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This dissertation examines the problem of detecting active sonar echoes

under ocean reverberation limiting conditions. The properties of acoustic

reverberation pertinent to the design of active sonar detectors are first studied.

Two detection schemes representing different approaches are then proposed and

developed. One approach is an ad-hoc engineering approach, which preprocesses

the received signal with an adaptive noise canceler, and then performs the

detection. The second approach takes a global point of view and utilizes the known

statistics of the problem to design an optimum detector in the Bayesian sense.

A new, joint process, pole-zero adaptive filter is developed, and it is shown

that under certain circumstances its performance is superior to its all-zero

counterpart. It is a candidate for an adaptive, ad-hoc detection scheme.

Often times, when closed expressions for system performance are hard to

achieve, a Monte-Carlo simulation approach is used. In this context, the ability to

synthesize an ensemble of active sonar pings is a key to assessing detector

performance. One of the major contributions of this dissertation is the development
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of a multi-channel element level reverberation time series generator.

Three active sonar problems of ever-increasing complexity are then

examined. The first problem is one of signal known exactly with a boundary

interference coming from a known direction. In the second problem the

interference is coming from an uncertain direction, and in the third another fixed

interference coming from an uncertain direction is added.

Finally, for all the above problems, comparisons are made between the ad-

hoc detector and two implementations of the Bayes detector, a block processor

(sub-optimum), and a time sequential processor. This is done using the

reverberation time series generator, and through the comparison of Receiver

Operating Characteristic (ROC) curves. It is shown that when the optimum detector

is allowed to be time sequential it performs uniformly better than the ad-hoc

detector. Furthermore, the optimum detector demonstrates an adaptive learning

quality, through the process of updating the a-priori probability density functions

of the unknown parameters, from iteration to iteration.
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Introduction

Acoustic reverberation is a phenomenon which active sonar systems have

to combat. Reverberation results when the propagating pulse's energy is scattered

from inhomogeneities in the ocean and its boundaries, Reverberation data usually

has a complex and highly variable range-Doppler map, which depends on the

location of the sonar array in the water column, and on its beampatterns.

Ocean boundary reverberation (surface or bottom), can leak through

sidelobes or even through the edges of a main lobe in a convent;,,.,. .forward

looking beam output. The above leakage typically has a sudden onset and can

contribute t. the overall noise level. In conventional active sonar systems,

discrimination against boundary reverberation is typically achieved through

controlling the sidelobe characteristics of the main, forward looking beam.

A more sophisticated approach to the problem has suggested the use of

an adaptive beamforming structure which dynamically steers spatial nulls in the

direction of the interlerent boundary patch (surface or bottom). Such a structure

is called in the literature a noise canceler6 6 . In addition to the conventional

forward looking beam, the adaptive noise canceling structure uses one or more

reference beams. The reference beams are constructed such that they receive well

the boundary reverberation, but are essentially prevented from receiving signals

coming in from the main look direction. The processor adaptively filters the

reference beams to provide a good estimate of the boundary reverberation

contaminant in the main beam. It then subtracts the adaptive filter output from

the main beam output to get the desired - reverberation canceled - signal.

Implementations of such adaptive beamforming structures which take advantage

of the spatial separation between desired signals and boundary reverberation

contaminants are presented in 2 3 . Additional relevant sources are5 4 .6 4 .

• - -- u r a I N a l Nu nn~wa~ r'- = - "1
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The above solution to the problem is representative of an approach which

is based on intuition, but it is not at all clear that it yields an optimal processor

(under any optimization criterion).

Another approach suggests treating the problem as a whole right from the

beginning without imposing intuitive components on the processor structure, and

using all a-priori knowledge available. Detection theory provides us with a

mathematical framework out of which optimum processors can be designed. The

processor will evolve out of the mathematical solution of the problem, and will

not be restricted to using familiar structures.

Although Bayes optimal processors have been derived for the case of

volume reverberation s 5, little work has been done which takes advantage of a-

priori knowledge of the time-evolving spatial characteristics of boundary

reverberation. Related Bayes optimal work concerning interference sources of

certain and uncertain (but not time varying) location is contained in I and 26.24.25

respectively.

Here, a classical detection theoretic approach will be applied to the

processing of a vector time series. That vecLor may be composed of the single

array element outputs, or of some preformed beams. Some optimality criterion is

chosen, and then the processor structure is allowed to evolve freely out of the

mathematical solution of the problem. Any uncertain parameters are treated as

random variables and all knowledge about them is summarized in a-priori

probability density functions.

This dissertation is organized as follows: Chapter 1 reviews the current

scientific knowledge about the reverberation phenomenon. It then details some of

the physical and statistical properties of reverberation important for attempting

to quantify spatial covariance matrix expressions of it. These matrices play a
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major role in the optimum detector expressions.

In the second chapter, an important tool is developed. Often times, when

likelihood ratio expressions are complex, computing the detector performance

analytically is either very hard, or impossible. Then, being capable of synthesizing

multi-element (or multi-beam) active sonar pings becomes a prerequisite to one's

ability to test detection algorithms using a Monte-Carlo simulation approach. In

lieu of sonar synthesis programs, which are time-consuming and impractical for

this application, this chapter uses a spectral estimation approach, to compute the

multi-channel, time evolving power spectrum of the problem, including the

transmit pulse, the element (beam) transmit and receive beampatterns, the volume

and boundary effects, and the dynamics of the scenario. Then, the multi-channel

covarianc, matrices are computed, and the normal equatioiha problem is solved,

yielding a time variable, one-step forward prediction filter. The inverse filter

frequency response is an estimate of the spectral character of the problem. Now,

all that's left is to pass vectors of uncorrelated white noise through the filter, in

order to get multiple sonar pings of the same sonar scenario, for a relatively low

time investment. Lastly, the synthesis capability is demonstrated through an

example.

Chapter 3 reviews the two approaches to detection of active sonar pings

in a reverberating environment. As discussed above, the first is a combination ad-

hoc noise canceler-matched filter. The c!a-.pter then lays the ground iules for

Bayes optimum detection, and examines the array detection problem. Lastly, it

develops the Bayes optimum detector (BOD) for the simple case of signal known

exactly in noise known exactly, which turns out to be a matched filter.

All-zero adaptive filters exist in many variations, where the main

difference is in the adaptive algorithm modifying the filter weights. In the fourth



4

chapter, the joint Process Least Squares Lattice (JCLSL) all-zero filter is reviewed,

and then its pole-zero (1IR) counterpart is developed using an embedding

approach, which makes use of the all-zero filter recursions to create the pole-zero

filter rec,,rsions. Then, through a set of simulations, it is shown that in some

scenarios, it is beneficial for the adaptive filter to possess the ability to adapt

poles. Another simulation shows that in the scenarios used in this dissertation, the

performance advantage of the pole-zero filter is marginal.

The fifth chapter develops the Bayes optimum detectors for the three

cases tested in this dissertation:

1. Signal known exactly in correlated Gaussian interference of precisely known

direction.

2. Signal known exactly in correlated Gaussian interference of uncertain

direction.

3. Signal known exactiy in correlated Gaussian interference of uncertain

direction, plus a fixed interference of uncertain direction.

The sixth chapter distinguishes between two different implementations

for the Bayes optimum detector, namely block processing and time sequential. It

develops the time-sequential detector design equations including the updates of

the a-priori probability density function estimates which increase its knowledge

about the problem as time progresses.

Chapter 7 reviews the main methods used to evaluate and compare the

performance of the various detection schemes.

Chapters 8 compares the performance of both detection approaches, when

the Bayes optimum detector is restricted to the block processing method. Finally,

chapter 9 concludes this work by comparing the performance of both detectors

when this time the BOD is allowed the time sequential method. It also
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demonstrates tle adaptive quality of the time sequential BOD through the

updating process of the a-priori probability density function from one iteration to

the next.



1. Reverberation in the Ocean:

Active underwater electronic systems propagate acoustic signals through

the water column and use the information carried by these signals to detect

targets, echo range, or communicate voice and data. Like every other electronic

system, these systems suffer from noise effects, which mask the desired return

signal, and limit their performance. Underwater systems' performance in general is

limited by external noise sources and not internal (thermal) noise. In the absence

of hostile jammers, this external noise is usually divided into two main categories,

namely ambient ocean noise, and reverberation. Among ambient ocean noise

contributors one can find rain, waves, seismic noise, various biological noise

sources, , trdffic etc., and they ail exist independent of the presence of the

underwater system. An inherent difference between reverberation noise ?nd

ocean noise is that reverberation exists only as a result of acoustic energy being

transmitted, whereas ambient ocean noise is always there.

System's performance may be limited by either type of interference

(reverberation or sea noise), and in fact the same system may be reverberation

limited for part of its operating range, and ambient noise limited for the rest of its

operating range. The systems considered in this dssertation are assumed to

operate in conditions which dictate that performance be reverberation limited.

Therefore, ambient ocean noise is neglected in all derivations.

Reverberation is the result of scattering of energy originating from the

propagating pulse, by inhomogeneities in the ocean and its boundaries. In some

respects this problem is akin to the radar "clutter" problem. Reverberation is

usually divided into three classes, namely, surface, volume and bottom

reverberation. Irregularities in the ocean surface and the acoustic impedance

contrast of the air/sea interface, gives rise to surface reverberation. This type of

6
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reverberation varies with wind speed and transmission frequency 56 . 0 ' 18. In the

ocean body, air bubbles, suspended sediment, thermal inhomogeneities, fish,

plankton, and other biological scurces are the main contributors to what is

classified as volume reverberation 11 . Bottom reverberation is caused by energy

scattered from the sea floor, and is highly dependent on the floor type. Both
particle size and bottom relief are important factors 3 7, 8 . In general, ocean

acoustic reverberation has a very complex nature, and a highly variable power

spectrum. In some situations, where the sonar is fairly close to the ocean

boundaries, or when its beam's sidelobes are pointing towards those boundaries,

the energy reflected off of these boundaries makes a -Tignificant contriburion to

the range-Doppler map. This contribution usually has a sudden onset, may appear

at nonzero Doppler frequencies, and therefore may mask legitimate sonar echoes.

1.1. The statistical and spectral properties of reverberation:

1.1.1. Amplitude distribution

Common reverberation models assume that the reverberation signal is

comprised of a combination of numerous individual sources which scatter the

acoustic energy. These sources scatter the energy with different magnitudes and

random phase. An expression for the intensity distribution of numerous sources

of equal magnitude and random phase has been derived by Rayleigh3 l . The

probability that the resultant intensity will exceed the value I is given by:

P = exp -- (1.1)

where I is the average intensity. The actual received intensity is, of course, a

combination of sources of many different magnitudes, because the individual
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scatterers are of different size and strength, because the projector may be

directional, and because the transmission loss in different parts of the ocean may

vary. Nevertheless, it can be shown that Equation (1.1) is still valid provided that

there are a large number of sources of each magnitude, and that the number of

sources of each magnitude remains constant.

The applicability of the Rayleigh model has been tested in numerous

studies 4 4 3 6 ,3 5 , for all reverberation classes (surface, volume and bottom). All of

the studies have found that in general, the actual probability distribution of

reverberation intensity fits the Rayleigh model well. Moreover, it has been found

that the received envelope of the reverberation is a complex Gaussian random

process (i.e. it's real and imaginary parts are jointly Gaussian distributed).

1.1.2. Coherence

Coherence includes both the autocorrelation and crosscorrelation properties

of a statistical process. The observed reverberation envelope of pulsed sonar

possesses a "blobby" nature, where the "biobs" are about a pulse width long. The

temporal autocorrelation coefficient of reverberation envelope has been found to

almost diminish in a time delay equal to one pulse duration 38 . Spatial correlation

of reverberation received at two vertically separated hydrophones plays an

important role when implementing reverberation rejection algorithms. This

correlation has been studied, modeled 4 and measured5 8 ,5 9. 5 7 for both volume and

boundary reverberation. Both the models and the experimental results show that

bcolndary reverberation is more correlated than volume reverberation, and that

the crosscorrelation coefficient of both types diminishes with increased frequency

and hydrophone separation.
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1.1.3. Frequency distribution

The reverberation return resulting from a single frequency sonar pulse

typically occupies a spectral band which is non-congruent to the original pulse

band. The reverberation 'and is shifted in frequency due to Doppler effects

caused by the sonar platform movement, combined with any ve!ocities possessed

by the scattering media be it volume scatterers or surface waves. Furthermore, a

spectral spread is observed. Naturally, the finite duration of the transmission

I
pulse, results in a basic spread of -, where r is the pulse duration. Further spread

is a result of the fact that different Doppler shifts are caused by the reverberation

returns received from various directions. The Doppler shift depends linearly on

Ine sonar platform's velocity component in that direction, and therefore

reverberation coming in from different directions suffer different Doppler shifts.

A third contributor to the spectral spread is the one caused by the random motion

of the scattering media.

A typical range-Doppler map of a reverberation retn rn is shown in Figure

1.1. it was generated using a reverberation z!mulation package (REVSIM) developed

for this research, which will be described in detail in a later chapter of this

dissertation. Here, the vehicle was purposefully given a relatively high speed (30

m/s), so as to well separate boundary reverberation from volume reverberation in

the frequency domain, and make each of them well defined. The range-Doppler

map has also been left shifted to compensate for the vehicle's own speed. The

sonar array is placed at a depth of 100m, where the ocean depth is 400m. The

transmit beam illuminates a sector t75* in elevation, and the receive beam spans

=60. Early in the ping, around 0.1 sec, the onset of the surface reverberation is

well noticeable. It slowly creeps towards 0 Doppler joining the volume

reverberation, when ,ioujid 0.5 scc thc 6..;,f bottom reverberation appears. It
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too, then, slowly joins the volume reverberation until around 1 sec the two

spectral peaks become very close.



CO

Figure 1. 1 Typical range-Doppler map.



2. Element level reverberation time series synthesis

2.1. Introduction

The ocean's boundaries (surface and bottom) and particulate matter in the

ocean volume scatter energy from an active sonar ping back to the transducer.

