AD-A214 568

S EE
V. T

AR ¢4 S
NAVAL POSTGRADUATE SCHOOL

Monterey, California

DISSERTATION

DYNAMIC FACTORIZATION IN LARGE-SCALE
OPTIMIZATION

by

Michael P. Olson

June 1989

Thesis Advisor: Gerald G. Brown

Approved for public release; distribution is unlimited

DTIC

ELECTYE ¢
NOV 221389

8

M
%

N
.
W
boret
-
R
pac !
<

SECURITY CLASSIFICATION OF THIS PAGE

e 5

REPORT DOCUMENTATION PAGE

Form Approved
OMB No 0704-0188

1a REPORT SECURITY CLASSIFICATION

b RESTRICTIVE MARKINGS

23 SECURITY CLASSIFICATION AUTHORITY

2b DECLASSIFICATION / DOWNGRADING SCHEDULE

3 _DISTRIBUTIO 'A{AILABIUTY F REPQRY
Approve or Public release;

Distribution is unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S)

S MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION

Naval Postgraduate School

6b OFFICE SYMBOL
(If applicable)

55

7a NAME OF MONITORING ORGANIZATION

Naval Postgraduate School

6¢ ADDRESS (City, State, and 21P Code)

Monterey,

California 93943-5000

7b ADDRESS (City. State. and ZIP Code}

Monterey, California 93943-5000

Ba NAME OF FUNDING /SPONSORING
ORGANIZATION

Rb NFFICE SYNMBOL
(If applicable)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBEPR

8¢ ADDRESS (Crty, State, and 21P Code) 10 SOURCE OF FUNDING NUMBERS

WORY UNiT
LCCESSION NO

PROGRAM PROJECT TASK
ELEMENT NO NO NO

11 TITLE (include Security Classification)

DYNAMIC FACTORIZATION IN LARGE-SCALE OPTIMIZATION

12 PERSONAL AUTHOR(S)
OLSON, Michael Paul

T30 TIME COVERED "2 DATE OF REFORT (vear, Month Day) |'5 PAGE (O 'e
Ph.D., Dissertation} FrROM. 10 1989, June 185

t3a TYPE OF REPORT

16 SUPPLEMENTARY NOTATION The views expressed in this thesis are those of the
a.thor and do not reflect the official policy or position of the
Department of Defense or the U.S. Government

17 COSat: CODES 18 SUBJECT TERN'S (Continue on reverse f necessary and dentify by biock numberj

FELD GROUF SUB GROUP Mathematical programming, linear programming,

factorization, Dynamic Row Factorization

19 ABSTRALT (Continue on reverse f necessary and identify by block number)

> Factorization is an approach to linear programming (LP) in which the
algebraic elements of the LP tableau are organized in such a way that a
lerge portion of the tableau may be represented implicitly and generated
from the remaining explicit part. In dynamic row factorization, the
row structure of the LP model instance influences the algebraic structure
of the tableau, and the dimension of the algebraic elements may change as
the solution progresses.

We present three algorithms motivated by this approach, each resulting
from a different LP model row structure: generalized upper bound (GUB)
rows, pure network rows and generalized network rows. We describe
implementations of all three algorithms, specifying data structures for
tableau and basis inverse representations and detailing procedures for

manipulation and upcdate of these representaticns.

SostER A ST ARLTELCT SIE D T COA AT
(8~ eiiinvooen (Jeew oo (3oo- wo | Unclassified
Cia TATT T BISO B L L L ELET VL neiuge AreaCode o o
Gerald G, Brown 408-64€-2140 55Bw
DD form 1473, JUN 86 Pee o useditions are chsoiete CLELE T CLATE A Lo T ek

SRR EEIS RIS ISV

1

SECURITY CLASSIFICATION OF THIS PAGE

Block 19. Abstract (cont)

Computational results are presented for a number of real-world
models taken from a variety of applications and industries. From each
model, one or more particular instances are solved by each of our three
implementations and by a commercial-qualtiy mathematical programming
system. Previous research on related algorithms by others suggests
that these algorithms are properly viewed as specialized approaches,
useful only on narrow classes of problems. Our computational results
strongly refute this view, and instead suggest that each algorithm is

superior to the general simplex approach on a wide range of problem
classes and structures.

Accesstion For

b — o - —

NTIS GORA&I iv 4
DTIC TAB dJ
Unanrnounced d
Justificntion

——e

By

Distribtutien/

r‘Availahxlitv Codqs
“Tlavail and/or

Dist ‘ Special

T
v

DD Form 1473, JUN 86 v - SE_Ub1l v

[S TR

i1

Approved for public release; distribution is unlimited.

Dynamic¢ Factorization in
Large-Scale Optimization

by

Michael P. Olson
Commander, Supply Corps, United States Navy
B.S.. United States Naval Academy, 1974
M.S., Naval Postgraduate School, 1988

Submitted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY IN OPERATIONS RESEARCH
from the

NAVAL POSTGRADUATE SCHOOL
June 1989

Author: _ W\ ! J/e;j\& P ()‘ Q Sao

Michael P. Olson

Approved by /

. Gcr.i G. Brown William Grage
rofessorpf Operations Research Professor of Mathematics
Dissertation Sapeyisor

ﬁ? // /(Aé, @c@/\t\ D. he 5’\«&

Putricia AT Jucobs Richard D. McBride
Prefessor of Operations Research Professor of Decicion Systems

1nve of Southern California
A

K)c/«— 2

~

R. Kevin Wood

Yo

veratuions Research

Associa, "reizssor of
5
Approved by y%« M—ﬂé'[

Peter Purdue, Charrman. Deparunent of Operations Rescardh

Arproved v %W»JZM&[
N - D,

Flarris o AR TN I)g S

ABSTRACT

Factorization is an approach to linear programming (LP) in which the algebraic
elements of the LP tableau are organized in such a way that a large portion of the
tableau may be represented implicitly and generated from the remaining explicit
pari. In dynamic row factorization, the row structure of the LP model instance
influences the algebraic structure of the tableau, and the dimension of the algebraic

elements may change as the solution progresses.

We present three algorithms motivated by this approach, each resulting from
a different LP model row structure: generalized upper bound (GUB) rows, pure net-
work rows and generalized network rows. We describe implementations of all three
algorithms, specifving data structures for tableau and basis inverse representations

and detailing procedures for manipulation and update of these representations.

Computational results are presented for a number of real-world models taken
from a variety of applications and industries. From each model, one or more partic-
ular instances are solved by each of our three implementations and by a commercial-
quality mathematical programming svstem. The characteristics of the four solvers
are compared and contrasted. Previous research on related algorithms by others
suggests that these algorithms are properly viewed as specialized approaches. useful
only on narrow classes of problemns. Our computational results strongly refute this
view. and instead suggest that each algorithm is superior to the general simplex

approach on a wide range of problem classes and structures.

IL.

I1I.

INTRODUCTION 1
A. INTRODUCTION e 1
B. SURVEY OF RELATED LITERATURE 3
MUTUAL PRIMAL-DUALMETHOD 8
A. INTRODUCTION oo oo 8
B. PRIMAL PROBLEM STATEMENT (PLP) 8
C. OBTAINING FEASIBILITY 10
D. FROM FEASIBILITY TO OPTIMALITY 16
E. BLOCKS 18
F. THE PRIMAL ALGORITHM AND A SUPPORTING BASIC TAB-
LEAU . . o e 19
G. DUAL LINEAR PROBLEM (DLP) 24
RESOLUTION OF BLOCKING 33
I. RELATIONSHIP BETWEEN PRIMAL-DUAL ALGORITHM AND
SIMPLEX METHOD 37
IMPLEMENTATION DESIGN OVERVIEW 42
A, INTRODUCTION oo o o 42
B. DESIGN CONSIDERATIONS 42
C. DESIGN TEMPLATE 43
D. SEQUENCING COMPUTATIONS TO EXPLOIT COMMON SUB-
EXPRESSIONS IN COLUMN GENERATION 47
E. SEQUENCING COMPUTATIONS TO EXPLOIT COMMON SUB-

TABLE OF CONTENTS

EXPRESSIONS IN ROW GENERATION ©

IV.

VI

VL

A. INTRODUCTION 61
B. THE FACTORED TABLEAU 62
C. BENEFITS OF FACTORIZATION 67
GENERAL IMPLEMENTATIONTOOLS 70
INTRODUCTION e 70
B. THE FACTORED TABLEAU 70
C. ALGORITHM OVERVIEW 72
D. IMPLEMENTATION CONVENTIONS 73
1. TheTableau. 73
2. The Explicit Transformation Kernel 79
3. The Factored Kernel 80
E. COMPLETE ALGORITHM DESCRIPTION 81
ACTORIZATION OF GENERALIZED UPPER BOUND ROWS .. 95
A. INTRODUCTION 93
B. THE FACTORED TABLEAU 96
C. SEQUENCING COMPUTATIONS TO EXPLOIT COMMON SUB-
EXPRESSIONS IN COLUMN GENERATION 98
D. SEQUENCING COMPUTATIONS TO EXPLOIT COMMON SUB-
EXPRESSIONS IN ROW GENERATION 102
E. DATA STRUCTURES 105
F. FACTORED KERNEL UPDATE ACTIONS 106
FACTORIZATION OF PURE NETWORK ROWS 109
A. INTRODUCTION o o 109
B. THE FACTORED TABLEAU 112

vi

C. SEQUENCING COMPUTATICNS TO EXPLOIT COMMON SUB-

EXPRESSIONS IN COLUMN GENERATION 114

D. SEQUENCING COMPUTATIONS TO EXPLOIT COMMON SUB-
EXPRESSION IN ROW GENERATION 117
E. DATA STRUCTURES 119
F. SOLVING LINEARSYSTEMS 121
G. FACTORED KERNEL UPDATE 128
VIII. FACTORIZATION OF GENERALIZED NETWORK ROWS 134
A. INTRODUCTION 134
B. THE FACTORED TABLEAU 137

C. SEQUENCING COMPUTATIONS TO EXPLOIT COMMON SUB-
EXPRESSIONS IN COLUMN GENERATION 138

D. SEQUENCING COMPUTATIONS TO EXPLOIT COMMON SUB-
EXPRESS:ONS IN ROW GENERATION 138
E. DATA STRUCTURES 138
F. SOLVING LINEARSYSTEMS, 139
G. FACTORED KERNEL UPDATE 141
IX. COMPUTATIONAL RESULTS 145
A, INTRODUCTION . . . oo o . 145
B. TEST PROBLEMS 145
C. METHODOLOGY 149
D. COMPUTATIONAL RESULTS 151
X. CONCLUSIONS . oo o 163
LIST OF REFERENCES 168
INITIAL DISTRIBUTION LIST oo oo 174

5.1

5.2
9.1
9.2
9.3
94

9.5
9.6

LIST OF TABLES

Indices of Tableau Regions 75
Secondary and Tertiary Tableau Exchanges 94
Description of Test Suite Models 145
Summary of Problem Suite Dimensions 158
Solution Times in CPU Seconds 159

Number of Elements in Explicit Transformation Kernel Representa-
tion of Optimality or at Failure 160
Summary of the Number of Binding Explicit Constraints at Optimality161

f(s,t) in Megabyte -seconds 162
) g

-1

~1

on

LIST OF FIGURES

Primal Blockin Column k5.
Subproblem (1) L
Dual Block in Subproblem (1)
Subproblem (2)
Primal Block in Subproblem (2)
Subproblem 3
Bump Triangular Formof 4,7o
Spikes withina Bump
LU Decompositionof 4,o
A Triangulated Fyy 0 oo
A Basis Graph Gy, - o o o o L
An Alternate Graph Paradigm _C‘F“
The Implementation Paradigm for Gp,,
Initialization of Node 9 Prior to Incorporation into Gg,,
Near-Triangulated Simplex Basis Corresponding t¢ {GNEY
A Sample Nearly-Triangulated (GNE) Simplex Basis Component . . .

“One-tree” Subgraph L

ACKNOWLEDGMENTS

I extend my sincere appreciation to those who have significantly influenced
this research effort, namely:

Rick Rosenthal, who first sparked my interest in optimization,

Kevin Wood, whose remarkable insights helped light the path, and most es-
pecially to

Jerry Brown. a brilliant researcher, an inspiring advisor and one of the finest
people I've had the pleasure tv know.

I also wish to thank those whose support was vital in bringing this effort to
fruition:

Jan Evans. my paticit and enduring typist and friend.

Steve Pilnick. my kindred soul in this long and sometimes tortuous path.

The X-Syvstem. which was often crue] but alwavs sorry.

Lastlv. but most importantly. I thank my daughters. Elizabeth and Katie. for
their patience and understanding during this effort, and my wonderful wife Susan.
who provided far more support than she s willing to admit. Her love and sharing

make life & far more glonons and fulfiling experience. than it otherwise would be.

I. INTRODUCTION

A. INTRODUCTION

A recurring theme in the development of simplex-based algorithms for linear
programming has been the identification and exploitation of special problem struc-
ture. Ideas as apparently disparate as the simplex method for bounded variables,
primal and dual decomposition methods, pure and generalized network primal sim-
picx algorithms and primal partitioning schemes may be unified to a degree by
interpreting their development in this context.

The factorization approach duc to Graves and McBride [1976] provides a unify-
ing framework from which we may reinterpret many existing algorithms and, through
the application of the common principles embodied in the approach. develop new
algorithms. This approach has as its central thesis the idea of recognizing. isolat-
ing and exploiting special structures which may occur in a certain tvpe of linear
programming tableain. An example of such special structure is generalized network
rows. Generalized network rows are naturally specified as a row structure in which
each colummn has at most two nonzero elements within the rows.

This paper adopts the design principles and algorithmic structure suggested
by Graves and McBride {1976 to develop algorithms that. while general in nature in
the sense that eacli may be used to solve any linear programming problem instance.
are strongly taiored to exploit a particular row structure. We call this approach
“dynamic row factorization™: “row factorization” because we exploit the structure
i the basie tableaws whicl s induced by the row structure of the LP model instance.

aud “dyvnamic” becaie the dimension of the structure may vary {or even faii to be

present) as the solution progresses. In our setting, we require the row structure of
the model instance to be speciﬁe_d prior to solving, and to remain fixed throughout
the solution process. An extension of this approach is to allow the row structure of
the model instance to vary as the problem is solved. While we do not develop an
implementation of the second approach, we show that it is a conceptually simple
extension of our work.

Each algorithm is developed by factoring the constraints of the LP model
into two classes: those that have special structure (factored) and those that do
not (explicit). This factoring of constraints induces a factored structure in the LP
tableaus which may be exploited computationally. We treat each of three structures
of factored constraints in this work: generalized upper bounds (GUB), pure networks
and generalized networks.

We implement each of the three algorithms by integrating it within the struc-
ture of a state-of-the-art mathematical programming system: the X-Svstem of
Brown and Graves [1975;. We do so both to demonstrate the feasibility of imple-
menting such methods and to determine whether or not such methods have practical
value for the practitioner interested in solving real-world problems. Commercial im-
plementations of similar GUB algorithms have generally failed to inspire enthusiasm
and are apparently falling into disuse [Kennington [1978]]. While the first commer-
cial impiementation of a related “pure network with side constraints™ algorithm 1s
(to our knowledge) just now becoming available, reports of research implementations
have generally supported the view that such algorithms have limited application.
The reports of implementations of similar “generalized network with «1de constraint”™
algorithms have offered less promuse than their pure network counterparts.

After we review the related literature. we provide a detailed presentation of the

underlving tableau-based algorithm which forms the foundation of all our subsequent

work. We do so because the algorithm is not widely known and may be unfamiliar
to the reader. We then review the general factorization approach of Graves and
McBride [1976]. We provide a design template for our developmental approach, and
then present the dvnamic row factorization algorithms for GUB, pure network and
generalized network row structures. Computational results are presented, and we

then summarize our conclusions and suggest avenues for further research.

B. SURVEY OF RELATED LITERATURE

While the terms “partitioning” and “factorization” are frequently used inter-
changeably in the literature, we observe a distinction between the two approaches.
We consider partitioning methods to be those that are based on special structure
in the original problem instance. This structure in the problem instance need not
induce special structure into the LP tableau. and in fact the method need not be
tableau-based. This is in contrast to our view of factorization, in which the algo-
rithm is based on special structure which occurs in the simplex basis and thus in the
basic tableau. We thus classify Dantzig-Wolfe [1960] and Benders [1962] Decompo-
sitions and Rosen’s [196G4] primal partitioning method as examples of partitioning
methods,

Perhaps the first example of what we consider factorization is the treatment of
simple upper bounds by Dantzig [1951] and. independently. by Charnes and Lemke
(1954;. They observe that it 1s more efficient to enforce the “structural” simple
upper bound constraints with logical tests within the algorithm rather than treat
them explicitly along witl other constraints. While not originally presented in the
context of a formal tablean factorization. the approach is easily viewed as such and

1s consistent with the eeneral approach.

The mutual primal-dual method of Graves [1965] focuses attention on the
special role of nonnegativity constraints in linear programming. A clear distinction is
drawn be.ween the computational convenience of treating nonnegativity constraints
implicitly rather than explicitly and the unambiguous mathematical equivalence
of all problem constraints, structural or nonnegativity. Emphasizing the special
importance of inequality constraints, the approach yields an elegant theory (see
Graves [1987]) and, as we will see, efficient implementations. We view this algorithm
as the first formal example of factorization.

Dantzig and Van Slyke [1967] extend the factorization approach applied earlier
to simple upper bounds in a more structured manner in their treatment of general-
ized upper bounds (GUB). In a problem: with p GUB constraints and m structural
constraints, their approach requires a working basis inverse of dimension (m + 1), a
considerable savings when p is large.

Hartman and Lasdon [1972] specialized this approach to the multicommodity
capacitated transshipment problem. In this case, the structure of the basic pure
network columns introduces additional structure into the working basis, allowing
further simplifications in basis representation and update techniques. Helgason and
Kennington [1977] develop techniques for representing the working basis inverse in
product form and provide graphic interpretation of the graph updates. Kennington
[1977] reports an implementation of the algorithm.

McBride {1972 and Graves and McBride [1976] formalize and generalize the
factorization approach. Thev view it is as a unifving framework for tableau-based
simplex specializatiou~ and illustrate this by developing a variation of the GUB
algorithm of Dantzig and Van Slyke [1967] and a GUB algorithm for doubly coupled
linear programs of Hartman and Lasdon [1970]. They present a new algorithm

for the set partitionine linear programming problem and an equalitv-constrained

form of the pure network with side constraints model. McBride [1972] reports an
implementation of a GUB factorization.

Schrage [1975] extends the approach of simple and generalized upper bounds
by considering variable upper bounds (VUB), which are constraints of the form
z; < i, where 14 is said to be the variable upper bound of z;. His algorithm allows
the implicit representation of the VUB constraints by expressing VUB variables in
terms of other basic columns. This permits the basis representation to be treated
in two parts, one part a large matrix which changes infrequently and thus needs
to be updated only occasionally, and the second part a small working basis which
requires regular attention. Thus, computation and storage savings may be realized.
Schrage [1978] extends these ideas to what he calls generalized variable upper bounds
(GVUB) constraints. which arise frequently in models involving fixed charges.

Klingman and Russell (1975] sketch a factorization method for solving trans-
portation problems with side constraints. They suggest techniques for performing
simplex iterations and updating the problem representation.. Chien and Saigal [1977]
present a similar approach for solving capacitated network flow problems with ad-
ditional linear constraints. Both the above presentations consider a graph-theoretic
view of the basis update mechanism and allow the basis representation to be treated
in two parts. a part which corresponds to a rooted spanning tree defined on the un-
derlying graph. and a general working basis inverse. Glover, Karney, Klingman and
Russell {1978] report an implementation of the Klingman and Russell design, but
one which (curiously) only accommodates a single side constraint. McBride {1989]
reports an implementation which requires the pure network rows to be equalities

and allows more than one side constraint.

The problem of generalized network problems with side constraints is ad-
dressed by Hultz and Klingman [1976). They present details for the simplex price-
out, column generation and basis update. Hultz and Klingman [1978] report an
implementation that (curiously) solves the “singularly constrained” generalized net-
work problem. McBride [1989] reports an implementation that is not restricted to
a single side constraint.

The factorization approach has been extended by the consideration of em-
bedded structures. Glover and Klingman [1981] consider a linear program which
contains embedded pure network structure, i.e., the pure network structure appears
in only a subset of the rows and columns of the technological coefficient matrix of
the problem. Their approach vields an algorithm similar in spirit to the algorithms
for the pure network with side constraint model, but the presence of the “side vari-
ables™ significantly complicates the basis representation and update. They report
an implementation of the algorithm but (curiously) restrict the problem suite to
problems having no complicating variables.

McBride [1985] treats the problem of linear programs with embedded general-
ized network structure. He presents methods for pricing. column generation, basis
representation update and data structures. A successful implementation is reported
which is approximately five times faster than MINOS [1977] for the models tested.

Interest in developing algorithms to solve problems with special substructures
has been accompanied by work to identify such substructures in problem instances.
Greenberg and Rarick [1974] and Brown and Thomen [1980] develop algorithms
to identify GUB sets. Brown and Wright [1984] develop algorithms for identifying
pure network constraint substructures. Brown. McBride and Wood [1983] present
a method for locatine generalized network structures. both embedded and row-only

structures.

(i

Todd [1983] examines factorization from a geometric standpoint and constructs
a geometric interpretation which is in large mezsure equivalent to the algebraic

development of Graves and McBride [1976).

II. MUTUAL PRIMAL-DUAL METHOD

A. INTRODUCTION

This chapter presents the mutual primal-dual linear programming method in-
troduced by Graves [1965]) which provides the algorithmic framework and notational
conventions for the research which follows.

We begin with a complete algebraic development of the primal algorithm fol-
lowed by a less detailed symmetric discussion of the corresponding dual algorithm.
We conclude with a unified treatment of the two which establishes the theoretical

importance of the algorithm and justifies its use as the foundation of our specializa-

tions.

The following presentation scrupulously restates the Graves [1965] algorithm.
incorporates later discussion by McBride [1972], and accommodates large-scale im-
plementations by Brown and Graves {1975]. The view presented here is not available

in standard reference texts. and is included in the interest of completeness.

B. PRIMAL PROBLEM STATEMENT (PLP)

The traditional statement of the linear programming (LP) problem is:

(LP) min: wy
v
st aqy < Ji=1,...m
€y 20 s)=1,....n.
where y is an n-vector of decision variables. w is an n-vector of cost coeflicients,

each a; is an n-vector of technological transformation coefficients, each r, is a scalar

right-hand side cocficient. and ¢, is the j* unit vector. While this statement of

the problem is clear and uﬁaxhbiguous, there are reasons for preferring an alter-
native. The insistence upon drawing a formal distinction between the “structural”
constraints a;y < r; and the “nonnegativity” constraints e;y > 0 obscures the math-
ematical structure of the problem by suggesting that the two types of constraints
are inherently different. Certainly the exploitation of the special structure of the
e;y = 0 constraints leads to computational efficiencies in the implementation of the
algorithm. However, in the theoretical development of the algorithm, we prefer to
treat them simply as general inequality constraints.

In order to achieve a consistent form, we rewrite the nonnegativity constraints
as —e;y < 0 and group them with the structural constraints. The problem statement
then becomes:

(PLP) myin Towy
sit.: aqy<r, ,it=1,....m+n,
where wy is called the extremal function. The constraints of (PLP) define a set of

feasible solutions which we shall call the feasible set,

Fé{yGR”\ainTn 1=1,...,m+n}.

Since F is the intersection of a finite number of closed half-spaces, F is itself a closed
set. If F is nonempty and bounded. then an optimal solution to (PLP) will occur
at an extreme point of F.

A point y° € F is said to be a feasible point or feasible solution. If, for
constraint . a,u" < r, . constraint 7 is satisfied at y° . and the quantity r, — a,y° is
the slack in constraint ¢+ at 3" . If. on the other hand, for constraint 7. a,y° > r, .
constraint 7 is violated at the point ¥° . the magnitude of the violation being a,y° —r,

i{the negative of the slacky.

G

A point y° € R" is defined to be a basic solution of (PLP) if there exists an
independent subset {a;,,a,,...,a;,} of {a1,8;,...,8myn} such that g; y° = r; for
Jj =1,...n. Such an independent subset {a;,,a;,,...,a:,} of {a1,a;,...,am4n} is a
basis for R" , and y° is the (basic) solution to the system a.-’y0 =r,j=1,...,n

Each basic solution of (PLP) corresponds to an extreme point of F and for each
extreme point of F there is at least one corresponding basic solution of (PLP). Since
there are at most (2") ways of choosing an independent subset of n vectors from
{a1,az,...,am+n}, the number of basic solutions of (PLP) and thus the number of
extreme points of F is finite. Hence, (PLP) can be solved by searching among its
basic solutions. The algorithm to be developed here will implicitly enumerate the

set of basic solutions of (PLP) and terminate in one of three states:

1. F=10

(no feasible solution exists) :

2. the extremum is unbounded

for every real number a there is a point y° € F with wy® < a); or
p y y

3. there exists at least one optimal solution

(a point ¥* € F with wy* <wyVye F).

We will first consider the problem of finding a basic feasible solution to (PLP).
Having achieved this. we will then consider the task of finding a basic feasible solution

which is also optimal.

C. OBTAINING FEASIBILITY
Since we have included the nonnegativity constraints —e;y < 0. 7 =1..... n
in our structural constraints a,y < r, .7 =1.....m + n, and since the origin is the

unique solution to the independent system:

10

—ey=0, j=1,...,n,

the origin is a basic solution that is always immediately available for (PLP).

Let y° be any basic solution to (PLP). By definition, there are at least n linearly
independent constraints which are exactly binding at ¥° . Among the m remaining
constraints, typically some will be satisfied at y° and others will be violated. Our
strategy will be to focus on one violated constraint at a time, which we will call
the target constraint. Moving from one basic solution to another, we will attempt
to reduce the violation of the target constraint until it becomes satisfied. We will
restrict our choices of basic solutions in such a way that all constraints that are
already satistied at y° remain satisfied at each subsequent basic solution. Once the
target constraint becomes satisfied, we then select some other violated constraint
as the new target constraint, and repeat the process. We proceed until either all
constraints are satisfied and we have obtained a basic feasible solution, or we find
a violated constraint which cannot be satisfied. in which case we conclude that no
basic feasible solution exists.

To formalize these ideas. define S(y°) to be the set of indices of all constraints

satisfied at a basic solution y° :

5(3/0)={15i5m+n|a,'yosr.}.

Of course, | S(¥%) | > n.
Suppose constraint k is violated at the basic solution ¥*. Then axy° > 74 and
k& S(y%). A necessary condition for the existence of a basic feasible solution is that

there exists a basic solution y with:

S(y) D S(3°) (2.1)

and

ary < apy®. (2.2)

Hf there exists no such basic solution y satisfying (Eq. 2.1) and (Eq. 2.2) we conclude
that F = 0. Thus, we may restrict our attention to basic solutions satisfying (2.1)
and (2.2).

Let {a;,,a;,,...,a,,} be a basis for R" at y°. For notational convenience we
will partition the constraints into two sets, those that are basic at y° and those that

are nonbasic at y°:

b a,, [fi Ty
B = f)") =% f= .f2 =" (2.3)
b, a,, L :fn Tin
d Qinyy [a1 Tine1
p=]" |- OCHN PR G I S (2.4)
d, Tipy L 9 Tintm

Define B and D to be the set of indices of the rows of B (basic constraints)
and D (nonbasic constraints) respectively. Using this notation. the current basic
solution y° may be expressed as By® = f, and since the rows of B are by definition
linearly independent. B~! exists and y° = B~'{.

Let y be any other point of R™. Then y can be expressed as:

v=3" 5 (v =30

We have chosen this representation since at y° the basic constraints are satisfied
exactly and thus it is the direction vector (y — y°) of any proposed move from y°
to y that determines whether or not a given basic constraint will remain satisfied
at y. (Of course, it is the magnitude of (y — y°) that is important in determining
whether the nonbasic constraints remain satisfied as well.)

Now, for a given arbitrary basis {p!,p?,...,p"} of R" and any point y, there

must exist scalars A,. ..., A, such that:

y=v"+(y-1) ="+ NP ="+ P

1=1

Since the choice of P is arbitrary, let us choose P = —B~! which we call the

conjugate row basis. Then:

By=By'+P\N) =By ' —B "\ =B A=f-A.

and thus y satisfies the basic constraints By < f if and only if A > 0.
Thus. the set of points in R™ which satisfy the basic constraints by < f, for

1 € B can be characterized as:

{!/ el u=1+ AP 205€ L}

JER
with P=-B"} .

