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INTRODUCTION

The geological environment in which a nuclear explosive I, rs eplaced has a major

influence on the strength of seismic signals. For example, Werth and Herbst (1963) found that

for a fixed yield, thle first half-cycle amplitudes for granite and salt are nearly equal, for tuff

the amplitude is about one-half the amplitudes fo~r granite anid salt, and for dry alluvium the

amplitude is about one-tenth thle amplitudes for granite anid salt. These trends were confirmed

by Springer (1960) who further suggested that dry porosity is the parameter responisible for

such wide variations in seismic coupling. Mur-phy (1981) reviewed available observed

mnb/yield and free-field data from contained explosions In a variety of source media andl con-

cluded that the coupling Into the teteseism 1ic 1, wave ravmisinpath Is a-bout the samie for

shots in granite, shale, and wet tuff-rhyolite emplacement miedia, whiereas explosions in dry

unconsolidated miaterial Couple signiticandl\ less etICIentl\'.

Wo:rth and I icrbst ( 1963) noted that explosions in higher velocity rock arc significanilv

richer in higher frequencies. Yet their data for 5 kt shots in alluvium and tuft1(i1ur 3,

WVerth anid H erbst, 1963) indicate mo~re higoh f requenc ies fci all unui than for tim T (o-r hi mher

corner frequency fc for aHLll 1 vi1ji1h11 for ti!!t), to-ethcr ss ith amrplit-des In tufft aboult 5 tim"'es

lar-er than in alluviumn Now-linear finite difference calcu~lationsI (kBa1Ch e 1982) ;indicate that

the most i-ro-rit charaicteristic of NTS tuf aIs its 1v iros iv. i ic h cain accoun mt I or the lar,,C

)bserved diffeicencs,, in the sel uric coumpl ing oft even is abi ye and hcio~s the wktier table.A

cumrparison o0 source tunictlimns 1or YuIcca Hlat we,,t ind di\ itfl lR-ache. 1982: Fi,_nre I I I

s hi ik, a larger low-frequenrcy a mpl itutde_ and lower 11 tor %k cit in comnparison to drN tu ff.

'.khenl vield vA;ics aire the samei Vvcmndeict "!. (1 11)()"i llsow simila'r togdpnec

I ~pliilli1'~sv specIr( lit (,111"1material J)priem o)f the coupling" medC~ia (,,cc epCTC I'll[\



their Figure 8). Gupta anid Blandford (1987) examined teiceseisnoc P' 17()m shot,, In saturated

(below water table) media arid found spectral dii terences to depend on the ,hot medwium ye!(

city, It seems therefore that both amplitudes and spectral shapes are sig-nificantly iluenkico]

by the geological environment of the shot point.

In this study, the amiplitude and spectra of- the regional phase Pn arc comipared for shotus

detonated below anid above the water table. The three paramecters estimiated fromn eachi record

for this purpose are cornier f'requcIyC f,., low-frequency, spectral level A(, and the time-domnain

measurement AF (a measure of nib). Short-penodI, vertical -comn-Tent data from twko sta-

tions, J AS (with record,, from 22 sho)ts) anid 1<551 (,,kith data from 17 shots) are analyzed.

The results indicate that. for a e envie id, both A,, and nmb are signifficant ly largecr for sho)t.-

below NVT than for those above WVT, but the f1, values are n )t distinguishableIC Thelist res ii s

are in aorcement -with thosec diived from substantially Lar"Cr datal Sets of both regh n ld and

telesCismie1 measureiuenTs1-'



ANALYSIS OF RF(;IONAI. I)ATA RF)RIDI) AT .JAMESTOWN OAS)

Spectral and Time domain Me.;tsurement,,:

We analyzed digital data from 22 NTS shots well rcc'rded at 20 samples/sec at the

DWWSSN station Jamestown, JAS at epiceitral distntcc,, (if about 350 kin. Tablc 1 lists

these 22 explosions along with pertinent information such as the shot medium, magnitude nb,

and whether the shot px)int is above or below the water table Out of 22 shots, only ) are

below WT; 19 shots are from the Yucca flats and only 3 (SIEPA, HARZI-R. arid SALV)

are from the Pahite Mesa regions of the NTS.

• II l II I



TABILt" 1

NTS SHOTS RECORDED AT JAS

Shot Gas Sh( 1)4-pth
N. Date Name Medium m Porositv Depth of WT Symbol*

(vol %) (M) (m)

1 14 Nov 1980 )AU'HIN tuff 41 17.0 320 5V' 1.1 YM
2 17 Dec 1980 SERPA tuff 5.1 10.0 573 627 P0
3 29 May 1981 ALIGOIT- tuff 4.2 8.0 320 W0s Y()
4 06 Jun 1981 IARZER tuff 5.5 3.0 63 .7 66 Pi)
5 27 Aug 1981 ISLAY tuft - 23.0 294 567 Y()
6 01 Oct 1981 PAI.ZA tuff 4.9 6.0 472 530 YO
7 1! Nov 1981 TILCI alluvium 4 8 10.1 445 494 Y()
8 12 Nov 1981 ROUSANNE tuff 53 -20 518 495 YX
9 03 Dec 1981 AKAVI tuff 4.6 14.3 494 580 YO