The characteristics of this reverberation are highly non-stationary. A commonly-

used display of the time-evolving frequency content of reverberation is the

range-Doppler map. The expected range-Doppler map is useful in many instances

for active sonar system performance characterization.

As depicted in Figure 2.1, one approach to estimating the expected range-

Doppler map is to propagate the pulse outward and calculate the expected

backscattered return at successive range increments 2 2 . At each range, the shell

representing the ensonified portion of the ocean and its boundaries is split into

cells subtending a small azimuth and elevation angle spread. The expected

spectrum contributed by each cell is summed across all cells yielding the expected

spectrum at that range (i.e. a slice of the range-Doppler map at a given range).

, D5 SURFACE

OCEAN DEP'
~BOTTOM

SDB

Figure 2.1. Reverberation model geometry

12
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Although the expected range-Doppler map is useful in many instances for

active sonar system performance characterization, often the actual reverberation

time series is desired. Such reverberation time series are generated by REVGEN

(REVerberation GENerator)49.5 0. REVGEN is a direct implementation of the point-

scattering model of oceanic reverberation developed by Faure, Ol'shevskii, and

Middleton15 , 45 . 40 , 41 . 4 2. 4 3 . The returns from a large number of discrete scatteres

distributed randomly throughout the volume and on the boundaries are summed

coherently to obtain the (complex basebanded) reverberation time series at the

output of each hydrophone element or beam. The backscattering coefficient

(strength) for each reverberation type (surface, volume, and bottom) is specified

along with random scatterer motion, platform trajectory, absorption, boundary

reflection losses, and transmitting/receiving beam patterns. REVGEN has proved

very effective in the simulation of oceanic backscatter in a wide range of

applications7 , 63 ,19,2.3

Although very good, REVGEN also Is very computationally intensive and is

not suitable for generating a large number of pings for a given environment as

needed when performing Monte Carlo simulations for -:tive sonar system

performance characterization. Typically, generating a single sonar ping similar to

the one synthesized in Section 2.3, will take REVGEN a few hours to run. In order

to generate a large ensemble of pings, REVGEN would have to be run hundreds

and maybe thousands of hours. An alternative to the point scattering approach

taken in REVGEN is to synthesize reverberation by passing a vector white noise

process through a multichannel IIR filter whose time-varying transfer function

matches the time-evolving spectral characteristics of the expected auto and cross

range-Doppler maps. Of specific interest is the generation of array element-level

or beam-level reverberation time series which have appropriate element-to-



14

element or beam-to-beam crosscorrelations. Related approaches are discussed

in 20 , 6 2 .9 , 3 4 . Obviously, one run time investment here is in generating the

multidimensional time-varying IIR filter coefficients. Surprisingly, this task in

itself is relatively short, and typically takes a few minutes. Once the filter

coefficients are available, generating each sonar ping takes a few minutes, as

contrasted to a few hours using REVGEN. The time savings factor exceeds 100,

and allows the synthesis of a complete sonar ping ensemble over the course of a

few hours. This makes the use of a Monte Carlo simulation approach feasible.

Section 2.2 will describe one approach to the generation of the expected

auto and cross range-Doppler maps and how to fit a time-varying, multichannel,

autoregressive (AR) time series model to these range-Doppler maps. Then, a set

of simulation results is provided in Section 2.3 and is compared with REVGEN's

output.

2.2. Multichannel revereration time series synthesis

2.2.1. Expected range-Doppler map generation (RVMD)

There are several approaches which can be used to calculate the expected

auto and cross range-Doppler maps. The specific environmental model used as

the basis for the simulations presented in Section 2.3 is a multibeam extension of

the approach discussed in 22 . Array elements can be viewed simply as beams with

broad spatial response characteristics, when an element level Range-Doppler map

is sought. The module whose function is to compute the scattering function

resulting from the combined effects of the environment, vehicle dynamics and

transmit and receive beam patterns is modified so it handles a pair of receive

beams at a time. When the program is handling an auto-scattering function, both

receive beams are identical, but when the program is dealing with a cross-
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scattering function, the two receive beams are the ones whose cross scattering

function is being computed. The programs run until all possible receive beam

pairs are exhausted. The result is a multidimensional scattering function.

As shown in Figure 2.1, the reverberation model geometry consists of a

spherical shell representing the portion of the ocean illuminated by the signal

wavefront at the instant in time corresponding to a range R after transmit. The

expected range-Doppler map is calculated in two stages.

First, the multidimensional scattering function is calculated following the

steps outlined in Figure 2.2. The illuminated volume of the ocean is divided into

cells. An evaluation of scatterer motion relative to the platform is made for a

measure of spectral shifting and/or spreading due to the environment. For each

cell, and each beam pair, the sonar equation is solved in order to determine the

gross attenuation experienced by a transmitted signal during the scattering

process. The total scattering function for each beam pair for surface, volume, and

bottom reverberation is computed by summing the incremental contributions from

all cells. These scattering functions include the effects of platform motion,

transmit beampattern, both receive beam patterns, and the environment (surface,

volume, and bottom backscattering strengths, scatterer velocity distributions,

surface waves and current layers, and sound absorption). An isospeea sound

speed profile is assumed and reflections at the surface and bottom boundaries are

not permitted.
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2V ,+y fc solution of sonar
equation for (ij)'
grid cell and

(k,) ' beam pair

(i.j,k,)

convolution 
f

surface volume bottom total

Figure 2.2. Scattering function calculation

In Figure 2.2, x is a time delay (range) variable, fj(x) is the Doppler shift

accounting for vehicle motion relative to the (Qj)th grid cell and mean scatterer

2V
speed relative to a stationary vehicle, - fc is the frequency offset such that a

C

stationary target on vehicle axis has zero Doppler shift, p'J( f,x) , is the zero-mean
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Gaussian speed distribution of scatterers in (j)th grid cell, S (f,x) , is the
Doppler shifted speed distribution of scatterers in (ij)th grid cell, A is the

scattering level (normalized to I s in range) from the (i,j)th grid cell, (kl)", beam

pair, S jkl(fx) is the scattering function for the (i,j)th grid cell, (k,l)' h beam pair,

and S'( f,X) are the surface, volume, bottom and total scattering functions for the

(kl)' beam pair.

Outlined in Figure 2.3, the second stage completes the reverberation

model by combining a detailed description of the .ransmit signal (i.e. pulse length,

envelope shape, and source level) with the characterization of the environment

provided by the multidimensional scattering function. The convolution of the

scattering function with the transmitted spectrum yields the expected multi-beam

range-Doppler map.

-k I

surface volume bottom total

Fou~e 2 ) onvolution ]
surface volume bottom total

Figure 2.3. Convolution with the transmitted spectrum
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In Figure 2.3 f(t) is the complex envelope of transmit pulse, fl(' is the

normalized energy spectrum of the transmit pulse, Et is the transmit pulse energy,

Sj'(f,x) are the surface, volume, bottom and total scattering functions for the
th ar thesurfce, otto andtota

(k,l)' h beam pair, and 4'(f,X) are the surface, volume, bottom and total

reverberation power spectra for the (k,l)' h beam pair.

2.2.2. Time-varying IR filter derivation

The classical linear minimum mean square error (MMSE) estimation

problem has been developed by Kolmogorov 2 9 and Wiener 6 8 , and has been since

one of the foundations of estimation theory. It is discussed is standard estimation

theory texts3 4 . Its development is therefore left in this dissertation for an

Appendix (A).

The end result of the linear MMSE problem are the well known normal

equations, in this case, their multichannel version:

AoRo+,Ao _-l+. .............. +AP/_= Go (2.1)

AOR +AoRo+ .............. +AP_ = Gj
..............

AoB ,,+A r_jRo+. .............. +A ,,Bo  = Gp

or in their matrix form:

Ro R I . . . R,

I.o

....... B . -- ....
rr

[AO.......ApJ - - = j ...... GP] (2.2)

R&., R-V~ . . . B0

Since we are dealing with an N-input N-output system, A, are all NxN matrices, and
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so are R1 and f. Also, Gj are the crosscorrelation matrices between the input and

the desired signal. In the specific problem of linear prediction, those reduce

simply to the crosscorrelation between the input at time n and the input at time

(n-1), or the input autocorrelation at lag (i+1):

Gi = Ri'l (2.3)

In this case, the matrix form of the normal equations takes the form:

Bo Rg . . . RP

R- 1  Ro  . . R_P

[A°  I ....... [,,]I -R2 ....... .R +1J (2.4)

&_, R-P+1 • • . 0

Solving the above equations will yield the multichannel filter coefficients A,.

Our goal is to pass a vector white uncorrelated noise process through a

multichannel IIR filter as shown in Figure 2.4 yielding a vector time series at the

output which approximates the time-evolving (auto and cross) spectral

characteristics of reverberation as it would be seen at the output of the elements

or beams of a transducer array. The time-varying coefficients of the multichannel

one step forward prediction filter can be derived in a number of ways.
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Figure 2.4. Autoregressive process generation model

Here, slices at a given range from the set of expected auto and cross

range-Doppler maps will be viewed as the multichannel power spectrum of a

stationary vector random process. First, the multichannel power spectrum is

inverse Fourier transformed to yield the corresponding multichannel correlation

function. Then, a multichannel extension of the Levinson-Durbin al.;orithm is

used to derive the one-step forward prediction error (inverse) filter shown in

Figure 2.5 which provides the IIR filter coefficients. The Levinson-Durbin

algorithm has been discussed extensively in numerous publications 3 3 . 14 6 5,6 9 , 52 ,2 8 ,

and its development will not be repeated here. It takes advantage of the special

structure of the autocorrelation matrices, to achieve an efficient method of matrix

inversion.
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A .(n)-'

Figure 2.5. One step forward prediction error filter

Each increment in range is processed in exactly the same way yielding

successive sets of IIR filter coefficients. The prediction error filter order is

chosen such that it is of the smallest order large enough to accomplish emulating

a!; of the spectral contents in the input data. In the type of problems encountered

in this dissertation, where the input spectrum typically posesses two spectral

humps, namely the main volume reverberation spectral hump, a.zd anotict,

boundary reverberation spectral hump, experience shows that filter order can be

kept to a low value (3-4), while preserving all spectral features of the input. This

is well demonstrated in the simulations in Section 2.3.

2.2.3. Reverberation time series synthesis

The sets of IIR filter coefficients (one set per rarge increment) then are

used as the coefficients of a time-varying, multichannel IIR filter. Since each
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coefficient set represents a range slice, the range slices originally selected for

RVMD have to be narrow enough so that the time varying spectra are relatively

smooth from range slice to the next. A vector white uncorrelated noise process is

passed through the filter yielding a vector output time series which simulates the

outputs of a reai transducer array in a.i ocean whose environmental parameters

are those input to RVMD.

2.3. Active sonar simulation

As an example of this approach to reverberation time series synthesis,

consider the following active sonar system. An array of 9 rows is mounted on a

submerged vehicle as shown in Figure 2.6.

surface

30 m

130 m

bottom

Figure 2.6. Submerged Array Example

The vehicle is traveling at 25 knots at a depth of 30 m. Ocean depth is 180 m. The

sonar transmits a 180 n,s, redtangularly windowed pulse.
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The 9 row array has a sensor spacing of X/2 at the operating frequency of

the sonar. A conventional beam is formed by simply summing the outputs of all

array rows. The corresponding beam pattern and a polar plot of a vertical slice

through the beam pattern at 0* bearing are shown in Figure 2.7.

A difference beam is formed by subtracting the outputs of the 2 center rows of

the array. The corresponding beam patterns similar to those in Figure 2.7 are

shown in Figure 2.8.
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Polor Sum beocmptte-rn (dB)
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Figure 2. 7. Sum Beam polar and spatial beampatterns.
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Polor Dffference beompc±±ern (dB)
90

.30

-10

-90

Spc t iol Dffforence becimpcttern (dB)

Figure 2.8. Difference Beam polar and spatial beampatterns.
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A transmit beam is assumed which uniformly illuminates the medium over a sector

-30* in bearing and ±75* in elevation normal to the array plane.

The backscattered return to this sonar was simulated using REVGEN and

the multichannel IIR filter approach discussed in Section 2.2. In this case, an

isovelocity sound speed profile was assumed (c - 1500 m/s) along with the

following parameters: (a) volume backscattering coefficient, sv - -70 dB, (b)

bottom backscattering coefficient, sb - -20 dB, and (c) surface backscattering

coefficient, s s - -30 dB, and (d) attenuation due to absorption, a - 4 dB/km.

REVGEN range-Doppler maps of the returning reverberation for the

conventional (sum) and difference beams as well as the the corresponding cross-

power range-Doppler map are shown in Figure 2.9 (fs - 1.27 kHz). These were

generated by taking successive 128-point FFT's (Kaiser-Bessel window, a-2.5)

overlapped by 87.5% (16 points). In addition, the range-Doppler maps have been

left-shifted to compensate for platform velocity. In Figure 2.9a (sum beam),

volume reverberation dominates early in the range-Doppler map. Later (at

approximately 0.25 s in range), the onset of bottom reverberation arriving through

the side lobes of the main beam is seen. In Figure 2.9b (difference beam), volume

reverberation also dominates early in the range-Doppler map. The onset of bottom

reverberation is more pronounced here than in Figure 2.9a due to the response

characteristics of the difference beam pattern.
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Figureu 2. 9b - VGEN -2 Row Dffrwc
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The multichannel IR filter results will be presented following the three

steps discussed in Section 2.2. The RVMD parameters were identical to those used

in the REVGEN simulation. First, Figure 2.10 shows the RVMD auto and cross

range-Doppler maps. Note the "scallops" in the suiface portion of the map, which

are due to the sidelobes intersecting the ocean boundary. Second, the

corresponding time-evolving inverse linear predictor spectral estimates (filter

order p-4) are shown in Figure 2.11. They indicate how closely the derived IIR

filter matches the expected auto and cross range-Doppler maps. Lastly, Figure

2.12 shows the results of passing a vector white noise process through the

multichannel IIR filter and processing the output as done with the REVGEN time

series. As is easliy seen, the results are quite similar to the REVGEN range-Doppler

maps in Figure 2.9.

