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ABSTRACT OF THE DISSERTATION

Observations of Fine-Scale Vertical Shear and Strain in the Upper Ocean

by

Jeffrey Thomas Sherman
Doctor of Philosophy in Oceanography

University of California, San Diego, 1989
Professor .obert Pinkel, Chairman

A statistical analysis of vertical shear (au/az, av/8z) and vertical strain
(ain/Oz, Y7- isopycnal displacement) is performed. Data were obtained during the
PATCHEX experiment (Oct., 1986), located in the eastern North Pacific (340 N. 127 °

W). Strain is estimated from two profiling CTD's, covering the top 560 m of the
water column. The shear field is obtained using two different Doppler sonars. A
pulse-to-pulse incoherent (long-range) sonar provides large-scale information (over
600 m in depth, with independent estimates every 18 m). A pulse-to-pulse coherent
(short-range) sonar yields fine-scale shear structure (30 m depth coverage, with 1.5
m vertical resolution).

The design and performance characteristics of the short-range sonar is
presented, including a discussion on the effects of zooplankton distribution on
velocity precision.

Cross-sections in wavenumber of the vertical wavenumber-frequency (m,w)
shear spectrum exhibit a decrease in slope from w- 3 tow 0 as m varies from 1/512 to
1/3 cpm. Cross-sections in frequency display a band-limited behavior, which nar-
rows with higher frequencies. All frequency bands roll off with a m -

1
- 2 slope for

m>0.1 cpm, with slope dependent upon noise correction scheme. The frequency-
integrated shear spectrum shows agreement with the Gargett et al.(81) spectral
model (m° slope for m<0.1 cpm, m - 1 for m>0.1 cpm).

The (m,w) vertical strain spectrum has been computed for both Eulerian
(fixed-depth) and semi-Lagrangian (isopycnal-following) reference frames. The
Eulerian :,train spectral shape is reminiscent of the measured shear spectrum. How-
ever, the semi-Lagrangian strain spectrum displays an w-2-1 frequency dependency
at high wavenumbers (instead of 0). The interpretation is that the Eulerian spec-
trum at high wavenumbers has been contaminated due to vertical advection causing
Doppler-shifting of the true signal.

A semi-Lagrangian shear spectrum is estimated by using linear internal wave
theory and the measured semi-Lagrangian strain spectrum. The resulting shape has
-2-i slope for all m. The frequency dependence of the high-wavenumber spectral

rolloff appears to be proportional to wl. The Eulerian high-wavenumber, near-
inertial shear variance contributes only 10% of the total variance, while the semi-
Lagrangian spectrum shows half of the high-wavenumber variance originating from
near-inertial motions.
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CHAPTER I

Synopsis

1.1 Introduction
This thesis addresses the vertical wavenumber-frequency (m,w) distribution

of vertical shear and strain in the upper ocean. Part of the data set includes meas-
urements from a newly-developed pulse-to-pulse coherent sonar. Chapter 2
discusses its design and performance. Chapter 3 investigates the effects of zoo-
plankton distribution on Doppler sonars which use small ensonified volumes. A
secondary data set of isopycnal vertical displacement (,) was collected with a profil-
ing CTD system. Vertical shear (Ou/az,9v/az) and vertical strain (al/8z) data are
analyzed in Chapter 4.

1.2 Motivation
The -fine-scale oceanic shear is thought to be a key link in the process of

energy dissipation in the internal wave field, and a contributor to microscale mixing
in the sea. Yet, little is known about the space-time variability of the shear. What
frequencies play an important role at high wavenumbers, and thus determine the
temporal characteristics of low Richardson number (m Ri) events? How does the
frequency distribution change from low wavenumbers, where motions are con-
sidered to behave as linear internal waves, to high wavenumbers, where strong non-
linearities are expected? In the past, mod( 'ers have used the Garrett-Munk (GM)
spectrum to estimate statistics of mixing events (i.e. Desaubies and Smith(82)). The
GM model is based upon a variety of one-dimensional spectral measurements,
which are pieced together by assuming that the spectrum is separable: all frequen-
cies share the same wavenumber dependence. Is this a reasonable assumption?

Partial information on vertical shear distribution has been available from
the Gargett et al.(81) spectral model (Fig. 1.1). They hypothesize an m0 slope at low
wavenumbers, with a depth-independent rolloff to a m- 1 slope at rn, ; 0.1 cpm. Fol-
lowing the work of Munk(8 1), Gargett et al. suggest that the rolloff occurs when the
Inverse Richardson Function (IRF) reaches a value of 1, where

IRF(m) = -T- f o(m)dm,

N is the Vaisala frequency, and 6(m) is the shear vertical wavenumber spectrum.
Based on the energy level of the GM model, Munk(81) predicts IRF(m,) - 0.5.

The Gargett et al. model is based on measurements from slow-profiling
instruments. No sense of the time evolution of the fine scale shear was obtained.
The GM spectrum (i.e. Munk(8i)) assumes that the wavenumber spectral shape is
independent of frequency. All frequency components of the shear spectrum should
replicate the Gargett et al. model. However, the only published measurement of
(,,m) shear spectrum (Pinkel(85), Fig. 1.2) shows that the wavenumber spectral
shape depends strongly on frequency, out to wavenumbers of 0.03 cpm. Should
modelers use the Garrett-Munk or Pinkel spectrum? If the Pinkel spectrum is really

2
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correct, what happens in frequency at the m c rolloff? Is m, really determined by
IRF(m,) - 1?

1.3 Experimental Approach

During the PATCHEX experiment in October, 1986 (located at 340 N, 127" W),
a seven day data set was collected from a long-range pulse-to-pulse incoherent
Doppler sonar, and a short-range pulse-to-pulse coherent Doppler sonar. The com-
bined measurements allow a statistical analysis of the shear field from 3-600 m
vertical scales. The calculated (w,m) spectrum is shown in Fig. 1.3a. No WKB scaling
has been applied (although Ch. 4 does explore the effects of various WKB-scaling).
Spectral levels from the long-range sonar have been adjusted downwards by 40% to
provide the most optimal fit with the short-range sonar spectrum (also discussed in
Ch. 4). The spectral shape that emerges is very reminiscent of Pinkel's spectrum in
Fig. 1.2. It is now seen that there is a slight shift of m, to higher wavenumbers with
higher frequency bands. High frequencies appear more band-limited in nature. All
frequency bands converge to the same energy level at high wavenumbers, such that
high wavenumber motions appear 'white' in frequency. Poor agreement is seen with
the GM spectrum. The GM assumption of separability appears to be strongly
violated. However, when the PATCHEX wavenumber spectrum is integrated over all
frequencies (Fig. 1.3d), good agreement is seen with the Gargett et al. model.

The above shear spectrum is based on Eulerian (fixed-depth) measurements.
This is 'contaminated' in the frequency domain due to vertical advection (by the
internal wave field itself), causing a fixed-depth sensor to see a Doppler-shifted fre-
quency of the true signal. What would the 'uncontaminated' spectrum look like?
During PATCHEX, two rapid-profiling CTDs (three-minute cycling period) were
operational over a three week period (over 20,000 profiles recorded), giving density
information down to 560 m depth. The measurement technique only allows the
vertical strain component of vertical displacement to be resolved (al/az). Vertical
strain can be measured in two different reference frames: Eulerian (for comparison
to the shear data) and semi-Lagrangian. where strain is measured while following
isopycnals (remtving the effect of vertical advection).

The (w,m) spectra for both the Eulerian and semi-Lagrangian vertical strain
are shown in Figs. 1.4 and 1.5. The Eulerian strain spectrum is similar to the shear
spectrum: a shift of m, with frequency, a narrowing of the wavenumber bandwidth
at higher frequencies, and all frequencies converging to the same spectral level at
high wavenumber. The cumulative strain spectrum also looks very similar.

The semi-Lagrangian vertical strain spectrum has quite different characteris-
tics. The frequency spectrum appears red in nature at high wavenumbers. The roll-
off wavenumber mc occurs at even higher values, with the highest frequency band
not yet rolling off at the 0.3 cpm resolution. How.cver, when the semi-Lagrangian
spectrum is integrated across frequencies, the resulting cumulative spectrum is
similar to the Eulerian version. The implication is that the 'red' frequency distribu-
tion seen in the semi-i agrangian spectrum at high wavenumbers has been Doppler-
shifted across all frequencies in the Eulerian spectrum, resulting in a 'white' fre-
quency distribution.

By comparing the Eulerian shear and strain fields,. what can be said about
the nature of these motions, and the possible effect of vertical advection? Linear
internal wave theory leads to a frequency-dependent relation between the vertical
strain/shear variance ratio:

3



J. T. Sherman

N17Zr ( _f2 ) N2

u - (w 2+f 2 ) (N2_w 2)

where f - Coriolis frequency, and U2 - (au/az)2 + (av/Oz) 2. Near-inertial waves have

low strain-to-shear variance, while near-N frequencies have high strain-to-shear
values. Comparison of linear theory to the measured ratio (Fig. 1.6) shows fair
agreement at low wavenumbers (m < .01 cpm). The inertial band shows slightly too
much strain at all wavenumbers, perhaps indicating high-strain, high-frequency
waves Doppler-shifted to near-inertial encounter frequencies. All other frequency
bands exhibit too much shear variance at high wavenumbers to agree with linear
theory. This could either indicate near-inertial waves (high-shear, low-strain) which
have been Doppler-shifted to higher frequencies, and/or nonlinearities taking over
at higher wavenumbers.

