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SECTION I
INTRODUCTION

The objective of this research was to develop nonlinear filtering and tracking
algorithms for systems subject to complex geometries and uncertainties. These attributes
characterize the air-to-air engagement scenario. The approach was based on the
approximation of the original nonlinear stochastic model with a piecewise linear model.
Then the resulting model was further approximated by a switched Markov linear model.
The result is a dynamic system of the form

X() = Alr()] X(t) + Bl(x()] Ut (la)
Y(t) = Clr(9)] X(t) + V(1) (1b)

where the sate vector is X(t), the observation vector is Y(t), U(t) can serve as the control
vector when the control problem is considered, or can serve as the process noise model for
the filtering problem, V(1) is the observation noise vector. The noise processes are assumed
to be white and Gaussian. The process r(t) is called either as the form index, the switching
process, or the macro-state process, and is assumed to be a finite state Markov process
taking the values in {1,2,...N}. The approximation is via what is known as either switched
Markov models or hybrid systems. The linear system in such a case switches among the
forms (A[il,B[i],Cli]) according to the value of r(t), i.e., when the macro-state is equal to
i

In earlier reports the validity of the approximation has been analyzed as discussed
in reference 1, and its applications to nonlinear filtering have been investigated as provided
in References 2 and 3. This report addresses several aspects of the resulting approximate
model and general approaches to its estimation, realization, and control. The main report
is subdivided into four major sections. Section II addresses the general properties of hybrid
systems from the point of view of control and stabilization. Section III addresses fast and
slow decomposition of the original piecewise linear approximation with the view of
simplifying the resulting algorithms. Section IV addresses an alternative model for the
jumps representing the maneuvers and develops approximate nonlinear filtering algorithms
for these models. Section V discusses sev. . issues resulting from the realization of such
systems as they affect sensitivity, robustnes ~- ! identification. The body of each scction
will be relatively short, as the results are pro..Jed in appropriate appendices.




SECTION 11
HYBRID SYSTEM MODELS

Since the approximation to the original nonlinear model is represented by the hybrid
model (1), a major part of the study dealt with control and stabilization properties of hybrid
systems. General properties of controllability and observability of such models are given
in Reference 4 and provided also in Appendix A. These properties carry over from the
linear time-invariant case and stress the simplification of the algorithms used for
controllability, observability, and stability. Usually, these system models switch among
several realization. An important issue to consider is the ability to represent such models-
by an average model. Such an average model may be suitable under certain condition, or
under cases where the switches may be fast. The use of such averaging methods can
simplify the resulting control and filtering algorithm. Several averaging procedures for the
stabilization of hybrid systems are reported in Reference 5 and provided in Appendix B.
Two properties of the average system are investigated in References 6 and 7, and are given
in Appendix C and D. The first considers the error that results from averaging and how
to determine the validity of the use of the average model The second considers the
minimality properties of the average systems that would allow the stabilization of the
original system by using the average model. The main advantage for using average models
is that there is no need to identify the macro-state and the resulting algorithms are rather
simple. Of course, the average model can replace the original system only under restricted
conditions. The iast aspect of hybrid systems considered in this problem is concerned with
eigenvalue assignment for hybrid system models, which in this case deals with the Lyapunov
exponents. The result is given in Reference 8 and Appendix E. The largest Lyapunov
exponent determine the stability of such systems, and its assignment using control gains
determines the ability to stabilize such systems.

Other aspects of hybrid systems dealing with realization and its relationship to
implementation and filtering is provided in Section V.




SECTION III
FAST AND SLOW DECOMPOSITION

The approximation used to model the nonlinear systems exhibited fast and slow
behavior both in the switching process and in each individual realization. Such fast ad slow
behavior can lead to simplification of the resulting algorithms due to two-time scales
decomposition and to reduced order of the filters-controllers via aggregation. The theory
of singular perturbation which has been developed to deal with such behavior has been
restricted to smooth systems. In our case the switches and the piecewise linear models lead
to difficulties that require an extension to the standard linear theory. This section treats
the singular perturbation theory fcr non-smooth systems with fast and slow modes. In
particular it extends the theory developed in Reference 9 for quantized systems to general
piecewise linear models. The piecewise linear models is considered in Reference 10 and
provided also in Appendix F. Usually sliding modes occur in such models in both the fast
and slow dynamics. Reference 11 (also given in Appendix G) discusses the conditions for
the existence of the sliding modes and how the aigorithm can handle thc resulting
complications. Two additional extensions of the theory are given in References 12 and 13,
which are also provided in Appendix H and I respectively. The first extends the theory to
the case of stochastic input as most of our models are subject to random inputs. The
second extends the quantized system to the vector quantization case. The quantization
problem is of interest in this case due to the fact that with the high order of the filter used
in the original filtering problem, it is appropriate to use only a few quantization levels to
reduce the computational complexity of the problem. In earlier reports the quantization
aspect was covered by an approximate stochastic differential equation model with state
dependent noise.




SECTION IV
FILTERS FOR POiSSON DRIVEN MODELS

This section considers an alternative approach to the modeling of the switching
jumps that affects the systems. In particular it considers a self-excited Poisson model as an
input to the system. These self-excited inputs may represent varying maneuvers and or
control actions that affects the target. It is well-known that the linear filter for such models
is not optimal. It is difficult to derive such a linear filter for the case where the average
of the input jumps is not zero. The study first considered several alternatives as suboptimal
nonlinear detection-estimation schemes to solve the problem. These are summarized in
References 14 and 15 and provided in Appendix J and K. The properties of the model and
-the derivation of the appropriate linear filters for such models are considered in References
16 and 17 and provided in Appendix L and M. Simulation results and the derivation of the
error properties of the resulting approximate filters are still being investigated.




SECTION V
REALIZATION, ROBUSTNESS, AND SENSITIVITY

This section addresses several aspects of hybrid systems modeling with particular
emphasis to realization and robustness as they affect the accuracy and sensitivity of the
implementation used for the filter.

Work on optimal realizations of such systems progressed in two directions: earlier
results showing the optimality of the balanced realizations (see Reference 18), in the
discrete time case have been extended to the continuous time case and is given in
Reference 19 and Appendix N. The results have also been extended to multi-mode systems
(see Reference 20 and Appendix O), and general time-varying systems as given in
Reference 21 and Appendix P. In these references applications to filtering have been
analyzed, and Reference 20 also addressed the optimal implementations of the suboptimal
nonlinear filters for the switched Markov models. Optimality conditions for non-
infinitesimal perturbations have been given as well. Conditions for optimality over finite
sets have been apolied to the parameterization of 3-D rotations in Reference 22 and
Appendix Q.

Realization problems for hybrid systems (reachability and observability) for
generalized systems have been solved. More specifically, results for N-periodic systems have
been reported in References 23 and 24 and are provided in Appendix R and S.

In addition to the realization point of view the sensitivity of analog algorithms were
investigated from a parameter sensitivity point of view. In particular, a discussion of optical
analog computing devices, for matrix computations was presented in Reference 25, and a
wider collection of devices were analyzed in Reference 26.




SECTION VI
CONCLUSION

The research addressed several basic aspects of filtering, and control for nonlinear
and hybrid models. These models may be used to approximate the nonlinear environment
and other uncertainties in air-to-air engagement. Research is continuing on the integration
of these approaches and in the implementation algorithms that could lead to a filter tat is
applicable to a realistic system.
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ON THE CONTROLLABILITY AND OBSERVABILITY OF HYBRID SYST™Ms!

Jelel Ezzine and A. H. Haddad

School of Electricel Engineering
~ Georgis Institute of Technology

Atlanta, Georgia

ABSTRACT
This paper considers a special class of
hybrid systems, whose state space is a cross-

product space of an Euclidean space and a finite-
state space. Such models may be used to rep-
resent systems subject to known abrupt parameter
variations, such as commutated networks. They
may also be used to approximate some types of
time-varying systems. The paper investigates
controllability, observability, and stability of
hybrid systems. In particular, it derives a
necessary and sufficient algebraic condition, a
simple algebraic criterion, and a computationally
simple algehraic sufficient test for controll-
ability and observability. Moreover, it provides
a simple sufficient stability condition.

1. Introduction and Problem Formulation

This paper examines the controllability,
observability and related issues of a special
class of hybrid systems {1, 2]. The state space
of a hybrid system is a cross-product space of an
euclidien space and a finite-state space.
Basically, hybrid systems are linear piece-wise
constant time-varying systems, which are swit-
ching among a finite number of constant reali-
zations. Systems of this type can be used to
model synchronously switched linear systems [2?],
networks with periocdically varying switches [4],
and systems subject to failures [1). Even though
hybrid systems are time-varying they 1lend
themselves to a precise and complete qualitative
ard quantitative analysis. Among such results we
mention the possibility to explicitly compute
their transition matrices, to derive and state
necessary and sufficient conditions for their

stability, and the possibility to derive an
Al;gbrlic controllability/observability tests
similar to the usual one for linear time-in-

variant systems. This
many features hybrid systems share with time-
invariant systems. Moreover, because they are
time-varying, they offer many useful features due
to their variable structure property. In other
:::ds. bybrid systems are s mixture of time-
b l;ilnt systems with which they share the

Sebraic and geometric structures, and time-
varying systems with which they share their

::rlablo structure property that will be useful
their control and stabilization.

is possible due to the

. ll’ br id systems con i
Sidered
are assg in this paper

1
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x(t) = A(r(£))x(t) + B(r(£))u(t) (.1

y{t) = C(r(t))x(t) (1.2)
where x is the system state vector of dimension
n, u is the control input vector of dimension p,
y is the output vector of dimension m, and r(t)
is the "form index" which 1is a deterministic
scalar sequence taking values in the finite index
set N={1, 2, ..., N}.

This type of model can be wused to represert

systems subject to known abrupt parameter
variations such as commutated networks or to
approximate some types of time-varying systems.
This is done by imposing a ''deterministic”

switching rule on the time behavior of the form
index. However, in order to model unknown abrupt
phen.-ena such as component and interconnection
failures the form index can be modeled, for
example, as a finite-state Markov chain.

The latter problem has
attention within the control
important generalizations
out. Chizeck et al [1]
problem the Jump Linear Quadratic (JLQ) problem
since they view it as an extention of the
standard Linear Quadratic (LQ) problem. However,
very little attention was given to the ’'eter-
ministic version of the problem, even thou-h it
shares many features with the JLQ problem. This
paper is concerned with the deterministic ve- ion
of the problem.

received covsiderable

community, but many
remain to be worked
denote such a control

Let Sy denotes any sequence of length M .f
the values taken by r(t), and let 8t; denotes t .2
time interval during which r(t) = i. Througho
the paper the following assumption is made, tha
Sy contains all the values that r(t) takes. Ir.
this case we define

N
T =L 8ty (2)

iw]
as the period of the system. If in addition the
sequence in every Sy is the same the system is
called a periodic hybrid system. It will be

obvious that the assumption that M2N in Sy will

not affect the results. Hence, the assumption
that M = N will be made to simplify the nota-
tions.

supported by the U.S. Air Force under contract
rmamept Laboratory) and grant AFOSR-87-0308.




The systea takes the realization
Ey=(Ay,B4,C4) when r(t) = 4, with icH. This
realization {s called the ith form. .

The following is an outline of the paper.
Section 2 discusses ths stability of hybrid
systems where a simple sufficient stability
criterion is derived. The observability and
controllability of periodic hybrid systems are
treated ir Sections 3 and 4, respectively.
Algebraic <oservability and controllability tests
are obtained. Section 5 extends the results of
Sections 3 and 4 to general hybrid systems. 1In
section 6 the stabilizability of hybrid systems
is addressad and a simple application is used for
illustration purposes. Section 7 concludes the
paper.

2. Stability

Even though hybrid systems are time-varying
systems it {s possible to obtain necessary and
sufficient asymptotic stability conditions. We
start by studying the stability of periodic
hybrid systems. To this end we recall a theorem
by Willems ([5] that provides a necessary and
sufficient conditions wunder which piece-wise
constant periodic systems are uniformly asympto-
tically stable. Basically, the theorem states
that for the system to be asymptotically stable
its transition matrix over one period of time has
to be a contraction. This theorem can be
obviously modified to derive a similar one for
hybrid systems which are not necessarily period-
ic. However the resulting theorem will be
difficult to use, since one has to ccmpute
(N-1)N! products of exponential matrices and
check their eigenvalues.

In order to derive simpler conditions to test
for the stability of such systems, a different
norm is defined, namely the logarithmic norm {6,
7]. The result 1s a simpler condition that is
sufficient only.

Definition

The logarithmic norm of a matrix A associated
with the matrix norm 1.} is defined by

u(A) = lim (II + hAl - 1)/h (3)
h-0t :

The norm satisfies the following inequality
1Exp(At)t s Exp(u(A)t). (8)

This norm is nov used to derive the stability
condition.

Theorem |

For the null solution >f the hybrid system
(1) to be uniformly asymptotically stable, it is
sufficient to have
L u(Ai)pi < 0, Py E ] étilr - (ti-ti-l)/'l', ieN. (S)
i

The proof is a simple application of the
logarithmic norm to Willems' theoresm. It is

42

important to note that the above theorem is
stated not only for periodic hybrid systems but
it applies to the more genaral hybrid systems as
defined above too.

3. OQObservability

Since hybrid systems are a special class of
time-varying systems they display interesting
properties relative to controllability and
observability. It would be appropriate to define
the latter properties while keeping in mind the
fact that these systems are variable structure
systems. We start with the observability
criterion since it is simpler to prove. Conse-
quently, the dual co:trollability criterion is
stated by appealing to the duality principle.

Definition

A periodic hybrid system is said to be
observable if there exists some finite tg 2 to,+T
such that the initial state x(t,) of the unforced
system can be determined from the knowledge of
y(t) on [tq,tel.

Using the above definition it is possible to
state an galgebraic necessary and sufficient
observability criterion very similar to the usual
algebraic test. Moreover this algebraic test is
expressed as a function of the observability
matrices of the different forms. This condition
is a generalization of the well known algebraic
observability test.

Theorem 2
A periodic N-form hybrid system is observable

if and only if the observability
matrix

0
Ozﬂxp(Al(étl))
) )
ONExp(AN_l(été-l))...Exp(Al(étl))

has full rank, where 0y
matrix of the ith form, ieN.

is the observability

Proof

Let us assume that the system is in its ith
form at time te{t;,t ;)] then the output is given
by the following expression

1
y(t) = CyExp(Aq(t-ty)) O Exp(A4(8ty))x(t,). (7)
j=i-1

We now take n-1 derivatives of y(t) in (7) ?ng
afr’nge t?en §n a column vector Y (t) = [yy 1
y(2) [ y(n=1))r yhycn may be expressed as

1
Yi(t) - OiExp(Ai(t'ti)) n Exp(Aj(dtj))‘(tn) (8)
J=i-1




S ihindes

where O is the observahility matrix of the ith
form. }f the same procedure is repeated for all
ieN and combined together the following equation
results

r
v, 0,Exp(A; (t-to))
Yz OzExp(Az(t'tl))Exp(Alétl)

x(te). (9)

Y| [onExp(Ay(t-ty.1))- . Exp(a,8t))

From this point on the proof is identical to a
standard textbook [8; pp. 354].

4. Controllability

At this point the dual algebraic controll-
ability test is introduced. First @& dual
definition for controllability is proposed and
used along with the algebraic observability test
to prove the result via the duality principle.

Definition

A hybrid system is said to be state-controll-
able if for any t, each state x(ty,) can be
transferred to any final state xg after one
period. Thus there exists a tg, to+T Sty <o
such that x(tg) = xg.

Before presenting the algebraic controll-
ability criterion, the dual to the observability
criterion given above, the wusual controllability
test for time-varying systems {s used. This is
done in order to display certain interesting
properties of hybrid systems. If we compute the
controllability grammian and use the fact that
the system is piece-wise constant we obtain the
following theorem.

Theorem 3

A periodic hybrid system of N forms is
controllable if and only if

N oty
W(ty,to+T) = £ 1 @;(t,t,)B;B{o{(t,t,)dt (10)
j=] ti'l

has full rank.

Corollary

A periodic hybrid system is completely
controllable if and only if it is controllable.

Proof

See Remark (2.18) 4in [9]), then use the
Theorem 3.

Befor proceeding any further, a necessary and
sufficient condition for a periodic hybrid system
to be uniformly completely controllable is
stated. This result will be of importance when
stabilizability of such systems is in question.

Theorem 4

A periodic hybrid system is uniformiwv
completely controllable if and only if it is
completely controllable.

Proof

If the periodic system is completely ccn-
trollable, there must exist & finite time s2 T
such that W(0,s) 2 €I > 0. Therefore the result
is proved by using Lemma ! from Silverman et al
[10] and Remark (2.18) in [9].

Having used the usual test we are ready to
present an algebraic controllability test similar
to the one used in linear time-invariant systems.
The following criterion applies for periodic
hybrid systems. A similar criterion for general
hybrid systems will be introduced 1in a later
section.

Theorem S

A periodic hybrid system of N forms is
controllable if and only if the controllatility
matrix

[CN' EXP(AN(GtN))CN-l. e
Exp(AN(GtN-l))...Exp(Az(étz))Cll (1)

has full rank, where C; is the usual controll-
ability matrix of the ith form, ieN.

Proof

Using the principle of duality and the
algebraic observability theorem presented above
proves the theorem.

For computational purposes, it is better to
rewrite the above controllability matrix as
follows

(Cx» Exp(An(8ty)){Cyn-y, --.{Cq,
Exp(Aq(8:3)){C;, Bxp(Az(8t))Cy}]. (12)

This way one does not have to compute &ll of the
matrices needed to express (11) and compute its
rank. That is the rank is checked sequentially
and (12) is augmented appropriately until full
rank is achieved. If full rank can not be
achieved throughout this sequential test then the
systam is not controllable. The same observation
applies to the observability criterion.

In addition to the above algebraic criteria
for controllability and observability, two more
tests are introduced. The first test is a simple
and geometrically and computationally attractive
necessary algebraic tast. The second one is a
simple algebraic sufficient condition.

Theorem 6

A necessary algebraic condition for a hybrid
system to be controllable is

rank(C;, C2, ..., Cy] ¥ rank C = n. (13)

.




Where C; is the controllability matrix for the
ith form, icN.

Proof

We write the state of the system at time s,
for x(t,) = 0:

s
x(s) = f &(s,t)B(t)dx. (14)
to

We now use the fact that the system is piece-wise
constant and the linearity property of the
integral operator to obtain for s = ty

x(ty) = Exp(Aydty)...Exp{A;8t;)

t1
/ Exp(A;(t;-t))Bju(t)dx +...
t,

tN-1
+ Exp(Aydty) / Exp(Ay-1(ty.1-1))By-qu(z)dx
tN-2

t
+ 7 Exp(ay(ty=t))Byu(x)ds. (15)
tN-1

After expanding the exponential matrices inside
every integral, it is found that x(ty) is an
element of the column range space of the control-
lability matrix C given in Theorem 5. Moreover,
it is easy to see that

rank C S rank C S n (16)

an inequality that dictates that full rankness of
C is a necessary condition for our system to be
controllable.

The above proof gives an alternate way to
prove the necessity part in Theorem 5. It is
also interesting to note that this latter test is
independent of the ZI;'s order. This ovder
independence would have been very beneficial,
however it does not hold in the sufficiency part
of the proof.

Now we state a theorem that gives a simple
sufficient algebraic test. With the above simple
necessary test this condition will provide an
efficlent algebraic method to test for the
controllability/observability of hybrid systems,
This theorem 1is adapted from a theorem given in
[11}.

Theorem 7

A sufficient condition for a periodic hybrid
system to be controllable is

rank[By, Exp(AN(8ty))By_q, ...,
Exp(Ay(8ty-1)).. .Exp(Az(8t;))B;]

%2 rank £ = n. (17)

Proof

Since ¢ has full rank then C&' > 0, i.e. it
is positive definite. Also

C('l"z"""N)c'(’lv'2’°'"’N) =

N

L o(sy,to)ByByd! (sy,t,) (18)
k=1

where spe(ty,ty.j]. Then wa have

tN
W(t,,ty) =/ &(s,ty)B(s)B'(s)d(s,t,)ds

to

N Sktc
2T (2 ) o(s,ty,)B(s)B'(s)0(s,t,)ds)

k=1 Sy

- cC(sl,sz,...,sN,tn)C'(sl,sz....,sN,t,)
+ o(0), (19)

for o sufficiently small., If we assume that C
has full rank then for o small enough (19) is
positive definite. But then (19) implies that
W(t;,te) > 0 which proves the theorenm.

5. Aperiodic Rybrid Systems

In this section we generalize the above
results stated for period‘e hybrid systems to
more general aperiodic hybrid systems. Neverthe-
less, many of these results apply to general
hybrid systems without modification. Therefore
we will state only the most important results.

Theorem 8

A hybrid system is controllable if and only
if Theorem 5 holds for all possible N! permuta-
tions of the form-index set N.

Theores 9

A hybrid system is controllable if Theorem 7
holds for all possible N! permutations of the
index-set N.

It {s obvious that Theorem 6 applies for
general hybrid systems too. Moreover, Theorem 6
may also be sufficient wunder very general
conditions. A heuristic argument can be given as
follows: Since any matrix exponential 1is a
perturbation of the identity matrix it follows
that multiplying any matrix with matrix exponen-
tials will not change its range space dramatical-
ly. That is if, for example, C; and C; have
algebraic complementery range spaces (i.e,
range(Cy;) is perpendicular to range(Cy)) then
range(Exp(AT)Cy) will almost always remain an
algebraic complement but not necessarily perpen-
dicular to range(Cj). As a wmatter of fact,
Mariton [2] states that he has proved that
Theorem 6 is also a sufficient condition.




6. Stabilizability

This section presents some results concerning
the control and stabilization of hybrid systems.
These results use standard techniques to control
“and stabilize hybrid systems.

Ikeda et al [12] looked at the relatjon
between controllability properties of the system
and various degrees of stability of the closed
loop system resulting from linear state variable
feedback. Their results are as follows: For any
initial time t,, and any continuous and monotoni-
cally nondecreasing function &(.,t,) such that
8(t,,t,)=0, the transition matrix &(.,.) of the
closed loop system can be made to satisfy

18{t,t,)1 S al(ty)Exp{-6(t,t,)} for all tat,,

if and only if the system is completely controll-
able. Furthermore, in case of a bounded system,
for any m 5§ 0, a bounded feedback matrix can be
found such that the transition matrix of the
closed loop system is made to satisfy

19(t,,t,)0 S aExp{-m(t,-t,)} for all t,, t,2t,,

if and only if the system is uniformly completely
controllable. Thus, their results can be
regarded, in some sense, as extensions of the
well known results of closed loop pole assignment
for time-invariant systems.

Therefore there 1is a high degree of flexibi-
lity in the stabilization of hybrid systems if
they are either completely controllable or
uniformly completely controllable.

As an {llustration of the above result, a
procedure is proposed to stabilize a periodic
hybrid system via state feedback when all of the
forms are minimal. This design procedure allows
the designer to impose or choose an upper bound
on the norm of the transition matrix of the
hybrid system to be stabilized. Thus the norm of
the transition matrix for hybrid systems plays a
role similar to the maximum overshoot and time
constants in linear time-invariant sgystems.

In order to impose an upper bound on the norm
of the transition matrix a known stability
criterion [5] is used: The null solution of (1)
is uniformly asymptotically stable if and only if
there exists two positive constant c; and ¢cp
such that

0(t,to)l S Clﬂxp('cz(t'tg)) (20)

or all t 2 O. Therefore the use of Theorem 1
leads to the following design criterion

L M(A1)6C1 H kl - sz (21)
i

vhere k; = 1In(c;) and T is the period of the
hybrid system. The ky's, i=], 2, are the design
parameters . that are chosen according to the
specifications on the upper bound of the transi-
tion matrix of the closed loop system and
consequently reflect the desired time response of
the system. This {is possible whensver (21) is

achievable. Consequently, (21) can be always
obtained via state feedback since every form is

observable. It is important to note that this
design procedure applies to both periodic and
aperiodic hybrid systems. It should be noted

that the minimality condition for every form is
not necessary to achieve such a design.

7. Conclusion

This paper considered a special class of
linear piece-wise constant time-varying systems.
These systems are called hybrid systems because
the set of linear time-invariant systems among
which the systems are switching is finite. Their
state- space thus contains both continuous and
discrete components.

Since hybrid systems share several features
with 1linear time-invariant systems it was
possible to derive the following results: A
necessary and sufficient stability condition and

a simple sufficient criterion. Algebraic
necessary and sufficient controllability-
observability tests similar to the usual time-
invariant tests. An interesting necessary

controllability-observability condition which may
also be sufficient, along with a simple suffi-
cient condition.

The necessary controllability/observability
condition is a flat blcck matrix composed from
the controllability/observability matrices of
every form which makes it independent of the
switching order. This order independence along
with the fact that the condition is "almost"
sufficient make it a very useful test. Therefore
identifying the class of hybrid systems for which
this condition is necessary and sufficient would
be an interesting problem.

Additional work is needed concerning stabil-
ity theory of this class of systems. The
variable structure property seems to be a
promising feature in this direction. In addition
if one thinks of every system I;=(A;,B;,Ci) with
ieN as an operator acting on the state x during
6ty, and these operators are applied in a
successive manner, then this process can be
vieved as an iterative process [13]. Viewing a
hybrid system as an iterative process sheds some
light on some complicated issues such as the
stability of such systems.

\

Finally adapting the results of this paper to
hybrid systems where the switching is a stochas-
tic process such as a Markov chain may be useful.
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ABSTRACT

This paper discusses some practical methods of
analysis and control of two-form hybrid systems.
These systams are called hybrid because their state
space contains both continuous and discrete
components. These are systems that switch among a
finite number of linear time-invariant realiza-
tions. Such models may be used to represent
systems subject to known abrupt parameter varia-
*ions such as comsutated networks or to approximste
some types of time-varying systeas. This paper
restricts the analysis to systems that switch among
only two possible linear models.

l. Introduction and Problem Formulation

This paper discusses some practical methods of
analysis and control of two-form hybrid systems.
Hybrid systems denote a special class of piece-wise
constant time-varying systems. The set of constant
realizations among which the model is switching is
finite and in this paper {s restricted to two.
Such systems can be ussd to model synchronously
switchea linear systems (1], networks with period-
ically varying switches [2], and systems subject to
failures (3]. In particular we examine the
stabilization and related issues of two-form hybrid
systems via a specisl averaging technigue.
Averaging theory may be used in either determinis-
tic or probabilistic contexts. In the probabilis-
tic case averaging is introduced in a natural way
by taking expected values. In the deterministic
case, hovever, averaging is introduced via perturb-
ation techniques. Averaging methods have raceived
considerable attention. Brockett and Wood (2] used
a detarministic sveraging technique to analyse and
stadbilize a class of bilinear systems which are
difficult to analyse or control otherwise. Geman
(4] used probabilistic averaging techniques to
study the stability of random differential equa-
tions. His wmain interest was to explore the
relation between asymptotic stability 4n the
average equation, and asymptotic stability in the
rvandom equation: Spacifically, when does the first
{mply the second? Fosut et &l {S] applied the
theory of averaging to the analysis of the stabil-
ity of adaptive systems.

Even though hybrid systems are time-varying
they lend themselves to & precise and complets
qualitative and quantitative analysis. Among such
vesults wva mention the possibility to explicitly
computs their transition matrices, to derive and
state necessary and sufficient conditions for their
stability [6]), and most interestingly the poss-
ibility to darive algedraic controllability and
observability tests similar to the usual ones found
in the theory of linear time-{nvariant systems [6].
This is possible dus to the many fastures hybrid
systems share with time~invariant systems.
Moreover, because they are time-varying, they offer

many useful features due to their variable

structure property.

The hybrid systems under consideration are
assumed to have the form

x(t) = A(e(t))x(e) + B(r(t)Iu(t) (1.1)

y(z) = C(r(c))x(c) (1.2)
vhere x is the system state vector of dimension n,
u {s the control i{nput vector of dimension p, y is
the output vector of dimension =, and r(t) is the
"“form index" which 4is a deterministic scalar
sequance taking values in the finjte index set
N={1, 2, ..., N}.

Such model may be used to rspresent systems
subject to known abrupt parameter variations such
as commutated netwvorks or to approximate some types
of time-varying systems (7]. The latter can be
done by imposing & '"deterministic" switching rule
on the time behavior of the form index. However, to
modsl unknown abrupt phenomena such as component
and interconnection failures the form index can be
modeled, for example, as a finite-state Markov
chain (FSMC) [3].

The latter problem has received considerable
attention within the contreol community but much
work still remains to be done. Chizeck et al [3]
denotes the optimal control problem of such systems
the Jump Linear Quadratic (JLQ) problem since they
view it as an extention of the standard Linear
Quadratic (LQ) problem. However, very little
attention wvas given to the stabilization and
control of the deterministic version of the
problem, even though it shares many features with
the JLQ problem. This paper is concerned with the
latter problenm.

Lat Sy denotes any sequence of length M of the

valuas taken by v(t), and let 3t; denotes the time
interval during vhich r(t) =« ¢, Throughout the
paper the following assumption {s made, that Sy
contains all the valuss that r(t) takes. In this
case ve define
N
Ts2 6!1 (2)
{i=]

as the pariod of the system. If 4n addition the
sequence in every Sy is the same the system ig
called a periodic hybrid system. It will be
obvious that making the assumption that M2N on Sy
will not affect tha results. The assumption that
M = N gimplifies the notations. Lat the ith form
denote the realization I =(A(,B;,C;{) associated
with the ith form index (i.e., r(t* w i), with icN.
In this paper N @ 2, g0 that we ars concerned with
Plip-Flop (F2) systems as a special class of hyb-{d

1 This work s supported by the U.S. Air
Yorce under grant AFOSR-87-0308.
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systems. The F2-systems ' switch "back and forth"
between two time-invariant systeas (two forms), I,,
and T5, of identical dimensions. The systea sponis
Ty time-ur ..¢ at Ly 1 =1, 2. The only condition
imposed on the switching is that the system can not
spend more than 2T; at £j. That is, no order is
imposed on the switching between the two forms.

The following 1is an outline of the paper.
Section 2 starts by introducing the averaging
technique based on a Lie algebraic formulation. It
also adresses the .perturbations induced by the
averaging procedure, and offers, whers possible, an
alternative to averaging. UFinally it discusses the

controllability of the averags system. The .
stability and stabilization {ssues of hybrid
systems are treated in section 3. Section &

concludes the paper and points to additional open
problems.

2. The Averaging Technique

In this section we introduce a practical
averaging technique which will be helpful 1in the
analysis and control of two-form hybrid systems.
It will be obvious from the following treatment
that the proposed averaging method appliss to
multi-form hybrid svstems as well. The main tools
in simplifying the analysis and synthesis of
stabilizing controls for such systems will be some
basic ideas from linear systems theory combined
with tools from Lie algebras, linear algebra, and
stability theory of ordinary differential equa-
tions.

The averaging methodology to be used {n this
paper is based on a result from Lie algebras known
as the Baker-Campbell-Hausdorff Formula {2}: Given
two real matrices A and B there is no guarantee
that there exists a real matrix C such that

Exp(A)Exp(B) = Exp(C). (3)
This will be the case, however, if 1Af+IBl S 1n(2)

(8], and then C will be given by a convergent
infinite expression

C=A+38+ (1/12)([A,B],B] +

(1/12)((B,A],A) + ... (4)
where the symbol [A,B] = AB-BA is the commutator
product. This expression is the Baker-Campbell-
Hausdorff formula (BCH).

Similar expressions like the BCH formula are
used in & large number of useful approximations in
physics (9] and switched electrical networks (2].
In this section wve show how the BCH formula and
related expressions can be used to analyse and
stabilize F2-systems and hybrid systems in general.

The concept is similar to the one used in (2)
to stabilize bilinear systems. In our case wva are
interested in the stabilization of F2-systeas vhose
A-satrix satisfies

AlfO!OSCdl
A(t) ={
g for T} § t <T,

(3)

and it 1is desired

to approximate tha expression
Bzp(Ag Ty )l!‘p(Az(T'Tl) .

The BCH formula is used to
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yield Exp(C) where C is as in (4).
desired to have an aexpression for C that
independent of order,

Now it is
is
to agres with the order
independence introduced in the definition of F2-

systems, then we must compute
1n} {Exp(A)Exp(B)+Exp(B)Exp(A)}
» A+B+(1/12)([A,B],B]+(1/12)([B,A].A]
= A+B+(1/12)[[A,B],B-A]. (6)
Therefore, we obtain a series of approximations
for F2-systems. If the F2-system realization is I,

= (Ay,by) for T}, and £; = (Az,bp) for Tz, then the
first approximation is

E = {aA)+(1-a)Az, abj+(l-a)by}, )
with
a 8T /(T +T,),
and the second approximation is
T = ([ah;+(1-a)A+(1/12)a(1-a)[[A].Az],
(1-a)Ay-aA;), abj+(l-a)bs}. (8)

Some comments about these two approximate
expressions are in order. The first order app-
roximation can be interpreted at least in two
different ways. The first interp-atation is a
probabilistic one; it says that the average system
can ba vieved as the probabilistic average of the
hybrid system with P(f=f;) = a and P(IsI;) = l-a.
This is consistent with the frequency interpreta-
tion idea especially when we are interested in long
time-range behavior of the system. The second
interpretation comes from the theory of variable
structure systems (VSS) and the Filippov's con-
tinuation technique. The latter technique was
introduced to study the behavior of the system in
chattering mode. The above first order approxima-
tion 1is ndthing but a Filippov's average system.
Therefore, a hybrid system can be viewed as a VSS
system in chattering mode where the switching
manifolds »re solution orbits of the average
systea.

It was shown in {2], via an example, that in
some special cases the second cC.rrection term is
more {mportant then the first, which, in fact,
might vanish. Thus, the usefulness of the second
approximation. However, in (2] there was no
attempt to analyse the errors introduced by the BCH
formula and the averaging method. Obviously, there
are two very important issues in using such a
formuls and averages derived from it. The first
one i{s the error introduced by only using fev terms
in the BCH expression while computing the average
matrix. The second one is the difference between
the actual system, in our case the Fl-systam, or in
[2] the bilinear system, and the average system
used to reflect the average behavior of the system
under consideration. Both of these issues have to
be addressed because of their paramount importance,
especially the difference between the actual system
and its averags vhich is a function of the error
introduced by truncating the BCH formula expres-
sion. Since the latter problems require a lengthy
discussion only a summary of the results is given
in this paper.

In wvhat follows we present some results related
to the accuracy of the usage of a truncated BCH




formula. Using the BCH formulas, one can obtain an
approximation of C, to any desired order.
Consequently, C can be written as C = C+C, where C
is the unknown error due to the approximation.
Therefore, the induced error in computing Exp(C) by
using the approximate matrix C is

E ® Exp(CT)-Exp(LT). 9)

The first order approximation of E can be expressed
in terms of the solution of a linear time-invariant
matrix differential equation:

Proposition 1 {10

Lat E; denote the first order approximation in
¢t to E, then E; satisfies the following matrix
differential equation

Y(e) » &Y + cCPpr(Ct). Y(0) = 0. (10)
vhere £ 2 eCp. and ¢ is a positive scalar.

In order to compute upper bounds for E;) and E
the following results may be used.

Proposition 2
Assume that 1Exp(Ct)1 $§ M(t)Exp(f(t)t), with

8(t) a scalar function, then
1E1 s (8r/218am(e)=
Exp{B(t)t}(Exp{21lit}-1). (11)

The use of results in [10), and the assumption that
M(t) is monotonic yields

1E1 S eaCIM3(e)Exp{(B(t) + M(e)1C1)t}. (12)

Sometimes {t {s possible to avoid the computa-
tion of A-"average". That 4{s, wunder certain
conditions, it is possible, via state feedback, to
nake the F2-system time-invariant in A. That is
given I; and I, and the appropriate conditions
satisfied by the given forms, one can compute a
feedback gain matrix

K = [K;.K;] (13)

vhich will make the A-matrices of both forms equal
and cosequently render the A-matrix of the hybrid
system, upon closing the loop via K; for I,,
constant. Moreover, this constant A matrix is
given by the following expression

A= AI - 3111 - AZ - 32!2. (16)

In this section necassary and sufficient
conditions are derived for the existence of Kk and a
compact computation recipe based on the Kronecker-
product and the generelized-inverse techniquas is
given.

Theorss 1
Given the F2-system
2(t) = Agx ¢ Bju, 1w 1,2, S as)
such that
Range(A;-A7,8),-B;] = Range(B;,-B;], (16)
::::. there exists & minimm-oorm G § [K;,K3] such
A; - BiE; = Ay - BK,. an
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Moreover, the G matrix is given by
s(G) = ([Bl’-BZ]* ] In)l(Al'Az). (18)
vhere s(.) is the stacking operator.
Proof
Starting with the forms £y, i=l1, 2, the ith
sodel {s given by
i(t) - Aix + Biu. (19)

If wa define A 3 A;-6A; the above system can be
vritten as follows

x(t) = Ax + 8Ayx + Byu, (20)

and the next step is to compute & gain matrix K;
such that

ékix + Biu - éAiX - Bil(ix -
(8A; - B4yKy)x = 0 for all x. (21)
This is equivalent to
Bixi- éAi. ) (22)
which is nothing but an algebraic equation for the
unknown K;. Therefore, for K; to exist one needs
the well known condition
rank(B;,8A;] = rank(By], i=1, 2 (23)

which is equivalent to the existence of some matrix
K; such that

SA; = ByKy, =1, 2. (24)

Substructing the first equation from the second
yields

Al - Az - BIKI - Bzxz (25)
which can be written as follows
(A; - Ap] = (By,-By)(K{,K3]" (26)

vhich is itself an algebraic equation with the Ky,
i=],2, as unknown and the condition given in the
theorem is the one needed for the existence of both
gains. Equation (18) is nothing but a compact way
to write such equations. As a matter of fact it is
very useful when numerical techniques are used to
solve the problem.

Corollary
If Range(A)-A3,B)-B;] = Range(B;-B;], then
KSK =Xy, (27)
and the gain satrix is given by:
s(K) = {(B;-B21% @ I ls(Aj-A7). (28)
Proof

When X; = X; = K is needed the proof of the
above theorem is changed accordingly to yield the
results stated in the theorem.

Ve now return to the average system. One of
the key assumptions msde to dasign the regulator
via averaging {s the controllability of tha average
systsm. This assumption {s not unreasonable since




.

the controllability property of linear time-
invariant systems is generic. However, one can
construct hybrid systems such that their averages
are not controllable {11]. In [11] a sufficient
condition that identifies a class of hydbrid systems
for which the hybrid system's controllability
guarantees the controllability of the averags
system vwas given. The result is stated in the
following theorea.

Theorem 2
The averags
controllable if

system of a hybrid system |is

a. Rank [Cy, Cp, ..., Cy] = n.
b. All forms are s taneously diagonaliz-
able.

3. Stability

Even though Hybrid systems are time-varying
systems it is possible to obtain necessary and
sufficient asymptotic stability conditions [6].
However, the latter condition is computationally
time consuming and a simple sufficient asymptotic
stability condition was presentad to alleviate the
computational burden. In this section the same
sufficient condition is rederived using other
means, which may be generalized.

In order to rederive this sufficient condition
s brief introduction to the notion of logarithmic
norm is given. The logarithmic norm (also known as
the logarithmic derivative, the measure of &
matrix) was introduced in 1958 separately by
Dahlquist [12] and Lozinskij {13] as a tool to
study the growth of solutions to ordinary differen-
tial equations and the erro: growth in discretiza-
tion methods for their approximate solution. It {s
formally defined as follows:

Definition
The logarithmic norm associated with the matrix
norm 0.1 is defined by

u(A) = lim (0I + hAl - 1)/h. (29)
h"0+

The explicit expression for the logarithmic norm
associated with the Euclidian norm is

u(A) = pax{u : u ¢ A((A+A")/2)}. (30)
Then the following inequality is true:
1Exp(At)l s Exp(u(A)t). (31)

Nov we are ready to apply the logarithmic norm
to derive a sicple sufficient condition to test for
the stability of hybrid systams.

Theoren [14]
let t + A(t) bde & resgulated function from
(0, ®) to CRX®, Then the solution of
x(t) = A(t)x(t) (32)
satisfies the inequalities

t
1x(ty)1 Exp{-/ ul[-A(t')lde'}
te
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t
$ Ix(e)t Six(ey)l Bxp s u(A(e')]de’. (33)

te

Basically the theorem states that the rate of
change of the norm of the state vector x(t) is
bounded by u(A(t)) and to insure stability this
bound must be negative.

Theorem 3

For the null solution of the hybrid system (1)
to be uniformly asymptotically stable, it |is
sufficient to have
(34)

z “(Ai)Pi <0, py & (ti‘ti-l)/r. ieN.
i

Bafore giving the proof of the theorem we
introduce a different way to represent hybrid
systems (1)-(2). This new formulation has the
advantage of simplifying certain proofs. This new
representation is as follows

N N
x(t) = { T vy(t)Agdx(e) + { £ v (t)Bglule) (35)
i=1 t=1

N
y(t) = { L vy(e)Cylix(e) (36)
i=

1

where v;(t) = | when the system is governed by the
ith rcaiization Ly, and v (t) = 0 otherwise. The
vi(t) function is called the ith indicator func-
tion. It {s evident from the definition of hybrid
systems that at any point in time only one of the N

indicator functions is one. Now we prove the
theorem.

Proof

Using the above representation the homogeneous

part of a hybrid system can be written as

N
x(t) = { T vi(t)Aglx(t) (37)

{=]
Using Theorem 27 in [14] one can write

t
ix(e)1 S Ix(tg)1Exp{ s u(A(s))ds}
t
t °N
= Ix(to)l Exp{ s u( L vy(s)A{]lds }
t, i=1

(38)
Using Theorem S(e, d) in [14] yields

N ¢t
Ix(e)l s Ix(to)] Bxp{ £ /s v (s)ulAy]ds)
i=l ¢

°
N t

= 1x(te)0 Exp{ £ ulA(] s v (s)ds}
=] t,

N t
& ix{to)l Exp{( £ u[Ag](1l/t-ty) s vy(t)ds)(t-t,))
i=1 t,

N
= 1x(t,)0 Exp{( T peulAg])(t-ty)} (39)
{=]

with
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Tt
py § (1/(t-t,)) s vy(s)as. (40)
te

This completes the proof after taking the limits.

This simple sufficient condition states that
for a hybrid system to be uniformly asymototically
stable the weighted average of the logarithmic
norms of sach realization has to be negative.
Therefore, this sufficient condition allows for
unstable forms. That is, as long as the stable
forms dominate, the overall system is asymptotical-
ly stable. This domination can occur in two ways:
either the stable forms are strongly stable (i.e.,
highly negative logarithmic norms), or the time
span of the stable forms is large relative to the
time span of the unstable ones or a combination of
the latter two reasons.

The above interpretation provides a mathemati-
cal rationale to the observations made by Chizeck
et al [3] while analyzing such systems.

4. Stabilization

This section presents some results concerning
the control and stabiliiaetlon of hybrid systems.

These results use standard techniques to con-
trol/stabilize hybrid systems.

Definition

A hybrid system is stabilizable if there exists
a constant feedback gain matrix K such that the
closed loop hybrid system is asymptotically stable.

Theoren 4
A hybrid system (s stabilizable if

a. The average system is stabilizable,
b. The following inequality is satisfied

N
L uféA; - 8ByK]p; < O, (41)
i=]1

vhere K is & stabilizing gain matrix of the average
system and 621!(6A1. éBi) is the difference batween
the {th realization and the average system.

Proof

Given & hybrid system with a stabilizable
average then there exists at least one constant
gain matrix K such that the average closed loop
matrix (A "K) {s Hurvitz. Therefors, x.v.r.g.(t)
is asymptotically stabls. But the actual system
response (s composed of two components, the average

system component and the error component. That is
x(t) = xgorage(t) + o(t) (42)
vhere the error dynamics sre
o(t) = f vi(t)[8A -8BsK]e. (43)

Condition b {s & sufficient requiremant for e(t) to
be asymptotically stable which proves the theoresm.

Tha following exsmple 4s sivwn to illustrate
the results.

Example
Given the following F2-system ZI(a)

11(t) = -ax; + x3 + u, (48)
iz(t) s (1 - a)x; + au, (45)

vhere a & T;/T, £; = E(1) and L3 = I(0). The above
system is the exact average system. The transfer-
function of the average system is given by

B(s) = (s + (20 -1))/(s + a)(s -1 + a). (46)

For a > 0.5, (46) 1is a minimum-phase transfer
function, othervise it {s not. Using wusual
techniques the minimum-phase case can be stabilized
vith an output feedback gain K. For a=.8 and K=5
the closed loop average system's poles are s;=-1.13
and s7#-10.1. However, the logarithmic norm test
applied to the error dynamics gives an upper bound
equal to gero, implying that the error dynamics are
not unstable. A graph of the (a,K)-stabilizability
domain and two phase-space simulations are given in
Fig. 1 and Pig. 2, respectively, to illustrate the
stability results and the effect of the feedback
gain K on the dynamics of the closed loop system.

5. Conclusion

An averaging method based on the Baker-Camp-
ball-Hausdorff formula was introduced for computing
the average of 8 hybrid systenm. In order to be
able to find how well the average system |is
approximating the actual system upper bounds of the
error induced by averaging are given. PFurthermore,
it was shown that under certain conditions one can

avoid the averaging of the A-matrix and therefore
minimize the errors introduced by the averaging
procedure. This {s done via state feedback by

making the A-matrix constant.

The controllability property of the average
system s a key assumption in the stabilization
procedures given i{n the paper. For that reason a
sufficient condition that identifies a class of
hybrid systems for which the average {s controll-
able was given. Therefore, the class of hybrid
systems with a controllable average is a research
topic in need of further investigation.

The stability of hybrid systems is still far
from baing solved. This is mainly due to the fact
that hybrid systems sre time-varying systems. In
the paper a sufficient stability condition was
derived. This condition is based on the logarith-
mic norm concapt. One important point to ba inves-
tigated about this stability condition {s how
conservative it is? The variable structure
property seams to be a promising feature in this
direction. Purthermore if one thinks of every
system I =(A;,3,,Ci) vith icN as an operator acting
on the state x during &t;, and these operators are
spplied in a successive manner, than this process
can be viewed as an ftarative process [15].
Vieving & hybrid system as an iterative process
sheds soms light on some complicated issues such as
the stability of such systems.

Finally adapting the results of this paper to
hybrid systems vhare the svwitching is a stochastic
process such as & Markov chain can be easely done.
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ERROR BOUNDS IN THE AVERAGING OF HYBRID SYSTEMS!
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ABSTRACT

This paper analyzes the errors introduced by the
averaging of hybrid systems. These systems involve
linear systems which can take a number of different
realizations based on the state of an underlying finite
state process. The avaeraging technique (based on a
formyla from Lie algebras known as the Baker-Campbell-
Hausdorff (BCH) formula) provides a single system
matrix as an approximation to the hybrid system. The
two errors discussed are: a) The error induced by the
truncation of the BCH series expansion, and b) The
error between the actual hybrid system and its average.
A simple sufficient stability test is proposed to check
the asymptotic bel.avior of this error. In addition,
conditions are derived that allow the use of state
feedback to arrive at a time-invariant system matrix
instead of averaging.

1. INTRODUCTION AND PROBLEM PORMULATION

Hybrid systems are a special class of piece-wise
constant time-varying systems. Such models switch at
different time instants among a finite set of linear
time~invariant realizations. Systems of this type can
be used to model systems subject to known abrupt
parameter variations such as synchronously switched
linear systems [1], networks with periodically varying
switches [2] or to approximate some types of time-
varying systems (3]. This is achieved by imposing a

detarministic switching rvrule [4]. To model unknown
abrupt phenomena such as systems subject to failures
[S), the switching can be modeled, for example, as a

finite-state Markov chain (FSMC). An earlier review of

hybrid systems may be found i(n {6].

Averaging theory, which is used in a deterministic
or probabilistic context, is an approach to the
approximation of such systems by a single constant
linear model. In the probabilistic case averaging is
introduced in a natural way by taking expected values.
In the deterministic case, however, averaging 1is
intr ‘iced via perturbation techniques. Brockett and
Wood (2] wused a deterministic averaging technique to
analyze and stabilize a class of bilinear systems which
are very hard to analyze or control otherwisea. Geman
[7) used probabilistic averaging techniques to study
the stability of random differential equations. His
main {nterest was to explore the raelation between
asymptotic rtability 4in the average equation, and
asymptotic stability in the random equation.
Specifically, when does the first imply the second?
Kosut et al. [8] applied the theory of averaging to the
analysis of the stability of adaptive systems. Ezzine
and Haddad {9] used an sveraging technique very similar
to the one used in [2) to analyze and stabilize hybrid
systems via a nonswitching gain. As a matter of fact,
Mariton et al. [10] showad that nonswitching control
gains may be preferable, in addition to the fact that
they are much sasier to implement.

In this

paper the averaging procedure used in

A. H. Haddad

Department of ER/CS
Northwestern University
Evanston, IL 60208

{2,9] is considered further. In [2) there was no
attempt to analyze the errors introduced by the BCH
formula and the averaging method. However, there are
two very important issues in using such a formula and

averages derived from it as mentioned in ([9]. The
first is the error introduced by truncating the BCH
expression while computing the average matrix. The

second is the difference between the actual system, in
[9) the F2-system, or in {2] the bilinear system, and
the average system used to approximate the average
behavior of the system under consideration. This paper
addresses both issues by providing bounds on the
resulting errors.

Furthermore, the paper provides conditions under
which the BCH formula can be avoided. Instead of using
the BCH formula to compute an average system matrix,
state feedback is used to obtain a constant closed loop
matrix for the system.

The class of hybrid systems considered in this
paper are assumed to have the form

%(t) = A(x(t))x(e) + B(r(t))ult) (1a)

y(t) = C(x(t))x(t); (1b)

where x is the system state vector of dimension n, u is

the control input vector of dimension p, y 1is the
system output vector of dimension m, and r(t) is the
"form index" which is a deterministic scalar sequence

taking values in the finite index set N={1, 2, ..., N}.
Let the ith form denote the realization £;=(A;,B;,Cy)
associated with the ith form index (i.e., z{t)=i), for
{eN.

It is assumed that any r(t)
of a succession of N-termed blocks. Every block is a
permutation of the index set N. It is important to
note that the succession of the blocks is completely
arbitrary (e.g., for N=3, a possible r(t)-sequence is:
123, 321, 213, 213, 312, ...). The time interval
during which r(t)=i is denoted by &t;. In this case we

sequence is composed

define
N
T 236ty (2)
im]
as the period of the system. Piece-vise constant

periodic systems are a special class of hybrid systems.
Therefore, from an application point of view the
subsequent results can, at least, be applied to the
periodic case. However, the primary motivation is to
derive results that can be appliad to the case where
the switching is governed by a FSMC.

