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PERFORMANCE OF CELLULAR FREQUENCY-HOPPED
SPREAD-SPECTRUM RADIO NETWORKS

1. INTRODUCTION

In many problems of practical interest in communication networks it is advantageous

to combine the use of spread-spectrum signaling techniques with networking techniques

in order to provide enhanced multi-user capabilities ai-d a higher degree of resistance to

interference, whether hostile or benign.

However, many of the spread-spectrum network models proposed in the past have

lacked precision in their descriptions of the effects of spread-spectrum techniques on net-

work performance. The general practice in papers like [1] and [3] has been to model the

effects of spread-spectrum techniques via the uF, of some threshold (a number of users

beyond which communication is not possible) or via some processing gain. Unfortunately,

such approaches generally do not provide accurate models, and the results obtained may be

optimistic or pessimistic, depending upon assumptions made. In addition, these analyses

do not accurately account for data modulation and forward error-control coding.

In [1], a model was presented for a frequency-hopped (FH) spread-spectrum multi-

ple access (SSMA) digital cellular telephone network and an expression was derived for

throughput. Notable features of that model were the characterization of user mobility

in terms of a two-eimensional Poisson process and the treatment of transmitter power

attenuation with distance. This model superceded that of [18].

In [2], the authors described and analyzed a digital ccllular mobil, n,,twork using some

of the techniques of [1]. While adding to the model the interference due to users in other

cf'-:- h,_ authcrs lt.ft out the spatial Poisson model and did not account explicitly for

Manu:7.ipt annrov'd Ag:'., 3u, ow).
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power attentuation with distance. Spatial Poisson modeling was also used in [3], in which

the authors modeled spread-spectrum multihop networks. In [4], a more precise approach

was taken to the spread-spectrum multihop network problem, while using some similar

network features in the analysis.

In this paper, the modeling techniques described above are combined with a precise

characterization of the effects of frequency hopping for the purpose of modeling frequency-

hopped digital cellular networks. This analysis also incorporates different data modulation

types (coherent and noncoherent) and forward error-control coding. A!Fo, unlike several

of the previous analyses, some of the techniques presented here allow for the computation

of bit/symbol or packet error probability, as desired. In addition to modeling a cell of a

FH/SSMA cellular mobile radio network, this also corresponds to a more accurate analysis

of communications in the presence of secondary multiple-access interference in that it

accounts for varying powers for different interferers according to their distances from the

receiver (compare, for example, to [11] and [19]).

An overview of the contents of this paper is as follows. In Section II, the network

model is presented. Section III contains analyses of the model for coherent and non-

coherent modulation/demodulation using approximation techniques. Section IV provides

an exact analysis for coherent systems using a characteristic function method. In Section

V, numerical results are presented and compared with previously derived results. Section

6 contains the concluding remarks.

2. NETWORK MODEL

The tictwork model used in this paper is similar to the one found in [1]. Users transmit

packets to other users via fixed relay (or "base") stations. As is the case with [1], we will
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focus on the user-to-station channel. Analysis of the station-to-user channel would then

proceed in a similar fashion

Let the number of users per unit area be Poisson distributed with parameter A. Also,

let M = (x, y) represent a position on the plane. Denote the origin by 0 = (0, 0); this will

be assumed, without loss of generality, to be the position of the fixed station.

Systems like this generally offer voice and data service. In the case of voice service, a

steady stream of information must be transmitted and delay can not be tolerated; however,

moderate error rates can be tolerated. In the case of data service, traffic is bursty and large

delays can be tolerated but small error rates are necessary. In this paper, it is assumed

that voice (telephone) service is predominant.

Transmitter-oriented assignment of hopping patterns is also assumed. Each mobile

has its own frequency-hopping pattern for transmission and reception; the base station

has a list of all of the patterns and can listen to several of them (or even all of them)

simultaneously. We restrict our attention to the case of mobile-to-base communication.

We consider the situation in which a mobile station has already established communication

with the base station at the center of the cell and now communicates in the presence of

secondary (or multiple-access) interference from other mobiles. It is assumed that only

the other terminals in the cell of interest may interfere, which reflects thc use of other

frequency bands in all adjacent cells, and that frequencies are only reused in cells distant

enough so that the effects are negligible.

Synchronization at the packet level is assumed feasible for all users. Thus, uncertainties

in the timing between different users are small relative to packet duration; however, since

they might not be small relative to the dwell time of the frequency hopper, the system is
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modeled as a general asynchronous frequency hopping system.

3. APPROXIMATIONS AND BOUNDS ON PACKET ERROR

PROBABILITY AND THROUGHPUT

Our approximation methods are developed below. These can be used for coherently

and noncoherently modulated systems with or without forward error-control coding.

3.1. Analysis Based on Gaussian Approximation Techniques

3.1.1. Noncoherent Signaling

We begin with noncoherent signaling. In this case, the system is assumed to utilize M-

ary frequency-shift keying (MFSK); binary FSK is a special case of MFSK, and therefore

the analysis holds for this, as well. Noncoherent demodulation is used at the receiver.

The signal transmitted by the k-th mobile user is of the form

Sk(t) = v'70'IT(t) cos {21r [f, + bk(t)A + fk(t)] t + Ok(t)} (1)

where P0 is the tran3mitted signal power and is assumed to be the same for all mobile

stations; bk(t) = {2 bnk)}, where b(k) E {1,2,. .. ,M} is the k-th sequence of M-ary infor-

mation symbols of duration T each; T1(t) is a pulse-shaping waveform; ok(t) is the sum of

phase shifts due to modulation and frequency hopping generated by the k-th transmitter;

f, is the carrier frequency; 2A is the spacing between any two consecutive tones out of

the M different tones; and fk(t) is the k-th hopping sequence.