If, as suggested by comparison of semi-Lagrangian and Eulerian vertical
strain spectra, the Eulerian shear is contaminated in frequency at high
wavenumbers, how would the semi-Lagrangian shear appear? One approach is to
assume that the linear strain/shear variance ratio is valid (even though nonlineari-
ties are expected at high wavenumbers). The semi-Lagrangian shear spectrum can
be estimated by simply dividing the strain spectrum by the linear ratio. Since verti-
cal strain approaches zero at near-inertial frequencies, and thus is prone to contam-
ination from Doppler-shifted, higher frequency motions, the estimated shear may
also suffer contamination in the near-inertial band. The resulting spectrum (Fig.
1.7a) is very similar to the semi-Lagrangian strain spectrum. When viewed in the
frequency domain (Fig. 1.7b), it is seen that most of the wavenumber bands exhibit
an w-2 slope in frequency, with only the highest wavenumber band (1/4-1/2 cpm)
showing disagreement. The rolloff wavenumber (mj) appears to be proportional to
,A.

What are the overall implications of the Eulerian and semi-Lagrangian shear
spectra to the temporal scales of low Ri events? The Inverse Richardson Function,
now also a function of . (as in Pinkel(85)), was computed from both viewpoints, and
is shown in Fig. 1.8. The Eulerian IRF estimates most of the high wavenumber vari-
ance resulting from high frequency motions, with near-inertial, high wavenumber
waves contributing little to the overall variance. In comparison, the semi-
Lagrangian IRF predicts that half of the shear variance comes from near-inertial
motions. The implication is that measurements from a fixed-depth sensor would
estimate that high-frequency motions provide most of the shear at high
wavenumbers, such that the near-inertial field would appear to have little influence
on causing instabilities. However, a sensor following an isopycnal would see half of
the total shear variance resulting from near-inertial motions, and so indicate near-
inertial waves playing an important role in low Ri events.
1.4

Conclusions
Vertical strain frequency-wavenumber spectra suggest that the Eulerian

(fixed-depth) reference frame has been contaminated in frequency due to vertical
advection of fine-scale strain, caused by the internal wave field. This effect is
strongest at high wavenumbers.

The Garrett-Munk spectrum is an inappropriate description of the oceanic
shear and strain fields when viewed from an Eulerian reference frame. However,

4
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the semi-Lagrangian (isopycnal-following) measurements show much better agree-
ment with the GM model. The high wavenumber rolloff (me) is frequency-dependert.
appearing to be proportional to w.

The Gargett et al.(81) wavenumber spectral model is an appropriate descrip-
tion of the PATCHEX data set. The measured m. value (1/16 cpm) is slightly lower
than their 0.1 cpm. Acdditionally, a low-wavenumber rolloff should perhaps also be
included, suggesting a spectral shape which is band-limited between m - 0.01-0.1
cpm. Gargett et al. suggest IRF(mj) - 1, while the PATCHEX data set has IRF(m)
0.3. This is in closer agreciaent with Munk's(81) value of IRF(mr) - 0.5.

The interpretation of the Inverse Richardson Function is quite different for
the two frames of reference. The Eulerian IRF suggests that high-frequency motions
are responsible for low Ri events, while the semi-Lagrangian IRF has near-inertial
waves contributing half of the overall variance. The semi-Lagrangian spectrum is
most probably closer to the truth, and thus Desaubies and Smith's(82) analysis of
K-H instabilities, which used the GM spectral model, is still a valid description.

Ideas for the future include measuring shear from an isopycnal-following
reference frame for intercomparison with the semi-Lagrangian strain. For instance,
when does the semi-Lagrangian strain/shear ratio begin to differ with linear theory?
Are high wavenumber waves best dynamically described in a Lagrangian frame?
What does the GM spectrum (in a Lagrangian reference frame) look like to an
Eulerian observer? The issue of why the shear spectrum rolls off at high
wavenumbers remains unresolved.

a ia a H~iiiH~i P a5
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10-3 . . .... II I . . . . .... I . . . ..... I . . . . ... *
m depth-independent value
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ell
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I0-6 , ... ., , . . .... l . .. .
10-2 i0-i 10 0  10 1  10 2

vertical wavenumber m (cpm)

Figure 1.I. Gargett et al.(81) based a universal shear spectral model on measurements
from the FAME experiment. The m° slope at low wavenumbers has its energy level scale in a
WKB fashion as N2. The break in slope at mc = 0.1 cpm is thought to be a depth-independent
parameter occurring when IRF(m,) - 1. The m - ' slope is then followed by an intermittent
high-wavenumber region, dependent upon mixing events.
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Figure 1.Z. a) Cross-sections of the (m,w) vertical shear spectrum is shown for 1, 2. 4, 8,

16, 32, and 64 cpd, as calculatzd by Pinkel(85). Dashed lines are the measured values, while

the solid lines represent estimates after modeled instrument noise has been removed. b)

When the (m,w) spectrum is integrated in frequency, the cumulative shear spectrum is

obtained. Each line represents the shear variance integrated from 0.5 cpd up to the labeled

value (i.e. 0.5-1.0 cpd). The resulting spectral shape (mo slope for m>0.01 cpm) is in agree-

ment with the Gargett et al.(81) model.
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Figure 1.3. a) The PATCHEX composite (m,w) shear spectrum includes both the long-range
and short-range sonar estimates. Average spectral density levels are shown for six bands:
44-16, 16-8, 8-4, 4-2, 2-1, and 1-0.7 hour periods, a) Cross-sections of the (m,w) shear spec-
trum are displayed for both sonars. Ine long-range sonar's spectral levels have been
reduced by 40% to provide the optimum fit to the short-range sonar spectrum. b) The same
spectrum is now viewed in frequency, with cross-sections displayed for 8 different
wavenumber bands (as labeled). Each line represents the average spectral density for its
wavenumber band. c) Figs. a) and b) are combined in a three-dimensional view of the (m,,J)
shear spectrum. d) Integration of energy across frequency bands yields a cumulative
vertical-wavenumber spectrum, with the top curve representing total energy contained
between 0.7-44 hour time periods.
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Figure 1.4. a) The PATCHEX Eulerlan vertical strain (m,w) spectrum is displayed in six dif-
ferent frequency bands, as in Fig. 1.3a. Spectral estimates have been logarithmically-
smoothed in mn, with a bandwidth equal to 5m - ±0. Im. b) The cumulative strain spectrum's
44-0.7 hour band is very similar to the the shear cumulative spectral value in Fig. 1.3d.
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Figure 1.5. The PATCHEX semi-Lagrangian vertical strain (m,W) spectrum is shown in the
same format as Fig. 1.4. Although the semi-Lagrangian spectrum in a) looks quite different

from the Eulerian strain spectrum in 1.4a, the semi-Lagrangian cumulative spectrum's 44-0.7
hour band (b) is now very similar to the Eulerian's (Fig. 1.4b).
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little strain to agree with linear theory. Estimates are averaged in wavenumber to provide
better precision.
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bands. a) The high-wavenumber rolloff (in.) appears to increase as a function of -, Y. b)
When viewed in frequency space, all except the highest wavenumber band exhibit an ,-
slope. c) The (r,w) spectrum is plotted in a three-dimensional format.
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CHAPTER II

Considerations in the Design of a Coherent Sonar

2.1 Introduction
Remote-sensing Doppler sonars have been developed over the past decade

to produce vertical profiles of the oceanic velocity field (c.f. Pinkel(79), Woodward
and Appell(86)). Pulse-to-pulse incoherent processing (Fig. 2.1a) has typically been
implemented. Its precision (--oin in a noise-free environment is defined by
(Theriault(86)):

O'inc(cm/s) = c/(41rf,,rMY1)  (2.1)

where c - speed of sound (cm/s), f. - transmission frequency (Hz), r - pulse dura-
tion (sec). and M - number of independent estimates averaged together. Precision
can be increased by transmitting a higher frequency (which lowers maximum range
due to attenuation losses), using a longer pulse (which gives less spatial resolution),
or averaging more estimates (which lowers the temporal resolution).

Another Doppler technique is pulse-to-pulse coherent processing (Fig. 2.1b).
Transmission pulses are phase-locked to each other, and the Doppler-shift at a
specific range is estimated from the variation in phase return from one pulse to the
next. Pinkel(80) and Lhermitte(81,83) give excellent descriptions of the coherent
process. A coherent sonar's precision is not dependent upon the transmission pulse
duration (at least to first order). This allows coherent processing to achieve greater
spatial resolution for the same amount of velocity precision as an incoherent sys-
tem, at the expense of giving up maximum range capability.

This chapter constructs a coherent sonar model applicable to the open
ocean, such that estimates of velocity precision can be made. The model's predic-
tion is compared with measurements taken from a coherent system built at Marine
Physical Laboratory (MPL) at Scripp's Institution of Oceanography. The trade-offs
between a coherent and incoherent sonar are discussed.

2.2 System Parameters of a Coherent Sonar
Each sonar system has its own set of characteristics (i.e. transmission fre-

quency, type of deployment, beam angles, etc.) which determines its maximum
range, spatial resolution, and velocity precision. Parameters defining a coherent
Doppler sonar system are:

fo- carrier frequency of the transmitted pulse
X - wavelength of transmitted pulse (X - c/fo)
r - duration time of the transmitted pulse
A - time between pulses

- angle of sonar with respect to azimuth
0 - full-width angle of sonar's main lobe

- solid angle of sonar's main lobe
Eb - ratio of energy received from main beam versus all other
sources (acoustic cross-talk level).
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These parameters specify the following system constraints:
Vma = ,/4a = c/4f0A - Nyquist velocity
R = cA/2 - maximum range achieved
V,,R,. = cX/8 - limitation parameter for given frequency
Vavg = (cr/2)(ORm/2)2 - average ensonified volume size

The maximum range required for an application sets the value of ,. Given the
expected range of velocities, f, can be chosen to avoid velocity aliasing. The pulse
duration and beam angle determine the spatial resolution. Velocity precision
depends upon both environmental conditions and sonar system limitations.

