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ABSTRACT

Factorization is an approach to linear programming (LP) in which the algebraic

elements of the LP tableau are organized in such a way that a large portion of the

tableau may be represented implicitly and generated from the remaining explicit

parL. In dynamic row factorization, the row structure of the LP model instance

influences the algebraic structure of the tableau, and the dimension of the algebraic

elements may change as the solution progresses.

We present three algorithms motivated by this approach, each resulting from

a different LP model row structure: generalized upper bound (GUB) rows, pure net-

work rows and generalized network rows. We describe implementations of all three

algorithms, specifying data structures for tableau and basis inverse representations

and detailing procedures for manipulation and update of these representations.

Computational results are presented for a number of real-world models taken

from a variety of applications and industries. From each model, one or more partic-

ular instances are solved by each of our three implementations and by a commercial-

quality mathematical programming system. The characteristics of the four solvers

are compared and contrasted. Previous research on related algorithms by others

suggests that these algorith ms are properly viewed as specialized approaches. useful

only on narrow classes of problems. Our computational results strongly refute this

view. and instead suggest that each algorithm is superior to the general simplex

approach on a wide range of problem classes and structures.
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I. INTRODUCTION

A. INTRODUCTION

A recurring theme in the development of simplex-based algorithms for linear

programming has been the identification and exploitation of special problem struc-

ture. Ideas as apparently disparate as the simplex method for bounded variables,

primal and dual decomposition methods, pure and generalized network primal sim-

p.eX algorithms and primal partitioning schemes may be unified to a degree by

interpreting their development in this context.

The factorization approach duc to Graves and McBride [1976] provides a unify-

ing framework from which we may reinterpret many existing algorithms and, through

the application of the common principles embodied in the approach. develop new

algorithms. This approach has as its central thesis the idea of recognizing. isolat-

ing and exploiting special structures which may occur in a certain type of linear

proaraimming tableau..Ai eipxaint], of such special structure is geneiralized network

rows. Genleralized networt rows are naturally specified as a row structure in which

each colunhin ha> at nio -t two nonzero elements within the rows.

Thlis paper adopts tile design principles and algorithmic structure suggested

by Graves and Mclrid' I19( to develop algorithms that. while general in nature in

the sense that eacl lt.\ he used to solve any linear programming problem instance.

arc strongly tailorc(! ex, eluit a particular row structure. We call this approach

"dvianic row far;,, ri/a " row factorization" because we exploit the structure

ill tl(. Iasic ta,!i.a'1 , i i cidinCe 1N the row structure of the L.P model instance.

an¢ "dvlian " l,( ; -,. t din .>im of the structure nnav vary (or even faii to be



present) as the solution progresses. In our setting, we require the row structure of

the model instance to be specified prior to solving, and to remain fixed throughout

the solution process. An extension of this approach is to allow the row structure of

the model instance to vary as the problem is solved. While we do not develop an

implementation of the second approach, we show that it is a conceptually simple

extension of our work.

Each algorithm is developed by factoring the constraints of the LP model

into two classes: those that have special structure (factored) and those that do

not (explicit). This factoring of constraints induces a factored structure in the LP

tableaus which may be exploited computationally. We treat each of three structures

of factored constraints in this work: generalized upper bounds (GUB), pure networks

and generalized networks.

We implement each of the three algorithms by integrating it within the struc-

ture of a state-of-the-art mathematical programming system: the X-System of

Brown and Graves [197-5]. We do so both to demonstrate the feasibility of imple-

menting such methods and to determine whether or not such methods have practical

value for the practi',ioner interested in solving real-world problens. Commercial im-

plementations of similar GUB algorithms have generally failed to inspire enthusiasm

and are apparently falling into disuse [Kennington [1978]]. While the first conmer-

cial implementation of a related "pure network with side constraints" algorithm s

(to our knowledge) just now becoming available, reports of research implementations

have generally supported the view that such algorithms have limited application.

The reports of implenent ations of similar "generalized network with ,ido constraint'"

algorithms have offered less promise than their pure network counterparts.

After we review the related literature, we provide a detailed presentation of the

undcrly'iig tableaiu-based algoril hl which forms the foundation of all oulr subsetquelt



work. We do so because the algorithm is not widely known and may be unfamiliar

to the reader. We then review the general factorization approach of Graves and

McBride [1976). We provide a design template for our developmental approach, and

then present the dynamic row factorization algorithms for GUB, pure network and

generalized network row structures. Computational results are presented, and we

then summarize our conclusions and suggest avenues for further research.

B. SURVEY OF RELATED LITERATURE

While the terms "partitioning" and "factorization" are frequently used inter-

changeably in the literature, we observe a distinction between the two approaches.

We consider partitioning methods to be those that are based on special structure

in the original problem instance. This structure in the problem instance need not

induce special structure into the LP tableau. and in fact the method need not be

tableau-based. This is in contrast to our view of factorization, in which the algo-

rithm is based on special structure which occurs in the simplex basis and thus in the

basic tableau. We thus classify Dantzig-\Volfe [1960] and Benders [1962 Decompo-

sitions and Itosen's 1196;i primal partitioning method as examples of partitioning

met hods.

Perhaps the first example of what we consider factorization is the treatment of

simple upper bound> ly Dantzig [19..1] and. independently, by Charnes and Lemke

[1954]. 'ihev oh,ervc that it is more efficient to enforce the "structural" simple

upper boutnd constraint> with logical tests within the algorithm rather than treat

tho'rn explicitly alc'n Nwit l other constraints. \Vhile not originally presented in the

context of a fornctl ta1lh.s,: fac-orizatioit. the approach is easily viewed as such and

is conlsistent with hi ,' g-mciwial approach.



The mutual primal-dual method of Graves [1965] focuses attention on the

special role of nonnegativity constraints in linear programming. A clear distinction is

drawn between the computational convenience of treating nonnegativity constraints

implicitly rather than explicitly and the unambiguous mathematical equivalence

of all problem constraints, structural or nonnegativity. Emphasizing the special

importance of inequality constraints, the approach yields an elegant theory (see

Graves [1987]) and, as we will see, efficient implementations. We view this algorithm

as the first formal example of factorization.

Dantzig and Van Slyke [1967] extend the factorization approach applied earlier

to simple upper bounds in a more structured manner in their treatment of general-

ized upper bounds (GUB). In a problem with p GUB constraints and m structural

constraints, their approach requires a working basis inverse of dimension (m + 1), a

considerable savings when p is large.

Hartman and Lasdon [1972] specialized this approach to the multicommoditv

capacitated transshipment problem. In this case, the structure of the basic pure

network columns introduces additional structure into the working basis, allowing

further simplifications in basis representation and update techniques. Helgason and

Kennington [1977] develop techniques for representing the working basis inverse in

product form and provide graphic interpretation of the graph updates. Kennington

[1977] reports an implementation of the algorithm.

McBride [1972j and Graves and McBride [1976] formalize and generalize the

factorization approach. They view it is as a unifying framework for tableau-based

simplex specializatioii- and illustrate this by developing a variation of the GUB

algorithm of Dantzie aid Van Slykc [1967] and a GUB algorithm for doubly coupled

linear prograns of Hartman and Lasdon [19701. They present a new algorithm

for the set partit W)i iic i mar pro.fra nming problem and an equality-constrained



form of the pure network with side constraints model. McBride [1972] reports an

implementation of a GUB factorization.

Schrage [1975] extends the approach of simple and generalized upper bounds

by considering variable upper bounds (VUB), which are constraints of the form

Xj < Xk, where Xk is said to be the variable upper bound of x3 . His algorithm allows

the implicit representation of the VUB constraints by expressing VUB variables in

terms of other basic columns. This permits the basis representation to be treated

in two parts, one part a large matrix which changes infrequently and thus needs

to be updated only occasionally, and the second part a small working basis which

requires regular attention. Thus, computation and storage savings may be realized.

Schrage [1978] extends these ideas to what he calls generalized variable upper bounds

(GVUB) constraints, which arise frequently in models involving fixed charges.

Klingman and Russell [1975] sketch a factorization method for solving trans-

portation problems with side constraints. They suggest techniques for performing

simplex iterations and updating the problem representation. Clien and Saigal [1977]

present a similar approach for solving capacitated network flow problems with ad-

ditional linear constraints. Both the above presentations consider a graph-theoretic

view of the basis update mechanism and allow the basis representation to be treated

in two parts. a part which corresponds to a rooted spanning tree defined on the un-

derlying graph, and a general working basis inverse. Glover, Karney. Klingman and

Russell [1978] report an implementation of the Klingman and Russell design, but

one which (curiously) only accommodates a single side constraint. McBride (1989]

reports an implementation which requires the pure network rows to be equalities

and allows more thart one side constrairt.



The problem of generalized network problems with side constraints is ad-

dressed by Hultz and Klingman [1976]. They present details for the simplex price-

out, column generation and basis update. Hultz and Klingman [1978] report an

implementation that (curiously) solves the "singularly constrained" generalized net-

work problem. McBride [1989] reports an implementation that is not restricted to

a single side constraint.

The factorization approach has been extended by the consideration of em-

bedded structures. Glover and Klingman [1981] consider a linear program which

contains embedded pure network structure, i.e., the pure network structure appears

in only a subset of the rows and columns of the technological coefficient matrix of

the problem. Their approach yields an algorithm similar in spirit to the algorithms

for the pure network with side constraint model, but the presence of the "side vari-

ables" significantly complicates the basis representation and update. They report

an implementation of the algorithm but (curiously) restrict the problem suite to

problems having no complicating variables.

McBride [1985] treats the problem of linear programs with embedded general-

ized network structure. Ile presents methods for pricing, column generation. basis

representation update and data structures. A successful implementation is reported

which is approximately five times faster than MINOS [1977] for the models tested.

Interest in developing algorithms to solve problems with special substructures

has been accompanied by work to identify such substructures in problem instances.

Greenberg and Rarick [1974] and Brown and Thomen [1980] develop algorithms

to identify GUB sets. Brown and Wright [1984] develop algorithms for identifying

pure network constraint substructures. Brown. McBride and Wood [19851 present

a method for locaitic generalized network structures, both embedded and row-only

st ruct ure:.



Todd [1983] examines factorization from a geometric standpoint and constructs

a geometric interpretation which is in large mezsure equivalent to the algebraic

development of Graves and McBride [3976].



II. MUTUAL PRIMAL-DUAL METHOD

A. INTRODUCTION

This chapter presents the mutual primal-dual linear programming method in-

troduced by Graves [1965] which provides the algorithmic framework and notational

conventions for the research which follows.

We begin with a complete algebraic development of the primal algorithm fol-

lowed by a less detailed symmetric discussion of the corresponding dual algorithm.

We conclude with a unified treatment of the two which establishes the theoretical

importance of the algorithm and justifies its use as the foundation of our specializa-

tions.

The following presentation scrupulously restates the Graves [1965] algorithm.

incorporates later discussion by McBride [1972], and accommodates large-scale im-

plementations by Brown and Graves [19751. The view presented here is not available

in standard reference texts, and is included in the interest of completeness.

B. PRIMAL PROBLEM STATEMENT (PLP)

The traditional statement of the linear programming (LP) problem is:

(LP) min : wy

s.t. aiy < r, , i="1. 7
cjY > O , 0 .... n .

where y is an n-vector of decision variables, w is an n-vector of cost coefficients,

each a, is an n-vector of technological transformation coefficients, each 7, is a scalar

right-hand side coefficient. and (, is the j, unit vector. While this statement of

0 I



the problem is clear and unambiguous, there are reasons for preferring an alter-

native. The insistence upon drawing a formal distinction between the "structural"

constraints aiy < ri and the "nonnegativity" constraints ejy > 0 obscures the math-

ematical structure of the problem by suggesting that the two types of constraints

are iaherently different. Certainly the exploitation of the special structure of the

ejy > 0 constraints leads to computational efficiencies in the implementation of the

algorithm. However, in the theoretical development of the algorithm, we prefer to

treat them simply as general inequality constraints.

In order to achieve a consistent form, we rewrite the nonnegativity constraints

as -ejy < 0 and group them with the structural constraints. The problem statement

then becomes:

(PLP) min: wy

s.f. : aiy :_ r, , i= 1,....m + n,

where wy is called the extremal function. The constraints of (PLP) define a set of

feasible solutions which we shall call the feasible set, F:

F III G R ' lay 5 7-,,, ? + 7}.

Since F is the intersection of a finite number of closed half-spaces. F is itself a closed

set. If F is nonernptv and bounded. then an optimal solution to (PLP) will occur

at an extreme point of F.

A point y' E I is said to be a frasibl point or fcasiblc solution. If, for

constraint 1 a,i <- r, . colnstraint i is satisfid at yO . and the quantity r, - a,yo is

the slack in constraint I at , . If. on the other hand, for constraint i. a'y ° > r,

constraint i is violal(d at th point y0. the magnitude of the violation being a,y°-r,

1t i' nega1iyC of lhe sIac:!.



A point Y' E R/ is defined to be a basic solution of (PLP) if there exists an

independent subset {ai, a 2 ,.. .,ain) of {al,a2,..., a,,+n} such that ai, y0 = r, for

j = 1,.. .n. Such an independent subset {a1 ,ai2 ,... ,ain) of {ai,a 2,. .. ,am+,} is a

basis for R" , and y0 is the (basic) solution to the system a,, y
0 = ri,,j = 1,... ,n.

Each basic solution of (PLP) corresponds to an extreme point of F and for each

extreme point of F there is at least one corresponding basic solution of (PLP). Since

there are at most ( n ) ways of choosing an independent subset of n vectors from

{ a,, a2, .. ., a,,+n}, the number of basic solutions of (PLP) and thus the number of

extreme points of F is finite. Hence, (PLP) can be solved by searching among its

basic solutions. The algorithm to be developed here will implicitly enumerate the

set of basic solutions of (PLP) and terminate in one of three states:

1. F=0

(no feasible solution exists)

2. the extremurn is unbounded

(for every real number a there is a point y0 C F with wy' < a ): or

3. there exists at least one optimal solution
(a point y" E F with wy" < wy V v e F ).

We will first consider the problem of finding a basic feasible solution to (PLP).

Having achieved this. we will then consider the task of finding a basic feasibh solution

which is also optimal.

C. OBTAINING FEASIBILITY

Since we have included the nonnegativity constraints -,y < 0. j = 1.

in our structural constraints 0!/ _< r, ,i . rn + n, and since the origin is the

unique solution to Ohli independent system:

10U



-ejy=O, j= 1,...,n,

the origin is a basic solution that is always immediately available for (PLP).

Let y0 be any basic solution to (PLP). By definition, there are at least n linearly

independent constraints which are exactly binding at y0' . Among the m remaining

constraints, typically some will be satisfied at yO and others will be violated. Our

strategy will be to focus on one violated constraint at a time, which we will call

the target constraint. Moving from one basic solution to another, we will attempt

to reduce the violation of the target constraint until it becomes satisfied. We will

restrict our choices of basic solutions in such a way that all constraints that are

already satisfied at yo remain satisfied at each subsequent basic solution. Once the

target constraint becomes satisfied, we then select some other violated constraint

as the new target constraint, and repeat the process. We proceed until either all

constraints are satisfied and we have obtained a basic feasible solution, or we find

a violated constraint which cannot be satisfied. in which case we conclude that no

basic feasible solution exists.

To formalize these ideas. define S(y ° ) to be the set of indices of all constraints

satisfied at a basic solution y0

S(1 ° ) { < i < m+ nI a,., ° < r}.

Of course. > n.

Suppose constrainT1 k is violated at the basic solution y0. Then akY° > rk and

k f S')° .-O A necessary condition for the existence of a basic feasible solution is that

there exists a basic soluilion, ! with:

11



S(y) D S(Y ° ) (2.1)

and

aky < aky. (2.2)

If there exists no such basic solution y satisfying (Eq. 2.1) and (Eq. 2.2 ) we conclude

that F = 0. Thus, we may restrict our attention to basic solutions satisfying (2.1)

and (2.2).

Let {ai, , a,.. a } be a basis for R n at yo. For notational convenience we

will partition the constraints into two sets, those that are basic at y0 and those that

are nonbasic at y0 :

b 2 I IFf i ri,B f f2 (2.3)

b, a,o f",F,

d , a j ,+ 1 g l i +

D d2 a,,+, 92 ri.4(24

drr, g r 1

Define 5' and 1) to be the set of indices of the rows of B (basic constraints)

and D (nonbasic constraints) respectively. Using this notation. the current basic

solution y0 may be expressed as By°  f, and since the rows of B are by definition

linearly independent. B -' exists and yo B-'f.

Let y be any other point of R"'. Then y can be expressed as:

.Y Y- ).



We have chosen this representation since at y' the basic constraints are satisfied

exactly and thus it is the direction vector (y - y') of any proposed move from y'

to y that determines whether or not a given basic constraint will remain satisfied

at y. ( Of course, it is the magnitude of (y - y') that is important in determining

whether the nonbasic constraints remain satisfied as well.)

Now, for a given arbitrary basis {pl,p 2 .... ,p'} of R' and any point y, there

must exist scalars A,. , A, such that:

y = ye + (y - yo) = y' + EAp7 = yo + PA

3=1

Since the choice of P is arbitrary, let us choose P = -B-', which we call the

conJugatc row basis. Then:

B ij = B (yf PA) = B( ° - B-'A) = By ° - A = f - A.

and thus y satisfies the basic constraints By : f if and only if A > 0.

Thus. the set of points inR which satisfy the basic constraints bvy < f, for

i can be characterized as:

{ h" E= A, ).A _ j ,>JOj E 5}

with P -B-'

It then follows that every point y satisfying
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can be expressed as

y = yo + PA,

for some A > 0 and P = -B- 1.

To address condition (2.2), assume that we have selected constraint k as our

target constraint (and thus k is violated at y0 , i.e., dky ° > 9k). To reduce the

violation of the target constraint, we seek a point y such that:

dky < dky ° , (2.6)

holds. Since such a point must also satisfy (2.1). it must have a representation of

the form y =y + PA for some A > 0. Replacing y by yo + PA ,we have:

dk(yo + PAj < dkY ° .

which holds if and only if dklJP. < 0. Since A > 0. it follows that a necessary

.ondition for the existence of a point y satisfying (2.5) and (2.6) is that at least

one element of the vector dkP be negative. i.e.. dkp;' < 0 for sonic j. 1 < J < 71. If

dk. P > 0. w conclude that :=

Sut Ios,, that da' < 0. 1ii (2.i) hold. at all points J the form:

y = & + A',. A, > ().

The generic point 31' - A,\: lies along an edge of the set of all points satisfying the

constraints whicl arc' basic at y. If there is more than one I for which dkp1 < 0.

an oin, ca bt he ch, .cli. -Or the purpose of exposition. we will desiN-nat 1h first

111,1, i C,,T! :Tl,'r , ;ill- ; "



The violation in constraint k decreases linearly as A, increases. Constraint k

becomes satisfied when:

dk(yO + Alp') = gk,

or when Ak = t, with

A(9k - dkY °)

t =-= dy 0  (2.7)

A geometric interpretation is that y = y0 + tp' is the point at which the ray

{y E RI y = y0 + Ap' A, >_ 0} pierces the hyperplane {y E R" I dky = gk}.

Define A, to be our ultimate choice for A, . Choosing t as the value for A,7

satisfies the target constraint k. but we are required by (2.5) to continue to satisfy

all nonbasic constraints which are alreadx satisfied at y0 (if any). The choice of t

may cause violations of such constraints. Thus, A must also satisfy the condition:

d.(.)(I +\Alp) A -g7 V j E P n O(yO).

\riting thi> a

~vr indt l~ w iiu~! ,ine : " g. -d:er '

, = in ,> " " , - d '( d4> ( (2 . S

If thI, set i- empI .\, dehfl , .- . Of cour(e, it Is possihl' fr S to Ihe c'lal to zerk,.

'I V i ,''



A; = min {t,s), (2.9)

where t and s are as defined in (2.7) and (2.8) respectively, we obtain the largest

reductiou in the violation of the target constraint consistent with the feasibility

restriction (2.5) with respect to the chosen direction p.

The selection A,* according to (2.9) leads to a new basic solution y' = yo+ATp',.

If A,' > 0 at each step, the transitivity of (2.5) and (2.6) guarantees that no basic

solution will be repeated before any given target constraint is satisfied, or until

the conclusion is reached that F = 0. At any given step, either the feasible set is

shown to be empty, a basic solution is found which satisfies the target constraint

or a positive reduction in the violation of the target constraint is achieved as the

result of moving to another basic solution. Since the set of basic solutions is finite.

the third alternative may be repeated a finite number of times before one of the

first two alternatives occurs. If this constraint becomes satisfied, (2.5) guarantees

that every subsequent solution will also satisfy the constraint. We may then select

a new violated nonbasic constraint as the target constraint. Since there are a finite

number of constraints, we will either discover a basic feasible solution or determine

in a finite number of steps that none exists.

If A7 = 0 at an%- step of the algorithm, we say that a block has occurred.

Blocks will be discusscd later in detail.

D. FROM FEASIBILITY TO OPTIMALITY

Once feasibility i: achieved, say at y0. the process of proceeding to optimality

can be thought of as minimizilng over F the violation of the constraint w'y wy -Q.

where c is a sufiicicit l larg, positive constant.



Let y0 be a basic feasible solution with By ° = f and P = -B- 1 .Since every

point y E R' which satisfies By < f may be written as y = y' + PA for some A > 0,

the value of the extremal function wy at such a point y is:

1

wy = w(y0 + PA) = wyo + wPA = wy ° + A.wp.
j=I

Thus, a necessary condition for the existence of a point y E F such that wy < wy °

is:

uwp' <0 for some j. 1<j:n.

If wp' > 0, then y0 must be a feasible. optimal solution to (PLP).

Suppose wp' < 0. Since all constraints are satisfied at y0, the greatest reduc-

tion in the value of the extremal function in the direction p is achieved when A7 is

chosen to be s. where s is as defined in (2.8). If s = oc , (PLP) has an unbounded

extremum. If 0 < A'7 < oc . a positive reduction in the value of the extremal function

can be achieved by moving from the basic feasible solution y0 to the basic feasible

solution y = y0 + ),p' . If A,* = 0, a block is encountered.

Once a feasible solution has been obtained. (2.5) and (2.6) become equivalent

to:

y E F (2.10)

try < wy (2.11)

The transiti \it v of (2.10) and (2.11) ensures that no basic feasible solution will

h,, rei at,,, as lol a- \.' > 0 at eacli step. At eaci iteration. either a basic feasible

17



solution is found to be optimal, the solution is found to be unbounded or a positive

reduction in the value of the extremal function is achieved by moving to another

basic feasible solution. Since the set of basic feasible solutions is finite and no basic

feasible solution is repeated, the third alternative can only occur a finite number of

times. Thus, if A7 > 0 at each step and if a finite optimal solution exists, it will be

found in a finite number of steps.

E. BLOCKS

Suppose that y0 is a basic solution satisfying

By = f.

where, as before, B is of dimension n by n and nonsingular and p' is the Jth column

of P = -B -1 . Then. y' is the unique point in R' lying in the intersection of the n

hyperplanes:

i f Ey R,. I 1 .... i=.

Suppose that 1' is a direction that either leads to a reduction in the violation

of some target constraint or, if y is feasible, a reduction in the value of the extremal

function. Since the nonhasic coprtraints are of the form:

d,7 <  '. i E 7 .

a block occurs whi; . fo>: at least one nonbasic constraint A.

10



and

dkpI > 0. (2.12)

Thus, any movement away from y0 in the direction pL will result in violation of the

nonbasic constraint dky 0 < 9k

If dky 0 = 9k , then y' is in a sense "over-determined", and yo is said to be

a "degenerate" solution. Geometrically, y0 lies in the intersection of at least n + 1

hyperplanes. Algebraically, there is more than one basis that can be formed from

the row vectors {aI, a,. .. , am+n} for which:

y0

a,,Y = ri, , j = 1,...,n,

holds, and there is more than one basic solution which corresponds to the extreme

point y0 . A block is therefore encountered when an over-determined solution sat-

isfies (2.12) in an "improving" direction (e.g., one that leads either to a reduction

in infeasibilitv or. if feasible, to a reduction in the value of the extremal function).

\Ve will develop a method for dealing with blocks later.

F. THE PRIMAL ALGORITHM AND A SUPPORTING BASIC TAB-

LEAU

The primal algorithm proceeds as follows:

1. Identify an initial basic solution. Notice that the origin satisfies

-I . y= 0.

and thus maY always serve as the initial solution.
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2. If the current solution is infeasible, select a violated primal constraint index k

(i.e., an index k for which 9k - dk °y < 0). This requires the quantity:

g - Dy°

3. Within the target row, select an element of the proper sign (negative, according

to our convention) whose index, 1, specifies a "transformation column". If the

current solution is infeasible, this requires the quantity:

dkP ,

with the transformation column satisfying dkp I < 0. If the current solution is

feasible, this requires the quantity:

wP

with the transformation column satisfying wp < 0. If no such element exists.

then the problem is infeasible (if the current solution is infeasible and dkP > 0)

or optimal (if the current solution is feasible and wP > 0). The task of

selecting such an index I is commonly referred to as "pricing" or a "pricing

strategy".