Figure 2.13 presents expanded high-resolution range-Doppler maps of the

main beam, in order to further emphasize the similarity of REVGEN output (2.13a),

RVMD output (2.13b), the linear predictor (2.13c), and finally REVSIM output

(2.13 d).



30

FI~.a-u 2.10a RVM- 9 Raw Sum

Flg~rs 2. 10b RVM 2 Raw Dfffwwc



31

Fz9Lrs 2. 19c- R'flD L- 0,-Oreuw Cr

Figure Z.10. RVMD - Auto and Cross range-Doppler maps.
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Figure 2.11. [nverse Linear Predictor - Auto and Cross range-Doppler maps.
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Figure 2.12. REVSIM - Auto and Cross range-Doppler maps.



36

Flgqa-s 2. 13a FENGEN 9 Ro Sw,

Plr 2. 13b -V -) Pow Gum



37

F1Lgire 2. 13c -LInr~ Prctr-- 9 Pc Sus

F19Lre 2-13d - -ESI Pow Sum

Figure 2.13. Main beam - high resolution range-Doppler maps.



3. Signal detection in boundary reverberation

As described in a previous chapter, ocean acoustic reverberation has a

very complex nature, and a highly variable power spectrum. Reverberation is a

source of interference which active sonar systems have to combat. In some

situations, where the sonar array is fairl; tuus_ lo the ocean boundaries, the

energy reflected off of these boundaries (bottom cr surface), makes a significant

contribution to the range-Doppler map. This contribution ',sually has a sudden

onset, may appear at nonzero Doppler frequencies, and therefore ma' mask

legitimate sonar echoes. The shape of the transmitting and receiving beams of the

active sonar modify the time evolving range-Doppler map observed by the

receiver. Traditionally, sonar systems have discriminated against boundary

reverberation by forming fixed receiving beams which had low sidelobe

characteristics in the direction of the ocean boundaries. However, the energy

leaking through the low sidelobes may still be a major contributor to the overall

noise background level. Furthermore, since the sonar system is typically moving

and varying its depth in the water column, the direction of boundary

reverberation is not fixed.

The above reasoning led many researchers to propose using an adaptive

structure in order to track the interference direction and to place spatial

beamformer nulls in that direction. Such a beamformer may continuously learn the

boundary interference direction and adjust itself to cancel it out, thereby

enhancing signal to noise ratio and improving the detection performance.

Implementation of such an ad-hoc structure follows the lines of the well known

adaptive noise canceler 6 6 . In addition to a main beam which receives well in the

desired look i rection, one or more reference beams are formed. The reference

beams receive well in the direction of the boundary interference, and have spatial

38
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nulls in the main look direction. The output of the main beam contains both the

desired signai, and a contaminant which is the contribution of the boundary

interference leaking through side lobes or the edges of the main lobe. Ideally, the

reference beams contain only a replica of the interference. The output of the

reference beam, or beams, is processed by an adaptive filter and then subtracted

from the main beam. The adaptive filter tries to provide a good estimate of the

interference portion of the main beam output, and the final error output ideally

contains only the desired signal. Implementation of such adaptive reverberation

cancellation schemes is reported by Hodgkiss and Alexandrou 23. The boundary

reverberation canceled output of the adaptive structure can now be treated as

containing a known signal in noise (the volume reverberation), a classical, solved

problem.

The proposed solution discussed so far is representative of an approach

which is based on intuition. A typical conventional adaptive processor would

combine one or more of the following building blocks in order to make a decision

about target presence:

1. Fixed Beamformer.

2. Adaptive beamformer.

3. Adaptive nullformer.

4. Adaptive spectral whitener.

5. Matched filter.

6. Threshold detector.

Use of each of the above building blocks is intuitively reasonable, but it is not at

all clear that any combination of these :omponents yields an optimal processor

(under any optimization criterion).

Another approach suggests treating the problem as a whole right from the
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beginning without imposing intuitive components on the processor structure, and

using all a-priori knowledge available. Detection theory provides us with a

mathematical framework out of which optimum processors can be designed s 4 . 64 .

The processor will evolve out of the mathematical solution of the problem, and

will not be restricted to using familiar structures.

Although Bayes optimal processors have been derived for the case of

volume reverberation5 5 , little work has been done which takes advantage of a-

priori knowledge of the time-evolving spatial characteristics of boundary

reverberation. Related Bayes optimal work concerning interference sources of

certain and uncertain (but not time varying) location is contained in 1 and 26.24.25

respectively.

Here, a classical detection theoretic approach is applied to the processing

of a vector time series. That vector may be composed of the single array element

outputs, or of some preformed beams. An optimality criterion is chosen, and then

the processor structure is allowed to evolve freely out of the mathematical

solution of the problem. Any uncertain parameters are treated as random variables

and all knowledge about them is summarized in a-priori probability density

functions.

3.1. The adaptive (noise canceling) ad-hoc detector

As previously mentioned, the time evolving nature of ocean acoustic

boundary reverberation has led many researchers to try applying adeptive

filtering schemes to an observed vector time series, in order to cancel out, or

reduce the interference level present in it. The idea of adaptively canceling

interference sources thereby enhancing the desired signal is intuitively

reasonable, and seems very attractive. It is not at all clear, though, that using such

a canceler as a building block, following it by another ad-hoc detection building
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block is a globally optimal solution from any optimal detection criterion point of

view.

As is implied from its name, an adaptive filter "adapts" to the changing

conditions by varying its weights, and going through a learning process. Various

mechanisms that control the variation of the filter weights have been proposed

and implemented. Each one of these mechanisms is based on some optimality

criterion (e.g. minimum mean square error), which is local to the adaptive filter

structure, and does not necessarily conform to any global optimum detection

criterion.

The adaptive filtering structures may be viewed as realizable approximate

solutions to the classical optimal Wiener filtering problem, and can be developed

both from a statistical point of view (assuming stationarity and ergodicity), or by

using a deterministic least squares approach. Both approaches can be

implemented through block processing or time-recursive techniques, and may be

implemented in direct form, or through efficient lattice structures. Built into all of

the adaptive filter implementations there is an adaptation coefficient which serves

as a 'forgetting factor' (i.e. weighting less past in favor of more recent data).

There are three general classes of adaptive structures. The first class is

based on the method of steepest descent and is generally referred to as the LMS

algorithm. The work of Widrow and Hoff 67 has served as the basis to this method.

The second class is the gradient lattice (GL), and the third is of the deterministic

least squares type, and is referred to as the least squares lattice (LSL). A

compaiison between these three classes is beyond the scope of this work, and

Alexandrou 4 is a good reference in that regard. Due to its superior behavior

during abrupt changes in the processed data, t!-e LSL class of adaptive filters has

been typically selected by researchers dealing with the ocean boundary
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reverberation problem. Hodgkiss and Alexandrou 2 3 and Alexandrou s have shown

how the LSL filter can be used to cancel or reduce sea surface reverberation

interference. LSL class adaptive filters are used in this dissertation as part of an

ad-hoc detection scheme. In fact, a new structure of a joint process pole-zero

adaptive LSL filter is developed in the next chapter, and its performance is

compared to that of the standard all-zero LSL filter.

The ad-hoc detection scheme, then, accepts as inputs a main beam output

which contains the signal contaminated by interference, and one or more

reference outputs, which contain the interference alone. The adaptive filter tries

to cancel the interference, and the filter's output is then presumed to be

interference free, and is presented to a signal known exactly in noise known

exactly Bayes optimum detector for making the decision. Figure 3.1 illustrates the

structure of the ad-hoc detector.

Optimum

_ X 
Detector

Re ference Adaptive

Figure 3.1 The ad-hoc detector
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3.2. Complex exponential Fourier series representation of signals

In order to be able to use classical statistical techniques and apply those to

optimal detection theory, we need to obtain a finite dimensional observation

vector which is then used in computing the joint probability density functions

under the true and the null hypotheses. These probability density functions, in

turn, are used to form the likelihood ratio. Typically, the *'ector of observables

available for processing is that of the array element outputs, or some preformed

beam outputs. In any case, this is a vector of continuous time waveforms, which

means that some mapping technique is required in order to collapse this space

into a finite dimensional space. There are three well known techniques to perform

this transformation, namely time sampling, Karhunen-Loeve expansion, and

trigonometric Fourier series. The best selection of the mapping technique usually

depends on the problem one is faced with, and a good choice can often reduce the

complexity of writing the likelihood ratio expressions.

Adams and Noltel have shown that using the trigonometric Fourier series

mapping technique leads to significant mathematical tractability, and Hodgkiss 2 7

derived the conditions that have to be met in order to be able to represent the

observed vector in terms of its Fourier coefficients. Certainly, with the advent of

fast computers, and ne availability of fast Fourier transformation algorithms,

using this approach seems very attractive. The mathematical derivations of

optimal Bayes detectors in this dissertation follow ,imlidi derivations made by

Adams and Noltel and Hodgkiss 27 except that their derivations dealt with the

passive sonar problem, where this work is dealing with its active counterpart. The

trigonometric Fourier series mapping is used, then, throughout this work.

It is well known that a well behaved function f(t) on T ,T} can be
2 2
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represented as.

N 1/2

f(t) = li ,~) exp(jnw~t) (3.1)

2 7r
where w = -, and

T

1/2 T12

ai(n) f (- f(t)exp(nw0 otdt (3.2)

If f(t) is bandlimited and has no dc component then on T... ,} f(t) can be

expressed as:

f(t) = 2 Re Ea(n){-Jexp(jnwat) (3.3)
N1  

T

Then f(t) is mapped into a finite-dimensional vector .f

T
= [a(N,),a(N,+ 1).........a(N 2)J (3.4)

The above can also be shown for a stationary random process r(t). with power

spectral density R(w). It can be expressed on [ 2]as:

N 11/2

r(t) = lim Ez(n)(-)' exp(jnwot) (3.5)
N- oo-N T

where z(n) is a random variable defined as in (3.2) above.

If r(t) is bandlimited and has no dc component then:

N 2  1 1/

r(t) = 2 Re Ez(n)(-) 1exp(jnwot) (3.6)
N T
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i.e. every realization of the random process r(t) can be mapped into a vector:

T
z = [z(N,),z(N 1 +l) ............ z(N 2)l (3.7)

If r(t) is a Gaussian random process, then z(n), which is a linear functional

of r(t) is a Gaussian random variable. For zero mean noise processes, z has the

zero vector as its mean. For large T, Papoulis 4 7 has shown that the components of

(3.7) are approximately uncorrelated and z(n) has a variance R(nwo). The

covariance matrix of z is therefore diagonal. It can also be shown that z is a

complex Gaussian vector, i.e. is a (N2 - N, + 1)-tuple of complex random variables

such that the vector of real and imaginary parts is (N2 - N , + 1)-variate Gaussian.

3.3. The array detection problem

An array of receiver elements observes a vector of time waveforms as

r (t) = [ro(t),rl(t) ......... rK - 1(t)] (3.8)

where subscript denotes the array element.

If all the received waveforms are bandlimited then according to (3.2) one can

express them in a Fourier expansion, as follows:

N1/2

rk(t) = liM Y zk(nd -LI exp(jnwot) (3.9)
N- oo_ tT

The Fourier coefficients are:

1/ T/2

zk(n)= _f rk(t)exp(-jnwot)dt (3.10)

One can now group the Fourier coefficients for a single frequency index but from
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all the array elements in a K dimensional ;ector as foliuvs:

Z T(n) = [zo(n),zj(n) .......... ZK - (n)] (3.11)

and group now vectors from all the frequency indices:

ZT = [Z T(NI),.ZT(NI + 1) ....... ZT(N2 )] (3.12)

In this way the time waveform observed on the K elements is mapped into a

K(N 2 - N, + 1) dimensional vector. It can be shown that Z is a complex Gaussian

vector, and that its covariance matrix (for large T), is block diagonal. There are

(N 2 - N1 + 1) KxK blocks, each representing the correlation between array

elements at a specific frequency.

3.4. Hypothesis testing

The theory of hypothesis testing began with the work of Bayes 6 on

conditional probability. The notions of cost and risk were introduced by Wald 6 1 ,

who initiated much of the recent theoretical work along the lines of the theory of

games. Communications receivers based on the ideas of conditional probability

were proposed by Kotel'nikov 30 in a dissertation from 1947, published in 1956

and translated into English in 1959. At the same time Woodward and Davies 7 0,

and Woodward 71 suggested applying conditional probability to signal detection.

An analysis of signal detection within the framework of conditional probability

was performed by Middleton 39 , and Peterson, Birdsall and Fox 48 were at the same

time designing receivers based on the likelihood ratio. The following summarizes

the thought process developed by the above mentioned researchers.

A processor which has available an observed vector time series z, has to be

designed. The processor is forced to make a binary decision between two mutually

exclusive and exhaustive hypotheses, namely, signal absent or signal present:
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HO: z = n(20) (3.13)

H1 : z = s(e.) + n(J_) (3.14)

where n(4), s(l) and n(%_) are noise and signal vectors written as functions of

paiameter vectors * and 1. The parameter vectors determine the shape and

character of the noise and signal vectors, and may be fully known, partially known,

or even completely unknown.

The processor's choice results in one of four different cutcomes, i.e a false

alarm, a miss, a detection or a null decision. Their corresponding probabilities are:

False Alarm: Q10 = f po(z)dz (3.15)

RI

Miss: Q 1 = f pl(z)dz (3.16)
RO

Detection: Q11 = f P(z)dz (3.17)
RI

Null Decision: QDo f po(z)dz (3.18)
RO

where po(z) and pl(z) are the probability density functions of the observed vector

under the two hypotheses.

