
seaM m A:M~iaT,=- q!IS PAGE-,

Form Approved
REPORT DOCUMENTATION PAGE 0M8 No. 0704-0188

Ia. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

UNCLASSIFIED _ _ ___ _

2a. .rECURITY CLAS$;F,ATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
E distribution unlimited.

AD-A214 542 t(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)

Georgia Inst. of TEch. Air Force Office of Scientific Research

6c. ADDRESS (City, State, ard ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

School of Electrical Engineering Building 410
Atlanta, GA 30332-0250 Boiling AFB, DC 20332-6448

8a. NAME OF FUNDING/SPONSORING l8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)

AFOSR I NM AFOSR-87-0308
'c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

Building 410 PROGRAM IPROJECT iTASK WORK UNIT

Boiling AFB, DC 20332-6448 ELEMENT NO. NO. NO ACCESSION NO.

61102F 2304 Al
11. TITLE (include Security Classification)

ESTIMATION AND CONTROL OF NONLINEAR AND HYBRID SYSTEMS WITH APPLICATIONS TO AIR-TO-AIR GUID

12. PERSONAL AUTHOR(S)
A. H. Haddad

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (YearMonth,D 15.FACA 9 T

Fiaal FROM I Aug 87TOl Ma8 'T --

16. SUPPLEMENTARY NOTATION 1% NOV 201989

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessa --. dentify "'oC num
FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
The research covered several aspects of the basic issues that are
needed to develop and implement nonlinear and hybrid systems schemes
for the filtering, tracking, and control of maneuvering vehicles in an
uncertain and nonlinear geometry. It is based on the approximation of
the original nonlinear problem by a switched Markov linear models
which in turn lead to hybrid model formulation or to piecewise linear
approximations. Four aspects are considered: 1. Approaches to
handling hybrid systems models; 2. Fast and slow decomposition for
piecewise linear systems; 3. Estimation in the presence of impulsive
inputs that can serve as either models for the switching behavior or
the changes in maneuvers; 4'. Modeling, parameterization, and
realization issues for hybrid systems. Applications to nonlinear
filtering and tracking schemes and their implementation is also
addressed. ... ..

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION [ ,

OUNCLASSIFIED/UNLIMITED q SAME AS RPT 0 DTIC USERS UNCLASSIFIED i
22a NAME OF RESPONSIBLE INDIVIDUAL 122b TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
Lt Col Crowley (202) 767- 5028I NM

D Form 1473, JUN 86 Previous editions are obsolete. SECLI1 M S1 -664II&S PAGE

SUN6LAbiIIU



:";/%}FSC)&&- " ,; L;.

" 2.

FINAL REPORT

Grant AFOSR-87-0308

August 1, 1987 - March 31, 1989

Estimation and Control of Nonlinear and Hybrid Systems

with Applications to Air-to-Air Guidance

by

A. H. Haddad , . .
E. I. Verriest

NTIS

School of Electrical Engineering '
Georgia Institute of Technology

Atlanta, GA 30332-0250

Prepared for: .

Air Force Office of Scientific Research
Major James M. Crowley/NM ._

Boiling AFB, Washington DC 20332 U, t

A1



SUMMARY
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The research covered several aspects of the basic issues that are needed to develop
and implement nonlinear and hybrid systems schemes for the filtering, tracking, and control
of maneuvering vehicles in an uncertain and nonlinear geometry. It is based on the
approximation of the original nonlinear problem by a switched Markov linear models which
in turn lead to hybrid model formulation or to piecewise linear approximations. Four
aspects are considered: 1. Approaches to handling hybrid systems models; 2. Fast and
slow decomposition for piecewise linear systems; 3. Estimation in the preselice of
impulsive inputs that can serve as either models for the switching behavior or the changes
in maneuvers; 4. Modeling, parameterization, and realization issues for hybrid systems.
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SECTION I

INTRODUCTION

The objective of this research was to develop nonlinear filtering and tracking
algorithms for systems subject to complex geometries and uncertainties. These attributes
characterize the air-to-air engagement scenario. The approach was based on the
approximation of the original nonlinear stochastic model with a piecewise linear model.
Then the resulting model was further approximated by a switched Markov linear model.
The result is a dynamic system of the form

X(t) = Afr(t)] X(t) + B[(r(t)] U(t) (la)

Y(t) = C[r(t)] X(t) + V(t) (1b)

where the Ote vector is X(t), the observation vector is Y(t), U(t) can serve as the control
vector when the control problem is considered, or can serve as the process noise model for
the filtering problem, V(t) is the observation noise vector. The noise processes are assumed
to be white and Gaussian. The process r(t) is called either as the form index, the switching
process, or the macro-state process, and is assumed to be a finite state Markov process
taking the values in (1,2,...,N). The approximation is via what is known as either switched
Markov models or hybrid systems. The linear system in such a case switches among the
forms (A[i],B[i],C[i]) according to the value of r(t), i.e., when the macro-state is equal t o
i.

In earlier reports the validity of the approximation has been analyzed as discussed
in reference 1, and its applications to nonlinear filtering have been investigated as provided
in References 2 and 3. This report addresses several aspects of the resulting approximate
model and general approaches to its estimation, realization, and control. The main report
is subdivided into four major sections. Section II addresses the general properties of hybrid
systems from the point of view of control and stabilization. Section III addresses fast and
slow decomposition of the original piecewise linear approximation with the view of
simplifying the resulting algorithms. Section IV addresses an alternative model for the
jumps representing the maneuvers and develops approximate nonlinear filtering algorithms
for these models. Section V discusses sev, issues resulting from the realization of such
systems as they affect sensitivity, robustnes, - _' identification. The body of each scction
will be relatively short, as the results are pro,.Jed in appropriate appendices.
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SECTION II

HYBRID SYSTEM MODELS

Since the approximation to the original nonlinear model is represented by the hybrid
model (1), a major part of the study dealt with control and stabilization properties of hybrid
systems. General properties of controllability and observability of such models are given
in Reference 4 and provided also in Appendix A. These properties carry over from the
linear time-invariant case and stress the simplification of the algorithms used for
controllability, observability, and stability. Usually, these system models switch among
several realization. An important issue to consider is the ability to represent such models-
by an average model. Such an average model may be suitable under certain condition, or
under cases where the switches may be fast. The use of such averaging methods can
simplify the resulting control and filtering algorithm. Several averaging procedures for the
stabilization of hybrid systems are reported in Reference 5 and provided in Appendix B.
Two properties of the average system are investigated in References 6 and 7, and are given
in Appendix C and D. The first considers the error that results from averaging and how
to determine the validity of the use of the average model The second considers the
minimality properties of the average systems that would allow the stabilization Of the
original system by using the average model. The main advantage for using average models
is that there is no need to identify the macro-state and the resulting algorithms are rather
simple. Of course, the average model can replace the original system only under restricted
conditions. The iast aspect of hybrid systems considered in this problem is concerned with
eigenvalue assignment for hybrid system models, which in this case deals with the Lyapunov
exponents. The result is given in Reference 8 and Appendix E. The largest Lyapunov
exponent determine the stability of such systems, and its assignment using control gains
determines the ability to stabilize such systems.

Other aspects of hybrid systems dealing with realization and its relationship to
implementation and filtering is provided in Section V.
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SECTION m

FAST AND SLOW DECOMPOSITION

The approximation used to model the nonlinear systems exhibited fast and slow
behavior both in the switching process and in each individual realization. Such fast ad slow
behavior can lead to simplification of the resulting algorithms due to two-time scales
decomposition and to reduced order of the filters-controllers via aggregation. The theory
of singular perturbation which has been developed to deal with such behavior has been
restricted to smooth systems. In our case the switches and the piecewise linear models lead
to difficulties that require an extension to the standard linear theory. This section treats
the singular perturbation theory fcr non-smooth systems with fast and slow modes. In
particular it extends the theory developed in Reference 9 for quantized systems to general
piecewise linear models. The piecewise linear models is considered in Reference 10 and
provided also in Appendix F. Usually sliding modes occur in such models in both the fast
and slow dynamics. Reference 11 (also given in Appendix G) discusses the conditions for
the existence of the sliding modes and how the algorithm can handle the :esulfing
complications. Two additional extensions of the theory are given in References 12 and 13,
which are also provided in Appendix H and I respectively. The first extends the theory to
the case of stochastic input as most of our models are subject to random inputs. The
second extends the quantized system to the vector quantization case. The quantization
problem is of interest in this case due to the fact that with the high order of the filter used
in the original filtering problem, it is appropriate to use only a fe'W quantization levels to
reduce the computational complexity of the problem. In earlier reports the quantization
aspect was covered by an approximate stochastic differential equation model with state
dependent noise.

4



SECTION IV

FILTERS FOR POISSON DRIVEN MODELS

This section considers an alternative approach to the modeling of the switching
jumps that affects the systems. In particular it considers a self-excited Poisson model as an
input to the system. These self-excited inputs may represent varying maneuvers and or
control actions that affects the target. It is well-known that the linear filter for such models
is not optimal. It is difficult to derive such a linear filter for the case where the average
of the input jumps is not zero. The study first considered several alternatives as suboptimal
nonlinear detection-estimation schemes to solve the problem. These are summarized in
References 14 and 15 and provided in Appendix J and K. The properties of the model and
.the derivation of the appropriate linear filters for such models are considered in References
16 and 17 and provided in Appendix L and M. Simulation results and the derivation of the
error properties of the resulting approximate filters are still being investigated.
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SECTION V

REALIZATION, ROBUSTNESS, AND SENSITIVITY

This section addresses several aspects of hybrid systems modeling with particular
emphasis to realization and robustness as they affect the accuracy and sensitivity of the
implementation used for the filter.

Work on optimal realizations of such systems progressed in two directions: earlier
results showi.ng the optimality of the balanced realizations (see Reference 18), in the
discrete time case have been extended to the continuous time case and is given in
Reference 19 and Appendix N. The results have also been extended to multi-mode bystems
(see Reference 20 and Appendix 0), and general time-varying systems as given in
Reference 21 and Appendix P. In these references applications to filtering have been
analyzed, and Reference 20 also addressed the optimal implementations of the suboptimal
nonlinear filters for the switched Markov models. Optimality conditions for non-
infinitesimal perturbations have been given as well. Conditions for optimality over finite
sets have been apolied to the parameterization of 3-D rotations in Reference 22 and
Appendix Q.

Realization problems for hybrid systems (reachability and observability) for
generalized systems have been solved. More specifically, results for N-periodic systems have
been reported in References 23 and 24 and are provided in Appendix R and S.

In addition to the realization point of view the sensitivity of analog algorithms were
investigated from a parameter sensitivity point of view. In particular, a discussion of optical
analog computing devices, for matrix computations was presented in Reference 25, and a
wider collection of devices were analyzed in Reference 26.
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SECTION VI

CONCLUSION

The research addressed several basic aspects of filtering, and control for nonlinear
and hybrid models. These models may be used to approximate 'the nonlinear environment
and other uncertainties in air-to-air engagement. Research is continuing on the integration
of these approaches and in the implementation algorithms that could lead to a filter tat is
applicable to a realistic system.
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ON THE CONTROLLABILITY AND OBSERVABILITY OF HYBRID SYSTV2{S 1

Jelel Ezzine and A. H. Haddad

School of Electrical Engineering
Georgia Institute of Technology
Atlanta, Georgia 30332-0250

ABSTRACT

This paper considers a special class of x(t) - A(r(t))x(t) + B(r(t))u(t) (1.1)
hybrid systems, whose state space is a cross-
product space of an Euclidean space and a finite- y(t) = C(r(t))x(t) (1.2)
state space. Such models may be used to rep-
resent systems subject to known abrupt parameter where x is the system state vector of dimension
variations, such as commutated networks. They n, u is the control input vector of dimen3ion p,
may also be used to approximate some types of y is the output vector of dimension m, and r(t)
time-varying systems. The paper investigates is the "form index" which is a deterministic
controllability, observability, and stability of scalar sequence taking values in the finite index
hybrid systems. In particular, it derives a set W{1, 2 ... , N).
necessary and sufficient algebraic condition, a
simple algebraic criterion, and a computationally This type of model can be used to represer t
simple algebraic sufficient test for controll- systems subject to known abrupt parameter
ability and observability. Moreover, it provides variations such as comutated networks or to
a simple sufficient stability condition, approximate some types of time-varying systems.

This is done by imposing a "deterministic"
1. Introduction and Problem Formulation switching rule on the time behavior of the form

index. However, in order to model unknown abrupt
This paper examines the controllability, phen.:ena such as component and interconnection

observability and related issues of a special failures the form index can be modeled, for
class of hybrid systems [1, 2]. The state space example, as a finite-state Markov chain.
of a hybrid system is a cross-product space of an
euclidien space and a finite-state space. The latter problem has received considerable
Basically, hybrid systems are linear piece-wise attention within the control community, but many
constant time-varying systems, which are swit- important generalizations remain to he worked
ching among a finite number of constant reali- out. Chizeck et al [1] denote such a control
zations. Systems of this type can be used to problem the Jump Linear Quadratic (JLQ) problem
model synchronously switched linear systems [?], since they view it as an extention of the
networks with periodically varying switches [4], standard Linear Quadratic (LQ) problem. However,
and systems subject to failures (1]. Even though very little attention was given to the 'eter-
hybrid systems are time-varying they lend ministic version of the problem, even thou .h it
themselves to a precise and complete qualitative shares many features with the JLQ problem. "hisand quantitative analysis. Among such results we paper is concerned with the deterministic ve- ion
mention the possibility to explicitly compute of the problem.
their transition matrices, to derive and state
necessary and sufficient conditions for their Let SM denotes any sequence of length M f
stability, and the possibility to derive an the values taken by r(t), and let 6ti denotes t Lealgebraic controllability/observability tests time interval during which r(t) = i. Throughoi
similar to the usual one for linear time-in- the paper the following assumption is made, tha
variant systems. This is possible due to the SN contains all the values that r(t) takes. It.
many features hybrid systems share with time- this case we define
invariant systems. Moreover, because they are
tiRevarying. they offer many useful features due Nto their variable structure property. In other T a E 6ti  (2)
"Orda, bybrid systems are a mixture of time- i-I
invariant systems with which they share the
algebraic and geomatric structures, and time- as the period of the system. If in addition the
varying systems with which they share their sequence in every SN is the same the system isvariabke structure property that will be useful called a periodic hybrid system. It will be
la their control and stabilization. obvious that the assumption that M9N in SM will

not affect the results. Hence, the assumption
The hybrid systems considered in this paper that M - N will be made to simplify the nota-a"w "gumad to have the form tions.

This research is supported by the U.S. Air Force under contract
lS'3S-I8-C-027 3 (with the Arma mpt Laboratory) and grant AFOSR-87-0308.
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The system takes the realization important to note that the above theorem is
Ei(AiBi.Ci) when r(t) - i, with ten. This stated not only for periodic hybrid systems but
realization is called the ith form. I it applies to the more genaral hybrid systems as

defined above too.

The following is an outline of the paper.

Section 2 discusses the stability of hybrid 3. Observability
systems where a simple sufficient stability
criterion is derived. The observability and Since hybrid systems are a special class of
controllability of periodic hybrid systems are time-varying systems they display interesting
treated ir Sections 3 and 4, respectively, properties relative to controllability and
Algebraic-oservability and controllability tests observability. It would be appropriate to define
are obtained. Section 5 extends the results of the latter properties while keeping in mind the
Sections 3 and 4 to general hybrid systems. In fact that these systems are variable structure
section 6 the stabilizability of hybrid systems systems. We start with the observability
is addressed and a simple application is used for criterion since it is simpler to prove. Conse-
illustration purposes. Section 7 concludes the quently, the dual coitrollability criterion is
paper. stated by appealing to the duality principle.

2. Stability Definition

Even though hybrid systems are time-varying A periodic hybrid system is said to be
systems it is possible to obtain necessary and observable if there exists some finite tf Z tO+T
sufficient asymptotic stability conditions. We such that the initial state x(t0 ) of the unforced
start by studying the stability of periodic system can be determined from the knowledge of
hybrid systems. To this end we recall a theorem y(t) on [to,tf].
by Willems (5] that provides a necessary and
sufficient conditions under which piece-wise Using the above definition it is possible to
constant periodic systems are uniformly asympto- state an algebraic necessary and sufficient
tically stable. Basically, the theorem states observability criterion very similar to the usual
that for the system to be asymptotically stable algebraic test. Moreover this algebraic test is
its transition matrix over one period of time has expressed as a function of the observability
to be a contraction. This theorem can be matrices of the different forms. This condition
obviously modified to derive a similar one for is a generalization of the well known algebraic
hybrid systems which are not necessarily period- observability test.
ic. However the resulting theorem will be
difficult to use, since one has to ccmpute Theorem 2
(N-1)NI products of exponential matrices and
check their eigenvalues. A periodic N-form hybrid system is observable

if and only if the observability
In order to derive simpler conditions to test matrix

for the stability of such systems, a different
norm is defined, namely the logarithmic norm [6,
7]. The result is a simpler condition that is 01
sufficient only. O2Exp(Al(6tl))

Definition (6)

The logarithmic norm of a matrix A associated ONExp(ANl(atNI))... Exp(AI(6t1 ))
with the matrix norm II is defined by

u(A) - lim (I + hAl - 1)/h (3) has full rank, where Oi is the observability
1 O+  matrix of the ith form, icN.

The norm satisfies the following inequality Proof

lExp(At)l I Exp(u(A)t). (4) Let us assume that the system is in its ith
form at time tc[ti.ti+J then the output is given

This norm is now used to derive the stability by the following expression
condition.

1

Theorem 1 y(t) - CiExp(Ai(t-ti)) 5 Exp(Aj(6tj))x(t). (7)
J-i-i

For the null solution 3f the hybrid system
(1) to be uniformly asymptotically stable, it is We now take n-i derivatives of y(t) in (7) fn4
sufficient to have afrrnge them n a column vector Yi(t) - [y yil)

y (2...y n-J 1 which may be expressed as
E u(Ai)pi < 0, Pi I 6ti/T - (ti-tiil)/T, icn . (5)
i 1

Yi(t) = OiExp(Ai(t-ti)) H Exp(Aj(6tj))x(t,) (8)
The proof is a simple application of the J-i-I

logarithmic norm to Willems' theorem. It is

42



where 0 is the observability matrix of the ith Theorem 4
form. If the same procedure is repeated for all
icn and combined together the following equation A periodic hybrid system is uniformly
results completely controllable if and only if it is

completely controllable.

Y1  OiExp(Al(t-t0)) Proof
Y2( O2 ExP(A2 (t-tl))F-xp(A,6t,)

•IIIf the periodic system is completely con-
.1 - x(t0 ). (9) trollable, there must exist a finite time sZ T

such that W(0,s) k cI > 0. Therefore the result
YN, ONExp(AN(t-tN-)).. .Exp(A1 6tl ) is proved by using Lema 1 from Silverman et al

[10] and Remark (2.18) in [9].

From this point on the proof is identical to a Having used the usual test we are ready to
standard textbook [8; pp. 354]. present an algebraic controllability test similar

to the one used in linear time-invariant systems.
4. Controllability The following criterion applies for periodic

hybrid systems. A similar criterion for general

At this point the dual algebraic controll- hybrid systems will be introduced in a later
ability test is introduced. First a dual section.
definition for controllability is proposed and
used along with the algebraic observability test Theorem 5
to prove the result via the duality principle.

A periodic hybrid system of N forms is
Definition controllable if and only if the controllability

matrix
A hybrid system is said to be state-controll-

able if for any to each state x(t0 ) can be (CN, Exp(AN(6tN))CN1.....
transferred to any final state xf after one
period. Thus there exists a tf, t0+T 5 tf <- Exp(AN(6tN_1))... Exp(A2 (6t2 ))CI] (11)
such that x(tf) - xf.

has full rank, where Ci is the usual controll-
Before presenting the algebraic controll- ability matrix of the ith form, icN.

ability criterion, the dual to the observability
criterion given above, the usual controllability Proof
test for time-varying systems is used. This is
done in order to display certain interesting Using the principle of duality and the
properties of hybrid systems. If we compute the algebraic observability theorem presented above
controllability gram-ian and use the fact that proves the theorem.
the system is piece-wise constant we obtain the
following theorem. For computational purposes, it is better to

rewrite the above controllability matrix as
Theorem 3 follows

A periodic hybrid system of N forms is [CN, Exp(AN(6tN)){CN_, .... {C4,
controllable if and only if

Exp(A 3 (6t3))(C2. Exp(A2 (6t2 ))C1 }]. (12)
N ti

W(t0 ,t0+T) - E f *i(t.t0)BiBjtj(t,t,)dt (10) This way one does not have to compute all of the
i-l ti_ 1  matrices needed to express (11) and compute its

rank. That is the rank is checked sequentially
has full rank. and (12) is augmented appropriately until full

rank is achieved. If full rank can not be
Corollary achieved throughout this sequential test then the

system is not controllable. The same observation
A periodic hybrid system is completely applies to the observability criterion.

controllable if and only if it is controllable.
In addition to the above algebraic criteria

Proof for controllability and observability, two more
tests are introduced. The first test is a simple

See Remark (2.18) in [9], then use the and geometrically and computationally attractive
Theorem 3. necessary algebraic test. The second one is a

simple algebraic sufficient condition.
Defor proceeding any further, a necessary and

sufficient condition for a periodic hybrid system Theorem 6
to be uniformly completely controllable is
stated. This result will be of importance when A necessary algebraic condition for a hybrid
stabilizability of such systems is in question. system to be controllable is

rank(Cl, C2 , .... Cq] I rank C - n. (13)
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Where C1  is the controllability matrix for the Proof
ith form, iclN. Since C has full rank then dd' > 0, i.e. it

Proof is positive definite. Also

We write the state of the system at time a, C(SlS 2 ,. .. N)'(Sl,s2 .... , N )
for x(tO) - 0: N

a E *(sk,to)BkBiO'(sk-t o) (18)
x(s) - $ *(s,-)B(t)d.. (14) k-l

to
where sktttk,tk-1l. Then we have

We now use the fact that the system is piece-wise
constant and the linearity property of the tN
integral operator to obtain for s - tN W(t0,tN) - I *(s,to)B(s)B'(s)O(s,to)ds

to
X(tN) - Fxp(AN6tN)...Exp(A26t2 )

N sktO
t1  Z (± $ *(s,t,)B(s)B'(s)O(s,to)ds)
f Exp(Al(t1 -i))Blu(%)d% +... k-i Sk
to- t- G'(sl,s 2%....sN~t*)C'(sl,s2 .... ,sN,to)

tN-1
+ Exp(AN5tN) f Exp(AN_I(tN.-T))BN-lU(1)d% + o(o), (19)

tN-2 for c sufficiently small. If we assume that C
tN has full rank then for a small enough (19) is

+ I Exp(AN(tN-T))BNu(x)di. (15) positive definite. But then (19) implies that
tN-1 W(tn,to) ) 0 which proves the theorem.

After expanding the exponential matrices inside 5. Aperiodic Hybrid Systems
every integral, it is found that x(tN) is an
element of the column range space of the control- In this section we generalize the above
lability matrix C given in Theorem 5. Moreover, results stated for period'c hybrid systems to
it is easy to see that more general aperiodic hybrid systems. Neverthe-

less, many of these results apply to general
rank C S rank C S n (16) hybrid systems without modification. Therefore

we will state only the most important results.
an inequality that dictates that full rankness of
C is a necessary condition for our system to be Theorem 8
controllable.

A hybrid system is controllable if and only
The above proof gives an alternate way to if Theorem 5 holds for all possible N1 permuta-

prove the necessity part in Theorem 5. It is tions of the form-index set N.
also interesting to note that this latter test is
independent of the Zi's order. This order Theorem 9
independence would have been very beneficial,
however it does not hold in the sufficiency part A hybrid system is controllable if Theorem 7
of the proof. holds for all possible NI permutations of the

index-set N.
Now we state a theorem that gives a simple

sufficient algebraic test. With the above simple It is obvious that Theorem 6 applies for
necessary test this condition will provide an general hybrid systems too. Moreover, Theorem 6
efficient algebraic method to test for the may also be sufficient under very general
controllability/observability of hybrid systems. conditions. A heuristic argument can be given as
This theorem is adapted from a theorem given in follows: Since any matrix exponential is a
ill]. perturbation of the identity matrix it follows

that multiplying any matrix with matrix exponen-
Theorem 7 tials will not change its range space dramatical-

ly. That is if, for example, C1  and C2 have
A sufficient condition for a periodic hybrid algebraic complementery range spaces (i.e,

system to be controllable is range(Cl) is perpendicular to range(C 2 )) then
range(Exp(AT)Cl) will almost always remain an

rank[BN, Exp(AN(etN))BN I, .... algebraic complement but not necessarily perpen-
dicular to range(C2 ). As a matter of fact,

Exp(AN(8tNI))... Exp(A2 (6t2 ))Bl] Mariton [2] states that he has proved that
Theorem 6 is also a sufficient condition.

Irank Cin. (17)
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6. Stabilizability achievable. Consequently, (21) can be always
obtained via state feedback since every form is

This section presents some results concerning observable. It is important to note that this
the control and stabilization of hybrid systems. design procedure applies to both periodic and
These results use standard techniques to control aperiodic hybrid systems. It should be noted
and stabilize hybrid systems. that the minimality condition for every form is

not necessary to achieve such a design.
Ikeda et al (12] looked at the relation

between controllability properties of the system 7. Conclusion
and various degrees of stability of the closed
loop system resulting from linear state variable This paper considered a special class of
feedback. Their results are as follows: For any linear piece-wise constant time-varying systems.
initial time to, and any continuous and monotoni- These systems are called hybrid systems because
cally nondecreasing function 6(.,t 0 ) such that the set of linear time-invariant systems among
6(t0 ,t0 )=0, the transition matrix $(.,.) of the which the systems are switching is finite. Their
closed loop system can be made to satisfy state space thus contains both continuous and

discrete components.

IW t,t )l S a(t )Exp{-6(t,t 
)} for all t~to ,

Since hybrid systems share several features
if and only if the system is completely controll- with linear time-invariant systems it was
able. Furthermore, in case of a bounded system, possible to derive the following results: A
for any m S 0, a bounded feedback matrix can be necessary and sufficient stability condition and
found such that the transition matrix of the a simple sufficient criterion. Algebraic
closed loop system is made to satisfy necessary and sufficient controllability-

observability tests similar to the usual time-
Ic(t,,t,)I S aExp{-m(t2 -tl)} for all t., t2 at1 , invariant tests. An interesting necessary

controllability-observability condition which may
if and only if the system is uniformly completely also be sufficient, along with a simple suffi-
controllable. Thus, their results can be cient condition.
regarded, in some sense, as extensions of the
well known results of closed loop pole assignment The necessary controllability/observability
for time-invariant systems. condition is a flat blcck matrix composed from

the controllability/observability matrices of
Therefore there is a high degree of flexibi- every form which makes it independent of the

lity in the stabilization of hybrid systems if switching order. This order independence along
they are either completely controllable or with the fact that the condition is "almost"
uniformly completely controllable. sufficient make it a very useful test. Therefore

identifying the class of hybrid systems for which
As an illustration of the above result, a this condition is necessary and sufficient would

procedure is proposed to stabilize a periodic be an interesting problem.
hybrid system via state feedback when all of the
forms are minimal. This design procedure allows Additional work is needed concerning stabil-
the designer to impose or choose an upper bound ity theory of this class of systems. The
on the norm of the transition matrix of the variable structure property seems to be a
hybrid system to be stabilized. Thus the norm of promising feature in this direction. In addition
the transition matrix for hybrid systems plays a if one thinks of every system Ei-(Ai,Bi,Ci) with
role similar to the maximum overshoot and time icN as an operator acting on the state x during
constants in linear time-invariant systems. 6ti, and these operators are applied in a

successive manner, then this process can be
In order to impose an upper bound on the norm viewed as an iterative process [13]. Viewing a

of the transition matrix a known stability hybrid system as an iterative process sheds some
criterion [5] is used: The null solution of (1) light on some complicated issues such as the
is uniformly asymptotically stable if and only if stability of such systems.
there exists two positive constant c1 and c2 \
such that Finally adapting the results of this paper to

hybrid systems where the switching is a stochas-
I0(t,to)l S clExp(-c 2 (t-to)) (20) tic process such as a Markov chain may be useful.

or all t Z 0. Therefore the use of Theorem 1 ACKNOWEDG(ENT
leads to the following design criterion

We wish to thank Professor Erik I. Verriest
E M(Ai)6ti S kI - k2T (21) for helpful discussions.
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ABSTRACT many useful features due to their variable
structure property.

This paper discusses some practical methods of
analysis and control of two-form hybrid systems. The hybrid systems under consideration are
These systems are called hybrid because their state assumed to have the form
apace contains both continuous and discrete
components. These are systems that switch among a i(t) - A(r(t))x(t) + B(r(t))u(t) (1.1)
finite number of linear time-invariant realiza-
tions. Such models may be used to represent y(t) - C(r(t))x(t) (1.2)
systems subject to known abrupt parameter varia-
tions such as comatated networks or to approximate where x is the system state vector of dimension n,
%am types of time-varying systems. This paper u is the control input vector of dimension p, y is
restricts the analysis to systems that switch among the output vector of dimension a. and r(t) is the
only two possible linear models. "form index" which is a deterministic scalar

sequence taking values in the finite index set
1. Introduction and Problem Formulation N-(l, 2, .... N).

This paper discusses some practical methods of Such model may be used to represent systems
analysis and control of two-form hybrid systems. subject to known abrupt parameter variations such
Hybrid systems denote a special class of piece-wise as coemutated networks or to approximate some types
constant time-varying systems. The set of constant of tim-varying systems (7]. The latter can be
realizations among which the model is switching is done by imposing a "deterministic" switching rule
finite and in this paper is restricted to two. on the time behavior of the form index. However, to
Such systems can be used to model synchronously model unknown abrupt phenomena such as component
switcneu linear systems (1I, networks with period- and interconnection failures the form index can be
ically varying switches (2], and systems subject to modeled, for example, as a finite-state Karkov
failures (31. In particular we examine the chain (FSMC) [3].
stabilization and related issues of two-form hybrid
systems via a special averaging technique. The latter problem has received considerable
Averaging theory may be used in either determinis- attention within the control community but much
tic or probabilistic contexts. In the probabilis- work still remains to be done. Chizeck et al (3]
tic case averaging is introduced in a natural way denotes the optimal control problem of such systems
by taking expected values. In the deterministic the Jump Linear Quadratic (JLQ) problem since they
case, however, averaging is introduced via perturb- view it as an extntion of the standard Linear
ation techniques. Averaging methods have received Quadratic (LQ) problem. However, very little
considerable attention. Brockett and Wood (2] used attention was given to the stabilization and
a deterministic averaging technique to analyse and control of the deterministic version of the
stabilize a class of bilinear systems which are problem, even though it shares many features with
difficult to analyse or control otherwise. Geman the JLQ problem. This paper is concerned with the
(4] used probabilistic averaging techniques to latter problem.
study the stability of random differential equa-
tions. His main interest was to explore the Let SM denotes any sequence of length K of the
relation between asymptotic stability in the values taken by r(t), and let 6ti denotes the time
average equation, and asymptotic stability in the interval during which r(t) - i. Throughout the
random equation: Specifically, when does the first paper the following assumption is made, that SN
imply the second? Kosut et al (51 applied the contains all the values that r(t) takes. In this
theory of averaging to the analysis of the stabil- case we define
ity of adaptive systems.

K
Iven though hybrid systems are tim-varying T a 2 6ti  (2)

they lend themselves to a precise and complete is1
qualitative and quantitative analysis. Among such
results we mention the possibility to explicitly as the period of the system. If in addition the
emiputa their transition matrices, to derive and sequence in every SN is the sae the system is

state necessary and sufficient conditions for their called a periodic hybrid system. It will be
stability (6], and most interestingly the poss- obvious that making the assumption that MN on SH
ibility to derive algebraic controllability and will not affect the results. The assumption that
observability tests similar to the usual ones fomd N - N simplifies the notations. Let the ith form
In the theory of linear tim-invariant systems (61. denote the realization Zia(Ai,DCi) associated
This is possible due to the many features hybrid with the ith form index (i.e., r(t) * i), with ien.
systems share with tim-invariant systems. In this paper N - 2, so that we are concerned with
Moreover. because they are timm-varying, they offer Flip-Flop (72) systems as a special class of hybi--d

T T work is supported by the U.S. Air

Forc mder grant A7081-87-0308.
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systems. The F2-system -switch "back and forth" yield Ixp(C) where C is as in (4). Now it is
between two time-invariant systems (two forms), E1. desired to have an expression for C that is
and Z2. of identical dimensions. The system spends independent of order, to agree with the order
Ti time-ur .. at Zi . i - 1, 2. The only condition independence introduced in the definition of F2-
imposed on the switching is that the system can not system, then we must compute
spend more than 2Ti at Z. That is, no order is
imposed on the switching between the two forms. 1nj(Exp(A)Exp(B)+Exp(B)Exp(A))

The following is an outline of the paper. a A+B+(1/12)[[AB],B]+(/12)([B,A],A]
Section 2 starts by introducing the averaging
technique based on a Lie algebraic formulation. It - A+B+(1/12)[(A,B],B-A1. (6)
also adresses the perturbations induced by the
averaging procedure, and offers, where possible, an Therefore, we obtain a series of approximations
alternative to averaging. Finally it discusses the for 72-systems. If the F2-systam realization is El
controllability of the average system. The - (Al,b1 ) for T1 , and E2 = (A2 .b2 ) for T2 , then the
stability and stabilization issues of hybrid first approximation is
systems are treated in section 3. Section 4
concludes the paper and points to additional open E - (A 1 +(l-a)A 2 , abl+(l--a)b 2 ), (7)
problem. with

a I Tl/(Tl + T2),
2. The Averatint Technique

and the second approximation is
In this section we introduce a practical

averaging technique which will be helpful in the Z {([aAl+(l-a)A 2+(l/12)a(l-a)[Al,A 2 ],
analysis and control of two-form hybrid systems.
It will be obvious from the following treatment (l-a)A2 -aA1 ], abl+(l-a)b2 ). (8)
that the proposed averaging method applies to
multi-form hybrid systems as well. The main tools Some coments about these two approximate
in simplifying the analysis and synthesis of expressions are in order. The first order app-
stabilizing controls for such systems will be some roximation can be interpreted at least in two
basic ideas from linear systems theory combined different ways. The first interp:atation is a
with tools from Lie algebras, linear algebra, and probabilistic one; it says that the average system
stability theory of ordinary differential equa- can be viewed as the probabilistic average of the
tions. hybrid system with P(E=Ei) - a and P(E=E2 ) - 1-a.

This is consistent with the frequency interpreta-
The averaging methodology to be used in this tion idea especially when we are interested in long

paper is based on a result from Lie algebras known time-rango behavior of the system. The second
as the Baker-Campbeli-Hausdorff Formula 12): Given interpretation comes from the theory of variable
two real matrices A and B there is no guarantee structure systems (VSS) and the Filippov's con-
that there exists a real matrix C such that tinuation technique. The latter technique was

introduced to study the behavior of the system in
Exp(A)Exp(B) - Exp(C). (3) chattering mode. The above first order approxima-

tion is nothing but a Filippov's average system.
This will be the case, however, if IAI+IBI S ln(2) Therefore, a hybrid system can be viewed as a VSS
(8], and then C will be given by a convergent system in chattering mode where the switching
infinite expression manifolds 're solution orbits of the average

system.
C = A + B + (I/12)[[A,B],B] +

It was shown in (2], via an example, that in
(I/12)[[B,Aj,A] + ... (4) some special cases the second ..rrection term is

more important then the first, which, in fact,
where the symbol [A,BJ I AB-BA is the commutator might vanish. Thus, the usefulness of the second
product. This expression is the Baker-Campbell- approximation. However, in (2] there was no
Hausdorff formula (BCH). attempt to analyse the errors introduced by the BCH

formula and the averaging method. Obviously, there
Similar expressions like the BCH formula are are two very important issues in using such a

used in a large number of useful approximations in formula and averages derived from it. The first
physics (9) and switched electrical networks (2]. one is the error introduced by only using few terms
In this section we show how the BCH formula and in the BCH expression while computing the average
related expressions can be used to analyse and matrix. The second one is the difference between
stabilize F2-systems and hybrid system in general. the actual system, in our case the F2-system, or in

(2) the bilinear system, and the average system
The concept is similar to the one used in (21 used to reflect the average behavior of the system

to stabilize bilinear systems. In our case we are under consideration. Both of these issues have to
interested in the stabilization of 72-systems whose be addressed because of their paramount importance,
A-mtrix satisfies especially the difference between the actual system

and its average which is a function of the error
introduced by truncating the BCH formula expres-

A1 for 0 S t <T 1  sion. Since the latter problem require a lengthy
A(t) - (5) discussion only a summary of the results is given

(2 for T1 S t cT. in this paper.

end it is desired to approximate the expression In what follows we present som results related
lxp(AlTI)Rxp(A2 (T-Tl). The BCH formula is used to to the accuracy of the usage of a truncated BCH
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formula. Usin; the BCR formula, one can obtain an Moreover, the G matrix is given by
approximation C of C, to any desired order.
Consequently, C can be written as C - C+Z, where C s(G) - {(B1 ,-B 2 ]1 ' a tn)S(A1-A2 ), (18)
is the unknown error due to the approximation.
Therefore, the induced error in computing Exp(C) by where s(.) is the stacking operator.
using the approximate matrix C is

Proof
E I Kxp(CT)-Exp(CT). (9) Starting with the forms Ei, i-l, 2, the ith

model is given by

The first order approximation 
of E can be expressed

in terms of the solution of a linear time-invariant i(t) - Aix + Biu. (19)
matrix differential equation:

If we define A A Ai-6Ai the above system can be
Proposition 1 [101 written as follows
Let El denote the first order approximation in

t to E, then E1  satisfies the following matrix i(t) - Ax + dAix + Biu, (20)
differential equation

and the next step is to compute a gain matrix Ki
t(t) a ft + cr-Pxp(Ct), Y(O) - 0. (10) such that

where C 1 4., and c is a positive scalar. 6Aix + Biu - 6Aix - BiKix -

In order to compute upper bounds for El and E (6Ai - BiKi)x - 0 for all x. (21)
the following results may be used.

This is equivalent to
Proposition 2
Assume that IExp(Ct)I s H(t)Fxp(O(t)t), with BiKi - 6Ai , (22)

B(t) a scalar function, then
which is nothing but an algebraic equation for the

I1E1 1 I (ICI/21C )M(t)- unknown •i" Therefore, for •i to exist one needs
the well known condition

Rxp(O(t)t}(Exp(2 ICt)-1). (11)
rank[li,6Ai] rank[Bi], i-I, 2 (23)

The use of results in [101, and the assumption that

M(t) is monotonic yields which is equivalent to the existence of some matrix

1EE S tlCIM
2 (t)Exp((O(t) + M(t)IC)t). (12) K, such that

IA1 - liKi, i-1, 2. (24)

Sometimes it is possible to avoid the computa-

tion of A-"average". That is, under certain Substructing the first equation from the second
conditions, it is possible, via state feedback, to yields
make the F2-system time-invariant in A. That is
given El and E2, and the appropriate conditions A1 - A2 - BlK 1 - B2 K2  (25)
satisfied by the given forms, one can compute a
feedback gain matrix which can be written as follows

K - [Kl,K 2] (13) [Al - A2] - [Bl,-B 2J(KjK]' (26)

which will make the A-matrices of both forms equal which is itself an algebralt equation with the Xi ,
and cosequently render the A-matrix of the hybrid 1-1,2, as unknown and the condition given in the
system, upon closing the loop via Ki for Ei, theorem is the one needed for the existence of both
constant. Moreover, this constant A matrix is gains. Equation (18) is nothing but a compact way
given by the following expression to write such equations. As a matter of fact it is

very useful when numerical techniques are used to
A - A - BIlK1 - A2 - B2K2 . (14) solve the problem.

In this section necessary and sufficient Corollary
conditions are derived for the existence of Z and a If Range(A 1-A2 ,1l-5 2 1 - Range(Bl-9 2 ], then
compact computation recipe based on the ronecker-
product and the generelized-inverse techniques is I 1 11 - Z2, (27)
given.

and the lain matrix is given by:
Theorem 1
Given the r2-system s(K) - ([ 1-52 1 ]t )s(Al-A2 ). (28)

A(t) = Aix+ Diu, I a 1,2. (15) Proo
When 1 - 12 - K is needed the proof of the

much that above theorem is changed accordingly to yield the
results stated in the theorem.

Range[Al-A 2 1.4 21 - lange(31-. 2 1. (16)
We sow return to the average system. One of

tn, there exists a minimum-norm G a ([1.12J such the key'assmptions made to design the regulator
that via averaging is the controllability of the average

Al - DIE, - A2 " B212. (17) system. This assumption is not unreasonable since
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the controllability property of linear tim- t
invariant systems is generic. However, one can S Ixt)I Slx(t.)l Exp f w[A(t')]dt'. (33)
construct hybrid system such that their Averages t
are not controllable (11]. In (11] a sufficient
condition that identifies a class of hybrid system Basically the theorem states that the rate of

for which the hybrid system's controllability change of the norm of the state vector z(t) is

guarantees the controllability of the average bounded by p(A(t)) and to insure stability this

system was given. The result is stated in the bound must be negative.

following theorem.
Theorem 3

Theorem 2 For the null solution of the hybrid system (1)

The average system of a hybrid system is to be uniformly asymptotically stable, it is

controllable if sufficient to have

a. Rank [C1 , C2 .... C I - n. u(Ai)pi < 0, Pi a (ti-ti-1)/T, iCN. (34)

b. All forms are simu~taneou,ly diagonalis- i

able.
Before giving the proof of the theorem we

3. Stability introduce a different way to represent hybrid
systems (1)-(2). This new formulation has the

Even though Hybrid system are time-varying advantage of simplifying certain proofs. This new

system it is possible to obtain necessary and representation is as follows

sufficient asymptotic stability conditions (6].
However, the latter condition is computationally N N

time consuming and a simple sufficient asymptotic i(t) - ( E vi(t)Ailx(t) + ( E vi(t)Bi)u(t) (35)

stability condition was presented to alleviate the i-I i-1

computational burden. In this section the same N

sufficient condition is rederived using other y(t) a ( E vi(t)Ci}x(t) (36)
means, which may be generalited. i-1

In order to rederive this sufficient condition where v (t) - 1 when the system is governed by the

a brief introduction to the notion of lotarithmic ith realization Ei , and vi(t) - 0 otherwise. The

norm is given. The logarithmic norm (also known as vi(t) function is called the ith indicator func-

the logarithmic derivative, the measure of a tion. It is evident from the definition of hybrid

matrix) was introduced in 1958 separately by systems that at any point in time only one of the N

Dahlquist (12] and Lozinskij (13] as a tool to indicator functions is one. Now we prove the

study the growth of solutions to ordinary differen- theorem.

tial equations and the errot growth in discretiza-
tion methods for their approximate solution. It is Proof

formally defined as follows: Using the above representation the homogeneous
part of a hybrid system can be written as

Definition
The logarithmic norm associated with the matrix N

norm 1.1 is defined by i(t) - ( E vi(t)Ai)x(t) (37)

w(A) - lim (II + hAl - 1)/h. (29)
h"O

+  
Using Theorem 27 in (14] one can write

t
The explicit expression for the logarithmic norm Ix(t)l S Ix(t 0 )IExp( I w(A(s))ds)

associated with the Euclidian norm is to
t N

u(A) - max(u : w c A((A+A )/2)}. (30) - Ix(t.)E Exp( I m[ E vi(s)Ailds } (38)
to imi

Then the following inequality is true:
Using Theorem 5(e, d) in [14] yields

*Exp(At)l S Kxp(w(A)t). (31)

N t
Now we are ready to apply the logarithmic norm Ix(t)l S Ix(t,)I Exp( E I vi(s)u[Ai]ds}

to derive a slzple sufficient condition to test for il1 to

the stability of hybrid sysL4ia. N t

- Ix(t.)l Kxp( E [Ai] I vi(s)ds)
Theorem [141 i-l to

Let t - A(t) be a regulated function from

[0, -) to C"
m

. Then the solution of N t

- lx(t.)l E xp( t u(Ai](l/t-te) I vi(t)ds)(t-to))
i(t) - A(t)z(t) (32) i=l to

satisfies the inequalities N

- lx(t.)l Ezp(( E pi[Ai])(t-t,)) (39)
t i-l

lx(t.)l {zp(-$ u[-A(t')]dt')

to with
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t ExM2le

Pia (l/(t-t.)) 
$ vi(s)ds. (40) Given the following F2-system E(a)

to il(t) - -axl + N2 + u, (44)

This completes the proof after taking the limits. x2(t) - (1 - a~'2 + au, (45)

This simple sufficient condition states that
for a hybrid system to be uniformly asymototically where a i T1 /T, El - EM() and E2 - E(0). The above
stable the weighted average of the logarithmic system is the exact average system. The transfer-
norms of each realization has to be negative, function of the average system is given by
Therefdre, this sufficient condition allows for
unstable forms. That is, as long as the stable H(s) - (a + (2a -l))/(s + a)(s -I + a). (46)
forms dominate, the overall system is asymptotical-
ly stable. This domination can occur in two ways: For a > 0.5. (46) is a minimum-phase transfer
either the stable forms are strongly stable (i.e., function, otherwise it is not. Using usual
highly negative logarithmic norms), or the time techniques the minimum-phase case can be stabilized
span of the stable forms is large relative to the with an output feedback gain K. For a-.8 and K-5
time span of the unstable ones or a combination of the closed loop average system's poles are sl--l.13
the latter two reasons. and s2-10.1. However, the logarithmic norm test

applied to the error dynamics gives an upper bound
The above interpretation provides a mathemati- equal to zero, implying that the error dynamics are

cal rationale to the observations made by Chizeck not unstable. A graph of the (aK)-stabilizability
ot al [3] while analyzing uh systems. domain and two phase-space simulations are given in

Fig. 1 and Fig. 2. respectively, to illustrate the
4. Stabilization stability results and the effect of the feedback

gain K on the dynamics of the closed loop system.
This section presents some results concerning

the control and stab.liza ion of hybrid systems. 5. Conclusion
These results use standard techniques to con-
trol/stabilize hybrid systems. An averaging method based on the Baker-Camp-

bell-Hausdorff formula was introduced for computing
Definition the average of a hybrid system. In order to be
A hybrid system is stabilizable if there exists able to find how well the average system is

a constant feedback gain matrix K such that the approximating the actual system upper bounds of the
closed loop hybrid system is asymptotically stable, error induced by averaging are given. Furthermore,

it was shown that under certain conditions one can
Theorem 4 avoid the averaging of the A-matrix and therefore
A hybrid system is stabilizable if minimize the errors introduced by the averaging

procedure. This is done via state feedback by
a. The average iystem is stabilizable, making the A-matrix constant.
b. The following inequality is satisfied

The controllability property of the average
N system is a key assumption in the stabilization
Z u[6A i - 6BiKjpi < 0, (41) procedure given in the paper. For that reason a
i-I sufficient condition that identifies a class of

hybrid systems for which the average is controll-
where K is a stabilizing gain matrix of the average able was given. Therefore, the class of hybrid
system and 6Zi 1 (6Ai, 6Bi ) is the difference between systems with a controllable average is a research
the ith realization and the average system. topic in need of further investigation.