It then follows that every point y satisfving

- 0

can be expressed as

y =y + P

for some A > 0and P = —B~!.
To address condition (2.2), assume that we have selected constraint k as our
target constraint (and thus k is violated at y° , i.e., diy® > gi). To reduce the

violation of the target constraint, we seek a point y such that:

diy < dit®, (2.6)

holds. Since such a point must also satisfv (2.1), it must have a representation of

the form y = y° + PA for some X > 0. Replacing y by y® + P , we have:

iy’ + PNy < din®

which holds if and only if d, P < 0. Since A > 0. it follows that a necessary
condition for the existence of a point y satisfving (2.5) and (2.6) is that at least
one element of the vector dy P be negative. 1.e.. dyp’ < 0 forsome). 1 <7 <n. If
di P > 0. we conclude that F =@,

Suppose that dip’ < 0. Then (2.6) holds at all points of the form:

v = y(’ + ,\[p“ A > 0.
The generic point y" + A;p' lies along an edge of the set of all points satisfving the
constraints which are basic at 4® . If there is more than one [for which dip' < 0.
an: one cat. be chosen. For the purpose of exposition. we will designate the first

el andes enconntered as

B!

The violation in constraint k decreases linearly as)\, increases. Constraint k

becomes satisfied when:

di(y° + Mip') = g,

or when A\, =t, with

& (g — dy?)

t
dip!

(2.7)

A geometric interpretation is that y = y° + tp' is the point at which the ray
{y ER Jy=v"+2p A 2 0} pierces the hyperplane {y € R" | dyy = g4 }.
Define A} to be our ultimate choice for A; . Choosing t as the value for A}
satisfies the target constraint k. but we are required by (2.5) to continue to satisfyv
all nonbasic constraints which are already satisfied at y° (if any). The choice of ¢

may cause violations of such constraints. Thus, A} must also satisfv the condition:

d, (" + Apl) < g, V je€DnN Sw).

Wrniting this as

Ad,p < g, —du'

we find that we must choose Ap < s, where

£ . | dm‘>ﬂl» (2.8)

gy j

Hli‘x

JEDTSGT

K

{(g/ - dj.uo)

If this set s empty. dehne < = a0 0 Of course, it is possible for < 1o be equal 1o zero.

Thu o by chaosine

A; £ min {t, s}, (2.9)

where t and s are as defined in (2.7) and (2.8) respectively, we obtain the largest
reductiou in the violation of the target constraint consistent with the feasibility
restriction (2.5) with respect to the chosen direction p' .

The selection A} according to (2.9) leads to a new basic solution y! = y®+A7p/,.
If A7 > 0 at each step, the transitivity of (2.5) and (2.6) guarantees that no basic
solution will be repeated before any given target constraint is satisfied, or until
the conclusion is reached that FF = @. At any given step, either the “easible set is
shown to be empty, a basic solution is found which satisfies the target constraint
or a positive reduction in the violation of the target constraint is achieved as the
result of moving to another basic solution. Since the set of basic solutions is finite,
the third alternative may be repeated a finite number of times before one of the
first two alternatives occurs. If this constraint becomes satisfied, (2.5) guarantees
that every subsequent solution will also satisfy the constraint. We may then select
a new violated nonbasic constraint as the target constraint. Since there are a finite
number of constraints. we will either discover a basic feasible solution or determine
in a finite number of steps that none exists.

If A} = 0 at any step of the algorithm. we say that a block has occurred.

Blocks will be discussed later in detail.

D. FROM FEASIBILITY TO OPTIMALITY
Once feasibility is achieved. say at y°. the process of proceeding to optimality

can be thought of as minimizing over F the violation of the constraint vy < wy®—a.

where a is a sufficiently large positive constant.

o

Let y° be a basic feasible solution with By® = f and P = —B~! . Since every
point y € R™ which satisfies By < f may be written as y = y°+ P for some A > 0,

the value of the extremal function wy at such a point y is:

wy=w(y’ + PA)=wy® + wPA=wy’ + 3 \uwp’.

i=1

Thus, a necessary condition for the existence of a point y € F such that wy < wy®

is:

wp' < 0 for some j. 1 <j<n.

If wp’ > 0, then y° must be a feasible. optimal solution to (PLP).

Suppose wp' < 0. Since all constraints are satisfied at y°, the greatest reduc-
tion in the value of the extremal function in the direction p' is achieved when A} is
chosen to be s. where s is as defined in (2.8). If s = oc , (PLP) has an unbounded
extremum. If 0 < A} < oc . a positive reduction in the value of the extremal function
can be achieved by moving from the basic feasible solution y° to the basic feasible
solution y = ¥ + A;p' . If A} = 0. a block is encountered.

Once a feasible solution has been obtained. (2.5) and (2.6) become equivalent

to:

veF . (2.10)

wy < wy’ . (211

The transitivity of (2.10) and (2.11) ensures that no basic feasible solution will

he repeated as long as A7 > (b at each step. At each iteration. either a basic feasible

17

solution is found to be optimal, the solution is found to be unbounded or a positive
reduction in the value of the extremal function is achieved by moving to another
basic feasible solution. Since the set of basic feasible solutions is finite and no basic
feasible solution is repeated, the third alternative can only occur a finite number of
times. Thus, if A} > 0 at each step and if a finite optimal solution exists, it will be

found in a finite number of steps.

E. BLOCKS

Suppose that y° is a basic solution satisfyin
p y g

By® = f.

where, as before, B is of dimension n by n and nonsingular and p’ is the j** column
of P = —B~!. Then. y° is the unique point in R" lying in the intersection of the n

hyperplanes:
{y ER by’ =fi. 1= 1.....17}.
Suppose that p' is a direction that either leads to a reduction in the violation

of some target constraint or, if ° is feasible, a reduction in the value of the extremal

function. Since the nonbaszic corstraints are of the form:

a block occurs whern. for at least one nonbasic constraint .

d.v' = q..

and

dip' > 0. (2.12)

Thus, any movement away from y° in the direction p' will result in violation of the
nonbasic constraint dyy°® < gx .

If dyy® = gi , then y° is in a sense “over-determined”, and y° is said to be
a “degenerate” solution. Geometrically, y° lies in the intersection of at least n + 1
hyperplanes. Algebraically, there is more than one basis that can be formed from

the row vectors {ay,as,...,am+n} for which:

0 _ p—
a,y =1, 3 .7‘_1~"'9n7

holds, and there is more than one basic solution which corresponds to the extreme
point y° . A block is therefore encountered when an over-determined solution sat-
isfies (2.12) in an “improving” direction (e.g., one that leads either to a reduction
in infeasibility or. if feasible, to a reduction in the value of the extremal function).

We will develop a method for dealing with blocks later.

F. THE PRIMAL ALGORITHM AND A SUPPORTING BASIC TAB-
LEAU

The primal algorithm proceeds as follows:
1. Identify an initial basic solution. Notice that the origin satisfies
—1-y°=0.

and thus may alwavs serve as the initial solution.

19

2. If the current solution is infeasible, select a violated primal constraint index k

(i.e., an index k for which g, — diy® < 0). This requires the quantity:
g—Dy° .

3. Within the target row, select an element of the proper sign (negative, according
to our convention) whose index, I, specifies a “transformation column”. If the

current solution is infeasible, this requires the quantity:
diP ,

with the transformation column satisfying dip' < 0. If the current solution is

feasible, this requires the quantity:
whP

with the transformation column satisfying wp' < 0. If no such element exists.
then the problem is infeasible (if the current solution is infeasible and dy P > 0)
or optimal (if the current solution is feasible and wP > 0). The task of
selecting such an index [is commonly referred to as “pricing” or a “pricing

strategy’ .

4. Compute t as in (Equation 2.7). If the current solution is feasible. assign

1=1oc.

5. Compute s as in (Equation 2.8). This computation is commonly called a “ratio

test”. or a "minimum ratjo test”. This computation requires the quantities:

g—Dy° and Dp'.

6. Compute A7 a< in (Equation 2.9j. If A7 = oc. the problem is unbounded.

201

—j

7. Update the current solution according to the computation:
v =y"+ NP
- 8. Update the assignments of constraint indices to B and D, and update P.
9. Go to Step 2.

The only quantities needed at each step of the algorithm are the matrix DP,
the column vector ¢ — Dy° and the row vector wP. For notational convenience, we
can define D to be an (m + 1) by n matrix whose bottom row dmyy is w, and § to

be a (m + 1) dimension column vector whose bottom entry, gm41, is zero. Then

gm-H - dm+ly0 =0- wyo = '—u'yoa

which is the negative of the extremal function value at the point y° . We can now
conveniently display all the relevant information by forming the (m + 1) by (m + 1)

matrix:

DP} ¢- Dyl. (2.13)

which we will call the basic fableau.

By computing the basic tableau in partitioned matrix form. we may isolate the
important algebraic components required by this method. To do so. let us assume
that at the current basic solution the basis consists of h structural constraints and

(1 — k) nonnegativity constraints. Then (2.3) can be written as:

by a, f2 Tiy

B = bh = ai" and f = fh = ri"
bh+1 —€ni Satr 0
br+2 —C€ins2 fre2 0

b | | e . 0

h n-h
~~ A~
B = An A }h
0 -1/ }n-h,
and thus
h n—h
~~ ~~
P = __B—l — "Al—ll -‘41—11/412 }h

0 I }n—h

Similarly. (2.4) can be written as:

dl —€¢; 9] 0
d2 —€; 92 0
d; —€ 0
, h
D= J = | and g = 9 =
h+1 alh.H Gh+1 Tl;,+1
dh+2 Glh.;; gh+2 rl‘h*z
L (1‘.:‘ J L aln+nx J L g"‘ . - r’"*”‘ -

and in partitioned matrix forn:

8%
[}

(2.14)

h n-h
A~ A~
L A (2.15)
Ay An) }m-—h
. Then
) h n-h
= ~~
DP=-DB!'= AR AL Ap } R

—AnAll An — AnAjlAn) }m-h
and we shall call DP the principal part of the tableau. By partitioning w =
(wi.w3), g7 = (g1,92)7 and y° = (9,49), the basic tableau (2.13) may be written

1n partitioned matrix form as:

-~ = ~

ATy ATl Ay, 4 VA
—AnAn An - AnAT AL @ - Any® — A | Ym—h (2.16)
—w AL wy —w A A —wy® b

Note that 3! is displayed explicitly in the tableau (2.16). Also, y9 = 0 since the
corresponding nonnegativity constraints are basic and thus binding.

As the algorithm proceeds [rom one basic solution to another. (2.16) can be
updated using a slight variant of the Gauss-Jordan transformation (which we will
call a pivot). The transformation is as follows:

Let [Dl’lq - DyO] = [v,,] be the basic tableau at any basic solution y° . If

S -

vy = dyp' # 0 then the basic tableau at the basic solution:

N (U
1 o . Usmal ; o (.Qs - ds?/) ;
W =u = p =Y +~\ 7|
v, dsp‘

written as

[DrP | ¢ - D] = [v}],

is calculated as:

general elements (i # s,7#1):

pivotal column (is#s, 3=1):

pivotal row (i=s,7#1):

pivotal element 1=3s, 3 =1

Vst '

After applying the transformation to (2.1€), row and column interchanges may
be necessary to restore the explicit structure of B in (2.14) and D in (2.15). A proof
of this may be found in Graves [1987]. who also extends the basic algorithm to

include free variables. equality constraints and bounded variables.

G. DUAL LINEAR PROBLEM (DLP)

Corresponding to (PLP) is the following linear program called its dual:

(DLP) max: 7

st.: A <w
z] <0.

The relationship hetween (DLP) and (PLP) 1s as follows:

()1

“

1. if (PLP) is infeasible, then (DLP) is either infeasible or unbounded.
2. if (PLP) is unbounded, then (DLP) is infeasible.

3. if (PLP) possesses a finite optimal solution y* , then (DLP) also possesses a

finite optimal solution z* and wy™ = z*r.

See Graves [1987] for a proof of this.

Solving (DLP) directly has important advantages in certain problems, and we
will show that its solution plays an important role in dealing with blocks in (PLP).
We will thus develop a dual algorithm in a manner similar to that for (PLP), sparing
some of the symmetrical detail where possible.

Let z, be a basic solution for (DLP). Then there exists an independent subset
{a,a%,...,a™} of {a',a%. ...,a™*"} such that z,a” = w”, i=1,...,m, and
this linearly independent subset will be called the basis for R™ at z, .

Partitioning the dual constraints into those which are basic at z, and those

which are nonbasic at r, vields:

T=(t.1,..., t™) = (a’,a”?,...,a"™)
= (u' Wt u™) = (et e, (2.17)
and
KN o= (kK2 k™) = (@™, @042 admn)
= (et e") = (I ™), (2.18)

Define 7 and X to be the set of indices of the columns of T (basic dual

constraints) and N (nonbasic dual constraints). respectively. The current basic

1

soluticns r. mav then be expressed as

"z, =uT™?,

and any other point z in R™ may be expressed as

z=1z,+(z—z,).

For a given arbitrary basis {¢,,¢5,...,¢m} of R™ , any such point z may be repre-

sented as:

m .

T=2,+ Y Ut =7, +¢Q.

=1
The current basic constraints are r,a’ = wh,; = 1,...,m and for these con-
straints to remain satisfied at the generic point r = z, + ¢¥'Q. we must have
[za” < wh,i=1..... m]. Choosing Q = T~! as a convenient basis for R™ at r,. we
then have:

2T = (20 + ¥Q)T = zoT + QT = u + ¢,

and thus we must have ¢* < 0.

Now consider a violated dual nonbasic constraint t. where a violation means

Tkt >t

To reduce the violation. we seek a point z at which

holds. Such a point must also satisfy the basic constraints, and thus the condition

for a reduction in the violation of the dual target constraint is:

zk' = (2, + YQ)k' = 2.k + Q' < z k',

which implies that

YQk' < 0.

Since v < 0. a necessary condition for constraint ¢ to be satisfied is that there exists
an 7 with ¢,k > 0. If none of the elements of ¢,k are positive, we conclude that the
dual constraints are inconsistent.

The dual algorithm proceeds along the edges

r=uz,+t'g,.

from basic solution to basic solution. We define

Sir):{1 <j<m+n|zr.a’ Su‘w.

¢

and insist that

To satisfy this condition. we consider the effect of moving along the edge of a

genera, nonbasic dual constraint b which is currently satisfied at . We must have

k) = (2, 4+ Pk = 2,k + gk < v,

Since the constraint k7 is satisfied at z, , we have

T <vV = v —x,kl >0,

and since ¥' < 0, if g;k’ < 0 then as 3* decreases in value we approach the boundary
of the constraint. If v/ — z,k’ = 0 then ¢;k’ < 0 causes an immediate violation if
¢ < 0. Thus, a block has occurred.

We have shown that our choice for ¥**, denoted ¥, should be

Yl = max {b,c}, (2.19)
where
b2 (¢! — zok')/ gk (2.20)
and
é : o .J .2 Jo_ > 2 907
c I;]Eak.\ {(z r kY gk | r k>0, gk < 0}. (2.21)
QOnce dual feasibility has been achieved. we wish to maximize:

rr=r.r+ 0(Qr).

Since v+ < 0. a necessary condition to achieve an increase in the value of the extremal
function is that there existe an 7 such that ¢r < 0. Hence. when ¢,r > 0. we conclude
that r, is dual optimal.

The dual aleorithing: then proceeds as follows:

1. Identify an initial basic solution. Notice that the origin satisfies

and thus may always serve as the initial solution.

2. If the current solution is infeasible, select a violated dual constraint index ¢

i.e., an index t for WhiCh l‘t - Iokt < 0). Th]s requires the quantit ’e
Y
v — Io]&’.

Column t is then referred to as the “target column”™. If the current solution is

feasible. the right-hand side column is designated the “target column”.

3. Within the target column, select an element of the proper sign (positive. ac-
cording to our convention) whose index, 7, specifies a “transformation row".

If the current solution is infeasible. this requires the quantity:

o

with the transformation row satisfving ¢A' > 0. If the current solution is

feasible. this requires the quantity:

Qr

with the transformation row satisfving ¢,» > 0. If no such element exists. then
the problem is infeasible (if the current solution is infeasible and ¢,&* < 0) or
optimal (if the current solution is feasible and ¢,7 < 0). The task of selecting

such an index 7 1x commonly referred to as “pricing . or a “pricing strategy'.

1. Compute & as in {Equation 2.201. If the current solution is feasible. assign

b= — .

Yy

. Compute ¢ as in (Equation 2.21). This computation is commonly called a

“ratio test”. This computation requires the quantities:

v—1z0K and QK'.

Zy =g+ ?»’)iQ.'-

. Go to Step 2.

. Compute ! as in (Equation 2.19). If ¢! = oo, the problem is unbounded.

. Update the current solution according to the computation:

. Update the assignments of constraint indices to 7 and K, and update Q.

This development shows that at each step, the quantities QK, (v — z,K) and

@Qr are needed to proceed with the dual algorithm.

To develop a matrix partitioned form of the dual tableau, we proceed as before.

Assuming the dual basis consists of h structural constraints and m — h nonnegativity

constraints. we have:

SO

T =17, ") = (at,a’* Lath et etz et
u o= (vt u? . u™) = (wtowtt. w* 0.0,.... 0).
= (v u?) = (u‘l.O)
The nonbasic constraints are then:
N o=k k. Bl = (e e’ L. 'hoaht ahr L a)

so v = (v',v?) = (0,w?) .

The matrix partitioned form of the basis is then

and with the choice of Q = T!

h m-—h
—~~ —~~
Arl 0 ko,
Q - 11 }
‘AglAl-ll] }m—h s
with the remaining constraints forming
. T Ap
K = [0 A, J
The principal part of the dual tableau is:
- _ 441_11 O] A]2
Ok "{—AMAS 1}[0 An
_| oAy ALY Az
T —AnAT An - AnAfAp

which we find to be exactly the principal part of the primal tableau. so

DP =QK .
The quantities (¢ — 1, N1 are

r—a h = v -{u i\

= v—uDP

-1 g-1
= (0,w?) [—jgu Al} Az] - uDP
= vP—-uDP
= (v—uD)P

o a3]}
= {(0,0%) - (-w',0)} P
= whP.
The quantity Qr is:

- o{(7)+ (%)}
- Q{9+[é QZ}<22)}

= Q{g+ N[}
= Qg+ 0QKf

_ A7 0 0
B [—A21~41_1] ! } (T2) +DPJ
= (0) +DPf
T2
= g+ D(Pf)
= g¢g-— Dy°.
We thus find that the quantities required for the dual tableau (QA.v—z,h and
Qr) are exactly the quantities required for the primal tableau (D P. wP and g— Dy°).

Therefore. the primal and dual algorithms use the same tableau. Reviewing the

summaries of the primal and dual algorithms. we see the strong symmetry between

32

the two. Operating on a single tableau, the primal algorithm identifies a target
row, selects a transformation column, performs a ratio test, and performs a pivot
update, while the dual algorithm identifies a target column, selects a transformation
row, performs a ratio test and performs a pivot update. This remarkable symmetry
allows us not only to perform either algorithm on a single tableau, but to switch
between one algorithm and the other as often as we choose. This fact has important
implications for our implementation and it enables us to deal with blocking in a

systematic and consistent way.

H. RESOLUTION OF BLOCKING

The resolution of blocking in either the primal or dual algorithm will be accom-
plished by shifting to the alternate algorithm when blocking occurs. The alternate
algorithm is applied to a subproblem of the original and at worst we are lead to a
contracting sequence of problems to which we alternately apply the primal and dual
algorithm. A strict contraction is assured. and thus in at most a finite number of
steps resolution is achieved.

We will demonstrate this procedure by assuming that we have started with
the primal algorithm. When a block occurs. assume we have rearranged the rows
so that the zeros in the right-hand side column occur contiguously.

Let &y = n+1 and k2 =t where t is the index of the target row (if the current
solution is primal feasible. k, = m + 1. the extremal function row). Let k3 be the
pivot column which caused the block. The situation is shown in Figure 2.1.

Define Subproblem (1) as consisting of all the columns of the original problem.
but only those rows with zeros in the right-hand side column, and as shown in Figure
2.2, "extremal function” row k. the target row of the original primal problem. Row

ky is the row containing the blocking element. Now apply the dual algorithm to

33

ky ky
+
+
+
+ 0
0
0
+
- N ks
Figure 2.1: Primal Block in Column k;
ks ky
+ 0 k4
0
] 0
- - k,

Figure 2.2: Subproblem (1)

Subproblem (1). Because the right-hand side column of any potential pivot row is
zero, the right-hand side column of the original primal problem is invariant to any
pivot in Subproblem (1). Let v;; denote the element in row i and column j of the
tableau. We proceed with the dual algorithm on Subproblem (1) until one of the

following situations occur (which may be after zero or more dual pivots):

1. vy, 4, 2 0. A pivot in column k3 no longer reduces the violation of primal
constrrint k; , and thus the primal block has been eliminated. We thus return

to the original primal problem and seek a new column in which to pivot.

2. vg k, < 0. A pivot in column k3 no longer threatens to violate primal con-
straint kg . We thus compute new ratios using columns &y and 43 of the original

primal tableau to determine if we can make a gain on the target constraint &,

using colum £,

»

P
wn
x>~
(2]
x~
—

+ 0 kq
0
0

0 - - k,

Figure 2.3: Dual Block in Subproblem (1)

k5 _k3

- ; ke

0 0 0 + k,

Figure 2.4: Subproblem (2)

3. We encounter a block in the dual algorithm applied to Subproblem (1). This
occurs when a column of Subproblem (1) contains a negative element in row

k4 and a zero in row k,, as illustrated in Figure 2.3.

Let ks be the column in Subproblem (1) causing the dual block. We now
define a further contraction, Subproblem (2}, and switch to the primal algorithm.
Subproblem (2) consists of all the rows of Subproblem (1). but only those columns
of Subproblem (1) with zeros in its target row (k;). Note that the current target
column in Subproblem (1) (k3) must have a negative element in its “extremal” row
(k2). As a notational convenience we reverse the sign of this element and record this
action by labeling the column as —k3. Column —k; becomes the right-hand side
column of Subproblem (2), as shown in Figure 2.4.

The number of columns in Subproblem (2) is reduced by at least one from
the number of columns in Subproblem (1). We now apply the primal algorithm to

Subproblem (2) until (which may be after zero or more primal pivots):

ks ~k3
- kq
0
+ 0 ke
0 0 0 + k;

Figure 2.5: Primal Block in Subproblem (2)

1. vk, -k, 2 0, implying taat vy, 4, < 0. A pivot in column k; no longer threatens
to violate primal constraint ks . We have thus removed the original primal
block, and we proceed by returning to the original primal problem, and com-

puting new ratios using columns k, and k; .

2. vk, > 0. A pivot in row k4 no longer threatens to violate dual constraint
ks, and thus we have removed the dual block in Subproblem (1). We revert to

Subproblem (1) and continue with the dual algorithm.

3. We encounter a block in the primal algorithm applied to Subproblem (2). We

illustrate this situation in Figure 2.5.

Let k¢ be the row causing the primal block in Subproblem (2). Since the the
target row in Subproblem (2) (k;) is identically zero for all but the right-hand side
column (—k3), primal unboundedness cannot occur. Also, the entire k; row in the
original problem is invariant to pivots in this subproblem. We proceed just as we did
when faced with this situation in the original primal problem. The current target
row (k) in the current problem (Subproblem (2)) becomes the extremal function
row in a newly defined contraction (Subproblem (3)). All columns of the current
problem are retained, but only those rows with zeros in the right-hand side column

of the (—k3) current problem are carried forward to the contraction. This again

A

ks —k;

+ 0 ke
; - kq

Figure 2.6: Subproblem 3

assuivs & 8trict icauction in the nu:nber of rows. The uew subproblem is shown in
Figure 2.6. We then proceed with the dual algorithm, exactly as before.

The construction of the contracting subproblems through the nested sets of
zeros in the columns and rows guarantees a monotonic decrease in the sizes of the
higher-order subproblems. This ensures the ultimate resolution of degeneracy and
gives us a complete, symmetric and finite algorithm for the solution of LP problems.

The blocking resolution scheme given here is a constructive algorithm to iden-
tify strictly improved solutions. The restricted subproblems ultimately yield a pivot
sequence satisfying all higher-order criteria. Geometrically, we systematically search
the degenerate subspace for an improved representation. This is in sharp contrast
to ad hoc “anti-degeneracy™ and “anti-cycling” schemes which invoke arbitrary sec-
ondary mechanisms not at all related to the geometry or mathematics of the problem
at hand, and consequently admit nuisance degenerate pivots with no constructive

motivation.

I. RELATIONSHIP BETWEEN PRIMAL-DUAL ALGORITHM AND
SIMPLEX METHOD

We now depart from the presentation of Graves [1963] to discuss the relation-

ship between the Mutual Primal-Dual Method and the classical Simplex Method.

After a brief discussion of the similarities, we will explain our reasons for adapting

the Primal-Dual view.

The Simplex Methnd assumes primal feasibility, and we must identify a start-
ing basic feasible solution. Because this is celdom practical, the usual approach is to
formulate and solve a new linear program closely related tu the original which has
the same optimal solution (assuming one exists) and possesses an easily ideui:fed
basic feasible solution. This related problem is derived from (PLP) by augmenting
it with slack variables, resulting in tne following:

(APLP) rgl'i’n cwy + Os

st.:Ay + Is=r }m
Iy >0 }In
Is>0 }m

In the classical Simplex view, a basis is a collection of m linearly independent
columns. Let Ag be such a simplex basis which corresponds to a primal feasi-
ble solution for (APLP). Suppose we parution the coefficient matrix in a manner
determined by the basic slack variables, yielding (after possible row and column

interchanges):

Ay Ap | L 0
‘4‘12 11 12 1
Al [Am An |0 I,

where

[Ay 0
AB'[AN 12}

and the matrix of nonbasic columns is

1 h An
A"'”“[o Au}

3~

The basic variables are yb = (y1,82) while the nonbasic variables are yvg =
(s1,¥2), and the principal part of the Simplex tableau is [ABIANB].
Borrowing from the perspective of the Primal-Dual algorithm, we may generate

the Simplex tableau by partitions:

P I N A 0]
B A, I —AnAn L |,

and the table.u becomes

_ U (R L AR
|A5'Ans] = [—AzilAﬁl I,] [0 Az J

_ [A Af' An]

T | —AnAY An - AnAG A, |
which is precisely the piiiicip=1 part of the Primal-Dual tableau. This is no surprisc
when we note that the basis for the Dual Algorithm, T, is exactly Ag, and the Primal
and Dual Algorithms share the same tableau. We may interpret the Primal and Dual
Algorithms as simply two different perspectives of the same tableau, wherein the
Primal Algorithm a pivot is viewed as exchanging primal constraints and in the
Dual Algorithm a pivot is viewed as exchanging dual constraints. The classical
Simplex Method may then be interpreted as solving (PLP) using the
Dual Algorithm perspective. That the classical Simplex Method is naturally
interpreted as a dual algorithm comes as a surprise to the conventionally trained.
However. the consequent mathematical insight is compelling. especially in light of
the notational simplification and apparent underlying role of A} .

There are several reasons for preferring the Primal-Dual Algorithm to the

Simplex Method. From a computational standpoint. because slack variables are

carried logically rather than introduced explicitly, we are able to clearly identify the

30

essential information needed to execute the algorithm. The matrix A;}' plays a key
role in the calculation of the tableau, and the entire tableau can be constructed from
A7} and original problem data. Since A7} is a submatrix of Az', it is smaller and
requires fewer arithmetic operations to update than does Ag'.

A second advantage of the Primal-Dual Algorithm lies in the flexibility it
oifers for specialization to particular problem classes or structures. Indeed, it is the
special structure and simplicity of the nonnegativity constraints that motivate the
development of the algorithm in the first place. It is frequently the case that other
special structures can be identificd in classes of (PLP). Examples of such structures
include simple upper bounds, generalized upper bounds, variable upper bounds.
pure and generalized network substructures, etc. Such structure may be static in
that its nature and dimension remains fixed throughout the solution process, or
the structure may be dvnamic in which case its precise nature and/or dimension
may vary as the problem is solved. Some special structures may be more strongly
characterized by their columnn structure and others by their row structure. The
Primal-Dual Algorithm allows one to effectively exploit virtually any such problem
structure in a natural manner and greatly simplifies the implementation of such a
specialization.

When the linear programming problem appears as a subproblem in a more
sophisticated solution setting (for example, in a mixed integer programming problem
or a nonlinear programming problem), the row/column symmetry of the Primal-
Dual Algorithm is of critical importance in specializing the solution approach. The
inherent symmetry of the algorithm permits easy adaptation to branch-and-bound
and cutting-plane approaches to mixed integer nrogramming. to column generation

settings. as well as to primal and dual decomposition techniques.

