

San Diego, California 92152

MARINE PHYSICAL LABORATORY

SCRIPPS INSTITUTION OF OCEANOGRAPHY

Statistics of a Chi-Square Random Variable Obtained from Independent Gaussian Samples with a Non-Zero Mean and Arbitrary Variance

Richard K. Brienzo

AD-A214 477

MPL TECHNICAL MEMORANDUM 405

MPL-U-40/88

January 1989

Approved for public release; distribution unlimited.

BEST AVAILABLE COPY

89 11 21 052

SECURITY CLASS ECATION OF THIS PAGE			•			
REPORT DOCUMENTATION PAGE						
13 REPORT SECURITY CLASSIFICATION UNCLASSIFIED		16 RESTRICTIVE MARKINGS				
24 SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION / AVAILABILITY OF REPORT				
26. DECLASSIFICATION / DOWNGRADINC SCHEDULE		Approved for public release; distribution unlimited.				
4. PERFORMING ORGANIZATION REPORT NUMBER(S)		5. MONITORING ORGANIZATION REPORT NUMBER(S)				
MPL TECHNICAL MEMORANDUM 405 [MPL-U-40/88]						
6a. NAME OF PERFORMING ORGANIZATION Marine Physical Laboratory	6b. OFFICE SYMBOL (If applicable) MPL	7a. NAME OF MONITORING ORGANIZATION Office of Naval Research Department of the Navy				
6c. ADDRESS (City, State, and ZIP Code) University of California, San Diego Scripps Institution of Oceanography San Diego, CA 92152		7b. ADURESS (City, State, and ZIP Code) 800 North Quincy Street Arlington, VA 22217-5000				
33. NAME OF FUNDING/SPONSORING ORGANIZATION	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER		MBE.1		
Office of Naval Research	ONR	N00014-80-C-0220				
3c ADDRESS (City, State, and ZIP Code) Department of the Navy 800 North Quincy Street Arlington, VA 22217-5000		PROGRAM ELEMENT NO.	PROJECT	TASK NO	WORK UNIT ACCESSION NO.	
STATISTICS OF A CHI-SQUARE RANDOM VARIABLE OBTAINED FROM INDEPENDENT GAUSSIAN SAMPLES WITH A NON-ZERO MEAN AND ARBITRARY VARIANCE						
13a TYPE OF REPORT 13b. TIME CO LEOD. IIENO FROM	DVERED TO	14. DATE OF REPO	RT (Year, Month, D 1989	ay) 15. PAGE	COUNT	
16. SUPPLEMENTARY NOTATION 17 COSATI CODES FIELD GROUP SUB-GROUP	18. SUBJECT TERMS (chi-square	Continue on revers random varia		identify by bloc	k umber)	
19. ABSTRACT (Continue on reverse if necessary and identify by block number)						
The mean and variance of a chi-square random variable are generally given for the case in which the chi-square random variable is derived from a process hav- ing a zero mean and unit variance. In this report, the mean and variance of the ran- dom variable found by squaring and summing N samples of an independent Gaussian process with a non-zero mean and arbitrary variance is derived.						
20 DISTRIBUTION / AVAILABILITY OF ABSTRACT		21. ABSTRACT SECURITY CLASSIFICATION S UNCLASSIFIED				
222 NAME OF RESPONSIBLE INDIVIDUAL W. S. Hodgkiss		22h TELEPHONE	(include Area Code 1-1798) 22c. OFFICE S MPT.	YMBOL	
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted. All other editions are obsolete \$U.S. Government Printing Offices 1986-687-6						

.

Statistics of a chi-square random variable obtained from independent Gaussian samples with a non-zero mean and arbitrary variance

Richard K. Brienzo

Marine Physical Laboratory Scripps Institution of Oceanography University of California, San Diego San Diego, CA. 92152

ABSTRACT

The mean and variance of a chi-square random variable are generally given for the case in which the chi-square random variable is derived from a process having a zero mean and unit variance. In this report, the mean and variance of the random variable found by squaring and summing N samples of an independent Gaussian process with a non-zero mean and arbitrary variance is derived.

