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SUMMARY

A ccmparison of the spectra of nuclear shots detonated below and above the water wble (W)
e ! S
made by analysis of mostly the regional phase Pn recorded ar two common stations. Paranetens
derived from each record include esumates of corner frequency £ oand the Tow-trequency specrral level
Ay after the spectra have been corrected tor the eftects of spatnal aitenuation Foe ame domuain meas-
0 I
urements of A/T, a measure of iy, are also made on cach observod record Resulss from 22 Nevada

Test Site (NTS) siwots recorded ar the DWWSSN digital stution, JAS indioaie that plots of 7ovensus A4,
show some separation between the below and above WU populanionsy whereas plots of £ versus AT
show no significant separation. For a fixed yield, £ for shors below and abeve W ae sarlv i
unguishable whereas both Ay and AT are considerably Targer for shots betow W than for those above
WT, prestmably due ™ improved source conphing of shots i water saturated envirenirent. A com
parison of vields estimatec from Ag, AT, Ay combined with £ and A7 cembined with /1 demonsrates
that substantially more precise yield determinations can be made o oo known whether the shiot was
detonated above or below W Resulis from the analvsis of 17 NTS shots recorded at the RSTN sta-
tion, RSSD are generally not as well defined bur appear stmilin o those trom the JAS recordings, The
wargest difference between the below and above W shots of o given weld Lies i ther low s fregquenay

spectral Tevel and, to a shightly smadter extent, in their rry, values

Examination of m, versus vicld from farge data bases of NUS shots recorded wt regional and
telescismic distances alvo shows that, for a fixed yield, shots below W7 have signmibicandy Lirger my,
than those detonated above W Guas-filled porosity of the shot medium appears to be the donvnam
reason tor the large magmitude ias between below and above WE shots Por shots detonaed near the
water tabie, explosion cavity and s proximuty (o W can alocosonmnennty mthience the soures cou-
phine Below antahove W Shaots may be distingushed by companng then Pooand B oophases atcom

mion recordme statons
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INTRODUCTION

The geological environment in which a nuclear explosive s emplaced has a major
influence on the strength of scismic signals. For example, Werth and Herbst (1963) found that
for a fixed yield, the first half-cycle amplitudes for granite and salt are nearly equal, for tuff
the amplitude is about one-half the amplitudes for granite and salt, and for dry alluvium the
amplitude is about one-tenth the amplitudes for granite and salt. These trends were confirmed
by Springer (1966) who further suggested that dry porosity 1s the parameter responsible for
such wide varniations n seismic coupling. Murphy (1981) reviewed available observed
my/yield and free-field data from contained explosions i a vanety of source media and con-
cluded that the coupling into the teleseismic Powave transmussion path 1s about the same for
shots 1n granite, shale, and wet tuff-rhyolite emplacement media, whereas explosions in dry
unconsolidated matenal couple signiticantly less efficiently.

Werth and Herbst (1963) noted that explosions i higher velocity rock arc significantly
richer in higher frequencies. Yet their data for § kt shots in alluvium and tutt (Figure 3,
Werth and Herbst, 1963) indicate more high frequencies for alluvium than for tutt (or higher
corner frequency f. for alluviun than for tnfl), together with amphitades in tuft about 5 times
larger than i alluvium. Non-hnear finite difference calculations (Bache, 1982) iadicate that
the most impertant charactenstic of NTS wft 15 1ty porosity, which can account tor the large
observed differences 1n the scismic coupling of events above and below the water table. A
companson of source functions tor Yucca Flat wet and div tutt (Bache, 19820 Figure T
shows a farger low-frequency amplituds and lower 1 tor wer tuft in companson to dry tutl,
when vield values are the same Evernden ez alo (1980) also show simular strong dependence

of explosion Powave spectra on the matenial properties of the coupling media (see espectalh




their Figure 8). Gupta and Blandford (1987) examuined telescismic Potrom shots in saturated

(below water table) media and found spectral difterences to depend on the shot medium velo
city. 1t seems therefore that both amplitudes and spectral shapes are signiticantly iniluenced
by the geological environment of the shot point.

In this study. the amplitude and spectra of the regional phase Pn oare compared for shots
detonated below and above the water table. The three parameters estimated from each record
for this purpose are comer frequency f, low-frequency spectral level A, and the ume-domain
measurement A/T (a measure of my). Short-penod, vertical component data from two sta-
tions, JAS (with records from 22 shots) and RSSD (with data from 17 shots) are analvzed.
The results indicate that, for a given vield, both A, and m,, are significantly larper for shots
below WT than for those above W, but the t. values are not distingumishable. These resulty
are in agreement with those dertved from substanually lirger data sets of both regional and

teleseismic measurements




ANALYSIS OF REGIONAL DATA RECORDED AT JAMESTOWN (JAS)

Spectral and Time-domain Measurements:

We analyzed digital data from 22 NTS shots well reeorded at 20 samples/sec at the
DWWSSN station Jamestown, JAS at epiceatral distances of about 350 km. Table 1 lists
these 22 explosions along with pertinent information such as the shot medium, magznitude my,
and whether the shot point 15 above or below the water table. Out of 22 shots, only 9 are
below WT; 19 shots arc from the Yucca Flats and only 3 (SERPA, HARZER. and SALUT)

are from the Pahuate Mcsa regions of the NTS.