A cost is attached to every one of the outcomes, and consequently a cost

matrix is defined:

IO C11 I

Where C,, is the cost of choosing Hi when Hi is true. The cost selection depends

heavily on the scenario of the problem, but usually the costs for making a correct
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decision are chosen lower than those for an incorrect decision. A negative cost

means - reward (conceivable for a correct decision).

A risk function is also attached to every outcome, and is defined as follows:

R= Cj Q j  (3.20)

This function is the product of the cost and the probability of an outcome, and

represents the risk incurred in case that outcome materializes.

3.5. The Bayes Criterion

i he Ihayes criterion attempts to minimize the average risk, and seems a

natural approach for an observer forced to make a large number of decisions

under repetitive circumstances. If - is the probability that Ho is true, the average

risk is:

R = [CooQoo + C1oQ1o] + (1 - )[CoOQ 1I + C11 Q 1 ] (3.21)

SdCoof po(z)dz + ClofPo(z)dzl + (1 - M)[Cojfp(z)dz + Clfpl(z)dzl

Ro  R1  Ro  RI

Now, since f p,(z)dz = I - f p(z)dz i=0,1
Ro  R1

Then

R = [Coo + (CI O - Co)fp(fPoZ)dz] + (0 - )[Co + (CoI - CIl)f'pl(z)dzl (3.22)
R 1  R 1

= Coo + (I - )Coj - (I - s-)(Coj - C, ,)f .'pj(z) - kop,(z)jdz
RR

Where:
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(Clo- COO)
AO = (3.23)

(1 - 'CoI - C11 )

Furthermore, since (Co, - C,,) is ositive, minimizing R means to select R , such

that the integral is as large as possible. In other words, choose R, such that all

points for which the expression p1 (z) - Aopo(Z) is positive are included.

This leads to the following decision rule:

p 1 z)
R= [z : A(z) = > Aoj (3.24)

Po(Z)

p1 (z)
Ro = [z.A(z)=- <Ao]

The optimum Bayes detector in the least risk sense is implemented, therefore, in

P1 (Z)
forming the ratio A(z) = which is called the likelihood ratio. The

pO(Z)

likelihood ratio is compared to a prescribed threshold, and the decision is made

based on the comparison's outcome. The above procedure serves as the basis for

all the optimum detector derivations in this dissertation.

3.6. Implementing the Bayes criterion for !.he detection of a known signal

in spatially correlated Gaussian noise

The following outlines the procedure used when deriving Bayes optimum

detectors. This case is a very simple one, in which everything is known about the

signal and the noise, and there is no boundary interference. Such may be the case

in the deep ocean, where the boundaries are far enough from the array so that the

reflections off of them are highly absorbed. Also, if an interference canceling

scheme is used prior to the Bayes detector, the processor may assume that

interference was canceled out completely, and implement the following approach:
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The processor observes a vector time series as follows:

r (t) = [ro(t),rl(t) ........... rK-l(t)] - < t < (3.25)
2 2

Under H,

-T T
rk(t) = Sk(t) + nk(t) - < < t (3.26)

2 2

Under H o.

-T T
rk(t) = nk(t) - < t < - (3.27)

2 2

As shown before, one can write:

N
2 I -T T

nk(t) = 2 Re Eak(n)(-) exp(j2not) < t < T (3.28)
T 2 2

N l

N2  1 -T T

rk(t) = 2 Re Ebk(n)(-I)1 exp(j2nwot) - < t < T (3.29)

NI T 2 2

and

N 2 T T
rk(t) 2 Re -]zk(n)( -)l exp(j2nwot )  -<t<-(.0

NI T 2 2

When noise alone is observed, Z , defined before, is a zero mean complex

Gaussian vector with covariance matrix ..

When a signal is present, Z is a complex Gaussian random vector with covariance

matrix Q, and mean:
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m - [bo(Nj),b1 (Nj) ....... bK-,(NI),bo(NI + 1) ...... bK _ 1(NI + 1) ...... bK - I(N 2 )I (3.31)

The probability density functions are then:

1 *

p(Z/H) = K exp[ - (Z - m)-(Z - m)] (3.32)

1

p(Z/H o) = K 11Q exp( - Z*-'Z] (3.33)

Form the likelihood functional:

P(Z/HO)
A(Z) = =expf - (Z - m) Q-j(Z - m) + ZQAa-IZ] (3.34)

p(Z!Ho)

Any moprone function of tt,' !':-'ihood functional can serve as a sufficient

statistic:

Int(Z) - (Z - m)0-- I(Z-m) + Z Q-'Z (3.35)

=- Z'-(Z - m) + m'L-(Z -m) + Z'-Z

Z'Az-lz + Z a- IM + M'a-1Z - M'a- M + z'a- Z

=Z .0a- m + m .Q- Z - M'Q -1m
since'mCL-Q m'

since m~joQ m isn' related to the observed vector Z, another sufficient statistic is:

I[Z - m + m'.Q -Zl = Re IZW1 n-Im] (3.36)
2

N2

- Re Z (n)'-'(n)[b,(n) ......... bK

NI

where Q -(n) is the inverse of the nth block .Q(n) of the block diagonal matrix ..
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Thus, the resultant optimum detector instructs us to implement a matched filter

where we correlate the observed vector with the signal mean vector.

The above derivation serves as an 'example recipe', which is repeated in this

work in order to arrive at Bayes optimum detectors which apply to various

scenarios and statistical assumptions.



4. JCLSL and JCARMA all-zero and pole-zero

adaptive filters

One approach to the problem of interference rejection in an array

processing context is the use of an adaptive beamfor ,ing structure which

dynamically steers a spatial null towards the source of undesirable signal.

Interference leaks into the output of a conventionally fc,rmed beam through

sidelobes pointing towards the source of interference. One or more reference

beams can be constructed which receive well the interference but are prevented

from passing signals propagating from the desired look direction. The outputs of

these reference beams are adaptively filtered to provide a good estimate of the

contaminant, and are then subtracted from the output of the conventional beam.

Such a structure is performing a noise canceling operation.

Since a beamformer weights and sums the outputs from a finite number of

array elements, it implements a spatial FIR digital filter. The response

:haracteristics of a beamformer will exhibit nulls as a function of either: (1) source

arrival angle at a given frequency or (2) source frequency at a given arrival angle.

Beam based adaptive beamformers can perform poorly due to nulls in the

response characteristics of the reference channel beamformer. A reference channel

adaptive filter implementing poles can partially compensate for these nulls.

4.1. An all-zero adaptive filter

The all-zero, joint process, least squares lattice structure (JCLSL) used in this

dissertation has been discussed in detail elsewhere 21' 2 along with applications to

the adaptive array processing problem. Figure 4.1 depicts the general structure of

this adaptive filter, and Figure 4.2 details the single stage structure.

-, 3
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- o(n)-' ( )

0 m
I Ststage Mt h stage

e o(n) erm(n)

y(n) (n )  n

Figure 4. 1. All-zero, joint process, least squares lattice filter
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Figure 4.2. i t stage of the filter

The reference channel process y(n) is filtered to form an estimate of the primary

channel process x(n) (the desired signal). Of particular importance in noise

canceling applications is the residual e,(n) obtained by adding the filtered

reference channel to the primary channel. In an adaptive beamforming application

x(r) is the output of a conventional beam containing an interference

contamination, and y(n) is the output of the formed reference beam. The filter

attempts to form a good estimate of the contaminant present in x(n).

4.2. The pole-zero complex adaptive joint process least squares lattice

This section will formulate and solve the joint process estimation proble,

where the estimated process is assumed to be an ARMA process, and therefore the
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linear predictor takes the form of a pole-zero structure. The single channel all-

zero linear predictor and the all-zero joint process estimator, as well as the pole-

zero linear predictor have all been developed and documented 21 . 2, 3 2 , 17. &. : 3 An

embedding approach is taken, where a scalar ARMA process is embedded into a

vector AR process, and the previously developed AR recursions are utilized to

produce the pole-zero joint process estimator recursions. The benefit of using the

more complex adaptive filter possessing both poles and zeros is finally

demonstrated through a simulation example.

4.3. The Input-output ARMA process model:

Consider a scalar data sequence y(n) which is assumed to be an M' h order

ARMA process of the form:

y(n)-aMly(n-l)+ .......... +aMMy(n-M) = bMou(n)+ .......... +bMMu(n-M) (4.1)

where the orders of the AR and MA parts of the ARMA process are chosen to be

equal for presentation convenience, and u(n) is the input to the ARMA filter. Note

that by simply dividing equation (4.1) by bM.o, it can be turned around to form:

u(n)+dMlu(n-1)+ .......... +dM.Mu(n-M) = CM.oY(n)+ .......... +CMM, y(n-M) (4.2)

Here, u(n) is also represented as an ARMA process.

The innovations of y(n) and u(n) are, respectively:

E(n) = y(n)-'(n) (4.3)

6(n) = u(n)-O(n) (4.4)

where
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(n) = -am, ly(n-1)-. .......... -am.my(n-M)+bm.IU(n-1)+. .......... +bm,mu(n-M) (4.5)

and

6(n)= -d , 1  . ............ k", ' -M; M ly(n- .) .... -cqMy(n-M) (4.6)

4.4. The embedding approach:

Equations (4.3)-(4.6) can be combined into a single matrix equation in the

form of a 2-dimensional AR linear predictor equation:

L(n) u(n)J -CMI dM,I I]u(n-i)1 (4.7)

Thr backward linear prediction equation can also be written in terms of an

embedded ARMA process in a vector AR process:

I(n)l= 
_u(n-M-I - hM Iu(n-i)J (4.8)

rM 1~~~-1 i MIi '+-

where rmy(n) and r"(n) are the Mth order backward prediction error signals.

Equations (4.7) and (4.8) are then just AR forward and backward linear prediction

equations for the 2-dimensional process:

[y K) 
(4.9)

The most crucial assumption made here is that u(n) can indeed be represented by

equation (4.2). Lee 31 shows that in most cases this assumption is valid.

Furthermore, implicit in this approach is the availability of the innovation process

u(n) to the ARMA filter. Since this input is unavailable, a bootstrapping approach

is taken, in which , the best estimate of u(n), is fed back to the input, and used



58

instead. Now one can use the previously derived AR process recursions to

compute the ARMA process linear predictor recursions and also the joint ARMA

process recursions. The ARMA process linear predictor recursions are well

documented 3i.53.32 and we will not repeat them here. Instead, we will extend the

joint process AR estimator recursions to get the joint ARMA process estimator

recursions. The notation used in the following equations is: y(n) represents the

reference process being filtered to predict the "desired" signal x(n). u(n) is the

reference signal innovation process. The first index always represents order

number, and the second represents time.

The recursion for the desired signal prediction error in the joint AR process

estimator is 3 •

+ = - i+ ri+l., (4.10)

where .M is the Mth order AR process cross correlation coefficient, and R.r is the

Mth order AR process backward prediction error covariance inverse. Using the

embedding approach, we now have in the ARMA case:

z = 1+1.??(4.11)

where, again, u(n) is the innovation process of the reference signal v(n). Now,

combining (4.10) and (4.11) we get:

X X x
T  

-r

= (4.12)

where

T
=' il~n ( ' i~~n 'iki~~n)(4.13)
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R Rry R rYY~

R'YY R ruu R ryu MRruy

It follows then that:

x * ,.. i U YitU (4.14)
i~l- atl~ ++Ln R -y R-1,n

where

=il~ R[2', R[uu,, Rpyu, 'ru

Further:

_____ x y Ry u )u ry y U rY(.5

-~ (-A ,

A-,. 1+ In+1,,+ 1 .~R+n(.6

K 4X =A7 1 f R7)U- AU RY"'

A +l~n 'ni~-~ 1+ 1. , +,"+l.n

Nowdfinl the deinrssiga rediection eoeffcurnsio s:

E XKd~xu A~ Rr A 'U R ruiiln-I~.n +.n- i+. i-s-n (.

The recursions for Y' and Axu are given by:

x y

= 1XAjY 1 ,1~~~ (4.18)
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X 
11Si,p~i+~ ~XU XU

Ai+l~n+l = (1-00 )i+1.n+t
1 

-yi,n+l

where (1-a) is the exponential weighting factor, and -1 is the likelihood variable.

The recursions for Rr'y, Rruy, Rryu and Rru are given by:

ryy (1-a)Riry+ -R+1(4.19)

y U
°

i~l~n~ l illnn+ 1 l.n +

ryury
R = (1-a)R'+.,

ruy ruy

Ril= (l-cx)R,+r+ Ill.n+

U U

Ri+,n+ = (1-a)R2Ru., -,-i+' -"ti.n +1

And all the above recursions yield the joint ARMA process estimator structure

shown in Figure 4.3. Figure 4.4 details the single stage structure.
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-2 o(n) -,n

t(n) E ) 
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(on) u (n),.

(n)

Figure 4.3. Pole-zero, joint process, least squares lattice filter
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riY~l(n)

r

rj (n) Z _ r(n)

y y

Figure 4.4. i t stage of the structure

4.5. Simulations

Two sets of simulations will be used to compare the performance of the all-

zero (jCLSL) and the pole-zero (JCARMA) least square lattice adaptive noise

canceling structures.
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Figure 4.3 describes how the input data was generated for the first

simulation.

Hre(Z) y(n) Adaptive
"re (Z)filter

Moir- chnnl r-o-sf er funciion

-e!S-a-0'-0e'-0i 0'0 0:1 0.2 0:3 0:4 0.5
Normalized FreqLency.

Reference chorinel tron-cer func-tion
Go0

40

Ncrrmolizid FroqL-ncy-

Figure 4.5. Data generation model.

A white noise time series w(n) has been passed through two simple FIR digital

filters. Ha,,(z), generating the main channel data x(n), consists of a 6-point

rectangular window. Hrf(z), generating the reference channel data Y(n), consists
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of a 4-point rectangular window. Since the goal of the adaptive filter is to invert

the characteristics of the reference channel transfer function, Href(Z), and to

model the characteristics of the main channel transfer function, Hmai(z), this

example presents a case where the ability to adapt poles is important.

