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ABSTRACT OF THE DISSERTATION

Least Squares Adaptive and Bayes Optimal

Array Processors for the Active Sonar Problem
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Doctor of Philosophy in Electrical Engineering
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Dr. William S. Hodgkiss, Chairman

This dissertation examines the problem of detecting active sonar echoes
under ocean reverberation limiting conditions. The properties of acoustic
reverberation pertinent to the design of active sonar detectors are first studied.
Two detection schemes representing different approaches are then proposed and
developed. One approach is an ad-hoc engineering approach, which preprocesses
the received signal with an adaptive noise canceler, and then performs the
detection. The second approach takes a global point of view and utilizes the known

statistics of the problem to design an optimum detector in the Bayesian sense.

A new, joint process, pole-zero adaptive filter is developed, and it is shown
that under certain circumstances its performance is superior to its all-zero

counterpart. It is a candidate for an adaptive, ad-hoc detection scheme.

Often times, when closed expressions for system performance are hard to
achieve, a Monte-Carlo simulation approach is used. In this context, the ability to
synthesize an ensemble of active sonar pings is a key to assessing detector

performance. One of the major contributions of this dissertation is the development
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of a multi-channel element ievel reverberation time series generator.

Three active sonar problems of ever-increasing complexity are then
examined. The first problem is one of signal known exactly with a boundary
interference coming from a known direction. In the second problem the
interference is coming from an uncertain direction, and in the third another fixed

interference coming from an uncertain direction is added.

Finally, for all the above problems, comparisons are made between the ad-
hoc detector and two implementations of the Bayes detector, a block processor
(sub-optimum), and a time sequential processor. This is done using the
reverberation time series generator, and through the comparison of Receiver
Operating Characteristic (ROC) curves. It is shown that when the optimum detector
is allowed to be time sequential it performs uniformly better than the ad-hoc
detector. Furthermore, the optimum detector demonstrates an adaptive learning
quality, through the process of updating the a-priori probability density functions

of the unknown parameters, from iteration to iteration.
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Introduction

Acoustic reverberation is a phenomenon which active sonar systems have
to combat. Reverberation results when the propagating pulse’s energy is scattered
from inhomogeneities in the ocean and its boundaries. Reverberation data usually
has a complex and highly variable range-Doppler map, which depends on the

location of the sonar array in the water column, and on its beampatterns.

Ocean boundary reverberation (surface or bottom), can leak through
sidelobes or even through the edges of a main lobe in a conventiu.a: forward
looking beam output. The above leakage typically has a sudden onset and can
contribute i> the overall noise level. In conventional active sonar systems,
discrimination against boundary reverberation is typically achieved through

controlling the sidelobe characteristics of the main, forward looking beam.

A more sophisticated approach to the problem has suggested the use of
an adaptive beamforming structure which dynamically steers spatial nulls in the
direction of the interferent boundary patch (surface or bottom). Such a structure
is called in the literature a noise canceler®s, [n addition to the conventional
forward looking beam, the adaptive noise canceling structure uses one or more
reference beams. The reference beams are constructed such that they receive well
the boundary reverberation, but are essentially prevented from receiving signals
coming in from the main look direction. The processor adaptively filters the
reference beams to provide a good estimate of the boundary reverberation
contaminant in the main beam. It then subtracts the adaptive fiiter output from
the main beam output to get the desired - reverberation canceled - signal.
implementations of such adaptive beamforming structures which take advantage
of the spatial separation between desired signals and boundary reverberation

contaminants are presented in?3. Additional relevant sources are>4.84,




The above solution to the problem is representative of an approach which
is based on intuition, but it is not at all clear that it yields an optimal processor

(under any optimization criterion).

Another approach suggests treating the problem as a whole right from the
beginning without imposing intuitive components on the processor structure, and
using all a-priori knowledge available. Detection theory provides us with a
mathematical framework out of which optimum processors can be designed. The
processor will evolve out of the mathematical solution of the problem, and will

not be restricted to using familiar structures.

Although Bayes optimal processors have been derived for the case of
volume reverberationS3, little work has been done which takes advantage of a-
priori knowledge of the time-evolving spatial characteristics of boundary
reverberation. Related Bayes optimal work concerning interference sources of
certain and uncertain (but not time varying) location is contained in ! and 26.24.25

respectively.

Here, a classical detection theoretic approach will be applied to the
processing of a vector time series. That vecior may be composed of the single
array element outputs, or of some preformed beams. Some optimality criterion is
chosen, and then the processor structure is allowed to evolve freely out of the
mathematical solution of the problem. Any uncertain parameters are treated as
random variables and all knowledge about them is summarized in a-priori

probability density functions.

This dissertation is organized as follows: Chapter 1 reviews the current
scientific knowledge about the reverberation phenomenon. It then details some of
the physical and statistical properties of reverberation important for attempting

to quantify spatial covariance matrix expressions of it. These matrices play a




major role in the optimum detector expressions.

In the second chapter, an important tool is developed. Often times, when
likelihood ratio expressions are complex, computing the detector performance
analytically is either very hard, or impossible. Then, being capable of synthesizing
multi-element (or multi-beam) active sonar pings becomes a prerequisite to one's
ability to test detection algorithms using a Monte-Carlo simulation approach. In
lieu of sonar synthesis programs, which are time-consuming and impractical for
this application, this chapter uses a spectral estimation approach, to compute the
multi-channel, time evolving power spectrum of the problem, including the
transmit pulse, the element (beam) transmit and receive beampatterns, the volume
and boundary effects, and the dynamics of the scenario. Then, the multi-channel
covariance matrices are computed, and the normal equatioi.> problem is solved,
yielding a time variable, one-step forward prediction filter. The inverse filter
frequency response is an estimate »f the spectral character of the problem. Now,
all that's left is to pass vectors of uncorrelated white noise through the filter, in
order to get multiple sonar pings of the same sonar scenario, for a relatively low
time investment. Lastly, the synthesis capability is demonstrated through an

example.

Chapter 3 reviews the two approaches to detection of active sonar pings
in a reverberating environment. As discussed above, the first is a combination ad-
hoc noise canceler-matched filter. The chapter then lays the ground iules for
Bayes optimum detection, and examines the array detection problem. Lastly, it
develops the Bayes optimum detector (BOD) for the simple case of signal known

exactly in noise known exactly, which turns out to be a matched filter.

All-zero adaptive filters exist in many variations, where the main

difference is in the adaptive algorithm modifying the filter weights. In the fourth




chapter, the Joint Process Least Squares Lattice (JCLSL) all-zero filter is reviewed,
and then its pole-zero (IIR) counterpart is developed using an embedding
approach, which makes use of the all-zero filter recursions to create the pole-zero
filter recursions. Then, through a set of simulations, it is shown that in some
scenarios, it is beneficial for the adaptive filter to possess the ability to adapt
poles. Annther simulation shows that in the scenarios used in this dissertation, the

performance advantage of the pole-zero filter is marginal.

The fifth chapter develops the Bayes optimum detectors for the three
cases tested in this dissertation:
1. Signal known exactly in correlated Gaussian interference of precisely known
direction.
2. Signal known exactly in correlated Gaussian interference of uncertain
direction.
3. Signal known exactiy in correlated Gaussian interference of uncertain

direction, plus a fixed interference of uncertain direction.

The sixth chapter distinguishes between two different implementations
for the Bayes optimum detector, namely block processing and time sequential. It
develops the time-sequential detector design equations including the updates of
the a-priori probability density function estimates which increase its knowledge

about the problem as time progresses.

Chapter 7 reviews the main methods used to evaluate and compare the

performance of the various detection schemes.

Chapters 8 compares the performance of both detection approaches, when
the Bayes optimum detector is restricted to the block processing method. Finally,
chapter 9 concludes this work by comparing the performance of both detectors

when this time the BOD is allowed the time sequential method. It also




demonstrates il.e adaptive quality of the time sequential BOD through the

updating process of the a-priori probability density function from one iteration to

the next.




1. Reverberation in the Ocean:

Active underwater electronic systems propagate acoustic signals through
the water column and use the information carried by these signals to detect
targets, echo range, or communicate voice and data. Like every other electronic
system, these systems suffer from noise effects, which mask the desired return
signal, and limit their performance. Underwater systems’ performance in general is
limited by external noise sources and not internal (thermal) noise. In the absence
of hostile jammers, this external noise is usually divided into two main categories,
namely ambient ocean noise, and reverberation. Among ambient ocean noise
contributors one can find rain, waves, seismic noise, various biological noise
sources, s»iap traffic etc, and they ail exist independent of the presence of the
underwater system. An inherent difference between reverberation noise and
ocean noise is that reverberation exists only as a result of acoustic energy being

transmitted, whereas ambient ocean noise is always there.

System’s performance may be limited by either type of interference
(reverberation or sea noise), and in fact the same system may be reverberation
limited for part of its operating range, and ambient noise limited for the rest of its
operating range. The systems considered in this d.ssertation are assumed to
operate in conditions which dictate that performance be reverberation limited.

Therefore, ambient ocean noise is neglected in all derivations.

Reverberation is the result of scattering of energy originating from the
propagating pulse, by i;lhomogeneities in the ocean and its boundaries. In some
respects this problem is akin to the radar "clutter” problem. Reverberation is
usually divided into three classes, namely, surface, volume and bottom
reverberation. Irregularities in the ocean surface and the acoustic impedance

contrast of the air/sea interface, gives rise to surface reverberation. This type of
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reverberation varies with wind speed and transmission frequency®6.10.18  [n the
ocean body, air bubbles, suspended sediment, thermal inhomogeneities, fish,
plarnkton, and other biological scurces are the main contributors to what is
classified as volume reverberation!!. Bottom reverberation is caused by energy
scattered from the sea floor, and is highly dependent on the floor type. Both
particle size and bottom relief are important factors37.8, In general, ocean
acoustic reverberation has a very complex nature, and a highly variable power
spectrum. In some situations, where the sonar is fairly close to the ocean
boundaries, or when its beam'’s sidelobes are pointing towards those boundaries,
the energy reflected off of these boundaries makes 2 <ignificant contriburion to
the range-Doppler map. This contribution usually has a sudden onset, may appear

at nonzero Doppler frequencies, and therefore may mask legitimate sonar echoes.

1.1. The statistical and spectral properties of reverberation:

1.1.1. Amplitude distribution

Common reverberation models assume that the reverberation signal is
comprised of a combination of numerous individual sources which scatter the
acoustic energy. These sources scatter the energy with different magnitudes and
random phase. An expression for the intensity distribution of numerous sources
of equal magnitude and random phase has been derived by Rayleigh5!. The

probability that the resultant intensity will exceed the value [ is given by:

P = exp

!
_-_] (1.1)
I

where [ is the average intensity. The actual received intensity is, of course, a

combination of sources of many different magnitudes, because the individual




scatterers are of different size and strength, because the projector may be
directionai, and because the transmission loss in different parts of the ocean may
vary. Nevertheless, it can be shown that Equation (1.1} is still valid provided that
there are a large number of sources of each magnitude, and that the number of

sources of each magnitude remains constant.

The applicability of the Rayleigh mode! has been tested in numerous
studies44.36.35  for all reverberation classes (surface, volume and bottom). All of
the studies have found that in general, the actual probability distribution of
reverberation intensity fits the Rayleigh model well. Moreover, it has been found
that the received envelope of the reverberation is a complex Gaussian random

process (i.e. it's real and imaginary parts are jointly Gaussian distributed).

1.1.2. Coherence

Coherence includes both the autocorrelation and crosscorrelation properties
of a statistical process. The observed reverberation envelope of pulsed sonar
possesses a "blobby" nature, where the "biobs" are about a pulse width long. The
temporal autocorrelation coefficient of reverberation envelope has been found to
almost diminish in a time delay equal to one pulse duration38, Spatial correlation
of reverberation received at two vertically separated hydrophones plays an
important role when implementing reverberation rejection algorithms. This
correlation has been studied, modeled* and measured58.59-57 for both volume and
boundary reverberation. Both the models and the experimental results show that
boundary reverberation is more correlated than volume reverberation, and that
the crosscorrelation coefficient of both types diminishes with increased frequency

and hydrophone separation.




1.1.3. Frequency distribution

The reverberation return resulting from a single frequency sonar pulse
typically occupies a spectral band which is non-congruent to the original pulse
band. The reverberation hand is shifted in frequency due to Doppler effects
caused by the sonar platform movement, combined with any velocities possessed
by the scattering media be it volume scatterers or surface waves. Furthermore, a

spectral spread is observed. Naturally, the finite duration of the transmission

1
pulse, results in a basic spread of —, where r is the pulse duration. Further spread
T

is a result of the fact that different Doppler shifts are caused by the reverberation
returns received from various directions. The Doppler shift depends linearly on
*ne sonar platform’s velocity component in that direction, and therefore
reverberation coming in from different directions suffer different Doppler shifts.
A third contributor to the spectral spread is the one caused by the random motion

of the scattering media.

A typical range-Doppler map of a reverberation reti'rn is shown in Figure
1.1. It was generated using a reverberation zimulation package (REVSIM) developed
for this research, which will be described in detail in a later chapter of this
dissertation. Here, the vehicle was purposefully given a relatively high speed (30
m/s), so as to well separate boundary reverberation from volume reverberation in
the frequency domain, and make each of them well defined. The range-Doppler
map has also been left shifted to compensate for the vehicle's own speed. The
sonar array is placed at a depth of 100m, where the ocean depth is 400m. The
transmit beam illuminates a sector +75° in elevation, and the receive beam spans
+60°. Early in the ping, around 0.1 sec, the onset of the surface reverberation is
weil noticeable. It slowly creeps towards O Doppler joining the volume

reverberation, when aiound 9.5 5c¢ the onsol of Eottom reverberation appears. It
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too, then, slowly joins the volume reverberation until around 1 sec the two

spectral peaks become very close.
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2. tlement level reverberation time series synthesis

2.1. Introduction

The ocean’s boundaries (surface and bottom) and particulate matter in the
ocean volume scatter energy from an active sonar ping back to the transducer.
The characteristics of this reverberation are highly non-stationary. A commonly-
used display of the time-evolving frequency content of reverberation is the
range-Doppler map. The expected range-Doppler map is useful in many instances

for active sonar system performance characterization.