TABLE 1

NTS SHOTS RECORDED AT JAS

Shot Gas Shot Depth
No. Date Name Medium  m,  Porosity  Depth  of WT  Symbol
(vol %) (m) (m)
1 14 Nov 1980 DAUPHIN tuff 4.1 70 320 hh{Y YO
2 i7 Dec 1980 SERPA tuff 5.1 10.0 5713 627 PO
3 29 May 1981 ALIGOTE tuff 42 8.0 3209 608 YO
4 06 Jun 1981 HARZER tuff 5.5 30 637 668 PO
5 27 Aug 1981 ISLAY tuff - 230 294 S67 YO
6 01 Oct 1981 PALIZA tuff 49 6.0 472 S30 YO
7 11 Nov 1981 TILCH alluvium 4R 101 445 464 YO
8 12 Nov 1981 ROUSANNE wff 53 20 S18 495 Y X
9 03 Dec 1981 AKAV] twff 46 143 494 580 YO
10 2% Jan 1982 JORNADA wff S9 0.0 640 SO7 YX
1 29 Sep 1982 BORREGO wff - 0.0 S64 501 Y X
[N 26 May 1983 FAHADA twff 44 120 384 600 YO
13 O Jun 1983 IDANABLYJ alluvium 45 12.5 320 SK4 YO
14 22 Sep 19383 TECHADO tuft - u.0 s33 SO0 Y X
13 31 May 1984 CAPROCK tuff S8 0.0 600 SO0 YX
1o 20 Jun 1984 DUORO tuff 4.6 14.0 381 450 YO
1 02 Aug 1984 CORREO tuff 47 130 338 470 YO
18 1S Muar 1935 VAUGHN tuff 48 11.0 427 498 Y()
19 12 Jun 1988 SALUT rhyolite S8 4.0 698 622 X
20 05 Dec 1985 KINIBOTO tuff ST 0.0 579 4x8 YX
21 22 Mar 1986 GLENCO: wft S 00 H10 522 Y X
22 14 Nov 1936 GASCON tuff S8 U AR R] S Y X

*Pand Y denote Pahute Mesa and Yucoa Flats regions and

O represents above and X below the witer wble shots

Dicial, vertical component data trom JORNADA and the Jomnt Venncation Experiment
OVEY shott KEARSARGE (17 August 1988, 37297 N, 116317 W) we shown i figure |
The TVE shot was recorded at the new DWWSSN station, CMB, aboat 1O kmoaway from
TAND all avadable data are shown JORNADA L detonated below W has my, 5.9 which
surrests aovicid vadue Close o 130 R ees e Bachel 1982 The INVE shotr known o be
dhove W T alao had wovicid of probably Close 1o 150kt although s my s only S 30 The Laree

ditterence i the Pnoamplitudes tor the two shots s most probably due to the Turge differences
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in coupling expected for shots below and above the WT. It is inter~sting to note that zlthough
Pg is clipped for both shots, the Pn/Pg amplitude ratio is much smaller for KEARSARGE
than for JORNADA. in fact, a comparison of the later, unclipped portion of Pg (or Pg “coda”)

amplitudes appears to suggest that Pg may not show the effect of the water table.

A window length of 6.4 sec ('28 points) with 10% cosinc taper is used for spectral
analysis of Pn. The spectra are corrected for noisc by computing spectra of a window of noise
prior to the onset of Pn and subtracting the power in the noise from the power in the observed
signal for each discrete frequency. Examples of such spectra of the observed signal and
noise, up to the Nyquist frequency of 10 Hz, are shown in Figure 2 for the same two records
as in Figure 1. The spectra are without smoothing and not corrected for instrumental response.
The signal-io-noise (S/N) ratio 1s good for almost the entire frequency range. The spectrai
ratio XEARSARGE/JORNADA, corrected for noise, and shown in Figure 3, has a mean slope
of 0.112 per Hz (with associated standard deviation, SD of 0.004) over the frequency range of
0.2 to 6.0 Hz. Results for the frequency range of 0.2 to 10.0 Hz are aiso shown in the figure
The mean values of the spectral ratio (in magnitude units), integrated over the two frequency
ranges by using the mean values of slope and intercept, denoted by AV INTEG in Figure 3,
indicate the average spectral amplitudes in KEARSARGE to be nearly half that for JOR-

NADA.

The far-field source spectra may generally be characterized by three independent parame-
ters: the low-frequency spectral level Ag, proportional to seismic moment; the comer fre-
quency f., and the power of the high-frequency asymptote (Aki and Richards, 1980). The last
parameter or the value of n in f ™ may be assumed to be 2 for explosions (Evermden et Jl

1986). For explosions in same or similar media, Ag is 4 good measure of the explosion yield
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FREQ BAND SLOPE S.D. AV INTEG
0.2 6.0 0.112 0.004 -0.268
0.2 10.0 -0.001 0.002 -0.320

Figure 3. Spectral ratio KEARSARGE/JORNADA of Pn, corrected for noise. Points for which
S/N power ratio is less than 1.5 are not plotted. The dashed line shows the mean least squares
slope over the frequency range of 0.2 10 6.0 Hz. Mean slope, with associated standard devia-
tion, SD and mean value of log amplitude ratio (AV INTEG) are indicated for two frequency
ranges.




(Evernden er al., 1986, McLaughlin eral., 1987). A spectral measure of Ag is made by
correcting for noise, removing the instrument response, applying the appropriate spatial
attenuation correction and then least-squares fitting the log-amplitude spectra to a model spec-
trum with a fall-off rate of f “2. Only those data points that have S/N larger than a specified
value are used in the least-squares regression. The amplitude spectrum is assumed to have the

form (Brune, 1970)

Ag
A(f) = —————. ]
& 1+ (f/f,)? M

Bakun and Johnson (1970) analyzed earthquake and NTS explosion data recorded at JAS
and found Q to be about 400 for Pn at regional distances. This corresponds to t* of about 0.1
for NTS shots recorded at JAS. Applying this attenuation correction, spectral tits for JOK-
NADA and KEARSARGE, based on S/N power threshold of 1.5, are shown in Figure 4
which clearly demonstrates the latter shot to have significantly lower Ay and higher f. than
those for the former shot. The frequency range used for spectral fits was 0.2 to 6.0 Hz since

most shots showed good S/N only n this frequency band.

A similar procedure was applied to all 22 shots to obtain values of A; and f_, which are
plotted on log-log scale in Figure 5a in which the explosion numbers correspond to those in
Table 1. Below WT (denoted by X) and above WT (marked by circles) shot populations do
not appear to show an obvious separation. The mean slope and intercept values are -0.245
(0.051) and 0.654 (0.104), respectively, where the quantities within parentheses denote one
SD value. Data from the 9 below WT shots and the 13 above WT shots are plotted in Figures
Sb and Sc, respectively. Least squares linear regressions of data in these two tigures yielded

mean slopes of -0.302 (0.061) and -0.283 (0.104), respectively. Both of these slope values are
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Figure Sa. f_ versus Ay for 9 below water table (denoted by X) and 13 above water table
(marked by circles) shots numbered as in Table 1 and based on t* = 0.1. The least squares
linear regression through all 22 data points (continuous line) has correlation coefficient of
0.731, slope of -0.245, and intercept of 0.654. One SD vanation in the intercept value 1s
shown by the dashed lines.
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Figure 5b. Similar to Figure 5a for only 9 below water table shots. Forcing a slope of -1/3,
the least squares linear regression (continuous line) has an intercept of 0.926.
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Figure 5c¢. Similar to Figure 5a for only 13 above water table shots. Forcing a slope of -1/3,
the least squares linear regression (continuous line) has an intercept of (0.754.
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within one SD of the theoretically expected value of -1/3. We therefore forced a slope of -1/3
through the data points in Figures 5b and Sc and the least squares regressions gave mean
intercept values of 0.926 (0.044) and 0.754 (0.045), respectively. Thus the below and above
WT populations are separated by 0.172 (0.063). In other words, for the same low-frequency
spectral level, shots below WT have, on the average, larger (about a factor of 1.5) f. than

thcse above WT.