In our analysis, we consider only the attenuation of signal power with distance. We

assume that the attenuation and the noise spectral density are constant over the hopping

bandwidth. In many practical systems attenuation varies over the hopping bandwidth.

It would be possible to include such frequency-dependent effects in our model; however,
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to do so would further complicate an already complex and computationally demanding

calculation. 1

Let P(M) denote the received power of a signal originating at the mobile station

located at the point M of the plane and received at the origin. We will assume that P(M)

is given by

P(M) Poro if OM ro (2)

Po0/I'- , if 10M > ro

where IOMI denotes the Euclidean distance between M and the origin 0, ro is some small

radius within which P(M) is assumed to be approximately constant, Po is the transmitted

power, and a is a constant that reflects the speed of attenuation. ro is necessary because,

as M is brought arbitrary close to 0, IOMI- approaches infinity. A particular signal

arriving at the receiver (and originating from Mk) has the form

rk(t) = V/§P(Mk)41(t) cos {2r [f, + bk(t)A + fk(t)] t + k(t) (3)

where V'TFPMk) represents the received signal amplitude and 0k( t ) is the total phase shift.

Since the system under consideration is a multiple-access one, the received signal has the

form

r(t) = r kl(t - T) + n(t) (4)
k

where each rk(t) is given by (3), 7 k is a random delay, and n(t) is zero-mean additive white

Gaussian noise (AWGN) with two-sided spectral density N0 /2.

'It would actually involve deriving the bit or packet error probability (accounting for both power

and frequency losses and other-user interference) conditioned on the system operating at a particular

hopping frequency and then integrating over the probability density function of the system visiting each

hopping frequency. Therefore, one additional integration would be necessary besides the integrations

already performed in our subsequent analysis.
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Fig. 1 shows the receiver for the ith signal in a binary FSK system: the M-ary receiver

is similar in form but with M branches. The ith signal is the signal of interest. r(t) is

dehopped and the dehopper output is given by

rd(t) = Z { [lfk(t - 7k),fi(t)] 'P(t - 7k)
k

x cos [27r [f, + bk(t - 7k)Aj + ck(t)]} + nd(t). (5)

Here fk(') and fi(') represent the kth and ith hopping sequences, respectively; nd(t) is a

zero-mean Gaussian random process with spectral density No/8; 6(u,v) = 1, if u t'.

and 0, otherwise; and kk(t) represents the total phase shift of the signal after dehopping.

The sufficient statistics are formed as shown in Fig. 1. Were it not for multiple-

access interference, the computation of the probability of error for the system described

above (a binary FSK system with noncoherent demodulation) would be straightforward,

as for example in [10]. The presence of other-user interference is due to the partial overlap

of the frequency-hopping patterns assigned to the different mobiles; this is termed sec-

ondary multiple-access interference. By contrast, the interference generated when a num-

ber of transmitters using the same hopping pattern attempt to access the same receiver is

termed primary interference. To incorporate the effects of secondary other-user interfer-

ence is difficult because it brings into the computation of the error probability features of

each transmitting signal (i.e., time delays, phase angles, and data streams) which have a

statistical nature and consequently a multi-dimensional integration needs to be performed

to evaluate the average of the error probability with respect to all these variables. This

difficulty can be overcome by means of conditioning the error probability on the potential

number of interfering user6 and the actual number of interfering users causing hits on the

desirable received signal, Recall that a hit occurs when fk(t - rk) = f,(t) (refer to [5] and
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[6]); if this equality is satisfied for the entire duration of a particular hop (dwell-time) of

the i-th user we say that user k causes a full hit during that hop, otherwise we say that the

k-th user causes a partial hit to the i-th user. To evaluate the conditional symbol-error

probability just described, we use the Gaussian approximation technique, as developed in

[51 and [6], where the Zc,m and Z,,m representing the outputs of the matched filters of

the in-phase and quadrature parts of branch m (rn takes values +1 and -1) of the BFSK

demodulator of Fig. I were approximated by zero-mean Gaussian random variables with

the same second-order moments. This Gaussiar approximation is one of the most popular

tools for computing the other-user interference in multi-user spread-spectrum systems (see

[5],[6], and [17]) and has satisfactory accuracy in most situations as the comparisons with

the exact expressions for the error probability in [6] and [17] attest to. Given this, the

symbol error probability can be derived (see [5) or [6)) and is given by

M-1 (M - 1 (_)-- mx 6P,= ((-I) exp [2m+l& (6)
' t = m + I 2 ( mn + I) & -'

in which &2 is the variance of Zc,, and Z.,m and is given by

r rEb 1 + 1~ U~la 7&2 = 2 9(lOM 1I)log 2 Mj g(A0f I) k#,

In (7), Eb = POT is the transmitted signal energy; Uk is the variance of the interference

with the ith signal due to the k-th signal; and we introduced the normalized received

signal power as g(IOM) = OAf I-', if lOM I > re, and r-', if JOMj < ro. which follow

from (2).