The following is an outline of the paper. Section
2 begins with an overview of the averaging technique
for  hybrid systems. It also addresses the
perturbations induced by the averaging procedure. Two
important perturbation errors are identified, and the

! This work is supported by the U.S. Air Force under grant AFOSR-87-0308.
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first one is analyzed. Section 3 discusses the second
error, and also offers, where possible, an alternative
to averaging. Section 4 concludes the paper and points
to additional open questions.

2. DERIVATION OF THE PERTURBATION BOUNDS

This section addresses the accuracy of the
averaging technique. First, upper bounds for the
errors introduced by using a truncated BCH formula are
derived. .

The averaging methodology to be analyzed in this
paper is based on a formula from Lie algebras known as
the Baker-Campbell-Bausdorff (BCH) formula [2,11,12]):
Given two real matrices A and B there is no guarantee
that there exists a real matrix C such that

Exp(A)Exp(B) = Exp(C). (3)

However, if JAI+IBISIn(2), then C exists [11], and will
be given by a convergent infinite expression (the BCH
formula)

C = A+B+(1/12)[[A,B],B}+(1/12)[{B,A],A)+... (4)

where the [A,B)EAB-BA (i.e., the commutator

product).

symbol

Similar expressions like the BCHE formula are used
in a large number of useful approximations in physics
[12) and switched electrical networks [2]. In the
sequel we show how the BCH formula and related
expressions can be used to compute the average of N-
form hybrid systems. However, for notational
simplicity F2-systems (i.e., two-form hybrid systems)
only are treated.

The averaging idea introduced in [2] and used in

{9] to stabilize hybrid systems is outlined in the
following section. Given an F2-system such that

Al for 0 st < Tl’
A(t) = (5)
Ay for T} s t < T.

then an approximation for
desired.

Exp(A;T))Exp(A5(T-Ty) is
The BCH formula provides the approximation as

Exp(CT), where C is as in (4). Now if we require an
expression for C independent of the order of the
product, to agree with the order independence

introduced in the definition of F2-systems, then we
must compute

1nd {Exp(A)Exp(B)+Exp(B)Exp(A)}
=A+B+(1/12)((A,B],B]+(1/12)((B,A],A]
=A+B+(1/12){[A,B],B-A]. (6)
Therefore, we ocbtain a series of approximate
averages for Fl-systems. If the F2-system realization
is Ly=(A;,b;) for period T), and £y=(A;,by) for period
T2, than the first order approximation is
T = (aA;+(1-a)Ay, abj+(1-a)by), (7)

with a 8 T;/(T; + Ty). Second-order
included to obtain the approximation

terms may be

T = ([ah)+(1-a)A+(1/12)a(1-a)[[A],A],
(1-a)Az-aA;], aby+(1-a)by). (8)

Higher-order approximations msay also be derived.
Consequantly, if wve let { denota the approximating

matrix, then C can be written as C=C+C, where £ is the
error due to the approximation. Therefore, the induced

error in computing Exp(CT) by using the matrix C is
E = Exp(CT)-Exp(LT). (%)

inhomogeneous
derive an exact

The solution formula for
differential equations can be used to
expression of E [13]:

T
E= s {Exp(C(T-5))CExp((L+8)s))ds. (10)
0

In this section a wuseful approximate expression

for E is derived using perturbation techniques. To do
so we define (=eC,, where ¢ is a scalar. It is
recalled [13] that i¥ (8,%) commute, that is,
&t =L, (11)
then
Exp((C-d-cCp)T) = Exp(CT)Exp(cCpT)
= Exp(ST)(I + €C,T + cZC%T2/2! + ... ()

To find Exp((Z+L)T), when { and C_ do not commute, one
can use an jterative technique similar to the one used
to derive the exact expression for E [13]. Hence one
can write

Exp((C+C)T) = Exp(LT) +

T
cExp(LT) / Exp(-Cs)C Exp(Cs)ds + O(c?). (13)
Y

series solution for the
convergent perturbation

This is the Liocuville-Neumann
integral equation. It is a
series for all ¢ [13]).

However,
series in ¢, do

these exact expressions, given as a

not lend much insight to qualitative
analysis questions. In that regard, transforming those
integral expressions for E into differential equations
might be more useful. We first introduce the following
definition:

Ey = E - 0(c2)

T
cExp(LT) s Exp(-Cs)CpExp(Cs)ds. (14)
]

where E) is the first order approximation tc E in ec.
Now E; can be expressed as follows.
Proposition 1 [14
Let E; denote the first order

to E, then E, satisfies the
differential equation:

approximation in €
following matrix

Y=C0Y+ eCpExp(Ct). Y(0) = 0. (15)
As a consequence of the above representation one
can use the theory of linear matrix differential

equations to study the qualitative behavior of E;. For

example, one can show that if all eigenvalues of C have
negative real parts then Ej(t) = 0 as t = =.
Moreover, it is possible to derive a general

explicit expression for E;. To do so we first recall

the well known result [12]
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Exp(sA)BExp(-sA) = T (si/il){al,n), (16)
1=0
with {(AQ,B}=B and {AP*l,B}=[A,{AP,B}].  Using this
identity the general explicit expression for E; will
follow
-
-Ey = eBxp(Ct) B (el (-0, ¢y, an

im]

At this point,
bounds for Ej and E.

we are ready to compute upper

Proposition 2

Assume that IExp(Ct)usM(t)Exp(B(t)t), with B(t) a
scalar function, then

1E;15(181/218)M(£) Rxp{B(t )t} (Exp(21it}-1), (18)

and with the added assumption of M(t) being monotone
then

1Bl s ti8aM2(e)Exp{(B(t) + M(t)ili)t}. (19)
Proof
Using (16) in the evaluation of the integral in

(14) yields

By = Exp(-At) I (ei/i1){al"1,B}. (20)

im]
Taking the norm of both sides in (20)
following inequality

and using the

1{AP,B}} S 27 1ATY 1BI = 12A8" 1BI (21)
leads to
-
IE1 s tExp(-Atht T (ed/in)izani-lim, (22)
i=]
which after simple algebra results in (18). Equation

(19) follows in the same manner by using the

monotonicity property of M(t).
3. STABILITY OF THE ERROR DYNAMICS

In this section the dynamics of the error between
the average system and the actual hybrid system are
derived. The stability of the error dynamics is
discussed and two stability criteria are introduced.

Given a homogeneous N-Form hybrid system with
state vector x(t), and one of its time-invariant
averages with state vector x,(t), the error is given as

e(t) 7 x(t) - x,(¢t) (23)
From this definition it 1is easy to see that the error
dynamics are governed by the following hybrid system

. N
o(t) = ( B vi(t) 8Aq)e(t) (24)

im]

where 8A 3A;-A, and the indicator functions v;(t) are
defined by: v (t)=l when the original hybrid system is
described by the ith realization I,, and v (t)=0
othervise.

criteria are
The first

At this point two stability
introduced to check the stability of (24).

criterion is a necessary and sufficient condition (4]
and the second one is a sufficient test only (9, 4].
Because the first condition is computationally involved
and is a generalization of a well known result (see
[{4]) we choose to present the second one.
Interestingly enough, the second test is more general
in the sense that it can be easily generalized to a
larger class of hybrid systems.

In order to state this sufficient condition a
brief introduction to the notion of logarithmic norm is
given.

The logarithmic norm (also known as the
logarithmic derivative, the measure of a matrix) was
introduced in 1958 separately by Dahlquist [15) and
Lozinskij [16] as a tool to study the growth of
sclutions to ordinary differential equations and the
error growth in discretization methods for their
approximate solution. It is formally defined as
follows:

Definition

The logarithmic norm associated with the matrix
norm 1.1 is defined by

u(A) = lim (4I + hAl - 1)/h (25)
h_.o*l'

Explicit expression for the logarithmic norm associated
with the Euclidean norm is
uw(A) = max{u : u e AM((AA")/2)},  (26)

where A(A) is the set of eigenvalues corresponding to
the matrix A. Then the following inequality is true:

1Exp(At)1 $ Exp(u(A)t). (27)
Theorem 3

For the null solution of the hybrid system (24) to
be uniformly asymptotically stable, it is necessary

that
T u(-Ayey > O, (28a)
and sufficient to have
T ulApdpy < 0, (28b)
where ;
py ¥ (t4-ty_1)/T, ieN.
Proof

We start by showing that the sufficient condition
holds. Using Theorem 27 in [17) one can write

t
te(t)i s te(tg)IBxp{ s u(A(s))ds}

to
t N
= le(tg)t Exp{ s ul £ vi(t)Aylds }. (29)
to i=]

Using Theorem 5(e, d) in [17) and after some algebra we
get

N t
limle(t)t S limie(tg)t Bxp{ £ /s v (t)ulA;]ds}
| & (& j=] to
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N
= limle(tg)l Exp{( T pyulA;])(t-tp)} (30)
i=1

L

with

t
P; = lim(l/(t‘to)) J vi(s)ds. (31)
[ & to

which completes the proof of (28b).

The necessary condition (28a) is shown similarly
by using the fact that Exp-{u(-A)}S1ExpAti.

This simple sufficient condition states that for a
hybrid system to be uniformly asymptotically stable the
weighted average of the logarithmic norms of each
realization has to be negative. Therefore, this
sufficient condition allows for unstable forms. That
is, as long as the stable forms dominate the overal
system is asymptotically stable. This domination can
occur in three ways: either the stable forms are
strongly stable (i.e., highly negative logarithmic
norms) or the time span of the stable forms is large
relative to the time span of the unstable ones or a
combination of both reasons. This stability property
of hybrid systems was reported in [5) via examples.

The difference between (28b) and (28a) could be
used as a measure of the conservativeness of (28b).

Sometimes it is possible for F2-systems to avoid
the computation of an average matrix and, consequently,
minimize the errors induced by averaging [9). That is,
under certain conditions, it 1is possible, via state
feedback, to make the closed loop F2-system A-matrix
tipe-invariant. That is, given I; and I, satisfying
appropriate conditions, one can compute a feedback gain
matrix

K= [X; | Kj) (32)

which will make the A-matrices of both forms equal, so
that the A-matrix of the closed 1loop hybrid system
(using gain K; for I;) becomes a constant. Moreover,
this constant A matrix 4is given by the following
equation

A= A; - BjK) = Ay - BoKs. (33)

In [18], Mariton proposed a technique quite
similar to this idea. He showed that it is possible to
solve the Jump Linear Quadratic (JLQ) problem by making
the performance index independent of the different
realizations of the form-index r(t). His approach
renders the cost incurred by any realization of r(t)
the same. In other words, it makes all realizations
equal in that sense.

Even though the goals seem similar, the approaches
are not. In contrast to [18], the present equalization
is direct; the homogeneous parts of the two forms are
made equal via feedback. In this section a sufficient
condition is given for the existence of K and a simple
computational algorithm based on the Kronecker-product
and the generelized-inverse techniques is proposed. As
stated above, the following results hold for Ne=2 only.

Theorem &
Given the F2-system

t = Agx + Byu, 1= 1,2, (34)

such that
Range(Aj-Ay | By | -By) = Range(B; | -By}, (35)
then, there exists a minimum-norm GE[K1 B K2] such that
Ay - BiK} = Ay - BoKj. (36)
Moreover, the G matrix is given by
s(G) = {[By | -By)t @ I }s(A;-Ay), (37)

where s(.) is the stacking operator, (.)* is the
generelized-inverse, and 8@ is the Kronecker-product.

Proof
Starting with the forms I;, i=1, 2, the ith model
is given by
x(t) = Ayx + Bju. (38)
If we define A = Aj-5A; the above system can be written
as follows
x(t) = Ax + SA;x + Bju, (39)
The next step is to compute a gain matrix K; such that
éAix + Biu = GAiX - BiKix
~ (8A; - ByK;)x =0 for all x. (40)
This is equivalent to
BjKy = SAy, (41)

which is an algebraic equation for the unknown Kj.
Substructing the first equation from the second yields

A - Ap = BIKI - 321(2 (42)
which can be written as follows

[A; - Ag) = [B},-By)[K{,K3)" (43)
which is itself an algebraic equation with K;, i=1, 2,
as unknown and the condition given in the theorem is
the one needed for the existence of both gains.
Equation (37) 4is a compact way to write these

equations, and is also useful when numerical techniques
are used to solve the“problem.

Corollary

I1f
Range[Aj-A7 | B1-B;) = Range[B)-B;], (44)

then
K= Kl - Kz, (45)

and the gain matrix is given by:
s(K) = {[B1-By1% @ I, }s(Ay-A7). (46)

To illustrate the above results consider the
following example.

Example

Given the following F2-system
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. - . 4
2 2 1
Al- ’ bl' »
r 1 - -
1 0 \]
Az- » bz' ’
1 -1 -1
L d 8 4

it is easy to check that after closing the loop via the
gain k=(1 2), the system A-matrix becomes the identity
for i=1, 2.

4. CONCLUSION

In this paper the errors introduced by averaging
hybrid systems have been analyzed. Two errors have
been identified and discussed. The first is the error
induced by trucating the BCH expression while computing
the average A-matrix. The second is the error between
the actual hybrid system and its average. The paper
provides two upper bounds for the first error along
with a simple sufficient stability criterion for the
second one.

It is important to note that the results of this
paper are independei.t of the averaging technique used
to compute the average system. Thus, the results can
be used, for instance, when the switching is governed
by a stochastic process such as a Markov chain and the
average system is the probabilistic average of the
hybrid system. However, the stability tests used in
the paper have to be adjusted accordingly. As a matter
of fact, imposing some ergodicity conditions
dynamics of the hybrid system yields exactly the same
sufficient stability condition when properly
interpreted.

A different direction that might be helpful in
deriving better stability conditions for such systeams
is to think of every system I;=(A(,B;,Cy) with icN as
an operator acting on the state x during étj, and these
operators are applied in a successive manner, then this
process can be viewed as an jiteratjve process [19].
Viewing a hybrid system as an iterative process sheds
some light on the complexity of the stability of such
systems.

It would be interesting to compare the present
work and [9] to [20] where a different type of
averaging hybrid systems is discussed.

REFERENCES

[1] T. L. Johnson, "Synchronous Switching Linear
Systems,"” Proc. 24th IEEE Conf. Decision and

Control, Ft. Lauderdale, FL, pp. 1699-1700,
Dec. 1985.
{2] R. W. Brockett and J. R. Wood, "BElectrical

Networks Containing Controlled Switches,"” in
Applications of Lie groups theory to nonlinear
netvorks problems, Supplement to IEEE

International Symposium on Circuit Theory, San
Prancisco, pp. 1-11, April 1974.

(3] J. A. Richards, Analysis of Periodically Time-
Varying Systems, Springer-Verlag, 1983.

[4] J. Rzzine and A. H. Baddad: "On the Control-
lability and Observability of Hybrid Systems,”
Proc. 1988 American Control Conf., Atlanta, GA,
pp. 41-46, June 1988,

on the

(5]

fe]

(71

£:1]

{9}

{10]

{11]

(12)

{13]

[14]

[15]

(16]

{17]

[18]

{19]

{20}

1791

H. J. Chizeck, A. S. Willsky and D. Castanon,
"Discrete-time Markovian Jump Linear Quadiatic
Optimal Control," Int J. Control, Vol. 43, No. 1,
pp. 213-231, 1986.

D. D. Sworder, 'Control of systems subject to
sudden changes in character,”" Proc. IREE, Vol. 64,
No. 8, pp. 1219-1225, 1976.

S. Geman, "Some Averaging and Stability Results
for Random Differential Equations," SIAM J. App.
Math., Vol. 36, No. 1, Feb. 1979.

M. Y.

R. L. Kosut, B. D. 0. Anderson and I.

Marsels, '"Stability Theory for Adaptive Systems:
Method of Averaging and Persistency of
Excitation," IEEE Trans. Automat. Cont., Vol. AC-

32, NO. 1, pp. 26-34, Jan. 1987.

J. Ezzine and A. H. Haddad, "On the Stabilizatijon
of Two~Form Hybrid Systems Via Averaging,” Proc.
22nd Annual Conf. on Information Sciences and
Systems, Princeton University, pp. 579-584, March
1988,

M. Mariton and P. Bertrand, '"Nonm-switching Control
Strategies for Continuous-time Jump Linear
Quadratic Systems," Proc. 24th IEEE Conf. Decision
and Control, Ft. Lauderdale, FL, pp. 916-921, Dec.
1985.

J. G. P. Belinfante, "Explizit Version of the
Campbell-Baker-Hausdorff Formula: Integrai
Representation for ln e*eY," unpublished.

R. M. Wilcox, "Exponential operators and parameter
differentiation in Quantum Physics," J. of Math.
Physics, Vol.8, pp. 962-982, 1967.

R. Bellman, Introduction to
McGraw-Hill, 1960.

Matrix Analvsis,

J. Bzzine and C. D. Johnson, "Analysis of
Continuous-Discrete Model Parameter Sensitivity
via a Perturbation Technique," Proc. Eighteenth
Southeastern Symposium on System Theory, pp. 545-
550, 1986.

C. Van Loan, "The Sensitivity of the Matrix
Exponential," SIAM J. Num. Anal., Vol. 14, No. 6,
Dec, 1977.

T. Strom, "On Logarithmic Norms,"” SIAM J. Num.
Anal., Vol. 12, No. 5, Oct. 1975

C. A. Desoer and M. Vidyasagar, Feedback Systems:
Input-Qutput Properties, Academic Press, 1975.

M. Mariton, "The Equalizing Solution of the JLQ
Problem," Proc. 26th IEEE CDC, Los Angeles, CA,
Dec. 1987.

J. N. Tsitsiklis, "On the Stability of
Asynchronous Iterative Processes,” Pro. 25th. IEEE
Conf. Decision and Control, Athens, Greece, pp.

1617-1621, Dec. 1986.
D. A. Castanon et al. '"Asymptotic Analysis,
Approximation  and Aggregation Methods for

Stochastic Hybrid Systems," Proc. 1980 JACC, San

Francisco, CA, paper TA2-D, 1980.




AFPENDIX D

J. Ezzine and A. H. Haddad, "On the Minimality of the A\ erage of Hybrid Systems",

_ Proc. IEEE Conference on Control and Applications, Jerusalem, Israel, pp. RA-6-
2/1-4, April 1989.




RA-g.2

ON_THE MINIMALTTY OF THE AVERAGE OF BYBRRID SYSTEMS™*

RO ~6-2
Jelel Ezzine
School of Electrical Engineering
Georgia Institute of Technology
Atlanta, GA 30332-0250
ABSTRACT
The stabilization of hybrid systems with a non-

switching gain is cheaper and simpler to implement
than the switching one. One approach to the design
of a non-switching gain 1is based on the averaging
of the hybrid system. For obvious reasons, the
non-switching gain exists if the average system is
controllable. In this paper, the minimality of the
average system is investigated and a sufficient
criterion is derived. Furthermore, these results
also shed some light on the topology of minimal LTI
svetems in parameter space.

1. INTRODUCTION AND PROBLEM FORMULATION
Bybrid systems 8re a special class of piece-wise
constant time-varying systems. Such models switch
at different time instants among a finite set of

linear time-invariant realizations. Systems of
this type can be used to model systems subject to
known  abrupt parameter variations such as
synchronously switched linear systemsl, networks
with periodically wvarying switches or to
approximate some types of time-varying systems-.
This 1is achieved by imposing a deterministic

switching rule. However, to model unknown abrupt
phenomena such as systems subject to failures” the
switching can be modeled, for example, as a finite-
state Markov chain (FSMC). An earlier review of
hybrid systems may be found in Sworder's paperS.

Averaging theory, which is used in a deterministic
or probabilistic context, 4is an approach co cthe
approximation of such systems by a single constant
linear model. In the probabilistic case averaging
is introduced in & natural way by taking expected

values. In the deterministic case, however,
averaging is introduced via  perturbation
t echniques. Brockett  and Wood? used &

deterministic averaging technique to analyze and
stabilize a class of bilinear systems which are
very hard to analyze or control otherwise. Geman
used probabilistic averaging techniques to study
the stability of random differential equations.
His main interest was to explore the relation
between asymptotic stability in the average
equation, and asymptotic stability in the random
equation. °‘Specifically, when does the first imply
the second? Kosut et al.’ applied the theory of
averaging to the analysis of the stability of
adaptive systenms, Ezzine and Haddad” used an
averaging technique very similar to the one used in
Brockett et al.'s paperc to analyze and stabilize
hybrid systems via a nonswitching gain. As a
matter of fact, Mariton et al.*" showed that

s
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RA-6~2
e

A. H. HADDAD

Department of EE/CS
Northwestern University
Evanston, IL 60208-3118

nonswitching control gains may be Preferable, in
addition to the fact that they are much easier o
implement.

The paper also considers deterministic
systems, when such systems capture the
stochastic hybrid systems.
addition to
implement.

hybrigd
essence of
In this case the

the fact that they are much easier to

The hybrid systems considered in this paper ar,
assumed to have the form

x(t) = Alr(t))x(t) + B(r(t))u(t) (1.1)

y(t) = C(r(t))x(t) (1.2)
where x is the system state vector of dimension p
u is the control input vector of dimension p, y i;
the output vector of dimension m, and r(t) is the
"form index" which is either a deterministic or ,
stochastic scalar sequence taking values in the
finite index set N={1, 2, ..., N}.

The system takes the realization zi'(Ai-Bi-ci)
when t(t) = 4, with ieN. This realization is
called the ith form. dti denotes the time

interval during which r(t) = i. In addition we
define
N
T = £6t1 (2)
j=]

as the period of the systenm.

Sometimes it is more convenient to represent the

hybrid system in an equivalent different form
which leads to the following representation

N N
T vi(Oagdx(t) + { T vy(t)Bglu(t)(3.1)
i=1 i=1

x(t) = {

N

y(t) = { T vy(e)Cylx(t) (3.2)
i=]

where v (t) = 1 when the system is governed by the
ith realization Iy, and v4(t) = 0 otherwise. The
vq(t) function is called the ith indicator
function. It is evident from the definition of
hybrid systems that at any point in time only one
of the N indicator functions takes the value one.

This research is supported by the U.S. Air Force under contract P0B635-84-C-0273 (with the Armament




This paper mostly addresses the cass where where
r(t) is a stochastic process, which is assumed to
be governed by a Pinite State Markov Chain (FSMC)
with probabilities

Pr{r(t+t) = jjr(t) = i} = Pyy(q), (4.1)

for continuous-time systems. In case the dynamics
of the hybrid system are discrete the transition
probabilities are givin by

ét(r(t+l) = jlr(t) =i} = pij. €4.2)

It is also assumed, Throughout this research work,
unless stated o:hervise1 that the FSMC s
stationary and irreducible 1,

sequence r(t) 1s assumed to be deterministic and to
be composed of a succession of N-termed blocks.
Every block 1is a permutation of the index set N.
It is important to note that the succession of the
blocks is completely arbitrary (e.g., for Ne=3, a
possible r(t)-sequence is:
123,321,213,213,312,...).

The following {s an outline of the paper. Section
2 Dbegins with an overview of the averaging
techniques for hybrid systems. In section 3 the
controllability of hybrid systems is recalled along
with a necessary contollability condition and a
stabilization result. Section 4 deals with the
controllability of the average of a hybrid systea.
This result is used to derive the main theorem of
the paper, which identifies a class of hybrid
systems for which the average is minimal. Section
5 concludes the paper and points to additional open
questions.

2. THE AVERAGR SYSTEM

Two averaging techniques are concidered in this
paper. The first one is the probabilistic average
of the hybrid system when the switching is governed
by an irreducible FSMC. The second one is the
first order average of the hybrid system when the
switching is deterministic as discussed above. The
latter average is based on the Backer-Campbell-
Hausdorff formula2.

The two averages are identical in form. In fact,
both’ averages are weighted averages. In the
probabilistic case the weights are the components
of the stationary probability vector of the FSMC.
In the deterministic case the weights are the
relative time-spans spent by each form. Therefore,
the following representation, of the average, is
adopted for both cases in the rest of the paper

Ea 3 qlzl + 0222 + ...+ QNSN' (s)
uhc:ollho a;=0 are the steady state probabilities
of r(t)»i for the stochastic case, and are defined
as

01 - éti/T (6)

for the deterministic casa with

N
T -lfl L1 (7)

-2-

3. CONTROLIABILITY OF HYRBRID SYSTEMS
Before dealing with the controllability of tha
average system a definition of the controllability

of deterministic hybrid systens“ is proposed along
with few related results.

Definition:
A deterministic hybrid system is said to be state-
controlladble if for any t, each state x(t,) can be

transferred to any final state xg after one
period. Thus there exists a tg, to+Titg<m such
that x(tg)=xg.

The next result is a necessary algebraic
controllability condition. Basically the theorem
says that in order for the hybrid system to bé
controllable it is nezessary that the sum of the
controllable subspaces of the forms to be equal to
the whole space.

Theorem®
A necessary algebraic condition for a

deterministic hybrid system to be controllable is
rank[Cy, ¢9, ..., Cy] = rank T = n. (8)

Where C; is the controllability matrix for the ith
form, icM.

Due to the importance of this theorem a heuristic
proof presented in Ezzine et al.s paper” that
shows that the above <condition 1is almost
sufficient will be repeated here. The heuristic
argument can be given as follows: Since any matrix
exponential {is a perturbation of the identity
matrix tt follows that wultiplying any matrix with
matrix exponentials will not change its range
space drastically. That is if, for example, Cy
and C» have algebraic complementery range spaces
(1.e, range(Gy) 1s perpendicular to range(g;))
then range(ExptAT)Cl) will almost always remain an
algebraic  complement but not  necessarely
perpendicular to range(C;). As a matter of fact,
Maritonl? states that he has proved that theorem 6
is also a sufficient condition when the switching
is govarned by a continuous FSMC.

Using the above definition it i{s possible to prove
in a classical vay“ that deterministic hybrid
systems are uniformly completely controllable iff
they are controllabla. Therefore, the above
algebraic condition plays almost exactly the same
role as the usual :lgebraic condition for LTI
systems.

At this point and in the 1light of the preceding
paragraphs we_ would like to mention the work of
lkeda et al.'”. In their work they looked at the
relation between controllability properties of the
system and various degrees of stability of the
closed loop system resulting from linear feedback

vf the state variables. Their results are as
follows: For any initial time t,, and any
continuous and monotonically nondecreasing

function &(.,t,) such that  4(to,tp)"0, the
transition matrix §(.,.) of the closed loop system
can be made such that (e, ty)nsa(t,)Exp(-8(¢t ¢ ))




for all * t2t,, 4ff the system is complately
controllable. Furthermore, in case of & bounded
systen, for any ms0, a bounded feedback matrix can
be found such that I(t,,t,)isaBxp{-m(t;-t,))} for
all t;, t,2t;, iff the asystem is uniformly
completely controllable. Thus, their results can
be regarded, in some sense, 25 extensions of the
well known results of closed loop pole assignment
for time-invariant systems.

Hence, there is a high degree of flexibility in the
stabilization of  hybrid systams if they are
controllable or, equivalently, uniformly completely
controllable.

As an illustration of the above results we recall,

with a slight generalization, & stabilization
theorem® for hybrid systems where averaging is
used.

Definition

A hybrid system is almost surely stabilizable if
there exists a constant feedback gain matrix K such
that the closed loop hybrid system |is
asymptotically stable.

Theoren® -

A hybrid system is almost surely stabilizable if

a. The average system is stabilizable,

b. The following inequality is almost surely
satisfied

N
L uléAy - &ByK]py < O,
i=]

(9

where K is a stabilizing gain matrix of the
average system, 6I;8(6Ay, 6By) is the difference
between the ith realization and the average
sys}zm, and u(.) is the logarithmic norm of
(.)4,

4. CORTROLLABILITY OF THE AVERAGE SYSTEM
We now turn to the controllability of the average
system in light of the above theorem. One of the
key assumptions made to design the regulator via
averaging is the controllability of the average
system. This assumption is not unreasonable since

the controllability property of linear time
invariant systems is generic. However, one can
construct hybrid systems such that their averages
are not controllable; such & system is a 2-form

hybrid system (F2-system):

I) = (Aj,by) and I3 = (Az,bp)
with
- - . .
-1 1 1
Al - » bl - »
0o o 1
L d L
[ ¢ 1 ] 1
Ay = » b=
(1} 1 4]
L d 9 -

It is easy to check that neither I; nor Ij is

RA-6~2
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controllable but that the F2-system is4. After
derivation of the average system the determinant
of its controllability matrix as a function of a
was computed. The latter determinant {s given by
the follovwing third order polynomial:

P(a) = a{2c2 - 30 + 1).

The teros of the above polynopial are ay=0. eco=1.

and aq~.5, The two first zeros a; and a; are &
cansequence of the fact that I; and [; are both
uncontrollable. However, the zeroc 63=.5 1is a

result of the sveraging, therefore it refutes the
claim that the average system of & controllalle
hybrid system is necessarily controllable.

In th sequel we give 8 sufficient condition that
identifies a class of hybrid systems for which the
hybrid system's controllability guaranties the
controllability of the average system.

Theorem 1
The average system of
controllable if

a N-form hybrid system is

a- rank [{y, €2, ..., Cy) = n, where C; is the
controllability matrix of the ith form,

b- All forms are simultaneously diagonalizable,

Proof:
The average system I=(A,B) is given by

N N
A =131 ajA;, and B =% q;B, (10)
i=] i=i
with
N
£aoy=1, and oy # 0 for {= 1, 2, .., N. (11)
i=]
Since all forms, i=1, 2, ceey N, are
diagonalizable with the same similarity
transformation then
ToIAT = 4y, (12)
T8 =1y for i=l, 2, ..., N. (13)
The T matrix is the common modal matrix for all

the forms, and Ay is the
corresponding to the i-th form.

diagonal matrix

Using the above result the average
transformed to the following form

system can be

Ae TIAT @ T(Z, o AT = T oy, (14)

T ET B e 17l(2; ayBy) = Ty o4y, (15)
Becsuse of assumption (b) A will be diagonal too.
Now, invoking condition (a) every 1i1ow in the T
matrix must have at least one nonzero entry'$S
which concludes the proof.

Using theorem 1 and the duality principle it 1s
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easy to derive the following theorem.

Theorem 2
The average system of
minimal provided that

is the
orm,

a- rank{Cy, €7, ..., Cy] = n, vhere ¢
controllability marrix of the ith

b- Ol
02
rank . = n,

On

where Oi is the observability matrix of the ith
form,

c- All forms are simultaniously diagonalizable.

Using this theorem it is easy to design & constant
regulator for hybrid systems, for which the above
three conditions hold, using standard LTI-design
techniques. For an example the interested reader
is referred to Ezzine et al.'s work?.

5.CONCLUSION

The main result presented in this paper 1is a
theorem that identifies a class of hybrid systems
for which the average is minimal. The minimality
of the average system is crucial if the hybrid
system is to be stabilized via a nonswitching
feedback gain. Purthermore, this result sheds some
light on the topology of minimal LTI systems in
parameter space.

The above theorem can, probably, be generalized to
the case where all forms aré simultaniously
transformable to jordan canonical forms with the
additional condition that the geometric
multipiicities of all eigenvalues of the avarage
system are equal to one.

It is, again, obvious that the
the controllability criterion of
plays an important role
the average system.
makes it still more
closely.

neces<ary part of
the hybrid .ystem
in the controllability of
This need for this condition

important to be studied

The issue of the minimality of average systems can
be studied in a more systematic way by defining an
appropriate topology on the parameters space; works
such as Cobb's papetl Eising's paper 7. and
references therein can provide a good start in this
direction. Nevertheless, the paper's results point
to directions that can be helpful in defining such

a N-form hybrid system is

topology. Moreover, the last theorem tells us that
givan a set of simultaniously diagonalizable
systems then every element in the set of all
averages, as defined in this paper, is
controllable. This is an interesring result in its
own right.

Another research direction concerning the
minimality of the average system is the afglicution
of the results 1in  Anderson's paper vheras
structural controllability and matrix nets are
studied. RA-6-2
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ON LABGEST LYAPUNOV EXPONENT ASSIGNMENT

AND ALMOST SURE STABILIZATION OF HYERID SYSTEMS!

Jelel Ezzine

School of Electrical Engineering
Georgia Institute of Technology
Atlanta, GA 30332

ABSTRACT

This paper develops techniques for the
analysis, control and stabilization of hybrid
systems. .These systems switch among a finite set
of linear time-invariant models with switching
behavior governed by a Finite State Markov Chain.
The relationship of these techniques to standard
methodologies for linear time-invariant systems
is also considered.

1. INTRODUCTION AND PROBLEM FORMULATION

1.1 INTRODUCTION

Many real systems such as power systems [I-
3] exhibit variations in their structures or
abrupt changes in their inputs or intermal
variables and other system parameters. Standard
linear time-invariant systems models can not
adequatly represent these systems. Consequently,
a new class of systems has been proposed to model
such systems {4-14]. This class is called hybrid
systems due to the existence of both discrete and
continuous variables in their state space. Such
systems have been explicitly or implicitly used
in past research [1].

Systems of this type can be used to model
networks with periodically varying switches
[15,16], synchronously switched 1linear systems
[17), multi-rate Sampled-data systems [18-22],
systems subject to failures (1,23-25],
manufacturing systems [24,25], large scale
flexible structures [13), and last but not least
macroeconomic models [S].

The objective of this paper is to develop
methodologies or, at least, to provide the
necessary foundations for the analysis and design
of such systems, with emphasis on their
stabilization. These design tools are expected
to aid in the design of controllers to stabilize
such systems and to achieve reliable performance
despite the changes.

It is customary to assume that these systems
switch among a finite set of linear models
according to an irreducible FSMC. Hence, the
approach is based on the mathematical theory of
ergodic stochastic processes. Interestingly
enough, the concepts of eigenvalues and
eigenspaces are generalizable within the ergodic
theory framework. Therefore, the key design idea
of eigenvalues assignment for hybrid systems
remains meaningful despite the time-variation and
random nature of these systems.

Earlier major works on the subject exhibit

A. B. Baddad

Depagtment of EE/CS
Northwestern University
Evanston, IL 60208

two important points. The first one is the
almost exclusive usage of Stochastic Dynamic
Programming (SDP) as a tool to adress the optimal
control and stabilization of hybrid systems. The
second one is the difficulties related to the
solution (i.e., existence and uniqueness issues)
of the coupled Riccati-like equations derived via
SDP. These equations play the same role played
by the familiar Riccati equations in LQR theory.

SDP is a very convenient tool to solve
optimization problems. However, besides the well
known ‘''curse of Jimentionality", the systematic
application of SDP does not allow the user to
gain insight about this complex problem. In
general the use of SDP obscures most of the
useful properties of these systems. These
properties can reveal the geometric and algebraic
structuses of hybrid systems. As a matter of
fact, many of the results presented in [26],
{14], and [27] show that these systems, despite
their time-variation and random nature, share
many useful properties with LTI systems.

Our approach avoids the difficulties faced
by previous researchers and exploits the
similarities between LTI systems and hybrid
systems. In. particular, due to the simplicity
and success of the eigenvalues assignment design
technique in the stabization of LTI systems, we
will follow a similar approach.

In order to address the stabilization
problem of hybrid systems one needs a simple
stability criterion for this class of systems.
Hence, some conditions for deteraining the
stability of hybrid systems are first developed
based on a generalization of the eigenvalues
concept. The stabilization approach uses the
largest Lyapunov  exponent along with some
controllability properties of hybrid systems.

The following is an outline of the paper.
After the problem formulation, Section 2
introduces the material needed to discuss the
almost sure stabilization of hybrid systems.
This section also addresses tne stability of both
continuous and discrete time hybrid systems and
sipple sufficient stability criteria are derived.
In section 3 the almost sure stabilizability
result is  discussed. This result 1is a
generalization of Wonham stabilization theorem to
this class of systems. Section 4 concludes the
paper.

1.2 PROBLEM FORMULATION
The hybrid systems considered in this paner
are assumed to have the form

1 This work is supported by the U.S. Air Porce under grant APOSR-87-

0308.
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x(t) = A(z(t))x(t) + B(r(t))ul(t) (l.a)

y(t) = C(r(t))x(t) (1.b)

where x is the system state vector of dimension
n, u is the control input vector of dimension p,

y is the output vector of dimension m, and r(t)
is tha "form index" which is either a
deterministic or a stochastic scalar sequence
taking values in the finite index set N={1l, 2,
«oes N}

The system takes the realization
Ly=(A¢,By,Cq) when r(t) = i, with ieN. This
realization is called the ith form. Let &ty
denote the time in*erval during which r(t) = §.
In addition we define

N
T 33 oty (2)
im]

as the period of the system.

Sometimas it is more convenient to represent
the hybrid system in an equivalent different form
which leads to the following representation

N

x(t) = { T vi(t)Adx(t) + { T vy(t)Bylu(B)a)
im} i=]
N

y(t) = { T vy(e)Cydx(t) (3.b)
1wl

where v (t) = 1 when the system is governed by
the ith realization I, and v4(t) = 0 otherwise.
The v;(t) function is called the ith indicator
function. It is avident from the definition of
hybrid systems that at any point in time only one
of the N indicator functions takes the value one.

Most of our wvork will address the situation
vhera r(t) is a stochastic process, more
presisely, r(t) will be assumed to be a Finite

State Markov Chaine (FSMC) with transition
probabilities
P{r(t+dty) = jfr(t) = 1} = Pyjr (4.a)
for continuous-time systems, and
(4.b)

P{r(t+l) = j|r(t) = i} = Piys

for discrete-time systems. It is also assumed,
unless stated otherwise, that the FSMC ({s
stationary and irreducible [28]).

Sometimes r(t) is defined as a special

It will be obvious from
the definition that r(t) is very similar to the
FSMC defined above. This is done in order to
show that a deterministic formulation is
sufficient to answer certain questions. In this
case it is assumed that any r(t) sequence is
composed of a succession of N-termed blocks,
where every block is a permutation of the index

deterministic process.

set N. It is important to note that the
succession of the blocks is completely arbitrary
(e.g., for N=3, a possible r(t)-sequence is:

123,321,2:3,213,312,...).

2. STABILITY OF HYBRID SYSTEMS

2.1 Lyapunov Exponents

In 1892, A. M. Lyapunov founded thae theory
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of characteristic that bear his name
[29].
His intention was tc determine criteria for

the stability (of the origine x20) of

exponents

x = A(t)x, x(0; x,) = x, ¢ R?, t ¢ RY, (5)

A(t) is continuous and bounded.

For constant A the eigenvalues of A
determine the stability behavior of (5). Por
periodic A(t) Floquet theory shows that the
results for constant A remain true if the real
parts of eigenvalues are replaced by the

characteristic exponents of A{t) [30, chapters 3
and 13].
The Lyapunov exponent of a solution x(t; x,)

is defined by

A(x,) 2= lim sup (1/t)Loglx(r; x, ). (6)
o

Lyapunov proved that for every solution with
X020, A(x,) is finite. Moreover, the set of all
possible numbers which are Lyapunov exponents of
some nonzero solution of (5) is finite, with

cardinality p, such that 13psSn and A < ... < iy.
Furthermore, Lyapunov  prove that the
subspaces

Ly 8 {x, ¢ R" : M(xg)sAy, i=l...., p+l}
form a filtration of R?, 1{i.e.,

0=l Ly -

with dimLi=ky, such that

kp+1 = 0 < kp < ... < ki =n,

LI - Rn,

and
A('xo) = Xi iff Xq € Li\Li"‘l' i1i=1, ..., p.
The numbers Ay together with their
multiplicities dy are called the Lvapunov

spectrum of (5). The asymptotic behavior of {5/
is dictated by A;. That is, {5) is exponentially
stable iff 1;<0.

Unfortunatly, it is in general not true that

A1<0 implies the stability of the following
nonlinear system:
x = A(t)x + f(t, x). (7)

However, for a special class of f(t, x) the above
is true 1if (5) is what Lyapunov calls regular.
For regular systems the following holds

A} = lim (1/t)Loglx(t; x4)¥. (8)

Lo

For example, (5) is regular if A is constant or
periodic. In the latter case Ay are the
characteristic exponents.

Regularity is hard to verify for a
particular system, but it happens with
probability one in many cases involving a flow
with an invariant probability measure [31]. This

is how Birkoff's ergodic theorem {32] and ergodic
theory in general comes in to exploit Lyapunov
powerful spectral theory.

As shown above there are many similarities




between eigenvalues and eigenspaces of constant
matrices and the Lyapuno spectras. theory of
time-varying systems. The main similarity that
will be of major importance in this paper is the
stability role played by the largest Lyapunov
exponent Ay; A;) plays the same role as the
largest eigenvalue plays in the stability of
time~invariant systems.

2.2 Continuous-time Bybrid Svstems

Eventhough the sign of A is a necessary and
sufficient test for the stability of a hybrid
system, it is almost impossible to compute. In
this section we will use the Lyapunov exponent
along with the logarithmic norm concept to derive
a simple sufficient stability test for
continuous-time hybrid systems.

In order to derive uncomplicated conditions
for the stability of such systems, a different
tool 1is used, namely the logarithmic norm
{33,34}, resulting in a simpler sufficient
condition.

The logarithmic norm (also known as the
logarithmic derivative, the measure of a matrix)
was introduced in 1958 separately by Dahlquist
[33] and Lozinskij [34] as a tool to study the

growth of solutions to ordinary differential
equations and the error growth in discretization
methods for ¢their approximate solution. It is
formally defined as follows:
Definition 1

The logarithmic norm of a matrix A

associated with -the matrix norm 1.1 is defined by

u(A) = lim (1I + hAl - 1)/h (9)
h*0+

Explicit expression for the logarithmic norm
associated with the Euclidean norm is

w(A) = max{u : u e A((A+A")/2)}.  (10)
Then the following inequality is true:
Exp(-p(-A)t) s 1Exp(At)t s Exp(u(A)t). (11)

One very important property of the
logarithmic norm follows from the fact that it
may be shown to be the smallest element of

S = {s : IExp(At)l S Exp(st), t20}. (12)
Therefore it gives an optimal bound on the
exponential behavior of IExp(At)l for t20. It may
be concluded therefor that

suplExp(At)t = } iff u(A)s0.
t20

(13)

In Ehe case where A is normal square matrix
(i.e., A"A=AA"), then

1Exp(At)1 = Exp(a(A)t) = Exp(u(A)t)(14)

where a(A) is the maximal raal part of the
eigenvaluas of A. This norm is now used to
derive the stability condition.

Theorem 1
For the null solution of the hybrid system
(1) to be a.s. exponentially stable, it is
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necessarv that

b4 U(‘Ai)pi > 0, (15.3)
i
and sufficient to have
(15.b)

z u(Ai)pi <0,
i

vhere the p;'s are the steady-state probabilities
of the irreducible FSMC and ieN.

The simple sufficient condition states that
for a hybrid system to be a.s. uniformly
asymptotically stable the average of the
logarithmic norms of each realization has to be
negative. Therefore, this sufficient conditicn
allows for unstable forms. That is, as long as
the stable forms dominate, the overal system is
a.s. exponentially stable. This domination can
occure in two ways: either the stable forms are
strongly stable (i.e., highly negative
logarithmic norms) or the time span of the stable
forms is large relative to the time span of the
uns:able ones or a combination of both reasons.
This stability feature of hybrid systems was
reported in [23] via examples. The critera given
above holds for hybrid systems where the
switching is deterministic as well, in which case

the p;'s represent relative time span of the
forms.

It is clear from the proof of the above
theorem that the sufficient almost sure

exponential stability criterion is an upper bound
for the largest Lyapunov exponent A;, and is
simple to compute. Therefore, this sufficient
criterion can play a beneficial role in testing
for the stability of hybrid systems as well as in
the design of controllers to stabilize such
systems, as stated in the following:

Theorem 2
The largest Lyapumov exponent i; of the null
solution of the hybrid system (1) satisfies the
following inequality
Ap = lim (1/t)Logix(t; xo)0 § T pgu(Ay),  (16)
ieN.

| S

where the pi's are the steady-state probabilities
of the irreducibla FSMC.

The differance between the upper and lower
bounds given in theorem 1 give a measure of the
conservativeness of (15.a). This problem is
considered further in the sequel.

2.3 Discrete-time Hvbrid Systems

Tha study of the stability, sample-wise, of
discrete-time hybrid systems is similar to the
study of the solutions of stochastic linsar

difference equations with randomly varying
parameters. This lead us to the study of the
following problem:

Let (My, n ¢ N} be a sequence of random,

nxn, matrices. To each x, ¢ R? one associates
the process {X,, n € N} with values in R%, which
is the solution to

%he1 = Mekne

We have Kool =
question is what
this process.

neN, and X, = x,. (17)

My Mix,. One important
is the asymptotic behavior of




Furstenberg-Kesten Theorem [35]

Let [Hi, i1 € N} be a stationary, metrically
transitive (i.e., ergodic) stochastic process
with values in the set of nxn matrices sucbh that

E(Log*lhoi}<-. Then, with probability one

lim(1/n)E{LogiS0} = inf(1/n)E{LogiS,l}
n n

" = 1im(1/n)LoglS,I
n

A € RU{-=}, (18)

where S, = M,...M]. Ay is the

exponent of the process.

largest Lyapunov

Rerark

The Purstenberg-Kesten Theorem (FKT) is a
generalization of Birkoff's ergodic theorem to
the case of matrix valued functions.

The largest Lyapunov exponent Ay of a
discrete-time hybrid system plays the same role
as the one played by the largest Lyapunov
exponent of continous-time hybrid systems. That
is, for a discrete-time hybrid system to be a.s.
uniformly asymptotically stable it is necessary

and sufficient to have A(<0. However, it would
be very impractical to use (18) to compute A
(i.e., compute (18)). Therefore, one way to

avoid this difficulty is to use the Furstenberg-
Kesten Theorem to derive simpler criteria to test
for the a.s. stability of the system.

As it is stated in the PKT, A; is an infimum
of a particular set. Consequently, if any of the
elements of this set is negative one concludes,
using the property of the infimum, that the
system is a.s. exponentially stable. However, by
not knowing exactly A;, 4t is not possible to

tell how stable the system is. That is, by
exploiting this property to alleviate the
computational burden, we are loosing some

qualitative insight about the dynamical behavior
of the system, This qualitative insight can be
crucial for application purposes. First we need
additional definitions.

Définition 2
A set S-{Hi, i=1, ...,N} of nxn matrices is
nilpotent provided there is a a k-termed sequence
{H;}, such that k is finite and the matrix
i
nk H Hk e HZHI (19)
least number 6 for which the
My 1is null is called the

is nilpotent. The
power of the matrix
index of nilpotency.

In case S is a singleton the above
definition is identical to the usual definition
of nilpotency.

Proposition 1
If S contains a nilpotent matrix then the

set is nilpotent and its index of nilpotency © is
lass or equal to the index of nilpotency of the
nilpotent matrix.

Definition 3

The set S={H;, i=1, ..., N} of nxn matrices
is said to be contractive provided that there is
a k-termed finite sequence {H;} and a norm, such
that
(20)

IHy ... HZHI' sac<l.
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At this point we would 1lika to recall a
theorem that will play a key role in the sequel.
This theorem is the converse of a well known
result relating the norm of a matrix to its

spectral radius (i.e., a(A) S IAl1). The
following theorem asserts that there exists an
induced norm for which the 4inequality in the
previous result can be reversed after adding an

arbitrarily small positive number to the matrix

spectral radius.

Theores [36]

For any ¢>0 and any nxn real A matrix, there
is a (vector) norm on R" such that the
corresponding induced norm satisfies

1Al 5 a(A) + €. (21)

Now we are ready to apply the above
definitions and theorems to derive simple
sufficient a.s. exponential stability tests for
discrete-time hybrid systems. As mentioned
earlier these results will, in general, answer
the stability issue but will not provide enough
information about the qualitative behavior of the
system. That is, how fast or how slow the system
is converging or diverging. Bowever, the first
result is an exact result (i.e., exact Al). It
allows a complete quantitative and qualitative
analysis in an important special case.

Theorem 3

A homogeneous N-form hybrid system with a
stationary irreducible FSMC, is a.s.
exponentially stable with Aj=m-e, provided that
the set N contains a nilpotent set.

The first result says that a homogeneous N-
form hybrid system is a.s. stable, and its Aj=-=,
if the set of N-matrices of the hybrid system
contains a nilpotent set.

This result is the analog of the stability
result of a homogeneous difference equation with
a nilpotent matrix. These difference equations
converge to zero in no more than n steps. That
is, by analogy, hybrid systems with a nilpotent
set of matrices are very fast systems. This is
confirmed by the fact that Aj=-e,

The next result is more general but less
powerful in the sense that it does not provide us
with Al'

Theorem 4

A homogeneous N-form hybrid system with a
stationary irreducible PSMC, is a.s.
exponentially stable, provided that the set N
contains a contractive set.

As an attempt to alleviate the shortcomings
of the latter theorem we provide an upper bound
for Ay similar to the one given for continuous-
time hybrid systems. However, this bound does
not involve the logarithmic norm concept, but it
is derived via a simple computation.

Theorem 5

The LSR of a homogeneous N-form hybrid

system with a stationary irreducible FSMC
satisfies the following inequality
N. .
A} § T pyloglayl. (22)
iw]

The next result is based on the work of Katz




and Thomasian [37]. Along with tha FKT it
provides a mean by which one can estimate the
least number of matrix multiplications in the X;-
formula for which the probability of having a
large error is minimized.

Theorem 6

Given a homogeneocus
with a stationary and
positive integer m and e>0.

N-form hybrid system
irreducible FSMC, a
Then

N
P{[(1/n) £ LoglA;l - LSR*|2e for some n2m}

im]
S 2aBxp{~-Bem}, (23)
where
g = p3N/285282, (24.a)
. a = 8N/pN(1 - Bxp{-Be?}), (24.b)
with

8 = maxloglA;} - minLoglA;),(25.a)
ieN jeN
LSRY = I pjLoglaql. (25.b)
ieN
and p is the largest entry in the steady-state
probability vector.

This result tells us when to
average of the )| upper bound and still get a
good approximation. This might seem useless
since wa have a simple expression for LSRY.
However, the LSR* is an upper bound for Ay,
therefore, this stopping rule can be used as an
approximate stopping rule in computing the LSR.

stop the time

3. ALMOST SURE STABILIZATION OF BYBRID SYSTEMS

3.1 Lyapunov SPECTRAL RADIUS ASSIGNMENT

In this section we provide the main result
of the paper; a simple sufficient a.s.
stabilization theorem.

Theorem 7

An m inputs n states N-form hybrid system
with a stationary and irreducible FSMC is a.s.
stabilizable by arbitrarily assigning its X

provided that there is a completely reachable K-
pericdic system, with m inputs and n states,
embedded in the N forms, with KsSN.

This result is based on the pole-assignment
for discrete-time linear periodic system.
Hernandez and Urbano [38] extended the pole
assignment technique to linear periodic systems.
Their result 4is used here to extend the pole
assignment to stochastic hybrid systems by
assigning the largest Lyapunov exponent Aiy.

