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I. INTRODUCTION

When two signals having widely different amplitudes (i.e., more than

20 dB) are applied to an ideal hard limiter, the differences in their

levels increases by 6 dB. When real (i.e., nonideal) microwave FET ampli-

fiers are used to realize limiters, however, this ideal compression charac-

teristic is observed only when the amplifier is mildly saturated. When the

amplifier is hard-saturated, the amplitude of the smaller signal often

deviates substantially from its expected value. The amount cf small-signal

compression generally varies unpredictably with the frequency and level of

the large signal. When it occurs in the front end of a receiver, this

compression reduces the receiver's sensitivity to the small signal, and

thus is often called desensitization.

This phenomencn has been observed experimentally in this laboratory.
1

Measurements of the compression of a small signal by a larger one were made

on a commercial broadband, low-noise amplifier at frequencies near 3 GHz.

Although the expected small-signal compression of 6 dB was observed under

moderate levels of saturation, the small-signal level varied unpredictably

when the amplifier was strongly saturated.

Because it does not conform to the conventional theory describing

hard iimiters, this phenomenon has heretofore been considered anomalous.

However, far from being anomalous, it can be explained in a straightforward

manner by means of Volterra-series theory, and is in fact the expectable

consequence of saturation. It appears to be anomalous only because the

ideal hard-limiter model is not adequate to describe real microwave

circuits.

• • m m | | | | | 3



II. THE HARD-LIMITER MODEL

Figure 1 shows the conventional model of an ideal hard limiter. The

limiter, shown schematically in Fig. 1(a), has the memoryless voltage-

transfer function shown in Fig. 1(b). The limiter has no effent when the

peak value of the input voltage Vi is below the threshold Vt; if Vi > Vt,

the output voltage is clamped at Vt and includes only input frequencies

(distortion components and harmonics are filtered from the output). If two

signals are simultaneously applied to the limiter and one signal is much

smaller than the other, the smaller signal effectively phase modulates the

larger one at a rate equal to the difference of their frequencies. This

case is illustrated by the diagram in Fig. 1(c), in whivh the output volt-

age V. is described as the sum of two phasors representing the signals.

The resultant of the two phasors is

V0(t) = V1cos[wit + *sin(w mt) (1)

where

0 tan- ( (2)

and w - W1I When V2 << V1, * V2 /V I and Eq. (1) can be expanded to

obtain

Vo0)W V1J0 (O)sin(w1t) + V2J1 ()sin[(w 1 + WM)t] + ... (3)

where Jn is the nth-order Bessel function. In the limit V2/V1 . 0,

V(t) = Vl[sin(wut) + 2 sin(w t) + (4)

Thus, the level of V2 is compressed, relative to V1, by a factor of two, or

6 dB. This degree of saturation is usually observed in practice in lightly

saturated single-stage amplifiers.

5
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Fig. 1. The Ideal Hard Limiter. (a) The limiting section and a band-
pass filter. (b) The input/output characteristic of the
limiting section. (c) Phasor components of V0 when there are
two excitation components, V, and V2.
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III. THE VOLTERRA-SERIES MODEL

The ideal hard limiter has only a single resistive or memoryless)

nonlinearity, and has no feedback. Real amplifiers have both linear and

nonlinear reactances, feedback, and possibly even multiple memoryless non-

linearities; the most significant of the latter are the transistor's trans-

conductances.

The output Vo(t) of a nonlinear system having both reactive and re-

sistive nonlinearities can be expressed by the frequency-domain form of the

Volterra series:

0 nt) = N qQ Q Q V V H(W-n Vs,ql sq2 sqn n q .q2
n=1 2q1=-Q q2=-Q qn=-_Q ,2" sq q'qn

exp[wQ I + Wq2 + .. qn )t] (5)

in which the excitation Vi(t) consists of Q noncommensurate sinusoids, and

can be expressed as

Vi(t) = 2 q V exp(jw t) (6)q:Qq jqt

We note ~at w q = -Wq in Eq. (6). The complex quantity Hn (wq1

Wq2*** W qn) is called the nth-order nonlinear transfer function, or the

nth-order Volterra kernel of the system. Analogous to the transfer

function of a linear system, it relates the nth-order response at the fre-

quency wq1 + Wq2 +.. W to the individual excitation tones [the first-

order term H1(Wq) is in fact the linear transfer function of the system].

The sum of these responses, at all possible orders and mixing frequencies,

is the total response of the system. Thus, Eq. (5) represents the sum of a

7



very large number of frequency components, each of whicn occurs at a fre-

quency that is the linear combination of a set of' n excitation frequencies.

These frequencies are called nth-order mixing frequencies.