Determination of f_ is obviously uependent on the attenuation relationship assumed in
correcting the observed amplitudes. A different attenuation correction is therefore tried in
order to examine how the results pertaining to below and above WT shot populations are
affected. Analyzing Pn spectra of a large number of NTS shots recorded at regional dis-
tances, Taylor er al. (1987) suggested the following frequency-dependent attenuation relation-
ship:

Q =1250f06 (2)
T'his correction is applied to the data by assuming a propagation velocity of 8 km/sec for Pn.
The resulting plots of Ag versus f. are shown in Figures 6a, 6b, and 6¢ for all (22) shots, 9
shots below WT, and 13 shots above WT, respectively. The mean slope and intercept values
for all shots (Figure 6a) are -0.237 (0.042) and 0.497 (0.098), respectively. The mean slope
values for the data in Figures 6b and 6¢ are -0.276 (0.055) and -0.272 (0.087), respectively;
both of these slope values are within one SD of the theoretically expected value of -1/3. A
slope of -1/3 is therefore forced through the data points in Figures 6b and 6¢ and the least
squares regressions give mean intercept values of 0.802 (0.044) and 0.648 (0.039), respec-
tively. Thus the below and above WT populations are separated by 0.154 (0.059). This result

is very nearly the same as obtained earlier based on t* = 0.1. It means that the separation

14
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Figure 6a. Similar to Figure Sa but based on frequency-dependent Q. The least squares lincar
regression (continuous line) has correlation coefficient of (.782, slope of -0.237, and intercept
of 0.497.
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model and 1s therefore significant.

Note that as far as the disinction between beiow and above W shots 1s concemned, the
results based on t* = 0.1 (Figures Sa, b, ¢) and those based on frequency-dependent Q (Hig-
ures 6a, b, ¢) are nearly identical; the relative distnbution of various data points 1s almost the
same for the two sets of figures and only the mean intercept values are different. Also the
separation between the below and above W'T populations is nearly independent of the attenua-
ton model used for correcting Pn amphitudes For this reason, subsequent analyses of data

are restricted to the use of only one attenuation model, viz. t* = 0.1.

Time domamn measurements of A/T are also made on all 22 JAS records. Plots of f,
(derived by assuming t* o 01 versus log AZT are shown in Figures 7a, 7b, and 7c¢ for all
122) shots, below WT (49) shots, and above WT (13) shots, respectivelv. The mean siopc
values for the data i these three hgures are 0220 (0.080), -0.296 (0.110), and -0.149
(0164, respectively. When the mean slope denved from the entire data set (viz. -0.220) 1s
forced through the data points in Figures 7b and 7¢. the mean intercept values are 0.714
(1 067) and 0.654 (0.036), respecuvely Thus, for a given AT or my value. {0 values for shots
beiow and above WU are not vigniticantty ditierent

Plots of £ versus vield ton log-log scaley 1o all shots showed mean slope und intercept
values of 0239 (070 and 0541 (O 109, respectivedy Por below WT and above WT shots,
the medan slopes were 0247 (0093 and 0 249 (0 138 respectuvely. Both of these slope
values are wathin one SIY of the theoretically expected vatue of 13 A slope of 173 was

theretore torced throuch the data points and the feast squares regressions gave mean intercept
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bigure 7a. . versus log A/T for 9 below water table (denoted by X) and 13 above water tahle
(marked by circles) shots based on t* = ().1. The least squares hinear regression through all 27
data points (continuous line) has correliation coetficient of 0.524, slope of -0 220, and intercep:

of 0.678. One SD variztion tn the intercept value is shown by the dashed lines
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Figure 7b. Similar to Figure 7a for only 9 below water table shots. Forcing a slope of -0.220
the least squares linear regression (continuous line) has intercept of 0.714.
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Figure 7c. Similar to Figure 7a for only 13 above water table shots. Forcing a slope of
-0.220, the least squares linear regression (continuous line) has intercept of (.654.




values of 0.663 (0.069) and 0.662 (0.051), respectively. Thus there 1s no separation between
the below and above WT populations. In other words, for a fixed yield, f. values for shots

below and above WT are not significantly different.

Plots of A, versus yield (on log-log scale) for all (22) shots, below WT (9) shots, and
above WT (13) shots gave mean slopes of 1.061 (0.124), 0.969 (0.118), and 1.094 (0.119),
respectively. All of these slope values are within one SD of the theoretically expected value
of 1. When a slope of 1 was forced through the data points, the least squares regressions give
mean intercept values of 0.789 (0.083) and 0.276 (0.045), respectively. Thus the below and
above WT populations are separated by 0.513 (0.095). In other words, for the same value of
yield, Ag for a shot below WT is, on the average, significantly larger (about a factor of 3)

than that for a shot above WT.

Plots of log A/T versus yield for all shots, below WT shots, and above WT shots gave
mean slopes of 0.875 (0.086), 0.829 (0.048), and 0.846 (0.111), respectively. When the mean
slope derived from the entire data set (viz. 0.875) was forced through the data points, the
mean intercept values were 1.206 (0.036) and 0.844 (0.041), respectively. Thus, the below and
above WT populations are separated by 0.362 (0.0542). In other words, for a fixed yield, log
A/T or my for a shot below WT is significanty larger (about 0.36 magnitude unit) than that

for a shot above WT.