As depicted in Figure 2.1, one approach to estimating the expected range-
Doppler map is to propagate the pulse outward and calculate the expected
backscattered return at successive range increments22, At each range, the shell
representing the ensonified portion of the ocean and its boundaries is split into
cells subtending a small azimuth and elevation angle spread. The expected
spectrum contributed by each cell is summed across all cells yielding the expected

spectrum at that range (i.e. a slice of the range-Doppler map at a given range).

D,  SURFACE

|
1
1
t
1
)

DEPT}

OCEAN DE P#FT

BOTTOM

> <D,

Figure 2.1. Reverberation model geometry
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Although the expected range-Doppler map is useful in many instances for
active sonar system performance characterization, often the actual reverberation
time series is desired. Such reverberation time series are generated by REVGEN
(REVerberation GENerator)#9.50, REVGEN is a direct implementation of the point-
scattering model of oceanic reverberation developed by Faure, Ol'shevskii, and
Middleton!5.45.40.41.42.43  The returns from a large number of discrete scatteres
distributed randomly throughout the volume and on the boundaries are summed
coherently to obtain the (complex basebanded) reverberation time series at the
output of each hydrophone element or beam. The backscattering coefficient
(strength) for each reverberation type (surface, volume, and bottom) is specified
along with random scatterer motion, platform trajectory, absorption, boundary
reflection losses, and transmitting/receiving beam patterns. REVGEN has proved
very effective in the simulation of oceanic backscatter in a wide range of

applications7.83.19.2.3,

Although very good, REVGEN also is very computationally intensive and is
not suitable for generating a large number of pings for a given environment as
needed when performing Monte Carlo simulations for .-ztive sonar system
performance characterization. Typically, generating a single sonar ping similar to
the one synthesized in Section 2.3, will take REVGEN a few hours to run. In order
to generate a large ensemble of pings, REVGEN would have to be run hundreds
and maybe thousands of hours. An aiternative to the point scattering approach
taken in REVGEN is to synthesize reverberation by passing a vector white noise
process through a multichannel 1IR filter whose time-varying transfer function
matches the time-evolving spectral characteristics of the expected auto and cross
range-Doppler maps. Of specific interest is the generation of array element-level

or beam-level reverberation time series which have appropriate element-to-
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element or beam-to-beam crosscorrelations. Related approaches are discussed
in20.62.9.34 Obviously, one run time investment here is in generating the
multidimensional time-varying I[IR filter coefficients. Surprisingiy, this task in
itself is relatively short, and typically takes a few minutes. Once the filter
coefficients are available, generating each sonar ping takes a few minutes, as
contrasted to a few hours using REVGEN. The time savings factor exceeds 100,
and allows the synthesis of a complete sonar ping ensemble over the course of a

few hours. This makes the use of a Monte Carlo simulation approach feasible.

Section 2.2 will describe one approach to the generation of the expected
auto and cross range-Doppler maps and how to fit a time-varying, multichannel,
autoregressive (AR) time series model to these range-Doppler maps. Then, a set
of simulation results is provided in Section 2.3 and is compared with REVGEN’s

output.

2.2. Multichannel revereration time series synthesis

2.2.1. Expected range-Doppler map generation (RVMD)

There are several approaches which can be used to calculate the expected
auto and cross range-Doppler maps. The specific environmental model used as
the basis for the simulations presented in Section 2.3 is a multibeam extension of
the approach discussed in22, Array elements can be viewed simply as beams with
broad spatial response characteristics, when an element level Range-Doppler map
is sought. The module whose function is to compute the scattering function
resulting from the combined effects of the environment, vehicle dynamics and
transmit and receive beam patterns is modified so it handles a pair of receive
beams at a time. When the program is handling an auto-scattering function, both

receive beams are identical, but when the program is dealing with a cross-
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scattering function, the two receive beams are the ones whose cross scattering
function is being computed. The programs run until all possible receive beam

pairs are exhausted. The result is a multidimensional scattering function.

As shown in Figure 2.1, the reverberation model geometry consists of a
spherical shell representing the portion of the ocean illuminated by the signal
wavefront at the instant in time corresponding to a range R after transmit. The

expected range-Doppler map is calculated in two stages.

First, the multidimensional scattering function is calculated following the
steps outlined in Figure 2.2. The illuminated volume of the ocean is divided into
cells. An evaluation of scatterer motion relative to the platform is made for a
measure of spectral shifting and/or spreading due to the environment. For each
cell, and each beam pair, the sonar equation is solved in order to determine the
gross attenuation experienced by a transmitted signal during the scattering
process. The total scattering function for each beam pair for surface, volume, and
bottom reverberation is computed by summing the incremental contributions from
all cells. These scattering functions include the effects of platform motion,
transmit beampattern, both receive beam patterns, and the environment (surface,
volume, and bottom backscattering strengths, scatterer velocity distributions,
surface waves and current layers, and sound absorption). An isospeed sound
speed profile is assumed and reflections at the surface and bottom boundaries are

not permitted.
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Figure 2.2. Scattering function calculation

In Figure 2.2, X is a time delay (range) variable, f'gj(x) is the Doppler shift

accounting for vehicle motion relative to the (i,j)"' grid cell and mean scatterer
. . v
speed relative to a stationary vehicle, —g fc is the frequency offset such that a

stationary target on vehicle axis has zero Doppler shift, p”( ), Is the zero-mean
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Ay
Gaussian speed distribution of scatterers in (i.j)"' grid cell, S; (fX) , is the

Doppler shifted speed distribution of scatterers in (i,j)™ grid cell, A, is the
scattering level (normalized to 1 s in range) from the (i,j)'h grid cell, (k,I)"' beam
pair, .S":;‘j'k'l( f) is the scattering function for the (i,j)"' grid cell, (k,l)"' beam pair,
and 5;"( f.\) are the surface, volume, bottom and total scattering functions for the

(k,)™ beam pair.

Outlined in Figure 2.3, the second stage completes the reverberation
model by combining a detailed description of the iransmit signal (i.e. pulse length,
envelope shape, and source level) with the characterization of the environment
provided by the multidimensional scattering function. The convolution of the
scattering function with the transmitted spectrum yields the expected multi-beam

range-Doppler map.

=k.l.

surface volume bottom total

fo Fourier

Transform convolution

|

surface volume bottom total

y 4 Y
R AY

Figure 2.3. Convolution with the transmitted spectrum
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In Figure 2.3 f(t) is the complex envelope of transmit pulse, S'f(f) is the
normalized energy spectrum of the transmit pulse, E, is the transmit pulse energy,
§£"( f\) are the surface, volume, bottom and total scattering functions for the
(k,l)th beam pair, and S:"(f,x) are the surface, volume, bottom and total

reverberation power spectra for the (k.l)"’ beam pair.

2.2.2. Time-varying IIR filter derivation

The classical linear minimum mean square error (MMSE) estimation
problem has been developed by Kolmogorov?? and Wiener®8, and has been since
one of the foundations of estimation theory. It is discussed is standard estimation
theory texts54. Its development is therefore left in this dissertation for an

Appendix (A).

The end result of the linear MMSE problem are the well known normal

equations, in this case, their multichannel version:

Ao.Ro+AolS_l+ .............. +APR_‘, = .Go (21)
AORI+AORO+ .............. +APR_‘,+| = -Gl
AORp+Ap—IRO+ .............. +APR0 = .Gp

or in their matrix form:

B, B, ... R,
: :
B, Ry . ..B

[AO.AI ....... N [gogl ....... 5, (2.2)
R, B, R

Since we are dealing with an N-input N-output system, 4; are all NxN matrices, and
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so are R; and G;. Also, G; are the crosscorrelation matrices between the input and
the desired signal. In the specific problem of linear prediction, those reduce
simply to the crosscorrelation between the input at time n and the input at time

(n-1), or the input autocorrelation at lag (i+1):

G =R, (2.3)

In this case, the matrix form of the normal equations takes the form:

By By ... B,
B, Ry ...R,
[AO.A, ....... Al = [RuBs e By (2.4)
L ' ' o4
R, By - - - R

Solving the above equations will yield the multichannel filter coefficients A,.

Our goal is to pass a vector white uncorreiated noise process through a
multichannel [IR filter as shown in Figure 2.4 yielding a vector time series at the
output which approximates the time-evolving (auto and cross) spectral
characteristics of reverberation as it would be seen at the output of the elements
or beams of a transducer array. The time-varying coefficients of the multichannel

one step forward prediction filter can be derived in a number of ways.
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x(n)

w(n)

ho)
N
N

i
|
N
N

Figure 2.4. Autcregressive process generation model

Here, slices at a given range from the set of expected auto and cross
range-Doppler maps will be viewed as the multichannel power spectrum of a
stationary vector random process. First, the multichannel power spectrum is
inverse Fourier transformed to yield the corresponding multichannel correlation
function. Then, a multichannel extension of the Levinson-Durbin algorithm is
used to derive the one-step forward prediction error (inverse) filter shown in
Figure 2.5 which provides the IIR filter cocefficients. The Levinson-Durbin
algorithm has been discussed extensively in numerous publications33.14.65.69.52.28
and its development will not be repeated here. It takes advantage of the special
structure of the autocorrelation matrices, to achieve an efficient method of matrix

inversion.
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x(n) ~1 ~1 ~1 -1

Figure 2.5. One step forward prediction error filter

Each increment in range is processed in exactly the same way yielding
successive sets of IIR filter coefficients. The prediction error filter order is
chosen such that it is of the smallest order large enough to accomplish emulating
al: of the spectral contents in the input data. In the type of problems encountered
in this dissertation, where the input spectrum typically posesses two spectral
humps, namely the main volume reverberation spectral hump, and anotlic:
boundary reverberation spectral hump, experience shows that filter order can be
kept to a low value (3-4), while preserving all spectral features of the input. This

is well demonstrated in the simulations in Section 2.3.

2.2.3. Reverberation time series synthesis

The sets of IIR filter coefficients (one set per range increment) then are

used as the coefficients of a time-varying, multichannel IIR filter. Since each
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coefficient set represents a range slice, the range slices originally selected for
RVMD have to be narrow enough so that the time varying spectra are relatively
smooth from range slice to the next. A vector white uncorrelated noise process is
passed through the filter yielding a vector output time series which simulates the
outputs of a real transducer array in a.1 ocean whose environmental parameters

are those input to RYMD,

2.3. Active sonar simulation

As an example of this approach to reverberation time series synthesis,
consider the following active sonar system. An array of 9 rows is mounted on a

submerged vehicle as shown in Figure 2.6.

surface

”:%SK)

150 m

bottom

Figure 2.6. Submerged Array Example

The vehicle is traveling at 25 knots at a depth of 30 m. Ocean depth is 180 m. The

sonar transmits a 180 n.s, rectangularly windowed pulse.
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The 9 row array has a sensor spacing of A/2 at the operating frequency of
the sonar. A conventional beam is formed by simply summing the ocutputs of all
array rows. The corresponding beam pattern and a polar plot of a vertical slice

through the beam pattern at 0° bearing are shown in Figure 2.7.

A difference beam is formed by subtracting the outputs of the 2 center rows of
the array. The corresponding beam patterns similar to those in Figure 2.7 are

shown in Figure 2.8.
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Figure 2.8. Difference Beam polar and spatial beampatterns.
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A transmit beam is assumed which uniformly illuminates the medium over a sector

+30° in bearing and +75° in elevation normal to the array plane.

The backscattered return to this sonar was simulated using REVGEN and
the multichannel IIR filter approach discussed in Section 2.2. In this case, an
isovelocity sound speed profile was assumed (¢ = 1500 m/s) along with the

following parameters: (a) volume backscattering coefficient, s, = -70 dB, (b)

v
bottom backscattering coefficient, S = -20 dB, and (c) surface backscattering

coefficient, Sg = -30 dB, and (d) attenuation due to absorption, « = 4 dB/km.

REVGEN range-Doppler maps of the returning reverberation for the
conventional (sum) and difference beams as well as the the corresponding cross-
power range-Doppler map are shown in Figure 2.9 (fS = 1.27 kHz). These were
generated by taking successive 128-point FFT's (Kaiser-Bessel window, a=2.5)
overlapped by 87.5% (16 points). In addition, the range-Doppler maps have been
left-shifted to compensate for platform velocity. In Figure 2.9a (sum beam),
volume reverberation dominates early in the range-Doppler map. Later (at
approximately 0.25 s in range), the onset of bottom reverberation arriving through
the side lobes of the main beam is seen. In Figure 2.9b (difference beam), volume
reverberation also dominates early in the range-Doppler map. The onset of bottom
reverberation is more pronounced here than in Figure 2.9a due to the response

characteristics of the difference beam pattern.
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The multichannel IR filter results will be presented following the three
steps discussed in Section 2.2. The RVMD parameters were identical to those used
in the REVGEN simulation. First, Figure 2.10 shows the RVMD auto and cross
range-Doppler maps. Note the “scallops” in the surface portion of the map, which
are due to the sidelobes intersecting the ocean boundary. Second, the
corresponding time-evolving inverse linear predictor spectral estimates (filter
order p=4) are shown in Figure 2.11. They indicate how closely the derived IIR
filter matches the expected auto and cross range-Doppler maps. Lastly, Figure
2.12 shows the results of passing a vector white noise process through the
multichannel IR filter and processing the output as done with the REVGEN time
series. As is easliy seen, the results are quite similar to the REVGEN range-Doppler

maps in Figure 2.9,

Figure 2.13 presents expanded high-resolution range-Doppler maps of the
main beam, in order to further emphasize the similarity of REVGEN output (2.13a),
RVMD output (2.13b), the linear predictor (2.12c), and finally REVSIM output

(2.13d).
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3. Signal detection in boundary reverberation

As described in a previous chapter, ocean acoustic reverberation has a
very complex nature, and a highly variable power spectrum. Reverberation is a
source of interference which active sonar systems have to combat. In some
situations, where the sonar array is fairl, ciuse io the ocean boundaries, the
energy reflected off of these boundaries (bottom cr surface), makes a significant
contribution to the range-Doppler map. This contribution sually has a sudden
onset, may appear at nonzero Doppler frequencies, and therefore ma; mask
legitimate sonar echoes. The shape of the transmitting and receiving beams of the
active sonar modify the time evolving range-Doppler map observed by the
receiver. Traditionally, schar systems have discriminated against boundary
reverberation by forming fixed treceiving beams which had low sidelobe
characteristics in the direction of the ocean boundaries. However, the energy
leaking through the low sidelobes may still be a major contributor to the overall
noise background level. Furthermore, since the sonar system is typically moving
and varying its depth in the water column, the direction of boundary

reverberation is not fixed.