It is possible under special assumptions to
arbitrarily assign Ay without requiring the
complete reachability of a periodic system. That
is, by imposing a geometric relation among the N
forms. This way the complete reachability
condition is weakened considerably as it |is
stated in the next theorem

Theorem 8

Given a N-form hybrid system with a
stationary and irreducible FSMC such that

a. Rank [Clp CZ; e CN] *n,

b. (Ai'BiKi' ieN} belongs to a solvable Lie

algebra,

then the hybrid system can be
stable with Aj=-= 3.3,

made exponentially
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Actually what the theorem says is that the

Lyapunov spectral radius can always be made
negative, more precisely -, if the two
conditions of the theorem are met. The first

condition, as discussed several times in [26], is
a necessary condition for the hybrid system to be
controllable, therefore, it is the weakest
controllability condition. This condition is the
strongest part of this theorem. However, the
second condition is quite restrictive and maybe

impractical.
4. CONCLUSION
The a.s. exponential stability criteria

presented in this paper are simple to compute,
consequently they alleviate the computational
shortcomings of Lyapunov exponents. However,
these tests are only sufficient and they can be
quite conservative, hence they require further

study.
The a.s. stabilizability theorem can be
viewed as a generalization of Wonham

stabilization theorem. Actually what the theoren
says is that the Lyapunov spectral radius can
always be made negative with probability one,
more precisely -=, if certain conditions are met.

One additional problem of interest is to
find wether the eigenspaces idea carries over to
hybrid systems and its usefulness.
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SINGULAR PERTURBATION IN PIECEWISE-LINFAR SYSTEMS!

B.S. Heck and A.B. Haddad
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Atlanta, GA 30332-0250

ABSTRACT

This paper analyzes piecewise-linear systems
which are singularly perturbed. A technique is
developed that allows decoupling of such systems
into fast and slow subsystems for analysis and
design. The results of a numerical example are
included to demonstrate this technique.

1. INTRODUCTION

Piecewise-linear systems which are singularly
perturbed are found in many applications includ-
ing electrical circuits and flight controls. The
piecewise-linearity may be due to nonlinear
elements such as saturation or may result from a
linearization about various operating points of a
nonlinear plant. These types of systems are
numerically very stiff and, hence, are difficult
to analyze. This problem may be alleviated by
using singular perturbation theory to separate
the system into reduced-order models, one
centaining the slow dynamics and one containing
the fast dynamics. Reduced-order models are
easier to use in analysis and design by lessening
the computation complexity. In addition, time-
integration of the lower order systems instead of
the full order model reduces computation time
since a larger time step can be used for the slow
dynamic model. The use of standard singular
perturbation techniques, however, requires that
the system dynamical equations be smooth [1,2]
ruling out their use on piecewise-linear systems.
This paper extends the general method of singular
perturbation for application to continuous
piecewise-linear systems.

1.1 Problem formulation

The system considered in this paper may be
represented in the following form:

x = £ ,(x,2), x(t,) = x4 (1)
ut = f:(xnz). z(to) -2z, (2)

where: £, and f, are continuous piecewise-linear

1

functions, u>0 is a small parameter, and xeRP and
zeRT. The functions are affine 1in specific

regions of the state space (Rp+r) wvhere a region
is typically defined as an intarsection of half-
spaces. For example, equations (1) and (2) are

represented in the ith

"linear" system:

region by the following

x = A;,ix + Alziz + v;i )
uz = A,lix + A,,iz + v,i (4)

For the purposes of this paper, the 1th region is
defined by the set S;={(x,z): d1_1< Kxx+Kzz F di)

where !‘ and Kz are rov vectors and d < di are

i-1
scalars. By this definition, the type of regions
allowed are parallel in that the boundaries do
not intersect. An example of a physical system
which has this description 1is one 1in which the
pilecewise-linear element is in a scalar feedback
loop. The reason for the restriction will be
discussed in Section 2.

The system given in equations (1) and (2)

contains both fast and slow dynamics. The
variable x is primarily slow while 2z has both
fast and slow components. Starting from the

initial conditions of equations (1) and (2), the
fast part of z quickly dies out and z converges
to a quasi-steady-state value (i.e., the slow
component) in a short time interval [t,,t,+5)
known as the boundary layer. The fast component
of z is then known as the boundary layer solu-
tion. The solution of the system outside of the
boundary layer 1is termed the outer solution. It
is desired to decouple system (1)-(2) into fast
and slow models which yield the boundary layer
solution and the outer solution, respectively.
The boundary 1layer solution is then used as a
correction term to the outer solution so that the
combination is an approximation for the original
system with errors of order O(u). A technique to
decouple the systam is developed in this paper.

The following is an outline of the paper.
Section 2 discusses the boundary layer solution
and developes a reduced-order model to approxi-

This research is supported by the U.S. Air Force under contract P08635-84-C-0273 (with the Armament
Laboratory) and AFOSR-87-0308.




mate this solution. The outer solution along
with a corresponding reduced-order model |is
di'scussed in Section 3. A numerical example is
presented in Section 4 to demonstrate the tech-
niques developed in this paper. Section 5 con-
cludes the paper.

2. BOUNDARY LAYER SOLUTION

The fast dynamics of the system are most
prominant during the boundary layer and can be
decoupled from the slow dynamics by introducing
an expanded time scale v = (t-t,)/u. Examina-
tion of equation (i) sh.oss that . stays rela-
tively constant with respect to t assuming that
A%, A, and w;? are bounded in all regions Sy
[1]. Equation (2) may be rewritten as follows:

dz -
el i(z) (5)
where z(t)=z(ut+t,) and ¥(Z)=f,(x,,2). The

function T is a continuous piecewise-linear
mapping from RF into RY. The state space in RT
is partitioned into regions where the function is
affine; e.g., the ith region is defined as the
set Ry={z: di; < Kox¥K,z 3§ di). A degenerate

case vhere K =0 results in the existence of only

one region in RY so that ¥ is affine everywhere.
The initial quasi-steady-state value, 2zg(t,), of
z(t) is a stable equilibrium point of (5). Note
that the equilibrium point of the degenerate case
is easily found.

The equilibrium point(s) of (5) for the
nondegenerate case can be found wusing solution
techniques developed for piecewise-linear resis-
tive networks. Many papers have been written on
finding the solution x of the equation f(x)=y
where f is a continuous piecewise-linear func-
tion, e.g. [3-9). Fujisawa and Kuh show in [4]
that a continuous piecewise-linear function
satisfies a Lipshitz condition. The following
theorem from [4] gives sufficient conditions for
the existence and uniqueness of the solution.

Theorem 1: Let f be a continuous piecewise-
linear mapping of RT into itself and let Jik
denote the matrix composed of the first k rows
and columns of the Jacobian matrix Ji in region
Ry. The mapping is a homeomorphism of RT onto
itself if, for each k=1,2,...,r, the determinants
of the kxk matrices

Jlk,lzk,....Jrk
do not vanish and have the same sign.

This previous work is wused in finding the
equilibrium point(s) of system (5) by solving
£(z)=0. In this application, J! = A,,1 and each
Az;l i3 assumed to be Hurwitz for stability
purposes. The conditions of Theorem 1 may be
stringent and various other sufficient conditions
for the existence and uniqueness of the solution
are given in [9-11). Also, reference [12)
discusses nonunique solutions.

2.1 Algorithm to Solve for Equilibrium Point

The Katzenelson algorithm is widely used
insolving for x in the equation

f(x) =y (6)

where £:RT-RT is continuous and piecewise-
linear. The basic outline of this algorithm used

in solving ¥(z)=0 is given below. More detaiis
of the general method are given in [4]. Let
Wl o= A,ljx°+vj ¥j, and denote the iteration

number on z4 and A by superscripts.

0) initialize by letting i=] and zsi-zo

1) solve z = -(A,zj)-le, where region Kj
contains zg

2) if z lies in region Rj then z; = z and step
3) otherwise, let R, be the region containing z;
if k>j then d = dj and then let j=j+l
if k<¢j then d = dj-l
4) solve Al = (Kzzs+xxx°-d)lxz(zsi-z)
5) solve zsi+1 = zsi - Ai(zsi-z)

6) let i=i+l and go to 1)

and then let j=j-1

It is shown in [4] that 1if the piecewise-linear
function is a homeomorphism (e.g., it satisfies
the conditions of Theorem 1) then the algorithm
will converge in a finite number of steps.

2.2 Boundary Laver Approximation

A fast model approximating the dynamics
occurring in the boundary layer can be found once
the equilibrium point of system (5) is known.
The boundary layer solution 1is then given as
zg(x) = z(1)-zg(ty). In this application, zg
must be found implicitly because f; is not
smooth. Therefore, the fast model approximating
Ehe boundarytéayer solution is given in terms of
z. In the i region the fast model is given by

g—: . A txg + At 4wt 2HO)=z, (D)

ze(t) = 2(x) - zg(ty)

vhere the ith region is defined by the set R;={z:
di .y <Kxo + Kz s d}.

For the purposes of this paper, it is assumed
that there exists exactly one equilibrium point
vhich is asymptotically stable. Multiple stable
equilibrium points may be handled by partitioning
the state space into domains of attraction for
the various equilibrium points and the analysis
in this paper holds for each domain of attrac-
tion.

Asymptotic stability is assumed in this system
though there is no known general method for
determining asymptotic stability of piecewise-
linear systems. Depending on the specific system
under consideration, a Lyapunov function may be
found. Another possibility {is to use standard
SISO frequency domain techniques or hyperstabil-
ity. PFor wusing hyperstability notions, system
(5) may be rewritten as




dx

vwhere A is chosen to be stable, B is the identity
I, and u is defined in the ith region  to be

umaAiZ+A, ix 4wt where  aAlmp,,l-a, If the
nonlinearity in the feedback loop satisfies the
Popov integral inequality, then the necessary and
sufficient condition for asymptotic stability is

that the transfer matrix (sI-A)"! must be
strictly positive real [13].

The errors in this approximation, which are
of order C(.), 2r2 due t> *hu substitution of x,
for x in (7) and in the definition of the
regions. Substituting x = x, + O(u) in (7) and
in Ry yields the system

£ . Ar (2 #0()) + Ap,tE + vty 2(0)=z, (9)
Ry = {Z: d;_ +0() < Kyxo¥K,Z 5 d,+0(u))
where Z represents the actual response. In the
interior of any particular region, both the

approximation and the actual model are linear.
Previous results on singular perturbation theory
in linear systems show that if z(<')=z(t')+0(u)
then z(t")=2(x")+0(u) for t"'>t' as long as both &
and z stay within the region. The problems that
may arise due to a boundary crossing are elimin-
ated if the class of systems allowed is restrict-
ed to those in which the vector field intersects
a boundary hyperplane at a large enough angle
(i.e. 0(u%)). In these systems if either Z or z
crosses into another region, the other must also
cross into that region. The resulting error in
the approximation remains of order O(u). These
conditions are summarized in the following
theorems. Note that the restriction placed on
the class of systems is sufficient and not
necessary for proving that the approximation
error is of order O(u).

Theorem 2: Let the vector field near a
boundary at d;=K,Z+K,x,+0(u) in the space RF be
given by

£(z) = Az)_i (x0+0(u)) + Azzi z+ Vziv (10)
Assume that £(Z) does not vanish near the
boundary. If f(z) intersects the boundary with
an angle of order O(u°), then the difference
between the solutions of (7) and (9) tis O(u).

Proof: Assume z crosses the d; boundary at
t and 2 has not crossed yet. Prior to crossing
z = z + 0(u). The normal vector of the boundary
hyperplane is given by n=K, /IK 1. Since f(z):n
= 0(u%), then

K (Ap, 1 (x,40(0)) + A0 2 + v, 1) = 0(u®). (11)
It follows that
Ky(As, 1 %o 4 4,0 2 + v, 1) = 0(u®) (12)
Define 3 and s by
5= Ky2 - dy' (13)
8 =Kyz - dy' + 0(u) (14)

& AZ + Bu (8)
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Assume s,s3>0.

where d,'=d;-K x,. For z to cross

the boundary, %% <0 where g% is given by expres-
sion (11). Correspondingly, %% < 0 where %% is
given by expression (12). At the boundary
crossing, S5(1')=0 so that K,z-d;'=0(u). It
follows that s(t')=0(u).

Since %3 =0(1:°) then z; = 0(u°). Hence, At=0(y)

since As=s(1')=0(u). Therefore, if z crosses a
boundary into a new region at t', then z must
also cross into the same region at a time t" such
that t"w<t'+0(y),

It remains to be shown that the time difference
of 0(u) in the boundary crossing has O(u) effect

on the solution. Let A = A,,i and AA = A,,j = A
where R; is the new region and t,<t’' be such that
both z(%,) and Z(t,) lie in region Ry. Then the

solution of (7) for =<' is

2(z) = 8(z,70)E(5,) +|  #(x,0)(8AE+A,, Ixgt, T )do
<
' . (15)
J'( ’(tto)(Azl Xotw, ) do
To

where #(x,t') = exp[A(x-<')]). Since the inte-
grands are bounded in both integrals and t"-t'
=0(y), equation (15) is rewritten as

31) = 0(x,1)3(x,) +I1“0(t,a)(AA2+Azljx,+vzj)da
h 4

<" { { (16)
+] #(x,0)(A;;, xotw,) do + O(p)
Ts

Similarly, the solution to equation (9) is found
to match the form of equation (16) exactly.
Hence, z(t)=z(1)+0(u). ®

Theorem 3: Eet the vector field near a
boundary at dy=K,z+Kyx, in the space RT be given
by

2(z) = Ay lxg + A1 2 4 w,i, 7)
Assume that f(z) does not
boundary. If P(Z) intersects the boundary with
an angle of order 0(u°), then the difference
between the solutions of (7) and (9) is O(u).

vanish near the.

Proof: The proof is very similar to that of
Theerem 2. The gist of the proof is to show that
if z crosses the boundary prior to a crossing of

Z, then Z must cross within a time of order O(u).
The time delay in crossing affects the error in
the approximation only by order O(u).

Using the results of Theorems 2 and 3 it is
seen that the errors in the approximation are of
order O(u). The restriction given in Section 1
that the regions of linearity be parallel is used
in the proof of the theorems but is not a neces-
sary condition. The difficulty is showing that
if a solution crosses & boundary near an inter-
section of boundaries then the approximation will
remain within an error of order O(u).




3. OUTER SOLUTION

A reduced-order model for system (1)-(2) is
developed below with approximation errors of
order 0(n) for the time outside of the boundary
layer. Assuming that the fast subsystem given in
equation (7) {s asymptotically stable to its
equilibrium point, the fast component of 2z is
negligible outside of the boundary layer.
Therefore, the variables of the reduced-order
slow model are x and the quasi-steady-state value
zg of z. Here, zg 1is the equilibrium pojnt of
(7) when x, is replaced with x. Hence, the
quaci-steadv-ctacs value of ¢ 15 a coucinuous
implicit function of x. (Continuity is shown
below.) The value of 2zg can be determined by
using the Katzenelson algorithm (see Section 2.1)
with x substituted for x,. The algorithm is
initialized with zs‘ equal to the previous value
of z4. Due to continuity, a small change in x
results in a small change in zg. Hence, in time-
integrating the system, generally only steps 0)-
3) are used to find a new z, at each time-step.
Continuity of z5 as a function of x is shown in
the proof of the following theorem.

Theorem 4: Let f£:R™RT be a continuous
piecewise-linear mapping defined in the 4%
region by

£(z) = Ay x + Ay, 2+ w,d (18)

If f is a homeomorphism then the equilibrium
point zg of (18) is given by a continuous
function of x

Proof: Since f is a homeomorphism, a unique
solution for zy exists for any x. Let x, be
given with resulting z. given by Zg,1-

Let S; denote the region of (x,,2g,;) in RPT,
Suppose (xl,zs ,) lies in the interior of region
Si. Then zg, ; can be written as

Zg,1 * ~(A2 )7 gt xy + D) 19

It is clear that zg is a continuous function of x
at x, supposing that there exists a 5>0 such that
(x,2g) 1lies 1in region S5 for all x such that

ix,-x1¢8. Defining M = Ky - Ky(A,;1) A, % and

dj' - dj + Kz(Azzi)'lvzi (for j=i-1,i), a 8 is

given by
8 = min [le(di‘-Hx,)l ' lM*(Hxx-di.l')l]

vhere Mt « WT(MMT)™. Therefore, z, is a contin-
uous function of x for all x such that (x,zg)
lies in the interior of a region.

Suppose x; 1is given so that (x,,z, ;) lies on a
boundary, say di-Kxx,+lzzs 1- Chooss x, close to
%, resulting in zymzy ,.  If (x,,fg,,) lies in
region S; then the above analysis is lppliad and
zg is considered to be continuous from the closed
halfspace in region Sy. If (x;,25,;) lies in
region Sy,), then

g1 = ~(A 117N 1 2, + Wity (20)

A consequence of the continuity of f is that

‘(Azzi).l(Azxi x, +w, i) 4
(A“:H'l)‘l(A“bH %, + ‘,zi*l) =0 21)

Adding equation (21) to equation (20), subtract-
ing the :=sult from (19) and taking the norm of
both sides yields:

lz5,1-25 20 = WA ) 1A G ox 0 s

1A ) A, hx, -x,0

Hence ~_ sgtisfles o Lipshitz condition in the
open halfspace in region Sj4y. Therefore, 24 is
continuous for x such that (x,z ) lies on a
boundary hyperplane. Thus, z5 is & continuous
function of x. B

The reduced-order slow model of system (1)-
(2) for t outside of the boundary layer, i.e.
>t 46, is given as follows:
b S A,lixs + Alziz, + vxi, xg(to)=x,  (22)
vhere £, is an implicit function of x and is
found using the Katzenelson algorithm.

The error in the approximation is <due
entirely to the fact that z=z +0{u}. This error
is analogous to the error of approximating x by
x, in the boundary layer solution. Therefore,
the effect of the error can be analyzed similarly
as i{n Theorems 2 and ) showing that the errors in
the solution are of order O(u).

4. EXAMPLE

The techniques previously described for
separating a pilecewise-linear singularly per-
turbed system are demonstrated on the example
below. The model represents a linear system with
a saturstion nonlinearity in the feedback loop.
Such types of wmodels sexist in both flight
controls and in electrical circuits. The system
is given by

X ® Ajx + Az -~ Bu (23)

HE = Agx + Ay,z ~ Byu (24)
sl o, 3 Kz < -1
u = { Kox4k,z, 4f | x+Kpz|s)
1, if EpxHiz > 1

where u=0.1. The parsmeter matrices are given as
follovs:

-3 0.8 R 0
"“'[o o] ‘12'[0.34501 51'[0]
-0.524 -0.465 0.262 0
B - 24508 - 8]

Iy = {1 0,861} K, = [1.220 0.310]

The initfal conditions are given as x(0) = z{(0) =
2. 3.1,

The substitution of u into (23)-(24) yields s
piecevise-linsar wmodel, with three regions:
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S;={(x,2) :Kyx+K, 2<-1}, S,={(x,2):|Kyx+K,z|51} and.
Sy={(x,2):Kx+K,2>1}.
in S,.

The reduced-order models given in the form of
equations (7) and (22) are used in finding the
time response. Comparisons between these results
and those obtained by time-integrating the full
order model are shown in Pigure 1 through Figure
4. Note that the approximation matches the
actual response very closely, i.e. within an
error of order O(u). The computation time for
the approximation was roughly one-third of that
for the actual system. Furthermore, as the value
of u decreasas, the approximation becomes more
accurate and che relative computation time
decreases due to the rnumerical stiffness in the
actual system.

5. SUMMARY

A singular perturbation technique is devel-
oped in this paper which allows for a decoupling
of a continuous piecewise-linear system into slow
and fast subsystems. Under the assumption of
asymptotic stability, the fast variable is found
to decay in the boundary layer to its quasi-
steady-state solution.’ This quasi-steady-state
solution is given by a continuous implicit
function of the slow wariable. The solution is
found using the finite step algorithm given *~
the paper. Sufficient conditions for the
approximation to be accurate to an order of O(u)
are given. The technique developed is success-
tully illustrated via a numerical examples.

REFERENCES

{1] p.v. Kokotovic, R.E. O'Malley and P.
Sannuti, "Singular Perturbations and Order
Reduction in Control Theory--An Overview,"
Automatica, vol. 12, pp. 123-132, March
1976.

{2] J.J. Levin, '"The Asymptotic Behavior of the
Stable Initial Manifolds of a System of Non-
linear Differential Equations,”" Tran. Am.
Math. Soc., vol. 85, pp. 357-368, 1957.

[3] J. Katzenelson, "An Algorithm for Solving
Nonlinear Resistive Networks," Bell Syst.
Tech. J., vol. 44, pp. 1605-1620, 1965.

{4} T. Pujisawa and R.S.
Theory of Nonlinear Networks,"

Kuh, "Piecewisu-linear
SIAM J.

Appl. Msth., veol. 22, pp. 307-328, March
1972,
[5] L.O. Chua, "Efficient Computer Algorithms

for Piecevise-Linear Analysis of Resistive

Networks," IEEE Trans. Circuits and Systems,
vol. 18, pp. 73-85, Jan. 1971.

[6] S.N. Stevens and P-M Lin, "Analysis of
Plecewise-Linear Resistive Netwvorks Using
Complimentary Pivot Theory,"” IEEE Trans.
Circuits and Systems, vol. 28, pp. 429-441,
May 1981.

The initial condition is

1726

{71

18]

-
)
.

(10])

1]

[12]

(13]

T. Ohtsuki, T. Pujissawa and S. Kumagai,
"Existence Theorem and a Solution Algorithm
for Piecewise-Linear Resistor Networks,"
SIAM J. Mathematical Analysis, vol. 8, pp.
69-99, Feb. 1977.

S.M. Kang and L.O. Chua, “A Global Represen-
tation of Multidimensional Piecewise-Linear

Functions with Linear Partitions,” IEEE
Trans. Circuits and Systems, vol. CAS-25,

Pp. 938-940, Nov. 1978.

Br2inboldt and J.5. Vandergcoafr, "Om
in RO," SIAM J.
680-689, Dec.

H.C.
Piecewise Affine Mappings

Appl. Math., wvol. 29, pp.
1975.

V.C. Prasad and P.B.L. Gaur, "Homeomorphism
of Piecewise-Lirear Resistive Networks,"
Proc. IEER, vol. 71, pp. 175-177, Jan. 1983.

M. Kojims and R.
ship Between Conditions
Mapping is 3 Home._orphism,”

Operations Research, vol.
109, Feb. 1980.

Saigal, "On the Relation-
that Insure a PL
Mathematics of
5, pp. 101-

S-M Lee and K-S Chao, "Multiple Solutions of

Piecevise-Linear Resistive Networks," IEER
Trans. Circuits and Systems, vol. CAS-130,

pp. 84-89, Feb. 1984.

Y. D. Landau, Adaptive Control - The Model
Reference Approach, Marcei Dekker, 1979.




50
3.50

) N
o P
o~ o~
2 &
- ~
> %
5 3
(=] o
8 8
o T =T —T 1 -] T y T 1
0.00 250 5.00 7 50 10 00 0.00 2.50 5.00 7.50 10 00
TIME (SEC) TIME (SEC)
Figure 1: Response of x, to initial condition for Figure 2: Response of x, to initial condition for
actual system (solid 1line) and approximated actual system (solid 1line) and approximated
system. system.
8 8
NW ’q
3] 2
~ o0
‘ e —
8 g
T G »
~N ~N
3 )
4 T
8 8
- 0 'l, \ T A Y
'0 00 250 5,00 7.50 10 00 0.00 2.50 5 00 7.50 1000
TIME (SEC) TIME (SEC)
Figure 3: Response of z, to initial condition for Figure 4: Response of z, to initial condition for
actual system (solid line) and approximated actual system (solid 1line) and approximated
system. system.

1727




Singular Perturbation in Piecewise-Linear Systems

B. S. Heck
A. H. Haddad

Reprinted
IEEE TRANSACTIONS ON AUTOMATIC CONTROL
Yol. 34, No. 1, January 1989

T-AC/34/1//23302




TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 34, NO. 1, JANUARY {989 87

Technical Notes and Correspondence

Singular Perturbation in Piecewise-Linear Systems
B. S. HECK AND A. H. HADDAD

Aostract—This acte analyzes plecewise-linear systems which are singu-
larly perturbed. A technique Is developed that allows deconpling of such
systems into fast and slow subsystems for analysis and design. The results
of a numerical example are included to demonstrate this technique.

1. INTRODUCTION

Piecewise-linear systems which are singularly perturbed are found in
many applications including electrical circuits and flight controls. The
piccewise linearity may be due to nonlinear elements such as saturation or
may result from a lincarization about various operating points of a
nonlinear plant. These types of systems are numerically very stiff and,
hence, are difficult to analyze. This problem may be alleviated by using
singular perturbation theory to separate the system into reduced-order
models, one containing the slow dynamics and one containing the fast
dynamics. The use of standard singular perturbation techniques, however,
requires that the system dynamical equations be smooth [1], (2] ruling out
their use on piecewise-lincar systems. This note extends ihe general
method of singular perturbation for application to continucus piecewise-
linear systems.

A. Problem Formulation

The sy35em considered in this note may be represented in the following
form:

2=fi(x, 2)
u2=fi(x,27)  z(t))=2o 2

where f; and f; are continuous piecewise-linear functions, 4 > O is a
small parameter, and x € R” and z € R’. The functions are affine in
specific regions of the state space (R”*") where a region is typically
defined as an intersection of halfspaces. For example, (1) and (2) are
represented in the ith region by the following linear system:

X(ly) = Xo )

2=Al x+ Al 24w (€))
nt=ALx+ALT+ W, @

For the purposes of this note, the ith region is defined by the set §; = {(x,
2):d;-) < Kex + K,z 5 di} where K, and K, are row vectors and d..,
< d; are scalars. By this definition, the type of regions allowed are
parallel in that the boundaries do not intersect. An example of a physical
system which has this description is one in which the piecewise-linear
clement is in a scalar feedback loop. The reason for the restriction will be
discussed in Section II.

The following is an outline of the note. Section II discusses the
boundary layer solution and develops a reduced-order model to approxi-
mate this solution. The outer solution along with a corresponding
reduced-order model is discussed in Section III. A numerical example is
presented in Section [V to demonstrate the techniques developed in this
note. Section V concludes the note.
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II. BOUNDARY LAYER SOLUTION

The fast dynamics of the system are most prominent during the
boundary layer and can be decoupled from the slow Jyuamics by
introducing an expanded time scale r = {f — fy)/u. Examination of (1)
shows that x stays relatively constant with respect to 7 assuming that 4,

Al;, and w! are bounded in alt regions S; [1]. Equation (2) may be
rewritten as follows:

d?
o =/(8) (%)

where 2(1) = z(ur + fo) and f(2) = f3(xo, £). The function / is a
continuous piecewise-linear mapping from R into R’. The state space in
R’ is partitioned into regions where the function is affine, e.g., the ith
region is defined as the set R, = {2:d,., < K.xo + K,2 5 di}. A
degenenate case where K, = O results in the existence of only one region
in R” so that /s affine. The initial quasi-steady-state value, z,{f), of z(?)
is a stable equilibrium point of (5). Note that the equilibrium point of the
degenerate case is easily found.

The equilibrium point(s) of (5) for the nondegenerate case can be found
using solution techniques developed for piecewise-linear resistive net-
works. Many papers have been written on finding the solution x of the
equation f(x) = y where fis a continuous piecewise-linear function, e.g.,
[3]-[9]. Fujisawa and Kuh show in [4] that a continuous piecewise-linear
function satisfies a Lipshitz condition. The following theorem from (4]
gives sufficient conditions for the existence and uniqueness of the
solution.

Theorem 1: Let f be a continuous piecewise-linear mapping ot R’ into
itself and let J| denote the matrix composed of the first & rows and
columns of the Jacobian matrix /' in region R,. The mapping is a
homeomorphism of R’ onto itself if, for each k = 1, 2, -+, r, the
determinants of the k x k matrices

T dboe i
do not vanish and have the same sign.

This previous work is used in finding the equilibrium point(s) of system
(5) by solving /(2) = 0. In this application, J' = A, and each A, is
assumed to be Hurwitz for stability purposes. The conditions of Theorem
1 may be stringent and various other sufficient conditions for the existence
and uniqueness of the solution are given in [9]-(11]. Also, [12] discusses
nonunique solutions.

A. Algorithm to Solve for Equilibrium Point

The Katzenclson algorithm is widely used in solving for x in the
equation

S(x)=y (6)

where f:R’ = R’ is continuous and piecewise linear. The basic outline of
this algorithm used in solving f(£) = 0 is given below. More details of
the general method are given in [4). Let W/ = A,/x, + w Vj, and
denote the iteration number on 2, and A by superscripts.
0) Initialize by letting i = 1 and z! = 2z,
1) Solve z = —(A%,)~'W/, where region R, contains z!.
2) If z lies in region R,, then z, = z and stop.
3) Otherwise, let R, be the region containing z;
Ifk > j,thend = djand thenletj = j + 1
Ifk <j,thend = d;,_;and thenletj = ; - |I.
4) Solve N = (K2, + K xo ~dy/ K (2} - 2).
5) Solve zi*! = 2/ — N(z} - 2).
6) Leti =i + 1and goto 1).

0018-9286/89/0100-0087301.00 © 1989 [ECE
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It is shown in [4] that if the piecewise-linear function is a homeomor-
phism (e.g., it satisfies the conditions of Theorem 1), then the algorithm
will converge in a finite number of steps.

B. Boundary Layer Approximation

A fast model approximating the dynamics occurring in the boundary
layer can be found once the equilibrium point of system (5) is known. The
boundary layer solution is then given as £,(r) = £(r) — z,(f). In this
application, z, must be found implicitly because f; is not smooth.
Therefore, the fast model approximating the boundary layer solution is
given in terms of £. In the ith region the fast model is given by

di_ . 5
d—T=,-1',,xo+A‘,_22+w'z i0)=2

L =E(r) - 2(t) Q)

where the ith region is defined by the set R, = {£:1d;_; < K,xo + K 4 5
d}.

For the purposes of this note, it is assumed that there exists exactly one
equilibrium point which is asymptotically stable. Multiple stable equilib-
rium points may be handled by partitioning the state space into domains of
attraction for the various equilibrium points and the analysis in this noie
holds for each domain of attraction.

Asymptotic stability is assumed in this system although there is no
known general method for determining asymptotic stability of piecewise-
linear systems. Depending on the specific system under consideration, a
Lyapunov function may be found. Another possibility is to use standard
SISO frequency domain techniques or hyperstability. For using hypersta-
bility notions, system (5) may be rewritten as

ds
2;=A2+Bu (8)

where A is chosen to be stable, B is the identity /, and u is defined in the
ithregiontobeu = AA'Z + Ai,xo + wiwhere A4’ = A%, — A.Ifthe
nonlinearity in the feedback loop satisfies the Popov integral inequality,
then the necessary and sufficient condition for asymptotic stability is that
the transfer matrix (s/ — A) ' must be strictly positive real {13].

The errors in this approximation, which are of order O(y), are due to
the substitution of xo for x in (7) and in the definition of the regions.
Substituting x = xo + O(y) in (7) and in R, yields the system'

s
T ALK+ O+ AT+, 0=z
R={2:d,.,+O(W<Kxo+ K2 5 di+Ou)} [©)

where Z represents the actual response. In the interior of any particular
region, both the approximation and the actual model are linear. Previous
results on singular perturbation theory in linear systems show that if Z(r’)
= 8(r') + O(u) then Z(r”) = (") + O(u) for r° > r’ as long as
both Z and £ stay within the region. The problems that may arise due to a
boundary crossing are climinated if the class of systems allowed is
restricted to those in which the vector field intersects a boundary
hyperplane at a large enough angle [i.e., #O(u)].' In these systems if
cither  or £ crosses into another region, the other must also cross into that
region. The resulting error in the approximation remains of order O(u).
These conditions are summarized in the following theorems. Note that the
restriction placed on the class of systems is sufficient and not necessary
for proving that the approximation error is of order O(u).

Theorem 2: Let the vector field near a boundary at d, = K, 2 + K,x,
+ O(u) in the space R’ be given by

S0 =AY X+ O + Al L+ Wi, (10)

Assume that f() does not vanish near the boundary. If /() does not
intersect the boundary with an angle of order O(i), then the difference
between the solutions of (7) and (9) is of order O(u).

‘A # Ou)isused tomean fAf/x ~ +masy = 0.

Proof: Assume £ crosses the d, boundary at r’ and £ has not crossed
yet. Prior to crossing Z = £ + O(u). The normal vector of the boundary
hyperplane is given by 1 = KI/||K,||. Since f(z)-n # O(g), then

KA} (xo+ O(u) + Ay f+ wi) 2 O(u). an

It follows that

K (Al Xo+ Algd+w) 2 O(u). (12)

Define § and § by

$=K2-d’ (13)

§=K.2-d! +0(n) (14)
where d/ = d, - K,xo. Assume §, § > 0. For  to cross the boundary,
ds/dr < 0 where d$/dr is given by expression (11). Correspondingly,
d$§/dr < 0 where d§/d7 is given by expressicn (12). At the boundary
crossing, §(r°) = Oso that K;Z - d; = O(u). It follows that §(r°) =
O(p). Since d§/dr £ O(u), then AS/Ar # O(u). Hence, Ar = O(u)
since AS = §(r’) = O(u). Therefore, if Z crosses a boundary into a new
region at r’, then £ must also cross into the same region at a time 7° such
that 7° = 7' + O(u).

It remains to be shown that the time difference of O(u) in the boundary
crossing has O(y) effect on the solution. Let A = 4, and A4 = A4, -
A where R, is the new region and let r; < 7’ be such that both £(r;) and
Z(7s) iie in region R,. Then the solution of (7) for r > 7' is

2r)=&(r, rp)E(ro) + S'. P(r, O}QAL+ A xo+ W) do

+ S B(r, oNALxo+wy) do (15)
0

where &(r, r') = exp [4(r — 7’)]. Since the integrands are bounded in

both integrals and r* — ' = O(u), (15) is rewritten as

) =d(7, 10)E(1) + S'. (r, oNAAL+ AL xo+ W) do

2

+ S' (7, o)A}, xo+ w}) da+ O(p). (16)
0

Similarly, the solution to (9) is tound ‘5 match the form of equation (16)
exactly. Hence, Z(7) = &(r) + O(u). | |
Theorem 3: Let the vector field near a boundary at d, = K, + K,x,
in the space R’ be given by
S =ALxo+ AL 2+ wi. an
Assume that f(Z) does not vanish near the boundary. If f(£) does not
intersect the boundary with an angle of order O(u), then the difference
between the solutions of (7) and (9) is of order O(u).

Proof: The proof is very similar to that of Theorem 2. The gist of the
proof is to show that if £ crosses the boundary prior to a crossing of Z, then
¢ must cross within a time of order O(y). The time delay in crossing
affects the error in the approximation only by order O(u).

Using the results of Theorems 2 and 3 it is seen that the errors in the
approximation are of order O(u). The restriction given in Section I that
the regions of linearity be parallel is used in the proof of the theorems but
is not a necessary condition. The difficulty is showing that if a solution
crosses a boundary near an intersection of boundaries, then the
approximation will remain within an error of O(u).

1. OUTER SOLUTION

A reduced-order model for system (1) and (2) is developed below with
approximation errors of order O(u) for the time outside of the boundary
layer. Assuming that the fast subsystem given in (7) is asymptotically
stable to its equilibrium point, the fast component of z is negligible outside
of the boundary layer. Therefore, the variables of the reduced-order slow
model are x and the quasi-steady-state value z, of z. Here, Z, is the
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equilibrium point of (7) when x, is replaced with x. Hence, the quasi-
steady-state value of z is a continuous implicit function of x. (Continuity is
shown below.) The value of z, can be determined by using the
Katzenelson algorithm (see Section II-A) with x substituted for xo. The
algorithm is initialized with z! equal to the previous value of z,. Due to
continuity, a small change in x results in a small change in z,. Hence, in
time-integrating the system, generally only steps 0)-2) are used to find 3
new z, at cach time-step. Continuity of 2, s a function of x is shown in the
proof of the following theorem.

Theorem 4: Let f:R™ = R" be a continuous piecewise-linear mapping
defined in the ith region by :

f(Q)=ALx+ AL z+wl (18}

If £ is a homeomorphism, then the equilibrium point 2, of (18) is given by
a continuous function of x.

Proof: Since f is a homeomorphism, a unique solution for z, exists
for any x. Let x, be given with resulting Z, given by z,.1. Let S denote the
region of (x, Z,,;) in R7*".

Suppose (x,, 2,,) lies in the interior of region S;. Then z,, can be
written as

z,,= —(AL) (A5 X+ wy). (19)

It is clear that z, is a continuous function of x at x, supposing that there
exists a5 > 0 such that (x, z,) lies in region S; for all x such that lx;, -
x| < & Defining M = K, - Ki(A L) 1AL and d] = d +
KAL) 'wi(forj =i - 1,i),adis given by

d=min ["M’(d;_Mxl)"l ﬂM'(Mxl-d,'..)"]

where M = MT(MMT)-!. Therefore, 2, is a continuous function of X
for all x such that (x, 2,) lies in the interior of a region.

Suppose x, is given so that (x;, z,,;) licson a boundary, say d; = K,x,
+ K,2,,. Choose x, close to x, resulting in Z, = Z;». If (x3, Z,2) lies in
region S;, then the above analysis is applied and g, is considered to be
continuous from the closed halfspace in region Si. If (xz, 2,2) lies in
region S, , then

s

.= — (AR ) Ay n+wih). (20)

A consequence of the continuity of f is that

—(AL) (AL x + W)+ (AR A L KW ) =0 QD)
Adding (21) to (20), subtracting the result from (19" and taking the norm

of both sides yields

is i+ i+ 1+1

2, =2 ll=l(A 5 )" Ay (xa=x) S a4y | flxy—x 1.

Hence, 7, satisfies a Lipshitz condition in the open halfspace in region
Si+1. Therefore, 2, is continuous for x such that (x, 2,) lieson a boundary
hyperplane. Thus, z, is a continuous function of x. ]

The reduced-order slow model of system (1} and (2) is given in the ith
region of R?, {x,;:d,., < K.x, + K.z, S d;}, as follows:

X=Alx+ AL 4w X=X e2))
where z, is an implicit function of x, and is found using the Katzenelson
algorithm. The actual variables, x and 2, are approximated by x, and , for
t outside of the boundary layer, i.e., t > lp + 5.

The error in the approximation is due entirely to the fact that z = g,
O(u). This error i- analogous to the error of approximating x by Xo in the
boundary layer solution. Therefore, the effect of the error can be analyzed
similarly as in Theorems 2 and 3 showing that the errors in the solution
are of order U ().

IV. EXAMPLE

The techniques previously described for separating 2 precewise-linear
singularly perturbed system are demonstrated in the ollowing example.

00

e —
730 10 00

(1]

0 00 a S0
TIME (SEC)
Fig. 1. Response of x, to initial condition for actual system (solid line) ard
approximated system.

The model represents a linear system with a saturation nonlinearity in the
feedback loop. Such types of models exist in both flight controls and in
electrical circuits. The system is given by

x=A x+A,2~-Bu (23)
‘LZSAHX“‘AHZ‘B;" (24)
-1, if Kx+Kz< -1
u={ K.x+K,z2, if [Kex+Kz) 51
i, if Kex+K,2>1

where 4 = 0.1. The parameter matrices are given as follows:

-3 4 0 o0 0
A“’[ 0 o] A"’[o.m o} B"[o]
0 -0.52 _046s 0262 . 1o

K.={1 0.861] K,={1.220 0.310).

The initial conditions are given s x(0) = z(0) = [2. 3.]".

This substitution of u into (23) and (24) yields a piecewise-linear
model, with three regions: §; = {(x, 2):Kx + K2 < ~ 1}, 5 = {(x,
2:|K.x + Kzl s 1},and S+ = {(x, 2):K,x + K,z > 1}. The initial
condition is in ;.

The reduced-order models given in the form of (7) and (22) are used in
finding the time response. Comparisons between these results and those
obtained by time-integrating the full order mode! are shown in Figs. 1-4.
Note that the approximation matches the actual response very closely,
j.c., within an error of order O(u). The computation time for the
approximation was roughly one-third of that for the actual system.
Furthermore, as the value of u decreases, the approximation becomes
more accurate and the relative computation time decreases duc to the
numerical stiffness 1n the actual system.

V. SUMMARY

A singular perturbation technique is developed in this note which
allows for a decoupling of a continuous piecewise-linear system into slow
and fast subsystems. Under the assumption of asymptotic stability, the fast
variable is found to decay in the boundary layer to its quasi-steady-state
solution. This quasi-steady-state :olution is given by a continuous implicit
function of the siow varicble. The solution is found using the finite step
algorithm given in the note. Sufficient conditions for the approximation to
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Fig. 2. Response of x; to initial condition for actual sysem (solid line) and
approximated system.
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Response of 2z, 0 initisl condition for actual system (solid line) and
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Fig. 4. Response of z; to initial condition for actual system (solid line) and
approximated system.
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be accurate to an order of O(u) are given. The technigue developed is
successfully illustrated via a numerical example.

2]

B
(4)
(3)

(6]

91
{10
(1]

(12)
(3]

REFERENCES

P. V. Kokotovic, R. E. O'Malley, and P. Saanuti, **Singular perwurbations and
order reduction in control theory—An overview,'* Aufomatica, vol. 12, pp. 123~
132, 1976.

1. 1. Levin, **The asymptotic behavior of the stable initial manifolds of a system of
nonlinear differential equations,’” Trans. Amer. Math. Soc., vol. 85, pp. 357-
368, 1957.

J. Katzenelson, **An algorithn for solving ponlinear resistive nerworks,** Bell
Syst. Tech. 1., vol. 44, pp. 1605-1620, 196S.

T. Fujisawa and E. S. Kuh, *‘Pieccwise-lincar theory of nonlincar networks,"’
SIAM J. Appl. Math., vol. 22, pp. 307-328, Mar. 1972.

L. O. Chua, “Efficient computer algorithms for piecewise-linear analysis of
resistive networks,"* [EEE Trans. Circuits Syst., vol. CAS-18, pp. 73-8S, Jan.
1971.

S. N. Stevens and P.-M. Lin, **Analysis >f pi linear resistive ks
using cu:aplimentary pivot theory,* [EEE Trans. Circuits Sysi., vol. CAS-28,
Pp. 429-441, May 1981.

T. Obtsuki, T. Fujisawa, and S. Kumsga, *‘Existence theorem and a solutica
algorithm for piecewise-linear resistor networks,'* SIAM J. Math. Anal., vol. 8,
pp. 69-99, Feb. 1977.

S. M. Kang and L. O. Chua, ‘A global representation of multidimensional
piecewise-linear functions with lineas partitions,’* JEEE Trans. Circuits Syst.,
vol. CAS-2S, pp. 938-940, Nov. 1978.

W. C. Rheinboldt and J. S. Vandergraft, **On pieccewise affine mappings in R*,"’
SIAM J. Appl. Math., vol. 29, pp. 680-689, Dec. 1975.

V. C. Prasad and P. B. L. Gayr, ** ism of piecewise-linear resistive
oetworks,”’ Proc. IEEE, vol. 71, pp. 175-177, Jan. 1983.

M. Kojima and R. Saigal, **Oun the relaticaship between coaditions that insure &
PL mapping is a b phism,”’ Math. Operat. Res., vol. §, pp. 101-109,
Feb. 1980.

S.-M. Lec and K.-S. Chao, ‘*Multiple solutioas of piecewisc-linear resistive
networks,’’ JEEE Trons. Circuits Syst., vol. CAS-30, pp. 84-89, Feb. 1984,
Y. D. Landau, Adaptive Control—The Model Reference Approach. New
York: Marcei-Dekker, 1979.

0018-9286/89/0100-0090801.00 © 1989 [FEE




APPENDIX G

B. S. Heck and A. H. Haddad, "Extensions of Singular Perturbation Analysis in
Piecewise Linear Systems”, Proc. Annual Conference on Information Sciences and
Systems, Princeton University, pp. 958-963, March 1988.




EXTENSIONS OF SINGULAR PERTURBATION ANALYSIS IN PIECEWISE-LINEAR SYSTEMsS!

B.S. Heck and A.H. Haddad

School of Electrical Engineering
Georgia Institute of Technology
Atlanta, GA  30332-0250

ABSTRACT

This paper continues the analysis of singularly
perturbed piecewise-linear systems. It provides a
less restrictive sufficient condition for the
validity of the singular perturbation analysis of
such systems. The paper also considers the
additional time-scale separation analysis required
by the existence of sliding modes. Finaily, the

effect of random inputs on such systems is exam-
ined.
1. INTRODUCTION
This paper addresses problems in piecewise-

linear systems which are singularly perturbed.
Such systems are found in many applications
including electrical circuits and flight controls.
The piecewise-linearity may be due to nonlinear
elements such as saturation or may result from s
linearization about various operating points of s
nonlinear plant. Singular perturbation theory is
used to separate the system into reduced-order
models, one containing the slow dynamics and one
containing the fast dynamics. Standard singular
perturbation techniques, however, are limited to
systems which are smooth [1,2]). Recently, singular
perturbation theory has been extended to certain
types of piecawise-linear systems, i.e., those with
continuous dynamics {3] and those with a scalar
quantized control ({4]. This paper extends these
earlier results. These earlier papers [3,4]
provided reduced-order models for the slow and fast
dynamics and theorems showing that thess models
approximate the actual system within an appropri-
ately small error. The theorems were based on
geometric ideas and were restrictive in their
applicability. The results are extended to include
the occurrence of a sliding mode in the quantized
control case. A new nongeometric criterion is
introduced for wusing singular perturbation in the
continuous piecewise-linear case. This criterion
is easy to use and the proof is straightforward.
Finally, the effect of random inputs 1is also
considered.

The remainder of the paper is outlined as
follows. Section 2 contains background information
summarizing the results of [3] and [4) and provid-
ing physical insight into the restrictions required
for using these results. theorems. Saction 3
discusses the effect of a sliding mode occurring in
the quantized control case. Section 4 contains a
new criterion for applying singular perturbation
theory. The random input analysis is contained in
Section §.

2. BACKGROUND MATERIAL

The two types of system analyzed

in (3,4] are
those which are continuous and those which are the

result of a quantized control. Both types of
systems may be expressed in the following form.

x(t,)=x, (n
z(t,y)ez, (2)

x=f,(x,2),

ut = £,(x,2),

vhere u is a small positive parameter and f; and f,
are piecewise-linear functions mapping from ROME ¢o
R and R®, respectively. The functions are affine
in specific regions of the state space (R"*M) uhere
a region is typicallz defined as an intersection of
halfspaces. The it re2ion is defined by the set
Sy={(x,2): d{_;<K;x+K,25d;)} where K, and K, are row
vectors.

The systems with continuous dynamics as
analyzed in [3] are those where the piecevise-
linear functions, £, and f,, are continuous Such
systams may be represented in the it region by the
following "linear" system:

x = A ix 4 a0z 401 (3
uz = Ay lx + Ay lz + w,ld (s)

The fast model yielding the boundary layer solution
is found . by introducing an expanded time-scale
t=(t-t,)/u. Equations (1) and (2) are expressed in
the t-time as

&

ic - uf (x,2), x(0)= x, (5)
£ .30, H0)m g, (6)
where z(t)=z(uz+t,) and X(t)=x(ut+t,). The

variable X is found to remain constant with respect

to t, so x(t)sx,. Equation (6) is then approxi-
mated as follows:
£ .1, 0w, (7)

dz

vhers F(Z)=f,(x,,2). The function ! is a contin-
uous piecevise-linear mapping from R® into R®. The
state space in R® {s partitioned into regions where
the function is affine; e.g., the ith cegion is
defined by the set Ry={z: d;.j<K;x,+K,25d;}. The
equilibrium point for t7) (i.e., the initial quasi-
steady-state solution, 2z,(t,)) is found using the
Katzenelson algorithm [31 The approximation for
the boundary layer solution, given by z-z (t,), is
found implicitly from the fast model dcfined in the
1th region of R® as follows:

1 This work is supported by the U.S. Air Force under contract AFOSR-87-0308.
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'dT - A,xix, + A,:ii + vzt (8)

The reduced-order slow model of (3)-(4) for t
outside of the boundary layer is given in
region of R7, {xg: d;_1<K;xXg+K,2,5d;}, as follows:

kg = Ay lxg + A iz ¢l xg(eg)ex, 9)
vhcrc.;s is a continuous implicit function of x and

is found using the Katzenelson algorithm.

Reduced-order models for systems with scalar
quantized control input are developed in [4]. It
was found that, without 1loss of generality, only
those systems need to be considered which satisfy
(1) and (2) with

£,(x,2) = Agx + Byu (10)
f,(x,z) = A;z + Byu (11)
u = Q(-K,x-K,z)

The quantizer function is defined as Q(-K;x-K,z)=cy
for (x,z) in the i%h region. It is required that
Ci<cy4)s do=-=, dp4y=+= and that A, be invertible.

A fast model for this system approximating the
actual solution in the boundary layer was developed
in a manner similac that for tha ccatlinuous
dynamics case described abovs. Using notation
introduced previously, the fast model is given
below.

gf = Aji + Byu; £(0)=z, (12)

u = Q(~K;x,-K,Z)

The boundary layer solution is given as Z(z)-zg,
where 2. is the equilibrium point of (12). Define
i®-A; *Bycj. Then 2z, can be written as & mapping

z
of Kixy, 2g=f(K,x,), where £(£) is as follows.

1) £(g) = -A;"1B,u, if K,=0 where u=Q(-£),

14) £(g) = z4, if K,=0
and d,8-K,2;-E<dj,) for some i, (13)

144) £(£) = (g+d;41)m, 1f K,20 and
'414.1":214.1 <E S -diﬂ-l,zi for some 1§
where m = (Zi+l’!i)llxz(li'zi+l)).

If there is no feedback from the fast variable,
then case i) holds. Case i) corresponds to an
equilibrium point z; lying inside its own regionm,
i.e. (x4,24)eS;. Case 1ii) corresponds to an
equilibrium point 1lying on one of the boundaries
between regions. Por case iii), the resulting
control switches rapidly between two values to
maintain the equilibrium. It was shown in [4) that
f is single-valued if K,A,"lB,<0; thersfore, this
assumption will be made in this paper. Nots that £
is a continuous function.

The quantized system given by (1)-(2) and (10)-
(11) is approximated outside of the boundary layer
by the solution to the following slow model:

kg ® Agxg ¢+ Byu; l.(t.)-i. (14)
u ® QK x <K 2.): g * £(K,x,)
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By the definition of £, it is seen that case iii)
spplies for (x4,24) lying on a boundary hyperplane
and case ii) applies othervise.