Yield Estmation:
In order to assess the effect of the water table on yield estimates, we computed estimated
vields (Y) based on Ay A/T. Ay and f_. and AT and f . The coefhicients used to compute the

estimates are first determined through linear or multilinear regressions, with the known yicld
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(Y) as the dependent variable:

IOngal + bl log AO

log Y =a, + b, log A/T

log Y = a3 + by log Ag + ¢3 log f.

log Y = a4 + by log A/T + ¢4 log f.

(3a)
(3b)
(3¢)

(3d)

Regression coefficients as well as the estimated yields (Y) for each shot (along with its associ-

ated SD) are computed for 9 events below the water table (a®*!, b2, ¢

), for 13 events

above the water table (™, b, ¢™Y), and for all (22 shots) of the data together

(af’“, bia", cf‘”). The regression results based on log Y as the dependent variable are listed in

Table 2 in which the SD of the estimated yicld (in magnitude units) is denoted by s.

TABLE 2

LINEAR REGRESSION COEFFICIENTS FOR JAS DATA

Data 4 Constant | Independent | Coefficient | Independent | Coefficient ¢
Set a Variable b Variable c
ALL(22) | 20 0014 0.740 0.276
BWT(9) 7 -0.638 log A, 0.935 0.261
AWT(13) | 11 0.040 0.809 0.141
ALL(22) 20 -0.718 0.958 0.239
BWT(9) 7 -1.469 log A/T 1.178 0.129
AWT(13) | 11 -0.663 0.995 0.165
ALL(22) | 19 | -0.081 0.776 o 0.145 0.282
BWT©9) | 6| -2.095 log A, 1.451 log f. 1.707 0.115
AWT(13) 10 -0.211 0.915 0.374 0.132
ALLQ22) | 19 | 0391 08s2 | -0.482 0.224
BWT©®) | 6| -1.446 log A/T 1171 log f. -0.025 0.139
_AVVT(IB) 10 | _O}L ] 0.923 - 1_1—0.499_ 0.136
* d denotes degrees of freedom
23




In order to assess the improvement in yield estimates obtained by considening events
above the water table separately from events below the water table, we computed two sets of
estimated yields using the coefficients in Table 2. The first set is computed using the regres-

sion coefficients obtained for all of the data together, e.g.,

log ¥; =af + bf!" (log Ag), (4)
The second set of yield estimates is computed by applying separate regression coefficients to

events below and above the water table, e.g.,

log \“,jwa = a™ + b (log Ag)”™ (52)

log Y™ = af™ + b (log Ag)™ (5b)

Since the coupling is generally significantly smaller for events above the water table, it is
likely that the second set of estimated yields (equations 5a and 5b) would be more precise,
since different relationships for events below and above the water table are used, thus
accounting for the coupling differences. When separate coefficients for below and above WT

shots are used, the SD of log Y, S is given by

52 dl 512 + dz 522

(6)
where s, s, are the SD for below and above WT shots and d,, d, are the corresponding
degrees of freedom (sce Table 2).

Consider, as an example, plots of estimated yield based on A;. When the regression
coefficients for the entire data set are used, the yicld estimates for events below the water
table are positively biased whercas the estimates for events above the water table are nega-

tively biased and the SD of the estimated yicld is 0.276 (Table 2). However, when separate
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sets of coefficients are used, the systematic biases are eliminated and, using equation (6), the
SD reduces to 0.196. Furthermore, the correlation coefficient of estimated yield with known
yield improves from 0.886 to 0.950 and the slope increases from 0.785 to 0.902. A similar
improvement is obtained for yield estimated from A/T, Ay and f., and A/T and f.. These

improvements are summarized in Table 3 below.

TABLE 3

COMPARISON OF REGRESSION RESULTS

Slope Correlation Coefficient SD of log Y
Estimation Same Separate Same Separate Same Separate
Parameters || Coefficients | Coefficients || Coefficients | Coeflicients || Coefficients | Coetlicients
A 0.785 0.902 0.886 0.950 0.276 0.196
AT 0.838 0.941 0916 0.970 0.239 0.152
Ay f. 0.787 0.964 0.887 0.982 0.282 0.126
AT, f, 0.866 0.958 0.930 0979 0.224 0.137

At least some of this increase in slope and correlation coefficient is probably due to the
additional degrees of freedom, i.e., the use of twice as many regression coefficients in equa-
tion (5a) or (5b) as in equation (4). Nevertheless, a comparison of the SD values in Table 3
shows that substantially better yield estimates can be obtained if one can determine whether

the event occurred above or below the water table.

Using KEARSARGE as an example, the derived values of A, and f_ (indicated on Fig-
urc 4) and the regression coefficients in Table 2 for above WT shots lead to the estimated

yield value, Y given by

log Y =~ 0.211 + 0.915 (log 191.78) + 0.374 (log 1.9) (7)




which gives a value of 96 kt. The use of only onc independent variable (viz. Ag) will provide
a value of 77 kt. Similarly, use of regression coefficients for all data lead to yield estimates of
50 and 54 kt when results with one (viz. Ag) and two (viz. Ag and f;) independent variables,
respectively are used. As expected, the first value (96 kt) is a better estimate than the other

three values.
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RESULTS FROM THE RSTN STATION, RSSD

Short-period, vertical component, digital data from 17 NTS explosions, well recorded at
the RSTN station, RSSD (40 samples/sec), with epicentral distances of about 1300 km, are
also analyzed in the same manner as the JAS data. These shots are listed 1n Table 4; note that

10 shots are common with Table 1.

