
FILE pi

Parallel Functional Computation

Final Report

R. R. Oldehoeft

November 9, 1989

P P

U.S. Army Research Office

Contract Number DAAL03-86-K-0101

Colorado State University DT IC:
ELECT,

NOV2 8 9~E

APPROVED FOR PUBLIC 'RELEASE;

DISTRIBUTION UNLIMITED

u ii 2', 199



-or

AeessSon 1tow

STIS GRA&IDTIC TAN
Unannounced 0

S jLsti flCtln

DintributiO/

AvallabilltY C0608
Avail Fad/er

st Spoelal

The view, opinions, and/or findings contained in this.report are
those of the author(s) and should not be construed as an official
Department of the Army position, policy, or decision, unless so
designated by other documentation.



UNCLASSIFIED MASTER COPY - FOR REPRODUCTION PURPOSES
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION I AVAILABIUTY OF REPORT

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE Approved for public release;
distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

A__n .23.22/. II.L
Go. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

j (If applicabl)
Colorado State University - U. S. Army Research Office

6c. ADDRESS (Gty, State, and ZP Code) 7b. ADDRESS (Ciy, State, and ZLP Code)

Fort Collins, CO 80523 P. 0. Box 12211
Research Triangle Park, NC 27709-2211

8a. NAME OF FUNDING/SPONSORING l8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION if appcam)
U. S. Army Research Office DII/7L0 -Y4-k./0

8€. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

P. 0. Box 12211 PROGRAM PROJECT TASK WORK UNIT•"ELEMENT NO. INO. NO. ACCESSION NO
Research Triangle Park, NC 27709-2211 I N N

11. TITLE (Indude Securfly Claw ~flcation)

Parallel Functional Computation

12. PERSONAL AUTHOR(S)
Rodney R. Oldehoeft

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, MonA Day) S. PAGE COUNT
Final FROM 6/15/86 TO 8/14/89 1989/November/9 10

16. SUPPLEMENTARY NOTATION The view, opinions and/or findings contained in this report are those

of he authir(?)and sh uld not be construd as an fficial Dartment of the Army position

17. COSATI CODES 18. SUBJECT TERMS (Contlinue on rearim if necesary and identify by block number)

FIELD GROUP SUB-GROUP Parallel computation, functional languages,

SISAL

'9. ABSTRACT (Continue on vewrne if necesary and wdentify by block number)

This is the final report for ARO Contract DAAL03-86-K-0101 titled "Parallel Functional

Computation" at Colorado State University. The research described here has developed

the functional language SISAL to be a highly efficient mechanism for automatically

exploiting shared-memory parallel computers.

20. DISTRIBUTIONSAVALASIUTY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
MUNCLASSIFIEDAJNUMIdTED 0 SAME AS RpT. ; OTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (hichnit Area COd) 22c. OFFICE SYMBOL

00 FORM 1473, *4 mun 83 APO edion may be used untl euxhuted. SECURITY CIASSIFICTKON OF THIS PAGE
All other edition are obolete. S IFIT

UNCLASSIFIED



UNCLASSIFIED
emerTY CLAficAf Ow vms was6

UNCLASSIFIED
UCSYY CLAUPICAYIOU or vms PAE



This is the final report for project DAAL03-86-K-0101 titled "Parallel Functional Com-
putation" and funded by the U. S. Army Research Office begween 15 June, 1986 and 14
August, 1989 at Colorado State University.

1 Problem Statement

The magnitude of problems that people need to solve using automatic computation often
exceeds the processing power of available sequential computers. However, most algorithms
contain components that can execute concurrently instead of serially, and vendors have
pr~.ta~y of _machines capable of p arallelprocessing..)