1( 28 Jan 1982 JORNADA tuff 5.9 0.0 640 507 YX
1 20 Sep 1982 BORREGO tuff - 0( 5&1 501 YX
12 2( MaN, 198, FAIIAI)A tuff 4.4 12.0 384 (OO YO
13 01) Jun 1981 DANABLUJ alluvium 4.5 12.5 320 584 YO
14 22 Sep 1981 TEC1tAIO tuft 'O0 S13 5(X) YX
15 31 May 1984 CAI'ROCK tuff 5.8 0.() 00 5(X) YX
lo 20 Jun 1984 DIUORO( tuff 4 6 14.0 381 48(} Y()
1 02 Au 198.1 ('ORREC) tuff 4.7 13.0 335 470 Y()
18 15 Mar 198s VAtJ(GIHN tuff 4.8 11.0 427 499 YO
19 12 Jun 1985 SAI.tI thyolite 55 4.0 698 022 1'X
2( 05 Dec 1985 KINIBOT() tuff 5.7 0.0 579 4, S Yx
21 22 Mar 1986 GL.ENCOL tuff 5.1 00 o1 S22 YX
22 14 Nov 19S, (1'ASCON tuff 5o8 Q 51 5(I,, Yx

P ant 'I dente Pahutc Nca and 'fucva Flats regon\, aidI

(I repic''nis above and X hclw, the k. atcr tbIe shot'

I )I,-,Il. ,l-Il, cI mp(C n cn datj Ird,1 J( )R\AI).\ Ind tIu J_0I!It \cti ;,.it ion -x penrncrIt

) h . K1{ARsAI.: (17 A.,kurst 1988; 37 29" N, I 160 I Ya i C WtI iI n flgorc I

IhC JVI '11,t waL tcu~Id'i jt the nok I)\VW.SSN stjnon, (NIB, alho) (I kin ,,V vfr, rl

.J > all ,.'I, blc l Itti jrc 'irk: J()RNAI):,\. (xC fl1,11cdcl hc,,, \k F, hl' i 5.9 v,, hch

a I i ,tit* ' t, 1 ,() kt vcc. C!e iclc, 11)2 1 c . \1: Nh!. kr\o t. !,) be

.).O, ', ;. \\ol..f hipi , N ie t of PI,.1 V jo., , I S) 1,., alt ,mugh t1 101, Il ON1 5 P (h) III"c

tlrcntcllC Ili Un C t 'Il aMp1Itude It, the sh)ots . t1l()1s h,t hk du_ 1) the large dltlercces
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in coupling expected for shots below and above the WT. It is inter-sting to note that Llthough

Pg is clipped for both shots, the PniPg amplitude ratio is much smaller for KEARSARGE

than for JORNADA. in fact, a comparison of the later, unclipped portion of Pg (or Pg "coda")

amplitudes appears to suggest that Pg may not show the effect of the water table.

A window length of 6.4 sec ('28 points) with 10% cosinc taper is used for spectral

analysis of Pni. The spectra are corrected for noise by computing spectra of a window of noise

prior to the onset o' Pn and subtracting the power in the noise from the power in the observed

signal for each discrete frequency. Examples of such spectra of the observed signal and

noise, up to the Nyquist frequency of 10 Hz, are shown in Figure 2 for the same two records

as in Figure 1. The spectra are without smoothing and not corrected for instrumental response.

The signal-o-noise (S/N) ratio is good for almost the entire frequency range. The spectrai

ratio IEARSARGE/JORNADA, corrected for noise, and shown in Figure 3, has a mean slope

of 0. 112 per Hz (with associated standard deviation, SD of 0.004) over the frequency range of

0.2 to 6.0 lHz. Results for the frequency range of 0.2 to 10.0 Ilz are also shown in the figure

The mean values of the spectral ratio (in magnitude units), integrated over the two frequcircy

ranges by using the mean values of slope and intercept, denoted by AV INTEG in Figure 3.

indicate the average spectral amplitudes in KEARSARGE to be nearly half that for JOR-

NADA.

The far-field source spectra may generally be characterized by three independent parame-

ters: the low-frequency spectral level A0, proportional to seismic moment; the comer fre-

quency f, and the power of the high-frequency asymptote (Aki and Richards, 1980). The last

parameter or the value of n in f -n may be assumed to be 2 for explosions (E.vemden et .l.,

1986). For explosions in same or similar media, A0 is a good measure of the explosion yield

6
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KEARSARGE (CMB)/ JORNADA (JAS)

4-4

4
-I 4 "+ / 4A 4

4 -

4- 
4  i 4

4 + 4

0o.00 2. 00 14o.00 6.00 8. 00 i 0. 00
FREQUENCY (Hz)

FREQ BAND SLOPE S.D. AV ITEG
0.2 6.0 0. 112 0.004 -0.268
0.2 10.0 -0.001 0.002 -0.320

Figure 3. Spectral ratio KEARSARGE/JORNADA of Pn, corrected for noise. Points for which

S/N power ratio is less than 1.5 are not plotted. The dashed line shows the mean least squares
slope over the frequency range of 0.2 to 6.0 Hz. Mean slope, with associated standard devia-
tion, SD and mean value of log amplitude ratio (AV INTEG) are indicated for two frequency

ranges.
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(Evernden et al., 1986; McLaughlin et al., 1987). A spectral measure of A0 is made by

correcting for noise, removing the instrument response, applying the appropriate spatial

attenuation correction and then least-squares fitting the log-amplitude spectra to a model spec-

trum with a fall-off rate of f -2. Only those data points that have S/N larger than a specified

value are used in the least-squares regression. The amplitude sp-ctrum is assumed to have the

form (Brune, 1970)

A(f) A (1)

1 + (f/f,)
2

Bakun and Johnson (1970) analyzed earthquake and NTS explosion data recorded at JAS

and found Q to be about 400 for Pn at regional distances. This corresponds to t* of about 0.1

for NTS shots recorded at JAS. Applying this attenuation correction, spectral fits for JOR-

NADA and KEARSARGE, based on S/N power threshold of 1.5, are shown in Figure 4

which clearly demonstrates the latter shot to have significantly lower A0 and higher f, than

those for the former shot. The frequency range used for spectral fits was 0.2 to 6.0 Hz since

most shots showed good S/N only in this frequency band.