4. Compute t as in (Equation 2.7). If the current solution is feasible. assign

i = cx.

5. Compute ,; as in (Equation 2.8). This computation is commonly called a "ratio

test". or a "minimum ratio test". This computation requires the quantities:

g - Dy ° and Dpi.

6. Compute A' a, ini (Lquation 2.9). If A' = cc, the problem is unbounded.
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7. Update the current solution according to the computation:

I = 0 + A0*p.

8. Update the assignments of constraint indices to B and 1), and update P.

9. Go to Step 2.

The only quantities needed at each step of the algorithm are the matrix DP,

the column vector g - Dy ° and the row vector wP. For notational convenience, we

can define b to be an (rn + 1) by n matrix whose bottom row d,+I is w, and to

be a (m + 1) dimension column vector whose bottom entry, g,+I, is zero. Then

.,r+] - dM+iyo = 0 - WY° = -wY 0 ,

which is the negative of the extremal function value at the point y' . We can now

conveniently display all the relevant information by forming the (m + 1) by (m + 1)

matrix:

fbP~ hDy]. (2.13)

which we will call the basic tableau.

By computing the basic tableau in partitioned matrix form. we may isolate the

important algebraic components required by this method. To do so. let us assume

that at the current basic solution the basis consists of h structural constraints and

- t) nornlleativitv con ,traint s. Then (2.31 can be written as:



bl aij / ri,

b2 ai2 f2 r12

bh = aj and f fh ribh+l -. h+1 fh+l 0

bh+ 2  -ejh+ 2  fh+2 0

b,,f 0

In partitioned matrix form,

h n-h

B AllA12 h(2.14)
0 -1/ }n-h,

and thus

h n-h

P =-B- (-A-' -Ai'A 12 ) }h
o I J }n -h

Similarly. (2.4) can be written as:

d2  92 0

9,2 0

D di - and g 0 0
dk"" a ah4l 9gh+l rth+l

S a gh+2 J ih+2

anld in partitionied, na-ri: foirn,:

,2,



h n-h

D -1 0 h (2.15

A2 A 22 ) }m-h (2.15)

Then

h n-h

DP = -DB - 1 = Al1 A' 1A12 } h

a-A2AD l A 22 - A21A'A12 m-h,

ald we shall call DP the principal part of the tableau. By partitioning w =

(wlw 2 ), gT = (g1,g 2)T and y' = (y', y'), the basic tableau (2.13) may be written

in partitioned matrix form as:

h n-1

A-ll' A-['A12 yo })h

-A21A-1 A 22 - A2,AL'A i
2 .q - A21Y ° -m22yJ } -h (2.16)

-u' A I' U'2 - wl All A12 - wy }' 0

Note that y, is displayed explicitly in the tableau (2.16). Also, yO = 0 since the

corresponding nonnegativity constraints are basic and thus binding.

As the algorithm proceeds from one basic solution to another. (2.16) can be

updated using a slight variant of the Gauss-Jordan transformation (which we will

call a pivot). The transformation is as follows:

Let [b)1'4 - by'l = [vy] be the basic tableau at any basic solution y'. If

VS: = d 1  0 then the basic tableau at the basic solution:

( ) +( )
/, ',. , 1 , ( , - d,



written as

6,' .by'] = [v',

is calculated as:

general elements (i s,j 1)

vs Vi ,jVi,l

pivotal column (i s, j = l)

-Vil
Uii -

Vsjl

pivotal row (i = S, j 1)

S Vs,3Vs , -

pivotal element i s, j=l

V,1Vss.!

After applying the transformation to (2.16), row and column interchanges may

be necessary to restore the explicit structure of B in (2.14) and D in (2.15). A proof

of this may be found in Graves [1987]. who also extends the basic algorithm to

include free variables, equality constraints and bounded variables.

G. DUAL LINEAR PROBLEM (DLP)

Corresponding to (PLP) is the following linear program called its dual:

(DLP) ma"x xr
X

s.t. : xA <u,

XI < 0.

'le relaioi1}1:', iwe (I)IT ) and (PLP) is as follows:
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1. if (PLP) is infeasible, then (DLP) is eithr infeasible or unbounded.

2. if (PLP) is unbounded, then (DLP) is infeasible.

3. if (PLP) possesses a finite optimal solution y , then (DLP) also possesses a

finite optimal solution x' and wy* = zxr.

See Graves [1987] for a proof of this.

Solving (DLP) directly has important advantages in certain problems, and we

will show that its solution plays an important role in dealing with blocks in (PLP).

We will thus develop a dual algorithm in a manner similar to that for (PLP), sparing

some of the symmetrical detail where possible.

Let x, be a basic solution for (DLP). Then there exists an independent subset

{ a 1, a' 2,... , a" } of {a 1 ,a . , +a"'} such that xoa j , = wJ', i = 1,...,m, and

this linearly independent subset will be called the basis for Rmn at x, .

Partitioning the dual constraints into those which are basic at x, and those

which are nonbasic at x, yields:

T = (tl , . ,t ) - (ai',aj2 ,. .. aj )

u = 11, u 2  
-

)  ( u'' , ' 2 ,
.

. u j ) ,  (2.17)

and

IN' = (k.k ...... V ) = (am+1,, aj",+2.. .,a,, ,)

1 " = r .2 . . , ' ) = O( r ' " , , r '  , J n 2 . u "  ' +  . ( . S

Define T and k to be the set of indices of the columns of T (basic dual

constraints) and A' ijrasic dual constraints). respectively. The current basic

solutic:; r nia tlw:: he expro,',(d a,
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x, = uT - 1,

and any other point x in R' may be expressed as

x = X0 + (x - Xo).

For a given arbitrary basis {q, q2,..., q I of R' , any such point x may be repre-

sented as:

x o0 + qj' = '0+ tQ.
i=1I

The current basic constraints are xo j' = wj", i = 1,.. .,m and for these con-

straints to remain satisfied at the generic point x = x, + gQ, we must have

[xaJ < u,J , i = 1 ..... ,m]. Choosing Q = T - 1 as a convenient basis for R- at xo. we

then have:

xT = (xo + i'Q)T = xoT± + QT = u +

and thus we must have z' < o.

Now consider a violated dual nonbasic constraint f, where a violation means

Xokt > Ut

To reduce the violation. we seek a point x at which

x;,", < X K.

2',! !!



holds. Such a point must also satisfy the basic constraints, and thus the condition

for a reduction in the violation of the dual target constraint is:

xkV = (x, + tkQ)k' = xok' + OQk < xok ' ,

which implies that

V, Qk' < 0.

Since i,< 0. a necessary condition for constraint t to be satisfied is that there exists

an i with qtk > 0. If none of the elements of qjkt are positive, we conclude that the

dual constraints are inconsistent.

The dual algorithm proceeds along the edges

X = XC + Cq.

from basic solution to basic solution. We define

<{1 J < 77 + z I xa' < u'.

and insist that

To satisfy this condition. we consider the effect of moving along the edge of a

geniera2 noTl!1aiC dital conTI traTi!l : w1:ich is currentlv satisfied at x, . We must have



Akl = (xro + t+I qi)k = xok' + O'qiVk < v'.

Since the constraint k is satisfied at x. , we have

xjkj < t v = - Xoik > 0,

and since 0' < 0, if qjk J < 0 then as V, decreases in value we approach the boundary

of the constraint. If vi - xok - = 0 then qjk J < 0 causes an immediate violation if

i' < 0. Thus, a block has occurred.

We have shown that our choice for ti, denoted should be

=max {b,c}, (2.19)

where

b v , k t )/q,,0. (2.20)

and

c = max (r" - xUl )/qk' I v - x, > 0. qk-' < 0} . (2.21

Once dual feasibility has been achieved, we wish to maximize:

," = x r + t'(Qr).

Since t? < 0. a il(c('ssa\ coridit ion to achieve an increase in the value of the extremal

functioI is that tiCrC( exiss an ? such that qr < 0. Hence. when qr > 0. we conclude

that Xo i! dual ot) in l.

ihIe d( a a ,ic It i t ,r, I)roceed- a- fOllBi>,w>:
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1. Identify an initial basic solution. Notice that the origin satisfies

x I 0,

and thus may always serve as the initial solution.

2. If the current solution is infeasible, select a violated dual constraint index t

(i.e., an index t for which vt - x0 Uk < 0). This requires the quantity:

v - x0 K.

Column t is then referred to as the "target column'. If the current solution is

feasible. the right-hand side column is designated the "target column".

3. Within the target column, select an element of the proper sign (positive, ac-

cording to our convention) whose index, i, specifies a "transformation row".

If the current solution is infeasible, this requires the quantity:

Qkf

with the transformation row satisfying q,k > 0. If the current solution is

feasible. this requires the quantity:

Q7.

with the transformation row satisfying qr > 0. If no such element exists. then)

the problem is infeasible (if the current solution is infeasible and q,]kt < 0) or

optimal (if tle current solution is feasible and qr < 0). The task of select ing

such an iicx 7 is conimonly referred to as "pricing". or a "pricing strategy"

1. Complute k as ill (Equation 2.20,. If the current solution is feasible. assign

i - y2

h),



5. Compute c as in (Equation 2.21). This computation is commonly called a

"ratio test". This computation requires the quantities:

t- xoK and Qkt.

6. Compute 0 as in (Equation 2.19). If 0 = oo, the problem is unbounded.

7. Update the current solution according to the computation:

-T = z0 + O!4q 1.

8. Update the assignments of constraint indices to T and K, and update Q.

9. Go to Step 2.

This development shows that at each step, the quantities QK, (v - xoK) and

Qr are needed to proceed with the dual algorithm.

To develop a matrix partitioned form of the dual tableau, we proceed as before.

Assuming the dual basis consists of h structural constraints and rn - h nonnegativity

constraints, we have:

T ( , t.. t') ( 1,a2 . a. . , C Fh. &
, 

+2, .. .
,

U = I Iu . .....1) 2 (u -'. , .... . 0. 0 ..... 0 ).

so

1 u = 1 . 2) (u. , 0).

The non1basi( co~i>- raint s are then:
.. .1"  . k' ) ('. '1 1 t '  Jh - '+  2 42

. .... .) - ..... (''.a . .. a .,

... ..... w0. u .r . . '" .
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so v = (vI, v) = (0, w2).

The matrix partitioned form of the basis is then

h rn-h

T= All 0 ) h,

A21  I rn-h

and with the choice of Q =T

h m-h

Q= Al 11 0 I}h,

-A 21Aj' I }rn-h

with the remaining constraints forming

K IA 12 1
0 A 22

The principal part of the dual tableau is:

_ L - A 21A ll1 I 0 A 22

[ Al1' Aj '1 A1 2
-,4 21-41

1 A 22 - A21AI A12

which we find to be exactly tile principal part of the primal tableau, so

DP = QK.

Tie quantit it, ( - K! ar'

r-,j N( = ?'-(IIQ)1(



= v- uDP

= (O, U)) All' -Al'A 12 ] -uDP

= vP- uDP

= (v- uD)P

t {Ow)( I , A2 2 ]

= {(OW2) _(-l O)}P

- .

The quantity Qr is:

Qr Q Qr,)

-Q~g+[ I A12]()

-Q{g+ Kf}

- Qg + QKf
A - 0, +](2) DPf

0 (+)DPf

= g + D(Pf)

= g - Dy ° .

We thus find that the quantities required for the dual tableau (QK. 1'-xoK and

Qr) are exactly the quantities required for the primal tableau (DP, uP and g-Dy0 ).

Therefore. the primal and dual algorithms use the same tableau. Reviewing the

summaries of the primal and dual algorithms, we see the strong symmetry between

32



the two. Operating on a single tableau, the primal algorithm identifies a target

row, selects a transformation column, performs a ratio test, and performs a pivot

update, while the dual algorithm identifies a target column, selects a transformation

row, performs a ratio test and performs a pivot update. This remarkable symmetry

allows us not only to perform either algorithm on a single tableau, but to switch

between one algorithm and the other as often as we choose. This fact has important

implications for our implementation and it enables us to deal with blocking in a

systematic and consistent way.

H. RESOLUTION OF BLOCKING

The resolution of blocking in either the primal or dual algorithm will be accom-

plished by shifting to the alternate algorithm when blocking occurs. The alternate

algorithm is applied to a subproblem of the original and at worst we are lead to a

contracting sequence of problems to which we alternately apply the primal and dual

algorithm. A strict contraction is assured. and thus in at most a finite number of

steps resolution is achieved.

We will demonstrate this procedure by assuming that we have started with

the primal algorithm. When a block occurs., assume we have rearranged the rows

so that the zeros in the right-hand side column occur contiguously.

Let ki = ,2 + 1 and /,'2 = I where t is the index of the target row (if the current

solution is primal feasible. k2 = rn + 1. the extremal function row). Let k3 be the

pivot column which caused the block. The situation is shown in Figure 2.1.

Define Subproblem (1) as consisting of all the columns of the original problem.

but only those rows with zcros, in the right-hand side column, and as shown in Figure

2.2. "extremal fuinctio ' row k2. the target row of the original primal problem. Row

k., is the row cont ainirg th, blocking element. Now apply the dual algorithm to

3:1



k3 ki

+
+

+ 0
0
0

- k 2

Figure 2.1: Primal Block in Column k3

k.3 ki
+ [0 k4

I 0I 0
- k2

Figure 2.2: Subproblem (1)

Subproblem (1). Because the right-hand side column of any potential pivot row is

zero, the right-hand side column of the original primal problem is invariant to any

pivot in Subproblem (1). Let t'0 denote the element in row i and column j of the

tableau. We proceed with the dual algorithm on Subproblem (1) until one of the

following situations occur (which may be after zero or more dual pivots):

L. t'k2 ,k > 0. A pivot in column k3 no longer reduces the violation of prima!

constrrint k2 , and thus the primal block has been eliminated. We thus return

to the original primal problem and seek a new column in which to pivot.

2. Vk4.k, < 0. A pivot in column k3 no longer threatens to violate primal con-

straint k4 - W\e thus compute new ratios using columns k, and k3 of the original

primal tableau to detcruic if we can make a gain on thie target constraint k2

using coluT I
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ks k3 ki

+ 0 k4

0
0

0 - k2

Figure 2.3: Dual Block in Subproblem (1)

k5  -k3
- k 4

o0 k2

Figure 2.4: Subproblem (2)

3. We encounter a block in the dual algorithm applied to Subproblem (1). This

occurs when a column of Subproblem (1) contains a negative element in row

k4 and a zero in row k2, as illustrated in Figure 2.3.

Let k5 be the column in Subproblem (1) causing the dual block. We now

define a further contraction, Subproblem (2), and switch to the primal algorithm.

Subproblem (2) consists of all the rows of Subproblem (1), but only those columns

of Subproblem (1) with zeros in its target row (k2). Note that the current target

colunm in Subproblem (1) (k3) must have a negative element in its "extremal' row

(k2). As a notational convenience we reverse the sign of this element and record this

action by labeling the column as -k 3. Column -k3 becomes the right-hand side

column of Subproblem (2), as shown in Figure 2.4.

The number of columns in Subproblem (2) is reduced by at least one from

the number of cournuis in Subproblem (I). We now apply the primal algorithm to

SubproblCT 2) until (which ma' be after zero or more primal pivots):

3



k5  -k 3
- k 4

0

+ 0 k6
00 0 + k2

Figure 2.5: Primal Block in Subproblem (2)

1. Vk,.k,, > 0, implying tfLat Vk,,k, < 0. A pivot in column k 3 no longer threatens

to violate primal constraint k4 . We have thus removed the original primal

block, and we proceed by returning to the original primal problem, and com-

puting new ratios using columns k, and k 3 .

2. Vkk, > 0. A pivot in row k4 no longer threatens to violate dual constraint

ks, and thus 'e have removed the dual block in Subproblem (1). We revert to

Subproblem (1) and continue with the dual algorithm.

3. We encounter a block in the primal algorithm applied to Subproblem (2). We

illustrate this situation in Figure 2.5.

Let k6 be the row causing the primal block in Subproblem (2). Since the the

target row in Subproblem (2) (k2) is identically zero for all but the right-hand side

column (-k 3 ), primal unboundedness cannot occur. Also, the entire k2 row in the

original problem is invariant to pivots in this subproblem. We proceed just as we did

when faced with this situation in the original primal problem. The current target

row (k4) in the current problem (Subproblem (2)) becomes the extremal function

row in a newly defined contraction (Subproblem (3)). All columns of the current

problem are retained, but only those rows with zeros in the right-hand side column

of the (-k3) current problem are carried forward to the contraction. This again



k5  -k 3

0
+ 0 k6

- k4

Figure 2.6: Subproblem 3

aso,,~o 4 strict 1cduction in the nu..nber of l.Tjwi. Thz L±w s bproblem is shovn in

Figure 2.6. We then proceed with th, dual algorithm, exactly as before.

The construction of the contracting subproblems through the nested sets of

zeros in the columns and rows guarantees a monotonic decrease in the sizes of the

higher-order subproblems. This ensures the ultimate resolution of degeneracy and

gives us a complete, symmetric and finite algorithm for the solution of LP problems.

The blocking resolution scheme given here is a constructive algorithm to iden-

tify strictly improved solutions. The restricted subproblems ultimately yield a pivot

sequence satisfying all higher-order criteria. Geometrically, we systematically search

the degenerate subspace for an improved representation. This is in sharp contrast

to ad hoc "anti-degeneracy" and "anti-cycling" schemes which invoke arbitrary sec-

ondary mechanisms not at all related to the geometry or mathematics of the problem

at hand, and consequently admit nuisance degenerate pivots with no constructive

motivation.

I. RELATiONSHIP BETWEEN PRIMAL-DUAL ALGORITHM AND

SIMPLEX METHOD

We now depart from the presentation of Graves [1965] to discuss the relation-

ship between the Mutual Primal-Dual Method and the classical Simplex Method.

After a brief discussion of the similarities, we will explain our reasons for adapting

tile Primal-I)ual view.
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The Simplex Method assumes primal feasibility, and we must identify a start-

ing basic feasible solution. Because this is :eldom practical, the usual approach is to

formulate and solve a new linear program closely related t, the original which has

the same optimal solution (assuming one exists) and possesses an easily ice,-.''ed

basic feasible solution. This related problem is derived from (PLP) by augmenting

it with slack variables, resulting in the foilowing:

(APLP) min wy + Os
Ys

s.t.:Ay + Is=r }m
Iy > }n

Is>O }m

In the classical Simplex view, a. basis is a collection of m linearly independent

columns. Let AB be such a simplex basis which corresponds to a primal feasi-

ble solution for (APLP). Suppose we parition the coefficient matrix in a manner

determined by the basic slack variables, yielding (after possible row and column

interchanges):

[A i=[ All A 12  1 0]

A2, A22  0 12

where

A21~i 12]

and the matrix of nonbasic columns is

[A12jA .%. 0 A ,2
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The basic variables are YB = (yi, S2) while the nonbasic variables are YNB =

(SIY2)) and the principal part of the Simplex tableau is [AB'ANB].

Borrowing from the perspective of the Primal-Dual algorithm, we may generate

the Simplex tableau by partitions:

_~ An1 0 rA 1 1  I01A A 12 12 -A 21 Al 1 2

and the table -u becomes

[A31AAA] = [ A 0 ] [ T A]
-A211' 12 0 22

[ All' A'1 A1 2  1
= -A 21A1

1 A22 - A 21Al' A 12  ,

which is precisely the nijcl part of the Primal-Dual tableau. This is no surprisc

when we note that the basis for the Dual Algorithm, T, is exactly AB, and the Primal

and Dual Algorithms share the same tableau. We may interpret the Primal and Dual

Algorithms as simply two different perspectives of the same tableau, wherein the

Primal Algorithm a pivot is viewed as exchanging primal constraints and in the

Dual Algorithm a pivot is viewed as exchanging dual constraints. The classical

Simplex Method may then be interpreted as solving (PLP) using the

Dual Algorithm perspective. That the classical Simplex Method is naturally

interpreted as a dual algorithm comes as a surprise to the conventionally trained.

However. the consequent mathematical insight is compelling, especially in light of

the notational simplification and apparent underlying role of A-, 1

There are several reasons for preferring the Primal-Dual Algorithm to the

Simplex Method. From a computational standpoint, because slack variables are

carried logicallv r r a limT) jitroduced explicitly, we are able to clearly identify the

T9



essential information needed to execute the algorithm. The matrix All' plays a key

role in the calculation of the tableau, and the entire tableau can be constructed from

A' and original problem data. Since A-' is a submatrix of A-', it is smaller and

requires fewer arithmetic operations to update than does A 1 .

A second advantage of the Primal-Dual Algorithm lies in the flexibility it

offers for specialiacion to particular problem classes or structures. Indeed, it is the

special structure and simplicity of the nonnegativity constraints that motivate the

development of the algorithm in the first place. It is frequently the case that other

special structures can be identificd in classes of (PLP). Examples of such structures

include simple upper bounds, generalized upper bounds, variable upper bounds.

pure and generalized network substructures, etc. Such structure may be static in

that its nature and dimension remains fixed throughout the solution process, or

the structure may be dynamic in which case its precise nature and/or dimension

may vary as the problem is solved. Some special structures may be more strongly

characterized by their column ztr',cture and others by their row structure. The

Primal-Dual Algorithm allows one to effecti cly exploit virtually any such problem

structure in a natural manner and greatly simplifies the implementation of such a

specialization.

When the linear programming problem appears as a subproblem in a more

sophisticated solution setting (for example., in a mixed integer programming problem

or a nonlinear programming problem), the row/column symmetry of the Primal-

Dual Algorithm is of critical importance in specializing the solution approach. The

inherent symmetrv of the algorithm permits easy adaptation to branch-and-bound

and cutting-plane approaches to mixed integer programming. to column generation

settings. as well a, to primal and dual decomposition techniques.

4 0



We believe the reason for this flexibility offered by the algorithm lies in its

more complete mathematical foundation. There is a natural consistency that

arises from the choice of a vector space having the same dimension as the

problem variables that is lacking in other approaches. A natural geometric

interpretation of the solution trajectory follows directly from this development. In-

cidental issues such as finding an initial basic feasible solution and dealing

with degeneracy are resolved constructively in this mathematical frame-

work. Other approaches resort to unnecessarily complicated tangential efforts.

All the research results reported here can be developed, with some effort, in

the framework of the classical Simplex Method. However, we choose to present these

results in the manner of their development - the mutual Primal-Dual view presented

by Graves.



III. IMPLEMENTATION DESIGN OVERVIEW

A. INTRODUCTION

We seek to demonstrate the eficiency of row factorization (in particular, using

dynamic-dimension bases). Accordingly, we will implement the ideas developed here

and extensively test them within a commercial-quality optimization system: the X-

System [1975] employs the Graves mutual primal-dual algorithm in a variety of

large scale optimization applications, including linear, nonlinear, mixed integer and

decomposed models. The benchmark test suite is drawn from a wide variety of actual

applications, and our goal is to improve the efficiency of xn already well-known and

highly regarded system.

B. DESIGN CONSIDERATIONS

We want to test our ideas by repeatedly solving many medium- to large-size lin-

ear programming problems (i.e.. approximately 8,000-10,000 constraints and 15.000-

20.000 structural variables). Larger problems are of interest, but for purposes of this

research, we are limited to a relatively modest computer budget on an IBM 3033/AP

computer under the VNI/CMS operating system using VS Fortran 1.4.1. We wish

to support the computational enhancements common in commercial mathematical

programming systerns (e.g.. bounded variables, ranged constraints, parametric pro-

gramming. etc.). \We require a primal-dual implementation that offers complete

flexibility in determining solution strategy. In addition, each experimental imple-

mentation musl support all the routine housekeeping of the optimization system

(e.g., re-inversion. crash starts. relaxations, restrictions, extrinsic and intrinsic enu-

neratioi etc. . uiiallv. w, sek di, capability to identify desired row factorization

.12



structure within the LP model instance, either by communication from the modeler

or automatically.

C. DESIGN TEMPLATE

To establish a conceptual framework for the evaluation of our algorithms, it

is useful to outline the important aspects of our implementation and identify the

crucial steps which most strongly influence performance. Recall from Chapter 2 our

basic tableau in partitioned form:

UJ) (JA) (.jj)

(i). Al-l' All A12 AIllr7 !

(12' -A:,lAA 12 A 22 - A,21 A-1lA 12  2 - A21 A-Ilrl (3.1)

i) -u'lAll u'2 - u'lAlA -wlAll~rI

where we have made the substitution y' = B-'f in the right-hand side column:

YO = B-l'f 1 ( 2~ -T = 1AA2](0 -1 0

z- (O, g/O) T  = (Allri. O)T.

The data requirements of the algorithm are:

1. Access to the original problem data:

2. A representation of that part of the current tableau we have chosen to represent

implicitly. all

3. A representation of t hat part of the current tableau we have chosen to represent

explicil l.

V. ,v, ( i'w , -, requireient in greater dct il,

.I 3



Primal simplex implementations typically are column-oriented and thus re-

quire column-wise access to the problem data. In the primal-dual method, restric-

tion to either column-wise or row-wise access alone exacts a serious computational

penalty. Thus, our design allows both column-wise and row-wise access.