TABLE 4

NTS SHOTS RECORDED AT RSSD

shot
No. Date Name Lat Lon medium mb  symbol
1 1982028 28 jan 82 JORNADA 37.09  -116.05 tuff 5.9 X
2 1982175 24 jun 82 NEBBIOLO 37.24 -116.37  rhyolite 5.6 0]
3 1982217 0S5 aug 82 ATRISCO 37.08 -116.01 tuff 57 X
4 1982344 10 dec 82 MANTECA 3703  -116.07 alluvium 4.6 6]
5 1983104 14 apr 83 TORQUOISE  37.07 -116.05 tuff 5.7 X
6 1983125 05 may 83 CROWDIE 37.01 -116.09  alluvium 4.5 0]
7 1983146 26 may 83 FAHADA 37.10 -116.01 tuff 4.4 0]
8 1983160 09 jun 83 DANABLU 37.16  -116.09  alluvium 4.5 O
9 1984091 31 mar 84 AGRINI 37.15  -116.08 alluvium 4.1 O
i0 1984152 31 may 84 CAr ndCK 3710 -116.05 turr 5.8 X
11 1984172 20 jun 84 DUORO 37.00 -116.04 tuff 4.6 0
12 1984215 02 aug 84 CORREO 37.02 -116.01 tuff 4.7 O
13 1985074 15 mar 85 VAUGHN 37.06 -116.05 tuff 4.8 @)
14 1985122 02 may 85 TOWANDA 37.25  -116.33 tuff 5.7 X
15 1985163 12 jun 85 SALUT 37.25  -11649  rhyolite 5.5 X
16 1985339 05 dec 85 KINIBOTO 37.05 -116.05 tuff 5.7 X
17 1986318 14 nov 86 GASCON 37.10 -116.05 tuff S8 X

* O represents above and X below the water table

Spectra of Pn (window length 6.4 sec) from ATRISCO and NEBBIOLO, two shots of
stmilar magnitudes but the first below WT and the other above WT, are shown in Figure 8.
The spectra are not smoothed and arc not corrected for instrumental response. The S/N s

go «d up to about 5 Hz. The attenuation correction for the RSSD data 1s assumed to be t* -

27




‘A[uo zY ¢ noqe o1 dn pood sieodde N/S "(ISSY 1T PAPI0IAL (A}
191BM 2A0QE) OTTOIEEAN PuUe (J1qQR) 11em MO[2q) ODSIYLY 10j ‘7 2inSig ur asoyl o1 Jeruts
‘(moputm Fuoj 23S $9) ud jo enodads opmidwe Juswade|dsip usuodwod-festrss g It
Y Jdo Yyt . ’
o N m_,, Ry ; :
<w fj SRTASREs v:‘i. R e - - - mee—— e e — w\/\/\‘. vEm e eos- B s -
1 [ v
U }
(zH) AONINOT Y (ZH) ADNINOT Y
SioRtel 00 & oJoRt) IO roe2 2000 Lot St St .
[SS— - ————— e s e e 1||\||4|Ts [ - IR - - -
+0 3 e
o 2 > i "~ .
+ . + .
0% o @ +5 r
+ + + 7 © + v o — - -7 o7
+ - - v i N -
09 o, & . b . 5. T .
o, ~ - ! . e < - - 6
o w 0 3 A - c -
°© o, - © ﬁo_x I N T 5 -
2. = o 5 : S
5. o0 - ° 0 r . e = o R
-t o) SRS < - 0o G S SP
R % Cog O c S .
RS zC ° QWT. 5 T - -
2 ® Gk 'z
. o) 8", =
r.‘l n ”
o i O . z
R e
vl - N . . -
LMY= (QSSY) OTIOINEIN L Ly LAE-(ASSW CISTELY

() b




0.4 as the source-receiver distance 1s about 4 times that for the station JAS. The correspond-
ing displacement spectral fits and the denived values of f. and A, are shown in Figure 9. Note
that f_ for the above WT shot is considerably higher than for the below WT shot, similar to

the result in Figure 4.

A plot of f_ versus Aqy for all 17 shots recorded at RSSD is shown in Figure 10a; the
explosion numbers correspond to those in Table 4. The mean slope and intercept values are
-0.398 (0.038) and 1.071 (0.090), respectively. When the mean slope derived from the entire
data set is forced on the below WT data alone (Figure 10b), the mean intercept value is 1.065
(0.032) whereas the corresponding result for only above WT shots (Figure 10c) is 1.076

(0.044). Thus there is hardly any separation beiween the below and above WT populations.

Time-domain measuremenis of log A/T, a measure of m,, are made in the same manner
as for the JAS recordings. Plots of f versus log A/T are shown in Figures 1la. b, and ¢ for
all (17) shots, 8 below WT shots, and 9 above WT shots, respectively. Forcing the mean slope
of -0.480 obtained from the entire data set (Figure 1la), the intercept values for below and
above WT populations are 1.102 (0.058) and 1.189 (0.057), respectively. Therctore, the comer
frequencies for a given my, for shots below and above WT are not significantly d'fferent.

A plot of Aj versus yield (on log-log scale) for all 17 shots indicated th: mean slope of
1.648, considerably larger than the theoretically expected value of 1 or the obscrved value of
close to 1 for the JAS data. One reason for this is the lack of sufficient overlap in the yield
values of below and above WT shots. Forcing a slope of 1 to the data points, the mean inter-
cept values for all (17) shots, 8 below WT, and 9 above WT shots were 0.506 (0 103), 0.934

(0.113), and 0.278 (0058, respectively. The below and above W populatons are theretore
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Figure 10a. f_ versus Ay for 8 below water table (denoted by X) and 9 above water table
(marked by circles) shots numbered as in Table 4 and based on t* = 0.4, The least squares
inear regression through all 17 data points (continuous line) has correlation coefticient of
0.959, slope of -0.39%, and 1ntercept of 1.071. One SD vanaton in the intercept value s
shown by the dashed hines
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Figure 10b. Similar to Figure 10a for only 8 below water table shots. Forcing a slope of
-0.398, the least squares nnear regression (continuous hine) has mtercept of 1.065.




Figure 10c. Similar to Figure 10a for only 9 above water table shots. Forcing a slope of
-0.398, the feast squares linear regression (continuous line) has intercept of 1.076

RR}




rigure 1la. fo versus log A/T for 8 below water table (denoted by X) and 9 above water table
(marked by circles) shots based on t* = 0.4, The least squares lincar regression through all 17
data points (continuous line) has correlation coefficient of 0851, slope of -0.480, and intercept
of 1.148. One SD variation v the intercept value is shown by the dashed hines.
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Figure 11b. Similar to Figure 1la for only 8 below water table shots. Forcing a slope of
-0.4%0, the least squares hinear regression (continuous line) has intercept of 1,102




log A/T

Figure 1lc. Similar o Figure 1la tor only 9 above water table shots. Forcing a slope of

-0.480, the least squares linear regression (continuous line) has intercept of 1,189,
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separated by 0.676 (0.128). This is close to the separation observed from 22 shots recorded at

JAS.
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COMPARISON WITH RESULTS FROM LARGER DATA BASES

Blandford and Klouda (1980) measured regional phases including Pn from a large
number of NTS explosions recorded at TFO, at epicentral distances of about 550 km. Their
results for magnitudes based on amplitude of Pn (the "b" phase) are used here to compare the
magnitude versus yield relationships for below above WT shots. The Rainier Mesa shots are
considered to be below WT because of a perched water table at shallow depths in the region.
A plot of magnitude versus log yield for all available below WT (35) shots shows a correla-
tion coefficient of 0.918, mean slope of 0.744 (0.056) and mean intercept of 4.477 (0.104).
Corresponding results from above WT (112) shots are: correlation coefficient 0.796, mean
slope 0.899 (0.065), and mean intercept 3.685 (0.065). These plots indicate a magnitude
difference of about 0.46 between below and above WT shots of 150 kt each. Note that this
value 1s fairly close to the separation of (.36 (0.05) obtained for shots recorded at JAS.