But expected reductions in execution times did not always occur owing to ineffective
utilization of available parallel hardware or excessive interprocessor communication. Pro-
grammers could sometimes manually optimize program structures to solve these problems,
but this work is extraordinarily difficult, and not practical for large programs. Research
into automatic parallelization follows two paths. First, because of the large investment in
extant software, attempts continue toward compilers for conventional languages that map
ordinary programs onto parallel architectures efficiently. Systems of this kind work best
when programmers use certain easily recognizable forms in source programs and under-
stand underlying parallel hardware.

Second, research continues in this and other projects to design, implement, and evaluate
new languages for which automatic parallel execution is more easily attainable. Programs
written in functional languages have been known to be easily parallelizable because they
possess these features:

* Programs are true functions.

* Assignments to names occur only once.

* Function application does not include side effects.

e Iteration occurs only in special forms.

e Only data dependencies sequentialize evaluation.

One or more factors have hindered the potential for efficiently exploiting parallel archi-
tectures via programs written in functional languages:

" Functional programs must do excessive data copying in simple implementations to
preserve semantics.

" Researchers have designed special architectures along with functional languages, lim-
iting the applicability of results.

" The theoretical bases have been explored exclusively, so the possible is better under
stood than the practical.



o A gap exists between practitioners with large problems to solve and the functional
language research community.

e Language design has been based on obscure academic systems instead of the more
familiar applications languages.

o Producing highly efficient software is not in the scope of academic research projects.

In some cases recent developments have ameliorated some of these problems.

At the time the U. S. Army Research Office funded the work summarized here, the
SISAL project had designed a functional language and showed its utility for implicitly
parallel execution.

* The language syntax resembled that of conventional, Pascal-like languages [18].

" An implementation on the Denelcor HEP showed that automatic parallel execution
was possible without hardware designed just for SISAL [1, 19].

" Performance data showed some successes, and located the sources of additional im-
provement [21].

The proposal had the following objectives:

* Performance Enhancement: Attack the special performance problems of functional
languages, generate better object code, reduce run-time overhead.

" Portability Studies: Dissasociate SISAL software from all but the most widely avail-
able UNIX features, show that portability is possible widely.

* Production Language Features: Develop modular language features and other en-
hancements.

" Conventional Language Compatibility: Allow programs to be written partly in SISAL.
and partly in, e.g., FORTRAN.

" Array Operations: Develop better multi-dimensional array facilities, including array
operations in the language.

The next section addresses the success at meeting these objectives.

2 Summary of Project Accomplishments

Dr. Rodney R. Oldehoeft and his research group at Colorado State University, and the
Computing Research Group at LLNL, have evolved the SISAL project to its current state:

-2-



an efficient testbed for additional research in parallel functional computing. LLNL per-
sonnel have written the current front-end parser for SISAL 1.2, designed the intermediate
languages IF1 and IF2 [26, 29], written an interpreter for IF1 that also gives graphs of
potential parallelism [28], developed several optimizers that work with IF1 [27], written
many SISAL benchmarks [11], and continue to collaborate with the CSU group in many
ways.

Representatives from LLNL, CSU, the University of Manchester (England) and Digital
Equipment Corporation cooperatively defined the original SISAL language. Version 1.1
followed quickly, and in 1985 LLNL, CSU, and UM defined Version 1.2 [18].

2.1 Efficient Processing

The CSU group have concentrated on the efficient native execution of SISAL 1.2 programs.
While native code translations of SISAL programs available on a variety of systems [6]
execute much faster than any interpreter could run, the compiler was not competitive
with those for conventional languages on sequential machines, or with hand-parallelized
programs on multiprocessors [20]. The group set two goals:

e SISAL programs should run competitively with those written in conventional lan-
guages on a single processor.

* SISAL programs should show efficient use of multiple processors when they are avail-
able and the algorithms themselves have inherent parallelism.

These goals may seem contradictory because the easiest way to show good parallel speedup
is to generate inefficient code that occupies all available processor resources. This, however.
precludes competitive sequential execution. To pursue these goals the CSU group began
several optimization projects.