A similar procedure was applied to all 22 shots to obtain values of A0 and f, which are

plotted on log-log scale in Figure 5a in which the explosion numbers correspond to those in

Table I. Below WT (denoted by X) and above WT (marked by circles) shot populations do

not appear to show an obvious separation. The mean slope and intercept values are -0.245

(0.051) and 0.654 (0.104), respectively, where the quantities within parentheses denote one

SD value. Data from the 9 below W'r shots and the 13 above WT shots are plotted in Figures

5b and 5c, respectively. Least squares linear regressions of data in these two tigures yielded

mean slopes of -0.302 (0.061) and -0.283 (0.104), respectively. Both of these slope values are

9
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Figure 5a. f, versus A0 for 9 below water table (denoted by X) and 13 above water table
(marked by circles) shots numbered as in Table I and based onl t* = 0.1. The least squares
linear regression through all 22 data points (continuous line) has correlation coefficient of
0.731, slope of -0.245, and intercept of 0.654. One SI) variation in the intercept value Is
shown by the dashed lines.
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Figure 5b. Similar to Figure 5a for only 9 below water table shots. Forcing a slope of - 1/3,
the least squares, linear regression (continuous line) has an intercept of 0.926.
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within one SD of the theoretically expected value of -1/3. We therefore forced a slope of -1/3

through the data points in Figures 5b and 5c and the least squares regressions gave mean

intercept values of 0.926 (0.044) and 0.754 (0.045), respectively. Thus the below and above

WT populations are separated by 0.172 (0.063). In other words, for the same low-frequency

spectral level, shots below WT have, on the average, larger (about a factor of 1.5) fc than

those above WT.

Determination of f, is obviously uependent on the attenuation relationship assumed in

correcting the observed amplitudes. A different attenuation correction is therefore tried in

order to examine how the results pertaining to below and above WT shot populations are

affected. Analyzing Pn spectra of a large number of NTS shots recorded at regional dis-

tances, Taylor et al. (1987) suggested the following frequency-dependent attenuation relation-

ship:

Q = 250 f 0.6 (2)

This correction is applied to the data by assuming a propagation velocity of 8 km/sec for Pn.

The resulting plots of A0 versus fc are shown in Figures 6a, 6b, and 6c for all (22) shots, 9

shots below WT, and 13 shots above WT, respectively. The mean slope and intercept values

for all shots (Figure 6a) are -0.237 (0.042) and 0.497 (0.098), respectively. The mean slope

values for the data in Figures 6b and 6c are -0.276 (0.055) and -0.272 (0.087), respectively;

both of these slope values are within one SD of the theoretically expected value of -1/3. A

slope of -1/3 is therefore forced through the data points in Figures 6b and 6c and the least

squares regressions give mean intercept values of 0.802 (0.044) and 0.648 (0.039), respec-

tively. Thus the below and above WT populations are separated by 0.154 (0.059). This result

is very nea ly the same as obtained earlier based on t* = 0. 1. It means that the separation
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ligZurc 61. Similar to Figure (a for only 9 below water table shots. Forcing a slope of -1/3,
the least squares linear regression (continuous line) has intercept of 0.802.
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Figure 6c. Similar to [i1gure 6a for only 13 above water table shots. Forcing a slope of - I'
the 'Ica~t sqluares linear regression (continJouIs line) has intercept of 0,0.1,S.

17



between below and above WT populati(,ns iS n(t much influenced by the choice of attenuat!'.n

model and is therefore significant.

Note that as far as the distinction between below and above WT shots is concerned, the

results based on t* = 0. 1 (Figures 5a, b, c) and those based on frequency-dependent Q (Fig-

ures 6a, b, c) are nearly identical; the relative distribution of various data points is almost the

same for the two sets of figures and only the mean intercept values are different. Also the

separation between the below and above WT populations is nearly independent of the attenua-

tion mldel used for correcting Pn amplitudes For this reason, subsequent analyses of data

are restricted to the use of only one attenuation model, viz. t* = 0.1.

Time domain measurements of A/7 are also made on all 22 JAS records. Plots of f(

(dcrived by assuming t* 0. 1) versus log A!T arc shown in Figures 7a, 7b, and 7c for all

t22) shots, below; WT (9) shots, and above WT (13) shots, respectively. The mean siupc

values for the data in these three figures are .0.220 (0090), -0.296 (0.110), and -0.149

(I6 {4). rcspecti- ci,,. \Vhen the niLaT lope derived hrum the entire data set (viz. -0.220) is

'irccd throu,, ,h the data pmints in Figurc,, 7b and 7c. the mean intercept values are 0.714

Uo 007) and 0.,54 p).03() respectcvl, Thus, fur a gicn A,7 or m b val-i. f. values for shuts

, and above WI are nt significantl, ditfrerit

Plt,, of I vCr.s \Ich (oi i I(),g Io-e ,calc) 1,: all ,hts shked mean slope and intercept

\,,d,, 0I (c A 4) (ti (V0 and 0 541 ((0 1(')), rc1c09t),c\ For bclw WT and above WT shts,

:} e mean sl pcws 'ere () 24 8() 0' ) and ( 2-4' U (}I ,3 !, repctivclv Both of these sll

\aluc, aic vi1li1n ne NI Af the tLcorcticall, cxjI-p tcd aliue of 1 3 A s,,pe of -1'3 'kas

thC cloic forccd tltu-.h the data pt it:s a nd the lcat sqlita s rcgrc,,sons gave mean intercept
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E:igL~re 7h. Similar to Figure 7a for only 9 below water table shots. Forcing a slope of -0.220,
thle least sqjuares linear regression (continuous line) has intercept of 0-714.
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Figure 7c. Similar to Figure 7a for only 13 above water table shots. Forcing a "lope ot
-0.220, the least squares linear regression (continuous line) has Intercept ot 0.654.



values of 0.663 (0.069) and 0.662 (0.051), respectively. Thus there is no separation between

the below and above WT populations. In other words, for a fixed yield, f, values for shots

below and above WT are not significantly different.