The design of an efficient large-scale tableau element generation representation

is remarkably complex. Many subtle software engineering and hardware environment

issues can have a profound influence on the intricacy and performance of promising

designs. The design excursions reported here are inexorably influenced by architec-

ture of the host computer, operating system and implementation language. However,

the reported design philosophy has been tempered with experience on many other

computers of widely varied designs. The proposed innovations adapt quite well to

floating-point pipelines, large cache memories and parallel architectures.

Because of its fundamental role in the construction of the tableau, we maintain

an explicit representation of Al 1' (we thus refer to All as the "explicit kernel").

Although any of the various techniques such as LU, LDLT or QR decomposition

or product form inverse (e.g.. Golub and Van Loan [198.5] or Magnanti [1976]). are

suitable for representing All or A-I' , a difficulty arises in this algorithmic setting.

While in the primal Simplex method all updates to the basis take the form of rank

one column exchanges, our setting admits more general updates. which include single

row exchanges. single row and column exchanges. single row and column deletions.

and multiple row exchanges of Ali' (multiple columr exchanges of All). While

this does not preclude the use of any particular representation, it adds a level of

complexity not usually encountered in more traditional implementations.

We also maintain an explicit representation of the right-hand side column and

the botton (cost) ro . Because of the symmetric nature of the mutual primal-dual

nijethod. a sensii 1 approacd s to al'ocal, a sinle storage array for both (uantities.
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which taken together are called the "problem rim". If we generate an explicit rep-

resentation of the pivot row and pivot column of the tableau at each iteration, then

we may update the problem rim array using the simple pivot transformation. By

adopting the convention of labeling the nonbasic constraints as rows 1 through m

and labeling the basic constraints as rows (m + 1) through (m + n) (assuming our

problem instance has m structural constraints and n nonnegativity constraints), the

problem rim array is partitioned as follows:

1. The first portion of the array holds values corresponding to the nonbasic con-

straints in region (i) of the tableau (3.1). Since these are nonnegativity con-

straints and they are nonbinding (nonbasic), the values in region (i) of the rim

arrav are those of the currently (possibly) nonzero variables.

2. The second portion of the array hold, values corresponding to the nonbasic

structural constraints in region (ii), and thus the values in the rim array are

the current slack or violation in these constraints.

3. The third region of the rim arraN, beginning at position m + 1. corresponds

to basic (binding) structural constraints, and thus the values are those of the

corresponding (possibly) nonzero dual variables.

4. The fourth region of the rim array corresponds to basic nonnegativity con-

straints. and thus the values are those of the corresponding (possibly) nonzero

dual variables, conventionally called "reduced costs".

The rest of the tallcau we represent implicitly. by simply recording in a stor-

age array the ciirrer-t ordeiing of nonbasic and basic constraints. When additional



information from the tableau (for example, a row or column) is required, we con-

struct it from our representation of All', the current row ordering and the original

problem data.

An overview of the solution process is as follows:

1. Identify an initial basic solution. As stated previously, the origin is always

such a solution, and thus we may always begin with:

B ° = -I

D o = A,

or any other suitable basis.

2. Check for optimality. If there are currently no primal violations ( a negative

value in the first or second region of the rim array) and there are no dual

violatiuns (a positive value in the third or fourth region of the rim array),

then the current solution is optimal. Otherwise, we proceed to step 3.

3. Select either a primal or a dual violation, perform a pivot which makes progress

towards reducing that violation and return to step 2.

Since we desire to maintain current information in the rim array by means of

the pivot transformation updates, we require a representation of the pivot row

and pivot colurnii at each iteration. Since we explicitly maintain only 4-1' and

the probler rim. we see that a key computational step in our implementation

is the generat ioi of tableau rows and .:,jlumns.

Recall fron (ijaptcr 2 the principal part of the primal tableau (a symmetric

devceloptmer!i froti t, d mi! porspective is also possible, and is of course equivalen):

.t ,
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Dp 11(i)( Ajl 1 A1 2  (3.2)
(ii) -A 21 A- 1  A 22 - A2,AjA 12

where P = -B- 1 is the conjugate row basis,

B = (j) r Al1  A 12 ] (3.3)
(ii) 10 -1]

and D contains the nonbasic rows

(oo ) A21 A22

D. SEQUENCING COMPUTATIONS TO EXPLOIT CG1ivMON SUB-

EXPRESSIONS IN COLUMN GENERATION

Now consider the generation of column s from (3.2). Rewriting (3.2) in a

manner that highlights our intentions:

(2) (1 2)

D P=- (i) ( A ll' All'A12 (3.5)

P (ii) -A:i(Ai) -A 2 1 (A 1
1 A1 2) + A2 2  (

By properly sequencing our computations we will exploit the fact that region

(ii) of a given column is simply a linear combination of region (i) of the same column.

Assume we want to place the current representation of column s into a work

array z. which we partition as z7 = (z1 . z2 ) " to correspond to (3.5). Expressed in

tern- of an explicit transformation kernel Ali'. we first compute region (i) of column

. as:

:1 =(.A171 if ., is iII (j).



or

Z= Al A28if s is in (3j).

Having done this, we then Compute Z2 as:

Z2=z-2Z if s is in (j),

or

Z= -A 21z1 + (A 2 2 )' if s is in(j)

Assuming an LU representation of All, we first compute region (i) of column

s as:

LUzi c if column s is in ()

or

LUz1 = (.412)' if column s is in (3j),

Having done this. we then Compute Z2 as:

Z2= ,21Iif column s is in ()

or

Z2=-: - -421Z] + (A422)3 if column s i s i n (jj).

Theni the ciirreit represciitatiori of coiurnn s is available in :-T =(ZI. Z2)T



E. SEQUENCING COMPUTATIONS TO EXPLOIT COMMON SUB-

EXPRESSIONS IN ROW GENERATION

The computation of row t of the tableau proceeds in a similar manner. We

now view the principal part of the tableau as:

(U) (j)

DP_ ( ) ( A (A 1 )A 12

(ii) -A 21A111 (--A 2 IA 1
1 )A1 2 + A22 )

If we want to place the current representation of row t in a work array z

partitioned as = (, il), we may first compute region (j) of row t as:

i3 = (A-')t if row t is in (i),

or

3 =(-A2,),A-, if row t is in (ii).

We then compute:

z = i3(A 12 ) if row t is in (i),

or

4 )+ (A22)t if row t is in (ii).

AlternatelY iivinL ait .1 representation of All.
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i 3LU = et if row t is in (i),

or

i 3LU = (-A 21 )t if row t is in (ii).

We then compute i4 as:

i4 = i 3(A 12) if row t is in (i),

or

4 = i3(Al -4-I 2122)t if row t is in (ii),

and the current representation of row t is available in , = (P3, i 4 ).

We see that in each case calculations proceed by first using a representation of

All to compute a portion of the row or column and then using this initial computa-

tion and original problem data to compute the remaining part. We will discover that

our specializations extend this approach by introducing additional tableau partitions

which allow this computational strategy to be applied on a larger scale.

As previously mentioned, an important implementation challenge in this algo-

rithmic setting is the dynamic behavior of All. We see from the primal row basis

(3.3) and nonbasic rows (3.4) that the dimension of All corresponds to the number

of basic structural constraints, or. equivalentlv, to the number of nonbasic nonneg-

ativitv constraint: (recall that if a nonnegativitv constraint is nonbasic and thus
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nonbinding, the corresponding variable may possibly be nonzero). Recalling that

our primal view of a pivot is as an exchange of constraints between B and D, we

see that one of four cases may occur during a pivot:

1. A structural constraint enters the basis B and a structural constraint leaves

the basis and enters D. Since the number of basic structural constraints (and

the number of nonbasic nonnegativity constraints) remains unchanged, the

dimension of All is unchanged. A pivot of this type involves a row in region

(j) of B (3.3) and a row in region (ii) of D (3.4), and thus it corresponds to

a pivot coordinate in the location ((ii), (j)) of the tableau (3.5).

2. A nonnegativity constraint enters the basis and a nonnegativity constraint

leaves the basis. Again, the dimension of All remains unchanged. Since this

pivot involves a row in region (jj) of (3.3) and a row in region (i) of (3.4), the

corresponding tableau (3.4) pivot coordinate lies in ((i), (i *)).

3. A structural constraint enters the basis and a nonnegativity constraint leaves

the basis, and thus the number of basic structural constraints (equivalently,

the number of nonbasic nonnegativity constraints) increases by one. The di-

mension of .41 is increased by one. This corresponds to a pivot coordinate in

region ((ii). (.j)) of the tableau (3.5).

4. A nonnegativity constraint enters the basis and a structural constraint leaves

the basis. and thus the dimension of All is decreased by one. The correspond-

ing pivot coordinate in (3.5) is ((i). (j)).

We see that we may exert some influence on the behavior of the dimension of

Al hy our straiegy for selecting target violations for primal and dual constraints

(i.. our pricii e strateYv, arid through our tie-breaking rules for choosing pivot



row/columns, and that this dynamism is an inherent feature of our algorithm. We

have already seen the fundamental importance of the kernel (A11 ) in our compu-

tations. Thus, a successful implementation must manage this dynamic behavior

efficiently and reliably.

To illustrate in a familiar setting the challenge this offers, consider a LU rep-

resentation of the kernel All:

All = LU. (3.6)

A pivot in tableau coordinate ((i), (Jj)) results in a column exchange in A11 . Writing

(3.6) in tile more convenient form:

LA 11 - U. (3.7)

When column ak replaces thie pth coluiin of All to form All, we have

where o = L-la has replaced the 1th column of 1'. We now must restore the

uptper triangular fIIll of I'. \e would prefer a method which denimonstrates strong

numnrical statii', aw x, l l ii at,, r ,parsity of {" Several nw'tlhods



have been proposed (Bartels and Golub [1969], Forrest and Tom". [!972], Saunders

[19761 and Reid [1982]). Perhaps the most widely used method is that of Saunders.

Assume for the moment that A11 has a block (or "bump") triangular form (we

discuss how this is done shortly). Then All appears as shown in Figure 3.1.

Figure 3.1: Bump Triangular Form of All

Each bump consists of (possibly) several columns that extend above tile main

diagonal. These columns are called' "spikes-. and the tallest spike within a bump is

placed in the right-most column. so that a bump appears as shown in Figure 3.2.

The block triangular form of All results in a LU decomposition which has the

form shown in Figure 3.3.

Saunders exploits the form of these Lii factors bv maintaining a pernutation

of the columns and rows of U so that all tihe spikes appear on the right-hand side

without chanoiiic Ihif.i r.lative oi~erin , vi-dinn!i:



Figure 3.2: Spikes within a Bump

o F'

W~hen the pth c'oltrni of All is replaced by' a', the mnethod proceeds as follows:

1. Delete the p"' coluin of U i;. and miove all the following columnns one

posit ion to tl~w ],ft.

2. lila o 0 1 i tw ie :&c li;ino coliiini of '



Fiur 3.:- eopoiino l

3. Move thle p" row of Ui. f, ).t i ottoml of Uand mTove all rows ii betwen

upon psi ~N ot e that tis pi eserves ti , triangular form of all biit the

last colun of U . an (] furthLer ijot i at row LI has norlzeros onlyv in column~ls

corresponding to fl.

4. Using Gaussianl elimninat ion withI row interchanges. t ransform :1. to a sint-

gleton coi ii i t herebY restoring thle upper trianigular form of U . Thus,

!iE,..Ell' -, where I"is thle fi ial updated form of U andi E,. E are hie

elementary t ransformat ion matrices corresponding to tile Gaussian elliminationl

steps (se4% e.g.. Nlurtagn [19811j).

5. Apply these saii (;aussian elininat ion steps to L', fornillc



Typically, L 1 is held in product form and thus these transformations are

simply added to the current list of transformation vectors ("eta" vectors).

This method has the virtue that new nonzeros can be created only in the

submatrix F of U, and thus R may be carried in peripheral storage. The numerical

properties are reported to be quite good.

The computational burden of continuously maintaining A11 in block triangular

form is excessive, and the usual approach is to refresh the structure as part of the

basis re-inversion routine. Between the re-inversions, the structure is left untended.

An effective heuristic due to Hellerman and Rarick [1972] is commonly used for this

purpose.

A pivot in tableau coordinate ((ii),(j)) results in a row exchange in All.

Writing (3.6) as

,l1(- 1 = L (3.8)

WVhen low a, replaces the qth row of All to torm A,, we lave

Allf-

where row .3 t replaces the q " row of L. I he desired structure of L nliav be

restored V inn Iwds svminetric to tl)ose developed for te colimin exclhange case,

again for-in , '



A11 = LU

A pivot in tableau coordinate ((ii), ()j)) causes the dimension of All to in-

crease by one through the addition of a row and a column. It is convenient to add

the new row to the bottom of All and the new column to its right. If A,, is the

new kernel, then

'i Al A~a a(2 k (3.9)

a, ar 0 k

where a,, ak and a .k are original matrix coefficients.

The desired updated decomposition is of the form:

1_a , lr 0 k1

which requires that

k

]Luk a k

l =ar.

Settinig Uk. = I we, lid\

i.. = ... - !



The final pivot coordinate, ((i), (i)) results in the dimension of All decreasing

by one. If All is the current transformation kernel and All results after the pivot,

without loss of generality we have:

A ~ ] [ 1k,k 0 [i,,.(.0
Al= a Au 1- L1 0 U ,

where (a,k, a.) is the leaving row, (a,.k, a k)T the leaving column and a,.,k the

pivot element. Using an analysis similar to Rosen [1960], we note that if the square

matrix C is nonsingular and is partitioned as:

C3 C4 ,

where C, is square and nonsingular. C4 is square and Co = (74 - C3CiT C2 is non-

singular. then

Cy' -1 C 1'C 2 C O I C 3 C' I  -CY I C
2 C I--- 1

~~ -L -CO 1C'3C,'0-

Applying this result to (3.10). we discover that

AII1 - 0 k(a,.k]-la. = LIUI

or

A I,, = L t, k C1, (3.11

If the . .. erl. I ( , ,, sou he tihe zero nmatrix, our new decomposition is at

ha:ri. I rufort ,' ,. (' -_') c teed not he zero. but we may guarantee it to

h,, -,, t,' Irf),,11i!;1 a ,1 ::i. : c ,ll-',:; u'c l n c lpdat,, to' A ll! . W e) rcl "a,



column (ark, ak ) ' with column (1, O)T and compute the updated factors exactly as

we did in the column exchange case considered earlier. This results in a modified

transformation kernel A11 with factors

0i=[ Ar1 k 0 U,

Then the second term of (3.11) is

and thus the updated Ll; factors are at hand:

WVe 11ow see the advantages and disadvantages of the Graves mutual primal-

duai method. It has the advantage that. although the transformation kernel can

be as large as m. the number of structural constraints in the problem instance, its

dimension is aclually equal to the current number of binding structural constrai'-

(or equivalently, to the number of potentially nonzero primal variables). At our

initial basic solution. the kernel dimension is zero. If the maximum kernel dimen-

sion during the course of the solution trajectory is much smaller than rn, we enjoy

significanit conputal iona] advantages in storage, update and computation. For a

great nan.v .Pk m odt! intanrces. this is precisely the case.

1 he dvraini c latI ure of the transfformation kernel clearly complicates update

Ipro(fl lr-. \V i, t I imil priMIl S~I 1I)lex method requires only the columin ex-

chhanl,. 1n,,tiTO. (Tre-" tj,,iI' ,,1, reqlirc> f,,r u'pdate ca->.



In our implementation, we will seek methods for handling the transformation

kernel that enjoy the advantages while mitigating the disadvantages.

It is this general strategy for row and column generation we develop and en-

hance in our specializations. By identifying a special structure in the problem data,

we will introduce additional linear dependencies in the rows and columns of the

tableau which will further simplify their generation and will also further reduce the

dimension of the transformation kernel.



IV. FACTORIZATION

A. INTRODUCTION

Each of the algorithms we present in this research can be viewed as a special-

ization of a general approach to large-scale linear programming developed by Graves

and McBride [1976J, which they call the "factorization approach". It is based on

distinguishing special rows and columns in a way that allows large parts of the ba-

sic tableau to be represented implicitly, to be generated easily from the remaining

explicit parts only when actually required by the algorithm.

Although sometimes used interchangeably in the literature, we recognize a

distinction between partitioning methods and factorization methods. In the former,

a formal distinction is made between substructures which appear in the model in-

stance, usually constraints or variables. An approach for solving the problem is then

developed which exploits the substructures. For example, Dantzig-Wolfe decompo-

sition is such an approach which partitions constraints, while in Benders decompo-

sition the variables are partitioned. Such an approach may be applied statically, in

which case the desired partitions are identified at the start of the solution process

and remain fixed throughout. or it may be dvnaniic. in which cae the partitioning

may be adjusted as tihe solution proceeds.

In contrast. we consider factorization methods to be those in which a formal

distiriction is made between substructures in the Ll' basis (and thus in the basic

talleau). lfie aleorithun i- then specialized to exploit this special substructure.

1 hu . w, ,.ie, tle ( I'I algorith i of Djaiiizig and Van SlyLk [1 96, an t(3 the mu l-

t iconinioditv I wK fl,,%v aL,,rit lii of IIartmn ald Lasduu0 [19!70' as exaniplh,-



of factorization algorithms. Factorization methods may also be static or dynamic,

depending on whether the dimension of the factored substructures in the LP basis

may vary during the solution process.

Our research is concerned with dynamic row factorization algorithms. We

develop the general dvna.mic factorization approach here and discuss the important

aspects of the algorithm. In subsequent chapters, we specialize this general approach

to each of several special LP row structures. This general development closely

parallels that of Graves and McBride [1976).

B. THE FACTORED TABLEAU

The problem to be considered is:

(FLP) min: wy

s.t. : Ey < r } explicit constrai-,ts
Fy < b } factored constraints

-Jy < 0 } nonnegativity constraints

where y is a ri vector of decision variables, u- is a n vector of cost coefficients. E

is an m by n matrix of constraint coefficients for "explicit" constraints with right-

hand side 77 vector r. F is a p by n matrix of constraint coefficients for "factored"

constraints with right-hand side p vector b. and -I is the negative of the n by n

identity matrix. In this general development, we refer to the F-type constraints

as "factored" only to distinguish them from the "explicit" E-type constraints, and

assume nothing about their structure. Not until our specializations in later chapters

will we impose special structure on F, and the structures we will consider permit

the representation of the F type constraints without the inversion of a matrix. We

will see that this approach is centered around handling the part of the basis cor-

respondiri ic) th e F-t Ive constrain t s explicitlY while factorin I the portion cf the

(;j2



basis corresponding to the F-type constraints. The notation is chosen to suggest

this idea.

As we saw in Chapter 2, in the mutual primal-dual method the primal al-

gorithm and the dual algorithm share the same tableau, and thus the tableau for

(FLP) may be derived from either perspective. We present only the derivation from

the primal viewpoint here.

Recall that a basis for the primal algorithm consists of n linearly independent

rows from the constraint coefficient matrix when it is assumed to include both

structural (explicit and factored) and nonnegativity constraints. Assume that the

current row basis consists of I rows from E, k rows from F and (n - k - 1) rows

from -I. Using the notation of Chapter 2 temporarily, we have:

I+k n-I-k

/

B = All1 Ai2. I+ k

0 -1 }rt -I- k

where [Aii '1 12] includes all basic structural rows, from both E and F.

We will ultimately be interested in isolating the effect of each type of struc-

tural constraint algebraically in the factored tableau, and thus we require greater

resolution in our factored basis. Introducing obvious notation, we have:

k I - I-k

w' Ii ri,

F,

wY}I're

1.4,1L



From the development in Chapter 2, we recognize Al1 as the explicit kernel,

and thus Al-' exists. It then follows that it is always possible to identify among the

columns of [Fi1 F12] a nonsingular submatrix Fi1 of dimension k, since otherwise

the rank of [Fi1 F12] is at most (k - 1) and thus the rank of B is at most (n - 1).

We will later see that one of the important implementation challenges is the task of

efficiently managing the structure and nonsingularity of Fil.

The full factored row basis is then:

k I n-I-k

( Eli £12 £13 I

(i) 0 0 -1I}n-1-k

Introducing the notation:

11 E12 - E1 1 F IIF 12

A12  E13 - ElF 1
1 F13

its, inverse IS:

-F1 I1Fl24 11' (1 + F1Y'F12A711E11)Fi11 FG'(F13 -F1 1A2

B(1 0ll -AlEI lAl1 J
Grouping, the coefficients of the nonbasic constraint- and applying the same

columin ordcl'rii Yicid-.



k I n-1-k

() -1 0 0 k

D- (ii) F2, F22 F23 p -k (4.2)

(iii) 0 -I 0 1

(iv) E21 E22  E23 }m-l

We will explain the ordering of the rows of D shortly.

The principal part of the factored tableau is DP, where P = -B- 1 is the

conjugate row basis. Introducing the additional notation:

P22  F22 - F2IFH'F1 2

F23  2 3 - 2IiIF3

A 2  E22- EFfIF,2

A 2 2 = 23 - E121 F1i' F, 3 ,

the principal part of the factored tableau is:

( (n) ( 2)

i) -F~j'] 2 .A;I' (I + F F12AL,'Ell)F1' F17i(F13 - F1214-1

DI' = -ii) -,22A 2t2,4-,1 E 1l - F21)F1 '  P23 - P2 2,A 1A, 2

111 AII IIA l. 1

(it) -A 2 ,..1,' (,lA 'l,, - E21)F,2 A22 -A 2 Aj11,' A,.
(4.3)

P'art it ionii T ?v ('. 1 2.- U'2 . 4 ). r 7 (rl.r 2 )7 and h = (b1.b 2 )T and

imtrodulcing th,' iotiiti ,r!:

Zr ,; - w, 1 f"i :



W3 W3 2F 'F]3

-r - ElFIlbl

r2= r- E21FjIbl

the complete factored tableau is:

-F 'F,2 All' (I + F I'FI2A.'E,1 )Fil F '(F,3 - F12A'A 12 ) F '(b - F12AI I 1 )

-F2 A~1  (F2A~1 
11 F2 )F1 2  A12  b2- F2 2A1 1r1l
All ll' 12 A l 1(4.4)

-A 21 AT1  (A21-ilA.E 1, - E.,)F- j A2 - A2 ,ATi A 2  F2 - A21AT ,1
-' ],F(, - ,w)f' zt3 - t2A 11 A12  wF Fbi + , 2A-1 ,rlj

We see from (4.4) that with knowledge of the current factorization. we can

construct the Cnlire tableau from F l, All and the original problem data. The

dimension of F ,- is eq,)ia to the number of F-type constraints that are currently

basic, and thus can be, at most i). The dinension of i1 ' is equal to the number of

E-type constraiiuv that are currently basic. Hence, its dimension cannot exceed 7n.

We call .-Q t l- explicit transformation kernel and F,' the factored transformation

kernel.

We have ', in Chapter 3 that tlhe origin is always a convenient initial basic

solution for t,, iwitii;, Jrinial-dial meild., and the same is true for the factoriza-

tion approac.i, An i i ha4< suf lio is alwavs:



B 0 =[-I]

Do F

Starting from this solution, we may view the algorithm as progressing by exchanging

rows of F and E from D with nonnegativity constraints from B. We will find it useful

to associate with each F-type constraint in B a unique nonnegativity constraint in

D. Borrowing the terminology of Dantzig and Van Slyke [1967], we will call each such

unique nonnegativity constraint (and its corresponding variable) the "key" variable

for the associated F-type constraint. The algebraic structure arising from this basic

F-type constraint/nonbasic "key" variable association allows us to represent parts

of the tableau implicitly rather that explicitly. To distinguish these "key" variables

in D from others, we place them in region (i) of D. This is the reason for the row

ordering mentioned earlier.

C. BENEFITS OF FACTORIZATION

Graves and McBride [1976] report three principal benefits of the factorization

approach:

1. Good starting bases:

2. Reduction in memory requirements:

3. Reduction in work per pivot.

Although the origiij is always available as an initial basic solution. Graves and

McBrid, 1.7(c sug-Le-t tluit a better one can frequent ly be found with only small

6 7



computational effort using this approach. They form the Lagrangian Dual of (FLP)

with respect to the E-type constraints, we obtain:

(LFLP) min: wy + A(Ey -r)

s.t.: Fy <_ b
-Iy < 0

where A > 0 is a m vector of dual variables. If A equals A*, the optimal dual variables

for (FLP), then an optimal solution of (FLP) is among the optimal solutions of

(LFLP). They speculate that if A is a "good" estimate of A*, then using A in (LFLP)

and solving for y should yield a "good" starting point for (FLP). If no such estimate

A is available, then A = 0 may be used. Depending upon the structure of the F-type

constraints, the resulting problem may either be much easier to solve than (FLP) and

thus may be solved optimally, or heuristics may be used to find a computationally

inexpensive "good" solution. All factorization algorithms can be started by solving

(LFLP) first.

Standard simplex techniques require a basis of dimension (m + p) to solve

(FLP). The factorization approach requires the explicit transformation kernel Aj11-

whose dimension is at most n, and the factored kernel F11 , whose dimension is

at most p. Thus. it is clear that we expect a considerable reduction in memory

requirements using the factorization approach. When we specialize the approach

for models in which the F-type constraints have special structure (e.g.. GUB. pure

network or generalized network). we will see that memory requirements can be

further reduced.