Noise enters the system through the receive system electronics, and by con-
tamination of the receive signal from range-aliased signals and side-lobe interfer-
ence (Section 2.3).

Environmental conditions increase velocity variance due to: true water
motion variance (- ac), biota actively swimming (- a ), and sonar instrument motion
(m a?). The number of scatterers present and their size distribution will also affect
spatial resolution (Chapter 3).

The performance of the system depends upon the algorithm employed to
produce the velocity estimates. Choices include the Rummler autocovariance esti-
mator (Rummler(68)), the first moment of a spectral estimate, or some variation.
Sirmans and Bumgarner(75) and Lhermitte and Serafin(84) discuss processing tech-
nique tradeoffs in their papers.

2.3 Acoustical Interference : Range-Aliasing and Cross-Talk
The ideal receive signal is comprised entirely of scattering from the desired

ensonified volume. However, two other sources are also received: acoustic cross-
talk, and range-aliasing (shown schematically in Fig. 2.2).

Acoustic cross-talk includes returned side lobe energy from the sonar
transmission beam, and, in a multi-beam environment, energy leakage into side
lobes from other beams. Since pure volume reverberation has a low backscattering
strength compared to a reflective surface(i.e. ocean bottom, surface, ship, or moor-
ing cable will appear on order 60-80 dB brighter per unit solid angle (Urick(83))) a
side lobe return can dominate the main beam under poor circumstances.

Total energy received can be estimated for pure volume reverberation by
integrating the sonar's beam pattern over the complete hemisphere (solid angle -
41r). This energy can be compared to that received in just the main lobe to estimate
Eb:

Eb = ff b(0,0) do do (2.2)

f f b(oo) do do

where b(#,.) is the beam pattern (c.f. Urick). A narrower main lobe means a smaller
tk, and requires lower side lobe levels to maintain a constant Eb. Cross-talk from a
multi-beam system can also be estimated from beam pattern geometry in a similar
fashion. Once a system is built, field testing by passively listening on one beam
while transmitting on all others gives an empirical estimate of multi-beam cross-talk
levels.
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Range aliasing is caused by previous pulses scattering further out in range,
and arriving at the receiver at the same time as the desired ensonified volume. The
energy in the return signal from u single transmission pulse can be modeled as:

E(r) = - --1 0-,r (2.3)

where Eo is the energy of the transmitted pulse, a is the fraction of energy actually
backscattered toward the receiver, a - absorption loss per meter, and r -
distance(range) along the beam. The r2 factor represents attenuation due to spheri-
cal spreading of the backscattered signal. (2.3) neglects near-field sonar effects,
which lowers E(r) at close range. This includes parallax problems for a split
transmit/receive system, and attenuation in the Fresnel zone. The Fresnel zone is
where the scattered return is close enough to the transducer such that a plane wave
front is not a good approximation. The curvature of the return signal results in
phase cancellation across the sonar face, causing attenuation of the signal. (2.3)
also assumes a pure volume reverberation return (no reflective surfaces at far
range), and no intensity variability from zooplankton patchiness. E(r) is shown in
Fig. 2.3a, along with an hour-long afternoon profile measured from the MPL sonar.
Electronic noise has been added to the simulated profile to better match intensity
at far range. Discrepancies are due to (2.3) not modeling the near-field, and to
scattering layers of biota increasing the intensity at midrange depths. Fig. 2.3b is
from Plueddemann(87) as measured from a 75 kHz system, and shows the degree of
day/night temporal variability.

A coherent sonar runs into problems by transmitting again every seconds
(when r - R.). The total signal received is:

E-r(r) = E(r) + E(r+Rm) + E(r+2Rmx) + ... (2.4)

The range-aliased intensity profile based on A - 60 ms is shown in Fig. 2.3c for
both the simulated and hour-long average measured profile in Fig. 2.3a. Also shown
is the 7.5 day average profile for the MPL coherent sonar from the PATCHEX cruise.
Again, discrepancies at near range are from not modeling near-field effects.

A signal-to-noise ratio (SNR) for range aliasing can be defined as:

SNRr(r) = - -E(r) (2.5)
FE(r + jRmax)

j-I

SNRra is shown in Fig. 2.3d for both the hour-long measured and simulated profiles
for A - 60 ms. The lower intensity response in the near field of the sonars
translates into 4-8 dB lower SNRra from the simulation. Also affecting the measured
estimates is the scattering layer at midranges. When this layer moves up at night,
near range intensities increase ,-hile far ranges decrease. This steepens the slope
of the intensity profile, causing SNRr, to increase.

To improve SNR , frequency can be increased (causing more attenuation in
range), or Rmax (A) can be made greater (so that the aliased signal is further out in
range, and smaller in amplitude). SNRr at r - Rmax is estimated from the simulated
profile for both varying frequency and A in Fig. 2.3e and f. Although increasing
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either .. or f, improves SNRra, it also decreases Vrmax, causing more velocity aliasing
problems. The signal will also decorrelate faster, adding more variance to the velo-
city estimate.

Another approach to increase SNRra is to focus Lhe transmit and receive
transducers such that only the volume of interest is mutually shared by the two
beams (bi-static configuration). Cross-talk SNR is then limited only by side lobe con-
tamination levels. More elaborate techniques involving coded pulses are also dis-
cussed in Brumley et al.(87) and Cabrera et al.(87, .

Correct modeling of the effect of range aliasing on the velocity estimate is
unclear. The Doppler spectrum from a measured range bin is the sum of the true
range bin spectrum plus the spectra from all other aliased bins, weighted by their
respective intensities. Velocity precision will depend upon the summed spectral
shape, plus the velocity estimator used. For instance, a first-moment spectral eski-
mator would predict an aliased velocity - V(r, to be:

E(r)V(r) + E(r+Rmax)V(r+Rm,,) +
E(r) + E(r+Rm.) + "'"

where V(r) is the actual velocity field. Let V(r) be Fourier-decomposed into sl,,nL
range wavenumber(k) components:

V(r) = E Vo(k)ei(kr+O(k))
k

where 6(k) is the phase of the wave(k) at r-0. The vertical wavenumber m is related
to k by m - k/sin(O). The range-aliased response for wavenumber k is:

V(r,k) = V(k)ei(kr+O(k)) [ E(r) + E(r+Rm, )e i "'u + . I

E(r) + E(r+Rmax) + *""

The value of Q is estimated for varying wavelengths in Fig. 2.4. The value of r
remains fixed, while the wave is allowed to move past r (O(k) is varied from 0 to 2-).
The measured profile in Fig. 2.1a is used for E(r). It is seen that V(rk) has both a
phase and amplitude response. The amplitude response was computed over many
wavenumbers, and is shown in Fig. 2.5a. The maximum attenuation occurs when
V(r) and V(r + Rm.) are 180* out of phase (kRm,. - r, 3r, ...).

Besides moving a wave past a fixed range value, O(k) can be held constant,
and the response in range can be computed. This is analogous to estimating the
amount of distortion in the measured profile caused by range-aliasing. This is
shown in Fig. 2.6 for various values of k. The distorted wave maintains its
wavenumber, but goes through a phase and amplitude shift, as in Fig. 2.4. Conse-
quently, the amplitude response in Fig. 2.5a can also be interpreted as the transfer
function between the true and measured wavenumber spectrum.

Given the coherent sonar's maximum range Rm, and so a bandwidth resolu-
tion of 6k - 2 1r/Rma, the curve in Fig. 2.5a can be integrated over the measured
wavenumber bands to give the expectant measured response. The result (Fig. 2.5b)
is that the measured wavenumber spectrum will be approximately 50-60% of the
true spectrum, across all wavenumber bands. If the simulated intensity profile is
used. with SNRr, - 8 dB at Rmax. the wavenumber spectrum is then only attenuated
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by 15%.

The above argument depends upon the Fourier-decomposition to be an
accurate representation over all aliased ranges. The other extreme is to consider all
aliased velocities to be uncorrelated. The aliased spectral peaks will be random,
causing the summed spectrum to appear broad-band. Similarly, side-lobe contamina-
tion can also be considered as a sum of randomly Doppler-shifted sources. and
modeled as a broad-band noise contaminant.

2.4 Instrument Package Movement
Sonar movement causes its own Doppler shifting of the return signal. Gen-

erally, sonar motion is only a concer' at high frequency (i.e. surface wave fre-
quency) and can be adequately removed by averaging. However, its variance does
degrade the signal, thus requiring more averaging time for the same amount of pre-
cision.

Coherent sonars have additional instrument motion constraints. Doppler
shifts are estimated on a A time period. If package movement is violent enough to
completely decorrelate the signal (random movement of 0(x) every A seconds), the
velocity estimate becomes invalid. This implies that a, should be kept below Vm. .
Also, the beam must point at the same volume of water every A time period. Hence,
rotations should be constrained to a fraction of the beam angle every A seconds.

2.5 Biota Effects

Chapter 3 discusses effects of a finite number of particles in the ensonified
volume. Problems arise when not enough organisms are present to give a true
.volume averaged' velocity estimate. This will bias the velocity if the point source
does not reflect the true volume average. Furthermore, point source measurements
will cause aliasing in wavenumber space. Biota patchiness causes variability in
range, leading to temporal range aliasing problems (SNR. is small during the advec-
tion time of the patch).