The above reasoning led many researchers to propose using an adaptive
structure in order to track the interference direction and to place spatial
beamformer nulls in that direction. Such a beamformer may continuously learn the
boundary interference direction and adjust itself to cancel it out, thereby
enhancing signal to noise ratio and improving the detection performance.
Implementation of such an ad-hoc structure follows the lines of the well known
adaptive noise canceler®® In addition to a main beam which receives well in the
desirad look cirection, one or more reference beams are formed. The reference

beams receive well in the direction of the boundary interference, and have spatial

38
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nulls in the main look direction. The output of the main beam contains both the
desired sigrai and a contaminant which is the contribution of the boundary
interference leaking through side lobes or the edges of the main lobe. Ideally, the
reference beams contain only a replica of the interference. The output of the
reference beam, or beams, is processed by an adaptive filter and then subtracted
from the main beam. The adaptive filter tries to provide a good estimate of the
interference portion of the main beam output, and the final error output ideally
contains only the desired signal. Implementation of such adaptive reverberation
cancellation schemes is reported by Hodgkiss and Alexandrou?3, The boundary
reverberation canceled output of the adaptive structure can now be treated as
containing a known signal in noise (the volume reverberation), a classical, solved

problem.

The proposed solution discussed so far is representative of an approach
which is based on intuition. A typical conventional adaptive processor would
combine one or more of the following building blocks in order to make a decision
about target presence:

1. Fixed Beamformer.

2. Adaptive beamformer.

w

. Adaptive nullformer.

4. Adaptive spectral whitener.

5. Matched filter.

6. Threshold detector.
Use of each of the above building blocks is intuitively reasonable, but it is not at
all clear that any combination of these _omponents yields an optimal processor

{under any optimization criterion).

Another approach suggests treating the problem as a whole right from the
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beginning without imposing intuitive components on the processor structure, and
using all a-priori knowledge available. Detection theory provides us with a
mathematical framework out of which optimum processors can be designed54.64,
The processor will evolve out of the mathematical solution of the problem, and

will not be restricted to using familiar structures.

Although Bayes optimal processors have been derived for the case of
volume reverberation>?, little work has been done which takes advantage of a-
priori knowledge of the time-evolving spatial characteristics of boundary
reverberation. Related Bayes optimal work concerning interference sources of
certain and uncertain (but not time varying) location is contained in! and 26.24.25

respectively.

Here, a classical detection theoretic approach is applied to the processing
of a vector time series. That vector may be composed of the single array element
cutputs, or of some preformed beams. An optimality criterion is chosen, and then

the processor structure is allowed to evolve freely out of the mathematical

solution of the problem. Any uncertain parameters are treated as random variables
and all knowledge about them is summarized in a-priori probability density

functions.

3.1. The adaptive (noise canceling) ad-hoc detector

As previously mentioned, the time evolving nature of ocean acoustic
boundary reverberation has led many researchers to try applying adeptive
filtering schemes to an observed vector time series, in order to cancel out, or
reduce the interference level present in it. The idea of adaptively canceling
interference sources thereby enhancing the desired signal is intuitively

reasonable, and seems very attractive. It is not at all clear, though, that using such

a canceler as a building block, following it by another ad-hoc detection building
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block is a globally optimal solution from any optimal detection criterion point of

view.,

As is implied from its name, an adaptive filter "adapts" to the changing
conditions by varying its weights, and going through a learning process. Various
mechanisms that control the variation of the filter weights have been proposed
and implemented. Each one of these mechanisms is based on some optimality
criterion (e.g. minimum mean square error), which is local to the adaptive filter
structure, and does not necessarily conform to any global optimum detection

criterion.

The adaptive filtering structures may be viewed as realizable approximate
solutions to the classical optimal Wiener filtering problem, and can be developed
both from a statistical point of view (assuming stationarity and ergodicity), or by
using a deterministic least squares approach. Both approaches can be
implemented through block processing or time-recursive techniques, and may be
implemented in direct form, or through efficient lattice structures. Built into all of
the adaptive filter implementations there is an adaptation coefficient which serves

as a 'forgetting factor’ (i.e. weighting less past in favor of more recent data).

There are three general classes of adaptive structures. The first class is
based on the method of steepest descer.it and is generally referred to as the LMS
algorithm. The work of Widrow and Hoff 7 has served as the basis to this method.
The second class is the gradient lattice (GL), and the thirq is of the deterministic
least squares type, and is referred to as the least squares laitice (LSL). A
compaiison between these three classes is beyond the scope of this work, and
Alexandrou? is a good reference in that regard. Due to its superior behavior
during abrupt changes in the processed data, tke LSL class of adaptive filters has

been typically selected by researchers dealing with the ocean boundary
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reverberation problem. Hodgkiss and Alexandrou?3 and Alexandrou’ have shown
how the LSL filter can be used to cancel or reduce sea surface reverberation
interference. LSL class adaptive filters are used in this dissertation as part of an
ad-hoc detection scheme. In fact, a new structure of a joint process pole-zero
adaptive LSL filter is developed in the next chapter, and its performance is

compared to that of the standard all-zero LSL filter.

The ad-hoc detection scheme, then, accents as inputs a main beam output
which contains the signal contaminated by interference, and one or more
reference outputs, which contain the interference alone. The adaptive filter tries
to cancel the interference, and the filter's output is then presumed to be
interference free, and is presented to a signal known exactly in noise known
exactly Bayes optimum detector for making the decision. Figure 3.1 illustrates the

structure of the ad-hoc detector.

Main m Bayes Decision
z Optimum >
’\/ Detector

/

Re ference Adaptive
———
Filter

é

Figure 3.1 The ad-hoc detector
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3.2. Complex exponential Fourier series representation of signals

In order to be able to use classical statistical techniques and apply those to
optimal detection theory, we need to obtain a finite dimensional observation
vector which is then used in computing the joint probability density functions
under the true and the null hypotheses. These probability density functions, in
turn, are used to form the likelihood ratio. Typically, the ector of observables
available for processing is that of the array element outputs, or some preformed
beam outputs. In any case, this is a vector of continuous time waveforms, which
means that some mapping technique is required in order to collapse this space
into a finite dimensional space. There are three well known techniques to perform
this transformation, namely time sampling, Karhunen-Loeve expansion, and
trigonometric Fourier series. The best selection of the mapping technique usually
depends on the problem one is faced with, and a good choice can often reduce the

complexity of writing the likelihood ratio expressions.

Adams and Nolte! have shown that using the trigonometric Fourier series
mapping technique leads to significant mathematical tractability, and Hodgkiss??
derived the conditions that have to be met in order to be able to represent the
observed vector in terms of its Fourier coefficients. Certainly, with the advent of
fast computers, and we availability of fast Fourier transformation algorithms,
using this approach seems very attractive. The mathematical derivations of
optimal Bayes detectors in this dissertation follow simiiar derivations made by
Adams and Nolte! and Hodgki.ssn except that their derivations dealt with the
passive sonar problem, where this work is dealing with its active counterpart. The

trigonometric Fourier series mapping is used, then, throughout this work.

—_ R

It is well known that a well behaved function f(t) on can be
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represented as:
N 12
f(t) = lim Y a(n)|—| exp(jnwyt) (3.1
N— o _y T
2w
where wy = —, and
T
. 121
a(n) = |—| [ f()exp(-jnwyt)dt (3.2)
T e

T T
If f(t) is bandlimited and has no dc component then on [-—; .—] f(t) can be
2
expressed as:

1
N, 2

1
f(t) =2 Re Ea(n)[?] exp(jnwyt) (3.3)

N,

Then f(t) is mapped into a finite-dimensional vector f.

L7 =[a(N).a(N+ D e .a(N,)] (3.4)

The above can also be shown for a stationary random process r(t), with power

T T
spectral density R(w). [t can be expressed on [—; —2-] as:
N 1
r(t) = lim Zz(n)(;)lﬂexp(jnwot) (3.5)

N— %_y

where z(n) is a random variable defined as in (3.2) above.
If r(t) is bandlimited and has no dc component then:

N

2
1
r(t) = 2 Re Ez(n)(?)mexp( jnwgt) (3.6)

Ny
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i.e. every realization of the random process r(t) can be mapped into a vector:

27 = [2(N),2(N 4 1)rnz(N,)] (3.7)

If r(t) is a Gaussian random process, then z(n), which is a linear functional
of r(t) is a Gaussian random variable. For zero mean noise processes, z has the
zero vector as its mean. For large T, Papoulis4’ has shown that the components of
(3.7) are approximately uncorrelated and z(n) has a variance R(nwg). The
covariance matrix of z is therefore diagonal. It can also be shown that z is a
complex Gaussian vector, i.e. is a (N, — N; + 1)-tuple of complex random variables

such that the vector of real and imaginary parts is (N, - N, + 1)-variate Gaussian.

3.3. The array detection problem

An array of receiver elements observes a vector of time waveforms as

" 1 PR
Jcilows:

1) = o0, (Ol _ (D] (3.8)

where subscript denotes the array element.
If all the received waveforms are bandlimited then according to (3.2) one can

express them in a Fourier expansion, as follows:

N 12
1
r(t) = lim Ezk(n)[*—] exp(jnwyt) (3.9)
N— °°—N T
The Fourier coefficients are:
| 12172
z,(n) = |— [ r(texp(-jnwyt)dt (3.10)
T -t

One can now group the Fourier coefficients for a single frequency index but from
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all the array elements in a K dimensional vector as foliows:

ZT(n) = [2o(n).z, (M) ez _ (N)] (3.11)

and group riow vectors from all the frequency indices:

2T =[ZT(ND.ZT(N} + 1)nZT(N)) (3.12)

In this way the time waveform observed on the K elements is mapped into a
K(N, — N, + 1) dimensional vector. It can be shown that Z is a complex Gaussian
vector, and that its covariance matrix (for large T), is block diagonal. There are
(N, -~ Ny + 1) KxK blocks, each representing the correlation between array

elements at a specific frequency.

3.4. Hypothesis testing

The theory of hypothesis testing began with the work of Bayes® on
conditional probability. The notions of cost and risk were introduced by Wald6!,
who initiated much of the recent theoretical work along the lines of the theory of
games. Communications receivers based on the ideas of conditional probability
were proposed by Kotel'nikov3? in a dissertation from 1947, published in 1956
and translated into English in 1959, At the same time Woodward and Davies79,
and Woodward’! suggested applying conditional probatility to signal detection.
An analysis of signal detection within the framework of conditional probability
was performed by Middleton39, and Peterson, Birdsall and Fox 48 were at the same
time designing receivers based on the likelihood ratio. The following summarizes

the thought process developed by the above mentioned researchers.

A processor which has available an observed vector time series Zz, has to be
designed. The processor is forced to make a binary decision between two mutually

exclusive and exhaustive hypotheses, namely, signal absent or signal present:
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Hy: z = ndy) (3.13)

H,:z=s(8) + n(g,) (3.14)

where n(g,), s(4,) and n(4,) are noise and signal vectors written as functions of
paiameter vectors §,and §,. The parameter vectors determine the shape and
character of the noise and signal vectors, and may be fully known, partially known,

or even completely unknown.

The processor’s choice results in one of four different cutcomes, i.e a false

alarm, a miss, a detection or a null decision. Their corresponding probabilities are:

Faise Alarm: Qo = [py(z)dz (3.15)
R1

Miss: Qu = [p(2)dz (3.16)

RO
Detection: Q)= [p(2)dz (3.17)
R1

Null Decision:  Quo = [ Ppo(z)dz (3.18)

RO

where py(z) and p,(z) are the probability density functions of the observed vector

under the two hypotheses.

A cost is attached to every one of the outcomes, and consequently a cost

matrix is defined:

[Coo Cm]

C =
'-CIO Cll

(3.19)

Where C,; is the cost of choosing H; when H; is true. The cost selection depends

heavily on the scenario of the problem, but usually the costs for making a correct
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decision are chosen lower than those for an incorrect decision. A negative cost
means a reward (conceivable for a correct decision).

A risk function is also attached to every outcome, and is defined as follows:

R=C,;Q; (3.20)
This function is the product of the cost and the probability of an outcome, and

represents the risk incurred in case that outcome materializes.