40

We believe the reason for this flexibility offered by the algorithm lies in its
more complete mathematical foundation. There is a natural consistency that
arises from the choice of a vector space having the same dimension as the
problem variables that is lacking in other approaches. A natural geometric
interpretation of the solution trajectory follows directly from this development. In-
cidental issues such as finding an initial basic feasible solution and dealing
with degeneracy are resolved constructively in this mathematical frame-
work. Other approaches resort to unnecessarily complicated tangential efforts.

All the research results reported here can be developed, with some effort, in
the framework of the classical Simplex Method. However, we choose to present these
results in the manner of their development - the mutual Primal-Dual view presented

by Graves.

III. IMPLEMENTATION DESIGN OVERVIEW

A. INTRODUCTION

We seek to demonstrate the cfficiency of row factorization (in particular, using
dynamic-dimension bases). Accordingly, we will implement the ideas developed here
and extensively test them within a commercial-qualiiy optimization system: the X-
System [1975] employs the Graves mutual primal-dual algorithm in a variety of
large scale optimization applications, including linear, nonlinear, mixed integer and
decomposed models. The benchmark test suite is drawn from a wide variety of actual
applications, and our goal is to improve the efficiency of an already well-known and

highly regarded system.

B. DESIGN CONSIDERATIONS

We want to tes* our ideas by repeatedly solving many medium- to large-size lin-
ear programming problems (i.e.. approximatelyv 8,000-10,000 constraints and 15.000-
20.000 structural variables). Larger problems are of interest. but for purposes of this
research. we are limited to a relatively modest computer budget on an IBM 3033/AP
computer under the VM /CMS operating svstem using VS Fortran 1.4.1. We wish
to support the computational enhancements common in commercial mathematical
programming systems (e.g.. bounded variables, ranged constraints, parametric pro-
gramming. etc.). We require a primal-dual implementation that offers complete
flexibility in determining solution strategy. In addition. each experimental imple-
mentation must support all the routine housekeeping of the optimization system
(e.g.. re-iversion. crash starts, relaxations. restrictions. extrinsic and intrinsic enu-

meration. etc.i. Finallv. we seck the capability to identify desired row factorization

12

structure within the LP model instance, either by communication from the modeler

or automatically.

C. DESIGN TEMPLATE

To establish a conceptual framework for the evaluation of our algorithms, it
is useful to outline the important aspects of our implementation and identify the
crucial steps which most strongly influence performance. Recall from Chapter 2 our

basic tableau in partitioned form:

(4) (37) (335)
(i) 1—11 A1—11A12 1_117'1
(21) —AglAuAlQ Azz - A'21A1-1]A12 g2 — A21A—117'1 (31)
(7)) \ —wi Ay wy — wy Ap' A —urAfy'ry

where we have made the substitution y° = B~!f in the right-hand side column:

-1 0

= (1)) = (ARn.0)T

L AL AT A
=BT = @) = [A ”}(“)

The data requirements of the algorithm are:

1. Access to the original problem data:

2. Arepresentation of that part of the current tableau we have chosen to represent

implicitly. and:

3. Arepresentation of that part of the current tableau we have chosen to represent

explicitly.

We now consier coctaf these requiremients in greater detail,

43

Primal simplex implementations typically are column-oriented and thus re-
quire column-wise access to the problem data. In the primal-dual method, restric-
tion to either column-wise or row-wise access alone exacts a serious computational
penalty. Thus, our design allows both column-wise and row-wise access.

The design of an efficient large-scale tableau element generation representation
is remarkably complex. Many subtle software engineering and hardware environment
issues can have a profound influence on the intricacy and performance of promising
designs. The design excursions reported here are inexorably influenced by architec-
ture of the host computer, operating system and implementation language. However,
the reported design philosophy has been tempered with experience on many other
computers of widely varied designs. The proposed innovations adapt quite well to
floating-point pipelines, large cache memories and parallel architectures.

Because of its fundamental role in the construction of the tableau, we maintain
an explicit representation of Ay} (we thus refer to A;, as the “explicit kernel™).
Although any of the various techniques such as LU, LDLT or QR decomposition
or product form inverse (e.g.. Golub and Van Loan [1985] or Magnanti [1976]), are
suitable for representing A,, or Ay, a difficulty arises in this algorithmic setting.
While in the primal Simplex method all updates to the basis take the form of rank
one column exchanges, our setting admits more general updates. which include single
row exchanges. single row and column exchanges. single row and column deletions.
and multiple row exchanges of A} (multiple columr exchanges of A,;). While
this does not preclude the use of any particular representation, it adds a level of
complexity not usually encountered in more traditional implementations.

We also maintain an explicit representation of the right-hand side column and
the bottom (cost) row. Because of the symmetric nature of the mutual primal-dual

method. a sensible approach i to al’ocate a single storage arrav for both quantities.

41

which taken together are called the “problem rim”. If we generate an explicit rep-

resentation of the pivot row and pivot column of the tableau at each iteration, then

we may update the problem rim array using the simple pivot transformation. By

adopting the convention of labeling the nonbasic constraints as rows 1 through m

and labeling the basic constraints as rows (m + 1) through (m + n) (assuming our

problem instance has m structural constraints and n nonnegativity constraints), the

problem rim array is partitioned as follows:

o

. The first portion of the array holds values corresponding to the nonbasic con-

straints in region (7) of the tableau (3.1). Since these are nonnegativity con-
straints and they are nonbinding (nonbasic), the values in region (z) of the rim

array are those of the currently (possibly) nonzero variables.

The second portion of the array holds values corresponding to the nonbasic
structural constraints in region (u¢), and thus the values in the rim array are

the current slack or viclation in these constraints.

The third region of the rim array, beginning at position m + 1. corresponds
to basic (binding) structural constraints, and thus the values are those of the

corresponding (po:sibly) nonzero dual variables.

. The fourth region of the rim array corresponds to basic nonnegativity con-

straints. and thus the values are those of the corresponding (possibly) nonzero

dual variables. conventionally called “reduced costs”™.

The rest of the tableau we represent implicitly. by simply recording in a stor-

age arrayv the current ordering of nonbasic and basic constraints. When additional

information from the tableau (for example, a row or column) is required, we con-
struct it from our representation of Aj}, the current row ordering and the original
problem data.

An overview of the solution process is as follows:

1. Identify an initial basic solution. As stated previously, the origin is always

such a solution, and thus we may always begin with:

or anyv other suitable basis.

2. Check for optimality. If there are currently no primal violations (a negative
value in the first or second region of the rim array) and there are no dual
violatiuns (a positive value in the third or fourth region of the rim array).

then the current solution is optimal. Otherwise, we proceed to step 3.

3. Select either a primal or a dual violation, perform a pivot which makes progress

towards reducing that violation and return to step 2.

Since we desire to maintain current information in the rim array by means of
the pivot transformation updates. we require a representation of the pivot row
and pivot columnmn at each iteration. Since we explicitly maintain only A} and
the problemn rimi. we see that a key computational step in our implementation

1s the generation of tableau rows and <olumns.

Recall fromi Chapter 2 the principal part of the primal tableau (a symmetric

development from the dnal perspective 1¢ also possible. and 15 of course equivalent):
I P p i

16

(4) (i5)
DP = (l) . Al_ll Al-llAlz (32)
(1) \—An AR Axn — AnAn' An
where P = —B~! is the conjugate row basis,
] A A
p= U [A] 3.3
G Lo -1 (3:3)

and D contains the nonbasic rows

(Zl) Ag] Agz

D. SEQUENCING COMPUTATIONS TO EXPLOIT COGMMON SUB-
EXPRESSIONS IN COLUMN GENERATION

p= [‘I 0] (3.4)

Now consider the generation of column s from (3.2). Rewriting (3.2) in a

manner that highlights our intentions:
(5} (37

op_ [A A7l A
(1) \ ~Au(A) —Au(aj An)+ Axn /) -

By properly sequencing our computations we will exploit the fact that region

(3.5)

(17) of a given column is simply a linear combination of region (7) of the same column.
Assume we want to place the current representation of column s into a work

T = (z,.2,)7 to correspond to (3.5). Expressed in

array z. which we partition as z
terms of an explicit transformation kernel A}, we first compute region (¢) of column

& as:

o= (.»11'11 1 if s (7).

or

z; = A (A)° if s is in (5j).

Having done this, we then compute 2, as:

2= —Anz if s is in (3),
or
29 = —A2121 + (Azz)s if sis in (]])
Assuming an LU representation of A;;, we first compute region () of column
s as:
LUz, =¢° if column s is in (j),
or
LUz = (AR)° if column s is in (77),

Having done this. we then compute z, as:

5= —Ann if column s is in (j).

or

= —Apn 4+ (AR) if column s is in (jj).
Then the current representation of column s is available in =7 = (z,.)7,

4%

E. SEQUENCING COMPUTATIONS TO EXPLOIT COMMON SUB-
EXPRESSIONS IN ROW GENERATION
The computation of row t of the tableau proceeds in a similar manner. We

now view the principal part of the tableau as:

() (1)
~— ~~—
DP = (l) /41-11 (AI-II)AIZ

(1) \ —An Al (—AnA7)An + Az
If we want to place the current representation of row ¢ in a work array 2

partitioned as Z = (23, 24), we may first compute region (j) of row ¢ as:

23 = (A7) if row t is in (1),

or

23 = (—An (AT} if row t is in (22).

We then compute:

4= Z3(Ap) if row t 1s in (1),

or

23 = ZalA) + (An): if row t is in (27).

Alternatelv using an LU representation of A;;.

49

5HLU =€ if row t is in (),
or
LU = (—An): if row t is in (ii).
We then compute 24 as:
Z4 = 23(A1) if row t s in (2),
or
Zs = 23(/4]2) + (.'1.;2)1 if row t is in (Zl),

and the current representation of row t is available in Z = (23, 24).

We see that in each case calculations proceed by first using a representation of
Aj: to compute a portion of the row or column and then using this initial computa-
tion and original problem data to compute the remaining part. We will discover that
our specializations extend this approach by introducing additional tableau partitions
which allow this computational strategy to be applied on a larger scale.

As previously mentioned, an important implementation challenge in this algo-
rithmic setting is the dvnamic behavior of A;;. We see from the primal row basis
(3.3) and nonbasic rows (3.4) that the dimension of A, corresponds to the number
of basic structural constraints. or. equivalently, to the number of nonbasic nonneg-

ativity constraints (recall that if a nonnegativity constraint is nonbasic and thus

[}

nonbinding, the corresponding variable may possibly be nonzero). Recalling that

our primal view of a pivot is as an exchange of constraints between B and D, we

see that one of four cases may occur during a pivot:

1.

e

A structural constraint enters the basis B and a structural constraint leaves
the basis and enters D. Since the number of basic structural constraints (and
the number of nonbasic nonnegativity constraints) remains unchanged, the
dimension of A;; is unchanged. A pivot of this type involves a row in region
(7) of B (3.3) and a row in region (iz) of D (3.4), and thus it corresponds to

a pivot coordinate in the location ((iz), (7)) of the tableau (3.5).

A nonnegativity constraint enters the basis and a nonnegativity constraint
leaves the basis. Again, the dimension of A;; remains unchanged. Since this
pivot involves a row in region (jj) of (3.3) and a row in region (z) of (3.4), the

corresponding tablean (3.4) pivot coordinate lies in ({7), (77)).

A structural constraint enters the basis and a nonnegativity constraint leaves
the basis, and thus the number of basic structural constraints (equivalently,
the number of nonbasic nonnegativity constraints) increases by one. The di-
mension of A;, is increased by one. This corresponds to a pivot coordinate in

region ((77).(77)) of the tableau (3.5).

. A nonnegativity constraint enters the basis and a structural constraint leaves

the basis. and thus the dimension of A, is decreased by one. The correspond-

ing pivot coordinate in (3.5) 1s ((2).(7)).

/

We see that we may exert some influence on the behavior of the dimension of

Ay by our strategy for selecting target violations for primal and dua! constraints

(1.6

our pricing strateev) and through our tie-breaking miles for choosing pivot

5l

row, columns, and that this dynamism is an inherent feature of our algorithm. We
have already seen the fundamental importance of the kernel (A;;) in our compu-
tations. Thus, a successful implementation must manage this dynamic behavior
efficiently and reliably.

To illustrate in a familiar setting the challenge this offers, consider a LU rep-

resentation of the kernel Ay;:

An = LU. (3.6)

A pivot in tableau coordinate ((7),(jj)) results in a column exchange in A;;. Writing

(3.6) in the more convenient form:

L-]/i]] = l,[(37)

When column a* replaces the p™* column of Ay to form Ay, we have

where a = L7 'a* has replaced the p™* column of {". We now must restore the
upper triangular form of 170 We would prefer a method which demonstrates strong

numerical stabili*y and which also preserves the sparsity of 7. Several methods

have been proposed (Bartels and Golub [1969], Forrest and Tomli~ {1972}, Saunders
[19761 and Reid [1982]). Perhaps the most widely used method is that of Saunders.
Assume for the moment that A;; has a block (or “bump™) triangular form (we

discuss how this is done shortly). Then A,, appears as shown in Figure 3.1.

Figure 3.1: Bump Triangular Form of A,

Each bump consists of (possibly) several columns that extend above the main
diagonal. These columns are called “spikes™. and the tallest spike within a bump is
placed in the right-most columm. so that a bump appears as shown in Figure 3.2.

The block triangular form of A;; results in a LU decomposition which has the
form shown in Figure 3.3.

Saunders exploits the form of these LU factors by maintaining a permutation
of the columns and rows of U so that all the spikes appear on the right-hand side

without changing their relative ordering, vielding:

Figure 3.2: Spikes within a Bump

—

I Iy \ 1 R
O F '

P:PHW:[

When the p™ column of Ay, is replaced by @, the method proceeds as follows:

1. Delete the p' column of U, 4" and move all the following colurins one

position to the left

2. Place o = [7' i the right-hand columm of U7,

Figure 3.3: LU/ Decomposition of 4,

) S . . .)
3. Move the p' row of U, 4, to the bottom of U, and move all rows in belween
up one position. Note that this preserves the triangular form of all but the
last column of {7, and further note that row 4, has nonzeros only in columns

P \

corresponding to ff.

4. Using Gaussian climination with row interchanges, transform @, to a sin-
gleton column. thereby restoring the upper triangular form of . Thus,
[" = E... E,l", where {is the final updated formof U and L,... | F are the
elementary transformation matrices corresponding to the Gaussian elimination

steps (see, e.g.. Murtagh [1981]).

5. Apply these same Gaussian elimination steps to L~ forming

! is held in product form and thus these transformations are

Typically, L~
simply added to the current list of transformation vectors (“eta” vectors).

This method has the virtue that new nonzeros can be created only in the
submatrix F of U, and thus R may be carried in peripheral storage. The numerical
properties are reported to be quite good.

The computational burden of continuously maintaining A;; in block triangular
form is excessive, and the usual approach is to refresh the structure as part of the
basis re-inversion routine. Between the re-inversions, the structure is left untended.
An effective heuristic due to Hellerman and Rarick [1972] is commonly used for this
purpose.

A pivot in tableau coordinate ((i),(7)) results in a row exchange in 4.

Writing (3.6) as

Apnt='=1 . (3.8]

When 10w a, replaces the ¢'* row of A}, to form Ay,, we have

CL
" AN
where tow .3 = a.l 7! replaces the ¢** row of L. The desired structure of L mayv be

restored by methods symmetric to those developed for the column exchange case,

again forming :

/in = i[[.

A pivot in tableau coordinate ((ii),(j7)) causes the dimension of A, to in-
crease by one through the addition of a row and a column. It is convenient to add
the new row to the bottom of A;; and the new column to its right. If A, is the

new kernel, then

/‘iu = [Au at] (3-9)

a, Oy k
where a,,a* and a,, are original matrix coefficients.

The desired updated decomposition is of the form:

Ay a* _ L0 U u*
ar ax |t | L 0 wkk

which requires that

and

deg = Lut + L oug

Setting uir = 1 . we have:

The final pivot coordinate, ((z), (7)) results in the dimension of A,; decreasing
hy one. If A;, is the current transformation kernel and /i“ results after the pivot,

without loss of generality we have:

| arx a ey O .u,', U,
wel@ L n] e

where (@, a,) is the leaving row, (a,x, a*)T the leaving column and a, the
pivot element. Using an analysis similar to Rosen [1960], we note that if the square
matrix C is nonsingular and is partitioned as:

e cz}

| Cs Cy

where C is square and nonsingular, (4 is square and Cy = C4 — C3C7'C5 is non-

singular. then

o OV 4 CTYC O CRCTY =GN CLC5!]

~C3CsCY ol

Applving this result to (3.10). we discover that

or

: i
'Aili:Lll.l#()Gk(‘r . (311}

a. i
If the term (\% ot v <hould be the zero matrix. our new decomposition i< at
Ge i

1

PP

_— ‘
Va'a. need not be zero. but we may guarantee it to

hand. Unfortunatel. |

he oo b perforanne a preliniany cohimn exchange update to 0 We replac

T
column (a,_k,a") with column (1,0)7 and compute the updated factors exactly as
we did in the column exchange case considered earlier. This results in a modified

transformation kernel A;; with factors

A‘ _ 1 a, _ Zk,k 0 ﬁr'r ar
"Tlo Ay | | L L 0 U

Then the second term of (3.11) is

]
(T)O"”:O

and thus the updated LU factors are at hand:

Ay = LT,

We now see the advantages and disadvantages of the Graves mutual primal-
duai method. It has the advantage that. although the transformation kernel can
be as large as m. the number of structural constraints in the problem instance. its
dimension is actually equal to the current number of binding structural constraint-
(or equivalently. to the number of potentially nonzero primal variables). At our
initial basic solution. the kernel dimension is zero. If the maximum kernel dimen-
sion during the course of the solution trajectory is much smaller than m. we enjoy
significant computational advantages in storage, update and computation. For a
great many LP model instances. this is precisely the case.

The dyvnamic nature of the transformation kernel clearly complicates update
procedures. While the usual primal Simplex method requires only the column ex-

chaner update. Grave-" method requires four update cases,

In our implementation, we will seek methods for handling the transformation
kernel that enjoy the advantages while mitigating the disadvantages.

It is this general strategy for row and column generation we develop and en-
hance in our specializations. By identifying a special structure in the problem data,
we will introduce additional linear dependencies in the rows and columns of the
tableau which will further simplify their generation and will also further reduce the

dimension of the transformation kernel.

60

IV. FACTORIZATION

A. INTRODUCTION

Each of the algorithms we present in this research can be viewed as a special-
ization of a general approach to large-scale linear programming developed by Graves
and McBride [1976], which they call the “factorization approach™. It is based on
distinguishing special rows and columns in a way that allows large parts of the ba-
sic tableau to be represented implicitly, to be generated easily from the remaining
explicit parts only when actually required by the algorithm.

Although sometimes used interchangeably in the literature, we recognize a
distinction between partitioning methods and factorization methods. In the former,
a formal distinction is made between substructures which appear in the model in-
stance, usually constraints or variables. An approach for solving the problem is then
developed which exploits the substructures. For example, Dantzig-Wolfe decompo-
sition is such an approach which partitions constraints. while in Benders decompo-
sition the variables are partitioned. Such an approach may be applied statically. in
which case the desired partitions are identified at the start of the solution process
and remain fixed throughout. or it may be dynamic. in which case the partitioning
maVv be adjusted as the solution proceeds.

I contrast. we consider factorization methods to be those in which a formal
distinction is made between substructures in the LP basis (and thus in the basic
tablean). The algorithm is then specialized to exploit this special substructure.
Thus. we view the GUR algorithm of Dauizig and Van Slyke {1967} and the mul-

tcommodity network flow algorithni of Hartman and Lasdon {19707 as examples

of factorization algorithms. Factorization methods may also be static or dynamic,
depending on whether the dimension of the factored substructures in the LP basis
may vary during the solution process.

Our research is concerned with dynamic row factorization algorithms. We
develop the general dvnamic factorization approach here and discuss the important
aspects of the algorithm. In subsequent chapters, we specialize this general approach
to each of several special LP row structures. This general development closely

parallels that of Graves and McBride [1976].

B. THE FACTORED TABLEAU

The problem to be considered is:

(FLP) myin Dowy

st.: FEy<r } explicit constraints
Fy <b }factored constraints
-1y <0 } nonnegativity constraints

where y 1s a n vector of decision variables, uw is a n vector of cost coefficients. E
is an m by n matrix of constraint coefficients for “explicit™ constraints with right-
hand side m vector r. F is a p by n matrix of constraint coefficients for “factored”
constraints with right-hand side p vector b. and —1/ is the negative of the n by n
identity matrix. In this general development. we refer to the F-tyvpe constraints
as “factored” only to distinguish them from the “explicit™ E-tvpe constraints. and
assume nothing about their structure. Not until our specializations in later chapters
will we impose special structure on F, and the structures we will consider permit
the representation of the F type constraints without the inversion of a matrix. We

will see that this approach is centered around handling the part of the basis cor-

responding to the [-tvpe constraints explicitly while factoring the portion of the

basis corresponding to the F—fype constraints. The notation is chosen to suggest
this idea.

As we saw in Chapter 2, in the mutual primal-dual method the primal al-
gorithm and the dual algorithm share the same tableau, and thus the tableau for
(FLP) may be derived from either perspective. We present only the derivation from
the primal viewpoint here.

Recall that a basis for the primal algorithm consists of n linearly independent
rows from the constraint coeflicient matrix when it is assumed to include both
structural (explicit and factored) and nonnegativity constraints. Assume that the
current row basis consists of [rows from E, k rows from F and (n — k —) rows

from —I. Using the notation of Chapter 2 temporarily, we have:

I+k n—-l—-k
~ = A~
B — 4411 A]Q } 1+ k
0 -1 yn—1-k |

where [4;; Aj;] includes all basic structural rows. from both £ and F.
We will ultimately be interested in isolating the effect of each type of struc-
tural constraint algebraically in the factored tableau. and thus we require greater

resolution in our factored basis. Introducing obvious notation. we have:

{"111 11.\ =
ST 3T Fs } &

where

fq Ly By
A= [Py Ry }

L

From the development in Chapter 2, we recognize A;; as the explicit kernel,
and thus A} exists. It then follows that it is always possible to identify among the
columns of [F}; Fjz] a nonsingular submatrix Fy; of dimension k, since otherwise
the rank of [Fy; Fj;)is at most (k — 1) and thus the rank of B is at most (n — 1).
We will later see that one of the important implementation challenges is the task of
efficiently managing the structure and nonsingularity of F;.

The full factored row basis is then:
k ! n-l—k

(7) Eyvw FE., Ejy; Vi
(]]) Fll Fl'z F13 }k (41)
Gidd)\ o 0 -1) }n-Il-k

Introducing the notation:

B =

}l
>

Ey, — EnFﬁle

oo
no

-1
E]3 - Elan Fls
its Inverse Is:

—F]_ll_Fli’"il_l] (I + F1_1]~F12/ix—11E11)F1_11 11~1](F13~— P:12/il_ll"il2)
B_I = ‘41_11 -Al—llEllFl_il A;ll/‘llg

0 0 -1

Grouping the coefficients of the nonbasic constraints and applyving the same

column ordering vicld-:

} k
le F22 F23 }p—k
(i)} 0 I 0 }

(1v) \sz Ex»n Enx / pm—1
We will explain the ordering of the rows of D shortly.

The principal part of the factored tableau is DP, where P = —B~! is the

conjugate row basis. Introducing the additional notation:

F g F. — F21F1—11F12
Fs & Fp— FaFil ks
An & En- EnF;'Fo
A22 g [/'23 - E21F1_11F13 L)

the principal part of the factored tableau is:

(2 (22) (122)
—~~ —~ —~~
(1) | =F3'FRATY (I + FL FRAL E R FRl(Fis — FRARAy)
DP = (“) "f‘—zzfiil} llf{ﬂn/if]]En - le)Fﬁl 1:123—1}22/11_11‘;112
(417) A7) —AT ELFS ATl A,
(i) \ —AnAy (An AT En — Ex)FY! Ap — An ATl A
(4.3)
Partitioning w = (w, wp wawy). 1 = (r;.r))7 and b7 = (b,.5;)7 and

introducing the notation:

W3 = wy—wF 'R
by & by~ FuF'h,
1 = ry— EnFp'h
T2 = ry~ EnF'b

the complete factored tableau is:

—-Fi'Fa AT (1 + B P AR En) PR Fi'(Fys - F,}/i{;/i,;) Fil(by — FpAf'#)

—F3:-4f11 (Fzzfif{Exx ~)it Fy —_an‘h—‘]fin by — FnAy'fy

A o AV EGFR A An Ap'fy (4.4)
—AnAY (AW En - BFL An - AnAflAn 7o — AnAjl'
—w, Ay (U ATV Ey —wy) Pt Wy — W Af A wy F3'hy + g AT

We see from (4.4} that with knowledge of the current factorization. we can
construct the entire tableau from Fj;', A7) and the original problem data. The
dimension of F}' is eqnal to the number of F-type constraints that are currently
basic, and thus can be at most ». The dimension of A7 is equal to the number of
E-type constraints that are currently basic. Hence. its dimension cannot exceed m.
We call A7) the explicit transformation kernel and Fy7' the factored transformation
kernel.

We have scenin Chapter 3 that the origin is always a convenient initial basic
solution for the mutual primal-dual meithod. and the same is true for the factoriza-

tion approach. Au initial basic solntion is alwavs:

o1

Starting from this solution, we may view the algorithm as progressing by exchanging
rows of F and F from D with nonnegativity constraints from B. We will find it useful
to associate with each F-type constraint in B a unique nonnegativity constraint in
D. Borrowing the terminology of Dantzig and Van Slyke [1967], we will call each such
unique nounegativity constraint (and its corresponding variable) the “key” variable
for the associated F-type constraint. The algebraic structure arising from this basic
F-tvpe constraint/nonbasic “key”™ variable association allows us to represent parts
of the tableau implicitly rather that explicitly. To distinguish these “key” variables
in D from others, we place them in region (i) of D. This is the reason for the row

ordering mentioned earlier.

C. BENEFITS OF FACTORIZATION
Graves and McBride [1976] report three principal benefits of the factorization

approach:
1. Good starting bases:

2. Reduction in memory requirements:

D

. Reduction in work per pivot.

Although the origin is always available as an initial basic solution. Graves and

MecBride 119767 sugeest that a better one can frequently be found with onlv small

67

computational effort using this approach. They form the Lagrangian Dual of (FLP)

with respect to the E-type constraints, we obtain:

(LFLP) myin o wy+ AM(Fy—r)
st.: Fy<b
-Iy <0
where A > 0 is a m vector of dual variables. If A equals A*, the optimal dual variables
for (FLP), then an optimal solution of (FLP) is among the optimal solutions of
(LFLP). They speculate that if Xisa “good” estimate of A*, then using) in (LFLP)
and solving for y should vield a “good” starting point g for (FLP). If no such estimate
X is available, then A = 0 may be used. Depending upon the structure of the F-type
constraints, the resulting problem may either be much easier to solve than (FLP) and
thus mayv be solved optimally. or heuristics may be used to find a computationally
inexpensive “good” solution. All factorization algorithms can be started by solving
(LFLP) first.

Standard simplex techniques require a basis of dimension (m + p) to solve
(FLP). The factorization approach requires the explicit transformation kernel A7}l
whose dimension is at most m. and the factored kernel Fj;. whosc dimension is
at most p. Thus. it 1s clear that we expect a considerable reduction in memory
requirements using the factorization approach. When we specialize the approach
for models in which the F-tyvpe constraints have special structure (e.g.. GUB, pure
network or generalized network). we will see that memory requirements can be
further reduced.

While it i« difficult to measure the computational effort per pivot when product
form inverse or basis decomposition techniques are used. there are indications that

the factorization approacl can vield substantial benefits. Both analvtic {McBride

(R

[1972]) and empirical (Torrﬂin [1972]) studies indicate that when the F-type con-
straints are GUB constraints (we will cover this in detail in Chapter 6), the factoriza-
tion approach results in per-pivot computational benefits when the GUB constraints
comprise at least 30% of the total number of structural constraints. With some sim-
plifying assumptions, a similar analysis can be developed for the case where the
F-type constraints are pure network rows.

We will consider each of three different factored row structures in this work.
The complexity of the factored row structure determines the computational difficulty
of representing and updating the factored kernel Fy;. The simplest row structure
we consider, in which the factored rows are generalized upper bounds, allows Fy; to
be interpreted as a simple permutation matrix. The second factorization, in which
the F-type constraints are pure network rows, is a more complex structure which
subsumes generalized upper bounds as a special case. In this case, Fj; may be
interpreted as iepresenting a partiai ordering defined over a subset of the rows of F.
The final factorization. in which the rows of F are generalized network rows, is the
most general we consider in this work and subsumes both the other factorizations.
Here, Fiy may be interpreted as a linear transformation in which a near partial

ordering exists among a subset of the rows of F.

fiti

V. GENERAL IMPLEMENTATION TOOLS

A. INTRODUCTION

We now provide an overview of our implementation of the factorization method.
We describe the representation and update of the three important algorithm compo-
nents: the basic tableau, the factored kernel and the explicit transformation kerne].
The fundamental update steps are described in terms of functions which operate
~q each of the algorithm components. Where the details of the update actions are
common to all three factorizations treated in this research, the details are presented

in this chapter; otherwise, they appear in subsequent chapters.