Biota actively swimming will add their own variance to the return signal.
For instance, velocity precision estimates in Fig. 3.7 show that during the diurnal
migration cycle the variance more than doubles. Also, the nighttime variance is
higher than during the daytime, presumably because zooplankton are more active at
night. It is assumed that biota motions are much higher in frequency than the Vai-
sala frequency = N. Biota effects can be removed by averaging in time, allowing
water motions with frequency < N to be resolved.

Another scattering problem, which arises from either instrument motion,
biota movement, or background flow velocities, concerns how rapidly scattering
particles pass through the ensonified volume. If the return signal is from a different
set of particles on each trar.nision, the phase progression from one return to the
next will be random, containing no useful information. Following the same
approach as taken in App. B, it can be shown that the SNR is equal to the percent of
the same particles remaining in the volume divided by the percent of new individu-
als. The minimum volume size should be limited so that only a small fraction of
scatterers leave the ensonified volume between transmitted pulses.

18



SIO Reference 89-11

2.6 Receiver Noise
Receiver bandwidth is normally chosen to match the transmission pulse

width. For instance, the receive bandwidth would be 1 kHz for a 1 ms pulse width.
Since this is typically much wider than 1/A, (the Nyquist frequency of the measured
Doppler shift), it is appropriate to view electronic noise as a white noise source.
Let SNRn equal the signal-to-electronic noise ratio of the system. An estimate of
SNRen can be obtained by listening to the receive signal while not transmitting, and
comparing this level to what is normally received. The effect of white noise on the
velocity estimate depends upon the processing algorithm used.

2.7 Effect of Signal Processing Technique: Rummier Estimator
Numerous signal processing techniques can be employed to estimate velo-

city. The Rummier autocovariance estimator is most generally used because of its
low overhead computational requirements, and robustness (c.f. Lhermitte and
Serafin(84). Sirmans and Bumgarner(75)). This section concentrates on the Rummier
technique.

If the carrier frequency is removed from the return signal (i.e. by heterodyn-
ing), the return from a specific range bin can be described by:

x(t) = x0 (t)eiO(t) (2.7)

where o(t) is the variation in phase from f,- The coherent sonar samples x(t) once
every A seconds. The Rummier method computes the autocovariance for the first
lag in time (bt - a ):

C(A) M <x*(t)x(t+A)> = <x,2 "I> (2.8)

where * denotes the complex conjugate, and <> signifies pulse-to-pulse averaging.
Velocity is estimated from:

= - arg[C(A)] . (2.9)47ra

Miller and Rochwarger(70,72) explore the effects of estimating q from a
total return consisting of the desired signal and an additive noise source that is
either band-limited or white-noise. (i.e. from range-aliasing, acoustic cross-talk or
receive electronics). The estimator of Q has a variance dependent upon the the size
and shape of the bandwidths. If the signal and noise are Gaussian with equal
bandwidths (as might be the case with the iange-aliased signal), then the total vari-
ance will be (Miller and Rochwarger(70)):

a2oh= 0 n 1 + 2/SNR + 1/SNR 2  (2.1Oa)

where ~gi is the variance of the desired volume, and M - number of independent
estimates averaged together. The signal variance can be expressed as:

az 92 + 0
t'signal = + + (2.1Ob)
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Estimates are independent when C(t 2-t 1 )<<l. The value of M does not equal the
number of transmission pulses, but some subset separated by the decorrelation
time. The decorrelation time of the biota movement, instrument motion, and water
motion are not necessarily the same. The effective M may vary for the different
components of (2.10).

2.8 A Sample Case: MPL Coherent Doppler Sonar

A coherent Doppler sonar system was developed at the Marine Physical
Laboratory to measure the fine-scale shear field in the upper ocean (App. A). The
system consists of four beams oriented in a Janus configuration with I* wide
beams. It is operated at 164 kHz. Typically, a pulse of 1 ms duration (3/4 m in
range) is transmitted every 60 ms (Rm, - 45 m), giving an average ensonified
volume size of :z 1/4 m3. The computed Nyquist velocity equals ± 3.8 cm/s. This
small value would normally cause velocity aliasing problems in the oceanic environ-
ment. The MPL sonar avoids aliasing by estimating velocity differences over depth
every two seconds, effectively measuring shear. Expectant values of oceanic shear
give velocity differences over Ar (- cr/2) that are less than Vm.. , so that no aliasing
should occur. This technique also removes long period Doppler smearing caused
by instrument movement (i.e. low-frequency swell motions). The drawback is that
first-differencing the velocity also doubles the amount of variance.

Simulated beam pattern programs calculate E6 - 10 dB for the composite
transmit-receive transducers. Tests performed at sea measure minus 10-15 dB
acoustical cross-talk for three beams contaminating the fourth (Fig. 2.7).

Range aliasing measurements at sea show a lower SNRm than the simulated
intensity profile (Fig. 2.3d). This is because the simulation does not include near-
field effects, and the measured profile has a scattering layer located at midrange.
The value of SNR, - 4 dB - 2.5 will be taken as a representative value.

Instrument package variance was calculated from accelerometers, compass,
and pressure sensor mounted inside the package (App. A). Variance was found to
be z1.7 (cm/s) 2. Most of this variance is caused by vertical motions, primarily due to
FLIP tilting with the surface waves, and strumming of the cable.

Based on the model of Chapter 3, 80% of the return in an average ensoni-
fled volume comes from approximately six organisms, with the largest individual
contributing 45% of the return. The velocity standard deviation (based on 15
second averages, with variances calculated over 20 minute periods) is shown in Fig.
3.7. There is a strong correlation with the diurnal migration, with the largest vari-
ance occurring at dawn and dusk. Nighttime standard deviation is higher (1.2 cm/s)
than during the day (0.8 cm/s), presumably because the biota are more active at
night.

The above standard deviations are estimated from the total variance (i.e.,
from all the components in (2.10)). A minimum nighttime value of ab can be
estimated from (2.10) by assuming all olher variance sources are time-independent,
and that b - 0 during the day, giving ab (cm/s) - 0.9M . M equals the number of
independent estimates taken in a 15 second period, and depends upon how quickly
biota motions decorrelate. For instance, if zooplankton motions decorrelate once
every second (M - 15), then nighttime ab - 3.5 cm/s.

Water velocity variance within the ensonified volume can be estimated from
physical arguments. If the Richardson number - 1/4 sets an upper limit on shear,
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then the maximum expected velocity difference can be computed for the vertical
span of the ensonified volume (assuming no active mixing patches are present).
This difference can then be used to bound the expected variance. For instance, if
the Vaisala frequency - 4 cph, with a vertical span - 60 cm, then the maximum
expected a, - 0.84 (cm/s).

Receiver noise based on long-range transmissions give SNRen - 25 dB at r -
Rm (Fig. 2.3a).

2.9 Estimate of the Variance
The velocity variance due solely to the 'desired' ensonified volume can be

estimated by summing the values of true water variance, biota variance, and instru-
ment motion. Nighttime variance is estimated from (2.10b), assuming biota decorre-
lation time - 1 s, giving + a - (0.7 + 12.2 + 1.7)/M - 14.6/M (cm/s) 2 .

Range aliasing and acoustic cross-talk (both multi-beam and self-
contamination) have a combined SNR - 1/(1/SNRra + 1/SNRmuit + I/SNRs,,If) -
1/(1/2.5 + 1/10 + 1/10) - 1.7. It will be assumed that their bandwidths are
equivalent to Vax - 14.4 (cm/s) 2. This is nearly the value of ox,,, so 2.10a) should
be an appropriate estimation. This gives a total variance equal to
C12oh cign(1+2/.7+l/1.7 2)- 2.Scsignai - 36.5/M (cn',"s)2 . Variance caused by white
noise is minimal since SNRen - 25 dB. The effect of electronic noise will therefore
be ignored.

Daytime precision can bc estimated by assuming ab - 0 during the day, giv-
ing Oo h - 4.9/M3 (cm/s) The average day and night precision is 9coh - 5.5/W
(cm/s). Fig. 2.8 displays an average autocorrelatlon curve taken at sea. The return
signal has derorrelated to a value cf 0.1 after one second. Independent samples can
be assurmed to be obtained at least once every second.

The above variance is for velocity along the beam, which is equal to:

Ubeam = Ucos(O) + Wsin(O) (2.17)

where U - horizontal velocity, W - vertical velocity, and o - angle of sonar with
respect to azimuth - 55* for the MPL sonar. Horizontal velocities are estimated by
subtracting back-to-back beams and dividing by 2cos(O), increasing acoh by a factor
of 2 /(2cos(O)). The estimate of shear (dU/dz) adds another factor of 2z/Az (Az -
60 cm). The precision of shear is equal to oh(cm/s)/[Azcos(O)] - 0 .0 3 acoh (1/s).

2.10 Comparison with PATCHEX Data Cruise Measurements
During the PATCHEX cruise in November 1986, a 7.5 day data set was col-

lected using the MPL coherent sonar. Averaged data was written to tape every 30
seconds. Two repetition periodg (A) equal to 50 and 60 ms were alternated on a
two second period basis. A 30 second time span consists of 15 seconds of A - 50
ms and 15 seconds of A - 60 ms. Data ancdybis in Chapter 4 uses only a - 60 ms,
since it has a larger maximum range. Data was further reduced by computing 512
twenty minute average profiles (-40 records averaged per profile - 600 seconds of
actual data). Standard deviation estimates based on these 15 second averages were
calculated every 20 minutes, with results shown in Fig. 3.7. This figure shows acoh -

(0.8,1.0,1.2) (cm/s) for the (daytime, average, nighttime) values. Calculated
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nighttime precision will agree with the measured value if M equals 25, correspond-
ing to a decorrelation time of 0.6 seconds. The calculated (daytime, average, night-
time) values become Ocoh - (0.98, 1.1, 1.2) (cm/s).