Proof The stability of hybrid systems is still far
Given a hybrid system with a stabilizable from being solved. This is mainly due to the fact

average then there exists at least one constant that hybrid systems are time-varying systems. In
gain matrix K such that the average closed loop the paper a sufficient stability condition was
matrix (A, ') is Hurwitz. Therefore, xaverage(t) derived. This condition is based on the logarith-
is asymptotically stable. But the actual system mic norm concept. One important point co be inves-
response is composed of two components, the average tigated about this stability condition is how
system component and the error component. That is conservative it is? The variable structure

property seems to be a promising feature in this
x(t) - Zavrage(t) + e(t) (42) direction. Furthermore if one thinks of every

system Zi-(Aii ,Ci) vith ic as an operator acting
where the error dynamics are on the state ; during dti, and these operators are

applied in a successive manner, then this process
e(t) u Z vi(t)[&Ai-6BiKje. (43) can be viewed U an iterative process (15].

Viewing a hybrid system as an iterative process
sheds so light on som complicated issues such as

Condition b is a sufficient requirent for e(t) to the stability of such systems.
be asymptotically stable which proves the theorem.

Finally adapting the results of this paper to
The following example is ivm to illustrate hybrid systems where the switching is a stochastic

the results. process such as a Markov chain can be easely done.
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ABSTRACT (2,9] is considered further. In [2] there was no
attempt to analyze the errors introduced by the BCH

This paper analyzes the errors introduced by the formula and the averaging method. However, there are
averaging of hybrid systems. These systems involve two very important issues in using such a formula and
linear systems which can take a numbsr of different averages derived from it as mentioned in 9). The
realizations based on the state of an underlying finite first is the error introduced by truncating the BCH
state process. The averaging technique (based on a expression while computing the average matrix. The
formula from Lie algebras known as the Baker-Campbell- second is the difference between the actual system, in
Hausdorff (BCH) formula) provides a single system [9] the F2-system, or in (21 the bilinear system, and
matrix as an approximation to the hybrid system. The the average system used to approximate the average
two errors discussed are: a) The error induced by the behavior of the system under consideration. This paper
truncation of the BCH series expansion, and b) The addresses both issues by providing bounds on the
error between the actual hybrid system and its average, resulting errors.
A simple sufficient stability test is proposed to check
the asymptotic beLavior of this error. In addition, Furthermore, the paper provides conditions under
conditions are derived that allow the use of state which the BCH formula can be avoided. Instead of using
feedback to arrive at a time-invariant system matrix the BCH formula to compute an average system matrix,
instead of averaging, state feedback is used to obtain a constant closed loop

matrix for the system.
1. INTRODUCTION AND PROBLEM FORMULATION

The class of hybrid systems considered in this
Hybrid systems are a special class of piece-wise paper are assumed to have the form

constant time-varying systems. Such models switch at
different time instants among a finite set of linear t(t) - A(r(t))x(t) + B(r(t))u(t) (Ia)
time-invariant realizations. Systems of this type can
be used to model systems subject to known abrupt y(t) - C(r(t))x(t); (lb)
parameter variations such as synchronously switched
linear systems [1], networks with periodically varying where x is the system state vector of dimension n, u is
switches (2] or to approximate some types of time- the control input vector of dimension p. y is the
varying systems [3]. This is achieved by imposing a system output vector of dimension m, and r(t) is the
deterministic switching rule [4]. To model unknown "form index" which is a deterministic scalar sequence
abrupt phenomena such as systems subject to failures taking values in the finite index set N-(l, 2, ..., N).
[5], the switching can be modeled, for example, as a Let the ith form denote the realization Ei-(Ai.BiCi)
finite-state Markov chain (FSMC). An earlier review of associated with the ith form index (i.e., r(t)-i), for
hybrid systems may be found in [6]. irN.

Averaging theory, which is used in a deterministic It is assumed that any r(t) sequence is composed
or probabilistic context, is an approach to the of a succession of N-termed blocks. Every block is a
approximation of such systems by a single constant permutation of the index set N. It is important to
linear model. In the probabilistic case averaging is note that the succession of the blocks is completely
introduced in a natural way by taking expected values, arbitrary (e.g., for N-3, a possible r(t)-sequence is:
In the deterministic case, however, averaging is 123, 321, 213, 213, 312, ...). The time interval
intr *ced via perturbation techniques. Brockett and during which r(t)-i is denoted by 6ti . In this case we
Wood (2] used a deterministic averaging technique to define
analyze and stabilize a class of bilinear systems which
are very hard to analyze or control otherwise. Geman N
17] used probabilistic averaging techniques to study T a 2 6ti  (2)
the stability of random differential equations. His i-
main interest was to explore the relation between
asymptotic rtability in the average equation, and as the period of the system. Piece-wise constant
asymptotic stability in the random equation. periodic systems are a special class of hybrid systems.
Specifically, when does the first imply the second7 Therefore, from an application point of view the
Kosut at al. [8] applied the theory of averaging to the subsequent results can, at least, be applied to the
analysis of the stability of adaptive systems. Ezzine periodic case. However, the primary motivation is to
and Haddad (9] used an averaging technique very similar derive results that can be applied to the case where
to the one used in [2) to analyze and stabilize hybrid the switching is governed by a FSMC.
systems via a nonswitching gain. As a matter of fact,
ariton et al. [101 showed that nonswitching control The following is an outline of the paper. Section
gains may be preferable, in addition to the fact that 2 begins with an overview of the averaging technique
they are much easier to implement. for hybrid systems. It also addresses the

perturbations induced by the averaging procedure. Two
In this paper the averaging procedure used in important perturbation errors are identified, and the

I This work is supported by the U.S. Air Force under grant A/OSR-87-0308.
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first one is analyzed. Section 3 discusses the second matrix, then C can be written as C-C4t, where t is the
error, and also offers, where possible, an alternative error due to the approximation. Therefore, the induced
to averaging. Section 4 concludes the paper and points error in computing Exp(CT) by using the matrix C is
to additional open questions.

E E Exp(CT)-Exp(T). (9)
2. DERIVATION OF THE PERTURBATION BOUNDS

The solution formula for inhomogeneous
This section addresses the accuracy of the differential equations can be used to derive an exact

averaging technique. First, upper bounds for the expression of E [13):
errors introduced by using a truncated BCH formula are
derived._ T

E - I (Exp((T-s))CExp((C+t)s))ds. (10)
The averaging methodology to be analyzed in this 0

paper is based on a formula from Lie algebras known as
the Baker-Campbell-Rausdorff (BCH) formula [2,11,12]: In this section a useful approximate expression
Given two real matrices A and B there is no guarantee for E is derived using perturbation techniques. To do
that there exists a real matrix C such that so we define acC, where c is a scalar. It is

recalled [13] that if (CC) commute, that is,
Exp(A)Exp(B) - Exp(C). (3) t= ee, (11)

However, if IAI+IBISln(2), then C exists [11], and will
be given by a convergent infinite expression (the BCH then
formula)

C - A+B+(/12)[[A,B],B]+(1/12)[[BA],A]+... 
(4) M

- Exp(CT)(I + Cc T + c
2
C
2
T
2
/2! + ... ). (12)

where the symbol [A,BJAB-BA (i.e., the commutator

product). To find Exp((C+C)T), when t and C do not commute, one
can use an iterative technique similar to the one used

Similar expressions like the BCH formula are used to derive the exact expression for E [13]. Hence one
in a large number of useful approximations in physics can write
[12] and switched electrical networks [2]. In the
sequel we show how the BCH formula and related Exp((C+C)T) - Exp(CT) +
expressions can be used to compute the average of N-
form hybrid systems. However, for notational T
simplicity F2-systems (i.e., two-form hybrid systems) cExp(CT) I Exp(-CS)CpExp(ts)ds + 0(c2 ). (13)
only are treated. 0

The averaging idea introduced in [2] and used in This is the Liouville-Neumann series solution for the
[9] to stabilize hybrid systems is outlined in the integral equation. It is a convergent perturbation
following section. Given an F2-system such that series for all c [13].

A for 0 6 t < Ti, However, these exact expressions, given as a
A(t) - (5) series in c, do not lend much insight to qualitative

A2  for TI S t < T. analysis questions. In that regard, transforming those
integral expressions for E into differential equations

then an approximation for Exp(AITI)Exp(A2 (T-TI ) is might be more useful. We first introduce the following
desired. The BCH formula provides the approximation as definition:
Exp(CT), where C is as in (4). Now if we require an
expression for C independent of the order of the El E - O(2)
product, to agree with the order independence
introduced in the definition of F2-systems, then we T
must compute - cExp(CT) J Exp(-Cs)CpExp(Cs)ds, (14)

0
lni{Exp(A)Exp(B)+Exp(B)Exp(A))

where El is the first order approximation to E in c.
*A+B+(1/12)[[A,B],B]+(1/12)([B,A],A] Now El can be expressed as follows.

-A+B+(1/12)[[A,B],B-A]. (6) Proposition 1 [141

Therefore, we obtain a series of approximate Let El denote the first order approximation in c
averages for 72-systems. If the F2-system realization to E, then E1  satisfies the following matrix
is Z1-(Al,bl) for period T1 , and t2-(A2 ,b2 ) for period differential equation:
T2 , then the first order approximation is

E - (aA1+(1-u)A 2, abl+(l-u)b2 ). (7) Y - tY + ccpExp(ct), Y(O) - 0. (15)

with a 9 T1 /(T1 + T2 ). Second-order terms may be As a consequence of the above representation one
included to obtain the approximation can use the theory of linear matrix differential

equations to study the qualitative behavior of E For
Z - ([uAI+(l-a)A 2+(1/12)a(I-a)[[AI,A 2 ], example, one can show that if all eigenvalues of have

negative real parts then El(t) - 0 as t - -.
( 1-a)A2 -aA I ], ab1+( l- ) b2). (8)

Moreover, it is possible to derive a general
Higher-order approximations may also be derived. explicit expression for El. To do so we first recall
Consequently. if we let C denote the approximating the well known result [12]
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Exp(sA)B~xp(-sA) = 2 (si/il){Ai,B), (16) criterion is a necessary and sufficient condition (4]
i-0 and the second one is a sufficient test only 19, 4].

Because the first condition is computationally involved

with (A0 ,B}-B and (An+l,B}-[A,{An,B)]. Using this and is a generalization of a well known result (see
identity the general explicit expression for El will (4]) we choose to present the second one.
follow Interestingly enough, the second test is more general

Sin the sense that it can be easily generalized to a

- l - p 2 (ti/i1){(-)i-l, Cp). (17) larger class of hybrid systems.
i-i

In order to state this sufficient condition a
At this point, we are ready to compute upper brief introduction to the notion of logarithmic norm is

bounds for El and E. given.

Proposition 2 The logarithmic norm (also known as the
logarithmic derivative, the measure of a matrix) was

Assume that IExp(Ct)12M(t)Exp(0(t)t), with 0(t) a introduced in 1958 separately by Dahlquist [15] and
scalar function, then Lozinskij [16] as a tool to study the growth of

solutions to ordinary differential equations and the
|EllS(II/2tIl)H(t)Exp{(t)t(Exp(2|IIt)-l), (18) error growth in discretization methods for their

approximate solution. It is formally defined as
and with the added assumption of M(t) being monotone follows:
then

Definition
1E1 S tijIM2(t)Exp{(0(t) + M(t)inl)tl. (19)

The logarithmic norm associated with the matrix

Proof norm 1.1 is defined by

Using (16) in the evaluation of the integral in w(A) - lim (II + hAl - )/h (25)
(14) yields h 0+

-- Explicit expression for the logarithmic norm associated
El - Exp(-At) 7 (ti/i!)(Ai'l.B}. (20) with the Euclidean norm is

i-l
p(A) - max( : V c X((A+A*)/2)), (26)

Taking the norm of both sides in (20) and using the
following inequality where X(A) is the set of eigenvalues corresponding to

the matrix A. Then the following inequality is true:
I(An,B}l I 2n lAni IBg - 12AIn IBI (21)

lExp(At)l 1 Exp(i(A)t). (27)
leads to

- Theorem 3
IEI| I IExp(-At)I E (ti/iI)I2AI'iIB1, (22)

i-i For the null solution of the hybrid system (24) to
be uniformly asymptotically stable, it is necessary

which after simple algebra results in (18). Equation that
(19) follows in the same manner by using the
monotonicity property of H(t). Z u(-Ai)Pi > 0, (28a)

i

3. STABILITY OF THE ERROR DYNAMICS
and sufficient to have

In this section the dynamics of the error between
the average system and the actual hybrid system are r u(Ai)Pi < 0, (28b)
derived. The stability of the error dynamics is i
discussed and two stability criteria are introduced, where

Given a homogeneous N-Form hybrid system with Pi S (ti-ti-l)/T, icN.
state vector x(t), and one of its time-invariant
averages with state vector xa(t), the error is given as Proof

e(t) I x(t) - xo(t) (23) We start by showing that the sufficient condition
holds. Using Theorem 27 in [17] one can write

From this definition it is easy to see that the error
dynamics are governed by the following hybrid system t

le(t)l 5 le(to)lExp( f u(A(s))ds)

N t
e(t) ( 2 vi(t) 6Ai)e(t) (24)

i-1 t N
l le(to)l Exp( f u( E vi(t)Ai]ds }. (29)

where 8Ai3Ai-A a and the indicator functions vi(t) are to  i-I
defined by: vi(t)-l when the original hybrid system is
described by the ith realization Ei, and vi(t)O Using Theorem 5(e, d) in (17] and after some algebra we
otherwise. get

At this point two stability criteria are N t
introduced to check the stability of (24). The first limle(t)l S limle(t0 )I Exp( E J vi(t)u[Ai]ds)

i-1 to
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N such that
- limle(to)i Exp{( Z piw[Ai])(t-to)) (30)

i-i Range[Ai-A 2 : BI : -B2] = Range[Bl -B2 ], (35)

wl th then. there exists a minimum-norm GEfK1  K2 ] such that

t A1 - BjKl - A2 - B2K2. (36)

Pi - lim(i(t-t0)) f vi(s)ds. (31)
to  Moreover, the G matrix is given by

which completes the proof of (28b). s(G) = ([B1 : "B2 ]t 9 In)s(Ai-A 2 ), (37)

The necessary condition (28a) is shown similarly where s(.) is the stacking operator, (.)+ is the
by using the fact that Exp-{P(-A)lt|ExpAt|. generelized-inverse, and 9 is the Kronecker-product.

This simple sufficient condition states that for a Proof
hybrid system to be uniformly asymptotically stable the
weighted average of the logarithmic norms of each Starting with the forms Ei, i-, 2, the ith model
realization has to be negative. Therefore, this is given by
sufficient condition allows for unstable forms. That
is, as long as the stable forms dominate the overal
system is asymptotically stable. This domination can x(t) - Aix + Biu. (38)
occur in three ways: either the stable forms are
strongly stable (i.e., highly negative logarithmic If we define A E Ai-6Ai the above system can be written
norms) or the time span of the stable forms is large as follows
relative to the time span of the unstable ones or a
combination of both reasons. This stability property
of hybrid systems was reported in [5] via examples. Ax + 6Aix + Biu ,  (39)

The difference between (28b) and (28a) could be The next step is to compute a gain matrix Ki such that
used as a measure of the conservativeness of (28b).

dAix + Biu = 6Aix - BiKix

Sometimes it is possible for F2-systems to avoid
the computation of an average matrix and, consequently, - (6Ai - BiKi)x -0 for all x. (40)
minimize the errors induced by averaging [9]. That is,
under certain conditions, it is possible, via state This is equivalent to
feedback, to make the closed loop F2-system A-matrix
time-invariant. That is, given E1 and E2 satisfying BiK i - 6Ai, (41)
appropriate conditions, one can compute a feedback gain
matrix which is an algebraic equation for the unknown Ki .

Substructing the first equation from the second yieldsK - [K1  K2] (32)
Al - A2 - BIK I - B2K2  (42)

which will make the A-matrices of both forms equal, so
that the A-matrix of the closed loop hybrid system which can be written as follows
(using gain Ki for ti) becomes a constant. Moreover,
this constant A matrix is given by the following [A, - A2] - [BI,-B 2][Kj,Kj)' (43)
equation

which is itself an algebraic equation with Ki, i1-, 2,
A - Al - BIKj - A2 - B2K2. (33) as unknown and the condition given in the theorem is

the one needed for the existence of both gains.
In [18], Mariton proposed a technique quite Equation (37) is a compact way to write these

similar to this idea. He showed that it is possible to equations, and is also useful when numerical techniques
solve the Jump Linear Quadratic (JLQ) problem by making are used to solve the-problem.
the performance index independent of the different
realizations of the form-index r(t). His approach Corollary
renders the cost incurred by any realization of r(t)
the same. In other words, it makes all realizations If
equal in that sense. Range[Al-A2 : Bl-B 2) - Range[Bl-B2 ], (44)

Even though the goals seem similar, the approaches then
are not. In contrast to [18], the present equalization K a K1 - K2 , (45)
is direct; the homogeneous parts of the two forms are
made egual via feedback. In this section a sufficient and the gain matrix is given by:
condition is given for the existence of K and a simple
computational algorithm based on the Kronecker-product s(K) - ([BI-B 2 ]* B In)s(Al-A 2 ). (46)
and the generelized-inverse techniques is proposed. As
stated above, the following results hold for N-2 only. To illustrate the above results consider the

following example.
Theorem 4

Example
Given the P2-system

Given the following F2-system
* - Aix + Biu, i - 1.2. (34)
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ABSTRACT nonswitching control gains may be preferable. in
addition to the fact that they are much easier to

The stabilization of hybrid systems with a non- implement.
zwitching gain is cheaper and simpler to implement
than the switching one. One approach to the design The paper also considers deterministic hybrid
of a non-switching gain is based on the averaging systems, when such systems capture the essence of
of the hybrid system. For obvious reasons, the stochastic hybrid systems. In this case the
non-switching gain exists if the average system is addition to the fact that they are much easier to
controllable. In this paper, the minimality of the implement.
average system is investigated and a sufficient
criterion is derived. Furthermore, these results The hybrid systems considered in this paper are
also shed some light on the topology of minimal LT2 assumed to have the form
sy-tems in parameter space.

1. INTRODUCTION AND PROBLEM F OULATION i(t) = A(r(t))x(t) + B(r(t))u(t) (ii)
Hybrid systems are a special class of piece-wise
constant time-varying systems. Such models switch y(t) = C(r(t))x(t) (1.2)
at different time instants among a finite set of
linear time-invariant realizations. Systems of where x is the system state vector of dimension n,
this type can be used to model systems subject to u is the control input vector of dimension p, y is
known abrupt parameter variations such as the output vector of dimension m, and r(t) is the
synchronously switched linear systems I, networks "form index" which is either a deterministic or a
with periodically varying switches2  or to stochastic scalar sequence taking values in the
approximate some types of time-varying systems3 . finite index set =(l, 2, ..., N).
This is achieved by imposing a deterministic
switching rule 4 . However, to model unknown abrupt The system takes the realization Zi=(A2.Bici)
phenomena such as systems subject to failures5 the when r(t) - i, with iN. This realization is
switching can be modeled, for example, as a finite- called the ith form. 6ti denotes the time
state Markov chain (FSMC). An earlier review of interval during which r(t) = i. In addition we
hybrid systems may be found in Sworder's paper6 . define

Averaging theory, which is used in a deterministic N
or prubabilistic context, is an approach LO ftne T I E 6ti (2)
approximation of such systems by a single constant il
linear model. In the probabilistic case averaging
is introduced in a natural way by taking expected as the period of the system.
values. In the deterministic case, however,
averaging is introduced via perturbation Sometimes it is more convenient to represent the
techniques. Brockett and Wood2  used a hybrid system in an equivalent different form

deterministic averaging technique to analyze and which leads to the following representation
stabilize a class of bilinear systems which are
very hard to analyze or control otherwise. Geman 7  N N
used probabilistic averaging techniques to study i(t) E ( vi(t)Ai)x(t) + { Z vi(t)Bi)u(t)(3.1)
the stability of random differential equations. i-I i-i
His main interest was to explore the relation
between asymptotic stability in the average N
equation, and asymptotic stability in the random y(t) = ( E vi(t)Ci)x(t) (3.2)
equation. *Specifically. when doec the fira tirly i-i
the second? Kosut et &l.7  applied the theory of
averaging to the analysis of the stabilit of where vi(t) - 1 when the system is governed by the
adaptive systems. Ezzine and liaddadv used an ith realization Zi, and vi(t) = 0 otherwise. The
averaging technique very similar to the one used in vi(t) function is called the ith indicator
Brockett at al.'s paper2  to analyze and stabilize function. It is evident from the definition of
hybrid systems via a nonswitching gain. As a hybrid systems that at any point in time only one
matter of fact, Mariton et al. 10 showed that of the N indicator functions takes the value one.

This research is supported by the U.S. Air Force under contract F08635-84-C-0273 (with the Armament
Laboratory) and grant AFOSR-87-0308.
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This paper mostly addresses the case where where
r(t) is a stochastic process, which is assumed to
be governed by a Finite State Markov Chain (FSMC) 3. COTROLLABr= OF HYHI SYSTD4
with probabilities Before dealing with the controllability of the

average system a definition of the controllability
Pr{r(t+) - jlr(t) - i) - PiJ(.c), (4.1) of deterministic hybrid systems4 is proposed along

with few related results.
for continuous-time systems. In case the dynamics
of the hybrid system are discrete the transition Definition:
probabilities are givin by A deterministic hybrid system is said to be state-

controllable if for any to each state x(t0 ) can be
Pr{r(t+l) = JJr(t) - ii - "ij. (4.2) transferred to any final state xf after one

period. Thus there exists a tf, t,+Titf<- such
It is also assumed. Throughout this research work, that x(tf)-xf.
unless stated otherwise that the FSMC is
stationary and irreducible 11 . The next result is a necessary algebraic

controllability condition. Basically the theorem
sequence r(t) is assumed to be deterministic and to says that in order for the hybrid system to be
be composed of a succession of N-termed blocks, controllable it is ne:assa y that the sum of the
Every block is a permutation of the index set V. controllable subzpaces of the forms to be equal to
It is important to note that the succession of the the whole space.
blocks is completely arbitrary (e.g., for N3, a
possible r(t)-sequence is: Tbeorem4

123,321,213,213,312 ...). A necessary algebraic condition for a
deterministic hybrid system to be controllable is

The following is an outline of the paper. Section
2 begins with an overview of the averaging rank[;,. C2, ..- CN] = rank C - n. (8)
techniques for hybrid systems. In section 3 the
controllability of hybrid systems is recalled along Where Ci is the controllability matrix for the ith
with a necessary contollability condition and a form, icN.
stabilization result. Section 4 deals with the
controllability of the average of a hybrid system. Due to the importance of this theorem a heuristic
This result is used to derive the main theorem of proof presented in Ezzine et al.s paper4 that
the paper, which identifies a class of hybrid shows that the above condition is almost
systems for which the average is minimal. Section sufficient will be repeated here. The heuristic
5 concludes the paper and points to additional open argument can be given as follows: Since any matrix
questions. exponential is a perturbation of the identity

matrix it follows that multiplying any matrix with
2. THE AVERAGE SYSTEM matrix exponentials will not change its range

Two averaging techniques are concidered in this space drastically. That is if, for example, Cl
paper. The first one is the probabilistic average and C2 have algebraic complementary range spaces
of the hybrid system when the switching is governed (i.e. range(C ) is perpendicular to range(9 2 ))
by an irreducible FSMC. The second one is the then range(Exp(AT)Cl) will almost always remain an
first order average of the hybrid system when the algebraic complement but not necessarely
switching is deterministic as discussed above. The perpendicular to range(C 2 ). As a matter of fact,
latter average is based on the Backer-Campbell- Mariton 12 states that he has proved that theorem 6
Hausdorff formula2. is also a sufficient condition when the switching

is governed by a continuous FSMC.
The two averages are identical in form. In fact.
both, averages are weighted averages. In the Using the above definition it is possible to prove
probabilistic case the weights are the components in a classical way4  that deterministic hybrid
of the stationary probability vector of the FSMC. systems are uniformly completely controllable iff
In the deterministic case the weights are the they are controllable. Therefore, the above
relative time-spans spent by each form. Therefore, algebraic condition plays almost exactly the same
the following representation, of the average, is role as the usual :Igebraic condition for LTI
adopted for both cases in the rest of the paper systems.

Ea I QlE1 + a2E2 + "'' + aNEN, (5) At this point and in the light of the preceding

paragraphs we would like to mention the work of
where the aiO are the steady state probabilities Ikeda et &l.13 . In their work they looked at the
of r(t)-i for the stochastic case, and are defined relation between controllability properties of the
as system and various degrees of stability of the

closed loop system resulting from linear feedback
oi = dti/T (6) uf the state variables. Their results are as

follows: For any initial time to, and any
for the deterministic case with continuous and monotonically nondecreasing

function 6(.,t.) such that 6(t0 ,t0 ), the
N transition matrix 4(.,.) of the closed loop system

T E 1 6t (7) can be made such that t4(t,to)lja(t)xp(-6(t.t 0 ))
L- -
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for all " tat., iff the system is completely controllable but that the F2-system ise. After

controllable. Furthermore, in case of a bounded derivation of the average system the determinant
system, for any m10, a bounded feedback matrix can of its controllability matrix as a function of a
be found such that 16(t 2 ,tj)1Salxp(-m(t2 -tj)) for was computed. The latter determinant Is given by
all tj. t:zt1 , iff the system is uniformly the following third order polynomial:
completely controllable. Thus, their results can
be regarded, in some sense, as extensions of the P(Q) - a(202 - 3. + 1).
well known results of closed loop pole assignment
for time-invariant system . The zeros of the above polynomial are a,-0. r,-1.

and o3-.5. The two first seros a1 and 02 are a

Hence, there is a high degree of flexibility in the consequence of the fact that £ and E2 are both

stabilization of hybrid system if they are uncontrollable. However, the zero Q3-.5 is a

controllable or, equivalently, uniformly completely result of the averaging, therefore it refutes the

controllable. claim that the average system of a controllable
hybrid system is necessarily controllable.

As an illustration of the above results we recall,

with a slight generalization, a stabilization In th sequel we give a sufficient condition that

theorem
4  

for hybrid systems where averaging is identifies a class of hybrid systems for which the

used. hybrid system's controllability guaranties the

controllability of the average system.

Definition
A hybrid system is almost surely stabilizable if Theorem I

there exists a constant feedback gain matrix K such The average system of a N-form hybrid system is

that the closed loop hybrid system is controllable if

asymptotically stable.

a- rank [C1 , C2, .... CN) 
- n, where C, is the

Trheore
A  

controllability matrix of the ith form,

A hybrid system is almost surely stabilizable if

a. The average system is stabilizable, b- All forms are simultaneously diagonalizable.

b. The following inequality is almost surely
satisfied Proof:

The average system E-(A,B) is given by

N
Z w[6A i - 6BiKjpi < 0. (9) N N

i A E - iAl , and B - Eo 1 iB i  (10)
i-I -

where K is a stabilizing gain matrix of the

average system, 6Zis(6A t, 6Bi) is the difference with

between the ith realization and the average

system, and P(.) is the logarithmic norm of N
Z a, = 1, and o I s 0 for i- 1, 2, .. , N. (11)
i-i

4. CONTROLLABILITY OF THE AVERAGE SYSTEM

We now turn to the controllability of the average Since all forms, i-I, 2, ..., N, are

system in light of the above theorem. One of the diagonalizable with the same similarity

key assumptions made to design the regulator via transformation then

averaging is the controllability of the average
system. This assumption is not unreasonable since T'IAiT - Ai ,  (12)

the controllability property of linear time

invariant systems is generic. However, one can T-
1
Bi r ri  for i-1, 2 .... N. (13)

construct hybrid systems such that their averages

are not controllable; such a system is a 2-form The T matrix is the common modal matrix for all

hybrid system (F2-system): the forms, and Ai is the diaponal matrix
corresponding to the i-th form.

El - (Al,bl) and 12 (A2 ,b2 )
Using the above result the average system can be

with transformed to the following form

A,* -I bl - nd A E T'IAT - T'I(Ei iAi)T - Zi oiAi, (14)

A 1 -, bI - ,and

r E -BTIE ii iCr. (5

Because of assumption (b) A will be diagonal too.
A2 4. -[:]. Now, invoking condition (a) every tow in the r

0 1 0 matrix must have at least one nonzero entryl5
which concludes the proof.

It is easy to check that neither El nor E2 is Using theorem 1 and the duality principle it is
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easy to derive the following theorem.
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ABSTRACT two important points. The first one is the
almost exclusive usage of Stochastic Dynamic

This paper develops techniques for the Programming (SDP) as a tool to adress the optimal
analysis, control and stabilization of hybrid control and stabilization of hybrid systems. The
systems. -These systems switch among a finite set second one is the difficulties related to the
of linear time-invariant models with switching solution (i.e., existence and uniqueness issues)
behavior governed by a Finite State Markov Chain. of the coupled Riccati-like equations derived via
The relationship of these techniques to standard SDP. These equations play the same role played
methodologies for linear time-invariant systems by the familiar Riccati equations in LQR theory.
is also considered. SDP is a very convenient tool to solve

optimization problems. However, besides the well
1. INTRODUCTION AND PROBLEM FORMULATION known "curse of dimentionality". the systematic

application of SDP does not allow the user to
1.1 INTRODUCTION gain insight about this complex problem. In

Many real systems such as power systems (I- general the use of SDP obscures most of the
3] exhibit variations in their structures or useful properties of these systems. These

abrupt changes in their inputs or internal properties can reveal the geometric and algebraic
variables and other system parameters. Standard structu..s of hybrid systems. As a matter of
linear time-invariant systems models can not fact, many of the results presented in [26],
adequatly represent these systems. Consequently, (14], and [27] show that these systems, despite
a new class of systems has been proposed to model their time-variation and random nature, share
such systems (4-141. This class is called hybrid many useful properties with LTI systems.
systems due to the existence of both discrete and Our approach avoids the difficulties faced
continuous variables in their state space. Such by previous researchers and exploits the
systems have been explicitly or implicitly used similarities between LTI systems and hybrid
in past research [I1. systems. In particular, due to the simplicity

Systems of this type can be used to model and success of the eigenvalues assignment design
networks with periodically varying switches technique in the stabization of LTI systems, we
[15,161, synchronously switched linear systems will follow a similar approach.
[17], multi-rate Sampled-data systems [18-22], In order to address the stabilization
systems subject to failures (1,23-25], problem of hybrid systems one needs a simple
manufacturing systems [24,25], large scale stability criterion for this class of systems.
flexible structures [13], and last but not least Hence, some conditions for detariniing the
macroeconomic models (5]. stability of hybrid systems are first developed

The objective of this paper is to develop based on a generalization of the eigenvalues
methodologies or, at least, to provide the concept. The stabilization approach uses the
necessary foundations for the analysis and design largest Lyapunov exponent along with some
of such systems, with emphasis on their controllability properties of hybrid systems.
stab4 lization. These design tools are expected The following is an outline of the paper.
to aid in the design of controllers to stabilize After the problem formulation, Section 2
such systems and to achieve reliable performance introduces the material needed to discuss the
despite the changes. almost sure stabilization of hybrid systems.

It is customary to assume that these systems This section also addresses tne stability of both
switch among a finite set of linear models continuous and discrete time hybrid systems and
according to an irreducible FSMC. Hence, the simple sufficient stability criteria are derived.
approach is based on the mathematical theory of In section 3 the almost sure stabilizability
ergodic stochastic processes. Interestingly result is discussed. This result is a
enough, the concepts of eigenvalues and generalization of Wonham stabilization theorem to
eigenspaces are generalizable within the ergodic this class of systems. Section 4 concludes the
theory framework. Therefore, the key design idea paper.
of eigenvalues assignment for hybrid systems
remains meaningful despite the time-variation and 1.2 PROBLEM FORMULATION
random nature of these systems. The hybrid systems considered in this poner

Earlier major works on the subject exhibit are assumed to have the form

1 This work is supported by the U.S. Air ForLe under grant AFOSR-87-

0308.
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of characteristic exponents that bear his name
i(t) - A(r(t))x(t) + B(r(t))u(t) (1.a) [29].

His intention was to determine criteria for
y(t) - C(r(t))x(t) (l.b) the stability (of the origine xiO) of

where x is the system state vector of dimension A(t)x, x(0; x0 ) - x, c Rn , t c R , (5)
n. u is the control input vector of dimension p,
y is the output vector of dimension m, and r(t) A(t)is continuous and bounded.
is the "form index" which is either a For constant A the eigenvalues of A
deterministic or a stochastic scalar sequence determine the stability behavior of (5). For
taking values in the finite index set N{l, 2, periodic A(t) Floquet theory shows that the
.... N}. results for constant A remain true if the real

The system takes the realization parts of eigenvalues are replaced by the
Eij(AiBi,Ci) when r(t) - i. with icN. This characteristic exponents of A(t) [30, chapters 3
realization is called the ith form. Let 6ti and 13).
denote the time in'erval during which r(t) - i. The Lyapunov exponent of a solution x(t; x.)
In addition we define is defined by

N
T I E 6ti (2) X(x0 ) 3 lim sup (1/t)Ljgix(r; x,)I. (6)

i-I

as the period of the system. Lyapunov proved that for every solution with
Sometimes it is more convenient to represent x,*O, A(x0 ) is finite. Moreover, the set of all

the hybrid system in an equivalent different form possible numbers which are Lyapunov exponents of
which leads to the following representation some nonzero solution of (5) is finite, with

cardinality p. such that 11pin and A < .. < X1.
N N Furthermore, Lyapunov proveg that the

x(t) - { E vi(t)Ai)x(t) + ( E vi(t)Bi)u(B)a) subspaces
i-I i-i

Li a (x, c Rn p(x))Ai, i. +1}

N
y(t) - ( Z vi(t)Ci)x(t) (3.b) form a filtration of R

n
, i.e.,

i-1
where vi(t) - I when the system is governed by 0 - Lp~l  Lp ... L1 - Rn ,

the ith realization Ei. and vi(t) - 0 otherwise.
The vi(t) function is called the ith indicator with dimL-k i , such that
function. It is evident from the definition of
hybrid systems that at any point in time only one kp+1 - 0 < kp < ... < ki - n,
of the N indicator functions takes the value one.

Most of our work will address the situation and
where r(t) is a stochastic process, more
presisely, r(t) will be assumed to be a Finite X(x0 ) - Xi iff x* C Li\Li+,. i - 1, ..., p.
State Markov Chaine (FSMC) with transition
probabilities The numbers Ai together with their

multiplicities di are called the Lyapunov
P{r(t+6ti) - jlr(t) - i} - pij, (4.&) spectrum of (5). The asymptotic behavior of (5)

is dictated by A,. That is, '5) is exponentially
for continuous-time systems, and stable iff Al<O.

Unfortunatly, it is in general not true that
P(r(t+l) - jjr(t) - i} - pij, (4.b) A1 <0 implies the stability of the following

nonlinear system:
for discrete-time systems. It is also assumed,
unless stated otherwise, that the FSMC is x - A(t)x + f(t. x). (7)
stationary and irreducible [28].

Sometimes r(t) is defined as a special However, for a special class of f(t, x) the above
deterministic process. It will be obvious from is true if (5) is what Lyapunov calls regular.
the definition that r(t) is very similar to the For regular systems the following holds
FSMC defined above. This is done in order to
show that a deterministic formulation is A, - lim (l/t)Loglx(t; x0 )I. (a)
sufficient to answe- certain questions. In this
case it is assumed that any r(t) sequence is
composed of a succession of N-termed blocks, For example, (5) is regular if A is constant or
where every block is a permutation of the index periodic. In the latter case Ai are the
set N. It is important to note that the characteristic exponents.
succession of the blocks is completely arbitrary Regularity is hard to verify for a
(e.g. for N-3, a possible r(t)-sequence is: particular system, but it happens with
123,321,213,213.312...). probability one in many cases involving a flow

with an invariant probability measure [31]. 7his
2. STABILITY OF HYBRID SYSTEMS is how Birkoff's ergodic theorem [32] and ergodic

theory in general comes in to exploit Lyapunov
2.1 Lyapunov Exponents powerful spectral theory.

In 1892, A. M. Lyapunov founded the theory As shown above there are many similarities
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between eigenvalues and eigenspaces of constant necessary that
matrices and the Lyapuno spectrai theory of
time-varying systems. The main similarity that E w(-Ai)pi > 0, (15.a)
will be of major importance in this paper is the i
stability role played by the largest Lyapunov and sufficient to have
exponent A1 ; A1 plays the same role as the
largest eigenvalue plays in the stability of E p(Ai)p i  0, (15.b)
time-invariant systems. i

where the pi's are the steady-state probabilities

2.2 Continuous-time Hybrid Systems of the irreducible FSMC and icN.
Eventhough the sign of X, is a necessary dnd The simple sufficient condition states that

sufficient test for the stability of a hybrid for a hybrid system to be a.s. uniformly
system, it is almost impossible to compute. In asymptotically stable the average of the
this section we will use the Lyapunov exponent logarithmic norms of each realization has to be
along with the logarithmic norm concept to derive negative. Therefore, this sufficient condition
a simple sufficient stability test for allows for unstable forms. That is, as long as
continuous-time hybrid systems. the stable forms dominate, the overal system is

In order to derive uncomplicated conditions a.s. exponentially stable. This domination can
for the stability of such systems, a different occure in two ways: either the stable forms are
tool is used, namely the logarithmic norm strongly stable (i.e., highly negative
[33,341, resulting in a simpler sufficient logarithmic norms) or the time span of the stable
condition. forms is large relative to the time span of the

The logarithmic norm (also known as the unstable ones or a combination of both reasons.
logarithmic derivative, the measure of a matrix) This stability feature of hybrid systems was
was introduced in 1958 separately by Dahlquist reported in [23] via examples. The critera given
[33) and Lozinskij [34) as a tool to study the above holds for hybrid systems where the
growth of solutions to ordinary differential switching is deterministic as well, in which case
equations and the error growth in discretization the pi's represent relative time span of the
methods for their approximate solution. It is forms.
formally defined as follows: It is clear from the proof of the above

theorem that the sufficient almost sure
Definition I exponential stability criterion is an upper bound

The logarithmic norm of a matrix A for the largest Lyapunov exponent Al, and is
associated with the matrix norm 1.1 is defined by simple to compute. Therefore, this sufficient

criterion can play a beneficial role in testing
u(A) - lim (II + hAl - 1)/h (9) for the stability of hybrid systems as well as in

h-O+  the design of controllers to stabilize such
systems, as stated in the following:

Explicit expression for the logarithmic norm
associated with the Euclidean norm is Theorem 2

The largest Lyapumov exponent Al of the null
m(A) - max({ : m c A((A+A*)/2)). (10) solution of the hybrid system (1) satisfies the

following inequality
Then the following inequality is true:

A, - lim (l/t)Loglx(t; xO)I S Z pii(Ai), (16)
Exp(-u(-A)t) I lExp(At)l S Exp(w(A)t). (11) t-- iCN.

One very important property of the where the Pi's are the steady-state probabilities
logarithmic norm follows from the fact that it of the irreducible FSMC.
may be shown to be the smallest element of The difference between the upper and lower

bounds given in theorem I give a measure of the
S - (s : IExp(At)l S Exp(st), tZ0}. (12) conservativeness of (15.a). This problem is

considered further in the sequel.

Therefore it gives an optimal bound on the
exponential behavior of IExp(At)l for ta0. It may 2.3 Discrete-time Hybrid Systems
be concluded therefor that The study of the stability, sample-wise, of

discrete-time hybrid systems is similar to the

suplExp(At)I - I iff w(A)SO. (13) study of the solutions of stochastic linear
taO difference equations with randomly varying

parameters. This lead us to the study of the
In the case where A is normal square matrix following problem:

(i.e., A*A=*AA), then Let (Mn, n c N) be a sequence of random,
nxn, matrices. To each x0  c Rn one associates

IExp(At)l - Exp(a(A)t) - Exp(w(A)t)(14) the process {X, n e N) with values in Rn, which
is the solution to

where a(A) is the maximal real part of the

eigenvalues of A. This norm is now used to Xn 1 - Mn, n c N, and X. - x,. (17)
derive the stability condition.

We have Xn~ = n. ..Mx,. One important

Theorem 1 question is what is the asymptotic behavior of
For the null solution of the hybrid system this process.

(1) to be a.s. exponentially stable, it is
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Furstenberg-Kesten Theorem [35] At this point we would lika to recall a
Let (Mi, i c N) be a stationary, metrically theorem that will play a key role in the sequel.

transitive (i.e., ergodic) stochastic process This theorem is the converse of a well known
with values in the set of nxn matrices such that result relating the norm of a matrix to its
E(Log 4+IMO}<-. Then, with probability one spectral radius (i.e., a(A) 5 IAI). The

following theorem asserts that there exists an
lim(l/n)E{LogISn|} = inf(l/n)E(LogISn|} induced norm for which the inequality in the
n n previous result can be reversed after adding an

arbitrarily small positive number to the matrix
- lim(i/n)LogISnI 5 A, c RU(--). (18) spectral radius.

n
Theorem [36]

where Sn S Mn.. .Ml. A, is the largest Lyapunov For any c>0 and any nxn real A matrix, there
exponent of the process. is a (vector) norm on Rn such that the

corresponding induced norm satisfies
Rerark

The Purstenberg-Kesten Theorem (FKT) is a IAI S a(A) + c. (21)
generalization of Birkoff's ergodic theorem to
the case of matrix valued functions. Now we are ready to apply the above

The largest Lyapunov exponent Xl of a definitions and theorems to derive simple
discrete-time hybrid system plays the same role sufficient a.s. exponential stability tests for
as the one played by the largest Lyapunov discrete-time hybrid systems. As mentioned
exponent of continous-time hybrid systems. That earlier these results will, in general, answer
is, for a discrete-time hybrid system to be a.s. the stability issue but will not provide enough
uniformly asymptotically stable it is necessary information about the qualitative behavior of the
and sufficient to have A1 <O. However, it would system. That is, how fast or how slow the system
be very impractical to use (18) to compute A1  is converging or diverging. However, the first
(i.e., compute (18)). Therefore, one way to result is an exact result (i.e., exact Al). It
avoid this difficulty is to use the Furstenberg- allows a complete quantitative and qualitative
Kesten Theorem to derive simpler criteria to test analysis in an important special case.
for the a.s. stability of the system.

As it is stated in the PKT, Xl is an infimum Theorem 3
of a particular set. Consequently, if any of the A homogeneous N-form hybrid system with a
elements of this set is negative one concludes, stationary irreducible FSMC, is a.s.
using the property of the infimum, that the exponentially stable with A1---, provided that
system is a.s. exponentially stable. However, by the set N containd a nilpotent set.
not knowing exactly A1, it is not possible to The first result says that a homogeneous N-
tell how stable the system is. That is, by form hybrid system is a.s. stable, and its A1 ---,
exploiting this property to alleviate the if the set of N-matrices of the hybrid system
computational burden, we are loosing some contains a nilpotent set.
qualitative insight about the dynamical behavior This result is the analog of the stability
of the system. This qualitative insight can be result of a homogeneous difference equation with
crucial for application purposes. First we need a nilpotent matrix. These difference equations
additional definitions, converge to zero in no more than n steps. That

is, by analogy, hybrid systems with a nilpotent
Definition 2 set of matrices are very fast systems. This is

A set S.{Hi, i-1, ...,N) of nxn matrices is confirmed by the fact that A1'--.
nilpotent provided there is a a k-termed sequence The next result is more general but less
(Hi), such that k is finite and the matrix powerful in the sense that it does not provide us

with A1 .

nk  1 Hk  
... H2H I  

(19)

Theorem 4
is nilpotent. The least number e for which the A homogeneous N-form hybrid system with a
power of the matrix Rk is null is called the stationary irreducible FSMC, is a.s.
index of nilpotency. exponentially stable, provided that the set N

In case S is a singleton the above contains a contractive set.
definition is identical to the usual definition As an attempt to alleviate the shortcomings
of nilpotency. of the latter theorem we provide an upper bound

for A1 similar to the one given for continuous-

Proposition 1 time hybrid systems. However, this bound does
If S contains a nilpotent matrix then the not involve the logarithmic norm concept, but it

set is nilpotent and its index of nilpotency e is is derived via a simple computation.
less or equal to the index of nilpotency of the
nilpotent matrix. Theorem 5

The LSR of a homogeneous N-form hybrid
Definition 3 system with a stationary irreducible FSMC

The set S-(Hi, i-i ....... N of nxn matrices satisfies the following inequality
is said to be contractive provided that there is
a k-termed finite sequence (Hi) and a norm, such N
that Al S C piLoglAil. (22)

Ifk ... H2HII S a < 1. (20) i-l
The next result is based on the work of Katz
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and Thomasian (37]. Along 'wth the FMT it Actually what the theorem says is that the
provides a mean by which one can estimate the Lyapunov spectral radius can always be made
least number of matrix multiplications in the Al- negative, more precisely -, if the two
formula for which the probability of having a conditions of the theorem are met. The first
large error is minimized, condition, as discussed several times in 126], is

a necessary condition for the hybrid system to be
Theorem 6 controllable, therefore, it is the weakest

Given a homogeneous N-form hybrid system controllability condition. This condition is the
with a stationary and irreducible FSMC, a strongest part of this theorem. However, the
positive integer m and c>O. Then second condition is quite restrictive and maybe

impractical.
N

P((1/n) E LoglAi| - LSR I c for some n~mj 4. CONCLUSION
iI

5 2mExp{-Oc2m}, (23) The a.s. exponential stability criteria
where presented in this paper are simple to compute,

= p3N/2862N2 , (24.a) consequently they alleviate the computational
shortcomings of Lyapunov exponents. However,

S= 8N/pN(1 - Exp{- c2 )), (24.b) these tests are only sufficient and they can be
with quite conservative, hence they require further

6 - maxLogiAi| - minLogIAji,(25.a) study.
iem jCN The a.s. stabilizability theorem can be

viewed as a generalization of Wonham
LSR+ - Z piLoglAi| . (25.b) stabilization theorem. Actually what the theorem

icN says is that the Lyapunov spectral radius can
and p is the largest entry in the steady-state always be made negative with probability one,
probability vector, more precisely --, if certain conditions are met.