Figure 4.6 displays error power as a function of time at the output of JCLSL

and JCARMA for filter order p-4. The results show that JCARMA has a several dB

lower error signal power than JCLSL.

>-4_ alM =0 0s. p1 t avercm N D=4.. oI)M ri m.r g n9

8.8 .0

-3.08 -38.0

-4. 0 128 25 38 3 1 AV6 A2 4. 99 94 51:2 M~ %8 8~G24
*Lance NLnber (W Securwe Ni~r (n)

Figure 4.6. JCARMA vs. JCLSL error power vs. time (p-4)

Additional insight is gained by looking at the power spectra in Figure 4.7 (JCLSL),

and Figure 4.8 (JCARMA). The left hand pair of panels are estimates of the main

and reference channel input power spectra (white noise passed through H,,ain and

Href). Note the dip in the reference channel spectrum which is centered on the

first sidelobe of the main channel power spectrum. It is in this particular region

that the adaptive filter can use the ability to adapt poles. The right hand pair of

panels are estimates of the adaptive filter output and error e(n) power spectra. As

can be seen, JCARMA is able to properly match the spectral characteristics of the

main channel where JCLSL cannot.



65

t~~~rRN -I 0% QIM *1 - of ?bin COMme]

29-0 ie e

20- 2e8.0

-20.8 -9.

-36.8 38.e

-40.8 -4e 0

Figure 4.7. JCARMA, p-4

32.83a 20
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Nor~c~iamdPraquwcV NrwiI zad Frurc

20-.8,
10.0 18.0
0.0 8.0

10.8 -10.0
-20.8 -28.0
-30.8 -38.0

-0.9 0.1 2 2 923 0.4 2 .~ -4 0 0 .1 0.2 9.3a 2.A 'M.

Figure 4.8. JCLSL, p-4

F~gures 4,'-#, 4.10 and 4.11 repeat the simulation with filter order p-8. Note that

even witih the atdditional degrees of freedom, JCLSL for p-8 is unable to perform
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uis well as JCARNIA for p-4.

o1!E. 5 Lb Point overcq rq cjo:005 1J, Vryt mlw-ao fl

-10.0 -18

e 8 25 34 5 2 61 ?9 14 9 2 5 8 1263
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Figure 4.9. JCARMA vs. JCLSL error power vs. time (p-8)
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4.6. REVGEN simulation

The second simulation was set up using a real ocean environment, and

REVGEN, a REVerberation GENerator discussed in Chapter 2. This is a

reverberation simulation package which implements directly the point scattering

model 50 . The returns from a large number of discrete scatterers, distributed

randomly throughout the ocean volume and boundaries, are summed coherently to

obtain the reverberation time series.

The sonar receiving array is made of four elements, and is placed at a depth

of 150m, in water which is 450m deep. The array platform is moving at 12.5 knots.

A pure tone, 180 msec pulse is transmitted and propagated through the water

column. The transmit beampattern is uniform over 60 azimuthal degrees and 150

vertical degrees. The return volume, surface and bottom reverberation time series

for each of the array elements is generated by REVGEN. Two conventional beams

are formed, a primary beam using the sum of all four array element time series.

and a reference beam using the difference between the two middle element time

series.

it is clear from the above description, and from examining the beampatterns

that the sonar array will receive boundary reverberation which might hinder its

ability to receive well from the desired look direction (straight ahead), An

adaptive filter continuously steering a spatial null in the direction of the

interference may improve the sonar's performance. Here, the performance of

JCARMA will be compared again to that of JCLSL, under the described scenario.

Figure 4.12 details the polar beampatterns of the main and reference

channels along a vertical cross-section. Figure 4.13 details the spatial

-beampatterns of the main and reference channels. Figure 4.14 depicts range-
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Doppler maps of the main and reference channel time series, after the platform's

own speed has been compensated for by shifting the entire range-Doppler map by

the proper amount. The surface reverberation return is clearly seen, peaking

around 0.5 sec and -0.2 cycles/sample.
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Now we pass the 2-beam vector time series through the two adaptive

filtering structures (JCLSL and JCARMA), and examine the results. For both filters,

filter order was set to 3, and a to 0.02. Figure 4.15 depicts the two adaptive filter

outputs. Though it is clear that both filters have done a good job of reducing the

surface interference lcvel, thereby allowing better reception from the look

direction, it is not clear in this case that JCARMA performs better than JCLSL.

Plotting the overall time evolving power levels (Figure 4.16) and the

JCLSL'JCARMA error power ratio (Figure 4.17) further reveals that in this scenario

there is only a slight performance advantage for JCARMA over JCLSL. The error

power ratio departs 0 towards the positive side wherever JCARMA does better

than JCLSL. The scenario used above will be used again in this dissertation to test

and compare the performance of different detectors. The above serves as an

indicator, which has been confirmed in other simulations, that in these scenarios,

the slight performance advantage of JCARMA over JCLSL, does not justify the

higher algorithmic complexity, and the higher run-time investment.
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Figure 4.15S. JCLSL -s. JCARMA filter output range-Doppler maps.
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5. Three specific problems and their corresponding

Bayes optimum detectors

This chapter deals with a specific scenario which an active sonar system

may encounter. Bayes optimum detectors are developed for three diffefent sub-

scenarios, whose level of uncertainty is ever increasing. The setting is as follows:

an active sonar system is mounted on an underwater platform which is submerged

in shallow ocean water. In this context shallow water means that the first

reflection of acoustic energy back into the receiver is significant. The ocean depth

is chosen such that there is a significant no-overlap zone between the two

boundary (surface and bottom) interferences, and therefore only one of them is

considered, meaning detection is performed in the no-overlap zone. The

platform's depth in the water column is either known, or has a known probability

density function. Sound speed profiles are assumed isovelocity, i.e. acoustic

energy propagates through the medium in straight lines. The platform is

completely stationary in the water column, i.e. the effective own Doppler speed is

zero. The sonar's front end is a four element sensor array whose preformed beam

outputs are available to the processor in the form of a sampled vector time series.

The preformed beam ensemble contains a sum beam which is formed by summing

all element outputs, and one or more difference beams formed by subtracting two

adjacent element outputs. It is further assumed that the transmission pulse is

narrowband, that the incoming signal characteristics are completely known, and

that the target is stationary. The sonar is assumed to be limited in performance

by acoustic reverberation and not by ambient ocean noise. This assumption is

typically valid in medium and high frequency systems, certainly when dealing with

relatively short ranges.

The three sub-scenarios are as follows:

76
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1. Platform is at a fixed, precisely known depth.

2. Platform is at an unknown depth, but the depth probability density function is

known precisely.

3. Platform is at an unknown depth, but the depth probability density function is

known precisely. Also, there is a fixed interference source whose direction

probability density function is known precisely.

Since the transmitted energy is propagating through the water, 'he

boundary interference direction is changing constantly. In the case where platfurm

depth is known exactly, the interference direction is also known exactly. When

there is uncertainty in platform depth, it translates to uncertainty in the direction

of the incoming boundary interference.

In the first cwo sub-scenarios, a sum-difference beam arrangement is

sufficient, since there are two degrees of freedom, namely signal and boundary

interference. In the third sub-scenario, another interference source is introduced,

and therefore another degree of freedom is required. That is why in this scenario

another difference beam is formed and used, and the problem's dimension

increases.

As discussed in Chapter 1, ocean acoustic reverberation has been the

subject of numerous studies 3 6. 35 , 13 , 4 6 . These studies clearly show that the

complex envelope magnitude of acoustic reverberation is Rayleigh distributed,

and that the real and imaginary components of this envelope are jointly Gaussian

distributed. This property of reverberation justifies using Gaussian probability

density functions in all the derivations of the Bayes optimum detectors in this

oi.sertation.

In Chapter 3, a general expression was derived for the likelihood function

in the case of a known signal in spatially correlated Gaussian noise:
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p(Z/H)
A\iZ) = -exp[ - (Z - m)'O-(Z - m) + Z_QZ] (5.1)

p(Z/Ho)

Equation (5.1) will ser'-e as the basis for computing the Bayes optimum ,letectors

in the three sub-scenarios addressed in this chapter. It is clear that key to this

derivation is our ability to precisely and accurately arrive at the covariance matrix

inverse expressions.

Figure 5.1 depicts the power spectrum of a typical sonar ping at the range

where detection is attempted.

86
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Figure 5.1. Sum beam power spectrum

It is apparent that due to this problem's setting (i.e. a narrowband transmission

pulse, 0 vehicle speed, 0 target speed), almost all the spectral content is located in

frequency inlex 0, or DC. For this reason, it is sufficient to use a single frequency

term in computing the received signal Fourier transform vector Z, the rovariance

matrix , which ends up containing a single block, and the signal mean vector m.
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5.1. Derivation of the two beam covariance matrix

Typically, active sonar systems operating at medium and high frequencies,

are reverberation limited. The detection ranges of these systems are usually such

that reverberation dominates the ambient ocean noise which is therefore

ignored 60 . -he ability to precisely evaluate the total reverberation (volume,

surface and bottom) covariance matrix, is the foundation to the correct derivation

of the likelihood functional. That will lead to the design of a tru -ptima!

detector in 'he "Bayesian" sense.

Consider the four element array which we use. We have available two beams:

sum and difference. The sum beam is a sum of all four channels, and the

difference beam is a difference between the two center channels. Figure 5.2

depi-ts ti, arrangement:

1 0- sum

20--

3F

diff _

Figure 5.2. Sum and difference beams
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Since in this ' : - , the mapping used to reduce the received signal to a finite

dimensional space is .he Fourier transform, the matrix sought here represents the

covariance between Fourier coefficients of all frequency indices, and all array

indices. Here, oril% a single frequency Fourier coefficient is used, and therefore the

covariance matr.,x is block diagonal, and only one block of it needs to be

calculated. Since th sonar is reverberation limited, we need consider only the

reverberation components' contribution to the covariance matrix.

Volume reverberation results from the scattering of acoustic energy by

marine life and particulate matter distributed in the water. Its element to element

cross-power spectrum depends heavily on the cross-element spatial response

overlap, but by -io means is white. Array element to element covariance is

therefore far fr, m being negligible. It wi!l be shown here, though, that in the

particular case of sum-difference beams, volume reverberation can be assumed as

uncorrelated elem.t to another element.

Denote the k-th element received waveform by rk(t).

Then the sum beam waveform s(t) is:

s(t) = ro(t)+rj(t)+r2 (t) r 3(t) (5.2)

and the difference heam waveform is:

d(t) = ri(t)-r 2 (t) (5.3)

The cross-covariance bet'.A:een the sum and difference beams is:

Q"d( t) = F s(o t~(011 = E rO(t)+r 1 (t)+ r2 (t)+r 3 (01 1) r ) 2(t 1] 14

where E[ I represent, the expected value operator, and represents complex

Conjugation.
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Dropping the time dependence in the notation:

Q.~d = E rori+rrir2 rvrr 3 r-ror-ri -r 2 r-2 r3 r;j (5.5)

On the average, and certainly when the reverberating volume is in the far field (i.e

its range is much larger than the array length), it is true that:

E [r, rI= E Ir 2r2 ] (5.6)

E Ir3 r;= E Ir0r;]

E Iror; = E Ir3r2]

E Ir 2 rj EIrlr; I

and therefore:

Q.,d 0 (5.7)

We see that in the particular case of sum-difference beams, far field volume

reverberation is essentially uncorrelated, and its only contribution' to the

covariance matrix is along the main diagonal.

Consider now the boundary reverberation. Denote the n th Fourier coefficient

at the O
h array element due to the boundary reverberation as d,(n). Then the

Fourier coefficient at the pth array element is:

d,(n) = do(n)exp (-jnwo6p P=0,..,3 (5.8)

where 6P is the time delay between element 0 and element p. The sum Fourier

coefficient is then:

3

d,(n) E~ d0(n)exp(-Jn'('0 5PJ (5.9)
p -O



82

and the difference Fourier coefficient is:

d~j(n) = do(n) (exp (jn,,,;Obexp ( &jJ (5.10)

Consider now the covariance matrix, let exp(jno61 )- W, and note that 6p = p6 1,

then the cross covariance is:

Od= E[d,(n)d,(n)]= I do(n)I 2(+W-I+W2W-3 )(WIW23(.)

I do(n) 1 2(Vr 2_W2)

- -2j Ido Isin(2nwoj1)

In general, if there are k (even) elements in the array, and the middle two are

subtracted to form the difference beam:

S k

E[d(n)d;(n)= -2i 1 do s in(nwo6 1) (5.12)
L i 2

k-i k-I
When k is odd, and elements subtracted are - and -+1:

2 2

E[d5(n)dd(n)j I doI 2fexp -Jnlw6k 1 }.exp {+jnwo,21] (5.13)

The sum beam autocovariance is:

3 3

0,= E[d(f)d;(,)]= Zdo(n)W- Zdo(n)W (5.14)
p-

0  p-
0

= d 2 $+2W -3W'+4+3W-'+2W2+W-3)

..... . . . . m mbm m mm m m



83

S21 do (4+3cos(nwo,6i+2cos(2n.o6 )+cos(3. ob I)

And in general:

k-I

E~ds(fl)d;*(l)'j= 2 1 oI 2 E (k-i)cos(flw0 61 )
i-O

The difference beam autocovariance is:

Qd= E [dd (n) dd (n)] doj 2((W1_W2)(W_W2)J (5.15)

=21 do 1 2 ( 1cos(nwb)3

The covariance matrix can now be inverted and used in the likelihood ratio

expression.

5.2. Signal known exactly in --orrelated Gaussian interference of precisely

known direction

The covariance matrix elements computed are all functions of 6, the basic

element to element time delay. When depth is known precisely, figuring out 61

requires a trigonometric computation which is illustrated in Figure 5.3:
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Ocean surface

--.CZ( T)

X(I

Figure 5.3. Element to element time delay computation

d
sina - - (5.16)

Z( T)
Z(T) = cT

d
sina = cT

x(6 1) = Isina (5.17)

and therefore:

x(0 1 ) lsirc Id
. = - 2 (5.18)

C c c T

where I is the inter-element spacing, d is the array depth, c is the speed of sound,

and T is the observation time.