Another comparison can be made by using the vertical wavenumber spec-
trum of the 512 average shear profiles for the entire cruise, as shown in Fig. 2.9.
This shows an average noise floor equal to 0.0065 1/s for the equivalent of a single
component of shear. The above estimated value (with M-1000 - 0.6 second
decorrelation time) gives Ocoh - 0.0052 1/s, about 25% lower than measured. Stan-
dard deviation based on daytime-only profiles is estimated at 0.0049 1/s (Fig. 2.9).
Calculated daytime precision is Ocoh - 0.0046 1/s, which is within 5% of the meas-
ured value.

2. 11 Comparison with an Incoherent System
The precision of an ideal incoherent system, as given in (2.1), will be com-

pared with the daytime precision of 0.8 cm/s. as measured with the coherent sonar
over a 15 second period. It will be assumed that every transmission will be an
independent estimate, such that M - 15/ - 15/0.06 - 250. The transmission pulse
r equals 1 ms (as for the coherent sonar), and c - 1500 m/s. The required fre-
quency to give ai.c - 0.8 cm/s is f, - 940 kHz. The signal would be in the noise
floor at 45 meters at such a high frequency. Since wavenumber is not truly
resolved until a 4 m wavelength (Fig. 2.9). the value of r can be tripled (r - 3 ms -
1.8 m vertical resolution), reducing the required f. to 310 kHz, which would have no
problems going 45 meters. Note again this is assuming 'optimum' performance. For
example, Plueddemann(87) and Hansen(85) calculate actual standard deviation to be
roughly twice that of the optimum for the system developed by Pinkel.

For the incoherent velocity precision to remain constant, spatial resolution
can only be gained by increasing f, (from (2.1), for - constant for anc - constant).
Attenuation of the signal (which is equivalent to 1/(maxlmum range)) depends on f2
(c.f. Urick). The spatial resolution divided by the maximum range is proportional to:

spatial resolution . r = fo(fr) ;t fo for inc = constant.
maximum range fo-2

As an incoherent system is pushed to higher frequencies to gain spatial resolution,
the total number of estimates in range decreases. A coherent system will be pre-
ferred when, for the same spatial resolution, it can achieve a larger maximum range.
Large-scale phenomena (with low spatial resolution) are best performed by
incoherent processing, whereas microstructure measurements are best suited for a
coherent sonar. The fine-scale field of I m vertical resolution over a 50 m max-
imum range pushes both incoherent and coherent methods towards their limits.
resulting in both systems having about the same performance capabilities.

2.12 Summary
An analysis of error sources in a coherent sonar system has been presented.

Precision is affected by white noise from receive electronics, variance from the
desired ensonified volume, and acoustic interference (range-aliasing and side-lobe
contamination). Variance from the desired ensonified volume comes from true
water motion, instrument movement, and biota actively swimming. Biota motion and
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instrument movement are considered high frequency phenomena, such that their
signals can be removed by time averaging. Modeling of range-aliasing for varying
wavenumbers suggest that the measured wavenumber spectrum will be underes-
timated across all resolved wavenumbers. The amount of attenuation will depend
upon the total energy contained in the aliased ranges.

Expected velocity variance is calculated for a coherent sonar designed by
MPL for use off the research platform FLIP. The total return energy is computed to
be comprised of 63% from the desired ensonifled volume, 25% from aliased ranges,
and 12% from side-lobe contamination. Future work can improve precision by
crossing the transmit and receive beams such that only the near range is 'focused',
and by better rejection of side lobe energy.

Variance from the desired range bin is estimated to be near V,,.. This level
is mainly due to biota activity and instrument motion. Only instrument motion can
be reduced, but would pose a difficult task. If it is assumed that all acoustic
interference is eliminated, such that variance only depends upon water, biota, and
instrument motions, velocity precision would improve from (1.0.1.2) cm/s (daytime,
nighttime) computed values to (0.3, 0.8) cm/s (for a 15 second averaging period).

Comparison of calculated variance with measured values agree reasonably
well. Differences may result from not including higher biota variance levels
observed at dawn and dusk, or because a 0.6 second decorrelation period is inap-
propriate for some components of the variance.

When the MPL coherent Doppler system is compared with an optimum
incoherent system, it is found that the incoherent system would be required to
operate at twice the frequency to achieve the same results. The MPL's sonar's tem-
poral, spatial, and maximum range requirements push both the incoherent and
coherent processing methods towards their respective limitations.
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Figure 2.1. a) With Incoherent processing, a transmission pulse of duration r travels out-
ward in range, ensonifying a number of scatterers at any instance in time. The return signal
is sampled every T, seconds, with phase Information recorded. Each new phase estimate
represents a change in ensonified volume by distance cT,/2, with a certain percent of dif-
ferent scatterers present. The return phase will only stay correlated for a pulse duration
time period, setting a limiting bandwidth on the Doppler estimate equal to 1/7.
b) With coherent processing, every a seconds another pulse is transmitted with the same
phase. The time-varying phase return at range r will reflect the true Doppler shift, as long
as the particle's advection time through the ensonified volume is long compared to _,. Ambi-
guity arises if particle movement causes a phase change greater than 21r in a A time period.
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Figure 2.2. A coherent sonar in an oceanic environment has many variables that come into
play. Instrument movement and biota actively swimming cause false Doppler shifts of the
true water velocity. Scattering beyond Rmax (the maximum range resolved) contaminate the
return signal. This range-aliasing may dominate the return when large scatterers are present
at far range. Sonar side lobes will transmit and receive energy, causing both self and cross-
bean contamination.
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Figure 2.3.
a) Computer simulation of (2.3), with a noise floor added, is compared with an hour-long
average afternoon profile taken at sea. Differences between actual and simulated curves are
due to near-field effects not being modeled, and variation of biota distribution with depth.
R,,, is shown for the PATCHEX repetition rate (A - 60 ms). All intensity return further out
in range than Rma, will contaminate the desired signal.
b) Twelve-day averages of day/night intensity profiles from a 75 kHz sonar were calculated
by Plueddemann(87) during the MILDEX cruise. MILDEX took place in October 1983 in the
same locale as the PATCHEX cruise in October 1986. Note the 10 dB variability near 200 m
depth.
c) Coherent sonar range-aliased intensity profiles as calculated from (2.6) are shown using
both the measured and simulated profiles in a). The 7.5 day PATCHEX average profile is also
displayed (at an arbitrary dB level), showing an overall slope more reminiscent of the simu-
lated data than the measured profile. This may be the result of the biota variability effecting
the hour-long measured profile, as mentioned above.
d) SNRr, was calculated from (2.5) for both the simulated and measured profiles. Discrepan-
cies are due to not modeling near-field effects and biota variability.
e) Rmax is varied in (2.5), which is equivalent to trying different pulse repetition rates (A).
This is plotted against SNRmaJC as calculated at r - Rm (where SNR is at its lowest). As A
increases there is less intensity allasing, and SNR improves.
f) Transmission frequency f, can also be increased, causing greater attenuation at far range,
and better SNR values. The nonlinear relationship is due to absorption being dependent
upon the frequency squared.
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Figure 2.4. A velocity field with vertical wavelength X propagates past a fixed range r.
The dark lihes are the true velocities, while the dashed lines are values contaminated by
range-aliased components. The range-aliased estimates are both phase and amplitude
shifted. A vertical wavelength of 37 meters corresponds to the maximum vertical range of
the sonar (Rmaxsin(O)).
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FIgure Z.S. a) The amplitude response of Fig. 2.4 is shown over a wide wavenumber range.
Maximum attenuation occurs when the first aliased return is 180" out of phase with the
desired return. The dark line is the response function for slant range equal to 15 m from the
sonar, and the light line is at 45 m (maximum slant range).
b) The amplitude response in a) is averaged over the wavenumber bands resolved by the
coherent sonar (bandwidth - 1/(maximum range)). The dark and light lines correspond to
responses at 15 and 45 m range respectively.
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Figure 2.6. The range-aliased response as a function of range is shown for vertical
wavelengths from 15-100 m. The dark lines represent the true velrcty profiles, while the
dashed lines are the estimates contaminated by range-aliasing.
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Figure 2.7. a) Three out of the four beams of the MPL sonar transmitted every 0.5 seconds.
The return signals of all four beams were recorded. The 'bump' seen at 145 m range in the
fourth (non-transmitting) beam is most likely a side lobe reflecting off the sea surface. The
sonar's depth was 145 m.
b) The same transmit configuration as in a), but now transmitting at a 50 ms repetition
period.
c) The return profile of beam I is subtracted from the other three beams in a), giving a meas-
ure of crosstalk level into the receive-only beam. All beams merge at far range since they
share a common noise floor.
d) Cross-talk is estimated from b). When all cross-beam contamination is also range-aliased.
the receive-only beam has an intensity value 10 dB below the other beams. When all four
beams are transmitting, any one beam will have approximately 10% of its total return con-
taminated by side-lobe contamination from the other beams.
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Figure 2.8 An average value of the autocorrelation function is shown based on 30 minutes
of data. A time lag of . 60 ms was used during the PATCHEX experiment.