The approximation errors for the reduced-order
models (8), (9), (12) and (14) are shown under
certain restrictions to be of order O(u). In the
fast model of (8), the error is due to the substi-
tution of x, for x. The actual solution, Z, is
given by the system described in region R; as

L 0 0 Hxgt0(u) + Ay tE vt (15)
Ry = {Z: dy_ 1+0(u) < K xo4KyZ § dy+0(0)).

The following theorems from ({3] prove that the

approximation errort are of order O(u).

Theorem 1i: Let the vector field near a
boundary at d;=K,Z+K,x,+0(u) in the space R™ be
given by

f(i) = Azli(xo"'clv)) + Azzii + Vzi

Assume the f(Z) does not vanish near the boundary.
If £(z) intersects the boundary with an angle of
order O(u°), then the difference between the
solutions of (8) and (15) is of order O(yu).

Thecram 2: Let the vector field near =
boundary at d;=K,Z+K;x, in the space R be given by

£(2) = Ay ix, + Ag,12 + W, i

Assume that f(Z) does not vanish near the boundary.
If £(z) intersects the boundary with an angle of
order 0(u°), then the difference between the
solutions of (8) and (15) is of order O(u).

The gist of the proofs of these theorems is
that if the solutions of (8) and (15) both exist a
particular region of the state space, then the
error between them {s of order O(u) due to the
linearity. The problems that may arise at a
boundary crossing are eliminated due to the
restriction on the vecto- field. Thus, if one
solution crosses into another region, the other
solution must also cross into that region within a
time delay of O(u). The resulting error remains of
order O(u).

Theorems 1 and 2 may be directly applied to the
quantized control system to show that the error in
the fast model (12) is also of order O(u) since
continuity is not required in the proofs. The
approximation errors in both slov models (9) and
(14) are dus to the fact that zez,+0(u). This
error is analogous to the error introduced into the
boundary layer solutions; therefore, Theoreams 1 and
2 are applicable. The main consideration for using
the slov models is that the boundary layer solution
sust be stable so it is negligible outside of the
boundary layer. A further consideration is that g,
must vary slovwly with x  so that the fast dynamics
are not excited. This vas shown for both models
separately in [3] and [&].

The restriction in the hypothesis of Theoreas 1
and 2 concerning the angle of intersection is hazd
to satisfy in many cases. For example, the angle
of intersection described in Theorem 2 is found
from the inner product of f£(z) and the normal to
the surface, n=K,l/1K,). Hence, it is required
that




Ka(Ag 1x, + A, i2 + wyl) = 0(u%) (16)

near the boundaries. Note that the’ boundary
hyperplanes are parallel; all are given as trans-
lates of the null space of K, in RO.

We novw define a new variable y by
y =&+ (M) gtz + v, D).
Then the condition in (16) becomes
KaA, .ty = 0(u?).
along the boundaries defined by
Kiy = dy'; dy' = di*‘:(kz:1)-1(A111*o*':1) + K;x,

If X,20, and since A,,! has full rank, the condi-
tion will fail only in the O(u) neighborhood about
the intersection of the null space of K,A,,i and
the boundary. Note that this intersection {is an
m-2 dimensional manifold on which the vector field
is exactly tangent to the boundary. (If A,,! does
not rotate the domain space, e.g. if A,,;’=-I, then
there i3 no intersection.)

Hence, the use of Theorems 1 and 2 in showing
that a particular system approximation is valid,
almost requires knowing tha solution beforehand.
Unless A;; has special properties mentioned above,
there exists at least one point of tangency on
every boundary. If the vector field is continuous,
then there exists only one point of tangency. If
the vector field is discontinuous at the boundary,
then there are two distinct points of tangency, one
for each side of the boundary. The points in the
space where the condition of the theorems fajls
form a set of measures O(u) in the space. Whether
the solution of the system is in this set depends
on the initial conditions. However, note that this
condition is sufficient but not necessary for the
approximation error of the reduced-order models to
be of order O(u).

3. SLIDING MODE EQUATIONS

The previous results on singular perturbation
of systems with quantized control do not account
for the possibility of a sliding mode to exist on a
switching boundary. Sliding modes may occur in any
system in which the dynamical equations are
discontinuous. Much research can be found on this
topic under the more general title of variable
structure systems, see for example [5]. The term
“"sliding mode"™ characterizes the bshavior of a
system vhen the vector fields on both sides of a
switching boundary point towards the boundary. A
tepresentative point is directed tovards the
boundary from both sides and, therefore, is forced
to move (or slide) along the boundary. Because the
system is constrained to lie on a surface vith
saaller dimension than the space, a reduced-order
system may be obtained. Often, the resulting
reduced-order model has many properties such as
robustness and {nvariance to disturbance which
nwakes it attractive to control system designers

[5].

In a physical system with discontinuous
control, a representative point does not actually
travel along the switching curve, rather, it
"chatters" along the curve. The chatter is caused
because an actuator cannot switch instantaneocusly.
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It may switch with a time-lag or may act as a
$irst-order filter so that & representative point
actually crosses the switching boundary into the
other side before the control switches to direct it
back again. In systems which are linear with
raspact to the control, the limiting behavior of
chattering as the time-lag goes to zero is the
sliding mode where the switching frequency goes to
infinity [S]. Tor the purposes of this paper, the
time-lag for switching is assumed to be of order

0(e) where c<<u. In this way, the actuator
dynamics are much faster than the fast system
dynamics. ~(If this was not the case, then the

original model (1)-(2) would be inadequate.) Thus,
the system displays three time-scales, two of which
(t and t) are of interest. Therefore, setting e=0
yields the ideal sliding mode equations.

The previous theorems proving the that the slow
and fast models approximate the actual singularly
perturbed system with quantized control are naot
applicable when sliding occurs. These proofs
relied on the time delay between boundary crossings
of the actual solution and of the approximated
solution to be of order O(u). Each solution then
spent a nonzero length of time in a particular
region where the linearity properties kept the
approximation error to be of order O(u). When
sliding occurs, the consecutive time spent in any
one region is zero and the number of boundary
crossings in any finite time interval is infinite.
Therefore, the phenomenon of sliding omust be
handled separataly.

The proof of the following theorem shows that
{f sliding occurs in the fast time-scale, then the
approximation error remains of order O(u). The
case of sliding in the normal time-scale will
follow as a consequence of this.

Theorem 3: Given the system in (5)-(6),(10)-
(11) and the approximation in (12) where the vector
fields on each side of a switching boundary
intersect the boundary with an angle of 0(u?), if
either of the systems is sliding along the boundary
and if K,B, is invertible then the approximation
error, z(t)-z(t), is of order O(u),

Proof: It is clear from the proofs of Theorem
1 and 2 that if either the approximation or the
actual system is sliding then the other system must
also be sliding. Hence, it suffices to show that
the solutions of the sliding modes of the two
systems differ by O(n). The method of equivalent
control [5] will be used to find the sliding modes
of the systems. Let the sliding surface for the
approximation be given by seK x,+K,z-d;=0. If the
system is sliding, then ds/dt = 0.

ds 8
e Kags ] (17)

The substitution of (12) into (17) yields
Ky (AsE + Baugg) = 0
vhere the equivalent control, Ugqs can ba solved as
Ueq * -(K,B) " 1K;A4E (18)
We nov substitute u,, for u in (12) to obtain the
sliding mode equations:




& .o (19)
42 | (), - B,(K:B) KoAp)E (20)
dt 2 2 2V2 282

with the constraint that K;xq+K,Z-d =0.

The sliding mode of the actual system sliding
on the surface s=K x+K,Z may be similarly obtained
using - (5)-(6) and (10)-(11). The equivalent
control is found to be

ugq = -(K;B; + UK Bo) MK ALE + uK,AGR).

The substitution of u,, for u in (10) and (11)
yields the sliding mode equations:

L uhg - uBy (KB B) AR (51
-1 -
- - MBQ(K:B:NK;SQ) K,A;)z
dz -1 -
ﬁ = -pB,(K,B,+uk,B,) KIA::; ) (22)
+ (A; - By(X;B,+uK,Bo) 'K A,)2
with the constraint that K x+K,2z-d;=0. Note that

(21) and (22) along with its constraint are regular
perturbations of the sliding mode equations for the
approximate system (19) and (20) with its con-
straint. Hence, the error between the solutions is
of order O(u).

A sliding mode naturally occurs in the normal
time-scale every time a boundary hyperplane is
crossed. Prior to a boundary crossing in the t-
time, t 2 slow mndel has arrors of order 2/.), and
the quasi-steady-state solution, zg, is given by
case ii) of the definition of f in (13). When the
solutions x, and zg hit the boundary, the condi-
tions for using case {ii) are satisfied to find z,.
As mentioned in Section 2, the control begins
switching rapidly to maintain that value of z,. 1In
essence, the system satisfies the requirements for
sliding in the t-time but has reached the quasi-
steady-state solution of z;. This can be verified
by noting that the value of z, given in case iii)
is an equilibrium point of the sliding mode
equation in the fast time (20). Note that since
the boundary layer solution was negligible prior to
sliding and the switching occurs very quickly (on
order of 0(¢)), the boundary layer solution remains
of order O(u). Since 24 is continuous with respect
to x4, the conditions of case 1ii) in (13) are
satisfied for a nonzero 1length of time in the t-
time. Hence, the system must slide in the normal
time-scale.

The sliding mode in the t-time 1is found from
the quasi-steady-state equivalent control of the
fast system. - Replace t with =z, in (18) and
substitute ugy in (18) for u in (14) to yield

&g * Ayxg = B,(K;B) 'KoAze, (23)
Since the solutions lie on & boundary, g, as
dafined in case {1i) of (13) may be substituted

into (23). The resulting equation 1is the sliding
mode in the normal time-scsle,

kg = A,x, + KXy * Bodiy; (24)
KA, 1B,

valid on the K x +K,z,=d,,; surface.
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4. APPROXIMATION ACCURACY

Theorems 1 and 2 are restrictive
application due to the requirement that the vector
field cannot cross a boundary tangentially. The
following theorem for continuous systems provides a
condition for the accuracy of the approximation
that 1{s easier to use and removes the above
restriction. First, the system i{s reformulated and
two preliminary results are given.

in their

Let (3) and (4) be written as
X ® A x + A,z ¢+ g,(x,2) (25)
uz = Ay,x + Az + g,{(x,2) (26)

vhere Ay, =A%, A ®Au,% Ag mA;; %, AppmAg,° (the
parameter matrices in the i=0 region), and g,(x,z),
g:(x,z) are piecewise-linear functions defined in
region i as

pi(xez) = (At - A, x4 (A, - 4,02 + 0t
820x,2) = (Ag,d = Ay, %)% + (A1 - Ay,%)2 + v, i

Lemma 1: If A,. in equation (26) is stable,
then there exists real gositive numbers K and ¢
such that ler22t1 5 Ke™®t, For procf, see [6].

Lemma 2: If a function, g,(x,z), is piecewvise-
linear, then it satisfies a Lipshitz condition,
{i.ea., there exists a positive real number k such
that

18:(x,2)-g, (%, E)1 3 K| [:] - [i‘] |

Por proof, see [7].
We now state the main result:

Theorem 4: For & continuous piecewise-linear
singularly perturbed system, the error in the
spproximation given by the fast model (8) is of

order O(u) 4if k¥,%X and o as defined above satisfy
kKso.
Procf: The actual system is given in the fast

time-scale, t=(t-t,)/u, by

%% = uA;x 4+ ouAg,z +oug;(x,2)

%f ® Agx + Ag,z + g,(x,2)
(For simplicity of notation, z is denoted as z and
X as x.) The fast model approximation can be

similarly given by

-0

28 2%

= Ak +Ay,E +g,(R,2)

Lot @,(x) = x(x)-2(<) and e,(x) = 2(x)-z(1), then
the followving differential equation can be written.

d.1/dt] -0 0 |[o] & u(A,,x+A,,z+11£x=z))]
de,/dz Az Ajz]les 8:(x,2) - g,(x,2)
The following solutions are obtained.

0.(2) = 0,(0) + u [:(A,,x(.)+a,,-(.)4,,(:.;))4.




0:(3) = -Ayy H(I-a"11%IA 0, (0) + e*22%,(0)

+ u]’:-A,,"(x-.‘u‘n,l(Al,x(s)ﬂuz(-)m(x.z))as‘
+ I: cA”(‘.’)(gz(x.z) - ga(x,z))ds.

It is given that ¢,(0) and ,(0) are of order O(u).
For finite <t and bounded parameters, e,(x)=e,(0)+
O(u)=0ix). Similarly, the first integral in the
second exprassion is O(u). Using Lemma 1) from
above, it can be shown that

10:(x)1 s ke Cle,(0)1 +
KIt .-0("’)lgz(x.z)-gz(i.i)Ids + 0o(u).
o
From Lemma 2) and the fact that

|‘1| $ lo,1 + o),
®

the following expression can be obtained:

e 1o, (t)1 5 Kl (01 + kKJ:!°’[l011+lo,l]ds + 0(u)

This is reduced using the results from [6] to
"o, (1§ (Ko, (0)1 + 0(w)]e KT,

which finally yields

-(o-kK)t

lo,(t)1 § Kie,(0)le + 0(u).

Hence, if kKSo, then lw,(t)1 is of order O(u).

The application of this theorem requires
obtaining values for k, K and o. Results from (7]
can be used to find a minimum value for k.

k = maxiA,, 1-A;,, Aj,t-Ag,0

where 1Al is the maximum singular value of A. The
following three methods may be used to find values
for K and o given 1eAT1 § Ke T where A is stable.

1) If A is diagonalizable to A such that A=M=1aM,
then

1 1 Lad

1ef% s i s i lie”

wvhere -0 is the larzest real part of any eigenvalue
and K=gM~lypmy,

2) Reference [8] shows hov to obtain the following

values.

Let B(A) = max Xj(ézé » vhere 14 is an eigenvalue
2

then o=-8(A) and K=l,

3) Lat B=TAT"l, then K=ITIIT"!1 and o=-3(B) {9].

Thus, Theorem 4 may be applied without prior
knovledge of the solution.

3. RANDOM INPUTS

The effect of a random input- on the singularly
perturbed continuous plecevise-linear model is now
considered. The stochastic model msy be repre-
sented by the following form.
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dx = f;(!.l)dt + ‘;dup X(t.)-’!' (27)
udz = f,,(xdde + £,,(x)zdt + Jig,dW, z(t,)ez, (28)

vhere: x and z are scalar variables; W represents 3
Wiener process with variance parameter Q; g, and 8:
are constants; and f,, f., and f,, are continuous
and plecewise-linear. As in the detemministic
case, the state space 1s partitioned into regions
vhers the functions are affine. Note that the
noise input to the second equation is scaled to
preserve the well-posedness of the fast tipe
problem. See {10] for a discussion of this problem
in linear singularly perturbed systems.

The behavior of the system in the t time-scale
is evaluated by expressing (27) and (28) as

di = uf,(%,z)dt + Vg, dv, x(0)wx, (29)

dz = £,,(X)dx + £,,(X)Zdt + g,dW, z(0)=z, (30)
vhere W is nov defined as a Wiener process in the
t-time. It is shown below that this system may be
approximated by a reduced-order (fast) model of the
following form:

dz = £,,(x,)dt + £,,(x,)zdt + g,dW, z(0)=z, (31)
Note that this system is completely linear.

The analysis of the fast system focuses on the
propagations of the conditional joint probability
density function and its corresponding character-
istic function. Define the conditional joint

probability density functicn as p(x,z.t|x,,2,,0)
and the characteristic function as

&(vw,v,t]xy,2,,0) = II ej("x+VZ)p(x,z.t|x°.z°,O)dxdz

vhere
p(x,z,t|x,,2,,0) =

=k He‘J(wx+vz)°(u,v'tlx°’ZO,o)dudv

Because the system is piecewise-smooth, a Fokker-
Plank equation which holds almost everywhere may be
derived to obtain the conditional density function.

2w - (£, (04£,,(02)p) 4

2
%!zzq %;z p+ o(ud) a.e. 32

vhers pep(x,z,t|x0,%,,0). The propagation of the
characteristic function is derived from (32) as

3 . II o JCumtve) 2

3t E [(fn(X)*-f”(x)z)p]dxdz

+ 3% H SO 2 parae + o(ud) (33)
It is shown below that a solution to this equation
is
O(V.V.‘!lxg.z..0)-0‘1""5(".!'!..:..0) + O(Hi) (36)

or, equivalently,




p(x,2,%[X0.20,0)=8(x~x0)p(2,t]|Xe,20,0) + O(ud)

where p(z,t|xg,2,.0) is the conditional probability
density function of the fast wmodel (31) and
&(v,t}xy,2,,0) is 1its corresponding characteristic

function.
The Fokker-Planck equation for the fast model
(31) is
B 2 Lq(s,,(x)4E:,(x0)2)P) +
1 a2 . (35)
533’03;, p a.e.
where p = p(z,t|x,,2,,0). An equation for

&(v,t{x,,25,0) is obtained from (35) as

g—z -{Ojvz g_z[(le(xq )*fn(x,)z)i]dz

2 -
+ %gz’Q I.ejvz %;,p dxdz (36)

The substitution of (34) into (33) yields an
equation which {s a regular perturbation of (36),
thus proving (34). Hence, the fast model (31) is a
valid approximation of the original system in the <

time-scale.

Suppose that the system is stable so that it
reaches a steady-state in <. The steady-state
probability density function pg(zjx,) can be found
from (35) to satisfy

(fu(xo)"'f:z(xo)l)l;s - %gzzQ 2z Ps  a-e. (37)

Due to 1linearitv, 1€ the input is Gaus<i=wn, ﬁs is
conditionally Gaussian. ‘inis steady-state model
may be used to develop a reduced-order slow model
valid in the normal time-scale.

6. SUMMARY
Previous results on the singular perturbation
of piecevise-linear systems are extended in this
paper. Sliding mode equations are developed in
both the normal time- and the fast time-scales for
the case of the quantized control. It 4s found
that the occurrence of a sliding mode does not
affect the validity of the time-scale separation
procedure given in an earlier paper. A nevw,
nongeometric theoram is given to prove that the
approximations developed previously for the
continuous dynamics case are accurate to within an
error of order O(u). This theorem is sasy to apply
and is less restrictive in {ts assumptions.
However, becauss all tha theorems provide suffi-
cient but not necessary conditions, none supercedes
the othars. TFinally, the effect of a randow input
on & particular continuous piecevise-linear system
is analyzed. A reduced-order model approximating
the system in the boundary layer is developed.
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ABSTRACT

The effect of random inputs on a continuous piecewise-linear
singularlv perturbed system is investigated in this paper.
Reduced-order models are developed for a second-order system (one
fast and one slow variable) which has a random input. It is shown
that the solutions of the reduced-order models approximate the
actual solutizn with differences in probability density functions
of order O0(u2) (in a distributional sense). For the special case
of a system which is linear in the fast variable, it is shown that
the mean-squared error between the approximate and actual
solutions in the fast time scale is of order O(u). An outline is
provided for the extension of the results to the vector variable
case.

1. INTRODUCTION

A system inherently possessing both fast and slow dynamics

can often be simplified by using singular perturbation theory to
separate the system into reduced-order models, one containing the
fast dynamics and one containing the slow dynamics. The standard
theory, however, is restricted to systems with smooth dynamics [1-
3]. Recently, this theory has been extended for deterministic

systems to piecewise-linear systems [4,5]. Piecewise-linear




singularly perturbed systems appear in many applications including
flight controls and electrical circuits. The piecewise-linearity
may occur from a piecewise-linear element such as a saturation or
dead zone or may occur as a result of a piecewise-linear
approximation of a nonlinear system. It is desireable to extend
singular perturbation theory to piecewise-linear systems with
random inputs.

Reduced-order models for linear singularly perturbed systems
with Gaussian random input have been developed in [6,7] for
filtering, smoothing and control purposes. The filtering problem
for smooth singularly perturbed nonlinear systems with wide-sense
stationary random input 1is discussed in {8]. Reduced-order
filters are designed for the smooth nonlinear system corresponding
to the fast and slow dynamics. This paper extends the previous
work on singular perturbation theory in piecewise-linear systems
to the case of random inputs for possible use in filtering,
smoothing and stochastic control. An example of this application
is a singularly perturbed piecewise-linear flight control system

which has random wind disturbances.

1.1 Problem Formulation

The system investigated in this paper is continuous and
piecewise-linear with a random input. Since the resulting system
is nonlinear, the model is written in terms of coupled Ito

differential equations:

dx

fl(X,Z)dt + gldw (l)

udz = £5(x,2z)dt + JugpdW (2)
where: x and z are scalar variables; W represents a Wiener process
with variance parameter Q; g; and g, are constants; f; and f; are
continuous and piecewise-linear functions. As in the
deterministic case studied in [4], the state space is partitioned

into regions where the functions are affine. Let the system be




th

defined in the 1 region as follows:

dx = Ay ixdt + Ajoizde + gaw (3)

udz AZIixdt + Azzizdt + J:gzdw (4)
The superscripts simply denote the region number. For simplicity,
the regions are reétricted to be nonoverlapping, nonempty and
parallel. By parallel, it is meant that the boundaries of the
regions are parallel hyperplanes.

The random input to the fast subsystem is assumed to be
scaled by Ju so that the well-posedness of the problem is
preserved. It has been shown by Khalil et. al. [9] that the well-
posedness is questionable unless the white noise input to the fast
variable is scaled by a factor of order O(u®) where 0<as} or wide-
band noise is wused instead. The problem occurs with unscaled
white noise because as p»0 the bandwidth of the fast subsystem
approaches infinitity, so that the fast variable acts like white
noise in the normal time-scale. This is valid as an input to the
slow model but not as a dynamic process itself. Scaled random
inputs, however, do not exhibit this problem.

The outline of the paper is given as follows. In Section 2,
the behavior of the system in the fast time scale is discussed.
A1so, a reduced-order model is developed which is wvalid in the
fast-time scale. Similarly, a reduced-order model is developed in
Section 3 to approximate the slow dynamics of the system with
respect to the normal time-scale. The cvtension of the second-
order analysis to higher order systems is outlined in Section 4.

Concluding remarks are included in Section 5.

2. FAST SUBSYSTEM

The behavior of the system in the fast time-scale is

investigated below. At each sample tiae, t;, of the normal time
scale, the fast subsystem may be evaluated. Define the expanded

time variable by <t=(t-t;)/p and restrict the samples so that




tj41-t; is large relative to u. The original system in (1)-(2) is

reformulated in terms of © as follows

dx

nfy(x,z)dt + J;glda; x(0) (5)

L}
el
)

dz = fo(kx,z)dt + godW; z(0) = z, (6)
where ﬁ is now defined as a Wiener process in the 1t time-scale
given as W(t)=u%W(ut). It 1is shown that this system may be
approximated by the solution to a reduced-order (fast) model of

the following form:

dz = £2(x0,2)d + gzdi; z(0) = z, (7)

x(1) = x,

The proof that the resulting approximation error is of order
O(u) focuses on the propagations of the conditional joint
probability density function and its corresponding characteristic
function. Define the conditional joint probability density
function for the solution of (5)-(6) as p(X,z;1t}x,,20;0) and the

characteristic function as

0
O(v,w;T|x0,2030) = JJ eJ(vx+wz) p(x,z;1]%,,24;0)dxdz (8)
where

P(x,2z5t|x,,2430) = Z%E JJ e -J(VX+wz)¢(v,w;t|xo,zo;O)dwdv (9)

Because the system 1is continuous and piecewise-smooth, a
Fokker-Planck equation which holds almost everywhere may be
derived to obtain the conditional joint probability density

function:




3 2
) 75 [f,(x,2)p] + % g,°Q %;zp o %; [£,(x,2)p] +

(10)

1 2g 32 p i3 3 _p 1.3 3 p
7 W8 Qg2 5 MEgy8Q e B+ 5 weBRoR g a.e.

where p = p(x,z;tlxo,zo;O). The equation holds everywhere except
for the set of measure zero where the dervivative of fl and £, do
not exist. The initial condition (in a distributicnal sense) and

auxilary conditions are

p(x,2;0)x,,2030) = 8(x-%,)8(2-24);

e (11
p 2 0 and j[ p dxdz =1

- Q0

(For a discussion of the derivation of the Fokker-Planck equation,
see Wong [11).)

Examination of (10) shows that the propagation of p is
relatively insensitive to the variation of x. Since this 1is a
linear partial differential equation, the methods of Kato [12] can
be used to show that the solution of (10) can be approximated by
the solution of the following equation with errors in the solution

1 . . .
of order 0{u2) (in a distributional sense).

$a = - L f,(x,2)p,) +

3~ Y a.e. (12)

1 2 p
2 8 Q 3z2 a
where pa=pa(x,z;t|xo,zo;0). The initial and auxilary conditions
remain the san¢ (again, the initial conditions are defined in a
distributional sense):

Pa(x,2;0[%0,24;0) = 8(x-%4)8(z-2,);

40
P 2 U and JJ py dxdz =1




Hence, p = py + O(u%) in distribution.

To remove the consideration of the differential equation
being defined almost  everywhere, the propagation of the
characteristic function 1is introduced. Denote the characteristic
functiorn of Py as ¢a(v,w;t|xo,z°;0) where a characteristic
function is define. in equation (8). Then an expression yielding
the propagation of ®,(v,w;t|%,,2,350) can be found from (12) by
first multiplying both sides of the equation by eJVX*J%Z and then

integrating with respect to x and z.

40
od jvx+jwz ) 1 82
% - -2 i, 2492
v JJ e [ Y [fz(x,z)pa] + > 8 Q azzpa] dxdz (14)

- co

The values of the derivatives can be assigned arbitrarily for
points in the set of measure zero where the derivative is not
defined. Since the righthand-side of (12) multiplied by eJVXtjwz
differs from the iIntegrand in (14) on a set of measure zero, the
right-hand side of (14) is equal to the integration with respect
to x and z of the right-hand side of (12) multiplied by eJjvxtjwz
(for proof, see [13]). The corresponding initial condition is
¢a(v,w;0|xo,zo;O)=ejvx0ejwzo and the auxilary conditions
correspond to (13), i.e., ,(0,0;1]x,,2,;0)=1.

Similar to the case for the actual solution, a Fokker-Planck
equation .an be derived to find the conditional probability

density function for the approximation given in (7)

0 é - 1 32 -

3% = - [fz(xo.z)p] + 3 gzzQ 322P a.e. (15)
where p = p(z;t|x.,2,;0). This is subject to the following
initial and auxilary conditions:

40
p(z;1]%,,2430) = 8(z-2,); p 2 0 and J p dz =1 (16)

-0




Denote the characteristic function for p as ®(w;t|x4,2,30). The

propagation equation for é(w;tlxo,zn;O) is found from (15) to be

% _ jwz _ 8 - 1 2 Qi “]
at Je [ 3z Lfp(x0,2)Pl + 58,%°Q 572p | d2 (17)

-0

where the initial condition is 6(w;0|x0,20;0)=ejwzo‘

A comment can be made about the steady-state value of p. It
is assumed that the system in (7) is stable so that a steady-state
solution for p exists. It can be found by setting the time
derivative to zero in the Fokker-Planck equation. The steady-

state can then be solved from the resulting equation:
=1 = L1, 208
[f,(x0,2)p,)] = 3 8,°Q 57 P, a.e. (18)

where p, = Po(z}x,). Note that p. can be considered as a function
of x,, but continuity of that function is not guaranteed.

It can now be shown that the joint probability density
function given by the solution to (12) is equal to p =8(x-x,)p,
or, equivalently, ¢a=ejvx0$. The expressions for p, and &, are

substituted into (14) to yield

%; [fz(x,z)é(x-xo)ﬁ]

- 4o
3 jvxe _ JJ QI VE+iwz [_
9t

+

82 -
gzzo 3;2[6(x-xo)p]] dxdz (19)

N jr—

Integration with respect to x yields

3% ejwo =

L o
jvx, jwz [_ 3 - 1,232 -
- e J e [ 32 [fz(xo,z)p] + 5 8,%Q 325p| dz (20)

-

Since the pair (p,®) is a solution to (17) it must also be a




solution to (19). Therefore, p,=6(x-x,)p and ¢a=ejvxo&_

Finally, the assertion that the probability density function
of the solution to the approximate model differs from that of the
true solution by factor of order O(uﬁ) is proven in a
distributional sense. Since p=pj + O(u%) (in distribution), the
results of the preceeding paragraph imply that p=6(x-x,)p + O(ué)
(in distribution). Correspondingly, =eI V%00 + 0(4). Hence, the
statistical moments of the true solution and the approximation

differ only by an error of o(ud).

2.1 Systems Linear in z

It can be further shown that for a system which 1is linear in
z, the mean-squared error between the actual solution and the
approximate solution is of order O(u). A continuous piecewise-

linear system that is linear in z has the following form:

dX = pfyy(X)dT + pAjpzdt + JiugqdW (21)

dZ = £51(X)dt + Ajpzdt + godW (22)

where f;; and f,; are continuous piecewise-linear functions; Ay,,
A7, g1 and g are constants and G is a Wiener process defined in
1 with variance parameter Q. This is simply a subset of systems
of the general form given in (5)-(6). Note that the requirement
that Ajp and Ap; be constant is a consequence of the continuity of
the system. Also, stability of the fast model is required in this
analysis, hence, Ayo is stable. The process is ill-defined if Ap,
is not stable.

Examination of (?1) shows that x stays relatively constant
with respect to = and can be approximated by x,. The
approximation for z is given by the solution tc the following

equation

dz = f31(xp)dT + Agpidt + godW (23)




To show that the mean-squared error between z and z is ot order
0(u), define the approximation error as (1) = z - z. Then an

equation for ¢ is giver by
de = (f21(§)'f21(x0))dt + Ajo0dT; o(0) =0 (24)

The solution to (24) due to linearity is given by

.
o(1) = J e A22("°)[f21(§)-f21(x0)] do (25)

[¢]

An upper bound for ¢ can be found by noting that f;; satisfies a
Lipschitz condition; hence, there exists a positive constant k<«

such that:

T
o(1) < j A22(770) ity do (26)

o]

The mean-squared error of ¢ is found from (25) to have an upper

bound as follows:

E{o?(1)}

T T
jf A22(t0) A22(%°0) 4 £y13(0) - x,1[R() - x,f dode (27)
Q

0
Since Aj; is stable and the quantity x(t,)-x, is of order O(u) for

0st,$1t, the integrand is found to be of order O(u). Hence,

E{0?(t)} is of order O(u).

3. SLOW SUBSYSTEM

The slow dynamics of the system (1)-(2) can be approximated

in distribution by the solution of the following model:




dxg = fy(xg5,25)dt + g1dW; xg(ty) = x4 (28)

o
1

= fZ(XS’zs)

Note that =z is found from xg using the Katzenelson algorithm

s
given in reference [4]. This algorithm is computationally
efficient for solving algebraic piecewise-linear expressions. The
approximation is validated below by showing that the true joint
probability density function of x and z-differs from that of xg
and z; by a factor of O(ué) (in distribution). This approximation
is shown to be valid outside of the initial boundary layer as long
" as the solution does not cross into another region of the state
space. A boundary layer may need to be evaluated after each time
the solution crosses a boundary between regions.

The Fokker-Planck equation yielding the joint prohability
density function of the actual solution given in (1)-(2),
p(x,z3t]x,,203t,), can be derived using an approach similar to one
found in [11]. The Chapman-Kolmogorov equation is the starting

point.

p(x,z;t+Ale;ZO;t) =

40 .
JJ p(x,z;t+a]x;,23t)p(x),215t|x0,205t,) dxjdzy (29)

An expression for p(x,z;t+A|x1,zl;t) is found using the

characteristic function. Define the characteristic function as

o
e(v,wit+alxy,zy;t) = fj eIVETIVZ p(x,z;t+8)x;,2 ;t) dxdz  (30)

-0
where

$-c0
. 1 -jvx-jwz
p(x)z:t+A|X1,21;t) = 4n2 JJ e

¢(v,w;t+a]xy,21;t) dvdw (31)




Expand the following term in a Taylor series about x=xj.

-3 - 2
o jvlxy-x) _ 1 - jv(xy-x) + % (x3-x)2 + h.o.t. (32)

This series is substituted into (30) to yield:

oo
; 2
O(v,w;t+alxy,z5t) = JJ erz[l-jv(xl-x)+ % (x1-%x)% ]

x p(x,z;t+A|x1,zl;t)erx1 dxdz (33)
Integration with respect to x yields

¢(v,w;t+A'x1,zl,t) =
w . - 2
J eI"? V1 fl-jvfl(xl,zl)A + % gIZQA]p(z;t+A]x],zl;t)] dz (34)

-y

To solve for p(z;t+Alx,,z;;t), a boundary layer following t
may be evaluated. Define a new time scale by =<=A/u and let
z(t)=z(ut+t). Then it is found using the derivation in Section 2
that an 0(p?) approximation for the conditional probability
density function of z, ﬁ(z;tlxl,zl;t), is given by the solution to

the following Fokker-Planck equation.

92=-a— 5 .]; zﬁ
Py 35 (f2(x1,2)p) + 7 Qg,% 373 a.e. (35)

where p=p(z;t|xy,z;;t) and p(z;0|xy,27;0)=5(2z-2,). Assuming that
the system 1is stable, the probability density function reaches a
steady-state in t denoted as p(z|x;). For a small value of 4, x
stays relatively constant so that p(z,t+A|x1,zl,t) is approximated

(in distribution) by




p(z,t+a}x;,25t) = p(z]x)) + O(n) (36)

Restrictions on the O(p) term arise due to the fact that both
p{z;t+a|xy,21;:t) and p(z]xy) are probability density functions so
they must satisfy certain conditions. One problem with this
analysis is that ﬁ(zlxl) may not depend continuously on x; for
those xj; which 1lie on a boundary between regions in the state
space. If p is not continuous with repect to X1, then the
conditional muments of z may not be continuous either. The fast
dynamics may then be excited sufficiently so that the slow model
approvimation is not wvalid when a boundary is crossed. Since
proving continuity of p with respect to x) may be difficult, it
may suffice for many practical applications to show only that the
mean and covariance of z are continuous as a function of x; if the
higher order moments are negligible.

Once an expression in (36) is obtained, it can be substituted
into (34) and the resulting expression then substituted into (31)

to yield an expression for p(x,z;t+a]x;,zy;t):
p(x,z;t+a|xy,zy5t) =
= 2
_l_ -jvx-jwz jvx1+jwy s v 2
An2JJJ e e (1 JVfl(xl’zl)A+ > 84 Q4]

» ply]xy) dydvdw + 0O(n) (37)

This is then substituted into the Chapman-Kolmogorov equation (28)
to yield

p(x,z;t+8]xg,243t) =

4o 4 ,
1 -jvx-jw j .
e JJ IJ e IVETIVZ IVX) [l-Jvfl(xl,zl)A+ % gleA]

r 3 -
x| e?B(ylxIp(x], 215t %,205t) dydvdwdxydzy + O(u)  (38)




Note that the O(u) term is plzced outside of the integrals since
all of the integrals correspond to taking expectation or
transformation. The expected value of the perturbed quantity is a
perturbation of the expected value of the quantity.

Since the integrand in equation (38) is continuous, the order
of integration may be interchanged. Integration with respect to w

yields

p(x,z3t+8]xq,205t) =

-3 : 2
%HJ...J e IV VX1 [l-jvfl(xl,zl)A+ % gleA]

-0

x ﬁ(ylxl)p(xl,zl;tlxo,zo;t) 8(z-y) dydvdxjdz; + 0(u) (3%)
Integration with respect to y yields the following:

p(x,z;t+8]xq,2,5t) =

teo 4o _ ,
%ﬂ”j e I Il [1-3vE (x),2))8+ 3 g,2Q8)
x ﬁ(zlxl)p(xl,zl;tlxo,zo;t) dvdxjdz; + O(w) (40)

Integration with respect to zj yields
o

. oy o 1 -jvx _jvx . - v?
p(x,z;t+8]xy,243t) = ZnJJ e e 1 [l-Jvfl(xl.zl)A+ 2 gzzQA]

-0

x ﬁ(zlxl)p(xl;tlxo,zo;t) dvdx; + o(u) (41)
where El is defined by

0= fz(xl,El) (1&2)




To obtain p(x;t+a|x,,z,3t), integrate (41) with respect to z on
both sides to yield

+o0
1 -jvx _jvx . - v?
p(x;t+A|x°,zo;t) = Eﬂ“’ e e 1 [1‘JVf1(X1.Zl)A+ ) 81205]
x p(xy3t)xg,2,55t) dvdxy + 0(w) (43)

The expression in (43) is evaluated with the following result:

p(xst+a]x,,203t) = plx;t]xg,2z45t) - %; fl(x,E)p(x;t|xo,zo;t)A
+ 3 g,2Q 22 p(x;t{x,,z05t)8 + O(u) a.e (44)
2 51 ¢ ax2PrTrrlRoafent €.

where z is defined by 0=f2(x,;). As 5-0, this expression becomes

the usual Fokker-Planck equation where p;p(x,tlxo,zo;to):
sp . . 2 3 1 2,23%
[£,(x,2)p) + 58055 +0(u) ae.  (45)

ot 9x

The initial condition (in a distributional sense) and auxiliary

conditions are
4+
p(xity|xes203t,) = 8(x-x%4); p20; J pdx =1 (46)

The Fokker-Planck equation of the slow approximation is given

by

) _ d 1 32

5%5 = - 5;[fl(xs,zs)ps] + 3 gl2 Q 5;%5 a.e. (47)
where  po=p (x;t]x,;t,) and  pg(xito[xgsty)=6(x-x,) (in a

distributional sense). Since (45) is a regular perturbation of




(47) satisfying the same initial and auxilary conditions, the

solutions are found to differ by O(u), i.e.,

P(x;t]xo5te) = pglxgit]xosty) + O(n) (48)
Hence, for statistical purposes, x can be approximated by xg with
approximation errors in the probability density functions of order

O(p) in distribution.

4. EXTENSION TO VECTOR VARIABLES

The results of Sections 2 and 3 are directly extendable to

the vector variable case. The fast subsystem approximation is
given by equation (7) where z and x, are vectors variables (zeRT
and x,eR™) and f; and g; are vectors of appropriate length.
Similarly, the slow subsystem is given by equation (28) where xg
and zg (xseRm and zeRT) are vector variables and £y, f5, g; are
vector valued functions of appropriate length.

It is still possible to show that the errors between the
probability density functions of the fast subsystem and the
solution are of order O(ué). The Fokker-Planck equation for the
true probability density function is generalized from the previous

case as follows:

r r

r
8p _ . 3_ 1 T
31 E 5z, T2(%:2)P1 + 5 (8,7Q8,); 525025 ©
i1 i£1 §51
Y 1§ T 52
W 5 ax; [f)(x,2)p] + w3 / 5 (g, le)i,j 3% ;0% ; P
i=1 i=1 j=1
(49)
lm r 32
3L T
L (8,°Q8,), 4 ax30z; ©
i21 321
1 N a2
i1 T
U3 (g, Qy)y,5 9z 0x; F

i=1 j=1 J




where p=p(x,z;T|Xy,2,;0) and x; and z; are components of the x and
z vectors. The propagation of p is relatively insensitive to
variation i: any of the components of the x vector. Hence,
following the previous analysis, it can be easily seen that the
probability density function of the fast subsystem approximates
that of the true solution. For systems linear in z, the analysis
in Section 2.1 is extended in a straighforward manner.

Most of the analysis in Section 3 for the slow subsystem
involves the derivation of the Fokker-Planck equation. Since the
Fokker-Planck equation has been derived for the vector case in
[11]), these steps generalize accordingly. The only difference
between the analysis in Section 3 and previous work 1is the
solution for p{z;t+A|xy,zy;t) in (34). This can be approximated
by the steady-state of the probability density function for the

fast subsystem found from the correspoinding Fokker-Flanck

equation.

5. SUMMARY

Reduced-order models are developed in this paper which
approximate the original system both in the fast time scale and in
the slow time scale. It is shown that the approximations are
valid in terms of the statistical infocmation c¢f the true
solution. It is further shown for systems that are linear in the
fast wvariable, that the fast subsystem approximates the true

solution with a mean-squared error of order O(u).
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SINGULAR PERTURBATION ANALYSIS FOR LINEAR SYSTEMS
WITH VECTOR QUANTIZED CONTROL

Bonnie S. Heck
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Abstract

In this paper, th= analysis for a singularly perturbed
linear sysiem with quantization in the .eedback loop is
performed. It is found that the system has variable
structure and can exhibit sliding behavior on the switching
surfaces. Because the system is nonsmooth and standard
singular perturbation techniques are not applicable, a new
technique is developed for a two-input case to obtain the
boundary layer solution and the outer soluticn. A discus-
sion of the approximation error is included. The tech-
nique developed is successfully iilustrated on a numerical
example.

1. Introduction

Singular perturbation theory is an asympuotic ap-
proximation sch me used to simplify systems which
contain both fast and slow dynamics. These types of
systems, termed "numerically stiff,” are often difficult to
analyze numerically due to ill-conditioning in the system
matrices.  Singular perturbation theory removes the
r.umerical problem by separating the system into reduced-
order models, one containing the fast dynamics and one
containing the slow dynamics. This theory has received
considerable attension in the past thirty years (see the
surveys given in References [1-3]). However, the common
restriction placed on systems for using singular perturba-
tion theory is that the system dynamics must be smooth
(1-3].

In many systems, the actuators supply inputs with
discrete rather than continuous values, i.e. the input is
quantized. Examples of these types of actuators include
relays, stepper motors, and certain types of hydraulic and
pneumatic devices {4,5]. The resulting control is discon-
tinuous with respect to the state variable, hence the
system is nonsmooth and standard singular perrurbation
techniques are not applicable. The basic theory of
singular perturbation 1s extended in this paper to the case
0. a quantiz>r exisung in a two-dimensional feedback
loop. The scalar case was developed separately in Refer-
ence [6]. Note that the discontiruous control causes the
system te be a variable structure system.

Intuitively, discontinuities in the control would seem
to excite the frst dynamics in the same wav 45 would a
step input. However, it is found that under very mild
restrictions, the slow system slides along the switching
surface instead of cross...g through it. Therefore, there
are no jumps in the quasi-steady-state solution which
wonld cause the fast dynamics to respond with a step
response outside of the initial boundary laver.

L1 Problem Formulation

The systemn under consideration is assumed .~ be
linear and time-invanart. 't was deermined in (6] that,
for the scalar quantized controi case, che system may b
transformed into decoupied coordinates and the singular
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perturbation analysis performed on the decoupled coor-
dinates. For the purposes of this paper, it is also assumed
tha: the systermn may be transformed to decoupled coordi-
rates and is represented by:

€=Ak8 - Bu  £0) =§ (1)
A,n + By, n(0) = n, (2)

where ¢€R®, neR", ueR? 4>0 is small and A, is Hurwitz.
Define the control vector to be

u = [q1('K11£'K«2’7) ]
Qo(-K€-Kom)

where K ,, K,,. K,, and K,, are row vectors and q, and
q, are quantizer functions defined as foilows.

Un

(3)

qy(x) = ¢ ford, ; sx <d, ;i i=l..a  (4)
Q(x) = ¢ ; ford,; s x < dy o j=1m
The parameters are specified such that ¢,  <¢y .4
€, 1 <8, ju d,,,<d,“,,, d, <d2 jetr d1,1 ==, d2,1 =--,
et = *eand d, ., = Ce

This system is a variahle structure system with nk
possible linear subsystems. The state space (R™") can be
nartitioned into nk nonoverlapping regions defined by

= {(&n): q‘('K11€'K12’7)=C1,i and
G (-Kp &Ko) =<, 1}

The boundary between two regions is a convex partition
of a liyperplane defined by -K,,{-K,;n = d, ; for some i
or -K,,£-K,n = d, ; for some j. Notc that if K, #K,,
and K.,#K,, then edch of the 1 gions (except those of S,
Vi, S,y ¥i, S,; Vj, and S;, Vi) is bordered by two sets o
parallel hypcrpl:mes

(%)

For the purpose of this paper, it is assumed that K.,
and K,, are not of order O(u). If either of the quantities
was ot order O(u) then the slow manifold would be
nearly discontinuous. In particular, the quasi-steadv-state
solution would be a discontinuous function of the siow
variable. Heace, the fast dynamics would have to be
evaluated after each switch in the corresponding coni-ol
component.

Reduced-order models of the system descnibed above
are developed in this paper using a sirgular perturbation
approach. The boundary layer approx - ation :s given in
Section 2. Section 3 presents the cuter sawwtion ap-
proximation. A numerical example 1s given in Section 4
and concluding remarks ure given in Section >.




2. Boundary Layer Solution
The fast dynamics are most prominent during the
initial boundary layer and cun be separated from the
slow dynamics by the introduction of an expanded time-
scale 7=(t-t)/u. It can be easily shown that £ stays
relatively constant with respect to 7; hence, £ is approxi

mated by £,. The approximation for n is given by Lhe
solutidn to the following equation.
B . ap+Bu MM =n (O
u, = [‘11(}(150 12’7)]
! Qo(-K € Ko

This reduced-order model is also a variable structure
system with nk possible linear subsystems. Hence, the
reduced-order state space (R") can be partitioned into nk
nonoverlapping regions for which the system is linear.
Analogously with the full-order model, the regions R;
are defined as:

Ry; = {#: q,(-K &K ) =¢, ; and
(Kb Ko =¢; ;) ™

Correspondinglv the boundaries between regions are
hyperplanes defined by -K, &K, = 4, ; for some i or
KoKt = d, ; for some j.

It is assumed that the system in (6) is asymptotically
stable to one equilibrium point. Stability in "ordinary”
smooth system can be shown by use of Lyapunov’s second
method. However, in variable structure systems the
Tyapunov function is generally discontinuous and, hence,
not everywhere differentiable. Paden and Sastry intro-
duced a generalized Lyapunov theorem in {7] which is
suitable for diccontinuous functions. Such a method may
be useful in determining asymptotic stability of this
system. The equilibrium point of (6) (also defined as
quasi-steady-state solution at t=0, n,(0}) is derived below
and a discussion of the approximation error follows.

Poi

There are three basic positions for the equilibnum
poin* _f (6): in the interior of a region, on single bound-
ary hyperplane, or on an intersectior: between two bound-
ary hyperplanes. The first two cases are treated very
similarly to the scalar quan: zed control analys.s discussed
in Reference [6]. The last case is more complicated and
can be solved uniquely only for limited types of sysiems.
The derivation of the equilibrium point 2s a function of
K€, and Ky&, f(K(£5KpE,), is shown i the next

three subsecuons for the three possible positions.

211 Interior Position. The piecewise-linearity of the
system in (6) is utilized in determining the system be-
havior; i.e., for f in the R, region of the state space. the
system is given by the following descripuon.

.
= A8 + B, [22 |

The behavior in this region 1s governed by the position of
the following point which is termed the regional equi-
lib ium point.

¢

dr (8)

n, =-A, B,| (9

!

[N—)
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If i, lies in Ry; (i.e., satisfies (7)), then it is a local
cqumbnum po-m If n;; does not lie in R, , then points
in R;; are directed out of the region.

Z...LSLQ&'S_BQMMQS.M An equilibrium point
may lie on a boundary between two regions if trajectories
from the two bordering regions head toward the boun-
dary. To find the conditions for such an occurrence, the
specific example of an equilibrium point existing oa the
boundary berween R;, and R, ; is examined. The
control uZ c2 XS Con.,""" amare 'i-ne knn-—ﬂlnn/ ‘\nv -_-
switches between ¢y ; and ¢, ;,y. Suppose the f0110wmg
condition is satisfied.

dy s + Koy € K&y < dy iy + Koy, (10)
whcre Miaq,; a0d 7;; are regional equilibrium points for
R, . and’ lR rcspecnvely This condition states that
each of the regxonal equilibrium points of the two border-
ing regions lies across the boundary hyperplane from its
associated region. Hence, wrajectories in Ry, ; and in
R,; move toward that hyperplane. If the regions were
parallel then this would be a sufficient condition for the
equilibrium point to lie on that boundary hyperplane.
However, with nonparallel regions it is possible for the
representative point to move (or slide) along the hyper-
plane until it reaches a position where the hyperplane no
longer borders R;; and R, ;. Hence, to find the
equilibrium pomt. 'first assume that the regions are
paralle! and find the equilibrium point to such a system.
Then, if that candidate equilibrium point lies on the part
of the hyperpiane that borders the actual regions, it is a
true equilibrium point.

The equivalent control metwod which was developed
for use in variable structure systems (8] is used to find the
candidate equilibrium point. If representative points frem
both sides of the boupdary are directed toward the
boundary, then the control u, starts switching very quickiy
berween ¢, | and ¢, ,,, while u,=¢, , remains constant
The system "filters out the high frequenm/ leaving only the
low freguencv average component. The average value of
u, as r~+= is the equivalent control at the equilibrium
point, u,. The corresponding candidate equilibrium point,
n,. is found to be:

n, =
(K“fg*d1’i.1)(ﬂ,"rf”|'j) + (K'zv.u 1)77 (sznij)n‘o\,;
K,z(ﬂ,.,,;m,‘ K-z(ﬂ‘-.|,;’ﬂ.,~) (11)

This is a irue equilibrium point if it lies on the pan
of the hvperpiane that borders R;; and R, . This
corresponds to satisfying e followmg condiuon:

dy; + Ky, s -Kyg < dy 1y + Kypnp (12)

Hence, if the conditions in equation (10) and (iI) are
satisfied. (nen the equilibrium point is given by equation
(11). These conditions are illustrated in the second-order
example given 1in Figure 1. Note that the equilibrnum
point lies on the intersection of the line connecting n |
and n,,, , and the hyperpiane.

The equilibrium point existing on a boundary betwe- n

P, and R, _, is found using a dual argument. The

conditions m "(10) and (12) correspond tn the foilowir




et A,

conditions, respectively.

dZ,j°‘+Kzznij s -Kpép < dz,jd+K22n|',jo1 and(13)
dy; + K1, € -Kyyép < dy oy + Ky (14)

where the equilibrium point is given by:

n, =
(ano*dz jq)(n”‘n" j.\) +(K22’7i,,.|)’7,‘j - (Kzznﬁj)ni,jo'
Kzz(’h o1 77‘, Kzz(’h_;q - ’7.',) (15)

Therefore, if the conditions in (13) and (14) are satisfied,
then the equilibrium point is given by (15).

i Another
possible position for the equilibrium point is on the
intersection between two boundary hyperplanes. To find
the conditions for this occurrence it is known that neither
the conditions for (11) or for (15) to be the equilibrium
point can be satisfied since it is assumed that there exsts
only one equilibrium point. There are iwo separate
additional conditions on the system each of which yield an
equilibrium point on the intersection of boundacizs.