A carefil examination of Eq. (5) shows that many mixing frequencies of

different orders are identical. For example, when the excitation has two

tones (Q 7 2), the third-order (n 3) outp, t includes terms at u, + - I +

W I = W 1 and w 1  W-1 + W2 = '2" Although these components occur at exci-

tation frequencies, they are still third-order mixing frequencies, and

oecause H3 is complex, they may have phases that are different from those

of the linear outputs. Mixing frequencies equal to the excitation frequen-

cies occur in all odd-order terms of Eq. (5).

We now consider the case of a nonlinear system having two excitation

tones, one at w that is very strong and another at w. that is much weaker.

From Eq. (5) we find that the outputs at w and w2 can be expressed,

respectively, as

V (W) V H (W2 ) + (3/4)V 3H (-w1 w1, wI)

+ (5/8)V H5 (-w, -wIt w1  wit W )

+ (35/64)V7HT(-W 1, -W 1 ' -wit Wit W 1 , Wi, WI)

+ ... (7)

and

V (W2 ) V2 HI(W 2 ) + (3/2)V V2 H3 (-w1, w 1 9 w2)

J4
+ (15/8)V 1 V2 H5 (-wi, -Ul, Wit wt w2

6
+ 35/16)V 1V2 H7 (-w1 , -Wi, -w1, w 1 , wt, w 1 , W2 )

+ ... (8)
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Equa> ,is (7) and (8) are approximate; many terms in Eq. (5) that contri-

bute to 0 (W1 ) and Vo (w 2 ) are negligible when V2 '. V1 , and these terms

have not been included.

Each of the additive terms in Eqs. (7) and (6) can be represented by a

phasor. Without loss of generality, we can assume V, and V2 to be real;

then the magnitude of each phasor is proportional to the appropriate pro-

duct of the excitation-voltage components, and the phase of each phasor is

equal to the phase of Hhn . Note that the Hn in Eqs. (7) and (8) are not

identical; consequently, their magnitudes and phases are, in general,

different.



IV. THE IDEAL HARD LIMITER DESCRIBED BY THE VOLTERRA-SERIES MODEL

Because its transfer function has discontinuous derivatives near, the

saturation pc;nt, the ideal hard limiter cannot be described by a Volterra-

series formulation. However, if we replace this transfer function with a

memoryless one that has continuous derivatives, the Volterra series is

applicable. We therefore approximate the limiter characteristic as shown

in Fig. 2; we derived the approximate curve by fitting a polynomial to the

ft-nction V - tanh(V i ) in the range Vi = (-5,5). The resulting polynomial

is

: a IV + a3 V3 + a5 V 5 a 7 Vl .. (9)1o i 3 5 7

where

al 0.8454

a3  -0.10703

a 5 = 6.407-10
- 3

a 7  =-1.264-10
- 5

In the following calculations this polynomial will be truncated after
the seventh-degree term. The nonlinear transfer functions Hn can be found

by means of the probing method. 2,3 We find that in both Eqs. (7) and (8),

Hn = an; i.e., the power-series coefficients are the Volterra kernels.

Thus, in this case the Hn are all real and have phases of either 180 or

0 degrees. We note that a symmetrical, odd, monotonic function such as

that shown in Fig. 2 will always have a,, a5 , a9 ... > 0 and a 3 , a 7,

a l l ... < 0, and an  0 when n is even. Also, because Eq. (9) is valid

only in the range Vi = (-5,5), we should expect the Volterra series to be

accurate only within, at most, this same range.
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Fig. 2. Characteristics of the Ideal and the Approximate Limiter
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Figure 3 shows a phasor diagram representing either Eq. (7) or (8),

in which the output voltage V () is the vector sum of the phasors

representing the individual terms of those equations. [Note that this

diagram does not illustrate the same phenomenon as does Fig. 1(c); the

Volterra-series terms in Fig. 3 represent components of the same signal,

and are all at the same frequency; Fig. 1(c) shows two separate signals at

different frequencies.] When V1 is small, as shown in Fig. 3(a), the

higher-order terms are negligible and on-y a single term, the linear one (n

= 1, containing H1 ) is significant. However, as V, increases, the third-

order term increases rapidly. Because the phase of H3 in an ideal hard

limiter is 180 degrees, the sum of the first- and third-order phasors does

not increase as rapidly as the first-order term, ana thus the output level

begins to saturate; this situation is illustrated in Fig. 3(b).

If only first- and third-order terms existed, increasing V1 further

would eventually cause V (w) to peak and then decrease. However, before

the output level can decrease, the fifth-order term becomes significant;

because its phase is zero, it adds a positive component to V () that

opposes the negative third-order term and thus prevents V (w) from decreas-

ing. As V1 is increased, subsequent higher-order terms become progress-

ively more significant in this manner, and as a result the limiter has a

smooth output-saturation characteristic. Figure 3(c) shows the phasors

when the limiter is strongly saturated.