31



J. T. Sherman

-3

_10-4"

c\J

DAYTIME ONLY

10.5 I I I

10-2 10-1  100

CPM

Figure 2.9 Vertical wavenumber spectra were computed from the 512 twenty minute aver-
aged profiles of the PATCHEX data cruise for both components of shear. Spectra were calcu-
lated from all profiles and from daytime-only profiles. The noise floor at high wavenumber
allow variance estimates to be made of the noise level for a single component of shear, giv-
ing a daytime value of 0.0049 1/s and average value of 0.0065 P's
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CHAPTER III

The Effects of Zooplankton Biomass Distribution
on the Precision of a Doppler Sonar

3.1 Introduction

Standard Doppler theory makes two suppositions regarding particle
behavior: Many organisms are present in the scattering volume, and they have a
mean velocity reflecting that of the true water motion. As Doppler sonar techniques
are applied to finer scale measurements in the open ocean, ensonified volumes
have been growing smaller. However, with small volumes, the number of scattering
targets may be few, resulting in both a non-uniform average over the scattering
volume, and the possibility of an inaccurate velocity estimate (when the biota are
actively swimming). Since fine-scale motions contain important high-frequency
components, it is imperative that the Doppler sonar's precision is accurately quanti-
fied.

As microstructure scales are approached, the statistical nature of the
acoustic-scattering particles must be considered. Specifically, the spatial and tem-
poral characteristics of these scatterers must be modeled to estimate the quality of
velocity measurements. This chapter specifically addresses the open ocean
environment, where zooplankton are expected to be the major contributors to
volume reverberation.

Determining reliable error bounds is complicated by the fact that the zoo-
plankton distribution varies not only with depth and geographic location, but also
temporally on scales from the advection time of a patch, through diurnal migration
cycles, to seasonal variations. The uncertainty in the spatial distribution of targets
and their swimming properties might be the limiting factor on making high-quality,
high-frequency time series measurements from a volume-reverberation sonar.

The zooplankton distribution problem is approached here by modeling
'pseudo-distributions' of targets based on biomass estimates from ocean observa-
tions. These are coupled to a backscattering strength model to produce estimates of
the number of 'acoustically significant scatterers' in a given ensonified volume. Per-
formance estimates can then be made based on computer simulations incorporating
a variety of estimation algorithms.

3.2 Modeling the Backscattered Signal
Let the sonar transmission be modeled as a boxcar pulse with duration r

and carrier frequency f.:

T(t) = S,,sin(21rfot) t<r(31
0t>r 31

As the pulse travels outward, it will ensonify a volume V, given by:

V(r)= {-_ -(r9) 2  (3.2)
2 14
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where c - speed of sound, 0 - full beam angle (narrow beam approximation), and r
- range along the beam. (3.2) is only valid for the far field (where spherical
spreading occurs), and for a radially symmetric beam.

Within this volume will be N individual organisms, which will backscatter
the transmitted pulse to varying degrees. Plankton are typically modeled as fluid-
filled spheres in the prediction of their acoustic scattering properties (Ander-
son(50)). Johnson(77) has modeled the backscatter strength ab for a sphere of
radius a to be:

A Ifoa 6

J b(a ) ---- 6 (3 .3 )
2 + 3(ka)4

where k - wavenumber (2-rf 0/c), and A, is a constant dependent upon the density
properties of the sphere. The backscatter function is shown in Fig. 3.1. Note ab

changes from an a6 response to a2 at about a - 0.1-0.2X, where X is the acoustic
wavelength at frequency f,, (X - c/f0 ).

The total backscattered return is given by:

R(r) = EO'b(aj)e (3.4)
j-I

where Oj - phase of the jth zooplankton, whose value is dependent upon the
particle's position. To know the characteristics of the return signal, both the
number of scatterers N(r) in the scattering volume, and their size distribution aj
must be known. This will determine if the sonar's signal is dominated by a few
large zooplankton, or is well distributed over many small scatterers. The approach
here is to estimate N(r) and aj using a biomass distribution model developed by bio-
logical oceanographers. Biomass distribution is defined as the amount of biomass
per unit volume contained within a size category (i.e. all the biomass of organisms
between 1-2 mm in size).

Marine biologists have done both theoretical modeling (c.f. Platt(85)) and
analysis of oceanic data sets (Rodriguez and Mullln(86a), henceforth RM86a) of
biomass distribution. RM86a calculated such a distribution for the North Pacific
Central Gyre, obtaining for macrozooplankton:

AB _ Aow .13  (3.5)
Aw

where w is the mean individual weight (pgC) of a size category with a weight spread
(w-Aw/2, w+Aw/2), and AB - biomass per unit volume (,4gC/m 3) for this category.
Ao is a measurement of overall biomass level, and is dependent upon the location
and its productivity. A surprising result of their study was that the power relation
(-1.13 term) exhibited only a small spread (-1.07-1.34) over various depth ranges,
seasons of the year, and diurnal variations. This result compares well with the Platt
theoretical model, which predicts a -1.22 slope.

(3.5) can be integrated to estimate the amount of biomass present between
two individual weights to obtain:

W2 A

B(wj,w 2) = fAow - 1' 3 dw w- 1 0 . 13 _ w2 0 . 13 )  (3.6)
WI
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This states that the sum of the biomass from organisms (per unit volume) which
weigh between w1 and w2 equals B(wl,w2).

If a geometric mean weight is defined as:

Wm = (w1w 2)' (3.7)

then the number of individuals (n) with weight wm in the ensonified volume V can
be modeled as:

n(w ,w,) =B(w,w ) V = A0V (wI' 13 - w2'. 3 )n . 1, 2 = Wm - A ww) (3.8)wM 0. 13 (wIwO)6

When n(wl,w2) - 1. V equals the minimum volume size at which one organism of
weight w, is likely to be found.

It is now possible to model the number of particles and their size distribu-
tion given a volume V. A starting weight for w, is chosen, and w2 is computed from
(3.8). thus giving wm for the first particle. The new value of w, Is set to the old w2,
and the above computation is repeated. This iteration process is continued until no
w2 exists such that (3.8) can be satisfied for n-1. This last step essentially defines
the largest organism expected to be found in the finite volume V. N particles have
now been computed with weights wm(j) which satisfy the biomass distribution as
given by (3.5).

It remains to convert wm(j) into an equivalent radius such that it can be used
in (3.4). (3.5) was computed in terms of carbon weight (/pgC) by RM86a. The radius
required is that of a sphere with an equivalent displaced volume of the organism.
How carbon weight relates to displaced volume will depend upon the type of zoo-
plankton and its size. It is theorized (Omori and Ikeda(84), and Wiebe et al.(75))
that the 'ideal' cubic relationship is expected:

4/3ra3 
- c1w (3.9a)

(carbon weight is simply proportional to the displaced volume by some constant cl
). However, Wiebe et al.(75) also give an empirical fit based on many data sets as:

4/37ra3(mm) = 1.36w. 808(gC) (3.9b)

This suggests that heavier organisms are actually smaller than predicted by the
ideal relationship. (3.9a) and (3.9b) can be rewritten to give:

a(mm) = 0.63wO-333(OgC) (3.1Oa)

a(mm) = 0.688wM127(pgC) (3.1Ob)

where cl was calculated such that (3.9a) - (3.9b) for a - 1 mm. RM86a argue that
Wiebe et al.'s empirical relation is not consistent with their oceanic data, which
varied through seven orders of magnitude in a, and is simply an artifact of measure-
ment technique (as also suggested by Wiebe et al.). Nevertheless, (3.10b) will be
used as an extreme bound for comparison.
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The only unknown left is the biological factor A0, which must be ascertained
from field data from each locale of interest. Due to diurnal and patchiness variabil-
ity, A, can vary by a factor of four even for the same site (Greenblatt(80), RM86b,
Fig. 3.7). Therefore, once a rough number has been estimated for an area, models
should be run for different values of A,.

3.3 An application of the Model
Marine Physical Laboratory at Scripps Institution of Oceanography has

developed a 164 kHz Doppler sonar which ensonifies 0.2-0.5 M3 volume. This
instrument has been deployed off the Zouthern California coast. Net tows have
been performed near the same locale by Greenblatt(80), who found the zooplankton
population to be dominated by copepods and euphausiids. which averaged 1-2
individuals/m 3 for the 4-8 mm class size category. By using Johnson's empirical
length-to-equivalent radius formula, this translates into 1-2 organisms/m 3 with a =
1.2-3.4 mm. Simulation of this biomass distribution yields a value of A. - 50

/pgC/m 3. which is within a factor of two of RM86a's value of 100 PgC/m 3.
The iteration process was run on (3.8) using the cubic relation of (3.10a). A

minimum length of 0.3 mm was used as the starting point, yielding a total of 136
individuals per 0.25 m3 with a size distribution as shown in Fig. 3.2.

The total return signal can now be computed from (3.4). There are two
quantities which are helpful in interpreting the return signal:

N
dF(aj) =b(aj) / -'Tb(ak) (3.11)

k-I

N
F(aj) = tb(ak) / Lb(ak) (3.12)

k-i k_1

where dF represents the fraction of the total return which particle aj contributes,
and F gives the fraction of the total return in which particles <aj contribute. These
are plotted in Fig. 3.3. Fig 3.3a shows that the largest individual contributes about
44% of th-, total return, the next individual 16%, etc. Fig. 3.3b shows that all parti-
cles <0.6 mm represent <10% of the total backscatter signal, while 80% of the
return is determined by the six largest organisms. Also shown in Fig. 3.3b is the
result of using Wiebe et al.'s relation (3.10b), demonstrating that the largest particle
is of smaller radius, and contributes only 25% of the total return.