Plots of A0 versus yield (on log-log scale) for all (22) shots, below WT (9) shots, and

above WT (13) shots gave mean slopes of 1.061 (0.124), 0.969 (0.118), and 1.094 (0.119),

respectively. All of these slope values are within one SD of the theoretically expected value

of 1. When a slope of 1 was forced through the data points, the least squares regressions give

mean intercept values of 0.789 (0.083) and 0.276 (0.045), respectively. Thus the below and

above VT populations are separated by 0.513 (0.095). In other words, for the same value of

yield, A0 for a shot below WT is, on the average, significantly larger (about a factor of 3)

than that for a shot above WT.

Plots of log A/T versus yield for all shots, below WT shots, and above WT shots gave

mean slopes of 0.875 (0.086), 0.829 (0.048), and 0.846 (0.111), respectively. When the mean

slope derived from the entire data set (viz. 0.875) was forced through the data points, the

mean intercept values were 1.206 (0.036) and 0.844 (0.041), respectively. Thus, the below and

above WT populations are separated by 0.362 (0.0542). In other words, for a fixed yield, log

A1T or mb for a shot below WT is significantly larger (about 0.36 magnitude unit) than that

for a shot above WT.

Yield Estimation:

In order to assess the effect of the water table on yield estimates, we computed estimated

vicilds (Y) based on A0 , Art' A0 and fl, and A,7 and f,. The coefficients used to compute the

estimates are tirst determined through linear or multilinear regresions, with the known yield
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(Y) as the dependent variable:

log Y = a, + b, log A0  (3a)

log Y = a2 + b2 log ArT (3b)

log Y =a 3 + b3 log A0 +c 3 log f, (3c)

log Y =a4 + b4 log A/T + c 4 og f, (3d)

Regression coefficients as well as the estimated yields (Y) for each shot (along with its associ-

ated SD) are computed for 9 events below the water table (abt, bbwt, cbwt), for 13 events

above the water table (aiawt, biwt, Ciawt), and for all (22 shots) of the data together

(a all, biall, C ia). The regression results based on log Y as the dependent variable are listed in

Table 2 in which the SD of the estimated yield (in magnitude units) is denoted by s.

TABLE 2

LINEAR REGRESSION COEFFICIENTS FOR JAS DATA

Data d" Constant Independent Coefficient Independent Coefficient s
Set a Variable b Variable c

ALL(22) 20 0.014 0.740 0.276
BWT(9) 7 -0.638 log A, 0.935 0.261

AWT(I 3) 11 0.040 0.809 0.141
ALL(22) 20 -0.718 0.958 0.239
BWT(9) 7 -1.469 log AfT 1.178 0.129
AWT(13) Ii -0.663 0.995 0.165
ALL(22) 19 -0.081 0.776 0.145 0.282
BWT(9) 6 -2.095 log A0  1.451 log t 1.707 0.115

AWT(I 3) 10 -0.211 0.915 0.374 0.132
ALL(22) 19 -0.391 0.852 -0.482 0.224
BWT(9) 6 -1.446 log A/T 1.171 log f, -0.025 0.139

AWT(13) 10 -0.414 0.923 -0.490 0.136

* d denotes degrees of freedom
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In order to assess the improvement in yield estimates obtained by considering events

above the water table separately from events below the water table, we computed two sets of

estimated yields using the coefficients in Table 2. The first set is computed using the regres-

sion coefficients obtained for all of the data together, e.g.,

log Y = aj1 + br" (log A0 ) (4)

The second set of yield estimates is computed by applying separate regression coefficients to

events below and above the water table, e.g.,

log _ + b, (log A0 )*bwt (5a)

log yawl = a Wt + b w, (log A0 )iawt  (5b)

Since the coupling is generally significantly smaller for events above the water table, it is

likely that the second set of estimated yields (equations 5a and 5b) would be more precise,

since different relationships for events below and above the water table are used, thus

accounting for the coupling differences. When separate coefficients for below and above WT

shots are used, the SD of log Y, S is given by

d, s, 2  + d 2 s-2
2

S2 = 2  - (6)
d) +d 2

where si, s, are the SD for below and above WT shots and d1 , d 2 are the corresponding

degrees of freedom (see Table 2).

Consider, as an example, plots of estimated yield based on A0 . When the regression

coefficients for the entire data set are used, the yield estimates for events below the water

table are positively biased whereas the estimates for events above the water table are nega-

tively biased and the SD of the estimated yield is 0.276 (Table 2). However, when separate
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sets of coefficients are used, the systematic biases are eliminated and, using equation (6), the

SD reduces to 0.196. Furthermore, the correlation coefficient of estimated yield with known

yield improves from 0.886 to 0.950 and the slope increases from 0.785 to 0.902. A similar

improvement is obtained for yield estimated from A/l', A0 and f, and A/T and f, These

improvements are summarized in Table 3 below.