Using amplitude data from the ISC bulletins, P. D. Marshall (written communication)
obtained maximum likelihood estimates of the seismic magnitude my of a large number of
NTS explosions. The methodology used 1s described in detail in Marshall er al. (1986). Out
of a total of 300 events, 287 events were found suitable for studying the effect of the water
table. Plots of my versus log yield for below WT (114) shots indicate correlation coefficient of
0.971, mean slope of 0.754 (0.018), and mean intercept of 4.096 (0.035). Results from 173
above WT shots are: correlation coefficient 0.872, mean slope 0.899 (0.039), and mean inter-
cept 3.491 (0.054). These plots will indicate a magnitude difference of about 0.29 between

below and above WT shots of 150 kt each.
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An attempt is now made to estimate the effect of water table when, considering the size
of the explosion cavity and the surrounding fracture zone, shots may be considered to be well
separated from the water table. A rough mecasure of the explosion cavity radius R¢ 1s given

by

R, =10Y'" (8)
where Y is the yield in kt. This relationship is not much different from the empincal depth-
and medium-dependent relationships for NTS explosion cavity radii obtained by Closmann
(1969). One may consider shots having their shot points at least 2 R, below or above WT to
be well separated from the water table. my versus log yield plot for 72 well below WT shots
(including Rainier Mesa shots which are all assumed to be well below WT) indicated correla-
tion coefficient of 0.981, mean slope of 0.746 (0.017), and mean intercept of 4.118 (0.035).
The correlation cocfficient for the data from 125 well above WT shots is 0.708, mecan slope 1s
0.711 (0.064), and mean intercept is 3.670 (0.075). These plots indicate the magnitude of a
below WT shot to be larger than that of an above WT shot by about 0.52, if cach hay the
same yield of 150 kt. As expected, the separation between the below and above populations

1s enhanced when only those shots that are well below and well above WT are considered.
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EFFECT OF GAS POROSITY AND CAVITY RADI FOR SHOTS IN TUFF

Magnitude versus yield plots for above WT shots show considerably more scatter than
those for below WT shots. According to Patton (1988), a possible reason for this is the effect
of gas-filled voids in the emplacement medium on source coupling. His investir~*on b2sed on
the use of my(Lg) magnitudes showed the gas porosity to significantly reduce my, (Lg) for
shots in tuff (and rhyolite since no distinction was made between the two media, H. J. Patton,
oral communication). He also examined the effect of gas porosity on Marshall’s my values
for 21 Yucca shots and found the effect to be very similar to that for my (Lg). In this study,
we examine a much larger data set consisting of a total of 148 shots (91 below and 57 above
WT) from the Yucca Flats, Pahute Mesa, and Rainter Mesa regions of the NTS. These are
the only tuff-rhyolite shots for which gas porosity values are available, out of a total of 287

shots for which Marshall’s my are known.

Approximate expressions for cavity radii in tuff and rhyolite, based on Closmann’s

(1969) study (sec also Mueller and Murphy, 1971), are

R, (tuff) = 31.41 Y02 ph 01 9)

and

R, (rhyolite) = 28.66 Y02 n-01! (10)
where h is the shot depth in meters. These two equations were used to determine cavity radu
for all 148 wff-rhyolite shots. Explosions with their shot points at least two cavity radin
below the water table and all Rainier Mesa shots may be considered to be well below the
water table. There were 56 such shots with known gas porosity and 8 more for which porosity

was not known. For these 56 + 8 = 64 well below the water table shots, my, versus yield rela-




tionship was found to be

m, = 0.744 (0.018) logY + 4.117 (0.030). (1

The SD of estimated m, is 0.109.

A piol of my reciduals (ohserved - estimated), whore the ectimated values are denved for
known Y from equation (11), versus gas porosity (in volume %) 1s shown in Figure 12a for
all 148 shots. The usual least squares regression (continuous line), based on the assumption
that porosity is error-free, has a mean slope of -0.033 (0.002) and the SD of my residual is
0.13. Note that several porosity values in Figure 12a are negative "even though physically
unreal as a result of small errors in the measured parameters input to the calculation”
(Howard, 1983). Furthermore, there are a large number of shots with exactly zcro porosity.
All this means that the error in porosity is substantial and should not be neglected. In order
to study the effect of errors in both x and y vanables, where x denotes porosity and y
represents m,, residual, the maximum likelithood linear fitting method of Ericsson (1971) is
used to obtain mean slope and intercept values. The variables x and y are assumed to be com-
pletely uncorrelated and the ratio g = g,/0,, where 0 denotes the SD, is assumed to be
known Since the smallest value of observed porosity for several shots is -5, a rough estimate
of ¢, may be assumed to be S. Similarly, from the data used in equation (11), g, 15 about 0.1
so that g may be taken to be 0.02. The resulting maximum likelihood fit, with derived mean
slope value of -0.042 (0.003), is also shown in Figure 12a (dashed linc). When 50 well below
WT shots are excluded, the results for the remaining 92 shots are shown i Froure 12b When
porosity (x) is assumed to be crror-free: the mean slope iy -0.034 (0.602) whereas the value
increases to -0.043 (0.003) if g ~ 0.02. If only shots well above WT are considered. the
regressions for 31 such shots is shown in Figure 12¢c. The mean slope changes from -0.026
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Figure 12a. my residual versus gas porosity (in volume %) for 148 tuff-rhyolite shots with
known gas porosity values. Below and above water table shots are denoted by X and circle,
respectively. The least squares linear regression (continuous line) has a mean slope of -0.033
(0.002) whereas regression based on g = 0.02 (dashed line) shows a larger slope of -0.042
(0.003).
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Figure 12b. Similar to Figure 12a for 92 shots obtained by excluding 56 well below water
table shots from those used in Figure 12a. The least squares linear regression (continuous
line) has a mean slope of -0.034 (0.002) whereas regression based on g = 0.02 (dashed line)
shows a larger slope of -0.043 (0.003).
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Figure 12c. Similar to Figure 12a for 31 well above water table shots. The least squares
linear regression (continuous line) has a mean slope of -0.026 (0.006) ~vhereas regression
based on g = 0.02 (dashed line) shows a larger slope of -0.054 (0.016).