While it is difficult to measure the computational effort pcr pivot when product

form inverse or basis decomposition techniques are used, there are indications that

the factorization approacl, car yield substantial benefits. Both analytic (McBride



[1972]) and empirical (Tomlin [1972]) studies indicate that when the F-type con-

straints are CUB constraints (we will cover this in detail in Chapter 6), the factoriza-

tion approach results in per-pivot computational benefits when the CUB constraints

comprise at least 30% of the total number of structural constraints. With some sim-

plifying assumptions, a similar analysis can be developed for the case where the

F-type constraints are pure network rows.

We will consider each of three different factored row structures in this work.

The complexity of the factored row structure determines the computational difficulty

of representing and updating the factored kernel F11 . The simplest row structure

we consider, in which the factored rows are generalized upper bounds, allows Fi to

be interpreted as a simple permutation matrix. The second factorization, in which

the F-type constraints are pure network rows, is a more complex structure which

subsumes generalized upper bounds as a special case. In this case, Fil may be

interpreted as iepresenting a partial ordering defined o\.cr a subset of the rows of F.

The final factorization, in which the rows of F are generalized network rows, is the

most general we consider in this work and subsumes both the other factorizations.

Here, Fil may be interpreted as a linear transformation in which a near partial

ordering exists among a subset of the rows of F.



V. GENERAL IMPLEMENTATION TOOLS

A. INTRODUCTION

We now provide an overview of our implementation of the factorization method.

We describe the representation and update of the three important algorithm compo-

nents: the basic tableau, the f, ctored kernel and the explicit transformation kernel.

The fundamental update steps are described in terms of functions which operate

,,i each of the algorithm components. Where the details of the update actions are

common to all three factorizations treated in this research, the details are presented

in this chapter; otherwise, they appear in subsequent chapters.

B. THE FACTORED TABLEAU

As beforc. .;e are ntcic:.,. in UIc probielh.

rMin 71wy

s.t. Ey < } explicit constraints
Fy < b } factored constraints

-ly < 0 } nonnegativity constraints

Recall the algebraic representation of an arbitrary primal row basis:

() Ell E12 El-,
13 (j I F12 F13

(jjj) , 0 0



with the corresponding nonbasic rows:

(i 1 0 0

D _ i) F21  F2 2 F23  (5.2)
(i) 0 -1 0

(2'v) £21 £22 £23

The conjugate row basis inverse is:

(5.3)

F,-tF 1:_.4' E1 1F1-' -F 'F,3 + 'l~l(, - EiiF7Q!FI3 )
P = -BFr (-'E 3~F2 4l' -~ - Ei iF1 7'F 3 )

\ 0 01/

and the Iprincipai Imi I of the faictoc U(1tIhIu s:

i ~ F:Fl: F , 1,, ;EF I F F E E, EF FI

-F FAFF<12 FE F, F

F,; i I F,!-E~ EF

itF .i~ FA F.......... F71 fn All', F I F



The entire principal part of the factored tableau can be constructed with

knowledge of the row and column ordering, Fn' (or F 1 ) and Al1j. Our discussion

of the implementation centers around the representation and update of these three

components.

We restrict our attention to the principal part of the tableau because our

implementation maintains a current representation of the right-hand side column

and bottom (cost) row (collectively referred to as the "problem rim") at all times.

These quantities are always immediately available and need not be computed upon

demand. This is in contrast to (5.4), where only An' and F11 are always available

and any other quantity of interest (for example, a complete row or column) must

be computed.

C. ALGORITHM OVERVIEW

In broad terms. the algorithm proceeds as follows:

1. Establish an initial basic solution.

2. Stop if the curr!iit solution is optimal. Optimality existz- when the right-band

side colurn2 is nonnegativo and the bottom (cost) row is nonpositive.

Based o a jIicing scheme and a ratio test. select and generate a row and

coluno11 f i.!. 1 1.

4. Soipo, I" rt ' ' iW:i co1lIm re ca! infeasibility or unboundedness.

ki: , ': . ri 1:!. tht tal.cau renrescntation. an I an -, and

., T , '- , updat c wV(. will



D. IMPLEMENTATION CONVENTIONS

We will first discuss the implementation of each of the three algorithm com-

ponents individually, and then provide a detailed presentation of the complete al-

gorithm. Our implementation is coded in the FORTRAN language, and thus the

following discussion is colored by the character of that language.

1. The Tableau

The mutual primal-dual method fosters a symmetric view of the linear

programming problem and the solution process. This symmetry is reflected in the

indexing conventions required in our implementation. Assuming now that (5.1)

consists of m structural constraints (both factored and explicit) and n structural

variables, we require the structural constraints to be indexed from I to in, and the

variables from (mn + 1) to (m + n). While our statement of the problem specifies

the nonnegativity constraints expiicitiv. we will of course deal with them implicitly.

Note. however, that we have two equivalent interpretations of the indices (rn +

1) through (in + n). \Ve can view them as the indices of the structural problem

variables or as the indices of the nonnegativity constraints corresponding to each

of the structural variables. We will use both interpretations in our development.

Observe also that we require no explicit representation of logical (slack. surplus or

artificial) variables.

The indexing of the original problem data exists independently of the

solution process and is thus referred to Ls the "extrinsic" indexing. The factoring of

the coist raints to form 1P and ) represents a second indexing of the problem whic]i

defilne> tiie clm-wr'r s, lit ii . irdependent of the extrinsic indexing. Wc refer to thi-

ii Jde'x~ii sv ,.r, a- "IJlli;,>i ". alld it partiallv defines the ciirrewit reptresenlathjul (f

B ar,, I). (J T CIM c ,itTio, f,,r inTrinsic iride>xir has the row> of 1) la,,lw ', froi:, I

u ~ i' r i ' I~ K' t u 7i,. t



The original problem data is stored in super-sparse form, (in super-sparse

form, each real value is stored once, and each nonzero coefficient is represented by a

row index, a column index, and a pointer to a real value) with unique nonzero real

values stored once in an array of type DOUBLE PRECISION, and referenced by the

FORTRAN equivalent of a pointer from each constraint :-..t7:x coefficient. These

pointers to the real values are singly-linked by both row (with associated column

indices) and by column (with associated row indices). This allows symmetric row-

wise and column-wise access to the data to the performed efficiently, which is an

important virtue in a primal-dual design.

To specify the structure of (5.4) we require a representation of the cur-

rent mapping between the extrinsic indexing of the problem data and the intrinsic

indexing of the current tableau. We represent this mapping by two arrays of type

INTEGER, each dimensioned from I to (n + n), which are used as pointers. We

denote these arrays MNINT() and MEXT(). MINT() represents the mapping from

intrinsic to extrinsic indices. and MEXT() represents the inverse mapping. Thus,

if IINT is an intrinsic index of a row or column of (5.4) and IEXT is the extrinsic

index of the constraint or variable currently mapped to position lINT of the tableau.

then:

MINT(IINT, lEXT

MEXT(IEXT) IINT

NIINI(NIIXT(IiXl) I Xl

NI1XI (NIINTI(IIN] I IINI.

"1,, 1110, l pr(o-(itl alioll of (.514) "c require knowl,'b of . fac-

,: : :v r i . I''"7 aIclrai(al, v r v io t' I', ( , K ( , i. e.. \.



handle this with the use of several variables of type INTEGER which are used as

pointers to record the ending intrinsic index of the various tableau regions. Table

(5.1) lists the regions and the associated pointer names.

TABLE 5.1: Indices of Tableau Regions

REGION BEGINNING INDEX ENDING INDEX

(i) 1 MKC
(ii) MKC + 1 MFR
(iii) MFR + I MXR
(i) MXR + 1 M
(j) M + 1 NXR
(jj) NXR + I NFR
(jj j) NFR + I M + N

The arrays MINT() arid .NEXT() and the pointers MKC. MFR, MXR.

NXR and NFY( comprise the data structures necessary to represent the principal

part of the tableau. To complete the representation of the tableau we require a rep-

resentation of the right-hand side colimn. the bottom row and the current value of

the extremal function. The right-hand side colunm and bottom row are represented

by an array of type DOUBLE PRECISION. dimensioned from 1 to (m +n). referred

to as NIM(). Position, I through 7o correspond to the right-hand side column and

positions (mi, + 1) through ( ?n + "I ) correspond to the bottom row. Note that these

are intrinsic indlices. Ihc current vaiie of the extremal function is held in a scalar

variable of type )OU'BLE PRECISION called OPT.

\W no discnsw the operations necessary to maintain and update the

t.,leau retr.rat " ,, re,,glizv' a" . solution We siIIIplJ t:311 the H IMI

arrii. \\i' Il1i, \9I,( iT. l,-ritlonS I throuighl rni are nO:1ll ~aiv( and tl,,se in

i o III I , l l ; oi -- r Il it7i 1 mI cu rree sulutiw, I- 0 1T ' i' i!



Violations of either sign discipline may serve as potential primal algorithm target

rows or dual algorithm target columns, respectively.

Having selected a target row or column, we must generate the correspond-

ing row or column of the tableau, compute ratios with respect to the right-hand side

column or bottom row, and thus identify the index of a corresponding column or

row. We then generate that column or row of the tableau. Because the details of row

and column generation differ according to the factorization, we defer their discussion

until the appropriate chapter. To represent the update operations, however, we de-

fine the abstract functions GenerateRow(IPRI) and GenerateColumn(IPC1).

These functions accept as arguments the intrinsic row (IPRI) or column (IPCI)

index of the current tableau and return the current representation of that row or

column. We require a working array of type DOUBLE PRECISION to hold these

current representations. We define ROWCOL() to be such an array, dimensioned

from I to (rm + ??). where positions I through rn correspond to column IPCI of (5.4)

and positions (m + 1) through (in + n) correspond to row IPRI. ROWCOL() is

indexed intrinsically in conformance with our convention for (5.4).

Recall that our interpretation of a pivot from the primal algorithm view-

point is as an exchange of rows between B and D. The row indices of D correspond

to the row indices of (..). while the row indices of B correspond to column indices

of (.5.4 . Thus. a pivot requiring the exchange of a row of B and a row of D icquires

the exchange of a row index of (5.4) with a column index of (5.4). Using MINT()

and MEXT(). tlich an exchange requires just a few assignment statements. For

example. if th," pivot1 rOwv It corresponds to extrinsic index EPRI and the pivot

col11 11 1('I corr,-p,;.,t to extrinsic index EPCI. then prior to a pivot we have:



MINT(JPRI) = EPRI

MEXT(EPRI) = IPRI

MINT(IPCI) = EPCI

iMEXT(EPCI) = IPCI

and after (he pivotal exchange we have:

MINT(IPRI) = EPCI

MEXT(EPCI) = IPRI

MINT(IPCI) = EPRI

MEXT(EPRi) =IPCI.

We call this type of index exchange a "primary exchange". For abstrac-

tion purposes we define a function PrimaryIndexExchange (IPRI.IPCI) which.

given the current tableau representation and the intrinsic pivot row index IPRI and

the intrinsic pivot column index IPCI. performs the appropriate update of MINT()

and MEXT(O. Every pivot requires a primary exchange.

In addition to the partitioning of constraints into B and D. we are re-

quired to maintain the factorizations ((i. (1). etc.) within each. Having performed

the primary exchange. it is possible that additional exchanges within B and/or D

are required to rcstkrc thr proper factorization. For example, if the primary ex-

change remove> an F-type constraint from D (region (ii)) and places it in region (7)

of 13. anl additional (c':(all,, is necessary to move the row from region (j) to region

(J I. \\( rci', r 1o s;!Cll aCt ici' as "secondarY" exchanges". Secondary exchanges in D

corresponld t(, row exc1anlges in (5.4) and secondary exchanges in B to column ex-

rhan,',. iIt 51. 'I hi-. we define th1 functions RowIndexExchange(IR1ll.R12l



and Columnndex-Exchange(ICII,ICI2) which exchange intrinsic rows IRI1 and

IR12 or intrinsic columns ICI1 and IC12, respectively. Since the indexing of the

RIV. () array corresponds to the tableau indexing, we assume that any secondary

exchanges performed on the tableau are also performed on RIM(.

Finally, our factorization requires that the factored kernel, F11, remain

nonsingular. It is possible that the primary and secondary exchanges will destroy

the nonsingularity of F 11. When this occurs, additional row exchanges between

regions (i) and (iii) of D will be necessary to restore the required nonsingularity of

F11 . We call such exchanges "tertiary exchanges". Again, we assume that tertiary

exchanges performed on the tableau are also performed on RIM).

The factorizations of B and D are dynamic in nature, meaning that

a particular pivot may cause the dimension of one or more regions of B and/or

D to increase or decrease by one row. Such dimension changes are handled by

simply adjusting the values of the factorization pointers. We define the functions

Increment(XXX) and Decrement(XXX). where "XXX" is MKC, MFR, MXR.

NXR or NFR. to increment or decrement. respectively, the appropriate pointer

value.
In summary, the tableau data structures are:

MINT()

MEXT()

RIM()

ROWCOL()

IK('.M!IR.MXI{.NFR. NXR.



and the necessary update operations are:

GenerateRow (IP RI)

Generate -Column (IPC I)

Primary IndexExchange(IPRI, IPCI)

RowIndex_.Exchange(IRI1, IRI2)

ColumnIndexExchange(ICI1, IC12)

Increment(X XX), and

Decrement(XXX).

2. The Explicit Transformation Kernel

As can be seen from (5.4). the rows of Aj'-' correspond to region (iii) of

the tableau (nonbasic nonkev variables) and the columns to region (j) (basic explicit

constraints). The dimension of A-' 1 may vary as the algorithm progresses, and the

mechanism for these changes is the addition and deletion of rows and columns.

We thus require data structures that permit the efficient insertion, deletion and

exchange of rows and columns of A,-. Further, the number of nonzero elements

in A-l' varies from pivot to pivot. independently: of dimension changes. We store

these nonzero elements in a stack, referring to them via pointers which are stored

as an orthogonally linked list, doubly linked by row and doubly linked by column.

This allows the efficient update of ,-' and accommodates the dynamics, at some

expense in storaw-o. (ontrary to the tableau representation, we maintain the explicit

transformation kerroil representation indexed extrinsically rather than intrinsically.

Tlhis allows perinh itatlions within reion (j) and/or within region (iii) of the tableau



without requiring corresponding permutations in the columns and/or rows of the

All' representation.

We again define a suite of functions which operate on our representation of

Al'1 and describe its update. AddRow(IRE) and Add.Column(IJE) append ex-

trinsic row IRE and extrinsic column IJE, respectively, to our representation of All.

We will ensure that the current representation of each is in work array ROWCOL()

prior to executing these functions. Columns will always be appended to the right-

hand side of All' and rows will be appended to the bottom. DeleteRow(IRE) and

DeleteColumn(IJE) delete extrinsic row IRE and IJE, respectively, from the rep-

resentatio, of A-,'. Replace__Row(IRE ,iRE2) causes the overlay of extrinsic row

IRE1 by extrinsic row IRE2. The representation of IRF. will have been previously

placed in ROWCOL). Finally. Upd.te.Explicit.- Transformation_-Kernel per-

forms a pivot update of the representation of A,11, using the current representation

of the pivot row and pivot column in ROWCOL).

3. The Factored Kernel

The data structures and update actions for the factored kernel vary ac-

cording to the factorization and their discussion will be deferred. Here we define the

necessary abstract update functions.

IsFactored-KernelSingular tests the current representation of Fl,

for singularity and returns the appropriate Boolean value. It will be used in certain

pivot cases to determine which of several courses of action should be taken.

All tertiary exchanges take the form of row exchanges between regions

(i) and (iii) of (.4). Note that region (i) consists of the nonnegativity constraints

of key variable. By our alternate interpretation of the nonnegativitv constraint

indices we may consider theso to be key variable indices. Since the columns of F11

are kY varia ,le. we ii t r'ert r.iOl (i) as containing tile indi ce- of the colurns

,Sn



of F11. An exchange of rows between (i) and (iii) of (5.4) is then interpreted as an

exchange of columns of F11.

Before such a column exchange for F11 (and thus a row exchange in (5.4))

can be made, we must frequently identify the index of the column to be removed from

Fi (which is an index in region (i) of (5.4)) and the index of the column which will

replace it (which is an index in region (iii) of (5.4)). We thus define Find-Column

-toRemove(1OUT), which selects from among the indices of region (i) of (5.4)

the intrinsic index lOUT of the column to be removed from F11. Similarly, Find

-Column -to-Add(IIN) selects from among the indices of region (iii) of (5.4) the

intrinsic index 11N of the column to be be added to F11 . Finally, Update-Factored

-Kernel updates the data structures used to represent F11 .

E. COMPLETE ALGORITHM DESCRIPTION

We are now in a position to fully describe our implementation of the

algorithm. We do so by expanding the discussion of each step given previously in

section C.

1. Initialize the algorithm using the origin as the initial basic solution. Then

30 = (-I)

i) = F

"). St , if thl currci l . u-,,l 1ion s optimal. The current solution is optimal if

( IM 'll ') >( fr I <H < '1! aid RIA(.I(') < 0 for '1I-+ < JC < M+.

3. (a Sel.ct a \'iolatet trinizil i dual constraiint as the tariz'l ro or column.

re ((t iv'elv, l", vir',1 of e>: siliiOh. a0sulin, thec currehit solu ion is



primal feasible and we are executing the primal algorithm. Then the

target row is the bottom row, and we select the intrinsic index IPCI of a

column which will allow us to make a gain in the value of the extremal

function (i.e., RIM(IPCI) > 0).

(b) GenerateColumn(IPCI).

(c) Calculate ratios by computing RIM(IR)/ROWCOL(IR) for those 1 <

!R < M with ROWCOL(IR) > 0. If ROWCOL(IR) < 0 for all IR, 1 <

IR < M stop, since the problem is primal unbounded. Otherwise, select

IPRI to be the intrinsic index yielding the smallest such ratio. Break

ties in accordance with the following hierarchy: region (iii) first, then

regior (ii). then (i) and finaiiy region (iv). Within a region, break ties

by selecting IPRI to be the first such index encountered.

(d) Generate_-Row(IPRI).

4. If. contrary to our assumption in 2.a. the current solution is not primal feasible,

the target row would be some row IPRI of (5.4), 1 < IPRI < Al. rather than

the bottom row. We would proceed by next executing Generate Row(IPRI).

If ROIWCOL(.JC) > 0 for all Al + I < JC < M + A', we would conclude that

the problem is primal infeasible.

5. (a) PrirnarylndexExchange(IPRI.PCI).

(b) Pivot updat,, RIM() and OPT using ROWCOLO.

(c) Perform timc necessary secondary and tertiary exchanges, as shown in Ta-

bl' 2..N ,, that sorne tertiary update actions are conditional. depending

upo the, singularily of F11. We use a notation similar to the FORTRAN

iLOCI(( IF stalerient to indicate tfie conditional actions.
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(d) Update-FactoredKernel.

(e) Update_-ExplicitTransformationKernel.

(f) Go to Step 2.

We now give a more detailed explanation of the secondary and tertiary

exchanges listed in Table 5.2, discussing each pivot coordinate individually.

1. Pivotal coordinate ((i), (j)). EPCI, the extrinsic index of an E-type constraint

located in position IPCI of B, is exchanged with EPRI, the extrinsic index

of a nonnegativity constraint located in position IPRI of D. The initial pivot

exchange places EPCI in position IPRI of (i) and EPRI in position IPCI of

(j), and thus secondary row and column exchanges are necessary to restore the

structure of the tableau. Beginning with the column structure, we exchange

column EPRI in position IPCI of region (j) with the extrinsic index located in

position NXR of region (jjj). and then decrement the value of NXR. This has

the effect of shifting the starting column index of region (jj) one position to

the left. Now extrinsic index EPRI is in position (NXR+]) of the tableau and

thus is still misplaced. \Ve then exchange EPIRI in position (NXR+I) with the

extrinsic index located in position NFR. This places EPRI contiguously with

region (ijj). so decrementing NFR we restore the column factorization.

The effect has been to decrease the dimension of (j) by one, increase the

dimension of (j.7j) by one and to shift the entire (jj) region one position

to the left. i~ I lie row structure. EPCI in position IPtI of region (i) must

even t ullv 1,e fmoe to region (?ir). However, prior to this pivot EPRI was a

key variabl.. i(,cita(c in re.gion (I ). Its removal has dist urbed the structure and

ttl. t h rionsini ciarlv or Fit. \We nust therefore identify a column currently

iII rC,_irLr: lili caji ho is('l to restore the nonsincuularitv of 111. W,



thus invoke FindColumn-toAdd(IIN), which identifies the intrinsic index

IIN of such a column. Suppose the extrinsic index of the column in position

IIN is KX. We exchange EPCI in position IPRI of region (i) with KX in

position 11N of region (iii). We now have extrinsic index EPCI in position

IIN of (iii) and we must move it to region (iv). We thus exchange EPCI

in position I1N in region (iii) with the e'xtrinsic index in position NXR of

(iii), and then decrement NXR. This completes the restructuring ae row

factorization with the effect of decreasing the dimension of region (iii) while

increasing that of region (iv). The effect of these exchanges has been to reduce

the dimension of All ' through the deletion of column EPCI and row KX. To

maintain the proper structure of i,-', -,-e therefore Delete.Row(KX) and

DeleteColumn(EPCI).

2. Pivotal coordinate ((i), (jJ)). EPCI, the extrinsic index of a basic F-type con-

straint located in position IPCI of B. is exchanged with EPRI, the extrinsic in-

dex of a nonbasic nonnegativitv constraint located in position IPRI of D. Since

both EPCI and EPRI are misplaced after the primary exchange. secondary row

and colurmn exchanges are needed. In the colurmns, we exchange EPRI in po-

sition IPCI of region (jj) with the extrinsic index located in position NFR of

region (1j). Decrementing NFR then completes the column exchan ..s, leaving

the dimeiion of region (jj) reduced by one and that of (jjj) increased by

one. In the rov,. we exchainge EPCI in) position IPRI of region (i) with the ex-

trinsic ind, iii pusition MKC of region (i). Decrementing MKC then restores

the row fac,i > rr, -i-e of the tableau. It remains to be seen. however.

' ct her wvc, r*(;n1)ijn, of I after the removal of row EPCI and column EPRI

is still no smczl;:. We 1test /f by invoking IsFactoredKernelSingular.



If the response is FALSE, then no tertiary exchanges are required. If, how-

ever, the response is TRUE, we must identify a column exchange that we will

restore the nonsingularity of F11. To identify the two columns which will be in-

volved in the exchange, we invoke Find-Column -toRemove(IOUT) which

returns the intrinsic index IOUT (with associated extrinsic index NX, say) of

a column to be removed from F11. We then call FindColumn.toAdd(IIN)

which identifies the intrinsic index 1IN (with associated extrinsic index KX,

say) of a column in region (iii) which can be used to replace IOUT. We now in-

voke RowIndexExchange(IINIOUT), which completes the update of the

row factorization. This row exchange results in the replacement of row KX of

by row NX of the tableau. We currently have no representation of row KX of

the tableau, so we compute it by invoking Generate-Row(lOUT). We may

then restore the structure of ,-' by invoking ReplaceeRow(KX.NX).

3. Pivotal coordinate ((i), (Jjj)). EPCI. the extrinsic index of a basic nonneg-

ativitv constraint located in position IPCI of B, is exchanged with extrinsic

index EPIII located in position IPRI of D. The primary exchangti properly

places EPRI in region (jjj). and thus no secondary column exchanges are

needed. Likewise. EP('i is properly placed in position IPRI of region (i). so

no secondary row exchanges are required. Prior to the pivot. EPRI was desig-

nated a kex coluimn and its removal dist urbed the structure of FII. Since EPCI

is itself a column. it is possible that it may be a replacement for EPRI. To

determine if thl is the case., we invoke Is-FactoredKernelSingular. If the

resporn,. i- I lI , th direct exchange of column EPCI for column EPli in

is .i-tif (I a:,,! I li tail.ail upiate is compli-le. If the resionse is TRUE. how-

evrc,. ;, t; ;iTV\ l,,w I ,xchiin, is required E )c. P I. currently locat#-d ill position



IPRI of region (i), will be the column we remove from Fi, and its replacement

is found by invoking Find_-Column-toAdd(IIN) which returns the intrinsic

index IIN (associated with extrinsic index KX, say) located in region (iii). We

perform a tertiary exchange by invoking Row_-Index._Exchange(IIN,IPRI).

This completes the row factorization update. This tertiary exchange results

in the replacement of row KX of Al' by row EPCI of the tableau. We must

therefore perform the corresponding row exchange in ,' also. To perform

such an exchange, we require the current representation of row IPRI of the

tableau. This is precisely the pivot row and is already available in the work

array ROWCOLO. Thus, we may invoke Replace.Row(KXEPCI) directly.

4. Pivotal coordinate ((ii), (j)). EPCI, the extrinsic index of a basic E-type

constraint located in position IPCI of B, is exchanged with EPRI, the ex-

trinsic index of a nonbasic F-type constraint located in position IPRI of D.

After the primary exchange, both EPCI (in (ii)) and EPRI (in (j)) are mis-

placed, and thus both secondary row and column exchanges are necessary.