Accession For				
NTIS	GFA&I			
DTIC TAB				
Ungenhounded 🗍				
Justiniostim				
By Distribution/ Availability Jodes				
Dist	Special	-		
P~1				

Statistics of a chi-square random variable obtained from independent Gaussian samples with a non-zero mean and arbitrary variance

1. Introduction

In this report, general expressions are derived for the mean and variance of a random variable that is found by squaring and summing N independent samples of a Gaussian process x_i , which has a non-zero mean and an arbitrary variance (i.e. $\sum_{i=1}^{N} x_i^2$).

A common structure which generates such a random variable is an energy detector (Figure 1). Each output sample is obtained by squaring and summing N input samples. This is the optimal detector for an unknown signal buried in white Gaussian noise, and is often used as a post-processor for other routines (for example, the output of a beamformer may be run through an energy detector to determine if a signal is present).

Figure 1. Energy detector. Finds the energy in N samples of x(n). Eac. Suppose sample is produced by squaring and summing N input samples.

Chi-square random variables

Let z_1, z_2, z_3, \dots be normally distributed, independent random variables with zero mean and a variance of one, and define a new random variable

$$\chi_N^2 = z_1^2 + z_2^2 + z_3^2 + \dots + z_N^2$$
(1)

The variable in (1) is called a chi-square random variable with N degrees of freedom. The density function of χ_N^2 approaches that of a normally distributed random variable for large N (N > 30), and is non-symmetric for smaller N. The mean and variance of the chi-square random variable in (1) is given by [1, page 105].

$$\mu_{\chi_N^2} = E\left\{\chi_N^2\right\} = N \tag{2}$$

$$\sigma_{\chi\bar{\chi}}^2 = v \, a \, r \left[\chi_N^2\right] = 2 \, N \tag{3}$$

Details about the density and distribution functions may be found in [1, Section 4.2.2]. Random variables with a non-zero mean that are squared and summed have a non-central chi-square distribution [3,4].

A time series x can always be transformed to have a mean of zero and variance equal to one by defining the standardized variable z_i to be

$$z_i = \frac{x_i - \mu}{\sigma} \tag{4}$$

In some cases, it is desirable to find the statistics of the random variable formed by squaring and summing N values of x, which does not necessarily have a zero mean or variance equal to one. In the next section, general expressions for the mean and variance of a random variable that is obtained from squaring and summing independent Gaussian samples with a non-zero mean μ and arbitrary variance σ^2 are derived.

2. Derivation

Given the standardized random variable in (4), a chi-square random variable with N degrees of freedom is obtained by squaring the z_i and summing over N samples.

$$\chi_{N}^{2} = \sum_{i=1}^{N} z_{i}^{2}$$

$$= \frac{1}{\sigma^{2}} \left[\sum_{i=1}^{N} (x_{i} - \mu)^{2} \right]$$

$$= \frac{1}{\sigma^{2}} \left[\sum_{i=1}^{N} (x_{i}^{2} - 2\mu x_{i} + \mu^{2}) \right]$$
(5)

$$= \frac{1}{\sigma^{2}} \left[\sum_{i=1}^{N} x_{i}^{2} - 2\mu \sum_{i=1}^{N} x_{i} + N\mu^{2} \right]$$
(6)

$$E\left\{\chi_{N}^{2}\right\} = \frac{1}{\sigma^{2}} E\left\{\sum_{i=1}^{N} x_{i}^{2}\right\} - \frac{2\mu}{\sigma^{2}} E\left\{\sum_{i=1}^{N} x_{i}\right\} + \frac{N\mu^{2}}{\sigma^{2}}$$
$$= \frac{1}{\sigma^{2}} E\left\{\sum_{i=1}^{N} x_{i}^{2}\right\} - \frac{N\mu^{2}}{\sigma^{2}}$$