" Run-time support overhead in thread management, dynamic storage allocation, lock
code, and processor assignment have been dramatically improved [14, 24]. Code is
much more parallel, and simultaneously more efficient, than before.

" The group extended IF1 optimizers developed at LLNL to have a more global effect
across entire programs, and developed several new optimizations.

" Staff at LLNL[23 designed "build-in-place" optimization, but did not implement it.
This enables, for example, an array that is built as the concatenation of smaller arrays
to be placed in its final storage from the beginning, eliminating all sub-array copying
from concatenation operations. The CSU group implemented the design. proving the
concept. This optimization, and all following, involve expressing SISAL programs in
the extended intermediate form IF2.

" They adapted a prototype optimizer of reference count operations for dynamically
allocated storage, begun at LLNL, to work globally [8]. In its current implementation

-3-



it removes most operations from typical programs. This is important because the
operations take time, and updates must take place in critical sections for correct
results. Removing operations improves speed and parallel efficiency simultaneously.

" The "update-in-place" problem was attacked. In single assignment languages, an
aggregate data structure derived from another by changing one component must, in
principle, be copied before modification. Analysis of when the data may be changed
without copying is not always possible at compile time. Based on the reference
count optimizer, this optimization determines that more efficient code can often be
produced, and uses reference counting to handle other cases during execution. The
result is execution time reduced by two decimal orders of magnitude for problems
such as sequential sorting. The CSU SISAL group have effectively solved this problem
for functional languages in a general setting [3, 9, 101.

" The group developed a new code generator that produces C from IF2. The quality of
the machine code resulting from compiling this C is often better than that resulting
from a handwritten C program.

The performance goals have been met: SISAL programs compiled and run using CSU
software are often competitive with their C and FORTRAN counterparts when executing
sequentially, and show good parallel speedup and efficiency on shared memory multipro-
cessors [10].

Members of the group have built, two tools to help in analyzing performance problems
and ameliorating them. First, one can obtain a histogram across SISAL program text
giving the relative amounts of time spent in each function (or in sections within functions).
This helps to identify bottlenecks in run-time routines or translations of SISAL functions.
Second, an instrumented run-time library emits data reflecting events of interest during
parallel execution. Later. one can examine this data interactively on a Sun workstation to
identify parallel bottlenecks and other hard-to-obtain behaviors [16].

2.2 Software Portability

The new software discussed above no longer relies on the intermediate forms of any other
compiler. By developing all software in C [2, 21], and producing C from the SISAL in-
termediate form [4], the widest possible portability has been achieved [7]. The compiler-
produced C can use structures not generally used by human programmers. and therefore
sequential SISAL program performance generally is better than hand-written C programs.
The machine-dependent facilities necessary for parallel synchronization are carefully en-
capsulated for easy porting to new systems. The CSU group have )rodluced SISAL im-
plementations for sequential execution on Vaxes, Suns, and other similar systems, and on
commercially available parallel machines such as the Sequent. Encore. and Alliant. A pro-
totype Cray version has been produced [17], a version has been ported to the C'MU W'Varp
[13], and a Connection Machine implementation is underway.

-4-



2.3 Language Redesign

Based on experience with writing SISAL programs [11, 12, 15, 25] and observations about
the possible optimizations, LLNL and CSU SISAL groups cooperatively began a revision of
the language. Although the language specification is incomplete [5], the improved version
comprises these features:

e Arrays and associated operators: Arrays and their manipulation are common in sci-
entific programs, and SISAL 2.0 provides advanced features in this area. Arrays, and
sub-arrays defined by subscript expressions, are first-class objects that can be com-
bined with infix arithmetic operators. True multidimensional arrays are available to
complement current one-dimensional arrays with arrays as components. Multidimen-
sional arrays are constructable by describing arbitrary sub-array expressions that can
be evaluated in parallel. A simple syntax for describing diagonals in multidimensional
arrays with arbitrary orientation provides improved expressive power.

