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ABSTRACT

A systematic theoretical development is presented for sound

absorption in dilute chemically reacting systems when heat effects

and other dissipative mechanisms, e.g. diffusion and viscous dampinq,

are ignored.

A derivation is presented for the isothermal frequency depen-

dent compressibility for such a system and the relation of this

quantity to sound attenuation and the sound absorption spectrum.

The method is applied to several illustrative reaction

mechanisms of interest. Particular attention is placed on the sim-

plifications that arise when there is a single slow step in the

reaction mechanism. The general case of coupled Lheinical reactions

is treated and a prescription presented for determining the sound

absorption coefficient.

The final section is concerned with sound absorption from

chemical systems in steady states far from chemical equilibrium.

For such systems the possibility exists that composition fluctuations

will behave as chemical waves which will be exhibited by a distinctive

splitting in the sound absorption spectrum.



I. Introduction

Sound absorption in chemically reactive fluids is a subject of

interest to workers in a wide variety of fields, including chemistry,

biology, and fluid mechanics. The subject also has some practical

importance. In particular, sound absorption at relatively low fre-

quency (below a few hundred kilohertz) in the ocean is markedly

influenced by chemical relaxation between the prodiguous number of

different species (mostly ionic) that are present in sea water.

Understandably, the subject has attracted the attention of the Navy

and the Defense Advanced Research Projects Agency (DARPA' who have

supported work in this area over the years. Substantial progress has

been made in understanding the rather complicated chemistry and

resulting sound absorption in sea water. However, some problems

remain, notably the absorption at 1k-Hz attributable (1 boric, ' toboi

acid in sea water.

Consideration of this oroblem and the methods of analysis em-

ployed to interpret the sound propagation measurements indicates a

need for a systematic development of +, theory of sound absorption

in chemically reacting systems. While theory is available in a

of oures(2-5)
number of sources 2  , the existing developments are either overly

formal or difficult to penetrate. Moreover, the existing developments

do not describe the approximations needed to reduce the general case

of the influence of coupled reactions in solution on sound attenuation

to the frequently eniouriLered r-se where a sinnle step in the reaction

'nechanism is slow and hence rate determining.
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The purpose of this technical note is to provide a clear and

direct theoretical development for sound absorption arising from

chemical relaxation. Hopefully this development will be useful, not

only for those working in sound attenuation in the oceans but also

for others working on sound absorption in chemistry and biology.

The treatment presented is restricted to the circumstances

most frequently encountered. It is assumed that dissipative trans-

port processes other than chemical reaction, e.g. diffusion, Lnermal

conduction, and viscous damping, can be ignored, which is usually the

case at low frea'iencies. Thermal (enthalapic) effects due to heats

of reaction are also ignored so the treatment is for isothermal

conditions. Moreover, the analysis is restricted to dilute solutions

so that all activity or concentration effects are iqnored. All of

these restrictive assumptions except for the last one (low concentra-

tion) can easily be relaxed.

In Section II, the pertinent solution thermodynamics is pre-

sented. Section III presents the oertinent relaxation equations for

this problem, and in Section IV the determined frequency dependent

isothermal compressibility is related to sound absorption. Section V

is devoted to demonstrating for several mechanistic examples of

interest how the method may be employed to determine the sound

absorption spectrum. Section VI is concerned with a description of

the general case that may be encountered in coupled chemical reactions

where the assumption of a single slow step is not valid. The analysis

ol this section would be required if one wished to model a complex

cnemically reacting system, e.g. sea wacer, comorehensively and not
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divide the problem so to soeak, piecewise, where each frequency

range is associatel with a single dominant relaxation step. Tne

final section is concerned with sound absorption from chemically

reacting systems in a steady state, far from equilibrium, where

the fluctuations in the chemical reaction behave as "Jiemical waves"

and influence the attenuation of the sound waves accordingly. This

last section contains material which should be of interest to the

many workers who are currently devoting attention to non-linear

chemically reacting systems.
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I. Solution Thermodynamics

For solution containing several components, the Gibbs free energy

is

(2.1)

where S in the entropy, T the absolute temperature, V the volume, and

the pressure. Here .Ii is the chemical potential of solute species i

ancIOi the number of moles of species i; uo andM 0 denote resnectively

the chemical potential and moles of solvent, assumed inert.