Solving for the N squared and summed samples of \mathbf{r}_i , and using Equation (2) gives

$$E\left\{\sum_{i=1}^{N} x_{i}^{2}\right\} = N\sigma^{2} + N\mu^{2}$$
$$= N(\sigma^{2} + \mu^{2})$$
(7)

By definition, the variance of the chi-square random variable is given by

$$v \, a \, r \left[\chi_{N}^{2} \right] = E \left\{ \left[\chi_{N}^{2} - \mu_{\chi_{N}^{2}} \right] \left[\chi_{N}^{2} - \mu_{\chi_{N}^{2}} \right] \right\}$$
(8)

Using (2) and (6), and multiplying both sides by σ^4 gives

$$\sigma^{4} v a r \left[\chi_{N}^{2} \right] = E \left\{ \left[\sum_{i=1}^{N} x_{i}^{2} - 2 \mu \sum_{i=1}^{N} x_{i} + N \mu^{2} - N \sigma^{2} \right] \left[\sum_{j=1}^{N} x_{j}^{2} - 2 \mu \sum_{j=1}^{N} x_{j} + N \mu^{2} - N \sigma^{2} \right] \right\}$$

Replacing the expression on the left side with (3) and expanding yields

$$2N\sigma^{4} = E\left\{ \left(\sum_{i=1}^{N} x_{i}^{2}\right)^{2} + 2\mu \sum_{i=1}^{N} x_{i}^{2} \sum_{j=1}^{N} x_{j} + N\mu^{2} \sum_{i=1}^{N} x_{i}^{2} - N\sigma^{2} \sum_{i=1}^{N} x_{i}^{2} - 2\mu \sum_{i=1}^{N} x_{i}^{2} \sum_{j=1}^{N} x_{j}$$
$$+ 4\mu^{2} \left(\sum_{i=1}^{N} x_{i}\right)^{2} - 2N\mu^{3} \sum_{i=1}^{N} x_{i} + 2N\mu\sigma^{2} \sum_{i=1}^{N} x_{i} + N\mu^{2} \sum_{i=1}^{N} x_{i}^{2} - 2N\mu^{3} \sum_{i=1}^{N} x_{i}$$
$$+ N^{2}\mu^{4} - N^{2}\mu^{2}\sigma^{2} - N\sigma^{2} \sum_{i=1}^{N} x_{i}^{2} + 2N\mu\sigma^{2} \sum_{i=1}^{N} x_{i} - N^{2}\mu^{2}\sigma^{2} + N^{2}\sigma^{4} \right\}$$

$$= E\left\{\left(\sum_{i=1}^{N} x_{i}^{2}\right)^{2} - 4\mu \sum_{i=1}^{N} x_{i}^{2} \sum_{j=1}^{N} x_{j} + 2N\mu^{2} \sum_{i=1}^{N} x_{i}^{2} - 2N\sigma^{2} \sum_{i=1}^{N} x_{i}^{2} - 4N\mu^{3} \sum_{i=1}^{N} x_{i} \right. \\ \left. + 4N\mu\sigma^{2} \sum_{i=1}^{N} x_{i} - 2N^{2}\mu^{2}\sigma^{2} + N^{2}\mu^{4} + N^{2}\sigma^{4} + 4\mu^{2} \left(\sum_{i=1}^{N} x_{i}\right)^{2}\right\}$$