The product AoV can be varied to explore the sensitivity of the results to
both volume reverberation size and total biomass present in the water. Plotted in
Fig. 3.4a is the number of largest organisms which contribute 80% of the return,
henceforth regarded as the number of 'significant scatterers.' It is seen that the
number of significant scatterers increases linearly with AoV. Shown in Fig. 3.4c is
the percent of the total return backscattered by the largest individual (or MSB, for
the Most Significant Bug). Also shown is the percent return from the two and three
largest organisms combined. Fig. 3.4b shows that the size variation of the MSB
encompasses the 0.1-0.2x, transition zone of Fig. 3.1. At low values of AoV, each new
individual added represents a backscattering strength near the a6 region, and thus
dominates the return. At higher values of AoV, the backscattering goes as a2 , and
the contribution from each new individual goes down. This is reflected in Fig. 3.4c,
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where the contribution of MSB has it's most rapid change through this transition
region. The variance in all three plots is contributed to the model's 'least count
noise' of computing plus/minus one extra organism before the maximum cutoff.

Besides modifying the ensonified volume size, the sonar designer can also
alter the transmission frequency f, . Fig. 3.5 repeats Fig. 3.4, but now as a function
of frequency (AOV is held constant). Again, the effect seen is the change in slope of
backscattering strength as a function of the largest individual present. Near 115
kHz, the dominant scatterer's size exceeds O.1x. Fig. 3.5c displays the required f.
to guarantee that the MSB >0.1x for a given A0V. A sonar designer working with a
known frequency and A, can estimate the volume required such that the size of the
largest expected individual lies in the a2 backscattering region.

3.4 Error Estimates
It remains to translate scatterer distribution into velocity variance esti-

mates. Precision and accuracy will be affected by how truly the individuals
represent the actual water velocity, and the manner in which the signal processing
algorithm reacts to the input signal. The effects of the algorithm can by tested by
taking the modeled biomass distribution, assigning each particle some normally-
distributed velocity about the mean, and doing a computer simulation using that
algorithm.

The use of the Rummier autocovariance method (a standard real-time pro-
cessing technique) has the interesting result that a marginal advantage is achieved
in precision by having fewer scatterers (App. B). This results from the fact that hav-
ing only one scatterer present provides a perfectly correlated signal, with degrada-
tion proceeding in a N/(N-1) manner after that. Fig. 3.6a displays results of com-
puter simulations for various values of AV, showing no dependence of velocity
variance on N. Standard deviation estimates from an oceanic data set with various
pulse widths (1/2, 1, 2 ms), show less than a 15% deviation with volume size (Fig.
3.6b). This factor of four variation in r would correspond to approximately twice
the number of significant scatterers (from Fig. 3.6), and thus does not provide a
broad range for verification. However, both simulation and actual data suggest that
having more scatterers present does not aid the processing algorithm itself.

The number of scatterers doe! play a role in providing a good spatial sta-
tistical average. If only one individual is dominant, then a point measurement some-
where in the scattering volume is obtained. This does not represent a true volume
average, and creates high-wavenumber aliasing problems in wavenumber spectra
estimates. Only by averaging many velocity estimates together, such that the
individual's position varies over the entire volume, can a spatial average be
obtained. However, if the dominant organism is selectively following some micros-
tructure feature within that volume, the averaged value will still be a biased esti-
mate of the true volume average.

Measured biota motion variance is of the order 1-4 (cm/s)2 (Fig. 3.7,
Plueddemann(87)), which is of the same order as the expected oceanic velocity
differences on a 1-10 m scale. Since variance is not reduced by having many scatter-
ers present, higher precision will only be obtained by doing either spatial or tem-
poral averaging on velocity estimates. Either approach will constrain the highest
wavenumbers (or frequencies) which can be measured.
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3.5 Summary
A modeling technique has been presented to estimate the statistical charac-

teristics of backscattering from a specified volume size and sonar frequency. This
approach is based on an empirically measured biomass distribution model which
agrees well with theoretical derivations. The results enable the sonar designer to
estimate the number of significant scatterers in a return signal, given the type and
size of organisms dominant in the deployment area. Due to the high variability of
zooplankton numbers and size distribution within patches, the above model only
provides the expected results on average.

For a small ensonified volume (such that the largest organism has a radius
less than 0.1X), the largest individual provides more than 50% of the total return
signal (Fig. 3.5). In contrast, Greenblatt(80) concludes that large scatterers do not
dominate the total signal. This results from Greenblatt working in the limit of an
infinite volume size, where scattering is expected from all size ranges.

The percent return expected from the largest individual can be used as a
guide to predict the amount of variance in the return intensity. For instance, for the
MPL sonar volume range, Fig. 3.4 suggests an intensity variation of 30-50%. Reason-
able bounds can therefore be placed on an 'anomalous' intensity return (i.e. due to
nekton swimming through the volume), and the data processed accordingly.

It was found that the number of scatterers had no important effect on the
Rummier autocovariance estimator. Computer-simulated velocity variance was
within 30% of actual input variance over a range of 10-870 individuals occupying
the volume, with no trend apparent. This implies increasing the ensonified volume
will not increase precision due to averaging over more scatterers. However, an
increase in the number of organisms will provide a better volume averaged velocity
estimate, thus decreasing the degree of aliasing in wavenumber.

Due to biota motion variance matching that of fine-scale motions, the true
ocean velocity field can only be separated from biota swimming by assuming that
the zooplankton's motions contain only high-frequency components, and time-
averaging to retrieve the background velocity field. However, this averaging results
in loss of high-frequency velocity information, which may, in the end, defeat the
scientific purpose of a high-resolution Doppler sonar.
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Figure 3.1. Johnson's backscattering madel is plotted versus radius. Note the change of
slope occurs between 0.1-0.2X.
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Figure 3.2. Simulation of size distribution is computed for a 1/4 m 3 volume with a
biomass level set equal to oceanic measurements by Greenblatt. Shown is the number of
individuals with radius equal to a±0.O5 mm.
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Figure 3.3. a) Estimates of individual backscattering strength as a fraction of the total
return are calculated for the distribution shown in Fig. 3.2. Assumed sonar frequency is 164
kHz ( - MPL sonar). Each cross-mark represents a single individual as calculated from the
simulation. The largest organism contributes 44% of the return, next largest 16%, etc. b)
Cumulative backscattering strength (the integral of a) ) is plotted for both the cubic relation
of carbon weight to displaced volume, and the empirical Wiebe relation. The cubic relation
places greater importance on the larger organisms, showing that 80% of the return can be
attributed to the six largest individuals, whereas the Wiebe relation calculates over two
dozen organisms comprising 80% of the return.
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Figure 3.4. a) As the product A0 V increases (for frequency - 164 kHz), the number of larg-
est organisms contributing 80% of the total return (the number of 'significant scatterers')
also rises. The variance in the plot is an artifact of the model. b) As AoV is varied, the frac-
tional size (a/X) of the largest individual (or Most Significant Bug (MSB)) passes through the
0.1-0.2X transition zone of Fig. 3.1. Correspondingly, in c), the fraction of the total return
from the largest individual shows a decrease in rate of change for a>0.2X. Also shown is the
percent of the total return for the two and three largest organisms combined.
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Figure 3.5. a) The number of significant scatterers is calculated for various frequencies.
Biomass level is held constant to the value used in Fig. 3.2. Also shown is the frequency
where X reaches a value such that the largest organism's radius is equal to 0.1 and 0.2N. b)
The contribution from MSB is calculated for varying frequency. Again, it is seen that the per-
cent of the total return from the largest individual is a strong function of the change in
power relation In Johnson's model, c) displays the frequency necessary such that a(MSB) -

0.IX for a given AoV.
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Figure 3.6. a) Normalized standard deviation for the Rummier autocovariance technique is
calculated using the backscatter strength distribution as shown In Fig. 3.3 for varying values
of AoV. No trend is apparent, with estimated values having less than 30% variation, and
averaging 10% higher than the input value. b) Velocity standard deviation estimates are
given as a function of range for three different pulse widths (1/2, 1. 2 ms). Again, no
apparent dependency on pulse width (and therefore number of organisms) can be seen.
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Figure 3.7. The time series of intensity (dark line) and velocity standard deviation is
comprised of 512 points of 20 minute averages over all beams and range for the 7.5 day
PATCHEX data set. Strong correlation is seen with the diurnal migration. Nighttime variance
levels are higher than during the day, suggesting that the biota are more active at night.
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CHAPTER IV

A Statistical Comparison of Upper Ocean Shear and Strain

4.1 Introduction

This chapter explores the spatial and temporal characteristics of the vertical
shear and strain fields on vertical scales of 3-600 meters as measured during the
1986 PATCHEX cruise. Historical observations and theories of the vertical
wavenumber shear spectrum are reviewed. This is followed by a description of the
PATCHEX experiment, along with a presentation of the shear and strain data sets.
Frequency-wavenumber spectra are estimated, and consistency tests with linear
theory are investigated. Contamination effects due to horizontal and vertical advec-
tion are modeled to help resolve discrepancies. Richardson number functions are
computed for various 'advection-corrected' spectra. Results are compared with
other proposed spectral models, followed by speculation on the possible role of
caustics on spectral shape.

