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Statistics of a chi-square random variable obtained
from independent Gaussian samples with a non-zero
mean and arbitrary variance

Richard K. Brienzo

%iarint- Physical Laboratory
Scripps Institution of Oceanography
University of California, San Diego

San Diego. CA. 92152

ABSTRACT

The mean and variance of a chi-square random variable are generally given

for the case in which the chi-square random variable is derived from a process hav-

ing a zero inean and unit varianrc. In this report. the mean and variance of the ran-
doin variable found by squaring and summing N samples of an independent Gaussian
process with a non-zero mean and arbitrary variance is derived.
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Statistics of a chi-square random variable obtained

from independent Gaussian samples with a non-zero

mean and arbitrary variance

1. Introduction

In thi.- report. gvneral expressions are derived for the mean and variance

of a random variable that is found by squaring and summing N independent sam-

pies of a Gaussian proce.s x, which has a non-? ero mean and an arbitrary variance

(i e . Z4 )
i=1

A common structure which generates such a random variable i. art nergy

detector (Figure 1). Each output sample is obtained by squaring and summi::g N

input samples. This is the optimal detector for an unknown signal buried in white

Gaussian noise, and is often used as a post-processor for other routines (for exam-

pie. the output of a beamformer may be run through an energy detector to deter

mineý if a signal is preent).

x(n) 2 y(n)

Figure 1. Energy detector.

Finds the energy in N samples of x(n). Eac. ,r. sample is produced

by squaring and summing N input samples.

('1) t-.sq t a re rani do i t rt ia ab le.

z,,: . be norrmally distributed, independent random variables

with zero mean and a variance of one, and define a iew r-- Xo: , v.•riahle

+ + +2 ++ :Z (1)
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TIhe v arnald Itu (I1 1 is called a ch i-s5q uare ran domr variable w ithi A' degrees of free-

domin The dens ity function of x2, approaches that of a norinally distributed ran-

diii varible large \' (A' > 30). and is rior-syvn metric for smaller N. The mean

and variance of the chi-square random variable in (1) is given bvIA page 105

E (2)

(T tr K] r 2 N (3)

Dotail. about tlie dpensityN and ditstribution functions may- be found inI 1, Sci

41.2 .2 .Random variables with a non-zero mean that are squared and] summred have

a non-ceeitial :!,,-square distribution '3.4

A- Timie s;eries r can always be transforrmed to have a neiea of zero andi~

variance equal to onie by defining the standardized variable z, to ie

(7

lII some cases, it is desirable to find the statistics of the random variable formed

by squaring an(1 summing A_ values of x. which does not necessarily have a zero

mean or variartre e-qual to one. In the next section, general expression, for the

incart arid varimntcc of a ran domii variable that is obtained from squaring arid sum-

minrg ind(Ie pen den~t Gauss ian samtrples with a non-zero mnean p and arbitrary vani-

a ric e or2 are derived .

2. Derivat~ion

Given the sýtandardized randomn variable in (4), a chi-square randoni vari-

able wýith N degree-s of freedom is, obtained by squaring the -j and suimming over

.\~Z Xipls

V X -)/IiX + Pl



- ; [ < - .i , x, + .\'y• ~(6)

L'{,\} - '~ r{2., } - -'" r{j'- .. } + ",,p

•olNi ig for thL \ >-uaied r (Ia 1 r id s n eu j '.l l ,ns ef t, arid u'titig l g . 1itit 1o 2) gi '-

E{ L,. } = .,.- + .,,-

N 7-' + Ij2) (7)

Rv (d.flniion, the varianc: of' the chi-> 1wu re rando1 m I arii il,, i 1, E:v 'i 1,\

.ar = - , -P:,2 }P,

Using (2) and (6). and multiplying both sides by (7 gives

.4 var HI = E{Zzi - ý, + ,Vo r2 - 2-pz. + Vp.\ -

P'feplacing the expression on the left side with (3) and expanding 'eldq
.\L ' ' Nv A' ,N, ,N ,'