This result tells us when to stop the time One additional problem of interest is to
average of the Xl upper bound and still get a find wether the eigenspaces idea carries over to
good approximation. This might seem useless hybrid systems and its usefulness.
since we have a simple expression for LSR+.
However, the LSR+ is an upper bound for Xl, R NCE
therefore, this stopping rule can be used as an
approximate stopping rule in computing the LSR. [] A. S. Dabs, and A. R. Benson, "Security

assessment of power systems," Proc of the
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for Power: Status and Prospects, Publication
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SINGULAR PERTURBATION IN PIECEWISE-LINEAR SYSTV(S 1
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ABSTRACT functions, u>O is a small parameter, and xcRP and
zeR

r
. The functions are affine in specific

This paper analyzes piecewise-linear systems

which are singularly perturbed. A technique is regions of the state space (R
p+ r ) where a region

developed that allows decoupling of such systems is typically defined as an intersection of half-

into fast and slow subsystems for analysis and spaces. For example, equations (1) and (2) are

design. The results of a numerical example are represented in the ith region by the following
included to demonstrate this technique. "linear" system:

i - A11 ix + A1 2 ia + z(3

1. INTRODUCTION
UZ = 2IX + A11 ~ 4

Piecewise-linear systems which are singularly 
A 2 1 X+A 2 2 Z+w 2

perturbed are found in many applications includ- For the purposes of this paper, the ith region is
ing electrical circuits and flight controls. The defined by the set Siu{(x,z): diil K x+Kzz S di }
piecevise-linearity may be due to nonlinear

elements such as saturation or may result from a where Kx and Kz are row vectors and di. < di are

linearization about various operating points of a scalars. By this definition, the type of regions
nonlinear plant. These types of systems are allowed are parallel in that the boundaries do
numerically very stiff and, hence, are difficult not intersect. An example of a physical system
to analyze. This problem may be alleviated by which has this description is one in which the
using singular perturbation theory to separate piecewise-linear element is in a scalar feedback
the system into reduced-order models, one loop. The reason for the restriction will be
containing the slow dynamics and one containing discussed in Section 2.
the fast dynamics. Reduced-order models are
easier to use in analysis and design by lessening The system given in equations (1) and (2)
the computation complexity. In addition, time- contains both fast and slow dynamics. The
integration of the lower order systems instead of variable x is primarily slow while z has both
the full order model reduces computation time fast and slow components. Starting from the
since a larger time step can be used for the slow initial conditions of equations (1) and (2), the
dynamic model. The use of standard singular fast part of z quickly dies out and z converges
perturbation techniques, however, requires that to a quasi-steady-state value (i.e., the slow
the system dynamical equations be smooth (1,2] component) in a short time interval [t0 ,t0+6)
ruling out their use on piecewise-linear systems. known as the boundary layer. The fast component
This paper extends the general method of singular of z is then known as the boundary layer solu-
perturbation for application to continuous tion. The solution of the system outside of the
piecewise-linear systems. boundary layer is termed the outer solution. It

is desired to decouple system (1)-(2) into fast

1.1 Problem formulation and slow models which yield the boundary layer
solution and the outer solution, respectively.

The system considered in this paper may be The boundary layer solution is then used as a

represented in the following form: correction term to the outer solution so that the
combination is an approximation for the original
system with errors of order 0(p). A technique to

= f1 (x.z), x(t0) - X (1) decouple the system is developed in this paper.

ui - f2(x,z), z(t0 ) " z 0  (2) The following is an outline of the paper.
Section 2 discusses the boundary layer solution

where: f, and f2 are continuous piecewise-linear and developes a reduced-order model to approxi-

1 This research is supported by the U.S. Air Force under contract 708635-84-C-0273 (with the Armament
Laboratory) and AFOSR-87-0308.
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mate this solution. The outer solution along 2.1 Algorithm to Solve for Equilibrium Point
with a corresponding reduced-order model is
discussed in Section 3. A numerical example is The Katzenelson algorithm is widely used
presented in Section 4 to demonstrate the tech- insolving for x in the equation
niques developed in this paper. Section 5 con-
cludes the paper. f(x) - y (6)

BOUNDARY LAYER SOLUTION where f:Rr-Rr is continuous and piecewise-

linear. The basic outline of this algorithm used

The fast dynamics of the system are most in solving 1(i)-0 is given below. More details

prominant during the boundary layer and can be of the general method are given in [4]. Let

decoupled from the slow dynamics by introducing Wi - A2 Jx0 +wJ Vj, and denote the iteration
an expanded time scale x - (t-to)/m. Examina- number on z. and A by superscripts.
tion ur equatio, k) sl.as that .. stay rela-
tively constant with respect to I assuming that 0) initialize by letting il and zsi-z 0
A,,i, A,2i and w1

i are bounded in all regions Si  1) solve Z . -(A22 i)'Wj, where region R
[1]. Equation (2) may be rewritten as follows: contains z i

dz 2) if z lies in region Rj then z, - z and stop
7t 3) otherwise, let Rk be the region containing z;

where i(%)-z(w%+t0 ) and '(z)=f 2(x0,z). The if k>j then d - d and then let j=j+l
function f is a continuous piecewise-linear

mapping from Rr into Rr. The state space in R
r  if k<J then d = d1_I and then let j-j-

1

is partitioned into regions where the function is 4) solve X1 - (Kzzs+Kxxo0d)/Kz(ZsL.z)
affine; e.g., the ith region is defined as the 5) solve Zsi+ i - Ai(,si-Z)
set Ri-(z: di. 1  < KxX0+KzZ di). A degenerate 5) slet 25 ad g to )

case where Kz=0 results in the existence of only

one region in Rr so that f is affine everywhere. It is shown in [4] that if the piecewise-linear

The initial quasi-steady-state value, of function is a homeomorphism (e.g., it satisfies
z(t) is a stable equilibrium point of (5). Note the conditions of Theorem 1) then the algorithm(s).Notewill converge in a finite number of steps.
that the equilibrium point of the degenerate case

is easily found.
2.2 Boundary Layer Approximation

The equilibrium point(s) of (5) for the
nondegenerate case can be found using solution A fast model approximating the dynamics
techniques developed for piecewise-linear resis- occurring in the boundary layer can be found once
tive networks. Many papers have been written on the equilibrium point of system (5) is known.
finding the solution x of the equation f(x)-y The boundary layer solution is then given as
where f is a continuous piecewise-linear func- if(T) - z(%)-zs(t0 ). In this application, z.
tion, e.g. [3-9]. Fujisawa and Kuh show in [4] must be found implicitly because f2  is not
that a continuous piecewise-linear function smooth. Therefore, the fast model approximating
satisfies a Lipshitz condition. The following the boundarytayer solution is given in terms of
theorem from (4] gives sufficient conditions for z. In the i region the fast model is given by
the existence and uniqueness of the solution. di i+ i

Theorem 1: Let f be a continuous piecewise- A(

linear mapping of Rr into itself and let Jik Zf(T) = i(T) - Zs(t0 )
denote the matrix composed of the first k rows th
and columns of the Jacobian matrix ji in region where the I region is defined by the set Ri-{z:
Ri . The mapping is a homeomorphism of Rr onto di K 0 + K i S di
itself if, for each k-1,2,...,r, the determinants diZ 

z

of the kxk matrices For the purposes of this paper, it is assumed

that there exists exactly one equilibrium point

J1 k,J2k,..,Jrk which is asymptotically stable. Multiple stable
equilibrium points may be handled by partitioning

do not vanish and have the same sign. the state space into domains of attraction for
the various equilibrium points and the analysis

This previous work is used in finding the in this paper holds for each domain of attrac-
equilibrium point(s) of system (5) by solving tion.
f(i)=0. In this application, Ji - A22 1 and each
A2 2

i  is assumed to be Hurwitz for stability Asymptotic stability is assumed in this system
purposes. The conditions of Theorem I may be though there is no known general method for
stringent and various other sufficient conditions determining asymptotic stability of piecewise-
for the existence and uniqueness of the solution linear systems. Depending on the specific system
are given in [9-11). Also, reference [12] under consideration, a Lyapunov function may be
discusses nonunique solutions. found. Another possibility is to use standard

SISO frequency domain techniques or hyperstabil-
ity. For using hyperstability notions, system
(5) may be rewritten as
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di . Ai + Bu (8) where di'-di-Kxx.. Assume i,i>0. For i to cross
d.X di dithe boundary, -<0 where is given by expres-

where A is chosen to be stable, B is the identity sion (11). Correspondingly, !L < 0 where d is
I, and u is defined in the ith region' to be d-

given by expression (12). At the boundary
u=AAii+AI2ix0+Wzi where &AI=A2i-A. If the crossing, i(T')-0 so that Kzi-di'-O(u). It
nonlinearity in the feedback loop satisfies the follows that s(x')"O(m).
Popov integral inequality, then the necessary and
sufficient condition for asymptotic stability is Since !L -O(P° ) then 0O(u0 ). Hence, 8 c-O(u)
that the transfer matrix (sI-A)' maust be since Ai-iW)=O(p). Therefore, if i crosses a

strictly positive real [13]. boundary into a new region at ', then i must
also cross into the same region at a time t" such

The errors in this approximation, which are that 0-0'+O(u),
of ordcr Z2. ara due to th. substitution of x,
for x in (7) and in the definition of the It remains to be shown that the time difference
regions. Substituting • = x0 + 0(p) in (7) and of 0(0) in the boundary crossing has O(w) effect
in R i yields the system on the solution. Let A - A12 i and &A = A21J - A

where R is the new region and %O<T' be such that

dj A21 (xo+O(w)) + A2 2ia + w2  i(0)z 0  (9) both Z(%,) and i(xo ) lie in region Ri. Then the
solution of (7) for x> ' is

HR = (i: d 1 +O() < xx°+Kzi I di+0()) z(r) - *(t, 0)i(x0 ) 9+ r(t'o)(MW+A*i x°+wiJ)dc

where i represents the actual response. In the
interior of any particular region, both the '(x (15)
approximation and the actual model are linear. + Wto)(A,, xo4w2 ) do
Previous results on singular perturbation theory Fo

in linear systems show that if i(W')-i(W')+O(u) where *(ti') = exp[A(x-%')]. Since the inte-
then i(x")i(T")+0(u) for -0>-' as long as both i grands are bounded in both integrals and t"-T'
and i stay within the region. The problems that -O(P), equation (15) is rewritten as
may arise due to a boundary crossing are elimin-
ated if the class of systems allowed is restrict- + (,) +)(W j+Aljxo+wjJ)d°
ed to those in which the vector field intersects PC,,
a boundary hyperplane at a large enough angle T,, (16)
(i.e. O(u)). In these systems if either i or i + (%,o)(A2,iXG+W2 )

crosses into another region, the other must alsos 4d0
cross into that region. The resulting error in
the approximation remains of order 0(m). These Similarly, the solution to equation (9) is found
conditions are sumarized in the following to match the form of equation (16) exactly.
theorems. Note that the restriction placed on Hence, z( )i( )+O(u). U
the class of systems is sufficient and not
necessary for proving that the approximation Theorem 3: Let the vector field near a
error is of order O(N). boundary at di-Kzi+Kxxo in the space Rr be given

by
Theorem 2: Let the vector field near a

boundary at di=Kzi+Kxx0+O(u) in the space Rr be f(z) - A2 1 i x0 + A 2
i z + w2i. (17)

given by Assume that I() does not vanish near the.
f(i) = A2 1 i (x0+O(U)) + A 2

1i ' + wli . (10) boundary. If f(M) intersects the boundary with
an angle of order O(WO), then the difference

Assume that f(i) does not vanish near the between the solutions of (7) and (9) is O(w).
boundary. If f(i) intersects the boundary with
an angle of order O(W0 ), then the difference Proof: The proof is very similar to that of
between the solutions of (7) and (9) is 0(). Theorem 2. The gist of the proof is to show that

if i crosses the boundary prior to a crossing of
Proof: Assume z crosses the di boundary at i, then i must cross within a time of order O(W).

'and z has not crossed yet. Prior to crossing The time delay in crossing affects the error in
- z + 0(p). The normal vector of the boundary the approximation only by order 0(u).

hyperplane is given by n=K.zT/IKzI. Since f(z).n
- O(u0 ). then Using the results of Theorems 2 and 3 it is

seen that the errors in the approximation are of
Kz(A 2 1i (x0+O(P)) + A,,

1 i + w2 ) - 0(W). (11) order 0(0). The restriction given in Section 1
that the regions of linearity be parallel is used

It follows that in the proof of the theorems but is not a neces-
sary condition. The difficulty is showing that

Kz(Azi xo + A22
1 i + w2i) - 0(W) (12) if a solution crosses a boindary near an inter-

section of boundaries then the approximation will
Define i and i by remain within an error of order O(u).

i -Kz - di ' (13)

= z - di ' + O(p) (14)
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3. OUTER SOLUTION -(A22i)-(A 21 xi + w+i) +

A reduced-order model for system ()-(2) is (A221 1)'(A FI'l x) 4 v 2 i&2) = 1 (21)

developed below with approximation errors of
order 0() for the time outside of the boundary Adding equation (21) to equation (20), suborac-

layer. Assuming that the fast subsystem given in ing the ;-sult from (19) and taking the norm of

equation (7) is asymptotically stable to its both sides yield.:

equilibrium point, the fast component of z is
negligible outside of the boundary layer. Izs8 -zsj1 - t(&22i+'l) iA 1i+I( -x\I I

Therefore, the variables of the reduced-order
slow model are x and the quasi-steady-state value |(A22i+1)'iA2i'+lllxa-X1 l
za of z. Here. z• is the equilibrium point of
(7) when x. is replaced with X. Hence, the ore -b szt:zfle. . L4SIhiLZ coi,..ition in the

valXe tf 4 is a co,4cinuous open halfspace in region Si+j .  Therefore, z. is
implicit function of x. (Continuity is shown continuous for x such that (x,z,) lies on a
below.) The value of z. can be determined by boundary hyperplane. Thus, z. is a continuous
using the Katzenelson algorithm (see Section 2.1) function of x. 0
with x substituted for x,. The algorithm is
initialized with z.1 equal to the previous value The reduced-order slow model of system (1-
of zs . Due to continuity, a small change in x (2) for t outside of the boundary layer, i.e.
results in a small change in zs . Hence, in time- t>t0 +6, is given as follows:
integrating the system, generally only steps 0)-
3) are used to find a new z. at each time-step. isa Alm + Allizs + w li ' xs(t,)-x, (22)
Continuity of z. as a function of x is shown in
the proof of the following theorem, where zs  is an implicit function of x and is

found using the Katzenelaon algorithm.

Theorem 4: Let f:Rr.Rr be a continuous

piecewise-linear mapping defined in the ith The error in the approximation is 1le
region by entirely to the fact that z-z+0(U). This error

is analogous to the error of approximating x by
f(z) - A2 i x + A2,i z + w2 i (18) x6 in the boundary layer solution. Therefore,

the effect of the error can be analyzed similarly
If f is a homeomorphism then the equilibrium as in Theorem 2 and 3 showing that the errors in
point zs of (18) is given by a continuous the solution are of order 0(m).
function of x.

Proof: Since f is a homeomorphism, a unique 4. EXAMPLE

solution for zs exists for any x. Let x, be The techniques previously described for
given with resulting z• given by z•,1. separating a piecewise-linear singularly per-

Let Si denote the region of (x1 , s,) in Rp+r turbed system are demonstrated on the example
Suppose (x,.z5,1 ) lies in the interior of region below. The model represents a linear system with
Si . Then zs,1 can be written as a saturation nonlinearity in the feedback loop.

Such types of models exist in both flight
Zs,l " -(A221)'1 (A2li xl + w i) (19) controls and in electrical circuits. The system

It is clear that z. is a continuous function 
of x is given by

at x, supposing that there exists a 6>0 such that i a Al1x + Al2z - Blu (23)
(x,zs) lies in region Si for all x such that pi A,1 x + A,1 z , B2u (24)

1x1-xI<(. Defining M a Xx - K(A 22i)-
1A21

i and ( -1 if K%2 x+Zz < -1

die a d + Kz(Az i)l1v2 i (for jai-1.i), a 6 is u jKXX+ Z, if jV'x+tzj]l

given by 1 . if Kx+Kz > 1

8 - min IMtdiI-Mx,)l , 1Mt(Kx, di. ' where u0.1. The parameter matrices are given as
follows:

where Mt - XT(HHM') 1* Therefore, es is a contin- V3
uous function of x for all % such that (x.Z,) Al 4 AIL - [.0 5 B
lies in the interior of a region. A

Suppose X, is given so that (x1 ,, ) lies on a o.t) [0'
boundary, say diUKx,+Xtza5±. Choose X2 close to A21 [a -o.s5 A22, [O.A65 B.6 ,) ; - 0
x, resulting in sZ.  If (x,,s, ) lies in
region Si then the above analysis is applied and
zs Is considered to be continuous from the closed Xx - [1 0.961) Is - 11.220 0.3101
hlfspacs in region Si.  If (xjzs,=) lies ini nregion Si+' then The initial conditions are given as x(O) - z(O)

[2. 3-'.

9e.2 - -(A22i+l)'(A2,i+l X2 + w2
+1 ) (20) The substitution of u into (23)-(24) yields a

A consequence of the continuity of f is that piecewise-linear model, with three regions:
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Sx((x.Z):L~x4Kzz<1). Sz((x~z):IKx+K~zil) and [7] T. Ohtsuki, T. Fujisawa and S. Kumagai,

S3{((Xz): xX z>l). The initial condition is "Existence Theorem and a Solution Algorithm
for Piecewise-Linear Resistor Networks,"

in S3 . SIAM J. Mathematical Analysis, vol. 8, pp.
69-99, Feb. 1977.

The reduced-order models 
given in the form of

equations (7) and (22) are used in finding the 18] S.M. Kang and L.O. Chua, "A Global Represen-
time response. Comparisons between these results tation of Multidimensional Piecewise-Linear

and those obtained by time-integrating the full Functions with Linear Partitions." IEEE

order model are shown in Figure 1 through Figure Trans. Circuits and Systems, vol. CAS-25,
4. Note that the approximation matches the pp. 938-940, Nov. 1978.
actual response very closely, i.e. within an
error of order O(u). The computation time for W.C. Rheinboldt and J.S. Vauidarg.:afL, A,

the approximation was roughly one-third of that Piecewise Affine Mappings in Rn," SIAM J.
for the actual system. Furthermore, as the value Appl. Math., vol. 29, pp. 680-689, Dec.
of p decreases, the approximation becomes more 1975.

accurate and cho relative computation time
decreases due to the Yuimerical stiffness in the (10] V.C. Prasad and P.B.L. Gaur, "Homeomorphism

actual system. of Piecewise-Linear Resistive Networks,"

Proc. IEEE, vol. 71, pp. 175-177, Jan. 1983.

5. SUM [1j] M. Kojims and R. Saigal, "On the Relation-

A singular perturbation technique is devel- ship Between Conditions that Insure a PL

oped in this paper which allows for a decoupling Mapping is a Hom..rhism," Mathematics of

of a continuous piecewise-linear system into slow Operations Research, vol. 5, pp. 101-

and fast subsystems. Under the assumption of 109, Feb. 1980.

asymptotic stability, the fast variable is found
to decay in the boundary layer to its quasi- [12] S-H Lee and K-S Chao, "Multiple Solutions of

steady-state solution. This quasi-steady-state Piecewise-Linear Resistive Networks," IEEE

solution is given by a continuous implicit Trans. Circuits and Systems, vol. CAS-30,

function of the slow "arlable. The solution is pp. 84-89, Feb. 1984.

found using the finite step algorithm given '-
the paper. Sufficient conditions for the (13] Y. D. Landau, Adaptive Control - The Model

approximation to be accurate to an order of O(M) Reference Approach, arcei Dekker, 1979.

are given. The technique developed is success-
tuily iUl--trated via a numerical example.
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actual system (solid line) and approximated actual system (solid line) and approximated
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Technical Notes and Correspondence

Singular Perturbation In Piecewise-Linear Systems II. BOUNDARY LAYER SOLUTION

B. S. HECK AND A. H. HADDAD The fast dynamics of the system are most prominent during the
boundary layer and can be decoupled from the slow J,..amics by

,Aostract-This acte analyzes plecewlse-linear systems which are singu- introducing an expanded time scale r = (I - to)/M. Examination of (1)
larly perturbed. A technique Is developed that allows decoupling of such shows that x stays relatively constant with respect to r assuming that A '1,
systems Into fast and slow subsystems for analysis and design. The results A,, and w' are bounded in all regions Sj [1]. Equation (2) may be
of a numerical example are Included to demonstrate this technique, rewritten as follows:

I. INTRODUCTION =- )
dr()

Piecewise-linear systems which are singularly perturbed are found in
many applications including electrical circuits and flight control. The where t(r) = z(at + to) and f(t) = f2 (xo, f). The function f is a
piecewise linearity may be due to nonlinear elements such as saturation or continuous piecewise-linear mapping from R' into R'. The state space in
may result from a linearization about various operating points of a R' is partitioned into regions where the function is affine, e.g., the ith
nonlinear plant. These types of systems are numerically very ff and, region is defined as the set R, - {z:d 1 , < K.xo + Ktz g d}. A
hence, are difficult to analyze. This problem may be alleviated by using degenerate case where K, = 0 results in the existence of only one region
singular perturbation theory to separate the system into reduced-order in R'so thatfis affine. The initial quasi-steady-state value, z,(to), of z(t)
models, one containing the slow dynamics and one containing the fast is a stable equilibrium point of (5). Note that the equilibrium point of the
dynamics. The use of standard singular perturbation techniques, however, degenerate case is easily found.
requires that the system dynamical equations be smooth [1], [2] ruling out The equilibrium point(s) of (5) for the nondegenerate case can be found
their use on piecewise-linear systems. This note extends ihe general using solution techniques developed for piecewise-linear resistive net-
method of singula perturbation for application to continuc.i piecewise- works. Many papers have been written on finding the solution x of the
linear systems, equationf(x) - y wherefis a continuous piecewise-linear function, e.g.,

[31-[91. Fujisawa and Kuh show in [4] that a continuous piecewise-linear
A. Problem Formulation function satisfies a Lipshitz condition. The following theorem from [4]

gives sufficient conditions for the existence and uniqueness of the
The siem considered in this note may be represented in the following solution.

form: Theorem 1: Letfbe a continuous piecewise-linear mapping ot R" into
it-f,(x, Z) X00 )- X0  (1) itself and let J, denote the matrix composed of the first k rows and

columns of the Jacobian matrix J1 in region R. The mapping is a
At -f 2 (x, Z) z(to)-zo (2) homeomorphism of R' onto itself if, for each k = 1, 2, r, the

where f, and f2 are continuous piecewise-linear functions, j > 0 is a determinants of the k x k matrices
small parameter, and x E R P and z E R'. The functions are affine in Jz .... ;
specific regions of the state space (RP *') where a region is typically "
defined as an intersection of halfspaces. For example, (1) and (2) are do not vanish and have the same sign.
represented in the ith region by the following linear system: This previous work is used in finding the equilibrium point(s) of system

2 - A ',,x + A ,z w, (3) (5) by solving f(t) = 0. In this application, 3e.t=A,x+.Anz+w (3) aplcto, = A,, and each A~a is
assumed to be Hurwitz for stability purposes. The conditions of Theorem

g=A ,x+A hz+ w. (4) 1 may be stringent and various other sufficient conditions for the existence
and uniqueness of the solution are given in [9]-[l 1]. Also, [12] discusses

For the purposes of this note, the ith region is defined by the set S, - {(x, nonunique solutions.
z):d,_1 < K,x + Kz g d) where K, and K, are row vectors and di,.
< di are scalars. By this definition, the type of regions allowed am A. Algorithm to Solve for Equilibrium Point
parallel in that the boundaries do not intersect. An example of a physical
system which has this description is one in which the piecewise-linear The Katzenelson algorithm is widely used in solving for x in the
element is in a scalar feedback loop. The reason for the restriction will be equation
discussed in Section UI.

The following is an outline of the note. Section II discusses the f(x) -y (6)
boundary layer solution and develops a reduced-order model to approxi-
mate this solution. The outer solution along with a corresponding wheref:R'-, R' is continuous and piecewise linear. The basic outline of
reduced-order model is discussed in Section ITM. A numerical example is this algorithm used in solving f(t) = 0 is given below. More details of
presented in Section IV to demonstrate the techniques developed in this the general method are given in [4]. Let WJ = A21jxo + wJ Vj, and
note. Section V concludes the note. denote the iteration number on z, and X by superscripts.

0) Initialize by letting i = I and z' = zo.
Maacript received October 4, 1987; revised Febnrhy 16. 1988 and April 13, 1988. I) Solve z = - (AJ)- I WJ, where region Rj contains z,.

This work wa mpported by the U.S. Air Porce under Contract P08635-4-C-0273 (with 2) If z lies in region Rj, then z, = z and stoo.
the Armment Lsboratoy) aid by AFOSR-87-0308. 3) Otherwise, let R, be the region containing z;
B. S. Heck is with the School of Elecical Enineering. Oeorgia Irsitute o If k > j, then d - di and then let jj + I

Tedmooloy. Adam. GA 30332-0250. If k < I, then d - dn - 1.
A. H. Haddad wm wi tw School of Elecul Eagineering. oeorgialnitituae of I d Iandthenletj

Techfology. Adam GA 30332-02.M. He is now with the Departent of Electrical 4) SolveX' - (Kz, + Kxro -d)lK,(z
, 

- z).
Enineering sid Comlpter Scienoe, Nordiwestem Universty. Evanston, IL 60208. 5) Solve z"' z, - X'(z" - z).

IEEE Log Number =33o02. 6) Let I - i + I and go to I).

0018-9286/89/0100-0087S01.00 © 1989 IEEE



88 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL 34. NO I. JANUARY 1989

It is shown in [4] that if the piecewise-linear function is a homeomor- Proof: Assume Z crosses the d, boundary at T' and f has not crossed
phism (e.g., it satisfies the conditions of Theorem I), then the algorithm yet. Prior to crossing f = f + O(ju). The normal vector of the boundary
will converge in a finite number of steps. hyperplane is given by n = K[/)1K I. Sincef(z)'n * 0(p), then

B. Boundary Layer Approximation K,(A' (o + 0(A)) + A + w) # 0(L). ()

A fast model approximating the dynamics occurring in the boundary It follows that

layer can be found once the equilibrium point of system (5) is known. The K,(A ',,xo +A ,, + w1) Ot0(). (12)
boundary layer solution is then given as f((7) = f(r) - z,(to). In this
application, z, must be found implicitly because f2 is not smooth. Define I and f by
Therefore, the fast model approximating the boundary layer solution is
given in terms of 2. In the ith region the fast model is given by 1=K .- d,' (13)

df= A.xo + A ,.+ w f(0) = zo S=Kr -d' +O(A) (14)
dr "2 w

where d' = d, - K xo. Assume 1, 9 > 0. For Z to cross the boundary.

(T) = Z(7) - Z, (to) (7) dI/dr < 0 where dI/dr is given by expression k iI). Correspondingly.
dS'/dr < 0 where dI/dr is given by expressicn (12). At the boundary

where the ith region is defined by the set Ri = (:d- I < Kxxo + 1M2 crossing, 9(r') = 0 so that KZ - d,' = 0(j). It follows that 9(r') =
d,}. O(p). Since df/dr ± 0(;), then 4,f/ar * 0(p). Hence, ,A" = 0(p)

For the purposes of this note, it is assumed that there exists exactly one since A = 1,0r') = 0(p). Therefore, if f crosses a boundary into a new
equilibrium point which is asymptotically stable. Multiple stable equilib- region at r', then 2 must also cross into the same region at a time 7' such
rium points may be handled by partitioning the state space into domains of that r = , + 0(p).
attraction for the various equilibrium points and the analysis in this note It remains to be shown that the time difference of O(i) in the boundary
holds for each domain of attraction. crossing has 0(p) effect on the solution. Let A = A and AA = A I -

Asymptotic stability is assumed in this system although there is no A where Rj is the new region and let r0 < r' be such that both t(ro) and
known general method for determinirg asymptotic stability of piecewise- '.r.,) ;ie in region Rj. Then the solution of (7) for r > r' is
linear systems. Depending on the specific system under consideration, a
Lyapunov function may be found. Another possibility is to use standard t ((r, a)(AA .+A.xo+ wj) dof (7)=(r, r0) f(To) +2SISO frequency domain techniques or hyperstability. For using hypersta- ,.
bility notions, system (5) may be rewritten as

d2+ *,(r, o)(A'2tx0+ w'z) do (15)
-= A 2+Bu (8)0
d"

where 4(r, -') = exp [A(r - r')]. Since the integrands are bounded in
where A is chosen to be stable, B is the identity 1, and u is defined in the both integrals and r' - r' = O(p), (15) is rewritten as
ith region tobe u = AA' + A ,,xo + wi where4AA = A i - A. Ifthe
nonlinearity in the feedback loop satisfies the Popov integral inequality, (r)=4,(r, r0)2(r0)+ * (r, a)(sAt+A21xo+ w.2) do
then the necessary and sufficient condition for asymptotic stability is that
the transfer matrix (sI - A) I must be strictly positive real [13].

The errors in this approximation, which are of order O(p), are due to + 4*(7, o)(A ',,xo + w') do + 0(;L). (16)
the substitution of x0 for x in (7) and in the definition of the regions. a

Substituting x = xo + O(p) in (7) and in R, yields the system Similarly, the solution to (9) is tound to match the form of equation (16)
exactly. Hence, Z(r) = t(r) + 0(p). 0

Z 0 )(0) = zTheorem 3: Let the vector field near a boundary at d, = K2 + Kxo
d7 in the space R' be given by

R,= I2: di-, + 0(u)<Kxo+ K,1 * d,+ 06) (9) f(f)=A',xo+A '.+ wi. (17)

where Z represents the actual response. In the interior of any particular Assume that f(e) does not vanish near the boundary. If f(2) does not
region, both the approximation and the actual model are linear. Previous intersect the boundary with an angle of order O u), then the difference
results on singular perturbation theory in linear systems show that if Z(r') between the solutions of (7) and (9) is of order O(p).
= .(r') + 0(W, then t(r') = t(r') + 0(p) for r' > r' as long as Proof. The proof is very similar to that of Theorem 2. The gist of the
both Z and I stay within the region. The problems that may arise due to a proof is to show that if t crosses the boundary prior to a crossing of Z, then
boundary crossing are eliminated if the class of systems allowed is f must cross within a time of order O(js). The time delay in crossing
restricted to those in which the vector field intersects a boundary affects the error in the approximation only by order O(&).
hyperplane at a large enough angle [i.e., * O(&)]. In these systems if Using the results of Theorems 2 and 3 it is seen that the errors in the
either I or f crosses into another region, the other must also cross into that approximation are of order O(p). The restriction given in Section I that
region. The resulting error in the approximation remains of order O(A). the regions of linearity be parallel is used in the proof of the theorems but
These conditions are summarized in the following theorems. Note that the is not a necessary condition. The difficulty is showing that if a solution
restriction placed on the class of systems is sufficient and not necessary crosses a boundary near an intersection of boundaries, then the
for proving that the approximation error is of order O0(). approximation will remain within an error of O(jA).

Theorem 2: Let the vector field near a boundary at d, = Kt + Kxo
+ O(/i) in the space R" be given by

IL. OUTER SOLUTION
f(') = A ;(xo +0(/)) + A 2+ w[. (10) A reduced-order model for system (i) and (2) is developed below with

Assume that f(t) does not vanish near the boundary. If f(2) does not approximation errors of order 0(u) for the time outside of the boundary
intersect the boundary with an angle of order O(), then the difference layer. Assuming that the fast subsystem given in (7) is asymptotically
between the solutions of (7) and (9) is of order O(a). stable to its equilibrium point, the fast component of z is negligible outside

of the boundary layer. Therefore, the variables of the reduced-order slow
'A * O() isusedtomeanIA /Ql - + au i-s0. model are x and the quasi-steady-state value z, of z. Here, z, is the
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equilibrium point of (7) when x0 is replaced with x. Hence, the quasi-
steady-state value of z is a continuous implicit function ofx. (Continuity is
shown below.) The value of z, can be determined by using the
Katzenelson algorithm (see Section fl-A) with x substituted for xo. The
algorithm is initialized with z, equal to the previous value of z5. Due to

continuity, a small change in x results in a small change in Z, Hence, in
time-integrating the system, generally only steps 0)-2) are used to find a
new z, at each time-step. Continuity of z, as a function of x is shown in the
proof of the following theorem.

Theorem 4: Let f:R' - R' be a continuous piecewise-linear mapping -

defined in the ith region by
X

f~) A ,x+ A .:+ w .,8
0'

ff is a homeomorphism, then the equilibrium point z of (18) is given by
a continuous function of x.

Proof.- Sincef is a homeomorphism, a unique solution for z, exists 0
for any x. Let x, be given with resulting zs given by z,.,. Let S, denote the 00 -5-0 00

region of (x,, zI,) in R- -'. d 00 50 500 7 So

Suppose (xi, z,.j) lies in the interior of region S1. Then zs,* can be TIME (SEC)
Fig. I. Response of x, to initial condition for actual system (solid line) aud

w e aapproximated system.

z,,- -(A',)- I(A',x, + w'). (19)

It is clear that z, is a continuous function of x at x, supposing that there The model represents a linear system with a saturation nonlinearity in the

exists a 6 > 0 such that (x, z,) lies in region S, for all x such that 11x, - feedback loop. Such types of models exist in both flight controls and in

xl1 < S. Defining M = K, - K (A i'Aa d; = + electrical circuits. The system is given by

AK(A ) -Iwl(forj = i - 1, i), a 6 is given by x=Ajjx+Aj 2z-Blu (23)

6=rain [[IMr(dl'-Mx,)q, 0M(Mx-d,-,)[j] 92A2tx+A,,z-B2u (24)

where M = Mr(MMr- i. Therefore, z, is a continuous function of x

for all x such that (x, z,) lies in the interior of a region. 1, if Kx +Kz < - I

Supposex, is givensothat (xi, z,.,)liesonaboundary, say d - Kx Kx +Kz, if iKx+Kz g I

+ K:z,,,. Chooxe x2 close to x, resulting in z, = z4.2 If (X2, z,.2) lies in

region 5, then the above analysis is applied and z, is considered to be if Kx+Kz> I

continuous from the closed halfspace in region St. If (x2, Z1.2) lies in where s - 0. 1. The parameter matrices are given as follows:

region S, ,+, then (0] o B=[o]

zZ 2=_(A a )- (A + x2+w4,+). (20) 0H 0 0.34500

A consequence of the continuity of f is that 0 -0.524 -0.465 0.2621 [ 01
-(AS -l 0 + +] A.- 0 -621

,,A) '(A',x. , )(A )- (A'- X +w" ')=0. (21)

Adding (21) to (20), subtracting the result from (19) and taking the norm K,=[1 0.8611 K,=[l.220 0.3101.

of both sides yields The initial conditions are given c s x(0) = z(0) = [2. 3.]
This substitution of u into (23) and (24) yields a piecewise-linear

I. . 2 2ll ) ( (A ')-'A'2*'II 1Ix -X, ll model, with three regions: St = {(x, z):Kx + Kz < - I), S2 = ((X,

Hence, Z, satisfies a Lipshitz condition in the open halfspac in regn z):IK.x + Kzl 1}, and S, - (x, z):K,x + Kz > 1. The initial
S11The eore, z, atisesnatinuohutfonditio n that (, hlesp on region condition is in S].

S,. Therefore., z, is continuous for x such that (x, z ) lies on a boundary The reduced-order models given in the form of (7) and (22) are used in

hyperplane. Thus, z, is a continuous function of x. i finding the time response. Comparisons between these results and those

The reduced-order slow model of system (Ki) and (2) is given in the it obtained by time-integrating the full order model are shown in Figs. 1-4.

region of R , {x,:d., 1 < Kx, + Ktz, ; d}, as follows: Note that the approximation matches the actual response very closely,

t,A',,x,+A',,z,+ w, x,(to)-=. (22) i.e.. within an error of order 0(p). The computation time for the

approximation was roughly one-third of that for the actual system.

where z, is an implicit function of x, and is found using the Katzenelson Furthermore, as the value of ;& decreases, the approximation becomes

algorithm. The actual variables, x and Z, are approximated by x, and z, for more accurate and the relative computation time decreases due to the

I outside of the boundary layer, i.e., t > to + 3. numerical stiffness in the actual system.

The error in the approximation is due entirely to the fact that z = z,

0(jA). This error i- analogous to the error of approximating x by x0 in the V. SUMMARY

boundary layer solution. Therefore, the effe-t of the error can be analyzed
similarly as in Theorems 2 and 3 showing that the errors in the solution A singular perturbation technique is developed in this note which

are of order (a). allows for a decoupling of a continuous piecewise-linear system into slow
and fast subsystems. Under the assumption of asymptotic stability, the fast

IV. EXAMPLE variable is found to decay in the boundary layer to its quasi-steady-state
solution. This quasi-steady-state -3lution is given by a continuous implicit

The techniques previously described for separating a ptecewise-linear function of the slow variable. The solution is found using the finite step

singularly perturbed system are demonstrated in the iollowing example. algorithm given in the note. Sufficient conditions for the approximation to
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be accurate to an order of O(ju) are given. The techniqj" c ivcloped is
successfully ilustrated via a stumnenca examnple.
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EUTINSIONS OF SINGULAR PE]TURBATION ANALYSIS IN PIECEWISE-LINEAR SYSTEMS
1
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ABSTRACT 2. BACKGROUND MATERIAL

This paper continues the analysis of singularly The two types of system analyzed in [3,4] are
perturbed piecewise-linear systems. It provides a those which are continuous and those which are the
less restrictive sufficient condition for the result of a quantized control. Both types of
validity of the singular perturbation analysis of systems may be expressed in the following form.
such system. The paper also considers the
additional time-scale separation analysis required - f,(xz), x(t0 )-x0  (1)
by the existence of sliding modes. Finally, the
effect of random inputs on such systems is exam- Pi f2(xz), Z(to)-Z0 (2)

ined. where u is a small positive parameter and f, and f.
are piecewise-linear functions mapping from Rn~m to

1. INTRODUCTION Rn and R1, respectively. The functions are affine
in specific regions of the state space (Rn+m ) where

This paper addresses problems in piecewise- a region is typically defined as an intersection of
linear systems which are singularly perturbed. halfspaces. The itn --:!on is defined by the set
Such systems are found in many applications Si-((x,z): di.l<Kix+Kzz~di) where K, and K, are row
including electrical circuits and flight controls. vectors.
The piecewise-linearity may be due to nonlinear
elements such as saturation or may result from a The systems with continuous dynamics as
linearization about various operating points of a analyzed in [3] are those where the piecewise-
nonlinear plant. Singular perturbation theory is linear functions, f, and f2 , are continuous. Such
used to separate the system into reduced-order systems may be represented in the ith region by the
models, one containing the slow dynamics and one following "linear" system:
containing the fast dynamics. Standard singular
perturbation techniques, however, are limited to * - Allix + A12iz + w1

i  (3)
systems which are smooth (1,2]. Recently, singular (4)
perturbation theory has been extended to certain - A21

tx + A22iz 4 w2 (
types of piecewise-linear systems, i.e., those with The fast model yielding the boundary layer solution
continuous dynamics (31 and those with a scalar
quantized control (4]. This paper extends these is found by introducing an expanded tiie-scale
earlier results. These earlier papers [3,4] the-t 0 )/u. Equations (1) and (2) are expressed in
provided reduced-order models for the slow and fast the z-time as
dynamics and theorems showing that these models di
approximate the actual system within an appropri- d- . wfj(i,), i(O)= x" (5)
ately small error. The theorems were based on

geometric ideas and were restrictive in their di
applicability. The results are extended to include d- f '(0) Z. (6)
the occurrence of a sliding mode in the quantized
control case. A new nongeometric criterion is where i(%)-z(uw+t,) and i(T)=x(T+t,). The
introduced for using singular perturbation in the variable i is found to remain constant with respect
continuous piecewise-linear case. This criterion to i, so i(%)ux,. Equation (6) is then approxi-
is easy to use and the proof is straightforward, mated as follows:
Finally, the effect of random inputs is also
considered. di - , z(0).z 0  (7)

The remainder of the paper is outlined as
follows. Section 2 contains background information where *(i)f 2 (x0 , ). The function f is a contin-
sumarizing the results of [3] and (4] and provid- uous piecewise-linear mapping from RI into Rm . The
Ing physical insight into the restrictions required state space in R

m 
is partitioned into regions where

for using these results. theorems. Section 3 the function is affine; e.g., the ith region is
discusses the effect of a sliding mode occurring in defined by the set Rt;(z: di..<Kjx4+K 2z~di). The
the quantized control case. Section A contains a equilibrium point for7) (i.e., the initial quasi-
new criterion for applying singular perturbation steady-state solution, a (to)) is found using the
theory. The random input analysis is contained in Katzenelson algorithm [3T. The approximation for
Section 5. the boundary layer solution, given by z-z,(to), is

found implicitly from the fast model defined in the
ith region of Ru as follows:

1 This work is supported by the U.S. Air Force under contract AFOSR-87-0308.
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di (8) By the definition of f, it is seen that case iii)
d 2AaXO + A22 i' + w2 ( applies for (x,,z,) lying on a boundary hyperplane

and case ii) applies otherwise.
The reduced-order slow model of (3)-(4) for t

outside of the boundary layer is given in the ith The approximation errors for the reduced-order
region of Rn , (x: di.l<Kixs+K2zsSdi), as follows: models (8), (9), (12) and (14) are shown under

certain restrictions to be of order 0(m). In the
*s a Allixs + AX2 4. w1

i , xs(t 0 )-x0 (9) fast model of (8), the error is due to the substi-
tution of x0 for x. The actual solution, z, is

where z. is a continuous implicit function of x and given by the system described in region Ri as

is found using the Katzenelson algorithm. d - A2 1 i(x..O(u)) + + wi (15)

Reduced-order models for systems with scalar
quantized control input are developed in [4. It Ri - (: di..+0(u) < Kxo+K2i S di+O(o)).
was found that, without loss of generality, only
those systems need to be considered which satisfy The following theorems from [3] prove that the
(1) and (2) with approximation errorn are of order 0(w).

f,(x,z) w Aox + Bou (10) Theorem 1: Let the vector field near a

f2(z) - A2 Z + B2 u (11) boundary at di-Kai+Kiox+O() in the space Rm be

u = Q(-K~x-Kaz) f(u) - Aaii(x0+CVu)) + A224 + 2i

The quantizer function is defined as Q(-Klx-K2Z)-ci
for (x,z) in the ith region. It is required that Assume the f(i) does not vanish near the boundary.
ci<ci+l, do---, d+l+- and that A2 be invertible. If f(i) intersects the boundary with an angle of

order O(u), then the difference between the
A fast model for this system approximating the solutions of (8) and (15) is of order 0(w).

actual solution in the boundary layer was developed
in a manner similaz that for th4 c;ntLnaous Theorem 2: Let the vector field near a
dynamics case described above. Using notation boundary at di-K 2i+Kxox in the space Rm be given by
introduced previously, the fast model is given
below. f(i) - A2 1 X0 + A2 2i 2i

di A2i + B2U; i(0)=Z O  (12) Assume that f(i) does not vanish near the boundary.
d3 If f(i) intersects the boundary with an angle of

u = Q(-K2xo-K 2 ) order 0(O), then the difference between the
solutions of (8) and (15) is of order 0(w).

The boundary layer solution is given as i(%)-zs, The gist of the proofs of these theorems is
where z is the equilibrium point of (12). Define
2--A2 ! Bci. Then zs can be written as a mapping that if the solutions of (8) and (15) both exist a

0 Klx0, Zs-f(Klx0 ), where f(C) is as follows, particular region of the state space, then the
error between them is of order 0(P) due to the
linearity. The problems that may arise at a

i) f(&) - -A2-lBu, if [2-0 where u-Q(-&), boundary crossing are eliminated due to the
restriction on the vecto- field. Thus, if one

ii) f(c) , if K20 solution crosses into another region, the other
solution must also cross into that region within a

and diS-K 2zi-&<di+1 for some 1, (13) time delay of 0(w). The resulting error remains of
order 0(u).

iii) f(E) - (E+di+l)m, if K,*0 and

-di+l-K2zJ+ 1 < C S -di+1-K 2 zi for some i Theorems I and 2 may be directly applied to the
quantized control system to show that the error in

where m - (zi+i-zi)/[K2(zi-zi~l)]. the fast model (12) is also of order 0() since
continuity is not required in the proofs. The

If there is no feedback from the fast variable, approximation errors in both slow models (9) and
then case i) holds. Case ii) corresponds to an (14) are due to the fact that z-zs+O(w). This
equilibrium point a, lying inside its own region, error is analogous to the error introduced into the
i.e. (zg.zi)cSi. Case iii) corresponds to an boundary layer solutions; therefore, Theorems 1 and
equilibrium point lying an one of the boundaries 2 are applicable. The main consideration for using
between regions. Tor case iii). the resulting the slow models is that the boundary layer solution
control switches rapidly between two values to must be stable so it is negligible outside of the
maintain the equilibrium. It was shown in (4] that boundary layer. A further consideration is that z.
f is single-valued if K2 A2

1 ' 2 <0; therefore, this mist vary slowly with x. so that the fast dynamics
assumption will be made in this paper. Note that f are not excited. This was shown for both models
is a continuous function. separately in 13] and (4).

4 The quantized system given by (I)-(2) and (10)- The restriction in the hypothesis of Theorems 1
(11) is approximated outside of the boundary layer and 2 concerning the angle of intersection is hard
by the solution to the following slow model: to setify in many cases. Tor eample, the angle

in a A~xs + |u (to)o (14) of intersection described in Theorem 2 is found
from the inner product of f(i) and the normal to

u Q(-K,5-K,) ;  2" f(Kx S ) the surface, nu,T/IKI. Hence, it is required
that
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K2(A21i
t x + A22ii + w2i) - O(u) (16) It may switch with a time-lag or may act as a

first-order filter so that a representative point

near the boundaries. Note that the' bodary actually crosses the switching boundary into the

hyperplanes are parallel; all are given as trans- other side before the control switches to direct it

lates of the null space of K2 in R1. back again. In systems which are linear with

respect to the control, the limiting behavior of

We now define a new variable y by chattering as the time-lag goes to zero is the

sliding mode where the switching 
frequency goes to

y - i +.(A 2 i)'(A 2 1 x 0 + w2 ). infinity (5]. For the purposes of this paper, the

time-lag for switching is assumed to be of order

Then the condition in (16) becomes 0(c) where c<<u. In this way, the actuator

dynamics are much faster than the fast system

K2A2 2iy a O(W). dynamics. (If this was not the case, then the

original model (l)-(2) would be inadequate.) Thus,

along the boundaries defined by the system displays three time-scales, two of which

d il i (t and %) are of interest. Therefore, setting c-0

K2y - di'; di' a di+ 2 (Azi)'(A 2 1 x.x0+
i ) + KiQ yields the ideal sliding mode equations.