3.5. The Bayes Criterion

lhe Bayes criterion attempts to minimize the average risk, and seems a
natural approach for an observer forced to make a large number of decisions
under repetitive circumstances. If ¢ is the probability that H, is true, the average

risk is:

R = ¢1Co0Q00 + C10Quol + (1 = 9[Co, Qo + €1,Qy)] (3.21)

= [Coo [ Pol2)dZ + C)o [ Po(2)dz] + (1 = OICy, [P i(2)dZ + Cy, [P ((2)dz2]

R, R, R, R,

Now, since [p(2)dz =1- [p(z)dz i=0,1

Ro R,
Then
R = [Cyo + (Cio = Coo) [ Po(2)d2z] + (1 = O Coy + (Coy — Cyp) [ p1(2)d2] (3.22)
R, R
=¢Coo + (1 = 9)Coy — (1 = NCoy = Ci) [Ip(2) — Aopo(2)]dz
Rl
Where:




49

f(Clo - Coo)
T (1= (Coy = Cyy)

Ao (3.23)

Furthermore, since (Cy, — C,,) is positive, minimizing R means to select R, such
that the integral is as large as possible. In other words, choose R, such that ali

points for which the expression p,(z) — Aypy(2) is positive are included.

This leads to the following decision rule:

p(2)
R =[z:A(2)= > Agl (3.24)
Po(2)
(2)
Ro =z . A2) = < Ao]
po(Z)

The optimum Bayes detector in the least risk sense is implemented, therefore, in

p,(2)

forming the ratio A(z) = which is called the likelihood ratio. The

pol2)
likelihood ratio is compared to a prescribed threshold, and the decision is made
based on the comparison’s outcome. The above procedure serves as the basis for

all the optimum detector derivations in this dissertation.

3.6. Implementing the Bayes criterion for the detection of a known signal

in spatially correlated Gaussian noise

The following outlines the procedure used when deriving Bayes optimum
detectors. This case is a very simple one, in which everything is known about the
signal and the noise, and there is no boundary interference. Such may be the case
in the deep ocean, where the boundaries are far enough from the array so that the
reflections off of them are highly absorbed. Also, if an interference canceling
scheme is used prior to the Bayes detector, the processor may assume that

interference was canceled out completely, and implement the following approach:




50

The processor observes a vector time series as follows:

~-T T

£ = Irg(O. 7 (Ot (D] S <<y (3.25)
Under H, :
-T T
r () = 5. () + n (D) T <t< ; (3.26)
Under H,:
. -T T
r(t) = n(t) — <t<— (3.27)
2 2
As shown before, one can write:
" 1 T T
n(t) =2 Re Zak(n)(~‘)”2exp(j2nwot) — <t<— (3.28)
N, T 2 2
"2 1 T T
5 (t) =2 Re Zbk(n)(—)lﬁexp(janot) — <t<— (3.29)
N, T 2 2
and
NZ
1\ ] -T T
r () = 2 Re Yz, (n)(—) "“exp(j2nwyt) — <t<— (3.30)
N T 2 2

1

When noise alone is observed, Z , defined before, is a zero mean complex
Gaussian vector with covariance matrix Q.
When a signal is present, Z is a complex Gaussian random vector with covariance

matrix Q and mean:
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m" = (BN )b (N Db (NN, + Dby _ (N} + Dby _ (N3] (3.31)

Tne probability density functions are then:

1 ]
p(Z/H)) = v expl -~ (Z - m)' Q" NZ — m)] (3.32)
T
p(Z/Ho) = ——expl - Z'Q"'Z] (3.33)
= 1Ql
Form the likelihood functional:
p(Z/H, . 1 . 1
AM)=—————=expl-Z-m) Q Z-m+2ZQ 2] (3.39)
p(Z/Ho)

Any monntone function of the lit~lihood functional can serve as a sufficient

statistic;

INAQZ) = - (Z - m) ' Q (Z~m) + Z2Q°'Z (3.35)
=-ZQ'Z-m+m Q' Z-m+2Q'Z
=-ZQ'Z+Z Q' m+mQ'z-mQ'm+2'Q7'Z
=22 Q' m+mQ'Z-mQ'm

since m'Q'lm isn't related to the observed vector Z, another sufficient statistic is:

| S . .
;[z Q'm+m'Q'Zl =Re (Z'Q ' m) (3.36)
NZ
= Re S2Z°(MQ ™ (M{bo(A)enby _ (M7
N

!

where Q’l(n) is the inverse of the nth block Q(n) of the block diagonal matrix ..
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Thus, the resuftant optimum detector instructs us to implement a matched filter

where we correlate the observed vector with the signal mean vector.

The above derivation serves as an 'example recipe’, which is repeated in this

work in order to arrive at Bayes optimum detectors which apply to various

scenarios and statistical assumptions.




4. JCLSL and JCARMA - all-zero and pole-zero
adaptive filters

One approach to the problem of interference rejection in an array
processing context is the use of an adaptive beamfor-'ing structure which
dynamically steers a spatial null towards the source of undesirable signal.
Interference leaks into the output of a conventionally fcrmed beam through
sidelobes pointing towards the source of interference. One or more reference
beams can be constructed which receive well the interference but are prevented

from passing signals propagating from the desired look direction. The outputs of

these reference beams are adaptively filtered to provide a good estimate of the
contaminant, and are then subtracted from the output of the conventional beam.

Such a structure is performing a noise canceling operation.

Since a beamformer weights and sums the outputs from a finite number of
array elements, it implements a spatial FIR digital filter. The response
characteristics of a beamformer will exhibit nulls as a function of either: (1) source
arrival angle at a given frequency or (2) source frequency at a given arrival angle.
Beam based adaptive beamformers can perform poorly due t‘o nulls in the

response characteristics of the reference channel beamformer. A reference channel

adaptive filter implementing poles can partially compensate for these nulls.

4.1. An all-zero adaptive filter

The all-zero, joint process, least squares lattice structure (JCLSL) used in this
dissertation has been discussed in detail elsewhere?!-2 along with applications to
the adaptive array processing problem. Figure 4.1 depicts the general structure of

this adaptive filter, and Figure 4.2 details the single stage structure.
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—io(n) o —iM(”)
x(n) ¢5(n) L em(n)
1" stage M™ stage
Ko
o) | ry(n)
y{n) eo(n) ] ey(n)

Figure 4.1.

All-zero, joint process, least squares lattice filter
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K
Lrl—l(n) fi(n) -

(-

Figure 4.2. " stage of the filter
The reference channel process y(n) is filtered to form an estimate of the primary
channel process x(n) (the desired signal). Of particular importance in noise
canceling applications is the residual ey(n) obtained by adding the filtered
reference channel to the primary channel. In an adaptive beamforming application
x(n) is the output of a conventional beam containing an interference
contamination, and y(n) is the output of the formed reference beam. The filter

attempts to form a good estimate of the contaminant present in x(n).

4.2. The pole-zero complex adaptive joint process least squares lattice

This section will formulate and solve the joint process estimation probletn,

where the estimated process is assumed to be an ARMA process, and therefore the
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linear predictor takes the form of a pole-zero structure. The single channel all-
zero linear predictor and the all-zero joint process estimator, as well as the pole-

L)
>

zero linear predictor have all been developed and documented?1.2.32.17.18.22  Ap

embedding approach is taken, where a scalar ARMA process is embedded into a
vector AR process, and the previously developed AR recursions are utilized to
produce the pole-zero joint process estimator recursions. The benefit of using the
more complex adaptive filter possessing both poles and =zeros is finally

demonstrated through a simulation example.

4.3. The input-output ARMA process model:

Consider a scalar data sequence y(n) which is assumed to be an M™ order

ARMA process of the form:

y(m+ay y(n—=1)+.......... +ay myY(N=M) = by qu(n)+.......... +by yu(n-M) (4.1)

where the orders of the AR and MA parts of the ARMA process are chosen to be
equal for presentation convenience, and u(n) is the input to the ARMA filter. Note

that by simply dividing equation (4.1) by by, it can be turned around to form:

u(m+dy u(n="1+.......... +dymu(n=M) = ¢y oy(M+.......... +CymyY(n=M) (4.2)
Here, u(n) is also represented as an ARMA process.

The innovations of y(n) and u{n) are, respectively:

ey(n) = v(n)-v(n) (4.3)

() = u(n)-a(n) (4.4)

where
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y(n) = —ay ,y(n-1)—......... —ayuyyY(n=M)+by ju(n-1j+.......... +by qu(1-M) (4.5)

and
a(n) = —dy | in=1)—eeeee —dy =ty (=1 sy yy(n=M) (4.6)

4.4. The embedding approach:

Equations (4.3)-(4.6) can be combined into a single matrix equation in the

form of a 2-dimensional AR linear predictor equation:

[L(")] [Y(H)LM[aM.I —by
mhn) = lu(n) % —Cumi Ay

fm]

[y(n—i)}
(4.7)

u(n-i)

The backward linear prediction equaticn can also be written in terms of an

embedded ARMA process in a vector AR process:

o)
ranyl

where ry(n) and ry(n) are the M™ order backward prediction error signals.

y(n-M-1) M[eM.MH-: ~ Fr M1t

u(n-M-1)! by

im]

[y(n—i)]
(4.8)

~IuMri~i  Mmmei—i 1Lu(n=i)

Equations (4.7) and (4.8) are then just AR forward and backward linear prediction

equations for the 2-dimensional process:

y(n)

uln)

The most crucial assumpticn made here is that u(n) can indeed be represented by
equation (4.2). Lee3! shows that in most cases this assumption is valid.
Furthermore, implicit in this approach is the availability of the innovation process
u(n) to the ARMA filter. Since this input is unavailable, a bootstrapping approach

is taken, in which ¢}, the best estimate of u(n), is fed back to the input, and used
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instead. Now one can use the previously derived AR process recursions to
compute the ARMA process linear predictor recursions and also the joint ARMA
process recursions. The ARMA process linear predictor recursions are well
documented31.53.32 and we will not repeat them here. Instead, we will extend the
joint process AR estimator recursions to get the joint ARMA process estimator
recursions. The notation used in the following equations is: y(n) represents the
reference process being filtered to predict the "desired” signal x(n). u{(n) is the
reference signal innovation process. The first index always represents order

number, and the second represents time.

The recursion for the desired signal prediction error in the joint AR process

estimator is3! :

x x x -r
€ivin = ei.n—AH-l.n Ri+l,nri+l.n (4'10)

where A, is the M™ srder AR process cross correlation coefficient, and Ry is the

th

M order AR process backward prediction error covariance inverse. Using the

embedding approach, we now have in the ARMA case:

riy+l,n
Y (4.11)

i+l.n

Yioip =

where, again, u(n) is the innovation process of the reference signal v(n). Now,

combining (4.10) and (4.11) we get:

X X T —r
€ivln = Ef.n—Al‘x+l.nB!+l.nri+l,n (4.12)
where
r
Afin =@ A (4.13)




[ Rir-:;‘.n RI-H n]

ruy
—r —Ri+l.n RH—l n
Ri+1.n =
ruu ruy
l+lan+l n R1+1n i+lLn
It follows then that:
ruu
1 Ri+1,n RH-ln riy+1.n
x X xu
€ivln = €in— (Al+ln ’ Ai+l.n) R R A
AH—Ln —Ritln i+ln S ¥isLn
where
")’" ray
AH»l.n 1+1 HRI+1 n— :+l.n Ri+l.n
Further:
x X ruu xu
€ivln = Cin— (AH-I n 1+l.n"Ai+l n r+l n)rH-l n
i--l.n
) u
—A ( AH-lnRH»ln Al+lnR:+ n)ri+l.n

i+l.n

Now define the joint process reflection coefficients as:

xy ruy
Ki.x, A R = AR G 0
xu
i+ln = H-] nRH—l n— 1+l nRr+l n

and finally the desired signal prediction error recursion is:

x x Xy Y xu _u
€ivtn = Cin—Riginlistn—Risintivin
. u .
The recursions for A and A™ are given by:
X y'
Xy ‘i.n+lrr+l.n+l
‘Awl n+l = (IQG)AHLH*'

—Tin+l
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(4.14)

(4.15)

(4.16)

(4.17)

(4.18)
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X H'
€; Y
xu xu inelTitlnel
Ai-f-l.n-(»l = (I_Q)Aiﬂ.n‘*‘
~Yin+l

where (1-a) is the exponential weighting factor, and ~ is the likelihood variable.

The recursions for R””, R™, R™" and R"™" are given by:

y
’ Y
ryy rvy i+ln+l’ i+l nel
Ri+l.n+l = (l_a)Ri+l.n+ (4.19)
~Tin+l
y "'
r; r;
La+livlnel
ryu ryu i+1, .
Rifiner = (1=a)R Ly n+
~Tin+l

4 it
ruy ruy  irinstficing
Riving = (1=0)R ) pt
1= ny
u H.
uu ruw Vet Yislngl
Ri+l.n+l = <1—‘3‘)’Ri+—l,n -
~Tinsl

And all the above recursions yield the joint ARMA process estimator structure

shown in Figure 4.3. Figure 4.4 details the single stage structure.
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Figure 4.3.

Pole-zero, joint process, least squares lattice filter
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Figure 4.4. ™ stage of the structure

4.5. Simulations

Two sets of simulations will be used to compare the performance of the all-
zero (JCLSL) and the pole-zero (JCARMA) least square lattice adaptive noise

canceling structures.




63

Figure 4.5 describes how the input data was generated for the first

simulation.
win) x(n e(n)
Hmain(z) ( ) @ -
H,q (2) y(n) Az'iapnve
filter
Main charnel transfer function
2.9 + ' ' N ) . ) .
-8.@ } 4
Bia > | 1
.
-2 @ A
~a2a e + -+

-©.5-0.4-2.3-2.2-2.1 9.0 ©.1 2.2 ©.3 0.4 @.5
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Reference chonnel transfer furction
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SBiee ¢ +
gﬁq o | .
-3 ./ 3
-4 @ + 4
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Figure 4.5. Data generation model.
A white noise time series w(n) has been passed through two simple FIR digital
filters. H,,.(2). generating the main channel data x(n), consists of a 6-point

rectangular window. H,,,(z), generating the reference channel data y(n), consists
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of a 4-point rectangular window. Since the goal of the adaptive filter is to invert
the characteristics of the reference channel transfer function, H,,((2), and to

model the characteristics of the main channel transfer function, H (2), this

main

example presents a case where the ability to adapt poles is important.
Figure 4.6 displays error power as a function of time at the output of JCLSL

and JCARMA for filter order p=4. The resuits show that JCARMA has a several dB

lower error signal power than JCLSL.