44




(0.006) for error-free x to -0.054 (0.016) for g = 0.02. Note that the mean slopes vulues based
on porosity not being error-free (dashed lines) are all significantly larger than those based on
crror-free x (continuous lines), thereby suggesting enhanced dependence of my, residual on gas
porosity. All three figures indicate gas porosity to reduce the observed my by significant

amounts.

We now consider the effect of gas porosity on shots close to the water table, t.e. on
92 — 31 = 61 shots that are neither well below nor well above WT (ie. shots within 2 R, of
WT). Plots of my residual versus porosity from all 61 shots, & subset of 35 that are below
WT, and the remaining 26 above WT shots are shown in Figures 13a, 13b, and 13c, respec-
tively. The mean slopes are -0.029 (0.003), -0.013 (0.007). and -0.027 (0.004) based on
error-free x, and -0.039 (0.004), -0.105 {0.025), and -0.036 (0.007) for g = 0.02, respectively.
All slope values are negative, confirming the expected effect of gas porosity. Since these 61
shots are all near WT, they should also be expected to show the effect of proximity of their
cavity radii and fracture zone to the water table. Defining “scaled distance to water table”
(SDWT) as the vertical distance to the water table (considered positive for below and negative
for above WT shots, respectively) from the shot point divided by R, where R, iy given by
equations (9) or (10), the results for 61 (35 below and 26 above WT) shots are shown in Fig-
ure 14. Linear regression of the data (continuous line) has a mean slope of 0.141 (0.017), sug-
gesting that eaplosion cavity and its proximity to the water table significantly influence the
source couphing. The lack of a sharp discontinuity where the two populations meet (i.c. at
SDWT = 0) means that the distinction between below and above WT shots is lost for shots
very close to WT. For explosions with their shot points below W, shot-generated cavity and

surrounding fractures extending above the water table (especially for shots wath their cavities
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Figure 13a. my residual versus gas porosity (in volum?%) for 61 twuff-rhyolite shots within 2
cavity radii of the water table. Below and above water table shots are denoted by X and cir-
cle, respectuvely. The least squares linear regression (continuous line) has a mean slope of
-0.029 (0.003) whereas regression based on g = 0.02 (dashed line) shows a larger slope of
-0.039 (0.004).

46




e \
N\
NOX

r o N X
TN > \ %
<@EX
D A
o RS
b >< ‘/‘ >< Ny W\ a

CoN X T~

N i N o
O X X X T
l‘ N /\. \ P \k_‘
e X ) \ T ——

) Pas ——
o AN —
Ny N
R
- : \

.
T \
5 l N
iz AN
RIS O
RN AN
NN AN
LNV | \
a8
AN
> \
w \
i \,
° N
| ’:‘"fk'*"ﬁ' T T —'MTMI;' T T T i Hoeos o - ‘,_ T :'”*h T Aj R
H. 00 J. 00 Se 0 1000 15. 00 2000 e Ud
GAS POROSITY (7 VUL UMED

Figure 13b. Similar to Figure 13a for 35 tff-rhyolite shots that are below but within two cav-
ity radit of the water table. The least squares linear regression (continuous line) his a mean
slope of -0.013 (0.007) whereas regression hased on ¢ = .02 (dashed line) shows a larger
slope of -0.105 (0.025).




0. 40
L

N

SIDUAL
-0. 00

(MARSHALL) Rz
-1. 80 -0.40

i

ME

20

5. 00 0. 00 5. 00 10.00 15,00 20. 00 25.00
GAS POROSITY (74 VOLUME)

Figure 13c. Similar to Figure 13a for 26 tuff-rhyolite shots that are above but within two cav-
ity radii of the water table. The least squares linear regression (continuous line) has a mean
slope of -0.027 (0.004) whereas regression based on g = 0.02 (dashed line) shows a larger
slope of -(0.036 (0.007).

48




Syl stenpisar Yur jo (S ayl pun
(L1O'0) 1p1°0 Jo adofs uvaw v sey (dulj snonunuod) uoissaidar saenbs 1seay oy (0 = LMAS
1) suoneindod J Ay 2A0QE PUR MO[2Q Y] UIMIIG PIALISQO ST Annunuodsip divys oN 1A\

Jo uper Aitaed om uiynim (A19an0adsar 9po110 pue w £Q pPaloUT) ‘LA 9A0QR Q7 pur M0[2q g¢)
$I0YS OAYI-J3m 19 10] (LAVCS) 2QE1 Jlem O1 9dUTISIP Pajuos snsiaa [enpisas fw 1 aindrg

LM 0L 4ONV_CIU (1= 'vES

SR 0G °; 001 0% °0 00 °0 08 °C Coen- Lo eRrs
L ! Y ! 1 : 1 1 —

.
=

=

B A

-

\q)./vrv
A

'S e

0 o

] ]\\/l‘ 4"

f

(Hd A S I FEER =000 NO o SN H

49




crossing the water table) appear to reduce the coupling. Similarly, for above WT shots, explo-

sion cavity and fractures intersecting the water table seem to enhance the coupling.




DISCRIMINATION BETWEEN BELOW AND ABOVE WT SHOTS

Analysis of the Pn spectra of 22 shots recorded at JAS shows some separation on plots
of f. versus Ay derived from the Pn spectra of 22 shots recorded at JAS. However, the
separation is probably not large and significant enough to be of much practical value (see Fig-
ures 5 and 6). On the other hand, plots of Ag versus yield show the largest separation between
the two types of shots. It seems therefore that the low-frequency spectral amplitude of Pnois a
possible discriminant. This is also supported by the spectral ratio of KEARSARGE (above
WT shot) to JORNADA (below WT shot) in Figure 3 in which, at low frequencies, the ampli-

tude ratio is much smaller than 1.