If KjsO, and since A2 2
1 has full rank, the condi- The previous theorems proving the that the slow

tion will fail only in the O(u) neighborhood about and fast models approximate the actual singularly

the intersection of the null space of KzA 2 1 i and perturbed system with quantized control are not

the boundary. Note that this intersection is an applicable when sliding occurs. These proofs

m-2 dimensional manifold on which the vector field relied on the time delay between boundary crossings

is exactly tangent to the boundary. (If A 21i does of the actual solution and of the approximated

not rotate the domain space, e.g. if A 221i -, then solution to be of order 0(P). Each solution then

there is no intersection.) spent a nonzero length of time in a particular
region where the linearity properties kept the

Hence, the use of Theorems I and 2 in showing approximation error to be of order 0(u). When

that a particular system approximation is valid, sliding occurs, the consecutive time spent in any

almost requires knowing the solution beforehand. one region is zero and the number of boundary

Unless A22 has special properties mentioned above, crossings in any finite time interval is infinite.
there exists at least one point of tangency on Therefore, the phenomenon of sliding must be

every boundary. If the vector field is continuous, handled separately.
then there exists only one point of tangency. If
the vector field is discontinuous at the boundary, The proof of the following theorem shows that

then there are two distinct points of tangency, one if sliding occurs in the fast time-scale, then the

for each side of the boundary. The points in the approximation error remains of order 0(P). The

space where the condition of the theorems fails case of sliding in the normal time-scale will
form a set of measure O(w) in the space. Whether follow as a consequence of this.

the solution of the system is in this set depends
on the initial conditions. However, note that this Theorem 3: Given the system in (5)-(6),(1O)-
condition is sufficient but not necessary for the (1I) and the approximation in (12) where the vector

approximation error of the reduced-order models to fields on each side of a switching boundary

be of order O(M). intersect the boundary with an angle of 0(wa), if

either of the systems is sliding along the boundary

3. SLIDING MODE EQUATIONS and if KzB2 is invertible then the approximation
error, E( )-£( ), is of order 0(),

The previous results on singular perturbation

of systems with quantized control do not account Proof: It is clear from the proofs of Theorem

for the possibility of a sliding mode to exist on a 1 and 2 that if either the approximation or the

switching boundary. Sliding modes may occur in any actual system is sliding then the other system must

system in which the dynamical equations are also be sliding. Hence, it suffices to show that

discontinuous. Much research can be found on this the solutions of the sliding modes of the two

topic under the more general title of variable systems differ by 0(m). The method of equivalent

structure systems, see for example 15]. The term control [5] will be used to find the sliding modes

"sliding mode" characterizes the behavior of a of the systems. Let the sliding surface for the

system when the vector fields on both sides of * approximation be given by saKjx+K:z-di-0. If the

switching boundary point towards the boundary. A system is sliding, then ds/d% - 0.

representative point is directed towards the
boundary from both sides and, therefore, is forced - K2d a 0 (17)

to move (or slide) along the boundary. Because the d-a d%

system is constrained to lie on a surface with
smller dimension than the space, a reducedorder The substitution of (12) into (17) yields

system may be obtained. Often, the resulting K(As + :Ueq) - 0
reduced-order model has many properties such as
robustness and invariance to disturbance which

makes it attractive to control system designers where the equivalent control, Ueq, can be solved a

Is]. ueq - -(K2B2)'I 2A 2i (18)

In a physical system with discontinuous
control, a representative point does not actually We now substitute ueq for. u in (12) to obtain the

travel along the switching curve, rather, it sliding mode equations:
"chatters" along the curve. The chatter is caused
because an actuator cannot switch instantaneously.
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m . 0 (19) A. APPROXIMATION ACCURACY

di A Theorems 1 and 2 are restrictive in their
a- (A' - 3(K 2 B" K2A2)i (20) application due to the requirement that the vector

field cannot cross a boundary tangentially. The

with the constraint that K1x.+K2 i-diM0. following theorem for continuous systems provides a
condition for the accuracy of the approximation

The sliding mode of the actual system sliding that is easier to use and removes the above
on the surface s-KXl+K 2  may be similarly obtained restriction. First, the system is reformulated and
using -(5)-(6) and (10)-(11). The equivalent two preliminary results are given.
control is found to be

Let (3) and (4) be written as
Ueq - -(K2 B2 + wKaBO)- (K2AI' + uK1 Aoi). i - A1 1 x + A1 2 z + gl(x,z) (25)

The substitution of ueq for u in (10) and (II) ui a A21x + A2 2z + g2(x,z) (26)
yields the sliding mode equations: where A11 A, A1 1A 12, A 2 1 A2 1 , A22-A 22  (the

d parameter matrices in the 1-O region), and g1(xz),
d .BO( 2B2+Wu1BO) KIAO)i (21) 92(',z) are piecewise-linear functions defined in

- 9B(K 2B 2+uK1Bd-
1)K 2AA)i region i as

di -- I g,(x,z) a (A11 i - A,,1 )x + (A,2 i - A1 2
0 )z + w1i

- B 2(K2B+ KX 1Bo) 1K1Aox (22) g2(x,z) " (A21 i - A2 1 6)x + (A2 2i - A22 0)z + w2i. (A2 - B2(12B2 uK1 B0 )- K2A2)z

with the constraint that Kx~+Kzj-di-0. Note that Lemma 1: If A22  in equation (26) is stable,
(21) and (22) along with its constraint are regular then there exists real ositive numbers K and a
perturbations of the sliding mode equations for the such that 1eA 22 tj £ Ke

"° . For proof, see [6].
approximate system (19) and (20) with its con-
straint. Hence, the error between the solutions is Lema 2: If a function, g2 (x,z), is piecewise-
of order 0(m). linear, then it satisfies a Lipshitz condition,

i.e., there exists a positive real number k such
A sliding mode naturally occurs in the normal that

time-scale every time a boundary hyperplan. is x
crossed. Prior to a boundary crossing in the t- g(xz)-g,(i,i)l kI - I
time, tle sw- "-Iel ?er arrors of order C(,), and
the quasi-steady-state solution, Zs, is given by For proof, see (7].
case ii) of the definition of f in (13). When the We now state the main result:
solutions xs  and z. hit the boundary, the condi-
tions for using case iii) are satisfied to find zs. Theorem 4: For a continuous piecewise-linear
As mentioned in Section 2. the control begins singularly perturbed system, the error in the
switching rapidly to maintain that value of zs. In approximation given by the fast model (8) is of
essence, the system satisfies the requirements for order 0() if k,. and 0 as defined above satisfy
sliding in the i-time but has reached the quasi- kKo.
steady-state solution of zs. This can be verified Proof: The actual system is given in the fast
by noting that the value of z. given in case iii) time-scale, %-(t-t0)/, by
is an equilibrium point of the sliding mode
equation in the fast time (20). Note that since dx
the boundary layer solution was negligible prior to d m uA1 1 x + mA,2z + pg2 (x,z)
sliding and the switching occurs very quickly (on
order of 0(c)), the boundary layer solution remains + +
of order 0(0). Since z. is continuous with respect d- A x + A2 z + g,(xz)
to Xs. the conditions of case iii) in (13) are
satisfied for a nonzero length of time in the t- (For simplicity of notation, i is denoted as z and
time. Hence, the system must slide in the normal x as x.) The fast model approximation can be
time-scale, similarly given by

The sliding mode in the t-time is found from Ai . 0
the quAsi-steady-state equivalent control of the dt
fast system. Replace i with s s  in (13) and di
substitute uaq in (18) for u in (14) to yield ; . A21 i + A2 2 i + gz(i,i)

is a Aox, - Bo(K B) I K2A~zs (23) Let 91(%) m x( )-i( ) and O2 (%) - s(t)-i( ), then

Since the solutions lie an a boundary, a. as the following differential equation can be written.

defined in case iii) of (13) may be substituted rdd , 0 0 , g,(,,)A- +,(xa))1
into (23). The resulting equation is the sliding Lde/d=J A,
mode in the normal time-scale, O1

in a Aozx + 3o*11 S + Bodi+l (24) The following solutions are obtained.

K5 312 *(') I .l(O) + u ll~)Al~)I~l)d

walid on them1 1 zi C~-K2d4.1 surface.
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92W = -A2 2 -1 (I-eA2%)AP'(O) + eAll V2 (0) dz - f1 (x.z)dt + gjdW, x(t.)-X, (27)

udz - f21 (xldt + f21 (x)zdt + /wg2 dW, z(te)-z, (28)
T )A4(A.jx(s)+Aj2z(s)+z(x'Z))ds

where: z and z are scalar variables; W represents a
+ * eA22(%-s)(gu(xz) - g2(i.i))ds. Wiener process with variance parameter Q; g9 and S,

are constants; and fl, f21 and f2 2 are continuous

and piecewise-linear. As in the deterministic
It is given that 9,(0) and 02(0) are of order 0(). case, the state space is partitioned into regions
For finite % and bounded parameters, 9j(%-)9j(0)+ where the functions are affine. Note that the
O(u)'Ok). Similarly, the first integral in the noise input to the second equation is scaled to
second expression is 0(m). Using Lemma 1) from preserve the well-posedness of the fast time-
above, it can be shown that problem. See [101 for a discussion of this problem

S K01 102(0)1 +in linear singularly perturbed systems.

The behavior of the system in the % time-scale
KJI ( (Xz).2(ii)ids + O(u). is evaluated by expressing (27) and (28) as

From Lamia 2) and the fact that di - wf,(i,i)d% + r$gzdW, i(0)=x0  (29)

I 1 1 + 
di - f 2 (i)d% + f2 (i)id% + gdW, i(0)'z, (30)

e2

where W is now defined as a Wiener process in the
the following expression can be obtained: t-time. It is shown below that this system may be

CMd approximated by a reduced-order (fast) model of the
0 S KI2(0)1 + kKJoeS[lll+lejl]ds + 0(0) following form:

This is reduced using the results from [6] to di o fz,(xo)d% + f,2(x)idi 4. g dW, i(0).z (31)

eCMl 2 (t)l S [Ki,2 (0)I 4 O(u)]ext, Note that this system is completely linear.

which finally yields The analysis of the fast system focuses on the
propagations of the conditional joint probability

10W S 0)-(1-kK) + 0(m). density function and its corresponding character-
istic function. Define the conditional joint

Hence, if k1yo, then 1*2(%)l is of order 0(m). probability density function as p(x,z,x x0,z0,0)
and the characteristic function as

The application of this theorem requires
obtaining values for k, I and a. Results from [7] O(w'v= t7 e J(vx+vz)p(x,z,xlxo,z,0)dxdz
can be used to find a minimum value for k.

k -maxIA i.A, A22-A2 
where

i-z 22z-z p(x,z,%jxo,zO,0) =

where IA, is the maximum singular value of A. The ( 17 e'J(wx+vz)O(w,v,flx,,z0)dwdv
following three methods may be used to find values
for K and a given leAil S Ke " " where A is stable.

1) If A is diagonalizable to A such that A-N'
1AN, Because the system is piecewise-smooth, a Fokker-

then Plank equation which holds almost everywhere may be
derived to obtain the conditional density function.

IQ c I S I 1IMVle AI S I[ I - (f(x)+f 2 2 (x)z)p] 4.

where -a is the ler=sst real part of any eigenvalue a-Z a+
and K -IM '1 1 1MI . I Q 2  (+ 0 ) a .. (J2)

2) Reference [8] shows how to obtain the following
values. where puvp(x,z'%lxG,:0,0). The propagation of the
Let O(A) a ix 'j(A42Al , where Xj is an eigenvalue characteristic function is derived from (32) as

then o--(A) and K-. _ 1 J('i3s)

3) Let B-AT" 1 , then K-ITIIT-11 and am-0(B) [9]. a " [(f21 (x)+f2 2 (x)z)p]dxds

Thus, Theorem 4 may be applied without prior
knowledge of the solution. + 2 IQ 0j. z pdxdz + 0(0 ) (33)

5. MrIDo4 INPUTS
It is shown below that a solution to this equation

The effect of a random input- on the singularly is
perturbed continuous piecewise-linear model is now
considered. The stochastic model may be repre- *(w,v, Ix..zo,0)-eJvW04(vczoe,z..0) + o(u) (34)
sented by the following fo 'v.

or, equivalently,
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p(X,z,.Ix 0 .s,0)-6(x-x.)i(Z.jx 0 ,. 0ZO) + 0(i) (2] Levin, J.J., "The Asymptotic behavior of the
Stable Initial Manifolds of a System of

where j(z,%Ix,z0.0) is the conditional probability Nonlinear Differential Equations," Trans. Am.
density function of the fast model (31) and Math. Soc.. vol. 85, pp. 357-368, 1957.
4(v,.CIx0,z°,0) is its corresponding characteristic
function. [3] Hack, B.S. and A.H. Haddad, "Singular

Perturbation in Piecewise-Linear Systems," to
The Fokker-Planck equation for the fast model appear in the IEEE Trans. Auto. Control.

(31) is
14) Heck, B.S. and A.H. Haddad, "On Quantized

[+ Control of Linear Singularly Perturbed
a% 3z 2  ° + ') Systems," to appear in Automatica.

22 2 a.e. [5) Utkin, V.I., "Variable Structure Systems withSliding Modes," IEEE Trans. Auto. Control,
where i" i'(z,Ix0 ,z 0 ,0). An equation for vol. AC-22, pp. 212-222, April 1977.
(v, x°,s0,O) is obtained from (35) as

[6] Coddington, E.A. and N. Levinson, Theory of

jvz aOrdinary Differential Equations, Robert E.
%_ le 7z[(f,1 (x0 )+f2 2 (xo)z)i]dz Krieger Publishing Co., Malabar, FL, pp. 315,

1985.

2Q j vz 82 - (7] Fujisawa, T. and I.S. Kuh, "Piecewise-Linear
+ 2  -re jj2p dxdz (36) Theory of Nonlinear Networks," SIAM J. AppI.

-~ Math., vol. 22, pp. 307-328, March 1972.

The substitution of (34) into (33) yields an 18] Doeser, C.M. and M. Vidyasagar, Feedback
equation which is a regular perturbation of (36), Systems: Input-Output Properties, Academic
thus proving (3f). Hence, the fast model (31) is 8 Press, NY, 1975.
valid approximation of the original system in the %
time-scale. [9] Ezzine, J., "Parameter-Perturbations in

Digital Control Systems," Master's Thesis,
Suppose that the system is stable so that it University of Alabama in Huntsville, 1985.

reaches a steady-state in %. The steady-state
probability density function ij(zixo) can be found (101 [halil, R.K., A.H. Haddad and G.L.
from (35) to satisfy Blankenship, "Parameter Scaling and Well-

Posedness of Stochastic Singularly Perturbed
(fz(x0) f22(x0)z)is 2'Q 2- a .. (37) Control Systems," Proc. 12th Asilomar Conf.

2 z ""on Circuits, Systems and Computers, Pacific

Grove, CA, Nov. 1978.
Due to lineari-1, if the input is Gausni-n, is is
conditionally Gaussian. 'Inis steady-state model
may be used to develop a reduced-order slow model
valid in the normal time-scale.

6. SUMMARY

Previous results on the singular perturbation
of piecewise-linear systems are extended in this
paper. Sliding mode equations are developed in
both the normal time- and the fast time-scales for
the case of the quantized control. It is found
that the occurrence of a sliding mode does not
affect the validity of the time-scale separation
procedure given in an earlier paper. A new,
nongeometric theorem is given to prove that the
approximations developed previously for the
continuous dynamics case are accurate to within an
error of order 0(p). This theorem is easy to apply
and is less restrictive 4.n its assumptions.
However. because all the theorems provide suffi-
cient but not necessary conditions, none supercedas
the others. Finally, the effect of a random input
on a particular continuous piecewise-linear system
is analyzed. A reduced-order model approximating
the system in the boundary layer is developed.

[I] Kokotovic, PV.,.I. O'Malley, and P. Sannuti,
"Singular Perturbations and Order Reduction in
Control Theory--an Overview," Automatica, vol.
12. pp. 123-132, March 1976.
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ABSTRACT

The effect of random inputs on a continuous piecewise-linear
Z,2a-_..lv perturbed system is investigated in this paper.

Reduced-order models are developed for a second-order system (one
fast and one slow variable) which has a random input. It is shown
that the solutions of the reduced-order models approximate the
actual soluti n with differences in probability density functions
of order O(M ) (in a distributional sense). For the special case
of a system which is linear in the fast variable, it is shown that
the mean-squared error between the approximate and actual
solutions in the fast time scale is of order O(p). An outline is
provided for the extension of the results to the vector variable
case.

1. INTRODUCTION

A system inherently possessing both fast and slow dynamics

can often be simplified by using singular perturbation theory to

separate the system into reduced-order models, one containing the

fast dynamics and one containing the slow dynamics. The standard

theory, however, is restricted to systems with smooth dynamics [1-

31. Recently, this theory has been extended for deterministic

systems to piecewise-linear systems [4,5]. Piecewise-linear



singularly perturbed systems appear in many applications including

flight controls and electrical circuits. The piecewise-linearity

may occur from a piecewise-linear element such as a saturation or

dead zone or may occur as a result of a piecewise-linear

approximation of a nonlinear system. It is desireable to extend

singular perturbation theory to piecewise-linear systems with

random inputs.

Reduced-order models for linear singularly perturbed systems

with Gaubzian random input have been developed in [6,7] for

filtering, smoothing and control purposes. The filtering problem

for smooth singularly perturbed nonlinear systems with wide-sense

stationary random input is discussed in [8]. Reduced-order

filters are designed for the smooth nonlinear system corresponding

to the fast and slow dynamics. This paper extends the previous

work on singular perturbation theory in piecewise-linear systems

to the case of random inputs for possible use in filtering,

smoothing and stochastic control. An example of this application

is a singularly perturbed piecewise-linear flight control system

which has random wind disturbances.

1.1 Problem Formulation

The system investigated in this paper is continuous and

piecewise-linear with a random input. Since the resulting system

is nonlinear, the model is written in terms of coupled Ito

differential equations:

dx = fl(x,z)dt + gldW (1)

udz = f2 (x,z)dt + Ag2dW (2)

where: x and z are scalar variables; W represents a Wiener process

with variance parameter Q; gj and g2 are constants; fl and f2 are

continuous and piecewise-linear functions. As in the

deterministic case studied in [4, the state space is partitioned

into regions where the functions are affine. Let the system be



defined in the ith region as follows:

dx = Allixdt + A1 2izdt + gldW (3)

wdz = A2 1ixdt + A22 izdt + 4 g2dW (4)

The superscripts simply denote the region number. For simplicity,

the regions are restricted to be nonoverlapping, nonempty and

parallel. By parallel, it is meant that the boundaries of the

regions are parallel hyperplanes.

The random input to the fast subsystem is assumed to be

scaled by .I so that the well-posedness of the problem is

preserved. It has been shown by Khalil et. al. [9] that the well-

posedness is questionable unless the white noise input to the fast

variab le is scaled by a factor of order O(pa) where D<a£ or wide-

band noise is used instead. The problem occurs with unscaled

white noise because as w-0 the bandwidth of the fast subsystem

approaches infinitity, so that the fast variable acts like white

noise in the normal time-scale. This is valid as an input to the

slow model but not as a dynamic process itself. Scaled random

inputs, however, do not exhibit this problem.

The outline of the paper is given as follows. In Section 2,

the behavior of the system in the fast time scale is discussed.

Aiso, a reduced-order model is developed which is valid in the

fast-time scale. Similarly, a reduced-order model is developed in

Section 3 to approximate the slow dynamics of the system with

respect to the normal time-scale. The extension of the second-

order analysis to higher order systems is outlined in Section 4.

Concluding remarks are included in Section 5.

2. FAST SUBSYSTEM

The behavior of the system in the fast time-scale is

investigated below. At each sample time, ti, of the normal time

scale, the fast subsystem may be evaluated. Define the expanded

time variable by i-(t-ti)/ and restrict the samples so that



ti+l-ti is large relative to W. The original system in (l)-(2) is

reformulated in terms of i as follows

dx = fl(x,z)di + ./wgldW; i(O) = xo  (5)

dz = f2(x,z)di + g2dW; z(0) = Z0  (6)

where W is now defined as a Wiener process in the T time-scale

given as W(i)=d W(pT). It is shown that this system may be

approximated by the solution to a reduced-order (fast) model of

the following form:

dz = f2(x0,z)dt + g2dW; z(O) = z0  (7)

i(T)= X

The proof that the resulting approximation error is of order

O(w) focuses on the propagations of the conditional joint

probability density function and its corresponding characteristic

function. Define the conditional joint probability density

function for the solution of (5)-(6) as p(X,z;Tlx 0,z,;O) and the

characteristic function as

P(vw;Tjx0,z0 ;O) = ff ej(vx+ wz) p(x,z;Tllx,zo;O)dxdz (8)

where

p(x,z;Tlx 0 ,z0 ;o) 2 e j(vx+wz)0(vw;ixz;O)dwdv (9)

Because the system is continuous and piecewise-smooth, a

FoKker-Planck equation which holds almost everywhere may be

derived to obtain the conditional joint probability density

function:



=_ a _ 82 a
a8 - [f2(x,z)P] + -2 g2 Q 12 p  [fl(x 'z)pI +

(10)

a 2g Q 2 2 g2  axaz 2 +  8Z-X

where p = p(x,z;tixO,zc;0). The equation holds everywhere except

for the set of measure zero where the dervivative of f, and f2 do

not exist. The initial condition (in a distributicnal sense) and

auxilary conditions are

p(x,z;Olxo,zo;O) = 6(x-xo)6(z-zo);

p!0 and f{pdxdz =1I

(For a discussion of the derivation of the Fokker-Planck equation,

see Wong 111].)

Examination of (10) shows that the propagation of p is

relatively insensitive to the variation of x. Since this is a

linear partial differential equation, the methods of Kato [12] can

be used to show that the solution of (10) can be approximated by

the solution of the following equation with efrors in the solution

of order O(,j2) (in a distributional sense).

-P-a - -  + 2Q 2p a.e. (12)
atE az 2 (x,z)Pal + 1 g 2 ~ @Z a

where pa=Pa(x,z;tlx0,zo;0). The initial and auxilary conditions

remain the sar (again, the initial conditions are defined in a

distributional sense):

Pa(X,Z;O0xo,zo;0) = 6(x-xo)6(z-zo);

+" (12)

Pa Z U and if Pa dxdz = 1
- =



Hence, p = Pa + 00) in distribution.

To remove the consideration of the differential equation

being defined almost everywhere, the propagation of the

characteristic function is introduced. Denote the characteristic

function of Pa as Oa(v,w;TIxo,zo;O) where a characteristic

function is definel in equation (8). Then an expression yielding

the propagation of 4a(v,w;TIxo,zO;O) can be found from (12) by

first multiplying both sides of the equation by ejvx+jwz and then

integrating with respect to x and z.

a f ejvx+zwz [f2 (xz)n
a] + 2 g2

2Q 8z2 pa dxdz (14)

The values of the derivatives can be assigned arbitrarily for

points in the set of measure zero where the derivative is not

defined. Since the righthand-side of (12) multiplied by ejvx+jwz

differs from the Integrand in (14) on a set of measure zero, the

right-hand side of (14) is equal to the integration with respect

to x and z of the right-hand side of (12) multiplied by ejvx+jwz

(for proof, see [13]). The corresponding initial condition is

(Da(v,w;Ox,zo;O)=ejvxoejwzo and the auxilary conditions

correspond to (13), i.e., 0a(O,O;TlxO,zO;O)=.

Similar to the case for the actual solution, a Fokker-Planck

equation an be derived to find the conditional probability

density function for the approximation given in (7)

a
at = z 2(x0,z) 

] + -2 g2
2Q az2p a.e. (15)

where p = p(z;T xr,z 0 ;O). This is subject to the following

initial and auxilary conditions:

p(z;Tlx 0,z0 ;O) - 6(z-z 0 ); p a 0 and f p dz 1 (16)



Denote the characteristic function for p as C(w;tIx 0 ,z,;O). The

propagation equation for P(w;tIx 0 ,z,;O) is found from (15) to be

jw [- z [f2(x0 'z)p] + g Q z2p dz (17)

where the initial condition is D(w;Ox0,z0;O)=ejwzo.

A comment can be made about the steady-state value of p. It

is assumed that the system in (7) is stable so that a steady-state

solution for p exists. It can be found by setting the time

derivative to zero in the Fokker-Planck equation. The steady-

state can then be solved from the resulting equation:

1 2QL_

[f2 (x
'z ) -] = g22Q Z p a.e. (18)

where p. = p0 (zlx 0 ). Note that p. can be considered as a function

of x0 , but continuity of that function is not guaranteed.

It can now be shown that the joint probability density

function given by the solution to (12) is equal to pa=6(x-xo)p,

or, equivalently, 0a=eJVXO4. The expressions for Pa and Da are

substituted into (14) to yield

30 "vx eJvx+jwz [

evx° - e[ [f2 (xz)6(x-x0 )P]

+ 2Q 2 [6(X-Xo)p]J dxdz (19)

Integration with respect to x yields

&- ej-O jvx rewz [f2(x°'z)P] + - g2 2Q 2p dz (20)

Since the pair (p,@) is a solution to (17) it must also be a



solution to (19). Therefore, Pa=6(x-xo)p and 4a=eJvxo4.

Finally, the assertion that the probability density function

of the solution to the approximate model differs from that of the

true solution by factor of order O0) is proven in a

distributional sense. Since P=Pa + O(Pz) (in distribution), the

results of the preceeding paragraph imply that p=6(x-x0 )p- + O0)

(in distribution). Correspondingly, O=ejYVoc + O(N). Hence, the

statistical moments of the true solution and the approximation

differ only by an error of O(pf).

2.1 Systems Linear in z

It can be further shown that for a system which is linear in

z, the mean-squared error between the actual solution and the

approximate solution is of order O(p). A continuous piecewise-

linear system that is linear in z has the following form:

dx = wfj 1 (i)dT + PA 12zdi + 4gldW (21)

dz = f2 1( )dT + A2 2 di + g2dW (22)

where fll and f2 1 are continuous piecewise-linear functions; A1 2 ,

A22 , g, and 92 are constants and W is a Wiener process defined in

T with variance parameter Q. This is simply a subset of systems

of the general form given in (5)-(6). Note that the requirement

that A1 2 and A2 2 be constant is a consequence of the continuity of

the system. Also, stability of the fast model is required in this

analysis, hence, A2 2 is stable. The process is ill-defined if A2 2

is not stable.

Examination of (21) shows that x stays relatively constant

with respect to t and can be approximated by x0 . The

approximation for z is given by the solution to the following

equation

di = f21(x0 )dt + A2 2 id-t + g2dW (23)



To show that the mean-squared error between z and z is ot order

O(p), define the approximation error as ()= z - z. Then an

equation for cp is given by

d(p = (f2 1 (x)-f 2 1 (x0 ))dT + A22pdi; P(O) = 0 (24)

The solution to (24) due to linearity is given by

I

=() f e A22(To)[f21 (x)-f 21 (x0 )] do (25)

0

An upper bound for o can be found by noting that f2 1 satisfies a

Lipschitz condition; hence, there exists a positive constant k<

such that:

f() eA 22 (( -O ) kllx-x 0II do (26)

0

The mean-squared error of P is found from (25) to have an upper

bound as follows:

E{p2 (1)}

JJ eA22(T-0) eA22(-e) k EII[x(o) - x0][x(e) - x0d dode (27)

0 0

Since A2 2 is stable and the quantity x(t1 )-x0 is of order O(w) for

OxtST, the integrand is found to be of order O(w). Hence,

E{cp2 ('E)) is of order 0(p).

3. SLOW SUBSYSTEM

The slow dynamics of the system (l)-(2) can be approximated

in distribution by the solution of the following model:



dxs = fl(xs,zs)dt + gldW; xs(t 0,) = x0  (28)

0 = f2(xs,zs)

Note that zs  is found from xs using the Katzenelson algorithm

given in reference [4). This algorithm is computationally

efficient for solving algebraic piecewise-linear expressions. The

approximation is validated below by showing that the true joint

probability density function of x and z differs from that of xs

and zs by a factor of 0(u) (in distribution). This approximation

is shown to be valid outside of the initial boundary layer as long

as the solution does not cross into another region of the state

space. A boundary layer may need to be evaluated after each time

the solution crosses a boundary between regions.

The Fokker-Planck equation yielding the joint pro!ability

density function of the actual solution given in (l)-(2),

p(x,z;tJx 0 ,z0 ;t0 ), can be derived using an approach similar to one

found in [il]. The Chapman-Kolmogorov equation is the starting

point.

p(x,z;t+Ax 09z0 ;t) =

J{ p(x,z;t+Alxl,zl;t)p(xl,zl;tlxo,z 0 ,t 0 ) dxldz1  (29)

An expression for p(x,z;t+Alxl,zl;t) is found using the

characteristic function. Define the characteristic function as

O(v,w;t+AIxl,zl;t) = J e j v x + j w z p(x,z;t+lxl,zl;t) dxdz (30)

where

p(xz;t+ax1,z 1 ;t) = f e-jVx-jwz 0(v,w;t+lxil,zl;t) dvdw (31)
4) 2 4-m



Expand the following term in a Taylor series about x=x I .

e-jvx-x) = 1 - jv(x-x) + y (Xl-X)2 + h.o.t. (32)

This series is substituted into (30) to yield:

O(v,w;t+AlXl,Zl;t )  e eJWZ[ljV(XlX)+ y2 (Xl-X)2]

p(x,z;t+Alxl,zl;t)eJ VXl dxdz (33)

Integration with respect to x yields

0(v,w;t+AlXl,Zl,t) d

e j w z ej v x l [1-jvf (XI,Zl) + . g1
2QL]p(z;t+Ljx 1 ,z1 ;t)] dz (34)

To solve for p(z;t+Alxl,zl;t), a boundary layer following t

may be evaluated. Define a new time scale by T=6/I and let

z(i)=z(wT+t). Then it is found using the derivation in Section 2

that an O(wl) approximation for the conditional probability

density function of z, p(z;xjIx,zl;t), is given by the solution to

the following Fokker-Planck equation.

~2 - 2 + 2 Qg22 az2  a.e. (35)

where p=p(z;Tjxlzi;t) and p(z;0Ixl,zl;O)=6(z-zO). Assuming that

the system is stable, the probability density function reaches a

steady-state in i denoted as p(zlxi). For a small value of A, x

stays relatively constant so that p(z,t+LIxi,zj,t) is approximated

(in distribution) by



p(z,t+&Ixl,zl;t) : (zlx 1 ) + O(P) (36)

Restrictions on the O(p) term arise due to the fact that both

p(z;t+&lxl,zl;t) and j(zlxI) are probability density functions so

they must satisfy certain conditions. One problem with this

analysis is that (zjx I ) may not depend continuously on x, for

those x, which lie on a boundary between regions in the state

space. If p is not continuous with repect to xl, then the

conditional moments of z may not be continuous either. The fast

dynamics may then be excited sufficiently so that the slow model

appro-imation is not valid when a boundary is crossed. Since

proving continuity of p with respect to x, may be difficult, it

may suffice for many practical applications to show only that the

mean and covariance of z are continuous as a function of x, if the

higher order moments are negligible.

Once an expression in (36) is obtained, it can be substituted

into (34) and the resulting expression then substituted into (31)

to yield an expression for p(x,z;t+AJxl,zl;t):

p(x,z;t+Llxl,zl;t) =

i [ [ e jVx-j,z •v j~ w •X ,J A 2eeV1+ e +wY[1-jvfl(xlZ ) + 21

p(ylxl) dydvdw + O(p) (37)

This is then substituted into the Chapman-Kolmogorov equation (28)

to yield

p(x,z;t+AIx 0 ,z0 ;t) =

1{ f{ e-jVx-jwz ejVXl [ljvf1 (X1 ,Z )6+ X g1
2QA]

x j eJWy (ylxl)p(xl,zl;tJx0 ,z0 ;t) dydvdwdxldzl + O(p) (38)



Note that the 0(p) term is placed outside of the integrals since

all of the integrals correspond to taking expectation or

transformation. The expected value of the perturbed quantity is a

perturbation of the expected value of the quantity.

Since the integrand in equation (38) is continuous, the order

of integration may be interchanged. Integration with respect to w

yields

p(x,z;t+Atx 0 ,zo;t) =

1 f.. e-jvx ejvx [1-jVf1(X1 ,z1 )A+ y
2g91 2Q6]

x p(yjx l)p(xl,zl;tjx0,z0;t) 6(z-y) dydvdxldz1 + 0() (39)

Integration with respect to y yields the following:

p(x,z;t+Ix0 ,z0 ;t) =

] r
2

-00 -00

x P(zlx 1 )p(xl,zl;tlxo,Zo;t) dvdxldzl + O(W) (40)

Integration with respect to zI yields

+00

p(x,z;t+IXoZo;t) = gJ e-jvx eJvxl [1-jvf(X ,i1)+ g 2 Q6]

x (zjxl)p(xl;tjx0 ,z0 ;t) dvdx I + 0(p) (41)

where Tj is defined by

0 = f2(xl,zl) (42)



To obtain p(x;t+61x o,zo;t), integrate (41) with respect to z on

both sides to yield

p(x;t+AIxozo;t) = J j v eJV1 [l-jvfl(xl, 1l)A+ E g22QL]

X p(xl;tlxo,zo;t) dvdx1  + O(w) (43)

The expression in (43) is evaluated with the following result:

p(x;t+61x 0,zo;t) = p(x;tlxo,z0 ;t) - 2- f (x,i)p(x;tlxo,Zo;t)6
ax 1

+ gQ T2 p(x;t ix ° pz ° ;t)6 + o(w) a.e. (44)

where z is defined by 0=f2 (x,z). As b-0, this expression becomes

the usual Fokker-Planck equation where p-p(x,tlxo,zo;to):

= a 1 2- R + O M(u) a.e. (45)
at ax[fl(x ' )p + 2 glQ 8x2

The initial condition (in a distributional sense) and auxiliary

conditions are

p(X;tolxo,zo;t o) = 6(x-xo); p O; O pdx = 1 (46)

The Fokker-Planck equation of the slow approximation is given

by

---[fl (xs'Zs)Ps] + _ gl Q ax2  a.e. (47)
at ax i 2

where ps=ps(x;tlx0 ;to) and Ps(x;t 0jx0 ;t0 )=6(x-x0 ) (in a

distributional sense). Since (45) is a regular perturbation of



(47) satisfying the same initial and auxilary conditions, the

solutions are found to differ by O(p), i.e.,

p(x;tlx 0 ;t0 ) = Ps(xs;tlxo;t 0 ) + O(P) (48)

Hence, for statistical purposes, x can be approximated by xs with

approximation errors in the probability density functions of order

O(P) in distribution.

4. EXTENSION TO VECTOR VARIABLES

The results of Sections 2 and 3 are directly extendable to

the vector variable case. The fast subsystem approximation is

given by equation (7) where z and x0  are vectors variables (icRr

and x0cR
m ) and f2 and g2 are vectors of appropriate length.

Similarly, the slow subsystem is given by equation (28) where x.

and zs  (xseRm and zcRr) are vector variables and fl, f2 , g, are

vector valued functions of appropriate length.

It is still possible to show that the errors between the

probability density functions of the fast subsystem and the

solution are of order O(). The Fokker-Planck equation for the

true probability density function is generalized from the previous

case as follows:

r r r
= - _[f2(xz)p] + (g TQg p

1 i=1 j=_

- [f (xz)p + (glTQg)i xiax 2
i l x i  1 2 L 1 1 i j d j x

(49)
m r

+ pi (g TQg2 * p
ii j=1axaz

+ ) (g2TQg) a
2 g i,j aziax j 

p

i=I j=l



where p=p(x,z;tix 0,z0;0) and xi and zj are components of the i and

z vectors. The propagation of p is relatively insensitive to

variation i5 any of the components of the x vector. Hence,

following the previous analysis, it can be easily seen that the

probability density function of the fast subsystem approximates

that of the true solution. For systems linear in z, the analysis

in Section 2.1 is extended in a straighforward manner.

Most of the analysis in Section 3 for the slow subsystem

involves the derivation of the Fokker-Planck equation. Since the

Fokker-Planck equation has been derived for the vector case in

[11], these steps generalize accordingly. The only difference

between the analysis in Section 3 and previous work is the

solution for p(z;t+Alxl,zl;t) in (34). This can be approximated

by the steady-state of the probability density function for the

fast subsystem found from the correspAiding Fokker-Planck

equation.

5. SUMMARY

Reduced-order models are developed in this paper which

approximate the original system both in the fast time scale and in

the slow time scale. It is shown that the approximations are

valid in terms of the statistical information of the true

solution. It is further shown for systems that are linear in the

fast variable, that the fast subsystem approximates the true

solution with a mean-squared error of order O(w).
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Abstract
In ti's paper, thr analysis for a singularly perturbed perturbation analysis performed on the decoupled coor-

linear system with quantization in the *eedback loop is dinates. For the purposes of this paper, it is also assumed
performed. It is found that the system has variable tha: the system may be transformed to decoupled coordi-
structure and can exhibit sliding behavior on the switching rates and is represented by:
surfaces. Because the system is nonsmooth and standard
singular perturbation techniques are not applicable, a new , = A , - Bou, (0) =(1)
technique is developed for a two-input case to obtain the
boundary layer solution and the outer solution. A discus- A/= A277 + B2 u, 1(0) = 7 (2)
sion of the approximation error is included. The tech-
rnique developed is successfully iilustrated on a numerical where f-RI, r7R', uERP, g>0 is small and A, is Hurwitz.
example. Define the control vector to be

1. Introduction qKl,-K,F77)
Singular perturbation theory is an asymptotic ap- u = Lq2(-K,1&K2  (3)

priximation sch me used to simplify systems which
-.ontain both fast and slow dynamics. These types of where K, K12, K21 and K22 are row vectors and q, and
systems, termed "numerically stiff," are often difficult to q2 are quantizer functions defined as follows.
analyze numerically due to ill-conditioning in the system
matrices. Singular perturbation theory removes the ql(x) = cl, for d, i x < d, . i=,..,n (4)
numerical problem by separating the system into reduced- q2(x) = c, for d2', 5 x < d2'1; j=l ,...k
order models, one containing the fast dynamics and one
containing the slow dynamics. This theory has received The parameters are specified such that c,, <c,..,,
considerable attension in the past thirty years (see the c2, 1<c 2 ,i. 1, di <d, 1 4 <d 2 ,., d, 1 =..o, d2 , 1 =-..

surveys given in References [1-31). However, the commron di,, 1 = + . and d2k. 1 -

restriction placed on systems for using singular perturba- Tsy
tion theory is that the system dynamics must be smooth This system is a variable structure system with ak
[1-3]. possible linear subsystems. The state space (R"r) can be

partitioned into nk nonoverlapping regions defined byIn many systems, the actuators supply inputs with

discrete rather than continuous values, i.e. the input is s {, q,(-K1, -K,2r7)=C,, and
quantized. Examples of these types of actuators include { q -K1 -K2n)=c and
relays, stepper motors, and certain types of hydraulic and q2(K 2 1 -K2 2r)=c2 } (5)
pneumatic devices [4,5]. The resulting control is discon- The boundary between two regions is a convex partition
tinuous with respect to the state variable, hence the of a hyperplane defined by -K.g-Kion = d, for some i
system is nonsmootb and standard singular perturbation or -KEf-K227 = dz , for some j. Note that if K K2 ,

techniques are not applicable. The basic theory of and K. 2 1K2 then each of the r1gios (except those of S,.
singular perturbation is extended in this paper to the case and, i, S,, Vj and S5 k Vi) is bordered by two sets,
o; a quantiz-r exisng in a two-dimensional feedback 'al hie, -- -lns
loop. The scalar case was developed separateiy in Refer- paral'el hyperplanes.

ence [6]. Note that the discontir'uous control causes the For the purpose of this paper, it is assumed that K,,
system to be a variable: structure system- and K., are not of order O(1;). If either of the quantities

Intuitively, discontinuities in the control would seem was ot order O(A) then the slow manifold would be

to excite the fzst dynamics in the same way us would a nearly discontinuous. In particular, the quasi-steady-state
step inpiut. However, it is found that urder very mild solution would be a discontinuous function of the slow

ste jnut.Howver itis oun tht u'de ve~ mldvariable. H,!!nce, the fast dynamics would have to be
restrictiuls, the slow system slides along the switching valated afte e st in th e onbo
surface instead of cross,:.g through it. Therefore, there evaluated after each switch in the corresponding coniol

are no jumps in the qLasi-seady.state solution which component.
wouild cause the fast dynamics to re .pond with a step Reduced-order models of the system dscnbed above
response outside of the initial boundary layer, are developed in this paper using a si."ular perturbatio

approach. The boundar,, layer approx - anon :s given :n
1.1 Problem Formulation Section 2. Section 3 presents the i.ater soiutlon ap-

The system under consideration is assumed be proximation. A numerical example is given in Sec:ior 4

linear and *ime-invariat. !t was de'ermined in [61 that, and concluding remarks i.re given in Section z,.
for the scalar quant/zed controi case, che system may b,.
transformed into decoupied coordinates and the sing-.:ar
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2. Boundary Layer Solution If n.. lies in R_ (i.e., satisfies (7)), then it is a local
The fast dynamics are most prorrinent during the equil"brium point. If 7, does not lie in R , ,, then points

initial boundary layer and can be separated from the in Ri, are directed out of the region.
slow dynamics by the introduction of an expanded time- 2.1.2 Single Boundary Position. An equilibrium point
scale '=(t-to)i/. It can be easily shown that stays may lie on a boundary between two regions if trajectories
relatively constant with respect to r; hence, f is approa- from the two bordering regions head toward the boun-
mated by - The approximation for r is given by the dary. Ta find the conditions for such an occurrence, the
solutirPn to the followng equation, specific example of an equilibrium point existing on the

- 4, + B2- (6) boundary between Rij and Ri.,, is examined. The
di'-z 2 1, ' control u2 =c2  is corts~nr----!e ~ h

FqK 11 o-K12 ) switches between c,.i and c1 .,. Suppose the following
(K qz(-K. K~zz)1 condition is satisfied.

This reduced-order model is also a variable structure , + ! -K1 0 < dli + i2',i (10)

system with nk possible linear subsystems. Hence, the where q,., • and rl.. are regional equilibrium points for
reduced-order state space (Rr) can be partitioned into nk R e and an respectively. This condition states that
nonoverlapping regions for which the system is linear. R71 n'~rsetvl.Ti odto ttstaeach of the regional equilibrium points of the two border-
Analogously with the full-order model, the regions Rij ing reuios lies across the boundary hyperplane from its
are defined as: associated region. Hence, trajectories in Ro.,., and in

..and R move toward that hyperplane. If the regior'.s were
parallel then this would be a sufficient condition for the

q2(-K2,e0-Kz2 ))= cz, (7) equilibrium point to lie on that boundary hyperplane.
However, with nonparallel regions it is possible for the

Correspondingly, the boundaries between regions are representative point to move (or slide) along the hyper-
hyperp:anes dened by -K, 1 o-K 2 = di. i for some i or plane until it reaches a position where the hyperplane no
-K21 (-K2A = d2 J for some j. longer borders R,, and R,.,.j. Hence, to find the

It is assumed that the system in (6) is asymptotically equilibrium point, first assuime that the regions ar

stable to one equilibrium point. Stability in "ordinary" parallel and find the equilibrium point to such a system.

smooth system can be shown by use of Lyapunov's second Then, if that candidate equilibrium point lies on the part

method. However, in variable structure systems the o perpiane that borders the actual regions, it is a

T.yapunov function is generaLly discontinuous and, hence, true equilibrium point.

not everywhere differentiable. Paden and Sastry intro- The equivalent control method which was developed
duced a generalized Lyapunov theorem in [7i which is for use in variable structure systems [81 is used to find the
suitable for discontinuous functions. Such a method may candidate equilibrium point. If representative points from
be useful in determining asymptotic stability of this both sides of the boundary are directed toward the
system. The equilibrium point of (6) (also defined as boundary, then the control u, starts switching very quickly
quasi-steady-state solution at t=O, r,(O)) is derived below between c, , and c,-, whie u2 =c2  remains constant
and a discussion of the approximation error follows. The system'filters out the high frequency leaving only the

low freouencv iverage component. The average value of
2.1 Evaluation of the Equilibrium Point u, as T- - is the equivalent control at the equilibriufit

There are three basic positions for the equilibrium point, u*. The corresponding candidate equilibrium point.
poin .t (6): in the interior of a region, on single bound- r7,, is found to be:
ary hyperplane, or on an intersection between two bound-
ary hyperplanes. The first two cases are treated very =

similarly to the scalar quan ' ed control analvss discussed
in Reference [6]. The last case is more complicated and (' ) K
can be solved uniquely only for limited types of sysLems. K,K(r., 2- K, 2 ,7. -7,) (11)
The derivation of the equilibrium point as a function of
K 11 4 and K,,f 0, f(K 1 ,,K 2 ,z0 ), is shown an the next This is a *,rue equilibrium point if it lies on the part
three subsections for the three possible positions. of the hyperplane that borders R and R. This

2.1.1 Interior Position, The piecewise-lineari-y of the corresponds to satisfying tie following condition:

system in (6) is utilized in determining the system be- d + K s K1 < d + K (1x
havior; i.e., for I in the R, region of the state space, the di 2 K -K 0 < ,j.1 22Kzn (1

by the following descrpion. Hence, if the conditions in equation (10) and (12) are

Ac, I satisfied, Lhen the equilibrium point is given by equation
d cA tB 2 j (8) (11). These conditions are illustrated in the second-order

, example given in Figure 1. Note that the equilibrium

The behavior in this region is governed hy the position of point lies on the intersection of the line connecing 7,,
the followng point which is termed the regional equi- and . and the hyperplane.
lib ium point. The equilibrium point existing on a boundary hetwe, n

"I I[ c, R, and R,., is found using a dual argument. The
, B2 L c,( conditions in (10) and (12) correspond to the oilo'ir
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conditions, respectively. librium point for the sliding mode equation in the new
coordinates and, finally, t-ansforming the equilibrium

dzj.1 +K 22 17ij S -Kzj1o < d2 . 1.,+K2 ,7,71 . and(13) point back to the orignal coordinates. The equilibrium
di1 + K 2 %7, s -Kj o < dli~. + IZY7, (14) point of a sliding mode existing on the intersection of the

two boundary byperplanes is given below (for details of

where the equilibrium point is given by: the derivation, see [9]).