TABLE 3

COMPARISON OF REGRESSION RESULTS

Slope Correlation Coefficient SD of log

Estimation Same Separate Same Separate Same Separate
Parameters Coefficients Coefficients Coefficients Coefficients Coefficients Coeflicients

A0  0.785 0.902 0.886 0.950 0.276 0.196

A/T 0.838 0.941 0,916 0.970 0.239 0.152

A0, f, 0.787 0.964 0.887 0.982 0.282 0.126
AfT, f, 0.866 0.958 0.930 0.979 0.224 0.137

At least some of this increase in slope and correlation coefficient is probably due to the

additional degrees of freedom, i.e., the use of twice as many regression coefficients in equa-

tion (5a) or (5b) as in equation (4). Nevertheless, a comparison of the SD values in Table 3

shows that substantially better yield estimates can be obtained if one can determine whether

the event occurred above or below the water table.

Using KEARSARGE as an example, the derived values of A0 and f, (indicated on Fig-

ure 4) and the regression coefficients in Table 2 for above WT shots lead to the estimated

yield value, Y given by

log Y 0.211 + 0.915 (log 191.78) + 0.374 (log 1.9) (7)
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which gives a value of 96 kt. The use of only one independent variable (viz. A0 ) will provide

a value of 77 kt. Similarly, use of regression coefficients for all data lead to yield estimates of

50 and 54 kt when results with one (viz. A0) and two (viz. A0 and fc) independent variables,

respectively are used. As expected, the first value (96 kt) is a better estimate than the other

three values.
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RESULTS FROM THE RSTN STATION, RSSD

Short-period, vertical component, digital data from 17 NTS explosions, well recorded at

the RSTN station, RSSD (40 samples/sec), with epicentral distances of about 1300 km, are

also analyzed in the same manner as the JAS data. These shots are listed in Table 4; note that

10 shots are common with Table 1.

TABLE 4

NTS SHOTS RECORDED AT RSSD

shot
No. Date Name Lat Lon medium mb symbol*

1 1982028 28 jan 82 JORNADA 37.09 -116.05 tuff 5.9 X
2 1982175 24 jun 82 NEBBIOLO 37.24 -116.37 rhyolite 5.6 0
3 1982217 05 aug 82 ATRISCO 37.08 -116.01 tuff 5.7 X
4 1982344 10 dec 82 MANTECA 37.03 -116.07 alluvium 4.6 0
5 1983104 14 apr 83 TORQUOISE 37.07 -116.05 tuff 5.7 X
6 1983125 05 may 83 CROWDIE 37.01 -116.09 alluvium 4.5 0
7 1983146 26 may 83 FAHIADA 37.10 -116.01 tuff 4.4 0
8 1983160 09 jun 83 I)ANABLU 37.16 -116.09 alluvium 4.5 0
9 1984091 31 mar 84 AGRINI 37.15 -116.08 alluvium 4.1 0

10 1984152 31 may 84 CAi kOCK 3/.10 -116.05 tuft 5.8 X
11 1984172 20 jun 84 DUORO 37.00 -116.04 tuff 4.6 0
12 1984215 02 aug 84 CORREO 37.02 -116.01 tuff 4.7 0
13 1985074 15 mar 85 VAUGHN 37.06 -116.05 tuff 4.8 0
14 1985122 02 may 85 TOWANDA 37.25 -116.33 tuff 5.7 X
15 1985163 12 jun 85 SALUT 37.25 -116.49 rhyolite 5.5 X
16 1985339 05 dec 85 KINIBOTO 37.05 -116.05 tuff 5.7 X
17 1986318 14 nov 86 GASCON 37.10 -116.05 tuff 5.8 X

* 0 represents above and X below the water table

Spectra of Pn (window length 6.4 sec) from ATRISCO and NEIIBIOLO, two shots of

similar magnitudes but the first below WT and the other abov,: 'NT, are shown in Figure S.

The spectra are not smoothed and are not corrected for instnmental rcsponsc. The S/N is

g, d up to about 5 1tz. The attenuation correction for the RSSD data is assumed to he t*
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0.4 as the source-receiver distance is about 4 times that for the station JAS. The correspond-

ing displacement spectral fits and the derived values of fc and A0 are shown in Figure 9. Note

that f, for the above WT shot is considerably higher than for the below WT shot, similar to

the result in Figure 4.

A plot of f, versus A 0 for all 17 shots recorded at RSSI) is shown in Figure 10a; the

explosion numbers correspond to those in Table 4. The mean slope and intercept values are

-0.398 (0.038) and 1.071 (0.090), respectively. When the mean slope derived from the entire

data set is forced on the below WT data alone (Figure 10b), the mean intercept value is 1.065

(0.032) whereas the corresponding result for only above WT shots (Figure 10c) is 1.076

(0.044). Thus there is hardly any separation beiween the below and above WT populations.

Time-domain measurenlent of log A/T, a measure of ITlb, are made in the same manner

as for the JAS recordings. Plots of fc versus log A/T arc shown in Figures I Ia. b, and c for

all (17) shots, 8 below WT shots, and 9 above WT shots, respectively. Forcing the mean slope

of -0.480 obtained from the entire data set (Figure I la), the intercept values for below and

above WT populations are 1.102 (0.058) and 1.189 (0.057), respectively. Therefore, the comer

frequencies for a given rnb for shots below and above WT are not significantly dfterent.