Ay i * KoMy € Kyydp < dy i = Kiginy, s
and (16)

Ay, 1m0 + KaMliay,j S Kby < g 0y *+ Koty s

gx,m + Koty o $ Ky < dy i + Kty
an

Ay jer + Kofyj € Kby < dy 100 + KMy i

A second-order example of a system sat’<fying the condi-
tion in (16) is given in Figure 2.

The equilibrium point for system (6) is not, in
general, found uniquely when either the conditiona in (16)
or (17) is satisfied, By definition of the quantizer func-
tion, for the equilibrium point to exist on the intersection
between two boundary hyperplanes, then n, must be a
solution to the following equation.

Ku] [ 1101 - Koy eo] i

n = . for some i 18
] =[G i
For a second-order system with an invertible (K,,", K,,')'
matrix, a unique solution for n, is found to be given Ely

K, 1 110 " Ko
M= [K'z:] [ 4z, 101 - Ko o] (19)

If it can be determined that the system is sliding on
the intersection of the hyperplanes, which is the surface
defined by the solution n of equation (18), then a unique
solution for n, may exist for larger order systems. Using
notation comm - to variable structure system theory,
define an affine i .ictional s as:

s =-Kn+v (20)

or

(17

where K and v are determined from (18) such that the
solution of s(n)=0 is the swuchmg surface. A sliding
mode exists an that surface if s's<0 (8]. The equilibrium
paint of the sliding mode can be found by first tra..form:
ing Lhe system into regular form, then, ﬁnding the equi-
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librium point for the sliding mode equation in the new
coordinates and, finally, transforming the equilibrium
point back to the original coordinates. The equilibrium
point of a sliding mode existing on the intersection of the
two boundary byperplanes is given below (for details of
the derivation, see [9]).

n, = S, - S,(KSp) 'KS,)A, 1T,A,5,(KS,) v
+ S,KSy v (1)

where: = T,AS, + T,A,5,(KS,)’ \KS) T,= uz
S,=U, S2 L and U and U, are obrained from a
smgular value decomposmon of B,, i.e. B,={U,, U,]5V".

2.1.4 Function for the Equilibrum Point In
summary, tbe equilibrium point n, for the sysiem in (6)
can be found as a mapping of the variables K, £, and
Ky i€o 1, =£(K,1€0.Ky,€0), from equations (9), (11), (15),
(19), and (21) depending on the conditions that are satis-
fied. The mapping is a function (i.e., single-valued) since
it is assumed that there exists an unique equilibrium
point. The function is piecewise-linear since each of the
function definitions is linear. Continuity is not guaran-
teed and may need to be evaluated on a case by case
basis. However, using the methods in [6] for the scalar
coatrol case, it is straightforward to show that the func-
tion is continuous for a second-order system. To demon-
strate the use of this function, an example is given below.

Example: Let a system be given by
Rl P LR FHE @

dr
The control selected is bang-bang with components:

U, =sgnsy, s, =-[L,2n-8
u, =sgns; s, = (-2 2n-7 (23)
where the sgn function is defined bejow:
- J 1 if 520
S =1 if s <0 9

where s,{n)=0 and s,(n)=0 define the switching hyper-
planes and 8 and v are parameters. To correspond to the
previous notation, let

K =(L 2} Kp=l-22); 8 =K ¢ 1=Kyt

-8 4], 4 0
Az*[o-w B, = [o 4} ()

Ga=&a=-l =6l d,=2d,,=0
Define the regioas as
Ryy ={n:uy= 1and u.=-1}={n: 3>-K,;n and v>-K,,n}
Ry, ={n u,=-1 and uz-l' {n: 8>-K,,n and vs-K,,n)
R,, ={m u1—l and u,=-1} = {n: 8<-K,,n and 7>-K,,n}
R,, ={m u,=1 and u2=1}={n: B<-K,,n and v5-K,,n)

The regional equilibrium points -2 found to be

SRIMERMEH

0 )
P My =[_.U' P Ty =[f] (26)




The equilibrium point can be found as a function of
B and v using the function definitions given in equations
(9), (11), (15), (19) and (21). For a regional equilibrium
point to lie inside its associuied region, one of the follow-
ing conditions must hold:

a)if 8>3 and v>0 then 7,,€R,, and n,=n,,
b) if 8>-2 and v<-2 then n,€R,, and 0, =n,,
c) if 3<2 and v>2 then n,,eR,, and n, =n,,
d) i B<-3 and <0 then n,,eR,, and n,=1n,,

Note that these are mutually exclusive conditions.

For an equilibrium point to lie on a boundary, either
conditions (10) and (12) or {(13) and (14) are satisfied.
The following conditions and corresponding equilibrium
points are given for 4, to lie on the boundaries between
R,, and R,,, R,, and R,,, R,, and R,,, and R, and R,,,

respectively.
o]l
ofol- |

f)i7-224>-3 and -€228+7 then n, = [(1)] *

e) if 328>2 and 6<28+y then n, =

)
3]
g) if 027>-2 and 3<4-v(5/2) thea n, = 7[:1%] . “]

m32y>0mdswq6ﬂ)mmn,=yrf]+[H

If the equilibrium point of (22) lies on the intersec-
don between s, and s,, then the following must be true.

i) if the conditions in a)-h) are not satisfied and
3>8>-3 and 2>y>-2 then
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The domain space of the mapping n, =£(8,7) can be
partitioned into ten nonoverlapping regions each cor-
responding to a function definition a)-i). It can be shown
easily that this mapping is a function since none of the
regions overlap. Also, the function is continuous. This
can be shown easily by noting that the function is con-
tinuous within each partition of the -y space. It is
straightforward to show that on any boundary between
"wo partitions the two function definitions are equal.

&2 Boundary Layer Approximation Error

The errors introduced by approximating the true
solution by the solution of (6) are due entirely to the
assumption that £=§, in the boundary layer. As in the
other piecewise-linear systems discussed in [6,10], the
approximation errors are of order O(u) for the time
intervais when both the actual solution and the approxi-
mate solution exist within the same region of the R™"
state space due to lineanty. When a single boundary
hyperplane is crossed, then the previous results on the
approximation errors in the scalar quantized control case
are applicable. That is, if the vector field does not
intersect tne boundary with an angle of order O(y), then
the approximation error remains -f order O(g). How-
ever, if the solution crosses a boundary hyperplane within
ar O(u) neighborhood of an intersection between bound-
ary hyperplanes. this result cannot be used.

.13 13
M = [-1/3 -1/6
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There are certain problems introduced by allowing
intersections af switching boundaries 1o exist in the sysiem
definition. If the actual solution crosses a boundary near
an intersection, then the approximation may not cross intu
the same region. From that point, there is no guarantee
that the approxmation error remains of order O(u). A
consolation in this is that if the system is oot sliding on
switching surface, then the chances of hitting a boundary
within an O(u) neighborhood of the intersection fcr an
arbitrary initial condition is of order O(u). The exception
to this is when the equilibrium point lies on the intersec-
tion. In that case, the solution must eventually travel into
the O(u) neighborhood about that point and will cross the
boundaries there. However, if the function f which
defines the equilibrium point is continuous, then O(s)
approximation errors in § result in O(u) errors between
the equilibrium point, n,, and the actual value of n(r) as
1-+o, Therefore, if the solutions differed by an amount
of order O(u) prior to entering the small neighberhood
about n,, then continuity of f implies that the error will
remain of order O(u).

3. Cuter Solution

The outer solution is found by neglecting the fast
dynamics. It is assumed that the fast variable, n, reaches
a quasi-steady-state value within the initial boundary
layer. This initial quasi-steady-state value is, of course,
the equilibrium point of the fast subsystem (6). The
quasi-steady-state solution, n,(t), cannot be found by
simply setting =0 in equation (2) as is done in standard
singular perturbation techniques, because the solution 7,
to the resulting equation is undefined for values of
(€,.n,) that lie on a switching boundary in the state space.
Instead, n,, is found as an equilibriun. point of the fast
subsystem using the function defined in Section 2.1, i.e.
n,(t) = (K 1€,(0).Ky€,(1).

Similarly, the control in the slow time-scale, u,,
cannot be obtained by simply substituting &, and n, for €
and n in the original definition of the control (3) because
the control is undefined for values of (€.,n,) that lie on
a switching boundary. In ordinary systems with discon-
tinuous control, the system chatters along the sliding
surface causing the control to switch at a very high
frequency. The average value of the control (i.e. the
equivaient control) determines the motion of the system
along the sliding surface. In this application, however, the
system does not chatter as seen from the definition of 1,.

Thus, th- " control must be given as the equivalent
con” - .ose values of (£,,n,) that lie on a switching
bo... . | Alternately, it can be given as the final value

of the equivalent control in the fast time-scale.

u, = «(B,’B,)1B,"A;n, (27)
Note that the use of the psuedo-inverse is justified by the
consistancy of the equation, i.e., n, was derived from the
equivalent control.

Thus, the solution of the system (13-(2) can be
approximated outside of the boundarv layer by the
solution to the following system:

(s

'51 = AOEI + Ba”d f,(O) = fo
n, = (K €,.Kp08,)




where u, is given in equation (27) and the function f is
defined from (9),(11),(15),(19) and (21). As ctated previ-
ously, f is piecewise-linear and may be continuous; hence,
the slow manifold defined by the function f is piecewise-
linear and may be continuous.

The continuity of the slow manifold is required for
the approximation errors given by n(t)-n(t) and £(t)-€_(t)
to be of order O(u) for the time nutside of the initial
boundary-layer. If the function defining the slow mani-
fold is continuous, it satisfies a Lipschitz condition since
it is piecewise-linear [11]). Therefore, a sufficient coudi-
tion for the approximation error to be of order O(u) is
that the Lipschitz constant be bounded as p~0, ie. it
cannot be of order O(1/p). If it was of order O(1/y),
then the equilibrium point for the fast dynamics would
change too quickly in the t-time scale thereby invalidat-
ing the separation in time scales between t and 7. The
resulting behavior would require evaluation of the fast
dynamics after each switch in the control, and the slow
model approximation in (28) would be valid only in the
time-intervals between switches.

4. Numerical Example
An example of the approxmation method for the
two-input quantized control system is demonstrated here.
The system is given in the form of equations (1)-(2). The
control is selected to be bang-bang with components

u, =sgns,; s, = -K€-Kppn (29)
U =SB Sy Sy = Kyl - Kyt
The parameter matrices are given as follows:
3 10 0 0
A,=4i-1-3 0] B= -1 0
0 0 -2 0 -1
(30)
_ |-8 4 _ |40
AZ‘[O i om- [ 9]
Ky=[211] K1z ={1 2}
K,y =112 K;; =([2 2]

To correspond to the previous notation, the parameters
of the quantizer functions are defined as:

Log,=6,=14d,=4d,,=0
[-1.5, 1, -0.75]" and n, =

G =6y =

The mmal conditions are §, =
[1, 2} and =0.1.

Note that the fast subsystem is the same as given in
the example described in Section 2.1.4. Theretore, the
boundary layer approximation is found as the solution of
(22). The equilibrium point of this system, n,(0), is found
as a function of K,,§, and K,§, using the function
definitions a)-i) listed in Section 2.1.4 where 8= K,,{,
and v=K,,£,. With the given initial conditions on £, the
equilibrium point is found to be n,(O) =[-2.75, 2] This
corresponds to an equilibrium point existing on the
boundary between R,, and R, so that as f} approaches
n,(0), the control u, begins swnchmg very rapidly while
uz=1 remains constant. It can be shown that with the
given inital conditions on n, the fast subsystem will siide
in the 7-time scale on the switching surface defined by
s, =0.

1 The outer solution is found from the slow model in
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(28). The quasi-steady-state solution is found from the
function definitions a)-i) listed in Section 2.1.4 where
B=K,,§, and v=K,,{,. The iniual conditions for this
example are such that the system starts out sliding on the
s,=0 surface in the normal time-scale.

Comparison between the time-integration of the
actual systern and the approximate system are shown for
representative siates in Figures 34. The errors berween
the trajectories are of order O(g). In the approxmate
solution, the boundary layer correction (f-n,(0)) is added
to the outer solution for 0¢t<C.2, beyond which it is zegli-
gible. Both the approximation and the true solution are
asymptotically stable to the origin. Therefore, both
systems are found to slide on the intersection of the
switching surfaces defined by s,=0 and s5,=0. The
computaticn time for obtaining the actual soiution was
roughly 18 times longer than that for obtaining the
approximate solution for. As in all singular perturbation
approaches, as 4 decreases, the approximation becomes
more accurate and the relative computational time-savings
greatly increases.

5. Summary

This paper presents the analysis of a singularly
perturbed two-input quantized control system. The
discontinuities in the control occur in the state space on
single boundary surfaces as well as on intersections of
boundaries. This latter occurrence is precisely what
makes the analysis of the two-input case so much more
complicated than that of the scalar case. In spite of the
complications, reduced-order models are developed which
yield the outer solution and the boundary layer solution.
As part of the slow model, a function is derived which
solves for the quasi-steady-state solution in terms of the
slow variable. This function is known to be continuous
when the fast subsystem is second-order. Other cases
may need to be evaluated numerically. As in the scalar
case, the system may possess a sliding mode in the fast
time as well as the sl e sc Tue resuits of a
numerical simulation show that the approximation method
described in this paper can yield very accurate results
with very good computational time-savings.

V-
S,

It appears that the extension of singular perurbation
theory to the general multiple input quantized control is
a very complex problem. In particular, finding a function
which solves for the quasi-steady-state solution is very
tedious and, in fact, may not be possible. Hence, in
general, singular perturbation theory does not simplify the
analysis. However, it may be the only alternative if the
original system is too numerically suff to be solved any
other way. A discussion of the multiple input case is
contained in [9).
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ABSTRACT

Stochastic differential equations for the conditional density functjop
and moments are presented for a linear system which is excited by a markeqd
Poisson process whose rate depends on the state of the system and which is
observed in white Gaussian .oise. The set of optimal filtering equationg
is infinite dimensional, therefore, any practical filter is suboptimal. ,
suboptimal filter is developed for the case of unmarked Poisson excitation,
This suboptimal filter estimates the Poisson process via a combined sequen-
tial estimation and detection scheme based on the criterion of maximum

a posteriori (MAP) probability. An example computation is presented.

1. INTRODUCTION

This paper examines the issue of state estimation for a linear sygtem
which iz driven by a Poisson process whoie rate parameter depends on tha
state of the system, The input process is described as “self-excited*
since its rate function can be specified given the past history of the
input process.

The model of a dynamic system driven by a Poisson process with a state
dependent rate is motivated by several practical situations. In aircraft
maneuvers, the pilot's discrete application of controls is sometimes
modeled as a Poisson input process, It is reasonable to expect that the
rate of the control actions is dependent on the state of the aircraft,
Another example is the tracking of a light source with a photon detector.
The rate of photon arrivals certainly depends on the state of the tracking
system, notably the tracking error angle.

The most general system considered in this paper is described by the

following scalar equations:

dx = a x dt + b dn (1)
v % 2"
dz dw

-t _t (2)
Ye "3 " ¥ T T

where n_ is a marked Poigsson process whose marks (i.e., the amplitudes of
the Jjumps) {ui} are & seguence of mutually independent, identically

distributed random varicbles with density Pyiu). The 1incident rate

L26




RE-Jlh X S

of r\t is a memoryless function of the state, u(x‘). The pzccul'hy‘t& ’l <
irownian motion with diffusion V. . ‘\glm
The objective is to estimate X, given the hiatory of the obu:ut#&l
rocess, either Yq OF 2z, for 8 € t. In Section 2, an expression toc‘{th'.m-
winimium mean-squared error (MMSE) estimate is derived, and shown bo'_bn
.mpractical. Good suboptimal approximations to the MMSE cstinto’;;zo
ljesirable, but are not pursued here. Instead, in Section 3, the naximum

1 posteriori (MAP) criterion is used to derive a practical filter for xt.‘ﬂ

2. OPTIMAL PILTER EQUATIONS

This section derives the axpression for the stochastic partial diffec~
:ntial equation satisfied by Ppieix), the conditional density function of
<, given 2, ¢ [zsrs < t}, based on a filtering theorem for white Gaussian
sbservation noise. Purthermore, recursive equations are obtained for the
central moments of this density function. The procedure used here is
similar to the one used by Kwakernaak (1] to analyze a linear time
invariant (LTI) system driven by an unmarked Poisson process with a
constant rate,

Pirst, the filtering theorem stated in Kwakernaak [1] is summarized
for the special case of a scalar system with independent observation noise.

Filtering Theorem (1]: Let Qur t > t , be the semi-martingale defined

by
R + >

dQ: - tdt d"t t t° (3)
where Mt is a martingale with respect to a growing family of o-fields 't'
t > t,, and where R, is a process adapted to P. Let Zye t 2 t,, be the
semi-martingale process

+ > 4

dzt - htd: dwt r.» s (4}
where h 1is another process adapted to P, and v, is a Brownian motion inde~
pendent of P, such that B(duz) - tht, Vt > 0 for t 2> tg- Define Z, as the
growing family of g-field. gene:ated by the process Z.. Por an arbitrarcy

process Et, define Et ‘3 E(Et!zt). Then Qt satisfies the dynamic equation

aQ -;dt+[6\h -Q !
e e e T el

o

laz, = n,at] (5)

t
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The filtering theorem will be applied to Qt - QIVXt' for X, a8 defined jip
(1. However, the differential rule for filtered Poisson processes mugt
first be uvsed to obtain th. The rule may be found in Snyder (2, p. 200),
and is also a special case of the differential rule for discontinuous semi-
wartingales (1,3).

Differential Rule (2]: Por an appropriately smooth function Q(x,) and

for x, defined in (1), the rule is

3Q(xt)

3xt

aQ(x,) = atxt( Jde + £ [Q(xt+btu) - Q(xt)]K(dt,du) (6}

where the last integral is a counting integral {2, p. 195], evaluated over
the mark space U, with respect to the Poisson counting measure K(dt,du).
K(at,A) is the number of jumps of " during the interval A4t with marks jn
the set A C U,

Equation {6) maey be put in the form of (3) by letting

oM, '£ (tx #o w) = Q@) ](K(de,au) = uix )p (u)dtdu] (1)

and taking thc as the remainder. The substitution of R, into (5) yields

O N e T

xvxt xvxt xvxt ivbtu
de - (ivatxto + e (e - 1]u(xt))dt

N N

ivx - Jvx

+ (ctxte - cx.e t]Vt‘{dzt - ct;tdt] . (8)

Let Bt - btu {recall u is the mark variable) and pe (*) be <he probability
density function for et. If it is assumed that é%e conditional density

function P*lt(X) exists, then taking the inverse Fourier transform of each
term of (8) yields

-1 - -
- - - ‘
Py X = Loy Ide + Ve Ixox Jpy 0 [dz, - e x dt] %
where L is the linear operator given by

3
Lp(x) = - 3= {“txP(x)] + (pe (x) * [ux)p(x)]) - uixip(x) (10)
t
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where "*" denotes convolution. As in Kwakernaak's case, equation (9) is
the same as the Kushner equation for systems driven by Brownian motion,
except for the definition of L,

Equations (9) and (10) can be used to derive stochastic differ-

h

ential equations for X, and the a®® conditional central moments Pn e "
- L

n
2 (x,~x,) 1z,]as follows:

n
- 1
Py ® el (x,=x,)"12, ] n=1,2,... (1
EY - /‘\ _1 [ a ]
dxt bl atxtdt + th(u)u(xt)dt + Vt cch,t dzt - ctxtdt

Bk k — ~
= + ' - E P
P . = naP dt k);‘ (k)th(u Yk % )7 Tu(x,)dt = ab E(u)u(x )P, dt

-t -~
Ve cc[Pn+1,: ' “Pz,cpn-1,t][dz: - ctxtdt]

-1 2 n~1
ML el PR L A LU V= 2ed,e.- 0

Bquations (11) and (12) represent an infinite set of coupled stochas-
tic differential equations. Thus, an exact mean-squared error optimal
filter is impossible to implement. Furthermore, in Kwakernaak's opinion,
simple truncation of the moment equations (for the constant rate case)
leads to unstable filters and generally poor results. Hence, approximate
suboptimal filtering techniques are required, and are under investigation.
This paper considers an alternative approach which uses a different error

criterion, and ig treated in the next section.

3. A MAP APPROACH

Por this analysis, it is assumed that the driving process nt is a
counting process, i.e,, it has only unit jumps. Purthermore, it is assumed
that the system being driven ias linear time-invariant, that is, 2, = a and
bt = b in equation (1), Thus, it is clear that knowledge ‘of the jump times
implies knowledge of X. The approach followed in this section is to
obtain MAP estimates of the number N of jumps in nt and the jump times
T -

(S S P
N, 1772 N,

] on the interval {0,T), given the observations Y, =
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{y‘ls < T}. The state estimate at time T, denoted P is then coanstructed

by the appropriate superpogition of imoulse respon:;s. The approach ig
made into a practical sequential algorithm by using time discretization and
a finite time window.

This i8 an extension of the work of Au and Haddad [3] wherein the
approach outlined above was taken for marked Poigsson driving processes
which have constant known rates,

The MAP estimates NT and lﬁ satisfy

Max
N T - . fNe 7o) 1
(NT,IM) arg] 0 € N* < M iin Py Y LN <M‘N ’lM) (13)
vl M T
IgER,

where the argument of the logarithm is a joint a posteriori probability
density function. M is an integer chosen large enough so that Priigm > M)
is negligible. The condition N'r < M ensures that lﬁ includes enough Jjump
times to construct X e

The log of the density function in (13) can be replaced by the
following expression without changing the result:

T a1 m(eap]( ] m(es)]
tn =0 2y, - hic,t? h{t,t*)]de
2\/,r 0 t i=0 i =0 3
+1tnp Lo (zeIN o« NN < M) + tn Pe[N_ = N*IN_ < M] . (14)
Ty Np N SMM T T T T

The first term is recognized as the log likelihood function, wherein
h(t,T;) represents the response of the system at time t to an impulse at
time T;. For brevity, h(t,'r;) is defined as the unforced response due to a
known initial condition Xqe

The next objective is to simplify the expressions of the second and
third terms of (14). Note that the event Ny = N* is also the event Tye €
T < TNee1” Therefore, the probability de - in the second term can be
rewritten as

* . <
P NN ulZa1Ny = NeNy < M) .

T

Pr o In <M(1§'NT < M) for 0 < t* < <1e < T

M 18 e N*
Prlvy, € T,T.,,, > TIN® < M) and T <TE, < Ts (s)
0 otherwise

Since in 0 = -, it is reasonable to restrict the region over which the

expression in (13) is maximized to the region of support of (15). Under
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this restriction, the third term of (14) cancels the denominator of the
nonzero part of (185).
The remaining term to simplify is the numerator of the nonzero part of

(15). It is noted that the ever® 'T € M is also the event er! > T. Thus,

the term of interest may be expressed as a marginal density Cfunction:

-
p < (z#tn_ < M) = [ p (zx 17 > T)dte | . (16)
1M|NT MM T T 1M+1ITM+I>T —M+1 M+) M+

It is noted that the region of support of the integrand is over the "wedge"

< < i < T.
g < i < ... Ty € Tyey MiNUS the half aspace LIV T Therefore, (16)

can be rewritten as:

- Py (1§+I)
—M+1
P (T'IN < M) - J’ [l b5 SESEESE—— } P ) an
he INT<M -8 T Max(fﬁ,r) P:(YM*‘ > T) M+l

The unconditional density in the integrand of (17) is a special case of the
density considered by Snyder [2, p. 248] for a self-exciting point process.

For this special ca.~. the density can be expressed as:

usl o
= 375 ~exp T{ sl (z3_))]ae  for 0 < Ty Ll <Tp
P (1344 i-t
-+l (18}
0 otherwise
with
- at i
xt(l{-l) = x e u(t) + j§1 b exp[a(t-fi)]uj(t - T;)

where u, 1s the unit step function. In words, ;t(lz—i) is the value of the
H ; 3 jum r ] Yeee T L x .
state assuming tnat n_ has had jumps caly at times Tf, TP .. Let ‘:(lg)
denote the unforced value of the state.
Substitution of (18) irto (17) is straightforward due to the product

form of (18) and yields

P, (lé) Max(r;,T)
( - x d 19
pLMINT‘M‘lilNT < M) Bty 5 ) exp {; -u[xt(lgll t (19)

where it has been assumed that there exists some o > O such that u(x} > a
for all x, thus making

as

exp | - u(rcldt -0 .

»
M
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It is noted that p1 (*) 18 defined by replacing M + | by M 1n (18),

Evaluation of the deriva?fves yields:

T
M i
(co) 121 u[xrzfli_')]exp 1{ - u[xttlf_')]dt for 0. ¢ 13 < .., < T;
P T = i =
Iy ™ - (20)
0 otherwise

The combination of equations (14), (15), (19), and (20) results 'n a new

MAP equation:

(¥..7,) =
Max
Max :_'CRP: 1 T - -
I Vo cmr M| tre L, < TT'{) [2y, = (1)) ()] e
T < ‘):'4:1 € ... € T;‘
u Max(rg,T)
+tn| 1 u[i;!(1;_1)] - “[;;(1§)]d‘ (21,
iw1 i 0

where the maximization is to be performed in two steps, first over the

1;‘8 for fixed N*, and second over the N*'s,

4. SBQUENTIAL MAP APPROXIMATIOR

The MAP equation (21) derived in the previous section is now approxi-
mated as a sequential algorithm. In this approximation, the observations
are processed in subintervals each of length 4, which is chosen such that
the probability of having two or more jumps in each interval is negligibly
small. Each subinterval of observations is used to detect a jump in the
subinterval and to estimate the jump time, as well as to update the
estimates of past jump times.

In order to reduce computational complexity of the algorithm,
estimates further than L subintervals away from the new subinterval are not
updated and considerea “finalized.® The selection of L represents a
tradeoff between performance and complexity. Thus, observations in the
k*® gubinterval [(R-1)A,KA) are used to update estimates in the “"window"

[(K-L)A,KA). represents the number of finalized estimates of jump

N(K-L)A
times.

Equation (21) is next modified so that maximization is performed only
over jump times occurring after the time (K~L)A. Any additive terms which

depend solely on finalized estimates are dropped. Por brevity, let ir -




roee TR ]l

"(x-ma - N_+1 N_+L
and redefine xt(li) as the state assuming that jumps have occurred orﬁy at

the finalized times and at the proposed times \'_E. The modified (approxi-

("P® for finalized). Furthermore, redefine I, 2 [1~

mate) version of (21) is:

Max
Max
N ,T.) - WS T e S e ST, <R
(Vg Ze) = aee §P<N'<§?+L F F .
RA S T8, 0 € eun € t?‘rﬂ‘
L] ey, - S]]
2y, = x(22)][x(x2)]ae
Ty ks L
§ 4L Max(r‘g 4.;,'“)
P
S B A EIRCTIN ) I S 0 P I et
. i (X-L)a

{oN_+1
1-NP

There is a remaining difficulty with the maximization over the t*'s in
(22). Assume that this maximization is being performed for a given, fixed
N*, Purthermore, assume a discretized domain, i.e., a subset of equally
spaced discrete values in RI‘. The discretization implies that the expres-
sion in (22) is evaluated over a finite number of values for the t*'s
between i and K4, but there are still an infinite number of values to
check for Puu t*'s above KA. Maximizing over these “future® jump times is
equivalent to maximizing the joint a priori probability density for these
jump times.

The constant rate casa (u[xcl - uo) presenta no difficulty, because
the joint a priori density function for the jump times after KA has its
maximum at Tﬁ-ﬂ - rﬁ.*z - ...~ r;:' o KA. It is easily shown that the
same is true for stable first order systems and rate functions u(x]) which
monotonically increase with ixi. However, for more general LTI systems and
rate functions, findina the maximum of the a priori Joint density is

appatently not as easy. This matter is currently under investigation.

S. EXAMPLR
Pigures 1 and 2 display simulation results based on the algorithm of
Section 4, The parameters are (see equations ! and 2) a, = -5, b, = 2, and
cp = 1. The rate or intensity, u(xt), of the counting process nt, takes
only two values: u(xt) e 2 for lxtl < 1 and u(xt) « 4 for lxtl > 1,
Pigure | contains the state trajectory. The rate takes its high value when

the trajectory is above the dashed line and the low value otherwise.
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For estimation, & = 0,03125 gec. This yields an approximate uppe;
bound for Pz[ntM =m0 1} of 43 = 0,125, The observation noise sampleg
have a standard deviation (@ of 0.15. The estimation/detection window
is L = 4, Estimation results are shown in figure 2. Some errors may be
Observed at t = 2 and 3 <t < 4. It is noted that for /V—T'- 0.1, all of
the jumps were correctly detected (to the order of the simulation sample
period) and for /“J;- 0.2, several more false detections occurred in the
region 0,5 < ¢t < 1.5,

6. CONCLUSIONS

The state estimation problem has been considered for a linear system
observed in additive white Gaussian noise, where the system is driven by a
Poisson process with a state dependent rate., It is no surprise that the
minimum mean-squared estimator is infinite dimensional, since the same is
true for the simpler constant rate case. However, it is expected that the
form of the equations will suggest a good suboptimal approximation in the
future. An implementable estimator was developed based on maximum
a posteriori (MAF) estimates of the number and times of the jumps in the
driving process. However, the feasibility of this scheme has been shown
only for certain LTI systems and rate fur~tions. Puziltar inveetisation
is needed to enlarge the apparently limited applicability of this Map
approach.
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A Sequential Detection Approach to State Estimation of
Linear Systems Driven by Self-Excited Point Processes’

M. A. Ingram

School of Electrical Engineering
Georgia Institute of Technology
Atlanta, Georgia 30332-0250

Abstract

A sequential detection scheme is used to determine the approximate
occurrence times of impulses in & self-excited point process which drives
a scalar linear system. Observations of the state are corrupted by
additive white Gaussian noise. The state estimate is constructed based
on the detected impulses.

1 Introduction

Linear systems driven by a combination of a marked (randomly weight-
ed) impulse proceas and a white Gaussian noise process have been used
as models for maneuvering targets {1}, switching environments |2}, and
seismic signals in oil exploration [3]. Impulsive input processes with
state-Jependent statistics are applicable if a system is prone to a high
disturbance rate in some regions of the state space and a low rate in
other regions. As preparation for the analysis of the complex model de-
scribed abave, & simpler problem has been addressed in which the only
disturbance is & self-excited point process [9] with constant marks. The
process is described as self-excited because its instantanecus average
rate is & function of the state of the system being driven.

The optimal mean square error filtsr invoives an infinite set of
coupled stochastic differential equations [4,8]. In cases where the in.
stantaneocus average rate of the input process is constant and is low
relative to the bandwidth of the system, varicus truncations of the
optimal filter have performed poorly [4,8].

These performance reports have prompted investigation into other
approaches (8,6,5] which resemble a maximum a poeteriori (MAP) ap-
proach. These approaches share the basic goal of determining the num.
ber, N, and the arrival times, 1y, of input puises in a time interval,
using observations over that time interval and a priori statistics. Au (8]
and Kwakernaak (5] make the additional assumption of random marks.
However, it will be demonstrated that an inherent difficulty with this
problem is preserved in the constant mark case. In all approaches but
Kwakernaak’s, the solutions to this fixed-interval smocthing problem
were tranaformed into fixed-lag smoothing algorithms by allowing the
interval to become s moving window. A smoocthed estimate of the state
is constructed by superimposing responses to the detected impulses as
they are left behind by the time window.

In order to discuss the problem further, some definitions are needed.
Let Npr be the pumber of input impulses in the interval [0,7"). Let
Za = [f1,73,...,7a] represent the first n consecutive arrival times of
the impulses. Assume obeervations of » scalar system:

w = n(ty,,)+w te,T) o)
Nosr

. 2(tv, ) = Zh(‘_fd)+°(t,0)zo (2
=1

where w is Gaussian white noise with spectral height o , A(t) is the
impulse response of the system, and $(t,0)z, is the unforced response.
Let {Yo.r} repressnt .he observations over the interval [0,T). The
instantaneous average rate of inpui impulises is defined to be uiz],
svhere u is a positive, bounded function.

“Sapported by the U. 8. Air Force uader Graat AFOSR-87-0308
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The difficulty referred to above is how to properly use the a priori
statistics in this problem. The procedure is straightforward when the
goal is to produce a MAP estimate of the consecutive arrival times in
an interval [0,T), given that there are exactly n arrival times. The
MAP estimate {, maximizes the quantity

A{Yor | La)p(tn | Nox = n) (3)
where A is the likelibood functional
T
exp (555 [ 1w - sl @

aad p(r, | Nor = n) is the joint probability density function (pdf)
of the first n occurence times in {0,T), given that Nor = n. It is
noted that for the state-dependent rate case, this pdf is not generally
differentisble with respect to r,,.

It is also straightforward to produce a MAP estimate of Ng 1, that
is, a minimum probability of error detection of Npr. The MAP esti-
mate Ny 7 maximizes

E{A{Yor | L} | Nog = n} Pr{Noz = n}. (s)

where, in the constant rate case, the second factor is s unimodal func-
tion of n, with its peak at E{Ngr} = AT.

In the problem at hand, however, neither £, or Ro,r alone will suf-
fice. The two procedures must somehow be merged. The issue is more
pressing when the model includes random marks which can take very
small values. In that case, the maximmum likelihood approach yields
unreasonably large values of N as many small impulse responses are
made to fit the observation noise. Any estimator of N must sufficiently
penalise large values. ’

In each of the three approaches mentianed above, a single expres-
sion is maximized to determine both the number and times (also marks
in [8] and [5]) of impulses in an interval. Au [8] used the likelihood
Tatio weighted by Snyder’s sample function density (sfd) (6]:

/(ta1nin) = P(2a | Nox = 1)p(tn | Nox = n)Pr{Nor =n} (€)

where y, denotes the random marks. It is noted that the sfd is not
a joint pdf, since the dimension of its domain depends on the last
argument. For independently and identically distributed (iid) marks,
the natural log of the sfd simplifies to

nlnd- AT+ ) lnp(w). m
iml
which, as & function of n, does not share the characteristics of
In Pr{Nos = n}; in particular, it does not necessarily penalize large
n. In the algusithm, extreme values of n are prevented by limiting the
rate of change in the collection of n's.

In treating the state-dependent rate case, Ingram and Haddad (6]
replaced the sfd in Au's approach with the joint pdf of £, and Nor,
where M is chosen so that Pr{Nor > M} « 1. Use of an actual
pdf might seem appropriate for 8 MAP approach. However, it was
observed that for the constant rate case, this pdf is constant with
respect to both 1), and n when n < M. Thus for the constant rate
cas~, the criterton 12 alupiy azunwa Lkelihood wit' an vpre wousd
onn.
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Kwakernaak (5] applied Rissanen’s (7] shortest data description
method to this problem. The resulting procedure is the same as Au’s
except that the expression in (6) is augmented with the factors IT.  n; &
where 7n; and §; are resolutions for digitizing the sth mark and arrival
time, respectively. The resolutions are chosen to minimize the aug-
mented expression, which is interpreted as the symbol iength needed
to encode the data n, r,,, and y,,. This method is optimal for the data
length criterion and penalizes high values of n. Bowever, it is not read-
ily applicable when the input is a self-excited point process. This is due
to the complexity of the expreasions and the required differeatiability
of the sfd in the assignments of n; and §;.

2 The Sequential Algorithm

The approach taken in this paper to the problem of estimating the self-
excited input point process has two steps. The first step is to compute
the MAP estimates £, for every n such that 0 < n < M, where M is
chosen as above. The likelihood functional for the n = 0 case is also
computed.

The second step is to approximate the minimum probability of error
detection of No,r by replacing the averaged likelihood functional in (5)
with the likelihood functional evaluated at £,,, i.e., by maximizing

A{Yox | £as20} Pr{Nor = n [ 20} (8)

over 0 < n < M to get Nor. The final estimate of input impulse times
is tﬂ.,,-' Both terms in (8) are conditioned on zo because of the state
dependence of the rate.

The main reason this approsch was chosen is its explicit depen-
dence in both steps on a priori statistics. This dependence was highly
desirable, given the rather elaborate input model that has been as-
sumed. The reason why equation {5) was not used is mainly due to
implementation difficulties. Specifically, the likelihood functional can
take on very large values for high signal-to-noise; this causes high sen-
sitivity to approximation errors in the numerical integration needed to
perform the expectation. Even if this sensitivity problem did not exist,
the muitiple integration would not be desirable because it is very time
consuming.

Equation (8) is relatively easy to implement. The firat factor is s
byproduct of the first step and the second factor, Pr{Nor = n | 2o},
can be computed off-line for the desired range of values for 2. The
second factor naturally imposes s penalty on high n and also aoticeably
depends on z;.

In the sequential algorithm, this procedure is performed over the
interval (A4, A+T)], where A is periodically incremented. The smoothed
state estimate 2, takes the place of zo.

The algorithm has been tested on the following example. Let

Ae) = 207%u()

< |1 =<1
ulm) = {4 Jze| > 1

Some values of Pr{Nor = n | 25}, computed for the example and
T = 0.1875 are shown in the table. For this interval size, Pr{Nor >
3} < 0.0073, s0 it is sufficient to consider values of n uptoM =3It
is observed that as z, increases, the probability weight gradually shifts
away from n = 0, but the probabilities of n = 1 and n = 3 still differ
by an order of magnitude. For z5 > 2.6, the distribution for 0 <£n<3
is unchanged becsuse the high initial condition ensures that ulzd = 4
over the whole interval. For o = 0.01, all pulses except the first are
detected within the time resolution of the simulation. As the noise
strength grows from o = 0.04, errors begin to occur. Additioual tests
are being performed and s theoretical performance analysis is under
investigation.

n=3
0.010
0.010
0.010
0.010
0.010
0.010
0.022
0.027
0.030
0.032
0.033
0.033
0.033
0.033

n=12
0.039
0.040
0.04C
0.040
0.040
0.040
0.078
0.094
0.109
0.119
c.22

0.130
0.133
0.133

n=1
0.121
0.120
0.119
0.119
0.119
0.119
0.159
0.195
0.231
0.259
0.287
0.309
0.338
0.354

n=0
0.829
0.829
0.829
0.829
0.829
0.829
0.744
0.679
0.623
0.581
0.547
0.517
0.491
0.472

E )
0.0
0.2
04
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.8

Table 1: Values of Pr{Nor = n | 29} for the example system.
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ABSTRACT

In this work, mean-square continuity is proved for the state of a linear system disturbed by
a point process with a state-dependent rate and random marks. The croas-correlation property
and the linear optimal filter are derived for the case of zero mean marks.

SUMMARY

The model treated in this summary is a continuous linear time invariant system driven by
a self-excited, marked point process. The term “self-excited” implies that the instantaneous
average jump rate or intensity of the point process depends on the history of the process. Thus,
self-excitation is one kind of time-correlation. In particular, the jump rate is specified as a
memoryless function of the system state. The term “marked” describes a point process with
random jump amplitudes (marks}.

One possible application of this model is in the tracking of maneuvering targets. The
jump process represents the commanded acceleration of the vehicle being tracked. The state-
dependency of the rate represents a relation between the rate of acceleration jumps and the
position and velocity of the vehicle. Another possible application is in state estimation for
systems subject to abrupt failures, such as the onset of biases in sensors or actuators. Here,
state-dependency of the rate may represent an increased vulnerability to failures under condi-
tions of high heat, speed, or electrical curreat.

The state process is given by the following stochastic differential equation

dz; = Azidt + BdM; t20

where z; € R” is the state, with initial condition zg, A€ R" x R*, Be R*, and M; € Risa
piecewise constant random process to be defined below. ’

Let N, denote the number of jumps in M;. Let {u;,u3,...,un,} be the consecutive jump
Leigh*y or marks of M;. Then M; may be expressed

N
Mg = Zu".

=]

The marks are assumed to be independently and identically distributed with mean @ and
mean square value u?. We define the stochastic intensity [1] or instantaneous average rate of
Ny to be p{z;], where 4 is a scalar valued, positive, and bounded function of the state z; of the
system. It follows that &, — [} u(z,]ds is a martingale with respect to the o-algebra §; generated
by z,. The observation model is given by

dz; = zedt + dwy

where wy is an n-vector of Wiener processes with E{dwidw,} = dt.
There has been a fair amount of work concerning systemns driven by compound Poisson
processes, that is, independent increment point processes with random marks. The contribu-

“Supported by the U. 8. Air Force undar Graat AFOSR-87-0308
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tions include representations and properties {2), and mean-square optimal, linear optimal, and
suboptimal state estimation [3,4]. Self-excited and more general point processes have received
attention |2,1], mainly as models for point process observations of dynamic systems.

Martingale theory has been applied successfully in the characterization of point processes
(1] as well as in nonlinear filtering theory. Thus, it was desirable and instructive to use it in
proving the following propositions.

Proposition 1 If there exists a constant K such that
ulz] < K < +oo0
for all £ € R™, then z; is mean-square continuous, that s,
lim E{llz - 2,1} = 0.
where || - || denotes the Euclidean distance in R".

Proposition 2 If the mean of the marks is zero, i.e., if G =0, then z, is of the separable class
[5], which implies that for any nonlincar, scalar valued function g(:), there ezists a constant
vector C such that

E{zi9(z,)} = E{z7,)C.

gtven that the appropriate ezpeclations ezisl.

The innovations approach of Kailath [6] may be used to derive the linear filter. The mean-
square continuity of z, is sufficient to prove that the innovations process v, = 2z, — f,‘° z,ds,
where %, is the filter output, is a process of orthogonal increments. When the marks have zero
mean, the resulting filter is

Aigdl + Pgdv‘
AP, + P,A' + BB' Wl u[z,| - PP,

di,
A

]

Although F; will be difficult to compute due to the a priori expectation u z.l, the computation
can be done off-line. We are currently investigating methods of computation and the filter
expression for the case of nonzero mean marks.
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ABSTRACT

Modeling issues and the minimum mean squared error linear filter and
smoother are studied for a linear system disturbed by a jump process with
a state-dependent rate and random jump heights. The jump process is
defined in terms of martingale processes. Martingale techniques are used
to derive certain properties and second order statistics of the jump and state
processes. It is shown that the linear filter and smoother are practical only
for the case of zero-mean jump heights.

1 Introduction

Linear systems with random impulsive forcing functions have been used to
model dynamic systems subject to abrupt failures or bias changes [1] and
manuevering targets (2], as well as many other physical situations (3, chapt.
4]. State estimation for such systems from noisy observations has been an
active research area for many years. The input process is often described
as either an independent increment compound Poisson process {4,5,6,7] or
a discrete-time semi-Markov process {2,8]. In both cases, the minimum
mean squared error (MMSE) filter is not implementable. Thus researchers
have considered various approximations to the MMSE filter as well as linear

1Supported by the U. S. Air Force under Grant AFOSR-87-0308




optimal filters and schemes which involve maximum a posteriori (MAP) or
MAP-like criteria [6,8].

This note treats a linear system driven by an extended version of the
compound Poisson process. The extension results from allowing the instan-
taneous average rate of the input impulses to depend on the state of the
linear system. In the abrupt failure applicat.on, the state dependency is
motivated by the idea that a system maybe more prone to failures when
it is under some degree of “stress,” as defined by a region of the state
space. In the target tracking application, the likelihood of a pilot to give
an acceleration command may depend on his speed and position, again re-
flected by the state of the system. Apparently, this input model has not
been previously considered in the context of state estimation. A related
model, a linear system with Markov jump parameters where the jump rate
is state-dependent, has been considered for optimal control [9].

The objectives of this note are to determine various properties and quan-
tities of the process of interest which are relevant to MMSE estimation,
and to derive the MMSE linear filter and fixed-lag smoother. The note
is summarized as follows. Section 2 contains a methodical development of
the properties of the state process. The development is based on a semi-
martingale representation of the counting process which underlies the jump
process. It is this semimartingale representation which precisely describes
the state-dependency of the system disturbance. We build up from the
counting process to the jump process, and finally to several repres:ntations
of the state process. The state process is proved to be square integrable
and mean square continuous. Section 3 contains a discussion on linear esti-
mators for the state process, given observations in additive white Gaussian
noise. A recursive form for the filter and fixed-lag smoother follow easily
when the jump heights have zero mean. In the general case, however, a re-
cursive form of the linear filter is not obtained. Some observations are made
from the general filter expression and the form of the a priori covariance
equations.




2 The State Process

In this section we define the state process and discuss its properties. Several
representations are considered, and the properties of square integrability
and mean square continuity are proved. We recall that these properties
are true for the constant rate case, so it should not be surprising that they
follow for the state-dependent rate case when the rate function is uniformly
bounded. The definitions and proofs, however, do require some care.
The state process is given by the following stochastic differential equa-
tion
dr, = Az, dt + BdM, t >0 (1)

where z; is an n-dimensional state vector, with initial condition z,. The
n X n constant matrix A is assumed to be such that the solution of £ = Az is
exponentially stable. The scalar process M; is a piecewise constant random
process. The jumps of M, occur at an instantaneous average rate which
depends on z..

2.1 The Input Process

The process M, is known as a jump process. Its definition depends on a
sequence of ordered pairs {(71,u1), (72, u32), ...}, where 7; > O is the time of
the ¢** jump and u, is the jump height. This sequence of ordered pairs is
known as a point process, and the u’s are the marks of the point process.
The 7 sequence may be equivalently represented by the counting process
N;, which is the number of jumps prior to time t. Thus the jump process
M, may be expressed

N,
M, = Z u,. (2)

=1
In this note, the marks are assumed to be independent and identically
distributed (iid) with probability density function (pdf) p,(u), mean %, and
mean square value u?. Also, u, is independent of {N,,M,;0 < s < t} for

]. > Ng.

The state dependency of the rate is made precise in the definition of
the counting process N,. Because martingale theory is known to be quite
powerful in the analysis of point processes on the real line [10,11] and it is




fundamental to nonlinear filtering theory [12], N, will be defined in terms
of martingales.

Let S; be the smallest o-algebra containing the histories of both the
state z; and the counting process N, i.e. § = o{z,,N,;s < t}. The
reason NV, is explicit in the definition of S, is because if a mark u can take
the value of zero, then a jump in N; may not coincide with a jump in z,.
S: is assumed to possess the “usual” properties of completeness and right
continuity [13]. Consider the process A; = p[z], u : R® — R, where u
is such that 0 < u[z] < K < +oo for all z € R™ and some constant K.
We specify A; to be a stochastic intensity with respect to S;, or simply an
Si-intensity, for N; [11, p. 27]. Note that the definition of §;-stochastic
intensity requires that /V, be measurable with respect to §;, hence the need
for N; in the definition of §;. An informal interpretation of A, is that on
the infinitesimal interval [¢,t + dt), N; acts like a Poisson process with rate
parameter ), or that Pr{dN, = 1| §} = A.dt.

By definition of S;-stochastic intensity,

t
Dg = Ng —/; A,d&' (3)

is an S;-martingale. The integral [; A,ds is also known as the unique pre-
dictable compensator for N, with respect to S; [10, p. 59].

It is known that a counting process N, may have more than one stochas-
tic intensity with respect to a given growing o-algebra, but there is only
one stochastic intensity which is predictable [11, p. 30]. If u[z,] has left
and right limits, then S\t = p|z;_] is predictable [14, p. 46]. However, pre-
dictability is not required for the results in this paper; any A, differing from
:\, on a set of Lebesgue measure zero may be used.

The description of a point process using a stochastic intensity is a rel-
atively modern approach to the modeling of point processes. One of the
classic approaches is to define a point process by the joint probability dis-
tribution of its jump times and marks and by the distribution of N;. In
his book [3], Snyder reviews distributional descriptions for many classes
of point processes on the real line. One class of processes, the class of
“marked self-excited poir.t processes,” includes the process of interest in
this note (3, p.467]. The term self-excited means that the present and fu-
ture statistics of the process depend on its own past. It is noted that the




specification of A; = u[z,] as a stochastic intensity of N; is consistent with
the distributional characterization of a marked self-excited point process
where the self-excitation is through state dependency. The connection is
made through a theorem stated by Brémand (11, p. 61]. We note in passing
that the distributional description is useful in certain maximum a posteriori
(MAP) approaches to this state estimation problem [15,16].

The definition of N; will now be generalized to include random jump
heights or marks. This procedure will lead to a decomposition of M, similar
to the decomposition in equation (3). The decompositon of M, will, in turn,
lead to a useful decomposition of z,.

Let the mark sequence {u,,n > 1} take its values in the measure space
(U,U). The idea of the counting process N; may be generalized to a counting
measure p((0,t] x A), which is the number of jumps in M, that have marks
(or jump heights) in the set A € U [11, p. 234]. It follows that N, =
p((0,t] x U) and

M, = /U up((0,4] x du). (4)

If N, has the stochastic intensity A; and the future marks are iid and inde-
pendent of §;, then it follows that the stochastic intensity of p((0,t] x A),
is A, Pr{A}. A heuristic argument is given below.

Pr{p(dt X A) =1 ‘ Sg} = Pr{dM, €A , ng = 1,S¢}Pr{ng =1 ! Sg}
= Pr{UN'+1 €A | ng = I}Agdt

= /A pu(u)dudt.
A corollary of Brémaud (11, p. 235| then implies that
¢
R, = /; j/;, u[p(ds x du) — A\,p,(u)dsdu)

t
= M, - /0 aA,ds (5)

is an S;-martingale and Q; = [§ @),ds is the unique predictable compen-
sator of M,. It is noted that (5) is also the unique decomposition with
respect to §¢ = 0{z,;0 < s < t}. This is because dM, is conditionally
independent of {N,;0 < s < t} given z;. It is further noted that R, is an




orthogonal increment process (its formal derivative is white noise) since all
martingales have orthogonal increments.

In the appendix, R, is shown to be an L?-martingale with quadratic
variance

(R.R), = [ Pulz,ds (6)

which implies that Rf — (R, R), is an S;-martingale (17, p. 115]. It follows
that

E{RR,} = E{(R,R),.}
AT
= / u? plz,]ds. (7)
0
where t A 7 = min(t,7). The expressions in (6) and (7) will be employed

below in a bound on state variance and in the linear filter expression, re-
spectively.




2.2 Representations and Properties

The state process has several representations. These representations will
be reviewed and then one will be used to prove the square integrability and
mean square continuity of z,.

The expressions in (1), (2), and (3) constitute one representation for z,.
It is also possible to give an augmented state equation with an independent-
increment excitation. Let 1\:!, be a compound Poisson process with iid
p.(u)-distributed marks and a unsty jump rate. It follows from a theorem
and lemma of Brémaud [11, p. 41], that if A, is uniformly lower bounded
away from zero, then z; may also be represented by the following equations:

dz, = A:z:,+Bd1\~l,, (8)
dry = plz,]dt

where the augmented variable performs time scaling of the input process
I\;I,. While the representation in (8) has not been useful in analysis, it is
useful for computer simulations.

It is easily observed that z; is a Markov process with a stationary
transition function, since the statistics of dM; in equation (1) are com-
pletely determined by z,;. More specifically, z; is in the class of Piecewise-
deterministic Markov processes, a class described by Davis [18] that “covers
virtually all non-diffusion applications.”