CARMA error r JOLS error
halxalmma,g‘.‘f 16, paint avereging b=4 nlmcs:ﬁg, 16, parrt ovproging
8.9 1 9.8 1
@10.8 1 519.0
EZB.B Ezo_a
-32.9 1 -38.9
"40.9 ST Z 384 517 646 763 846 1024 "38.9 F1hg 2 384 512 600 %8 8% 1624
Sequence Nunber (n Sequence Number (0}

Figure 4.6. JCARMA vs. JCLSL error power vs. time (p=4)
Additional insight is gained by looking at the power spectra in Figure 4.7 (JCLSL),
and Figure 4.8 (JCARMA). The left hand pair of panels are estimates of the main

and reference channel input power spectra (white noise passed through H and

main
H,.¢)- Note the dip in the reference channel spectrum which is centered on the
first sidelobe of the main channel power spectrum. It is in this particular region
that the adaptive filter can use the ability to adapt poles. The right hand pair of
panels are estimates of the adaptive filter output and error e(n) power spectra. As

can be seen, JCARMA is able to properly match the spectral characteristics of the

main channel where JCLSL cannot.
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Figures 4.7, 4.10 and 4.11 repeat the simulation with filter order p=8. Note that

even with the additional degrees of freedom, JCLSL for p=8 is unable to perform




as well as JCARMA for p=4.
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4.6. REVGEN simulation

The second simulation was set up using a real ocean environment, and
REVGEN, a REVerberation GENerator discussed in Chapter 2. This is a
reverberation simulation package which implements directly the point scattering
model3%. The returns from a large number of discrete scatterers, d.stributed
randomly throughout the ocean volume and boundaries, are summed coherently to

obtain the reverberation time series.

The sonar receiving array is made of four elements, and is placed at a depth
of 150m, in water which is 450m deep. The array platform is moving at 12.5 knots.
A pure tone, 180 msec pulse is transmitted and propagated through the water
column. The transmit beampattern is uniform over 60 azimuthal degrees and 150
vertical degrees. The return volume, surface and bottom reverberation time series
for each of the array elements is generated by REVGEN. Two conventional beams
are formed, a primary beam using the sum of all four array element time series.
and a reference beam using the qifference between the two middle element time

series.

[t is clear from the above description, and from examining the beampatterns
that the sonar array will receive boundary reverberation which might hinder its
ability to receive well from the desired look direction (straight ahead). An
adaptive filter continuously steering a spatial null in the direction of the
interference may improve the sonar's performance. Here, the performance of

JCARMA will be compared again to that of JCLSL, under the described scenario.

Figure 4.12 details the polar beampatterns of the main and reference
channels along a vertical cross-section. Figure 4.13 details the spatial

Leampatterns of the main and reference channels. Figure 4.14 depicts range-
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Doppler maps of the main and reference channel time series, after the platform’s
own speed has been compensated for by shifting the entire range-Doppler map by
the proper amount. The surface reverberation return is clearly seen, peaking

around 0.5 sec and -0.2 cycles/sample.
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Figure 4.12.

Main and Reference channels polar beampatterns.
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Now we pass the 2-beam vector time series through the two adaptive
filtering structures (JCLSL and JCARMA), and examine the results. For both filters,
filter order was set to 3, and o to 0.02. Figure 4.15 depicts the two adaptive filter
outputs. Though it is clear that both filters have done a good job of reducing the
surface interference icvel, thereby allowing better recepidon from the look
direction, it is not clear in this case that JCARMA performs better than JCLSL.
Plotting the overall time evolving power levels (Figure 4.19) and the
JCLSL/JCARMA error power ratio (Figure 4.17) further reveals that in this scenario
there is only a slight performance advantage for JCARMA over JCLSL. The error
power ratio departs 0 towards the positive side wherever JCARMA does better
than JCLSL. The scenario used above will be used again in this dissertation to test
and compare the performance of different detectors. The above serves as an
indicator, which has been confirmed in other simulations, that in these scenarios,
the slight performance advantage of JCARMA over JCLSL, does not justify the

higher algorithmic complexity, and the higher run-time investment.
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S. Three specific prchlems and their corresponding
Bayes optimum detectors

This chapter deals with a specific scenario which an active sonar system
may encounter. Bayes optimum detectors are developed for three different sub-
scenarios, whose level of uncertainty is ever increasing. The setting is as follows:
an active sonar system is mounted on an underwater platform which is submerged
in shallow ocean water. In this context shallow water means that the first
reflection of acoustic energy back into the receiver is significant. The ocean depth
is chosen such that there is a significant nc-overlap zone between the two
boundary (surface and bottom) interferences, and therefore only one cf them is
considered, meaning detection is performed in the no-overlap zone. The
platform’s depth in the water column is either known, or has a known probability
density function. Sound speed profiles are assumed isovelocity, i.e. acoustic
energy propagates through the medium in straight lines. The platform is
completely stationary in the water column, i.e. the effective own Doppler speed is
zero. The sonar’s front end is a four element sensor array whose preformed beam
outputs are available to the processor in the form of a sampled vector time series.
The preformed beam ensemble contains a sum beam which is formed by summing
all element outputs, and one or more difference beams formed by subtracting two
adjacent element outputs. It is further assumed that the transmission pulse is
narrowband, that the incoming signal characteristics are completely known, and
that the target is stationary. The sonar is assumed to be limited in performance
by acoustic reverberation and not by ambient ocean noise. This assumption is
typically valid in medium and high frequency systems, certainiy when dealing with

relatively short ranges.

The three sub-scenarios are as follows:
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1. Platform is at a fixed, precisely known depth.

2. Platform is at an unknown depth, but the depth probability density function is
known precisely.

3. Platform is at an unknown depth, but the depth probability density function is
known precisely. Also, there is a fixed interference source whose direction

probability density function is known precisely.

Since the transmitted energy is propagating through the water, the
boundary interference direction is changing constantly. In the case where platform
depth is known exactly, the interference direction is also known exactly. When
there is uncertainty in piatform depth, it transiates to uncertainty in the direction

of the incoming boundary interference.

In the first iwo sub-scenarios, a sum-difference beam arrangement is
sufficient, since there are two degrees of freedom, namely signal and boundary
interference. In the third sub-scenario, another interference source is introduced,
and therefore another degree of freedom is required. That is why in this scenario
another difference beam is formed and used, and the problem’s dimension

increases,

As discussed in Chapter 1, ocean acoustic reverberation has been the
subject of numerous studies38.35.13.46  These studies clearlv show that the
complex envelope magnitude of acoustic reverberation is Rayleigh distributed,
and that the real and imaginary components of this envelope are jointly Gaussian
distributed. This property of reverberation justifies using Gaussian probability
density functions in all the derivations of the Bayes optimum detectors in this

a,,sertation.

in Chapter 3, a general expression was derived for the likelihood function

in the case of a known signal in spatially correlated Gaussian noise:
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p(Z/Hl) . 1 . 1
MDD =—"——=expl-Z-m Q (Z-m+2ZQ 2] (5.1)
p(Z/Ho)

Equation (5.1) will serve as the basis for computing the Bayes optimum uetectors
in the three sub-scenarios addressed in this chapter. It is clear that key to this
derivation is our ability to precisely and accurately arrive at the covariance matrix

inverse expressions.

Figure 5.1 depicts the power spectrum of a typical sonar ping at the range

where detection is attempted.

o e
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Figure 5.1. Sum beam power spectrum

It is apparent that due to this problem’s setting (i.e. a narrowband transmission
pulse, O vehicle speed, 0 target speed), almost all the spectral content is located in
frequency in.lex 0, or DC. For this reason, it is sufficient to use a single frequency
term in computing the received signal Fourier transform vector Z, the covariance

matrix Q, which ends up containing a single block, and the signal mean vector m.
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S.1. Derivation of the two beam covariance matrix

Typically, artive sonar systems operating at medium and high frequencies,
are reverberation limited. The detection ranges of these systems are usually such
that reverberation dominates the ambient ocean noise which is therefore
ignored®’. The ability to precisely evaluate the total reverberation (volume,
surface and bottom) covariance matrix, is the foundation to the correct derivation
of the likelihood functional. That will lead to the design of a trv ~ptimal

detector in the "Bayesian” sense.

Consider the four element array which we use. We have available two beams:
sum and difference. The sum beam is a sum of all four channels, and the
difference heam is a difference between the two center channels. Figure 5.2

depints this arrangement:

0 Cr
1 O— sum
2 C
30
7N diff

| O

Figure 5.2. Sum and difference beams
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Since in this w.rx the mapping used to reduce the received signal to a finite
dimensional space is the Fourier transform, the matrix sought here represents the
covariance between Fourier coefficients of all frequency indices, and all array
indices. Here, oniv a single frequency Fourier coefficient is used, and therefore the
covariance matrix is block diagcnal, and only one block of it needs to be
calculated. Since the sonar is reverberation limited, we need consider only the

reverberation components’ contribution to the covariance matrix.

Velume reverberation results from the scattering of acoustic energy by
marine life and particuiate matter distributed in the water. Its element to element
cross-power spectrum depends heaviiy on the cross-element spatial response
overiap, but by no means is white. Array element to element covariance is
therefore far from being negligible. It will be shown here, though, that in the
particular case of sum-difference beams, volume reverberation can be assumed as

uncorrelated eleniont to another element.

Denote the k-th element received waveform by r,(t).

Then the sum beam waveform s(t) is:

5(8) = ro(D+r,(O+r(0+r;(t) (5.2)

and the difference heam waveform is:

dit) = r (t)-ry(1) (5.3)

The cross-covariance betwe=en the sum and difference beams is:

Q.,(t) = Els)d (0] = E{[ro(t)+r1(t)+rz(t)+r3(t)][r'l(t)—r;(t)]} (5.4)

where £[ ] represents the expected value operator, and represents complex

ronjugaticn.
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Dropping the time dependence in the notation:
Qui = E|Fror | +F F 1410 | +F3F ~FoFa—F ¥ 3= ¥ y—F 3P, (5.5)

On the average, and certainly when the reverberating volume is in the far field (i.e

its range is much larger than the array length), it is true that:

E r,rI = E rzr;] (5.6)
Elryr] =€ ror;]
E ror;] =L r3r;]
E rzr;J = E r,r;]
and there.fore:
Q4 =0 (5.7)

We see that in the particular case of sum-difference beams, far field volume
reverberation is essentially uncorrelated, and its only contribution’to the

covariance matrix is along the main diagonal.

Consider now the boundary reverberation. Denote the n'" Fourier coefficient
at the 0™ array element due to the boundary reverberation as d,(n). Then the

Fourier coefficient at the p"' array element is:

d,(n) = do(n)exp [_ jnuoép] P=0...3 (5.8)

where §, is the time delay between element J and element p. The sum Fourier

coefficient is then:

3
dy(n) = 5 do(mexp(~jnwq, | (5.9)

p =0
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and the difference Fourier coefficient is:

d(n) = do(n) [exp[—jn,.-oél]—exp[—jnuoéz]] (5.10)

Consider now the covariance matrix. let exp(jnwys,) = W, and note that é, = ps,,

then the cross covariance is:
Q= E[ds(n)d;(n)] = | dy(n)| 2(1+W"+W‘2+W‘3)(w‘-wz] (5.11)
= | do(m| (W=

= —2j| dgy| “sin(znuwgs,)

In general, if there are k (even) elements in the array, and the middle two are

subtracted to form the difference beam:

) k
Eld,(maym]e -2)1 dy Zsin(nwo‘z—él) (5.12)

k—1 k-1
When k is odd, and elements subtracted are —— and ——+1:

E[d,(n)d;(n)} | dyl Z[exp —jnwed ]—exp[-pjnuoék_l 1]] (5.13)
- 4+
2 2
The sum beam autocovariance is:
3 3
Qs = E[d,(md}(m)] = TdomW™ Ldomw’ (5.14)
p=0 p=0

= l dol 2[W3+2W‘+3W1+4+3W—l+zw—2+w-3]
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=2]d,l 2(4+3cos(nw051)+2cos(2nw06,)+cos(3nuoél)]
And in general:
: k-1
E[d,(md}(m)] = 2] do] * 5 (k=i)cos(inues)
im0
The difference beam autocovariance is:
Qua = Eldy(mdy(m)] = | do] (W' -wd) (5.15)

21 dyl 2[1—cos(nw051)]
The covariance matrix can now be inverted and used in the likelihood ratio

expression.

S.2. Signal known exactly in «orrelated Gaussian interference of precisely

known direction

The covariance matrix elements computed are all functions of §,, the basic
element to element time delay. When depth is known precisely, figuring out 4§,

requires a trigonometric computation which is illustrated in Figure 5.3:




Ocean sur face

Z(T)

=]

x(4,)

Figure 5.3. Element to element time delay computation

) d
sina = (5.16)
Z(T)
Z(T)=cT
) d
Siha = —
cT
x(8,) = Isina (5.17)
and therefore:
x(8)  Isire Id
8, = = = (5.18)

¢ c T
where ! is the inter-element spacing, d is the array depth, c is the speed of sound,
and T is the observation time.