We assume that the solute species are underqoinq r chemical

reactions of the form

(2.2)
.<

I.-

with the convention that the stochiometric coefficients in the a th

reaction, 1 , are positive for products and negative for reactants.

We define the affinity of the ath reaction Aa as

(2.3)

.... m mIlIIII RRI Alm|I
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and the progress variable for the ath reaction x as

( < (2.4)

Since the interconversion of species can only ocuur by chemical reaction

M E % ( -() (2.5)

and Eq (2.1) may be expressed as

(2.6)

The solvent is assumed not to participate in any of the reactions.

At chemical equilibrium (aG)-, = 0 which yields the condition

(2.7).
1 -A (T,W,^)=

which determines the equilibrium values of the variables Xo = ( o

.0 These values will deoend upon T and so ,o = 0 (T)

We shall assume that the species in solution that undergo chemical

reaction exhibit ideal behavior so that
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S--(2.9)

where xi z ni/no is the mole fraction of species i. It follows that

we are restricting consideration to dilute solutions.

We shall be concerned with isothermal relaxation processes, i.e.

temperature and enthalpy effects will be neglected. The formulation

can easily be generalized to include these processes.

The differential change in the voume V is given by

(2.10)

v '

The equilibrium isothermal compressibility <T(O) is defined by

(2.11)

and the "frozen" isothermal comoressibility <T(-) is defined by

(2.12)

S( o6I i II
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so that we have the relation

- __ (2.13)
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II Relaxation Behavior

We imagine a pressure wave of the form

imposed on the reacting mixture, This disturbance will instantaneously

perturb the chemical environment. The soecies will interconvert

in an effort to attain the new, momentarily established, local

equilibrium condition A2 (T, p+zp, 0+) = . For small disturbances

the changed equilibrium is gi"en oy

s'~ Z(& r~y~(3.2)

The chemical species will not be able to follow the pressure

disturbance instantaneously, and this will cause relaxation. The

relaxation behavior is determined by the kinetic equations which are

governed by the linear laws
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(3.3)

-7

The factor V-  included on the left hand side takes into

account that the progress variables as defined here are extensive

prooerties; the kinetic coeffii.1t, K- are intensive quantities.

This expansion may be written in more compact vector notation

(3.4)

where

AW (3.5)

and

Uq e (3.6)

In vector notation Eq. (2.10) is



10

where use has been made of the MIaxwell relation which follows from

Eq. (2.6)

(3.8)

At equilibrium . 0 and Eq. (3.4) yields the relation

(3.9)

f. T A o V

Thus, the compressibility relation, Eq. (2.13), can as well be expressed

as

-D) U (3.10)

a relation that will prove useful shortly.

The imposed pressure will induce a steady state response in the

volume and progress variables given by

. (3.11)

V % II )1 II , IX P IA I
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respectively. The steady state resoonse for isothermal chanqes in

volume is

(3.12)

We may solve for;% by substitution Eq. (3.11) Eq. (3.12); the

result is

A -1 A(3.13)

Before proceeding, it is useful to write Eq. (3.13) in terms of

more familiar rate expressions by defining the kinetic matrix

(3.14)

then Eq. (3.13) takes the form

A (3.15)

,- i i I I I I
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In terms of time Eq. (3.15) corresponds to

(3.16)

where 5.c are "imposed" concentration differences induced by the pressure

wave perturbation

- (3.17)

We continue by eliminating between Eqs. (3.13) and (3.12)

thus obtaining a relation between 6V and

(3.18)

A A

The quantity V/6,^can be related to the frequency dependent

isothermal compressibility

S(3.19)

iv
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Then Eq. (3.18) may be written as

(3.20)

Alternatively, Eq. (3.10) may be employed to expressAT) as

(3.21V

In the limit w-0, KT(W) <T(Q), and in the limit w , KT( )-KT( ).