We exchange EPRI in position IPCI of region (j) with the extrinsic index

in position NX1R of region (j) and then decrement NXR. This has the ef-

fect of reducing the dimension of region (j) while increasing that of region

(jj). Notice that we have added row EPRI to the structure of F11. and

thus an additional column must at some point be identified. Several row

exchanges are needed. First, we exchange row EPCI in position IPRI of

region (ii) with the extrinsic index located in position (MKC+I) of region

(ii) and then decrement MKC. This restores the structure of region (ii) by

reducing its dimension by one row. We now must execute a series of ex-

change: that ultimately places EPCI in region (iM) and also adds a column



to region (i) to restore the nonsingularity of F11 . To do this, we first iden-

tify the column to be added to F11 by invoking Find_-Column.toAdd(IIN),

which identifies the intrinsic index IIN in region (iii) (associated with an

extrinsic index KX, say) which may be added to F11 . Notice that the dimen-

sion of Fli is increased by one through the addition of row EPRI and col-

umn KX. We then perform Row-IndexExchange(IIN,MKC), which places

KX in position MKC of region (i) (correctly) and places EPCI in position

IIN of region (iii) (incorrectly). To complete the tertiary row exchanges, we

invoke RowIndexExchange(IIN,M1XR), followed by Decrement(MXR).

This properly places EPCI in region (it!) by increasing the dimension of re-

gion (iv) by one row while decreasing that of region (iii). Finally, notice that

the dimension of 4-1j1 has been reduced by one through the removal of column

EPCi and row KX. To update the representation of Ai 1 accordingly, we invoke

DeleteRow(KX) followed by Delete_-Column(EPCI).

,5. Pivotal coordinate ((ii), (jj)). PC, the extrinsic index of a basic F-type

constraint located in position IPCI of B, is exchanged with EPRI, the ex-

trinsic index of a nonbasic F-type constraint located in position IPRI of D.

The primary exchange places both EPRI and EPCI in their propei positions.

so no secondary row or column exchanges are needed. However, the struc-

ture of has been altered through the addition of row EPRI and the deletion

of row EPCI. To determine if the structure and nonsingularitv of Fil has re-

mained intact, we invoke Is-Factored-KernelSingular. If the response is

FALSE. the tableau update is complete. If the response is TRUE, we must

identify a columT exchange that wili restore nonsingularit\. Thus. we invoke

FindColumnito tRemove(IOT'T) which returns the intrinsic index lOUT
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(associated with the extrinsic index NX, say) of a column located in region

(i) which may be removed from F11. We invoke FindColumnAo.Add(IIN)

which returns the intrinsic index (associated with an extrinsic index KX, say)

of the column IIN located in region (iii) which may be added to F11. We then

perform a tertiary exchange by invoking RowIndexExchange(IIN,IOUT).

This last action results in the replacement of row IIN of Aj' by row lOUT of

the tableau. We have no current representation of row lOUT, and to compute

one we invoke GenerateRow(IOUT). We then update the representation of

A-' by invoking Replace _Row(KX,NX).

6. Pivotal coordinate ((ii), (iii)). EPCI, the extrinsic index of a basic nonnega-

tivity constraint located in position IPCI of B, is exchanged with EPRI, the

extrinsic ndcx: of a nmtasic F-type constraint located in position IPRI of D.

The primary exchange misplaces both EPRI and EPCI and thus both sec-

ondary row apr column exchanges are necessary. We exchange EPRI, located

in position IPCI of region (jjj) with the extrinsic index located in position

NFR. By then incrementing NFR, we restore the column factorization struc-

ture by increasing the dimension of region (jj) while reducing that of region

(jjj). Notice that the addition of row EPRI to the structure of F11 indicates

that an a corresponding column must also be located. To restore the structure

of region (ii). we exchange EPCI in position IPRI of region (ii) with the extrin-

sic index in position MXC of region (i). Incrementing MKC restores the struc-

ture of region (ii) by reducing its dimension by one row. Since EPCI is a col-

umn which we have now placed in position MIKC, it is possible that F11 is now

nonsingular. To determine this, we invoke Is-FactoredKernelSingular.

If the response is FALSE. the tableau is complete. If, on the other hand,

s~I



the response is TRUE, we must perform a tertiary column exchange to re-

store the nonsingularity of F11 . We will be removing EPCI, currently located

in position MKC, from Fil and replacing it with the column identified by

FindColumn.toAdd(IIN), which is extrinsic index KX located in posi-

tion IIN of region (iii). We then perform RowIndexExchange(IIN,MKC),

which completes the tertiary exchange. This exchange implies a row exchange

in Aj also. We are required to replace row KX of Aj-1 with the current

representation of row EPCI of the tableau. Since IPRI is the pivot row, the

current representation of EPCI is readily available in ROWCOL(. We may

then complete the row exchange by invoking Replace_-Row(KX,EPCI).

7. Pivotal coordinate ((iii), (i)). EPCI, the extrinsic index of a basic E-type

constraint located in position IPCI of B, is exchanged with EPRI, the extrin-

sic index of a nonbasic nonnegativity constraint located in position IPRI of

D. The primary exchange misplaces both EPRI and EPCI, and thus both

secondary row and column exchanges are necessary. We exchange EPRI, in

position IPCI of region (j). with the extrinsic index in position NXR of re-

gion (j). We then exchange EPRI. now in position NXR of region (j), with

the extrinsic index located in position NFR of region (jj). We complete the

column update by decrementing both NXR and NFR, which has the effect of

reducing the dirnesion of region (j) by one column, shifting region (j) one

column to the left in the tableau and increasing the dimension of region (jjj)

by one colunmi. For tihe row update, we first exchange EPCI, in -- _)n IPRI

of region (iii). with the extrinsic index located in position MXR of region

(iii). By then decrementing MXIt we restore the row factorization by increas-

ing the dimcni ion of region (i') by one row while decreasing that of region



(iii). The effect on A,-' has been to reduce its dimension by one through the

deletion of column EPCJ and row EPRI. The corresponding update to the

representation of All I requires that we invoke DeieteRow(EPRI) followed

by DeleteColumn(EPCI).

8. Pivotal coordinate ((ii), (jj)). EPCI, the extrinsic index of a basic F-type

constraint located in position IPCI of B, is exchanged with EPRI, the extrin-

sic index of a nonbasic nonnegativity constraint located in position IPRI of

D. The primary exchange misplaces both EPRI and EPCI, and thus both

secondary row and column exchanges are necessary. We exchange EPRI, cur-

rently located in position IPCI of region (jj), with the extrinsic index currently

located in position NFR of region (j)j). By then decrementing NFR, we re-

store the column factorization by decreasing the dimension of region (jj) while

increasing that of region (j j j). Note that the removal of EPCI from the struc-

ture of F11 implies that the dimension of F, decreases by one, and thus a

corresponding column must be removed from Fil. To locate this column, we

invoke FindColu nintoRemove(OUT), which returns the intrinsic index

lOUT (associated with the extrinsic index NX, say) of a column located in

region (i) which .may be removed from Fil while allowing the remaining struc-

ture to be nonsingular. We exchange EPCI. currently located in position IPRI

of region (iii). with NX. currently located in position lOUT of region (i). This

restores the row structure of region (iii), but EPCI is misplaced in region (i).

Therefore. we exchange EPCI in position lOUT of region (i) with the extrin-

sic index located iM position MNIC of region (i). By then decrementing MKC.

we restore the structure of region (i) by decreasing its dimension and that

of regioT (i increasing its dimension. The exchange of NX in IIN with
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EPCI i. IPRI implies a row exchange in An'. To perform this exchange in

the representation of A,4il, we must replace row EPRI of Al' with the current

representation of row NX of the tableau. Since this current representation is

not available, we invoke Generate-Row(IIN) to compute it. We then update

our representation of A-' by invoking Replace_-Row(EPRI,NX).

9. Pivotal coordinate ((iii), (jjj )). EPCI, the extrinsic index of a basX. nonneg-

ativity constraint currently located in position IPCI of B, is exchanged with

EPRI, the extrinsic index of a nonbasic nonnegativity constraint currently lo-

cated in position IPRI of D. The primary exchange properly places EPRI and

EPCI, so no secondary exchanges are necessary. Since Fil is unaffected, no

additional action is required.

10. Pivotal coordinate ((iv), (j)). EPCI, the extrinsic index of a basic E-type

constraint currently located in position IPCI of B, is exchanged with EPRI., the

extrinsic index of a nonbasic E-type constraint currently located in position

IPRI of D. The primary exchange properly places EPRI and EPCI, so no

secondary exchanges are necessary. F11 is unaffected, so no additional action

is required.

11. Pivotal coordinate ((iv), (jj)). EPCI, the extrinsic indcx of a basic F-type

constraint currentlv located in position IPCI of B, is exchanged with EPRI,

the extrinsic index of a nonbasic E-type constraint currently located in po-

sition IPRI of D. The primary exchange misplaces both EPRI and EPCI.

so both secondary row and column exchanges are necessary. EPRI, cur-

rently in position IPCI of region (3j ). is exchanged with the extrinsic in-

dex located at position (NXt+I) of region (3j). The column structure is

restorcd hv incre'menting NXt{. increasing the dimension of region (p while



decreasing that of region (ji). Note that since the dimension of region (j)

increases, the dimension of will increase also. Also, the removal of EPCI from

Fi1 implies that the dimension of Fl will decrease. Thus, a column of Fi

must be identified for removal as well. To find such a column, we invoke

Find_-Column AtoRemove(IOUT), which returns the intrinsic index lOUT

(associated with the extrinsic index NX, say) of a column whose removal from

Fi allows the remaining structure of Fil to be nonsingular. We perform a ter-

tiary exchange by exchanging NX, currently located in position IOUT of region

(i), with the extrinsic index currently located in position MKC of region (i).

The structure of region (i) is then restored by decrementing MKC, reducing

the dimension of region (i0 while increasing that of region (ii). To properly po-

sition EPCI and restore the structure of region (ii), we exchange NX, currently

located in position (MKC+I) of region (ii), with EPCI, currently located in

position IPRI of region (iv). This leaves only NX misplaced. We thus exchange

NX, currently located in position IPRI of region (iv), with the extrinsic index

located in position MXR of region (ii). The row update is completed by incre-

menting MXR, increasing the dimension of region (iii) while decreasing that

of region (iv). Since the dimension of A-1 has been increased, we must up-

date our representation. Ve are required to add the current representation of

column EPRI. which is available as the pivot column in ROWCOL(). W e also

require the current representation of row NX of the tableau, which is not cur-

rently available. We thus invoke Generate-Row(IOUT) With these two rep-

resentations. we may then invoke AddRow(NX) and AddColumn(EPCI)

to complete the update of the representation of A -1.

(i.



12. Pivotal coordinate ((itv), (iji)). EPCI, the extrinsic index of a basic nonneg-

ativity constraint currently located in position IPCI of B, is exchanged with

EPRI, the extrinsic index of a nonbasic E-type constraint currently located in

position IPRI of D. The primary exchange misplaces both EPRI and EPCI.

To restore the column factorization, we first exchange EPRI, locaued in posi-

tion IPCI of region (iii), with the extrinsic index located in position (NFR+1)

of region (J jj). We then exchange EPCI, now in position (NFR+1) of region

(jj), with the extrinsic index located in position (NXR+I). We complete

the column update by incrementing both NXR and NFR, which has the effect

of increasing the dimension of region (j), shifting region (jj) one position to

the right and decreasing the dimension of region (jjj). Since the dimension of

region (j) has been increased, the dimension of All will increase as well. To

restore the row factorization, we exchange EPCI, currently in position IPRI

of region (it'), with the extrinsic index located in position (MXR+1) of re-

gion (it). The row update is completed by incrementing MXR, which has

the effect of increasing the dimension of region (iii) while decreasing that of

region (iv). Tho dimension of All' has been increased through the addition of

column EPCI and row EPRI. Since IPCI is the pivot column and IPRI is the

pivot row. each is already available in ROWCOLO. Thus we simply invoke

AddRow(EPRI) followed by AddColumn(EPCI) to complete our update

of the representation of All .
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TABLE 5.2: Secondary and Tertiary Tableau Exchanges
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VI. FACTORIZATION OF GENERALIZED
UPPER BOUND ROWS

A. INTRODUCTION

We now develop the first of three specializations of the factorization approach.

We are still interested in the problem:

(GUB) min: wy
V

s.t.: F 1 <b F p by n
Ey <_r E m by n

-1y<O -I nby n

where F, E. -I. w, b and r are as before. We now require that the F-type constraints

are generalized upper bound (GUB) constraints. Define S,, - 1.... ,p to be pair-
P

wise disjoint subsets of the set N {1. n} and further define S, = N - U S,

(S0 may be empty). Then S,', s for 0 < i < p. 0 < i' < p. i i' and
p
U S, = N. GUB constraints are of the form

i=O

Z 6 jY,-- b:. 1.p.. P. (6.1)
jES,

The sets St. i = 0 ..... p are called GUB sets and i is the GB set index. S,

identifies those variables that have no coefficient in any GUB constraint. The E-

type constraints are of arbitrary form.

A specialization of the Simplex Method to handle GUB constraints was first

developed by Dantzig and Van Slyke [1967;. They introduce a specialization of

(G'B) with , = I and strict equality constraints. Their algorithm requires a

working basis of dimension (r1 + 1). McBride [1972] develops a specialization of

the mu tlnal tpri ll;1-di n Ietudot to solve a second variant of (GIB with , = ±

I:



and strict equality constraints. A dynamic working basis whose dimension cannot

exceed m is required. A computational analysis by McBride [1972] predicts that the

performance of this algorithm should exceed that of the Simplex Method when the

proportion of GUB constraints in the model exceeds approximately 29c, and his

empirical results tend to confirm this analysis.

We extend this work by developing a speciahzation of the factorization ap-

proach which does not require all GUB constraints to be binding. We will see that

there are computational efficiencies to be gained by this approach. We first present

the factored tableau for (GUB). We then discuss thE important computational is-

sues.

B. THE FACTORED TABLEAU

Recall from Chapter 4 the primal row basis at an arbitrary point in the solution

process is:

k r,-1- k
k\

L", I:1 EI,, E I }

BV = . I 1 1_' 3 4- (6.2)

(.i) 0 0 - 1 n - I

We saw in Chlapi r -1 thai it is always possible to identify among the columns of

B a set of k coliiu:'- such t hat the subinatrix Iil is nonsingular. Since the rows

of T/I F] " :, (orr( tm ,] t1, GV'B constraints, their form is similar to (6.1 ). with

column peri i t a: - a i k1 t g f,, t lie difference. Each column of [Fi F 12 '13! is

either zero . or a sw re i,! .:i t r. anTd thus by row permutations of these F-type

constraints. Ill ra> , I,;, irit w, the form of a4- by k- signed identity matrix A1I.

Ili,, restiltiic l(;I t, rp, Lasri- r>:



k I n-i-k

-(jE) (11 E12  E 13  } (

B =l Fl Fl )1 13jJk (6.3)

(jj j) 0 0 -I } n -- k

The corresponding nonbasic constraint rows are then:

k I n-1-k

(i) -1 0 0 k

D- (ii) 0 F22  F23 p- k (6.4)
(iii) 0 -I 0 1

(iv) £21 E 22 E23 -l

Recall that we wish to observe a one-to-one dssociation between the variables

whose nonnegativity constraints (which appear in region (i) of D) are nonbasic

(nonbinding) and the F-type constraints in region (jj) of B. This association is

exactly analogous to the idea of "key"" variables proposed by Dantzig and Van Slvke

[1967]. We call the variables whose nonnegativity constraints appear in region (i)

of D "kev" variables, and there is one such variable for each currently basic F-

type constraint appearing in region (jj) of B. The variables whose nonnegativity

constraints appear in region (iii) of ) are then called "non-key".

Usigr (6.3) and (6.4) arid recalling the expression for the explicit transforma-

tion kernel:

- i l - t l -t;11!i'12 t"(Liz t;1 - t1- "2)



the principal part of the factored tableau is:

Ul))

all aAj t3 - - laIF3

Fn47LuuA1 n %A'(Ej3 - EiaitPn)

k'E3 - EA,1F1 )

C. SEQUENCING COMPUTATIONS TO EXPLOIT COMMON SUB-

EXPRIESSIONS IN COLUMN GENERATION

1F0 examine 010n actions required by Generate-Col u n(L( L). suppose Nve

"'ant to generate column 1,( of H ie princip~al part of the tableau (6.5) and place

thje results In) HI VC01 veto 7 :- (:Z . Z2- '3, 2Z )T which is partitioned to conform to

(6.5). H ewr t inc, (6-1 11 in a more con Veruiert man ncr. we have:



O)U'I U)')

( -all,,,2 , -A F Lit,, ,, - ,,F,, .4T(E1 - E L, , L * + L "

-F ,, - ,, - 1,E -FI, t .,,j E,, - E,,A,,F,,)] . F.

I,. _A[,]_ - ,r,' .,> -Ar, - ,E,, A,,] - . CEr,, E- E,,A,, F,,

-E,[- E A , ,~ -En A E' -En A ~-;, ~,F, A (E3 - E II-11FIC 31,1 ,

(6.6)

To highlight those computations involving terms consisting entirely of zeros and plus

and ninus ones, wve introduce the following notation: a general matrix product is

denoted by ".", as in F'3 • . A "simple" matrix product (i.e., one in which one

of the terrrs consists entirelv of z,.Wo. phis ones and minus ones) is denoted by 0, as

in El o F2. The citmiUlatioTIs i Niv tihn proceed as follows (note that (LC is a unit

vector with a plus one in toh in tL(i 1C):

I.Ca!,cnlite rec'i1 (Il77 ):

(a) if obirim IP ' 's itl (J). th n:

- . ,

..... ....... c ( ,



(c) If column LC is in (jjj), then:

= - El All 0 (F13

Notice that (F 13)C is either null or it is a signed unit vector, say in row

k, in which case Ell 0 All 0 (F 13)LC = -(Ell)' .

2. Calculate region (i):

(a) If column LC is in (j), then:

ZI = -All 0 F1 2 0 Z3

(b) If column LC is in (jj). then:

zI = -All 0 FJ2 0 Z3 + (All)L

(c) If column LC is in (jjj). then:

Zi = --A1 1 0 F12 0 z3 + All 0 (F 3)LC.

Notice that the computation -F 12 0 Z3 involves only additions and sub-

tractions. and that each case in region (i) differs only by an addition

Slffix.

3. Calculate region (1):

1O0



(a) If column LC is in (j), then:

Z2 -F 22 * Z3

(b) If column LC is in (jj), then:

Z2= -F 22 oZ3

(c) If column LC is in (jjj), then:

Z2 = -F 22 o z3 + (F23 )LC

4. Calculate region (iv):

(a) If column LC is in (j), then:

Z 4 = -E21 z 1 - E22 Z 3

(b) If column LC is in (jj). then:

4 = -E 21 zi - E22 z3

(c) If column L(' is in (jjj). then:

=:4 -2L ' Z1 - -2. ' Z3 + (E2", )"'
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Then colun LC of (6.6) is available as z T = (z1 , Z2 , Z3 , Z4 T . Notice that

floating point multiplications and/or divisions are necessary only for computation of

regions (iii) and (iv); also note that regions (i), (ii) and (iv) are linear combinations

of region (iii) and one another, and that each~ term in these regions differs only by

an additive suffix.

D. SEQUENCING COMPUTATIONS TO EXPLOIT COMMON SUB-

EXPRESSIONS IN ROW GENERATION

Now we examine the actions of Generate -Row(LR). Suppose we desire to

generate row LR and place the results of the computation in the vector i = (1-4 i~i i 7 )

which is partitioned to conform to (6.5). Rewriting (6.5) in a convenient form:

(is -F.% . ,,F,7;-;, C '' {.l,,-i' El: Ail, TO FL..

(Cf. A, , Z- l, EAjL, fE F, 7 - A , , Aj ,} F,3

(sr IEA,.y F, -I FAF F .,, F, ~F,4, jF,,, , -- Eii a.' F l, -E

(6.7)



Then we may proceed as follows (note that eLR is a unit vector with a plus one in

position LR):

1. Calculate region (j):

(a) If row LR is in (i), then:

i5 = [-(AI)LR 0 F12] OAi 1

(b) If row LR is in (ii), then:

,5 = (-F2)LR o ll

(c) If row LR is in (iii), then:

z 5  ~ = A 1 )LR

(d) If row LR is in (it), then:

5 =[(E2,)LR 0 All 0 F12 - (E22)LR] All

Notice that the computation of the term (E2,)LR o All F12 - (E22)LR

involves only additions and subtractions.

2. Calculate region (jj):

(a) If row LR is in (i). then:

1E0l+



(b) If row LR is in (ii), then:

6= (-is Ell) * All

(c) If row LR is iii (iii), then:

6 =(-is El) * Al

(d) If row LR is in (iv), then:

i6 = (-i5" Ell - (E21)LR) *ali

3. Calculate region (jjj):

(a) If row LR is in (i), then:

i= E 1 3 + Z6 O F1 3

(b) If row LR is in (ii), then:

S= " E13 + z 6 O F 13 + (F3)LR

(c) If row LR is in (iii), then:

S7 = z 5 " E13 o Fl,



(d) If row LR is in (iv), then:

i7= is. E 13 + z 6 o F 13 + (E23)LR.

The row LR of (6.7) is available as i = (is, 6, i 7 ). Note that floating point

multiplications and/or divisions are avoided for terms involving F11, F22 and F 23,

that regions (j j) and (j jj) are linear combinations of region (j), and that many

cases differ only by additive infix terms.

This computational scheme extends the approach of the mutual primal-dual

method by introducing additional linear dependencies into the tableau and exploits

those dependencies to improve efficiency. Empirical evidence suggests that this

approach also improves numerical stability (McBride [1989]).

E. DATA STRUCTURES

The essential information contained in the factored kernel when the factored

rows are GUB constraints is simply the unique mapping between each basic factored

constraint and its corresponding "key" nonbasic variable. We require a represen-

tation of this mapping which is compact. can be efficiently accessed and is easily

updated.

One possibility is to maintain the intrinsic ordering of the tableau in such a way

that the factored row/key variable relationship can be derived implicitly. Region

(jj) of the tableau corresponds to the basic factored constraints of B. Region (i)

of the tableau correspond, to the nonnegativity constraints associated with the key

variables. If we maintain the ordering of (jj) and (i) so that the kth position of (i)

contains the index of the key variable associated with the factored constraint whose

index is in the k p.-, i of (ji). we have an implicit representation of F12.
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Two difficulties arise with such an approach which lead us to choose an alter-

nate representation. First, such an ordering complicates the tableau update scheme

presented in Chapter 5 and potentially increases the computational expense of all

tableau updates which affect F 11. Second, several update cases require the iden-

tification of GUB set membership for variables which are not currently assigned

to region (i) and thus are not currently part of the F11 structure. This may be

done by accessing the original problem data by column and scanning that column

for the index of the GUB row, if any, in which the column has a nonzero element.

Since the original problem data is stored in a super-sparse form, this scheme re-

quires indirect computer memory addressing. We prefer a method which requires

less computational expense.

We thus introduce an additional data structure to manage the structure of

F11 . KEY(IJ) is an array of type INTEGER, dimensioned from 1 to (m + n),

which for each basic factored constraint records the extrinsic index of the associated

key variable, and for each nonbasic key variable records the extrinsic index of the

corresponding basic factored constraint. Additionally, for each variable which is not

key (i.e., either non-kr'v variables or basic variables), KEY(IJ) records the extrinsic

index of the factored constraint for which it may serve as a key variable. If we

interpret the extrinsic index of the factored constraints as GUB set indices, then

for every variable KEY(IJ) contains the GUB set index. Note that since GUB

set membership is fixed for a given variable, all column indices KEY(IJ) can be

initialized once and need never be updated. Only the factored constraint indices

require updating.

F. FACTORED KERNEL UPDATE ACTIONS

Recall from Chaptr .5 the details of the factored kernel update actions

10(



Is-FactoredKernel-Singular,

Find ColumnToRemove(IFKC),

FindColumn_-ToAdd (IFKC), and

Update -Factored -Kernel,

are factorization-specific. We now discuss these details for the GUB factorization.

The row-permuted diagonal structure of Fi1 (All) implies that the question of

singularity arising from rank-one updates can be resolved strictly on the basis of local

information. That is, the exchange, deletion or addition of a row leads immediately

to the identification of a unique GUB set. The search for a corresponding column

(variable) to complete the exchange, deletion or addition is then limited to those

sharing this GUB set membership. The simplicity of this structure greatly enhances

the efficiency of the necessary update actions.

For example, consider pivot update case ((ii), (Jij)), in which basic factored

constraint EPCI. located in tableau position IPCI is removed from the row basis

and nonbasic factored constraint EPRI, located in tableau position IPRI replaces it.

Because EPCI was basic, there is a key variable, say EPCIKV, located in position

IPCIK' of region (i) of the tableau. Because GUB sets are, by definition, pair-

wise disjoint, EPCIKV max' not serve as a key variable for the new basic factored

constraint EPRI. Thus. a replacement variable among those in region (iii) of the

tableau must be found. Such a replacement must exist, for otherwise B is singular.