Regarding the effects of full and partial hits, their independent consideration may result

in a mathematically intractable expression, if we attempt to use (6) and (7) in subsequent

expressions. In order to circumvent this problem, we make the assumption that all hits
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are full hits. Note that this causes the result to be pessimistic, sincc we assume that the

interference caused by any hit is that of a full hit, while the probability of a hit is tile sum

of the probabilities of full and partial hits. Under this assumption (7) becomes

& = [2Lo (I0moJ)log 2m] + gU

in which cr is used to denote the variance of interference under the assumption that any

hit that occurs is a full hit (note that this is independent of which of the other signals

is interfering). Expressions for er can be found in [5], in which it is also shown that, for

random FH patterns, a2 =- mi,/M. For a rectangular shaping waveform IQ (t), mv, = 1/3;

for a sine shaping waveform, mv, = (15 + 7r 2 )/127r 2.

At this point we use a three-term exponential approximation to Pc,i, the symbol cor-

rectness Probability. An exponential approximation considerably facilitates the remainder

of this analysis; this is justified by the fact that terms which are exponential in the number

of interfering users can be efficiently averaged (can be actually put in closed form) with

respect to Poisson distributions on the number of potentially interfering users. One could

use an arbitrary number of terms in this exponential approximation but we found out

that the complexity of the necessary subsequent operations (for taking averages) would

be prohibitive if the number of terms were larger than three. Moreover, since very satis-

factory accuracy (curve-fitting) can be achieved with three terms, we used three terms in

our analysis. Such an approximation can be made using techniques like Prony's method

(see [8]), or curve-fitting. A least-squares curve fit was used to obtain the results shown

below; as a result, we have

"' I -
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3

L' Ce (9)

where we define x to be &2. In using curve-fitting for (9), we considered the range of z to

be the interval [0, 2]; this was chosen on the basis of the various parameters characterizing

the statistics of user population and the varying distances from the base station. If we

substitute for x in (9) and substitute (8) for &', we get

Pc, = C', exp - [2L-0 0A 1)og2MI + 0f, Z-(0Mkj), (10)

Let us now write (10) in the form

3

PCi= ZC,H(v,f)exp . (11)1Ok1

In (11), we have introduced the notation

H (v,) exp Lf, (2 9 M 109 2 M

and

26L(f) =-LUg(f)

in order to simplify this and subsequent expressions. Also, we have taken f = 10Aij, the

distance of the "terminal of interest."

Let us reiterate that the expression given in (11) represents the conditional probabil-

ity of symbol correctness, which is conditioned on f, the number of potential interferers

present, and on the number of hits that actually occur given the above number of potential

interferers. However, since our ultimate goal is to determine packet throughput, we require

a packet error correctness probability. This is evaluated in Section 3.1.3 below.

9



3.1.2. Coherent Signaling

The development of the probability expression that corresponds to (11) above for the

coherent case is similar to the one carried out above for the noncoherent case. In this

case, the system is assumed to utilize binary phase-shift keying (BPSK) with coherent

demodulation. The signal transmitted by the kth mobile station is of the form

Sk(t) = v2Pobk(t)4'(t) cos [27r [f, + fk(t)] t + Ok(t)] (12)

in which all quantities are as above, except that b(Ek)  {-1, +11 (we now have information

bits rather than M-ary symbols). From (12) we obtain the following expression for the

kth received symbol

rk(t) = 2P(Mk)bk(t)T1() cos t27r [f + fk(t)] t + fk(t)] . (13)

The received signal, given by (4), goes through the same dehopper and the dehopper

output is given by

rd(t) = - { P~' M) ~
6 [fk(t - Tk), f i(t) ] bk(t- rk)4(t - 7 )

cos [2irfr + Ok(t)]} + hd(t). (14)

This is fed into a coherent demodulator and the sufficient statistic for the reception of the

/th bit of the ith transmitted signal is given by

(1+1)T

Zj = J rd(t)4'(t) cos(27rfct)dt. (15)
IT

Assuming that the receiver is synchronized to the ith signal, Zi can be rewritten as

8 + z: P(Mk)0 ) T Ik, + ft

10



where Ik,j represents the normalized interference caused by the kth, signal to the reception

of the ith signal and fi is a zero-mean Gaussian random variable with variance NOT/16.

Refer to [1] for a detailed description of the receiver of a coherent hybrid direct-sequence

frequency-hopped system. We only need ceminate the direct-sequence part and set N = 1

for the number of chips per bit to obtain the coherent purely frequency-hopped system.

The decision process is concerned with determining whether the current bit is +1 or

-1. The test is, therefore, to determine whether Zi > 0 or Zi < 0. This allows some

further manipulation of Z,. 2; the modified test statistir after we divide bv PO, is of the

form

2/ = Vg(lOM )bi) + Z /g(lOMkl)Ik,, + ft (17)
k4i

where fi is a Gaussian random variable with variance NoI2Eb, where Eb = POT is

the transmitted bit energy. We utilize the Gaussian approximation technique, namely we

approximate 2i by a zero-mean Gaussian random variable with variance a2 , which denotes

the variance of Zi. This is the coherent analog to the Gaussian approximation found in

[5] and [6]. Given this approximation, the conditional symbol (bit) error probability is

1 E"\/9(l0A,[1
P = ' erfc I (18)

in which erfc(.) is the usual complementary error function. From our earlier expressions,

it can be shown that

z2 1 E[k0 +E g(1OMkI)0a, (19)

where 2 is the variance of Ik,i. If we oncc again assume that all hits that occur are full

hits, we find that

t,= + 6- + Z g(IOikj) (20)

11



where a is the variance of the interference terms under the assumption that any hit that

occurs is a full hit. It can be shown, using the results of [5], that a = rn,4,, where rn, is

as discussed above.