The following summarizes our findings relative to a representative block of

the block diagonal reverberatiun ccvar.Ance matrix:
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k-I k
2 2Z(k-i)cos(nwoij)+V, --2jI doI s in(nwo0 - 1 )

i-O?

= k I 2 (5.19)

2

Whe V's and V, are the sum and difference volume reverberation powers.

Now one can invert the covariance matrix, and use it in the previously

computed likelihood ratio expression derived for this case of signal known

exactly in correlated Gaussian interference of known location.

p(ZiH1 ) *

k(z) =( 1) = exp[ - (Z - m) .Q-1(Z - M) + ZQja7Zz] (5.20)
p(Z/Ho)

5.3. Signal known exactly in correlated Gaussian interference of uncertain

direction

Boundary interference in this case is coming from an uncertain direction

since vehicle depth is uncertain. We do have some limited knowledge about depth,

though, in the form of a probability density function (pdf) of it. This pdf is

translated directly (through a simple transformation) to a pdf of the element to

element delay 61. The same covariance matrix expressions developed for the

previous case still apply, but now computing the likelihood ratio involves

integration over the uncertain parameter. When H0 is in force, the conditional

probability density function is:

p(Z/Ho,6j ) = (7rk Q(n,61 )1 )-lexp [-Z'(n)I-(n, .)Z(n) )  (5.21)

In our case Z is 2-dimensional (sum-difference), and only one frequency index is

used. Therefore:
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Z z2 (5.22)

The covariance matrix, which is a function of 6I has been derived previously. Let:

[Qll Q121
Q(61 ) = k Q22 (5.23)

then:

Eo -Z Q -'(1 )Z = -I--I zI Q22+ I z 2  2Q ,-2Re(z zQ ,)) (5.24)

A

where A is the determinant of Q. Note that A , and Qj are all functions of 6. Now

the conditional pdf under H0 assuming 6 is known can be written as:

p(Z/Ho,61) = --- exp(E o) (5.25)
irA

The knowledge about the distribution of the element to element delay can now be

utilized to form the pdf under HO:

611

p(Z/Ho) = - f exp(Eo)p(6 1)d51  (5.26)ir2A bl

where 61 and 61f represent the boundaries in between which p(fi) is defined.

Finally, when assuming uniform distribution on 61, as will be assumed here:

bif
1

p(Z/Ho) = f exp(Eo)dbl  (5.27)

When H I is in force, the conditional probability density function is:

, i I III I I I I
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P(Z/H1 ,61) = (rk IQ(n,61) )-'exp (-Z(n)-bo(n)u(n) (5.28)

where b,(n) is the signal mean vector, and u(n) is the signal "point-ng" vector. The

signal direction is assumed precisely forwards, i.e.:

-U = 1,](5.29)

Using the same steps used to derive p(Z/HO,61 ):

E (Z bA)a-'(6 1 (Z-bA)(5.30)

±{ (iI Z 12 2 I 2Q12Re<zQ2 )

+2boRe(zIQ 22-z;Q 2 -zQ 1 2+z;Q )-I bI 2(Q-Q,2+Q)

The conditional pdf under HI assuming 61 is known can be written now as:

1
p(Z/H I.61) -- exp(E,) (5.31)

ir A

Using .vhat's known about the distribution of 61:

1

P(Z/H = A- f exp(Ej)p(61)d61  (5.32)

It

and when the uniform distribution is incorporated:

Si f

p(Z/H) = f exp(E1 )d6l (5.33)

We are now finally ready to compute the likelihood ratio for the case of signal
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known exactly in correlated Gaussian interference of uncertain direction:

SI f

f exp(El)d6l

p(Z/H) s1,
A = - (5.34)p(Z/Ho) 61

f exp(Eo)dl

611

5.4. Derivation of the three beam covariance matrix

When we consider a more complex case, in which, in addition to the

boundary reverberation interference we have another fixed interference source

(e.g. a jammer), we need another degree of freedom in the system. Therefore,

another difference beam is formed, and we have three beams: one sum beam and

two difference beams. Figure 5.4 depicts this arrangement:

00

1 0- sum

20

30

_ differencel

_ _ __ difference2

Figure 5.4. Sum and difference beams
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Now we can attempt to compute the increased order covariance matrix. Denote

the n' h Fourier coefficient at the Ot" array element due to the boundary

reverberation as do(n). Then the Fourier coefficient at the pth array element is:

dp(n) = do(n)exp(- jno0P) P=O,..,3 (5.35)

where 6. is the time delay between element 0 and element p. The sum Fourier

coefficient is then:

3

d,(n) = do(n)exp (-jnwobP) (5.36)
p -O

and the difference Fourier coefficients are:

dd 1(n) = d,0(n) (exp (-jn W06 o)exp t-nwo51IJ (5.37)

dd2(n) = do(n) (exp (-jnWO5 2} exp (-jnWo3JJ (5.38)

Consider now the covariance matrix, let exp(jn, 0 6) - W, and note that 6 = p61,

then the first cross-covariance is:

Q~d I = E [d, (n) d;,(n)J d0)(n) 12( WIjA(2+ W-3 ](1- 1 (5.39)

=Ido(n) 2(-3_ WI)

The second cross-covariance is:

= E[d,(n) dd (n) d, (n) ((5.40)

do(n)( (W- W33
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The sum be. tocovariance (calculated previously) is:

k-1

Q,, = E~ds(n)d;(n)J = 21 do12 Z (k-i)cos(in_,0 ) 5) (5.41)

The difference beam autocovariances (calculated previously) are:

Qd ,jId= E dd 1(n)dd I W)J= EjIdd2(n)dd2(n)] = 2 1 do121csn,&) (5.42)

The difference beam cross covariances is:

.,d2 = E~d ,(n)dd2(n)]= do(n) ( 2(l-W-iI(W -.3/ 5.43)

= do(n) l 2 2 WZW1W3)

When a fixed interference is introduced, the structure of the resulting covariance

matrix is identical to the boundary reverberation covariance matrix. The only

difference is that the time delay variable 6 does not vary with range, but is fixed.

The fixed time delay is denoted bf. The combined covariance matrix is then the

sum of the range variable boundary interference matrix, the fixed interference

matrix, and the diagonal volume reverberation matrix:

Q11 Q12 Q13'

Q=-Q(n,6j,5f)= Q21 Q2 Q 3  (5.44)

Q31 Q32 Q33'

5.5. Signal known exactly In correlated Gaus.an interference of uncertain

direction, plus a fixed interference of uncertain direction

Fixed interference, as well as boundary reverberation in this case are coming

from uncertain directions. Again, we do have some limited knowledge about fixed
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,nterference direction in the form of a probability density function (pdf) of it.

Here. computing the likelihood functional involves integration over both uncertain

paiameters, namely 61 and 5f. When H0 is in force, the conditional probability

density function is:

p(Z/Ho, b,1 ) = ( Q(n,i, b f) I )-iexp (-Z'(n)Q-I(n,61,i f)Z(n) (5.45)

In our case Z is 3-dimensional, and only one frequency index is used. Therefore:

Z = Z2 (5.46)

The covariance matrix, which is a function of , has been derived previously. Let:

HI H1 2 H13-

Q~( 65 ) U(i.~)=H 21 H22 H23  (5.47)

H3 . H 3 2 H 33.

then:

Eo = -Z H(i.6f)Z (5.48)

= - 2H1 4- I Z21 2H 22+ Z3 1 2H 33+2Re(z 2zH 2,)+2Re(z;zH 3 ,)+2Re(z;z2 H 3 ) )

Note that HO are functions of 6, and 6f. Now the conditional pdf under H0 when

and are known can be written as:

p(Z/Ho' bf) = exp(Eo) (5.49)

Where A, is the determinant of , and:
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(5.50)

Eo = EO(6 16f)

The knowledge about thr distribution of 61 and 6, can now be utilized to form the

pdf under I ,. Assuming that the two time delays are independent, which is

reasonable:

1 f3ffI

P(Z/Ho) =3 f f exp(EO)P(63)P(6f)d6jd6f (5.51)
A I 56ft

where 61, and fif represent the boundaries in between which n(6) is defined, and

>fl and bff represent the boundaries in between which P(6 f) is defined. Finally,

when assuming that both delays are uniformly distributed, as will be assL-ted

here we get:

6if6ff

p(Z/H o) = f f exp(E0)d6jd6f  (5.52)

When H1 is in effect, the probability density function is:

p(Z/Hr1.,.6f) = (rk )iexp(--Z(n)-bo(nu(n) (5.53)

Q-(n 1,6 f) (Z(n)-bo(n)u(n) 1

where bo(n) is the signal mean vector, and u(n) is the signal "pointing" vec or. The

signal direction is assumed precisely forwards, i.e.:

u={] (5.54)

Using the same steps used to derive p(Z/Ho,6j1,f)
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E -(Z-bo ]Q -l6f)(Z-bou3 (5.55)

=-E 0 +2b0 Re [z1 (H11+h 12±H1 3)+Z?(H 2 ,+H22+H23)+Z;(H 3 ,+H32+H33)j
3 3

-I b01 2 Z Hj
i-lIj-I

The conditional pdf under Hi when both delays are known can be written now as:
1

p(Z/H 1i,6f) = - exp(EI) (5.56)

Using what is known oout the distribution of 6,:

61 fbf ff

p(Z/H) = y f f exp(EI)p(bl)p(6f)djd6, (5.57)

and when the uniform distributions are incorporated:

lfb ff

p(Z/H) = 3f f exp(EI)d6ld3 f  (5.58)
7r -16 1 f-b1i)(6ff- 6fj) 6116 .ft

We are now finally ready to compute the likelihood ratio for the case of signal

known exactly in correlated Gaussian interference of uncertain direction plus an

interference of uncertain direction:

Ifr, ff

f f exp(E)d61 d6f

A = - (5.59)
p(Z/Ho) = f6

fr

f f exp(Eo)d 1 d6f
sit 6fi
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We have developed in this chapter three different Bayes optimum detectors

for three different ocean environments. These will be used later in this

dissertation in the detector :-ompariso-.



6. Block processing and time sequential approaches

to Bayes optimum detection

The general expressions developed in the previous chapter for the three

different cases are indirectly all time dependent. As the transmission pulse

propagates through the water, it ensonifies different regions of the ocean, and the

return signal varies therefore with time. The time dependence enters the optimum

detector expressions through the element to element delay 6,, and through the

signal and boundary reverberation powers.

There are at least two approaches to processing the data. The simpler

approach is to divide the incoming data stream into equal length blocks, and to

process each block separately, without carrying over any information from the

processing of one block to the next. This approach is called block processing, and

is obviously sub-optimal in a sense, since it takes a look at only part of the

available information at any givn point in time. Despite its apparent flaw, this

approach is many times easier to implement, and is well suited for real time

applications. The second approach is to store all the incoming data, and then

process it at once and make a decision. This approach is called one-shot, and it is

optimal in the sense that it makes use of all the available data. A variant of this

approach is the time sequential approach. Here, the processor operates on a block

of observations at a time, but through updating the a-priori probability density

functions of the uncertain parameters, it carries over acquired information from

block to block. This app'roach is mathematically equivalent to the one-shot

approach, and produces exactly the same decisions, but in some respects is more

attractive since it demonstrates the inherent learning nature of the detector, and

lends itself to comparisons with other adaptive structures. Both the block

processing and the time sequential approaches have been implemented in this

95
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dissertation, and are both used in the comparisons with ad-hoc detectors

6.1. The time sequential processor design equations

Consider the vector r (t) of time waveforms observed by the receiver array

as in (3.20). r T (t) is broken into time sequences of length T,,, and the vectors of

Fourier coefficients Z[(n) are formed, where i represents the ith increment. Thus,

for a total observation period of T = LT,, r(t) will be represented by L vectors of

Fourier coefficients, f£2, ...... 2L).

When using the block processing approach, each one of vectors ZT

represents a block, and is being processed separately from all the others. When

using time sequential processing, the approach is as follows. In order to form the

likelihood ratio, we need the marginal distributions of the observables,

conditioned on the hypothesis in force. Here, the observables are the L vectors

(ZI ...... 2L). Suspending the conditioning on H, and H0 for the moment:

L

p(Z 1 ...... ZL) = I-p(Z,/Zi, ....... Z) (6.1)

L

= f flp(Z,/Zi-1 . . jpbd

where A is the vector of uncertain parameters, which for simplicity is assumed

time-invariant here. Assuming parameter conditional independence of the vectors

Zj:

P(z1/z,i ...... 214 = p(Zi/M (6.2)

Substituting now (6.2) into (6.1) we get:
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L

p(Z ...... Z L) =f f-p(Zj/)p(Dd (6.3)
A i-I

Now, applying Bayes' rule L times to the integrand in (6.3):

L

p(ZI ...... L) = H f p(Zi/)p p _ 1 ....... Z1) (6.4)
i-I A

where p(Z-/Z, ....... Z) is an updated version of the a-priori probability density

function of A:

p (ZI_ ...... 21b)
P( ZiI ...... 2 ) P( . (6.5)

P(Zi-) ..... , . l)

P(4 -114 -21 ...... ,7Z P(Zi_21 ...... 21

p(z_ ....... Z )

and assuming parameter conditional independence:

p(Z _/- ) p(ZI_2 ...... 21
(6.6)

P(4._1 ....... Z)

P P(Zi - I/)P. Z-2. ..... Z)P(Zi-21 ..... 21)

P(4-_14-_2. ...... 1 )p(Z_2 ..... 2 )

p(i.).p.z_2 ...... 21)

P(4-_./...2 ...... 21)

Note that the updated version of the a-priori probability density function of A is

formed using probability density functions which are either known, or computed

in the previous iteration.