To locate such a variable, we scan the variables in region (iii), searching for one

which is a member of GUB set EPRI. The test is simply this: for each variable JC

in region (iii). if

KEY(JC) EPRI.
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then accept JC as the key variable for EPRI and proceed with the secondary tableau

update exchange. Otherwise, continue the scan.

Thus, the action Find-Column-To-Add(EKV) scans the indices of region

(iii), performing the GUB set membership test on each index. The first such index

for which the test is true is chosen as EKV.

The action FindColumn_-ToRemove(EKV) is required when a constraint

ERI is removed from F1i. EKV is then the key variable corresponding to ERI and

is determined by:

EKV = KEY(ERI).

Is-Factored-KernelSingular is required when the constraint EPRI is to be

added to Fil and the pivot column index EPCI corresponds to a variable. Thus,

EPCI is a possible key variable for EPRI and is a convenient candidate. It may be

accepted as the key variable for EPRI if and only if F, remains nonsingular after the

addition cf both EPRI and EPCI, and this is the case if EPCI is a member of GUB

set EPRI. Thus. Is-FactoredKernelSingular simply compares KEY(EPCI) and

EPRI. If they are unequal, F11 is singular and the result "true" is returned. Other-

wise, the result is "false".

Finally, we consider UpdateFactoredKernel. Since the GUB set mem-

bership of a variable does not change. only constraint index updates of KEY(IR)

are required. For example, if the old key variable index for constraint EPRI is

EPRIKVO and the new index is EPRIKVN, the required update is:

KEY(EPRI) = EPRIKVN.
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VII. FACTORIZATION OF PURE NETWORK
ROWS

A. INTRODUCTION

We remain interested in the problem:

(PNSC) min: wy
if

s.t.: Fy~b ; F pbyn
Ey:r ; E mbym

-1y _0 ; -I nbym

where F, E, -I, w, b and r are as before. We now require that each column

of F consist of zero, one or two nonzero elements If a column contains a single

nonzero element within the rows of F, it may be either a plus one or a minus

one. If a column contains two nonzero elements within the rows of F, one must

be a plus one and the other a minus one. F-type constraints may also be in-

terpreted as defining the node-arc incidence matrix of a directed graph. Define

= {O,...,p) _7 ...... },and' {niE-{0} to be a set of nodes and

A= {ak, E J a = (n,,n9.iE 1.j E I} to be a set of arcs with ordered pairs

of nodes (tail.head) as elements indexed by k. Note that we interpret node 0 as a

null node. and thus an arc incident to node 0 is viewed as a single-ended arc. Then

a graph is defined a-- 9 {A'. A}. The node-arc incidence matrix of 9 is a matrix

F consisting of p rows (one for each node in A') and n columns (one for each arc in

A) with elements:

.+1 if ~= (n,.i,) for some n:, C ,
f.. if a = (71 ,',) for some ,72 E A

0 otherwist,
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Thus, if arc ak - (ni,nj) is represented by column k of F, then

0

S th row

0

-1 j row

0

0

and each column of F is either all zeros, contains exactly one nonzero element (which

may be either plus one or minus one) or contains exactly two nonzero elements (a

plus one and a minus one).

A specialization of (PNSC) that has been widely studied arises when the F-

type constraints are taken to be equalities and the E-type constraints are vacuous.

resulting in:

(PNE) min: U'

s.t. Fy = b F p by ii
-Iy <0 - I n by 7

Very effici elt specializations of the primal Simplex Method have been developed

and implemented to solve (PNE) (e.g.. Srinivasan and Thompson [1973>. Glovei. et.

al. [(1974. Bradley. Brown and Graves [1977]). These algorithms exploit some well

known propert iv, of f ( we asstme that one redundant row has been removed from

F1:

1. Ever primal Simlplex basis 13 of F (consisting of (p - 1) linearly independent

colum'i- of t"' cat, be triangulated t)\ row and column permutation'.
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2. Every such basis B is itself the node-arc incidence matrix of a subgraph of 9,

and this subgraph is a rooted spanning tree, and

3. F is totally unimodular, implying that if b and b2 are integer (p - 1)-vectors

and x, and x 2 are (p - 1)-vectors of unknowns, then for every primal Simplex

basis B of F the solutions of Bxj =b1 and xB = bT are also integer.

Property (1) allows very efficient execution of Simplex iterations, property (2) mo-

tivates the use of special data structures which allow efficient storage and update of

Simplex bases and property (3) allows all computatior.s to be performed in integer

arithmetic (assuming w and b are integer).

Several contributions have been made to solving variations of (PNSC) when

the E-type constraints are not vacuous. The e approaches have their roots in work

by Kaul [1965] and Bennett [1966]. Chen and Saigal considered a version of (PNSC)

with all equality constraints. Hartman and Lasdon [1972] considered a specialization

of (PNSC) to the multicommoditv capacitated transshipment problem (MCTP), in

which the E-type constraints are generalized upper bound (CUB) constraints and

the F-type constraints decouple into independent pure network subproblems. In

each of these treatments, the resulting algorithm is a specialization of the primal

Sinplex Method. McBride [1972] considered (PNSC) in the context of the mutual

primal-dual method. with all constraints assumed to be equalities. Each of these

approaches allows a basis representation which may be factored into two compo-

nents: an explicit part of dimension m by rn and a factored part of dimension p by

p.

Our inequality formulation of (PNSC) allows a dynamic basis representation

where, just as in the (;'13 specialization, both the dimension of the factored part

andt Ie din1erisio1 i Of th explicit part may vary from one iteration to the next.
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B. THE FACTORED TABLEAU

Recall from Chapter 3 the primal row basis at an arbitrary point in tile solution

process is:

(j) (Ell E1  2 E13

B= (j ) FII F 12  F13  (7.1)
(iii) 0 0 -1

The corresponding nonbasic constraint rows are then:

(i) -I 0 0

D = I . 21  F2 F23  (7.2)
(iih 0 -I 0
(it') F2  E22 E2 3

and the principal part of the factored tableau is:

4, ,] F - !1 F :-l' 4- F ,- ' F ,..-i -! E : , -{ F l- F , I - F I- ' F i . 1-1 E l,3 - E ,, F ,- ' F ,

(,,l -F 2 17.' F;;FY F ; 4[.' F22  7 . EF.Y-Q - F2 F,;' F23 - F2 FF 3-? + F:,;FF,.4IT.'E , - EIF< 'F,3 .

- F, F iF F .-. :A ' EF, -F:2 .,'F ,3 - EF,, F 1 F,)

(fit) ., I i. E,,Fil,- E13  - E !, FI'-1 F13)

',iv -EE,, - E ,F-F,,.i,' EE2 . ,£,,F, - E:,F-' F.- F, 2 i: 1:"E,, - E,,Fl F,

-E lz F,-l Fl j.-ill Ell Fill - E FlI F, - Ell"-i, 1 E,, - Ei 1F,3 F,, I

(7.3)

The F-type constraints represent the node-arc incidence matrix of a graph. For

notational convenience, let us define the corresponding directed graph explicitly as

(A', 4 ) where G.%' and A are as previously defined. Note that while we ch,-,e

to interpret all colmis of WNS('0 as arcs i1 G. an\ num!)her uf tlh- culuns may be
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null with respect to the F-type constraints and thus may be interpreted graphically

as null arcs.

Since the rows of [F11 F12 F13] in the primal row basis B form a subset of the

rows of F, [Fil F12 F1 3] may itself be interpreted as the node-arc incidence matrix

of a graph 9B = {,,AB}. KB is a subset of A", but in general AB € A. To

see this, define AD = A' - ,B and consider an arc aq = (i,.n,) where ni E ,

and n. E ArD. Then aq "spans" the partitioning of " into A' and KD. While aq

is a doubleton arc with respect to g, it is a singleton arc with respect to 9 B. We

call such an arc a "dynamic singleton", and we will discover that such arcs require

special handling in our implementation.

Since a nonsingular F11 must exist, it is well known that the columns of F 1

represent a rooted spanning tree defined over the nodes of , and that F11 may be

placed into upper triangular form by row and column permutations. If we choose to

represent F11 rather than F 1 in our implementation, we are interested in performing

two fundamental operations:

1. Solving linear systems of the type

Fllzl = b,

and

z[FI = bT

where z1 and z 2 are unknown and b, and b2 are rationals (not necessarily

integers), and

11:3



2. Vlacing 11 in upper triangular form, where F1 1 results from a column ex-

change, a row exchange, a column and row addition or a column and row

deletion performed on F11 .

The literature on (PNE) demonstrates that with a proper choice of data structures,

operation (1) may be performed very efficiently when b, and b2 are integer, and that

(2) may be done efficiently when the class of updates is limited to column exchanges.

We will extend these existing approaches to deal with (1) and (2) in the (PNSC)

setting.

C. SEQUENCING COMPUTATIONS TO EXPLOIT COMMON SUB-

EXPRESSIONS IN COLUMIN GENERATION

To examine the actions required by GenerateColunn(LC), suppose we

want to generate column LC of the principal part of the tableau (7.3) and place

the results in the vector Zr = (Z 1 , Z2- z 3 Z4 )T which is partitioned to conform to

(7.3). Rewriting (7.3) in a more convenient manner, we have:

F- F-

it " I I. s

-F, ".-r." - -; - .- , , -FE3, . -F., 4- : -

F:..., .. .-m -F:,-F,, F , 4 E - *, -. r

:, , -,. - - , -F:-.F,. "A?,; -E. FA: £ Y:'- : ",7. ' - £ 1.3iY - :

-F, -F , -- -r': -E, FE F F-. F:,

T.1)
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The calculations may then proceed as fcllows:

1. Calculate region (iii):

(a) If column LC is in (j), then:

= 4i1eLC = (A 1)LC

(b) If column LC is in (jj), then:

Z= -A Eii(F 'L c

(c) If column LC is in (jjj), then:

- [- [13")LC - EIFnl(F3)LC ]

notice that (FP')LC and F 11(Fj)Lc may be computed by backpath traversal

or. Fil (e.g., Bradley, Brown and Graves I9771, p. 11).

2. Calculate region (i):

(a) If column LC is in (j), then:

F11z1 = F 2z3

(b) If column LC is in (jj), then:

, =IZ1 = F 12z3 + eLC

(c) If column LC is in (jjj), then:

F11z1 = F12Z3 + (F13)LC
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3. Calculate region (2i):

(a) If column LC is in (j), then:

Z2 = -F 22z 3 - F21z

(b) If column LC is in (jj), then:

Z2 = -F 2z3 - F2zI

(c) If column LC is in (jjj). then:

12 = -F 22 -3 - F2 1 Zl + (F 23 )LC

4. Calculate region (iv):

(a) If column LC is in (j), then:

Z4 - -E 22 Z3 - E 21z 1

(b) If column LC is in (jj), then:

Z4 = -E 2 2z 3 - E 2 1zI

(c) If column LC is in (jjj), then:

Z4 = -E22Z3 - E 21 zI + (E 23 )LC

Then column LC of (7.4) is available as z T = (z,, z2 , z3 , z4 )T. Note that floating

point multiplications and/or divisions are necessary only for computation of regions

(iii) and (iv), and that regions (i), (ii) and (iv) are linear combinations of region

(iii) and one another.
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D. SEQUENCING COMPUTATIONS TO EXPLOIT COMMON SUB-

EXPRESSION IN ROW GENERATION

Now we examine the actions of Generate.Row(LR). Suppose we desire to

generate row LR. and place the results of the computation in the vector i = (ii, i 6 , i7)

which is partitioned to conform to (7.3). Rewriting (7.3) in a convenient form:

( .F) T1 -j F, Tl'' E, Ij FF, -F l,A E, ~- F, E, I F7 F,,

It~ FF, I F,,F,-F,, -17_.7A~ Eli - F,, rl-; Ill: Ell

*~- { F,,F7'F, li - F,,} F1-1' F,, F.,

(:u)-;! ,, F2, E,, { K, Eli F, I F,,

ElF,~'i - Fn).i;,! Fli - E,,) F-'IF,, - E.

Then we may proceed as follows:

1. Calculate region (J):

(a) If row LR1 is in (i), tlhcn:

(b) If row LRt Is in (ii), then:

15=(F 21 FI [ -1



(c) If row LR is in (iii), then:

(d) If row LR is in (iv), then:

5 = (E2 F J F12 - E22)LR,4 11

2. Calculate region (jj):

(a) If row LR is in (i), then:

Z6 Fl 1 = -- ;5El - fLR

(b) If row LR is in (ii), then:

;6F11 = - (E21 )LR

(c) If row LR is in (iii), then:

(d) If row LR is in (it). then:

46Fl = -7 5 E1 - (E21)LR

3. Calculate region (j j j):

(a) If row LR is in (i), then:

-7 = SE 13 + -6 F13

(b) If row LR is in (1). then:

t. = 5 E13 + - 6 F13 + (F23)LR
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(c) If row LR is in (iii), then:

Z7 = 5E13 + -:6F13

(d) If row LR is in (iv), then:

i7 = i 5E13 + -6 F 3 + (E23)LR

The row LR of (7.5) is available as , = (is,4,-i7 ). Note that floating point

multiplications and/or divisions are avoided for terms involving F12 , F22Fn3 and F23 ,

and that regions (jy) and (Ijj) are linear combinations of region (j).

E. DATA STRUCTURES

Several suites of data structures have been proposed for algorithms designed

to solve (PNE) (Johnson [1966], Srinivasan and Thompson [1973], Glover, Karney,

Klingman and Napier [1974], Bradley, Brown and Graves [1977]). Our implementa-

tion is based on the last.

The purpose of the data structures is to define a graph that represents F11 .

Such a graph forms a rooted spanning tree defined over the nodes of NB, which

we denote as 9F,. Note that because Fil is nonsignular, Fil must contain at least

one singleton column. Since F11 is maintained in triangulated form, we associate

with each row IR the column JC in which the element appearing on the diagonal of

IR occurs. This association is analogous to the GUB row/key variable association

defined for the GUB algorithm. Ve represent this association with the array KEY(),

of type INTEGER and dimensioned from 1 to (m + n), which records for each row

of F11 the extrinsic index of the corresponding key variable, and for each column of

Fl the extrinsic index of the corresponding basic factored row. KEY() is undefined

for other row and column indices.
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We require knowledge of the row ordering of Fi to define a triangulation.

PO() is an INTEGER array, dimensioned from 1 to p, which for each row IR of F11

records the extrinsic index of the row that follows IR in the current triangulation.

This ordering is referred to as preorder, and the successor of IR is called its preorder

successor. PO() is undefined for factored rows not currently in F11 . Note that the

triangulated column ordering of Fl may be deduced from PO() and KEY(.

PO() and KEY( capture the triangulated row and column ordering informa-

tion for a representation of F11 but provide no means for interpreting this repre-

sentation as a rooted spanning tree. The predecessor function p() is a well known

method for representing trees and thus rooted spanning trees. To define p(ik), we

associate with each node ik of 'F 12 the row index of the offdiagonal element in the

kth column of F11, when the rows are ordered to correspond to a triangulation of

F11 . Graphically, p(i) may be iterated recursively to trace the backpath from node

z to the distinguished root node of 9F 1.

We represent p( by the INTEGER array P0, dimensioned from 1 to p, which

for each row IR in F 1 records the extrinsic index of the predecessor of IR. It is

convenient to keep a record of the sign of the diagonal element of each row of Fl.

We use the sign bit of P0 to do so. Assume node IRP is the predecessor of node

IR in the current representation of F11 . If the diagonal element in row IR is a plus

one, then P(IR) = IRP, while if the diagonal element in row IR is a minus one,

P(IR) = -IRP. In the graph GF11, this may be interpreted as follows: if the actual

orientation of arc ak = KEY(IR) is the same as that recorded in F,, which is

(IR,IRP). then P(IR) > 0). If the actual orientation of arc ak is opposite that

recorded in !F1, then P(IR) < 0.

The final data structure, Do, is an INTEGER array dimensioned from 1 to p.

For each node IR of !;F, (row of F11) D(IR) records the depth of node IR, where
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depth is defined as the number of nodes encountered on the backpath between

IR and the root node. Do allows updates to be performed on the data structures

representing 9F,, in a single pass through the data structures, and allows us to avoid

unnecessary operations in the solution of linear systems to be discussed shortly.

F. SOLVING LINEAR SYSTEMS

It is clear from the discussion of GenerateRow(LR) and GenerateCol-

umn(LC) that the solution of the linear systems,

and

F11-2 =-b

where z, and z 2 are vectors of unknowns and b, and b2 are vectors of rationals, are

crucial steps. The practical value of our implementation depends to a large extent

on the efficiency with which these systems may be solved, and thus we will consider

this problem in some detail.

First, we examine the data structures used to represent the terms. Three data

structures are used to represent b, and b2, the right-hand side terms. WORK() is a

DOUBLE PRECISION array, dimensioned from 1 to p, which is used to hold the

real values of b, and b2 (we sequence operations so that at any given moment we are

interested in either b, or b2 but not both, so that the same array may be used for

both). An INTEGER array WORKMKO, also dimensioned from I to p, is used as

a nonzero mask for WORK(. The convention is:
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WORKMK(K) = 0 if WORK(K) = 0.0
WORKMK(K) = 1 IF WORK(K) 74 0.0

Finally, the array WORKNZO, of type INTEGER and also dimensioned from 1

to p, records the extrinsic column (in b1) or row (in b2) index of each nonzero in

WORK). The use of WORKMK() and WORKNZ() allows the efficient manage-

ment of nonzeros in b and b2.

The solution vectors z1 and z2 are represented by three analogous arrays.

ROWCOL() (for rowcolumno) is of type DOUBLE PRECISION and is dimensioned

from 1 to (m + n). It is used to store the representation of a row and column of the

principal part of the tableau, and thus portions of it are used to store the solutions

of Equation (7.1). Associated with ROWCOL() is ROWCOLMK(), an INTEGER

array of conformable dimension, used as a nonzero mask for ROWCOLO, and the

INTEGER array ROWCOLNZO, also of conformable dimension, used to record the

indices of nonzeros in ROWCOL().

In contrast to the usual situation in Simplex-based approaches to linear pro-

gramming in which each successive right-hand side of the problem may be computed

by means of a simple update to the previous right-hand side, in this setting such

is not the case. Thus, we are not able to derive the solution to the current form

of Equation (7.1) by simply updating the previous solution. Instead, we must solve

each system from scratch.

Each right-hand side is itself the result of a sequence of preliminary computa-

tions. As each new nonzero element is generated by these computations, its value

is placed in WORK), WORKMK() is updated and the index of WORK() in which

122



the nonzero appears in placed in the next available position in WORKNZO. For ex-

ample, suppose the first nonzero generated for WORK() is the value 6.5 in position

38. Then the arrays appear as follows:

WORK(38) = 6.5
WORKMK(38) = 1.0
WORKNZ(1) = 38.0

A counter for the number of nonzeros in WORK() is maintained (an INTEGER

variable called NNZW), so at the conclusion of the preliminary computations we

may iterate through the nonzeros on the right-hand side in the order in which they

were generated by:

WORK(WORKNZ(K)), K = 1, ... , NNZW

Since our representation of F11 is in upper triangular form, the obvious ap-

proach for solving

F =Z2 b2 (7.6)

is by back substitution. All nonzero elements in Fil are either plus ones or minus

ones, so only assignments. additions and subtractions are necessary. Assuming that

the current dimension of F11 is k by k, we proceed by considering each row IR in

turn, IR = k,...,1. We assign the value in WORK(IR) to ROWCOL(KEY(IR))

and update by an addition the value in WORK() in the row corresponding to the

predecessor of row IR. (i.e., WORK(P(IR))).

This approach requires knowledge of the ordering of the rows of F11 in the

order of last to first in triangulated form, which is precisely the reverse of our data
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100 101 102 103 104 105 106 107

1 1 1 -1
2 -1

3
4 -1 1 -1

5 -1 1
6 -1
7
8 -1

Figure 7.1: A Triangulated F11

structure PO(). To support this approach in our implementation, we could define

and maintain an additional data structure EO(), recording the "endorder- of F11 . If

we choose not to include an additional data structure, we could instead invert PO()

in situ whenever this reverse ordering is required, inverting it again when PO() is

next required. With either approach, it is convenient to make PO() and EO(). if

included, circular lists and to add a distinguished "artificial node", say IRA, which

is then used to locate both the first node (row) in preorder and the first node in

endorder. To illustrate, Figure 7.1 displays a triangulated form of F11 with row and

column labels.

Figure 7.2 presents the corresponding graph .-F,. By assuming the existence

of an artificial node IRA. we in effect change our paradigm of !F 1, to that shown in

Figure 7.3.

We may interpret the backsolve method as a labeling procedure on Qp11. In

this context, each nonzero in the right-hand side is interpreted as a supply or demand

at the corresponding node in 9F,,. The problem of solving Equation (7.6) is then

interpreted as one of finding a set of feasible flows defined on the arcs of gT,*
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101 Joe 14

01

Figure 7.2: A Basis Graph 9F,1

The backsolve approach to solving Etpiation (7.1) hasi the advantage of sim-

plicity, and when viewed as a labeling algorithm hias the Intuitive appeal of "visiting"

each node only once. The disadvantages are the nieed for either additional storage

(EO ( ) or addit iona I comnipitat ion (two in versions of P)O())

The right-handl sides of thlise prohlonms are invarialy %ciy sparse: thle density

is typically O.3/c or less. We are thus mrol ivated to explore alterinate approaches to

solving Equation (7.6). The solution approach just outlined requires the "visiting" of

every node in ~,.Although NVOJKINIIK() allows us to perform a simple INTEGER

comparison to deterniine If the current node has nionzero suplply or demand, we have

strong empirical evidenice that suggests that other approache,- ar-e more efficient. It

is import ant to keep in n iid thIiat this problem is very deep ly nested with in the

algorithmn 0171ic11i1r0, a11(1 iiiiist be solved tens of thjousandls of timies for a typical
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Figure 7.3: An Alternate Graph Paradigm F- 1

linear programming problem. Small changes in efficiency here have large effects on

the overall algorithm efficiency.

Since the right-hand sides are sparse. an alternative is to consider solving Equa-

tion (7.6) iteratively as a sequence of subproblems, each consisting of a right-hand

side containing a single nonzero element and a current partial solution, Iterating

through the nonzeros, we introduce the supply or demand at the corresponding node

in 9F ,, and then adjust the flows of all arcs appearing on the backpath of that node

as necessary.

Analyzing the worst-case performance of these two approaches, we see that the

first approach is linear in the number of nodes in !F, (rows in F11), while the second

approach is quadratic in the number of nonzeros in the right-hand side. For the

densities typically encountered in the problems we have studied, tile crossover point

at which the performance of the linear algorithim overtakes that of the quadratic is
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in the range of 400 to 1000 rows in F 1 . However, in the testing we have performed,

the worst-case analysis is pessimistic, and in practice the performance of the second

approach always dominates that of the first.

The second linear system of interest is

i 1 1 (7.7)

We interpret the problem as one of being given flows on the arcs of 1F,, and being

asked to find the necessary supplies and demands at the nodes. Analogies to each of

the approaches to solving Equation (7.6) may be found for solving Equation (7.7),

and our empirical evidence strongly suggests that an approach analogous to the

second method for solving Equation (7.6) is preferable for solving Equation (7.7).

Having made the design decisions for solving Equation (7.6) and Equation

(7.7), it is worthwhile to review our paradigm for 9F,,. Our preferred solution

techniques do not require a partial ordering of all rows of Fl. Rather, we require

partial ordering information only among each set of coupled rows, or, graphically,

among each disjoint component of 9F,,. Rather than introducing an artificial node,

we may treat each disjoint component as an independent entity. It is then conve-

nient to treat singleton arcs (either dynamic or static singletons) as self-loops, and

construct the predecessor function so that it forms a ring within each component.

Our graph paradigm of Figure 7.1 then becomes as shown in Figure 7.4. The data

structure representation of Figure 7.4 is then:

Node: 1 2 3 4 5 6 7 8
Predecessor: P() 1 -1 1 -4 -4 -.5 4 -8
Preorder Successor: PO() 2 3 1 .5 6 7 4 8
Depth: Do 0 1 1 0 1 2 1 0
Key Variable: KEY() 100 101 102 103 104 105 106 107
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10 0 104 i

Figure 7.4: The Implementation Paradigm for !F,,

G. FACTORED KERNEL UPDATE

The update of a rooted spanninlg tree representation of a pure network tri-

angulated basis which results from a column exchange is well understood and has

been treated thoroughly in tihe literature. Bradley', Brown and Graves [1977] give

an excellent account of such an update in an algorithmic setting very similar to the

one here. Hence, we will not repeat the details. In this setting, however, a column

exchange is but one of four possile updates required. We must also deal with row

exchanges, row an(l column additions and row and column deletions. Our general

approach will be to reduce these three cases to the column exchange case through

a sequence of operations which may be thought of as pre- arid post-processing. The

following three cases, along with the column exchange case, comprise the actions

required for UpdateFactoredKernel.

The first case we consider is the row and column deletion case, in which the

dimension of F11 decreases. It is convenient to limit row/column deletions to row/key

variable pairs. This is because removing a row/key variable pair always preserves
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nonsingularity of the remaining factored kernel, and because, with our choice of data

structures, given one member of the pair, it is easy to identify the other member

through the use of the KEY() array.