At this point we use a three-term exponential approximation to Pc,, to obtain

P,t = l-P,, = 1 - 1 erfc [x1/2]

3

= C~e x  (21)
V=1

where we define x to be 2oi% /g(IOMil). Again we use [0,2] as the range of x. If we

substitute for x in (21) and substitute (20) for a2, we get

P , exp ( [(10M ) +(0M ) g(IOMkl) • (22)

which is of the form of (11) with H(v, f) and bv(f) now given by

H(v,f) = exp [V(

and

27,m¢

This completes the development of the conditional coherent bit correctness probability for

the coherent system.

3.1.3. Packet Throughput

As mentioned earlier, in order to compute packet throughput we need a probability of

packet correctness or erro;. This is accomphshed by deriving first the conditional packet

error probability given the number of interfering users and f; and then taking ,Pxpectations

with respect to the distribution of interfering (causing hits) users, the distribution of

potential interfering users in the cell, and the distance f of the receiver under consideration

12



from the center of the cell. The first step is straightforward; we can obtain the desired

conditional probability expressions by taking the known error probability expressions fcr a

noncoherent FSK or a coherent BPSK system in AWGN from the literature (e.g. [9]) and

substitute for the variance of the other-user interference and the three-term exponential

approximation from the analysis described previously in this section. The second step is

demonstrated below for the cases of uncoded packets and RS(n,k)-coded (encoded with a

Reed-Solomon code of length n and rate k/n) packets; the development is the same for

other coding schemes.

3.1.3.1. Uncoded Systems

For a general uncoded packet of length L we have

=1 _ pL.
Pe,;,kt C

Since Pc(f, K) in (11) is dependent on f, on the number of potentia interferers, and on

the number of hits given K, we must take expectations over all of these. Thus,

Pepkt = 1- EEKEh{p(, K)}. (23)

The inner expectation in (23) requires some explanation. The probability of hav-

ing k hits, when there are in addition to the user i, K other users present, is given by

( K )P,(1
-Ph)K -k where Ph is the probability of a full hit. As discussed in [7], for

stationary Markov random hopping patterns Ph is given by

Ph = 1+ ), (24)

where q is the number of different frequencies and N, the number of symbols per hop.

As discussed in [7], for moderately large values of q, (24) either bounds or approximates

13



the hit probabilities for memoryless randem hopping patterns and Reed-Solomon periodic

hopping patterns. Thus, (24) is a good general expression for most purposes.

Suppose now that the summation in the exponent in (11) can be decomposed into

collections of interferers having equal g(IOMI). We would then have

n

g(IOMkI) = E kjgj, (25)
k~i j=l

where kj is the number of interferers with g(IOMI) = gj.

Let us consider some planar region A and a partition of A given by {Aj}'= 1 such

that for all mobile users located in Aj, g(JOMI) = gj. Let N(Aj) denote the number

of such mobile users. We now have a total number of users with a given attenuation and

a probability that, out of a given population of K potential interferers, there are k hits.

Then one may take Kj = N(Aj) to be the population in that probability expression.

From (11) we get by expanding the trinomial

(f K:()() [ )m [C2 H(2,~)m=0 i=O

X [C3H(3, )]L-m-i exp [[mb, (f) + i62 (f)

+(L - m - i)63 (f)] :g(IOMkI) (26)

Considering this, the discussion of Eh{}, and the fact that C(f) = CiH(i, f), we rewrite

(23)as

L m L

Pe,pkt = 1- E E n
m=o i=O m

xEEj<Eh {m()C( )cL-m-i(f)

x exp ([mb,(f) + i252(f) + (L - m - /)63()]

X F, 9j kj

XZ9 1 ) I

14



xEf 2 3CI~C-mIf

XEK I : 1 1 p -

Ij=1 k =o kj

x exp ([mbl (f) + i 2 (f) + (L - m - i)6 3 (f)]

xgj kj ))}

SM=O i=0 m i

xEf {01r( 2Cs(f)3-m-i(f)

xEg {f [Phe(mS(f)+i62(f)+(L m-i)63()9 ,

+1 - PhIK}}

=L" m L

L

xEK EK in [Ph exp ([mb 1(f) + i 2(f)
Ij=l

+(L - m - i)63(f)]gj) + 1 - PhI}}. (27)

EKO{. is taken by following a technique used in [1]. For any partition of the surface of

the cell A, say {A,}' 1 defined as described in the paragraph following (25), and constants

{ a,}7~, we have

E exp 1LN(A,)aj = exp [) S(Aj)(c '% - 1) (28)
L3=I .3=1

where S(Aj) denotes the area of A,. Because K. = N(A,), (27) and (28) can be combined

15



to yield

L m
Pepkt = 1 E-

m=0 = 0

xE9 {C(flCi(f)OL-m-i(f)

x exp [A =S(Aj) (Ph [exp(fm(f) + i 2 (f)

+(L - m - i)6(0)]9j)- 1])]}. (29)

We now consider the limit of the sum inside the exponential in (29) as the partition

{Aj)}L 1 becomes finer and finer; it approaches an integral over the surface A-standard

arguments for Riemann integration can be used here. This allows Pe,pkt to be written as

L m L
Pe,pkt = 1 - E Em=O i= 0 m )

x E, {Crn7( )s'( )O'-m-t(f)

x exp [,A (Ph [exp (lmb,(f) + i 2 (f)

+(L - m - i)06()] g(OMI))- 1]) d2M] } (30)

where fA(.)d 2M denotes the integral over the surface A. This completes the analysis

because EF{ f is simply an expectation over the entire area A under consideration.