The following summarizes our findings relative to a representative block of

the block diagonal reverberaton covariance matrix:
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k-1
k
2| dq| 22<k—f)605("woi61)+V, =2ji dgl 2sin(nwo*—él)
(=0 2
Qln.s) = (5.19)
ek i
2J1 do| sin(rwe=8) Va+2] do) [l—cos(nwoél)]J

Whe.e V, and V, are the sum and difference volume reverberation powers.

Now one can invert the covariance matrix, and use it in the previously
computed likelihood ratio expression derived for this case of signal known
exactly in correlated Gaussian interference of known location.

p(Zl’HJ)

(Z)=—""—=exp[-Z-m) Q' Z-m+ 2 Q2] (5.20)
p(Z/H,)

5.3. Signal known exactly in correlated Gaussian interference of uncertain

direction

Boundary interference in this case is coming from an uncertain direction
since vehicle dz2pth is uncertain. We do have some limited knowledge about depth,
though, in the form of a probability density function (pdf) of it. This pdf is
translated directly (through a simple transformation) to a pdf of the element to
element delay §,. The same covariance matrix expressions developed for the
previous case still apply, but now computing the likelihood ratio involves
integration over the uncertain parameter. When H, is in force, the conditional

probability density function is:

P(Z/Hps) = (=] Q(n.8,)] ) 'exp [—Z'(n)Q"(n.a,)Z(n)] (5.21)

In our case Z is 2-dimensional (sum-difference), and only one frequency index is

used. Therefore:
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A
Z= (5.22)

The covariance matrix, which is a function of 6, has been derived previously. Let:

[Qu Qi2]
= 5.23
260~ |g,, q) o2
then:
. 1 - .
Eo=-Z'Q'(6)Z = —-’A_[l 2] “Qp+l 2, an"ZRe(Zzszzl)] (5.24)

where 4 is the determinant of Q. Note that A, and Q;; are all functions of §;. Now

the conditional pdf under H, assuming ¢, is known can be written as:

1
p(Z/Hy8,) = —;—exp(Eo) (5.25)
T A

The knowledge about the distribution of the element to element delay can now be

utilized to form the pdf under Hy,:

51
1
» [ exp(Eg)p(5,)d5, (5.26)

A
8

P(Z/Ho) =

where 6, and §,, represent the boundaries in between which p(s,) is defined.

Finally, when assuming uniform distribution on §;, as will be assumed here:

6lf

- [ exp(Ep)ds, (5.27)
r A(&l’r—(s“) 61'.

p(Z/Ho) =

When H, is in force, the conditional probability density function is:




p(Z/H\8) = (] Qs ) "exp - (2tm-bo(mu(n))

Q™ (ns) (2(m-bo(mu(m))
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(5.28)

where by(n) is the signal mean vector, and u(n) is the signal "pointing” vector. The

signal direction is assumed precisely forwards, i.e..

Using the same steps used to derive p(Z/H,.6,)

E =-— [Z—bou].Q'l(J,) (z- bou)

1

- :{—[l 21 2 Qut | 2, ZQH—ZRQ(Z;ZlQZO]

+2boRe(Z;sz“Z;sz—Z;le'*'Z;Ql D=1 byl Z(sz‘Qzl—Q12+Q11)}

The conditional pdf under H, assuming §, is known can be written now as:

1
p(Z/H,6,) = — exp(E))
T A

Using what's known about the distribution of 4;:

51f
1
5 [ exp(E)p(s,)dé,

7rA5“

P(Z/Hl) =

and when the uniform distribution is incorporated:

6”.

1
p(Z/H)) = ——— [exp(E))ds,
L A(51 f—(sl") 5”

(5.29)

(5.30)

(5.31)

(5.32)

(5.33)

We are now finally ready to compute the likelihood ratio for the case of signal
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known exactly in correlated Gaussian interference of uncertain directicn:
5”
[ exp(E|)ds,
p(Z/Hl) 8,
A= = 5 (5-34)
p(Z/Hy) f
[ exp(Ey)ds,

511'

5.4. Derivation of the three beam covariance matrix

When we consider a more complex case, in which, in addition to the
boundary reverberation interference we have another fixed interference source
(e.g. a jammer), we need another degree of freedom in the system. Therefore,
another difference beam is formed, and we have three beams: one sum beam and

two difference beams. Figure 5.4 depicts this arrangement;

0 O—
1 & sum
T
2 O
30
differencel
___ﬁ\ .

N4

N\ difference?
+ >
</

Figure 5.4. Sum and difference beams
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Now we can attempt to compute the increased order covariance matrix. Denote
the n” Fourier coefficient at the 0% array element due to the boundary
reverberation as d,(n). Then the Fourier coefficient at the p” array element is:

d,(n) = do(mexp [~ jnugs, | P=0...3 (5.35)

where §, is the time delay between element 0 and element p. The sum Fourier

coefficient is then:

3
d,(n)= Y dyn)exp [-jnuoép} (5.36)

p=0

and the difference Fourier coefficients are:
dyin) = do(n)[exp [—jnuoéo}—exp[—jnwoé,]] (5.37)

d;,(n) = dy(n) [exp (—jnwoﬁz]—exp [—jnw053]] (5.38)

Consider now the covariance matrix. let exp(jnwy,) = W, and note that é, = pé,,

then the first cross-covariance is:
Q= E[d,(n)d;l(n)]= | dy(n)| 2[1+uf‘+w"2+w3][1_w‘] (5.39)

= | dgm | 2(w-w!)

The second cross-covariance is:

i

Quiz = E[d (i (m)] = | dom) | 2[1ew s 2ew™ (Wi’ (5.40)

it

| dofm) | 2 (W' w?]
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The sum be: Atocovariance (calculated previously) is:
k-1
Q, = E{ds(n)d,(n)] =21 dy| 2 (k=i)cos(in-qs,) (5.41)
i =)

The difference beam autocovariances (calculated previously) are:

Quiar = E[da(mdjy(m)| = E[dpptmdiptm] = 21 do| *(1-costnugs))  (5.42)

The difference beam cross covariances is:

Quraz = Eldpimdsy(m] = | doim 1 2(1-w~")(w2-w?) (5.43)

| do(n)] 2[2W2_w‘-w3)

When a fixed interference is introduced, the structure of the resulting covariance
matrix is identical to the boundary reverberation covariance matrix. The only
difference is that the time delay variable § does not vary with range, but is fixed.
The fixed time delay is denoted 5,. The combined covariance matrix is then the
sum of the range variable boundary interference matrix, the fixed interference

matrix, and the diagonal volume reverberation matrix:

Qi Q2 Qs
Q=Q(nsbp) = |Qn Qz Q3| . (5.44)
Qi Qi Qs

5.5. Signal known exactly in correlated Gaus.,ian interference of uncertain

direction, plus a fixed interference of uncertain direction

Fixed interference, as well as boundary reverberation in this case are coming

from uncertain directions. Again, we do have some limited knowledge about fixed
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nterference direction in the form of a probability density function (pdf) of it.
Here, computing the likelihood functional involves integration over both uncertain
parameters, namely §, and §,. When H, is in force, the conditional probability

density function is:

P(Z/Ho8,8,) = (| QUnsyep ) exp (-2 (mQ (n6,.5)Z(n) (5.45)

In our case Z is 3-dimensional, and only one frequency index is used. Therefore:

N

(5.46)

The covariance matrix, which is a function of 5, has been derived previously. Let:

HH HJZ HJB
Q7 '6,85) = H(8,8,) = |Hyy, Happ Hy (5.47)
H3L H32 H33
then:
Eo=-Z H(6,8/)Z (5.48)

=l 2, °H \+| z,] *H,y+ | 23] 2H33+2Re(z;z,H2])+2Re(z;z,H3,)+2Re(z;22H32)

Note that H,; are functions of §, and §,. Now the conditional pdf under H, when

4, and §, are known can be written as:

1
p(Z/Hob,5¢) = —5—exp(E) (5.49)
A

Where A is the determinant of Q, and:
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A= 2(5,5,) (5.50)

The knowledge about the distribution of §, and §, can now be utilized to form the
pdf under I , Assuming that the two time delays are independent, which is

reasonable:

1 Bfbrer
P(Z/Ho) = —— [ [ exp(Eg)p(6))p(6,)ds,dé; (5.51)

T A
5ll5ﬁ

where é,; and &, represent the boundaries in between which »()) is defined, and
s;, and 4, represent the boundaries in between which p(s;) is defined. Finally,
when assuming that both delays are uniformly distributed, as will be assu-ed
here we get:
Siffer
1

p(Z/Ho) = — [ [exp(Eyds ds, (5.52)
T A6, =808 p—b 5;)

5116ﬂ

When H, is in effect, the probability density function is:

-

P(Z/H 5,8 p) = () "exp [~ (Z(m)-bo(mu(m)) (5.53)

Q7'(n8,50) (Z(n)-bomu(n))]

where by(n) is the signal mean vector, and u(n) is the signal "pointing” vec.or. The

signal direction is assumed precisely forwards, i.e..

1
l} (5.54)

Using the same steps used to derive p(Z/Hy8,6¢) :
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.

E, = —(Z—bou] Q76,6 (Z—bou] (5.55)

)

= —Eo+2b0Re[z;(Hl1+h,2+H,3)+z;(H2,+H22+H23)+z;(H3,+H32+H33)J

3 3
—' bOI ZEZHU

il fuml

The conditional pdf under H, when both delays are known can be written now as:

1
LAY
Using what is known ..oout the distribution of 4;:
Siefer

[ [ exp(E)p(s))p(s,)ds,ds; (5.57)
5116f1

1

3
A

p(Z/H)) =

and when the uniform distributions are incorporated:

Sip8¢r
1

p(Z/H|) = — [ [ exp(E)ds,ds, (5.58)

6“8ﬂ
We are now finally ready to compute the likelihood ratio for the case of signal

known exactly in correlated Gaussian interference of uncertain direction plus an

interference of uncertain direction:

Sie%¢r ,
[ [exp(E\)ds ds,
p(Z/H)) %
A= =
p(Z/Hy)  Yifter
[ [exp(Ey)ds ds,
61|5fi

(5.59)
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We have developed in this chapter three different Bayes optimum detectors
for three different ocean environments. These wili be used later in this

dissertation in the detectcr —omparisons,




6. Block processing and time sequential approaches
to Bayes optimum detection

The general expressions developed in the previous chapter for the three
different cases are indirectly all time dependent. As the transmission pulse
propagates through the water, it ensonifies different regions of the ocean, and the
return signal varies therefore with time. The time dependence enters the optimum
detector expressions through the element to element delay §;,, and through the

signal and boundary reverberation powers.

There are at least two approaches to processing the data. The simpler
approach is to divide the incoming data stream into equal length blocks, and to
process each block separately, without carrying over any information from the
processing of one block to the next. This approach is called block processing, and
is obviously sub-optimal in a sense, since it takes a look at only part of the
available information at any given point in time. Despite its apparent flaw, this
approach is many times easier to implement, and is well suited for real time
applications. The second approach is to store all the incoming data, and then
process it at once and make & decision. This approach is called one-shot, and it is
optimal in the sense that it makes use of all the available data. A variant of this
approach is the time sequential approach. Here, the processor operates on a block
of observations at a time, but through updating the a-priori probability density
functions of the uncertain parameters, it carries over acquired infcrmation from
block to block. This approach is mathematically equivalent to the one-shot
approach, and produces exactly the same decisions, but in some respects is more
attractive since it demonstrates the inherent learning nature of the detector, and
lends itself to comparisons with other adaptive structures. Both the block

processing and the time sequential approaches have been implemented in this

95
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dissertation, and are both used in the comparisons with ad-hoc detectors

6.1. The time sequential processor design equations

Consider the vector rr(t) of time waveforms observed by the receiver array

as in (3.20). zT(t) is broken into time sequences of length T, ., and the vectors of

nc?
Fourier coefficients Z,-T(n) are formed, where i represents the it increment. Thus,
for a total observation period of T = LT,,., £(t) will be represented by L vectors of

Fourier coefficients, (Z,.......2}).

When using the block processing approach, each one of vectors z,.T
represents a block, and is being processed separately from all the others. When
using time sequential processing, the approach is as follows. In order to form the
likelihood ratio, we need the marginal distributions of the observables,
conditioned on the hypothesis in force. Here, the observables are the L vectors
(Z,.......Z;). Suspending the conditioning on H, and H, for the moment:

L

P(ZynZy) = TIP(Zi/Zi i) (6.1)

g (=l

where § is the vector of uncertain parameters, which for simplicity is assumed
time-invariant here. Assuming parameter conditional independence of the vectors

Z;

P(Z/ 2y ) B) = P(Z;/8) (6.2)

Substituting now (6.2) into (6.1) we get:
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L
p(ZynZy) = [ TIP(Z/8)P@)dS (6.3)
4§ iml
Now, applying Bayes’ rule L times to the integrand in (6.3):
L
p(Z .l = [1 f p(Z,/0p@/Z;_,.....L,)dE (6.4)

iml §
where p(§/Z,_,......Z,) is an updated version of the a-priori probability density

function of §:

PGIZ i) = ——————— (6.5)

= (6.6)

p(zi—l/d)p(ﬁ/zl—b ---- :21)”(21_2. ..... 'zl)
P(Z,_\/Zi_gyeenil )P(Zi_gpreeenid)

P(Z;_ /8P &/ Zi_3-.-nl))
PZi_1/Z) gueneenilly)

Note that the updated version of the a-priori probability density function of § is
formed using probability density functions which are either known, or computed

in the previous iteration.