B. THE FACTORED TABLEAU

As before. we are intercciid in vic probienn.

min : wy
v

st.: Ey < r} explicit constraints
Fy < b} factored constraints
—Iy < 0} nonnegativity constraints

Recall the algebraic representation of an arbitrary primal row basis:

with the corresponding nonbasic rows:

D= (12) | Fn Fa2 Faa (5.2)

(1v) \ Ey Eynp En

The conjugate row basis inverse is:

FiFeAL =i5' - P Fe Al EWFRY —FR'Fa+ PR FuAf (B - EnFy Fa)
P=-8B"= -AR AN EnFy -ANV(E - EnFR Fs)
0 0 I

and the principal part of the factored tableau is

- = L
1) { ~Fo Fa AT Fol~ FRFnALEnEy Folboa = F FaAL (B = EnFR R
oy b F A A B F R Y A E Y = B Fa- FuFL Pa Fn FEV Fn AR (En - En PV Ry
—Fu Y Fo AT EO R -Fa AT En - EnFR R
(e A7 —ALELFY ATNEs - EWFL Ry
ETINT R UL SO SO SULD ST PN SN DD STF SeRIy 0 Sl Fove Fu P i) 1Ey = Fu bR Py

‘i:.,‘:‘yifi:'i~)'AL'il:7: _[‘:![!"‘f‘, - [‘n“l_z"g‘-“ [H!x:.‘{l‘}

The entire principal part of the factored tableau can be constructed with

knowledge of the row and column ordering, Fj;! (or Fy;) and A5!. Our discussion

of the implementation centers around the representation and update of these three

components.

We restrict our attention to the principal part of the tableau because our

implementation maintains a current representation of the right-hand side column

and bottom (cost) row (collectively referred to as the “problem rim™) at all times.
P

These quantities are always immediately available and need not be computed upon

demand. This is in contrast to (5.4), where only fifll and F); are always available

and any other quantity of intercst (for example, a complete row or column) must

be computed.

C. ALGORITHM OVERVIEW

In broad terms. the algorithm proceeds as follows:

. Establish an initial basic solution.

Stop if the current solution is optimal. Optimality exists when the right-hand

side colum. 1s nonnegative and the bottom (cost) row is nonpositive.

.. Based on a pricing scheme and a ratio test, select and generate a row and

column of iH.41.

- Stop if thie row and column reveal infeasibility or unboundedness.
CTransfors v pooleens i the tableau reoresentation. Fi; and .~11_11. and
returt. toos _

D. IMPLEMENTATION CONVENTIONS

We will first discuss the implementation of each of the three algorithm com-
ponents individually, and then provide a detailed presentation of the complete al-
gorithm. Our implementation is coded in the FORTRAN language, and thus the
following discussion is cclored by the character of that language.

1. The Tableau

The mutual primal-dual method fosters a symmetric view of the linear
programming problem and the solution process. This symmetry is reflected in the
indexing conventions required in our implementation. Assuming now that (5.1)
consists of m structural constraints (both factored and explicit) and n structural
variables, we require the structural constraints to be indexec from 1 to m, and the
variables from (m + 1) to (m + n). While our statement of the problem specifies
the nonnegativity constraints expiicitiv. we wili of course deal with them implicitly.
Note. however. that we have two equivalent interpretations of the indices (m +
1) through (s + n). We can view them as the indices of the structural problem
variables or as the indices of the nonnegativity constraints corresponding to each
of the structural variables. We will use both interpretations in our development.
Observe alsc that we require no explicit representation of logical (slack. surplus or
artificial) variables.

The indexing of the original problem data exists independently of the
solution process and i< thus referred to s the “extrinsic™ indexing. The factoring of
the coustraints to form B8 and D represents a second indexing of the problem which
defines the current solution, independent of the extrinsic indexing. We refer to this
indexing svstens as “mtnnsic L and 1t partially defines the current representation of
B oawd)0 Our convention for intrinsic indexing has the rows of) labeled fron, |

! } R 1
tooan and the roses 8 fy m,n(';"n? from (100 = 1y to g = 1o,

The original problem data is stored in super-sparse form, (in super-sparse
form, each real value is stored once, and each nonzero coefficient is represented by a
row index, a column index, and a pointer to a real value) with unique nonzero real
values stored once in an array of type DOUBLE PRECISION, and referenced by the
FORTRAN equivalent of a pointer fron: each constraint matrix coeflicient. These
pointers to the real values are singly-linked by both row (with associated celumnn
indices) and by column (with associated row indices). This allows symmetric row-
wise and column-wise access to the data to the performed efficiently, which is an
important virtue in a primal-dual design.

To specify the structure of (5.4) we require a representation of the cur-
rent mapping between the extrinsic indexing of the problem data and the intrinsic
indexing of the current tablcan. We represent this mapping by two arrays of type
INTEGER. each dimensioned from 1 to (m + n), which are used as pointers. We
denote these arravs MINT() and MEXT(). MINT() represents the mapping from
intrinsic to extrinsic indices, and MEXT() represents the inverse mapping. Thus.
if IINT is an intrinsic index of a row or column of (5.4) and IEXT is the extrinsic
index of the constraint or variable currently mapped to position IINT of the tableau.

then:

MINT{IINT = IEXT
MEXT{IEXT) = 1INT
MINTIMENTEXT)) = ITENT
MENXTOMINTINT)0 = TINT.

1o complete the representation of (5.4) we require knowledee of the fac-

toration w bbb represented algehraically by regions 1o e o eten We

handle this with the use of several variables of type INTEGER which are used as
pointers to record the ending intrinsic index of the various tableau regions. Table

(5.1) lists the regions and the associated pointer names.

TABLE 5.1: Indices of Tableau Regions

REGION BEGINNING INDEX ENDING INDEX

(i) 1 MKC
(ii) MKC + 1 MFR
(iii) MFR + 1 MXR
(iv) MXR + 1 M

() M+ 1 NXR
Gi) NXR + 1 NFR
Gii) NFR + 1 M+ N

The arravs MINT() and MEXT() and the pointers MKC, MFR, MXR.
NXR and NFR comprise the data structures necessary to represent the principal
part of the tableau. To complete the representation of the tableau we require a rep-
resentation of the right-hand side column. the bottom row and the current value of
the extremal function. The right-hand side column and bottom row are represented
by an array of tvpe DOUBLE PRECISION. dimensioned from 1 to (m +n). referred
to as RIM({). Positions 1 through m correspond to the right-hand side column and
positions (m + 1) through (m + m} correspond to the bottom row. Note that these
are intrinsic indices. The current vahue of the extremal function is held in a scalar
variable of tvpe DOUBLE PRECISION called OPT.

We now discuss the operations necessary to maintain ard update the
tableau representation. To recognize a- 2 solution we simply scan the RIMy
arrav. When the values i positions 1 through me are nonnegative and those 1

positions f1 ~ Do throueh (= 10 are noupositive. the current solution 1« optimal,

Violations of either sign discipline may serve as potential primal algorithm target
rows or dual algorithm target columns, respectively.

Having selected a target row or column, we must generate the correspond-
ing row or column of the tableau, compute ratios with respect to the right-hand side
column or bottom row, and thus identify the index of a corresponding column or
row. We then generate that column or row of the tableau. Because the details of row
and column generation differ according to the factorization, we defer their discussion
until the appropriate chapter. To represent the update operations, however, we de-
fine the abstract functions Generate Row(IPRI) and Generate_Column(IPCI).
These functions accept as arguments the intrinsic row (IPRI) or column (IPCI)
index of the current tableau and return the current representation of that row or
column. We require a working array of type DOUBLE PRECISION to hold these
current representations. We define ROWCOL() to be such an array, dimensioned
from 1 to (m + n). where positions 1 through m correspond to column IPCI of (5.4)
and positions (m + 1) through (m + n) correspornd to row IPRI. ROWCOL() is
indexed intrinsically in conformance with our convention for (5.4).

Recall that our interpretation of a pivot from the primal algorithm view-
point 1s as an exchange of rows between B and D. The row indices of D correspond
to the row indices of (5.4, while the row indices of B correspond to column indices
of (5.4). Thus. a pivot requiring the exchange of a row of B and a row of D 1cquires
the exchange of a row index of (5.4) with a column index of (5.4). Using MINT()
and MEXT(). zuch an exchange requires just a few assignment statements. For
example. if the pivot row IPRI corresponds to extriusic index EPRI and the pivot

column [P corresponds to extrinsic index EPCIL then prior to a pivot we have:

MINT(IPRI) = EPRI
MEXT(EPRI) = IPRI
MINT(IPCI) = EPCI

MEXT(EPCI) =1IPCI

and after the pivotal exchange we have:

MINT(IPRI) = EPCI
MEXT(EPCI) = IPRI
MINT(IPCI) = EPRI

MEXT(EPR:) =IPCIL.

We call this tvpe of index exchange a “primary exchange”. For abstrac-
tion purposes we define a function Primary Index_Exchange (IPRIIPCI) which.
given the current tableau representation and the intrinsic pivot row index IPRI and
the intrinsic pivot column index IPCI. performs the appropriate update of MINT()
and MEXT{). Every pivot requires a primary exchange.

In addition to the partitioning of constraints into B and D. we are re-
quired to maintain the factorizations ((7).(27). etc.) within each. Having performed
the primary exchange. 1t is possible that additional exchanges within B and/or D
are required to restore the proper factorization. For example, if the primary ex-
change removes an F-tvpe constraint from D (region (17)) and places it in region (7)
of B. an additional excliange is necessary to move the row from region (7) to region
(jJ 1. Werefer to such acticis as secondary exchanges™. Secondary exchanges in D
correspond to row exchanges in (5.4} and secondary exchanges in B to column ex-

chanee<an (5.1 Thus. we define the functions Row _Index_Exchange(IRI1.IR12)

and Column_Index_Exchange(ICI1,ICI2) which exchange intrinsic rows IRI1 and
IRI2 or intrinsic columns ICI1 and ICI2, respectively. Since the indexing of the
RIN:() array corresponds to the tableau indexing, we assume that any secondary
exchanges performed on the tableau are also performed on RIM().

Finally, our factorization requires that the factored kernel, Fy;, remain
nonsingular. It is possible that the primary and secondar:" exchanges will destroy
the nonsingularity of Fy;. When this occurs, additional row exchanges between
regions () and (ii7) of D will be necessary to restore the required nonsingularity of
F);. We call such exchanges “tertiary exchanges”. Again, we assume that tertiary
exchanges performed on the tableau are also performed on RIM().

The factorizations of B and D are dynamic in nature, meaning that
a particular pivot may cause the dimension of one or more regions of B and/or
D to increase or decrease by one row. Such dimension changes are handled by
simply adjusting the values of the factorization pointers. We define the functions
Increment(XXX) and Decrement(XXX). where “XXX" is MKC, MFR, MXR,
NXR or NFR. to increment or decrement, respectively, the appropriate pointer

value.
In summary. the tableau data structures are:

MINT()
MEXT()
RIM()
ROWCOL()

MRKC.MFROMXRONFR.ONXR.

and the necessary update operations are:

Generate_Row(/PRI)
Generate_Column(/PCI)

Primary Index_Exchange(/PRI,IPCI)
Row _Index_Exchange(/RI1,IRI2)
Column_Index_Exchange(ICI1,1C12)
Increment(X X X), and

Decrement(X X X).

2. The Explicit Transformatior. Kernel

As can be seen from (5.4). the rows of A7} correspond to region (ii7) of
the tableau (nonbasic nonkey variables) and the columns to region (7) (basic explicit
constraints). The dimension of AT}! may vary as the algorithm progresses, and the
mechanism for these changes is the addition and deletion of rows and columns.
We thus require data structures that permit the efficient insertion, deletion and
exchange of rows and columns of A7!. Further. the number of nonzero elements
in A7 varies from pivot to pivot. independentl: of dimension changes. We store
hese nonzero elements in a stack. referring to them via pointers which are stored
as an orthogonally linked list, doubly linked by row and doubly linked by column.
This allows the efficient update of A7 and accommodates the dynamics, at some
expense in storage. Contrary to the tableau representation. we maintain the explicit

transformation kernel representation indexed extrinsicallv rather than intrinsically.

This allows permntations within region (7) and/or within region (177) of the tableau

~(

without requiring corresponding permutations in the columns and/or rows of the
A7} representation.

We again define a suite of functions which operate on our representation of
A7} and describe its update. Add_Row(IRE) and Add_Column(1JE) append ex-
trinsic row IRE and extrinsic column 1JE, respectively, to our representation of A;}.
We will ensure that the current representation of each is in work array ROWCOL()
prior to executing these functions. Columns will always be appended to the right-
hand side of A} and rows will be appended to the bottom. Delete_ Row(IRE) and
Delete_Column(lJE) delete extrinsic row IRE and IJE, respectively, from the rep-
resentatic.. of A7'. Replace_Row(IRE],IRE2) causes the overlay of extrinsic row
IRE1 by extrinsic row IRE2. The representation of IR} . will have been previously
placed in ROWCOL(). Finally. Update Explicit Transformation_Kernel per-
forms a pivot update of the representation of A7}, using the current representation
of the pivot row and pivot column in ROWCOL().

3. The Factored Kernel

The data structures and update actions for the factored kernel vary ac-
cording to the factorization and their discussion will be deferred. Here we define the
necessary abstract update functions.

Is_Factored _Kernel_Singular tests the current representation of Fj,
for singularity and returns the appropriate Boolean value. It will be used in certain
pivot cases to determine which of several courses of action should be taken.

All tertiary exchanges take the form of row exchanges between regions
(1) and (117) of {5.1). Note that region (1) consists of the nonnegativity constraints
of kev variables. By our alternate interpretation of the nonnegativity constraint
indices we may consider these to be keyv variable indices. Since the columns of Fi,

are kev variables. we interpret region (1) as containing the indices of the columns

N

of F1;. An exchange of rows between (1) and (2227) of (5.4) is then interpreted as an
exchange of columns of Fy;.

Before such a column exchange for Fy; (and thus a row exchange in (5.4))
can be made, we must frequently identify the index of the column to be removed from
F1; (which is an index in region (7) of (5.4)) and the index of the column which will
replace it (which is an index in region (217) of (5.4)). We thus define Find_Column
-to_Remove(IOUT), which selects from among the indices of region (i) of (5.4)
the intrinsic index IOUT of the column to be removed from Fj;. Similarly, Find
-Column_to_Add(IIN) selects from among the indices of region (22:) of (5.4) the
intrinsic index 1IN of the column to be be added to F};. Finally. Update_Factored

_Kernel updates the data structures used to represent Fy,.

E. COMPLETE ALGORITHM DESCRIPTION
We are now in a position to fully describe our implementation of the
algorithm. We do so by expanding the discussion of each step given previously in

section C.

1. Initialize the algorithm using the origin as the initial basic solution. Then

B = (=1

F

v (5}

E

0Pt _ F
PP = (r

2. Stop if the current solution 1« optimal. The current solution is optimal if

(RIMARy > 0for] < R < Maud RIM(JC) < 0for M+1 < JC < M4N.

3. (a) Select a violated primal o1 dual constraint as the target row or column.

respectively. For purposes of exposition. assume the current solution 1s

~]

(d)

primal feasible and we are executing the primal algorithm. Then the
target row is the bottom row, and we select the intrinsic index IPCI of a

column which will allow us to make a gain in the value of the extremal

function (i.e., RIM(IPCI) > 0).
Generate_Column(IPCI).

Calculate ratios by computing RIM(IR)/ ROWCOL(IR) for those 1 <
TR < M with ROWCOL(IR) > 0. If ROWCOL(IR) < 0forallIR,1 <
IR < M stop, since the problem is primal unbounded. Otherwise, select
IPRI to be the intrinsic index yielding the smallest such ratio. Break
ties in accordance with the following hierarchy: region (72:) first, then

regicr (11). then (1) and finally region (:1v). Within a region, break ties

bv selecting IPRI to be the first such index encountered.
3 g

Generate_Row(IPRI).

4. If. contrary to cur assumption in 2.a. the current solution is not primal feasible,

3.

(a)
(b)

(c)

the target row would be some row IPRI of (5.4). 1 < ITPRI < M rather than
the bottom row. We would proceed by next executing Generate Row(IPRI).
If ROWCOL(JC)y>0forall M+1 < JC < M+ N, we would conclude that

the problen; is primal infeasible.

Primary _Index_Exchange(IPRLIPCI).

Pivot update RIM() and OPT using ROWCOL().

Perform the necessary secondary and tertiary exchanges. as shown in Ta-
ble 2. Neie that some tertiary update actions are conditional. depending
upon the singularity of Fy;. We use a notation similar to the FORTRAN

BLOCK II statement to indicate the conditional actions.

(d) Update Factored Kernel.
(e) Update_Explicit_Transformation_Kernel.

(f) Go to Step 2.

We now give a more detailed explanation of the secondary and tertiary

exchanges listed in Table 5.2, discussing each pivot coordinate individually.

1. Pivotal coordinate ((¢),(7)). EPCI, the extrinsic index of an E-type constraint
located in position IPCI of P, is exchanged with EPRI, the extrinsic index
of a nonnegativity constraint located in position IPRI of D. The initial pivot
exchange places EPCI in position IPRI of (z) and EPRI in position IPCI of
(7). and thus secondary row and column exchanges are necessary to restore the
structure of the tableau. Beginning with the column structure, we exchange
column EPRI in position IPCT of region (j) with the extrinsic index located in
position NXR of region (j;j7). and then decrement the value of NXR. This has
the effect of shifting the starting column index of region (j;) one position to
the left. Now extrinsic index EPRI is in position (NXR+1) of the tableau and
thus is still misplaced. We then exchange EPRI in position (NXR+1) with the
extrinsic index located in position NFR. This places EPRI contiguously with
region (j77). so - decrementing NFR we restore the column factorization.
The effect has been to decrease the dimension of (j) by one. increase the
dimension of (j77) by one and to shift the entire (j;) region one position
to the left. In the row structure. EPCL in position IPRI of region (z) must
eventually be moved o region (1v). However. prior to this pivot EPRI] was a
kev variable. located in region (7). Its removal has disturbed the structure and
thus the nonsinguiarity of Fi;. We must therefore identify a column currently

i oregion (0 which can be used to restore the nonsingularity of £y, We

3

thus invoke Find_Column_to_Add(IIN), which identifies the intrinsic index
IIN of such a column. Suppose the extrinsic index of the column in position
IIN is KX. We exchange EPCI in position IPRI of region (i) with KX in
position IIN of region (i1z). We now have extrinsic index EPCI in position
IIN of (221) and we must move it to region (1v). We thus exchange EPCI
in position IIN in region (i2:) with the extrinsic index in position NXR of
(727), and then decrement NXR. This completes the restructuring ae row
factorization with the effect of decreasing the dimension of region (11z) while
increasing that of region (iv). The effect of these exchanges has been to reduce
the dimension of A7} through the deletion of column EPCI and row KX. To

maintain the proper structure of A7}, we therefore Delete_Row(KX) and

Delete_Column(EPCI).

. Pivota!l coordinate ((7).(77)). EPCI, the extrinsic index of a basic F-type con-
straint located in position IPCI of B. is exchanged with EPRI, the extrinsic in-
dex of a nonbasic nonnegativity constraint located in position [PRIof). Since
both EPCI and EPRI are misplaced after the primary exchange. secondary row
and column exchanges are needed. In the columns, we exchange EPRI in po-
sition IPCI of region (j7) with the extrinsic index located in position NFR of
region (7). Decrementing NFR then completes the column exchang s, leaving
the dimension of region (7)) reduced by one and that of (777) increased by
one. In the rows. we exchange EPClin position IPRI of region (7) with the ex-
trinsic index in position MKC of region (7). Decrementing MK C then restores
the row factored structure of the tableau. Tt remains to be seen. however.
waether what remains of Fip after the removal of row EPCI and column EPRI

is still nonsinenlar. We test Fy; by invoking Is_Factored Kernel _Singular.

If the response is FALSE, then no tertiary exchanges are required. If, how-
ever, the response is TRUE, we must identify a column exchange that we will
restore the nonsingularity of Fy;. To identify the two coiumns which will be in-
volved in the exchange, we invoke Find_Column_to_Remove(IOUT) which
returns the intrinsic index IQUT (with associated extrinsic index NX, say) of
a column to be removed from F};. We then call Find_Column_to_Add(IIN)
which identifies the intrinsic index IIN (with associated extrinsic index KX,
say) of a column in region (z:7) which can be used to replace IOUT. We now in-
voke Row _Index_Exchange(IIN,JOUT), which completes the update of the
row factorization. This row exchange results in the replacement of row KX of
by row NX of the tableau. We currently have no representation of row KX of
the tableau, so we compute it by invoking Generate_Row(IOUT). We may

then restore the structure of A7 by invoking Replace_Row(KX.NX).

. Pivotal coordinate ((7).(y77)). EPCI. the extrinsic index of a basic nonneg-
ativity constraint located in position IPCI of B, is exchanged with extrinsic
index EPRI located in position IPRI of D. The primary exchauge properly
places EPRI in region (jjj). and thus no secondary column exchanges are
necded. Likewise. EPCL is properly placed in position IPRI of region (7). so
no secondary row exchanges are required. Prior to the pivot, EPRI was desig-
nated a kev column and its removal disturbed the structure of Fy;. Since EPCI
is itsell a colummn. it is possible that it may be a replacement for EPRI. To
determine if this is the case. we invoke Is_Factored _Kernel Singular. If the
responsc i« FALSE the direct exchange of column EPCI for column EPRT in
is justificd and the tableau update is complete. If the response is TRUE. how-

ever.a tertiary row exchange i< required EPCL currently located in position

IPRI of region (2), will be the column we remove from Fy,, and its replacement
is found by invoking Find_Column_to_Add(IIN) which returns the intrinsic
index IIN (associated with extrinsic index KX, say) located in region (1i7). We
perform a tertiary exchange by invoking Row_Index_Exchange(IIN,IPRI).
This completes the row factorization update. This tertiary exchange results
in the replacement of row KX of Af}! by row EPCI of the tableau. We must
therefore perform the corresponding row exchange in x‘if,l also. To perform
such an exchange, we require the current representation of row IPRI of the

tableau. This is precisely the pivot row and is already available in the work

array ROWCOL(). Thus, we may invoke Replace_Row(KX,EPCI) directly.

. Pivotal coordinate ((i7),(j)). EPCI, the extrinsic index of a basic E-type
constraint located in position IPCI of B, is exchanged with EPRI, the ex-
trinsic index of a nonbasic F-type constraint located in position IPRI of D.
After the primary exchange, both EPCI (in (7)) and EPRI (in (j)) are mis-
placed, and thus both secondary row and column exchanges are necessary.
We exchange EPRI in position IPCI of region (j) with the extrinsic index
in position NXR of region (j) and then decrement NXR. This has the ef-
fect of reducing the dimension of region (7) while increasing that of region
(77). Notice that we have added row EPRI to the structure of Fy;. and
thus an additional column must at some point be identified. Several row
exchanges are needed. First, we exchange row EPCI in position IPRI of
region (u7) with the extrinsic index located in position (MKC+1) of region
(17) and then decrement MKC. This restores the structure of region (i1) by
reducing its dimension by one row. We now must execute a series of ex-

changes that ultimately places EPCI in region (iv) and also adds a column

to region (i) to restore the nonsingularity of Fy;. To do this, we first iden-
tify the column to be added to Fy; by invoking Find_Column_to_Add(IIN),
which identifies the intrinsic index IIN in region (ii¢) (associated with an
extrinsic index KX, say) which may be added to F};. Notice that the dimen-
sion of Fy; is increased by one through the addition of row EPRI and col-
umn KX. We then perforr: Row_Index_Exchange(IIN,MKC), which places
KX in position MKC of region (i) (correctly) and places EPCI in position
IIN of region (7:2) (incorrectly). To complete the tertiary row exchanges, we
invoke Row _Index_Exchange(IIN,MXR), followed by Decrement(MXR).
This properly places EPCI in region (iv) by increasing the dimension of re-
gion (iv) by one row while decreasing that of region (ii¢). Finally, notice that
the dimension of A7} has been reduced by one through the removal of column
EPCfand row KX. To update tlie representation of /ifll accordingly, we invoke

Delete_Row(KkX) followed by Delete_Column(EPCI).

. Pivotal coordinate ((i7},(jj)). LPCI, the extrinsic index of a basic F-type
constraint located in position IPCI of B, is exchanged with EPRI, the ex-
trinsic index of a nonbasic F-type constraint located in position IPRI of D.
The primary exchange places both EPRI and EP'CI in their proper positious.
so no secondary row or column exchanges are needeq. However, the struc-
ture of has been altered through the addition of row EPRI and the deletion
of row EPCI To determine if the structure and nonsingularity of Fj; has re-
mained intact. we invoke Is_Factored Kernel_Singular. If the response is
FALSL. the tableau update is complete. If the response is TRUE. we must
identify a column exchange that wili restore nonsingularity. Thus. we invoke

Find_Column_to_Remove(IOUT) which returns the intrinsic index I0UT

.

(associated with the extrinsic index NX, say) of a column located in region
(1) which may be removed from Fy,. We invoke Find_Column_to_Add(IIN)
which returns the intrinsic index (associated with an extrinsic index KX, say)
of the column IIN located in region (tii) which may be added to Fy,. We then
perform a tertiary exchange by invoking Row_Index_Exchange(IIN,JOUT).
This last action results in the replacement of row IIN of A} by row IOUT of
the tableau. We have no current representation of row IOUT, and to compute
one we invoke Generate Row(IOUT). We then update the representation of

A7l by invoking Replace Row(KX,NX).

. Pivotal coordinate ((12),(777)). EPCI, the extrinsic index of a basic nonnega-
tivity constraint located in position 1PCI of B, is exchanged with EPRI, the
extrinsic index of 2 noubasic F-type constraint located in position IPRI of D.
The primary exchange misplaces both EPRI and EPCI and thus both sec-
ondary row an<2 column exchanges are necessary. We exchange EPRI, located
in position IPCI of region (jj7) with the extrinsic index located in position
NFR. By then incrementing NFR, we restore the column factorization struc-
ture by increasing the dimension of region (jj) while reducing that of region
(777). Notice that the addition of row EPRI to the structure of F}; indicates
that an a corresponding column must also be located. To restore the structure
of region (21). we exchange EPCl in position IPRI of region (17) with the extrin-
sic index in position MXC of region (). Incrementing MKC restores the struc-
ture of region (i7) by reducing its dimension by one row. Since EPCI is a col-
umn which we have now placed in position MKC, it is possible that Fy; is now
nonsingular. To determine this. we invoke Is_Factored _Kernel_Singular.

If the response is FALSE. the tableau is complete. 1f. on the other hand.

i 5]
B

the response is TRUE, we must perform a tertiary column exchange to re-
store the nonsingularity of F},. We will be removing EPCI, currently located
in position MKC, from Fj; and replacing it with the column identified by
Find_Column_to_Add(IIN), which is extrinsic index KX located in posi-
tion IIN of region (ii7). We then perform Row_Index_Exchange(IIN,MKC),
which completes the tertiary exchange. This exchange implies a row exchange
in Aj also. We are required to replace row KX of A; with the current
representation of row EPCI of the tableau. Since IPRI is the pivot row, the
current representation of EPCI is readily available in ROWCOL(). We may

then complete the row exchange by invoking Replace_Row(KX,EPCI).

. Pivotal coordinate ((722),(7)). EPCI the extrinsic index of a basic E-type
constraint located in position IPCI of B, is exchanged with EPRI, the extrin-
sic index of a nonbasic nonnegativity constraint located in position IPRI of
D. The primary exchange misplaces both EPRI and EPCI, and thus both
secondary row and column exchanges are necessary. We exchange EPRI. in
position IPCI of region {j). with the extrinsic index in position NXR of re-
gion (j). We then exchange EPRI. now in position NXR of region (7). with
the extrinsic index located in position NFR of region (57). We complete the
column update by decrementing both NXR and NFR, which has the effect of
reducing the dimension of region (j) by one column, shifting region (7;) one
column to the left in the tableau and increasing the dimension of region (777)
by one column. For the row update, we first exchange EPCI,in ;- - on IPRI
of region (u17). with the extrinsic index located in position MXR of region
(127). By then decrementing MXR we restore the row factorization by increas-

ing the dimension of region (1) by one row while decreasing that of region

(iii). The effect on A7} has been to reduce its dimension by one through the
deletion of column EPCI and row EPRI The corresponding update to the
representation of Aj)' requires that we invoke Deiete_Row(EPRI) followed

by Delete_Column(EPCI).