3.1.3.2. Coded Systems

We now consider RS(n,k)-coded packets with error-only correction decoding. The

applicable error probability expression is given by

P =RS -- - - PX (31)
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where t = [n - k/2j is the error correction capability of the code. This can be also

expressed as

PeRS = M ( ( 1rP-+n. (32)

With respect to the required expectations, this can be treated exactly like the uncoded

packet error probability expression. Therefore, we obtain

t I "n-t+m i nn +m
7r,RS 1Z Z Z

t=om=o i=o j=o 0 m

x exp [A (Ph [exp([i)C(f) +() 2(f)

+(n- I + m - i - j)63(f)] g(OMI))

11d2](33)

It should be noted that in the case of coherent BPSK, the three-term exponential approx-

imation must approximate P7, rather than P,,, when considering Reed-Solomon codes.

The m noted here refers to the number of bits in BPSK per Reed-Solomon symbol; for

example, if RS(32,16) code is used, m = 5. It should also be noted that for the Reed-

Solomon coded systems the signal-to-noise ratio of the channel symbols is that of the

uncoded system multiplied by the code rate; this is valid under the assumption that the

data rate of the system remains fixed and the total bandwidth of the system expands by

the inverse of the code rate.

Once one has obtained an expression for packet error probability, the expected through-

put can be obtained by subtracting it from one and multiplying by the offt ,ed traffic load,
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which is given by Gtot = ArS(A), S(A) being the area of the region of concern. In the

cases presented here, a bandwidth expansion factor must also be introduced.

= Gtot(1 -P,)B. (34)

B, the bandwidth expansion factor, is given by

B= 1R, (35)
q

where q is the number of hop frequencies and the code rate R, is 1, for uncoded packets,

and k/n, for RS(n, k) coded packets.

3.2. Bounds

Error probabilities have been upper bounded giving lower bounds on system through-

put. These will be presented here for the purpose of comparison. The probability of a

symbol error at the receiver p,(K), when K users transmit, can be upper-bounded as

p,(K) _ 1 - (1 - Po)(1 _ Ph)K - 1  (36)

where P0 is the error probability for a single user system in the presence of AWGN with

or without fading, and Ph is the probability of a hit from a single other user; expressions

for Ph can be found in [7]. For random frequency-hopping patterns, we can use Ph =

(1 + log2 M/Nb) 1, where Nb denotes the number of bits per dwell time and q is the

number of frequencies.

Let us discuss now the calculation of throughput when the total number of users

(packets) transmitting in a slot (a packet slot, which is L symbols long in the uncoded

case) is K. Let s(K) and Pe(K) denote the average number of packets received successfully

and the average probability of failure (erroneous reception) of a typical packet, respectively,

when A" packets are transmitted. This gives us s(K) = K - Ai'P,(A).
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Let K be Poisson-distributed on an area A with average intensity A (packets per unit

area). Let 'e(G) and Pe(G) denote the averages of the quantities s(K) and Pe(K), defined

in the previous paragraph, with respect to the Poisson distribution p(K) = e-G (GK/K!),

whereE{K} = AA = G (the offered load). ThenTe(G) = 1-["9,(G)/G] = [E{KPe(K)}/G]

and the normalized throughput is given by r(G) = G/q 11 - P,(G)j.

We can actually show that T,(G) = E {P,(K + 1)}. Since the packet error probability

Pe(K) is, through the symbol error probability P8 (K), a function of K - 1 (the number of

interfering packets), "P(G) is a function of K and not of K - 1. This implies that in the

calculation of the throughput, instead of working with the total number of transmitted

packets, we can equivalently work with the number of interfering packets and treat that

as being Poisson-distributed with the same parameter G. This argument also justifies the

assumption that the number of interfering users is Poisson-distributed with parameter G.

We can now write

-(G) 1Te(C) = E{[1 -p.(/ + 1)]}L

< E{[(-Po)(1--ph)K]L}

= (1 - po)Le-[ - ( -Ph)L] (37)

where L is the number of M-ary symbols or bits transmitted in a packet. L = I can be

used to bound the bit error probability. The throughput can be then lower-bounded as

77(G) >_ G(1 - po)Le-G[1-(1-P)L]. (38)
q

If thb system employs error-control coding, we can follow the analysis in [11]. The

analysis will be shown for a Reed-Solomon (RS) errors-only correction scheme; other

schemes, such as RS with side information, have been analzyed similarly.
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The probability of a symbol error p,(K) is upper-bounded in a way similar to that

in (36), where Ph is the probability of a hit for an RS symbol, consisting of m, rn-ary

symbols; thus, we must use m log 2 M instead of log 2 M in the expression that provides

the probability of a hit. When the RS(n, k) code errors-only correction is employed and

one codeword per packet is transmitted, the probability of correct reception of a codeword

is given by

P (K) _ Z( [p,(K)]j [1 - p.(K)]T' -  (39)

where t = [n - k/2j is the error-correction capability of the code and P,(K) _< I -

(1- Po)K - 1. Finally, we can get an expression for the average probability of correct

packet reception T(G) that allows us to write the following expression for the normalized

throughput (per frequency slot) il(G)

G(G ~k 10 eGG Kt

77(G) 2! - (-J") [I -(1 P) (1 - Ph)K

K=O =

x [(1 - Po)r-(1- ph)] " - j

Gk n ( \ y(l~ _ p0)m,(n+s-j)e-G(i-(-P)'lj1 ('10)
qflZ ii

4. ACCURATE EVALUATION OF BIT ERROR PROBABILITY

FOR COHERENT MODULATION

If coherent modulation is employed, the resulting system can be analyzed by means of

a characteristic function method, as will be demonstrated below.