With our paradigm for 9F11 , the key variable for row IR corresponds to the arc

which connects node IR to its predecessor. Tue removal o' IR and KEY(IR) creates

a new disjoint component within 9F,, consisting of all nodes and the associated key

variables on whose backpaths IR and KEY(IR) appear. If IR is a leaf (a node which

is incident to a single arc), then the new disjoint component is null. Within the new

disjoint component, Do changes for all nodes, but P0 and PO() change only for the

first node in preorder. say IRFIRST, and the last node in preorder, say IRLAST.

For the first node in preorder, its predecessor becomes itself (with the sign bit used

to indicate arc orientation), forming a self-loop. The update is thus:

P (IRFIRST) = IRFIRST

Its depth is updated to be zero, and the magnitude of this depth change is recorded

for future use. For every other node in the new disjoint component, Do is reduced by

the magnitude of the IRFIRST depth change. Finally, PO() of IRLAST is changed

to the first node in preorder. restoring the local ring structure of PO(). The update

is:

PO (IRLAST) = IRFIRST

These updates can be accomplished in one pass through the data structures of the

new disjoint component. The structure of 9F,, is restored by changing PO() of the

predecessor of I to the index of the node which was the successor of IRLAST prior

to the update.
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The second update case is a row and column addition. Suppose IRADD is the

row (node) to be added to F11 (g 11 )- We wish to treat this update as a column

exchange. To do so, we first incorporate IRADD into the structure and associate

with it an imaginary ("logical") arc which forms a self-loop. We then perform a

column exchange with the new column, say JCADD, entering G9 F, and the logical

arc leaving 9F2,

The difficulty in incorporating IRADD into GF,, lies with the dynamic single-

ton arcs. 9F,, currently may have many singleton arcs which appear in our paradigm

as self-loops. If any of these dynamic singletons are actually incident to IRADD in

G, incorporating IRADD into GF1 requires changing their representation.

To illustrate this point, assume IRADD has the node label "9" and we wish

to incorporate it into the graph shown in Figure 7.4. Assume also thait arcs 103 and

107 are dynamic singletons which are actually incident to node 9; that is, arc 103

= (9,4) and arc 107 = (9,8). XVe first initialize the data structures for node 9 as

follows:

D(9) 0

P(9) 9

PO(9) 9,

which has the effect of placing node 9 at depth 0 as a disjoint component consisting

of a single node with a (logical) self-loop, as shown in Figure 7.5.

We then change the representation of arcs 103 and 107 from dynamic singletons to

doubletons. To do this, we change P(4) from -4 to -9 and P(8) from -8 to -9. We

then assert a partial ordering among those (formerly) disjoint components which

have been merged by the change in the representation of the dynamic singletons,
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10 Q' Q9 U> C)

lt lot 001 0 1 0

Figure 7.5: Initialization of Node 9 Prior to Incorporation into 9 F1

and retriangulate. This is accomplished by increasing the depth of each node in the

component by one, changing PO(7) from .1 to 8, and PO(8) from 8 to 9. This update

requires a single pass through the data structures of each affected component. After

incorporation, 9F, appears as shown in Figure 7.6. We may now complete the

update by performing a column exchange.

To identify the dynamic singletons which are affected by such an update, we

access the extrinsic problem data structures for row (node) IRADD. For each column

with a nonzero in row IRADD, we test whether or not that column is currently key

for some row in F11. If so, that column is currently represented in 9 F-, as a dynamic

singleton.

The final update case is the row exchange case. Suppose we want to replace

row IROUT with row IRIN. We treat this in two stages. The first stage is a row

and column deletion case, in which the node IROUT and the arc KEY(IROUT) are
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removed from 9F,,. To complete the update, we seek a column (arc) which may

be added to QF1 1 along with row (node) IRIN. We require an arc which is either

a static singleton, incident to node IRIN, or a doubleton, incident to node IRIN

and a node (other than IROUT) which is currently in 9F,,. We first consider arc

KEY(IROUT). If is satisfies the second condition (obviously, it cannot satisfy the

first condition), we designate it as the arc to be added. If not, we search among the

variables (arcs) in region (iii) of the tableau for such an arc. We know one must

exist, for otherwise B is singular. We select the first such arc found as the arc to be

added. We then perform the row and column addition case.

Recall that the action Is_-Factored_-KernelSingular() is required when we

have identified an arc (column) for removal from F,, and we are considering a

candidate arc to replace it. We want to determine if this exchange preserves the

nonsingularity of Fil. The fact that 9F,, is a rooted spanning tree provides the

necessary structure to support a simple test of nonsingularity. Assume JCOUT is

the (known) arc to be removed from 9F11 and JCIN is the candidate replacement.

In our paradigm, F11 is nonsingular if and only if each disjoint component of 9F1

is connected and contains exactly one cycle, which must be a self loop occurring at

the component's root (the root is the distinguished node in the component whose

depth is zero). The removal of JCOUT creates a new disjoint component which has

no root self loop. If the addition of JCIN fails to correct this, the proposed exchange

is singular.

The specific test is this: identify the nodes incident to JCIN using the original

problem data structures. Note that there may be zero, one or two such nodes. If

none of these nodes are currently included in the structure of gF,,(FJI), then the

proposed exchange is singular. For each such node which is currently included in

the structure of 9F,,, traverse the backpath of that node by recursively iterating
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the predecessor array P0 until either the root node of that component is found, or

until the "join" is located (the "join" is that node with largest depth which appears

on the backpath of both nodes incident to JCIN. The join exists only if JCIN is

incident to two nodes, both nodes are currently included in the structure of 9F,2 ,

and the two nodes are in the same disjoint component.). If JCIN is encountered

during this backpath traversal, the proposed exchange is nonsingular. Otherwise, it

is singular.

The action Find_-Column -toRemove(IOUT) is particularly simple, since,

as mentioned previously, we always remove row/key variable pairs. Thus, if IR is

the node to be removed, then KEY(IR) is the corresponding column to be removed.

Finally, the action Find_-Column -to-Add(IIN) requires searching among

the variables in region (iii) of the tableau. For each candidate arc, we invoke

Is-Factored-KernelSingular(). If the response is "FALSE", we have found the

column to be added. Otherwise, we continue the search.
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VIII. FACTORIZATION OF GENERALIZED
NETWORK ROWS

A. INTRODUCTION

The problem of interest remains:

mi: wy

(GNSC) s.t.: Fy: _b; F p by n
Ey 5 r; E M by n

-Iy 0 ; -I nbyn

where F, E, -I, w, b and r are as before. We now require that each column of

F have at most two nonzero elements, which may be of arbitrary sign. We may

associate a generalized network with F by defining a node corresponding to each

row i of F and an arc F corresponding to each column j of F. The arcs are defined

as:

(i,k) if Fj$O, Fkj0 and i<k<p
F= (i,0) if Fj0O, Fkj=O for all k5i<p

(0.0) if F2r=0 for all I<p

We let A = {F' . .... F " } ,A"= {1,...,p} and define the graph 1 = {A', A}. Arcs

of the form (i,0) are singleton arcs, sometimes called root arcs. Arcs of the form

(0,0) are null.

The most widely studied specialization of (GNSC) is obtained when the F-

type constraints are equalities and the E-type constraints are vacuous, resulting

in:
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min: wy

(GNE)
s.t.: Fy :_ b; F p by n

Ey:r E mbyn
-Iy O0; -I nbyn

Dantzig [1963] provides the seminal treatment of (GNE), identifying the im-

portant structure that leads directly to efficient primal Simplex-based algorithms

for its solution. Implementations have been reported by Glover, Klingman, Hultz,

Karney and Elam [1972. 1973, 1977, 1978, 1979] and Brown and McBride [1984].

(GNE) may be viewed as a generalization of (PNE), and the cost of such

generalization is a weakening of the properties which so strongly characterize (PNE)

and which lead to the efficient and elegant implementations. In (GNE), F is not

totally unimodular, and thus an implementation may not be restricted to integer

arithmetic. It is not possible to triangulate every primal Simplex basis extracted

from F by row and column permutations. The subgraph generated from the columns

of a primal Simplex basis no longer form a rooted spanning tree defined on the nodes

of g. Apparently, much has been given up in the generalization.

In fact, significant structure rf-iains in (GNE). A well known result, due to

Dantzig [1963], shows that any primal Simplex basis extracted from F can be put in

the form of Figure (8.1) by row and column permutations. Each square submatrix

component Bk is either upper triangular or nearly upper triangular with only one

element below the diagonal. Notice that if each Bk is strictly upper triangular, the

structure is analogous to that found in the (PNE) primal Simplex basis.

Interpreting the structure of Bk as a subgraph of !g, we find that when Bk

is upper triangular, the subgraph may be viewed as a disjoint component with a

single self-loop at the root node. exactly as in the (PNE) case. When Bk is not
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B 1

B 2

Bk

Bq

Figure 8.1: Near-Triangulated Simplex Basis Corresponding to (GNE)

upper triangular, the subgraph still forms a disjoint component with a single loop,

but that loop is no longer a self-loop. For example, Figure (8.2) shows a nearly

triangular Bk with row and column labels.

100 101 102 103 104 105

1 (1.08 .98
2 1 .99 1 .98
3 -1 -1
4 -1 1
5 1.01
6 -1

Figure 8.2: A Sample Nearly-Triangulated (GNE) Simplex Basis Com-
ponent

The resulting subgraph is shown in Figure (8.3). Such a subgraph is commonly

called a "one-tree", (an apparent oxymoron).

This structure allows the extension of the algorithm and data structures de-

veloped for (PNE), leading to efficient implementations to solve (GNE) (e.g., Brown

and McBride [1984]).

(GNSC) has received less attention in the literature than (PNSC). Hultz

and Klingman [1976] develop a primal Simplex-based approach to an equality-

constrained formulation of (GNSC). and report on an implementation which allows
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Figure 8.3: "One-tree" Subgraph

a single E-type constraint (Ilultz and Ioingman (1978)). McBride [198.51 develops

an algorithm for solving a generalization of (GNSC) in which complicating columns

as well as complicating constraints are permit ted, arid reports on an implementation

of that algorithm.

B. THE FACTORED TABLEAU

The algebraic development of the primal row basis D. the nonbasic rows D

and the factored tableau is exactly as shown in Chapter 7 and is not repeated here.

Note that F11, the factored kernel, may now be placed in the form shown in Figure

(8.1) by row and column permutations. The corresponding graph, 9F,, consists of

one or more disjoint components, each of which contains exactly one loop. The loop

may be either a self-loop, as in the case of the disjoint components of (PNSC), or
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it may be a "root loop- (a loop consisting of two or more nodes, all of which are at

depth zero in the component), as shown in Figure (8.3).

C. SEQUENCING COMPUTATIONS TO EXPLOIT COMMON SUB-

EXPRESSIONS IN COLUMN GENERATION

The sequencing of computations for column generation in (GNSC) is exactly

the same as that for (PNSC).

D. SEQUENCING COMPUTATIONS TO EXPLOIT COMMON SUB-

EXPRESSIONS IN ROW GENERATION

The sequencing of computations for row generation in (GNSC) is exactly the

same as that for (PNSC).

E. DATA STRUCTURES

Several proposed data structures for algorithms tailored to solve (GNE) have

been offered (Glover, Klingman and Stutz [1973, 1974], Elam. Glover and Klingman

[1979], Brown and McBride [1984]). Our implementation is based on the last, which

extends to (GNE) the data structures developed in Bradley, Brown and Graves

[1977] to solve (PNE).

We have seen the similarity between the structure of the disjoint components

that arise in the graph corresponding to Fil in (GNSC) and the structure of the

components in (PNSC). To develop a representation of these components, we wish to

extend the data structures developed for (PNSC) in a natural way. Knowledge of the

row ordering of F11 is again maintained in an INTEGER array PO(). dimensioned

from 1 to p. As before, it is convenient to make PO() a circular list defined on

each disjoint component. The unique correspondence between each row of F11 and

a distinguished column is maintained in the INTEGER array KEY(). dimensioned
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from I to (m + n). The conventions for KEY() are exactly as in (PNSC). The depth

array, Do, is defined exactly as before. However. as suggested by our diagram

in Figure (8.3), we adopt the convention of placing all nodes appearing on a loop

at depth zero, which is consistent with our definition of 'root loop'. F inally. a

representation of the predecessor function is needed, and we define P() as before.

For any row IR in the factored kernel, P(IR) > 0 indicates that the diagonal element

in the near-triangulation is the first non-zero factored element in its column.

F. SOLVING LINEAR SYSTEMS

Just as in (PNSC), the crucial steps in the generation of rows and columns of

the principal part of the tableau are solving the systems

-TF b (8.1)
-i1

and

F = b2  (8.2)

where z, and z2 are vectors of unknowns and b, and b are vectors of rationals. Our

approach for solving these systems closely parallels that developed for (PNSC).

,he data structures used to represent zj. z 2, b, and b2 are exactly the same

as in the (PNSC) implementation. To represent b, and b2, we use:

WORKI()

WORKMIK()

WORKNZ(),
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and for z and z2:

ROWCOL()

ROWCOLMK()

ROWCOLNZ().

The right-hand side sparsity-exploiting approach for solving (8.1) and (8.2)

developed in Chapter 7 may still be used, but two complications arise in the (GNSC)

setting. First, the ncnzero elements of Fi1 are no longer restricted to be plus and

minus ones. and may assume arbitrary values. Thus, we are not able to restrict all

arithmetic operations to additions and subtractions.

Interpreting (8.1) and (8.2) as problems of finding balancing supply and de-

mands (8.1) or feasible flows (8.2), we see that in (GNSC) we must allow for gains

and losses in tie flows over the arcs of GF1 . Because our formulation allows two arbi-

trary nonzeros in each column of F (rather than one arbitrary nonzero and one plus

one, for example), backward and forward substitution schemes require both multi-

plications and divisions. We may eliminate the need for divisions by pre-computing

both ratios of the nonzero elements in each arc. That is. if a column has nonzero

elements a and b in rows of F, we pre-compute the ratios 1 and '- We then substi-

tute the pre-computed value for the division whenever it occurs. Storing a pair of

DOUBLE PRECISION real numbers for every column of (GNSC) is wasteful, and

instead we define a single pointer for each column which points to the location of

the first of two DOUBLE PRECISION real values. The first is the value 2 and the

second is !. (Note that for singleton arcs, the values a and 1_ are stored instead.)

We compute and store only the unique ratio pairs for a given problem instance, and
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the number of such unique pairs is usually quite small: typically, a problem with

10,000 to 20,000 columns has only 30 to -10 unique ratio pairs.

The second difficulty is that the disjoint components of Fil may be nearly tri-

angular rather than triangular, and thus backward and forward substitution cannot

be applied directly. However, Dantzig [1963] shows that a variation of backward

and forward substitution may be used to solve (8.1) and (8.2). This method solves

the triangulated part of a disjoint component exactly as is done in backward and

forward substitution. When a root loop is encountered, the method requires two

calculations for each row or column of Fil corresponding to a node or arc on the

loop. The second calculation involves a term Dantzig [1963] called the -loop factor",

which is common value for every node (or arc) on the loop. Our implementation

uses this modified forward and backward solution technique for solving (8.1) and

(8.2), and we store unique values of loop factors in a DOUBLE PRECISION array

called GNROOT().

G. FACTORED KERNEL UPDATE

We first consider the actions required by Update-FactoredKernel.

Brown and McBride [1984] give an excellent treat:,lent of the update required

for a column exchange within a generalized network basis in an algorithmic setting

very similar to the one here, and thus we do not repeat that discussion. As in

the case of (PNSC). however, three additional classes of updates may occur in this

setting: row exchanges, culumn and row additions and column and row deletions.

\We again treat these three cases by reducing them to the column exchange case

through sequences of pre- and post-processing operations.

We again limit row and column deletions to row/key variable pairs. When

row IR and its associated key variable KEY(IR) are removed from F11, a disjoint
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component is created which has no loop. If IR and KEY(IR) do not appear on a root

loop of 9F,. a new disjoint component is created, just as in the (PNSC) algorithm.

If IR and KEY(IR) do appear on a root loop of !F,,, the resulting retriangulated

component contains a self-loop rather than a root loop. The update of the subgraph

data structures is very similar to those presented in Chapter 7.

Row and column additions require the incorporation of the incoming node into

the structure of iF,, prior to the column exchange, just as in (PNSC). The technique

for (GNSC) is exactly the same as in (PNSC). Once the new node has been added

to 9F-,, a column exchange operation is performed, with a logical arc (which forms

a self-loop on the new node being added to 9Fv,) being replaced by the new arc

(column) being added.

Finally, row exchanges are handled as a two-stage update, exactly as in (PNSC).

The task of determining the singularity of F11 (Is-Factored_-Kernel.Singu-

lar) is more challenging in (GNSC) than in either of the other two algorithms due

to the arbitrary nonzero elements. In each of the previous two algorithms, we have

been able to determine with certainty the singularity of F 11 indirectly. In the (GUB)

factorization. Fi = All, a signed identity matrix. Since All is orthogonal (i.e.,

A11  = I), F11 is perfectly conditioned (see e.g., Golub and Van Loan [1983] for

a discussion of matrix conditioning). In (PNSC), Fll may be triangulated, placing it

in a form with plus and minus ones on the diagonal. Thus, the determinant of F11 is

either plus or minus one. We may therefore determine its singularity by examining

the structure of 9 F,, rather than considering F11 directly. In either case, as long

as the accumulated round-off error in the current representation of the problem

is such that we can distinguish plus or minus one from zero, we may rely on the

structure of our representation of GF,, to deduce the singularity of F11. Thus, we

are able to discern singularity logically and need not resort to analytic methods.
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In (GNSC), however, we may not rely exclusively on the structure of !F,, to reach

conclusions about the singularity of F 11. It is not difficult to invent examples of

factored kernels corresponding to instances of kGNSC) which are ill-conditioned.

We expect ill-conditioning of F11 to lead to serious numerical difficulties, which

we wish to avoid if possible. Since we generally have freedom in determining the

structure of F11 and since our fundamental rank-one update of F11 is the column

exchange, we use a heuristic based on column exchanges to anticipate conditioning

problems. Recall in the column exchange update, a column has been selected for

removal from Fil and a candidate column has been identified as its replacement.

We use the backpath traversal method described in Chapter 7 to determine if the

proposed exchange maintains the required structure of G1,. If it does not, we can

conclude that the exchange renders F11 singular and we reject the candidate arc.

As we traverse the backpath, we perform calculations which, if the exchange

does in fact preserve the required structure of 1;F,,, will ultimately compute the

determinant of the disjoint component in which the replacement arc will appear if the

proposed exchange is performed. If the absolute value of the computed determinant

is too small (a decision controlled by a implementation parameter), we conclude that

the proposed update produces a submatrix of F11 (the submatrix corresponding to

the new disjoint component) that may be ill-conditioned, and thus F11 may itself

be ill-conditioned. We therefore reject the proposed candidate arc.

This approach is attractive because it is computationally inexpensive and,

based on our empirical evidence, it works well in practice. It is of course merely

a heuristic, since it is easily shown (e.g., Golub and Van Loan [1983)] that the

determinant can be a poor indicator of matrix condition. Further, we do not actually

compute the determinant of FI, but rather only the determinant of a submatrix of

F11.
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The remaining update actions, Find-.Column...to-Add(ICI) and Find..Col-

umn-to-Remove(ICI) are treated in a manner analogous to that in (PNSC).
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IX. COMPUTATIONAL RESULTS

A. INTRODUCTION

The algorithms developed here have been implemented and extensively tested

within the framework of a commercial-quality optimization system: the X-System

of Brown and Graves [1975]. This system employs the Graves mutual primal-dual

algorithm in a variety of large scale optimization applications, including linear, non-

linear, mixed integer and decomposed models. Although we report computational

results only for linear models, our factorizations are seamlessly integrated into the

X-Systerr and support all system features.

B. TEST PROBLEMS

The benchmark test suite is drawn from a wide variety of actual applications.

Table (9.1) provides a short synopsis of each model, quoting from the abstract

where a reference in the open literature is available. In some cases, several different

instances of models are reported. We selected these models because they provide

a representative sample of size, structure and taxonomy of contemporary real-life

applications of linear programming. For those models that are mixed integer, we

report solution statistics for the initial linear programming relaxation.

TABLE 9.1: Description of Test Suite Models

* GTE "The seven Telephone Operating Companies within GTE have adopted

an integrated business system called Capital Program Management System

(CPMS) to guide their 3 billion dollar per year capital planning. The system

includes a large scale mixed integer programming optimization system that
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optimizes the critical economic tradeoffs between maximizing the long-term

budget value of the firm's equity and satisfying shorter-term financial con-

straints, resource limitations and service objectives. Investment opportunities

for the next 5 years are modeled as 0-1 variables with alternative implemen-

tations for each. The objective is to maximize the net present value of the

capital portfolio. There are financial constraints on capital, internally gen-

erated funds, net income to common, and limits on resources such as labor

hours, lines installed, etc. There are also constraints that enforce logical re-

lationships among opportunities (such as, if choose A then must choose B)."

See Bradley [1986].

* INVEST "Capital allocation and project selection for a large multi-national

firm is modeled as a two-stage multi-year nonlinear capital budgeting problem

with over 40,000 integer variables. Innovative modeling yields subproblems

easy to solve, and optimality is achieved with a single iteration of the nonlinear

master problem." See Harrison, Bradley and Brown [1989]. The instance

reported here is a linear program subproblem of the two-stage model.

* TANKER "A crude oil tanker scheduling problem faced by a major oil com-

pany is solved using an elastic set partitioning model. The model takes into

account all fleet cost components, including the opportunity cost of ship time,

port and canal charges, demurrage and bunker fuel. The model determines

optimal speeds for the ships and the best routing of ballast (empty) legs, as

well as which cargoes to load on controlled ships and which to spot charter. All

feasible schedules are generated, the cost of each is accurately determined and

the best set of schedules is selected." See Brown, Graves and Ronen [1987].
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" GAS "Natural gas utilities supply about one fourth of the energy needs of

the United States. From wellhead to consumer, operations are governed by an

astounding diversity of purchase, transport and storage contract agreements

which enable complex physical distribution systems to meet future demands

no more predictable than next year's weather. Gas is a highly detailed op-

timization model which utilities use to plan operations and to justify such

plans to regulatory agencies is developed." See Avery, Brown, Rosenkranz

and Wood [1989].

" ODSM "A commonly occurring problem in distribution system design is the

optimal location of intermediate distribution facilities between plants and cus-

tomers. A multicommodity capacitated single-period version of this problem

is fo;mulated as a mixed integer linear program. A solution technique based

on Benders Decomposition is developed. ... An essentially optimal solution

is found and proven with a surprisingly small number of Benders cuts." See

Geoffrion and Graves [1974]. The instances reported here are decomposition

master problems.

" TAM "The annual decision on how much of the Air Force procurement budget

should be spent on the many different aircraft and how much should be spent

on the many different munitions is of great interest to many people. How

the Air Force staff develops information to support the decision has changed

over the years. Currently, a linear program is being used by the Air Force

Center for Studies and Analysis and is being tested by the Munitions Division

of the Plans and Operations Directorate (AF/XOXFM) for munitions tradeoff

analysis. The LP uses existing data and estimates on (1) aircraft and munition

effectiveness, (2) target value, (3) attrition, (4) aircraft and munition costs.
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and (5) existing inventories of aircraft and munitions. Other factors considered

are weather and length of the conflict." See Might [1987] and Jackson [19891.

" PHOENIX "The U. S. Army operates a fleet of over 7,000 helicopters to

perform combat and combat support tasks. Although newer, more technically

advanced helicopters have been and are being procured, the majority of the

fleet is still composed of helicopters that were built during the late 1960s

for use in South Vietnam. These older airframes are rapidly reaching the

end of their useful lives and must be (i) replaced by newer, more advanced

designs. (ii) gutted and refit or replaced by a combination of (i) and (ii). Army

force planners recognize that this problem can only be solved by a long-term

program and the commitment of billions of dollars. Phoenix is a software

system employing mixed integer linear programming to help Army aviation

staff and officers develop long- range helicopter modernization plans." See

Clemence, Teufert, Brown and Wood [1988J.

" AMM04H "A four-commodity transshipment model for delivery over time of

military products from production and storage locations to overseas locations

to support theater operations is developed. The model covers five physical

echelons, including production plants, storage depots. ports of embarkation,

ports of debarkation and geographic field locations. Road, rail, sea and air

transportation are modeled, and product demands are time- phased. Capaci-

tation occurs primarily on sea and air links, and as throughput capacities on

transfer points, requiring replication of some echelons. The objective of the

model is to minimize deviation from on-time deliveries." See Staniec [1984J.

" GK A weekly multi-plant production/inventory/transshipment linear pro-

gram from a consumer products industry is developed. The model is meant
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to guide weekly processing and packaging decisions. Production consists of

two stages: basic products are produced and then packaged into different-

sized containers to yield finished products. Processing lines typically produce

a subset of the basic products and have limited capacity with overtime charges

for weekend shifts. Packaging lines for finished products are similar. In-house

inventory capacity is limited although outside storage is available at additional

cost. Inter-plant shipments are made by rail or truck. See Wood [1989].