A plot of A0 versus yield (on log-log scale) for all 17 shots indicated th. -.-n slope of

1.648, considerably larger than the theoretically expected value of 1 or the observed value of

close to I for the JAS data. One reason for this is the lack of sufficient overlap in the yield

values of below and above WT shots. Forcing a slope of I to the data points, the mean inter-

ccpt values for all (17) sh,,ts, 8 below WT, and 9 above WT shots were 0.59(0 (0 103), 0.954

()1 14), and 0.278 ( ().i , respectivelv. The below and above WT population, atc thcre(ore
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A()

Figure 10b. Similar to Fig',ure 10a for only 8 below water table shots. Forcing a slope of
-0.398, hie least squares inear regression (continuous line) has intercept of 1 .065.
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f7 X 1 yl

iurc I Ia. fversus log A/T' for 8 below water table (denoted by X) and 9 above water table
(marked by circles) ,hots based on t* 0.4. The least sqILuCrS lne~ir reijession through all 17
data points (continuous line) h~scorrelation coefficient of 0,8S5 I slope of -0.480. and intercept
of 1. 1-18. One SI) val-l"1tion in thle intercept valuec is shown by the dashed lines.
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Figure I1b . Similar to Figure I la for only 8 below water table shots. Forcing a slope of
-0.480. the least squares linear regression (continuous linle) has intercept of 1 .102.
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Figure I Ic. Similar to Figure I I~ t fr only' 9 above water table shois. Forcing a slope of
-(.-480), the least sqtt|ares linear regressioni (continuous line) hits intercept of 1. 189.

30'

.N -I I I i



separated by 0.676 (0.128). This is close to the separation observed from 22 shots recorded at

JAS.
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COMPARISON WITH RESULTS FROM LARGER DATA BASES

Blandford and Klouda (1980) measured regional phases including Pn from a large

number of NTS explosions recorded at TFO, at epicentral distances of about 550 km. Their

results for magnitudes based on amplitude of Pn (the "b" phase) are used here to compare the

magnitude versus yield relationships for below above WT shots. The Rainier Mesa shots are

considered to be below WT because of a perched water table at shallow depths in the region.

A plot of magnitude versus log yield for all available below WT (35) shots shows a correla-

tion coefficient of 0.918, mean slope of 0.744 (0.056) and mean intercept of 4.477 (0.104).

Corresponding results from above WT (112) shots are: correlation coefficient 0.796, mean

slope 0.899 (0.065), and mean intercept 3.685 (0.065). These plots indicate a magnitude

difference of about 0.46 between below and above WT shots of 150 kt each. Note that this

value is fairly close to the separation of 0.36 (0.05) obtained for shots recorded at JAS.

Using amplitude data from the ISC bulletins, P. D. Marshall (written communication)

obtained maximum likelihood estimates of the seismic magnitude mb of a large number of

NTS explosions. The methodology used is described in detail in Marshall et at. (1986). Out

of a total of 300 events, 287 events were found suitable for studying the effect of the water

table. Plots of mb versus log yield for below WT (114) shots indicate correlation coefficient of

0.971, mean slope of 0.754 (0.018), and mean intercept of 4.096 (0.035). Results from 173

above WT shots are: correlation coefficient 0.872, mean slope 0.899 (0.039), and mean inter-

cept 3.491 (0.054). These plots will indicate a magnitude difference of about 0.29 between

below and above WT shots of 150 kt each.
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An attempt is now made to estimate the effect of water table when, considering the size

of the explosion cavity and the surrounding fracture zone, shots may be considered to be well

separated from the water table. A rough measure of the explosion cavity radius R, is given

by

R' = 10 YI 3  (8)

where Y is the yield in kt. This relationship is not much different from the empirical dcpth-

and medium-dependent relationships for NTS explosion cavity radii obtained by Closmann

(1969). One may consider shots having their shot points at least 2 R, below or above WT to

be well separated from the water table. mb versus log yield plot for 72 well below WT shots

(including Rainier Mesa shots which are all assumed to be well below WT) indicated correla-

tion coefficient of 0.981, mean slope of 0.746 (0.017), and mean intercept of 4.118 (0.035).

The correlation coefficient for the data from 125 well above WT shots is 0.708, mean slope i

0.711 (0.064), and mean intercept is 3.670 (0.075). These plots indicate the magnitude of a

below WT shot to be larger than that of an above WT shot by about 0.52, if each has the

same yield of 150 kt. As expected, the separation between the below and above populations

is enhanced when only those shots that are well below and well above WT are considered.
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EFFECT OF GAS POROSITY AND CAVITY RADII FOR SHOTS IN TUFF

Magnitude versus yield plots for above WT shots show considerably more scatter than

those for below WT shots. According to Patton (1988), a possible reason for this is the effect

of gas-filled voids in the emplacement medium on source coupling. His investi,"o-' b-sed on

the use of mb(Lg) magnitudes showed the gas porosity to significantly reduce mb (Lg) for

shots in tuff (and rhyolite since no distinction was made between the two media, H. J. Patton,

oral communication). He also examined the effect of gas porosity on Marshall's mb values

for 21 Yucca shots and found the effect to be very similar to that for mb (Lg). In this study,

we examine a much larger data set consisting of a total of 148 shots (91 below and 57 above

WT) from the Yucca Flats, Pahute Mesa, and Rainier Mesa regions of the NTS. These are

the only tuff-rhyolite shots for which gas porosity values are available, out of a total of 287

shots for which Marshall's mb are known.

Approximate expressions for cavity radii in tuff and rhyolite, based on Closmann's

(1969) study (see also Mueller and Murphy, 1971), are

Rc (tuff) = 31.41 Y0 .2 9 h01  (9)

and

R, (rhyolite) = 28.66 Y0.29 h-0 11 (10)

where h is the shot depth in meters. These two equations were used to determine cavity radii

for all 148 tuff-rhyolite shots. Explosions with their shot points at least two cavity radii

below the water table and all Rainier Mesa shots may be considered to be well below the

water table. There were 56 such shots with known gas porosity and 8 more for which porosity

was not known. For these 56 + 8 = 64 well below the water table shots, mb versus yield rela-
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tionship was found to be

n b = 0.744 (0.018) logY + 4.117 (0.036). (11)

The SD of estimated mb is 0109.