In this case, the system will be assumed to utilize binary phase-shift keying (BPSK)

with coherent demodulation. The signal transmitted by the kth mobile station is of the

form given in (12). We assume here that Rayleigh fading may or may not be present. We
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modify (13) to get

rk(t) = Fk v2P(AMk)bk(t)(t) cos[27r[f, + fM,(t)]t + k(t)] (41)

where Fk is a Rayleigh fading factor, if fading is assumed to be present and all other

quantities are as previously described.

The dehopper output rd(t) used in (15) is now given by

d(t) = Fkv P( )6[fk(t- k),f(t)Jbk(t- k)(t- 7k)
k2

x cos [2rfct + 0k(t) + ,'d(t (42)

We proceed until we again have a modified test statistic 2, of the form given in (17). Our

goal is to derive expressions for the probability of error and the expected throughput 77.

Since a coherent receiver is being used here, the characteristic function method. described

in [131 and simplified to the case where the signature sequences are identically 1. will be

used to derive the desired probability expression.

The computation of the error probability involves the characteristic function of the

noise fi, which, in our case, is 4,, (u) = exp (-u'2 /2 . No/2Eb,o), and the characteristic

function of the interference process, which is the middle term in (17). This will be derived

here for the synchronous case and for the asynchronous case, both with and without

Rayleigh fading.

4.1. Synchronous Systems

In the synchronous frequency-hopping case, we have 7k = 0 for all k. The kth signal

interferes with the i-th signal if and only if the two signals are exactly superinposed upon

each other; this suggests that user k interferes with user i, if there is a full hit when two

signals are sent in the same frequency "bin" at the same time. Thus, if q denotes the
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number of different frequency bins, the probability of a hit is 1/q.

A result used in [1] can now be adapted to give an expression for j(u), the character-

istic function of the interference process. The result used in [1] is that, if the interferonce

process can be written as I = Ek Xkh(Afk) for a random process {Xk} with pdf px'-)

and, if the number of users is Poisson distributed on the area A with parameter (mean

intensity) A, then

4,j(u) = exp[A ([I px(a)esh(M)dx] -) d2M ]  (43)

in which fA f(M) d2 _11 denotes a surface integral and A represents the area of the cell

(area of concern). This, however, is not the exact form that must be used here, since

the interference process in our problem has the form of the middle term of (17) and the

probability of hits must also be taken into account. As a result, the characteristic function

of the interference process takes the form

(u) = exp { A L [t(ug(IOM)) - 11 d M  (44)

where

1- p2r exp(iucosO)dO = Jo(u). (45)

In (45), the cosO term was obtained by considering (43) and (17), letting rk = 0 and

assuming uniformly distributed random phase processes (0 is uniform on the interval

[0,27r)); JO(.) is the Bessel function of the first kind and zeroth order.

If we consider our region of concern to be a disk of radius R, then the integral in

(44) can be easily computed. Let us denote by r the radial distance 1OMJ and con-

sider the annulus (r,r + dr). Then we can write that fA [J0 (u/g(OAM)) - 1] d'Al
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fjR 2rr [ -- ( ) - 1] dr, where g(-) is as in (17). This expression can be evaluated

using formulas found in [14] to yield series solution.

Let us consider the same model with Rayleigh fading. This is accounted fur by means

of Fk in the expressions above. The Fk are assumed to be independent and identically

distributed with a Rayleigh parameter b2 ; therefore, E{F2} = 2b 2. As a result of the

addition of fading, (45) becomes

4(u) = PF(Y) 121r exp(iuy cos O)dOdy

= exp(-b 2U2  (46)

In (46), PF(y) = y2 /b2 exp (-y 2/2b') is the Rayleigh density function with parameter

b2. Since the product of a Rayleigh random variable and the sine or cosine of a uniform

on [0,27r) random variable yields a Gaussian random variable, G = F cos8 has pdf

PG(?7) = 1/(v2'ib)exp (- 7
2/2b 2) and the right-hand equality is derived by performing

the integration with respect to 77.

If the circular region model mentioned above is used, (44) becomes

4'j(u) = exp q 1  (exp [-g(r) 2] 2

- ex r - B(u)o -irr2

+ JR [,-B(u)r0-' 11 27rrdr) (47)

where B(u) = b2 U2/2. A closed-form result can be obtained using a formula from (16],

if o is known. If the typical value a =3.5 is used, (47) becomes

41(u) =exp {~(rr 2[,B(u)rT -1- r[R 2 - r2

B(U))

B(u)
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6 5..(61-k+ 1 -jI2 zR- 3 _\

+ [(-1 B(u)]k+ '6 " J6 -  . (48)
k~l . x=%r s

4.2. Asynchronous Systems

W now focus on the asynchronous frequency-hopping case. It will be assumed that

the 'rk in (42) are independent and identically uniformly distributed oil the interval [0, Th].

As a result of these delays, there are three possible interference scenarios for a signal

transmitted in a given frequency bin: no hit, partial hit, or full hit. These must all be

accounted for in the computation of the characteristic function of the interference process.

Since the interference term in (17) is a sum of independent random variables, the

overall characteristic function can be seen as a product of the individual characteristic

functions, that is,

4 /(u) = E {Jl 4(k'i)(u)}

= Ejfj [1-P + Pj$f'i)(u) + Pp4t(k") (U)] (49)

In (49), E denotes expectation with respect to the number of interfering users, Pf is

the probability of a full hit, Pp is the probabilty of a partial hit, 1 - P = 1 - P - Pp is the

probabibty of no hit occurring, and iPk')(u) and are the characteristic functions

of ki, given that a full hit or a partial hit has occurred. Note that for the case of no hit,

Ik,i = 0, which results in a characteristic function equal to 1. The validity of the second

equality in (49) was proven in [13].