Equations (6.1), (6.4) and (6.6), when conditioned on H, and H,, are the

design equations used to obtain the marginal distributions in the likelihood ratio
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expression for L iterations:

L

I [ p(Z/8H)PG/Z, ;i H ) dS
P(ZynZi /HY) i1 s

(6.7)

L
I1 [ p(Z/&H)P&/Z;_..nZ\ Ho)dE
(=] &

Note that since we are dealing with an active sonar problem, the signal (target
echo) is present only in the final iteration currently considered. The assumption is
made that there is only one target in the look direction and that it resides in the
current range cell. Thus the updated a-priori probability density functions under

both hypotheses are identical in all iterations but the last.

6.2. Time varying uncertain parameter vector

The previous discussions limited the uncertain parameter vector to be time-
invariant. In actuality, the uncertain parameter may be time-varying. In the first
case we are dealing with, there is a single uncertain parameter - boundary
reverberation element to element time delay, which certainly is time-varying. That
results in having to find a transition equation which makes use of the problem
geometry, to update p(5;/Z,_,......Z; H;) for iteration i+l. The likelihood ratio

expression is now:

L

(6.8)

i=] Sl

and the a-priori probability density function update equation is:

P(Z;_1/6i v H)DP8/Zi_p0eeenil i H )
P(6;/L;_ e .Z,,Hj) = (6.9)
p(z,_l/z‘__z. ..... .Zl.Hj)
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where j =0,1 represents the hypothesis in force. The need for a transition
equation arises since following iteration i-1, we have available only

p(§;_/&_5......&sH)), and in (6.9) we need p(§;/Z;_,......L.H}) .

The transition equation is developed in Appendix B, based on the geometry of

Figure 5.3, and the result is quoted here:

51’
bip1 = ——1—c5 (6.10)
I+ l
I(i-1)

Making use of this transition equation, we can arrive at the desired pdf by

computing the pdf of a function of a random variable:

P61/ Zi g H )
p(&l'/zl'_z. ..... ‘zl'HJ) = (6'1 1)
Ry

ds;_;

5!’-1

Appendix B also develops the exact expression for the above derivative.
Equations (6.8), (6.9) and (6.11) constitute the final design equations of the time

sequential Bayes optimum processor with a single uncertain parameter.

We now examine the more complex case where a fixed interference source
of uncertain direction is added to the scenario. Here, the uncertain parameters

indeed form a two-dimensional vector:

b
5= [’ (6.12)

f

where 5, is the time-varying boundary reverberation element to element time
deiay, and §, is the time-invariant fixed interference element to element time

delay. We again have:
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L
I f p(Z/aH)P&/Z, )0y H S
P2y /H) g
A= =~ (6.13)
P(Z el [Ho)
n f p(Z,/ﬁ.Ho)p(ﬁ/z,_l. ----- 'zl.HO)dé
iml §
and since §; and §; are independent random variables:
L
T1 JJ P(2/5,8 1 H)P(G /2y _yuornZ ) H)P(8 /2y _ypeenZ  H )8 dE
iml 5'5
A= : ! (6.14)
I1J[ p(Zs6;0 HO P81/ 2)_yirnZy HO) P81/ Z;_yuunnenZ Ho)d 6, dS
iml 5'5,.

Obtaining the update equations of §; and §, is a simple extension of the ideas

previously described and will not be repeated here. Suffice it to say that the

transition equation for §, remains the same, while nc transition equation is

required for §¢ since it is time-invariant.




7. Detector evaluation and comparison - methods
and tools.

7.1. Detector comparison

As described in Chapter 3, the performance of two detection schemes will
be evaluated and compared. One scheme, which represents an ad-hoc approach,
employs an adaptive filter to first reduce boundary interference level. It then
assumes that the processed signal contains only the volume reverberation
component, and treats the problem as one of signal known exactly in noise known
exactly. The adaptive filter chosen to be used in the comparison is the all-zero
least squares lattice filter (JCLSL). It has been shown previously (Chapter 4), that it
is quite adequate for the task, and that a pole-zero adaptive filter has only a very
slight advantage over it, in the scenarios used. The second scheme is the result of
a more global approach which uses our knowledge of the problem’s statistics to
arrive at an optimum solution in the Bayesian sense. Figure 7.1 depicts the two

schemes.
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‘Ad-—-hoc’ scheme:
Main SKE in NKE P
tfz\ Batyes Opt | Decision
Detector
Re ference Adaptive
Filter
‘Opti sl .
Main
Bayes Decision
Optimum .}___ -
Re ference Detector

Figure 7.1 The two detection schemes

The array used in the comparison is a 4-element array, where the main
beam was derived by summing all four element outputs, and the reference heam(s)

was generated by subtracting two adjacent element outputs.

7.2. Adaptation parameter selection

One of the parameters defining the behavior of an adaptive structure is
the adaptation coefficient a, which takes values between 0 and 1. This parameter
determines the filter's "forgetting factor”, or how much emphasis the filter puts on

past samples. Typically, the filter’s time constant (in samples) will be:

r= " (7.1)
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When using an adaptive structure such as the adaptive filter used in this
dissertation, the questions always arise as to how is the adaptation coefficient «
selected, and for how long the adaptive filter should be permitted to run and
adapt before its output is considered valid to sample. In order to resolve these
questions, a run was generated, where a simulated target echo in the look
direction was superimposed on an ordinary reverberation return ping. This ping
was picked out of the ensemble of pings which are later used in this work to
compare the different detection approaches. The ping was processed three times
by the same adaptive filter with three different adaptation coefficients, namely
0.02, 0.05 , and 0.2. Then, the adaptive filter output power was plotted against

main beam power, for the three different o's. Figure 7.2 details the results.
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Figure 7.2 Main beam vs. adaptive filter output power.
[t is clear from observing the plots, that as sccn as a is chosen larger than 0.02,

the filter starts canceling the target echo as well as the reverberation interference.
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This is undesirable. Therefore, throughout this work o was kept at 0.02. The
selection of o answers the second question as well, since an adaptive filter
typically takes a few time constants to adapt. With this selection of «, the time
constant r is 50 samples. Therefore, sampling the filter’s output anywhere beyond,

say, 500 samples (10 time constants) is safe.

7.3. Test scenario description

The two detection approaches are tested and compared under three

different interference conditions:

Case 1. Boundary interference is coming from a known direction.

Case 2. Boundary interference is coming from an ukrown direction, whose
probability density function is known,

Case 3. Boundary interference is coming from an uknown direction, whose
nrobability density function is known, and there is another fixed source of
interference coming from an unknown direction whose probability density

function is known.

One source of uncertainty in boundary interference direction is
uncertainty in the array platform’s depth. Therefore, depth was chosen as the
uncertain parameter, and its probability density functions were assumed known.
When dealing with the fixed interferer, probability densities of direction were
defined directly. In all cases of uncertainty, uniform probability density functions
were assumed. The basic test scenario selected for Case 1 above is described in

Figure 7.3.
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¥ surface
30m
300 m
bottom

Figure 7.3  Basic test scenario (Case 1)
As can be seen from the figure, the bottom depth is purposefully given a large
value, so that bottom reverberation will come in late, and only one source of

boundary reverberation (surface) is dealt with.

Figures 7.4 and 7.5 describe the test scenarios for Cases 2 and 3 above.

surface
¥
depth
uncertainty
X
300 m
bottom

Figure 7.4 Test scenario for uncertain depth (Case 2)
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surface
Y direction
dep.th uncertainty
uncertainty
X
fixed
300 m / interference
bottom

Figure 7.5 Test scenario for uncertain depth and fixed interference
(Case 3)

The output of both detectors .s examined approximately 0.2 sec following
transmit, or at about the 800" sample. This gives the adaptive filter enough time
to adapt. This time corresponds to a distance to the illuminated surface patch of
150m. The maximum depth uncertainty used in this work is 54m, centered around
30m. That spans a depth between 3 and 57m. The corresponding angular span to

the surface is as follows:

in"[ >4 21.1° (7.2)
a =S — | = . .
max 150

' "[ 3 1.15° (7.3)
o = Sin - = 1. .
min 150

Similarly, the fixed interference direction uncertainty spans the range of -10°to
-20° Examiming the sum and difference polar beampatterns, we see that within

the above angular ranges, both are well behaved, and the main beam has no nulls.
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Figure 7.6 Sum and Difference nolar beampatterns

7.4. ROC curves

The output produced by both detection schemes is the likelihood ratio
which in turn is compared to a threshold in order to make the decision whether a
target is present or not. The likelihood ratio A, summarizes all the information
about the data for a given observation interval and therefore is significant in
evaluating the detector’s performance. A complete description of a detector
includes the likelihood ratio A and the receiver operating characteristic (ROC)
curves. These curves plot the detection probability versus the false alarm
ptobability, where the threshold 5 serves as a parameter. The false alarm

probability P, and the detection probability P, are:

o0

Pr = [p(A/Hp)dA (7.4)

n

———
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Py = [p(A/H))dA (7.5)
n
Where n is the detection threshold. It has been shown*8 that:
p(A/H,) = Ap(A/H,) (7.6)
Thus P, can be written as:
(s o]
P, = [Ap(A/HR)dA (7.7)

n

When the densities of A cannot be determined analytically, one carries out a Monte
Carlo simulation of the detector under test. From the simulation results one then
forms estimates p(A/H,) and p(A/H,) of the desired densities. These can be used
to calculate P. and P, which constitute the ROC curve. We see that (7.47 above
implies that only the density under H, need be obtained. This eliminates the need
to simulate the signal. Note that (7.7) places an emphasis on the upper tail of
p(A/H,), where typically only a few observations will lie. An equivalent expression

to (7.7) is:

n

Pp=1— [Ap(A/Hp)dA (7.8)
0

and it is shown in27 that it is actually preferable to use (7.8).

As a point of reference, and an example of ROC curve generation, 100
observation intervals of white Gaussian noise, at each of 4 known variances were
generated. These sequences were then passed through the optimum detector for
this case (signal known exactly in noise known exactly (SKE in NKE)). The ROC

curves were then computed and drawn. The signal to noise ratio (SNR) is:
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E
SNR = — (7.9)
NO

where E is the signal energy, and N, is the noise power spectral density.

Figure 7.7 contains the ROC curves for the 4 different SNR's. These match well the

ROC curves originally reported in 48 for this case:

Theareticl SKE in Gaussiaon NKE

SNR =2, 0.5, 0.125 ond ©8.93125
ROC
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Figure 7.7 SKE in Gaussian NKE ROC curves

t'wo different approaches are considered for the Bayes optimum detector,
namely block processing and time sequential. These were described in detail in
Chapter 6, and the next two chapters are concerned with the detector comparisons
subject to these approaches. We now posess the tools, and are ready to examine

the detector performance evaluations and comparisons.
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8. Block processing optimum detector vs. ad-hoc
detector comparisons.

In this chapter, the performance of a block processing Bayes Optimum
Detector (BOD) is compared to that of an ad-hoc adaptive detector. The reason the
(sub-optimum) block processing approach is considered here at all is that for
i.al-time systems, this sometimes is the only viable approach. The test scenario
under which both detection approaches were tested was described in Chapter 7.
The array used in the comparison is a four element array, where the main beam
was composed of summing all four element outputs, and the reference beam(s)
was generated by subtracting two adjacent element outputs. When the fixed
interference is present, the problem’s order is increased, and there is a need for
another degree of freedom. Then, another reference beam is generated, and both

detector schemes tested have another input available for processing.

Figure 8.1 depicts the typical range-Doppler map of a synthesized ping
used in the basic test scenario where the interference direction is assumed known
precisely (i.e. the sonar array is at a known depth). Here, since the sonar array is
in relatively shallow water, surface reverberation is hard to distinguish from
volume reverberation since they both have an almost zero Doppler shift. Figure

8.2 shows the adaptive filter's output range-Doppler map.

Il
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Figure 8.3 plots main beam power, reference beam power, adaptive filter's output
power and reverberation cancellation power (ratio between adaptive filter's output
power and main beam power). Here, one can see how much of the surface
interference is canceled by the ad-hoc detection structure’'s adaptive filter around

0.2 sec, where both detectors’ outputs are sampled.
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Figure 8.3  Main, reference and filter's output power.

8.1. Known depth

Each comparison between the two detection approaches is based on a
Monte-Carlo simulation of 500 runs. In the first comparison made, the sonar array

was placed at a known depth, and the Bayes optimum detector was given that
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depth. Signal to surface interference ratio was set to 2.8. Figure 8.4 shows the ROC

curves of both detectors.

SKE in NKD - Boyes Optimum Detector vs.
Rdaptive Noise Canceler, Alpha = 0.02
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pE

Figure 8.4 The two detectors’ ROC curves (ANC is ***+*)
[t is obvious that the Bayes Optimum detector (BOD) performs better than the ad-
hoc Adaptive Noise Canceler (ANC). In fact, compare these ROC curves to the
curves given in Figure 7.7 (theoretical SKE in Gaussian NKE (SKENKE)), which can
serve as a reference. One sees that the BOD performs close to a SKENKE detector
when SNR=0.5, while the ANC performs as a SKENKE detector when SNR=(.125.

This translates into a "6 dB performance difference.
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8.2. Uncertain depth

In the next comparison, array depth is not a known quantity. What is
known is its probability density function, which is assumed uniform between
16.5m and 43.5m. In this way, the average depth is kept the same as the previous
comparison’s depth (30m). The comparison is based again on 500 Monte-Carlo
simulation runs, where the array was physically placed at various depths,
commensurate with a uniform distribution. Figure 8.5 shows the ROC curves for

this comparison.

SKE in NUD - 27 Meters Uncertainty
Bayes Optimum Detector vs.

Adaptive Noise Canceler
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Figure 8.5 Uncertain depth (27m) ROC curves (ANC s *****)
It is clear that the ANC's performance hasn't changed, since it has the ability to

adapt to the varying depth. The BOD's performance has degraded, but with this
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level of uncertainty, it is still performing better than the ANC. Naturaly, we will
now check what happens when the depth uncertainty is increased. Depth was
given twice the uncertainty (i.e 54m), still keeping the average depth at 30m as

before. Figure 8.6 plots the ROC curves for this case.