This expression for KT(w) is the central starting point for the

investigation of sound absorption in chemically reacting fluids. It is

important to bear in mind the restrictive assumptions under which this

result has been obtained. In particular, temperature effects have been

ignored and local equilibrium conditions have been assumed. In

Section VI we will indicate how this exnression can most easily be

evaluated for complex chemically reacting systems of interest.
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IV Relation to Sound Attenuation

The isothermal sound speed CT is given by

and the pressure satisfies the wave equation

(4.2)

AL

when viscous, diffusive, and heat dissipation effects are ignored.

For a pressure wave of the form Eq. (3.1) one obtains the dispersion

relation

7_ (4.3)

0 T 2-V

For the case of chemical relaxation the corresponding dispersion

relation is

(4.4)

and the frequency dependent compressibility leads to both sound

absorption and velocity dispersion. For the case of an impressed

pressure wave disturbance of real frequency w, the complex frequency
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dependency in will forcP k to become complex.

Let

" (4.5)

and seek a solution to Eq. (4.4) for the imaginary part, h"" If we

express <T(w) in real and imaginary parts

11 (4.6)

-Ti

one finds

f ~ EY (-T- (4 .7 )

Generally, one is justified in assuming that the characteristic length

for attenuation (k)-l is large compared to the wave length (k)-I so

that terms of order (J"/V)2 in Eq. (4.7) may be ignored. Under these

circumstances one finds

and
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-Q (4.9)~

The speed of sound is simply related to k' according to

(4.10)

The resulting expression for the pressure wave

(4.11)

clearly identifies as the attenuation in the medium. The adsorption

per wave length a(w) is defined

. " , "(4.12)

A ~ I 41)

Consider the simple case of single relaxation time where

(4.13)

X7' XT + A +

then
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A (4.14)

/ 
A

and

)t. 
(4.15)

/ ,- t#4 t)Z

so that

,f- f (./L)Y / 6) 7 (4.16)

and

(4.17)

).4/.D) / 7L z)

In the general case of many relaxation times

(4.18)

/*)
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the calculation of a(w) and CT(w) presents an algebraic task that, in

general, will require numerical calculation. However, for many cases

of interest the dispersion in velocity [A/KT(-)] will be quite small

and a(w) can be approximated by

(4.19)

77 At



19

V Some Examples

First consider the case where there is no coupling between the

reactions. Then

(5.1)

L -S-

and it follows from Eq. (3.20) that

(5.2)

Note that this expression has the form of Eq. (4.13).

For a single reaction, the result of Eq. (3.20) or (5.2) is

(5.3)

(w =?~ kT -A

V.A. First Order Equilibria

Consider a simple unimolecular eouilibrium

V, (5.4)

A 1aI
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For this mechanism

(5.5)

A D + 'RTL.&X6- IZ'Tt,,XA

or since the total number of moles is constant

(5.6)

A A

wheretnA and/n B are the number of moles in the volume V. The progress

variable is simply

(5.7)

The derivatives required for the evaluation of Eq. (5.3) are easily

found.

V = J (5.8)

and

A o l l (5.9)

)I /T)\
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with i = N°A +nMO B +-M 0 the total number of moles in volume V in the

solution.

It should be noted that

& * - ( )fAr , O /) )

and since the equilibrium constant K is

K = )p [ - / RT1

we may find Atr from W according to

The relaxation time must be determined from the kinetic equations

which we write in terms of the moles of species in the volume V instead

of the concentrations. This is required because the progress variables

have been defined as extensive quantities.

A It i I (5.10)

OW Nj 4- M
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Note that at equilibrium
(5.11)

A _VI 0,, .....- ' , _ -K

so that in terms of deviations from equilibrium Eq. (5.10) is

(5.12)

In terms of the progress variable, Eq. (5.7) one obtains a single

equation

(5.13)

LL+

which immediately identifies the relaxation time ast- I = 4--

in sum, ( ) is

(5.14)

where : VIM.