* Modules: The design for a comprehensive interface between SISAL and other, con-
ventional languages is complete [22]. It adds a modern modular structure to the
language that separates specification from implementation, allows a simple form for
small programs, and enables SISAL code to use extant subprogram libraries or large
applications written in convuintional languages to reference SISAL code for subsystems
where high performance, parallel execution is necessary.

* Parameterized types and inference: One can omit the explicit declaration of some
type names and use these names to declare functions. When a function reference is
processed, the types of actual parameters and results are known and an instance of
the function declaration is automatically instantiated in response. This is a powerful
facility for declaring a "generic" function with several instantiations for the various
usages of it-smaller programs often result. Parameterized types and inference cause
no degradation in execution performance.

* Higher-order functions: A programmer can declare function types, pass functions
as actual parameters, and obtain values of function types as the result of expression
evaluation. Partial evaluation or "Currying" is possible to produce efficient instances
of generalized functions. A function definition capability that fixes non-parameter
values at definition time is included. Greatly enhanced expressive power can result,
but these features are limited to actions during compilation so execution performance
is not degraded.

9 More compact syntax: SISAL is an expressive language with much familiar syntax,
and is easy to learn for that reason. Certain economies are introduced to shorten the
expression of some common structures.

The language redesign has achieved the remaining project objectives by enabling large
program construction, providing general interfaces with conventional languages, and incor-
porating comprehensive array construction and manipulation facilities.

-5-



3 List of Publications

Cann, D. C., Ching-Cheng Lee, R. R. Oldehoeft and S. K. Skedzielewski. SISAL Mul-
tiprocessing Support, Technical Report UCID-21115, Lawrence Livermore National
Laboratory, Livermore, CA, July, 1987.

Cann, D. C. and R. R. Oldehoeft. Porting Multiprocessor SISAL Software, Technical
Report CS-88-104, Computer Science Department, Colorado State University, Fort
Collins, CO, February, 1988.

Cann, D. C. Cann and R. R. Oldehoeft. Reference Count and Copy Elimination for
Parallel Applicative Computing, Technical Report CS-88-129, Computer Science De-
partment, Colorado State University, Fort Collins, CO, November, 1988.

Cann, D. C. and R. R. Oldehoeft. High Performance Parallel Applicative Computing,
Technical Report CS-89-104, Computer Science Department, Colorado State Univer-
sity, Fort Collins., CO, February 1989.

Cann, D. C. Compilation Techniques for High Performance Applicative Computation,
Ph.D. dissertation, Computer Science Department, Colorado State University. Fort
Collins, CO, May, 1989.

Hanson, T., S. Harikrishnan, T. Richert and R. Oldehoeft. The Purdue Parallel Bench.
marks in SISAL, Technical Report CS-88-114, Computer Science Department. Col-
orado State University, Fort Collins, CO, September, 1988.

Hanson, T. and R. R. Oldehoeft. Parallel Performance Measurement: Instrumentation
and Examples, Technical Report CS-88-115, Computer Science Department. Col-
orado State University. Fort Collins, CO, September, 1988.

Hanson, T. SISAL ,'unline Parallel Performance Instrumentation, Technical Report CS-
89-109, Computer Science Department, Colorado State University, Fort Collins, CO,
May, 1989.

flarikrishnan, S. A Type Inferencing Linkage Editor for Data Flow Graphs Generated
from SISAL, Technical Report CS-89-110, Computer Science Department. Colorado
State University, Fort Collins, CO, June, 1989.

Oldehoeft, R. R.. D. C. Cann and S. .J. Allan. "SISAL: Initial MIMD Performance Re-
suits," Proceedings of the 1986 Conference on Algorithms and Hardware for Parallcl
Processing, Aachen, Federal Republic of Germany, September, 1 986: 120-127.

Oldehoeft, R. R. and J. R. McGraw. "'Mixed Applicative and Imperative Programs." To
appear in Parallel Computing.