3

Using Equations (A1) - (A4) from the Appendix in the above equation results in

$$2N\sigma^{4} = E\left\{\left(\sum_{i=1}^{N} x_{i}^{2}\right)^{2}\right\} - 4\mu\left(2N\mu\sigma^{2} + N^{2}\mu\sigma^{2} + N^{2}\mu^{3}\right) + 2N^{2}\mu^{2}\left(\sigma^{2} + \mu^{2}\right) \\ - 2N^{2}\sigma^{2}\left(\sigma^{2} + \mu^{2}\right) - 4N^{2}\mu^{4} + 4N^{2}\mu^{2}\sigma^{2} - 2N^{2}\mu^{2}\sigma^{2} + N^{2}\mu^{4} \\ + N^{2}\sigma^{4} + 4\mu^{2}\left(N\sigma^{2} + N^{2}\mu^{2}\right)$$

$$= E\left\{\left(\sum_{i=1}^{N} x_{i}^{2}\right)^{2}\right\} - 8N\mu^{2}\sigma^{2} - 4N^{2}\mu^{2}\sigma^{2} - 4N^{2}\mu^{4} + 2N^{2}\mu^{2}\sigma^{2} + 2N^{2}\mu^{4} \\ - 2N^{2}\sigma^{4} - 2N^{2}\mu^{2}\sigma^{2} - 4N^{2}\mu^{4} + 4N^{2}\mu^{2}\sigma^{2} + N^{2}\mu^{4} - 2N^{2}\mu^{2}\sigma^{2} + N^{2}\sigma^{4} \\ + 4N\mu^{2}\sigma^{2} + 4N^{2}\mu^{4}$$

$$= E\left\{\left(\sum_{i=1}^{N} x_{i}^{2}\right)^{2}\right\} - 4N\mu^{2}\sigma^{2} - 2N^{2}\mu^{2}\sigma^{2} - N^{2}\mu^{4} - N^{2}\sigma^{4}$$

Therefore.

$$E\left\{\left(\sum_{i=1}^{N} x_{i}^{2}\right)^{2}\right\} = 2N\sigma^{4} + 4N\mu^{2}\sigma^{2} + 2N^{2}\mu^{2}\sigma^{2} + N^{2}\mu^{4} + N^{2}\sigma^{4}$$
(9)

For a random variable y.

$$v a r [y] = E \{y^2\} - (E \{y\})^2$$

therefore the variance of $\sum_{i=1}^N x_i^2$ is given by

$$v \, a \, r \left[\sum_{i=1}^{N} x_i^2 \right] = E \left\{ \left(\sum_{i=1}^{N} x_i^2 \right)^2 \right\} = \left(E \left\{ \sum_{i=1}^{N} x_i^2 \right\} \right)^2$$

Using Equations (9) and (7) results in

$$var\left[\sum_{i=1}^{N} x_{i}^{2}\right] = E\left\{\left(\sum_{i=1}^{N} x_{i}^{2}\right)^{2}\right\} - N^{2}\left(\sigma^{2} + \mu^{2}\right)^{2}$$
$$= 2N\sigma^{4} + 4N\mu^{2}\sigma^{2} + 2N^{2}\mu^{2}\sigma^{2} + N^{2}\mu^{4} + N^{2}\sigma^{4} - N^{2}\sigma^{4} - 2N^{2}\mu^{2}\sigma^{2} - N^{2}\mu^{2}$$

$$= 2N\sigma^4 + 4N\mu^2\sigma^2 \tag{10}$$

3. Summary

If x is a Gaussian random process and has mean μ and variance σ^2 , then

$$E\left\{\sum_{i=1}^{N} x_{i}^{2}\right\} = N(\sigma^{2} + \mu^{2})$$

$$var\left[\sum_{i=1}^{N} x_{i}^{2}\right] = 2N\sigma^{4} + 4N\mu^{2}\sigma^{2}$$

Note that when $\mu=0$ and $\sigma^2=1$ these equations reduce to (2) and (3).

Appendix: Expected values of various summations

1.
$$E\left\{\sum_{i=1}^{N} x_i\right\} = N\mu$$
(A1)

2.
$$E\left\{\sum_{i=1}^{N} x_{i}^{2}\right\} = N(\sigma^{2} + \mu^{2})$$
 (A2)

This is Equation (7) and was derived in the main text.