. Pivotal coordinate ((2:7),(57)). EPCI, the extrinsic index of a basic F-type
constraint located in position IPCI of B, is exchanged with EPRI, the extrin-
sic index of a nonbasic nonnegativity constraint located in position IPRI of
D. The primary exchange misplaces both EPRI and EPCI, and thus both
secondary row and column exchanges are necessary. We exchange EPRI, cur-
rently located in position IPCI of region (77), with the extrinsic index currently
located in position NFR of region (jj). By then decrementing NFR, we re-
store the column factorization by decreasing the dimension of region (j7) while
increasing that of region (557). Note that the removal of EPCI from the struc-
ture of F}; implies that the dimension of Fj, decreases by one, and thus a
corresponding column must be removed from Fj;. To locate this column, we
invoke Find_Column_to_Remove(I0OUT), which returns the intrinsic index
IOUT (associated with the extrinsic index NX, say) of a column located in
region (7) which 1nay be removed from Fj; while allowing the remaining struc-
ture to be nonsingular. We exchange EPCI. currently located in position IPRI
of region (717). with NX. currently located in position IOUT of region (7). This
restores the row structure of region (z77), but EPCI is misplaced in region (7).
Therefore. we exchange EPCI in position IOUT of region (1) with the extrin-
sic index located in position MKC of region (2). By then decrementing MKC.
we restore the structure of region (1) by decreasing its dimension and that

of region (1.1 by increasing its dimension. The exchange of NX in 1IN with

90

10.

11.

EPCI ir IPRI implies a row exchange in Aj!. To perform this exchange in
the representation of Af}!, we must replace row EPRI of A7} with the current
representation of row NX of the tableau. Since this current representation is
not available, we invoke Generate_Row(IIN) to compute it. We then update

our representation of A}, by invoking Replace_Row(EPRI,NX).

Pivotal coordinate ((2i7),(j77)). EPCI, the extrinsic index of a bas.. nonneg-
ativity constraint currently located in position IPCI of B, is exchanged with
EPRI, the extrinsic index of a nonbasic nonnegativity constraint currently lo-
cated in position IPRI of D. The primary exchange properly places EPRI and
EPCI, so no secondary exchanges are necessary. Since Fj; is unaffected, no

additional action is required.

Pivotal coordinate ((7v),(7)). EPCI, the extrinsic index of a basic E-type
constraint currently located in position IPCl of B, is exchanged with EPRI, the
extrinsic index of a nonbasic E-tvpe constraint currently located in position
IPRI of D. The primary exchange properly places EPRI and EPCI. so no
secondary exchanges are necessary. Fy; is unaffected, so no additional action

is required.

Pivotal coordinate ((2v),(77)). EPCI. the extrinsic indcx of a basic F-type
constraint currently located in position IPCI of B, is exchanged with EPRI.
the extrinsic index of a nonbasic E-tyvpe constraint currently located in po-
sition IPRI of). The primary exchange misplaces both EPRI and EPCI.
so both secondary row and column exchanges are necessary. EPRI. cur-
rently in position IPCI of region (jj). is exchanged with the extrinsic in-
dex located at position (NXR+1) of region (75). The column structure is

restored by incrementing NXR. increasing the dimension of region () while

decreasing that of region (j5). Note that since the dimension of region ()
increases, the dimension of will increase also. Also, the removal of EPCI from
Fy1 implies that the dimension of Fy; will decrease. Thus, a column of Fy;
must be identified for removal as well. To find such a column, we invoke
Find_Column_to_Remove(IOUT), which returns the intrinsic index IOUT
(associated with the extrinsic index NX, say) of a column whose removal from
F}, allows the remaining structure of Fj; to be nonsingular. We perform a ter-
tiary exchange by exchanging NX, currently located in position IOUT of region
(7), with the extrinsic index currently located in position MKC of region (1).
The structure of region (1) is then restored by decrementing MKC, reducing
the dimension of region (7) while increasing that of region (zz). To properly po-
sition EPCI and restore the structure of region (i7), we exchange NX, currently
located in position (MKC+1) of region (:z), with EPCI, currently located in
position IPRI of region (iv). Thisleaves only NX misplaced. We thus exchange
NX, currently located in position IPRI of region (iv), with the extrinsic index
located in position MXR of region (i7). The row update is completed by incre-
menting MXR, increasing the dimension of region (ii7) while decreasing that
of region (iv). Since the dimension of A7} has been increased. we must up-
date our representation. We are required to add the current representation of
column EPRI. which is available as the pivot column in ROWCOL(). We also
require the current representation of row NX of the tableau, which is not cur-
rently available. We thus invoke Generate _Row(IOUT) With these two rep-
resentations, we mayv then invoke Add_Row(NX) and Add_Column(EPCI)

to complete the update of the representation of /ii_]l.

12. Pivotal coordinate ((i.v),.(jjj)). EPCI, the extrinsic index of a basic nonneg-
ativity constraint currently located in position IPCI of B, is exchanged with
EPRI, the extrinsic index of a nonbasic E-type constraint currently located in
position IPRI of D. The primary exchange misplaces both EPRI and EPCL
To restore the column factorization, we first exchange EPRI, locaied in posi-
tion IPCI of region (j;7), with the extrinsic index located in position (NFR+1)
of region (757). We then exchange EPCI, now in position (NFR+1) of region
(777), with the extrinsic index located in position (NXR+1). We complete
the column update by incrementing both NXR and NFR, which has the effect
of increasing the dimension of region (7), shifting region (77) one position to
the right and decreasing the dimension of region (77;7). Since the dimension of
region (j) has been increased, the dimension of A7} will increase as well. To
restore the row factorization, we exchange EPCI, currently in position IPRI
of region (iv), with the extrinsic index located in position (MXR+1) of re-
gion (¢v). The row update is completed by incrementing MXR, which has
the effect of increasing the dimension of region (7¢7) while decreasing that of
region (iv). The dimension of Aj;! has been increased through the addition of
column EPCI and row EPRI. Since IPCI is the pivot column and IPRI is the
pivot row. each is already available in ROWCOL(). Thus we simply invoke
Add_Row(EPRI) followed by Add_Column(EPCI) to complete our update

of the representation of AJ}.

93

Secondary and Tertiary Tableau Exchanges

TABLE 5.2

(H1)wwnpoy ppy
([)ymoy ppy
(3 N B Jivawoout
(1 4+ U X W U)svuvyIz g Topu moy

(V)] .r.thuE:.u:\

(1 + YU XN Y dN)esuoydzg Topuuwnjo))
@kz.:s_.tb.i

(d DT 1+ YA N)oDuPyI T TpuuLmpo)

paasnbiyuoipyonN

ey
(57X Mmooy a0pday
(NIN D) pyobuvydr - Iopurinoy
AZ;\“E;WE,:::.3.9%:.,.\
uayy({)4opnburspouss s pesopov)1
xtk W)judu oug
(M W 'JU’T)ebuvydz g zopumoy
(U A N udws g
(d DU 4 N)3uLYIT T Lopuruwno))

Jipuy
(1)1 J ¥ ymoyraavpdayy
:,:z.,:w sbuvysz:y Iopuj-moy
(N INIPPY 01 uwno)" pus
uayy{()sopnbussjousa ympasoprv s 1)1
i
e

() uwnge)y ppy
(XA v ppy
((LiJON by v sjuisusy)
Q) XV Npusnisaoaug
(U N IV dU 14000y Is] TopufTamoyy
(JUT 1 DNV)oouvyo Ly Tapuy moy
(J2M Y puswavssg(y
(DOMINLINON b uvyI g Topu oy
(LHON wowsoypuuingo,) puty
(4 AN usmsoug
(1 + UXNN'JDT)sbubyos J opuf-uunjo)

(XN U)oy 2udy
(DM I) 1ususs o
(DM > LIJON)2buvysz [2opuf-moy
(JUT LNON)buoyo LG sopu oy
(LAOON oy o 2)uisuss)
(LAON suousy o uwmpo, y pui
(M AN udwabs(g
(U AN 'dDT)vbuvyary Topu[uwino,)

npud

(NN N Y ey sonpay
A,N;;:._C .7‘ IN v,.::c.‘.:m\ Lapnloiolf
(A TN PPy 0wy pa
(LION Yo v ajuiaugt)
CLIJON Wasw o wange 3 put
Uotj 3 (Javpuba g jonas U poaoga e 1)

Jipud
(NN N Y o s,.SL Y]
CLON W0 v 2 uaansly
(LIHON NN Jsbuvyorf Topuf oy
(NN PRV 0 Btanjo) put
(IO N)osatis}) v utngo y pus |
U ({V4vnb i g Jotiaw M praopor [v]}]}
(IM IV U prbuvyor repuf - moy
(U AN NIzl
(U AN 'J)1)0uvYyIL Y Tapti] uwnjo,)

—~—
(ee)

posmboyuorjoyon

(L pyusungo) 9)opa(]
Qe 2ol
(U Ny Huowe sy
(U XV JY T VvuvyaI i zopu-may
U N Nuews L]
(YN Jiuswea 0y
(Y AN UNXNN)OuvYI [T Tapufuuwitijo)
(U NN J)])ebuvyok g ropuf utingo)

() yuwngoy sga1s()
(N M b wie)a)
(N SV Hususssos (g
QIVIV N LA Ybuvygassp dopug oy
(L)Y I AN HOuuyad o sspp gy
AN PPV 0 uagoe) pu
()M Sy Jiusiasasuy
(14 DMV U I0uvyor 1 Lopuf o
Qf N N Nusweiou(g
(U NN))ebuuyo Ll Topu] wwinjo)

(g huange) napsf
PN Y 1l 2iegey
_: AW 1Y [Tt Oy
UIN WA LN Vbuvyo s g oy
(N TN JU)Y Sopuj ooy
(AN PPV 0L ko put
\1_\,.\?, .A {] ~\ r ,)\ TQ?E{LH...\. N.\T:\ :-t:\:‘ }
(4 XN Juswa s
(XA J)) ebuuy I T xopu T utuije)

—~
n

()

[ra)

Vi)

(1)

a4

VI. FACTORIZATION OF GENERALIZED
UPPER BOUND ROWS

A. INTRODUCTION

We now develop the first of three specializations of the factorization approach.

We are still interested in the problem:

(GUB) myin D wy
st.: Fy<b F pbyn
Ey<r E mbyn
—ly<0 ~1 nbyn
where F, E, ~I w,band r are as before. We now require that the F-type constraints

are generalized upper bound (GUB) constraints. Define S;.i = 1....,p to be pair-

P
wise disjoint subsets of the set A" = {[.. .. n} and further define S, = N - (J &,
1=1
(S, may be empty). Then SNSy =8 for0 <7< p. 0<7 <p. 1 #: and
r
U S, = N. GUB constraints are of the form
1=0
d by, <bli=10.. p. &, ==l (6.1)
JES,
The sets S,. 1 = 0..... p are called GUB sets and 7 is the GUB set index. S,

identifies those variables that have no coefficient in any GUB constraint. The E-
type constraints are of arbitrary form.

A specialization of the Simplex Method to handle GUB constraints was first
developed by Dantzig and Van Slvke [{1967]. They introduce a specialization of
(GUB) with &, = 1 and strict equality constraints. Their algorithm requires a
working basis of dimension (m + 1). McBride [1972] develops a specialization of

the mutual primal-dual method to solve a second variant of (GUB) with ¢, = %1

a5

and strict equality constraints. A dynamic working basis whose dimension cannot
exceed m is required. A computational analysis by McBride [1972] predicts that the
performance of this algorithm should exceed that of the Simplex Method when the
proportion of GUB constraints in the model exceeds approximately 29%, and his
empirical results tend to confirm this analysis.

We extend this work by developing a specialization of the factorization ap-
proach which does not require all GUB constraints to be binding. We will see that
there are computational efficiencies to be gained by this approach. We first present
the factored tableau for (GUB). We then discuss the important computational is-

sues.

B. THE FACTORED TABLEAU
Recall from Chapter 4 the primal row basis at an arbitrary point in the solution

process is:

k ! rn~{—k
- ~— N

{7} Ly En Ey }
b= (111 ISVE ST ST }k (6.2)

(2221 \ 0 0 -1 Jn—1-k%
We saw in Chapter 4 that it is alwavs possible to identify among the columns of
B a set of k columue< such that the submatrix Fy; is nonsingular. Since the rows
of [Fi1 Fiz Fio correspond to GUB constraints, their form is similar to (6.1). with
column permutation- accounting for the difference. Each column of [Fiy Fip Fi3) is
either zero. or a sicned unit vector, and thus by row permutations of these F-type
constraints. £y mia be placed into the form of a k by k signed identity matrix 3.

The resulting 1GURY row basis 1

.

k { n—-l—k
N A ~—

G) | En Ewn Es | M
B=(Gh {an Fa Fs |)k (6.3)

Gij)\L O 0 -1) Jn—-i-k

The corresponding nonbasic constraint rows are then:

(1) | -1 \}k
p_ ()| 0 Fu Fy | }p-tk

@iyl o -1 0 |}

(v) \ En k. Eg ym -1

Recall that we wish to observe a one-to-one association between the variables
whose nonnegativity constraints (which appear in region (1) of D) are nonbasic
{(nonbinding) and the F-tvpe constraints in region (jj) of B. This association is
exactly analogous to the idea of “key™ variables proposed by Dantzig and Van Slvke
[1967]. We call the variables whose nonnegativity constraints appear in region (1)
of D “kev” variables. and there is one such variable for each currently basic F-
tvpe constraint appearing in region (jj) of B. The variables whose nonnegativity
constraints appear in region (221) of) are then called “non-key™.

Using (6.3) and (6.4) and recalling the expression for the explicit transforma-

tion kernel:

(B = EnIg R = (B = Endg k™!

the principal part of the factored tableau is:

() —duFnAy By + duFuAl Endu AuFi - AnFudil(Es - Eudnfu)
() ~FnAy FnAjl Endu Fn = ndil(En ~ Endufu)
o i AT Eadn A7 By = EnanFsi

o) | =iEn = Endnfa A5 -Endu+1En- Endufidl Endn En- EnduFu = Endil(En ~ EnduFu)
+E,,A“Fur‘\\',‘(£n - Eyyanful

(6.5)

C. SEQUENCING COMPUTATIONS TO EXPLOIT COMMON SUB-
EXPRESSIONS IN COLUMN GENERATION
To examine the actions required by Generate_Column(LC). suppose we
want to generate column LC of the principal part of the tableau (6.5) and place
the results in the vector =7 = (z;. 22. 23. z4)7 which is partitioned to conform to

(6.5). Rewriting (G.5) in a more convenient manner. we have:

- 1
(v —Aan[_Af\“] -aufi, [‘AE'EnAﬂ] +8n -A..F,,{.A,,'(E.;—E..A.,F.,\) +0uf,
(i) ~Fn “fl‘} ‘Fnl"-"f"EnAu) —fa [""_‘I‘E“—E"A“F")] + Fa
(3m1) li\-\l ‘fin—;‘EnAn A(En - Enanhia
- it Ac - AL (E:y - Eyy 3 Fisl
() { —En [Aﬁ‘} - Ea ’l"Aufanu‘ ’] -En ['A“' E"‘:\‘“] En [A“(BT EmeEnTe]

-Ea [—3||Fn(-'4-|_.] Enay)+ A"l -En [—Aurn(/irxl(fu - Enanfui+ AnFn] + En

(6.6)

To highlight those computations involving terms consisting entirely of zeros and plus
and minus ones, we introduce the following notation: a general matrix product is
denoted by “-7, asin xi,",‘ - L3 A vsimple” matrix product (i.e., one in which one
of the terins consists entirely of zeros, plus ones and minus ones) is denoted by o, as
in Ey; 0 F;. The calculations may then proceed as follows (note that ¢C is a unit

vector with a plus one in pozition LC}:
1. Calculate region (1)

(a) I columm LC i (). then:

(c) If column LC is in (j;7), then:

3= AR [(Exs)LC —EnolAno (Fw)LC]

Notice that (Fi3)LC is either null or it is a signed unit vector, say in row

k, in which case Ej; 0 Ajy 0 (Fi3)X¢ = £(Eqp)k.
2. Calculate region (2):

(a) If column LC is in (J), then:

2y =—-ApnoFp0z2

(b) If column LC is in (jj). then:

25 = -—A“ 0F]2 O z3+ (A]l)LC

(¢) If column LC isn (7;7). then:

zy = —A” o F]2 O 23 + A11 <o (F13)LC'

Notice that the computation —Fj; ¢ 23 involves only additions and sub-
tractions. and that each case in region (1) differs only by an addition

suffix.

3. Calculate region (1/):

100

(a) If column LC is in (7). then:

2 = ~F22 © 23

(b) If column LC is in (jj), then:

2 =—Fpoz

(¢) If column LC is in (j77), then:

23 = —Fpozy+ (Fy)kc
4. Calculate region (1v):

(a) If column LC isin (7). then:

24 =—E21 21~ Egp - 23

(b) If column LC isin (7). then:

<4 = —521'21 ~ E; - 23

(c) If column LC isin (577). then:

si= —Ey oz = Eguoza 4 (Eg)F°

101

Then column LC of (6.6) is available as 27 = (z;, 23, 23, 2,)7. Notice that
floating point multiplications and/or divisions are necessary only for computation of
regions (111) and (tv); also note that regions (1), (i¢) and (iv) are linear combinations
of region (iit) and one another, and that each term in these regions differs only by

an additive suffix.

D. SEQUENCING COMPUTATIONS TO EXPLOIT COMMON SUB-
EXPRESSIONS IN ROW GENERATION
Now we examine the actions of Generate_Row(LR). Suppose we desire to
generate row LR and place the results of the computation in the vector 2 = (Zs, 2, 27)

which is partitioned to conform to (6.5). Rewriting (6.5) in a convenient form:

S v b
{1} =a5 Ry ‘{;——\n:fnfi;_:-'}fn ‘1}-31: !’-A,,F,,,-.i,',’_‘IE,,— i—{E—A‘,F,,,‘i,',‘iE,,ol}_“.”}ﬂ,
(s -Fa -l A En}an {=FnAt i Eo s = {(=Fadfi By Anl Fiy = Fa
fuei) A7 =AM EN) A [An Lo~ SR B a0 Ry
(et | (Ep &y Fre - Eroi5 —{{f;;-'anf;:-f—::‘-‘i‘—x"EEn‘EJ:}—'H: llEﬂA”F”'E”)’S;“,‘E”

<l EnsnFe - B AL B« B0) AV R - B

Jo

Then we may proceed as follows (note that ez g is a unit vector with a plus one in

position LR):
1. Calculate region (j):

(a) If row LR is in (1), then:

s = [<(An)Lr ¢ Fig) 0 A7}

(b) If row LR is in (27), then:

25 =(—Fn)Lro /ifll

(c) If row LR is in (7i7), then:

(d) If row LR isin (7v), then:

~

25 = {(En)Lr 0 A1 o Fia — (E22)Lr] - Af

Notice that the computation of the term (Ej) r o Ay 0 Fi2 — (Ex)Lr

involves only additions and subtractions.
2. Calculate region (j7):

(a) If row LR isin (7). then:

o=1—Is - By +ern) o Ay

103

(b) If row LR is in {ii), then:

26 =(—25 - En1)o A

(c) If row LR is in (2it), then:

26 = (—25- Eu) LAY

(d) If row LR is in (iv), then:

2¢ = (—55 By - (EZI)LR) o An

3. Calculate region (j7;):

(a) If row LR is in (2), then:

7 =25 B3+ 260 Fi3

e

(b) If row LR is in (11), then:

2o =35 -Fiz+ 260 Fia+ (Faa)ir

(c) If row LR is in (1i7), then:

=I5 Ela+ g0 Fua

101

(d) If row LR is in (iv), then:

27=%5- E1a+ 260 Fia + (E23)LR-

The row LR of (6.7) is available as 7 = (25, %, 7). Note that floating point
multiplications and/or divisions are avoided for terms involving Fy;, Fy; and Fis,
that regions (jj) and (jjj) are linear combinations of region (), and that many
cases differ only by additive infix terms.

This computational scheme extends the approach of the mutual primal-dual
method by introducing additional linear dependencies into the tableau and exploits
those dependencies to improve efficiency. Empirical evidence suggests that this

approach also improves numerical stability (McBride [1989]).

E. DATA STRUCTURES

The essential information contained in the factored kernel when the factored
rows are GUB constraints is simply the unique mapping between each basic factored
constraint and its corresponding “kev" nonbasic variable. We require a represen-
tation of this mapping which is compact. can be efficiently accessed and is easily
updated.

One possibility is to maintain the intrinsic ordering of the tableau in such a way
that the factored row/key variable relationship can be derived implicitly. Region
(77) of the tableau corresponds to the basic factored constraints of B. Region (7)
of the tableau correspond- to the nonnegativity constraints associated with the kev
variables. If we maintain the ordering of (j5) and (7) so that the k** position of (7)
contains the index of the key variable associated with the factored constraint whose

index is in the & position of (j7). we have an implicit representation of F;.

105

Two difficulties arise with such an approach which lead us to choose an alter-
nate representation. First, such an ordering complicates the tableau update scheme
presented in Chapter 5 and potentially increases the computational expense of all
tableau updates which affect Fy;. Second, several update cases require the iden-
tification of GUB set membership for variables which are not currently assigned
to region (i) and thus are not currently part of the Fj; structure. This may be
done by accessing the original problem data by column and scanning that column
for the index of the GUB row, if any, in which the column has a nonzero element.
Since the original problem data is stored in a super-sparse form, this scheme re-
quires indirect computer memory addressing. We prefer a method which requires
less computational expense.

We thus introduce an additional data structure to manage the structure of
Fi. KEY(1J) is an array of type INTEGER, dimensioned from 1 to (m + n),
which for each basic factored constraint records the extrinsic index of the associated
key variable, and for each nonbasic key variable records the extrinsic index of the
corresponding basic factored constraint. Additionally, for eacli variable which is not
key (i.e., either non-key variables or basic variables), KEY(1J) records the extrinsic
index of the factored constraint for which it may serve as a key variable. If we
interpret the extrinsic index of the factored constraints as GUB set indices, then
for every variable KEY(1J) contains the GUB set index. Note that since GUB
set membership is fixed for a given variable, all column indices KEY(1J) can be
initialized once and need never be updated. Onlyv the factored constraint indices

require updating.

F. FACTORED KERNEL UPDATE ACTIONS

Recall from Chapter 5 the details of the factored kernel update actions

106

Is_Factored Kernel _Singular,
Find_Column_To_Remove(/FKC),
Find_Column_To_Add(/FKC), and

Update _Factored Kernel,

are factorization-specific. We now discuss these details for the GUB factorization.

The row-permuted diagonal structure of F1; (A1) implies that the question of
singularity arising from rank-one updates can be resolved strictly on the basis of local
information. That is, the exchange, deletion or addition of a row leads immediately
to the identification of a unique GUB set. The search for a corresponding column
(variable) to complete the exchange, deletion or addition is then limited to those
sharing this GUB set membership. The simplicity of this structure greatly enhances
the efficiency of the necessary update actions.

For example. consider pivot update case ((i7),(77)), in which basic factored
constraint EPCI. located in tableau position IPCI is removed from the row basis
and nonbasic factored constraint EPRI, located in tableau position IPRI replaces it.
Because EPCI was basic, there is a kev variable, say EPCIKV, located in position
IPCIKY of region (i) of the tableau. Because GUB sets are, by definition, pair-
wise disjoint, EPCIKV may not serve as a key variable for the new basic factored
constraint EPRI. Thus. a replacement variable among those in region (2::) of the
tableau must be found. Such a replacement must exist, for otherwise B is singular.
To locate such a variable. we scan the variables in region (i:7), searching for one
which is a member of GUB set EPRI. The test is simply this: for each variable JC
in region (u2). if

KEY(JC) = EPRIL

107

then accept JC as the key variable for EPRI and proceed with the secondary tableau
update exchange. Otherwise, continue the scan.

Thus, the action Find_Column_To_Add(EKV) scans the indices of region
(121), performing the GUB set membership test on each index. The first such index
for which the test is true is chosen as EKV.

The action Find_Column_To_Remove(EKYV) is required when a constraint
ERI is removed from Fj;. EKV is then the key variable corresponding to ERI and

is determined by:
EKYV = KEY (ERI).

Is_Factored Kernel_Singular is required when the constraint EPRI is to be
added to Fj; and the pivot column index EPCI corresponds to a variable. Thus,
EPCI is a possible key variable for EPRI and is a convenient candidate. It may be
accepted as the key variable for EPRIif and only if F}, remains nonsingular after the
addition cf both EPRI and EPCI, and this is the case if EPCI is a member of GUB
set EPRI. Thus. Is_Factored _Kernel_Singular simply compares KEY(EPCI) and
EPRI. If they are unequal, Fy; is singular and the result “true” is returned. Other-
wise. the result 1s “false”.

Finally, we consider Update Factored Kernel. Since the GUB set mem-
bership of a variable does not change. only constraint index updates of KEY(IR)
are required. For example, if the old key variable index for constraint EPRI is

EPRIKVO and the new index is EPRIKVN, the required update is:

KEY (EPRI) = EPRIKVN.

10>

VII. FACTORIZATION OF PURE NETWORK
ROWS

A. INTRODUCTION

We remain interested in the problem:

(PNSC) myin Cowy

s.t.: Fy<b ; F pbyn

Ey<r ; E mbym

~Iy <0 ; —=I nbym
where F, E, —I, w, b and r are as before. We now require that each column
of F consist of zero, one or two nonzero elements If a column contains a single
nonzero element within the rows of F. it may be either a plus one or a minus
one. If a column contains two nonzero elements within the rows of F, one must
be a plus one and the other a minus one. F-tvpe constraints may also be in-
terpreted as defining the node-arc incidence matrix of a directed graph. Define
I=A{0.....p}. T ={1..... n},and A" = {n,.1 € T — {0}} to be a set of nodes and
A= {a", keT | a*=(n.n,)i€l.je€ I} to be a set of arcs with ordered pairs
of nodes (tail.head) as elements indexed by k. Note that we interpret node 0 as a
null node. and thus an arc incident to node 0 is viewed as a single-ended arc. Then
a graph is defined as G = {A". A}. The node-arc incidence matrix of G is a matrix

F consisting of p rows (one for each node in A"} and n columns (one for each arc in

A) with elements:

+1 if @ = (n,.n,) for some n, C A
fin=14 =11if a* = (1n,.n,) for some n, €N
(} otherwise

109

Thus, if arc a* = (n,,n;) is represented by column k of F, then

([0)
: i** row
1
0
at = :
-1] row
0
\ 0)

)
and each column of F is either all zeros, contains exactly one nonzero element (which
may be either plus one or minus one) or contains exactly two nonzero elements (a
plus one and a minus one).

A specialization of (PNSC) that has been widely studied arises when the F-
tvpe constraints are taken to be equalities and the E-type coustraints are vacuous.

resulting in:

(PNE) min: wy
Yy

st.: Fy=b F pbyn
—Iy <0 -1 nbyn

Very eflicient specializations of the primal Simplex Method have been developed
and implemented to solve (PNE) (e.g.. Srinivasan and Thompson {1973]. Glovei. et.
al. [(1974]. Bradley, Brown and Graves [1977]). These algorithms exploit some wel!

known properties of I (we assume that one redundant row has been removed from

F

1. Every primal Simplex basis B of F (consisting of (p — 1) linearly independent

columus of Fican be triangulated by row and column permutations.

110

2. Every such basis B is itself the node-arc incidence matrix of a subgraph of &G,

and this subgraph is a rooted spanning tree. and

3. F is totally unimodular, implying that if b; and b, are integer (p — 1)-vectors
and z; and z; are (p — 1)-vectors of unknowns, then for every primal Simplex

basis B of F the solutions of Bz, = b, and 27 B = b are also integer.

Property (1) allows very efficient execution of Simplex iterations, property (2) mo-
tivates the use of special data structures which allow efficient storage and update of
Simplex bases and property (3) allows all computatiors to be performed in integer
arithmetic (assuming w and b are integer).

Several contributions have been made to solving variations of (PNSC) when
the F-tvpe constraints are not vacuous. The e approaches have their roots in work
by Kaul [1965] and Bennett [1966]. Chen and Saigal considered a version of (PNSC)
with all equality constraints. Hartman and Lasdon [1972] considered a specialization
of (PNSC) to the multicommodity capacitated transshipment problem (MCTP), in
which the E-type constraints are generalized upper bound (GUB) constraints and
the F-type constraints decouple into independent pure network subproblems. In
each of these treatments. the resulting algorithm is a specialization of the primal
Siniplex Method. McBride [1972] considered (PNSC) in the context of the mutual
primal-dual method. with all constraints assumed to be equalities. Each of these
approaches allows a basis representation which may be factored into two compo-
nents: an explicit part of dimension m by m and a factored part of aimension p by
p.