,\ vX..2 , m b  Sc'Ials ( Cer,,ed - estimated w, t-re - 6.. ;ited values are derived for

known Y from equation (11), versus gas porosity (in volume %) is shown in Figure 12a for

all 148 shots. The usual least squares regression (continuous line), based on tie assumption

that porosity is error-free, has a mean slope of -0.033 (0.002) and the SD of mb residual is

0.13. Note that several porosity values in Figure 12a are negative "even though physically

unreal as a result of small errors in the measured parameters input to the calculation"

(Howard, 1983). Furthermore, there are a large number of shots with exactly zero porosity.

All this means that the error in porosity is substantial and should not be neglected. In order

to study the effect of errors in both x and y variables, where x denotes porosity and y

represents mb residual, the maximum likelihood linear fitting method of Ericsson (1971) is

used to obtain mean slope and intercept values. The variables x and y are assumed to be com-

pletely uncorrelated and the ratio g = cy/Y , where Y denotes the SD, is assumed to be

known Since the smallest value of observed porosity for several shots is -5, a rough estimate

of (Tx may be assumed to be 5. Similarly, from the data used in equationI (11), (7, is about 0.1

so that g may be taken to be 0.02. The resulting maximum likelihood fit, with derived mean

slope value of -0.042 (0.003), is also shown in Figure l2a (dashed line). When 50 well belowk

WT shots are excluded, the results for the rcmaining 92 shots are shown In 1itve 12b. \When

porosity (x) is assumed to be error-free; the mean slope is -0.034 (0.002) wheras tile value

increases to -0.043 (0.003) if g 0.02. If only shots well above WT are considered, the

regressions for 31 such shots is shown in Figure 12c. 'lhe mean slope changes from -0.026
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Figure 12a. mb residual versus gas porosity (in volume %) for 148 tuff-rhyolite shots with
known gas porosity values. Below and above water table shots are denoted by X and circle,
respectively. The least squares linear regression (continuous line) has a mean slope of -0.033
(0.002) whereas regression based on g = 0.02 (dashed line) shows a larger slope of -0.042
(0.003).
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(0.006) for error-free x to -0.054 (0.016) for g = 0.02. Note that the mean slopes values based

on porosity not being error-free (dashed lines) are all significantly larger than those based on

error-free x (continuous lines), thereby suggesting enhanced dependence of mb residual on gas

porosity. All three figures indicate gas porosity to reduce the observed mb by significant

amounts.

We now consider the effect of gas porosity on shots close to the water table, i.e. on

92 - 31 = 61 shots that are neither well below nor well above WT (i.e. shots within 2 Rc of

WT). Plots of mb residual versus porosity from all 61 shots, L subset of 35 that are below

WT, and the remaining 26 above WT shots are shown in Figures 13a, 13b, and 13c, respec-

tively. The mean slopes are -0.029 (0.003), -0.013 (0.007), and -0.027 (0.004) based on

error-free x, and -0.039 (0.004), -0.105 (0.025), and -0.036 (0.007) for - 0.0, repectivcly.

All slope values are negative, confirming the expected effect of gas porosity. Since these 61

shots are all near WT, they should also be expected to show the effect of proximity of their

cavity radii and fracture zone to the water table. Defining "scaled distance to water table"

(SDWT) as the vertical distance to the water table (considered positive for below and negative

for above WT shots, respectively) from the shot point divided by R, , where R, is given by

equations (9) or (10), the results for 61 (35 below and 26 above \VT) shots are shown in Fig-

ure 14. Linear regression of the data (continuous line) has a mean slope of 0.141 (0.017), sug-

gesting that eAplosion cavity and its proximity to the water table significantl) influence the

source coupling. The lack of a sharp discontinuity where the t\% o populations meet (i.e. at

SDWT 0 0) means that the distinction betwetn below and above \VT shots is lost for shots

very close to WT. For explosions with their shot points belo, WT, shot-generated cavity, and

surrounding fracturcs extending above the water table (especially for shots with ;lhcir cavities
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Figure 13a. mb residual versus gas porosity (in volume %) for 61 tuff-rhyolite shots within 2
cavity radii of the water table. Below and above water table shots are denoted by X and cir-
cle, respectively. The least squares linear regression (continuous line) has a mean slope of
-0.029 (0.003) whereas regression based on g = 0.02 (dashed line) shows a larger slope of
-0.039 (0.004).
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crossing the water table) appear to reduce the coupling. Similarly, for above WT shots, explo-

sion cavity and fractures intersecting the water table seem to enhance the coupling.
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DISCRIMINATION BETWEEN BELOW ANI) ABOVE WT S1OTS

Analysis of the Pn spectra of 22 shots recorded at JAS shows some separation on plots

of fc versus A0 derived from the Pn spectra of 22 shots recorded at JAS. However, the

separation is probably not large and significant enough to be of much practical value (see Fig-

ures 5 and 6). On the other hand, plots of A0 versus yield show the largest separation between

the two types of shots. It seems therefore that the low-frequency spectral amplitude of Pn is a

possible discriminant. This is also supported by the spectral ratio of KFARSARGE (above

WT shot) to JORNADA (below WT shot) in Figure 3 in which, at low frequencies, the ampli-

tude ratio is much smaller than 1.