The quantity inside the expectation in (49) can be written in the form

eXfi {Ekli In 1- P + Pf 'P(")(u) +P4P()

Let us consider a step function g(IOMj) = v"-1 gj IA, (M), where {A,1}, is a partition

of the region A; IB(M) is 1, if M E B, and 0 otherwise; and g(IOMI) = g, for all
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M E 4j. If we denote by N(Aj) the number of users in the area A., we obtain that

4l(U) = E {exp (f N(Aj)ln [I -P + PI (uv/j7) + PP,,4(uvf/J)I) (50)

in which !f(uvr/g7) and tp(uV/y7) denote the characteristic functions of the interference

due to any particular user located in Aj for the cases of full hits and partial hits, respec-

tively. Then the expectation can be written as

el(U)= exp {Pi_ S(Aj) [4)f(uvr") - 1]
j=1

+ APV 1: S(Aj) [¢,(u/g) - 1] . (51)
j=1

In the general case, g(1OMI) is a limit of step functions, implying that t 1 (ux/g (0MI))

and ,tp(us/gOM])) are such limits, too, and the overall characteristic function becomes

4j(u) = exp {APf IJA 4 (u (IOM)) - ll d 2 M

+ APPL It ( _g(OM - 1] d~M} (52)

Expressions for P and Pp were given in [13] for first-order Markov random hopping

patterns, for memoryless random hopping patterns, and for Reed-Solomon periodic hop-

ping patterns. Following [13] for the case in which the signature sequence is identically 1,

we obtain that

(tf(u) = 1 j Ro(7) + 7(r)) dr

= JoT 0 (R# (r) + Jo ( r) dr (53)

in the absence of fading, and

4j(I) j e-p- [Rp(r) + p(T)]2 dr
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SexP b2 u2  1
T J [-2 1

+exp [b2U2 (.r)}d7 (54)

in the presence of Rayleigh fading. In (53) and (54), the functions R, and Re, are the

partial autocorrelation functions of the shaping waveform tk(t) and are defined by PO(s) =

f[ t(t)iP(t - s)dt and Rp(s) = pk(T - s).

The relationship in [13], which expresses the bit error probability of the receiver as

an integral involving the characteristic functions of the noise and the interference process

(see [6]), can be modified to depend on the position -tr he "transmitter of concern" in the

following way

Pb(OMI) = Q ( 2Eb,oINo)

+ - j $jj(u) [1 - 4i(u)] du, (55)

where IOMI represents the distance between the receiving (base) station and the "trans-

mitter of concern" (the ith user in the analysis above), Q(x) is the complementary error

function given by Q(x) = 12 f: exp (-y 2 /2) dy, and 4b1(u) was defined earlier. 4j(u)

is given by (44) for synchronous systems, by (45) for no fading, and (46) for Rayleigh fad-

ing. For asynchronous systems, it is given by (52) and (53) for no fading and by (54) for

Rayleigh fading.

The resilt in (55) is useful because i4 gives us a measure of the correctness of each

individual bit. Unfortunately, to evaluate the throughput one needs the packet error

probability Pe(IOMI), which can not be expressed as an explicit function of Pb(IOMI).

The error probability of each one of the L bits in a packet depends on the number of

interfering users and their received power at the base station. Therefore, one should first

26



derive the bit error probability given the number of interfering users; from that one should

derive the packet error probability, given again the number of interfering users, and then

finally average the latter with respect to the Poisson distributed number of interfering

users. As a result, the best that can be done using this method for packets (coded or

uncoded ones) is an approximation.

5. NUMERICAL RESULTS

In discussing our numerical results, we must note several things. First, we take A

to be a circular region of radius R and then we set R = 1. This can be viewed as a

normalization and the results can be generalized to regions of larger or smaller size; this

is especially evident if one considers that the expected number of users in A is given by

N = \7rR 2 and that our results are indexed by N (and therefore by A).

A brief discussion of the issue of normalizing the radius R of the cell is in order here.

We assume that in the mobile-to-base mode of operation, all mobiles transmit with the

same signal-to-noise ratio Eb/NO, which is such that the signal-to-noise ratio received at

the base from a mobile at a distance r, given by E/No = (Eb/No) g(r), is at least as large

as Eb/No -z (EbINo) g(R), the received energy from a mobile at the periphery of the cell.

Therefore, if Eb/NO is set at the minimum acceptable level for reliable communications,

the transmitted signal-to-noise ratio for all mobiles is given by Eb/No = (T 6 /No) /g(R);

if R = 1, Eb/No = Lb/No, while if R > 1, g(R) can be computed and used to compute

E 6 /No from the above formula, while using R = 1 for all other calculations.

It is also important to consider the computational requirements of our results. Looking

at (30) or (33), one can see that there are multiple levels of summations and integrals

involved in the computation of each value of the packet error probability (note that Ef{.} is
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an integral). In computing the results shown here, we sought to avoid this last expectation

over f and explored two alternative methods.

The first method was to set f equal to some value such that a given probability of

acceptable communication is maintained. As discussed in [1], it can be shown that in

this case, f = N/"vTR, where P is the probability of acceptable communication to be

.alntadred. If one conqider valuies of P close to one--as would be tb- rang," of vahiu'. one

might like to examine-one can see that the results obtained will be overly pessimistic.