Our inequality formulation of (PNSC) allows a dynamic basis representation
where, just as in the GUB specialization, both the dimension of the factored part

and the dimension of the explicit part may vary from one iteration to the next.

111

B. THE FACTORED TABLEAU

Recall from Chapter 3 the primal row basis at an arbitrary point in the solution
process is:
(1) { En En Eis
B= (i) | Fu F2 Fu (
(bys)y N0 0 I

The corresponding nonbasic constraint rows are then:

-1
—
~—

(i) / =1 0 0
(1) | Iy Fn Fo3

(7.2)
(111) 0 -1 0
(2v) Fyn Ey Ep
and the principal part of the factored tableau is:
i (e ad
—~ —_— -
(1) - FRFa AR FR'+ Py Fady En Y FiV Fiy = F FaAf (B = EnFy' B
(0 | =P 0 e Fu PV Fa Ay FudiEnFR = Fu iyl Foy = FuFo'Fo+ Fn PR AR (B = EnF B
CFGFR P A EGFY —F AR By = EnFR' Fa)
(m'l .'iﬂ‘ —'i:-xlf:nnrx—xl l‘i_lx‘En'E!lFx‘x‘FU’
ey | = En ARt ¢ Ex PP Al Endl EuFy ~ EnFy! Ey+ ExFRl P\ Es - EnFRTFip
~En Py Fo AL En AR —EnFR P = En AR (En - EnF A
(7.3)

The F-type constraints represent the node-arc incidence matrix of a graph. For
notational convenience, let us define the corresponding directed graph explicitly as
G = {N. A} where G, A" and A are as previously defined. Note that while we chonce

to interpret all columns of (PNSCVasaresin ¢, any number of these columns may be

12

null with respect to the F-type constraints and thus may be interpreted graphically
as null arcs.

Since the rows of [F; Fi2 Fi3) in the primal row basis B form a subset of the
rows of F', [Fy, Fi; Fi3] may itself be interpreted as the node-arc incidence matrix
of a graph Gp = {AB,Ag}. Np is a subset of A", but in general 45 ¢ A. To
see this, define A'p = A" — Ap and consider an arc a? = (n,.n,) where n; € A'g
and n; € Np. Then a? “spans” the partitioning of A" into Ag and Ap. While a?
is a doubleton arc with respect to G, it is a singleton arc with respect to Gg. We
call such an arc a “dynamic singleton™, and we will discover that such arcs require
special handling in our implementation.

Since a nonsingular F}; must exist, it is well known that the columns of F;
represent a rooted spanning tree defined over the nodes of A'g. and that F; may be
placed into upper triangular form by row and column permutations. If we choose to
represent Fy; rather than Fi7' in our implementation, we are interested in performing

two fundamental operations:

1. Solving linear systems of the type

F]]Zl = 1)1
and
ZTF“ = bg

where z; and :z; are unknown and b, and b, are rationals (not necessarily

integers). and

113

2. Placing F); in upper triangular form. where F|; results from a column ex-
change, a row exchange, a column and row addition or a column and row

deletion performed on Fi;.

The literature on (PNE) demonstrates that with a proper choice of data structures,
operation (1) may be performed very efficiently when 4, and b, are integer, and that
(2) may be done efficiently when the class of updates is limited to column exchanges.
We will extend these existing approaches to deal with (1) and (2) in the (PNSC)

setting.

C. SEQUENCING COMPUTATIONS TO EXPLOIT COMMON SUB-
EXPRRESSIONS IN COLUMN GENERATION
To examine the actions required by Generate_Column(LC), suppose we
want to generate column LC of the principal part of the tableau (7.3) and place
T _

the results in the vector =7 = (zy,2,.23.24)7 which is partitioned to conform to

(7.3). Rewriting (7.3) in a more convenient manner, we have:

—~ — A~
Ly

' (TRt :v‘ =50 e - EET T -3 "_ En-Enfi e =80 F, \\
t “"F AT = Fay =F R AL -Fa AL En-ELF Ay =5 {
-y -Fy -f::F 4 LEG - En ST, - R, l
11 A7l A5y - EGFTF !
ool =By AN - B -F7 A A ~En A Eu- EGFF, : - Ey
\ -£ Fr = FR —En =3 Fa AR Du- Enf Fe = FIUF

(7.1)

11

The calculations may then proceed as follows:
1. Calculate region (111):

(a) If column LC is in (7), then:

(b) If column LC is in (jj), then:
23 = —A En(F')™
(c) If column LC is in (jj7), then:
23 = A7 eyg)tC — By FM(Fas) €]

notice that (F9)EC and F'(Fi-)E€ may be computed by backpath traversal

or. F1; (e.g., Bradley, Brown and Graves [1977], p. I1).
2. Calculate region (1):
(a) If column LC is in (j), then:
Fizy = Fiazm
(b) If column LC is in (j5), then:
c

LA a L
‘s =Foate

(c) If column LC is in (jj7), then:

Fiyzr = Floza + (Fls)LC

115

3. Calculate region (21):
(a) If column LC is in (j), then:
2= —Fpz3 — Fozy
(b) If column LC is in (;7), then:
2= —Fpz3— Fazn
(¢) If column LC is in (7). then:
2y = —Fpzy — Fozy + (Fa3)E€
4. Calculate region (iv):
(a) If column LC is in (), then:
sy =—=FEpmn— Enzn
(b) If column LC is in (y7), then:
24 = —Fqyp23 — Egy 7y
(¢) If column LC is in (5;7), then:

zg = —FEpzz - Enz + (Eza)LC

Then column LC of (7.4) is available as 2T = (z,, 2, 23, 24)7. Note that floating

point multiplications and/or divisions are necessary only for computation of regions

(i21) and (iv), and that regions (¢), (it) and (iv) are linear combinations of region

(z11) and one another.

116

D. SEQUENCING COMPUTATIONS TO EXPLOIT COMMON SUB-
EXPRESSION IN ROW GENERATION
Now we examine the actions of Generate_Row(LR). Suppose we desire to
generate row LR and place the results of the computation in the vector = (s, Z¢, 27)

which is partitioned to conform to (7.3). Rewriting (7.3) in a convenient form:

A = 2z
() —FiiFady ~{~F5'Fadr En - 1) FS [~ F Fudl | B = (= (I=F Fudi’ Ea - 1AV R
(6 | (FuFi'Fo - Foidl! = (AR Fa - Fabdiyi B = P} AT PPy Py = FradAfl Eny
+ i~ (PR P = FdART B~ Fud it R+ Fo
. - S
(W) | (EnFy' Fu- Ent A7 = L FS Fu = En) A7) By + Ea) R HEwF Fu - Enj AV 1 En

b= (B s = En) A7) By = En} T Ry = En

Then we may proceed as follows:

1. Calculate region ():

(a) If row LR is in (2), then:
Ig = —(Fﬂ’)LRFn(“il—lx)
(b) If row LR is in (:7), then:

55 = (leFl-i]F‘xz - FZ))LR“il_ll

p—— —

(c) If row LR is in (722), then:

(d) If row LR 1s in (iv), then:

5’5 = (EZIFI_IIFIZ - E?Z)LR/il_ll

2. Calculate region (37):

(a) If row LR is in (1), then:
26F11 = —3sE) — €Lr

(b) If row LR is in (2z), then:

ZeF1n = —25En — (Ea)Lr
(c) I row LR is in (22¢), then:

2eF = -3 E

(d) If row LR is in (zv), then:

Fiy = —3%En — (Ea)er

3. Calculate region (j;):

(a) If row LR is in (7), then:

e
~

sEis + Z6Fis

te

(b) If row LR is in (:¢). then:
= 55513 + Z6Fi3 + (Fas)Lr

118

(c) If row LR is in (221), then:

bye

7
(d) If row LR is in (zv), then:
27 = 25k + 6 Fia + (Ew)Lr

The row LR of (7.5) is available as z = (Zs, Z6, 27). Note that floating point
multiplications and/or divisions are avoided for terms involving Fi,, F22F13 and Fia,

and that regions (jj) and (jj7) are linear combinations of region (7).

E. DATA STRUCTURES

Several suites of data structures have been proposed for algorithms designed
to solve (PNE) (Johnson [1966], Srinivasan and Thompson [1973], Glover, Karney,
Klingman and Napier [1974]. Bradley, Brown and Graves [1977]). Our implementa-
tion is based on the last.

The purpose of the data structures is to define a graph that represents Fy,.
Such a graph forms a rooted spanning tree defined over the nodes of N, which
we denote as Gr,,. Note that because Fj; is nonsignular, Fj; must contain at least
one singleton column. Since Fy; is maintained in triangulated form, we associate
with each row IR the column JC in which the element appearing on the diagonal of
IR occurs. This association is analogous to the GUB row/key variable association
defined for the GUB algorithm. We represent this association with the array KEY(),
of type INTEGER and dimensioned from 1 to (m + n), which records for each row
of Fy; the extrinsic index of the corresponding key variable, and for each column of
F1, the extrinsic index of the corresponding basic factored row. KEY() is undefined

for other row and column indices.

119

We require knowledge of the row ordering of Fi; to define a triangulation.
PO() is an INTEGER array, dimensioned from 1 to p, which for each row IR of F;
records the extrinsic index of the row that followrs IR in the current triangulation.
This ordering is referred to as preorder, and the successor of IR is called its preorder
successor. PO() is undefined for factored rows not currently in F};. Note that the
triangulzted column ordering of Fy; may be deduced from PO() and KEY().

PO() and KEY() capture the triangulated row and column ordering informa-
tion for a representation of Fy; but provide no means for interpreting this repre-
sentation as a rooted spanning tree. The predecessor function p() is a well known
method for representing trees and thus rooted spanning trees. To define p(i;), we
associate with each node i; of GF,, the row index of the offdiagonal element in the
k** column of Fy;, when the rows are ordered to correspond to a triangulation of
Fy1. Graphically, p(z) may be iterated recursively to trace the backpath from node
¢ to the distinguished root node of G, .

We represent p() by the INTEGER array P(), dimensioned from 1 to p, which
for each row IR in Fj; records the extrinsic index of the predecessor of IR. It is
convenient to keep a record of the sign of the diagonal element of each row of Fi,.
We use the sign bit of P() to do so. Assume node IRP is the predecessor of node
IR in the current representation of Fj;. If the diagonal element in row IR is a plus
one, then P(IR) = IRP, while if the diagonal element in row IR is a minus one,
P(IR) = —IRP. In the graph Gf,,, this may be interpreted as follows: if the actual
orientation of arc a* = KEY(IR) is the same as that recorded in Gr,,, which is
(IR,IRP). then P(IR) > 0). If the actual orientation of arc a* is opposite that
recorded in Gr,,, then P(IR) < 0.

The final data structure, D(), is an INTEGER array dimensioned from 1 to p.
For each node IR of Gr,, (row of Fy;) D(IR) records the depth of node IR, where

120

depth is defined as the number of nodes encountered on the backpath between
IR and the root node. D() allows updates to be performed on the data structures
representing Gr,, in a single pass through the data structures. and allows us to avoid

unnecessary operations in the solution of linear systems to be discussed shortly.

F. SOLVING LINEAR SYSTEMS
It is clear from the discussion of Generate_Row(LR) and Generate_Col-

umn(LC) that the solution of the linear systems,

ZTF“ = blT

and

F1132=b2

where z; and z, are vectors of unknowns and b; and b, are vectors of rationals, are
crucial steps. The practical value of our implementation depends to a large extent
on the efficiency with which these systems may be solved, and thus we will consider
this problem in some detail.

First, we examine the data structures used to represent the terms. Three data
structures are used to represent b, and b,. the right-hand side terms. WORK() is a
DOUBLE PRECISION array, dimensioned from 1 to p, which is used to hold the
real values of b; and b, (we sequence operations so that at any given moment we are
interested in either b; or b, but not both, so that the same array may be used for
both). An INTEGER array WORKMK({(), also dimensioned from 1 to p, is used as

a nonzero mask for WORK(). The convention is:

121

WORKMK(K) =0 if WORK(K)=0.0
WORKMK(K) =1 IF WORK(K) # 0.0

Finally, the array WORKNZ(), of type INTEGER and also dimensioned from 1
to p, records the extrinsic column (in b;) or row (in b;) index of each nonzero in
WORK(). The use of WORKMK() and WORKNZ() allows the efficient manage-
ment of nonzeros in b; and b,.

The solution vectors z; and 2z, are represented by three analogous arrays.
ROWCOL() (for rowcolumn()) is of type DOUBLE PRECISION and is dimensioned
from 1 to (m 4+ n). It is used to store the representation of a row and column of the
principal part of the tableau, and thus portions of it are used to store the solutions
of Equation (7.1). Associated with ROWCOL() is ROWCOLMK(), an INTEGER
array of conformable dimension, used as a nonzero mask for ROWCOL(), and the
INTEGER array ROWCOLNZ(), also of conformable dimension, used to record the
indices of nonzeros in ROWCOL().

In contrast to the usual situation in Simplex-based approaches to linear pro-
gramming in which each successive right-hand side of the problem may be computed
by means of a simple update to the previous right-hand side, in this setting such
is not the case. Thus, we are not able to derive the solution to the current form
of Equation (7.1) by simply updating the previous solution. Instead, we must solve
each system from scratch.

Each right-hand side is itself the result of a sequence of preliminary computa-

tions. As each new nonzero element is generated by these computations, its value

is placed in WORK(). WORKMK() is updated and the index of WORK() in which

the nonzero appears in placed in the next available position in WORKNZ(). For ex-
ample, suppose the first nonzero generated for WORK() is the value 6.5 in position

38. Then the arrays appear as follows:

WORK(38) = 6.5
WORKMEK(38) = 1.0
WORKNZ(1) = 38.0

A counter for the number of nonzeros in WORK() is maintained (an INTEGER
variable called NNZW), so at the conclusion of the preliminary computations we
may iterate through the nonzeros on the right-hand side in the order in which they

were generated by:

WORK(WORKNZ(K)), K = 1, ..., NNZW

Since our representation of Fj; is in upper triangular form, the obvious ap-

proach for solving

F“ZZ = bg (76)

is by back substitution. All nonzero elements in Fj; are either plus ones or minus
ones, so only assignments, additions and subtractions are necessary. Assuming that
the current dimension of Fy; is k& by k, we proceed by considering each row IR in
turn, IR = k,....1. We assign the value in WORK(IR) to ROWCOL(KEY(IR))
and update by an addition the value in WORK() in the row corresponding to the
predecessor of row IR. (i.e., WORK(P(IR))).

This approach requires knowiedge of the ordering of the rows of Fj; in the

order of last to first in triangulated form, which is precisely the reverse of our data

123

100 101 102 103 104 105 106 107

wa Qo b —
—

M =1 D O
I
—

Figure 7.1: A Triangulated Fy;

structure PO(). To support this approach in our implementation. we could define
and maintain an additional data structure EO(), recording the “endorder™ of Fy;. If
we choose not to include an additional data structure, we could instead invert PO()
in situ whenever this reverse ordering is required, inverting it again when PO() is
next required. With either approach, it is convenient to make PO() and EO(). if
included, circular lists and to add a distinguished “artificial node”, say IRA, which
is then used to locate both the first node (row) in preorder and the first node in
endorder. To illustrate, Figure 7.1 displayvs a triangulated form of Fj; with row and
column labels.

Figure 7.2 presents the corresponding graph Gr,,. By assuming the existence
of an artificial node IRA. we in effect change our paradigm of GF,, to that shown in
Figure 7.3.

We may interpret the backsolve method as a labeling procedure on Gr,,. In
this context. each nonzero in the right-hand side is interpreted as a supply or demand
at the corresponding node in Gr,,. The problem of solving Equation (7.6) is then

interpreted as one of finding a set of feasible flows defined on the arcs of Gr,,.

124

1% /‘ 1"5(1\7{
D (-

ONNONSCIING

108

©

Figure 7.2: A Basis Graph Gg,,

The backsolve approach to solving Equation (7.1) has the advantage of sim-
plicity, and when viewed as a labeling algorithm has the intuitive appeal of “visiting”™
each node only once. The disadvantages are the need for either additional storage
(EO()! or additional computation (two inversions of PO()).

The right-hand sides of these problems are invariably very sparse: the density
is typically 0.37% or less. We are thus motivated to explore aiternate approaches to
solving Equation (7.6). The solution approach just outlined requires the “visiting™ of
every node in Gr.,. Although WORKNMNK() allows us to perform a simple INTEGER
comparison to determine if the current node has nonzero supply or demand, we have
strong empirical evidence that suggests that other approache: are more eflicient. It
is important to keep in mind that this problem is very deeply nested within the

algorithm structure, and must be solved tens of thonsands of times for a typical

100 107
123
: g ;
to] 102 104/ 10¢
© © © &
105

5

Figure 7.3: An Alternate Graph Paradigm Gr,,

linear programming problem. Small changes in efficiency here have large effects on
the overall algorithm efficiency.

Since the right-hand sides are sparse. an alternative is to consider solving Equa-
tion (7.6) iteratively as a sequence of subproblems. each consisting of a right-hand
side containing a single nonzero element and a current partial solution. Iterating
through the nonzeros, we introduce the supply or demand at the corresponding node
in Gr,,, and then adjust the flows of all arcs appearing on the backpath of that node
as necessary.

Analyzing the worst-case performance of these two approaches, we see that the
first approach is linear in the number of nodes in Gg,, (rows in Fy;), while the second
approach is quadratic in the number of nonzeros in the right-hand side. For the
densities typically encountered in the problems we have studied, the crossover point

at which the performance of the lincar algorithm overtakes that of the qnadratic is

126

in the range of 400 to 1000 rows in F;,. However, in the testing we have performed,
the worst-case analysis is pessimistic, and in practice the performance of the second
approach always dominates that of the first.

The second linear system of interest is

ZTFH = blT . (TT)

We interpret the problem as one of being given flows on the arcs of Gg,, and being
asked to find the necessary supplies and demands at the nodes. Analogies to each of
the approaches to solving Equation (7.6) may be found for solving Equation (7.7),
and our empirical evidence strongly suggests that an approach analogous to the
second method for solving Equation (7.6) is preferable for solving Equation (7.7).
Having made the design decisions for solving Equation (7.6) and Equation
(7.7), it is worthwhile to review our paradigm for Gr,,. Our preferred solution
techniques do not require a partial ordering of all rows of F};. Rather, we require
partial ordering information only among each set of coupled rows, or, graphically,
among each disjoint component of Gr,,. Rather than introducing an artificial node,
we may treat each disjoint component as an independent entity. It is then conve-
nient to treat singleton arcs (either dynamic or static singletons) as self-loops. and
construct the predecessor function so that it forms a ring within each component.
Our graph paradigm of Figure 7.1 then becomes as shown in Figure 7.4. The data

structure representation of Figure 7.4 is then:

Node: 1 2 3 4 5 6 7 8
Predecessor: P() 1 -1 | 4 -1 -5 4 -8
Preorder Successor: PO() 2 3 1 5 6 T 4 8
Depth: D() 0 1 1 0 1 2 1 0
Key Variable: KEY() 100 101 102 103 104 105 106 107

107

0)
(5

—
N

(!

TJ

kfg
©

Figure 7.4: The Implementation Paradigm for Gf,,

G. FACTORED KERNEL UPDATE

The update of a rooted spanning tree representation of a pure network tri-
angulated basis which results from a column exchange is well understood and has
been treated thoroughly in the literature. Bradley, Brown and Graves [1977] give
an excellent account of such an update in an algorithmic settiné very similar to the
one here. Hence. we will not repeat the details. In this setting, however, a column
exchange is but one of four possible updates required. We must also deal with row
exchanges, row and column additions and row and column deletions. Qur general
approach will be to reduce these three cases to the column exchange case through
a sequence of operations which may be thought of as pre- and post-processing. The
following three cases, along with the column exchange case, comprise the actions
required for Update_Factored _Kernel.

The first case we consider is the row and column deletion case, in which the
dimension of F; decreases. It is convenient to limit row/column deletions to row /key

variable pairs. This is because removing a row/key variable pair always preserves

128

nonsingularity of the remaining factored kernel, and because, with our choice of data
structures, given one member of the pair, it is easy to identify the other member
through the use of the KEY() array.

With our paradigm for Gf,,, the key variable for row IR corresponds to the arc
which connects node IR to its predecessor. Tue removai of IR and KEY(IR) creates
a new disjoint component within Gr,, consisting of all nodes and the associated key
variables on whose backpaths IR and KEY(IR) appear. If IR is a leaf (a node which
is incident to a single arc), then the new disjoint component is null. Within the new
disjoint component, D() changes for all nodes, but P() and PO() change only for the
first node in preorder, say IRFIRST, and the last node in preorder, say IRLAST.
For the first node in preorder, its predecessor becomes itself (with the sign bit used

to indicate arc orientation), forming a self-loop. The update is thus:

P (IRFIRST) = IRFIRST

Its depth is updated to be zero. and the magnitude of this depth change is recorded
for future use. For every other node in the new disjoint component, D() is reduced by
the magnitude of the IRFIRST depth change. Finally, PO() of IRLAST is changed
to the first node in preorder. restoring the local ring structure of PO(). The update

15:

PO (IRLAST) = IRFIRST

These updates can be accomplished in one pass through the data struciures ol the
ncw disjoint component. The structure of G, is restored by changing PO() of the
predecessor of IR to the index of the node which was the successor of IRLAST prior

to the update.

The second update case is a row and column addition. Suppose IRADD is the
row (node) to be added to Fy, (Gr,,). We wish to treat this update as a column
exchange. To do so, we first incorporate IRADD into the structure and associate
with it an imaginary (“logical”) arc which forms a self-loop. We then perform a
column exchange with the new column, say JCADD, entering Gr,, and the logical
arc leaving Gr,,.

The difficulty in incorporating IRADD into Gp,, lies with the dynamic single-
ton arcs. Gr,, currently may have many singleton arcs which appear in our paradigm
as self-loops. If any of these dynamic singletons are actually incident to IRADD in
G, incorporating IRADD into Gf,, requires changing their representation.

To illustrate this point, assume IRADD has the node label “9” and we wish
to incorporate it into the graph shown in Figure 7.4. Assume also thai arcs 103 and
107 are dynamic singletons which are actually incident to node 9; that is, arc 103
= (9,4) and arc 107 = (9,8). We first initialize the data structures for node 9 as

follows:

D(9) =0
P(9) =9
PO(9) = 9,

which has the effect of placing node 9 at depth 0 as a disjoint component consisting
of a single node with a (logical) self-loop, as shown in Figure 7.5.

We then change the representation of arcs 103 and 107 from dynamic singletons to
doubletons. To do this, we change P(4) from -4 to -9 and P(8) from -8 to -9. We
then assert a partial ordering among those (formerly) disjoint components which

have been merged by the change in the representation of the dynamic singletons,

130

123 191 e 1

@(O \D /U/ ! => @ t) /Q ’

Figure 7.5: Initialization of Node 9 Prior to Incorporation into Gg,,

and retriangulate. This is accomplished by increasing the depth of each node in the
component by one, changing PO(7) from 1 to 8, and PO(8) from 8 to 9. This update
requires a single pass through the data structures of each affected component. After
incorporation, G, appears as shown in tigure 7.6. We may now complete the
update by performing a column exchange.

To identify the dynamic singletons which are affected by such an update, we
access the extrinsic problem data structures for row (node) IRADD. For each column
with a nonzero in row IRADD, we test whether or not that column is currently key
for some row in Fy;. If so, that column is currently represented in Gr,, as a dynamic
singleton.

The final update case is the row exchange case. Suppose we want to replace
row IROUT with row IRIN. We treat this in two stages. The first stage is a row

and column deletion case, in which the node IROUT and the arc KEY(IROUT) are

131

removed from Gg,,. To complete the update, we seek a column (arc) which may
be added to GF,, along with row (node) IRIN. We require an arc which is either
a static singleton, incident to node [RIN, or a dvoubleton, incident to node IRIN
and a node (other than IROUT) which is currently in Gg,,. We first consider arc
KEY(IROUT). If is satisfies the second condition (obviously, it cannot satisfy the
first condition), we designate it as the arc to be added. If not, we search among the
variables (arcs) in region (iiz) of the tableau for such an arc. We know one must
exist, for otherwise B is singular. We select the first such arc found as the arc to be
added. We then perform the row and column addition case.

Recall that the action Is_Factored _Kernel_Singular() is required when we
have identified an arc (column) for removal from Gr,, and we are considering a
candidate arc to replace it. We want to determine if this exchange preserves the
nonsingularity of Fy;. The fact that Gr,, is a rooted spanning tree provides the
necessary structure to support a simple test of nonsingularity. Assume JCOUT is
the (known) arc to be removed from Gr,, and JCIN is the candidate replacement.
In our paradigm, Fj, is nonsingular if and only if each disjoint component of Gp,,
1s connected and contains exactly one cycle, which must be a self loop occurring at
the component’s root (the root is the distinguished node in the component whose
depth is zero). The removal of JCOUT creates a new disjoint component which has
no root self loop. If the addition of JCIN fails to correct this, the proposed exchange
is singular.

The specific test is this: identify the nodes incident to JCIN using the original
problem data structures. Note that there may be zero, one or two such nodes. If
none of these nodes are currently included in the structure of Gr,,(F11), then the
proposed exchange is singular. For each such node which is currently included in

the structure of Gr,,, traverse the backpath of that node by recursively iterating

132

the predecessor array P() until either the root node of that component is found, or
until the “join” is located (the “join” is that node with largest depth which appears
on the backpath of both nodes incident to JCIN. The join exists only if JCIN is
incident to two nodes, both nodes are currently included in the structure of Gr,,,
and the two nodes are in the same disjoint component.). If JCIN is encountered
during this backpath traversal, the proposed exchange is nonsingular. Otherwise, it
is singular.

The action Find_Column_to_Remove(IOUT) is particularly simple, since,
as mentioned previously, we always remove row/key variable pairs. Thus, if IR is
the node to be removed, then KEY(IR) is the corresponding column to be removed.

Finally, the action Find_Column_to_Add(IIN) requires searching among
the variables in region (i2¢) of the tableau. For each candidate arc, we invoke
Is_Factored Kernel_Singular(). If the response is “FALSE™, we have found the

column to be added. Otherwise, we continue the search.

133

VIII. FACTORIZATION OF GENERALIZED
NETWORK ROWS

A. INTRODUCTION

The problem of interest remains:

mgn T owy
(GNSC) st.: Fy<b; F pbyn
Ey<r; FE mbyn
~Iy<0; —-I nbyn
where F', F, —I, w, b and r are as before. We now require that each column of
F have at most two nonzero elements. which may be of arbitrary sign. We may
associate a generalized network with F' by defining a node corresponding to each

row ¢ of F and an arc F7 corresponding to each column j of F. The arcs are defined

as:

_ k) if Fj#0, F;#0 and i<k <p
Fl=¢(,0) if Fj;#0, F,; =0 for all k#:<p
0) if Fi;=0 forall :<p

Welet A= {F'..... F"} N = {1,....p} and define the graph G = {A", 4}. Arcs
of the form (z,0) are singleton arcs, sometimes called root arcs. Arcs of the form
(0,0) are null.

The most widely studied specialization of (GNSC) is obtained when the F-

type constraints are equalities and the E-type constraints are vacuous, resulting

in:

134

min: wy
Yy

(GNE)
sit.: Fy<b; F pbyn
Ey<r E mbyn
-Iy<0; —-I nbyn

Dantzig [1963] provides the seminal treatment of (GNE), identifying the im-
portant structure that leads directly to efficient primal Simplex-based algorithms
for its solution. Implementations have been reported by Glover, Klingman, Hultz,
Karney and Elam [1972. 1973, 1977, 1978, 1979] and Brown and McBride [1984].

(GNE) may be viewed as a generalization of (PNE), and the cost of such
generalization is a weakening of the properties which so strongly characterize (PNE)
and which lead to the efficient and elegant implementations. In (GNE), F is not
totally unimodular, and thus an implementation may not be restricted to integer
arithmetic. It is not possible to triangulate every primal Simplex basis extracted
from F by row and column permutations. The subgraph generated from the columns
of a primal Simplex basis no longer form a rooted spanning tree defined on the nodes
of G. Apparently, much has been given up in the generalization.

In fact, significant structure re.aains in (GNE). A well known result, due to
Dantzig {1963]. shows that any primal Simplex basis extracted from F can be put in
the form of Figure (8.1) by row and column permutations. Each square submatrix
component B* is either upper triangular or nearly upper triangular with only one
element below the diagonal. Notice that if each B* is strictly upper triangular, the
structure is analogous to that found in the (PNE) primal Simplex basis.