The low-frequency amplitude values may also be obtained by bandpassing the data and

computing the root-mean-square (RMS) amplitudes, after correcting for the instrumental

response and noise level before the onset of direct Pn. Results for the 05-1.5 flz passband,

with window length of 6.4 sec, for the 22 shots recorded at JAS are shown in Fie.uic i5. I he

least squares regression lines for the two types of shots, assuoing a slpe of 1, are separated

by 0.542 magnitude unit. These results are, as expected, nearly identical with those for .,\

The below WT shots show larger deviations from the mean than the above WT shots. The

RMS value from one shot (SALUT) in Figure 15. denoted by the letter P, is close to that

expected for an above \VT shot. A possible reason for this may be the fact that this is the

only below WT shot with non-zero gas porosity value (viz. 4%).

\n iInp ,rtant factor contributing to the scatter in Figure 15 i perhaps proximity,, the

slhl t cavities (,f sccral c\pl,)sio s to the water table. Out o a total of 22 sho ,, the ,ho"

nts (f 3 are within one cavity iadius of \VT umarked hN l i joos) and those of ) ohcr
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are within two cavity radii of WT (denoted by small arrov\s). If this were not the case, the

RMS values for these 12 shots would move towards the direction pointed by the arrows.

thereby resulting in somewhat larger separation between the two types of shots.

A plot of the RMS values for Lg with window length of 51.2 sec (but otherwise obtained

in the same manner as for Pn) versus yield for 19 shots for which Lg was available (most oth-

ers were clipped) is shown in Figure 16. The below and above WT populations are separated

by 0.300 magnitude unit. It seems therefore that Lg is considerably less sensitive than Pn to

whether the shot is below or above WT and Pn/Lg amplitude ratio is a possible discriminant.

This is in agreement with an analysis of Blandford and Klouda's (1980) data showing larger

separation between below and above WTF shots for mh (Pn) than for inb (I-).
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DISCUSSION AND CONCLUSION

Records of JORNADA and KEARSARGE, with good S/N, are also available at the SRO

station, ANMO at epicentral distance of about 900 kin. The two records are shown in Figure

17. Note that just as in Figure 1, JORNADA has much larger amplitudes than KEARSARGE

in the first several seconds of Pn but not so in the later wavetrain. The spectra of Pn (6.4 sec

window) for the two shots are shown in Figure 18; S/N is good up to about 6 Hlz. The spec-

tral ratio KEARSARGE/JORNADA is shown in Figure 19 and appears similar to that in Fig-

ure 3 although the mean slope value is slightly larger. The spectral fits, based on t* = 0.25.

are shown in Figure 20 and show differences between the two shots that are similar to those

in Figure 4. One may thus conclude that the differences in the spectral characteristics of these

two shots, as observed at ANMO, are similar to those observed at ]AS and the nearby station

C.10 13.

A comparison of the spectral characteristics of below and above WT shots shows that for

most parameters, there is a lack of systematic differences and considerable overlap bctwecn

the two types of shots, ccn though records from the same station ae used sO that source-

receiver paths are not much different. This is not surprising in icw of the extreme variahilt\

if regional ph ros from N"TS cxp)losions at essentially the sarTc location noted by Springer

and Denny (1976, especially their Figure 4) and Gupta et az. (1 9S4, see their Figure Il ). Plot,,

of fc versus A0 aplpear to show sonic separation between belMm and above WTl shots reco,-dc

it ]AS (Figure , Sh. c and 6b, c). This separation is, hi iwever. iot evident in the R.SSI) dati

(igurCs l0b, C),[perhaps because the RSS1) results are nrit as rciable due to poor ,vc ilqlp In

the f, and A0 valucs of the belw and a-hovc %VT poulatiim. '.- ,ic (atai fronm \eveudl ou;

,fti ,ns should he cxamiliicd to cxplorc further the possibility of dinI uishin" bct\eCn l



(a)

JORNADA (ANMO)--BWT f /

i1-" 3EQ} h !: NM 1} P

(b)

KEARSARGE (ANMO)--AWT

..... ) \ !

Figure 17. 7*-,,: -period, vertical-romponent records of JORNADA (below water table) and
KEARSARGE (above water table) at ANMO, similar to those in Figure 1. Note that in the
first several seconds of Pn, KEARSARGE has much smaller amplitude than JORNADA.
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and above WT shots from measurements of their fc and A0 values. Broadband instruments are

recommended so that both A0 and f, are better constrained. A determination from seismic data

alone of whether a shot was fired below or above WF is important since it can substantially

improve yield estimates. Plots of f, versus AfT and f, versus yield show no observable dis-

tinction between the two types of shots. The largest systematic difference between below and

above WT shots lies in plots of A0 versus yield and, to a somewhat smaller degree, in plots of

A/T (a measure of mb) versus yield.

Analysis of both regional and teleseismic mb data from substantially larger data bases

also demonstrate that, for a given yield, mb values for shots below WT are generally larger

than those for shots above WT by 0.3 to 0.5 magnitude unit. Gas po~rosity of the shot medium

appears to play an important role in the determination of this large magnitude bias. Yield esti-

mates can be significantly irnproved if it is known whether the shot point is below or above

Ohc wkaTer table. A knowledge of the gas-filled porosity of the shot medium may further

improve the precision of yield determinations of shots above the water table.

A surprising and interestium result is thu important role played by explosion cavity radii

;n deterinining the source coupling. The correlation bctwccn mb residual and SDWT (positive

for below and negative for above WT shots) tor shot poK.ints within two cavity radii of WT

makes a strong case for the influence (Ot explosion cavity and associated fracture zone on

source coupling. Signiticant improvement in ,icld estimates can be achieved by combining

ni, values with both gas P'r sr,\ and SI)VF ,,ire the jatter may be computed using empir-

cal mcdIUit - ald dCph-dcpcndcnt relationships for explosion cavity radii. A comparison

I'n and I., phascs recorded at a c,, n n , station !1ilay be effective in distinguishirg below and

above WT shots except those that are fired close to tie water table.
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