When a Markov process has a stationary transition function and is con-
tinous in probability (which is implied by mean square continuity, proved
below), then its transition function is uniquely determined by its differential
generator A (19, p. 184]. The operator A can be used to derive differential
equations which propagate the covariance of z; as well as other expected
values associated with z;. Given a continuously differentiable function f,
an expression for Af(z:) may be found by simplifying the general formula
in Davis [18]:

Af(ze) = g—i:A::, + p[ze) U;; f(z¢ + Bu)p,(u) du — f(z,)] . (9)

A property of the generator is that

f(ze) - f(zs) - / ' Af(z,) dr (10)




is a martingale for t > s [18].
The adjoint operator A* yields the following evolution equation for the
pdf of z,, assuming the density exists.
3pg(:c)

—5 = A’pi(z)

= a% [-Azpi(z)] + /,Z pe(z — Y)ulz — ylpsu(y) dy — pe(z)p|z] (11)

where pp,(+) is the pdf for the random vector Bu. It is observed that A" is
not a local operator because of the shifts in the convolution integral. The
shifts also imply that the steady-state equation is classified as a differential
delay equation.

Taking f in equation (10) to be the identity yields the S;-semimartingale
decompositon of z;, which is useful for deriving the MMSE nonlinear filter.
This decomposition can also be deduced directly from (1) and (5) and is
given by

Iy = 20+Gg+Hg (12)
¢
G = /; Az, + Buy(z,| ds

t
H, = / BdR,.
o]

where H; is the martingale by an important property of stochastic integrals
[12] and G; is predictable since it is continuous.

The final representation to be considered is a decomposition of the su-
perposition integral. Let ®(t) be the state transition matrix corresponding
to the plant matrix A. Then z, can be represented as

z = @(t)zo+/0‘q>(:-s)BdM, (13)

= ®(t)zo + (t)V: + ®(t) I, (14)
|7 /:Q(—-s)Bﬁu[z,]ds (15)
L = /O‘Q(—s)BdR, (16)

Here &®(t) is factored out of the integrals to enable the semimartingale
decomposition involving I; and V;. This representation rather than (12)




is used to prove square-integrability and mean-square-continuity of z, be-
cause the integrand of V, is a uniformly bounded function of z,, while the
integrand of G; is not. These properties are proved below.

The process z; is square integrable iff [17]

tE R+ E{”It” }< +00.

By the triangie and Cauchy-Schwarz inequalities,
E{||lz:|*} < E{A’} + E{B*} + E{C?}
+2[(B{4'}E{B*})} + (E{A}E(C?))} + (E{B'}E{C*})}] (17)

where
A = |[®(t)zoll
B = |o(t)Vil
C = |e(t)L|

and where ||z is the Euclidean norm for z € R™ and ||®|| is the matrix norm
induced by ||z||. The equation Z; = Az, is assumed to be exponentially
stable, which implies that there exist positive constants v and n such that
I1®(t)]| < ve~"* [20]. Also, for random z,, we assume E{]|z,]|*} < +oo0 and
recall that u(z] < K for all z. Hence, the following inequalities are implied:

E{2(0)z0]} < 12 (2)I°E{l2ol) (18)
(e ()Vil*}
E{ [ ' [ %zl | BTO(t - 5)TB(t - r)Bdsdr |
< //-21(2 |BT®(t - 5)7(t - 1)B| dsdr
< @KYBI* [ 186~ s)lds [ |@(¢ —r)ar (19)

One of the properties of an L?-martingale R, is that if C; is a bounded
predictable process, then the stochastic integral ¥, = f; C,dR, is again an
L*-martingale with predictable variation

(W, ), [ Cd(R,R),,




and E{¢?} = E{{¥,¥),} [17]. By a straightforward generalization to the
vector case of (16), it follows that

E{8(t)L]*)
= Trace E {/Ot o(t - s)B;L_zu[:z:,].BTQ(t - s)Tds}
E{ [ ulz]Ia( - 9|7 B ds)
< WK|BI* [ o - )[Pds (20)

IN

Because £ = Az is exponentially stable, all of the integrals of ®(t — s) are
bounded by a constant [20]. Thus the bound on E{]|z;||’} does not depend
on time, and z; is square integrable.

Next z, is shown to be mean square continuous. This property justifies
the use of innovations in deriving the MMSE linear estimators. In order to
show mean square continuity we must show

lim B2, — 2|} = 0.
Let w < t. The representation in equation (13) may be used to write
Te— Zy = [t —w) — Iz, + /u: ®(t — s)BdM,.
Steps parallel to (14) and (17) yield the inequality:
lze = 2ol < 18(t — w) = TI*flzull® + 18(2 — w)Varll” + [ 9(t — w) L dlf?

where V,,; and I, are defined the same as in (15) and (16), respectively,
except the lower integration limit of O is replaced by w. Continuation of the
same procedures yields inequalities nearly identical to (19) and (20), dif-
fering only in the lower integration limit. Further simplification is possible
by using the inequalities below [20]. Let a = ||4].

a [ 1) las

an [1 _ e—A(!—w)]

By
E\Y_ [1 - e—A(t—w)]
[ e - s)ias < ’17’ [1 - esiw)

I8t — w) - 1|

IA

IA

t
[ e~ s)ids <

A

10




Substitution of these inequalities leads to the expression
E{llz - zall*y < STE{|zu||?} [1 - )]
2 2
222 [y _ a-at-w)]? T3 2V [ ~2a(t-w)
+ @' K| B|* 5 [1-e |"+ K| B . [1-e ]

The boundedness of E{||z,||*} thus implies E{||z; — z,]|*)} 2> 0 ast — w.
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3 The Linear Filter and Smoother

For the estimation problem, we assume the m-dimensional observation pro-
cess to have the following form:

dyg = C:Etdt + dUg (21)

where the matrix C is such that A and C yield a completely observable
system. The observation noise v; is an m-dimensional Wiener vector, inde-
pendent of z;, with E{v,vT} = [{"* W, dr.

Because z; is mean square continuous, it belongs to the Hilbert space
spanned by all mean square continuous random processes. Thus its opti-
mal linear filter exists as the projection of z; onto the growing subspace
generated by the observation process y,. But the practscality of the filter is
uot guaranteed. An interesting characteristic of the process z, described in
Section 2.2 is that it appears to be on the “borderline” of the set of pro-
cesses for which recursive, finite-dimensional filters exist. This is because
in the case of zero mean marks, the linear filter expression is simple and
familiar, whereas for the case of non-zero mean marks, a recursive, finite-
dimensional filter does not seem to be possible. In this section, we give the
linear fiiter and fixed-lag smoother for the case of zero mean marks, and
discuss the difficulties associated with the case of non-zero mean marks.

3.1 Zero-Mean Marks

When the marks have zero mean, i.e. when % = 0, the input jump process
M, is a martingale and hence has orthogonal increments. The filtering prob-
lem is classified by Kailath [21] as the Stratonovich-Kalman-Bucy (SKB)
problem, for which the filter equations are well known. Let %, be the op-
timal linear estimate of z,, £, = z, — %,, and P(t) = E{Z,z7}. The linear
filter equations are:

dz, = Azdt+ P(t)CT¥;'dy,

P(t) = AP(t) + P(t)AT — P()CTY;'CP(t) + B [z ]BT. (22

where vy = y, — [§ C%,ds is the innovations process. The only unusual
characteristic in these equations is the a priori expectation u{z,] = E{u{z,]}.

12




Recall that the rate function u is necessarily nonlinear, since it must be
positive. We have found that for a scalar system and the simple function

ky |z]<a
ﬂ[xlz{kz z| > a

for some a > 0, m can be well approximated by numerically propagating
the pdf according to equation (11) and computing E{u|z;|}. We also note
that for scalar systems with certain mark distributions, it is possible to
derive the steady state pdf.

The fixed-lag smoother for the zero mean mark case can be derived using
Kailath’s procedure 23], except that martingale properties are invoked in
the computation of the error covariance P(s,t) = E{z,z7}, and differentials
are used instead of derivatives where appropriate. Let Z,;,, denote the
optimal linear estimate of z: given the observations up to ¢t + A, with
A > 0. The equations that constitute the smoother are

d£¢|¢+A = dfg + P(t)dfg + dP(t) fg,
the equations in (22), and
de = —|A+ P(t)CTE; ' C)T€dt — CTE Mduy + &(t + A,1)TCTY  yduia

where & (¢, s) is the state transition matrix associated with the plant matrix
A = A- P(t)CT¥;!C and which maps from time ¢ to time s. Let Ziera
denote the error covariance of Z;;; 4. The reduction in error covariance due
to the lag is given [23] by

t+4 .

i+ — P(t) = P(2) (/t @(s,t)Tc’“\y;lcé(s,z)ds) P(t).

3.2 Nonzero-Mean Marks

The linear filtering problem becomes more complex when the marks of the
input process have a nonzero mean. The complexity derives from the fact
that the compensator (i.e. the non-martingale part) of the jump process
becomes nonzero and random. Two approaches were used on this problem.
The objective of the first approach was to derive the filter directly using

13




the innovations method. The objective of the second approach was to
find the Gaussian process with the same autocovariance, and then write
the optimal filter for the Gaussian process. The merit of the innovations
approach is that it produces a filter expression, which may be simplified as
much as possible. The autocovariance approach is useful because it implies
an interesting interpretation of the compensator. In both approaches, the
difficulty arises in covariance equations involving u|z;]. Both approaches
are summarized below.

For the innovations method, it is useful to consider the perturbation of
z, from its mean %, = E{z,}, denoted by éz; = z: — Z;. An expression
for Z, may be found by taking the expectation of both sides of (13). A
representation for éz, is then

t t
620 =8(t - 5)6z, + [ ®(t - r) Budu, dr +/ &(t — r)BdR,  (23)

where 6u, = p|z,] — p[z:] and R; is defined in (5).
The projection form of the optimal linear filter is [21]

— t
5z, =/ E{6z,2T}CT ¥ \d,.
0

Substitution of (23) and interchange of integration order in the éu term
yields =N
d (6z,) = Abz.dt + Bubpdt + P(t)CT¥; dv,. (24)

Application of the orthogonality principle and some algebra yields the error
covariance equation
P(t) = AP(t) + P(t)AT + BuPL(t) + P.:(t)aB”
+ Bu? p[z,)]BT — P(t)CTYU'CP(2), (25)
where
Py(t) = Cyz(t) — E{6p,62:}

and C,.(t) is the covariance of u|z,| and z..

It is observed from equation (24) that for a recursive filter to exist, there
must be a recursion for 571,. However, there is reasonable doubt that such a
recursion exists or is worth the effort to derive, since the dynamics of u[z,]

14




are very complex. The presence of u[z] as a factor in (9) indicates that
the differential equations for any expectation involving u|z,] will depend on
higher order moments of u|z|.

In the second approach, the differential generator is applied to f(z:) =
z,:z;; (s is the ** component of z;) to get a differential equation for
C::(t,t) = E{6z, 6zT}. The result is

Cez(t,t) = AC,.(t,t) + Cpa(t, t) AT
+ BuCL(t,t) + C,.(t,t)BT + u[z.]BBTu2. (26)

In addition, it follows easily that

%C,,(t,s) = AC,.(t,s) + BECIZ(t,s). (27)

Now consider the Gaussian process z,:
dz, = Az,dt + B(0,dt + duw(")

where w{!) is a scalar Wiener process, and 6, is a scalar colored Gaussian
noise which satisfies
b, = F6,dt + Gdw®

where w(?) is also a Wiener process. The covariance of z;, when separated
out of the covariance expression for the augmented state |[z7,8,], matches
(26) and (27) if 8 is replaced by uu|z,] and the diffusion of w(1) is assumed
to be u? u[z,]. There is also a match between the filter equations for the
Gaussian process and the equations (24) and (25), when the appropriate
notational substitutions are made.

These similarities imply that the compensator of the input jump process
plays the role of the ‘colored part’ of the input noise. However, for the
reasons given earlier, the evclution equation for C,,(t,t) is much more
complex than for Cy(t,t) in the Gaussian case.

4 Conclusions

Martingale techniques have enabled a rigorous and complete derivation of
certain representations and second-order statistics for the state process of

15




interest. The linear filter and fixed-lag smoother were given for the case of
zero-mean marks in the system disturbance. In the nonzero-mean case, the
optimal linear filter did not seem to have a finite, recursive implementation.
However, the form of the filter expression suggests that if a recursive linear
filter exists for the compensator of an arbitrary jump process disturbance,
then a recursive linear filter may exist for the state process.
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Appendix

The following proposition is similar to a Lemma of Segall [14, p. 85],
which proves that a counting process with a continuous compensator is
locally square integrable. Here, the same property is proved for a jump
process whose underlying counting process has an absolutely continuous

compensator (i.e. an intensity) and whose marks are iid and mean square
bounded.

Proposition: Let M, be a jump process whose counting process N, has
an S,-intensity such that A, < K for all t. Let the jumps or marks of M, be
independent random variables with mean value ¥ and mean square value
u?. It follows from Section 2.1 that R, = M, — fé U\, ds is an S;-martingale.
Below it is proven that R, is locally square integrable, and further, that R,
is an L?-martingale.

Proof: By definition, the S;-martingale R, is locally square integrable if
there exists a family of S, stopping times (T,,n > 0), satisfying the prop-
erties T, < T,,, and

lim T, =400 (as.), (28)

n—+00

such that for each n,

max

0<t E{RfAT"} < +oo.

where t A T,, = min(t,T,).
Define T,, as the time of the nth jump of N,. Since {w : T,(w) <t} =
{w : Ny(w) > n}, each T, qualifies as an S;-stopping time.
To prove equation (28), we require only that E{N,;} < +oo for each
t > 0, which follows from the bound on A,. Define the stopping time T as
follows.
T= lim T,

n—+ 0o
It is observed that T = +oo (a.s.) iff Pr{T > t} = 1 for all t < +oo.
Suppose the opposite is true, i.e. that there exists a < +oo such that
Pr{T < a} > 0. By the fact that N, is increasing, we have that E{N,} =
+00, which contradicts our assumption, therefore (28) is proved.
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Finally, we address the process R,;. In Section 2.1, it was shown that
Q: = J3u), ds is the compensator of R;. Expansion of R}, , and use of
the triangle and Cauchy-Schwarz inequalities yields

E{thAT,.} S E{Mtz/\T,‘}
1
+2 [E{M1 }E{QL1,}]* + E{Qlur,)
The definition of T,, implies:

E{M/\1,}<E { (Z u.-)z} < n'ul.

=1
The remaining term is bounded as follows.
E{Ql.r,} <TK'T}

Therefore, E{R?,. } < +00 and R, is locally square integrable.

To prove square integrability of z,, it is convenient to be able to define
the quadratic variance of R, without having to use the stopping times {7,}.
The property we desire is for R; to be an L?-martingale, which means that
for each t > 0, E{R?} < +oo [17, p.112|. Since R;a7, is square integrable,
its quadratic variation exists (19, p.238|, and is defined as the predictable
compensator for the quadratic variation (R, R]iar,. Since Ri\7, has no
Wiener component,

[R,Rlixr, = 2. (AR,)?

0<s<(tATn)

where the summation is over all jumps in R, up to time ¢ A T,,. Since Q; is
continuous, (AR, )? = (AMiat,)?. Therefore (R, R|iat, is a jump process
with the same counting process as M;a7,, but whose marks are the square
of the marks of M;r,. We may deduce from equation (5) that

tAT, ___

<R,R >,m=/ I\, ds.
0

It is known that < R, R >ar, also compensates R}.r_, therefore

E{R!.7.} = E{<R,R>ur.}
< WK(tAT,).

18




Taking the limit of both sides as n — +o0 yields

E{R]} < u’Kt.
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ROBUST DESIGN PROBLEMS: A GEOMETRIC APPROACH

Erik I. Verriest and W. Steven Gray

School of Electrical Engineering, Georgia Institute of Technology,
Atlanta, Georgia 30332-0250%

Analogous to the correspondence between observability and identifi-
cation, a correspondence ve'ating controllability to a "dual" of the
identification problem: the "DESIGN"-problem is establighed. This
amounts to the choice of a realization or approximetion of a desired
system response, e.g., in view of minimizing the effects of component
tolerances in analog systems or finite wordlength effects in the dis-
crete case, A geometric approach to the design problem is presented,
and its solution given under & useful criterion for optimality. For
linear time invariant systems, the minimum sensitivity realizations
are linked to the Balanced Realizations.

1. THE PROBLEM DEFINITION AND HISTORY

This paper deals with a new geometric approach to the robustness problem,
Classically, the sensitivity properties of a given realization have been inves-
tigated, via a "sensitivity system" (12,3], or via the operator form [ll].
The questions of robustness with respect to variations of certain structural
parameters is closely related to this problem, and treated by Ackermann in [1].
A geometric point of view was recently introduced by Delchamps {2), and applied
to compensation and feedback. Our emphasis will be in optimal implementations
of systems with quantized or inaccurate parameters.

Consider a linear time invariant system (A,B,C) with m inputs and p outputs.
This may be a model for a real system one wants to simulate, the implementation
of a digital or analog filter, or an observer-controller implementating an
optimal regulator for some given plant. 1In all these applications, only the
relationship between the input and the output of the implemented system is
important. Usually the so-called "Canonical Forms" are implemented because
they minimize the number of parameters and allow for a pipelined realization.
This corresponds to minimal complexity, a quality that may be important if the
operation count becomes important. However, a minimal set of parsmeters has no
redundancy, and therefore, high sensitivity,

This paper investigates how the nonuniqueness of the state space realiza-
tions can be utilized to determine optimal parameterizations under various

measures of "optimality' or robustness.

*This research is supported by the U.S. Air Force under Contract No. F08635-84-
C-0273, and AFOSR-87-0308.
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Because addicion an? scalar multinlloavion of gystens have no meaningful
ratural interpretations, the realization space i aimply aseumed to have UThe
structure of an affine space of dimension alasmep),  The space 1s given the
structure of & Riemannian manifold by introducing an Euclidean metric in the
tangent space at each point. For instance, in the analysis and design of the
finite wordlength effacts with fixed point processing, a uniform metric for all
tangent spaces is appropriate, whereas for floating point procesaing, 2 wmetric
varying smoothly from paint to point is more appropriate.

This space can be resolved (i,e., partitioned into equivalence classea)
into disjoint seta, corresponding to different input/output behaviors. For a
particular realization, the proximity of neighboring sheets will be an indica-
tion. for the robustness or sensitivity of this realization. These geometric
notions are made precise in Section 3, after giving a more philosophical
introduction in Section 2 on the design problem and its relation with other
systems problems. This theory is applied to systems design in Section 4, The
most interesting result is the one relating the minimum sensitivity (under the

fixed point metric) realizations to the balanced realizations.

2. SITUATION OF THE PROBLEM

Consider the phenomenon "linear aystem"” &8s a mapping ¢ from a suitable
subset of the cartesian product of input functiona (U) and realizstions (L) to
the set of output functions (Y). For continuous linear time~invariant systems,

the mapping stands 'for the convolution operator
o UxL » ¥ : (u(+),s) + y()

t .
y(e) = [ ce® T putryur

-

For discrete systems a similar expression results. We can now look at the
marginal maps derived from the linear syastem operator, In particulsr, if

S = (A,B,C) is fixed, we define the usual linear input/output map as
o Ux {S] + Y:u() + y()
On the other hand, for a fixed input u(»), the marginal maps

g, {u xL + Y : s + y()
associate with each realization S, e.g. the impulase response hit) if u(r) =
6(t), or the transfer function H(p) characterizing the steady state reaponse to

2 sinusoid u(t) = eP® of complex frequency p.

-t
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and deconvolutton problems are tnverae nroblems for the map ¢

that the former relates to tle derivation of a right-inverse and
AL i e e et e

the latter to g left-invarse of the map. lloreever, a certain caunal structure

18 anmplicit in the problem. In designing a control to achiave a desired
output, invariably "future" actions are underatood, while in the deconvelution
problem one actn on observed data, and thus relates the "pest" of ule) and
y{+). Similarly, the construction of a left-iaverie for 9, pertains to the

system identification problem, invariably tied to an observation of functions

or time series, and hence reiating the "past” of y(+) to the asystem, Finally,
finding a right-inverse of a, is the problem of '"designing" a system with
desired "future' behavior.

In the identification problem, the messured data necessarily has uncertain-
ties due to the finite observation time, finite memory sffects, and imperfect
isolation. Similary, uncertainties interfere with the design problem: the
parameter settings necessarily have finite precision, In order to find
"uniquely" an "optimal" solution to these problems, one introduces a suitable

distance or norm in the domain and range spaces [l4].

3. MAIN RESULIS

A summary of aome known results on the geometry of systems and their

realizations is first given, The next subsection discusses the robusi design

on an abstract level,

3.1 The Geometric Structure of the Realization Space

Let Lm,n,p be the realization space, i.e. the space of all triples of
matrices (F,G,H) of dimension n x n, n x m, and p x n over R, Endow this space
vith an affine structure with vector space RM™*A*P)  pHence. at esch point S,
there is an attached vector space TglL (the tangent space at S), isomorphic to
pn{mensp) group Gl (R) acts differenciably on the right to Lm,n,p’ via
(A,B,C) + (A,8,C)T = (TAT"I,TB,CT-I) correaponding to a change of base in the
state space z = Tx, The quotient space is non~Hausdorff in general,
Reatricted to the completely reachable (or dually, the completely observable)
systems, the action of Gl (R) is free (as a consequence of reachability/
observability) and the quotient space (aset of orbits) M;fn.p - L;fn,p/61n(x) is
a smooth (real) analytic manifold (hence Hausdorff) of dimension n{m+p)., ~ The
set of equivalence classes of minimal realizations MEOIET are analytic oapen
eubmanifolds [5]. This space, called parameter ;p;ce, is crucial in
identification, and is well studied (e.g. in relation to the {non)existence
of continuous canonical forms [5), and degeneration phenomena [6)).

Since the isotropy subgroup ie trivial for all reachable or obaervable

realizations, its dimension is constant on L°%'°T

p' and hence, the orbita of
[ ALE ]
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; y . Co ., ,C2,eT . . .

CLo(RY form a foliation F oof - nop Of dimengion nluep) 9], Tue {lelt of
e ttad

tangent apacer to  the leaves forwm an almep)=dimeagional subbundle 1(F)} of

the tangent bundle, called the tangent bundlie to F, The quotient bundle v(F) =

TL/T(F) is called the normal bundle to ¥,
Our interest {3 not In the universal parsmeterization, but in the arbits

vader the action of GIP(R) itself. These orbits are open, and the boundary

points of reach, :le realizations are nonreachable realizationa. The explicic

form of the closure of the orbits was addressed ir [8]., We shall endow the

co,cr . - P .
tangent bundle TL 7' with a positive definite metric
mlnlp
. co,cr
<oyo> ¢ T.LxT.L + R for all § in L '
S 5 S m,n,p

3.2 The Robust Design Problem: A Geometric Approach

Before proceeding with our system design, we shall prove a general resulf on
sensitivity:

Definition: Let © be an N-dimensional open subset of an affine space AN of
design parameters (configurations). By an Observable, we shall mean any smooth
function £ : 8 + R which has no critical points.

Any two coafigurations 81 and 82 in the parameter space are indiscernible by
observation of f if f(Bl) - 5(82). This allows us to regard two parameteri-
zations yielding the same observable value(s) as being the same {or equivalent)
for some purpose, In a systems context, observables are, for instance, a
mapping from the realization space to the transfer fuaction (scalar case)
evaluated at a particular frequency, or the impulse response evaluated at a
specific instant, i.e., the "system functions" [3].

An observable induces a partition of © into equivalence classes, known as &
foliation, In this case, the submanifolds are the level surfaces of f, and
have dimension N-l. There exists a vector field normal (in terms of some
arbitrarily chosen Riemannian metric) to the leaves.

The whole issue of the sensitivity problem is now to find the points on the
leaves corresponding to a maximal "separation" of the leaves of the foliation.

3.2.1 Riemannian Metrics. If © is paracompact, then a Riemannian structure

G can be put on @ (or, more axactly, on its tangent bundle)., This means that
for each 8 ¢ 8, a symmetric, positive definite bilinear form Ce is defined on

the vector space TGG, such that C definea a metric or. T9, i.e, is a smooth

*

section of the vector bundle T;G. Let ¢ ! TO + T0 be the natural isomor-
L , . .

phism of each space TOG with TOG' If f is a smooth map, the gradient of [ ie

defined as the element df? of T0 (i.e. the vector field correspending under the

map ¢ to the differential form df). 1In the local coordinates, this is given by
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ij 3t 3
» 1
a0t 4o’
wherw the smmmation conveation is used. The matrix {g J} 13 the 1nverse of the

metric Censor {RU}

3 3
g.. = G(-—-——r —---‘)
20" a0’

The aquared norm of the gradient is

uvcfn2 - GV E,0.0) = gtd Af 3F
a0t aed

If 0 is foliated by f, then the tangent apace &y to the leaf through @ is an

N-1-dimensional subspsa=: of Tae. R
3.2.2 Extremal Sensitivity Theorem. Points of extremal sensitivity

{with respect to an observable f(08)), are determined by minimization of L(8) =
1

7|chl over the leaf characterized by a particular value of the observable f.
A worst case analysis leads to the minimization of the gradient norm lvcfl )

C(ch,vcf)l/z, or equivalently,

- _ 1 2

h -i-chfl
This scalar field induces a vector field in the tangent space a4 of the leaf.
However, note chac.dﬁ‘ - dC(df',df#)# is, in general, not tangent to the leaf,
Its projection on the tdngent space to the leaf at 6 yields the tangent vector
dC(df#,df‘)’ - Adf‘ to the leaf through 6, for some X € R.

Theorem 1: If £ is an observable for the parameter space (0,G), then the

points of extremal sensitivity with respect to f are implicitly determined by
the equation

ac(de?,aehH? - aae? = 0

Tre stated condition is the Euler~Lagrange equation for the constrained
optimization problem.

The gradients of K and f ace aligned at the extremal sensitivity pointa. 1In

particular, for the uniform metric, 8ij * ﬁij‘ the condition specializes to

(Eea(-) - x:)fe<-> -0

while for the relative metric 8 - 5ij/e‘ej, which is useful in connection
with the floating point arithmetic, the condition is

[aiag(o)diag(f,) + diag(07)e, Jaiag(07)e, = rdianled)e,

AN R e % e st MBI e
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In the latter case, a gimpler f(orm is obtained by waing the "general

gradient 9f with componenta oiaf/ae; insteed; correspondicg tn the gunere!
Hegsian ¥ = diag(7¢) + diag(O)fMdiag(e). We state what was just shown a-
important

Corollary: The extcemal sensitivity pointe of (6,6), where G is the unifon
relative metric, are the pointa where the gradient ¢t? i in the cigenspac

the geaneralized Hessian operator Y : TDG MERTLER l.e,

(Hee) - ,\{]dE# -0

4, APPLICATION TO ROBUST REALIZATIONS
Expreuys the par.neterization in terms of the comporents of a factoriza:

of the aystem Hankel matrix H = OR, where O and R are, respectively,

observability and reachability matrices of the realization. The Hankel mat -}

defined a2s a map with domain Lm,n,p plays the role of a multidimensic:

observable. The continuous time systems design under the uniform metric

discussed, for square (p = m) aystems only.

Definitions: Let L;[O,-) be the Hilbert space of m-vector functions with ir-

product <x(+),y(s)> = f: x(t)'y(t)dt. The reachability operator R: L;[O,-)

R" for a realization (A,B,C) is defined by Ru(t) = f- eAtBu(t)dt. Its adjc’
Ef is the operator ‘3f : BT - L;[O,-) : R¥x = B'e 'tx. The observabil:

operator is 0 : R" + L;[O,-) : Ox = ceAty, Since R snd O have a fin:

dimensional range and domain, respectively, they are compact, and th-i

composition OR is also compact [7]. Finally, we introduce the Hankel opers:

H: L';(O,-) - L;[O,‘-) : Hu(e) = /;' h(t+t)u(r)ds, where h(t) = CeAly, 1t
readily verified that indeed H = OR. An operator A : L?(O,-) - L?[C

* E 4
satisfying AL = A A = Id (the Identity operator) is called isometric.

shall also assume that the set {ei}?-l is the standard basis for R® and :-

the functions {wi}:-l form a complete orthonormsl basis in L;[OQ-).

H=] h o> | R=T7 r..le >, ]| 0= o, l¥, <]
v uviu v i ijtri j = n L3004 M |

The matrix representations [hijl, [rij}' and [°ij’ will be, respectivs.~

denoted by Mat(H), Mat(R), and Mat(0). By Vec(M), we mean the vector formed
stecking the elements of the matrix M columnwise.

It is now possible to satate our first auxiliary resule:

Lerma: Let E : L?(U,-) + L?[O,-) be such that TrAE = 0 for all isomer:

operators A, then E = 0,

Proof: Suppose E has the singular value decomposition {7, p. 26}

ks

.
<

.he

R
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Eowonn v, |
i
hpra 1 3 1 . : Ry . . .
whers u. i and v.} are orthonormal sets in L {2,»}, then choosing A as
2
E}vj><uil ylelds zai = 0. Since the sgingular values 8. are nonnegative, we
i i
aust have all 0-l = 0 and, hence, E = 0, ]

In order to apply the theury developed in the previous section, we consider

the affine apace formed by the matrix elements of ¢ and R, 8o that the param-
eter vector is 8' « {V;:(Hat(i)')', vec(Mat(0))']. Analogous to the discrete
case [4], we shall consider the observables: £,(8) = Tra(H-OR). Denote by

A

mo(fA) the leaf on which EA is constant, zero say, then we have the:

Theorem 2: The extremal sensitivity points of Mo(f\) have the property that
———— )

& -0’0, !

Proof: Substitute the bra~ket expansions in the expression for the ohservable

£(8), and use the orthoncrmality of the bases, This reduces the continuous
time problem to the matrix problem, solved in [4], where it was shown, based on

the Corollary to Theorem 1, that the extremal sensitivity points satisfy
Mat(R)Mac{R)' = Mat(0) Mar(0)

Expressing Mat(R)Mat(R)' and Maz(0)'Mat(0) in the bascis {ei}znl gives then the
condition in terms of the original operators: Bﬁf - EfZL

Corollary: The minimal sensitivity realizations on the Cl (R} orbit of a
minimal realization of H are the essentially balanced (i.e. balanced modulo an
orthogonal tranaformation) realizations,

Procl: Obsecrve first that che cendition for an extremum did not depend on the
choice of A, and therefore, must be zrue for all isometries, or observables f

A
1l extremal sensitivity points of f, belong, therefore, to the intersection

A
fWAHo(fA)' By the lemma, the intersection of the manifolds MO(fA) is the
subzanifold characterized by H = OR, i.e. the orbit of the system with Hankel

. . *
operator H uader the action of Cln(R). Then, by the previous theorem, RR =~
_(_)_'_Q 20 that

* * n
<x,KR y> = <{x,0 Qy> ¥x,y ¢ R

which leads to the equality of the Reachability and the Observability Gramian,
Realizations having this property are essentially balanced, as an orthogonal
similarity transformation will make them truly balanced (equal and disgonal
gramians) [10,1:]. The second wvariation property shows that the extremal

solutions obtained correspond to minimum sensitivity solutions. Finally, all

infinitesimal variations in the parameters of the factorizatians of the Hankel
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matrix lead to second order variations in H, But small (first order) varia-
tions in the reachability and observability matrices are themselves linked to
first order variations in the realization parameters. []

As shown by this corollary, it suffices to find an essentially balanced
realization., The characterization as a factorization of the Hankel matrix is,
therefore, independent of the size of the Hankel matrix considered, as long as

it specifies the given input/output relation.
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ABSTRACT

This paper discusses some aspects of the
design problem involved in the choice of a
realization or approximation of a desired system
behavior (as for instance dictated by the
analytical solutions to a filtaering problem) by
parameters that can only be approximately
sdjusted, e.g., due to quantization, coamponent
tolerances (analog case) and finite wordlength
(discrete case). The paper first addresses the
mathematical characterization of this robustness
probles, and its solutions under various criteria
of optimality. Earlier results are here extended
to multi-mode systems which can arise in non-
linear approximation problems. The feasibility
of this approach in wmulti-mode filtering {&s
shown, and is 4illustrated by an air-to-air
tracking example.

1. INTRODUCTION

The air-to-air target tracking problea is
highly nonlinear because of the nonlinear
relations between measurements and dynamical
states, and the different £flight regimes that
occur. Differences in Mach number and or
geometry of the target induce large changes in
the dynamical model. A good knowledge of the
dynamical model {s primordial to the design of
good tracking filters, as the predictive behavior
of the filters are determined by the dynamics of
the system. Mach number changes with air
density, hence sltitude, and velocity, and is
therefore coupled to the position and momentum of
the target. These are of courss state components
of direct interest. As the target is maneuvring,
perhaps beyond the anticipation of the tracker,
its trajectory is modeled as a smooth stochastic
process, the statistics of which are clearly
dependent again on its position and momentum, as
vell as the geometry of the vehicle.

This paper investigates the tracking problem
under the assumptions that the data sampling rate
is sufficiently high. This implies small
incresents (as compared to the sizes of the
domains in the different flight regimes) in the
state variables from one sample to anothsr, so
that the same flight regime can be assumed over a
large number of samples. Under this condition
the system is reasonably wall approximated by a
plecevise affine stochastic system [l1]). The
transitions from one flight regime to another is
datermined by the state vector itself. Given
enough (good) samples, the state estimator will

< -

have a good performance in each domain. At the
transients from one domain to another, unmodsled
uncertainty would be introduced because of the
mismatches of the updates near the boundaries. A
good filtering scheme needs 1likelihood type
methods as developed in [2-3] to .deal with this
sdditional uncertainty. This typically leads to
a filter composed of & parallel bank of Kalman
filters, together with a likelihood updating
schems. In this paper, the assumptions ensure
that the time spent in these transition regions
is relatively emall statistically speaking. We
simply propose to artificially resst the state
covariance whenever a state domain transition
occurs. This simplifies the filter from the
parallel bank plus 1likelihood estimator to a
simple sequentially switched estimstor.

The nev feature of this paper is the optimal
implementation of such a sequentially switched
filter from the point of view of parameter
sensi{tivity. Section 2 describes some typical
problems in the implementation of systems, i.e.
the winimization of the effects of component
tolerances for analog systems, and the finite
wvordlength aeffects 4in digital systems. In
section 3 the results are extended to & more
general typs of systems: the switched systems and
piecevwise linesr systems. Finally in section 4,
the air-to-air tracking example is discussed.

2. OPTIMAL IMPLEMENTATIONS FOR LINEAR MODELS

This work builds on ths earlier work on
robust design problems (4-5]. Consider a linear
time invariant systea (A,B,C) with =m inputs, p
outputs and McMillan degree n. This may be a
model of a systea to be faithfully simulated, the
implementation of an analog or discrete filter,
or an observer-controller implementing an optimal
regulator for a given plant. As in all these
applications, not the actual state coordinates,
but the input-output relation 4is important, they
are usually implemented by s so- called canonical
form. The reason for this s that these imp-
lagentations minimize ths number of parameters,
and allov a pipelined realization of the
devices, s.g. the "Direct Form" realizations in
digital signal processing. A minizzl number of
parameters corresponds to minimsl coaplexity, an
important quality 4if operation count becomss
important. Hovever, & minimal set of parameters
has no redundancy, and therefors one may expect
high sensitivity with rvespect to these para-
maters. It is clear that the freedom of coor-
dinate basis of ths implementation should be

1 This work vas supported by the U. S. Air Force under Grant APOSR-87-0308
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utilized to determine optimal realjzations under
various criteria for optimality. In particular,
two issues seem to be important: sensitivity and
clustering. The sensitivity requirement guaran-
tees robustness of the actval implementation,
while clustering deals with the parameter ranges.
It relates to the problem of approximately
inplementing & certain system with parameters
chosen from a finite set with fixed values.

The approach taken in (4] is geowetric. The
realization spacs .0 modeled as -~
n(ntmtp) dimensional atfine space with an

Buclidean metric metric defined in the tangent
space at esach point. The Extremal Sensitivity
Theorem assscts that the ainimum sensitivity
points of an obssrvable are the points where the
(generalized) gradient is in the eigenspace of
the (generalized; Hessian. In the case of fixed
point implumw:nitations, the uniform Euclidean
metric is appropriate, and the gradiant and
Hessian corruspond with the the usual notions in
calculus. All results are therefore also
"infinitesimal™. One can reasonably so argus
that in finite wvordlength arithmetic, the notions
of infinitesimal perturbations do not apply, as
all perturbations are due to the truncation of
the coefficients. This may indeed invalidate the
above mentioned method. Yor this reason, we
shall develop the analysis for non-infinitesimal
perturbations in this paper. It will be showm
that this approach mskes a connection vith ths
notion of clustering. In this section, by finite
we shall mean non-infinitesimal. By L ve denote

a particular realization in L, , 5, and by M the
equivalence class of all inigar realizations
having a pnrticulnr input-output behavior, i.s.
the orbit x~1(L) under Gln(R) The oqulvnlcncc
class will be referred to as '"systean", the orbit
space is denoted by and the projection
oap from Ly p p tO Hn n gy . Two probleas
related to tﬁc tansltlvity and robustness are
studied.

Problem A: Discrimination: How do we choose

a realization of a given system M, uuch that it

is maximally distant from the otbit x-1(M), vhere
M is another given system.

Problem B: Worst Case Defects: If the systea
parameters are perturbaed over a fixed non-infini-
tesimal amount, and {f f {s a scalar systea
function (i.e¢. invariant wunder similarity) then
find the realizations L of M,, for which the
f-parturbation

max { f(L+a) - £(L) } vhera Cy = { 4 | 181 = 1)
[
1-A-1n1nal.

In both problems, the norm function in the
realization space will be fixed to be the Eising
norm (compatible with the uniform metric).

dg? = Tr { AA' + BB' ¢ C'C )

It follows then that if (A,B,C) is a solution to
each of the above problems, then also any
realization obtained from (A,B,C) by an ortho-
gonal similarity transfornation is also a
solution. A third problem, related to problea A,
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is nowv fntroduced:

Problem C: Clustering: PFind the realizations
L of M with minimal system (Eising) norm.

This has the physical significance that
coopsratively the components of the realization
are as small as possible, bhance clustered near
gero. It is & special case of the more general
(and more significant) clustering problem. Lat
T = {yps.resy) be a finite subsst of R, then wve
formulate

Problem C': I'-Clustering: Find the realiza-
tions L of M with component values closest (in

the Eising-norm induced metric) to the sget I' =
{vgeeearvyle
Problem C corresponds then to I' = {0}, It is

also helpful to define s bilinear map on La,n,p

(.s.]) = Ly n,p * Lp,n,p --—* RE"
{{(A,8,C),(?,G,B)]] = [A',F) ~GB' +C'H

vhere [.,.] 1is the usual Lie product:
(A, 7] = AF - A

Theorem 1: The class of optimally clustered
realizations coincides with the class for which
[{L,L]] vanishes.

Proof: If (A,B,C) is constrained to realize
M, then if (Ag,Bg.Cg) is a representant for ¥, ve
get a constrained optimization problem, for which
the Hamiltonian is

He Tr { AA' + BB' + C'C + Ay\(TAg-AT}' +
Ap{TBy-B}' + Ac{Co=CT) }

The optimality conditions lead then directly to
the stated rasult.

Not svery system allows an optimally cluster-
ed realization. A counter-example can be found
vhich is based on the phenomenon that the orbits
under similarity are not closed [6].

With this solution, we can show the follow-
ing:

Theorem 2: The realization of M, which has
maximal Eising distance to the orbit of Mj is
implicitly given by La ¢ v~ (H ), satisfying

({a'sLs]]) =0
4 optimally clustared

(L*,Le) = L*La,

vhers 3 is fh. perturbation, d
istance {s then

vith L” c v7%(M;). The maximal
the Bising norm of A.

Proof: This follovs sasily by solving the
ainimax problem: First determine for a given
realization L, the point L¥ on thc orbit of M;
for which theEising distance dp(L, LY) is minimal.
This problem has alvays a solution, but the
realization L¥ may not be unique. The proof is
similar as {n thn clustering theorem. The
condition is [(L,L-L¥]) @ 0. Next wve slide L on
its orbit, the associsted realization L¥ will




1..g1y vary with L. lo thnt ve may define a map
is ) === wl(¥y) === L. Now find
:h‘ stli ar r-nlizltion Lg. for which dg(Lg.L )
is maximal. The realization L~ is the cor-
responding  point (La)¥, This constrained
optimization vroblem ylelds the additional
condition [[L- .L-1¥]) = 0.

Thers remain some open problems. It is not
clear whether or not the orbits can diverge, in
the sense that the optimum may be on the closure
of the orbits, and therefore not attainable.
Also, if a solution exists, it may not be unique
(modulo 0(n)). The example of 3°2(0,1,1) and

v1(1,1,1) illustrates that to every L in the
first, a corresponding L¥ on the other orbit
exists, for which the distances are constant and
squal to 1. It i{s also natural to look at the
sxtension of problem A:

Problem A': Multimode Discrimination: Given
the orbits ¥ I(Li). find the realizations Ly on
sach orbit such that the set {L; ) is maximally
separated.

This is of interest for realizing multi mode
systems. The practical significance of all this
i{s that the rvealizations with the largest
intraset distance are the most robust with
respect to parameter inaccuracy, as for instance
due to coefficient truncation. The problem will
be discussed in section 3.4.

As to problem B, we shall just state the
following results for the scalar obssrvable
£: Ly g p R , which in fact only gives an
1np11c1€ solution to problea B:

Theorem 3: i) Lat the realfzation L be
given. The deviation £(L+#8) ~ £(L), is extremal
if the perturbation 4 is in the direction of the
gradient of the observable f, evaluated at L+a.

11) If only the system M is given, i.e. the
orbit v 1(L), then the deviation £(L+a) - £(L) is
extremal at Lax if the perturbation éa,
grad f(La+as) and grad (La) are all aligned.

Proof: Again this %lovs simply from
adjoining the constraints {41 = 1 and for part
1{) also £(L) » ¢, with Lagrange multipliers A
(and u for 1i) ) to the performance function
f(L+a)-f(L). The optimality conditions are

grad f(6+4) + A = 0
grad £(8+a) + (u-2) grad £(8) = 0.

Remark: The infinitesimal result of (4] is
recovered for the uniform metric 1if the partur-
bation becomes i{nfinitesimally small.

3. MULTI-MODE SYSTEMS

Two typss of models vith many similarities
are discussed: Switched paramster linear systezs
and piscevise linear systems. Each "mode" of a
systes I; will be denoted by 8 triple of systems
functions (A .B‘.Ci) We shall also assume that
the number of different sodes is finite, N.

3.1 Switched Systems
The system is assumed to be modeled by

Teel = Ak ¥ Blk)uk

Y * Clx)*%x

where (k] ¢ (1,...,N} is the function determining
the mode switched on at time k.thc assume that
this switching is state-independant, but other-
wise a purely deterwinistic |sequence, or s
randop time series. A thsory for\ detemministic
discrete time periodic systems was developed in
(7). Hers wve allov general time variation, thus
not necessarily pericdically switching sequen-
ces. In the randomly switched cass, we assume
that the statistics are stationary and known.
The domain of validity of each mode is the entire
state space. This is in contrast with the next
class.

3.2 Piecevise Linear Systems

This is a mwmulti-mode system as described
above, but the domains for the validity of each
mode partitions tha state space, {.s. they form a
“patchwork"” which pieces together a single
“global” system. Clearly, one can think of such
a system as a svitched system with the switching
coupletely determined by the state x; of the
systen. Such & modsl results for instance in the
approximation of a nonlinear systam by & pisce-
wise linear one [1]. Despite its local linear-
ity, the dynamical behavior of such a systenm can
be very complax and sustain chsotic motion [1}.

3.3 Robust Design Problems for Multi-Mode Csse

As usual, the problas is to design an optimal
implementation of the multi-mode system.
Characteristic for the multi-mode systems is the
fact that the state is communicated from one mode
to the other. This implies that despite the fact
that each mods ssparataly can be realized in many
different ways, the total system is only left
invntilnt under the actfon of Gl (R), and not
G1,(R)N, vhars N is the number of modes. Heance a
straightforvard optimization by realizing each
moda in the optimal way (i.e. essentially
balanced) will only be valid if a state trans-
formation is performed at each mods transition.
We formalize this as

Theoram 4: Defining the observadle for the
wltinode system as & veighted average of the
obsarvables in the single wmodes, the optimal
unconstrained realization is obtained by realiz-
ing each wmode individually i{n essentially
balanced form.

Proof: The observable is
feTrl ‘151(51-01R1)
i

wvhich is & wveighted sum of the observables
dafined in (4-5] for singls mode systems. Tha
paramsterization {is with respect to the coam-
ponents of the observability matrices Oy, and the
reachability matrices Ry. The gradients are
linear in these paraneters, and the Hessian




eigenproblem therefore decouples into the
individual components, giving the simple condi-
tion 04'0; = RyR;', expressing sssential balance-
dness of all mode realizations.

If all =modes communicats, this means that
N(N-1) transformation matrices need to be stored.
This additionsl computation induces also in-
accuracies, and may therefore upset the optimal-
ity for that schems. We present here the more
direct approach by choosing the optimality
criterion as a wveighted version of the objective
in each mode. Tha weights (v} are most reason-
ably set squal to the relative time spent in each
mode. TFrom our assumptions these relative times
are precomputable.

Theorem 5S: Lat the relative time spent in
mode i be ¥y, then the constrained minimal
sensitivity vealizations are given by the
essentially balanced multi-mode systems defined
by the requirement:

f w200y = :: w % RRy"

Proof: TFollows directly from the EST, using
the observable

‘i =T wy Tr Ai(ﬂi‘OiR)
i
with the constraints:

0y = 0,°T"l and Ry = TR{®

vhere R;°® and 04° are respactively the reach-
ability and observability matrices for a nominal
realization, and T is the Gl (R) element to be
determined, 1i.e. ths parameterization for the
problem. First the gradients of the observable
vith respect to Ry and O; are computed, and the
constraints are substituted. Noting that the
time w; spent in mode I; does not depend on the
realization of that mode, the gradient components
are readily obtained,

39y = 34TR{%A¢
agy = w;A;0.°17}

Minimization of the norm of the gradient with
raspect to T yields then the condition

ml - r‘!qr'l
whers wve used the fact AA' = Aj'Aj =1, and
defined the generalized gramians, waighted by the
sojourn-times as
Peyl ‘liz l,_°l£°'
1
Q=T '12 01°'o,_°
1 .
The optimal T 4is then simply the balancing
transformation for P and Q, vhich can always be
found [8].

3.4 Non-Infinitesimal Perturbations of Multi-Mode
Systems

It is also natural to look at the extension
of problem A: Civen the orbits w"1(L;), find the
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rs:li:ation: Lt. on sach orbit such that the set
{L%;) is maximally separated. practical
significance of all this is ¢ the realizations
vith the largest intraset ~distance are the most
robust with respect to arameter inaccuracy, as
for instance dus to 96:¥f1ci¢nt truncation. We
give a constructive sqlution of problea A' in the
unconstrained cass, 1... vhen the states do not
necessarily have to communicate directly, and
transformations are allowvable at each mode
transition. .

1. PYor each realization L on M,, determins
realizations L; on the orbits of the other
modes for which dg(L,L.) is minimal. Let the
minimal distance Eo ALtﬂi).

2. Determine A(L,{M}) = min { 8 (M;); i=1,...,N
}. Note that this disance does no longer
vary smoothly as L moves on M.

3. Determine L on M, such that
a(L?, (M) = max {A(L,{M}); L reslizes M),

4. Perform steps 1-3 for each of the modes My,
to find the optimal realizations L;".

' Becauss of tha nondifferentiable structure, the

maximization in step 3 cannot be performed by
simple differentiation. In the constrained
problen, ve start froa the reslizations L;,...,L;
in modes M;,...,M; respectively, and solve for
tha transformation T such that (in the notation
of the unconstrained problea)

nin {8(T(Ly),{M}); 4=1,...,N}

is paximized over T ¢ Gln(R)‘ Many variants of
the prodblea can be defined. For instancs, the
w;-weighted averags, rathar than the minimum of
the distances 4(T(Ly),(M}) may be maximized.

4. APPLICATION TO FILTERING

4.1 The Model

As discussed in the {ntroduction, we shall
assume that the nonlinear dynamics are satis-
factorilly sodeled by a piecevise linear multi
model stocahstic system, thus a combination of
the systams discussed in section 3. Each flight
regime corresponds with one domain, and these
domains are smoothly patched together. Moreover,
in each flight regime, we also assune a multi-
-mode model because of the variable geometry.
The system is assumed to be controlled, the
control being conditioned on the observations,
and therefore deterministic. This 1is super-
imposed on ths stochastic inputs, modeling the
noise {in the systea as vell as the unpredictable
component of the wotion of the craft to be
tracked.

The general discrete model is
Xpey = Afx)Ex * Bix)dy ¢ Om‘“x
Yx ® Crx)%x + Dixjex + v

wvhere u and v ars wvhite noise processes, modeling
the measurement and dynamical uncertainties (e.g.

_—




the unknown inputs due to the unpredictable
motion of the craft to be tracked are typically
modelled by colored noise, the noise shaping
filter is then included in the dynamical equa-
tion). d is the deterministic input, which is a
feedback of the filtared signal and some exter-
nvally applied known component. Offsats (ths
biases due to an affine approximation of the
nonlinearities) can be modeled in these terms as
well.

4.2 The Steady State Filter

Under the above assumptions, a steady state
Kalman filter approximation i{s implemented in
each of the domains

Xp+) = A{x)%x + B{x)dg +
X[k](Yk~C[k)Xk-D[x}ex)

vhere the gains are computed for the steady
state. This of course requires some assumptions
on the deterministic signals dy and ey. Typical-
ly such & filter is used in a feedback schems in

order to provide the control command, {i.e. we
also have an "output" equation

dy = ry - H[k]ik
vhich generates the control command. The

comsbined equations are then

Zee1 ® (A{e)-BreMix]-K(x]1C(k] )%k *+
Brg)rx © l[kl‘l[kl‘k ¢ lmu

{.e, a multi-mode system
T4y = Flx)®e + O(x]vk
dk - n[k]ik +ry

with the modes defined by

Py = Ay - ByMy - K4Cy

Gy = { By ; KDy 5 Ky ]

By = -My
and the input wy is [r,’',e ', y¢'})’.
4.3 The Optimal lementation

The equations for the filter modes obtained
in the previous subsection are of the form of the
sulti-mode systems in section 3. The results
obtained there apply therefore directly. In
particular, ths sojourn-timas {75} can be
estimsted, either via simulation on the exact
dynamical (nonlinear) system, or in the simpler
cases, by direct analysis. The Graaians
Qg 2 0;'0y and Py = R4Ry' can be computed by
solving the Lyapunov equations

’1?1"1 + Gic' ;- Pi

P'QF; + B'4H; ©Q
The transformation to the minimal sensitivity

coordinate basis 4is then obtained by balancing
(7] the matrices
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Pefw?P and Q=Cu2Q

Pinally, sach of the modes of the filter is then
transformed to the optimal form. We have worked
out the ideas for discrete time filters. The
concept works just as well in continuous time
(5). The conditions are the same (i.s. essential

balancedness of ths averaged system).