Interpreting the structure of B* as a subgraph of G, we find that when B*
is upper triangular, the subgraph may be viewed as a disjoint component with a

single self-loop at the root node. exactly as in the (PNE) case. When B* is not

135

B! 1
B?

Bk

B? |
Figure 8.1: Near-Triangulated Simplex Basis Corresponding to (GNE)

upper triangular, the subgraph still forms a disjoint component with a single loop,
but that loop is no longer a self-loop. For example, Figure (8.2) shows a nearly

triangular B*¥ with row and column labels.

100 101 102 103 104 105
L N N N T N

1.08 .98
l .99 1 .98
-1 -1

e R N
!
p—
i

Figure 8.2: A Sample Nearly-Triangulated (GNE) Simplex Basis Com-
ponent

The resulting subgraph is shown in Figure (8.3). Such a subgraph is commonly
called a “one-tree™, (an apparent oxymoron).

This structure allows the extension of the algorithm and data structures de-
veloped for (PNE). leading to efficient implementations to solve (GNE) (e.g.. Brown
and McBride [1984]).

(GNSC) has received less attention in the literature than (PNSC). Hultz
and Klingman [1976] develop a primal Simplex-based approach to an equality-

constrained formulation of (GNSC). and report on an implementation which allows

136

loo

GG EOSNO
v \g
&)

Figure 8.3: “One-tree” Subgraph

a single E-type constraint (Hultz and Klingman (1978)). McBride [1983] develops
an algorithm for solving a generalization of (GNSC) in which complicating columns
as well as complicating constraints are permitted, and reports on an imiplementation

of that algorithm.

B. THE FACTORED TABLEAU

The algebraic development of the primal row basis B. the nonbasic rows D
and the factored tableau is exactly as shown in Chapter 7 and is not repeated here.
Note that Fj;, the factored kernel, may now be placed in the form shown in Figure
(8.1) by row and column permutations. The corresponding graph, Gr,,, consists of
one or more disjoint components, each of which contains exactly one loop. The loop

may be either a self-loop, as in the case of the disjoint components of (PNSC), or

137

it may be a “root loop™ (a loop consisting of two or more nodes, all of which are at

depth zero in the component), as shown in Figure (8.3).

C. SEQUENCING COMPUTATIONS TO EXPLOIT COMMON SUB-
EXPRESSIONS IN COLUMN GENERATION
The sequencing of computations for column generation in (GNSC) is exactly

the same as that for (PNSC).

D. SEQUENCING COMPUTATIONS TO EXPLOIT COMMON SUB-
EXPRESSIONS IN ROW GENERATION
The sequencing of computations for row generation in (GNSC) is exactly the

same as that for (PNSC).

E. DATA STRUCTURES

Several proposed data structures for algorithms tailored to solve (GNE) have
been offered (Glover, Klingman and Stutz [1973, 1974], Elam. Glover and Klingman
(1979]. Brown and McBride [1984]). Our implementation is based on the last, which
extends to (GNE) the data structures developed in Bradley, Brown and Graves
[1977] to solve (PNE).

We have seen the similarity between the structure of the disjoint components
that arise in the graph corresponding to F;; in (GNSC) and the structure of the
components in (PNSC). To develop a representation of these components, we wish to
extend the data structures developed for (PNSC) in a natural way. Knowledge of the
row ordering of Fi; is again maintained in an INTEGER array PO(). dimensioned
from: 1 to p. As before. it is convenient to make PO() a circular list defined on
each disjoint component. The unique correspondence between each row of Fy, and

a distinguished column is maintained in the INTEGER array KEY/(). dimensioned

138

from 1 to (m+n). The conventions for KEY() are exactly as in (PNSC). The depth
array, D(), is defined exactly as before. However. as suggested by our diagram
in Figure (8.3), we adopt the convention of placing all nodes appearing on a loop
at depth zero, which is consistent with our definition of “root loop™. Finally. a
representation of the predecessor function is needed, and we define P() as before.
For any row IR in the factored kernel, P(/R) > 0 indicates that the diagonal element

in the near-triangulation is the first non-zero factored element in its column.

F. SOLVING LINEAR SYSTEMS

Just as in (PNSC), the crucial steps in the generation of rows and columns of

the principal part of the tableau are solving the systems

TRy =0T (8.1)

and

Fiiz2 = b, (8.2)

where z; and :; are vectors of unknowns and b; and b, are vectors of rationals. Qur
approach for solving these svstems closely parallels that developed for (PNSC).
che data structures used to represent z;.z,,b, and b, are exactly the same

as in the (PNSC) implementation. To represent b; and b,, we use:

WORK()
WORKMK()

WORKNZ().

139

and for z; and z:

ROWCOL()
ROWCOLMK()

ROWCOLNZ().

The right-hand side sparsity-exploiting approach for solving (8.1) and (8.2)
developed in Chapter 7 may still be used, but two complications arise in the (GNSC)
setting. First, the ncnzero elements of Fj; are no longer restricted to be plus and
minus ones. and may assume arbitrary values. Thus, we are not able to restrict all
arithmetic operations to additions and subtractions.

Interpreting (8.1) and (8.2) as problems of finding balancing supply and de-
mands (8.1) or feasible flows (8.2), we see that in (GNSC) we must allow for gains
and losses in the flows over the arcs of Gr,,. Because our formulation allows two arbi-
trary nonzeros in each column of F (rather than one arbitrary nonzero and one plus
one, for example), backward and forward substitution schemes require both multi-
plications and divisions. We may eliminate the need for divisions by pre-computing
both ratios of the nonzero elements in each arc. That is. if a column has nonzero
elements a and b in rows of F', we pre-compute the ratios ¢ and g We then substi-

b

tute the pre-computed value for the division whenever it occurs. Storing a pair of
DOUBLE PRECISION real numbers for every column of (GNSC) is wasteful. and
instead we define a single pointer for each column which points to the location of

the first of two DOUBLE PRECISION real values. The first is the value % and the

second is g (Note that for singleton arcs, the values a and 1 are stored instead.)

We compute and store only the unique ratio pairs for a given problem instance, and

140

the number of such unique pairs 1s usually quite small: typically, a problem with

10,000 to 20,000 columns has only 30 to 40 unique ratio pairs.

The second difficulty is that the disjoint components of F}; may be nearly tri-
angular rather than triangular, and thus backward and forward substitution cannot
be applied directly. However, Dantzig [1963] shows that a variation of backward
and forward substitution may be used to solve (8.1) and (8.2). This method solves
the triangulated part of a disjoint component exactly as is done in backward and
forward substitution. When a root loop is encountered, the method requires two
calculations for each row or column of Fj; corresponding to a node or arc on the
loop. The second calculation involves a term Dantzig [1963] called the “loop factor”,
which is common value for every node (or arc) on the loop. Our implementation
uses this modified forward and backward solution technique for solving (8.1) and
(8.2), and we store unique values of loop factors in a DOUBLE PRECISION array

called GNROOTY().

G. FACTORED KERNEL UPDATE

We first consider the actions required by Update Factored Kernel.

Brown and McBride [1984] give an excellent treat:.ent of the update required
for a column exchange within a generalized network basis in an algorithmic setting
very similar to the one here. and thus we do not repeat that discussion. As in
the case of (PNSC). however, three additional classes of updates may occur in this
setting: row exchanges, column and row additions and column and row deletions.
We again treat these tnree cases by reducing them to the column exchange case
through sequences of pre- and post-processing operations.

We again limit row and column deletions to row/key variable pairs. When

row IR and its associated kev variable KEY(IR) are removed from Fy;. a disjoint

141

component is created which has no loop. If IR and KEY(IR) do not appear on a root
loop of GF,,. a new disjoint component is created, just as in the (PNSC) algorithm.
If IR and KEY(IR) do appear on a root loop of Gr,,, the resulting retriangulated
component contains a self-loop rather than a root loop. The update of the subgraph
data structures is very similar to those presented in Chapter 7.

Row and column additions require the incorporation of the incoming node into
the structure of Gr,, prior to the column exchange, just as in (PNSC). The technique
for (GNSC) is exactly the same as in (PNSC). Once the new node has been added
to Gr,,, a column exchange operation is performed, with a logical arc (which forms
a self-loop on the new node being added to Gr,,) being replaced by the new arc
(column) being added.

Finally, row exchanges are handled as a two-stage update, exactly as in (PNSC).

The task of determining the singularity of F1; (Is_Factored _Kernel Singu-
lar) is more challenging in (GNSC) than in either of the other two algorithms due
to the arbitrary nonzero elements. In each of the previous two algorithms, we have
been able to determine with certainty the singularity of F}; indirectly. In the (GUB)
factorization, F1; = Ay, a signed identity matrix. Since 4A;; is orthogonal (i.e.,
AT A, = 1), Fy; is perfectly conditioned (see ¢.g., Golub and Van Loan [1983] for
a discussion of matrix conditioning). In (PNSC), F;; may be triangulated, placing it
in a form with plus and minus ones on the diagonal. Thus, the determinant of Fy; is
either plus or minus one. We may therefore determine its singularity by examining
the structure of Gr,, rather than considering Fi, directly. In either case, as long
as the accumulated round-off error in the current representation of the problem
is such that we can distinguish plus or minus one from zero, we may rely on the
structure of our representation of Gr,, to deduce the singularity of F},. Thus, we

are able to discern singularity logically and need not resort to analvtic methods.

142

In (GNSC), however, we may not rely exclusively on the structure of Gf,, to reach
conclusions about the singularity of Fj;. It is not difficult to invent examples of
factored kernels corresponding to instances of GNSC) which are ill-conditioned.
We expect ill-conditioning of Fj; to lead to serious numerical difficulties, which
we wish to avoid if possible. Since we generally have freedom in determining the
structure of Fj; and since our fundamental rank-one update of Fy; is the column
exchange, we use a heuristic based on column exchanges to anticipate conditioning
problems. Recall in the column exchange update, a column has been selected for
removal from Fj; and a candidate column has been identified as its replacement.
We use the backpath traversal method described in Chapter 7 to determine if the
proposed exchange maintains the required structure of Gg,,. If it does not, we can
conclude that the exchange renders Fj; singular and we reject the candidate arc.

As we traverse the backpath, we perform calculations which, if the exchange
does in fact preserve the required structure of Gr,,, will ultimately compute the
determinant of the disjoint component in which the replacement arc will appear if the
proposed exchange is performed. If the absolute value of the computed determinant
1s too small (a decision controlled by a implementation parameter), we conclude that
the proposed update produces a submatrix of Fy, (the submatrix corresponding to
the new disjoint component) that may be ill-conditioned, and thus Fj; may itself
be ill-conditioned. We therefore reject the proposed candidate arc.

This approach is attractive because it is computationally inexpensive and,
based on our empirical evidence. it works well in practice. It is of course merely
a heuristic, since it is easily shown (e.g., Golub and Van Loan [1983)] that the
determinant can be a poor indicator of matrix condition. Further, we do not actually

compute the determinant of Fy;, but rather only the determinant of a submatrix of

F]l.

143

The remaining update actions, Find_Column_to_Add(ICI) and Find.Col-

umn_to_Remove(ICI) are treated in a manner analogous to that in (PNSC).

144

IX. COMPUTATIONAL RESULTS

A. INTRODUCTION

The algorithms developed here have been implemented and extensively tested
within the framework of a commercial-quality optimization system: the X-System
of Brown and Graves [1975]. This system employs the Graves mutual primal-dual
algorithm in a variety of large scale optimization applications, including linear, non-
linear, mixed integer and decomposed models. Although we report computational
results only for linear models, our factorizations are seamlessly integrated into the

X-Systerr and support all system features.

B. TEST PROBLEMS

The benchmark test suite is drawn from a wide variety of actual applications.
Table (9.1) provides a short synopsis of each model, quoting from the abstract
where a reference in the open literature is available. In some cases, several different
instances of models are reported. We selected these models because they provide
a representative sample of size, structure and taxonomy of contemporary real-life
applications of linear programming. For those models that are mixed integer, we

report solution statistics for the initial linear programming relaxation.

TABLE 9.1: Description of Test Suite Models

e GTE “The seven Telephone Operating Companies within GTE have adopted
an integrated business system called Capital Program Management System
(CPMS) to guide their 3 billion dollar per year capital planning. The system

includes a large scale mixed integer programming optimization system that

145

optimizes the critical economic tradeoffs between maximizing the long-term
budget value of the firm’s equity and satisfying shorter-term financial con-
straints, resource limitations and service objectives. Investment opportunities
for the next 5 years are modeled as 0-1 variables with alternative implemen-
tations for each. The objective is to maximize the net present value of the
capital portfolio. There are financial constraints on capital, internally gen-
erated funds, net income to common, and limits on resources such as labor
hours, lines installed, etc. There are also constraints that enforce logical re-
lationships among opportunities (such as, if choose A then must choose B).”

See Bradley [1986].

INVEST “Capital allocation and project selection for a large multi-national
firm is modeled as a two-stage multi-year nonlinear capital budgeting problem
with over 40,000 integer variables. Innovative modeling yields subproblems
easy to solve, and optimality is achieved with a single iteration of the nonlinear
master problem.” See Harrison, Bradley and Brown [1989]. The instance

reported here is a linear program subproblem of the two-stage model.

TANKER "A crude oil tanker scheduling problem faced by a major oil com-
pany is solved using an elastic set partitioning model. The model takes into
account all fleet cost components, including the opportunity cost of ship time,
port and canal charges, demurrage and bunker fuel. The model determines
optimal speeds for the ships and the best routing of ballast (empty) legs, as
well as which cargoes to load on controlled ships and which to spot charter. All
feasible schedules are generated, the cost of each is accurately determined and

the best set of schedules is selected.” See Brown, Graves and Ronen [1987].

146

o GAS “Natural gas utilities supply about one fourth of the energy needs of
the United States. From wellhead to consumer, operations are governed by an
astounding diversity of purchase, transport and storage contract agreements
which enable complex physical distribution systems to meet future demands
no more predictable than next year’s weather. Gas is a highly detailed op-
timization model which utilities use to plan operations and to justify such
plans to regulatory agencies is developed.” See Avery, Brown, Rosenkranz

and Wood [1989).

e ODSM *“A commonly occurring problem in distribution system design is the
optimal location of intermediate distribution facilities between plants and cus-
tomers. A multicommodity capacitated single-period version of this problem
is formulated as a mixed integer linear program. A solution technique based
on Benders Decomposition is developed. ... An essentially optimal solution
is found and proven with a surprisingly small number of Benders cuts.” See
Geoffrion and Graves [1974]. The instances reported here are decomposition

master problems.

e TAM “The annual decision on how much of the Air Force procurement budget
should be spent on the many different aircraft and how much should be spent
on the many different munitions is of great interest to many people. How
the Air Force staff develops information to support the decision has changed
over the years. Currently, a linear program is being used by the Air Force
Center for Studies and Analysis and is being tested by the Munitions Division
of the Plans and Operations Directorate (AF/XOXFM) for munitions tradeoff
analysis. The LP uses existing data and estimates on (1) aircraft and munition

effectiveness, (2) target value. (3) attrition, (4) aircraft and munition costs,

147

and (95) existing inventories of aircraft and munitions. Other factors considered

are weather and length of the conflict.” See Might {1987] and Jackson {1989].

PHOENIX “The U. S. Army operates a fleet of over 7,000 helicopters to
perform combat and combat support tasks. Although newer, more technically
advanced helicopters have been and are being procured, the majority of the
fleet is still composed of helicopters that were built during the late 1960s
for use in South Vietnam. These older airframes are rapidly reaching the
end of their useful lives and must be (i) replaced by newer, more advanced
designs. (ii) gutted and refit or replaced by a combination of (i) and (ii). Army
force planners recognize that this problem can only be solved by a long-term
program and the commitment of billions of dollars. Phoenix is a software
system employing mixed integer linear programming to help Army aviation
staff and officers develop long- range helicopter modernization plans.” See

Clemence, Teufert, Brown and Wood [1983].

AMMOA4H “A four-commodity transshipment model for delivery over time of
military products from production and storage locations to overseas locations
to support theater operations is developed. The model covers five physical
echelons, including production plants, storage depots, ports of embarkation,
ports of debarkation and geographic field locations. Road. rail, sea and air
transportation are modeled, and product demands are time- phased. Capaci-
tation occurs primarily on sea and air links, and as throughput capacities on
transfer points, requiring replication of some echelons. The objective of the

mode] is to minimize deviation from on-time deliveries.” See Staniec [1984].

GK A weekly multi-plant production/inventory/transshipment linear pro-

gram from a consumer products industry is developed. The model is meant

148

to guide weekly processing and packaging decisions. Production consists of
two stages: basic products are produced and then packaged into different-
sized containers to yield finished products. Processing lines tvpically produce
a subset of the basic products and have limited capacity with overtime charges
for weekend shifts. Packaging lines for finished products are similar. In-house
inventory capacity is limited although outside storage is available at additional

cost. Inter-plant shipments are made by rail or truck. See Wood [1989].

C. METHODOLOGY

We wish to evaluate implementations of our three algorithms on the basis
of computation time and computer memory requirements. Since each algorithm is
simplex-based, the formal theory of algorithmic complexity provides no basis for
preferring one to another, since in the worst case none enjoys a measure of running
time that is polynomial in the size of the problem specification (see e.g., Garey
and Johnson, {1979] for a discussion of algorithmic complexity and Klee and Minty
[1972] for an analysis of the Simplex method). Thus, we are led to consider “typical”
performance by gathering empirical evidence on the performance of the algorithms
solving “typical” problems.

We prefer an implementation that is both fast and requires little computer
memory. Most researchers who have reported on implementations of related al-
gorithms have been concerned primarily with execution speed, and certainly it is
important. However, we have seen in our algorithmic setting that once high speed
storage has been allocated for the problem representation and for the program code,
all remaining memory is available to store the representation of the explicit trans-
formation kernel and the factored kernel. If the solution trajectory is such that their

combined size never exceeds available memory. we succeed in solving the problem

149

If not, we fail. When success or failure depends on the total storage requirements
of the inverse representation, we may be willing to sacrifice execution speed in ex-
change for an economical representation of the inverse. This is a classic theme in
computer science and software engineering, and we believe its importance in this
context has been largely overlooked.

We will be comparing the performance of four separate implementations. The
first is an unadorned version of the X-System, which implements the Graves mutual
primal-dual method as presented in Chapter 2. There is no underlying factorization.
We refer to this implementation as “X”. The second implementation is the GUB
factorization presented in Chapter 6, and referred to as “GUB”. The third is the
pure network factorization of Chapter 7, referred to as “PNET”, and the last is the
generalized network factorization, called “GNET”, of Chapter 8.

The ideal approach for this computational study, would be to develop four
equivalent formulations of each model, each customized for it. particular implemen-
tation with the goal of inducing a large factored row set of the appropriate type.
This approach is a consistent theme in the literature dealing with specialized al-
gorithms and one that we strongly endorse. Alternate formulations of a model are
often available, and it seems sensible to choose one that as strongly as possible
exploits the strengths of the solver.

However, all of the models used here are “off-the-shelf” in the sense that they
were developed at various times by various modelers, and we cannot afford to develop
alternate formulations. Thus, our approach is to preserve a single, unfactored rep-
resentation of each model, and attempt to identify favorable row structures through
the use of heuristics. Our procedure is based on the work of Brown and Thomen
[1980], Brown and Wright [1983] and Brown, McBride and Wood {1985). The heuris-

tics are greedy and myopic in the sense that they initially consider the entire row

150

...

set of the problem, and discard one row at a time without backtracking until the
remaining set satisfies the desired row factorization. This may easily result in the
- confounding or destruction of structure intended or perceived by the modeler. While
our approach yields interesting and useful observations about the implementations,
it is in some ways a poor substitute for the customized model method.
Table (9.2) tabulates the important structural information concerning the
model instances we will be solving. The column headings may be interpreted as

follows: m is the total number of structural constraints (note that this use is differ-

ent from that in the problem specifications of Chapters 6, 7. and 8), n the number
of variables, pgr'g the number of GUB rows identified by the heuristic, ppy the
number of pure network rows, pgy the number of generalized network rows and NZ
the number of nonzeros in the technological coeflicient matrix of the model. For
example, consider the first model in Table (9.2), GTE. The structural constraints
contain 57,563 nonzeros, and the model consists of 6,624 variables. When viewed
as an unfactored mutual primal-dual model, it consists of 960 explicit constraints
and 0 factored constraints. When viewed as a GUB factorization, it consists of 909
factored (GUB) constraints and 960 — 909 = 51 explicit constraints. Similarly, when
viewed as a pure network factorization (PNET), it contains 909 factored rows and 51
explicit rows. Finally, when viewed as a generalized network factorization (GNET).

it consists of 922 factored rows and 38 explicit rows.

D. COMPUTATIONAL RESULTS
We solved each of these problem instances on an IBM 3033/AP under the
VM/CMS operating system using VS FORTRAN 1.4.1. A virtual machine size

of six megabytes was used, simply because it is the largest size normally available

to us. It is the nature of a time-shared system that measurements of processing

times are somewhat imprecise due to system load factors and accounting techniques
for system processing overhead. We have attempted to mitigate these effects by
performing our experiments during periods of low system usage.

Table (9.3) displays the solution times for each of the test problem instances by

»

each of the four implementations. An “*” indicates that the solver failed to solve the
problem instance. Such a failure occurred because the storage requirements for the
explicit transformation kernel representation exceeded the memory available and the
solver terminated gracefully. Solution times represent only the CPU time required
to solve the problem. and exclude the initial problem input, the time required by
the factorization heuristic to identify the factored row structure and the final output
to record the solution. All figures are in CPU seconds.

The formulations of three of the test problems were strongly influenced by the
design of the target solver: the TANKER model possesses a strong GUB structure
since it contains a set of schedule selection constraints for each ship (i.e., from a set
of candidate schedules, select at most one). The AMMO4H model is a multicom-
modity capacitated transshipment problem and is thus best suited to a pure network
factorization. The PHOENIX10 model design was shaped by the generalized net-
work factorization paradigm. The nature of the factored row structures shown in
Table (9.2) supports this assertion. In the TANKER model, the factored pure net-
work rows are exactly the same as the the factored GUB rows, and the heuristic
constructs a generalized network factored row set by identifying one additional row
to be paired with each GUB row. The AMMO4{H model may be viewed as a GUB
factorization with a relatively modest GUB set consisting of the joint capacitation
constraints, or as a pure network factorization with a relatively large pure network
(PN) factored row set. In the PHOENIX10 model, the dominant structure is clearly

the generalized network row structure.

As we expect, the factorization is most successful when the model is wed to the
solver. Although we are surprised to find the performance of (PNET) competitive
with (GUB) on the TANKER model. (GUB) clearly dominates the X and GNET
solvers. Similarly, (GNET) dominates on the PHOENIX10 model and (PNET) on
the AMMO4H model. We would be disappointed if the results were otherwise.

We see evidence in Table (9.3) to suggest that the approach of using heuristics
to automatically identify factored structure has its pitfalls. In a number of problem
instances, although our heuristics identify significantly larger factored sets as we
progress from the base system to (GNET). we see little improvement in computation
times (INVEST, ODSMI. TAMS). In fact. we see in the TANKER model that
the temptation to confound the modeler’s intended GUB structure by specifying a
generalized network factorization leads to disastrous consequences, even though this
tactic doubles the size of the factored row set. Interestingly enough. when we apply
the (GNET) solver to the (GUB) factored row set, we are able to solve the problem
in 16 5 CPU seconds. This suggests that the “quality™ of a row factorization is not
completely specified by size alone

We are encouraged by the observation that the transition from the basic system
to (GUB) to (PNET) seldom degrades solution times. even when doing so yields
little gain in the number of additional factored rows. This seems to contradict
popular folklore, which suggests that computation times worsen as the transition
from unadorned Simplex to (GUB) to (PNET) is made unless the transition is
accompanied by a substantial increase in the size of the factored portion of the
model. In fact. computational testing reported by others is frequently limited to
models in which the number of explicit rows is in the range of one to twenty (see
e.g.. Chen and Saigal {1977]. Glover, Karney, Klingman and Russell [1978]. Glover

and Klingman [19531]). Our results are all the more remarkable given the the lack of

153

guidance from the modeler for the “intended” row factorization. We note. however,
that results are mixed for the transition from (PNET) to (GNET), and it seems
clear that the applicability of the (GNET) factorization is not as general as that of
(PNET).

Finally, we observe that in several models it is factorization that separates
success from failure in solving the problem with a given allocation of computer
resources. This fact alone may be reason to consider this approach in practice.

Our second interest with respect to computation is in the memory requirements
of our algorithms. Our design strategy allocates memory to the data structures
which represent Fj; so that we may successfully represent the largest dimension of
factored kernel that may possibly arise. Limited memory remains to store the repre-
sentation of Af}, the explicit transformation kernel. During the solution process, if
we encounter a representation of A7! which requires more memory than is available,
failure occurs. We measure the size of the computer representation of /il_ll and the
amount of available computer storage in terms of the elements of Ay} that can be
stored. The number of bytes per element varies according to the size of the problem
(this has to do with the FORTRAN data types INTEGER*2 and INTEGER*4), but
is generally 28 bytes per element. Table (9.1} lists for each problem instance/solver
pair the maximum size of the AJ! representation encountered during the solution.
measured in units of number of elements. An asterisk (*) indicates that the number
shown equals the maximum number of units of storage that were available, and thus
failure occurred.

We sce that generally the representation of the maximum size of the explicit
transformation kernel decreases as the generality of the factorization increases. Re-

calling the defimtion of the explicit transformation kernel:

1:11_11 = (El'z - EuFl—-,IFrz)—l

this trend is as we would expect. As the generality of the factorization increases,
we expect the size of the factored component to increase and the size of the ex-
plicit component to decrease. Each potentially binding explicit row which may be
converted to a factored rovs by adopting a more general factorization reduces the
dimension of the resulting representation of Aj!. Also, the density of the term
—E,) F[1' Fi; generally increases as the complexity of the structure of Fj}! increases.
Assuming the dimension of F}; is k by &, the number of nonzeros in £,;' in the GUB
factorization is k. In the pure network factorization, the number of nonzeros in Fj;'
may be as large as "72, and in the generalized network factorization, the number of
nonzeros in F};' may be as large as n2. We note that (GNET) again provides several
exceptions to the general trend in Table (9.4).

It is the dvnamic nature of our factorization algorithms which marks this
work as a departure from previous research. Table 9.5 illustrates the significance
of this point. The first column lists the number of constraints which are binding
at optimality, and the second column expresses this as a percentage of the total
number of constraints in the problem instance. The resuiis shcwn here are typical
of real-world large-scale models. It is usually the case that many constraints are
not binding at optimality, and there are computational advantages to be gained by
exploiting this fact.

Columns 3, 4 and 5 of Table 9.5 list for (GUB), (PNET) and (GNET) respec-
tively the number of explicit constraints that are binding at optimality. Since in
each implementation. binding factored constraints are handled more efficiently than

binding explicit constraints, we sec that the computational success of our dynamic

factorization algorithms is due to the fact that even in large model instances, we
are able to limit our attention to a relatively small number of explicit constraints,
usually on the order of a few hundred or less. While this is well bevond the size of
previously reported implementations, our results show that it is quite manageable.

It is useful to establish a criteria for comparing and contrasting the perfor-
mance of the algorithms which accounts for both execution time and storage re-
quirements. Although more sophisticated models could undoubtedly be developed,
we offer a simple model which we feel captures the essential features we wish to

consider. Define

flsit) =5t

where s is the total computer storage (measured in megabytes) required to solve
a problem instance (including program code, original problem data, tableau rep-
resentation, factored kernel representation and explicit transformation kernel rep-
resentation) and t is the execution time (measured in CPU seconds). f(s,t) is
monotonically increasing in s and ¢, and in a crude fashion it captures the essential
features of the way in which computer resources are often marketed commercially.
We will use f(s,t) as a measure of performance. Table (9.6) displays f(s.t) for each

“*" indicates that the solver failed to

of the problem instance/solver combinations.
solve the particular instance.

We observe that the trend as the transitions are made from base system to
(PNET) is a decline in f(s,t). It is apparent that (PNET) i1s a versatile imple-

mentation. performing extremely well on models with highly favorable structure

(AMMO4H, KG1, GASPNA. GASPNC) and comparing favorably with (GUB) and

156

(GNET) on every other model. The performance of (GNET) is generally quite com-
parable to that of (PNET). It appears to be about 15-20% slower than (PNET)
when it is used to solve a pure network factorization (GASPNC, AMMO4H). Our
row elimination heuristics are usually effective in identifying a favorable factored
structure, but the computational results on the TANKER model clearly illustrate
the limitations of this approach. (GNET) apparently requires a more sophisticated
and careful user than do (GUB) or (PNET), and in this sense it is perhaps a more
specialized algorithm. The evidence shown here indicates that (PNET) is a strong
candidate for use as a general implementation, and need not be viewed as a highly
specialized implementation suitable only for rare model instances. For the models
studied here, we have progressed well beyond the stage of solving instances with

only a handful of explicit rows.