The low-frequency amplitude values may also be obtained by bandpassing the data and
computing the root-mean-square (RMS) amplitudes, after correcting for the instrumental
response and noise level before the onset of direct Pn. Results for the 05-1.5 Hz passband.
with window length of 6.4 sec, for the 22 shots recorded at JAS are shown in Figuie 15, Lhe
lcast squares regression fines for the two types of shots, assuming a slope of 1., are separated
by 0.542 magnitude unit. These results are, as expected, nearly identical with those tor A
The below WT shots show larger deviations from the meun than the above WT shots. The
KMS value from one shot (SALUT) in Figure 15, denoted by the letter Pty close to that

expected for an above W'T shot. A possible reason for this may be the fact that this s the

only below WT shot with non-zero gas porosity value (viz. 49%).
An Important factor contributing to the scatter in Figure 15 s perhaps proxinuty of the
shot cavities of several explosions to the water table. Out of a total of 22 shows, the ~hoi

roints of 3 are within one cavity radius of WT (marked by Tong wrows) and those of 9 other




LOG RMS

X . . S o L - - R I

.LOG YIELD

Figure 15. RMS amplitudes of Pn, for the bandpass 0.5 to 1.5 Hz, versus yield for 22 shots
recorded at JAS. The mean lines with slope of unity for the below and above WT populanons
are separated by 0.542 magnitude unit. The arrows indicate explosions with shot points within

two cavity radi of the water table.




are within two cavity radii of WT (denoted by small arrows). If this were not the case, the
RMS values for these 12 shots would move towards the direction pointed by the arrows,

thereby resulting in somewhat larger separation between the two types of shots.

A plot of the RMS values for Lg with window length of 51.2 sec (but otherwise obtained
tn the same manner as for Pn) versus yield for 19 shots for which Lg was available (most oth-
ers were clipped) 1s shown in Figure 16. The below and above WT populations are separated
by 0.300 magnitude unit. It seems therefore that Lg 1s considerably less sensitive than Pn to
whether the shot is below or above WT and Pn/Lg amplitude ratio is a possible discriminant.
This 1s in agreement with an analysis of Blandford and Klouda's (1980) data showing lareer

separation between below and above WT shots for my, (Pn) than for my (Lg).




LOG RMS

LOG YIELD

Figure 16. Similar to Figure 15 for Lg. The two mcean lines are separated by only 0.300 mag-
nitude unit.




DISCUSSION AND CONCLUSION

Records of JORNADA and KEARSARGE, with good S/N, are also available at the SRO
station, ANMO at epicentral distance of about 900 km. The two records are shown in Figure
17. Note that just as in Figure 1, JORNADA has much larger amplitudes than KEARSARGE
in the first several seconds of Pn but not so in the later wavetrain. The spectra of Pn (6.4 sec
window) for the two shots are shown in Figure 18; S/N is good up to about 6 Hz. The spec-
tral ratio KEARSARGE/JORNADA is shown in Figure 19 and appears similar to that in Fig-
ure 3 although the mean slope value is slightly larger. The spectral fits, based on t* = 0.25,
are shown in Figure 20 and show differences between the two shots that are similar to thosc
in Figure 4. One may thus conclude that the differences in the spectral characteristics of these
two shots, as observed at ANMO, are similar to those observed at JAS and the nearby station

CMB.

A comparison of the spectral charactenistics of below and above WT shots shows that for
most parameters, there is a lack of systematic differences and considerable overlap between
the two types of shots, even though records from the same station are used so that source-
recetver paths are not much different. This 15 not surprising n view of the extreme variability
of regional phases from NTS cxpiosions at essentially the same location noted by Springer
and Denny (1976, especially their Figure 4) and Gupta er al. (1984, see their Figure 11). Plots
of f. versus Ay appedr to show some separation between below and above WT shots recorded
at JAS (Figures Sh. ¢ and 6b, ¢). This separation is, however, not evident in the RSSD data
(bigures 10b, ¢), perhaps because the RSSD resulis are not as reliable due to poor overlap in
the foand Ay values ot the below and above WT populations. More data from several other

stafions should be examined to explore further the possibility of distinguishing between bejow
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Figure 17. “iwwe-penriod, vertical-component records of JORNADA (below water table) and
KEARSARGE (above water table) at ANMO, similar to those in Figure 1. Note that in the
first several seconds of Pn, KEARSARGE has much smaller amplitude than JORNADA.
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and above WT shots from measurements of their f. and A values. Broadband instruments are
recommended so that both Ay and f, are better constrained. A determination from seismic data
alone of whether a shot was fired below or above WT is important since 1t can substantially
improve yield estimates. Plots of f. versus A/T and f. versus yield show no observable dis-
tinction between the two types of shots. The largest systematic difference between below and
above WT shots lies in plots of Ay versus yield and, to a somewhat smaller degree, in plots of

AfT (a measure of my) versus yield.

Analysis of both regional and teleseismic my data from substantially larger data bases
also demonstrate that, for a given yield, my values for shots below WT are generally larger
than those for shots above WT by 0.3 to 0.5 magnitude unit. Gas porosity of the shot medium
appears to play an important role in the determination of this large magnitude bias. Yield esti-
mates can be significantly improved if it s known whether the shot point 1s below or above
the warer table. A knowledge of the gas-filled porosity of the shot medium may further
improve the preasion of vield determinations of shots above the water uble.

A surprising and interesung result as the important role played by explosion cavity radn
in determining the source coupling. The correlation between my residual and SDWT (positive
tor below and negative for above WT shots) for shot pomnts within two cavity radii of WT
makes u strong case for the intluence ot explosion cavity and associated fracture zone on
source couphing. Significant improvement 1 yield estimates can be achieved by combining
my values with both gas porosity and SDWT  where the aatter may be computed using empiri-
cal medium- and depth-dependent relanonstups for explosion cavity radit. A companson of
Prnoand Lo phases recorded at @ common staton may be effective in distinguishing befow und
above WT shots except those that are fired close to the water table.
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