4.4 Suboptimal Implementations

While the optimal implementation is based on
the steady-state filters described {n section
4.2, the applicability of these filters is not
appropriate for the stochastic transition case
vhen the transitions are not known to the
observer. The reasons for this is that the
filters vere darived for the steaady-state case,
which assumes long sojourn times for such a
steady-state to be achisved. The results also
assune that tha mode of the systeaz may ba known
so that the appropriate filter can be selected.
Such an assumption can be Jjustified for long
sojourn times that allov mode identification.
Finally, vhen fast transitions among the modes
can occur, a steady-state will also never be
schieved for any of these states.

In this cass a suboptimal choice of the
filters is considered based on the size of w;. A
small parameter 8 is selected, and the modes are
classified into two types: those with z; > §
(slov modes) and those with ¥y < & (fast modes).
A set of filters as shown {n section 4.2 is
designed to run in parallel for all slow modes,

.and the correct one is chosen based on s likeli-

hood function that is based on these steady-state
filters (the transitions are ignored to avoid the
axponential rise in complexity). Two alterna-
tives are considered for the fast mode filters.
The first is to define an average model just
based on thess modes and their sojourn times w4,
and use this to obtain a filter for these modes
with corresponding aggregated 1likelihood func-
tion. The second is to use a separate filter for
each mode and use a veighted average using the
lilelihocod functions of each mods.

In these cases the filters will be as given
in section 4.2 and the likelihood function is
obtained by standard expressions, which may be
modified as 4in [2) when the multi-models result
from nonlinesar approximations. In that case the
regions in the state space can be approximately
found froa the estimates and combined with the
statistical expressions.

4.5 Example: Two-Dimensional Intercept Problem

In this tvo-domensional example the states
represant the relative positions of the missile
and the target, which may be given as

xe Vg
yeoVy
V=4 - a

qy'dz°tz




where x and y are the relative positions in the
(x,y) plane, d; are the control forces of the
missile vhich will be based on the estimates of
the states assuming separation holds, and a; are
the mansuvering acceleration of the target vhich
may be modeled by a first-order Markov process

it - -“1.1 + '1' i= 1.2-
The objective may be formulated as a quadratic
control problem except that the observation are
nonlinear in the states, namely

g = (2 + yl)i tvier+vwv
Z; = tan~! (y/x) + vy =8+ vy

vhere v 43 modelled as a white noise with
covariance dependent on the relative distancs.

The model may be approximated in two possible
ways. The first is to define nev states involv-
ing the angle and the range and thess will lead
to a nonlinear model for the state equations.
This model 4s then approximated by a pilecevise
affine multi-mode set of equations. The saecond
is to approximate the observation functions by
piecevise affine wulti-mode system with linear
state model. If we define the set points for the
approximations as ry and 6; then the observations
will be given approximately by

Z)3 = ry + cos 64 (x-x4) + sin 85 (y-y4) + v}

x3 = 85 + (1/ry) {cos & (y-yy) -
sin 84 (x-x4)} + v,.

The multi{-mode filter is then derived using
the expressions of section 4.2. The control
command may also be incorporated in the design
using either given control strategy such as
proportional navigation or suboptimal {mplementa-
tion of an optimal quadratic cost state feedback
control law. The result can be evaluated using
simulation of tha system under several engagemant
scanarios.

S. CONCLUSIONS

The optimal sensitivity properties for the
sulti-mode realizations have been derived. They
extend nicely the notions of Essentially Balanced
Realizations derived in [4-5]. These optimal
reslizations have been applied to obtain an
optimal implementation of a simple multi-mode
filter, which allows the tracking of & targst
with low-complexity, small wordlength hardvars.
This simple multi-mode model can be justified if
the sampling rate is sufficiently high. More
quantitative results are presently under inves-
tigation based on a simple two-dimensional
tracking example.

We have restricted our discussion to square
systens (m*p) and minimal realizations. Exten-
sions of the theory are in progress. It seens
intuitively clear that ones could further exploit
tha redundancy of a realization by deliberately
using nonminimal realizations. A Dheuristic
argunant for this possibility i{s as follows: Lat
N = Fn, and let (A,B,C) be & =minimal sensitivity
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minimal realization of & system H. Construct now
k different realizations
(Ag,By,Cq) = (TAT"1,T(B,CT( "1 iel,...,k}.
With these realizations construct the nonminimal
diagonal realization of order N
R = diag (A;) ; B = vec(By) ; € = vec(C()/k
If the T 's are chosen in a naighborhood of the
{dentity, such that the rounding errors in each
component system are independent, then as k --+ =

187,12 5 1aC; + Cyargi2, /k 1x(8)g2 —c—~ 0

It is possible to overparametsize the system in
order to obtain minimal sensitivity realizations.
Pinally, the 4idea in the proof of the main
sensitivity theorem leads to gradient type
algorithms for the optimal sensitivity realiza-
tions. This of course is to be performed off
line, during the design stage, and posas there-
fore no restrictions on the hardvara. Prelimi-
nary remarks regarding these appear in (5].
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ABSTRACT

This paper addresses some aspects of the design and
implementation of multi-mode systems, under finite
precision restrictions. This occurs, for instance,
when quantization and finite wordlength effects need to
be incorporated, or when high component tolerances in
analog designs need to be considered. The freedom 1in
the design is exploited in order to obtain the reali-
zations closest to the normal or desired behavior,
despite the interference of quantization, coaponent
tolerances (analog case) and finite wordlength
(discrete case). OQur interest is in the mathematical
characterization of this new type of robustness
problem, and its solutions under various criteria of
optimality, Earlier results, linking these optimal
realizations for linear time-invariant systems to the
Balanced Realizations are here extended to the multi~-
wode and general time-varying systems. The feasibility
of this approsch 1n multi-mode stochsstic problems 1s
shown.

1. INTRODUCTION

This work builds on our previous work on robust
design problems for single-mode time-invariant systems
{4,5). Consider a linear time invariant system (A,B,C)
with @ inputs, p outputs, and McMillan degree n. This
may be a model of a system to a farthfully simulated,
the implementation of an analog or discrete filter, or
an observer/controller 1implementing an optimal regu-
lator for a given plant. As 1n all these applications,
not the actual state coordinates, but the input-output
relation is important, they are usually implemented by
a so-called canonical form. Reason for this is that
these implementations wminimize the number of param~
eters, and allow a pipelined vrealization of the
devices, e.g. the "Direct Form" realizations in digital
si1gnal processing. A minimal number of parameters
corresponds to minimal complexity, an important quality
if operation count becomes important. However, &
winimal set of parameters has no redundancy, and
therefore, one may expect high sensitivity with respect
to these parameters. It is clear that the freedom of
coordinate bcsis of the implementation should be
utilized to letermine optimal reaslizations wunder
various criteria for optimality. In particular, two
issues seem to be important: sensitivity and
clustering. The sensitivity requirement guarantees
robustness of the actual implementation, while
clustering deals with the parameter ranges. It relates
to the problem of approximately implementing & certain
system with parameter values chosen from a finite set.

These results wvill be extended here to aulti-mode
systems, These systems have vecently bdecome of
interest as mwmodels for wmulti-rate systems [(10],
nonuniformly sampled continuous systems and as approxi-
mations to nonlinear systems [2]. Several interesting
aspects (e.g. reachability) have been studied for these
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systems, and connections with other fields of study
(Yang~Mills Theory) have recently been made [9]. The
next section poses the main design problems 1in the
geometric framework. Emphasis is here given to the
noninfinitesimal perturbations, the resulcs on
infinitesimal perturbations being presented earlier
[4,5]. The interest 1is, of course, to problems
involving quantization and finite wordlength effects
in digital data processing, wvhere a random variable
approach to the problem may lead to unsuccessful
modeling of its behavior, as for instance illustrated
in [11], Section 3 then goes on with the application
of the geometric theory to wmulti-mode systems. Two
types are discussed in detail: the switched systems
and the piecewise linear systems. The general Cime~
varying case is presented in Section 4. In Sestion 5,
implementations of approximate filters are discussed,
based on a piecewise linesr approximation of the
nonlinearity, and their optimal implementation as
discussed in Section 3.

2. A GEOMETRIC APPROACH TO OPTIMAL IMPLEMENTATIONS:
NONINFINITESIMAL THEORY

The approach taken in [4] is geomec.1c. The
realization space n is modeled as an wnn+m+p)
dimensional affine JPJJL with an Euclidean metric
defined in the tangent space at each point. The
Extremal Sensitivity Theorem (4] asserts that cthe
minimum sensitivity points of an observable (a smooth
map from a to R) are the points where the
(generalized)’ i:;dient is in the eigenspace of the
(generslized) Hessian. In the case of fixed point
implementations, the wuniform Euclidean wetric s
appropriate, and the gradient and Hessian correspond
with the usual notions in calculus, All results are,
therefore, also "infinitesimal.” One can reasonably
argue that in finite wordlength arithmetic, the notions
of infinitesimal perturbations of the coefficients are
meaningless. This way 1indeed invalidate the
application to finite wordlength effects. For this
reason, 2 shall develop the anslysis for nonminfinmi~
tesimal perturbations in this paper, It will be shown
that this approach makes a connection with the notion
of clustering. 1In this paper, by finite we shall mean
noninfinitesimal, By L we denote & particular realiza-
tion in Lg , and by M the equivalence class of all
similar red igatxonl having_, particular input-output
behavior, i.e. the orbit v (M) under GL,(R). The
equivalence class will be referred to as “system," the
orbit space is denoted by My . ,, and the projestion
nap from Ly to My o P by ¥ '&e study two problems,
vhich are rirlred to ¢hé sensitivity and robustness.

Problem A: Discrimination, How do we choose a
realization of a given system M_ _guch that 1t 1is
maximslly distant from the orbit v (M), where M is
another given systen?

Problem B: Worst Case Defects. If cthe systen
psrameters avre perturbed over s fixed nominfinitesimal
amount, and if f is a secalar eystem function (i.e,




invariant under similarity), then find the realizations
L of M, for which the f-perturbation

max {£(L+d) - £(L)}

where C = {a] 181 = 1}
s
€

1s minimal.

In both problems, the norm function 1in the
realization space will be fixed to be the Eising norm
(compatible wath the uniform metric).

11? = 1(a,8,001% = Tr{ar’ + BB’ + c'c}

It follows then that if (A,B,C) is a solution to each
of the above problems, then also any realization
obtained from (A,B,C) by an orthogonal similarity
transformation is also & solution, Before outlining
the solution to the above problems, we shall introduce
a third one, to which problem A is related:

Problem C: Clustering. Find the realizations L of M
with minimal system (Eising) norm.

This has the physical significance that cooper-~
atively the components of the realization are as small
as possible, hence clustered near zero. It is &
special case of the following more general (and more
significant) clustering problem. let I' = {Yl""'YH} be
a finite subset of R, then we formulate:

Problem C': T~Clustering. Find the realizations L of
M with component values closest (in the Eising norm
induced metric) to the set [ = {Yl""'YH]'

Problem C corresponds then to I' = {0}. It is also
helpful to define a bilinear map on Lm,n,p:

., nxn
((".}] ) L“onup X LW.“:P—‘ R

[({A,B,C),(F,G,H)]] = [A',F] - CB' + C'H

where [.,.] 1s the usual Lie product: [A,F) = AF - FA.

Theorem 1. The class of optimality clustered realiza-
tions coincides with the c¢lass for which [[L,L])
vanishes.

Proof. If (A,B,C) 1is constrained to realize M, then

1f (AO,BO,CO) 1s a representative for M, we get a
constrained optimization problem, for which the
Hamiltonian 1s

H = Tr{AA' + BB' + C'C + AA{TAO-AT}'
+ AB{TBO-B}' + Ac{co-cr}}

The optimality conditions lead then directly to the
stated result. L]

Not every system allows an optimally clustered
realization. A counter-example is the system

SR

Converging sequences of transformations can be found
which yield equivalent systems with decressing Eising
norm, but the limic realization is not & point on the
orbit of the given realization. It is a known
phenomenon that the orbits under similarity are not
closed (6].

c=[1 1]

Remark. A realization is optimally clustered iff there
exiscs an orthogonal transforamation S ¢ O(n+m), such
thac [A,B]S = (A',C'}.

With chis solution, we can show the following:

Theorem 2. The realization of M_ which has wmaximal
Eising di}fance to the orbit of M) 1s implicitly given
by Ly ¢ v (Mo). satisfying

[1a',1,)] =0
4 optimally clustered

. -
where elil the perturbation, d (L .L.) « 1L ~L 1, with
L e (Hl)' The maximal dlognnce is then the Eising

norm of A,

Proof. This follows easily by solving the minimax
problem: First $etermine for a g{nen realization L of
M,» the point L° on the orbit » "(NM ) for which the
Eising distance dg(L,L") is minimal. "Thig problem has
slwvays a solution, but the realization L  may not be
unique, The proof is similar as ‘;n the clustering
theorem. The condition is [[L,L-L )] = O, Next w
slide L on its orbit, the associated realization L
will clearly vary with L, so that we may define a wmap

. ) = et L L'. Now find, the
similar  realization " L,, ~ for  which dE(L.,L JIRY]
maximgal., The reslization L 1is the corresponding point
(L))" This constrained optjmizajion problem yields
the additional condition ({L-L ,L-L ]% O. L]

There remain some open problems. It is not clear
wvhether or not the orbits can diverge, in the sense
that the optimum may be on the closure of the orbits,
and therefore not attainable, Also, if a solution
exists, it m4y not be unique (modulo 0(n)). The
example of s (0,1,1) and v "(1,1,1) illustrages that
to every L in the first, & corresponding L" on the
other orbit exists for which the distances are conscant
and equal to 1. It is also natural to look at the
extension of problea A,

Problem _4': Multi-Mode Discriminatigp. Given the
orbits w (Li)' find, the realizations L. on each orbit
such that the set {Li} is maximally separated,

This is of interest for resalizing wmulti-mode
systeus. The practical significance of this all 1is
that the reslizations with the largest intraset
distance are the most robust with respect to parameter
inaccuracy, as for instance due to <coefficient
truncation, The problem will be discussed in
Section 3.4,

As to Problem B, we shall just state the following
results for the scalar observable f: Ly - R,
vhich in fact only gives an implicit 8b%14fion to
Problem B:

Theorem J.

(1) Let the realization L be given. The deviation
f£(L+a) ~ £(L), is extremal if the perturbation &
is in the direction of the gradient of the observ-
able f, evaluated at Le+s,

(2) xgl only the system M is given, i.e, the orbit
* "(M), then the deviation f(L«a) - f(L) s
extremal at L, if the perturbation 3,
grad f£(L_+4.) and grad (L) are all aligned.

Proof. Again ihis follows simply from adjoining the
constraints 141 = | and for part (2) also f(L) = cst,
wvith Lagrange multipliers A (and u for (2)) to the
performance function f(L+s) =~ £(L). The optimality
conditions obtsined by nulling the partials, with
respect to 4 end L, are




grad £(8+a) + A3 = 0
grad £(8+4) + (u-1) grad £(8) = 0 L

Remark. The nfinitesimal result of [4] is recovered
for the uniform metric if the perturbation becomes
infinitesimall -asll,

3. MULTI-MODE SYSTEMS

A multi-mode system is in effect & time-variant
system. Rowever, the term will be used to designate
the particular case wvhere the time spent by the systen
in each wmode is significantly longer than the dynamicsl
characteristic times (e.g. time constants and oscilia-
tion periods), in each mode, Heuristically speaking, &
multi-mode system behaves locally (in a temporal sense)
like 8 time-invariant system. Each "mode" of a system
I will be denoted by a triple (A1’Bx'cx) of nxn, nxm,
and pxn wmatrices, respectively, We shall also assume
that the number of different modes 1i1s finite, N say.
(Alchough the theoretical development remains valid
with & countable set of modes, 1ts justification 1in
finite time data processing is elusive.)

This is in contrast to fast switching (Section 4).
In this case 1t 1s well known that, for instance, the
stability properties are not directly determined by
the individual dynamical interests A, . Two types of
models, with many similarities are discussed: switched
systems and piecewise linear systems.

3.1 Switched Systems

The system 1s assumed to be modeled by

x + B

kel " AL Xk Y Bl
-
4" Cler™

where k] ¢ {l,...,N} is the function determining the
mode switched on at time k. We assume that this
switching is state-independent, but otherwise, can be a
purely deterministic sequence, or a random time series,
A theory for deterministic discrete time periodic
systems was developed in (7], Here we allow general
time variation, thus not necessarily periodically
switching sequences. In the randomly switched case, we
assume that the statistics are stationary and known.
The domain of validity of each mode is all of Rn, i.e.
the whole sestate space., This is in contrast with the
next class.

3.2 Piecevise Linear Systems

This is a nulti-mode system as described above,
but the domains for the validity of each mode partition
the »state space, 1.e. they form s "patchwork" which
pieces together & single '"global" system. Clearly, one
can think of such a system &8s & switched system with
the swvitching completely determined by the state Xy of
the system. Such s model results, for instance, in the
approximation of 4« nonlinesr system by & piecevise
linear one [l]. Despite 1ts local linearity, the
dynsamical behavior of such a system can be very complex
and sustain chaotic motion Details are presented 1in

[3].

3.3 Robust Ismplementation

The problem is to design an optimal implementation
of the multi-mode system, As a first approximation to
the optimsl realization, each mode can be realized in
winimal sensitivity form as presented in [4]., This is
justified by cthe following argument. Let H be the pxp
block Hankel matrix of the Markov parameters in mode 1t,
and consider the Hankel watrix formed by cthe 2k-1

consecutive samples of the pulse response of the multi-
mode system, given that the input pulse occurred while
the system was in wmode i. If this initial pulse time
is uniformly distributed ir the interval [0.71]. where
T, 1is the duty time of mode 1, then the two Hankel
macrices will be equal with "probability" T -2k+1/T,
as long as 2k is less than T . Note that ghe above
probability converges to 1 if \:/Tl decreases. In this
case, a weighted average of the observables corre-
sponding to each mode is justified, with the weights
proportional to the duty cycles, or expected sejourn
times of the system in the respective wmodes. This
yields then at once the extension of the sensitivity
theorem in [4):

Theorem 4. Defining the observable for the multi-mode
system as & weighted average of the observables in the
single modes, the optimal unconstrained realization 1s
obtained by realizing each wmode 1ndividually 1n
essentially balanced form,

Proof., The observable is

foTr I vxA (H-OR.)
; v
which is & weighted sum of the observables defined 1n
[4,5) for single-mode systems., The parameterization 1s
with respect to the components ‘of the observability
matrices Oi, and the reachability matrices R . The
gradients are linear in these parameters, and the
Hessian eigenproblem, therefore, decouples into the
individual components, giving the simple condition

* L]
0jo, = R.R!,

expressing essential balancedness of all mode
realizations, )

There is one problem with the above approach. By
individually optimizing each mode, there will be no
common base for the state spaces in each mode. This
means that if at time T & mode switching occurs from 1
to j, the state existing at time T in mode 1, Xg)
cannot be directly used as "initial condition" (at
time T) for the eystem in mode j, but needs to be
transformed first to the proper coordinates. If all
modes communicate, (i.e. if all mode transitions are
present or possible), it means that N(N-1) transfor-
mation watrices need to be stored. This set consists
of pairs of mutual inverses. If only cyclic shifts
occur, N cransformations suffice. Besides this
required overhead in memory, the additional computa-
tions induce also inaccuracies, and may therefore upset
the optimality for that scheme.

A direct approach exists by solving the problem
vith the same optimality criterion as in Theorem &4
(i.e. & weighted version of the objective in each
wode), but with the additional constraint that the
state is communicated from one mode to the other. This
implies that despite the fact that each mode separately
can be realized in many different ways, the total
system is only left igvariant under the action of
Gl1,(R), and not Cln(R)". vhere N 1is the nubYer of
modes. The weights {!. are again set equal o our
assumptions these relative times are precomputable.

Theorem 5. Let the relative time spent in mode 1
be ¥ , then the constrained ainimal sensitivity
rcnl!zationn are given by the essentially balanced
aulti-mode systems defined by the requirement:

12 =1rskr .

; vt PR S
Proof. Follows directly from the EST, using the
observable

fel vTeA (H-OR)
AR R R R




with the constraints:

o =0}
1 1

R. = TR
1 1

vhere R® and 0° are, respectively, the reachabilaty
and observability matrices for a nominal realization,
and T is the GL,(R) element to be determined, i.e. the
plrlmeterxza:xon for the problem. First, the gradients
of the observable with respect to R. and O. are
computed, and the constraints are substituted. ﬁotxng
that the time v  spent in wmode I does not depend on
the realization of the mode, the gradient components
are readily obtained,

o
301 '1TRLA1
a =xA0°r!

Ri 111

Minimization of the gradient norm with respect to T
yields then the condition

TPT! = T Nqr )

where we used the fact A A' = A’ A = I, and defined the
generalized gramians, welghted by the sejourn-times as
2. 0.0

PeIxRR ,
i 11

Q= :zo°'o
i
The optimal T is then simply the balancing transfor-
mation for P and Q, which can always be found (8]). ]

3.4 MNoginfinitesimal Perturbations
of Multi-Mode Syste=s

It is also natural to look at _the extension of

Problem A: « Given che orbits * (M.), find | the
realizations L on each orbit such that tRe set {L.) 1s
. . 1
maximally separated. The practical significance of

this all 1is that the realizations with the largest
incraset distance are the most robust with respect to
parameter 1inaccuracy, as for instance due to coeffi-
cient truncation, We give a constructive solution of
Problem A' in the unconstrained case, i.e., when the
states do not necessarily have to communicate directly,
and transformations are allovable at each wmode
transition:

(1) For each realization L on M,, determine
realizations Li on the orbits of the other
modes for whxch dg(L,L;) is minival. Let the
minimal distance be a tH ).

(2) Determine A(L,{M}) = min{s (M.) ;
i=1,...,N]. Note that ‘this distance does
no longer vary smoothly as L moves on M, (1t
is not differentisble at the crosloverl)

(3) Determine L? on My such that
A(L',{H}) = max {A(L,{M}) ; L realizes Ho}

(4) Perform Steps ! to 3 for each of thg modes
M, to find the optimal realizations Li'

Because of the nondifferentiadble structure, the
maximization in Step 3 cannot be performed by simple
differentiation. In the constrained problem, we start
from cthe realizations L,;,...,L, 1n wmodes M ,...,Hz,
respectively, and solve for the transformation T such
that (i1n the notation of the unconstrsined problem)

min {A(T(Ll),[H}) i1 % L, .. N

1s maximized over T ¢ Gl (R). Many variants of the
problem can be defined. or instance, the " =weighted
average, rather than the minimum of the distances
A(T(L ),{M}) may be maximized.

4, GENERAL TIME-VARYING SYSTEMS

Consider now the general time-varying case, with
realization {(A.,B..C,) H icZ}. The dynamics are
completely specified by the response matrices H(k),
whose ij-elements are the response at time k+1 o an
impulse at cime k+j-l

Hij(k) - Ck,lAk.i-lAkoi-z"'AkojolAk‘jBk’j'l

Just as in [4), the optimal 1mplementation will be
determined by the optimal factorization of H(k) 1into a
local (at time k) observability and reachability
matrix, O(k) and R(k), for the time-varying system;
i.e. c

kel
CkozAkol

H(k) = O(K)R(k) = (B AB ) s---]

Defining the observable £, as TrA {O(KIR(K)-H(K)), the
only difference with the development in {4] lies in the
interpretation (i.e. it 1s now the local observable for
8 time-varying system). The mathematics carry through
in a scraight forwvard manner, The extremal sensitivity
reslization is then again determined from the criterion

R(K)R'(k) = 0'(k)O(K)

which means that the realization must be locally (at k)
essentially balanced. This resulc leads directly to:

Theorem 6, A time-varying system has a realization of
minimal sensitivity which is esseatially balanced 1n
the time~varying sense [8],

Proof. Define as the system observable a vuniformly
weighted sum of the local observables defined above,
1.e.

f = lin 5%—* Z TrA (H(x)-O(x)R(x))
Now i=<N

The parameterization of the reslizations 1is with
respect to the locsl observability and reachability
matrices. By Theorem &4, the optimality conditions are

o(i)*o(i) = R(i)R'(i)

i.e, equality of the local
reachability gramians,

observability and
These local gramians can be
simultaneously diagonalized by an orthogonal
transformation. The corresponding realiczation 1is the
time variant analog of the balanced realization, and
its existence is proven in [8). As the condition only
expresses equality and not diagonality of the gramians,
the extended notion of "essential balancedness," 1.e.
the balancedness up to an orthogonal (now time-varying)
transformation is agsin sufficient, °

S. APPLICATION TO NONLINEAR STOCHASTIC CONTROL
5.1 The Model

As discussed in the introduction, we shall assume
that the nonlinear dynamics are satisfactorily modeled
by & pilecevise linear amulti-model stochastic system
[2], thus & combination of the systems discussed 1in
Section 3, The system is assumed to be controlled, the




control being conditioned on the observations, and
therefore deterministic. This 1s superimposed on the
stochastic inputs, modeling the noise 1n the system as
wvell as the unpredictable components of the inputs, due
to coupling with unmodeled dynamics.

The general discrete model 1s

1/2
%ol A% T Bl % QY

1/2
Yoo T T Pl T Rl Yk

where u and v are whife nolse processes, modeling the
measurement and dynamical wuncertainties (e.g. the
unknown inputs due to unmodeled dynamics are typically
modeled by colored noise, the noise shaping filter 1s
then 1ncluded 1in the dynamical equation). d 1s the
deterministic 1input, which 1s a feedback of the
filtered signal and some externally applied known
component. Offsets (the bisses due to an affine
approximation of the nonlinearities) can be modeled in
these terms, d and e, as well.

5.2 The Steady State Pilter

Under the above assumptions, & steadv state Kalman
filter approximation 1s implemented in each of the
domains

Mol T AL Bt KSR o

wvhere the gains are computed for the steady state.
This of course requires some assumptions on the deter-
ministic signals dy and e . Typically such a filter 1s
used 1n a feedback scheme in order to provide the
control command, 1.e. we also have an "output" eguation

?

d = r - N{

which generates the command control, The combined

equatins are then

ol = ArgTB g g K0 e ) %

+ B[k]rk - K[k]D[k]ek + K(k]yk
1.e. & multi-wode system

ol T Pk %e Sl ™
dk = H[k]xk + LW
with the modes defined by
F = A -BM =-KC
1 1 1 11
G; - [Bx ; -Kibx i Kil

H = -H
i 1

and the input w, 1s (ri,e;.yil'.

5.3 The Optimal Implementation

The equations for the filter modes obtained in the
previous subsection are of the form of the multi-mode
systems in Section 3. The results obtained there
apply, therefore, directly, In particulsr, the
sejourn-times {7 | can be estimated, either via
simulation on the exact dynamical (nonlinear) system,
or in the simple cases, by direct analysis. The
gramians Q = 0'0 and Pl = R.R' can be computed by
solving the Lyspunov equations

FPF' =GC' =P
i1 11 1

' ' -
F\erl * Hx"x Ql
The transformation to the mini1mal sensltivity
coordinate basis is then obtained by balancing [7] cthe
matrices 2 2

P =L 'xpi and Q+=~I 'xQL

Finally, each of the modes of the filter 1s then
transformed to the optima. form. We have worked out
the ideas for discrete time filters. The concept works
just as well in continuous time [5]. The conditions
are the same (i.e. essential balancedness of the
averaged system).

6. CORCLUSIOHNS

The optimal sensitivity properties for the multi-
mode realizations have been derived. They extend
nicely the notions of essentially balanced realizations
derived in [4,5). These optimal realizations have been
applied to obtain an optimal implementation of a simple
multi-mode filter, which allows the tracking of a
target wvith low complexity, swall wordlength hardware.
This siople multi-mode model can be justified if the
sampling rate is sufficiencly high., More quantitative
results are presently under investigation,

We have restricted our discussion to square
systems (@ ® p) and minimal realizations. Extensions
are straightforward. It seems intuitively clear that
one could furcher exploit the redundancy of & realiza-
tion by deliberately using nonminimal realizations.
A heuristic argument for this possibility is as
follows: Let N = kn, and let (A,B,C) be a minimal
sensitivity wminimsl vrea.ization of a system H.
Construct now k different realizations Ai,Bi,CJ

b lT.AT?l,T.B,CTfl; i= 1....,&}. With these realiza-
tions ‘cohstruct the nonminimal diagonsl reaslization of
order N

A= disg (A) ; B = vee (B) ; C= ve (c )/

If the T 's are chosen in & neighborhood of the
identity, such that che rounding errors n each
component system are independent, then as k —> = :

L 1AC, + c.AA.l2 ki x
b} 1 1 max

oy, ! ®,2 _y o

It is possible to overparameterize the system in order
to obtain wminimal sensitiviry realizations. Finally,
the i1dea in the proof of the main sensitivity theorem
leads to gradient type algorithms for the optimal
sensitivity realizations. This, of course, is to be
performed off line, during the design scate, and poses,
therefore, no restrictions on the hardware. Some
preliminary remarks regarding these appear in [5].

ACKNOWLE DGEMENT

This research is supported by the U.S. Air Force
under Contract No. AFOSR-87-0308.

REFERENCES

[1] E.I. Verriest and A.H. Haddad, ‘"Approximate
Nonlinear Pilters for Piecewise Linear Models,"

Proc. Annual Conference on Information Sciences
and Systems, Princeton University, pp. 526-529,

March 1986,




[2)

[3)

[4]

[5]

[6)

L.0., Chua and A.C, Deng, "Canonical Piecewvise-
Linear Modeling,” IEEE Trans. Cirvcuits and
Systems, vol. CAS-337 no. 5, pp. 51T-325, May
1986.

E.I. Verries: and A,H. Haddad, “Linear Markov
Approximations of Piecewise Linear Stochastic
Systems,"” Stochastic Analysis and Applications,

vol, 5, no. 2, pp. 213-244, 1987.
E.I. Verriest and W.S. Gray, '"Robust
Problewms: A Geometric Approach," to appear 1in
Mathematical Theory in Networks and Systems,
Martin and Byrnes, eds., North-Holland, 1988.

Design

W.S. Gray and E.I. Verriest, "Optimality
Properties of Balanced Realizations: Minimum
Sensitivity," Proc. 26ch Conference on Decision

and Control, Los Angeles, CA, December [987.
A.S. Rhadr and C. Martin, "On the GLn(R) Action
on Linear Systems: The Orbit Closure Problem,”
in Algebraic and Geometric Methods in Linear

System Theory, Byrnes and Martin, eds., Llectures
1n Applied Mathewmatics, vol. 18, Springer-Verlag,
1980.

(7]

18]

9]

[10]

(11}

Discrete Time
Invariants, Parameterization and
Realization," Proc. Annual Conference on
Information Sciences and Systems, Prainceton

E.I. Verriest, “Alternating

Systens:

University, March 1988,

E.I. Verriest and T. Kailath, "On Generalized
Balanced Realizations,"” IEEE Transactions on
Automatic Control, vol. AC-28, no. 8, pp. B33-
844, August 1983,

U. Helmke, “Parameterizations for Multi-Mode
Systems and Yang-Mills Insctantons,” Proc, 25th
Conferenc® on Decision and Control, Achens,

Gieece, December 1986,

D.P. Stanford and L.T, Conner, "Controllability
and Stabilizability in Multi-Pair Systems,” SIAM
J., Control and Optimization, vol. 18, no. g,

pp. 488-497, September I980.

D.P, Delchamps, "New Techniques for Analyzing the
Effects of Output Quantizstion 1in Feedback
Systems," Proc. Annual Conference on Information
Sciences and Systems, Princeton University, March

1988,




APPENDIX Q

E. I. Verriest, "On three-dimensional Rotations, Coordinate Frames, and Canonical
Forms for It All", Proceedings of the IEEE, vol. 75, pp. 1376-1378, October 1988.




Relative field amplitude { in dB )

-70

—————-

T

s
[y
[}
L]
N

n
8

0 ¥ 20 '

S0 60 70 80 90

0 { degrees )

Fig. 4. Vertical beam patterns for a muitiplicative coaxial circular array.

[21 —, “Sidelobe suppressed beampatterns of a coaxial circular
array at operating wavelength useful to underwater trans-
ducer applications,” Acoust. Lett., vol. 11, no. 3, pp. 34-38, 1987.

(3] D.R.Hill, “Reduction of sidelobes in uniformly excited arrays
with element pattern control,” Electron. Lett., vol. 16, no. 4, pp.
134-135, Feb. 1980.

[4] M. L. Skolnik, Introduction to Radar Systems.
McGraw-Hill, 1985, ch. 7, pp. 233-234.

{5] R. ). Urick, Principles of Underwater Sound. New York, NY:
McGraw-Hill, 1975, ch. 2, pp. 60-68.

Singapore:

On Three-Dimensional Rotations, Coordina‘e
Frames, and Canonical Forms for It All

ERIK |. VERRIEST

Some properties of the eigenproblem for a three-dimensional
rotation matrix are shown, and related to the geometrical rotation
parameters. The problem of assigning a unique canonical coordi-
nate frame to a set of three mutually orthogonal axes is consid-
ered: The assignment is such that it corresponds to a minimal over-
all rotation with respect to the reference system. This problem is
of interest for the unique and consistent labeling of the principal
axes of various tensors related to physical properties of materials,
and symmetric matrices that appear in various disciplines of engi-
neering.

INTRODUL. TION

inthejueas of celestial and applied mechanics, robotics, the the-
ory of elasticity, radar and sonar, and in nuclear, molecular and
solid-stare physics, one frequently needs to express preferential
spatial orientations (attached to a ’rigid’’ body) in terms of some
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fixed reference system (the “laboratory” system). Coordinate
transformations are also of interest in expressing material param-
eters such as dielectric tensors, electrooptic tensors, stress ten-
sors, and so on. Any three fixed mutually orthogonal lines inter-
secting in 0 (e.g., obtained by solving the eigenproblem for a real
symmetric matrix), define 48 possible coordinate frames (of which
24 are right-handed). As the labeling of the preferential axes is usu-
ally arbitrary, this paper addresses the problem of providing a
“nice” way to uniquely describe or represent a preferential coor-
dinate frame.

As our solution relies on same elementary properties of 3-D rota-
tions, some basic properties of such transformations are first
recalled.

BACKGROUND AND NOTATION

A half-line originating in 0 (the origin) will be called an axis. If
uis an axis, then the axis paralle! to u but extending in the opposite
direction will be denoted by —u. By a (right-handed) coordinate
frame F, we understand an ordered triple of mutually orthogonal
axes, following the right-hand rule. A frame consisting of the axes
u, v, and w in that particular order will be denoted by (u, v, w). F
is the set of all possible right-handed coordinate frames.

There are many ways to specify the orientation of a coordinate
frame relative to another orthogonal coordinate frame with the
same origin. Denoting the axes of the fixed reference frame by (x,
y. 2), and of the preferential coordinate frame by (x', y’, 2'), itis stan-
dard to represent the rotation by the direction cosines of the primed
axes relative to the unprimed ones. One can think of the new
(primed) coordinate system as the one resulting by operating on
the original (unprimed) system by some transformation, and it is
well known that the set of matrices © representing these trans-
formations form the 10tation group SO@3).

Since any rotation can be represented as a global rotation over
# € [0, x), measured counterclockwise about some axis u, a rep-
resentation of the set of three-dimensional rotations can be given
in spherical coordinates: Longitude ¢ and latitude y suffice to iden-
tify the global rotation axis u, and the radius r = § describes the
angle of rotation. However, SO(3) is not topologically equivalent
to the open (or closed) ball, since antipodal points on the surface
of the sphere represent the same rotation. A standard homotopy
argument shows that the fundamental group contains two ele-
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ments [31. The covering of SO(3) by SU(2) leads to the Cayley-Klein
parameterization (1].

The eigenproblem for rotation matrices is summarized in the
following:

Lemma: i) A rotation matrix © has all its eigenvalues on the unit
circle. If the rotation is nontrivial, only one eigenvalue equals +1.
The global geometric rotation angle 4 satisfies cos 8 = [tr(©) — 1)
2, and the rotation axis corresponds to the global rotation vector
(i.e., the eigenvector u, corresponding to the eigenvalue 1). ii) The
real and imaginary parts of any complex eigenvector correspond-
ing to a nonunity eigenvalue have the same norm, and together
with the eigenvector corresponding to the eigenvalue +1they form
a mutually orthogonal set.

Proof:Parti)is shown in[1]. As for ii), let vbe the complex eigen-
vector of ©, corresponding to the eigenvalue \. Expressing u'Ov
in different ways results in u’ Re (v) = u’ Im (v) = Q, uniess the rota-
tion is trivial. Similarly, the simplification of v'Ov leads to v'v = 0,
which in turn implies the orthogonality of Re (v} and Im (v}, and
equality of their norms.

it follows at once that {Re (v), Im ()} is an orthogonal basis in
the rotation plane. A canonical parameterization can be shown to
result.

Theorem: Any rotation matrix has a (nonunique) eigenvalue
decomposition

8 =[uvV)diag(l e’ e [u vV

where @ lies in the interval [0, x], measured counterclockwise with
respect to u, and such that (u, Re (v), Im (v)] belongs to F.
Proof: See {4].

EICENPROBLEM

In many problems the rotation matrix 8 is only of intermediate
interest. In particular, consider the real symmetric eigenvector
decomposition A = UKL, also known as the Principal Axis (Com-
ponent) Decomposition. K is a diagonal matrix and Uis orthogonal.
If det U = 1, then (u,, Uy, U4} is the matrix of direction cosines of
a new right-handed coordinate system whose coordinate axes are
aligned with the vectors u,, u,, and u,. Clearly, this decomposition
is notunique: eigenvalues can be permuted, and to each ordering,
several different choices for the corresponding eigenvectors may
exist, leading to different orthonormal coordinate frames. For ref-
erence purposes, a canonical decomposition is desirable. To facil-
itate the search for canonical forms, the problem is characterized
in terms of its invariants, introducing the following definitions:

Definition 1: A Symmetric Eigenvalue Decomposition (SED) is an
ordered pair (U, K )where Ubelongstothe set F,and Kisan ordered
triple of real numbers (i.e., an element of R?).

Definition 2: Two SEDs (U,, K;) and (U,, K;) are called

i) (Weakly) Equivalent(~) iff U, diag (K)pU; = U, diag (K,)U; and
K, is an ordered triple of the permuted elements of K.
ii) Strongly Equivalent (s) if they are equivalent and K, = K.

The equivalence classes induced by the above equivalences are
nontrivial. In the nondegenerate case, the equivalence class of all
frames equivalent to a given frame U is generated by operating on
U by transformations of the group G,, consisting of the elementary
operations:

l LABELING OF FRAMES ASSOCIATED WITH THE REAL SYMMETRIC
Begin
Fori:= 0to2do
begin
(X Xpo X 1= (X5, Xp, X P’
Forj:=0to1do
begin

[x_,, Xps ‘(] Bl [xu Xpr X‘]Q’

FQi + j):= [x,, Xy, X)

end
Frame : = Ak,.)

End.
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T2+ f)im x5 + Xp3 + Xy
end

Kones := maximum™'(T(k);i= 0t05)

1) cyclically relabeling of the coordinate axes x', y', Z',

2) changing the directions of any two axes,

3) changing the direction of one axis, and switching the remain-
ing two.

It follows that every orbit of this group (equivalence class £/_) con-
sists of exactly 24 elements. In the restricted case of Strong Equiv-
alence, the frames can only be related by inversion of any two axes,
thus leaving only 4 elements in each class of Fis. The matrix rep-
resentations of the generators of G, are:

0 0 1 -1 00
p=l100| s,=| 0 -1 0}
[0 1 0 1 0 o1
10 100
Ss=]0 -1 of, Q=] 001
0 0 -1 010

The generators of the subgroup G,, associated with the Strong
Equivalence are S, and S,. The action of the group element C &
GC.(G,.) on Fis defined by G(F) = FG ¢ F. The frame derived from
F by group operation G is the frame with associated matrix FC. The
degenerate case is discussed in [4].

CANONICAL FORMS FOR REAL SYMMETRIC MATRIX DECOMPOSITIONS

A selection of a canonical form for the decomposition means that
to each element [F] of the equivalence classes F/_(or Fis) a unique
representantis assigned [2]. An obvious choice is the frame obtain-
able by a rotation of the reference frame over the smallest possible
angle. The ideas are made rigorous by introducing a ““correlation”
metric (-, - >:F x F— Rdefined by (F,, F,) = tr F,F;. The function
(-, )isnotaninner product on the set of frames F, since the latter
has not been endowed with a linear structure (i.e., addition of two
frames or scalar multiplication of a frame are not defined). An inner
product interpretation is possible by embedding F in a 9-dimen-
sional vector space (4]. As the reference frame is represented by
the identity matrix, one obtains the “‘correlation: (I, F} = tr F =
(1 + 2 cos ). The frame with the minimal 8 € [0, 7] is the one with
the maximal correlation. The map f assigning this optimal frame
to each equivalence class is a complete invariant {2}, and it follows
that the set of frames {F.} = f(F) is a set of canonical forms for F.

The selection algorithm for the canonical representation of a
given frame F proceeds then by optimizing tr FG over the elements
G of the groups G, or G,, generated by P, Sa, Sb, and Q, or Sa and
Sb alone for the canonical forms, respectively, under Equivalence
and Strong Equivalence in the nondegenerate case. The pseudo-
code is provided in the appendix.

APPENDIX
The Optimal Frame Algorithm for the Nondegenerate Case

Given a right-handed frame represented by the vectors of the
direction cosines|[x,, x,, x., the Canonical Form under Equivalence
is obtained via tha following algorithm (for Strong Equivalence omit
the loops in i and /).

Find diagonal elements (x,,, xp2, Xc3).
: ] if not all signs are positive,
then find the two columns whose sign change maximizes the trace.
(x4, Xp, X] 1= [x,, Xp, X] S, where S is one of S,, S, S.
{ Store a potentially optimal frame }
{ Store its correlation with | }

{ Search for maximum )
{ Output the optimal frame }
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An Improved Algorithm for Low-Pass to
Bandpass Transformations

STEPHEN A. DYER

An algorithm is presented for computing the coefficients of a
-ontinuous-time bandpass transfer function, obtained by applying
" e standard transformation to a normalized low-pass prototype.
1he method has all the desirable features of a recently described
algorithm while achieving increased computational efficiency
through use of a recursion relation.

l. INTRODUCTION

In a recent letter [1), an algorithm was presented for performing
the standard low-pass (LP) to bandpass (BP) transformation. The
method is quite general, being both independent of filter order
2.2 appiicable to prototypes having both poles and zeros. Since
itis algebraic in nature, it provides excellentaccuracy independent
of choice of scaling factor.

The algorithm presented in the following shares all the desirable
traits of that in [1]. However, while the method in {1] requires the
evaluation of a set of binomial coefficients, the present algorithm
employs a recursion relation, resulting in decreased computa-
tional effort.

11. DEVELOPMENT OF THE ALGORITHM

We wish to obtain the coefficients of the BP transfer function R(s),
obtained from the normalized LP transfer function P(s) by the trans-
formation

- R(s) = PUS)|; e a2 o bywstm as + 85" U]
where w, is the desired center frequency, in r/s, of R(s); W is the
desired bandwidth, in /s, of R(s); a = 1/W; and 8 = wYW.

The LP transfer function P(s) in (1) is assumed to have the general
form

N

Z a,s” *
Pls) = 22— @

2 bns™

meg

The BP transfer function R(s) has the form

z a,s"
ned

R(s) = ————. (3)
o= 2 b.sm
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The transformation (1), when applied to (2}, yields

N

X aas + Bs7'Ts
ne0

M

Eo blas + Bs~1"s”

R(s) = “4)

where y = max (N, M). The factor s'/s” is included to obtain a form
for R(s) which contains only nonnegative powers of s.

We concentrate for the moment on the numerator polynomial
in (4), writing it in the form of a power series, as in (3). We have,
then,

r N
T as = X afas + 857 5
kw0 neo
N »r
= T a, & Cpst (6
n=Q k=0
’ N -|
=X [Z anCi sk @
ka0 (ne=0 J

where, from the right-hand sides of (5) and (6), » = v + N Thus,
the &, car be found as

N
4,=Z 2,660 k=01 ,5 {8
nel
Similarly, the b, of (3) can be found as
M
Bk- Zobmck,m’ k-o'1l"'/“ 9

where u = 4 + M. Actually, the range of n and m in (8) and (9),
respectively, can be restricted further. This matter is discussed in
Section 1V.
We need, however, to determine the ¢, , before 8) and (9) can
be applied. From (5) and (6),
2y .
Eo Cuns' = (as + Bs™Y)s” (10}

= (as + s "Has + Bs~ )" 's?
2y

= (as + A5 .2 Chn1S*
-0

2 >
= 2 aCia 18"+ Z Bepn-st (11)
k=0 koD
Here, the upper limit on the sums is set to 2y so that (10) can be
applied to either (8) or (9) as needed.
After changes of variables, (11) becomes
2 Nt 2y-1
Z st = L aCiogn-15"+ X BCisrn-ist. (12
k=0 ke ke
So, upon equ. ..ag coefficients of like powers of s in (12), we obtain
the recursion relaticn

k=1, 2y -
Cin ™ ACh_q,n-1 + BCisvn-v (13)
N1,y
For n = 0, (10) gives
1, k=1«
Cho = {0, otherwise. i
Also, (12) yields
Con ™= BCrn-v n=T1 -,y (15)
and
Can = ACxotney N =T, . (16)

fIl.  THE ALCGORITHM

The 8P coefficients &, and b, of the R(s) in (3) are computed as
follows:

1) Accept N; M; wy; W; a2, n =0, - ,N:b,, mm0, -+ M
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ALTERNATING DISCRETE TIME SYSTEMS:
INVARIANTS, PARAMETRIZATION AND
REALIZATION

Erik L Verriest .
School of Electrical Engineering
Georgia Institute of Technology
Atlanta, Georgis 30332
(404)894-2949

Abstract

Periodic discrete time systems are analyzed. In particular we
investigate the Invariants, Parametrizations, Canonical Forms,
and Realization from input/output data for such systems. It was
found that the classical realization theory for time invariant sys-
tems carries over very nicely to such systems. For notational
simplification, some results are worked out for the sltarnating
{i.e. period two) single input single output discrete time system
only. A novel definition for an Operational Transferfunction is
given, which is useful in studying reductions, realizations sad in-
terconnections of such systemas.

1. Introduction .

This paper deals with periodic discrete time systems of period
N. To fix the ideas, a state space realization of such systems is
of the form

fi1 = An+ Byyw
n = Cun
p(k) = kmod N

The N-tuple {£,2;,...,En-1} where L, is the triple (A;, B;,
C;) will refer to such a realization. These systems arise for in-
stance by discretization of periodically, nos-uniformly sampled
continuous time systems, and more general periodically switched
systems. In order to simplify the ideas, we shall sometimes lock
st the special case of alternating (i.e. period two) single input
single output discrete time system. The main ideas for the gen-
eral case are not different, but only more complex in notation.

While these systems are in many ways more complex than or-
dinary time- invariant systems, they have still much more struc-

ture than general time varying discrete time systems analyzed by

Kamen (3], or even the muiti-rnode systems described by Stanford
et al. [2], and Relmke [1], and one can develop & parametrisation
theory for these systems which is in close analogy to the known
gecetric thecry for stationary systems (Hazewinke! [4]).

In particular, the input/output behavior of such systems is
lelt invariant by the traasformation group

GLW(R) x...x GLa(R) (Ncopies),

and the orbit space of the controllable systems is a manifold
which can be decomposed into generalized Kronecker cells whick
form s cellular patch complex. The canonical forms act as local
coordinate systems.

Our next main result involves the realization of such a system
from the knowledge of the impulse response ssquences

Aigii>j, j=0,1,.
3. 1/0 Equivalent Time-Invariant Representations
for period-N Systams

Some preliminary definitions and notations will be given in
this section. Also, the cbearvability, reachability and stability
properties will be discussed. The properties and representations
are the key to the realisation given in section 4. We aball discuss
the general cass for N-periodic systems in this section.

932

Given the N-periodic system {E£5,L;,...,En_1}, let the re-
sponse of the system to a pulse occurring at instant § < N be
the sequence A ; ; 1 > 5. The system response is readily seen to
be (where [k] indicates k mod N)

hy = CyAy-yAi-y---AGayBy >3 (1)
= 0 alse

Define the “Hankel® Matrices for this Periodic System as the
matrices H;,; whose (a,b)-element is Aj,qj-ssy. This matrix
does not have the (block) Hankel structure ss in time invariant
systems. However, it still allows & factorization in an observ-
ability and a reachability matrix (as defined in the time-varying
case).

Ejsr = Ojun1R; (2)
e.g. the a-th block entry in Oj4y and the 5-th block of R; are
respectively

(Rils = A1 Ayg—y - - Apjes-3 Bljar-y (3

[Os+1ls = ClyeaAljra=1] - -- Afjy) )]

Forfixed sin1,..., N, the derived sequence h; = Ajiay; k>0
is also the response to a unit pulse, of the following sugmented
time invariant system of order nN. (Note that Tx = Zo)

0 0 . AN
Ay O cen /]
Aa=1 0 Ag 0 0

0 0 ...An- 0

c...[c; Cs... CN] (5)

with read-in matrix [0, .. .0, B},0,...0]" where the nonzero block
B; occurs in the (5 + 1)-th block pasition. Such a time invariant
representation of the pulse response sequence H;; ; § > j will be
called an Adiabatic representation. The corresponding Adiabatic
Hankelmatrices ; with (o, b)-element Ajyqes-1, Will have the
true Hankel structure. The subscript “ca” refers to "cyclically
sugmented®. The above representation is in general not minimal.
A minimal realisation of the adisbatic Hankel matrix & will be
denoted by (Ay, B;,&)). _
In order to treat all A 4's at oncs, an equivalent composite
system (the Cyclically Augmented System) of Nn states, Nm
inputs and p outputs, is defined as the realization (A, Bee,Ces)
where Ay and Co are as in (2), and defining 8 By,-matrix a3

By O... (1]
0 "--. 0 (‘)

] 0... Br-3

Be=




B3

o

- v .

et e SR

Letting H;(z) denots the Zee-transform of the shifted se-

quencs Ayyjs ¢ k> 0, then the transfermatrix of the cyclically

sugmented system is simply
He(s) = [30(‘)1 By(s),...s ﬁx-;(z)l (n

The B;(s) are the transfermatrices of the ADIABATIC sy»-
tems, and it follows from the previous discussion that they are re-
alized in a noaminimal way by (A¢e,{0,.--,0, B},0,...,0]',Ces),
the nonzero element in the B-matrix occurring in the (5 + 1)st

Raemarks

1. Dually, we can also work with an equivalent (nN,m, Np)
system, thus treating the periodic system as an equivalent
atationary Np-output and m- input system.