1% = -  17, - -(S, - S(KS2)IKS,)A'ITA 2S 2(KS 2) v

(K2 1 E0+d2 .,°t)(r71 1 7 1 .+) +(K 2'7i,j.)r7i i - (K22 77) 1 )77(.j + S2(K5 2 ) V (21)
K2z(Tr,j.j - 17j) KU(?j. - Ri) (15) where: A, = TA 2 S1 + T.A2 S2(KS2)'I(-KS), Tj= LZ ,

Si=U2, S2 =U, and U, and U2 are obtained from a
Therefore, if the conditions in (13) and (14) are satisfied, singular value decomposition of B2, i.e. B-2 =[U,, U2]XV'.
then the equilibrium point is given by (15.). 2.1.4 Function for the Equih'brium Point, In

2A.3 Boundary Intersection Positio. Another summary, .the equilibrium point 7, for the system in (6)
possible positi:.n for the equilibrium point is on the can be found as a mapping of the variables K, and
intersection between two boundary hyperplanes. To find ,1y, K ,=f(KC1o 0,K~1 0), from equations (9), (11), (15),
the conditions for this occurrence it is known that neither (19), and (21) depending on the conditions that are satis-
the conditions for (11) or for (15) to be the equilibrium fled. The mapping is a function (i.e.. single-valued) since
point can be satisfied since it is assumed that there exists it is assumed that there exists an unique equilibrium
only one equilibrium point. There are tzwo separate point. The bunction is piecewise-linear since each of the
additional conditions on the system each of which yield an function definitions is linear. Continuity is not gura.n-
equilibrium point on the intersection of bounda-:-s. teed and ma. need to be evaluated on a case by case

basis. However, using the methods in [6] for the scalar
diI + K12 7i/ -K,1 0 < d,i* - Kz,12 i.lj.1 control case, it is straightforward to show that the func-

and (16) tion is continuous for a second-order system. To demon-
dz. i + K2277., ; -K2 CO < d2 ,ji. + Kzri7i,i.j strate the use of this function, an example is given below.

or + -K1 1 O < di., + Ka,,Iic: Let a system be given by

and', (17)[

A second-order example of a system sat;fying the condi-
tion in (16) is given in Figure 2. The control slected is bang-bang with components:

The equilibrium point for system (6) is not, in ul = sgn s,; s, = -[I. 21Y7-
general, found uniquely when either the condition in (16) u = sgn s2; s - +, 2- 7 - - (23)
or (17) is satisfied. By definition of the quantizer func-
tion, for the equilibrium point to exist on the intersection where the sgn function is defined below:
between two boundary hyperplanes, then %7, must be a
solution to the following equation. sgn s I if s < 0 (24)

1~ rd,. , 1 if s <0
KZj =-!2J'* ' I:1 ifj0  for some ij (18) where s1(,?)=0 and s,(,p)=O define the switching hyper-

planes and 0 and -f are parameters. To correspond to the
For a second-order system with an invertible [Ku', K2 previous notation, let
matrix, a unique solution for r7. is found to be given by

K 12 dij- - K 1 19)K 12 [l. 21; KU=F-2 21; 0 - K, , : -y - KY,,

KU -[ ]2 [:i; (19) = -8 4 ; B2 - [4 01 (25)

If it can be determined that the system is sliding on
the intersection of the hyperplanes, which is the surface € ,j = ., = -1, c,, c7_, 1. dj.2 = d2.2 = 0
defined by the solution Y7 of equation (18), then a unique
solution for n, may exist for larger order systems. Using Define the regions as
notation comm to variable structure system theory,
define an affine i-,ctional s as: R11 (7: ul l and u-=-1)=(Y7: ,5>-K, 27 and ->-K, 7 1

R12 =(77: u -I and u. I= 1 ,j: 0> -Iz,7 and y5-K 2 2,'}
s = -K. + v (20) R21 =1q: u1 =l and u=-)={r7: 0s-Kz27 and ->-K 22r?}

where K and v are determined from (18) such that the R2 -{(7: u, I and U2 =1)=0: O-K 2 r, and 's-K 22 0

solution of s(n)-0 is the switching surface. A sliding The regional equiibrium points z-e found to be
mode exists in that surface if si<0 (8]. The equilibrium
point of the sliding mode can be found by first tra.;-form- r711 11 P71 4 rZ2 21 1 (26)
mg the system into regular form, then, finding the equi- r" ,-1 " li 1 j
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The equilibrium point can be found as a function of There are certain problems introduced by allowing
0 and -f using the function definitions given in equations intersections of switching boundaries to exist in the system
(9), (11), (15), (19) and (21). For a regional equilibrium definition. If the actual solution crosses a boundary near
point to lie inside its associaed region, one of the follow- an intersection, then the approximation may not cross into
ing conditions must hold: the same region. From that point, there is no guarantee

that the appruxmation error remains of order O(g). A
a)-if 0>3 and "y>0 then 'yeR, and %=n, consolation in this is that if the system is not sliding on
b) if 0>-2 and -t<-2 then rn12ER12 and % = 712 switching surface, then the chances of hitting a boundary
c) if 052 and -Y>2 then i?, E, and 71,=ri/z within an O(14) neighborhood of the intersection for an
d) if 05-3 and -t50 then r1722Rz and r7, = ; , arbitrary initial condition is of order 0(p). The exception

to this, is when the equilibrium point lies on the intersec-
Note that these are mutually exclusive conditions. tion. In that case, the solution must eventually travel into

For an equilibrium point to lie on a boundary, either the 0(g) neighborhood about that point and will cross the

conditions (10) and (12) or (13) and (14) are satisfied. boundaries there. However, if the function f which

The following conditions and corresponding equilibrium defines the equilibrium point is continuous, then O0(;)

points are given for ri, to lie on the boundaries between approximation errors in result in 0(g) errors between
R,1 and R21 , R,2 and R22, R11 and R z, and R2 a'nd Rzz, the equilibrium point, i%, and the actual value of r7(r) asRespectively. a-- ". Therefore, if the solutions differed by an amount

of order 0(m) prior to enter-L g the small neighborhood

e) if 3 0>2 and 6<20+-y then about 77., then continuity of f implies that the error mill

ed' = 1+ . remain of order O(g).

f) i -2>>.3and.C>20+.ythenn 7, 3r-]+ [-2] 3. Outer Solution0 tlThe outer solution is found by neglecting the fast

g)ifOe >- ad < -y5/) he r, - ] [1 dynamics. It is assumed that the fast variable, r?, reachesg) if 0>_t>-2 and 3< --r(5/2 ) then 7= = "~ij1 + a quasi-steady-state value within the initial boundary

r layer. This initial quasi-steady-state value is, of course,
h) if 2>-y>0 and -3>_--y(5/2) then; = % ' + the equilibrium point of the fast subsystem (6). The

quasi-steady-state solution, %(t), cannot be found by
If the equilibrium point of (22) lies on the intersec- simply setting A=0 in equation (2) as is done in standard

tion between s, and s2, then the following must be true. singular perturbation techniques, because the solution r,
to the resulting equation is undefined for values of

i) if the conditions in a)-h) are not satisfied and (C,%;) that lie on a switching boundary in the state space.
3>_8>-3 and 2>'Y>-2 then Instead, 7, is found as an equilibrium point of the fast

subsystem using the function defined in Section 2.1, i.e.
[-1/3 1/3 IF % ,(t) = f(K,((t),K2,Q().

.1/3 -1/6 7 Similarly, the control in the slow time-scale, u,,
cannot be obtained by simply substituting C, and % for e

The domain space of the mapping ?,=f(1 ,7) can be and Y? in the original definition of the control (3) because
partitioned into ten nonoverlapping regions each cor- the control is undefined for values of (C,7%) that lie on
responding to a function definition a)-i). It can be shown a switching boundary. In ordinary systems with discon-
easily that this mapping is a function since none of the tinuous control, the system chatters along the sliding
regions overlap. Also, the function is continuous. This surface causing the control to switch at a very high
can be shown easily by noting that the function is con- frequency. The average value of the control (i.e. the
tinuous within each partition of the P--t space. It is equivaient control) determines the motion of the system
straightforward to show that on any boundary between along the sliding surface. In this application, however, the
'wo partitions the two function defiritions are equal. system does not chatter as seen from the definition of 77.

Thus, t'- I control must be given as the equivalent
22 Botndary Layer Approximatioa Error col. " ose values of (i,,r) that lie on a switching

The errors introduced by approximating the true bo.. . Alternately, it can be given as the final value
solution by the solution of (6) are due entirely to the of the equivalent control in the fast time-scale.
assumption that f=f, in the boundary layer. As in the
other piecewise-linear systems discussed in [6,10], the u. = -(B2B )'IB2 A2r7 (27)
approximation errors are of order 0(p) for the time
intervals when both the actual solution and the approxi- Note that the use of the psuedo-inverse is justified by the
mate solution exist within the same region of the R "  consistancy of the equation, i.e.. % was derived from the
state space due to linearity. When a single boundary equivalent control.
hyperplane is crossed, then the previous results on the
approximation errors in the scalar quantized control case Thus, the solution of the system (1)-(2) can be
are applicable. That is, if the vector field does not approximated outside of the boundary layer by the
intersect the boundary with an angle of order O(g), then solution to the following system:
the approximation error remains .,f order O(A). How-
ever, if the solution crosses a boundpiry hyperplane within ACE, + B u,; ,(0) = (2s,
a, O() neighborhood of an intersection between bound-
ary hyperplanes, this result cannot be used. =
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where u is given in equation (27) and the function f is (28). The quasi-steady-state solution is found from the
defined rom (9),(11),(15),(19) and (21). As :'ated previ- function definitions a)-i) listed in Section 2.1.4 where
ously, f is piecewise-linear and may be continuous; hence, O=Ke, and 7=K2 1 s. The initial conditions for this
the slow manifold defined by the function f is piecewise- example are such that the system starts out sliding on the
linear and may be continuous. s, =0 surface in the normal time-scale.

The continuity of the slow manifold is required for Comparison between the time-integration of the
the approximation errors given by 7i(t)-7%(t) and (t)-E.(t) actual system and the approximate system are shown for
to be of order O(g) for the time outside of the initial representative states in Figures 3-4. The errors between
boundary-layer. If the function defining the slow mani- the trajectories are of order O(A). In the approximate
fold is continuous, it satisfies a Lipschitz condition since solution, the boundary layer correction (f-i%(O)) is added
it is piecewise-linear [11]. Therefore, a sufficient coadi- to :he outer solution for 0sts0.2, beyord which it is negli-
tion for the approximation error to be of order O(A) is gible. Both the approximation and the true solution are
that the Upschitz constant be bounded as g-0, i.e. it asymptotically stable to the origin. Therefore, both
cannot be of order 0(1/1). If it was of order O(1,/u), systems are found to slide on the intersection of the
then the equilibrium point for the fast dynamics would switching surfaces defined by s,=0 and S2=0. The
change too quickly in the t-time scale thereby invalidat- computation time for obtairing the actual solution was
ing the separation in time scales between t and r. The roughly 18 times longer than that for obtaining the
resulting behavior would require evaluation of the fast approximate solution for. As in all singular perturbation
dynamics after each switch in the control, and the slow approaches, as A decreases, the approximation becomes
model approximation in (28) would be valid only in the more accurate and the relative computational time-savings
time-intervals between switches. greatly increases.

4. Numerical Example 5. Summary
An example of the approximation method for the This paper presents the analysis of a singularly

two-input quantized control system is demonstrated here. perturbed two-input quantized control system. The
The system is given in the form of equations (1)-(2). The discontinuities in the control occur in the state space on
control is selected to be bang-bang with components single boundary surfaces as well as on intersections of

11 = sgn s1; si = -K11t - K12 r (29) boundaries. This latter occurrence is precisely what

= sgn s = -K21f - makes the analysis of the two-input case so much more
complicated than that of the scalar case. In spite of the

The parameter matrices are given as follows: complications, reduced-order models are developed which
yield the outer solution and the boundary layer solution.

r3 01 As part of the slow model a function is derived which
1 01 solves for the quasi-steady-state solution in terms of the

1 0 B0 .= -_ slow variable. This function is known to be continuous
-2 (30) when the fast subsystem is second-order. Other cases

[1 4  [401](0 may need to be evaluated numerically. As in the scalar
= B2 = case, the system may possess a sliding mode in the fast

A 0 J B L04 time as well as the slc;.- tne z-'2,:. Thc results of a

K, 1 = [2 1 11; K, 2 = [1 2]; numerical simulation show that the approximation method

K2, = [1 1 2]; K2 2 = [-2 2] described in this paper can yield very accurate results
with very good computational time-savings.

To correspond to the previous notation, the parameters It appears that the extension of singular perurbation
of the quantizer functions are defined as: theory to the general multiple input quantized control is

= c, = -1; c, 2 = C2, 2 = I; d1 ,2 = d2 , Z = 0 a very complex problem. In particular, finding a function
which solves for the quasi-steady-state solution is very

The initial conditions are = [-1.5, 1, -0.75]? and 770 = tedious and, in fact, may not be possihle. Hence, in
[1, 21 and u=0.1. general, singular perturbation theory does not simplify the

Note that the fast subsystem is the same as given in analysis. However, it may be the only alternative if the
the example described in Section 2.1.4. Therefore, the original system is too numerically stiti to be solved any
boundary layer approximation is found as the solution of other way. A discussion of the multiple input case is
(22). The equilibrium point of this system, r%,(0), is found contained in [9].
as a function of KC, and K,,C, using the function
definitions a)-i) listed in Section 2.1.4 where 0= Ke, Acknowledgement
and -f=K 21 0. With the given initial conditions on , the This work was supported. in part, by the U.S. Air
equilibrium point is found to be q,(0)=[-2.75, -2]1. This Force under contract AFOSR-87-0308.
corresponds to an equilibrium point existing on the
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OPTIMAL AND SUBOPTIMAL FILTKR FOR LINEAR SYSTIMS DRIV4 BY SELF-EZCIYED
POISSON PROCESSES
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School of Electrical Engineering
Georgia Institute of Technology
Atlanta, Georgia 30332-0250

ABSTRACT

Stochastic differential equations for the conditional density function

and moments are presented for a linear system which is excited by a marked

Poisson process whose rate depends on the state of the system and which is

observed in white Gaussian .,oise. The set of optimal filtering equation,

is infinite dimensional, therefore, any practical filter is suboptimal. A

suboptimal filter is developed for the case of unmarked Poisson excitation.

This suboptimal filter estimates the Poisson process via a combined sequen-

tial estimation and detection scheme based on the criterion of maximum

a posteriori (MAP) probability. An example computation is presented.

1. INTRODOCTION

This paper examines the issue of state estimation for a linear system

which is driven by a Poisson process whoze rate parameter depends on the

state of the system. The input process is described as self-excited-

since its rate function can be specified given the past history of the

input process.

The model of a dynamic system driven by a Poisson process with a state

dependent rate is motivated by several practical situations. In aircraft

maneuvers, the pilot's discrete application of controls is sometimes

modeled as a Poisson input process. It is reasonable to expect that the

rate of the control actions is dependent on the state of the aircraft.

Another example is the tracking of a light source with a photon detector.

The rate of photon arrivals certainly depends on the state of the tracking

system, notably the tracking error angle.

The most general system considered in this paper is described by the

following scalar equations:

dx axdt + bdn ()

dzt  dw t

Y t t t d)

where n is a marked Poisson process whose marks (i.e., the amplitudes oft

the jumps) {u.} are a sequence of mutually independent, identically

distributed random variables with density pu(u). The incident rate
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if n is a meocyless function of the state, v(xt). The process.,vLai .. ..

irownian motion with diffusion Vt.

The objective is to estimate x. given the history of the obseratiLe

,rocess, either y1 or z s , for s C t. In Section 2, an expression foctM -

uinimium mean-squared error (MMSE) estimate is derived, and shown to'be

mpractical. Good suboptimal approximations to the M14SE estimate ae

lesirable, but are not pursued here. Instead, in Section 3, the mazimum

posteriori (MAP) criterion is used to derive a practical filter for xt.-i

2. OPTIML FILTR EQOATIOuS

This section derives the axpression for the stochastic partial differ-

ntial equation satisfied by ptt(x), the conditional density function of

<t given Zt t (zs;s < t}, based on a filtering theorem for white Gaussian

3bservation noise. Furthermore, recursive equations are obtained for the

zentral moments of this density function. The procedure used here is

similar to the one used by Kwakernaak (1] to analyze a linear time

invariant (LTI) system driven by an unmarked Poisson process with a

constant rate.

First, the filtering theorem stated in Kwakernaak [11 is summarized

for the special case of a scalar system with independent observation noise.

Filtering Theorem (1]: Let Q.' t ) to, be the semi-martingale defined

by

dot .Rtdt + dM t t (3)

where Mt is a martingale with respect to a growing family of a-fields Ft ,

t > to, and where Rt is a process adapted to F. Let z, t > to, be the

semi-martingale process

dz t - h tdt + dw t to (4)

where h is another process adapted to F, and wt is a Brownian motion inde-

pendent of F, such that E(dw
2
) - Vtdt , Vt > 0 for t > to. Define Zt as the

growLng family of a-field, gene:ated by the process z t .  For an arbitrary

process t' define t - E(t Z t). Then Qt satisfies the dynamic equation

t t ('t t -t dt)
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ivx t
The filtering theorem will be applied to .t • for xt as defined in
(1). However, the differential rule for filtered Poisson processes must

first be used to obtain dQt . The rule may be found in Snyder [2, p. 200],

and is also a special case of the differential rule for discontinuous semi-

martingales (1,3].

Differential Rule 121: For an appropriately smooth function Q(xt) and

for xt defined in (1), the rule is

3Q(x t

dQ(xt) " atxt ( )dt + f [Q(xt+btu) - Q(xt)]K(dt,du) (6)t U

where the last integral is a counting integral [2, p. 195], evaluated Over

the mark space U, with respect to the Poisson counting measure K(dt,du).
K(At,A) is the number of jumps of nt during the interval At with marks in

the set A C U.
Equation (6) may be put in the form of (3) by letting

d " f [Q(xt+b tu) - Q(x t)][K(dt,du) - u(x t)Pu(U)dtdu] (7)

U 

t
and taking Rtdt as the remainder. The substitution of Rt into (5) yields

dIvx t iia vx t 1,.tb u

e ( vtx e - a e - 1z - x ))dt

+ ( tt I t t - t .t -t "d (8)

Let Ot = btu (recall u is the mark variable) and p0 (") be the probability

density function for et.  If it is assumed that te conditional density

function ptt(x) exists, then taking the inverse Fourier transform of each

term of (8) yields

-1 - )[ t  ] ,)
dptit(x) - Lptt (x)dt + Vt ct [x-xt]pti t (x)[dz - ctdt]

where L ia the linear operator given by

,p W - 1 (a (x)] + ( ) [U(X)p(X]) - (x)p(x) (10)

t
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where *" denotes convolution. As in Kwakernaak's case, equation (9) is

the same as the Kushner equation for systems driven by Brownian motion,

except for the definition of L.

Equations (9) and (10) can be used to derive stochastic differ-

ential equations for xt and the n th conditional central moments Pn,t

E( (xt- t)n)zt~as follows:

Pn.'t -Et(X t ) n Zt] n - 1,2.... (11)

dx t  - atxtdt + btE(u) (x tdt + Vt ctP2 ,t[dzt - ctxtdt]

n

-nt t n, dt + (k)btE(u) xt t U(xt)dt - nbtE(u)u(x tP n-1,t

-1 k
+ Vt ct[Pn+1,t - nP2t P nl,tl]dz - c xtdt ]

-1 2 ,n-1

+ nV_ c 2 L - P P -P ]dt .~*2,3.... (12)
t tP2,t-2 2,t n-2,t n,t

Equations (11) and (12) represent an infinite set of coupled stochas-

tic differential equations. Thus, an exact mean-squared error optimal

filter is impossible to implement. Furthermore, in Kwakernaak's opinion,

simple truncation of the moment equations (for the constant rate case)

leads to unstable filters and generally poor results. Hence, approximate

suboptimal filtering techniques are required, and are under investigation.

This paper considers an alternative approach which uses a different error

criterion, and is treated in the next section.

3. A MAP APPROACH

For this analysis, it is assumed that the driving process nt is a

counting process, i.e., it has only unit jumps. Furthermore, it is assumed

that the system being driven is linear time-invariant, that is, a. - a and

bt - b in equation (1'. Thus, it is clear that knowledge of the lump times

implies knowledge of x.. The approach followed in this section is to

obtain MAP estimates of the number NT of jumps in nt and the jump times

T r..... on the interval (0,T), given the observations YT T
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J yasS T}. The state estimate at time T, denoted xT, i% then costructed

by the appropriate superposition of imoulse responses. The approach is

made into a practical sequential algorithm by using time discretization and

a finite time window.

This is an extension of the work of Au and Haddad [3] wherein the

approach outlined above was taken for marked Poisson driving processes

which have constant known rates.

The MAP estimates NT and LM satisfyT0 *-M
(NTZM) - arg 4 N"M < M Ln D N T Nt eM( ) 13)PNT. YT T'S"R] (3

where the argument of the logarithm is a joint a posteriori probability

density function. M is an integer chosen large enough so that Pr :T > M]

is negligible. The condition NT 4 M ensures that Z. includes enough jump

times to construct xT"

The log of the density function in (13) can be replaced by the

following expression without changing the resultt

T N* N'
LniN-f [2y -, h(t,,)J[ I h(t,r)dt

2T 0 t 10 j.0

+ Ln p M INT,NT N T*IINT N*,NT 4 M) + Ln Pr[NT - N*INT C M] . (14)

The first term is recognized as the log likelihood function, wherein

h(t,- ) represents the response of the system at time t to an impulse at

time T;- For brevity, h(t, ') is defined as the unforced response due to a

known initial condition x0 .

The next objective is to simplify the expressions of the second and

third terms of (14). Note that the event NT - N* is also the event N'

T < T N+I. Therefore, the probability de - in the second term can be

rewritten as

p1N N T<M (.g]N T -N,NT 4 M)

I M MINT fo 0 ... TN* T? Pr[ < T.,N.,+ > TIN* < M] and T < r'.+, I TM1

0 otherwise

Since In 0 - , it is reasonable to restrict the region over which the

expression in (13) is maximized to the region of support of (15). Under
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this restriction, the third term of (14) cancels the denominator of the

nonzero part of (15).

The remaining term to simplify is the numerator of the nonzero part of

(15). It is noted that the evert IT 4 M is also the event TM I > T. Thus,

the term of interest may be expressed as a marginal density function:

P (r*N< ~ dM+ (16)
.N MtNT N) "f -r >(t'1"~
'-N T TM - ItM,.1>T"-M+1 M+1 >

It is noted that the region of support of the integrand is over the "wedge"

0 ; l 1 ... 4 TM C TM+1 minus the half space TM+ I ( T. Therefore, (16)

can be rewritten as:

- Pt (M + )17
TIN (TiIN M) " Pr(T > T(17)

. TNT iM T Max(C ,,T) 14+1

The unconditional density in the integrand of (17) is a special case of the

density considered by Snyder (2, p. 2481 for a self-exciting point process.

For this special cc._- the density can be expressed as:

M+I -

a -exp x ( 1))dt for 0 " T ' < 141

'-. t I18M

0 otherwise

with
i-I

xtr[_) - Xeatul(t) + Y b exp(a(t--r;)]u 1(t - T;)
J-1

where u, is the unit step function. In words, t(' -) is the value of the

sta.e assuming tnat nt ha4 lhad Jumps only at times t.... T . Let xt(T)t I-
denote the unforced value of the state.

Substitution of (18) into (17) is straightforward due to the product

form of (18) and yields

PT ) T ax M,T)

P IN -M ) T ft

M

where it has been assumed that there exists some a > 0 such that ux ) a

for all x, thus making

exp j- 1 [xt Jdt 0
Ta
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It is noted that PT (*) is defined by replacing M + I by M in (18).

Evaluation of the derivattves yields

M i)Jexp u -u[; ('_,))dt for 0, , , .

p T[ T* t Md
Z M -M (2 0 )