It is possible to illustrate the compression of V (W 2 ) by dividing Eq.

(8) by Eq. (7) and substituting an for Hn. The result can be expressed as

Vo(w 2) V2 a V1 + 2b V1 + 3c V 5 + 4d V7 +.

Vo(W ) V1 a V + b V3 + c V5 +dV (10)
1 1 1 1

where a = a,, b = 0.75a 3, c = 0.625a5 , and d = 0.5469a7 . This ratio

becomes infinite as V1 - -, and thus appears to predict the unlimited

expansion (instead of the compression) of V2 with V1 . However, because of

the truncation of the Volterra series in Eqs. (7) and (8), and because

13
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Fig. 3. Phasor Representations of the Voltage Components at the Output
of the Limiter at Either w or w2 (the phasors are drawn sepa-
rately for clarity). (a) Vi << Vt; (b) Vi a Vt; (c) VI >> Vt .
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Eq. (9) is valid only within the range Vi = (-5,5), Eq. (10) is not valid

at large values of V1 . Figure 4 shows a plot of Eq. (10) as a function of

VI; it indicates that Vo (w 2)/Va() is compressed to a value of 0.43V2/V I

when V1 >> 1; this result is in reasonable agreement with conventional

theory, which predicts a compression value of 0.5V 2/V1 . The difference is

probably due to the truncation of the series after only the seventh degree,

and may also be related to approximations inherent in the hard-limiter

theory.

15
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Fig. 4~. The Compression of V (w ) by V1 (calculated by means of the
Volterra-series mod?1)2
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V. COMPRESSION IN REAL AMPLIFIERS

The analysis of a real amplifier differs from that of the ideal

limiter in two respects. First, a single amplifier stage has reactive as

well as resistive (memoryless) nonlinearities, which may include feedback

resulting from the transistor's nonlinear reverse-transfer capacitance.

These properties affect the nonlinear transfer functions -- especially

those of the highest order -- in a manner that is generally unpredictable.

Second, in a multistage amplifier more than one stage can saturate if the

input level is very great. The input to the final stage may then consist

not only of voltage components at the original input frequencies, but also

of harmonics and intermodulation products generated in earlier stages.

Thus, even if the input signal consists of only two tones, the signal en-

tering the final stage may consist of a multiplicity of tones, not just

two. Because of the many possible interactions between these components,

the phases and magnitudes of the nonlinear transfer functions of a multi-

stage amplifier can vary substantially with small changes in power level

and frequency.

Figure 5 shows a phasor diagram of one possible set of voltage compo-

nents in a real amplifier. Because the reactive nonlinearities arise in

the transistor's parasitic capacitances and are therefore relatively small,

the lower-order transfer functions are dominated by memoryless nonlineari-

ties, especially the transconductance. However, the higher-order transfer

functions often include high-frequency terms, and thus are more strongly

affected by small reactive nonlinearities. These are the terms that

dominate at high levels of V1 . Consequently, at moderate levels of

saturation the magnitude of the resultant phasor representing V (W 2 ) varies

approximately in accordance with hard-limiter theory. However, under heavy

saturation V (W 2 ) varies apparently randomly with changes in signal level

and frequency; under some conditions it can even disappear completely. It

is important to note that saturation changes not only the amplitude

of V (w) but also its phase.

17
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Fig. 5. One Possible Set of Voltage-Component Phasors at the Output of
a Strongly Saturated Real Amplifier
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Because the unpredictable compression of V (W 2 ) is the result of
higher-order nonlinear transfer functions, and these are dominated by

strong noniinearities and high mixing frequencies, it may be possible to

improve the compression characteristics of practical amplifiers by

minimizing the effects of these nonlinearities. For example, designing a

transistor'- mchlJg circuiits to reject harmonics and high-frequency

mixing products, as well as to short-circuit the gate drain of a FET (or

the base and collector of a bipolar transistor) at out-of-band frequencies,

may improve the amplifier's saturation characteristics. It may also be

helpful to include bandpass filters between the stages of multistage

amplifiers, or at least between the last two or three stages. Minimizing

nonlinearities inherent in the FET by employing a graded channel-doping

profile may also help. Finally, using a bias circuit having a low source

impedance and a high current capability may reduce saturation effects

associated with inadequate bias power. It is difficult to predict

theoretically which factors dominate in creating well-behaved higher-order

transfer functions; thus, the task of improving the saturation performance

of amplifiers is best approached experimentally.
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