, L ,i4.i i
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V.B. Coupled First Order Equilibrium With a Slow Step

We next consider the coupled reaction scheme

(5.19)

which has the following kinetic equations (in terms of moles in the

volume V)

(5.17)

and two progress variables

(5.18)

In terms of the progress variables one has

• • , , ,; + Z (5.19)

At

c1~A ~ K~ O ~+
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We consider the special case where the seuond reaction is slow compared

to the first. In this case one may set ( t//1t) = 0 in Eq. (5.19) and

obtain the relation

(5.20)

and hence

(5.21)

where we have introduced the equilibrium constants

(5.22)

o M o

Thus the slow relaxation is characterized by the relaxation time

(5.23)

+ i2 K)I
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The effect of assuming the rapid equilibration of the first step

[and the steady state approximation (J4/.)] is that the coupled

mechanism may be effectively reduced to a single step reaction mechanism

(5.24)

A

where (5.25)

L

with kinetics

(5.26)

or, in terms of progress variables

(5.27)

which is identical to Eq. (5.21).

We note that for the effective single step process, Eq. (5.24)

the equilibrium constant is
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0 ) (5.28)
C.* K-? ! K,

We can determine the effective volume change for the reaction in

the normal way

'L K' 1 )(5.29)

T

which immediately yields

(5.30)

where

0 0

We may now express the frequency dependent isothermal

compressibility for this effective one-step process as

XA + XL
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in analogy to Eq. (5.14) where T is given by Eq. (5.23) and A.J* by

Eq. (5.32). It follows from Eq. (4.12) that in the limit of low

dispersion the absorption coefficient is

) 'C (5.31)TTX+)§ + "z-

which may be written in the alternative form

(5.32)

where C0A, C0 C etc. are the equilibrium concentration. Using the

definition of T Eq. (5.23) and, according to Eq. (5.28)

CA%

this expression may be simplifipd to

(5.33)

,, i+ (w T
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For purposes of later comparison to the work of others we note that

(5.34)

C -C

I4- K,-

o that

(5.35)

V.C. More Complicated Coupled Equilibria with a Slow Step

We note that more complicated reaction schemes that contain a

slow step may be treated by the same procedure as described in the

previous section. As a final example we consider the scheme extensively

discussed by Eigen and de Maeyer (s ) and employed by Mellen et al. in

their investigations of the low frequency sound absorption in sea

water ( ). The scheme is

(5.36)

T k ic equtinsar

The kinetic equations are

,k 

(5.37)mm 
m m m m m m m
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where we have simplified notation by writing A : CA etc. In terms of

small deviations from equilibrium, we have

cVIA 4. 6 0L (5.38)

For this reaction the progress variables are

(5.39

V V

where the factor V is included in order to relate the change in con-

centrations in the volume V to the change in the extensive progress

variables. So we obtain

4 - (5.40)

I I nII
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which is precisely in the same form as Eq. (5.19), if we make the

identification

(5.41)

Ait - kI cAO so

If again we assume the second step is rate limiting and set (cVi /at) = 0,

we find, exactly as in the previous example, that

(5.42)
A

where

A (A+~)(5.43), - -- X, (Ac,+*to

We may again view the rapid first step as establishing an equilibrium

that leads to an effective single step mechanism of the form

(5.44)

with, now, [c.f. Eq. (5.25)]

(5.45)
-)4- ,
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and associated equilibrium constant [c.f. Eq. (5.28)]

(5.46)K -- - (,
h..2

It follows thAL for this effective one-step reaction the change in

volume is

(5.47)

MjZ + 4 K,

The remainder of the analysis for the absorption spectrum follows the

preceeding example exactly. We obtain the result

1+ XL +e

with given by Eq. (5.42), This result is identical to that obtained
(1)

by Mellen et al.

It has been correctly pointed out that this method may be applied to

other coupled reaction mechanism (provided, presumably, that unstable

states are not present) where a single slow step is rate limiting.