otherwise

The combination of equations (14), (15), (19), and (20) results in a new

MAP equatiun: p

Max

-M-

Ma Max(+ T)
Ln II (I-))]d (2

whre th maiizto is to be performed4T*.< V in 2to stp, rt ove th

~~~~~~~ fo fie *' <n eodovrteNs

4. SEQU(ITIAL I.&P APP1R1XliQAI~m

The MAP equation (21) derived in the previous section is now approxi-

mated as a sequential algorithm. In this approximation, the observations
are processed in subintervals each of length , which is chosen uch that

the probability of having two or more jumps in each interval is negligibly
small. Each subinterval of observations is used to detect a Jump in the

subinterval and to estimate the jump time, as well as to update the

estimates of past jump times.
In order to reduce computational complexity of the algorithm,

estimates furter than l subintervals away from the new subinterval are not

updated and considera =finalized. The selection of L represents a

tradeoff between performance and complexity. Thus, observations in the
kth subinterval [ (K-Io)v,KA are used to update estimates in the window

(K-L) KA. N(K-L) represents the number of finalized estimates of jump

times.

Equation (21) is next cmdified so that maximization is performed only

over Jump tmes occurring after the time (K-L). Any additive terms which
depend solely on finalized estimates are dropped. For brevity, let N
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-4 ('I" for finalized). Furthermore, red*fine i as [ ,r ... ,

and redefine '; (Cr as the state assuming that jumps have occurred onr.y at
the finalized times and at the proposed times . The modified (approxi-

mate) version of (21) is:

Max
rg Max F r C T 

I F 1 T " * * < 7A

NF+

2V [Eyt - H..][[)]dt
T (K-L) a

INF -max(,*~ +L' KA r)
n\f (K f WA (K-.)A t rj (22)

There is a remaining difficulty with the maximization over the T*'s in

(22). Assume that this maximization is being performed for a given, fixed

N*. Furthermore, assume a discretized domain, i.e., a subset of equally

spaced discrete values in RL. The discretization implies that the expres-

sion in (22) is evaluated over a finite number of values for the re's

between '- and K4, but there are still an infinite number of values to

check for Nthe TO's above KA. Maximizing over these "futurel jump times is

equivalent to maximizing the joint a priori probability density for these

jump times.

The constant rate case (Ilx¢] - U) presents no difficulty, because

the joint a priori density function for the jump times after KA has its

maximum at T. . . XA. It is easily shown that the
N-+1 'N+2 N +

same is true for stable first order systems and rate functions uIx] which

monotonically increase with {xi. However, for more general LTI systems and

rate functions, findina the maximum of the a priori joint density is

appatently not as easy. This matter is currently under investigation.

5. EZIAPLZ

Figures 1 and 2 display simulation results based on the algorithm of

Section 4. The parameters are (see equations I and 2) at - -5, bt . 2, and

t . 1. The rate or intensity, u(xt), of the counting process n takes

only two values: V(x t) - 2 foe Ixt1 4 1 and u(x t ) - 4 for IxtI > 1.

Figure 1 contains the state trajectory. The rate takes its high value when

the trajectory is above the dashed line and the low value otherwise.
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For estimation, A = 0.03125 sec. This yields an approximate upper

bound for Print+& - n t 
> 

i of 44 - 0.125. The observation noise samples

have a standard deviation (/ ) of 0.15. The estimation/detection window

is L - 4. Estimation results are shown in figure 2. Some errors may be

observed at t = 2 and 3 < t < 4. It is noted that for /V = 0.1, all of

the jumps were correctly detected (to the order of the simulation sample

period) and for /V - 0.2, several more false detections occurred in the
T

region 0.5 < t < 1.5.

6. COCILOSIONS

The state estimation problem has been considered for a linear system

observed in additive white Gaussian noise, where the system is driven by a

Poisson process with a state dependent rate. It is no surprise that the

minimum mean-squared estimator is infinite dimensional, since the same is

true for the simpler constant rate case. However, it is expected that the

form of the equations will suggest a good suboptimal approximation in the

future. An implementable estimator was developed based on maximum

a posteriori (MAP) estimates of the number and times of the jumps in the

driving process. However, the feasibility of this scheme has been shown

only for certain LTI systems and rate fur-tne-s. ?,:z;zar investi;ztior

is needed to enlarge the apparently limited applicability of this MAP

approach.

This research is supported by the U.S. Air Force under Contracts

F08635-84-C-0273 with the Armament Laboratory and AFOSR-87-0308.
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Linear Systems Driven by Self-Excited Point Processes*
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Abstract The difficulty referred to above is how to properly use the a priori
stattistic in this problem. The procedure is straightforward when the

A sequential detection scheme is used to determine the approximate goal is to produce a MAP estimate of the consecutive arrival times in

occurrence times of impulses in a self-excited point process which drives al interodc a0, A etateeete ectiv arrival times in

a sc.alar linear system. Observations of the state are corrupted by an interval 10,T), given that there are exactly n arrival times. The

additive white Gausian noise. The state estimate is constructed based MAP estimate f-L maximizes the quantity

on the detected impulses. A(Yor I r)zpQ. I Nor = n) (3)

1 Intr-oduction where A is the likelihood functionalep(-L: f
Linear systems driven by a combination of a marked (randomly weight- exp - ]247 t (r2 . i (r.) d (4)

ad) impulse process and a white Gaussian noise process have been used
as models for maneuvering targets [I], swit.zhing environments 12), and -d p(r4 I No,. = n) is the joint probability density function (pdf)
seismic signals in oil exploration [3]. Impulsive input processes with of the first n occurence times in 10,T), given that N0,1 = n. It is
state-dependent statistics are applicable if a system is prone to a high noted that for the state-dependent rate case, this pdf is not generally
disturbance rate in some regions of the state space and a low rate in differentiable with respect to r..
other regions. As preparation for the analysis of the complex model do. It is alo straghtforward to produce a MAP estimate of N0 .7 , that
scribed above, a simpler problem has been addressed in which the only i, a minimum probability of error detection of No . The MAP esti-
disturbance is a self-excited point process [9] with constant markr. The mate NoT, maximizes
process is described as selexcited because its instantaneous average E{A{y 0  I r.) I N0,2 = n) Pr{No,.. = n). (5)
-ate is a function of the state of the system being driven.

The optimal mean square error £ltor involves an infinite set of where, in the constant rate case, the second factor is a unimodal func-
coupled stochastic differential equations 14,61. In cases where the in. tion of n, with its peak at E{No0T) = AT.
atantaneous average rate of the input process is constant and is low In the problem at hand, however, neither f. or &O,r alone will suf-
relative to the bandwidth of the system, various truncations of the fice. The two procedures must somehow be merged. The issue is more
optimal filter have performed poorly 14,8]. preosing when the model includes random marks which can take very

These performance reports have prompted investigation into other small values. In that cae, the maximum likelihood approach yields
approaches [8,6,5] which resemble a maximum a poeteriori (MAP) ap- unreasonably large values of N as many small impulse responses are
proach. These approaches share the basic goal of determining the num- made to fit the observation noise. Any estimator of N must sufficiently
bar, N, and the arrival times, .N, of input pulses in a time interval, penalize large values.
using observations over that time interval and a priori statistics. Au 8) In each of the three approaches mentioned above, a single expreo-
and Kwakernaak [5] make the additional assumption of random marks. sion is maximized to determine both the number and times (als marks
However, it will be demonstrated that an inherent difficulty with this in (81 and [5)) of impulses in an interval. Au [81 used the likelihood
problem is preserved in the constant mark cae. In all approaches but ratio weighted by Snyder's sample function density (afd) [9:
Kwakernak'a, the solutions to this fixed-interval smoothing problem
were transformed into fixed-lag smoothing algorithms by allowing the . n) = p'r. I Noy = n)p(s, N0 ,7 -) Pr{ No7 = n) (6)
interval to become a moving window. A smoothed estimate of the state where u. denotes the random marks. It is noted that the sfd is not
is constructed by superimposing responses to the detected impulses as a joint pdf, since the dimension of its domain depends on the last
they are left behind by the time window, argument. For independently and identically distributed (iid) marks,

In order to discuss the problem further, some definitions are needed, the natural log of the sfd simplifies to
Let NoT, be the number of input impulses in the interval [0,T). Let
L_= Ixr I.... ra] represent the first f consecutive arrival times of nInA - AT+ np(,). (7)
the impulses. Assume observations of a scalar system: £-1

+ F ,T) 1 which, as a function of n, does not share the characteristics of
1 = I(LNv.,) +U t[0,T) (1) n Pr{ N r = n); in particular, it does not necessarily penalize large

No.T n. In the algwithm, extreme values of n anre prevented by limiting the
= h(t - r,) + O(t,O)Zo (2) rate of change in the collection of a's.

In treating the state-dependent rate case, Ingram and Haddad [61
where sh is Gaustian white noise with spectral height 0r , h(t) is the replaced the sid in Au's approach with the joint pdf of r.W and N0.,,
impulse response of the system, and f(t,0)z is the unforced respon . where M is chosen so that Pr{No," > M} -c 1. Use of an actual
Let {Uo.0l repr-r - t he observa ons < v* the interval [O,T). The pdf might seem appropriate for a MAP approach. However, it wee
instantaneous average rate of input impuiss is defined to be pis,], observed that for the constant rate case, this pdf is constant with

o is a positive, bounded function, respect to both r,. and n when n < M. Thus for the constant rate
cas-, the criterion - epjy m-,YaSA likelihood wi, skn ur';eL '.ouA

Se11Piled by tSU V. S. Air Forc sar Grat AIOSR-7-03S on n.
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Kwskernaak [51 applied Risanen's [71 shortest data description z n=0 n=1 n=2 n=3
method to this problem. The resulting procedure is the same as Au's 0.0 0.2 0. 0.039 0.010
except that the expression in (6) is augmented with the factors II_',. 0.829 0.120 0.003 0.0100.2 0.829 0.120 0.040 0.010
where vk and 5j are resolutions for digitizing the ith mark and arrival 0 0
time, respectively. The resolutions are chosen to minimize the aug- 0.6 0.829 0.119 0.040 0.010

mated expresion, which is interpreted as the symbol length needed 0.8 0.829 0.119 0040 0.010

to encode the data n, r., and &. This method is optimal for the data .0 0.829 0.119 0.040 0.010

length criterion and penalizes high values of n. However, it is not read- 1.2 0.724 0.119 0.075 0.022

ily applicable when the input is a self-excited point process. This is due 1.4 0.7" 0.19 0.095 0.022
1.4 0.679 0.195 0.094 0.02T

to the complexity of the expressions and the required differentiability 1.6 0.623 0.231 0.109 0.030
of the sid in the assignments of q, and 4. 1.8 0.581 0.259 0.119 0.032

2.0 0.547 0.287 C.2'26 0.033
2 The Sequential Algorithm 2.2 0.517 0.309 0.130 0.033

2.4 0.491 0.336 0.133 0.033
The approach taken in this paper to the problem of estimating the self- 2.6 0.472 0.354 0.133 0.033
excited input point process has two steps. The first step is to compute
the MAP estimates f, for every n such that 0 < n < M, where M is Table 1. Values of Pr(Noa. = n I 201 for the example system.
chosen as above. The likelihood functional for the n = 0 case is also
computed.

The second step is to approximate the minimum probability of error References
detection of No. by replacing the averaged likelihood functional in (5)
with the likelihood functional evaluated at f,, i.e., by maximizing [1] R. L. Moose, 'An adaptive state estimation solution to the ma-

neuvering target problem,' IEEE Trans. Automatic Control, Vol.
A(yo: I f.,,zo} Pr{No, = n [o1 (8) AC-20, No. 3, June 1975.

over 0 S n :_ M to get No.T. The final estimate of input impulse times [21 G. A. Ackerson and K. S. Pu, 'On state estimation in switching
is Both terms in (8) are conditioned on zo because of the state environments,'IEEE Trans. Automatic Control, Vol. AC-I5, No.
dependence of the rate. 1, February 1970.

The main reason this approach was chosen is its explicit depen- 31 . M. Mendel, 'White noise estimators for seismic data processing
dence in both step on a priori statistics. This dependence was highly in oil exploration,'IEEE Tfns. Automatic Control, Vol. AC-22,
desirable, givm the rather elaborate input model that has been aW- No. 5, October 1977.
sumed. The reason why equation (5) was not used is mainly due to
implementation difficulties. Specifically, the likelihood functional can [41 H. Kwakernaak, 'Filtering for systems excited by Poisson white
take on very large values for high signal-to-noise; this causes high sen- noise,' Eds.: A. Bensoussan, J. L. Lions, Control Theory, Nu-
sitivity to approximation errors in the numerical integration needed to mericl Methods, end Computer Systems, Springer Lecture Notes
perform the expectation. Even if this sensitivity problem did not exist, in Economics and Mathematical Systems, Vol. 107, Berlin, pp.
the multiple integration would not be desirable because it is very time 468-492, 1975.
consluming.

Equation (8) is relatively easy to implement. The first factor is a [51 H. Kwakernaak, 'Estimation of pulse heights and arrival times,'
byproduct of the first step and the second factor, Pr{Nor = n j to), Automatica, Vol. 16, pp. 367-377, 1980.
can be computed off-line for the desired range of values for zo. The [61 M. A. L.gram and A. H. Haddad, 'Optimal and suboptimal il-
second factor naturally imposes a penalty on high n and also noticeably tering for linear systems driven by self-excited Poisson processes,'
depends on zo. Proc. Twenty-Fifth Annual Allerton Conference on Communics-

In the sequential algorithm, this procedure is performed over the tion, Convol, end Computing, Sept. 30- Oct. 2, 1987, Monticello,
interval [A, A+T, where A is periodically incremented. The smoothed Illinois, pp. 426-435.
state estimate A takes the place of zo.

The algorithm has been teasted on the following example. Let (7J J. Riseanen, "Modeling by shortest data description,* A utomtices,
Vol. 14, pp. 465-471, 1978.

h IZt e 5 I [81 S. P. Au, 'State estimation for linear systems driven simultane.

-} - 4 > I ously by Wiener and Poisson processes,' Ph.D. Thesis, Universityf Iof Ul3inios at Urbana-Champaign, 1979.

Some values of Pr{N.y = n I 2o, computed for the example and [9 D. L. Snyder, Random Point Processes, Wiley, New York, 1975.
T - 0.1875 are shown in the table. For this interval size, Pr(No,r >
3) 5 0.00T3, so it is sufficient to consider values of n up to M = 3. It
is observed that as z0 incrases, the probability weight gradually shifts
away from n = 0, but the probabilities of n = 1 and n = 3 still differ
by an order of magnitude. For zo 2! 2.6, the distribution for 0 < n < 3
is uchanged because the high initial condition ensures that pre] = 4
ov the whole interval. For oJ = 0.01, all pulses except the first are
detected within the time resolution of the simulation. As the noise
strength grows from o = 0.04, errors begin to occur. Additioual tests
ams being performed and a theoretical performance analysis is under
investigation.
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ABSTRACT

In this work, mean-square continuity is proved for the state of a linear system disturbed by

a point process with a state-dependent rate and random marks. The cross-correlation property

and the Linear optimal filter are derived for the case of zero mean marks.

SUMMARY

The model treated in this summary is a continuous linear time invariant system driven by

a self-excited, marked point process. The term 'self-excited' implies that the instantaneous

average jump rate or intensity of the point process depends on the history of the process. Thus,

self-excitatioa is one kind of time-correlation. In particular, the jump rate is specified as a

memoryless function of the system state. The term 'marked* describes a point process with

random jump amplitudes (marks).
One possible application of this model is in the trackinj of maneuvering targets. The

jump process represents the commanded acceleration of the vehicle being tracked. The state-

dependency of the rate represents a relation between the rate of acceleration jumps and the
position and velocity of the vehicle. Another possible application is in state estimation for

systems subject to abrupt failures, such as the onset of biases in sensors or actuator3. Here,

state-dependency of the rate may represent an increased vulnerability to failures under condi-

tions of high heat, speed, or electrical current.
The state process is given by the following stochastic differential equation

dzi = Azdt + BdMg t > 0

where zi e R^ is the state, with initial condition to, A C R' x R^, B E R', and M, r R is a
piecewise constant random process to be defined below.

Let N, denote the number of jumps in Mi. Let (u,, ... . . uN,) be the consecutive jump

'ei -9 nr marks of Mi. Then Mi may be expressed

N,
Mt= u,'.

The marks are assumed to be independently and identically distributed with mean U and

mean square value u 2. We define the stochastic intensity 11) or instantaneous average rate of
N, to be ;4z,], where u is a scalar valued, positive, and bounded function of the state X, of the

system. It follows that N, - o ,4z, Zds is a martingale with respect to the a-algebra St generated
by z,. The observation model is given by

dz, = rdt + dwt

where w, is an n-vector of Wiener processes with E(dwdwg} = Idt.

There has been a fair amount of work concerning systems driven by compound Poisson
processes, that is, independent increment point processes with random marks. The contribu-

"upporssd by the U. S. Air Force under Grat AFOSR-87-0303
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tions include representations and properties [2), and mean-square optimal, linear optimal, and

suboptimal state estimation [3,4]. Self-excited and more general point processes have received

attention 12,11, mainly as models for point process observations of dynamic systems.
Martingale theory has been applied successfully in the characterization of point processes

(i1 as well as in nonlinear filtering theory. Thus, it was desirable and instructive to use it in

proving the following propositions.

Proposition 1 If there exists a constant K such that

.4xJ < K < +on

for all E R", then xt is mean-square continuous, that is,

lir Efjij, - x, 11) = 0.mt

where I] denotes the Euclidean distance in R'.

Proposition 2 If the mean of the marks is zero, i.e., if U = 0, then z, is of the separable class
15], which implies that for any nonlinear, scalar valued function g(.), there eZists a constant
vector C such that

E{xgg(x,)} = E{=x,',}C.

given that the appropriate ezpectations exist.

The innovations approach of Kailath 16) may be used to derive the linear filter. The mean-
-tquare continuity of z, is sufficient to prove that the innovations process v, - zt - f.0 :i, ds,
where :'t is the filter output, is a process of orthogonal increments. When the marks have zero
mean, the resulting filter is

d~i = Akidt + Pdv,

P, = AP + P,A' + BB'" "A7 - AP,

Although P, will be difficult to compute due to the a priori expectation P7'4, the computation
can be done off-line. We are currently investigating methods of computation and the filter
expression for the case of nonzero mean marks.
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ABSTR ACT

Modeling issues and the minimum mean squared error linear filter and

smoother are studied for a linear system disturbed by a jump process with

a state-dependent rate and random jump heights. The jump process is

defined in terms of martingale processes. Martingale techniques are used
to derive certain properties and second order statistics of the jump and state
processes. It is shown that the linear filter and smoother are practical only

for the case of zero-mean jump heights.

1 Introduction

Linear systems with random impulsive forcing functions have been used to

model dynamic systems subject to abrupt failures or bias changes [1] and
manuevering targets [2], as well as many other physical situations [3, chapt.

4]. State estimation for such systems from noisy observations has been an
active research area for many years. The input process is often described
as either an independent increment compound Poisson process [4,5,6,7] or
a discrete-time semi-Markov process [2,81. In both cases, the minimum

mean squared error (MMSE) filter is not implementable. Thus researchers
have considered various approximations to the MMSE filter as well as linear

'Supported by the U. S. Air Force under Grant AFOSR-87--0308
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optimal filters and schemes which involve maximum a posteriori (MAP) or
MAP-like criteria [6,8].

This note treats a linear system driven by an extended version of the
compound Poisson process. The extension results from allowing the instan-
taneous average rate of the input impulses to depend on the state of the
linear system. In the abrupt failure application, the state dependency is
motivated by the idea that a system maybe more prone to failures when
it is under some degree of "stress," as defined by a region of the state
space. In the target tracking application, the likelihood of a pilot to give
an acceleration command may depend on his speed and position, again re-
flected by the state of the system. Apparently, this input model has not
been previously considered in the context of state estimation. A related
model, a linear system with Markov jump parameters where the jump rate
is state-dependent, has been considered for optimal control [9].

The objectives of this note are to determine various properties and quan-
tities of the process of interest which are relevant to MMSE estimation,

and to derive the MMSE linear filter and fixed-lag smoother. The note
is summarized as follows. Section 2 contains a methodical development of
the properties of the state process. The development is based on a semi-
martingale representation of the counting process which underlies the jump
process. It is this semimartingale representation which precisely describes
the state-dependency of the system disturbance. We build up from the
counting process to the jump process, and finally to several representations
of the state process. The state process is proved to be square integrable
and mean square continuous. Section 3 contains a discussion on linear esti-
mators for the state process, given observations in additive white Gaussian
noise. A recursive form for the filter and fixed-lag smoother follow easily
when the jump heights have zero mean. In the general case, however, a re-
cursive form of the linear filter is not obtained. Some observations are made

from the general filter expression and the form of the a prior; covariance
equations.

2



2 The State Process

In this section we define the state process and discuss its properties. Several
representations are considered, and the properties of square integrability
and mean square continuity are proved. We recall that these properties

are true for the constant rate case, so it should not be surprising that they
follow for the state-dependent rate case when the rate function is uniformly
bounded. The definitions and proofs, however, do require some care.

The state process is given by the following stochastic differential equa-
tion

dxt = Axidt + BdMt t > (1)

where xt is an n-dimensional state vector, with initial condition x0 . The
n x n constant matrix A is assumed to be such that the solution of ± = AX is
exponentially stable. The scalar process Mt is a piecewise constant random
process. The jumps of Mt occur at an instantaneous average rate which

depends on xt.

2.1 The Input Process

The process Mt is known as a jump process. Its definition depends on a
sequence of ordered pairs {(r,u 1 ), (r2,u 2), ... }, where ri > 0 is the time of
the i t' jump and u, is the jump height. This sequence of ordered pairs is
known as a point process, and the u's are the marks of the point process.
The r sequence may be equivalently represented by the counting process
Nt, which is the number of jumps prior to time t. Thus the jump process

Mt may be expressed
Nt

A = Zui. ()
t:=I

In this note, the marks are assumed to be independent and identically

distributed (iid) with probability density function (pdf) pu(u), mean if, and
mean square value u 2. Also, u, is independent of {N°,Mo;0 < s < t} for
j>Nt.

The state dependency of the rate is made precise in the definition of
the counting process Nt. Because martingale theory is known to be quite
powerful in the analysis of point processes on the real line [10,111 and it is

3



fundamental to nonlinear filtering theory [12], Nt will be defined in terms
of martingales.

Let St be the smallest a-algebra containing the histories of both the

state xt and the counting process Nt, i.e. St = a{z.,N,;s < t}. The

reason Nt is explicit in the definition of St is because if a mark u can take
the value of zero, then a jump in Nt may not coincide with a jump in zt.

St is assumed to possess the "usual" properties of completeness and right
continuity [13]. Consider the process At = li[x,], 1 : )Z -* R , where A
is such that 0 < ,s[x] < K < +00 for all x E R' and some constant K.

We specify At to be a stochastic intensity with respect to St, or simply an
St-intensity, for Nt [11, p. 27]. Note that the definition of St-stochastic
intensity requires that Nt be measurable with respect to St, hence the need
for Nt in the definition of St. An informal interpretation of A, is that on
the infinitesimal interval It, t + dt), Nt acts like a Poisson process with rate
parameter At, or that Pr{dNt = 11 St} = A dt.

By definition of St-stochastic intensity,

Dt = Nt - A,ds (3)

is an St-martingale. The integral fo Ads is also known as the unique pre-
dictable compensator for N, with respect to St [10, p. 59].

It is known that a counting process Nt may have more than one stochas-
tic intensity with respect to a given growing a-algebra, but there is only
one stochastic intensity which is predictable [11, p. 30]. If kz[xt] has left
and right limits, then ,t = [xt_J] is predictable [14, p. 46]. However, pre-
dictability is not required for the results in this paper; any At differing from

on a set of Lebesgue measure zero may be used.
The description of a point process using a stochastic intensity is a rel-

atively modern approach to the modeling of point processes. One of the

classic approaches is to define a point process by the joint probability dis-
tribution of its jump times and marks and by the distribution of Nt. In
his book 13], Snyder reviews distributional descriptions for many classes
of point processes on the real line. One class of processes, the class of
"marked self-excited poir.t processes," includes the process of interest in
this note [3, p.467]. The term self-excited means that the present and fu-
ture statistics of the process depend on its own past. It is noted that the

4



specification of At = u[zt] as a stochastic intensity of Nt is consistent with
the distributional characterization of a marked self-excited point process
where the self-excitation is through state dependency. The connection is
made through a theorem stated by Br~maild [11, p. 611. We note in passing
that the distributional description is useful in certain maximum a posteriori
(MAP) approaches to this state estimation problem [15,161.

The definition of Nt will now be generalized to include random jump
heights or marks. This procedure will lead to a decomposition of Mt similar
to the decomposition in equation (3). The decompositon of Mt will, in turn,

lead to a useful decomposition of xt.
Let the mark sequence {un,n > 1} take its values in the measure space

(U, U). The idea of the counting process Nt may be generalized to a counting
measure p((O, t] x A), which is the number of jumps in Mt that have marks
(or jump heights) in the set A E U [11, p. 234]. It follows that Nt =

p((O, t] x U) and

t= J p((0,t] x du). (4)

If Nt has the stochastic intensity At and the future marks are iid and inde-
pendent of Si, then it follows that the stochastic intensity of p((O, t] x A),

is A Pr{A}. A heuristic argument is given below.

Pr{p(dt x A) = 1 I St} = Pr{dMt E A I dNt = 1, St} Pr{dNt = 1 I St}

= Pr{uN,+l E A I dNt = 1}Atdt
= fA p, (u)du.Xtdt.

A corollary of Brdmaud [11, p. 2351 then implies that

R. = I [p(ds x du) - A,p,(u)dsdu]

= M- f Ads (5)

is an St-martingale and Qt = f iIAds is the unique predictable compen-
sator of Mt. It is noted that (5) is also the unique decomposition with
respect to St = a{x,;0 < s < t}. This is because dMt is conditionally

independent of {N.; 0 < s < t} given xt. It is further noted that Rt is an
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orthogonal increment process (its formal derivative is white noise) since all
martingales have orthogonal increments.

In the appendix, Rt is shown to be an L 2-martingale with quadratic
variance

(R,R) = I 2.[z, lds (6)

which implies that R 2 - (R,R), is an St-martingale [17, p. 1151. It follows

that

E{RtR} = E{(R,R)t^,)

f t A l , . .

7
= 0 U2 ;L[x,jds. (7)

where t A r =- min(t,r). The expressions in (6) and (7) will be employed
below in a bound on state variance and in the linear filter expression, re-

spectively.
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2.2 Representations and Properties

The state process has several representations. These representations will
be reviewed and then one will be used to prove the square integrability and
mean square continuity of xt.

The expressions in (1), (2), and (3) constitute one representation for x,.
It is also possible to give an augmented state equation with an independent-
increment excitation. Let M be a compound Poisson process with iid
pU(u)-distributed marks and a unity jump rate. It follows from a theorem
and lemma of Bremaud III, p. 41], that if At is uniformly lower bounded
away from zero, then xt may also be represented by the following equations:

dx, = Axt + BdIr, (8)
drt = 4[XtJdt

where the augmented variable performs time scaling of the input process
M1 ,. While the representation in (8) has not been useful in analysis, it is
useful for computer simulations.

It is easily observed that xt is a Markov process with a stationary
transition function, since the statistics of dMt in equation (1) are com-
pletely determined by xt. More specifically, x, is in the class of Piecewise-
deterministic Markov processes, a class described by Davis [18] that "covers
virtually all non-diffusion applications."

When a Markov process has a stationary transition function and is con-
tinous in probability (which is implied by mean square continuity, proved
below), then its transition function is uniquely determined by its differential
generator A [19, p. 1841. The operator A can be used to derive differential
equations which propagate the covariance of xt as well as other expected
values associated with xt. Given a continuously differentiable function f,
an expression for Af(xt) may be found by simplifying the general formula
in Davis [18]:

Af(z) = fAx, + z] [fx f(xt + Bu)pu(u) du - f(xt)]• (9)

A property of the generator is that

f t) - f(z) - fA. f(z,) dr (10)

7



is a martingale for t > s [18].
The adjoint operator A* yields the following evolution equation for the

pdf of xt, assuming the density exists.

pt (x) p(x)

a

= 0 [-Axpt(x)] + Jpt(x - y)AIX - YIpB.(y) dy - pt(x)A[[] (11)

where PB,,(') is the pdf for the random vector Bu. It is observed that A* is
not a local operator because of the shifts in the convolution integral. The
shifts also imply that the steady-state equation is classified as a differential
delay equation.

Taking f in equation (10) to be the identity yields the St-semimartingale
decompositon of xt, which is useful for deriving the MMSE nonlinear filter.
This decomposition can also be deduced directly from (1) and (5) and is
given by

xt = xo + Gt + Ht (12)

G = fAx, + BuA.z,] ds

Ht = fotBdRs.

where Ht is the martingale by an important property of stochastic integrals
[121 and G, is predictable since it is continuous.

The final representation to be considered is a decomposition of the su-
perposition integral. Let 4D(t) be the state transition matrix corresponding
to the plant matrix A. Then x, can be represented as

xt = t(t)xo + o t(t - s)BdM, (13)

= t(t)xo + 4(t)V + ',(t)11  (14)

Vt = f$ (-s)BtA[x,]ds (15)

It = ,j(-s)BdR, (16)

Here <,(t) is factored out of the integrals to enable the semimartingale
decomposition involving It and Vt. This representation rather than (12)

8



is used to prove square-integrability and mean-square-continuity of xt be-
cause the integrand of V is a uniformly bounded function of x,, while the

integrand of Gt is not. These properties are proved below.
The process xt is square integrable iff [171

max + E{11z't1 2} < +00.
E R

By the triangie and Cauchy-Schwarz inequalities,

E{jxtgII2} < E{A2 } + E{B2 } + E{C2 }

+ 2 [(E{A2}E{B2}) + (E{A2}E{C})2 + (E{B2}E{C2})] (17)

where

A = II(t)xol

B = JIb(t)VtJ

C = II,(t)III

and where xl is the Euclidean norm for z E Z and 1[11 is the matrix norm
induced by flz[[. The equation it = Azt is assumed to be exponentially
stable, which implies that there exist positive constants - and rl such that

114(t)1 < -ye-nt [20]. Also, for random x0, we assume E{jzo02}= < +00 and
recall that s[x] < K for all z. Hence, the following inequalities are implied:

EIll-t(t)xoll2}  <__ JJ-(t)JJ'E{JlxoJJ'j (18)

E{JJ-b(t)V JI }

_E {j f 2 - S)T1(t - )Bdsdr}

fJ 2 J K, ~ 2 IBTb(t _ S)T4,(t - T)BI dsdr

O 2 JKIB1[12 f/ II.(t - s)ldsf Jo(t - r)ldr (19)

One of the properties of an L2-martingale Rt is that if Cg is a bounded
predictable process, then the stochastic integral Ot = ft C dR, is again an

L 2 -martingale with predictable variation

t = ftC2d(R,R),

9



and E{Vk'} = E{(ik,V))} [171. By a straightforward generalization to the
vector case of (16), it follows that

E {j-(t)It 12 1}

_ uKIIB 1 f 0 ' [l 0(t - s)112 ds (20)

Because i = Ax is exponentially stable, all of the integrals of 4(t - s) are
bounded by a constant [20]. Thus the bound on E{Ilxt]] 2} does not depend
on time, and xt is square integrable.

Next Zt is shown to be mean square continuous. This property justifies
the use of innovations in deriving the MMSE linear estimators. In order to
show mean square continuity we must show

lim E{IIxt - x,,j 2} = 0.

Let w < t. The representation in equation (13) may be used to write

Zt - XL = [-t(t - w) - Ilx,,, + f (t - s)BdM,.

Steps parallel to (14) and (17) yield the inequality:
iJt - zI,2 112 < 11(t - w) - III2II.112,!! + II(t - w)Vul1 + ii'( - w)!,t.I2

where V ,t and I,, are defined the same as in (15) and (16), respectively,
except the lower integration limit of 0 is replaced by w. Continuation of the
same procedures yields inequalities nearly identical to (19) and (20), dif-
fering only in the lower integration limit. Further simplification is possible
by using the inequalities below [20]. Let a = IIAIH.

-- t-W

- w) - IIl fo I['C(s)llds

K -"- [1- e -A( - ) ]

f t ['(t - s)11 2ds < _. (t -

10



Substitution of these inequalities leads to the expression

E{Izg - x.11'):5 E{xjj} 11 e-2A(t-W)

+ 1iZK211 2I [1 -- e - C W)]2 + u2KIIBII2- - 2A(t-w)

The boundedness of E{Iliz1lI} thus implies E{Iix, - X"11I} - 0 as t - w.

1I



3 The Linear Filter and Smoother

For the estimation problem, we assume the m-dimensional observation pro-
cess to have the following form:

dyt = Cxtdt + dvt (21)

where the matrix C is such that A and C yield a completely observable
system. The observation noise vt is an m-dimensional Wiener vector, inde-
pendent of xt, with E{vtv =) ft^e PIdr.

Because xt is mean square continuous, it belongs to the Hilbert space
spanned by all mean square continuous random processes. Thus its opti-
mal linear filter exists as the projection of xt onto the growing subspace
generated by the observation process yr. But the practicality of the filter is
lot guaranteed. An interesting characteristic of the process xt described in
Section 2.2 is that it appears to be on the "borderline" of the set of pro-
cesses for which recursive, finite-dimensional filters exist. This is because
in the case of zero mean marks, the linear filter expression is simple and
familiar, whereas for the case of non-zero mean marks, a recursive, finite-
dimensional filter does not seem to be possible. In this section, we give the
linear fiter and fixed-lag smoother for the case of zero mean marks, and
discuss the difficulties associated with the case of non-zero mean marks.

3.1 Zero-Mean Marks
When the marks have zero mean, i.e. when i! = 0, the input jump process
Mt is a martingale and hence has orthogonal increments. The filtering prob-
lem is classified by Kailath [21] as the Stratonovich-Kalman-Bucy (SKB)
problem, for which the filter equations are well known. Let it be the op-
timal linear estimate of xt, it = xt - it, and P(t) = E{ itT}. The linear
filter equations are:

dit = Aitdt + P(t)CPt 1dvt
P(t) = AP(t) + P(t)AT - P(t)CT I CP(t) + Bu 2 t4Xt]BT. (22)

where vt = yt - ft Cids is the innovations process. The only unusual
characteristic in these equations is the a priori expectation A4xtJ = E{;L~xtl}.

12



Recall that the rate function jA is necessarily nonlinear, since it must be
positive. We have found that for a scalar system and the simple function

ki Jx < a
AI] k2 JxJ > a

for some a > 0, lzixt] can be well approximated by numerically propagating
the pdf according to equation (11) and computing E{Jz[xt]}. We also note
that for scalar systems with certain mark distributions, it is possible to
derive the steady state pdf.

The fixed-lag smoother for the zero mean mark case can be derived using
Kailath's procedure [231, except that martingale properties are invoked in
the computation of the error covariance P(s, t) = E{i ,T}, and differentials
are used instead of derivatives where appropriate. Let itit+, denote the
optimal linear estimate of xt given the observations up to t + A, with
A > 0. The equations that constitute the smoother are

d-tlt+A = dit + P(t)d&t + dP(t)Ct,

the equations in (22), and

d~t= -[A + P(t)CT I[C1T Ctdt - CT 41-'dvt + (t + A, t)TCT xP7A d,t+A

where 4(t, s) is the state transition matrix associated with the plant matrix
= A - P(t)CT@ql tC and which maps from time t to time s. Let Etlt+&

denote the error covariance of !tlt+&. The reduction in error covariance due
to the lag is given [23] by

E ,t+4 - P(t) = P(t) (ft+A 4(St)TCTp-ICc(St)ds) P(t).

3.2 Nonzero-Mean Marks

The linear filtering problem becomes more complex when the marks of the
input process have a nonzero mean. The complexity derives from the fact
that the compensator (i.e. the non-martingale part) of the jump process
becomes nonzero and random. Two approaches were used on this problem.
The objective of the first approach was to derive the filter directly using

13



the innovations method. The objective of the second approach was to
find the Gaussian process with the same autocovariance, and then write
the optimal filter for the Gaussian process. The merit of the innovations
approach is that it produces a filter expression, which may be simplified as
much as possible. The autocovariance approach is useful because it implies
an interesting interpretation of the compensator. In both approaches, the
difficulty arises in covariance equations involving Alzt. Both approaches
are summarized below.

For the innovations method, it is useful to consider the perturbation of
xt from its mean ±t = E{xt), denoted by 6xt = xt - tt. An expression
for ±t may be found by taking the expectation of both sides of (13). A
representation for 6xt is then

~t f t

6xt = (t - s)6x. + f (t - r)Bi6 , dr + f 'D(t - r)BdR, (23)

where 6bt = A[4 - A[zI and Rt is defined in (5).
The projection form of the optimal linear filter is [21]

f Ef= j E iTCTVJ/ldv8 .

Substitution of (23) and interchange of integration order in the 6,4 term
yields

d (rxn) = A6rxdt + B:ESbtdt + P(t)C T1t'dvt. (24)

Application of the orthogonality principle and some algebra yields the error
covariance equation

P(t) = AP(t) + P(t)AT + BilpT (t) + PZ(t)iiBT

+ Bu 2 7[xt]BT - P(t)CT1p lCP(t), (25)

where
PA,(t) = C,.2 (t) - E{ryrxz}

and CJZ(t) is the cov-ariance of g[zt] and xt.
It is observed from equation (24) that for a recursive filter to exist, there

must be a recursion for 6t. However, there is reasonable doubt that such a
recursion exists or is worth the effort to derive, since the dynamics of 1.[Xt]

14



are very complex. The presence of tp[xt] as a factor in (9) indicates that
the differential equations for any expectation involving A[xt] will depend on
higher order moments of 41xtl.

In the second approach, the differential generator is applied to f(xt) =

X,.txi,t (x,t is the ith component of xt) to get a differential equation for
C,,(t,t) = E{6z, x, }. The result is

c~z(t, t) = AC,,(t, t) + C, 2 (t, t)AT

+ BiCT (t,t) + C,(t,t) B T + [xt1BBTu i . (26)

In addition, it follows easily that

-tC..(t,s) = AC,(t,s) + BC,(t,s). (27)

Now consider the Gaussian process xz:

dxt = Aztdt + B(Otdt + dw8l)

where w ( )1 is a scalar Wiener process, and Ot is a scalar colored Gaussian

noise which satisfies
dO, = FOtdt + Gdwt21

where w(2) is also a Wiener process. The covariance of x,, when separated
out of the covariance expression for the augmented state IXT, 0,], matches
(26) and (27) if 0 is replaced by ig4ztl and the diffusion of w(1) is assumed
to be u 2 p4z,4. There is also a match between the filter equations for the
Gaussian process and the equations (24) and (25), when the appropriate
notational substitutions are made.

These similarities imply that the compensator of the input jump process
plays the role of the 'colored part' of the input noise. However, for the
reasons given earlier, the evolution equation for Cu,(t, t) is much more
complex than for C,,(t, t) in the Gaussian case.

4 Conclusions

Martingale techniques have enabled a rigorous and complete derivation of
certain representations and second-order statistics for the state process of

15



interest. The linear filter and fixed-lag smoother were given for the case of
zero-mean marks in the system disturbance. in the nonzero-mean case, the
optimal linear filter did not seem to have a finite, recursive implementation.
However, the form of the filter expression suggests that if a recursive linear
filter exists for the compensator of an arbitrary jump process disturbance,
then a recursive linear filter may exist for the state process.
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Appendix

The following proposition is similar to a Lemma of Segall [14, p. 851,

which proves that a counting process with a continuous compensator is

locally square integrable. Here, the same property is proved for a jump

process whose underlying counting process has an absolutely continuous

compensator (i.e. an intensity) and whose marks are iid and mean square

bounded.

Proposition: Let Mt be a jump process whose counting process Nt has

an St-intensity such that At K for all t. Let the jumps or marks of M, be

independent random variables with mean value i and mean square value

u. It follows from Section 2.1 that Rt = - t' iA, ds is an St-martingale.

Below it is proven that Rt is locally square integrable, and further, that Rt

is an L 2-martingale.

Proof: By definition, the St-martingale Rt is locally square integrable if

there exists a family of St stopping times (Tn, n > 0), satisfying the prop-

erties Tn _ T,,, and
lim T, = +oo (a.s.), (28)

n- +oo

such that for each n,

max E{R~t^T} < +0.
0<t

where t A T = min(t, Tn).

Define T, as the time of the nth jump of Nt. Since {w : T,(w) _ t} =

{w : Nt(w) > n}, each Tn qualifies as an St-stopping time.

To prove equation (28), we require only that E{Nt} < +oo for each
t > 0, which follows from the bound on At. Define the stopping time T as

follows.
T = lim T,

n-*!-Oo

It is observed that T = +oo (a.s.) iff Pr{T > t} = 1 for all t < +oo.

Suppose the opposite is true, i.e. that there exists a < +oo such that

Pr{T < a} > 0. By the fact that Nt is increasing, we have that E{N,} =

+oo, which contradicts our assumption, therefore (28) is proved.
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Finally, we address the process Rt. In Section 2.1, it was shown that
Qt = fo iA, ds is the compensator of Rt. Expansion of Rt^T, and use of
the triangle and Cauchy-Schwarz inequalities yields

E{P^T.} < E{Mt^r,}

E{MT}E{Qf} 2 + E{Q Ar.}

The definition of T implies:

E{MATn} S E u)2 < n2- .

The remaining term is bounded as follows.

E{Q^T, } _ ii2K 2Tn

Therefore, E{R.AT.} < + and Rt is locally square integrable.
To prove square integrability of xt, it is convenient to be able to define

the quadratic variance of R, without having to use the stopping times {Tn}.
The property we desire is for Rt to be an L2-martingale, which means that
for each t > 0, E{RV} < +oo [17, p.11 2]. Since RtAT, is square integrable,
its quadratic variation exists [19, p.238], and is defined as the predictable
compensator for the quadratic variation [R,R]tATf. Since RtATn has no
Wiener component,

JR, Rt,^T. = (AR,)2

O<s<(tAT )

where the summation is over all jumps in R, up to time t A Tn. Since Q is

continuous, (ARAT.) 2 = (AMtAT.) 2 . Therefore [R, R]tAT, is a jump process
with the same counting process as MtAT., but whose marks are the square

of the marks of MtAT.. We may deduce from equation (5) that

< R,R >tAT.= A 2A, dS.

It is known that < R, R >tATfr also compensates RArT, therefore

E{RAVT} = E{<R,R>tAT.}

< 1K(t A Tn).
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- Taking the limit of both sides as n - +oo yields

E{R}2 : ; 2Kt.
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ROBUST DESIGN PROBLEMS: A GEOMETRIC APPROACH

Erik 1. Verriest and W. Steven Gray

School of Electrical Engineering, Georgia Institute of Technology,
Atlanta, Georgia 30332-0250*

Analogous to the correspondence between observability and identifi-
cation, a correspondence r-'actng controllability to a "dual" of the
identification problem: the "DESIGN"-problem is established. This
amounts to the choice of a realization or approximation of a desired
system response, e.g., in view of minimizing the effects of component
tolerances in analog systems or finite wordlength effects in the dis-
crete case. A geometric approach to the design problem is presented,
and its solution given under a useful criterion for optimality. For
linear time invariant systems, the minimum sensitivity realizations
are linked to the Balanced Realizations.

I. THE PROBLEM DEFINITION AND HISTORY

This paper deals with a new geometric approach to the robustness problem.

Classically, the sensitivity properties of a given realization have been inves-

tigated, via a "sensitivity system" (12,3], or via the operator form (11].

The questions of robustness with respect to variations of certain structural

parameters is closely related to this problem, and treated by Ackermann in [1).

A geometric point of view was recently introduced by Delchamps [2], and applied

to compensation and feedback. Our emphasis will be in optimal implementations

of systems with quantized or inaccurate parameters.

Consider a linear time invariant system (A,B,C) with m inputs and p outputs.

This may be a model for a real system one wants to simulate, the implementation

of a digital or analog filter, or an observer-controller implementating an

optimal regulator for some given plant. In all these applications, only the

relationship between the input and the output of the implemented system is

important. Usually the so-called "Canonical Forms" are implemented because

they minimize the number of parameters and allow for a pipelined realization.

This corresponds to minimal complexity, a quality that may be important if the

operation count becomes important. However, a minimal set of parameters has no

redundancy, and therefore, high sensitivity.

This paper investigates how the nonuniqueness of the state space realiza-

tions can be utilized to determine optimal parameterizations under various

measures of "optimality" or robustness.

'his research is supported by the U.S. Air Force under Contract No. F08635-84-
C-0273, and AFOSR-87-0308.
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tangent spaces is appropriate, whereas for floating point processing, a metric

into disjoint sets, corresponding to different input/output behaviors. For a

particular realization, the proximity of neighboring sheets will be an indica-

tion .for the robustness or sensitivi ty of this realization. These geometric

notions are Trade precise in Section 3, after giving a more philosophical

introduction in Section 2 on the design problem and its relation with other

CL systems problems. This theory is applied to systems design in Section 4. The

o most interesting result is the one relating the minimton sensitivity (under the
LU fixed point metric) realizations to the balanced realizations.

2. SITUATION OF THE PROBLEM

Consider the phenomenon "linear system" as a mapping a from a suitable

subset of the cartesian product of input functions (U) and realizations (L) to

ClD the set of output functions (Y). For continuous linear time-invariant systemx,
LUJ

the mapping stands 'for the convolution operator

a U x L + Y (u(.),S) + (

SA(t-T)
y(t) -f Ce - T

For discrete systems a similar expression results. We can now took at the

marginal maps derived from the linear system operator. In particular, if

S -(A,B,C) is fixed, we define the usual linear input/output map as

a U x (3) Y u(-) + Y(-)

On the other hand, for a fixei input j(-), the marginal maps

a :{u} x L +- Y :S

associate with each realization S, e.g. the impulse response hft) if u(t)

6(t), or the transfer function H1(p) characterizing the steady state response to

4 sinusoid u(t) - pt of complex frequency p.
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i ip .ci t in the problem. In designing a contrn[ to achieve a desired

oltptt, invariably "future" actions are underatood, while in the deconvolution

pr ble-n one actr on observed data, and thus relarea the "ppst" of u(.) and

y(-). Similarly, the construction of a left-inverfe for a pertains to the

mvsiem identification problem, invariably tied to an observation of functions

or time series, and hence relating the "past" of y(.) to the system. Finally,

finding a right-inverse of a is the problem of "designing" a system with

desired "future" behavior.

In the identification problem, the measured data necessarily has uncertain-

ties due to the finite observation time, finite memory effects, and imperfect

isolation. Similary, uncertainties interfere with the design problem: the

parameter settings necessarily have finite precision. In order to find

"uniquely" an "optimal" solution to these problems, one introduces a suitable

distance or norm in the domain and range spaces (141.

3. MAIN RESULIS

A sutmary of some known results on the geometry of systems and their

realizations is first given. The next subsection discusses the robusL design

on an abstract level.

3.1 The Geometric Structure of the Realization Space

Let Lm,n, p be the realization space, i.e. the space of all triples of

matrices (F,G,H) of dimenhion n x n, n x m, and p x n over R. Endow this space

with an affine structure with vector space Rn(m+n+p). Hence, at each point S,

there is an attached vector apace TsL (the tangent space at S), isomorphic to

Rn( m~ n + p). The group Cln(R) acts differentiably on the right to Lm,n,p, via

(A,B,C) - (A,B,C)T - (TAT- 1 ,TB,CT - 1 ) corresponding to a change of base in the

state Space z " Tx. The quotient space is non-Hausdorff in general.

Restricted to the completely reachable (or dually, the completely observable)

systems, the action of GI (R) is free (as a consequence of reachability/n
cr cr

observability) and the quotient space (set of orbits) Mmnp L IG (R) is
Tnp m,n ,p n

a smooth (real) analytic manifold (hence Hausdorff) of dimension n(m+p). " The

set of equivalence classes of minimal realizations M cocr are analytic open
m,n,p

submanifolds [5]. This space, called parameter space, is crucial in

identification, and is well studied (e.g. in relation to the (non)existence

of continuous canonical forms 15), and degeneration phenomena 16)).

Since the isotropy subgroup is trivial for all reachable or observable
co ,crrealizationa, its dimension Is constant on L snO r and hence, the orbits of
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0-:r i ner e s not in the unive r na pnr ameterizat ion, but in the orbits

under the act ion of GI (R) itself. These orbits are open, and the boundary

points of reach, I[e realization are nonreachable realizations. The explicit

form of the closure of the orbits was addresucd ir [8]. We shall endow th.:

tangent bundle TLCO 'cr with a positive definite metric
m,n,p

> T L x TL R for all S in Lc ° c r

S 5 S m, n, p

3.2 The Robust Design Problem: A Geometric Approach

Before proceeding with our system design, we shall prove a general result on

sensitivity:

Definition: Let 0 be an N-dimensional open subset of an affine space AN of

design parameters (configurations). By an Observable, we shall mean any smooth

function f : 0 + R which has no critical points.

Any two configurations 0 1 and 2 in the parameter apace are indiscernible by

observation of f if f(8O) - f(e 2 ). This allows us to regard two parameteri-

cations yielding the same observable value(s) as being the same (or equivalent)

for some purpose. In a systems context, observables are, for instance, a

mapping from the realization space to the transfer function (scalar case)

evaluated at a particular frequency, or the impulse response evaluated at a

specific instant, i.e., the "system functions" (3].

An observable induces a partition of 0 into equivalence classes, known as a

foliation. In this case, the submanifolds are the level surfaces of f, and

have dimension N-l. There exists a vector field normal (in terms of some

arbitrarily chosen Riemannian metric) to the leaves.

The whole issue of the sensitivity problem is now to find the points on the

leaves corresponding to a maximal "separation" of the leaves of the foliation.

3.2.1 Riemannian Metrics. If 0 is paracompact, then a Riemannian structure

G can be put on 0 (or, more exactly, on its tangent bundle). This means that

for each 0 I 0, a symmetric, positive definite bilinear form C8 is defined on

the vector space T 0, such that G defines a metric or. TO, i.e. is a smooth
01 *

section of the vector bundle T20 . Let : T 0 + TO be the natural isomor-

phism of each space To0 with To0. If f is a smooth map, the gradient of f is

defined as the element df# of TO (i.e. the vector field corresponding under the

map to the differential form df). In the local coordinates, this is given by
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1he squared norm of the gradient is

I7fl2 - (f,Vf) - giJL a
G G o e

If 0 in foliated by f, then the tangent space o to the leaf through 0 in an

N-l-dimensional ubso'_. of Teo I

3.2.2 txrremal Sensitivity Theorem. Points of extremal sensitivity

(with respect to an observable f(8)), are determined by minimization of L(8) ,
1 2
-17 fl over the leaf characterized by a particular value of the observable f.

A worst case analysis leads to the minimization of the gradient norm IVGfl -

GO(Vf,V f) /2 or equivalently,
- 2G 2

* This scalar field induces a vector field in the tangent space A of the leaf.

However, note that-dh - dC(df ,df#) is, in general, not tangent to the leaf.

Its projection on the tangent space to the leaf at 0 yields the tangent vector

dC(df#,df#)4 - df # to the leaf through 0, for some X c R.

Theorem I: If f is an observable for the parameter space (0,0), then the

points of extremal sensitivity with respect to f are implicitly determined by

the equation

dC(df#,df) 1 
- Adf ( 

- 0

Proof: Tle stated condition is the Euler-Lagrange equation for the constrained

optimization problem.

The gradients of 'R and f are aligned at the extremal sensitivity points. In

particular, for the uniform metric, gij a 6ij, the condition specializes to

(f - xI)f 0 .) - 0

while for the relative metric gij S 6/0i6J, which is useful in connectionLi
with the floatirig point arithmetic, the condition is

(diag(e)diag(f) + diag(O )f Idiag(0 2 )f- Xdi2 2(O2)f)f00jda( )f0d.( e
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Corollary: 7The '~xiemal sensitivity pointe of (0,G), where G is the unlearn r
relative metric, are the pointa here the gradient dfo is in the cigenapac
the generaiized lie, ran operator Uf : TO T0 ie.

I( f) - '

4. APPLICATION TO ROBUST REALIZATIONS

Express the par~neterization in terms of the components of a factoriza" tq
of the system liankel matrix H - OR, where 0 and R are, respectively, he
observability and reachability matrices of the realization. The Hankel mat 'x
defined as a map with domain Lmnp play' the role of a multidimensic'al
observable. The continuous time systems design under the uniform metric ia
discussed, for square (p - m) systems only.

Definitions: Let L2[O,-) be the Hilbert space of m-vector functions with ir er

product <x(e),y(.)> . x(t)'y(t)dt. The techability operator R : L2

R for a realization (A,B,C) is defined by Ru(t) - .r-eAtBu(t)dt. Its adjo nt
is the operator : n , ) : R*x - B'e ix. The observabilry

operator is O: Rn L [O,-) : Ox - CeAtx. Since R and 0 have a fini te
dimensional range and domain, respectively, they are compact, an% th,'ir
composition OR is also compact [71. Finally, we introduce the Hankel oper :or
H : Lm0,,) + LP(O,,-) : Hu(t) - fr h(t+ )u(T)d., where h(t) _ CeAtB. It ;&- 2 2 oreadily verified that indeed H - OR. An operator A : LWO,-) + L 3 -)

satisfying AA A A * Id (the Identity operator) is called isometric. We
shall also assume that the set {e,)'n1 is the standard basis for Rn and r at
the functions t form a complete orthonormal basis in L'ti),s).

I h uvl*><%lv " I rijlei><*jl 0 - 1 Okll*k><tlI
uv ij kl

The matrix representations [hiji, [rij], and (oij will be, respectiv - c,

denoted by Hat(H), Hat(R), and Hat(O). By Vec(M), we mean the vector formec -y

stacking the elements of the matrix H cotumnwise.

It is now possible to state our first auxiliary result:
Le t .a: Let E : L2n[,,-) * Lm[O,-) be such that TrAE - 0 for all isome - c

operators A, then E a 0.

Proof: Suppose E has the singular value decomposition I", p. 2611
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u and are. orthonormal sets in LOn ,Vui -{. ) ; L," then, choosing ,A a-

lv ><u.I yielId u LQ 0 . Since the singular values 0. are nonnegative, we

nIust have all 0. - 0 and, hence, E - 0.

In order to apply the theory developed in the previous section, we consider

the a' fine space formed by the matrix elements of C and R, so that the param-

eter vector is O' - fWc(at(,)')', Vec(Mat(O))']. Analogous to the discrete

cease [41, we shall consider the observables: f (0) - TrMAH-OR). Denote by

moCf ) the leaf on which f is constant, zero say, then 4e have the:

omA AThteorem 2: The extz-rml sensitivity points of Mo(f A ) have the property that

RR* -0*0. I1
Proof: Substitute the bra-ket expansions in the expression for the observable

f(e), and use the orthoncrmality of the bases. This reduces the continuous

time problem to the matrix problem, solved in [41, where it was shown, based on

the Corollary to Theorem 1, that the extremal sensitivity points satisfy

Mat(R)Mat(R)' - Hat(O)'Mat(O)

£xpressing Hat(R)Mat(R)' and Mat(O)'Mat(O) in the basis Ieij}7, 1 gives then the

condition in terms of the original operators: RR -0"0.

Corollary: The minimal sensitivity realizations on the Cln(R) orbit of a

minimal realization of H are the essentially balanced (i.e. balanced modulo all

o;'thogonal transformation) realization..

Proot: Observe first that the condition for an extremum 4,id not depend on the

choice of A, and therefore, must be true for all isometries, or observables fA

All extremal sensitivity points of fA belong, therefore, to the intersection