Equations (6.1), (6.4) and (6.6), when conditioned on H, and H0, are the

design equations used to obtain the marginal distributions in the likelihood ratio
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expression for L iterations:

L

1j f p(Zj 1 )p/Z ........ H1 )dd
p(ZI .. L/H) i-I I

AL = = L (6.7)
1-J f p(Zj1 Ho)p(/Zj-j ....... ZI.Ho)db

Note that since we are dealing with an active sonar problem, the signal (target

echo) is present only in the final iteration currently considered. The assumption is

made that there is only one target in the look direction and that it resides in the

current range cell. Thus the updated a-priori probability density functions under

both hypotheses are identical in all iterations but the last.

6.2. Time varying uncertain parameter vector

The previous discussions limited the uncertain parameter vector to be time-

invariant. In actuality, the uncertain parameter may be time-varying. In the first

case we are dealing with, there is a single uncertain parameter - boundary

reverberation element to element time delay, which certainly is time-varying. That

results in having to find a transition equation which makes use of the problem

geometry, to update P(bi/Zi-, ...... 2,Hj) for iteration i+1. The likelihood ratio

expression is now:

L

J7J f p(Z,/81 ,H)p(61Zj ....- ,Z1 H1 )d61

p(Z ....... ZL/HI) i-i 6,
AL. = (6.8)p(ZI ...... 2 7L/HO) L

1-' f p(Z/j1/6Ho)p(6 1/Z 1.- ... ... 1 Ho)dbi

and the a-priori probability density function update equation is:

p(Zj_j/6j_,H J)P(31Z1_2' ...... , Hj)

p(lIZ1_1 ...... Z ,Hj) = P(4/ 1 1 4-2 1/... . 1 ,Hj) (6.9)...................... ,H j)
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where j=0,1 repcesents the hypothesis in force. The need for a transition

equation arises since following iteration i-1. we have available only

p(6i-/. 2 ...... Z,,HJ), and in (6.9) we need p(bi/Zi 2 ..... ZIH) .

The transition equation is developed in Appendix B, based on the geometry of

Figure 5.3, and the result is quoted here:

6i
= -(6.10)

1+

1(-1)

Making use of this transition equation, we can arrive at the desired pdf by

computing the pdf of a function of a random variable:

P./Z_2 ....... H) = P(bi- 1 /Z .. . .ZPHj) (6.11)
d61

Appendix B also develops the exact expression for the above derivative.

Equations (6.8), (6.9) and (6.11) constitute the final design equations of the time

sequential Bayes optimum processor with a single uncertain parameter.

We now examine the more complex case where a fixed interference source

of uncertain direction is added to the scenario. Here, the uncertain parameters

indeed form a two-dimensional vector:

(6.12)

where 6, is the time-varying boundary reverberation element to element time

dELay, and bf is the time-invariant fixed interference element to element time

delay. We again have:
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L

l f p(Z/b.Hj)pWZ,_ ...... 1.,Hl)dA
p(Zj ....... ZL/H1) -.L =L (6.13)"L P(Z[ ....... ZL/Ho) L

-. f P(ZjHo)P1 H 0 pWZ- ....... Z.,H 0 )dA

and since 6, and 6
F are independent random variables:

L

171 f P(Z,/6,.6f.Hj)P(6i/Z,-I ...... Z 1,H1 )P(6,/Z, ...... ZjlHj)dbd6f

AL= L(6.14)L

f f P(Z/6 ,b r.H0)p(65,/Z,- ...... Z.1 H0)p(6,/Z,_ ...... Zj'H0)db6,dj

Obtaining the update equations of 6i and bf is a simple extension of the ideas

previously described and will not be repeated here. Suffice it to say that the

transition equation for 3, remains the same, while no transition equation is

required for 6f since it is time-invariant.



7. Detector evaluation and comparison - methods

and tools.

7.1. Detector comparison

As described in Chapter 3, the performance of two detection schemes will

be evaluated and compared. One scheme, which represents an ad-hoc approach,

employs an adaptive filter to first reduce boundary interference level. It then

assumes that the processed signal contains only the volume reverberation

component, and treats the problem as one of signal known exactly in noise known

exactly. The adaptive filter chosen to be used in the comparison is the all-zero

least squares lattice filter (JCLSL). It has been shown previously (Chapter 4), that it

is quite adequate for the task, and that a pole-zero adaptive filter has only a very

slight advantage over it, in the scenarios used. The second scheme is the result of

a more global approach which uses our knowledge of the problem's statistics to

arrive at an optimum solution in the Bayesian sense. Figure 7.1 depicts the two

schemes.

101
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'Ad-hoc scheme:

Main + SKE in NKE Decision
S = Bayes Opt.

Detector

Re ference Adaptive

L'pgmnu scheme:

M ain ~ Bayes D c s oOptimum Dcso
Re f erence Detector

Figure 7.1 The two detection schemes

The array used in the comparison is a 4-element array, where the main

beam was derived by summing all four element outputs, and the reference beam(s)

was generated by subtracting two adjacent element outputs.

7.2. Adaptation parameter selection

One of the parameters defining the behavior of an adaptive structure is

the adaptation coefficient a, which takes values between 0 and 1. This parameter

determines the filter's "forgetting factor", or how much emphasis the filter puts on

past samples. Typically, the filter's time constant (in samples) will be:

1
r - (7.1)
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When using an adaptive structure such as the adaptive filter used in this

dissertation, the questions always arise as to how is the adaptation coefficient a

selected, and for how long the adaptive filter should be permitted to run and

adapt before its output is considered valid to sample. In order to resolve these

questions, a run was generated, where a simulated target echo in the look

direction was superimposed on an ordinary reverberation return ping. This ping

was picked out of the ensemble of pings which are later used in this work to

compare the different detection approaches. The ping was processed three times

by the same adaptive filter with three different adaptation coefficients, namely

0.02, 0.05 , and 0.2. Then, the adaptive filter output power was plotted against

main beam power, for the three different a's. Figure 7.2 details the results.
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it is clear from observing the plots, that as seen as a is chosen larger than 0.02,.

the filter starts canceling the target echo as well as the reverberation interference.

140
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This is undesirable. Therefore, throughout this work a was kept at 0.02. The

selection of a answers the second question as well, since an adaptive filter

typically takes a few time constants to adapt. With this selection of a, the time

constant r is 50 samples. Therefore, sampling the filter's output anywhere beyond,

say, 500 samples (10 time constants) is safe.

7.3. Test scenario description

The two detection approaches are tested and compared under three

different interference conditions:

Case 1. Boundary interference is coming from a known direction.

Case 2. Boundary interference is coming from an uknown direction, whose

probability density function is known,

Case 3. Boundary interference is coming from an uknown direction, whose

probability density function is known, and there is another fixed source of

interference coming from an unknown direction whose probability density

function is known.

One source of uncertainty in boundary interference direction is

uncertainty in the array platform's depth. Therefore, depth was chosen as the

uncertain parameter, and its probability density functions were assumed known.

When dealing with the fixed interferer, probability densities of direction were

defined directly. In all cases of uncertainty, uniform probability density functions

were assumed. The basic test scenario selected for Case 1 above is described in

Figure 7.3.
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surface
30 m

300 m

bottom

Figure 7.3 Basic test scenario (Case 1)

As can be seen from the figure, the bottom depth is purposefully given a large

value, so that bottom reverberation will come in late, and only one source of

boundary reverberation (surface) is dealt with.

Figures 7.4 and 7.5 describe the test scenarios for Cases 2 and 3 above.

surface

depth
uncertainty

300 m

bottom

Figure 7.4 Test scenario for uncertain depth (Case 2)
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surface

direction
depth uncertainty

uncertaintyu

fixed
300 m interference

bottom

Figure 7.5 Test scenario for uncertain depth and fixed interference

(Case 3)

The output of both detectors .s examined approximately 0.2 sec following

transmit, or at about the 8 0 0t h sample. This gives the adaptive filter enough time

to adapt. This time corresponds to a distance to the illuminated surface patch of

150m. The maximum depth uncertainty used in this work is 54m, centered around

30m. That spans a depth between 3 and 57m. The corresponding angular span to

the surface is as follows:

amaz = sin-I }= 21.1 (7.2)

emin =  sin- 1 5 1.15 °  (7.3)

Similarly, the fixed interference direction uncertainty spans the range of -10 ° to

-20'. Examining the sum and dlfference polar beampatterns, we see that within

the above angular ranges, both are well behaved, and the main beam has no nulls.
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Figure 7.6 Sum and Difference polar beampatterns

7.4. ROC curves

The output produced by both detection schemes is the likelihood ratio

which in turn is compared to a threshold in order to make the decision whether a

target is present or not. The likelihood ratio A, summarizes all the information

about the data for a given observation interval and therefore is significant in

evaluating the detector's performance. A complete description of a detector

includes the likelihood ratio A and the receiver operating characteristic (ROC)

curves. These curves plot the detection probability versus the false alarm

probability, where the threshold q serves as a parameter. The false alarm

probability PF and the detection probability PD are:

PF = fp(A/Ho)dA (7.4)

• • • i i i I I I I7
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PD = fp(A/Hj)dA (7.5)

Where q is the detection threshold. It has been shown 48 that:

p(A/Hl) = Ap(A/Ho) (7.6)

Thus P. can be written as:

0o

PD = fAP(A/Ho)dA (7.7)

When the densities of A cannot be determined analytically, one carries out a Monte

Carlo simulation of the detector under test. From the simulation results one then

forms estimates p(A/H,) and p(A/H 0) of the desired densities. These can be used

to calculate P. and PD which constitute the ROC curve. We see that (7.47 above

implies that only the density under Ho need be obtained. This eliminates the need

to simulate the signal. Note that (7.7) places an emphasis on the upper tail of

p(A/Ho), where typically only a few observations will lie. An equivalent expression

to (7.7) is:

PD = I - fAp(A/Ho)dA (7.8)

0

and it is shown in27 that it is actually preferable to use (7.8).

As a point of reference, and an example of ROC curve generation, 100

observation intervals of white Gaussian noise, at each of 4 known variances were

generated. These sequences were then passed through the optimum detector for

this case (signal known exactly in noise known exactly (SKE in NKE)). The ROC

curves were then computed and drawn. The signal to noise ratio (SNR) is:
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E
SNR = - (7.9)

No

where E is the signal energy, and N. is the noise power spectral density.

Figure 7.7 contains the ROC curves for the 4 different SNR's. These match well the

ROC curves originally reported in 48 for this case:

Theoretici SKE in Gaussion NKE
SNR 2. 0.5, 0.125 and 0.03125
ROC

0.7

0.6

0.5

0.4

0 2
0,0
0.1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 7. SKE in Gaussian NKE ROC curves

two different approaches are considered for the Bayes optimum detector,

namely block processing and time sequential. These were described in detail in

Chapter 6, and the next two chapters are concerned with the detector comparisons

subject to these approaches. We now posess the tools, and are ready to examine

the detector performance evaluations and comparisons.



8. Block processing optimum detector vs. ad-hoc

detector comparisons.

In this chapter, the performance of a block processing Bayes Optimum

Detector (BOD) is compared to that of an ad-hoc adaptive detector. The reason the

(sub-optimum) block processing approach is considered here at all is that for

ial-time systems, this sometimes is the only viable approach. Ihe test scenario

under which both detection approaches were tested was described in Chapter 7.

The array used in the comparison is a four element array, where the main beam

was composed of summing all four element outputs, and the reference beam(s)

was generated by subtracting two adjacent element outputs. When the fixed

interference is present, the problem's order is increased, and there is a need for

another degree of freedom. Then, another reference beam is generated, and both

detector schemes tested have another input available for processing.

Figure 8.1 depicts the typical range-Doppler map of a synthesized ping

used in the basic test scenario where the interference direction is assumed known

precisely (i.e. the sonar array is at a known depth). Here, since the sonar array is

in relatively shallow water, surface reverberation is hard to distinguish from

volume reverberation since they both have an almost zero Doppler shift. Figure

8.2 shows the adaptive filter's output range-Doppler map.

ill
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Figure 8.1I Main and reference beam range-Doppler maps
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Figure 8.2 Adaptive filter output range-Doppler map.
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Figure 8.3 plots main beam power, reference beam power, adaptive filter's output

power and reverberation cancellation power (ratio between adaptive filter's output

power and main beam power). Here, one can see how much of the surface

interference is canceled by the ad-hoc detection structure's adaptive filter around

0.2 sec, where both detectors' outputs are sampled.
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l ieI
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Tan W Ttm

Figure 8.3 Main, reference and filter's output power.

8.1. Known depth

Each comparison between the two detection approaches is based on a

Monte-Carlo simulation of 500 runs. In the first comparison made, the sonar array

was placed at a known depth, and the Bayes optimum detector was given that
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depth. Signal to surface interference ratio was set to 2.8. Figure 8.4 shows the ROC

curves of both detectors.

SKE fn NKD - Boyes Opimum Detector vs.

Rdoptive Noise Conceler, Ripho 0.02

ROC

0.g
08
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- 0.5

0.4

0.3

0.2

0. 2

0.8

0. 0 0.1 0.2 0.3 0.4 0.5 0.6 8.7 0.8 8.9 1.0
pr

Figure 8.4 The two detectors' ROC curves (ANC is *****)

It is obvious that the Bayes Optimum detector (BOD) performs better than the ad-

hoc Adaptive Noise Canceler (ANC). In fact, compare these ROC curves to the

curves given in Figure 7.7 (theoretical SKE in Gaussian NKE (SKENKE)), which can

serve as a reference. One sees that the BOD performs close to a SKENKE detector

when SNR-0.5, while the ANC performs as a SKENKE detectoi" when SNR-0.125.

This translates into a -6 dB performance difference.
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8.2. Uncertain depth

In the next comparison, array depth is not a known quantity. What is

known is its probability density function, which is assumed uniform between

16.5m and 43.5m. In this way, the average depth is kept the same as the previous

comparison's depth (30m). The comparison is based again on 500 Monte-Carlo

simulation runs, where the array was physically placed at various depths,

commensurate with a uniform distribution. Figure 8.5 shows the ROC curves for

this comparison.