This result is presented next.
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Consider the general case where the slow step is first order

between species Y and Z. Each of these species may be involved either

directly or indirectly, through coupling to other species, in reactions

that are rapid compared to the interconversion.

3(5.48)

If one writes the entire reaction mechanisims in terms of the pertinent

rate equations for the progress variable , and sets all 0 0

except for the variable X characterizing the slow step Eq. (5.48), one

arrives at the effective rate equation

(5.49)

>17

which corresponds to the reaction scheme:

(5.50)

The rates and will be found as a function of the rate co-

efficients, equilibrium constants, and equilibrium concentrations of

other species in the mechanisim. The change in volume u* is given by

T I ( I I" K 
I( 5 .5 1 )
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where

( (5.52)

and the absorption spectrum is simply expressed as

(5.53)

OW + 0 -

Thus we have presented an explicit method for determining the

absorption coefficient for the case of a single slow first order step

in a complex coupled chemical reacting system. The method is easily

generalized to the case where the slow step involves the species Y and

Z in higher order reactions.
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VI Analysis of the General Case of Coupled Reactions

We return to Eq. (3.20), the general expression for KT(w) for a

coupled chemical system. We shall obtain an expression for <T( ) and

hency xw() in terms of the eigenvectors * and eigenvalues X of the

kinetic matrix M. In general M is not a symmetric matrix (reflecting

the fact that equilibrium constants are not unity) so it is necessary

to be concerned with both right and left handed eiqenvalues of M:

(6.1)

and

LT (6.2)

alternatively

L (6.3)

These eigenvectors are constructed to be orthonormal

(6.4)
L 

=
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and form a complete set in the vector space of the r chemical reactions.

Thus we may expand any vector t as

(6.5)

and the coefficient 0. will be given by

(6.6)

Alternatively the vector S may be expanded as

(6.7)

and the coefficient L. will be given by

(6.8)

S T . ,,9%

We shall expand the vectors ( .V) according to Eq. (6.5)

and the vector T according to Eq. (6.7) and substitute these expressions

into Eq. (3.20). If we make use of Eqs. (6.1) and (6.4) we obtain
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I" a 1v (6.9)
YT['j)YT[Ob + * 1.1

where

(6.10)

It is immediately apparent that the (real) eigenvalues of the

linearized kinetic matrix M are the relaxation times of the coupled

chemically reacting system

(6.11)

so that

(6.12)

We next demonstrate that . Since M L .f ,one has

form Eq. (6.1) after multiplying both sides of the equation by

- IIIII (I/I I (6.13)
kL it f/L
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Thermodynamic stability requires that L is symmetric, i.e. L T L

and it is an easy matter to show from Eqs. (2.6) and (3.6) thati: is

symmetric. Accordingly, it follows that M - .L. One has from

Eq. (6.3) after multiplying both sides of the equation bya " 1/ 2 "

S (6.14)

It follows from Eqs. (6.13) and (6.14) (the matrix M has no zero eigen-

values) that

(6.15)
4. ,qL, -

We may write

L T L(6.16)

where in the second relation we have used the fact that [ I]T = .

Sint-e

(6.17)

we nay substitute Eq. (6.16) to demonstrate that
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Thus Eq. (6.12) becomes

(6.18)

In sum, in order to calculate <(w) for coupled chemical reactions
Tkw

one must know Yand the eigenvalues and eigenvectors of M . While

this will not always prove possible to do analytically, it can easily

be accomplished on a computer.

As an example we compute the exactXT(&)) for the mechanism

considered by Mellen et al. displayed in Eq. (5.36). The matrix M is

simply
A

F (-- I)(619

('L-~~
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The eigenvalues are found from the equation det [I-M] det [1-MT] =

(6.20)

LL

The two roots will occur in the vicinity ofA(- + -') and k1, 4 k_),

If we are interested in the second root and (kt.-,) - i.e.

the first reaction step is fast compared with the second, one is

justified in dropping the X in the uppoer left hand corner of Eq. (5.42).

This yields a single eigenvalue which, as expected, is identical to

Eq. (5.42), for the case of a single, slow rate determining step

considered in Sec. V.C.