SKE in NUD - 54 Meters Uncertainty
Bayes Optimum Detector vs.
Adaptive Noise Canceler
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Figure 8.6 Uncertain depth (54m) ROC curves (ANC is ****%)
Here, the BOD has basically fallen apart, since the interference direction
uncertainty is large. The ANC, whose performance is essentially unchanged, is now
performing better than the BOD, using its capability to adapt to the varying

interference direction.

Another interesting point is to see what happens when the signal to noise

ratio is increased. This was done for the 27m of depth uncertainty, and an SNR of




118

11.2. Figure 8.7 shows the comparison result,

SKE in NUD - 27 Meters Uncertointy
Bayes Optimum Detector vs.
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Figure 8.7 Higher SNR ROC curves (ANC is *****)

As can be seen, the performance of both detectors has improved as expected.

8.3. Uncertain depth plus a fixed interference

At this point in time, it was clear that as soon as the depth (interference
direction) uncertainty exceeds some value, the ANC starts performing better than
the BOD. The next step was to check what effect an extra interference source has
on both detectors’ performance. An interference source whose direction is
uncertain, but whose direction probability density function was known, has been

added into the scenario. The interference was coming from directions between
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—10° and -30° . Interference power level was made equal to the boundary
interference power at the detection range. Figure 8.8 shows the results. we see

that the result of the added interference is that the BOD performs poorly.

SKE in NUD - 27 Meters Uncertainty
plus o Fixed Interference
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Figure 8.8 Fixed interference introduced (ANC is *****)
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8.4. Conclusion

When comparing Figure 8.8 to Figure 8.5 (see Figure 8.9), we see that the
ANC's performance remained essentially the same, even after the addition of the
fixed interference. This demonstrates its ability to adapt to another interference
source, 'vhen the adaptive filter order is given another degree of freedom. As
expected, the BOD performs very poor, and the effect another interference source
has on it, is akin to the effect that an increased depth uncertainty hod (see Figure
8.6). Figure 8.9 combines Figures 8.5 and 8.8, to compare both detectors’
performance under the same depth uncertainty (27m), with and without the fixed

interference.
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Figure 8.9 Performance with and without fixed interference (ANC js ****¥*)

We have compared the performance of the two detection approaches,
when the Bayes Detector was restricted to block processing. Since this restriction
makes the detector sub-optimal, its performance has not been uniformly better
than its ad-hoc counterpart. The next chapter will remedy that by using a time

sequential approach for the BOD.




9. Time sequential optimum detector vs. ad-hoc
detector comparisons.

In this chapter we will remove the block processing restriction from the
Bayes Optimum Detector (BOD) and let it make use of all the available data. This
way, the BOD becomes a truly optimum solution, and the comparison between the
two detectors is more fair. This will also enable us to dernonstrate the adaptive
nature of the BOD. The difference between the block processing and the time

sequential approaches has been detailed in Chapter 6.

9.1. Uncertain depth

The first comparison is identical to the second comparison made in
Chapter 8 (SKE in NUD). Here, there is a 27m depth uncertainty, and the BOD is

time sequential. Figure 9.1 shows the ROC curves for this case.
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Time Sequentiol Processing
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Time sequential BOD vs. ANC (ANC js *****)
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Obviously, the performance difference between the BOD and the ANC has

increased (compare to Figure 8.5). Now that the BOD is making use of past data to

update the a-priori pdf, it performs better. As before, the next step is to increase

the depth (interference direction) uncertainty, and observe the performance. The

uncertanty is increased to 54m as before, and Figure 9.2 details the result.
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Figure 9.2 54m uncertainty ROC curves (ANC is *****)
As opposed to what happened in the same situation when the block processing
approach was used, now even with the increased depth uncertainty, the BOD still

performs better than the ANC, though the performance differential is reduced.

As described in Chapter 6, the time sequential detector presents an
adaptive quality in that it updates the a-priori probability density functions (pdf’s)
of the uncertain parameters from iteration to iteration, thereby carrving important
information from the past to the present. It is interesting to watch how these pdf’s
adapt as time progresses (see equations (6.8) and (6.9)). Figure 9.3 depicts the

behaviour of the array element to element delay (AEED) pdf for the iterations
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preceding the one in which detection is made. AEED is a linear function of

interference direction, and was the unknown parameter used.
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Note how system's knowledge of the AEED improves from very diffuse (Iteration
#1), to more and more precise, as time progresses. Since the surface return comes
from shallower and shallower angles as the ping propagates through the water, the

AEED becomes smaller and smaller, and so does its estimate.

9.2. Uncertain depth plus a fixed interference

As before, we now check what effect an extra interference source has on
both detectors’ performance. An interference source whose direction is uncertain,
but whose direction probability density function is known has been added into
the scenario. The interference is coming from directions between -~10° and -30°"
Interference power level was made equal to the boundary interference power at

the detection range. Figure 9.4 shows the results.
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SKE in NUD - 27 Meters Uncertainty
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Figure 9.4 Fixed interference introduced (ANC is ****¥)
Here, the BOD’s performance has degraded due to the presence of the fixed
interference. Even though the ANC seems to be less sensitive to the presence of
the fixed interference, the BOD still performs better than the ANC. This is
contrasted with Figure 8.8, where the ANC performs better than the block

processing BOD.

9.3. No surface interference

It is interesting to check what influence removing the surface interference

from the scenario will have on both detectors’ performance. Time-varying
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boundary interference power and fixed interference power were purposefully kept
at an equal level. It is expected, therefore, that performance will be very close to
the case where only the surface interference was present. Figure 9.5 shows the

results:

SKE in NUD - 27 Meters Uncertainty
plus a Fixed Interference

no surfoce reverberation

Bayes Optimum Time Sequential Detector

vs. Adoptive Noise Conceler
ROC
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Figure 9.5 Surface interference removed (ANC is *****)

It is clear that indeed the performance is very similar to the one reported in Figure

9.1.

Lastly, Figure 9.6 shows the detector performance when depth uncertainty
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is increased from 27m to 54m, and when the fixed interference is present.

SKE in NUD - 54 Meters Uncertainty
plus a Fixed Interference

Bayes Optimum Time Sequential Detector
vs. Adoptive Noise Conceler
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Figure 9.6 Higher depth uncertainty (ANC is ****¥)

The performance of both processors has degraded uniformly, while the BOD still

performs best, as expected.

9.4. Conclusion

When a truly optimum approach is taken, and the Bayes optimum detector

is allowed to make use of all the available data, it performs better than the ad-hoc
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adaptive noise canceler. With the time-sequential approach, the BOD also posesses

an adaptive quality, in updating the a-pricri pdf's of the unknown parameter from

iteration to iteration.




Conclusion

The active sonar problem has been carefully examined in this dissertation.
Specifically, situations under which the sonar suffers from boundary interference
were analyzed. Underwater accustic reverberation, which is typically the limiting
noise process for this problem, has been studied. Then, two main schemes
designed to detect a desired signal buried in ocean reverberation were suggested
and examined. These two schemes represent two different approaches to the
problem. The first is an ad-hoc engineering approach, which uses an adaptive
noise canceler in the front end, to get rid of the undesired boundary interference,
and then uses a matched filter assuming now that the problem is one of known
Gaussian statistics. The second approach is a more global one. It makes use of the
known statistical properties of the problem to arrive at an optimal solution in the

Bayesian sense.

Recognizing that close analy:ic expressions for system performance are often
very hard to derive, an important tool has been developed. This software package
is capable of synthesizing multi-element (or beam) time series outputs, taking into
account transmit and receive beampatterns, the ocean environment including
surface, volume and bottom scattering strengths, and the sonar platform
dynamics. It sets up the normal equations for the problem, and uses the solution
to create a time varying [IR filter which represents the time varying characteristics
of a sonar ping propagating in the ocean. Once the filter has been derived, an
ensemble of sonar pings may be collected by passing uncorrelated white noise
vectors through the filter. This tool is then heavily used in assessing performance

of the various detection algorithms.

Next, a multi-channel, joint process pole-zero adaptive filter is developed and

its performance is compared to its all-zero counterpart. it is shown that some
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cases exist where the ability to adapt poles is important.

Last, but not least, the performance of the ad-hoc detectors is compared to
that of Bayes optimum detectors. It is shown that optimum detectors, when
allowed to make use of all the available data, perform better than the ad-hoc
adaptive detectors. Moreover, it is shown that the optimum detector possesses an
adaptive learning quality, through the process of updating the a-priori probability

density functions of the unknown parameters.

The work done in this dissertation can be extended in a few directions. The
multi-channel joint process ARMA adaptive filter developed here can be used in
various noise canceling and spectral estimation problems, and its ability to adapt
poles can be exploited. The reverberation simulation tool (REVSIM) incorpcrates
only isovelocity sound speed profiles, and the next step would be to allow a
variable sound speed. Other reverberation synthesis techniques exist, and have
been implemented by other researchers. It would be interesting, and beneficial for
the active sonar community, to compare and evaluate the different methods
against each other. The application of Bayes optimum detectors when there are
uncertain parameters has been outlined and demonstrated for the active sonar
problem. Two uncertain parameters concentrated on were platform depth, and
direction of arrival of a fixed interference. It would be very interesting to extend
the methods and ideas outlined, to other uncertain parameters such as sound
velocity. Finally, the investigation of applying Bayes optimum schemes for feature
estimation and extraction (e.g direction of arrival) using their adaptive learning

capability, may prove heneficial.




Appendix A

The linear minimum mean square estimation

problem:

The problem is presented in the following figure:

x(n) > a(n) —d(n) e?(n)

d(n)
Figure A.1 - The MMSE estimation problem

a(n) is a causal FIR filter of length p+1. The goal is to filter the stochastic
time series x{n; to yield an optimal estimate (in some sense) of the "desired” time

series d(n). The error is given by:

p
e?(n) = d(n)+a, x(n—k) (A.1)
0
or in vector notation:
e’(n) = d(n)+a’x (A.2)

where T represents the vector transpose operator. The solution to the problem
depends on the assumptions made about the input time series, and the optimality
criterion chosen. The Wiener filtering approach assumes the input time series is

stochastic, and seeks to minimize the mean square error:

minf[l e(n)| :] (A.3)
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where E[ . ] is the expected value operator.

lef(n)! P = [ d(mea’x]’ (A)
= d(n)d (n)+d(n)a’ x+a"x (n)d(n)+a"x"(ma"x(n)

where ? represents the Hermitian operator. Now, taking the expected value yields:

E[l el(m| 2} = £'(a) = ogo+a"a+a"g+a"10]"a (A.5)

where ogo is the desired signal power, g is the crosscorrelation vector between
the input x(n) and the desired signal d(n), and [$] is the autocorrelation matrix of

the input process x(n). Minimizing Ed(a) with respect to g yields:

0=g+l®l"a (A.6)

or

®)7a =-g (A.7)

which are called the normal equations. Solving for 2 we get:

-1

a=-le1] a (A8)

In the case that the input time series x(n) is stationary, [¢] is of a Toeplitz form:

¢k.j = éj—k (Ag)

Here, all matrix elements along any diagonal are equal. This becomes useful when

solving (A.7), avoiding the need to directly invert [$].




Appendix B

Transition equations for the time-varying element to
element delay.

In time-sequential processing, when transitioning from one iteration to the
next, an update is made on the a-priori pdf’s. Since §,, the element to element time
delay is time-varying, a transition equation is required, which determines the next
iteration’s time delay as a function of this iteration's delay. Consider the

problem’s geometry as is shown in figure B.1:

Ocean sur face

Z(T)

L=

Figure B.1 - element to element time delay computation

At time T, the element to element delay is:

Id Id K
5'(7-,) = = > = = (B.l)

!
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where
Id
K=—"
2
c
At time T,,,, the element to element delay is:
5 (T K K
i+1N figl/ = T1+1 T‘»+AT
where
T = T+AT
Let
5i+l = 5i+A
then
K K KT—-KT-KAT KAT
A=y -6 = - = ==
T+AT T, T(T+AT) T(T;+AT)

Substituting A back into (B.3) yields:

big1 = ‘5,'—5«'51“?

6"
b1 =

146;,—
K

Now, since

d
T, = —+(i~-1AT
c

then (B.5) becomes:
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(B.2)

(B.3)

(B.4)

(B.5)
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5, 5 5
bis1 = = = (B.6)
K AT AT AT
l4y—— l+— l4y———
T, K T; d
—+(i~1)AT
c
Now,
id Id
8 = o (B.7)
T, d
G l=+(i-DAT
c
s (i-DAT
d=e———mmm ; >l
I-cs;
Substituting (B.7) back into (B.6) yields:
8; 8;
5., = = o>l (B.8)
'H 1 1 [—cs,
+ . 1+
c§;(i—1) 1(i-1)
—+(i-1)
I-c5;

i

which is the desired result used in (6.10).

Part of the update equation for the a-priori probability density function of

d‘sl+l d6,~
§; is the derivative | T | 5, - It may be more convenient to compute |
]

i i+1

l

and then use:

d5i+l 1
d&, d&,
d6i+l

Using (B.8) we have:




s 5 5i+l ”61'4-1
= 1+ _
T s (i) 1(i-1)+c6;.,,
—+(i-1)
[—cé;
ds; il(1(i-1)+cé; . )—cils, i(i=1)
ds;,, (li=1)+c6;,,)° (I(i-1)+c6;, )’
Now, inverting the derivative we get:
ds,., (i=1)+cs;,,)°
ds, i*(i-1)
and finally:
2

1+ '
LI I(i-1)

ds; il(i-1)

cs5;
[1(i-—1)+—-—]
l-cé,
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(B.9)

(B.10)

(B.11)

(B.12)
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