- Ao(fA). By the lemma, the intersection of the manifolds X(EA) is the

submanifold characterized by i OR, i.e. the orbit of the system vith Hankel

operator H under the action of GIn(R). Then, by the previous theorem, RR -

00 so that

<x,RR y> - <x,O y> Vx,y C R

which leads to the equality of the Reachability and the Observability Gramian.

Realizations having this property are essentially balanced, as an orthogonal

similarity transformation will make them truly balanced (equal and diagonal

gramians) [lO,l']. The second variation property shows that the extremal

solutions obtained correspond to minimum sensitivity solutions. Finally, all

infinitesimal variations in the parameters of the factorizations of the Hankel
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matrix lead to second order variations in H. But small (first order) varia-

tions in the reachability and observability matrices are themselves linked to "

first order variations in the realization parameters. I

As shown by this corollary, it suffices to find an essentially balanced

realization. The characterization as a factorization of the Hankel matrix is,

therefore, independent of the size of the Hankel matrix considered, as long as

it specifies the given input/output relation.
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ABSTRACT have a good performance in each domain. At the
transients from one domain to another, unmodeled

This paper discusses some aspects of the uncertainty would be introduced because of the

design problem involved in the choice of a mismatches of the updates near the boundaries. A

realization or approximation of a desired system good filtering scheme needs likelihood type
behavior (as for instance dictated by the methods as developed in [2-31 to deal with this
analytical solutions to a filtering problem) by additional uncertainty. This typically leads to

parameters that can only be approximately a filter composed of a parallel bank of Xalman

adjusted, e.g., due to quantization. component filters, together with a likelihood updating
tolerances (analog case) and finite wordlangth scheme. In this paper, the assumptions ensure
(discrete case). The paper first addresses the that the time spent in these transition regions
mathematical characterization of this robustness is relatively small statistically speaking. We
problem, and its solutions under various criteria simply propose to artificially reset the state
of optimality. Earlier results are here extended covariance whenever a state domain transition
to multi-mode systems which can arise in non- occurs. This simplifies the filter from the
linear approximation problems. The feasibility parallel bank plus likelihood estimator to a
of this approach in multi-mode filtering is simple sequentially switched estimator.
shown, and is illustrated by an air-to-air
tracking example. The new feature of this paper is the optimal

implementation of such a sequentially switched
1. INTRODUCTION filter from the point of view of parameter

sensitivity. Section 2 describes some typical
The air-to-air target tracking problem is problems in the implementation of systems, i.e.

highly nonlinear because of the nonlinear the minimization of the effects of component
relations between measurements and dynamical tolerances for analog systems, and the finite
states., and the different flight regimes that wordlength effects in digital systems. In
occur. Differences in Mach number and or section 3 the results are extended to a more
geometry of the target induce large changes in general type of system: the switched systems and
the dynamical model. A good knowledge of the piecewise linear systems. Finally in section 4.
dynamical model is primordial to the design of the air-to-air tracking example is discussed.
good tracking filters, as the predictive behavior
of the filters are determined by the dynamics of 2. OPTIMAL INPLDOUTATIONS FOR LINEAR MODELS
the system. Mach number changes with air
density, hence altitude, and velocity, and is This work builds on the earlier work on
therefore coupled to the position and momentum of robust design problems (4-51. Consider a linear
the target. These are of course state components time invariant system (AB,C) with m inputs. p
of direct interest. As the target is maneuvring, outputs and McMillan degree n. This may be a
perhaps beyond the anticipation of the tracker, model of a system to be faithfully simulated, the
its trajectory is modeled as a smooth stochastic implementation of an analog or discrete filter,
process, the statistics of which are clearly or an observer-controller implementing an optimal
dependent again on its position and momentum, as regulator for a given plant. As in all these
well as the geometry of the vehicle, applications, not the actual state coordinates,

but the input-output relation is important, they
This paper investigates the tracking problem are usually implemented by a so- called canonical

under the assumptions that the data sampling rate form. The reason for this is that these imp-
is sufficiently high. This implies small lamentations minimize the number of parameters,
increments (as compared to the sizes of the and allow a pipelined realization of the
domains in the different flight regimes) in the devices, e.g. the "Direct Form" realizations in
state variables from one sample to another, so digital signal processing. A minimal number of
that the same flight regime can be assumed over a parameters corresponds to minimal complexity, an
large number of samples. Under this condition important quality if operation count becomes
the system is reasonably well approximated by a important. However, a minimal set of parameterspleceviss affine stochastic system [1]. The has no redundancy, and therefore one may expect
transitions from one flight regime to another is high sensitivity with respect to these para-
determined by the state vector itself. Given meters. It is clear that the freedom of coor-
enough (good) samples, the state estimator will dinate basis of the implementation should be

1 This work was supported by the U. S. Air Force under Grant APOSR-87-0308
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utilized to determine optimal realizations under is now introduced:
various criteria for optimality. In particular.
two issues seem to be important: sensitivity and Problem C: Clusterint: Find the realizations
clustering. The sensitivity requirement guaran- L of H with minimal system (Eising) norm.
toes robustness of the actual implementation.
while clustering deals with the parameter ranges. This has the physical significance that
It relates to the problem of approximately cooperatively the components of the realization
implementing a certain system with parameters are as small as possible, hence clustered near
chosen from a finite set with fixed values, zero. It is a special case of the more general

(and more significant) clustering problem. Let
The approach taken in [4] is geometric. The r - {y1 ,...,Yf} be a finite subset of R. then we

realization space L n is modeled as -- formulate
n(n+m+p) dimensional affine space with an
Euclidean metric metric defined in the tangent Problem C': r-Cluster1riv" Find the realiza-
space at each point. The Extremal Sensitivity tions L of H with component values closest (in
Theorem asserts that the minimum sensitivity the Rising-norm induced metric) to the set r -
points of an observable are the points where the { ....-. I}.
(generalized) gradlient is in the eigenspace of
the (generalized) Hessian. In the case of fixed Problem C corresponds then to r - (0). :t is
point impluawntations, the uniform Kuclidean also helpful to define a bilinear map on L,n,p
metric is appropriate, and the gradient and
Hessian correspond with the the usual notions in [[.,.]] - L.np x Lnn.p - Rn xn

calculus. All results are therefore also
"infinitesinmkl". One can reasonably so argue ([(A,5,C),(FG.H)]] - [A',F] - G B' + C' H
that in finite wvordlength arithmetic, the notions
of infinitesimal perturbations do not apply, as where [.,.] is the usual Lie product:
all perturbations are due to the truncation of (A] - A - FA
the coefficients. This may indeed invalidate the
above mentioned method. For this reason, we Theorem I: The class of optimally clustered
shall develop the analysis for non-infinitesimal realizations coincides with the class for which
perturbations in this paper. It will be shown [[L.L]] vanishes.
that this approach makes a connection with the
notion of clustering. In this section. by finite Proof: If (A,B.C) is constrained to realize
we shall mean non-infinitesimal. By L we denote H. then if (AO,BoCO) is a representant for H. we
a particular realization in Lm n , and by H the get a constrained optimization problem, for which
equivalence class of all si;Ilar realizations the Hamiltonian is
having a particular input-output behavior, i.e.
the orbit Wi(L) under Gln(R). The equivalence H - Tr ( AA' + B' + C'C + AA(TAO-AT)' +
class will be referred to as "system", the orbit AB{TBO-B)' + AC{Co-CT} )
space is denoted by Hm n,, and the projection
map from L.n p to Hmn '?y i. Two problems The optimality conditions lead then directly to
related to tS sensitivity and robustness are the stated result.
studied.

Not every system allows an optimally cluster-
Problem A: Discrimination: How do we choose ed realization. A counter-example can be found

a realization of a given system Mo such that it which is based on the phenomenon that the orbits
is maximally distant from the orbit 1 (H). where under similarity are not closed (6].
H is another given system.

With this solution, we can show the follow-
Problem B: Worst Case Defects: If the system ing:

parameters are perturbed over a fixed non-infini-
tesimal amount, and if f is a scalar system Theorem 2: The realization of Mo which has
function (i.e. invariant under similarity) than maximal Rising distance to the orbit of H is
find the realizations L of Ho  for which the implicitly given by Le c v 1 (H0 ). satisfying
f-perturbation

([a'.L1J] - 0
max ( f(L+A) - f(L) ) where Ca - A I I - I a £ optimally clustered
CA
is minimal, where J is the perturbatioa. di(L*.1*) - L*-L.,

with L c u '(Hl). The maximal distance is then
In both problems, the norm function in the the Rising norm of A.

realization space will be fixed to be the Rising
norm (compatible with the uniform metric). Proof: This follows easily by solving the

minimax problem: First determine for a given
dE2 - Tr ( AA' + 5B' + C'C } realization L, the point L1 on the orbit of H

for which theEising distance dE(L.Lo) is minimal.
It follows then that if (A.B.C) is a solution to This problem has always a solution, but the
each of the above problems, then also any realization LO may not be unique. The proof is
realization obtained from (AB.C) by an ortho- similar as in the clustering theorem. The
gonal similarity transformation is also a condition is ((LL-L] - 0. Next we slide L on
solution. A third problem, related to problem A. its orbit, the associated realization L will
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learly vary with L, so that we may define a map 3.1 Switched Systems
) w "(M) M L --- L. Now find

the sinl ar r=alization L*, for which dE(L*,L*) The system is assumed to be modeled by

is maximal. The realization L* is the cor-

responding point (L) # . This constrained xk+ l - A(k]xk + Blk]uk
optimization groblem yields the additional

condition [[L-L ,L-L411 a 0. Yk - C[k]xk

There remain some open problems. It is not where [k] c (1,...,N) is the functlon determining

clear whether or not the orbits can diverge, in the mode switched on at time k. e assume that

the sense that the optimum may be on the closure this switching is state-independdnt, but other-

of the orbits, and therefore not attainable, wise a purely deterministic Isequence, or a

Also, if a solution exists, it may not be unique random time series. A theory foe, deterministic

(modulo O(n)). The example of s-L(0,1,1) and discrete time periodic systems was developed in

V l(I1,Il) illustrates that to every L in the [7). Here we allow general time variation, thus

first, a corresponding LO on the other orbit not necessarily periodically switching sequen-

exists, for which the distances are constant and ces. In the randomly switched case, we assume

equal to 1. It is also natural to look at the that the statistics are stationary and known.

extension of problem A: The domain of validity of each mode is the entire

state space. This is in contrast with the next

Problem A': Multimode Discrimination: GIven class.
the orbits v"(Li), find the realizationrs Li on
each orbit such that the set {Li ) is maximally 3.2 Piecewise Linear Systems

separated.
This is a multi-mode system as described

This is of interest for realizing multi mode above, but the domains for the validity of each

systems. The practical significance of all this mode partitions the state space, i.e. r)'y form a

is that the realizations with the largest "patchwork" which pieces together a single

intraset distance are the most robust with "global" system. Clearly, one can think of such

respect to parameter inaccuracy, as for instance a system as a switched system with the switching

due to coefficient truncation. The problem will completely determined by the state xk of the

be discussed in section 3.4. system. Such a model results for instance in the
approximation of a nonlinear system by a piece-

As to problem B, we shall just state the wise linear one (1). Despite its local linear-
following results for the scalar observable ity. the dynamical behavior of such a system can
f: I n p -- R , which in fact only gives an be very complex and sustain chaotic motion [1).
implicit solution to problem Bi

3.3 Robust Destun Problems for Multi-Mode Case
Theorem 3: i) Let the realization L be

given. The deviation f(L+A) - f(L), is extremal As usual, the problem is to design an optimal

if the perturbation A is in the direction of the implementation of the multi-mode system.

gradient of the observable f, evaluated at L+A. Characteristic for the multi-mode systems is the
fact that the state is communicated from one mode

ii) If only the system M is given, i.e. the to the other. This implies that despite the fact

orbit v1l(L), then the deviation f(L+&) - f(L) is that each mode separately can be realized in many
extreomal at L* if the perturbation Ae, different ways, the total system is only left

grad f(L*+A*) and grad (L,) are all aligned. invariant under the action of Gln(R), and not
Gln(R)N, where V is the number of modes. Hence a

Proof: Again this folowa simply from straightforward optimization by realizing each
adjoining the constraints 1611 - I and for part mode in the optimal way (i.e. essentially
ii) also f(L) - c, with Lagrange multipliers A balanced) will only be valid if a state trans-

(and P for ii) ) to the performance function formation is performed at each mods transition.

f(L+6)-f(L). The optimality conditions are We formalize this "

grad f(6+6) + AA - 0 Theorem 4: Defining the observable for the
mltimoda system as a weighted average of the

grad f(9+A) + (p-1) grad f(e) - 0. observables in the single modes, the optimal
unconstrained realization is obtained by realiz-

Remark: The infinitesimal result of [] is ing each mode individually in essentially
recovered for the uniform metric if the pertur- balanced form.
bation becomes infinitesimally mall.

Proofs The observable is
3. MULTI-MODE SYSTE4S

f - Tr Z ViAi(Hi-OiRi)

Two types of models with many similarities i
are discussed: Switched parameter linear systems which is a weighted sum of the observables
and piecovise linear systems. Lach "mode" of a defined in 14-51 for single mode systems. The
system %i will be denoted by a triple of systems paremeterization is with respect to the com-
functions (A ,B iCi). We shall also assume that ponents of the observability matrices 0 , and the

the number of different modes is finite. N. reachability matrices Ri . The gradients are
linear in these parameters, and the Hessian
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sigenproblem therefore decouplas into the rolizations Lie on each orbit such that th set
individual components, giving the simple condi- (L 1) is maximally seprated._-,The practical
tion 0j01 - RiRi', expressing essential balance- significance of all this is t)a the realizations

dness of all mode realizations, with the largest intraset /,distance are the most
robust with respect to arameter inaccuracy, as

If all modes comunicats. this means that for instance due to ;efficiant truncation. We

N(N-1) transformation matrices need to be stored. give a constructive sqiution of problem A' in the
This additional computation induces also in- unconstrained case, ;.e. when the states do not
accuracies, and may therefore upset the optimal- necessarily have to comunicate directly, and

ity for that scheme. We present here the more transformations are allowable at each mode
direct approach by choosing the optimality transition.
criterion as a weighted version of the objective
in each mode. The weights (vi) are most reason- 1. For each realization L on Ko . determine
ably set equal to the relative time spent in each realizations Li on the orbits of the other
mode. From our assumptions these relative times modes for which dE(LL ) is minimal. Let the
are precomputable, minimal distance e LtMi).

Theorem 5: Let the relative time spent in 2. Determine A(L,(M)) - min ( AL(Mi); i-I,...N
mode i be uI , then the constrained minimal }. Note that this disance does no longer
sensitivity realizations are given by the vary smoothly as L moves on MO .
essentially balanced multi-mode systems defined
by the requirement: 3. Determine L1 on M. such that

z V12 00s, _ Z vi2 RlR i  (L#M}) - max (A(L.(M)); L realizes Me).
I I

Proof: Follows directly from the EST. using 4. Perform steps 1-3 for each of the modes i ,

the observable to find the optimal realizations Lit.

fi - Z 1i Tr Ai(Hi-OiR) Because of the nondifferentiable structure, the
i maximization in step 3 cannot be performed by

with the constraints: simple differentiation. In the constrained
problem, we start from the realizations Ll,...,L20 a OOT-1 and R- - TRIO in modes l,-....N 2 respectively. and solve for
the transformation T such that (in the notation

where Ri ° and 0i 0  are respectively the reach- of the unconstrained problem)
ability and observability matrices for a nominal min (A(T(Li),(N)); ilo .... N)
realization, and T is the Gln(R) element to be
determined, i.e. the parameterization for the is maximized over T c Gl.n(R). Many variants of
problem. First the gradients of the observable the problem can be defined. For instance, the
with respect to Ri and 0 i are computed, and the v -weighted average, rather than the minimum of
constraints are substituted. Noting that the te distances A(T(Li).(MO) may be maximized.

time vi spent in mode Zi does not depend on the
realization of that mode, the gradient components 4. APPLICATION TO FILTERING
are readily obtained,

4.1 The Model
301 - As discussed in the introduction, we shall

ali - TiAiOi*T -l  assum that the nonlinear dynamics are satis-
factorilly modeled by a piecewise linear multi

Minimization of the norm of the gradient with model stocahatic system, thus a combination of
respect to T yields then the condition the systems discussed in section 3. Each flight

regime corresponds with one domain, and these
TPT' - T1IQT "1  domains are smoothly patched together. Moreover,

in each flight regime, we also assume a multi-
where we used the fact AiAi' - Ai'Ai - I, and -mode model because of the variable geometry.
defined the generalized gramians, weighted by the The system is assumed to be controlled, the
sojourn-times as control being conditioned on the observations,

and therefore deterministic. This is super-
P - I vi 2 Ri°Ri ° '  imposed on the stochastic inputs, modeling the

I noise in the system as well as the unpredictable
Q . Z 'i 2 0i° OI component of the motion of the craft to be

i tracked.
The optimal T is then simply the balancing
transformation for P and Q, which can always be The general discrete model is

Zk l - Ak~zk + B[k~dk + Qlkjzuk

3.4 Non-Infinitesimal Perturbations of Multi-Mode
Systems Yk - C[k]Zk + D[k]ek + R[k]svk

It is also natural to look at the extension where u and v are white noise processes, modeling
of problem A: Given the orbits v'l(Li), find the the measurement and dynamical uncertainties (e.g.
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the unknown inputs due to the unpredictable P a E 1,2 P, and Q - E M1
2 Q,

motion of the craft to be tracked are typically
modelled by colored noise, the noise shaping Finally. each of the modes of the filter is than

filter is then included in the dynamical equa- transformed to the optimal form. We have worked

tion). d is the deterministic input, which is a out the ideas for discrete time filters. The

feedback of the filtered signal and some exter- concept works just as well in continuous time

nally applied known component. Offsets (the (5]. The conditions are the sa (i.e. essential

biases due to an affine approximation of the balancedness of the averaged system).

nonlinearities) can be modeled in these term as
vel. 4.4 Suboptimal Implementations

4.2 The Steady State Filter While the optimal implementation is based on
the steady-state filters described in section

Under the above assumptions, a steady state 4.2, the applicability of these filters is not

Kalman filter approximation is implemented in appropriate for the stochastic transition case

each of the domains when the transitions are not known to the
observer. The reasons for this is that the

ik+l - Ak]ik + Blkldk + filters were derived for the steady-state case,
Yikl(Yk-C[kkDfk]ek) which assumes long sojourn times for such asteady-state to be achieved. The results also

where the gains are computed for the steady assume that the mode of the system may be known

state. This of course requires some assumptions so that the appropriate filter can be selected.

on the deterministic signals dk and ek. Typical- Such an assumption can be justified for long
ly such a filter is used in a feedback scheme in sojourn times that allow mode identification.
order to provide the control command, i.e. we Finally, when fast transitions among the modes
also have an "output" equation can occur, a steady-state will also never be

achieved for any of these states.
dk - rk - H[k]Xk In this case a suboptimal choice of the

which generates the control comand. The filters is considered based on the size of vi. A
combined equations are then small parameter 6 is selected, and the modes are

classified into two types: those with vi > 6
1 k+1 - ( k]-BD(ki JkJ- k CkJ)Xk + (slow odas) and those with w, 

< 6 (fast odes).
[krk- (k) (k)ek +t(klyk A set of filters as shown in section 4.2 is

designed to run in parallel for all slow modes,

i.e, a multi-mode system .and the correct one is chosen based on a likeli-
hood function that is based on these steady-state

ik+l - F[klik + G(klVk filters (the transitions are ignored to avoid the
exponential rise in complexity). Two alterna-

dk - H[k]ik + rk tives are considered for the fast mode filters.
The first is to define an average model just

with the modes defined by based on these modes and their sojourn times vi ,
and use this to obtain a filter for- these modes

Fi - Ai - Bi~i - KiCi with corresponding aggregated likelihood func-
tion. The second is to use a separate filter for

Gi - I Bi ; -iDi ; Ki I each mode and use a weighted average using the
lilelihood functions of each mode.

Hi - -Mi In these cases the filters will be as given

and the input wk is [rk1,ek',Yk'J. in section 4.2 and the likelihood function is
obtained by standard expressions, which may be

4.3 The Optimal Implementation modified as in [2] when the multi-models result
from nonlinear approximations. In that case the

The equations for the filter modes obtained regions in the state space can be approximately
in the previous subsection are of the form of the found from the estimates and combined with the
multi-mode systems in section 3. The results statistical expressions.
obtained there apply therefore directly. In
particular, the sojourn-times (i) can be 4.5 Example: Two-Dimensional Intercept Problem
estimated, either via simulation on the exact
dynamical (nonlinear) system, or in the simpler In this two-domnsional example the states
cases, by direct analysis. The Gramians represent the relative positions of the missile
i- O1'0 and Pi - RiRi' can be computed by and the target, which may be given as
solving the Lyapunov equations Vz

FiPiF'i + GiG'. - Pi

F'iQiFi  + ViH i  -Qi M dl - l

The transformation to the minimal sensitivity
coordinate basis is then obtained by balancing Vy - d2 - &2
(73 the matrices
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where z and y are the relative positions in the minimal realization of a system H. Construct now
(z,y) plane. di are the control forces of the k different realizations
missile which will be based on the estimates of (AiBi,Ci) - (TiATi-1 ,TiB,CTi'I; i-l,...,k}.
the states assuming separation holds, and ai are With these realizations construct the nonminimal
the maneuvering acceleration of the target which diagonal realization of order N
may be modeled by a first-order Karkov process

A - diag (Ai) ; a - vec(B t ) a C - vec(Ci)/kal " "11 a1 +w 1 V Iul.12.

If the Ti's are chosen in a neighborhood of the
The objective may be formulated as a quadratic identity, such that the rounding errors in each
control problem except that the observation are component system are independent, then as k ---o -
nonlinear in the states, namely 16yk12  5 IAC, + Ci&AiI 2 a" /k 12(k) 12 0

-l ('2 + 2)I + vl-r + I
It is possible to overparametsize the system in

z 2 a tan "1 (y/X) + v2 - S + v2  order to obtain minimal sensitivity realizations.
Finally, the idea in the proof of the main

where v is modelled as a white noise with sensitivity theorem leads to gradient type
covariance dependent on the relative distance, algorithms for the optimal sensitivity realiza-

tions. This of course is to be performed off
The model may be approximated in two possible line, during the design stage, and poses there-

ways. The first is to define new states involv- fore no restrictions on the hardware. Prelimi-
ing the angle and the range and these will lead nary remarks regarding these appear in (5].
to a nonlinear model for the state equations.
This model is then approximated by a piecewise REFEIWDCES
affne nmulti-mode set of equations. The second
is to approximate the observation functions by [1] E. I. Verriest and A. H. Haddad. "Linear
piecevise affine multi-mode system with linear Markov Approximations of Piecewise Linear
state model. If we define the set points for the Stochastic Systems", Stochastic Analysis and
approximations as ri and 91 then the observations Applications, vol. 5. pp. 213-244. 1987.
will be given approximately by

[21 A. H. Haddad, E. I. Verriest, and P. D. West.
zI - ri + cos 91 (x-xi ) + sin Si (y-yi) + v, "Approximate Nonlinear Filtering for Piece-

wise Linear Systems." NATO/AGARD Guidance
z2 - ei + (/r i ) (cos 01 (y-yi) - and Control Panel's 44th Symposium, Athens,

sin 81 (x-xj)) + v2 . Greece. 5-8 May 1987.

The ulti-mode filter is then derived using [3] 1. 1. Verriest and A. H. Hadded, "Approximate
the expressions of section 4.2. The control Nonlinear Filters for Piecvise Linear
command may also be incorporated in the design Models", Proc. Annual Conference on Informs-
using either given control strategy such as tion Sciences and Systems, Princeton Univer-
proportional navigation or suboptimal implement&- sity. pp. 526-529, March 1986.
tion of an optimal quadratic cost state feedback
control law. The result can be evaluated using [41 1. I. Verriest and W. S. Gray. "Robust Design
simulation of the system under several engagement Problems: A Geometric Approach", in Maths-
scenarios. matical Theory in Networks and Systems,

Martin and Byrnes, ads., North-Holland 1988.
5. CONCLUSIONS

(5) W. S. Gray and 1. I. Verriest, "Optimality
The optimal sensitivity properties for the Properties of Balanced Reslizations: Minimum

multi-mode realizations have been derived. They Sensitivity", Proc. 26th IEEE Conf. on
extend nicely the notions of Essentially Balanced Decision and Control, Los Angeles, pp. 124-
Realizations derived in [4-51. These optimal 128, December 1987.
realizations have been applied to obtain an
optimal implementation of a simple multi-mode [61 A. S. Khadr and C. Martin, "On the GLn(R)
filter, which allows the tracking of a target Action on Linear Systems: The Orbit Closure
with low-complexity, small wordlngth hardware. Problem", in Alebraic and Geometric Methods
This simple multi-mode model can be justified if in Linear System Theory, Byrnes and Martin,
the sampling rate is sufficiently high. More ads., Lectures in Applied Mathematics, Vol.
quantitative results are presently under invs- 18, Springer-Verlag 1980.
tigation based on a simple two-dimensional
tracking example. (7) 1. 1. Verriest. "Alternating Discrete Time

Systems: Invariants. Parametrization and
We have restricted our discussion to square Realization". Proc. Annual Conference on

systems (mup) and minimal realizations. Exton- Information Systems and Sciences, Princeton
sions of the theory are in progress. It seems University, March 1988.
intuitively clear that one could further exploit
the redundancy of a realization by deliberately [81 E. I. Verrist and T. Kailath, "On General-
using nonminimal realizations. A heuristic ized Balanced Realizations", IEEE Trans.
argument for this possibility is as follows: Let Automatic Control,. Vol. AC-28. pp. 833-SAA,
N - Wn, and let (A,3,C) be a ainimal sensitivity August 1983
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ABSTRACT systems, and connections with other fields of study
(Yang-Mills Theory) have recently been made [9]. The

This paper addresses some aspects of the design and next section poses the main design problems in the
implementation of multi-mode systems, under finite geometric framework. Emphasis is here given to the
precision restrictions. This occurs, for instance, noninfinitesimal perturbations, the results oi
when quantization and finite wordlength effects need to infinitesimal perturbations being presented earlier
be incorporated, or when high component tolerances in 14,5]. The interest is, of course, to problems
analog designs need to be considered. The freedom in involving quantization and finite wordlength effects
the design is exploited in order to obtain the reali- in digital data processing, where a random variable
zations closest to the normal or desired behavior, approach to the problem may lead to unsuccessful
despite the interference of quantization, component modeling of its behavior, as for instance illustrated
tolerances (analog case) and finite wordlength in 111. Section 3 then goes on with the application
(discrete case). Our interest is in the mathematical of the geometric theory to multi-mode systems. Two
characterization of this new type of robustness types are discussed in detail: the switched systems
problem, and its solutions under various criteria of and the piecewise linear systems. The general time-
optimality. Earlier results, linking these optimal varying case is presented in Section 4. In Se:tion 5,
realizations for linear time-invariant systems to the implementations of approximate filters are discussed,
Balanced Realizations are here extended to the multi- based on a piecewise linear approximation of the
mode and general time-varying systems. The feasibility nonlinearity, and their optimal implementation as
of this approach in multi-mode stochastic problems is discussed in Section 3.
shown.

2. A GEOMETRIC APPROACH TO OPTDLAL I(PLEMENTATIONS:
MON 1N7 IN ITES D(AL THEORY

1. DITRODOCTION The approach taken in (4] is geome6.ic. The

realization space Lm e is modeled as an ,,n+m+p)
This work builds on our previous work on robust dimensional affine 4iae with an Euclidean metric

design problems for single-mode time-invariant systems defined in the tangent space at each point. The
[4,5]. Consider a linear time invariant system (A,B,C) Extremal Sensitivity Theorem (4] asserts that the
with m inputs, p outputs, and HcMillan degree n. This minimum sensitivity points of an observable (a smooth
may be a model of a system to a faithfully simulated, map from L n to 1) are the points where the
the implementation of an analog or discrete filter, or (generalizedn gadient is in the eigenspace of the
an observer/controller implementing an optimal regu- (generalized) Hessian. In the case of fixed point
lator for a given plant. As in all these applications, implementations, the uniform Euclidean metric is
not the actual state coordinates, but the input-output appropriate, and the gradient and Hessian correspond
relation is important, they are usually implemented by with the usual notions in calculus. All results are,
a so-called canonical form. Reason for this is that therefore, also "infinitesimal." One can reasonably
these implementations minimize the number of param- argue that in finite wordlength arithmetic, the notions
eters, and allow a pipelined realization of the of infinitesimal perturbations of the coefficients are
devices, e.g. the "Direct Form" realizations in digital meaningless. This may indeed invalidate the
signal processing. A minimal number of parameters application to finite wordlength effects. For this
corresponds to minimal complexity, an important quality reason, shall develop the analysis for noninfini-
if operation count becomes important. However, a tesimal perturbations in this paper. It will be shown
minimal set of parameters has no redundancy, and that this approach makes a connection with the notion
therefore, one may expect high sensitivity inth respect of clustering. In this paper, by finite we shall mean
to these parameters. It is clear that the freedom of noninfinitesimal. By L we denote a particular realize-
coordinate brts of the implementation should be tion in L ., and by M the equivalence class of all
utilized to etermine optimal realizations under similar reos ations havingf particular input-output
various criteria for optimality. In particular, two behavior, i.e. the orbit it (M) under GLn(R). The
issues seem to be important: sensitivity and equivalence class will be referred to as "system," the
clustering. The sensitivity requirement guarantees orbit space is denoted by Ma,n , and the projection
robustness of the actual implementation, while map from L. to He n . 'te study two problems,
clustering deals with the parameter ranges. It relates which are r4ilted to ehi sensitivity and robustness.
to the problem of approximately implementing a certain
system with parameter values chosen from a finite set. Problem A: Discrimination. How do we choose a

These results will be extended here to multi-mode realization of a given system NO -1 uch that it is
maximally distant from the orbit w (M), where M is

systems. These systems have recently become of another given system?
interest as models for multi-rate systems (lO,
nonuniformly sampled continuous systems and as approxi- Problem 5: Worst Case Defects. If the system
mations to nonlinear systems 12]. Several interesting parameters are perturbed over a fixed nontnfinitesimal
aspects (e.g. reachability) have been studied for these amount, and if f is a scalar system function (i.e.



invariant under similarity), then find the realizations
L of Ho for which the f-perturbation Theorem 2. The realization of H0 which has maximal

max f(LA) - where CA- JAI Eising disance to the orbit of H Iis implicitly given

afL)} e CA "{- 1 by L. c v (M0 ), satisfying

is minimal.

A optimally clustered
In both problems, the norm function in the

realization space will be fixed to be the Eising norm where A is the perturbation, d (L ,L ) IL *-LI, with
(compatible with the uniform metric). L* -(H 1). The maximal distance is then the Eising

ILI
2 

- I(A,B,C)I 2 TrJAA + BB' + C'C} norm of A.

Proof. This follows easily by solving the minimax
It follows then that if (A,B,C) is a solution to each problem: First etermine for a gien realization L of
of the above problems, then also any realization M., the point L on ihe orbit :- (H.) for which the
obtained from (A,B,C) by an orthogonal similarity EZising distance dE(L,L ) is minimal. Thi$ problem has
transformation is also a solution. Before outlining always a solution, but the realization L may not be
the solution to the above problems, we shall introduce unique. The proof is similar as in the clustering
a third one, to which problem A is related: theorem. The condition is [[L,L-L ]] - 0. Next w

slide L on its orbit, the associated realization L
Problem C: Clustering. Find the realizations L of M will clearly vary with L, so that we may define a map
with minimal system (Eising) norm. #: w-(M 0 ) --> *(K ) 

: L-> L 
# .  

Now find. the
This has the physical significance that cooper- similar realization L., for wich dE(L.,L ) is

atively the components of the realization are as small maxisal. The realization L is the corresponding point
as possible, hence clustered near zero. It is a (L*) . This constrained optjmizaiion problem yields
special case of the following more general (and more the additional condition (L-L ,L-L ]4 0. 9
significant) clustering problem. Let r - {l' .... 'YM be
a finite subset of R, then we formulate: There remain some open problems. It is not clear

whether or not the orbits can diverge, in the sense
Problem C': r-Clustering. Find the realizations L of that the optimum may be on the closure of the orbits,
M with component values closest (in the Eising norm and therefore not attainable. Also, if a solution
induced metric) to the set r * {y.... I exists, it "jy not be unioue (modulo 0(n)). The

example of v (0,1,1) and w,(1,1,) illustrates that
Problem C corresponds then to r a {0}. It is also to every L in the first, a corresponding L on the

helpful to define a bilinear map on l.,n~p: other orbit exists for which the distances are constant
np and equal to 1. It is also natural to look at the

L,J : L x L ---- -- nxn extension of problem A.m,n,p m,n,p

[[(AB,),(F,G,H)]] - [A',F] - GB' + C'H Problem -': Multi-Mode Discriminatiqy. Given the
orbits w (L.), find.the realizations L. on each orbit

where [.,.) is the usual Lie product: [A,F] - AF - FA. such that the 'It lLi} is maximally separated.

Theorem 1. The class of optimality clustered realiza- This is of interest for realizing multi-mode
tions coincides with the class for which [[LL]] systems. The practical significance of this all is
vanishes, that the realizations with the largest intraset

distance are the most robust with respect to parameter
Proof. If (A,B,C) is constrained co realize H, then inaccuracy, as for instance due to coefficient
if (AoBo,C0 ) is a representative for M, we get a truncation. The problem will be discussed in
constrained optimization problem, for which the Section 3.4.
Hamiltonian is

As to Problem B, we shall just state the following
H - TrfAA' + BB' + C'C + AAfTA0-ATI' results for the scalar observable f: L. o> "

which in fact only gives an implicit 6s67ion to
+ %{TB0-B}' + Ac{C0 -CTf} Problem B:

The optimality conditions lead then directly to the Theorem 3.
stated result. e

(1) Let the realization L be given. The deviation
Not every system allows an optimally clustered f(L A) - f(L), is extremal if the perturbation A

realization. A counter-example is the system is in the direction of the gradient of the observ-

[ 0able f, evaluated at LA.

(2) If1 only the system H is given, i.e. the orbit
Converging sequences of transformations can be found •I (M), then the deviation f(L.) - f(L) is
which yield equivalent systems with decreasing Eising extremal at L, if the perturbation A,
norm, but the limit realization is not a point on the grad f(L.A,,) and gred (L*) are all aligned.
orbit of the given realization. It is a known
phenomenon that the orbits under similarity are not Proof. Again ihis follows simply from adjoining the
closed (6]. constraints jai a I and for part (2) also f(L) - cst,

with Lagrange multipliers X (and ui for (2)) to the
Remark. A realization is optimally clustered iff there performance function f(L.A) - f(L). The optimality
exists an orthogonal transformation S c 0(n~m), such conditions obtained by nulling the partials, with
that [A,31]S - (A',C'I. respect to A and L, are

With this solution, we can show the following:



grad f(0+6) + ) 0 consecutive samples of the pulse response of the multi-
mode system, given that the input pulse occurred while

grad f(0+6) + (u-I) grad f(e) - 0 the system was in mode i. If this initial pulse time
is uniformly distributed ir the interval [0,TI ] , where

Remark. The infinitesimal result of [4] is recovered Ti is the duty time of mode i, then the two Hankel
for the uniforrm metric if the perturbation becomes matrices will be equal with "probability" T -2k+I/T
infinitesimall. zall. as long as 2k is less than T.. Note that tihe above

probability converges to I if k/T. decreases. In this
3. NLTI-MODE SYSTEMS case, a weighted average of the observables corre-

sponding to each mode is justified, with the weights
A multi-mode system is in effect a time-variant proportional to the duty cycles, or expected sejourn

system. However, the term will be used to designate times of the system in the respective modes. This
the particular case where the time spent by the system yields then at once the extension of the sensitivity
in each mode is significantly longer than the dynamical theorem in [4):

characteristic times (e.g. time constants and oscilla-
tion periods), in each mode. Heuristically speaking, a Theorem 4. Defining the observable for the mulct-mode
multi-mode system behaves locally (in a temporal sense) system as a weighted average of the observables in the
like a time-invariant system. Each "mode" of a system single modes, the optimal unconstrained realization is
I will be denoted by a triple (AiBI,CI) of nxn, nxm, obtained by realizing each mode individually in

and pxn matrices, respectively. We shall also assume essentially balanced form.
that the number of different modes is finite, N say.
(Although the theoretical development remains valid Proof. The observable is
with a countable set of modes, its justification in
finite time data processing is elusive.) f " Tr Z w.A.(H.-O R.)

i i ii

This is in contrast to fast switching (Section 4). which is a weighted sum of the observables defined in
In this case it is well known that, for instance, the [4,5] for single-mode systems. The parameterization is
stability properties are not directly determined by with respect to the components -of the observability
the individual dynamical interests A, .  Two types of matrices O, and the reachability matrices Ri . The
models, with many similarities are discussed: switched gradients are linear in these parameters, and the
systems and piecewise linear systems. Hessian eigenproblem, therefore, decouples into the

individual components, giving the simple condition
3.1 Switched Systems

The system is assumed to be modeled by ii ii t

expressing essential balancedness of all mode
xk+l A [kixk + B [k]uk realizations. 0

Yk C (klxk There is one problem rith the above approach. By
individually optimizing each mode, there will be no

where [k] e {l.... } is the function determining the common base for the state spaces in each mode. This
mode switched on at time k. We assume that this means that if at time T a mode switching occurs from i
switching is state-independent, but otherwise, can be a to j, the state existing at time T in mode i, xT,

purely deterministic sequence, or a random time series, cannot be directly used as "initial condition" (at
A theory for deterministic discrete time periodic time T) for the system in mode j, but needs to be
systems was developed in (7]. Here we allow general transformed first to the proper coordinates. If all
time variation, thus not necessarily periodically modes communicate, (i.e. if all mode transitions are
switching sequences. In the randomly switched case, we present or possible), it means that N(N-l) transfor-
assume that the statistics are stationary and known. mation matrices need to be stored. This set consists
The domain of validity of each mode is all of Rn, i.e. of pairs of mutual inverses. If only cyclic shifts
the whole state space. This is in contrast with the occur, N transformations suffice. besides this
next class, required overhead in memory, the additional computa-

tions induce also inaccuracies, and may therefore upset
3.2 Piecevise Linear Systems the optimality for that scheme.

This is a multi-mode system as described above, A direct approach exists by solving the problem
but the domains for the validity of each mode partition with the same optimality criterion as in Theorem 4
the state space, i.e. they form a "patchwork" which (i.e. a weighted version of the objective in each
pieces together a single "global" system. Clearly, one mode), but with the additional constraint that the
can think of such a system as a switched system with state is communicated from one mode to the other. This
the switching completely determined by the state xk of implies that despite the fact that each mode separately
the system. Such a model results, for instance, in the can be realized in many different ways, the total
approximation of a nonlinear system by a piecewise system is only left invariant under the action of
linear one [1. Despite its local linearity, the Gin(R), and not Gln(R)N, where N is the nui'ber of
dynamical behavior of such a system can be very complex modes. The weights (vi are again set equal o our
and sustain chaotic motion Details are presented in assumptions these relative times are precomputable.13]. tmsaepeoptbe

Theorem 5. Let the relative time spent in mode
3.3 Robust Implementation be V , then the constrained minimal sensitivity

realizations are given by the essentially balanced
The problem is to design an optimal implementation multi-mode systems defined by the requirement:

of the multi-mode system. As a first approximation to
the optimal realization, each mode can be realized in I 1 0'0. - Z e2RR
minimal sensitivity form as presented in (4]. This is i 1 i I i i I i.

justified by the following argument. Let HI be the pxp Proof. Follows directly from the EST, using the
block Hankel matrix of the Markov parameters in mode i, observable
and consider the Hankel matrix formed by the 2k-I f a E .TrA (H -0 R

i i i i ii



vith the constraints: 
mi {(T(L),{NI) N .

0 oOT
-  

is maximized over T C Cl (R). Many variants of the

0 problem can be defined. nFor instance, the I -weighted
R i - TR

0  
average, rather than the minimum of the distances

0  
0 A(T(L),{MJ) may be maximized.

where R. and 0 are, respectively, the reachability

and observability matrices for a nominal realization, 4. GENEAL TD(-VARYING SYSTEIS

and T is the GLn(R) element to be determined, i.e. the

parameterization for the problem. First, the gradients Consider now the general time-varying case, with

of the observable with respect to R. and 0 are realization {(A.,B..C.) ; itZi. The dynamics are

computed, and the constraints are substituted. oting completely specified by the response matrices H(k),

that the time w spent in mode Ii does not depend on whose ij-elements are the response at time k~i to an

the realization of the mode, the gradient component, impulse at time k+j-l
are readily obtained,

"HijaW - C k+,A i- -i-2... Aj~lk.jBkj1
0i I L 0-1  Just as in [41, the optimal implementation will be
a i 1 T determined by the optimal factorization of H(k) into a

local (at time k) observability and reachability

Minimization of the gradient norm with respect to T matrix, 0(k) and R(k), for the time-varying system;

yields then the condition i.e. C kl

TPT' - T-TQT
- I  

H(k) = O(k)R(k) N Ck+2Ak+l [BkAkBk l .... ]

where we used the fact A A' - A'A - I, and defined the

generalized gramians, weIghted by the sejourn-times as

P NN I W 2 R0 RO Defining the observable f k8as TrA(O(k)R(k)-H(k)), the

* I i ' i~ only difference with the development in [4] lies in the
i interpretation (i.e. it is now the local observable for

Q 12 0,0 a time-varying system). The mathematics carry through
0 1 0i in a straightforward manner. The extremal sensitivity

realization is then again determined from the criterion
The optimal T is then simply the balancing transfor-

mation for P and Q, which can always be found [8]. * R(k)R'(k) N O'(k)O(k)

3.4 Uoninfinitesimal Perturbations which means that the realization must be locally (at k)

of Multi-Node Syste's essentially balanced. This result leads directly to:

It is also natural to look at 1 he extension of Theorem 6. A time-varying system has a realization of

Problem A: * Given the orbits x (M.), find * the minimal sensitivity which is esseitially balanced in

realizations L on each orbit such that tie set (L) is the time-varying sense [8].

maximally separated. The practical significance of
this all is that the realizations with the largest Proof. Define as the system observable a uniformly

intraset distance are the most robust with respect to weighted sum of the local observables defined above,
parameter inaccuracy, as for instance due to coeffi- i.e.

cient truncation. We give a constructive solution of N
Problem A' in the unconstrained case, i.e. when the f NN lim A TrAi(H(i)-O(i)R(i))

states do not necessarily have to communicate directly, N N i-N

and transformations are allowable at each mode
transition: The parameterization of the realizations is with

respect to the local observability and reachability
(1) For each realization L on Mo, determine matrices. By Theorem 4, the optimality conditions are

realizations L. on the orbits of the other

modes for which dE(L,L ) is minimal. Let the O(i)'O(i) - R(i)R'(i)
minimal distance be ALH)

i.e. equality of the local observability and

(2) Determine ,(L,jM}) a minfa (M.) reachability gramians. These local gramians can be
i - ,...,N}. .Note that Ithils distance does simultaneously diagonalized by an orthogonal
no longer vary smoothly as L moves on Mo (it transformation. The corresponding realization is the

is not differentiable at the crossovers), time variant analog of the balanced realization, and

its existence is proven in (8]. As the condition only

(3) Determine L
# 

an M0 such that expresses equality and not diagonality of the gramians,

the extended notion of "essential balancedness," i.e.
a(L ,fM}) N max {h(L,fN}) ; L realizes m . the balancedness up to an orthogonal (now time-varying)

transformation is again sufficient. 0

(4) Perform Steps I to 3 for each of thl modes

M', to find the optimal realizations LL. S. APPLICATION TO NONLINEAR STOCHASTIC CONTROL

Because of the nondifferentiable structure, the 5.1 The Model
maximization in Step 3 cannot be performed by simple

differentiation. In the constrained problem, w start As discussed in the introduction, we shall assume
from the realizations L1 ,...,L 2 in modes MI, .. , 2 , that the nonlinear dynamics are satisfactorily modeled
respectively, and solve .o the transformation T such by a piecewtse linear multi-model stochastic system
that (in the notation of the unconstrained problem) [2), thus a combination of the systems discussed in

Section 3. The system is assumed to be controlled, the



control being conditioned on the observations, and F P F' G G' P

therefore deterministic. This is superimposed on the I I I I

stochastic inputs, modeling the noise in the system as FQ Fi H 'Hi Q,
well as the unpredictable components of the inputs, due i

to coupling with unmodeled dynamics. The transformation to the minimal sensitivity

coordinate basis is then obtained by balancing [7] the
The general discrete model is matrices 2

_l/2
Xk+l Xk B k dk + P PkPUk I I I

Finally, each of the modes of the filter is then

1/2 transformed to the optima. form. We have worked out
Yk C[k]xk e[k ek * R k] Vk the ideas for discrete time filters. The concept works

just as well in continuous time [5]. The conditions
where u and v are whire noise processes, modeling the are the same (i.e. essential balancedness of the
measurement and dynamical uncerteinties (e.g. the averaged system).
unknown inputs due to unmodeled dynamics are typically
modeled by colored noise, the noise shaping filter is 6. CONCLUSIONS
then included in the dynamical equation). d is the
deterministic input, which is a feedback of the The optimal sensitivity properties for the multi-
filtered signal and some externally applied known mode realizations have been derived. They extend
component. Offsets (the biases due to an affine nicely the notions of essentially balanced realizations
approximation of the nonlinearities) can be modeled in derived in [4,5]. These optimal realizations have been
these terms, d and e, as well. applied to obtain an optimal implementation of a simple

multi-mode filter, which allows the tracking of a
5.2 The Steady State Filter target with low complexity, small wordlength hardware.

This simple multi-mode model can be justified if the
Under the above assumptions, a steady state Kalman sampling rate is sufficiently high. More quantitative

filter approximation is implemented in each of the results are presently under investigation.
domsns

We have restricted our discussion to square
xk+l " A[kX k + B(k] dk + K k -[k]Xk-D kie k )  systems (m - p) and minimal realizations. Extensions

k re straightforward. It seems tntuitively clear that
where the gains are computed for the steady state. one could further exploit the redundancy of a realiza-
This of course requires some assumptions on the deter- tion by deliberately using nonminimal realizations.
ministic signals dk and ek. Typically such a filter is A heuristic argument for this possibility is as
used in a feedback scheme in order to provide the follows: Let N - kn, and let (A,B,C) be a minimal
control comnand, i.e. we also have an "output" equation sensitivity minimal rea.ization of a sstem H.

Construct now k different realizations IAi,., Ci
k  -r [kxk ITi T ! I T a -CT. ;i - Wi..... ith these realiza-

which generates the command control. The combined tions construct the norminimal diagonal realization of

equatins are then order N

Xk+l . (A [k-B [kN -K 1k)C[k)X k x -diag (A.) ; i * vec (B.) ; C " vec (C I)/k

+ B r -K D e K If the Ti's are chosen in a neighborhood of the
[k] k [k) [k k + K[k

y
k identity, such that the rounding errors Ln each

i.e. a multi-mode system component system are independent, then as k -> -

xk l F kx k  C [kw k  2 2 /klx(k)12

IYk i i i mx
dk  *H [k)x k + rk

with the modes defined by It is possible to overparemecerize the system in order
to obtain minimal sensitivity realizations. Finally,

F , A - M N - K C the idea in the proof of the main sensitivity theorem
I I I I I leads to gradient type algorithms for the optimal

G. - [B -KD, Y sensitivity realizations. This, of course, is to be
KD performed off line, during the design state, and poses.

H . -M therefore, no restrictions on the hardware. Some
I preliminary remarks regarding these appear in [5].

and the input wk is r.e .y k'k'. ACIOWLEDLJIZNT
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[2] -, "Sidelobe suppressed beampatterns of a coaxial circular fixed reference system (the "laboratory" system). Coordinate
array at operating wavelength useful to underwater trans- transformations are also of interest in expressing material param-
ducerapplications,"Acoust. Lett.,vol. 11, no. 3, pp. 34-38,1987. eters such as dielectric tensors, electrooptic tensors, stress ten-

[3] D. R. Hill, "Reduction of sidelobes in uniformly excited arrays sors, and so on. Any three fixed mutually orthogonal lines inter-
with element pattern control," Electron. Lett., vol. 16, no. 4, pp. secting in 0 (e.g., obtained by solving the eigenproblem for a real
134-135, Feb. 1980. symmetric matrix), define 48 possible coordinate frames (of which

[4] M. I. Skolnik, Introduction to Radar Systems. Singapore: 24 are right-handed). As the labeling of the preferential axes is usu-
McGraw-Hill, 1985, ch. 7, pp. 233-234. ally arbitrary, this paper addresses the problem of providing a

[5] R. J. Urick, Principles of Underwater Sound. New York, NY: "nice" way to uniquely describe or represent a preferential coor-
McGraw-Hill, 1975, ch. 2, pp. 60-68. dinate frame.

As our solution relies on some elementary properties of 3-D rota-
tions, some basic properties of such transformations are first
recalled.

On Three-Dimensional Rotations, Coordinale BACKGROUND AND NOTATION

Frames, and Canonical Forms for It All A half-line originating in 0 (the origin) will be called an axis. If
u is an axis, then the axis parallel to u but extending in the opposite

ERIK 1. VERRIEST direction will be denoted by -u. By a (right-handed) coordinate
frame F, we understand an ordered triple of mutually orthogonal

Some properties of the eigenproblem for a three-dimensional axes, following the right-hand rule. A frame consisting of the axes
rotation matrix are shown, and related to the geometrical rotation u, v, and w in that particular order will be denoted by (u, v, w). F
parameters. The problem of assigning a unique canonical coordi- is the set of all possible right-handed coordinate frames.
nate frame to a set of three mutually orthogonal axes is consid- There are many ways to specify the orientation of a coordinate
ered. The assignment is such that it corresponds to a minimal over- frame relative to another orthogonal coordinate frame with the
all rotation with respect to the reference system. This problem is same origin. Denoting the axes of the fixed reference frame by (x,
of interest for the unique and consistent labeling of the principal y, z), and of the preferential coordinate frame by x', y', z'), it is stan-
axes of various tensors related to physical properties of materials, dard to represent the rotation by the direction cosines of the primed
and symmetric matrices that appear in various disciplines of engi- axes relative to the unprimed ones. One can think of the new
neering. (primed) coordinate system as the one resulting by operating on

the original (unprimed) system by some transformation, and it is
INTOOj' rION well known that the set of matrices e representing these trans-

formations form the iotation group SO(3).
In the,,;weas of celestial and applied mchanics, robotics, the the- Since any rotation can be represented as a global rotation over

ory of eliticity, radar and sonar, and in nuclear, molecular and * e [0, ir], measured counterclockwise about some axis u, a rep-
solid-staie physics, one frequently needs to express preferential resentation of the set of three-dimensional rotations can be given
spatial orientations (attached to a "rigid" body) in terms of some in spherical coordinates: Longitude 0 and latitude ii. suffice to iden-

Manuscript received November 19, 1987. The research was supported by tify the global rotation axis u, and the radius r - 6 describes the
the U.S. Air Force under Conrac AFOSR-87-0308 angle of rotation. However, SO(3) is not topologically equivalent

The author is with the School of Electrical Engineering, Georgia Institute to the open (or closed) ball, since antipodal points on the surface
of Technology, Atlanta, GA 30306, USA. of the sphere represent the same rotation. A standard homotopy

IEEE Log Number 6821052. argument shows that the fundamental group contains two ele-
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ments [3). The covering of SO(3) by SU(2) leads to the Cayley-Kein 1) cyclically relabeling of the coordinate axes x', y', z',
parameterization (11. 2) changing the directions of any two axes,

The eigenproblem for rotation matrices is summarized in the 3) changing the direction of one axis, and switching the remain-
following: ing two.

Lemma: i) A rotation matrix e has all its eigenvalues on the unit It follows that every orbit of this group (equivalence class F) con-
circle. If the rotation is nontrivial, only one eigenvalue equals +1. of exactly 24 elements. In the restricted case of Strong Equiv-
2,e gband teometric rotation alesatisfies Corp s t g l r o tor alence, the frames can only be related by inversion of any two axes,2, and the rotation axis corresponds to the global rotation vector thus leaving only 4 elements in each class of Fs. The matrix rep-

(i.e., teegnetru orsodn oteegnau ) i h eettoso h eeaoso ,ae
real and imaginary parts of any complex eigenvector correspond- resentations of the generators of C, are:
ing to a nonunity eigenvalue have the same norm, and together
with theeigenvectorcorrespondingtotheeigenvalue +ltheyform [ 0 1 -1 0 0
a mutually orthogonal set. P= 0 , 1 0 -

Proof. Part i) is shown in [1]. As for ii), let v be the complex eigen- 0 J 1

vector of 0, corresponding to the eigenvalue X. Expressing u'ev 1 0 0
differentways results in u'Re(v) u' Im (v) = 0, unlessthe rota-

tion is trivial. Similarly, the simplification of v'ev leads to v'v = , 0 0 -1 0 0
which in turn implies the orthogonality of Re (v) and Im (v), and