The eigenvalues are

i ___ (6.21)

i 
1~

where

(6.22)

The eigenvalues are plainly real and positive.
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Note that fortI 1 )'>M 2 , x approaches the relaxation time Eq. (5.42).

The eigenvalues of the matrix

(6.23)

may be expressed in terms of the parameters

Am 4 VAL 
(6.24)

so that

(6.25)

and

(6.26)

_ - -
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The right hand eigenvectors are

(6.27a)

corresponding to and

9 (6.27b)

corresponding to

The left hand eigenvectors are

L / L (6.28a)

corresponding to 1 and

L (6. 28b)

corresponding to

Note that

L T (tL(6.29)
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Normalization of these eigenvectors is accomplished by requiring

so that

I (trY(6.30a)

and

(6.30b)

According to Eq. (6.10)

(6.31a)

and - -| )"iV #] 7 (6.31b)

7 ,2-=l~ I lll
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Thus we have found the complete solution to the reaction mechanism

Eq. (5.36). The frequency dependent compressibility is [from Eq. (6.18)]

simply

t W+ + +
1+ 14- C W7-

where b+ is given by Eq. (6.31) and -l = is given by Eq. (6.21).

It is evident that much more complicated reaction schemes, such

as those which characterize chemical relaxation in the ocean, can

easily be treated by the method exctly, if use is made of a computer

to determine the eigenvectors and eigenvalues for a particular

reaction mechanism with known rate coefficients. Accordingly, it

would be possible and desirable to attempt to fit the entire spectrum

of sea water absorption exactly in order to verify the accuracy of

existing assumed chemical reaction models.
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VII Sound Absorption from Systems Far From Equilibrium

For systems near chemical equilibrium, thermodynamics assures

that the relaxation times (eigenvalues) encountered are real and

positive. However, in a steady state, far from equilibrium a coupled

non-linear reaction scheme may exhibit more complex behavior.

Fluctuations from the steady state may be stable [Re(AM)>O], unstable

[Re(-)<O], or marginally stable [Re(x,)=O]. In addition fluctuations

may exhibit oscillatory behavior [Im(")O].

In recent years there has been considerable interest in the

behavior of such non-linear chemical systems far from equilibrium(6)

In this section, we wish to illustrate briefly the phenomena that may

be encountered when sound is absorbed by a chemical system in a

steady state. The example discussed is not comprehensive but displays,

in a simple manner, the features that can arise in the sound absorption

spectrum.

Accoustic effects in such systems have been studied by Ross

and co-workers (7 )  The method of analysis followed here is quite

similar to the method, discussed by Deutch et al.,)required to describe

the spectrum of light scattered from chemically reacting systems far

from equilibrium.

A. The Prigogine-Lefever !Mechanism(
9 )

Consider the model reaction scheme (without back reaction)

(7.1)

A
Yx +
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X E

where species A, B, and E are considered present in fixed concentrations,

and only X and Y are pertinent fluctuating variables.

The rate equations for the concentrations are

(7.2)

A steady state exists for this illustrative reaction scheme when

t (7.3)

In terms of fluctuations in the concentrations from these steady

states one has

- (7.4)

4%
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For simplicity in analysis we assume that all the rate coefficients

are equal and that A=l. Under these circumstances we have

(7.5)

-- -

where we have introduced the two progress variables

(7.6)

We know that the relaxation times of this system will be

related to the eigenvalues of the matrix M, which takes the form

(7.7)

The two relaxation times which arise are

(7.8)

S I I i6
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For B>2, both relaxation times will have a negative real part since

Re(X±)<O. For this case the fluctuation will grow exponentially from

the steady state signalling that the state is absolutely unstable and

hency physically unrealizable.

For O<B<2, the relaxation time will have positive real parts,

indicating that the candidate steady state is stable. However, in

this regieme, the relaxation times become complex with relaxation

times given by

(7.9)
+ Is5 <

2- +

The imaginary part of the relaxation time indicates that the concen-

tration variables perturbed from their steady state, for example by

passage of a pressure disturbance, will return to equilibrium in an

oscillatory manner.