As a result of the pessimistic nature of the first method, we have opted to use another

method, namely to set f equal to a value such that an average value of g(f) is obtained;

then f = [Er{g(r)}]- 1/' , where a and g(.) are as in (2). We find that the expectation is

given by

2-"' 2 2 2 a)
, + 2 R (56)

R2  (a- 2 )R 2(r°  R)

The value of this method is due to the fact that the probability of symbol or packet

correctness is usually a convex n function of g(r) in part of the range of r. In this range,

we can use Jensen's inequality

E7 {Pc(g(r))) :_ Pc{Er(g(r))} = Pc(g(f)) (57)

to obtain the upper bound on the right-hand side which depends only on g(F). In the

range of r in which the function Pc is not convex n in r, we can still use P,(g(f) as an

approximation.

In all the numerical results presented in this section the signal-to-noise ratio (denoted

by SNR in the figures) is the Eb/No with respect to the AWGN defined in the second para-

graph of this section. The numbier of bits per hop (dwefl-time) is Nb = 10, which implies

that in the M-ary FSK case there are two 32-ary symbols (of 5 bits each) transmitted in

28



each hop. Moreover, each symbol of the RS codes with codeword lenght n = 32 contains

5 bits and thus two RS symbols are transmitted on one hop. The number of frequencies

available for hopping is q = 100.

Fig. 2 compares the results using the Gaussian approximation technique, described in

Section III-A, with the bound presented in Section III-B for the cas, of coherent signaling

and RS(32, 16) coding with error-only correction decoding. This demonstrates that the

bound tends to be extremely pessimistic. On the other hand, the Gaussian approximation

tends to be moderately optimistic for most of the range of N (the average number of

neighbors). This last argument is justified as follows: Gaussian approximations tend to be

usually optimistic when applied to multiple-access problems (refer to [5] and [6]). However,

the assumption that all interfering users cause full hits is pessimistic. Furthermore, the

use of y(f) results in pessimistic values of the probability of correct reception for part of

the range of r. Thus, overall the Gaussian approximation used here is expected to be

moderately optimistic. This can be actually verified through a comparison to the exact

expressions in Fig. 6 and 7.

Fig. 3 deals with the coherent case and demonstrates the decrease in throughput with

decreasing Reed-Solomon code rate. As one might expect, throughput is proportional

to code rate due to the normalization by the code rate. However, the RS(32,8) code

provides slightly more than half of the RS(32,16) throughput when N = 150, which is

explained by an improvement in the expected probability of error. In both Fig. 2 and 3,

the values of the throughput for large N (larger than 150) are optimistic and should not

be considered fully dependable. This is due to the fact that the accuracy of the Gaussian

approximation used in the calculation of the conditional probability of error in Section
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3.1.1 degrades gradually as the number of interfering users increase; actually, it becomes

overly optimistic for a large number of interfering users.

We now move on to the noncoherent case (32-ary FSK with noncoherent demodula-

tion). Fig. 4 corresponds to Fig. 2. Once again it is demonstrated that the bound is very

pessimistic and the Gaussian approximation overly optimistic for large N.

Fig 5 presents rpci'!t3 using RS(32, 16) and RS(32, 8) coding. The same observations

that were made regarding Fig. 3 should be made here.

Fig. 6 demonstrates the relationships among the exact expression developed in this

section and the Gaussian approximation and bound presented in Section III. The bound

tends to be very pessimistic. The Gaussian approximation, on the other hand, tends to be

somewhat pessimistic for low to moderate values of N (the average number of neighbors),

while it provides a closer approximation and even becomes slightly optimistic for moderate

to i. -ge values of N. This reflects on the previous throughput results: for small N, the

approxiri. tion is closer to the exact value than the bound but is pessimistic; for moderate

N, it is close .o the exact value; for large N, the results exceed what they should be and

this effect is magni!"d by the RS coding.

Fig. 7 shows result, for synchronous and asynchronous systems. These results are so

close, that they appear as . single curve in the figure. The closeness of the results for

the synchronous and asynchronous cases is due .to the fact that the probability of a hit

is Ph = 1/q for synchronous systems and Ph = (1 + 1/Nb) /q for asynchronous systems,

whereas m, = 1/3 for asyn-hronous systems and rn = 1/2 for synchronous systems,

thus balancing out the effect of other-user interference of the two systems. Also shown is

a curve that represents an asynchronous system with Rayleigh fading; the parameter of
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Rayleigh fading is b2 = 0.01, which implies that the desired signal's SNR is attenuated by

.02 on the average, that is E{SNR1 ,ad) = 2b2 • SNR = .02. SNR. It is assumed that the

Rayleigh fading is sufficiently slow to make coherent demodulation feasible. As expected,

this system does significantly worse than its counterpart without fading.

6. CONCLUDING REMARKS

We presented methods by which error probability and/or throughput can be computed

for FH cellular mobile packet redio networks. These methods encompass a Gaussian ap-

proximation applicable to all systems and an exact method that can be applied only

to coherent systems. It was shown that the previously derived lower bound on system

throughput (upper bound on error probability) is a loose, pessimistic bound in compar-

ison to the approximation and the exact results. The approximation was shown to have

satisfactory accuracy for the lower-to-moderate values of the average number of neighbors,

but to be overly optimistic for large values of the average number of neighbors.

One major problem encountered lay in the computational complexity of the expres-

sions. In general, each curve in the figures presented required a considerable amount of

CPU time to compute. In the case of some of the exact expressions (especially the asvn-

chronous case without fading), this computation was extremely long. We used a VAX 780

computer and a few hours of supercomputer CPU time. What this indicates is that this

work may very well represent a practical limit as to how precisely one can characterize

these systems and still be able to compute analytically the various performance measures

of interest.
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