equality of their norms. Sb = -1 Q 0 0

It follows at once that (Re v), Im (v)) is an orthogonal basis in 0 0 Lo 1 0
the rotation plane. A canonical parameterization can be shown to
result. The generators of the subgroup G, associated with the Strong

Theorem: Any rotation matrix has a (nonunique) eigenvalue Equivalence are S, and Sb. The action of the group element G e
decomposition Ge(G,.) on F is defined by ,(F) = FG e F: The frame derived from

F by group operation G is the frame with'associated matrix FG. The
S= [u, v, v-] diag (1, e , e - ) [u, v, - degenerate case is discussed in [4].

where 9 lies in the interval t0, i], measured counterclockwise with
respect to u, and such that (u, Re (v), Im (v)] belongs to F. CANONICAL FORMS FOR REAL SYMMETRIC MATRIX DECOMPOSITIONS

Proof. See [4]. A selection of a canonical form for the decomposition means that

LABELING of Fw~ts ASSOCIATED WITH THE REAL SYMMETRIC to each element [F] of the equivalence classes F/_(or F/s) a unique
EINPGOF FRM representant is assigned [2]. An obvious choice is the frime obtain-

able by a rotation of the reference frame over the smallest possible
In many problems the rotation matrix E is only of intermediate angle. The ideas are made rigorous by introducing a "correlation"

interest. In particular, consider the real symmetric eigenvector metric (. , - >:F x F- R defined by (F, F2> = tr FFj. The function
decomposition A = UKU', also known as the Principal Axis (Corn- ( -, - ) is not an inner product on the set of frames F, since the latter
ponent) Decomposition. K is a diagonal matrix and U is orthogonal. has not been endowed with a linear structure (i.e., addition of two
If det U - 1, then (ul, u2, u3j] is the matrix of direction cosines of framesor scalar multiplication of aframeare not defined). An inner
a new right-handed coordinate system whose coordinate axes are product interpretation is possible by embedding F in a 9-dimen-
aligned with the vectors ul, u2 , and u3. Clearly, this decomposition sional vector space (4]. As the reference frame is represented by
is not unique: eigenvalues can be permuted, and to each ordering, the identity matrix, one obtains the "correlation": (I, F) = tr F =
several different choices for the corresponding eigenvectors may (1 + 2 cos 0). The frame with the minimal 9 e (0, T] is the one with
exist, leading to different orthonormal coordinate frames. For ref- the maximal correlation. The map f assigning this optimal frame
erence purposes, a canonical decomposition is desirable. To facil- to each equivalence class is a complete invariant [2], and it follows
itate the search for canonical forms, the problem is characterized that the set of frames (FC) = f(F) is a set of canonical forms for F.
in terms of its invariants, introducing the following definitions: The selection algorithm for the canonical representation of a

Definition 1: A Symmetric Eigenvalue Decomposition fSED) is an given frame Fproceeds then by optimizing tr FGover the elements
ordered pair (U, K) where U belongs to the set F, and K is an ordered G of the groups G. or G, generated by P, 5a, Sb, and Q, or Sa and
triple of real numbers (i.e., an element of R3). Sb alone for the canonical forms, respectively, under Equivalence

Definition 2. Two SEDs (U,, KI) and (U2, K.) are called and Strong Equivalence in the nondegenerate case. The pseudo-
code is provided in the appendix.

i) (Weakly)Equivalent(-) iff U, diag (K,)U; = U2 diag (K2)UL and
K, is an ordered triple of the permuted elements of K2. APPENDIX

ii) Strongly Equivalent (s) if they are equivalent and K, = K2.
The Optimal Frame Algorithm for the Nondegenerate Case

The equivalence classes induced by the above equivalences are
nontrivial. In the nondegenerate case, the equivalence class of all Given a right-handed frame represented by the vectors of the
frames equivalent to a given frame U is generated by operating on direction cosines Ix., Xb, xJ], the Canonical Form under Equivalence
U by transformations of the group Ge, consisting of the elementary is obtained via the following algorithm (for Strong Equivalence omit
operations: the loops in i and I).

Begin

For i:- 0 to 2 do
begin

[X., Xb, x] : I= x., Xb, xC]P'
For j :- 0 to 1 do

beginIxo, xb, xj]:- Ix., xb, xJ]Q1
Find diagonal elements (x,, Xb2, Xc,).

- ;If not all signs are positive,
then find the two columns whose sign change maximizes the trace.
[x1 , xb, XC] :- Ix, Xb, xcl S, where S is one of S., Sb, S,

F(2i + j) := [x., xb, x.] ( Store a potentially optimal frame
T(2i + j) :- x,, + Xb2 + x13 f Store its correlation with I

end
end

k,,.:- maximum - ' (T(k) ; 1-0 to 5) (Search for maximum)
Frame :- F(k.11 ) (Output the optimal frame)

End.
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E a. c,,sk (6)
n-0 k-0

An Improved Algorithm for Low-Pass to where, from the right-hand sides of (5) and (6), = + N Thus,

Bandpass Transformations the 31 car, be found as
N

STEPHEN A. DYER 1" Z a. c., k - 0, 1, - -, ,. (8)
n..0

An algorithm is presented for computing the coefficients of a Similarly, the £, of (3) can be found as

-ontinuous-time bandpass transfer function, obtained by applying k 0

e standard transformation to a normalized low-pass prototype. [ - Z bc,, k - 0, 1, •• (9)

ihe method has all the desirable features of a recently described -0

algorithm while achieving increased computational efficiency where j - -y + M. Actually, the range of n and m in (8) and (9),
through use of a recursion relation. respectively, can be restricted further. This matter is discussed in

Section IV.

I. INrRmoouCriON We need, however, to determine the ci,, before (8) and (9) can

In a recent letter [1], an algorithm was presented for performing be applied. From (5) and (6),

the standard low-pass (LP) to bandpass (BP) transformation. The hs

method is quite general, being both independent of filter order css - (as + Os- s (10)

z_. picable to prototypes having both poles and zeros. Since
it is algebraic in nature, it provides excellent accuracy independent - I + s ")(as + Bs-1

of choice of scaling factor. 2,

The algorithm presented in the following shares all the desirable - (as + os
- ) E c ,. -'sk

traits of that in [1]. However, while the method in [1] requires the ,-0
evaluation of a set of binomial coefficients, the present algorithm 2

employs a recursion relation, resulting in decreased computa- - ac", ,  
+ A, 0 0c*.

-
'

s -  
011)

tional effort.
Here, the upper limit on the sums is set to 2-f so that (10) can be

II. DEVELOPMENT OF THE ALGORITHM applied to either (8) or (9) as needed.

We wish to obtain the coefficients of the BP transfer function R(s), After changes of variables, (11) becomes

obtained from the normalized LP transfer function P(s) by the trans- Z , + k- (
formation ,- 0 -1, - -1

R(s) - P(s)J,-tu' ,,w-,= .as-, (1) So, upon equ...ag coefficients of like powersofsin (12),weobtain

where w 0 is the desired center frequency, in r/s, of R(s); W is the the recursion relation

desired bandwidth, in r/s, of R(s); a = 11W; and = /W. k 1, 2- I
The LP transfer function P(s) in (1) is assumed to have the general c.,, - ac, - I,, _ + oc + 1. , _ 1, (13)

form n

N For n - 0, (10) gives
a,,s 1, k=y

P(S) 4 (2) c,. =  
(14)

Z b se O0, otherwise.
e,-o Also, (12) yields

The BP transfer function R(s) has the form co.n - c1., , - 1, , 7 (15)

and,,-S

R(s) (3) o,.,, = ach.n,, n -1,', U n- (16)

,,-0 Ill. THE ALGORITHM
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ALTERNATING DISCRETE TIME SYSTEMS:
INVA.IANTS, PARAAMTRIZATION AND

REALIZATION

Erik L Verriest
School of Electrical Engineering
Georgia Institute of Technology

Atlanta, Georgia 30332
(404)894-2949

Abstract

Periodic discrete tim systems an analyzed. In particular we Given the N-periodic system (Eo,Ei, .. EN-1}, let the re-
invetigate the Invariants, Parametrizations, Canonical Forms, sponse of the system to a pulse occurring at instant j < N be
and Realization from input/output data for such systems. It was the sequence h,* ; i > j. The system response is readily seen to
found that the classical realization theory for time invariant sys- be (where (kI indicates k mod N)
tes carries over very nicely to such systems. For notational
simplification, some results are worked out for the alternating Ahj - Cpp&,_11Asl ... Aj+jBjj i > j (1)
(Le. period two) single input single output discrete time system = 0 else
only. A novel definition for an Operational Tfansferfunction is
given, which is useful in studying reductions, realizations and in- Define the 'Hankel Matrices for this Periodic System as the
terconnections of such systems. matrices Hj+l who" (a,b)-element is hi+.j_ .. This matrix

does not have the (block) Henkel structure as in time invariant
1. Introduction systems. However, it still aBows a factorization in en observ-

This paper deals with periodic discrete time systems of period ability and a reachability matrix (as defined in the time-varying
N. To fix the ideas, a state space realization of such systems is case).
of the form Zj+1 = Oj+:4 (2)

zh+l - Apk)za + BV(k)ua e.g. the o-th block entry in O,+l and the b-th block of J are

V - CP(&)&k respectively

p(k) = kmodN (Jft = Ay,11 ... 4+s..aBu+a..a (3)

The N-tuple {E,E,...,EmN-.} where r, is the triple (A., 1Oi+i1, = Cj+.jAj+._ ]... A +jl (4)
C,) will refer to such a realization. These systems arise for in-
stance by discretization of periodically, non-uniformly smpled For fixed j in 1,..., N, the derived sequence hk = h,+&j; k > 0
continuous time systems, and more general periodically switched is also the response to a unit pulse, of the following augmented
systems. In order to simplify the ideas, we shall sometimes look time invariant system of order nN. (Note th&t EN 0 EO)
at the special case of alternating (i.e. period two) ingle input 0 0 ... AN
single output discrete time system. The main ideas for the gen- At 0 ... 0
eral case are not different, but only more complex in notation. Am - 0 As 0 0

While these systems are in many ways more complex than or-
dinary time- invariant systems, they have still much more struc- . ."

ture than general time varying discrete time systems analyzed by

Kamen [31, or even the multi-mode systems described by Stanford
at al. (12, and Helrke Il, and one can develop a parametrization -[ c, c... Cpu (5)
theory for these systems which is in close analogy to the known
gecmetric thecry for stationary systems (Hasewinkel [41). with read-in matrix [0,... 0, Oi, 0,... Of' where the nonzero block

In particular, the input/output behavior of such systems is Bi occurs in the (, + l)-th block position. Such a time invariant
left invariant by the transformation group representation of the pulse response sequence Hj ; i > j will be

GL*(R) x ... x G,(R) (N opiss), called an Adiabatic representation. The corresponding Adiabatic
Hankelmatrices ki with (a,5)-element - will have the

and the orbit space of the controllable systems is a manifold true Hankel structure. The subscript Ice refers to "cyckay
which can be decompoeed into generazed Kronecker calls which augmented'. The above representation is in general not minimal.
form a cellular patch complex. The canonical forms ac4 local A 1inim realWaio of the adiabatic Hankel matrix t, will be
coordinate syste. dmotd by (A,, h,, 60).

Our next main result involves the realization of such a system In order to treat all h4j's at once, an equivalent composite
from the knowledge of the impulse response sequeces system (the Cyclically Augmented System) of Nn states, Nm

4J ;i b ., j 0.I... inputs and p outputs, is defined as the realization (A., .. ,C..)

2. 1/0 Equtvalent Tizzw-bivartant R ep t where Am and C.. ae as in (2), and defining a B.-matrix as

for perlod-N Systems 0D 0... 0 1
Some preliminary defintions and notations will be given in 0 a... 0 (6)

this section. Also, the obsmbility, reschabiy and stabity Bit

propert will be discussed. The properti and repreentations 0... BxI-
ae the key to the realization given in section 4. We shall discum
the general ca for -periodic systems in this section.
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lotting A'i(z) denote the Zo-tranform of the shifted s. realization for Am1, then A0  ABo.0]', and B, = B[O, B,]'.

queues h&+jj : h 0, then the transfermatrix of the cyclically The importance of this theorem lies in its use to find the
augmented system in simply realizations for an alternating system. Given the pulse respon"e

sequences h,,o and h., we can use the realization algorithm from
H,.(z) - [hAO(), A&L(...,Ax-ASM) (7) time invariant systems to determine minimal realizations of either

sequence. By the theorem, these realizations can be extended by
The ftj(s) ae the transfermatrices of the ADLABATIC sys- addition of uncontrollable states if necessary, to observable real-

tens, and it follows from the previous discussion that they are re- isationa with the same A and C matrix.
alized in a nonminimal way by (As&., [O....,1 B*, 0. .. 0j',C),
the nonzero element in the B-matrix occurring in the U + 1)5t 3. Reachability, Observabllty and Stability
block position. Definitions:

Rexcarks * Te N-reriodic system (Eo,E 11 . .. ,ENv..a is said to be
uniformly p-reachable (reachable in p steps), iff every state

1. Dually, we can also work with an equivalent (RN,M, NP) can be reached in p steps independently of the starting
system, thus treating the periodic system as an equivalent event (= initial time and initial state). The system is said
stationary Np-output and no- input myti to be uniformly reachable, iff there exists a p > 0, such that

* 2.~ Clasaical realization theory for multivariable time-invariant z suiomyprahbe

systems enables us to find a minimal realization (F. G, H) Tesytmaaitobunfrlobe lenptesf
for the above Hankel matrix. This minimal realization thintastt ~ a euiul etrie rmpcn
then the key to the rest of our development. In partcular, teutial stat xjcan be+~i u inepdnly deemndfo th stont-

since the equivalent stationary system captures all of the in- sctv upt neednl ftesat

put/output information of the periodic one, so will its fin- ing tuie j. The system is said to be uniformly observable

imal realization (F,CG,H). A parametrization for the peri- iff it is p-observable for some p.

odic systems follows then directly from the parametrization Theorem S. The period-N system (r..,N.}is uni-
of the multivariable system (F, G, H). At once, we see that formly reachable iff the reachability matrices (3) have full rank
even a scalar periodic system leads to mizltivariable equiva- for all j. The system is uniformly observable ifr the observability
lent systems. The restriction to scalar systems mentionned matrices (4) haves full rank for all j
at the onset is thus not restrictive, but permtits simpler The proof is easily established by a standard argument 151.
notation and examples. Since the adiabatic systems of at most order nN, provide an

We idicte omeparicuar esuts hic wil b usful in underlying time-invariant structure in the problem, at most nN
We idicte ome artculr rsult whch ill e uefu in steps need to be considered for checking uniform reachability and

the realization problem observability, by virtue of the Cayley- Hamilton Theorem. Some
Theorem 1: The minimal realizations (Akhi,6) of the a& direct corollaries of the theorem are:

abatic Hankelmatrices A, have the property that det(zJ - 4.)
divides det(zm1 - Ac. _ Aiv-) 1) The Cyclically Augmented system (A.,, BC.,C..) is reachable

Proof (for N = 2): The Hankelmatrix tois obtained hv iff the period-N realization {EilEz,...,ZE) is uniformly

the pulseresponse hj,. Its Z-transformn equalsredb.

h'o~) - Co~'I-Ax~)'A~o+C~z'- AAL) 1,B U)(EDxE...,l~is uniformly observable (reachable)
iff (E,.E1 .... ,Eje-i) is uniformly observable (reachable),

- lNo(z') +N(sz')]/det(rI- A*Ai) whence the invariance of uniform observability and reach-

for some poliornial matrices No and N1. Clearly then the min. ability under a cyclic shift.

imal realizations of 90 and Al have the above stated property. il) Using the backward propagation, we can write the output
In fact, it is easy to show that the realizations of Ho and Hl at time i in terms of the previous inputs. iLe., we look at

must be very closely related. Indeed, by rewriting H1 in the form ij for fixed i, and define the equivalent stationary systems

Of-A~ 1' [ 4 with the above A-matrix and C = 0..,~,,.,I the
AI W [C, Co 2r 4.4.1 1  nonzero block occuning in the i-th block position, and B =

-- O J t U . We then have the 'duality'-prope"t:

-~ ~ O [C-~ [' AzAo 0 1j 1B E,,...,EiY~1,Ej) is unif. observable iff
= [1-Ao11iS2 Ae (Edi Ed .. E is uniL reachable, where the *dual"

system is obtained by time reversal of the sequence of the
The first factors on the left also appear in the expansion of So dasE fteraiain ~ hr A~B,,'i h

1C. C, 21- l'[0A triple (4 d j) We are thus led to the definition:

Hence,~~~ ~~~ Ifw eietefloigtadrazFinally, we remark that Vf all ae nousingular, as for in-

kClr - AlM 0 1'At all stance in the important case of the discretization of a continuous
A.C1 0 s3Z- A*At~ 15 Aj system, the criterion of Theorem Ic an be simplified by virtue of

the following
then to - A01[BYOO' and A, - A011,UJ' Lefmwa I the Al wre onsingular forufll j.then theafullak-

This observation lI*&& directly to the following theorm am of one of the reachability matrices R4. (obeervability matrices
Theorem R.: There exsts an observable pear (AC) and mb- Oj) implies the full rankness of all others, and hence roadhability

tuces Do and B& such that (4a,.,), and (A,501 C) realise (observability).
rarpetvely the adiabatic transfer matrices A* and V. As an examuple, a also alternating wystem Eo, El will be uni-

Proof. IeG (A, a, 0) be a myinimal (obeervable Is sufflicient) formly reachable iff the stationary systems (A1 ,L~a, Alba]) and
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(A*Aa, [bo, Absj) are reachable. Ifthe system is uniformly reach- among the 2n columns of R0, select n linear independent ones,
able, no more than 2n steps are required to reach any desired end- which form a basis Po for the state space. In particular, a unique

state. Ithe product AoAl is nonsingular, then (AiA0, [&, Albol) "nice' selection may be chosen according to the Young or "crat e.

and (AoAl, [bo, Aob]) are either both reachable or both non- diagram. Similarly, let .8 be another basis, chosen by a nice s-

reachable. By applying inputs before 0, one gets the reachability lection among "he columns of A1 . Now exprems the system with

1rat tem 0: -spect to the basis which is alternating between ,8 and PI. e.g.
A0 is represented by the a new matrix whose j-th column is the

31 - Ri1u0,u-z,... r representation in terms of the basis P1 of A. operating on the
J-th baeisvector from the other bais 00.

where R = [I, Aiho,AiAo i,...] is the time varying reachability The eect is that the new representation is of the form ho =
matrix [3]. Observation of the output sequence after time 0, with =i - [1,0,...01'. (By assumption of reachability neither 60 nor
so input applied leads then to the observability relation: bi ar zero). If vi(k) denotes the position of the &-th basis vector

[MV,13t,.- -T' Oos0 from &., then we refer to the sequences wi = wi(I), .. ,vi(n) as
a multi-index. The k-th column of the new A-matrices ar

wesa .0 .. is the time varying obee-
ability matrix. Similarly, we construct the reachability and oh- A~e 4e.l()+i

aerability matrices, Ro and 01, relating to the reference time 1. Area - Rzeoo.- (11)
The products OoRl and O3 Ro are then the alternating (period-2)
Hankelimatrices defined in (2). However strahtforward the previous extension of the known

We also haye the following important stabilit theorem: scheme may be, a particular nice form is obtained as follows if A,
TAeoem 4: The N-period system (0) is stable if the eigen- is nonsingular. Search the columns of R0 in thfir natural order,

values of the product AoAi ... AN-1 have modulus lea than 1. i.e. from l to right, and reordered in chains, as in the usual
Proo. The convergence properties of the periodic systems "scheme I' search [5]. Now observe that if A, is nonsingular,

are determined by the convergence properties of the equivalent then the result of Al operating on the above basis, is also a basis,
time invariant system (A,..,C.). The latter is completely and in fact each of these new basis vectors will be a column in
determined by the characteristic polynomial R, except perhaps for the last new basisvector. In that case,
det(r"I - AlA1 Az ... Au) - . it may be substituted for &I as new last basis vector. Note that

The problem with this approach is that the resulting time- this al corresponds to a scheme 1 search in At, but STARTING
invariant system has order Nn if n is the order of the individual AT Albo. It follows that, unless there was a full length (= n)
realizations R1 . The original periodic system is only of -th or, chain Aobl .... (AoA1 )"-Ao1 in Ro, (which only happens if bn
der, so that a "hidden modes'-phenomenon ocur. is zero), the operator A, is represented by I. The b, vector is full

in general. The pair (An, &o) has a canonical controllability form
4. Canonical Forms, Parametrization and Topological [5 representation. In the latter special case, it follows that A0

Structure is represented by a cyclical.ly down shifted identity matrix, and
The first object in this study is to find the transformations Al by a cyclically down shifted right companion (controllability

on the realizations that leave the input-output behavior (i.e. all canonical form) matrix. The new ho (obviously) remains sero,
adiabatic transfermatrices and the the periodic system "Hankel and the new b is a full vector. As the co and cl have no particu-
matrices (2)) invariant. lar structure, there we 4n free parameters in this canonical form.

Let (]oE 1 ... , be a realization of an N-period syo- By analogy to the stationary realizations, we shall refer to this
tem. Denote an element of the group Gl,(R)N, denoted by aGla form as the controllability canonical form. Note that because the
for abort, by (Po, Pa ..... v-s). The group action is defined by search extends over 2n columns, the new A-matrices will in gen-

oral not be in the usual companion form themselves, unless the
(..... -(An, Be, Co) ... ,(AN.,..iC.) -- system is uniformly reachable in n steps, but then this is also the

(PLAoPq ,P1 Ac, C-.P ),(PoA#...i & PoBMvIC -sa.i) (9) case with the time invariant multivariable systems. In fact, it is
The states transform as exactly because of such a reduction from the timevarying to the

multivariable time-invariant cae that all the topological proper-
S--- FZN ties of thes systems are expected to carry over. In particular,

Z +b -'l P' i Jz 1,..., N' - 1 (10) for multivariable systems we have:
Theorem S: The orbit space of the reachable systems is an an-

The following property is readily shown: alytic manifold, which can be decomposed into generalized Kro.
Tkemom S: Equivalence of State Space Representations. necker calls which form a cellular patch complex. The state space
The product group G0,(R)" action on the set of period-N canonical forms act as local coordinates.

systems leavse the I/O properties invadaL The number of canonical forms that i required to cover the
Once the symmetry group, (Le. the group whose action leaves apace of all reachable alternating systems is also equal to the

the i/O behavioer invariant) is established, we can look t the number at pairs of nice milti-indicm that can be chosen. The
question of canonical forms: Any property of the original system information given here is rather sketchy, but the details will be
can be described as a map from the set of systems E, to maw presented in a forthcoming paper [.
suitable set S. After introducing canonical forms, the study of
the original function f is then replaced by the study of some .Op=-*1ol ranser Functon
"aimpler' function I : C , suchwl that f M /ear, where W Because of space limitations, very little will be said her. The
is the canonical projection r : Z - C on the set of canonical essential ingredient is the introduction of a sampling operator r,
fsom, wi s - s, and which does not commute with the shift operator

For notational simplicity, the rat of this sectio will be" to•  8-1. In ct, we have 8-lW& = 1-a, hom which a.+&(l -) W X.
saictea to alternating systems. The above development should The equain gsnh 4  = Aozss + Bosh is then transformed to s(I -
give enough insight to realz that the general principles remain r)X(s) - AoyX(s) + Bo*U(s). Similarly, the complementary
the same. Canonical form for the unifoully reachable systems equation transforms to NiX(s) seAl(I1- w)X(z) +B, (I- f)17(s).
re obtained by the usua Kr neckr selection procedure. L
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Adding yields the form X(s) - (a! - A(w))-B()V(z), where is to reduce the composite transfermatrix, and obtain a minimal

A(w) = Aar + AI(I - ) and B(r) Bow + Bi(1 - w). Delining realization of it, by standard multivariable techniques 15). The

also C(r) = Cow + C1(I - r), we get the Operational Ttarnfer second method consists in Ant obtaining minimal realiation.

function "(A, A,, A) of the adiabatic systems. These minima. realizations

)= C(r)(sZ - A B )may be of different dimensions. However, by the theorem 1, the
(.,w) =A(i))-sB(i) exists a maxim l characteistic polynoial, of order q say, in the

is. a transfermtrix with coeficients in the polynomial rng seose that the characteristic polynomials of the other realizations
Rjrsir = r]. Using the noncommutative relation, this formalism divide it, and each non-tninimal adiabatic realization can be ex-

is very helpful in deriving all sorta of results and transerfunction tended by adding a non-reachable, but observable subsystem, so
operations. For instance, defining the odd and even part of G(s) that all extended realizations of the adiabatic susbeystems have

E[C(z)1 = <C(.) C(s) + G(-9) the sam order (= ), and the same A and C matrix. The cor-
2 posite realization (Au,[Bui....,Bm.ti,Cm) is then the de-

sired form and is minimal since (A.,C.) is observable, and at
(1 - w)[C(z)I = c.(:) G(s) - G(-s) least one of the B., forms together with A. a reachable pair.

2 Step 3: Extend the realization of order f obtained in step

then the commutation relation implies for the peators 2, to one whose order is a multiple of M, by adding a non-
obeervable but reachable subsystem. Indeed, since the mini-

.()v w .(z) C.(s) = ( - -)C.(.) mal system (A, B.... . ,B. ,]:j,C.) and the cyclically aug-
mented system (A.., B., C,,.) realize the same transfer matrix,

anud ,and since Zhe cyclically augmented system is uniformly reach-
able by assumption, the latter must be an extension (A,, B., C.)

C(z)a = •G.(r) + (1 - •)C.(r) of (Am, [Buo ... ,Bg..p.LN-11,C.) by a non-observable but reach-

For instance: able subystem of order Yn - V. This implies the existence of
matrices X,Y,Z .. ,ZMt so that

(:Z- M)' =[(I - -)SI + MS['IZ - r]-1 Am 0 Bm, Bj.Lx

This last rule allows to write the OTF of the period-2 system s Y .. , ZI AA- c- 0

C.[a'- A- Ao-[AjBow + asB(1 - r)) - is similar to the cyclically augmented system. This augmentation

- '[x21 - AoaA 1 -t1 sBor + AaB1 (1 - •)J must not impair the reachability of the realization. The necessary
reachability of the subsystem implies that none of the rows of

The following duality is also very helpful in reduction. the matrix [X,Za,...,Zjw.- can be zero. This folows easily
by contradiction. If IX, Z0 ... , Zy-s1 had a sro row, then the

H(s, w) = R1(z)• + Rs(z)-(1 -) realization could be partitioned as

(I ... , B.L

wher X Y A . .... sV-

i,] (- 0 ([Y1  0 0 ..... 0

S2(z) • - 1 JR(s) which has the un-reachable subsystem tYV,0,C,,).

The XY, and A are chosen so that the reachability matrices
[R1 (z) 1 ( • •- 1 \([ S,(s) 1\ R(AE';BaAB.)and R(Aa;[B'ooA.B.,])haverankles"than

I. {(') r -- 1 • St(a) Step 4: Determine the similarity transformation that trans.

Finally, the reahability and observability conditions derived in forum the extended system (A.,[B.a,...,B.,rN1,C4) to a cyclic

the previous section are also readily obtained with this formalism, form. For notational convenience, we shall again discuss the lat-

It can also readily be extended for use with period N systems. ter far alternating (i.e. period- 2) systems. The ideas for period-

The commutation relation is different Le. ZMN- I + Z'N-=2Z + N systems ae simlar.

+ rVIf -1 t ZNV-'i The reachability matrix for the cyclically augmented matrix
has the structure

IL Rellastm J3, 0, 0, Ao8 1 , AaA1 Ba, 0
In this sectioa w show how the shove results can lead to a JIM 0 B. Ao. 0 , 0, 0In th1, secBo, W0,- , AtAoB,'

relatively simple realization algorithm for periodic system. We
shall asume that the order n of the minimal N-period system is whereas P. has entries in all positions in general. The desired
known. There is then an underlying uniformly reachable system similarity maps R into TN, = A.,. Partitioning T into 2,T,2"A',
M ,...EN.- of order i. The realization i given in 4 steps: it is seen that the sero locations in the above equation leds to

Step 1: Let the pulse responses A40;i > i,.... , 4 .-. ;i> N the identities:
be collected. With this data, the adiabatic Hankelmatrices I, -T7R(A!;[B.A.BaD 0

S- 0,e formed. There are now two possble goTte.
realise eaich adiabatic system separately, or realise the compasattee TsR(A!; [.A,,~J) 0
system ith tra sirmatrix [9o(s),...,. .. ,(s). where the readability matrices extena to a (bock)colums only,

Step 2: Obtain a min m realisation (A., (B.,0, 3l.4,..., and we thus square far sigle input periodic systems. On the
.i],C)oft system with composite traser matrix [Ao(s), endition that the test matrices , . R(A; [Bo A.B ), and

whem A4(s) is the treader matrix of the adabatc , = t(Ae; iS0, A.B,1), have rank less than N, it i possible
system (A. A. ,4). to And i linerly independent rowvectora in the left aulepaces

The we two way in which this ca be obtained. The LSt of the above r.hability matres. Sin the overall realizations
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ar both reachable, there exists T1 and Tz such that T *= 14,7"2]' realization (e, [c, b], 1), provided that e and & are not both 0, of

is nonsinguar with T1 and T3 satisfying the above conditions. the [A(s), ifi(s)]. As its order is odd, augmentation is required.

We summarize then with: The augmented system is

Theerem 7. An invertible transformation T can always bec
found, bringing the extended system Z, of order 2n to the cycli. 110]
ally augm~entes fora .(5) of th me order if it is reaabie [ [u
and if the reababity matrices R(A!; [Bo, A.B.,]) and The test matrices re

B 1, A.B.oD, bothhaverank atm t qual to . Ao r[ 6 +' 1Z2 81 c
Tkerem : The realization of [fo(s), 1(x) can always be si 86+15, " C+vrz,

augmented so that the extended system satisfies the conditions For s ,z 0, = a and V = -c for instance, the rank of both test
of theorem 4 matrices is 1. Taking then T, - t,[0, 1], and T, = t,[-z, ], the

Remarks: 
cyclically augmented realization

L The minimal adiabatic realizations completely specify the fr0 1 , r O 0 t1t [/(l), -i1/(,)

I/0 behavior of the alternating system, and may therefie "C',t' J [ a is

lead to new canonical representations for such ee= resuts, from which the (reparametrised) period-2 system (r,t, r/t),

2. Other identification methods for periodic systems exist.
One can etagger" the impulse responses, by lookingat (.'/r,k/r,c/t) follows
every N-th sample, for which the system looks like a time

invariant one. However, the solution for the individual real- Example Let hAj.o> = 2,2,1+ a, + a,+as, I+ as, I + 6

isations in (E,..., Ejv) require difficult nonlinear equation ... adh>.,-I+b, I +,1 +b, 1+ , 2b, l+ ab, I+o, ' ' -

solvers. Furthermore since the data samnples with such a The adiabatic systems have realizations

scheme ame not 6convoluted, a large number of data needs 0 1
to be collected (roughly 2nN) before the system starts to 010 0 2
unfold. The scheme presented here already presents a lot of 0 0 1 1 0

information about the system after 2n stepe, and is there. -1 L 10 +

fore more "holographic". [0 1 0][1+&] 00[o0 ][ + ,0 +, 1 oo
T. Examples -4 a 1 1+4b

Example . Let h,.o1 >o = e,,e,,ee, -. -, and h1 ij>it 6,, Extending with a first order no-obeervable state, the system

ab6c, 6b, .. The adiabaticsxystemsawe realized by 0 1 0 01 2 1+1[o ] [:.t l [o ] [l( 1 ] [0 0 1 0' 2
1o 0 [ ] and 1j. ,J 0 0 1 0 2 1+.j 0 0 0]

[t ' -s I l L 8 1

If and 6 are not both zero and cs is different from a, then a

minimal realization of the transfermatrix. [A0(z), E1(z)j in ob. realizes the augmented adiabatic system kA' (z) ] ~). It can be

servabllity canonical form [51 in checked that the choice x, = : = xs = 0, 1-, zt = 1,s2 =
-1 gives a system for which the matrices Ro and R, have rank

2 (if a differs from 1). The left nullspace of R,1 is spanned by

[.,o, -1,a - 11 and [0, 1, -1,0], While the left nullpace Of o is
06 , 1 .1: , I 'Ispanned by [1, -, 0, 0] and (a, 0, -1, 1 - a]. The special choice

Since the order of this realization is even, we check first the rank for T:
conditions on the test matrices

1i 0 1 :-1i
(0 -2 1 1

J11 rIa1'W 0 -1 1-l2 -)

Hence choing T, from span 1-c, 11 and T2 from span (-a, 4 leads -2 2 0 J
to a transformation (after introducing suitable parameters) yields then an equivalent cyclically augmented realizaton, from

which the period-2 system can be identified by inspectionT [ 1 [ 1 ][: ell I: l :
1 : [,1 ] [,0]

which i turn trsansforms to the abe re tof 0 -t/is 1 t(&; e) 0 Refe c-

-,,t/ o 1 o -ts(- - t L welmke, U., Parametr atios for Multi-Mode Systems and

[/(. - ,,)tt, -1/[(9 - e,)t,] Yang-NEU Instantons, Pr.. . NL Coa. on Dec ..-a sad
Contrl, Athens Grec, Dee. 1966.

The period-2 rmalzation is now read ot by inspection. Suitably L Safrd D.P., and Conner, LT, controlability and St.

rep. etrised, we find ~bilisaoldty in Multi-P. r Syste , SIAM J. Control sad

(,t,,/t), (/r,/r,,/) o ,timi ate, VoL 18, No. 5, September 90, 48 497.
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TH OPERATIORAL TRANSFER FrCTION AND PARAMETERIZATION OF W-PERIODIC SYSTEMS

Erik I. Verriest
School of Electrical Engineering
Georgia Institute of Technology
Atlanta, Georgia 30332-0250

ABSTRACT

Periodic discrete time systems are analyzed. In Given the N-periodic system frOlril'Z N-1)
} 

let the
response of the system to a pulse occirring at instant

particular, we investigate the Invariants, Parameters- j<N be the sequence {h. ;i>j7. The system response is
zations,tion from input/ readily seen to be (whe4 [k] indicates k mod N)
output data for such systems. It was found that the
classical realization theory for time invariant systems 1 C A AA B i>
carries over very nicely to such systems. A novel , U] li-I]i-P" [j4.lJ[jJ
definition for an Operational Transfer Function is - 0 else (1)
given, which is useful in studying reductions, reali-
zationa, and interconnections of soch systems. Define the "Hankel" matrices for this periodic system

as the matrices H. whose (a,b)-element is h.
This matrix doe not have the same (bloci ankel

1. WTRODGCTION structure as for time-invariant systems. However, it
still allows a factorization in an observability and a
reachability matrix (as defined in the time-varying

This paper deals with periodic discrete time systems of case).
period N. To fix the ideas, a state space realization H 0 j+R j  (2)
of such systems is of the form j+l

e.g. the a-th block entry in Oj l and the b-th block of

xk~l A p(k)xk * p(k)U k  Rj are, respectively

Yk Cp(k)Xk (0) [R.] b  . A.[j]A.j-l...{j+2_b]B[j~l-b] (3)

p(k) = k mod N (0 1 C A A (4)[O.1 a 
=  

[j+a]A[j~a-l]''A[j~l]

The N-tuple {%E'.E. . It N-11 where II is the triple For fixed j in {0,...,N}, the derived sequence
(A,B,,C,) will refer to such a realization. These { kh. .;k>0} is also the response to a unit pulse of
systems arise, for instance, by discretization of the Jo owing augmented time-invariant sysLem of
periodically, nonuniformly sampled continuous time order nN.
systems, and more general periodically switched 0 0 .... A
systems. In order to simplify the ,deas, we shall 0
sometimes look at the special case of alternating A1 0 .... 0
(i.e. period two) single input-single output discrete A c 0 A 0 0
time system. The main ideas for the general case are ca2
not different, but only more complex in notation.

0 0 .... A N 1  0:

While these systems are in many ways more complex than

ordinary time-invariant systems, they hava still much C - [C C C
more structure than general time-varying discrete time ca 1 2"
systems analyzed by Kamen [3], or even the multi-mode with read-in matrix [0,...O,B!,0,...0]' where the
systems described by Stanford, et al. [2], and Helmke nonzero block B. occurs in the (jJl)-th block position.
ill, and one can develop a parameterization theory for Such a time-iAvariant representation of the pulse
these systems which is in close analogy to the known response sequence jN. .;i>jl will be called an
geometric theory for stationary systems (Hazewinkel Adiabatic representatio . The corresponding Adiabatic
14]).

Hankel matrices H. with (a,b)-element h., b I. willa - , , ,

In particular, the input-output behavior of such have the true Rarrlkel structure. The 
3
eu scrpt "ca

systems is left invariant by the transformation group refers to "cyclically augmented." The above represen-
GLn(R) x ... x GL (R) (N copies), and the orbit space tation is, in general, not minimal. A minimal realiza-
of the controllale systems is a manifold which can be tion of the Adiabatic Hankel matrix I. will be denoted
decomposed into generalized Kronecker cells which form 3
a cellular patch complex. The canonical forms act as by (AjBj,C.).
local coordinate systems.

In order to treat all h 'a at once, an equivalent

Our next main result involves the realization of such a composite system (the Cyclically Augmented System) of
system from the knowledge of the impulse response Nn states, Nm inputs, and p outputs, is defined as the
sequences {h , ";i>i "0,l1 realization (ACa 'alc C Ca) where. Aca and Cca are as in

(2), and defining a Bca-matrix as
2. 1/0 iqUIVALErr TD(R-IVARIArr UPRISERrATIONS

FOR FKEIOD- -SSYDIS 0 ... .0

Some preliminary definitions and notations will be Bca 5 1l"' . (6)
given in this section. Also, the observability, reach- ... .....
ability, and stability properties will be discussed. 0 SN-
The properties and representations are the key to the
realization given in Section 4. We shall discuss the
general case for N-periodic systems in this section.



Letting H.(z) denote the Z-transform of the shifted Hence, if w define the following transfer matrix:
sequence fh . ;k);01, then the transformation of the f 2 1 -1 "
cyclically au nted system is simply z I-AIA 0  0 AI zl

H (z) 0 (7) H , I 0 z 2 I-AoA zI A 0Adiaaei then) {Ho6,0l andR; H 1 0,1'
The Hi(z) are the transfer matrices of the Adiabatic then HoHo[B'
systems, and it follows from the previous discussion 0 01 01

that they are realized in a nonminimal way by This observation leads directly to the following
(Aca;[O .... 0, B!,0 ,... ,0' C&), the nonzero element in theorem:
the B-matrix ocurring in the (j+l)st block position.

Theorem 2. There exists an observable pair (ALC) and
Remarka. matrices TB0 and B such that (1,B0-) , and (A,B ,C)

realize, respectively, the Adiabatic transfer matrices

1. Dually, we can also work with an equivalent

(nN,m,Np) system, thus treating the periodic H0 and HI•
system as an equivalent stationary Np-output and
m-input system. Proof. Let (7,B,C) be a minimal (observable is suffi-

2. Classical realization theory for multivariable cient) realization for H, then BOB[Bo,0', and
time-invariant systems enables us to find a F1-T[ O ,B 010 a

minimal realization (F,GH) for the above Hankel [

matrix. This minimal realization is then the key The importance of this theorem lies in its use to find
to the rest of our development. In particular, the realizations for an alternatinf system [6]. Given
since the equivalent stationary system captures the pulse response sequences {h 1 t and {h , we can
all of the input-output information of the use the realizations of either' sequence. By the
periodic one, so will its minimal realization theorem, these realizations can be extended by addition
(F,G,H). A parameterization for the periodic of uncontrollable states if necessary, to observable
system follows then directly from the parameter- realizations with the same A and C matrix.
ization cr the multivariable system (F,C,H). At
once we see that even a scalar periodic system 3. RZACHABILITY, MSRVABIrLITY, AND STABILITY
leads to multivariable equivalent systems. The
restriction to scalar systems mentioned at the Definitioms:
onset is thus not restrictive, but permits simpler
notation and examples. a The N-periodic system ,. ,., 1 is said to

be uniformly p-reachable (reachabe in p steps),
We indicate some particular results which will be iff every state can be reached in p steps,
useful in th2 realization problem: independently of the starting event (- initial

time and initial state). The system is said to be
Theorem 1. The minimal realizations (Ai,B ,C ) of the uniformly reachable, iff there exists a p>O, such

Adiabatic Hankel matrices H have the property that that it is uniformly p-reachable.

det(zl-A ) divides (zNI-A A ... A The system is said to be uniformly observable
in p steps iff the initial state x. can be

Proof (for N-2). The Hankel matrix H0 is obtained from uniquely determined from p consecutivi outputs
the pulse response {h,}. Its Z-transform equals {y .... ,y },independently of the starting

Stie j. YjPne
l system is said to be uniformly

H0(z) = r 21-A IA0)-AlB0 + ClI-AoAI)'zB0 observable iff it is p-observable tor some p.

[N0 (z
2 )*zNI(z 2 )]/det(z 2 I-AoA1 ) Theorem 3. The period-N system {I0..... EN_1" is

uniformly reachable iff the reachability matrices (3)
for some polynomial matrices N0 and N1 . Clearly then have full rank for all j. The system is uniformly
the minimal realizations of H0 and HI have the above observable iff the observability matrices (4) have full
stated property. * rank for all j.

In fact, it is easy to show that the realizations The proof is easily established by a standard srgument

of ; and H1 msut be very closely related. Indeed, by [5l. Since the Adiabatic systems of, at most, order nN
0 - provide an underlying time-invariant structure in the

writing H1 in the form problem, at most nN steps, ne.d to be considered for
t2-AA 0 ~ :0 checking uniform reachability and observability, by

A virtue of the Cayley-Hamilton Theorem. Some direct
;1 00 A BI corollaries of the theorem are:

0 z2 A0  zI ) hI1 (1) The Cyclicially Augmented System

f2 -(AcaBcaCcs) is reachable iff the period-Nz-AA 0 -1zI, realiz.ation {cal... L£}i uniformly

B1[CoC 1 2 B reachable. 2

L A0
The first factors on the left also appear in the (2) { , Z } is uniformly observable

(rlacable) ?ff {Ir,.... ,XN-1 } is uniformly
expansion of R0  observable (reachagle, whence the invariance

z 2 I'-A A 0 J' A of uniform observability and roachability

;O . tOOel 1 1A B0 under a cyclic shift.

0 z2I-AOjl zI 
0



(3) Using the backward propagation, we can write 4. CANONICAL FORM, PAXAKPrERIZATION
the output at time i in terms of the previous AND TOPOLOGICAL STRUCTURDE
inputs, i.e. we look at Jh. .1 for fixed i,
and define the equivai

4
it stationary The first object in this study is to find the transfor-

systems with the above A matrix and mations on the realizations that leave the input-output
C=[0,...,0,CXO,...,0], the nonzero block behavior (i.e. all Adiabatic transfer matrices and the
occurring in the i-th block position, periodic system "Hankel" matrices (2)) invariant.
and B=B(B-,Bi, ,B ')' We then have the
"duality propery: Let {Z0 ,rl,....N1 be a realization of an N-period

system. Denote an element of the group Gln(R) ' \
' . N-iN is uniformly observable denoted by G1I N 

for short, by (P0,P,...,P ) The
n 0'1*'N-Iiff group action is defined by

.d II is uniformly reachable, .N-

where the "dual" system is btained by Sime (9)

reversal of the sequence of the duals r of 1, 1 Pl 1 1.
the realizations ti, where ( ,Bz, C) is-the { P1 A0 . 0  P 1 B0 ,CoP 0

)  
..... (poAwII -I'N-- N-i'

triple (A',C',B;).i We are t'hus led to the
definitioA: 1 1 The states transform as

, .... 0 {zdzd_ .. (.) Xfk -Z> d0_k d Xw0i (10

Finally, we remark that if all AI are nonsingular, as XNk-l > iXNk-i
for instance in the important case of the discretiza-
tion of a continuous system, th. criterion of Theorem The following property is readily shown:
can be simplified by virtue of the following: Theorem S. Equivalence of State Space Representations.

Lma: If the Aj are nonsingular for all j, then the The product group G1 (R" action on the set of period-N
full rankness of one of the reachability matrices Ri  systems leaves the O properties invariant.
(observability matrices 0i ) implies the full rankness
of all others, and hence reachability (observability). Once the symmetry group (i.e. the group whose actionleaves the I/O behavior invariant) is established, we

As an example, a aiso alternating system {10,LI1 will can look at the question of canonical forms: Any
be uniformly reachable iff the stationary systems property of the original system can be described as a

(AA,[bA b ]) and (A 0 ,Al,[b 0 ,A 0 ,b ]) are map from the set of systems Z, to some suitable set S.
system reachable, no After introducing canonical forms, the study of the

more than 2n steps are required to reach any desired original function f is then replaced by the study of
endstate. If the product AA. 1 is nonsingular, then some "simpler" function f:C -> S, such that f-f o ii,
.A1,A 0 ,[b I A1 b 0 ) and (AQA 1 fb0,A.b 1) are either where 1! is the canonical projection w:Z -> C on the

boh reachaile or both no-.eachs~lel. By applying set of canonical forms.
inputs before 0, one gets the reachability relation at
time 0: For notational simplicity, the rest of this section

x0  R*lU, 9 .-. ' will be restricted to alternating systems. The above
development (N-2) should give enough insight to realize

where RI=[b1 ,A bA 1 A0 b1 ,...] is the time-varying that the general principles remain the same. Canonical
reachability matrix [3]. Observation of the output forms for the uniformly reachable systems are obtained
sequence after time 0, with no input applied, leads by the usual Kronecker selection procedure, i.e. among
then to the observability relation: the 2n colum:-.s of -x0 select n linear independent ones,

which form a basi { - for the state space. In
[Y0,YlY2 .... 0 o 0  particular, a unique "Rice" selection may be chosen

according to the Young or "crate" diagram. Similarly,
wherev Oac'c' '0A'A ' ' ' .... is the time-varying let to I be another basis, chosen by a nice selection
observagiliy 0m1trx. Similarly, we construct the among 1he columns of R1. Now express the system withreachability and observability matrices, R0 and Oj, respect to the basis which is alternating between {B I
relating to the reference time 1. The products OR and {Sll e.g. A0 is represented by the new matrix
and OR C are then the alternating (period-2) Hankel whose 3-th column is the representation in terms of the
matrices defined in (2). basis fell of A0 operating on the i-th basis vector

We also have the following important stability theorem: from the0other basis (Sol.

The effect is that the new representation is of theTheorm 4. The N-period system (0) is stable if the form b0 .b 1 [I,0,...,0J'. (By assumption of reach-
eigenvalues of the product A0A1 ... AN 1 have modulus ability, neither b0 nor b are zero.) If vi (k) denotes
less than 1. the position of the k-th 'basis vector from R1, then we

refer to the sequences Vw-{v1(l),...,v (n) as a multi-~roof. The convergence properties of the periodic index. The k-th column of the new A matrices are
systems are determined by the convergence properties of
the equivalent time-invariant system (AcaBca,Cca). Ar
The latter is complet iy determined by the character- Aok 0 l(k) l
istic polynomial det(z I-AIA2 A 3.,. AN),,O. r

The problem with this approach is th't the resulting Ilk  I v0(k)+ l
tine-invariant system has order Nn if n is the order of However straightforward the previous extension of the
the individual realizations E r The original periodic known scheme may be, a particular nice form is obtained
system is only of n-rh order, so that a "hidden modes" as follows if A] is nonsingular. Search the columns of
phenomenon occurs. R0 in their natural order, i.e. from left to right, and



reordered in chains, as in the usual "scheme II" search though, the operator algebra will be a noncommutative

[5]. Now observe that if A is nonsingular, then the one. The union of all these subspaces is the whole
result of tl operating on the above basis is also a space, so that we have the relator
basit, and in fact, each of these new basis vectors
will be a column in R1 , except perhaps for the last new I IN + ... + N

basis vector. In that case, it may be substituted for N N N

b, as new last basis vector. Note that this all corre- or, equivalently
sponds tu a scheme II search in R1 , but 5TART:NC AT

Alb . It follows that, unlsp there was a full length z - z IN + z N
2  Z

(-n? chain JA . Ab(AoA A 0 b in R0 (which only NN Nz +

happens if b0 is zero), te operator A, is represented Thus the above can be formalized as follows: Period-N
by I. The b, vector ts full in general. The pair systems of order n can be represented by an n-th order

(A0 ,b0 ) has a canonical controllability form [5] realization (A(,N),B(wN),C(WN)), whose coefficients are
representation. In the latter special case, it follows i N q

that A0 is represented by a cyclically down shifted

identity matrix, and A 1 by a cyclically down shifted R i) (j)_()

right companion (controllability canonical form) ; i 'N

matrix. The new b0 (obviously) remains zero, and the

new b I is a full vector. As the co and c, have no The periodic state space realization equations (0) are
particular structure, there are 4n free parameters in then transformed to

this canonical form. By analogy to the stationary
realizations, we shall refer to this form as the (i+ x - A x + B i) u for i * N-

controllability canonical form. N i N i N

Note that because the search extends over 2n columns, 1(0) A (N-i)x (N-1)

the new A matrices will, in general, not be in the N N-II N N-I N

usual companion form themselves, unless the system is ,( i) W

uniformly reachable in n steps, but then this is also N y 
c iw N  

x

the case with the time-invariant multivariable systems. Upon Z-transforming, we find

In fact, it is exactly because of such a reduction from
the time-varying to the multivariable time-invariant zir il)X(z) - A.i9 X(z) + B W U~z) for i * N-i

case that all the topological properties of these N i N N
systems are expected to carry over. In particular, for
multivariable systems, we have: Z( 0) )- z x(0 AN-I' l N N-i (N- )

Theorem 6. The orbit space of the reachable systems is
an analytic manifold, which can be decomposed into iN Y(z) - Ci )
generalized Kronecker cells which form a cellular patch

complex. The state space canonical forms act as local Note the appearance of the initial condition (x ) term.
coordinates. Adding the left hand sides, taking account of the above

relation between the projection operator, yields

The number of canonical forms that is required to cover

the space of all reachable alternating systems is also zX(z) -z x A( ) (N)
equal to the number of pairs of nice multi-indices that 0 'N '"N

can be chosen. (1) (N)
+ B(I N I N )U(Z)

5. OPERATIONAL TRANSFER 7P,.CTION
- (1) (N)

The essential ingredient is the introduction of a Yz) -(WN . 'N )Xz

sampling operator, iN' taking sequences into sequences, Hence, we get, assuming zero initial conditions, and
defined via i) -1 i

substituting IN by the combination z '-N , the

INfU I ; 1>01 -> fyi ; i)0} Operational Transfer Function (OTF)

H(z,WN) - C(z,wN)[zI-A(z,N)]'B(zIN)]

YNk uNk where now very simply:

Yk - 0 for i c{1....N-l}

2 0 A(z'wN A 
0
1N 

+  
N AN-l'zN+l NZN-1

Clearly, I w o that It is a projection operator.
Letting denote the usual Z-transform of the B -N+l N-i
sequence u(z), then wN induces an operator in the B(ZIN) 0 B N  I INt h•..N-1 N

z

Z-domain which we shall denote, with a slight abuse, by
the same notation iN . Note that then C(zW t C Z-lI 

z 
+ ... C-Z- z

WNZ'fk- N 7N + 1- 1N N-1 -N{1N N-1
I N z a 0 - for i c { NIn order o illustrate the ideas for period-2 systems

z if i - 0 (N-2), we have: z'ez(1-')z• The equation x2k+l

The space of formal power series in z-1 can then be A0X2k BUk is then transformed to z0-q)X(z)A0TX(z)+

decomposed into N orthogonal subspaces, each of which BIwU(z). Similarly, the complementary equation

induces in turn another prajection operator. The set transforms to zTX(z)-A (l-w)X(z)+B (l'W)U(z).
of subspaces and the set of projection operators are I 1 1

i) -i I Addition yields the form X(z)"(zI-A())- B(w)U(z),
i somorphic structures. Thus, define N bya N where A(s)=Aaw A (-). Using the noncomutative

for i c {i,...,N-l1. It follows at once that these relation, this iormalism is very helpful in deriving

operators are all generated by z and aN, clearly all sorts of results and transfer function operations.



For period-2 systems, some of the ideas on Operational 5.2 The Observability Proble, via the OTF
Transfer Matrix Reductions were explored. For
instance, connections (parallel, series, and feedback) Here, the inputs are zero, and a nonzero initial condi-
can be performed with the same formal rules as for tion x0 is assumed. The system output is given in the
stationary systems, as long as the noncoemutativity is transform domain by
taken into account during the reduction. Y~z) = CC1Y)[zI--A, I]-1xo

We ahall here also explore the possibility of connect-
ing systems of DIFFERENT periodicity. So one system
may have the OTF H I(z,w HN) and another G(z,w ). The N C(w)[I-z -A(,)) - 1z1
series connection is then simply G(z ,iMr N (z w).

Clearly, the combination involves now three generators:
z, w and w ,  So one needs to define the composite N C -[I+z - 1 A(w)2[z -(Air12....z
transfer matrix as a rational division ring (Noncommu- [
tative Field) extension of the polynomial ring with
three generators (z,ww N). Clearly additional commu- C(t)z-X0 * C(x)A(l..)z-x 0 +
tation rules (relators in the division ring) need to be
invoked. This work is, as of this writing, in progress N O(x)X (z)
and will be reported in the final version of this 0
paper. where 000-0 0)FoO1 (l--). As for the reachability

problem, the matrix 0() is said to have full rank if
Finally, we report that some interesting realization both 0 and 0 have full rank. The condition for
related properties can be developed from within the OTF observaility iollows them as from the full rankness
framework as well. In particular (for N-2): of O(W).

5.1 Reachability Problem via the OTF 6. ItALIZATION

With zero initial conditions, and input sequence {ukj, In this section we show how the above results can lead
the Z-transform of the state sequence is given by to a relatively simple realization algorithm for

periodic systems. We shall assume that the order n of
X(z) - [zI-A(w))]-B(1)U(z) the minimal N-period system is known. There is then an

. Z_1 - - 1 underlying uniformly reachable system {ro.....ZN-1I of
-l'A(W)z)B(i)U(z) order n. The realization is given is 4 steps:

N z l[I+A(w)z-l+...+(A(w)z-l)kB(w)zk+...]U(z) Step . Let the pulse responses {h 0 i >l}...,
1 h .. .i0 N, be collected. Wd hu this data,Noting that the comutation nf it and z 1 involves an h1  -I l

the idabatic Hankel matrices Hi' j0. N-I
involution, i.e. are formed. There are now two possible

-i _ 1 routes: realize each Adiabatic system
z A(s) - A(I-f)z separately, or realize the composite system

we get the series expansion with transfer matrix [H0  N- .]

zX(z)- [B(x)+A(lr)B(l-ir)z 1 +A(i)A(1)BC ) ...)U(z) Step 2. Obtain a minimal realization (A ,B ,B
zX~z) [B01+A(1)B(1?0zA~r)(1-')B(7+...U~z)B ?,N1 C m) of the system with Um~pa'lle

trnsfr matrix(z) i t .... ,4 (z)', where
[B(w),A(w)B(I-w),A(x)A(I-x)B(x) .... U(z) matrix of Ne Adiabatic

z-1U(z) system (Ai,BiCi).

z-2U(z) There ace two ways in which this can be

obtained. The first is to reduce the compo-
" R(W)U(z) site transfer matrix, and obtain a minimal

realization of it, by standard multivariable
The operator reachability matrix decomposes into two techniques 151. The second method consists
parts: in first obtaining minimal realizations

R(w) - wR0 + (-w)R (AsU.,C.) of the Adiabatic systems. These
minimal realizations may be of different

where, in terms of the system components: dimensions. However, by Theorem 1, there
exists a maximal characteristic polynomial, of

R0 N [B1 'AIB 0 ,AIA'B1,AIAoA 1B0 ,...] order q say, in the sense that the character-
istic polynomials of the other realizations

R 0 [ , 0, 0o1o0divide it, and each nonminimal Adiabatic

realization can be extended by adding a
As the operators w and 1--i select complimentary parts nonreachabie, but observable subsystem so that
of the vector U(z), we find for the condition of reach- all extended realizations of the Adiabatic
ability that both R0 and R1 should have full rank. We subsystems have the same order (-q), and the
shall say that then the operational reachability matrix same A and C matrix. The composite realiza-
R(W) has full rank, so that the usual criterion for tion (A ,(B .... B I,C is then ther-cab t is rerevd Is I me- I j
r-achability is retrieved. desired form and ism inimal since (Am ,C ) is
For instance, upon identifying the coefficients of z-3  observable, and at least one of the B,, forms

we obtain , together vith Am a reachable pair.

Step 3. Extend the realization of order q, obtained in
4a1 0 1 o0 0 1 0 A lU 1 0 2 1 3 Step 2, to one whose order is a multiple of N

by adding a nonobservable but reachable
subsystem. Indeed, since the minimal system
(Am,[I .... ,Bm  _],C and the cyclically
augmen& t A te aP Aca a,'c,) realize the



same transfer matrix, and since the cyclically
augmented system is uniformly reachable by have rank less than n, it is possible to find
assumption, the latter must be an augmentation n linearly independent row vectors in the left
(AeoBevCe) Of (Ab ea. e N I o,C) by a nullspaces of the above reachability matrices.
nonobservable but reslac

1 ~le aub
m
4Stem A order Since the overall realizations are both

Nn-q. This implies the existence of matrices reachable, there exists T1 and T2 such that
X,Y,Zo,...,ZN_1 so that T [TT'1 ]' is nonsingular with T1  and T2

Am !0 B1
m$'" [ atis ying the above conditions.

M 0 ... 'NN- [Cm ] We summarize then with

Theorem 7. An invertible transformation T can always
is similar to the cyclically augmented system. be found, bringing the extended system (F,g) of order
This augmentation must not impair the reach- 2n to the cyclically augmented form Z (5) of the same
ability of the realization. The necessary order if it is reachable and if c1he reachability
reachability of the subsystem implies that matrices F(F2 , [gFg ]) and F(F 2 ,[giFg0]) both have
none of the rows of the matrix [X,Zo,..., 1  rank at most equs2 to0n.

can be zero. This follows easily by
contradiction. if [X,Zo.... - Z rtI had a zero Theorm 8. The realization of [H (z),H (z)] can always
row, then the realizationcoul le partitioned be augmented so that the extende4 system satisfies the
as: conditions of Theorem 4.

!1Am 0 0 rBmo , ..., mN_- Some simple illustrative examples are given in [6].

XI X2  Y1  ZO..., N- lemarks.

2J 1. The minimal Adiabatic realizations completely

which has the unreachable subsystem [Y CI. specify the I/O behavior of the alternating
ham system, and may therefore lead to new canonicalrepresentations for such systems.

The X,Y, and Z are chosen so that the

reachability matrices 2. Other identification methods for periodic systems

N;N- exist. One can "stagger" the impulse responses,

e ;e0,Ael'- .. e Be,_]), by looking at every N-th sample for which the
system looks like a time-invariant one. However,

R(AN;[BeAeBe2 eA N-1 Bthe solution for the individual realizations in
e elle '',Ae  e,0)( ... I U Z,..., N) require difficult nonlinear equation

sovlvers. Furthermore, since the data samples with

R(AN N-I uch a scheme are not "convoluted," a large number
A;[Be,_1 ,AeBe0, ....A e  Be,N-2J) of data needs to be collected (roughly 2nN) before

the system starts to unfold. The scheme presented
all have rank less than n. here already presents a lot of information about

the system after 2n steps, and is therefore more
Step 4. Determine the similarity transformation that "holographic."

transforms the extended system (A ,[B .. ,
B ei1,C.) to a cyclic form. Forenot&ional ACIOOWbUDZIT

coAvenience, we shall again discuss the latter
for alternating (i.e. period-2) systems. The This research is supported by the U.S. Air Force under
ideas for period-N systems are similar. Contract No. AFOSR-87-0308.

The reachability matrix for the cyclically 1ZgcWS
augmented matrix has the structure
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