'2 ,•' = >34{ Y.•• -" 2 .,- >34>, + Np-2 >34# - Ku2 >34 - >3-.r >3•.52,
s~ '! .1=1 )'=1 ,=1 i.%, N

+ 4l2 ( -2 x + 2 .Ji 2 . + Np.. 2 A Lx
'=1 '=! t'=] = j'=1

\\tr - ." No r, " + " 'N V, \ / + 4

I. \~~ )- l 1 Si> ']r 2 Np,+ 2  >3> -x Ni X3 2 ix~
x =, 7=1 ,-'

N'. .\-

4-A It I \> - ,,=\v,4;\'4

• 1nn1



ts ing LquationS (Al) - (A-) frot,. the Apl'ti lix in the above equation results ill

2 A'- = E {( VXl) } - 4,( 2-,j,,- + +, +:,p,3) + 2.',p,( +
i=t

- C2.\ *-,( ( + l ') - 4 N l
4  + 4 .V -'/1 1 - 2 1,1"-i or2 + A"11i4

-t- \--. ~~ 1 ~ N 212  2

E ~ ) -8 p+~- ; ~j~a~- Np 4 + 2 + 2 4-p

- 2 .N\o'' 2 2 -- \C1 4 + 4 .\p~"- ± .\p 4  
- "2 .\Vi2a -p ,- .VAcrA

+- .NXp
2 a2 + 4 .' 1

= x ( Z,,) - 4_ _'o2  - :v-p 2  \-2- . p 4  A`4or

Th e re fo re

£_- (z.,) }- 2 N&' + 4 \-p 2 a2 + 2 ,%-/'-\ ± U + %20(9)

For a random variable y

var = Ey 2 
- (E{y}

Nilirfr.or, the. variantce, of >_3.,2 is given bv
'= I

tar j•jx = Li)>4z,) j -(/ EtZ.r:~)

(:sing LEquations (.) and (7) results in

va ,] - B ( ,) -Ex(A + ,2

2 Na' + 41 .1V/r1 + 2 , 2ar + ,v2/14 + V,\ -(,I a - 2'. 2 .%-1, /. 4



= 2.\%' + *4 \l a2  (10)

3. Summary

If x is a Gaussian randorii process and hlas nean ip and varianc" -. then

E{E•,} = \(-•+ ,,r)

zt,. r x 2.•c 1= + 4 'Vp•2
,2a

Non- that whin pi=U and a ,I these equations reducp to (2) and( (:3).



Appendix: Expected values of various summations

L. E{>.r} (AI)

E{L~} -r~~2)(A2)

Ti1 Is isý Fqiuatioii (7) anjd %%aý dt-ried in the mnaini text.

Dber i a t i 7

Let rj be niormiall~y distribuil~ ranidomi variablesý and defin1e r X,. thenl

x is a niormial ranidor m variable with mneani N11 and variance ANoQ The v-arianice of r-

miay be written as

1111 = T( E __,r )

so that

.1 12 {Z"Z 3  2NpIrT + \--,,
2 + p ()

De ri a hoen

= = N N

1 11 11s=1 j-1
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N
\Vl1 c1  i: j this becomes the single sum >_E{z} . From [2, page 162[,

SO

N

VEj x - (jI7 + j13) i=i

N N N {N ,

since the processes are independent. Using E{i}= p, and

Eli,::} = varjzx + p" = (re + 112

re.-ults in
NN N N

>>E {X i2}ýEfxj EE=1 + P 2
i ! j- I i- I i-I

These are summed over all iand j except for the case i= j,so there are N(N-l)of

thein, giving

NE~ijfj = N(N- I)p(o"2 +p2•) i# 6
i-I j-1

Adding the cases for i= j'and i j together gives

N 4N
E{Zz _} = N(3 1pa2 + Id) + N(N - + • 2 )

= 2NjwY + N'p-a + NAp3
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