2. Classical realization theory for multivariable time-invariant
systems enables us to find a minimal realisation (P,G, H)
for the above Hankel matrix. This minimal realization is
then the key %o the rest of our development. In particular,
since the equivalent stationary system captures all of the in-
put/output information of the periodic one, so will its min-
imal realization (F,G, H). A parametrization for the peri-
odic systems follows then directly from the parametrisation
of the multivariable system (F,G, H). At once, we see that
even a scalar periodic system leads to multivariable equiva-
lent systems. The restriction to scalar systems mentionned
at the onset is thus mot restrictive, but permits simpler
potation and examples.

Wae indicate some particular results which will be usefull in
the realization problem

Theorem 1: The minimal realizations (A, Bi, &) of the adi-
abatic Hankelmatrices &; bave the property that det(zI - A;)
divides det(sV1 ~ Ag... An-1)

Proof (for N = 2): The Hankelmatrix Ho is obtained from
the pulseresponse h;g. Its Z-transform equals

ﬂo(l) = Co(t’[ - A;Ao)"A;go + 01(8’1 - AoAx)“lBo
= [No(s?) 4+ Ni(s?)]/ det(s*T - AoAy)
for some polynomial matrices Ny and Ny. Clearly thes the min-
imal realizations of Ho snd &) bave the above stated property.

In fact, it is easy to show that the realizations of Ho and H,
must be very closely related. Indeed, by rewriting H; in the form

-1
o= [Cx.Cd["I-gMA‘ ,._°._,..] [ﬂ"
Bl-AAdy O
v

-1
sI B
S’I-AoAx] [Ao] !
The first factors on the left also appear in the expansion of Hp

\ -}
‘0 - [cﬂucll [ s .OAIAO a1 _OM‘ ] [ .A; ]&

Hencs, if we define the following transfermatrix:
Sl-As 0 o
3“"“"“‘1[ ) s't-M,] [x! 4o

then By = 8@;(36,0]' ad )= 30‘[0, ¥r.
This observation lesds directly to the fallowing theorem:
Theorim 8: There exists an observable pair (4,8) wnd me
trices By and B, such thet (4, 8,L), and (4, 5,,C) realise
ively the adisbatic transfer matrices f; and H;.
Preef: Lat (A, B,C) be & minimal (cbservable is sufScient)

= [Co,C1] [
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realization for Ho,, then Bo = B(B},0]', and B, = B[0, B})".

The importance of this theorem lies in its use to find the
realizations for an alternating system. Given the pulse response
sequences h; g and A; ;, we can use the realization algorithm from
time invariant systems to determine minimal realizations of either
sequence. By the theorem, these realizations can be extended by
addition of uncontrollable states if necessary, to observable real-
izations with the same A and C matrix.

3. Reachability, Observablility and Stability

Definitions:

e The N-reriodic system {£o,F;,...,En-;} is said to be
uniformly p-reachable (reachable in p steps), iff every state
can be reached in p steps, independently of the starting
event (= initial time and initial state). The system is said
to be uniformly reachable, iff thers exists s p > 0, such that
it is uniformly p-reacbable.

o The system is said to be uniformly observable in p steps iff
the initial state z; can be uniquely determined from p con-
secutive outputs yj,...,¥j+p-1, independently of the start-
ing time j. The system is said to be uniformly observable
iff it is p-observable for some p.

Theorem 3: The period-N system {To,...,En-1} is uni
formly reachable iff the reachability matrices (3) bave full rank
for all 5. The system is uniformly observable iff the observability
matrices {4) bave full rack for all j.

The proof is easily eatablished by s standard argument [S].
Since the adiabatic systems of at most order a¥N, provide an
anderlying time-invariant structure in the problem, at most nN
steps need to be considered for checking uniform reachability and
observability, by virtus of the Cayley- Hamilton Theorem. Some
direct corollaries of the theorem are:

1) The Cyclically Augmented system (A, B, Ceq) is reachable
iff the period-N realization {Z,,E3,...,Zx)} is uniformly
reachable.

#1) (£1,L3...,Ldis uniformly observable (reachable)
iff {20, B1,.--,En-1) is uniformly observable (reachable),
whence the invariance of uniform observability and reach-
ability under a cyclic shift.

1i1) Using the backward propagation, we can write the output
st time ¢ in terms of the previous inputs. ie., we look at
A;; for fixed 1, and define the equivalent stationary systems
with the above A-matrix and C = [0,...0,C;,0,...,0], the
nonsero block occuring in the i-th block position, and B =
(B5,B{,...,Bly_,). We then have the *duslity”-property:
{Z1,...,En-1,En} is unif. observable iff
{4, T%-;,---Zf) i unif reachable, where the *dual®
system is obtained by time reversal of the sequence of the
duals Tf of the realizations L;, where (A, B;,C;)¢ is the
triple (A}, C}, Bf). We are thus led to the definition:

(zhz’ou . .:O}d‘d = {:‘. n‘ﬂ-h ree tzt) (')

Finally, we remark that if all A; are noasingular, as for in-
stance in the important case of the discretisation of a continuous
system, the criterion of Theoram 1 can be simplified by virtue of
the following :

Lemma: H the A; are nonsingular for all 5, then the full rank-
2ess of coe of the reachability matrices R, (cbservability matrices
©O;) implies the full rankness of all others, and bence reachability
(observability).

As an example, s siso alternating system Eg,I; will be uni-
formly reachable iff the stationary systems {4, Ao, (b, A1ko]) snd




(AoAi, [bo, Acb1]) are reachable. If the system is uniformly reach-
able, no more than 2n steps are required to reach any desired end-
state. the product AgA; is nonsingular, then (4140, (&, A1bo])
and (AgA;, [Bo,Aobi]) are either both reachable or both non-
seachable. By applying inputs before 0, cne gets the reachability
relation at time 0:

So= Rll"ﬂ: A T2 ']'

whers R; = [b;, A1do, 41 Aghy, . . | is the time varying reachability
matrix [3]. Observation of the output sequence after time 0, with
Bo input applied leads then to the obeervability relstion:

hb:n-h----r = Opxo

where Op = [&, Ay, AbAch,.. ) is the time varying obeerv-
ability matrix. Similarly, we construct the reachability and ob-
servability matrices, Rg and Oy, relating to the referencs time 1.
The products Op.R; and Oy Ry are then the alternating (period-2)
Hankelmatrices defined in (2).

We alsc have the following important stability theorem:

Theorem {: The N-period system (0) is stable if the eigen-
values of the product AgAg... Ax-1 bave modulus less than 1.

Proof: The convergence properties of the periodic systerms
are determined by the convergence properties of the equivalent
time invariant system (Acq, Bes,Cos)- The latter is completely
determined by the characteristic polynomial
det(2NI - AjAAg...AN) = Q.

The problem with this approach is that the resulting time-
invariant system has order Nn if n is the order of the individual
realizations R;. The original periodic system is cnly of n-th ore
der, 30 that a “hidden modes”-phenomenon occurs.

4. Canonlical Forms, Parametrization and Topological
Structure

The first object in this study is to ind the transformations
on the realizations that leave the input-output bebavior (i.e. all
adiabatic transfermatrices and the the periodic system *Bankel*
matrices (2)) invariant.

Let {£9,Z;,...,Zn-1} be a realization of an N-period sys-
tem. Denote an element of the group Gla(R)Y, denoted by GI¥
for abort, by (P, Py,...,Pn-1). The group action is defined by

(5!"""-‘) : (AOnBO- a)t"-v(“ﬂvlo By-a, cﬂ*l) b
(PuAoPs P Bo, CoP3 "), (PoAn~1 Pl , PoBr -1, Cr-r Prty) (9)

The states transform as

sy — Bz
sNpel = Pizaiey i=1,... ,N-1

The following property is readily shown:

Theorem §: Equivalence of State Space Representations.

The product group GI,(R)" action on the set of period-N
aystems Jeaves the 1/0 properties invariant.

Oucs the symmetry group, (Le. the group whose action leaves
the 1/O behavioe invariant) is establisbed, we can look at the
question of canonical forms: Any property of the original system
can be described as & map from the set of systems L, to some
suitable set §. After introducing cancnical formes, the study of
the original function f is then replaced by the study of some
*simpler” function f : C — §, such that f = for, where »
# the canonical projection * : & — C on the set of canonical
forma.

" For notational simplicity, the rest of this section will be re-
stricted to alternating systems. Ths above development should
give encugh insight to realise that the general principies remain
the same. Canonical forms for the unifomly reachable systems
are obtained by the usual Kronecker selection procedure. ia.

(10)
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among the 2n columns of Ry, select n linear independent onses,
which form a basis Sy for the state spacs. In particular, a unique
“pice” selection may be chosen according to the Young or ®crate”-
diagram. Similarly, let 8; be another basis, chosen by a nice se-
Jection among the columns of B). Now express the system with
respect to the basis which is alternating between So and )1. o.5.
Ag is represented by the s new matrix whose j-th column is the
representation in terms of the basis 8; of Ay operating on the
§-th bagisvector from the other basis 5.

The effect is that the new representation is of the form b =
b = (1,0,...0]'. (By assumption of reachability neither & nor
by are zero). If v;(k) denotes the position of the k-th basis vector
from R;, then we refer to the sequences w; = v;(1},...,v(n) as
s multi-index. The k-th column of the new A-matrices are

Ases = Roeauyer
Al = Ricoups (1)

However straightforward the previous extension of the known
scheme may be, a particular nice form is obtained as follows if A,
is nonsingular. Search the columns of Ry in their natural order,
i.e. from left to right, and recrdered in chains, as in the usual
“scheme IT™ search [§]. Now observe that if A; is nonsingular,
then the result of A1 operating on the above basis, is alsc a basis,
and in fact each of these new basis vectors will be & column in
Ry, except perbaps for the Jast new basisvector. In that case,
it may be substituted for §; as new last basis vector. Note that
this all corresponds to a scheme II search in R;, but STARTING
AT Ado. It follows that, unless there was a full leagth (= n)
chain Agdy,...,[AgA1)*"  Aody in Ry, (which only heppens if &n
is sero), the operator A; is represented by I. The b, vector is full
in general. The pair (Ag, bo) bas a canonical controllability form
[5] representation. In the latter special case, it follows that A
is represented by a cyclically down shifted identity matrix, and

. Ay by s cyclically down shifted right companion (controllability

canonical form) matrix. The sew 8¢ (obviously) remains zero,
and the new 3, is & full vector. As the g5 and ¢; have no particu-
lar structure, thers are 4n {ree parameters in this canonical form.
By analogy to the stationary realizations, we shall refer to this
form as the controllability canonical form. Note that because the
search extends over 2n columns, the new A-matrices will in gen-
eral not be in the usual companion form themselves, unless the
system is uniformly reachable in n steps, but then thia is also the
case with the time invariant multivariable systems. In fact, it is
exactly becsuse of such a reduction from the timevarying to the
multivariable time-invariant case that all the topological proper
ties of these systemw are expected to carry over. In particular,
for multivariable systems we bave:

Theorem &8: The orbit space of the reschable systerns is an an-
alytic manifold, which can be decomposed into generalized Kro-
necker cells which form a cellular patch complex. The state space
canonical forms act as local coordinates.

The number of canonical forms that is required to cover the
space of all reschable alternating systems is also equal to the
aumber of pairs of nice multi-indices that can be chosen. The
information given here is rather sketchy, but the details will be
presented in » forthcoming paper {8].

8. Oper-*ional Transfer Function

Because of space limitations, very ittle will be said here. The
essential ingredient is the iatroduction of a sampling operator =,
with x? = x, and which does not comzaute with the shift operator
s~ In fact, we have 2~'xz = 1~ x, from which sx+2(1-2) = 2.
The equation 23341 = AoZy; + Byw, is then trandformed to 2{1~
*)X(3) = AogwX(s) + BorU(s). Similarly, the complementary
squation transforms to 39X () = Ay (1-%)X(2)+ By (1~2)U(s). -




-

Adding yields the form X(s) = (21 — A(x))~! B(x)U(z), where
A(x) = Agx + 41(1 - x) and B(r) = Bor + By(1 = x). Defining
alac C(x) 2= Cox + C1(1 — ), we get the Operational Transfer
function ss
Hs,x) = C(x)(sI ~ A(x))B(x)

ie. a transfermztrix with coefficients in the polynomial ring
Rix|x? = x]. Using the noncommutative relation, this formalism
ia very helpful in deriving all sorts of results and transferfunction
operationa. For instance, defining the odd and even part of G(s)

2(G(a)] = G.(s) = Gl +zcg-x)
(-ncl)l = G.() =SE=SC2)

2
then the commutation relation implies for the operators
G(s)x = 2G,(z) G, (s)r = (1~ )G, (s)

and
Gls)x = 2G.{s) + (1 - 5)Go(s)

For instance:

(21~ M) 'x = [(1 - 2)2I + sM][s] - M}
This last rule allows to write the OTF of the period-2 system as

Co[s] = Ay A A1 Box + 2B, (1 ~ x)] -
+Ci {831 = Ag Ay~ MaBor + AgBy(1 - x)]

The following duality is also very helpful in reduction.

H(z,x) = Ri(2)x+ Ry(s)}(1 =)
= 285 (s)+ (1~ x)S;(s)

here
8]-( =) (28]

Ri(s) ={" -1 Si(z)

Ra(2) =1 z Ss(s)
Finally, the reachability and observability conditions derived in
the previous section are also readily obtained with this formalism.
1t can also readily be extended for use with period N systems.

The commutation relation is different ie. ZV=-1g + Z¥~1xZ 4
ceeb g ZN-1 g ZN-3,

w,

€. Reallzation

In this section we show how the above results can lead to &
relatively simple realization algorithm for periodic systems. We
shall assume that the order n of the minimal N-period systam is
known. There is then an underlying uniformly reachable system
ZLo,..-,En-y of order n. The realization is given in 4 steps:

8tep 1s Let the pulse respocses Aip;i > 1,..., A n-y;s > N
be collectad. With this data, the adiabatic Hankelmatrices 4; ,
J=m0,...,N~1are formed. There are now two possible routes:
realise each adisbatic system separately, or realise the compositte
system with transfermatrix [Bo(s), ..., Bn-1(s)).

Step 3: Obtain & minimal realisation (Am,(Ba,0, Bm1,--+s
B ~1],Cam) of the system with composite transfer matrix [Ho(s),
....2,.1(;);:”«. 2,(s) is the transfer matrix of the adiabatic
m ( ] lo‘)'

There are two ways in which thia cas be obtained. The fAret
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is to reduce the composite transfermatrix, and obtain & minimal
realization of it, by standard multivariable techniques [S]. The
second metbod consists in first obtaining minimal realization
(A:, Bi, Ci) of the adiabatic systems. These minimal realizations
may be of different dimensions. However, by the theorem 1, there
exists s maximal characteristic polynomial, of order ¢ say, in the
sense that the characteristic polynormials of the other realisations
divide it, and each non-minimal adisbatic realization can be ex-
tended by adding a non-reachsble, but obeervable subsystem, so
that all extended realizations of the sdiabatic susbeystems have
the same order (= g), snd the same A and C matrix. The com-
ponite realization (Am,[Bmp;-.-, BmN-1),Cm) is then the de-
sired form and is minimal since (Am,Cwm) is observable, and at
least one of the B, ; forms together with An a reachable pair.
Step 3: Extend the realization of order ¢ obtained in step
2, to one whose order is a multiple of &, by adding a noo-
observable but reschable subsystem. Indeed, sincs the mini-
mal system (Ag, [Bm g, .., BaN-1},Cm) 80d the cyclically aug-
mented system (A.q, Beg, Coa) realize the same transfer matrix,

- and since ihe cyclically augmented system is uniformly reach-

able by assumption, the latter must be an extension (4,, B,,C.)
of (Am,{Bu0;:--s BmN-1],Cm) by & non-observable but reach-
able subsystem of order Nn ~ ¢g. This implies the existencs of
matrices X,Y, Z,...,Zx-1 90 that

ra A | -l | G

is similar to the cyclically sugmented system. This augmentation
must not impair the reachability of the realization. The necessary
reachability of the subsystem implies that none of the rows of
the matrix [X,2Z,...,2Zx~1] can be zero. This follows easily
by contradiction. If (X, 2y,...,2Zn-1] had a sero row, then the
realization could be partitioned as

+ Bmn-1 ]

A 0 O Bus, .-
xl x’ {1 Zo, ceey N1
0 0 Y 0, eeey O

which has the un-reachable subsystem [Y3,0,Ca).

The X,Y, and 2; are chosen 8o that the reachability matrices
R(A?; (B, AsBa]), and R(Au; (B, AcBu]) have rank less than
"

Step 4: Detarmine the similarity transformation that trans-
forms the extended system (A.,[Bas,..., Ben-1],Ct) to & cyclic
form. For notational convenience, we shall again discuss the lat-
ter for alternating (i.e. period- 2} systems. The ideas for period-
N systemns are similar.

The reachability matrix for the cyclically sugmented matrix
has the structure

Re= &o o, 0, Aﬁali AOAXBOI 0
0, Bi, ABo, O, 0, ArvAc By
whereas R, has entries in all positions in general. The desired
similarity mape R, into TR, = R,,. Partitioning T into [T}, T3/,
it is seen that the sero locations in the above equation leads to
the identities:

TyR(A};(Buy,ABg]) = O
TiR(AY; (B, ABy]) = 0

where the reachability matricas extand to n (block)columns oaly,
and are thus square for single input periodic systems. On the
condition that the test matrices Ry = R(AJ;[Bw, AcBu}), and
R,y = R(Ay;[Be, AcBar]), bave rank less than a, it is possible
to ind n linearly independent rowvectors in the left nullspaces

of the above reachability matrices. Since the overall realisations




are both reachable, thers exists T} and T such that T = [T, T})'
is nonsingular with T, and Tj satisfying the above conditions.

We summarite then with:

Theorem 7: An invertible transformation T can always be
found, bringing the extended system I, of order 2n to the cycli-
cally augmented form £.,(5) of the same order if it is reachable
and if tl;c reachability matrices R(A?; [Buo, A« Byy]) and

R(45;

[B.1, AcBw)), both have rank at most equal to n.

Thcorem 8: The realization of [Ho(s), H1(z)] can always be
sugmented so that the extended system satisfies the conditions
of theorem 4.

Remarks:

1. The minimal adiabatic realisations completely specify the
/0 bebavior of the alternating system, and may therelors
lead to new canonical representations for such systams.

2. Other identification methods for periodic systems exist.
One can “stagger” the impulse responses, by looking at
every N-th sample, for which the syatem looks like a time
invariant one. However, the solution for the individual real-
isations in (T, ...,Ex) require difficult nonlinear equation
solvers. Furthermors since the dats samples with such »
scheme are not "convoluted®, a large number of data needs
to be collected (roughly 2nN) before the system starts to
unfold. The scheme presented here already presents a lot of
iaformation about the system after 2n steps, and is there-
fore more “holographic”.

7. Examples
Exungle 1. Let hjq .o = €,3,c8, o cal,..., and Ajy = b,0b,
ab,cad,a?h,.... The adiabatic systema are relhnd by

[ o) [e] e oh e [23]-[5] 00 o)

I o and b are not both sero and ¢* is different from g, then &
inimal realization of the transfermatrix [Ho(s), H1(s)] in ob-
servability cancnical form [5] is

(2] ) el

Since the order of this realization is even, we check first the rank
conditions on the test matrices

h.[‘ o .&l.[;:c

Hencs chosing T from span [~¢, 1] snd T} from span (-4, ¢] leads
to a transformation (after introducing suitable parameters)

atHEy

which in turn transforms to the above realisation to

- s=-e
t:’/t:] ’[h( ; ) _M(:_")] ,
[e/1ta = sl —1/l(a - ty]

0
[ —-aty/ty

Tha period-2 reaisation is now read out by inspecton. Sultably '

reparametrised, we find

(r.t,r/1), (a/r,b¢/r,c/t)

If in the above example we have ¢ = g, then the adiabatic
reslisations are (e,¢,1) and (e, d,1). This leads to & reachable
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realization (¢, [e,8],1), provided that ¢ and b are not both 0, of
the {Bo(s), H1(2)]. As its order is odd, sugmentation is required.
The sugmented system is

e
The test matrices are

B‘° [z; d+,n]’3" [q T + y1y

For 53 = 0,21 =  and y = —c for instance, the rank of both test
matrices is 1. Taking then T} = ¢,[0,1], and T3 = t3{~x,¢|, the
cyclically augmented realisation

[ o e ] [ e _,‘:,,,] e/ Gets), =1/(zt)]
results, from which the (reparametrised) period-2 system (r,t,r/t),
(S/r,8¢/r,c/t) follows.

Example 2. Let Aj0,,, =2,2,1+4a,1+4a,1+a%1+a%1+4%,

-.and Bjy g = l+b 14+q9b,1+ad,1+a%,1+a%,1+dd,..
Tbo adiabatic systems have realizations

[’§ é 3”12‘][1 0 0] aad

[ 228][ e

Extending with a first order no-observable state, the system

0 1 00 ) 1+b

0o 01 0 2 1+aeb

e 1 0||l1+e 1+a [1000]
L, 23 23 ¥ 5 ;)

realizes the augmented adiabatic system [Ho(s), H1(z)]. It canbe
checked that the choice z; = g3 =23=0, y= -1, s =1, =
~1 gives a system for which the matrices Ry and R,; bave rank
2 (if a differs from 1). The leR pullspace of R,; is spanned by
[a,0,~1,a - 1} and [0, 1, -1,0], while the lelt nullspace of Ry is
spanned by [1,-1,0,0] and {,0,~1,1 = a]. The special choice

for T:
1 0 1 e-1
0 -2 2 1 1
e 0 -1 1-a}2a-1)
-2 2 0

yields then an equivalent cyclically sugmented realizaton, from
which the period-2 system can be identified by inspection as:

BEIH R IR
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ABSTRACT

Periodic discrete time systems are analyzed. In
particular, we investigate the Invariants, Parameteri-
zations, Canonical Forms, and Realization from input/

output dats for such systems., It was found that the
clagsical realization theory for time invariant systems
carries over very nicely to such systems, A novel
definition for an Operational Transfer Function 1s
given, which is useful in studying reductions, reali-
zations, and interconnections of sich systems.

1. INTRODUCTION

This paper deals with periodic discrete time systems of
period N, To fix the 1deas, a state space realization
of such systems is of the form

Fiel -

Aot ™k * Boti Yk

e " Cht%k @
p(k) = k mod N

The N-tuple {IO'Il""”z

(Ax’Bx’cx) will

systems arise,

N—l} where L. 1s the
refer to such a realization. These
for 1instance, by discretization of
periodically, mnonuniformly sampled continuous time
svstems, and wmore general periodically switched
systems. In order to simplify the .deas, we shall
sometimes look at the special case of alternating
(1.e. per1od two) single input-single output discrete
time system. The main ideas for the general case are
not different, but only more complex in notation.

triple

While these systems are in many ways more complex than
ordinary time-invariant systems, they have still much
more structure than general time-varying discrete time
systems analyzed by Kamen [3], or even the multi-mode
systems described by Stanford, et al. (2], and Helamke
{1], and one can develop a parameterization theory for
these systems which is in close analogy to the known

geometric theory for stationary systems (Hazewinkel
[4]).
In particular, the input~output behavior of such

systems 1s left invariant by the transformation group
GL (R) x ... x GL,(R) (N copies), and the orbit space
of the conzrolllg1e systems is a manifold which can be
decomposed 1nto generalized Kronecker cells which form
8 cellular patch complex, The canonical forms act as
local coordinate systems.

Our next main result involves the reslization of such a
system from the knowledge of the impulse response
sequences {hx j;i>j,j-0,l}.

3

2, 1/0 EQUIVALENT TIME-INVARIANT REPRESERTATIONS
FOR PERIOD-N SYSTEMS

Some preliminary definitions
given in this section. Also, the observability, reach-
ability, and stability properties will be discussed.
The properties and representations are the key to the
realization given in Section 4. We shall discuss the
general case for N-periodic systems in this section.

and notations will be

30332-0250

Given the N-periodic syatem {Io I ""IN- }, let the
response of the system to a pulse occ 'Tring at instant
j<N be the sequence {hA .31>j} . The system response is

readily seen to be (whérd [k] indicates k mod N)

k

. N
1,]

St ti-n =) A e By P

=0 elge (1)
Define the "Hankel" matrices for this periodic system
as the matrices H, , whose (a,b)-element 1s h,

This matrix does not have the same (blocl§ ﬂankel
structure as for time-invariant systems, However, it

st1ll allows a factorization in an observability and a

reachability wmatrix (as defined in the time-varying
case).

l-lj’1 = 0j+1Rj (2)
e.g. the a-th block entry in °j*1 and the b~th block of

R; are, respectively

J
. . . cedd B, . 3)
Rily = Ati1A5m11e# (5e2-012 (40170 ¢
- . . 4
[Oj¢1la c[j+a]‘[j‘a-1] A[J’l] (&)
For fixed i in {0,...,8}, the derived sequence
{h ;k>0} is also the response to & unit pulse of
the fgﬁ ovxng augmented time-invariant system of
order nN,
}0 O.... AO
Ay O....
A, " 0 A20 0
0 0""AN~1 0:
Cou ™ [c1 Cpene c&
with  read-in matrix [0,...0,B!,0,...0]' where the
nonzero block B. occurs in the (jd1)=th block position.
Such a time-ifivariant representation of the pulse
response  sequence {H. .;i>j} will be called an

Adiabatic representaticoAT The corresponding Adiabatic

Hankel wmatrices H . with (a,b)-element h. , will

+4+b-1,
have the true Hamkel structure, The “su scrxﬁk "ea"
refers to "cyclically augmented." The above represen-

tation is, in genersl, not minimal. A minimal realiza-

cxon of the Adiabatic Hankel matrix h) will be denoted

by (A BJ C ).

In order to treat all h. .'s at once, an equivalent
composite system (the Cyclically Augmented System) of
Nn states, Nm input:, and p outputs, is defined as the

realization (A .,B ) where . A and Cca are as 1n
(2), and defining a B -mltrxx as
Bo 0 .... 0
B - 0 'l...‘ 0 (6)
ca
0 o Lo




Letting H.(z) denote the Z-transform of the shifted
sequence fhk#' .;k>0], then the transformation of the
cyclically augﬁgnted system is simply

H (2) = {By(2) B (@), 0oy (2)] N

The H.(z) are the transfer matrices of the Adiabatic
systeds, and it follows from the previous discussion
that they are vrealized 1in a nonminimal way by
(A,.(0,...,0,8(,0,...,0]",C, }, the nonzero element in
the B-matrix oclurring in the {j+1)st block position.

Remarks.

1. Dually, we can also work with an equivalent
(nN,m,Np) system, thus treating the periodic
system as an equivalent stationary Np-output and
m-1nput system.

2. Classical realization theory for wmultivariable
time-invariant systems enables wus to find a
minimal realization (F,G,H) for the above Hankel
watrix. This mintmal realization 1s then the key
to the rest of our development. In particular,
since the equivalent stationary system captures
all of the input-output information of the
periodic one, s0 will its minimal realization
(F,G,H). A parameterization for the periodic
system follows then directly from the parameter-
i1zation ¢f the multivariable system (F,G,H). At
once we see that even a scalar periodic system
leads to multivariable equivalent systems. The
restriction to scalar systems wmentioned at the
onset is thus not restrictive, but permits simpler
notation and examples,

We 1ndicate some particular results which will be
useful in th2 realization problem:

Theorem !. The minimal realizations (Ai’Bx'Cx) of the

Adi1abatic Hanke! matrices H‘ have the property that

N
de:(zI-Al) divides (z I-AOAI"'AN-l)'
Proof (for N=2), The Hankel matrix H, is obtained from
the pulse response {h1 0}' Its Z-transform equals

2 -1 2 -1
= ( - -
Ho(z) Coiz'l AIAOJ ABy + Cl(z 1 AOAl) 2B,
.2 2 2
= [No\z )*le(z )] /det(z I-AOAI)
for some polynomial matrices N, and Nl’ Clearly then

the minimal realizations of Ho and Hl have the above
stated property. [

In fact, 1t 1s easy to show that the realizations
- -

of Eo lng Hl msut be very closely related. Indeed, by
writing H1 in the form
2 -1
. 2°1-A 0 1 A
A= 1608 7 2 B
0 z I-AIAO- Lsz
=1 7.0
z I-AlAO 0 zl
= [C4iC)] 2 | B,
L 0 z I-AOAl |AOJ
The first factors on the left also appear 1in che
expansion of HO
. 221'-AIA0 o |7 A
B, = [ChC,) B,

Hence, if we define the following transfer matrix:

P2 Te1’
- lz I-AIAO 0 | A zl
Hyy = 1€y 2
I -
L 0 200 § AOAI 2l on
] + - I‘I‘
then HO'HOl[Bo,O] and Hl HOIIO'BI'
This observation leads directly to the following
theorem:

Theorem 2. There_exists an observable pair (:L?l_aﬂg
matrices B. and B, such that (A,BO,EU, and (A'BI'C)
realize, respective&y. the Adiabatic transfer matrices

H, and H,.

0 1
Proof. Llet (A,B,C) be a winimal (observable 1s suffi-
cient) realization for Hops then EO;E[Bé,O]', and
31-3[0,311'. ]

The importance of this theorem lies 1in 1its use to find
the realizations for an alternating system [6]. Given
the pulse response sequences {h 7 and {h }, we can
use the realizations of eithe?Y sequence. By the
theorem, these realizations can be extended by addition
of uncontrollable states if necessary, to observable
realizations with the same A and C matrix.

3. REACHABILITY, OBSERVABILITY, AND STABILITY
Definitioas:

L The N=-periodic system {ZO,II,...,E -l} 18 said to
be uniformly p-reachable (re.ch.bfL 1n p steps),
1ff every state can be reached in p steps,
independently of the starting event (= 1initial
time and 1nitial state). The system 1s said to be
uniformly reachable, 1ff there exists a p>0, such
that 1t 1s uniformly p~reachable.

® The system is said to be uniformly observable
in p steps iff the initial state x. can be
uniquely determined from p conuecu:;vg outputs
YireeoaYo, },lndependently of the starting
tide j. J*fé system is said to be uniformly
observable iff it is p-observable tor some p.

Theorem 3. The period-N system {I_,...,I _ } oas
uniformly reachable 1iff the reachability matrices (3)
have full rank for all j. The system is uniformly
observable iff the observability watrices (4) have full
rank for all j.

The proof is easily established by & standard argument
[S). Since the Adiabatic systems of, at most, order nN
provide an underlying time-invariant structure in the
problem, at most nN steps, need to be considered for
checking wuniform reachability and observab:ility, by
virtue of the Cayley-Hamilton Theorem. Some direct
corollaries of the theorem are:

(1) The Cyclicially Augmented System
(A.g+BegsCcq) 18 reachable 1ff the period-N
realization 21,22,...,£N} 18 uniformly

reachable.

(2) {£.,0,,....2.} is uniformly observable
(rgacgable) Qs {£.,0,,...,E, ] 1s uniformly
observable (relchaele}, vhengzlthe invariance
of wuniform observability and reachabilaty
under a cyclic shaft.




(3) Using the backward propagation, we can write
the output at time 1 in terms of the previous
inputs, i.e, we look at {h. .} for fixed 1,
and define the equivae t stationary
systems with the above A matrix and
C-[O,...,O,CL.O,...,OJ, the nonzero block
occurring 1n the 1~th block position,
and B'B(Bé,B‘,...,BN_l')'. We then have the

"duality” property:

{zl""'xN'l'

iff

d d
{ZN’:N‘I'."’

IN} is uniformly observable

Ii} 1s uniformly reachable,

where the "dual" system is .btained by time
reversal of the sequence of the duals I of
the realizations I ., where (1v,Bx,C1) 1s the
triple (A?,C?,B').1 We are thus led to the
definitiod: ' !

dual d d d}

pl YL TR
Finally, we remark that 1f all Ax are nonsingular, as
for 1nstance 1in the important case of the discretiza-
tion of a continuous system, the criterion of Theorem 1
can be simplified by virtue of the following:

{zl,tz,...,:o} (&)

Lemma: 1f the A: are nonsingular for all j, then the
full rankness of” one of the reachability matrices Ry
(observability matrices O,) implies the full rankness
of all others, and hence reachability (observability).

As an exsmple, a siso alternating system {t .21} will
be wuniformly reachable 1ff the stationary systems

(AI:A '[bl'A ,b.]) and (Ao,Al.lbo,Ao,bl] are
reachagle. f the systew 1s uniformly reachable, no
more than 2n steps are required to reach any desired
endstate. If the product | 18 nonsingular, then
(A 'AO’(bl’A ,b 1) and (AO’Al'(bO'A ,bll] are either
both "reachable or both no-.eachgkle. By applying
inputs before 0, one gets the reachsbility relation at
time O:

X, = Rl[uo,u_l,...]'

where Rl-{bl‘AlbO’AlAObl""] 1s the time-varying
reachability wmatrix [37]. Observation of the output
sequence after time 0, with no input applied, leads
then to the observability relation:

lyo.yl.yz.---l' = 0y%,
where O '(c'.Aéc;,AéAicé,...]' is the time-varying
observ191119y maLT1iX, Similarly, we construct the
reachsbility and observability matrices, R, and 0,,
relating to the reference time 1. The products 0 A
and O R, are then the alternating (period-2) Han ei
matrices defined 1in (2),

We also have the following important stability theorem:

Theorem 4. The N-period systeec (0) is stable if the
eigenvalues of the product AoAl...AN-l have wmodulua
less than 1,

Proof. The convergence properties of the periodic
systems are determined by the convergence properties of
the equivalent time~invariant systen (Ac.,Bc.,Cc.).
The latter 1is coupletﬁiy determined ty the character~
istic polynowial det(: I-A1A2A3...AN)-0. L

The problem with this approach is that the resulting
tiwe-invariant system has order Nn if n is the order of
the individual realizations I .. The original periodic
system is only of n-rh order, so that a “hidden modes"
phenomenon occurs.

4. CARONICAL PORM, PARAMETERIZATION
ARD TOPOLOGICAL STRUCTURE

The first object in this study is to find the transfor-
mations on the realizations that leave the input~output
behavior (i.e. all Adigbatic transfer matrices and the
periodic system "Hankel" matrices (2)) invariant.

Let {20,21,...,£N_l} be & realization of an N~per18d
system, Denote ‘an element of cthe group Gl (R)7,

denoted by GlN for short, by (Pg,P;,...,Py ). The

N-1
group action is defined by

CITRITN ML {(AO,BO,CO)....,(N_I.BN_I,CN_I)} —>

(9)

-1 -1 -1 -1 -1 4
{(P1AGPG v P B CoPy Jueen s (PoAy Pyl BBy 1o Py

The states transform as
*Nk —_— POXNk
kel 0 Pi¥wkei

The following property 1s readily shown:

i=1,...,N"1] (10)

Theorem 5. Egquivalence of State Space Representations.
The product group Gl _ {R)" action on the set of period-¥
systems leaves the I?O properties 1nvariant.

Once the symmetry group (i.e. the group whose acztion
leaves the I/0 behavior invariant) is established, we
can look at the question of canonical forms: Any
property of the original system cen be described as a
map from the set of systems I, toc some suitable ser S.
After 1introducing canonical forms, the study of the
original funcrtion f is then replaced by the study of

some "simpler" function f:C —> S, such that f=f o %,
where ® 1s the canonical projection 2:I —> C on the
set of canonical forms.

For notational simplicity, the rest of this section
will be restricted to aslternating systems. The above
development (N=2) should give enough 1nsight to realize
that the general principles remain the same. Canonical
forms for the uniformly reachable systems are obtained
by the usual Rronecker selection procedure, i.e. among
the 2n colum:s cf RO' select n ]linear independent ones,
vhich form a basis {B_| for the sctate space. In
particular, & unique "gice" selection may be chosen
according to the Young or 'crate" diagram. Similarly,
let {B } be another basis, chosen by & nice selection
among khe columns of Rl‘ Now express the system with
respect to the basis which is alternating between {B }
and {8}, e.g. Ay it represented by the new matrix
whose j-th column is the representation in terms of the
basis {8 } of A operating on the i-th basis vector
from the other basis {Bo .

The effect is that the new representation is of the
form bg=by=[1,0,...,0]". (By assumption of rveach-
ability, neither by nor b, are gero.) If Vx(k) denotes
the position of the k-th basis vector from R,, then we
refer to the sequences v -{v (1), ...,v (n)} as & multa-
index. The k-th column of the new A matrices are

r T
Aok * Ro®vi(k)el

r r

Are T Ri®vo(k)el
However straightforward the previous extension of the
known scheme may be, a particular nice form is obtained
as follows if A is nonsingular., Search the columns of
Ry in their natural order, i.e. from left to right, and




reordered in chains, as in the usual "scheme II" search
[5]. Now observe that 1f A, is nonsingular, then the
result of {) operating on the above basis is also a
basis, and in fact, each of these new basis vectors
will be a column 1n Ry, except perhaps for the last new
basis vector. In that case, it may be substituted for
b, as new last basis vector. Note that this all corre-
sponds to & scheme II search in R), but 5TARTING AT
A)bg. It follows that, unless there was a full length
(*n} chain {Ab,,...,(AA;)" A b,} in Ry (which only
01 0 L 01 0

happens 1f bo 18 zero), the operator Al 1s represented
by I. The b; vector 1s full in general. The pair
(Ag,bg) has & canonical controllabilaty form [5)
representation. In the latter special case, it follows
that Ay is represented by a cyclically down shifted
identity matrix, and A; by a cyclically down shifted
right companion (controllability canonical form)
matrix. The new b, (obviously) remains zero, and the
new b; 1s a full wvector. As the ) and 3 have no
particular structure, there are 4n free parameters 1in
this canonical form. By enalogy to the stationary
realizations, we shall refer to this form as the
controllability canonical form,

Note that because the search extends over 2n columns,
the new A patrices will, in general, not be 1in the
usual companion form themselves, unless the system 1is
uniformly reachable in n steps, but then this 1s also
the case with the time-invariant multivariable systems.
In fact, 1t 1s exactly because of such a reduction from
the time-varying to the multivariable time-invariant
case that all the topological properties of these
systems are expected to carry over. In particular, for
multivariable systems, we have:

Theorem 6. The orbit space of the reachable systems is
an analytic manifold, which can be decomposed into
generalized Kronecker cells which form a cellular patch
complex. The state space canonical forms act as local
coordinates.

The number of canonical forms that is required to cover
the space of all reachable alternating systems is also
equal to the number of pairs of nice multi-indices that
can be chosen.

5. OPERATIONAL TRANSPER FULCTION

The essenti1al 1ngredient 1s the introduction of a
sampling operator, tN, taking sequences into sequences,
defined via

rolo, o120} = {y, ;5 iv0}

=u

4" Nk
Yier = © for i€ {l,...,N-1}

2 i . . .
Clearly, # =n . so that 7 iz a projection operator,

Letting Urtz)N denote the usual 2Z~transform of the
sequence u(z), then v, induces an operator 1in the
Z-domain which we shall denote, with a slight abuse, by
the same notation ®_. Note that then

N
LI for i ¢ {1,...,N-1}

. Nk ifi=o0

The space of formal power series in z'l can then be
decomposed into N orthogonal subspaces, each of which
induces in turn snother prujection operator. The set
of subspaces and the set of projection operators are
Thus, define l:l by z-‘lnzl
for i ¢ {1,...,N-1}]. It follows at once that these
operators asre all generated by 1z and ‘N' clearly

N

isomorphic structures.

though, the operator algebra will be a noncommutative
one, The union of all these subspaces 1s the whole
space, so that we have the relator

- -2 - -
1l = 'N +z l!Nz + z INz AT A 1 N'XWNZN !
or, equivalently
L zN-I’N + zN'zaNz ‘... zrﬂzN-z - nNzN-l .

Thus the above can be formalized as follows: Period-N
systems of order n can be represented by an n~th order
realization (A(7 ),B(» ),C(n )), whose coefficients are
in the multivariable polynomial quotient ring
(i) . . .
R[* saef{l, o W)/ (D) (Y ()
N (”N PN’ N 61j)

The periodic state space realization equations (0) are
then transformed to

w;1¢l)x - Aiwél)x ’iBN"(i)u for 1 # N-1
. . -1) (N-1)

N N-1"N * By-t"y U
(). L. ()

™ Y Ci"n X

Upon Z-transforming, we find

zﬂéi*l)x(z) - Aiw;i)x(z) - Biwéi)U(z) for 1 # N-)
zn;O)x(z) - znxo - AN_I';N_I)X(‘) * BN-I";N—I)U(Z)
,;i)y(,) - c‘aé‘)x(z)

Note the appearance of the initial condition (x,) term.
Adding the left hand sides, taking account of the above
relation between the projection operator, yields

N (n )
zX(z) - 2 x) * A(IN veesWy Jx(2)
. B(wél),...,w§N))U(z)
Y(z) = c(:él),...,né"))x(z)

Hence, we get, assuming zero 1initial conditions, and

substicuting 1(1) by the combination z-llﬂz‘, the
Operational Transfer Function (OTF)

LICR IS IENTCRIS P SRS b TR

where now very simply:

-1

Alz,my) = Agmy Az ez v o A " NN

B(z,wN) =BTy t Bz mer+ ... B

C(z,lN) - +C.z

Co"™n * C12"w?
In order .0 illustrate the ideas for period-2 systems
(N=2), we have: zx+z(l-%)=z. The equation xju,)"

* oo Operonel"NAN-1

transformed to z(l-u)x(z)'AowX(z)*

equation

onzk#Bouk 1s then
Ble(:).

transforms to

Similarly, the complementary

zix(z)-Al(l-l)x(:)*ll(l-')u(z).

Addition yields the form X(z)'(zI-A(l))—XB(I)U(z).

where A(r)=A w+A (1-%). Using the noncommutative
relation, this }ornllicn is very helpful in deriving

all sorts of results and transfer function operations.




For period-2 systems, some oOf the ideas on Operastional
Transfer Matrix Reductions were explored. For
instance, connections (parallel, series, and feedback)
can be performed with the same formal rules as for
stationary systems, as long as the noncommutativity is
taken into account during the reduction.

We ahzl! here also explore the possibility of connect~
ing systems of DIFFERENT periodicity. So one system
way have the OTF Hl(z 'N) and aenother G(z,n The
series connection 'is then simply G(z nH,h(z LI
Clearly, the combination involves now three generators‘
z, * , and ¥ .  So one needs to define the composite
transfer matrix as a rational division ring (Noncommu-
tative Field) extension of the polynomial ring with
three generators (z," ,7 ). Clearly additional commu~
tation rules (relators in the division ring) need to be
invoked. This work is, as of this writing, in progress
and will be reported in the final version of this
paper.,

Finally, we report that some interesting realization
related properties can be developed from within the OTF
framework as well. 1In particular (for N=2):

5.1 Reachsbility Problem via the OTF

With zero initial conditions, and input segquence {u }
the Z-transform of the state sequence is given by

X(2) = [21-a(m)] B)UC2)

= 2 1Az e

= T eame e a2 R B2 KL L Ju2)

-1

Noting that the commutation nof » and 2 involves an

involution, 1.e.

2"Am) = aq-m2 7t

we get the series expansion

2X(z) = [B(n)+a(m)B(I-m)z  ea(m)A1-n)B(m)+. .. JU(2)

= [B(x),A(®)B(lx),A(m)A(1-0)B(1),...] "U(2)
2 M)
-2
z “U(z)

= R(x)u(z)

The operator reachability matrix decomposes into two
parts:

R(¥) = xR, + (l-l)R1

0

where, 1n terms of the system components:
.

RO = [B Aino,AlA B »A AOA1 0....]

L IBO,AOBI rAgA BosAgA AR .. .l

As the operators v and l-f select complimentary parts
of the vector U(z), we find for the condition of reach-
ability that both Ry and R; should have full rank. We
shall say that then the operational reachability matrix
R(x) has full rank, so that the ususl criterion for
reachability is retrieved.

-3

For instance, upon identifying the coefficients of z °,

we obtain

®o " AhoRiBoto * A AQR 1Y) * A Bguy * Bluy

5.2 The Observability Problem via the OTF

Here, the inputs are zero, and & nonzero initia! condi-
tion Xq is assumed. The system output is given 1n the
transform domain by

Y(z) = C(W)[zI-A(ﬂ)]-lxo

e[ 1-2"am) e s,

-1

ce 1+ am)+ (27 an e, ) s

0

0* c(w)A<1-«)z‘2xo ‘...

= O(ﬂ)xo(z)

C(!)z-lx

where 0(n)=0qv+0, (1-7). As for the reachability
problem, the matrix O(r) is said to have full rank 1f

both 0, and 0, have full rank. The condition for
observability follows them as from the full rankness
of 0o(n).

6. REALIZATION

In this section we show how the above results can lead
to & vrelatively simple realization algorithm for
periodic systems, We shall assume that the order n of
the minimal N-period system is known. There is then an
underlying uniformly reachable system {f_, Iy 1} of
order n, The realization is given 18 4 steps

Step 1. Let the ulse responses {h ;i >l},...,
i -131>N] be collected. with” this daca,
:he’“dxaba:xc Hankel matrices H;, j=0,...,N-l
are formed. There are now "two possible
routes: realize each Adishbatic system
separately, or realize the composite system

with transfer matrix [Ho(z)....,H N- (z2)).

Obtain a wminimal realization (A,

ceeyB -l] c ) of the system w?&h cbmposike
trans?ér Batrix [H (z),..., (t)), where
Hx(z) is the transfer matrix of ‘the Adiabatic
systen (Ai,Bi,C‘).

Step 2.

There are two ways in which this can be
obtained, The first is to reduce the compo-
site transfer matrix, and obtain s minimal
realization of it, by standard wmultivariable
techniques |[5]. The second method consists
in first obtaining minimal realizations
(A B ,Cl) of the Adiabatic systems. These
nxnlmll realizations wmay be of different
dimensions. However, by Theorem I, there
exists a maximal characteristic polynomial, of
order q say, in the sense that the character-
istic polynomials of the other realizations
divide it, and each nomminimal Adiabatic
reslization can be extended by adding a
nonreachabie, but observable subsystem so that
all extended realizations of the Adiabatic
subsystems have the same order (=q), and the
same A and C wmatrix, The composite realiza-
tion (A ,[B 00 rosBg nop]iCg) 18 then  che
desired™ forw "and i1shinimal” since (A,,C ) 18
observable, and at least one of the B , forms
together with A a reachable pair. e

Extend the realization of order q, obtained in
Step 2, to one whose order is a wmultiple of N
by adding a nonobservable but reachable
lublysten. Indeed, since the minimal system

N LINPYPRIN B ) CIJ and the cyclically
lugmenPég sy-teﬁ B

Step 3.

A carl.y) realize the




Step &.

same transfer matrix, and since the cyclically
augmented system 1is uniformly reachable by
sssumption, the Iltter oust be an sugmentation
(Ag+BesCe) of T I ) by a
nonobservuble but reaéﬁé%le aubs&stem St order

Nn~q. This implies the existence of matrices
X,Y,20s-++,2y-) 80 that
- ;
l‘, ; ,IB'O'....B""‘IE [c o]
AX Y‘ ZO""'ZN-I i ]

is similar to the cyclically augmented system.
This augmentation must not impair the reach-
ability of the realization, The necessary
reachability of the subsystem implies thnt
none of the rows of the matrix [X,Z ....,ZN_

can be zero. This follovs eas11y gy

contradiction. If [X,2 0r e ] had a zero
row, then the realzzltlon c0ulJ‘be partitioned
as:

o ~' r -
.Am BmO""'Bn,N-l
XX Yl ,ZO""'ZN-I
0 0 Y 0see.,0

2

-

which has the unreachable subsystem [YZ,O.Cm].

The X,Y, and Z are chosen so that the
reachability matrices

R(A:;[Beo,A Bel""’A:-lBe,N-l])'
R(A:;[Bel,AeBez,....Af-lbe'o]),...,
R(A:;[Be,N-l'AeBeO’""A:-lbe,N-Z])

all have rank lgss than n.

Determine the similarity transformation that
transforms the extended system (A seevs
B‘ q—'] c ) to a cyclic form. For notatxonll
cohvenxence, we shall again discuss the latter
for alternating (i.e. period-2) systems. The

ideas for period-N systems are similar.

The reachability wmatrix for the cyclically
augmented matrix has the structure

e . By 0, O, AgBs AABo, O }
ca o, B, ABy, O, 0, AIAOBI}

whereas R, has entries in all positions in

general. The desired gimilarity maps R, into
TR."R., Partitioning T into {T!,T)]', it is
seen that the zero locations in ‘the above

equation leads to the identities:

T)R(A,,: (8, ,,4,8,,1) = 0

TZR(Aez, AB 1) =0

e0’' e el

vhere the reachability matrices extend to n
(block) columns only, and are thus square for
sing'2 input periodic systems. On the condi-
tion thst the test matrices

1),

R,O-R(A::ln'o.

and

e el

RCl.R(A:;[’el'AQBQOJ)'

have rank less than n, it is possible to find
n linearly independent row vectors in the left
nullspaces of the above reachability matrices.
Since the overall realizations are both
reachable, there exists T, and T, such that
T [T T ]' is nonsingular with T, and T,
cntxt*ylng the above conditions.

We summarize then with

An 1invertible transformation T can always
bringing the extended system (F,g) of order
2n to the cyclically augmented form L (5) of the same
order 1f 1t 1is reachable and 1if reachability
matrices F(F 2,[; ,Fg 1) and F(Fz,[gl.Fgol) both have
rank at most equal to n.

Theorem 7.
be found,

Theorem 8, The reslization of [H_(z),H (z)] can always
be augmented so that the excende? cyu:em satisfies the
conditions of Theorem 4.

Some simple illustrative examples are given in [6].

Remarks .

1. The wminimal Adiabatic realizations completely
specify the I/0 behavior of the alternating
system, and may therefore lead to new canonical

representations for such systems.

2. Other identification methods for periodic systems
exist. One can "stagger’ the impulse responses,
by looking at every N-th sample for which the
system looks like a time-invariant one. However,
the solution for the individual realizations in
(z ,....IN) require difficult nonlinear equation
solvers. Furthermore, since the data samples with
such & scheme &re not “coavoluted," & large number
of data needs to be collected (roughly 2nN) before
the system starts to unfold. The scheme presented
here already presents a lot of informstion about
the system after 2n steps, and is therefore more
"holographic."
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