/o e (I. )'f =c~ ;~,t (7.10)

where I' and x" denote the real and imaginary parts of the eigen-

values of respectively.

It is worthwhile remarking that as the point of marginal

stability is approached B-(2-), the example displays a slowing down

in the damping of the chemical mode [x'-O] that one might guess would



48

be manifest in the spectrum a(w) as a sharp peak. However, it must

be remembered that the treatment presented here has ignored other

dissipative transport effects, in particular, diffusion. Sufficiently

near the point of instability it is necessary to take these effects

into account (3), i.e. one cannot rest the analysis on the basis of

homogeneous perturbations.

B. Significance of Complex Chemical Relaxation Times

The preceeding analysis indicates that for chemical systems in

a steady state far from equilibrium, one of the chemical modes will

possess a complex 2igenvalue in its fluctuation behavior. According

to Eq. (7.10) the equation of motion for this mode is given by

(7.11)

whereP c is equal to the imaginary part of the eigenvalue characterizing

the mode and l is equal to the real part of the eigenvalue.

It is apparent from Eq. (7.11) that the chemical mode exhibits

wave like behavior. This chemical wave is characterized by frequency

(c.)c and damping ( . In contrast, when the chemical system is at equili-

brium and not in a steady state(Jc=O.

The consequences of this type of behavior on the frequency

dependent compressibility vT(w) can be seen from Eq. (4.13).

In place of the conventional expression
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Z - (7.12)

one finds

X A 
t(7.13)

One finds that <T(w) contains frequency shifts of +wc, The chemical

wave has effectively added (or subtracted) the frequency of the

chemical wave wc from the frequency of the imposed pressure wave w.

The pressure relaxation in this case may be regarded as a sort of

Raman process with the incident frequency w, scattered into frequencies

The complex part of the compressibility <T"(w) will beUI

so that the Lorentzian form for the absorption coefficient [0(,)/w]

Eq. (4.17) is replaced by the shifted Lorentzian
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7 7 A ---- - - _ _ _ _ ( 7 . 1 4 )

in the limit of low dispersion. It is clear from Eq. (7.14) that the

absorption spectrum is shifted by frequency c as a result of the

chemical waves.

The simple example considered here clearly indicates that sound

absorption is an important potential tool for studying chemical systems

in steady states far from equilibrium.

a



51

References

(1) R. H. Melleri, D. G. Browning, and V. P. Simmons; J. Acoust.
Soc. 68, 243 (1980) and references cited therein.

(2) S. R. de Groot and P. Mazur, "Non Equilibrium Thelmodynamics"
North Halland Publishing Co., Amersterdam, 1962. Chapter XII,
p. 315.

(3) K. F. Herzfeld and T. A. Litovitz, "Absorption and Dispersion
of Ultrasonic Waves," Academic Press, New York, 1959. Chapter
I, Section 27, p. 138.

(4) A. B. Bhatia, "Ultrasonic Absorption," Oxford University Press,
London. Chapter 9, p. 175.

(5) M. Eigen and L. de Maeyer, "Relaxation Methods," Chapter XVIII
in Volume VIII, Part II, "Technique of Organic Chemistry,"
ed. by S. L. Friess, E. S. Lewis, and A. Weissberger, John
Wiley, New York, 1963.

(6) P. G. Lansdorff and I. Prigogine, "Thermodynamic Theory:
Structure, Stability, and Fluctuation." John Wiley, New• York, 1971.

(7) P. J. Ortoleva and J. Ross, J. Chem. Phys. 55, 4378 (1971);
R. Gilbert, P. Ortoleva, and J. Ross, J. Chem. Phys. 58, 3625
(1973).

(3) J. M. Deutch, S. Hudson, P. J. Ortoleva, and J. Ross, J. Chem.
Phys. 57, 4327 (1972).

(9) I. Prigogine and P. Lefever, J. Chem. Phys. 48, 1695 (1968).

8o