SKE fn NUD - 27 Meiers Uncerionty

boyes Optimum Detector vs.
Rdopiive Noise Canceler

ROC
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8.0 8.1 0.2 0.3 0.4 8.5 0.6 8.7 0.8 8,9 1.8

pf

Figure 8.5 Uncertain depth (27m) ROC curves (ANC is *****)

It is clear that the ANC's performance hasn't changed, since it has the ability to

adapt to the varying depth. The BOD's performance has degraded, but with this
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level of uncertainty, it is still performing better than the ANC. Naturaly, we will

now check what happens when the depth uncertainty is increased. Depth was

given twice the uncertainty (i.e 54m), still keeping the average depth at 30m as

before. Figure 8.6 plots the ROC curves for this case.

5KE in NUD - 54 Meiers Uncerofnty

Boyes Optimum Detector vs.
Rdoplive NoIs9 Conceler

ROC
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Figure 8.6 Uncertain depth (54m) ROC curves (ANC is *****)

Here, the BOD has basically fallen apart, since the interference direction

uncertainty is large. The ANC, whose performance is essentially unchanged, is now

performing better than the BOD, using its capability to adapt to the varying

interference direction.

Another interesting point is to see what happens when the signal to noise

ratio is increased. This was done for the 27m of depth uncertainty, and an SNR of
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11.2. Figure 8.7 shows the comparison result.

SKE in NUD - 27 M1ers Uncercinty
boes Optimum Detector vs.
Pdoptive NoIse Canceler, SNR 11.2

ROC
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Figure 8.7 Higher SNR ROC curves (ANC is *****)

As can be seen, the performance of both detectors has improved as expected.

8.3. Uncertain depth plus a fixed interference

At this point in time, it was clear that as soon as the depth (interference

direction) uncertainty exceeds some value, the ANC starts performing better than

the BOD. The next step was to check what effect an extra interference source has

on both detectors' performance. An interference source whose direction is

uncertain, but whose direction probability density function was known, has been

added into the scenario. The interference was coming from directions between



119

-10' and -30 . Interference power level was made equal to the boundary

interference power at the detection range. Figure 8.8 shows the results. we see

that the result of the added interference is that the BOD performs poorly.

SKE in NUD - 27 Meters Uncertainty
plus a Ffxed Interference
boges Optimum Detector vs.
fdapive Nos9 Canceler

ROC
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Figure 8.8 Fixed interference introduced (ANC is *****)
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8.4. Conclusion

When comparing Figure 8.8 to Figure 8.5 (see Figure 8.9), we see that the

ANC's performance remained essentially the same, even after the addition of the

fixed interference. This demonstrates its ability to adapt to another interference

source, vhen the adaptive filter order is given another degree of freedom. As

expected, the BOD performs very poor, and the effect another interference source

has on it, is akin to the effect that an increased depth uncertainty had (see Figure

8.6). Figure 8.9 combines Figures 8.5 and 8.8, to compare both detectors'

performance under the same depth uncertainty (27m), with and without the fixed

interference.
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BKE fn NUD vs. SKE in FNUD
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FIgure 8.9 Performance with and without fixed interference (ANC is *****)

We have compared the performance of the two detection approaches,

when the Bayes Detector was restricted to block processing. Since this restriction

makes the detector sub-optimal, its performance has not been uniformly better

than its ad-hoc counterpart. The next chapter will remedy that by using a time

sequential approach for the BOD.



9. Time sequential optimum detector vs. ad-hoc

detector comparisons.

In this chapter we will remove the block processing restriction from the

Bayes Optimum Detector (BOD) and let it make use of all the available data. This

way, the BOD becomes a truly optimum solution, and the comparison between the

two detectors is more fair. This will also enable us to demonstrate the adaptive

nature of the BOD. The difference between the block processing and the time

sequential approaches has been detailed in Chapter 6.

9.1. Uncertain depth

The first comparison is identical to the second comparison made in

Chapter 8 (SKE in NUD). Here, there is a 27m depth uncertainty, and the BOD is

time sequential. Figure 9.1 shows the ROC curves for this case.

122
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SKE in NUD - 27 Meters Uncertonty
Time Sequenkiol Processing
Boyes Optimum Processor vs.
Rdop!ive Noise Conceler
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Figure 9.1 Time sequential BOD vs. ANC (ANC is *****)

Obviously, the performance difference between the BOD and the ANC has

increased (compare to Figure 8.5). Now that the BOD is making use of past data to

update the a-priori pdf, it performs better. As before, the next step is to increase

the depth (interference direction) uncertainty, and observe the performance. The

uncertanty is increased to 54m as before, and Figure 9.2 details the result.
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Time Sequenifol Processing
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Figure 9.2 54m uncertainty ROC curves (ANC is *****)

As opposed to what happened in the same situation when the block processing

approach was used, now even with the increased depth uncertainty, the BOD still

performs better than the ANC, though the performance differential is reduced.

As described in Chapter 6, the time sequential detector presents an

adaptive quality in that it updates the a-priori probability density functions (pdf's)

of the uncertain parameters from iteration to iteration, thereby carrying important

information from the past to the present. It is interesting to watch how these pdf's

adapt as time progresses (see equations (6.8) and (6.9)). Figure 9.3 depicts the

behaviour of the array element to element delay (AEED) pdf for the iterations
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preceding the one in which detection is made. AEED is a linear function of

interference direction, and was the unknown parameter used.
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Note how system's knowledge of the AEED improves from very diffuse (Iteration

#1), to more and more precise, as time progresses. Since the surface return comes

from shallower and shallower angles as the ping propagates through the water, the

AEED becomes smaller and smaller, and so does its estimate.

9.2. Uncertain depth plus a fixed interference

As before, we now check what effect an extra interference source has on

both detectors' performance. An interference source whose direction is uncertain,

but whose direction probability density function is known has been added into

the scenario. The interference is coming from directions between -10 and -30.

Interference power level was made equal to the boundary interference power at

the detection range. Figure 9.4 shows the results.

... ... . = == ,,- ,,mmmnnnum nnnm~ n I II I I IM
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Figure 9.4 Fixed interference introduced (ANC is *****)

Here, the BOD's performance has degraded due to the presence of the fixed

interference. Even though the ANC seems to be less sensitive to the presence of

the fixed interference, the BOD still performs better than the ANC. This is

contrasted with Figure 8.8. where the ANC performs better than the block

processing BOD.

9.3. No surface interference

It is interesting to check what influence removing the surface interference

from the scenario will have on both detectors' performance. Time-varying
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boundary interference power and fixed interference power were purposefully kept

at an equal level. It is expected, therefore, that performance will be very close to

the case where only the surface interference was present. Figure 9.5 shows the

results:

SKE fn NUD - 27 MeGers Uncerkofnt V

plus o Ffxed Interference
no surfoce reverberoaion
Boaes Optimum Time Sequentiol Detector
vs. Rdoptive Noise Conceler
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Figure 9.5 Surface interference removed (ANC is ****)

It is clear that indeed the performance is very similar to the one reported in Figure

9.1.

Lastly, Figure 9.6 shows the detector performance when depth uncertainty
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is increased from 27m to 54m, and when the fixed interference is present.

SKE in NUD - 54 Meters Uncertofntyj
plus a Frxed Interference
boVes Optimum Time Sequentiol Detector
vs. Rdoptive Noise Conceler
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Figure 9.6 Higher depth uncertainty (ANC is ****)

The performance of both processors has degraded uniformly, while the BOD still

performs best, as expected.

9.4. Conclusion

When a truly optimum approach is taken, and the Bayes optimum detector

is allowed to make use of all the available data, it performs better than the ad-hoc
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adaptive noise canceler. With the time-sequential approach, the BOD also posesses

an adaptive quality, in updating the a-priori pdf's of the unknown parameter from

iteration to iteration.



Conclusion

The active sonar problem has been carefully examined in this dissertation.

Specifically, situations under which the sonar suffers from boundary interference

were analyzed. Underwater acoustic reverberation, which is typically the limiting

noise process for this problem, has been studied. Then, two main schemes

designed to detect a desired signal buried in ocean reverberation were suggested

and examined. These two schemes represent two different approaches to the

problem. The first is an ad-hoc engineering approach, which uses an adaptive

noise canceler in the front end, to get rid of the undesired boundary interference,

and then uses a matched filter assuming now that the problem is one of known

Gaussian statistics. The second approach is a more global one. It makes use of the

known statistical properties of the problem to arrive at an optimal solution in the

Bayesian sense.

Recognizing that close analyic expressions for system performance are often

very hard to derive, an important tool has been developed. This software package

is capable of synthesizing multi-element (or beam) time series outputs, taking into

account transmit and receive beampatterns, the ocean environment including

surface, volume and bottom scattering strengths, and the sonar platform

dynamics. It sets up the normal equations for the problem, and uses the solution

to create a time varying IIR filter which represents the time varying characteristics

of a sonar ping propagating in the ocean. Once the filter has been derived, an

ensemble of sonar pings may be collected by passing uncorrelated white noise

vectors through the filter. This tool is then heavily used in assessing performance

of the various detection algorithms.

Next, a multi-channel, joint process pole-zero adaptive filter is developed and

its performance is compared to its all-zero counterpart. It is shown that some
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cases exist where the ability to adapt poles is important.

Last, but not least, the performance of the ad-hoc detectors is compared to

that of Bayes optimum detectors. It is shown that optimum detectors, when

allowed to make use of all the available data, perform better than the ad-hoc

adaptive detectors. Moreover, it is shown that the optimum detector possesses an

adaptive learning quality, through the process of updating the a-priori probability

density functions of the unknown parameters.

The work done in this dissertation can be extended in a few directions. The

multi-channel joint process ARMA adaptive filter developed here can be used in

various noise canceling and spectral estimation problems, and its ability to adapt

poles can be exploited. The reverberation simulation tool (REVSIM) incorporates

only isovelocity sound speed profiles, and the next step would be to allow a

variable sound speed. Other reverberation synthesis techniques exist, and have

been implemented by other researchers. It would be interesting, and beneficial for

the active sonar community, to compare and evaluate the different methods

against each other. The application of Bayes optimum detectors when there are

uncertain parameters has been outlined and demonstrated for the active sonar

problem. Two uncertain parameters concentrated on were platform depth, and

direction of arrival of a fixed interference. It would be very interesting to extend

the methods and ideas outlined, to other uncertain parameters such as sound

velocity. Finally, the investigation of applying Bayes optimum schemes for feature

estimation and extraction (e.g direction of arrival) using their adaptive learning

capability, may prove beneficial.



Appendix A

The linear minimum mean square estimation

problem:

The problem is presented in the following figure:

xn) ( n) -wed n

d(n)

Figure A.1 - The MMSE estimation problem

a(n) is a causal FIR filter of length p+1. The goal is to filter the stochastic

time series x(n) to yield an optimal estimate (in some sense) of the "desired" time

series d(n). The error is given by:

p

e d(n) = d(n)+->akx(n-k) (A.1)
0

or in vector notation:

e d(n) = d(n)+a TX (A.2)

where T represents the vector transpose operator. The solution to the problem

depends on the assumptions made about the input time series, and the optimality

criterion chosen. The Wiener filtering approach assumes the input time series is

stochastic, and seeks to minimize the mean square error:

minE[I ed(n) j (A.3)
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where E[. I is the expected value operator.

e"(n) = d(n)_-aTAi 2  (A.4)

= d(n)d (n)+d(n)a x+a x'(n)d(n)+a 'H (n)a TX(n)

where H represents the Hermitian operator. Now, taking the expected value yields:

Haa GO (A.5)

d

where o0o is the desired signal power, a is the crosscorrelation vector between

the input x(n) and the desired signal d(n), and [4D] is the autocorrelation matrix of

the input process x(n). Minimizing E£(a) with respect to a yields:

0 = T+[ lra (A.6)

or

[4l>T = a (A.7)

which are called the normal equations. Solving for a we get:

1a (A.8)

In the case that the input time series x(n) is stationary, [4] is of a Toeplitz form:

Okj = 'j-k (A.9)

Here, all matrix elements along any diagonal are equal. This becomes useful when

solving (A.7), avoiding the need to directly invert [4>].



Appendix B

Transition equations for the time-varying element to

element delay.

In time-sequential processing, when transitioning from one iteration to the

next, an update is made on the a-priori pdf's. Since 6, the element to element time

delay is time-varying, a transition equation is required, which determines the next

iteration's time delay as a function of this iteration's delay. Consider the

problem's geometry as is shown in figure B.1:

Ocean surface

d
Z(T)

Figure B.1 - element to element time delay computation

At time T, the element to element delay is:

Id Id K
bi(T)= _ _ (B.1)

cZ(T) C2 T1 T,
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where

Id
2

C

At time T,+,, the element to element delay is:

K K= 
(B.2)

T>, T1+aT

where

Tj = Ti+aT

Let

bi+l 6j+A (B.3)

then

K K KT-KT-KAT KaT AT...... i- -- ~ - i~,t-- (B.4)
i+1-i- T,+AT T T (T,+AF) T(Ti+aT) K

Suibstituting A back into (B.3) yields:

AT
6i-- i+l (B.5)

AT
1+61 -

K

Now, since

d
T -+(i-1)AT

c
then (B.5) becomes:
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6i_____ 6, 6

K AT AT AT (B.6)

I+-- I+- I+
T7K Ti d (-OT

C

Now,

Id Id
6, = z~+l~ (B.7)

d= i>1

Substituting (B.7) back into (B.6) yields:

6
i+ = >b1 (B.8)

I I-c61
1+

c6,(i-1) 1

I-c6,

which is the desired result used in (6.10).

Part of the update equation for the a-priori probability density function of

d61+1  d6,
6, is the derivative - I It may be more convenient to compute -

d6i ,+

and then use:

d6i d6,

Using (B.8) we have:
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6i'i+ c6i(i- 1) I(i- 1)+c6i~1  (B.9)

I-c61

Now, inverting the derivative we get:

d6i , 12(U11)

and finally:

2
cb5

=b 2 (B.12
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