TABLE 9.2: Summary of Problem Suite Dimensions

GTE
INVEST
TANKER
GAS PN A
GAS PN C
GAS PN E
GAS GN A
GAS GN C
GK 2

GK 3

GK 4
ODSMI1
ODSNM2
TAMI1
TAM?2
TAM3
TAMA4
TAMS5
TAMS
TAMI12

PHOENIX10
PHOENIX30

AMMO 4H

960
1,338
83
6,848
3,794
1,184
6,848
3,974
3.819
5,728
7.636
3,023
591
91
1350
209
211
438
420
629
1.618
4,305

13,963

n

6,624
11,989
7.598
27,884
15,362
5,102
27,884
15,362
17.811
27.193
37,139
11.568
22,211
389
1,204
2,883
1,327
10,969
6,101
17.793
6,884
4,297
83,497

PcuB

909
941
33
4,345
2,658
434
4,484
2,664
1,265
2,295
2,428
523
490
22

42

53

59
102
118
177
206
293
1,071

PPN

909
1,101
33
5,934
3,418
877
5.142
3,084
2,578
3,867
5156
540
490
28

54

81

77
132
154
231
220
303
12,892

PGN

917
1,168
66
5,976
3,420
883
5,976
3,420
2,585
3,876
5,167
558
490
34

66

99

98
162
196
295
1,153
3,605
12.892

NZ

57,563
36,829
30,890
36,702
19,701
7,355
36,702
19,701
34,809
51,289
73,766
21,532
42,827
1,212
6,869
21,356
6,954
93,964
49,376
164,947
13,818
16,441
166,713

-

TABLE 9.3: Solution Times in CPU Seconds

X GUB PNET GNET

GTE 48.4 33.0 37.2 38.3
INVEST 21.6 17.1 17.1 17.0
TANKER 141.8 20.5 17.7 43.8
GAS PN A * * 4132 5217
GAS PN C 56.9 53.7 35.8 31.3
GASPNE * 146.8 17.4 20.7
GAS GN A * * * 5216
GASGN C 52.9 50.9 37.6 33.7
GK 2 27.1 22.8 21.3 19.4
GK 3 62.4 58.4 50.4 45.1
GK 4 * 380.9 1822 186.6
. Op>SM1 8.7 12.1 9.3 8.8
ODSM?2 311 32.5 32.8 30.4
TAM1 0.7 0.7 0.7 0.7
TAM2 2.5 1.7 2.2 2.1
TAM3 17.8 14.1 14.3 13.5
TAM1 1.2 1.2 1.5 1.7
TAM5 317.1 300.9 307.8 269.6
TAMS 93.3 81.8 83.8 7.4
TAMI12 660.9 660.6 621.1 4809
PHOENIX10 68.6 43.7 30.4 10.7
PHOENIX30 * * * 4951

AMMO 4H NA 112413 2539 2884

e NA indicates problem instance not run.

t This problem was run on an IBM 3081K under the MV'S operating system using
VS FORTRAN 1.4.1 in a 32 megabyte virtual machine using an advanced starting
solution. The solution time shown is adjusted to account for the approximate dif-
ference in compnting speed between the IBM 3081K and the IBM 3033/AP.

TABLE 9.4: Number of Elements in Explicit Transformation Kernel Rep-

resentation of Optimality or at Failure

GTE
INVEST
TANKER
GAS PN A
GAS PN C
GAS PN E
GAS GN A
GASGN C
GK 2

GK 3

GK 4
ODSMI1
ODSM2
TAMI1
TAM?2
TAM3
TAM4
TAMS
TAME
TAMI12
PHOENIXI10
PHOENIX30
AMMO 4H

X

11,571
8,380
2,256

*132,995

21,912
*174,482
*132,995

17,966
8,280

13,991

*110,334
1,322
418
1,713
3,042

10,430
1,489

29.661

19,515

37.716

73,737

*153,781
NA

GUB

221

682

415
*130,883
14,765
111,821
*130,883
8.017
2,719
1,771
19,646
561

3

1.231
2.078
8,326
1,302
23,790
14,386
28,935
38,705
*151,746
122,085

160

PNET

214
654
312
35,395
260
4,808
*127,780
1,358
221
388
6,532
259

3

841
1,444
5,305
867
15.689
8,351
16,097
21.879
*148,348
23

GNET

196
521

81
65,558
364
4,312
65,081
608
184
310
9,155
421

1.165
1.610
6,525
1.332
18,737
11,182
20,186
1,458
11,523
23

TABLE 9.5: Summary of the Number of Binding Explicit Constraints at

Optimality
]
Total Percent GUB PNET GNET
Binding

GTE 552 57.5 19 138 18
INVEST 758 56.7 199 194 162
TANKER 50 60.2 31 30 9
GAS PN A 3,051 44.6 * 2492 319
GAS PN C 2,337 61.6 849 66 91
GAS PN E 897 7.8 572 88 81
GAS GN A 3.045 44.5 * * 352
GASGN C 2,331 58.7 863 402 &8
GK 2 1,950 51.1 1,011 93 90
GK 3 2,912 50.8 1,360 110 141
GK 1 4,119 53.9 2477 363 356
ODSM]1 297 9.8 53 19 47
ODSM?2 448 IGR 219 215 0
TAMI 46 50.5 14 32 35
TAM?2 87 18.3 7T 51 61
TAM3 148 55.0 131 97 107
TAM{ 121 57.3 110 59 81
TAM5 252 57.5 228 170 186
TAMS 276 65.7 238 140 174
TAMI12 413 65.7 355 208 252
PHOENIX10 1,085 67.1 1,083 1.082 T
PHOENIX30 3,477 80.8 * * 109
AMMO 4H 2,889 20.7 2,882 7 7

TABLE 9.6:

GTE
INVEST
TANKER
GAS PN A
GAS PN C
GAS PN E
GAS GN A
GASGNC
GK 2

GK 3

Gk 4
ODSM1
ODSM2
TAMI
TAM2
TAM3
TAM4
TAMS
TAMS
TAMI2
PHOENIXI10
PHOENIX30
AMMO 4H

f(s,t) in Megabyte -

X GUB
84 47
25 16
112 15
* *
73 58
* 509
62 15
27 19
90 74
* 1,368
4 6
449 47
0.1 0.1
1]
14 10
0.1 0.1
750 662
133 106
2.376 2,213
169 65
* *
NA 9,093

309

seconds

GNET

64
20
42

1,771
31
14

1,774
34
21
66

387

53
0.1

12
0.1
622
110
1,632

693
1194

X. CONCLUSIONS

We have presented three dynamic row factorization algorithms for solving
large-scale linear programs. Although each may be used to solve any LP instance.
each is designed to exploit a particular model row structure: generalized upper
bounds (GUB), pure network rows (PNET) or generalized network rows (GNET).

Previous research by others generally suggests that specialized algorithms such
as those presented here are useful only when the factored structure completely dom-
inates the structure of the model instance. There are reports of algorithms for
solving problems having a single unfactored (explicit) constraint (Hultz and Kling-
man [1978], Klingman and Russell [1978]). When implementations are reported.
problem suites are limited to instances having a very small number of explicit con-
straints, typically in the range from one to twenty (Chen and Saigal [1977], Glover,
Karney, Klingman and Russell [1978]. Glover and Klingman [1981]). The consensus
seems to be that such algorithms are appropriately viewed as specialized algorithms,
useful only for solving very special problem instances.

Our experience strongly refutes this view. \We find the performances of our im-
plementations of the dynamic factorization algorithms are competitive with that of
a commercial-quality optimization system on every model instance we have tested.
This is particularly remarkable for two reasons. First. our test suite consists of
models developed by skilled modelers specifically to exploit the capabilities and
characteristics of the solver with which our implementations are competing. Sec-

ond, we must select the row factorizations without the benefit of guidance from the

163

modeler, relying instead on useful but imperfect heuristics. Despite these computa-
tional handicaps, our tests show our implementations to be at least as efficient as a
well-respected commercial-quality optimization system.

Our development has stressed the similarity between the algorithms and the
natural extension which leads from one to the next. This is in contrast to the devel-
opment that has been reported for similar, non-dynamic algorithms (e.g., Dantzig
and Van Slyke [1967], Klingman and Russell {1978] and Hultz and Klingman {1978})
in which the specifics of the individual algorithm obscure the generality of the ap-
proach. The conceptual difference between our algorithms is seen to be largely
isolated to the structure of a single algebraic entity, the factored kernel. By abstract-
ing the structure of the factored kernel and concentrating on the general algorithm
design, we demonstrate the versatility and flexibility of this approach.

We are gratified to find that the modularity suggested by the algorithmic
development can be realized in an implementation design. We succeed in developing
a software suite which displays a “single-system image”. The modularity of the
algorithm allows the definition of an “abstract data type” (see, e.g., Aho, Hopcroft
and Ullman {1974]) which isolates the data structures and update procedures for the
factored Lernel from the rest of the implementation. Each factorization is seamlessly
integrated within the system design, presenting a single design image.

The early 1980's produced a great deal of research in the area of automatic
identification of special structure in LP models (see, e.g., Gunawardane and Schrage
(1977], Glover [1980]. Schrage [1981], Brown, McBride and Wood [1985] and Bixby
and Fourer [1986]). We have incorporated the most useful of these ideas into our
implementation, and we have what we believe to be the first implementation which

supports the automatic identification of factored row sets. This capability may

164

be used to identify new factored structure or to validate or augment a modeler-
provided recommendation. Our computational experience indicates that while this
approach is not as promising as perhaps first envisioned, it is nonetheless a valuable
tool. When faced with the choice of either solving an unfactored model instance
or automatically identifying a factored structure and then using the corresponding
solver, our results show that the latter is nearly always to be preferred. Our results
seem to suggest, however, that in addition to quantity of factored rows, the issue
of quality of factored rows exerts influence on the performance of the factorization
algorithms. While not well understood, it is clear that the myopic approach of
our heuristics is no substitute for the modeler’s guidance in identifying factored
structure.

Several areas suggest themnselves for further research. Certainly additional fac-
tored structures can be examined. For example, one approach for treating factored
column structures (“complicating columns™) is to allow the partitioning of rows into
the categories “factored” and “explicit” to vary as the algorithm progresses. That
is, allow factored row set membership to be determined with respect to the column
structure of the currently nonbasic variables rather than v'itl respect to the column
structure of all problem variables. While conceptually simple, such a generalization
seems to present significant algorithmic challenges.

General algorithms are sometimes useful in specialized contexts. For example,
processing networks (Koene [1982]) are network models which allow proportional
flow restrictions on the arcs entering or leaving some nodes. One formulation of such
a model results in a pure or generalized network structure with a set of complicating
columns. Chen and Engquist {1986] propose a primal partitioning algorithm for

solving processing network problems. An alternate formulation yields a pure or

165

generalized structure with complicating rows, and we note that this is precisely the
structure we seek for our network factorizations.

The multicommodity capacitated transshipment problem (MCTP) has been
the subject of much reseaich over the years, and a number of specialized algorithms
(see, e.g., Assad [1978] or Kennington {1978]) have been proposed to solve it. Adopt-
ing a general perspective, MCTP may be viewed either as a GUB model or as a pure
network model with side constraints, and either view might be preferred depending
upon the dimensions of the particular instance under consideration. Qur compu-
tational experience indicates that the pure network factorization algorithm offers a
powerful technique for solving MCTP. As an experiment, we customized our (PN)
implementation to exploit the special structure of the side constraints in MCTP. It
is interesting to note that in our scientific computing environment, we observed no
difference in solution times between the customized version of (PN) and the original
implementation.

Finally, all the approaches we have considered assume the prior existence of a
specific structure in the factored rows which in turn determines the structure of the
factored kernel. An extension of this general approach is to relax the requirement for
strict conformance to a specific structure. Instead, we might allow the factored row
structure to be “nearlyv” homogeneous. For example. we may allow a small number
of complicating columns to disturb what is otherwise a factored pure network row
structure. We then expect the structure of the factored kernel to be dominated by
that induced by the predominant row structure, with only occasional complications
due to the excep.ional row structure. We allow for this exceptional structure in
the factored kernel by identifying it “on-the-fly" as the algorithm progresses, and
treating it in an appropriate manner. This approach may be thought of as a hy-

brid between the factored method developed here and dynamic ba<is triangulation

166

methods (see, e.g.. Hellermar and Rarick {1971] and 71972}, Saunders [1976] and
McBride [1980]).

Dynamic extrinsic factorization is subsumed if we activate functions in the
update analogous to the secondary exchauges now employed. Essentially all that
has to be done is ensure that successive factored components retain their stipulated
special structure. In our estimation, this will only be justified in cases where the
model structure is amenable, and quite likely will require some model-specific fea-
tures to perform well on difficult models. We have limited our experimentaiion to

those static extrinsic cases which are believed to be most useful.

167

o

=1

10.

11

LIST OF REFERENCES

Aho, A. V., Hopcroft, J. E. and Ullman, J D., Tie Design «nd Analysis of
Computer Algorithms, Addison-Wesley Publishing Co., Menlo Fark, Califor-
nia, 1974.

Assad, A., “Multicommodity Network Flows-A Survey,” Networks, Vol. 8,
1978, pp. 37-91.

Avery, W., Brown, G. G., Rosenkranz, J. A. and Wood, R. K., “A Supply
Optimization System for Natural Gas Distribution Companies,” (in prepa-
ration), 1989.

Bartels. R. H. and Golub, G. H., “The Simplex Method of Linear Program-
ming Using LU Decomposition,” Communications of the ACM, Vol. 12, 1969,
pp. 266-268.

Bradley. G. H., “Optimization of Capital Portfolios,” Proceedings of the Na-
tional Communications “orum 86, 1986, pp. 11-17.

Bradley, G. H., Brown, G. G. and Graves, G. W., “Design and Implemen-
tation of Large-Scale Primal Transshipment Algorithms.” Management Sci-
ence, Vol. 24-1, 1977, pp. 1-34.

Benders, J. F., “Partitioning Procedure for Solving Mixed-Variables Pro-
gramming Problems.” Numerische Mathematik, Vol. 4, 1962, pp. 238-232.

Bennett, J. M., “An Appivach to Some Structured Linear Programming
Problems,” Operations Research, Vol. 14-4, 1966, pp. 636-645.

Bixby, R. E. and Fourer. R., Finding embedded network rows in linear pro-
grams I: Ertraction heuristics, Bonn University, Oelionometrie und Opera-
tions Research. Report No. 86437-OR, July, 1986.

Brown. G. G. and Graves, G. W', *XS Mathematical Programming System”
perpetual working paper, 1975.

Brown. G. G., Graves, G. \W. and Ronen, D.. "Scheduling Ocean Transporta-
tion of Crude O1l;" Management Science, Vol. 33-3, 1987, pp. 333-346.

. Brown. G. G. and McBride, R. D., “Solving Generalized Networks,” Man-

agement Science, Vol. 30-12, 1984, pp. 1497-1323.

. Brown. G. G., McBride, R. D. and Wood, R. K., “Extracting Embedded

Generalized Networks for linear programming problems,” Mathematical Pro-
gramming Study, 32, 1985, pp. 11-31.

. Brown. G. G. and Thomen. D.. “Automatic identification of generalized up-

per bounds in large-scale optimization models,” Management Science, No.
26-11. 1950, pp. 1166-1184.

T~

i - = -

15.

16.

17.

18.

19.

o
o

]
(WS]

Brown, G. G. and Wright, W., “Automatic Factorization of Embedded Struc-
ture in Large-Scale Optimization Models,” Mathematical Programming, 24,
1984, pr. 41-46.

Charnes, A. and Lemke, C. E., Computational Theory of Linear Program-
ming, [: The Bounded Variables Problem, ONR Research Memorandum 10,
Graduate School of Industrial Administration, Carnegie Institute of Technol-
ogy, Pittsburgh, Pennsylvania. 1952.

Clien, C. and Engquist, M., “A Trimal Simplex Approach to Pure Processing
Networks,” Management Science, Vol. 32-12, 1986, pp. 1582-1598.

Chen, S. and Saigal, R., “A Primal Algorithm for Solving a Capacitated
Network Flow Problem with Additional Linear Constraints,” Networks, Vol.
7, 1977, pp. 59-79.

Clemence, R. D. Jr., Teufert, W. R., Brown, G. G. and Wood, R. K.,
“Phoenix: Developing and Evaluating Army Aviation Modernization Poli-
cies Using Mixed Integer Linear Programming,” 27th U. S. Army Operations
Research Symposium, Fort Lee, Virginia, October 12-13, 1988.

. Dantzig, G. B., Notes on Linear Programming: Parts VIII, IX. X-Upper

Bounds, Secondary Constraints, and Block Triangularity in Linear Program-
ming, Research Memorandum RM-1367, The Rand Corporation, Santa Mon-
ica, California, October, 1954.

. Dantzig, G. B., Linear Programming and Extensions, Princeton University

Press, Princeton, New Jersey, 1963.

. Dantzig. G. B. and Van Slyke, R. M., “Generalized Upper Bounding Tech-

niques,” Journal of Computer and System Sciences, Vol. 1, 1967, pp. 213-
226.

. Dantzig, G. B. and Wolfe, P.. “Decomposition principal for linear program-

ming,” Operations Research, Vol. 8-1, 1960, pp. 101-111.

. Elam, J. F., Glover, F. and Klingman, D., “A Strongly Convergent Primal-

Simplex Algorithm for Generalized Networks.” Mathematics of Operations
Research, 4-1, 1979, pp. 39-39.

5. Forrest, J. J. H. and Tomlin, J. A., “Updating Triangular Factors of the Basis

to Maintain Sparsity in the Product Form Simplex Method,” Mathematical
Programming, Vol. 2, 1972, pp. 262-278.

. Garey, M. R. and Johnson, D. S., Computers and Intractability, W. H. Free-

man and Co., San Francisco, California, 1979.

. Geoffrion, A. M. and Graves, G. W., “Multicommodity Distribution Sys-

tem Design by Benders Decomposition,” Management Science, Vol. 29-5,
January, 1974, pp. 822-844.

. Glover, F., “Transformations enlarging the network portion of a class of

LP/embedded generalized generalized networks,” MSRS 80-1. University ol
Colorado, Boulder, Colorado, April, 1980.

. Glover. F.. Hultz. J., Klingman, D. and Stutz. J., “A New Computer-Based

Planning Tool.” Research Report CCS 289, Center for Cyvbernetic Studies.
University of Texas at Austin, Austin, Texas. 1977,

169

30.

31.

33.

34.

36.

37.

39.

40.

41.
. Greenberg, H. J. and Rarick, D. C., “Determining GUB sets via a invert

13.

44,

Glover, F., Hultz, J., Klingman, D. and Stutz. J., “Generalized Networks:
A Fundamental Computer-Based Planning Tool,” Management Science, Vol.
24-12, 1978, pp. 1209-1220.

Glover. F.. Karney, D. and Klingman, D., “The Augmented Predecessor
Index Methed for Locatin§ Stepping Stone Paths and Assigning Dual Prices
in Distribution Problems,” Transportation Science, Vol. 6-2, 1972, pp. 171-
179.

2. Glover, F., Karney, D., Klingman, D. and Napier, A., “A Computational

Study on Start Procedures, Basis Change Criteria, and Solution Algorithms
for Transpcrtation Problems,” Management Science, Vol. 20-5, 1974, pp.

793-813.

Glover, R., Karney, D., Klingman, D. and Russell, R., “Solving Singly Con-
strained Transshipment Problems,” Transportation Science, Vol. 12-4, 1978,
pp. 277-297.

Glover, F. and Klingman, D., “A Note on Computational Simplifications in
Solving Generalized Transportation Problems,” Transportation Science, Vol.
7-4, 1973, pp. 351-361.

. Glover, F. and Klingman, D., “The Simplex SON Algorithm for LP /Embedded

Network Problems,” Mathematical Programming Study, 15, 1981, pp. 148-
176.

Glover, F., Klingman, D. and Stutz, J., “Extensions of the Augmented Pre-
decessor Index Method to Generalized Network Problems,” Transportation
Science, Vol. 7-4, 1973, pp. 377-384.

Glover, F., Klingman, D. and Stutz, J., “Augmented Threaded Index Method
for Network Optimization,” INFOR, Vol. 12-3, 1974, pp. 293-298.

. Golub. G. H. and Van Loan, C. F., Matriz Computations, The Johns Hopkins

University Press, Baltimore, Maryland, 1983.

Graves, G. W., *A Complete Constructive Algorithm for the General Mixed
Linear Programming Problem.” Naval Research Logistics Quarterly, 12-1,
1965, pp. 1-14.

Graves. G. W. and McBride. R. D.. “The Factorization Approach to Large-
Scale Linear Programming.” Mathematical Programming, Vol. 10, 1976, pp.
91-110.

Graves, G. W., “Mathematical Programming”, in preparation, 1989.

agenda algorithm,” Mathematicil Programming, Vol. 7, 1974, pp. 240-244.

Gunawardane. G. and Schrage. L., “Identification of special structure con-
straints in linear programs,” University of Chicago, Chicago, lllinois, 1977.

Harrison. T. P.. Bradley. G. H. and Brown. G. G., “Capital allocation
and project selection via decomposition,” presented at CORS/TIMS/ORSA
meeting. Vancouver, Britich Columbia. Canada. May. 1989.

45.

46.

47.

48.

49.

50.

37.

58.

59.

Hartman, J. K. and Lasdon, L. S., “A generalized upper bounding method
for doubly coupled linear programs.” Technical Memorandum No. 140, June,

1970.

Hartman, J. K. and Lasdon. L. S., “A Generalized Upper Bounding Algo-
rithm for Multicommodity Network Flow Problems,” Networks, 1, 1972, pp.
333-354.

Helgason, R. V. and Kennington, J. L., “A Product Form Representation of
the Inverse of a Multicommodity Cycle Matrix,” Networks, Vol. 7, 1977, pp.
297-322.

Hellerman, E. and Rarick, D., “Reinversion and the preassigned pivot pro-
cedure,” Mathematical Programming, Vol. 1, 1971, pp. 195-216.

Hellerman, E. and Rarick, D., “The partitioned preassigned pivot procedure
(p*),” in: Rose, D. J. and Willoughby, P. A., eds., Sparse Matrices and their
Applications, Plenum Press, New York, New York, 1972, pp. 67-76.

Hultz, J, and Klingman, D., “ Solving Constrained Generalized Network
Problems,” Research Report CCS 257, Center for Cybernetic Studies, Uni-
versity of Texas at Austin, Austin, Texas, 1976.

. Hultz, J. and Klingman, D., “Solving Singularly Constrained Generalized

Network Problems,” Applied Mathematics and Optimization, Vol. 4, 1978,
pp. 103-119.

. Jackson, J. A., 4 Taronomy of Advanced Linear Programming Techniques

and the Theater Attack Model, Master’s Thesis, Air Force Institute of Tech-
nology, Air University, Wright-Patterson Air Force Base, Ohio, 1989.

. Johnson, E. L., “Networks and Basic Solutions,” Operations Research, Vol.

14-4, 1966, pp. 619-623.

. Kaul, R. N.. "An Extension of Generalized Upper Bounding Techniques for

Linear Programming,” ORC Report No. 65-27, Department of Operations
Research, University of California at Berkeley, Berkeley, California, 1965.

. Kennington, J. L., "Solving Multicommodity Transportation Problems Using

a Primal Partitioning Simplex Technique,” Naval Research Logistics Quar-
terly, Vol. 24-2, 1977, pp. 309-325.

. Kennington, J. L., “A Survey of Linear Cost Multicommodity Network Flows,”

Operations Research, Vol. 26, 1978, pp. 209-236.

Klee, V. and Minty, G. J., “How good is the simplex algorithm?,” in: Shisha,
0. (ed.), Inequalities-11l, Academic Press, New York, New York, 1972, pp.
159-172.

Klingman. D. and Russell. R., “On Solving Constrained Transporu.... ..
Problems.” Operations Research, Vol. 23-1, 1975, pp. 91-107.

Klingman, D. and Russell, R., “A Streamlined Simplex Appivach to the
Singly Constrained Transportation Problem,” Naval Research Logistics Quar-
terly, 25-1. 1978, pp. 3R1-696.

171

60.

61.

62.

63.

64.

65.
66.

67.

68.

69.

70.

Koene, J., Minimal Cost Flow in Processing Networks, a Primal Approach,
Ph.D. Thesxs Eindhoven Lm\ersny of Technology, Emdhoven The Nether-
lands, 1982.

Magnanti, T. L., “Optimization for Sparse Systems,” in: Bunch, J. R. and
Rose, D. J., eds., Sparse Matrmz Computations, Academic Press, New York,
New York, 1976, pp. 147-176.

McBride, R. D., “Factorization in Large-Scale Linear Programming,” Work-
ing Paper No. 22 University of California, Los Angeles, California, 1972.

McBride, R. D., “A Bump Triangular Dynamic Factorization Algorithm for
the simplex method,” Mathematical Programming, Vol. 18, 1980, pp. 49-61.

McBride, R. D., “Solving Embedded Generalized Network Problems,” Euro-
pean Journal of Operational Research, 21, 19835, pp. 82-92.

McBride, R. D., Private Communication, 1989.

Might, R. J., “Decision Support for Aircraft and Munitions Procurement,”
Interfaces, 17-5, September-October, 1987, pp. 55-63.

Murtagh, B. A. and Saunders, M. A., “MINOS User’s Guide,” Technical Re-
port SOL 77-9, Systems Optimization Laboratory, Department of Operations
Research, Stanford University. Stanford, California, 1977.

Murtagh, B. A., Advanced Linear Programming: Computation and Practice,
McGraw-Hill International Book Company, New York, New York, 1981.

Reid, J. K., “A Sparsity- Explomng Variant of the Bartels-Golub Decom-
position for Linear Programming,” Report CSS 20, Computer Science and
Systems Division, A.E.R.E., Harwell, England, 1975.

Rosen, J. B., “The gradient projection method for nonlinear programming-
Part 1. linear constraints,” Journal of the Society of Applied Mathematics,
Vol. 8-1, 1960, pp. 181-217.

. Rosen, J. B., “Primal Partition Programming for Block Diagonal Matrices,”

Numerical Mathematics, Vol. 6, 1964, pp. 250-260.

. Saunders, M. A., “A Fast, Stable Implementation of the Simplex Method

Using Bartels-Golub Updating,” in: Bunch, J. R. and Rose, D. J., eds.,
Sparse Matriz Computations, Academic Press, New York, New York, 1976,
pp. 213-226.

. Schrage, L., “Implicit representation of variable upper bounds in linear pro-

gramming,” Mathematical Programming, Vol. 4, 1975, pp. 118-132.

. Schrage, L., “Implicit representation of generalized variable upper bounds in

linear programming,” Mathematical Programming, Vol. 14, 1978, pp. 11-20.

. Schrage, L. “Some comments on hidden structure in linear programs,” in:

Greenberg, H. J. and Maybee, 1., eds., Computer-assisted Analysis and Model
Simplification, Academic Press, New York, New York, 1981, pp. 389-395.

. Srinivasan, V. and Thompson, J. L., “Benefit-cost analysis of coding tech-

niques for the primal transportation algorithm,” Journal of the Association
for Computing Machinery, Vol. 20-1, 1973, pp. 194-213.

172

77.

80.

Staniec, C. J., Design and Solution of an Ammunition Distribution Model
by a Resource-Directive Multicommodity Network Flow Algorithm, Master’s
Thesis, Naval Postgraduate School, Monterey, California, 1984.

. Todd, M. J., “Large-scale linear programming: Geometry, working bases and

factorization,” Mathematical Programming, Vol. 26-1, 19383, pp. 1-20.

. Tomlin, J. A., “Survey of computational methods for solving large scale

systems,” Technical Report 72-25, Stanford University, Stanford, California,
1972.

Wood, R. K., Private Communication, 1989.

173

(1]

INITIAL DISTRIBUTION LIST

Defense Technical Information Center

Cameron Station
Alexandria, Virginia 22304-6145

Library, Code 0142
Naval Postgraduate School
Monterey, California 93943-5002

Professor Gerald G. Brown, Code 55Bw
Department of Operations Research

Naval Postgraduate School
Monterey, California 93943-5000

Commarder Michael P. Olson, Code 55
Department of Operations Research
Naval Postgraduate School

Monterey, California 93943-5000

Professor Richard D. McBride
Decision Systems Department
School of Business

University of Southern California
Los Angeles, California 90059-1421

Chief of Naval Operations (OP-81)
Department of the Navy
Washington, D. C. 20350

Office of Naval Research
Mathematics (Code 411)
800 N. Quincy Street
Arlington, Virginia 22217

17

No. of Copies
2

20