C. METHODOLOGY

We wish to evaluate implementations of our three algorithms on the basis

of computation time and computer memory requirements. Since each algorithm is

simplex-based, the formal theory of algorithmic complexity provides no basis for

preferring one to another, since in the worst case none enjoys a measure of running

time that is polynomial in the size of the problem specification (see e.g., Garey

and Johnson, [1979] for a discussion of algorithmic complexity and Klee and Minty

[1972] for an analysis of the Simplex method). Thus, we are led to consider "typical"

performance by gathering empirical evidence on the performance of the algorithms

solving "typical" problems.

We prefer an implementation that is both fast and requires little computer

memory. Most researchers who have reported on implementations of related al-

gorithms have been concerned primarily with execution speed, and certainly it is

important. However, we have seen in our algorithmic setting that once high speed

storage has been allocated for the problem representation and for the program code,

all remaining memory is available to store the representation of the explicit trans-

formation kernel and the factored kernel. If the solution trajectory is such that their

combined size never exceeds available memory, we succeed in solving the problem
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If not, we fail. When success or failure depends on the total storage requirements

of the inverse representation, we may be willing to sacrifice execution speed in ex-

change for an economical representation of the inverse. This is a classic theme in

computer science and software engineering, and we believe its importance in this

context has been largely overlooked.

We will be comparing the performance of four separate implementations. The

first is an unadorned version of the X-System, which implements the Graves mutual

primal-dual method as presented in Chapter 2. There is no underlying factorization.

We refer to this implementation as "X". The second implementation is the GUB

factorization presented in Chapter 6, and referred to as "GUB". The third is the

pure network factorization of Chapter 7, referred to as "PNET", and the last is the

generalized network factorization, called "GNET", of Chapter 8.

The ideal approach for this computational study, would be to develop four

equivalent formulations of each model, each customized for it. particular implemen-

tation with the goal of inducing a large factored row set of the appropriate type.

This approach is a consistent theme in the literature dealing with specialized al-

gorithms and one that we strongly endorse. Alternate formulations of a model are

often available, and it seems sensible to choose one that as strongly as possible

exploits the strengths of the solver.

However, all of the models used here are "off-the-shelf" in the sense that they

were developed at various times by various modelers, and we cannot afford to develop

alternate formulations. Thus, our approach is to preserve a single, unfactored rep-

resentation of each model, and attempt to identify favorable row structures through

the use of heuristics. Our procedure is based on the work of Brown and Thomen

[1980], Brown and Wright [1983] and Brown, Mciride and Wood [1985]. The heuris-

tics are greedy and myopic in the sense that they initially consider the entire row
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set of the problem, and discard one row at a time without backtracking until the

remaining set satisfies the desired row factorization. This may easily result in the

confounding or destruction of structure intended or perceived by the modeler. While

our approach yields interesting and useful observations about the implementations,

it is in some ways a poor substitute for the customized model method.

Table (9.2) tabulates the important structural information concerning the

model instances we will be solving. The column headings may be interpreted as

follows: m is the total number of structural constraints (note that this use is differ-

ent from that in the problem specifications of Chapters 6, 7. and 8), n the number

of variables, PGIUB the number of GUB rows identified by the heuristic. pp the

number of pure network rows, PGN the number of generalized network rows and NZ

the number of nonzeros in the technological coefficient matrix of the model. For

example, consider the first model in Table (9.2), GTE. The structural constraints

contain 57,563 nonzeros, and the model consists of 6,624 variables. When viewed

as an unfactored mutual primal-dual model, it consists of 960 explicit constraints

and 0 factored constraints. When viewed as a GUB factorization, it consists of 909

factored (GUB) constraints and 960-909 = 51 explicit constraints. Similarly, when

viewed as a pure network factorization (PNET), it contains 909 factored rows and 51

explicit rows. Finally, when viewed as a generalized network factorization (GNET).

it consists of 922 factored rows and 38 explicit rows.

D. COMPUTATIONAL RESULTS

We solved each of tnese problem instances on an IBM 3033/AP under the

VM/CMS operating system using VS FORTRAN 1.4.1. A virtual machine size

of six megabytes was used, simply because it is the largest size normally available

to us. It is the nature of a time-shared system that measurements of processing

151



times are somewhat imprecise due to system load factors and accounting techniques

for system processing overhead. We have attempted to mitigate these effects by

performing our experiments during periods of low system usage.

Table (9.3) displays the solution times for each of the test problem instances by

each of the four implementations. An "*" indicates that the solver failed to solve the

problem instance. Such a failure occurred because the storage requirements for the

explicit transformation kernel representation exceeded the memory available and the

solver terminated gracefully. Solution times represent only the CPU time required

to solve the problem, and exclude the initial problem input, the time required by

the factorization heuristic to identify the factored row structure and the final output

to record the solution. All figures are in CPU seconds.

The formulations of three of the test problems were strongly influenced by the

design of the target solver: the TANKER model possesses a strong GUB structure

since it contains a set of schedule selection constraints for each ship (i.e., from a set

of candidate schedules, select at most one). The AMMO4H model is a multicom-

modity capacitated transshipment problem and is thus best suited to a pure network

factorization. The PHOENIX10 model design was shaped by the generalized net-

work factorization paradigm. The nature of the factored row structures shown in

Table (9.2) supports this assertion. In the TANKER model, the factored pure net-

work rows are exactly the same as the the factored GUB rows, and the heuristic

constructs a generalized network factored row set by identifying one additional row

to be paired with each GUB row. The AMMO4H model may be viewed as a CUB

factorization with a relativ.lv modest GUB set consisting of the joint capacitation

constraints, or as a pure network factorization with a relatively large pure network

(PN) factored row set. In the PHOENIX1O model, the dominant structure is clearly

the generalized network row structure.
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As we expect, the factorization is most successful when the model is wed to the

solver. Although we are surprised to find the performance of (PNET) competitive

with (GUB) on the TANKER model, (GUB) clearly dominates the X and GNET

solvers. Similarly, (GNET) dominates on the PHOENIX1O model and (PNET) on

the AMMO4H model. We would be disappointed if the results were otherwise.

We see evidence in Table (9.3) to suggest that the approach of using heuristics

to automatically identify factored structure has its pitfalls. In a number of problem

instances, although our heuristics identify significantly larger factored sets as we

progress from the base system to (GNET), we see little improvement in computation

times (INVEST, OI)SM1. TAMS). In fact. we see in the TANKER model that

the temptation to confouid the modeler's intended GUB structure by specifying a

generalized network factorization leads to disastrous consequences, even though this

tactic doubles the size of the factored row set. Interestingly enough. when we apply

the (GNET) solver to the (GUB) factored row set, we are able to solve the problem

in 16 5 CPU seconds. This suggests that the "quality" of a row factorization is not

completely specified by size alone

We are encouraged by the observation that the transition from the basic system

to (GUB) to (PNET) seldom degrades solution timeb, even when doing so yields

little gain in the number of additioial factored rows. This seems to contradict

popular folklore, which suggests that computation times worsen as the transition

from unadorned Simplex to (GUB) to (PNET) is made unless the transition is

accompanied by a substantial increase in the size of the factored portion of the

model. In fact. computational testing reported by others is frequently limited to

models in which the number of explicit rows is in the range of one to twenty (see

e.g.. Chen and Saigal [1977]. Glover, Karney, Klingman and Russell [1978], Glover

and Klingrnan r1 9S1 Our results are all the more remarkable given the the lack of
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guidance from the modeler for the -intended" row factorization. We note, however,

that results are mixed for the transition from (PNET) to (GNET), and it seems

clear that the applicability of the (GNET) factorization is not as general as that of

(PNET).

Finally, we observe that in several models it is factorization that separates

success from failure in solving the problem with a given allocation of computer

resources. This fact alone may be reason to consider this approach in practice.

Our second interest with respect to computation is in the memory requirements

of our algorithms. Our design strategy allocates memory to the data structures

which represent Fl1 so that we may successfully represent the largest dimension of

factored kernel that may' possibly arise. Limited memory remains to store the repre-

sentation of Aj-, the explicit transformation kernel. During the solution process, if

we encounter a representation of A- which requires more memory than is available,

failure occurs. We measure the size of the computer representation of Al 1I and the

amount of available computer storage in terms of the elements of ,4-1 that can be

stored. The number of bytes per element varies according to the size of the problem

(this has to do with the FORTRAN data types INTEGER 2 and INTEGER*4). but

is generally 28 bytes per element. Table (9. 1) lists for each problem instaice/solver

pair the maximum size of the .4j representation encountered during the solution.

measured in units of number of elements. An asterisk (') indicates that the number

shown equals the maximum number of units of storage that were available, and thus

failure occurred.

We see that generally the representation of the maximum size of the explicit

transformation kernel decreases as the generality of the factorization increases. Re-

calling the definition of the explicit transformation kernel:
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A41 = (Ei- E, 1F- 1F12)- 1

this trend is as we would expect. As the generality of the factorization increases,

we expect the size of the factored component to increase and the si7e of the ex-

plicit component to decrease. Each potentially binding explicit row which may be

converted to a factored row by adopting a more general factorization reduces the

dimension of the resulting representation of A-'. Also, the density of the term

-E 1 FIj'F 12 generally increases as the complexity of the structure of Fj' increases.

Assuming the dimension of F11 is k by k, the number of nonzeros in F 1j' in the GUB

factorization is k. In the pure network factorization, the number of nonzeros in FC,1

may be as large as ~,and in the generalized network factorization, the number of
2

nonzeros in FCj1 may be as large as n2 . We note that (GNET) again provides several

exceptions to the general trend in Table (9.4).

It is the dynamic nature of our factorization algorithms which marks this

work as a departure from previous research. Table 9..5 illustrates the significance

of this point. The first column lists the number of constraints which are binding

at optimality, and the second column expresses this as a percentage of the total

number of constraints in the problem instance. The resuls shcwn here are typical

of real-world large-scale models. It is isuallv the case that many constraints are

not binding at optimality, and there are computational advantages to be gained by

exploiting this fact.

Columns 3, 4 and 5 of Table 9.5 list for (GUB), (PNET) and (GNET) respec-

tively the number of explicit constraints that are binding at optimality. Since in

each implementation, binding factored constraints are handled more efficiently than

binding explicit constraints, we see that the computational success of our dynamic
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factorization algorithms is due to the fact that even in large model instances, we

are able to limit our attention to a relatively small number of explicit constraints,

usually on the order of a few hundred or less. While this is well beyond the size of

previously reported implementations, our results show that it is quite manageable.

It is useful to establish a criteria for comparing and contrasting the perfor-

mance of the algorithms which accounts for both execution time and storage re-

quirements. Although more sophisticated models could undoubtedly be developed,

we offer a simple model which we feel captures the essential features we wish to

consider. Define

f(s,t) = s" t

where s is the total computer storage (measured in megabytes) required to solve

a problem instance (including program code, original problem data, tableau rep-

resentation, factored kernel representation and explicit transformation kernel rep-

resentation) and t is the execution time (measured in CPU seconds). f(s,t) is

monotonicallv increasing in s and t, and in a crude fashion it captures the essential

features of the way in which computer resources are often marketed commercially.

We will use f(s, t) as a measure of performance. Table (9.6) displays f(s. t) for each

of the problem instance/solver combinations. "' indicates that the solver failed to

solve the particular instance.

We observe that the trend as the transitions are made from base system to

(PNET) is a decline in f(s, t). It is apparent that (PNET) is a versatile imple-

mentat;on, performing extremely well on models with highly favorable structure

(AMMO4II, KG4, GASPNA. GASPNC) and comparing favorably with (GUB) and
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(GNET) on every other model. The performance of (GNET) is generally quite com-

parable to that of (PNET). It appears to be about 15-20% slower than (PNET)

when it is used to solve a pure network factorization (GASPNC, AMMO4H). Our

row elimination heuristics are usually effective in identifying a favorable factored

structure, but the computational results on the TANKER model clearly illustrate

the limitations of this approach. (GNET) apparently requires a more sophisticated

and careful user than do (GUB) or (PNET), and in this sense it is perhaps a more

specialized algorithm. The evidence shown here indicates that (PNET) is a strong

candidate for use as a general implementation, and need not be viewed as a highly

specialized implementation suitable only for rare model instances. For the models

studied here, we have progressed well beyond the stage of solving instances with

only a handful of explicit rows.
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TABLE 9.2: Summary of Problem Suite Dimensions

m n PGUB PPN PGN NZ

GTE 960 6,624 909 909 917 57,563

INVEST 1,338 11,989 941 1,101 1,168 36,829

TANKER 83 7,598 33 33 66 30,890

GAS PN A 6,848 27,884 4,345 5,934 5,976 36,702

GAS PN C 3,794 15,362 2,658 3,418 3,420 19,701

GAS PN E 1,184 5,102 434 877 883 7,355

GAS GN A 6,848 27,88.1 4,484 5,142 5,976 36,702

GAS GN C 3,974 15,362 2,664 3,084 3,420 19,701

GK 2 3,819 17,811 1,265 2,578 2,585 34,809

GK 3 5,728 27,493 2,295 3,867 3,876 54,289

GK 4 7.636 37,139 2,428 5,156 5,167 73,766

ODSM1 3,02:3 11,568 523 540 558 21,532

ODSM2 591 22,211 490 490 490 42,827

TAM1 91 389 22 28 34 1,212

TAM2 1S0 1,201 42 54 66 6,869

TAI13 269 2,883 63 81 99 21.356

TAM4 211 1,327 59 77 98 6,954

TANI5 438 10,969 102 132 162 93,96.1

TAN8 420 6,10.1 118 154 196 49,376

TAM12 629 17,793 177 231 295 16.1,947

PIIOENIX10 1,618 6,88' 206 220 1,153 13,818

PIIOENIX30 4,305 4,297 293 303 3,605 16,441

AMMO 411 13,963 83,497 1,071 12,892 12.892 166,713



TABLE 9.3: Solution Times in CPU Seconds

X GUB PNET GNET

GTE 48.4 33.0 37.2 38.3
INVEST 21.6 17.1 17.1 17.0
TANKER 141.8 20.5 17.7 43.8
GAS PN A 413.2 527.7
GAS PN C 56.9 53,7 35.8 31.3
GAS PN E 146.8 17.4 20.7
GAS GN A * * * 521.6

GAS GN C 52.9 50.9 37.6 33.7
GK 2 27.1 22.8 21.3 19.4
GK 3 62.4 58.4 50.4 45.1
GIK 4 * 380,9 182.2 186.6

OL) 1:\1 8.7 12.1 9.3 8.8

ODSN12 3-1.1 32.5 32.8 30.4
TAMI 0.7 0.7 0.7 0,7
TAN12 2.5 1.7 2.2 2.1
TAM3 17.8 1-1.1 14.3 13.5
TAMI 1.2 1.2 1.5 1.7
TAM5 317.1 300.9 307.8 269.6
TANIS 93.3 81.8 83.8 77.4
TAMI 12 660.9 660.6 621.1 480.9
PIHOENIX10 68.6 43.7 30.4 10.7

PtIOENIX30 * * * 495.1

tMMO t 11 NA t 1,241.3 253.9 288.4

o NA indicates problem instance not run.

t This problem was run on an 113M 3081K under the MVS operating system using

VS FORTMAN 1.1.1 in a 32 megabyte virtual machine using an advanced starting

solution. The solution time shown is adjiisted to account for the approximate dif-

ference in cornpi'0ng !rpced between (he I[BM 3(81K and the IBM 30:3/ AP.!1 .5!



TABLE 9.4: Number of Elements in Explicit Transformation Kernel Rep-

resentation of Optimality or at Failure

X GUB PNE GNET

GTE 11,571 221 214 196

INVEST 8,380 682 654 521

TANKER 2,256 415 312 81

GAS PN A *132,995 * 130,883 35,395 65,558

GAS PN C 21,912 14,765 260 364

GAS PN E *174,482 111,821 4,808 4,312

GAS GN A *132,995 *130,883 *127,780 65,081

GAS GN C 17,966 8.017 1,358 608

GK 2 8,280 2,719 221 184

GK 3 13,991 7.771 388 310

GK 4 *110,33.1 79,616 6,532 9,155

ODSM1 1,322 861 259 421

ODSM2 418 3 3 3

TAM1 1,713 1.231 8.11 1,165

TAM2 3,042 2.078 1,444 1,610

TAM3 10,430 8,326 5,305 6,525

TAM4 1,489 1,302 867 1.332

TAM5 29.661 23,790 15.689 18,737

TAM8 19,5,15 14,886 8,351 11,182

TAM12 37,716 28.,93.5 16,097 20,.486

PIIOENIX10 73,737 38,705 21.879 1,458

PHOENIX30 *153,781 "151,746 *148,348 11,523

AMMO 4H NA 122,085 23 23
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TABLE 9.5: Summary of the Number of Binding Explicit Constraints at

Optimality

Total Percent CUB PNET GNET
Binding

GTE 552 57.5 19 18 18

INVEST 758 56.7 199 19.4 162

TANKER 50 60.2 31 30 9

GAS PN A 3,051 44.6 292 319

GAS PN C 2,337 61.6 8.19 66 91

GAS PN E 897 75.8 572 88 81

GAS GN A 3,045 4-1.5 352

GAS GN C 2,331 58.7 863 402 88

GIK 2 1,950 51.1 1,011 9:3 90

GK 3 2,912 50.8 1,360 110 111

GK .1 4,119 53.9 2.477 36:3 356

ODSM1 297 9.8 53 49 47
ODSM2 448 75.4 219 215 0

TAM1 46 50.5 4.1 32 :35

TAM2 87 48.3 77 51 61
TAN3 118 55.0 1131 97 107

TAM. 121 57.3 110 59 S1

TAM5 252 57.5 228 170 186

TAMS 276 65.7 2:38 110l 174

TAMI2 413 65.7 355 208 2.52

PIIOENIX1( 1,085 67.1 1,083 1,082 77

PIIOENIX30 3,477 80.8 * * 109

AMMO 411 2,889 20.7 2,882 7 7



TABLE 9.6: f(s,t) in Megabyte seconds

X GUB PNET GNET

GTE 84 47 54 64

INVEST 25 16 19 20

TANKER 112 15 13 42

GAS PN A * 926 1,771

GAS PN C 73 58 27 31

GAS PN E * 509 9 14

GAS GN A * 1,774

GAS GN C 62 -15 30 34

GK 2 27 19 18 21

GK 3 90 74 60 66

GK 4 * 1,368 309 387

OI)SMI 4 6 5 7

OI)SM2 ,9 47 48 .53

TAMI 0.1 0.1 0.1 0.1

TAM2 1 I 1 1

TAM3 14 10 9 12

TAM4 0.1 0.] 0.1 0.1

TANI5 750 662 614 622

TAM8 133 106 95 110

TAN112 2,376 2,213 1,882 1,632

PHOENIX1O 169 65 32 7

PIIOENIX30 * * 693

AMMO 411 NA 9,093 933 1194
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X. CONCLUSIONS

We have presented three dynamic row factorization algorithms for solving

large-scale linear programs. Although each may be used to solve any LP instance.

each is designed to exploit a particular model row structure: generalized upper

bounds (GUB), pure network rows (PNET) or generalized network rows (GNET).

Previous research by others generally suggests that specialized algorithms such

as those presented here are useful only when the factored structure completely dom-

inates the structure of the model instance. There are reports of algorithms for

solving problems having a single unfactored (explicit) constraint (Hultz and Kling-

man [1978], Klingman and Russell [1978]). When implementations are reported.

problem suites are limited to instances having a very small number of explicit con-

straints, typically in the range from one to twenty (Chen and Saigal 1977, Glover.

Karney, Klingman and Russell [1978], Glover and Klingman [1981]). The consensus

seems to be that such algorithms are appropriately viewed as specialized algorithms,

useful only for solving very special problem instances.

Our experience strongly refutes this view. W\e find the performances of our im-

plementations of the dynamic factorization algorithms are competitive with that of

a commercial-quality optimization system on every model instance we have tested.

This is particularly remarkable for two reasons. First. our test suite consists of

models developed by skilled modelers specifically to exploit the capabilities and

characteristics of the solver with which our implementations are competing. Sec-

ond, we must select the row factorizations without the benefit of guidance from the
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modeler, relying instead on useful but imperfect heuristics. Despite these computa-

tional handicaps, our tests show our implementations to be at least as efficient as a

well-respected commercial-quality optimization system.

Our development has stressed the similarity between the algorithms and the

natural extension which leads from one to the next. This is in contrast to the devel-

opment that has been reported for similar, non-dynamic algorithms (e.g., Dantzig

and Van Slyke [1967], Klingman and Russell [1978] and Hultz and Klingman [1978])

in which the specifics of the individual algorithm obscure the generality of the ap-

proach. The conceptual difference between our algorithms is seen to be largely

isolated to the structure of a single algebraic entity, the factored kernel. By abstract-

ing the structure of the factored kernel and concentrating on the general algorithm

design, we demonstrate the versatility and flexibility of this approach.

We are gratified to find that the modularity suggested by the algorithmic

development can be realized in an implementation design. We succeed in developing

a software suite which displays a "single-system image". The modularity of the

algorithm allows the definition of an "abstract data type" (see, e.g., Aho, Hopcroft

and Ullman [1974]) which isolates the data structures and update procedures for the

factored kernel from the rest of the implementation. Each factorization is seamlessly

integrated within the system design, presenting a single design image.

The early 1980's produced a great deal of research in the area of automatic

identification of special structure in LP models (see, e.g., Gunawardane and Schragc

[1977], Glover [1980]. Schrage [1981], Brown, McBride and Wood [198.5] and Bixby

and Fourer [1986]). We have incrporated the most useful of these ideas into our

implementation, and we have what we believe to be the first implementation which

supports the automatic identification of factored row sets. This capability may
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be used to identify new factored structure or to validate or augment a modeler-

provided recommendation. Our computational experience indicates that while this

approach is not as promising as perhaps first envisioned, it is nonetheless a valuable

tool. When faced with the choice of either solving an unfactored model instance

or automatically identifying a factored structure and then using the corresponding

solver, our results show that the latter is nearly always to be preferred. Our results

seem to suggest, however, that in addition to quantity of factored rows, the issue

of quality of factored rows exerts influence on the performance of the factorization

algorithms. While not well understood, it is clear that the myopic approach of

our heuristics is no substitute for the modeler's guidance in identifying factored

structure.

Several areas suggest themselves for further research. Certainly additional fac-

tored structures can be examined. For example, one approach for treating factored

column structures ("complicating columns") is to allow the partitioning of rows into

the categories "factored" and "explicit" to vary as the algorithm progresses. That

is, allow factored row set membership to be determined with respect to the column

structure of the currentlv nonbasic variables rather than N'itY respect to the column

structure of all problem variables. White conceptually simple, such a generalization

seems to present significant algorithmic challenges.

General algorithms are sometimes useful in specialized contexts. For example,

processing networks (Koene [19821) are network models which allow proportional

flow restrictions on the arcs entering or leaving some nodes. One formulation of such

a model results in a pure or generalized network structure with a set of complicating

columns. Chen and Engquist [1986] propose a primal partitioning algorithm for

solving processing network problems. An alternate formulation yields a pure or
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generalized structure with complicating rows, and we note that this is precisely the

structure we seek for our network factorizations.

The multicommodity capacitated transshipment problem (MCTP) has been

the subject of much reseaich over the years, and a number of specialized algorithms

(see, e.g., Assad [19781 or Kennington [1978]) have been proposed to solve it. Adopt-

ing a general perspective, MCTP may be viewed either as a GUB model or as a pure

network model with side constraints, and either view might be preferred depending

upon the dimensions of the particular instance under consideration. Our compu-

tational experience indicates that the pure network factorization algorithm offers a

powerful technique for solving MCTP. As an experiment, we customized our (PN)

implementation to exploit the special structure of the side constraints in MCTP. It

is interesting to note that in our scientific computing environment, we observed no

difference in solution times between the customized version of (PN) and the original

implementation.

Finally, all the approaches we have considered assume the prior existence of a

specific structure in the factored rows which in turn determines the structure of the

factored kernel. An extension of this general approach is to relax the requirement for

strict conformance to a specific structure. Instead, we might allow the factored row

structure to be "'nearly" homogeneous. For example. we may allow a small number

of complicating columns to disturb what is otherwise a factored pure network row

structure. We then expect the structure of the factored kernel to be dominated by

that induced by the predominant row structure, with only occasional complications

due to the exceplional row structure. We allow for this exceptional structure in

the factored kernel by identifying it "on-the-flV' as the algorithm progresses, and

treating it in an appropriate mariner. This approach may be thought of as a hy-

brid between the factored mcthod developed here and dynamic ba-is triangulation
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methods (see, e.g., Iellerman aAd Rarick [1971] and r1972], Saunders [1976] and

McBride [1980]).

Dynamic extrinsic factorization is subsumed if we activate functions in the

update analogous to the secondary exchanges now employed. Essentially all that

has to be done is ensure that successive factored components retain their stipulated

special structure. In our estimation, this will only be justified in cases where the

model structure is amenable, and quite likely will require some model-specific fea-

tures to perform well on difficult models. We have limited our experimentation to

those static extrinsic cases which are believed to ',e most useful.
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