Oldehoeft, R. R. and D. C. Cann. "Applicative Parallelism on a Shared-Memory Multi-
processor," IEEE Software, January,1988: 62-70.

-6-



Oldehoeft, R. R. "Parallelism Granularity in SISAL," Proceedings of the SRC Parallelism
Packaging Workshop, Supercomputing Research Center, April, 1988: 5.9.1-5.9.13.

Richert, T. R. Efficient Task Management for SISAL, Technical Report CS-89-111, Com-
puter Science Department, Colorado State University, July, 1989.

Sieker, Fritz. A Study of Rendering Graphical Images in SISAL, Technical Report CS-
89-102, Computer Science Department, Colorado State University, Fort Collins, CO.
February, 1989.

Skedzielewski, S. K., R. K. Yates and R. R. Oldehoeft. "DI: An Interactive Debugging
Interpreter for Applicative Languages," Proceedings of the ACM SIGPLAN 87 Sym-
posium on Interpreters and Interpretive Techniques, June, 1987: 102-112.

4 Participating Scientific Personnel

Principal investigator: Rodney R. Oldehoeft

Ph.D. graduate: David C. Cann

M.S. graduates: Thomas C. Hanson
Seetharaman Harikrishnan
Tamara R. Richert
Fritz Sieker

Continuing students: Khalid Aziz
Steven Dominic
Matthew Haines
Daniel Sweeney
Tom Walley

-7I-



References

[1] S. J. Allan and R. R. Oldelioeft. HEP SISAL: Parallel functional programming. In
J. Kowalik, editor, Parallel MIMD Computatien: The HEP Supercomputer and Its

Applications, pages 123-150. MIT Press, Cambridge, MA, 1985.

[2] S. J. Allan and R. R. Oldehoeft. Parallelism in SISAL: Exploiting the HEP architec-
ture. In 19th Hawaii International Conference on System Sciences. pages 538-548.
January 1986.

[3] D. C. Cann. Compilation Techniques for High Performance Applicative Computation.
PhD thesis, Colorado State University, Computer Science Department, Fort Collins.
CO, 1989.

[4] D. C. Cann, S. J. Allan. and R. R. Oldehoeft. An IF1 driven portable code generator.
Technical Report CS-84-15. Colorado State University Computer Science Department,
Fort Collins, CO, December 1984.

[5] D. C. Cann, J. T. Feo, and R. R. Oldehoeft. SISAL 2.0 Reference Manual. In
preparation.

[6] D. C. Cann, Ching-Cheng Lee, R. R. Oldehoeft, and S. K. Skedzielewski. SISAL

multiprocessing support. Technical report, Lawrence Livermore National Laboratory.
Livermore. CA, 1987.

[7] D. C. Cann and R. R. Oldehoeft. Porting multiprocessor SISAL software. Technical
Report CS-88-104. Computer Science Department. Colorado State University. Fort
Collins. CO, February 1988.

[8] D. C Cann and R. R. Oldehoeft. Reference count and copy elimination for parallel
applicative computing. Technical Report CS-88-129, Computer Science Department.
Colorado State University, Fort Collins, CO, November 1988.

[9] D. C. Cann and R. R. Oldehoeft. Compiling techniques for high performance parallel
applicative computing. Co ncutrrency Practice and Experience. 1989. Submitted for
publication.

[10] D. C. Cann and R. R. Oldelhoeft. High performance parallel applicative computing_.
Technical Report CS-89-104, Computer Science Department. Colorado State 'ni
sity, Fort Collins, CO, February 1989.

I111 J. T. Freo. The Livermore Loops in SISAL. Technical Report UCID-21159, Lawrence

Livermore National Laboratory, Livermore, CA, August 1987.

[12] .. T. Feo. An analysis of the coniputational and parallel complexity of the Livermor,

Loops. Puiralhl ('omputing. 7:16:3 185. .lldY 1988.