3.
$$E\left\{\left(\sum_{i=1}^{N} x_{i}\right)^{2}\right\} = N\sigma^{2} + N^{2}\mu^{2}$$
 (A3)

Derivation

Let x_i be normally distributed random variables and define $\tilde{x} = \sum_{i=1}^{N} x_i$, then \tilde{x} is a normal random variable with mean $N\mu$ and variance $N\sigma^2$. The variance of \tilde{x} may be written as

$$var\left[\tilde{x}\right] = E\left\{\tilde{x}^{2}\right\} - \left(E\left\{\tilde{x}\right\}\right)^{2}$$

so that

$$E\left\{\tilde{x}^{2}\right\} = E\left\{\left(\sum_{i=1}^{N} x_{i}\right)^{2}\right\}$$
$$= v a r \left(\tilde{x}\right) + \left(E\left\{\tilde{x}\right\}\right)^{2}$$
$$= N \sigma^{2} + N^{2} \mu^{2}$$

4.
$$E\left\{\sum_{i=1}^{N} x_{i}^{2} \sum_{j=1}^{N} x_{j}\right\} = 2N\mu\sigma^{2} + N^{2}\mu\sigma^{2} + N^{2}\mu^{3}$$
 (A4)

Derivation

$$E\left\{\sum_{i=1}^{N} x_{i}^{2} \sum_{j=1}^{N} x_{j}\right\} = E\left\{\sum_{i=1}^{N} \sum_{j=1}^{N} x_{i}^{2} x_{j}\right\} = \sum_{i=1}^{N} \sum_{j=1}^{N} E\left\{x_{i}^{2} x_{j}\right\}$$

6

When i = j this becomes the single sum $\sum_{i=1}^{N} E\{x_i^3\}$. From [2, page 162],

$$E\left\{x_i^3\right\} = 3\mu\sigma^2 + \mu^3$$

 $\mathbf{s}\mathbf{o}$

$$\sum_{i=1}^{N} E\{x_{i}^{3}\} = N(3\mu\sigma^{2} + \mu^{3}) \qquad i = j$$

When $i \neq j$

$$\sum_{i=1}^{N} \sum_{j=1}^{N} E\{x_{i}^{2} x_{j}\} = \sum_{i=1}^{N} \sum_{j=1}^{N} E\{x_{i}^{2}\} E\{x_{i}\}$$

since the processes are independent. Using $E\{x_i\} = \mu$, and

$$E\{x_i^2\} = var[x] + \mu^2 = \sigma^2 + \mu^2$$

results in

$$\sum_{i=1}^{N} \sum_{j=1}^{N} E\{x_i^2\} E\{x_i\} = \sum_{i=1}^{N} \sum_{j=1}^{N} \mu(\sigma^2 + \mu^2)$$

These are summed over all i and j except for the case i = j, so there are N(N-1) of them, giving

$$\sum_{i=1}^{N} \sum_{j=1}^{N} E\{x_i^2\} E\{x_i\} = N(N-1) \mu (\sigma^2 + \mu^2) \qquad i \neq j$$

Adding the cases for i = j and $i \neq j$ together gives

$$E\left\{\sum_{i=1}^{N} x_{i}^{2} \sum_{j=1}^{N} x_{j}\right\} = N(3\mu\sigma^{2} + \mu^{3}) + N(N - 1)\mu(\sigma^{2} + \mu^{2})$$
$$= 2N\mu\sigma^{2} + N^{2}\mu\sigma^{2} + N^{2}\mu^{3}$$

7

References

- Bendat, J.S., Piersol, A.G., Random Data: Analysis and Measurement Procedures, Wiley, New York (1971).
- Papoulis, A., Probability, Random Variables, and Stochastic Processes, McGraw-Hill, New York (1965).
- [3] Patnaik, P.B., "The non-central χ^2 and F-distributions and their applications", Biometrika 36, 202-232 (1949).
- [4] Whalen, A.D., Detection of Signals in Noise, Academic Press, New York (1971).

Acknowledgements

This work was supported by the Office of Naval Research under Contract N00014-80-C-0220.