[13] Thomas Gross and Alan Sussmann. Mapping a single-assignment language onto the
WARP systolic array. In Proceedings of the ACM Conference on Lisp and Functional
Programming, October 1987.

[14] T. Hanson. Sisal runtime parallel performance instrumentation. Technical Report
CS-89-109, Colorado State University Computer Science Department, Fort Collins,
CO, May 1989.

[15] T. Hanson, S. Harikrishnan, T. Richert, and R. Oldehoeft. The purdue parallel bench-
marks in SISAL. Technical Report CS-88-114, Colorado State University Computer
Science Department, Fort Collins, CO, September 1988.

[16] T. Hanson and R. R. Oldehoeft. Parallel performance measurement: Instrumentation
and examples. Technical Report CS-88-115, Colorado State University Computer
Science Department, Fort Collins, CO, September 1988.

[17] C. Lee. Experience of implementing applicative parallelism on cray x-rp. Technical
Report UCRL-98303, Lawrence Livermore National Laboratory, May 1988.

[18] J. R. McGraw, S. K. Skedzielewski, S. J. Allan, R. R. Oldehoeft, J. Glauert,
C. Kirkham, W. Noyce, and R. Thomas. SISAL: Streams and iteration in a single
assignment language: Reference manual version 1.2. Manual M-146, Rev. 1, Lawrence
Livermore National Laboratory, Livermore, CA, March 1985.

[19] R. R. Oldehoeft and S. J. Allan. Execution support for HEP SISAL. In J. IKowalik,
editor, Parallel MIVID Computation: The HEP Supercomputer and Its Applications,
pages 151-180. MIT Press, Cambridge, MA, 1985.

[20] R. R. Oldehoeft and D. C. Cann. Applicative parallelism on a shared-memory multi-
processor. IEEE Software, pages 62-70, January 1988.

[21] R. R. Oldehoeft, D. C. Cann, and S. J. Allan. SISAL: Initial MIMD performance
results. In Proceedings of the 1.986 Conference on Algorithms and Hardware for Parallel
Processing, pages 120-127, Aachen, Federal Republic of Germany, September 1986.

[22] R. R. Oldehoeft and J. R. McGraw. Mixed applicative and imperative programs.
Parallel Computing, 1990. To appear.

[23] J. E. Ranelletti. Graph Transformation Algorithms for Array Memory Optimization
in Applicative Languages. PhD thesis, University of California at Davis, Computer
Science Department, Davis, California, 1987.

[24] T. R. Richert. Efficient task management for SISAL. Technical Report 89-111, Com-
puter Science Department, Colorado State University, July 1989.

[25] Fritz Sieker. A study of rendering graphical images in sisal. Technical Report CS-
89-102, Computer Science Department, Colorado State University, Fort Collins, CO,
February 1989.

-9-



[26] S. K. Skedzielewski and J. Glauert. IFI-an intermediate form for applicative lan-
guages. Manual M-170. Lawrence Livermore National Laboratory, Livermore, CA,
July 1985.

[27] S. K. Skedzielewski and M. L. Welcome. Data flow graph optimization in IFI. In
Jean-Pierre Jouannaud, editor. Functional Programming Languages and Computer
Architecture, pages 17-34. Springer-Verlag, New York, NY, September 1985.

[28] S. K. Skedzielewski, R. K. Yates, and R. R. Oldehoeft. DI: An interactive debug-
ging interpreter for applicative languages. In Proceedings of the ACM SIGPLAN 87
Symposzum on Interpreters and Interpretive Techniques, pages 102-112, June 1987.

[29] M. L. Welcome, S. K. Skedzielewski, R. K. Yates, and J. E. Ranelletti. IF2: an
applicative language intermediate form with explicit memory management. Manual
M-195. Universitv of California Lawrence Livermore National Laboratory, November
1986.

-10-