4.2 Historical Observations of Shear Spectra

Garrett and Munk(72) hypothesized a model of the frequency-wavenumber
spectrum for the internal wave field which was consistent with various data sets,
and used linear theory to relate the assorted spectral forms to each other. This
model has been fine-tuned over the years (c.f. Munk(81), Desaubies and Smith(82))
to better agree with newer, more detailed observations. One of the major assump-
tions of this model is that the frequency and wavenumber dependency of the spec-
trum is separable, i.e. E(w,m) - f(w)*g(m), where m - vertical wavenumber, and .; -
frequency. In their model, m is related to the horizontal wavenumber k through the
linear dispersion relationship:

M - [N 2 W (4.1)

where N - Vaisala frequency, and f - Coriolis frequency. Gargett et al.(81) have
further hypothesized a 'universal' shear spectrum based upon observations from
three different types of shear profilers during the FAME experiment (Fig. 4.1). This
model has a flat spectral shape out to vertical wavenumbers of order 0.1 cpm,
where it then breaks off to a m - 1 form. At scales smaller than 1 m, the spectral form
is irregular, dominated by the intermittent presence of mixing. Gargett et al.
hypothesize that at low wavenumbefs, where linear internal wave theory is
appropriate, the shear spectrum's energy level will scale in a WKB fashion as N2.
They also suggest that the change in slope at 0.1 cpm is a depth-independent quan-
tity, referred to as the 'cut( ff wavenumber' mc. This is thought to occur at the
scale where the Inverse Richardson Function IRF(m,) - 1, with IRF(m) defined as:

IRF(m) = 6 f o(m)dm, (4.2)
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where 6(m) is the shear wavenumber spectrum.

Comparison of other, more recent, vertical wavenumber spectra from the
literature (Fig. 4.2) provides some collaboration, although no specific agreement
with the Gargett et al. proposed spectrum. Included in this collection are the Gar-
gett et al.(81) measurements, data from Toole and Hayes(84) in the near-Equatorial
region, Northeastern Pacific data from Pinkel(85), and California coastal measure-
ments by Duda(86). Also shown are the results from this chapter. Most observa-
tions do show a nearly-white spectrum at long wavelengths, with a break in slope at
about 10-20 m, going to a m- 1 to m- slope.

When the spectral energy levels are normalized to the same value at 0.1 cpm
(Fig. 4.2b), it is seen that Gargett's spectral shape is a fair model of most of the
observations. Past studies have not done time-series analyses on fine-scale shear,
giving no insight into which frequencies play a dominant role at high wavenumbers.

4.3 Description of PATCHEX Experiment
During October 1986 the research platform FLIP participated in the

PATCHEX experiment. The experiment site was at 34* N, 127* W, approximately 300
miles west of Point Conception, California (Fig. 4.3a). Numerous instruments were
deployed from FLIP. Two profiling CTD's monitored the density field in the top 560
meters of the water column. Four long-range Doppler sonars (using pulse-to-pulse
incoherent processing) measured the oceanic velocity field to depths in excess of
one km. A four-beam short-range Doppler sonar (using pulse-to-pulse coherent
processing) measured fine-scale shear from 150-180 meters in depth. A full set of
environmental sensors was also deployed. Each instrument was operational for
various lengths of time: from a little over one week for the short-range sonar (this
was its first full-deployment) to over three weeks for the CTDs and long-range
sonar.

FLIP was kept on station by a two-point mooring. Her relative bearing
remained constant to within ± 15* for the entire cruise, as shown in Fig. 4.4. Also
shown is wind direction, and wind speed. Light winds were experienced for most of
the cruise.

4.4 Short-Range Sonar Data : Fine Scale Shear
The short-range Doppler system consisted of a four beam Janus configured

sonar located 145 m below the surface (Fig. 4.3b). A technical description of the
instrument can be found in App. A, with a discussion of its performance given in
Chapter 1. The sonar transmitted a 1 ms pulse downwards at a 550 angle every 60
ms, giving it 60 cm vertical resolution over 30 m depth (The first 6 meters of the
return were not usable due to degradation of the signal by near-field effects). To
remove the effect of Doppler-smearing of the signal by instrument motion, velocity
differences in range, rather than velocity itself, were computed every two seconds.
These velocity-difference estimates were subsequently averaged in time and
recorded onto tape every 30 seconds. During PATCHEX, a 7.5 day time series was
recorded at the 145 m depth. Measured standard deviation (Fig. 3.7) suggest that
along-beam velocity estimates were precise to within 0.8 cm/s rms for each 30
second record during the day. Variability was -50% higher at night, and roughly
twice as high during the dawn/dusk migration times.
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The 7.5 day data set was divided into 512 twenty minute average profiles,
with each profile comprised of 50 independent estimates in depth. The Janus confi-
guration consists of two pairs of back-to-back beams. The pairs are orthogonal,
allowing both horizontal components of vertical shear to be computed by subtract-
ing back-to-back beams.

To accurately estimate the vertical shear low wavenumber variance (to pro-
vide comparison with the long-range sonar's data set), while still allowing the ease
of using a FFT routine, each depth profile was linearly interpolated to give 64 total
points in depth. If the profiles were instead padded with zeroes to give 64 points,
then the Fourier transform would be computed over 38 m in depth (instead of the
actual 30 m). The lowest wavenumber resolved by the FFT would not correspond to
the actual resolution of the sonar, providing inaccurate comparison to the long-
range sonar. The linear-interpolated profiles were also low-pass filtered to remove
energy in wavenumbers > 0.4 cpm. The final data set consists of a 64x512 array in
depth-time, allowing for easy Fourier decomposition into wavenumber-frequency
space. The resulting time series for both components of shear are shown in Fig 4.5.

Vertical wavenumber spectra of shear were computed for both the total
cruise and for daytime-only profiles (Fig. 4.6). It is seen that the daytime-only spec-
trum has roughly half the noise level as the spectrum of all profiles. The spectra
exhibit a break in slope at ;: 16 m wavelength, with a m- 1 slope at higher
wavenumbers, which agrees well with the Gargett et al.(81) model. However, when a
modeled white noise floor is subtracted from the spectrum, a m-2 slope emerges at
the higher wavenumber. Since these spectra are computed from time-averaged pro-
files, the data may be suffering from spatial smoothing caused by the vertical dis-
placement and straining of the high-frequency internal wave field within each
twenty minute averaging period. lsopycnal displacement based on CTD casts (taken
once every three minutes) has a variability of 1.2 m over 21 minute periods. It is
expected that the shear field has been displaced 1.2 m during the averaging time,
thus acting as a low-pass spatial filter on the data. If this is modeled as a boxcar
filter in depth of width 1.2 m, then the wavenumber spectrum should be divided by
the 2n function to retrieve the original shape. This is also shown in Fig. 4.6, where
there is now closer agreement with a m- 1.5 slope.

4.5 Long-Range Sonar Data: Large Scale Shear
During PATCHEX, long-range sonar data were collected for 22 days using a

75 kHz four-beam Janus configured system, with beams pointed downwards at a 52°

angle. A technical description of this system can be found in Plueddemann(87).
Pulses of 30 ms duration were transmitted, giving a vertical range resolution of 18.5
m. The return signal/noise ratio exceeded unity at depths in excess of 1 km. How-
ever, to avoid possible velocity biasing problems which occur at low signal-to-noise
(Plueddemann(87)), only the first 600 m of depth was used in the present analysis.
For comparison with the short-range sonar, only a subset of the total 22 day data
run was used. 512 18-minute averaged shear profiles were computed, to give 6.4
days of data overlapping the short-range sonar data set in time. The two com-
ponents of the shear field were computed by subtracting back-to-back beams (as
done with the short-range sonar). A low-pass filter in wavenumber was applied to
remove energy above 0.03 cpm. Corrections were also applied in wavenumber to
correct for the measurement effects of sampling with a volume-averaging pulse, and
using the first-differencing technique to estimate shear.
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4.6 Shear Wavenumber-Frequency Spectral Analysis

Given both long-range and short-range sonar data sets, the wavenumber-
frequency spectrum of shear can be estimated over 3-600 m vertical scales. Rotary
spectra were formed by Fourier transforming in both space and time the complex
data set (u + iv), where u,v denote the two components of the shear field. This
allows the clockwise, counterclockwise, upward, downward, and total spectral
energy to be analyzed.

Wavenumber-frequency spectra were computed for both the long-range and
short-range sonars by breaking down the 512x64 data arrays into seven 128x64
arrays (seven 38.4/46.6 hour time periods for the long-range/short-range data sets),
with each array overlapping another by 50% in time. A triangular window was used
in both space and time. All seven spectral estimates (four independent) were aver-
aged together to increase precision. The wavenumber-frequency spectra were sub-
divided into six bands: 44-16, 16-8, 8-4, 4-2, 2-1, and 1-0.7 hour periods. The aver-
age spectral energy density was calculated for each frequency band. Before results
are presented, the attributes of WKB scaling are discussed.

4.7 WKB Scaling
The shear field is thought to consist of linear waves at low wavenumbers,

with nonlinear waves (and perhaps 'vortical mode' contamination) at higher
wavenumbers. The low wavenumber, 'linear regime' of the shear spectrum should
scale in a WKB sense. Proper scaling for the 'nonlinear regime' at high wavenumbers
is unknown. The Gargett et al.(81) model reflects these two features by having a
high-wavenumber cutoff independent of depth (non-WKB-scaling) and a low-
wavenumber energy level which scales as N2 (as per WKB theory).

Since strong nonlinearities are expected at 0(60 m) vertical scales and
shorter (Holloway(80), Munk(81)), it is not clear whether the long-range sonar data
set should be WKB-scaled. WKB scaling of linear internal waves suggests that both
amplitude and wavenumber will vary as functions of the Vaisala frequency N. A
linear wave packet should have its vertical wavenumber vary by N, with its shear
variance being proportional to N3. For a signal with a finite bandwidth, this ampli-
tude variation is comprised of two parts: There is a spectral energy density level
that varies as N2, and a changing of the spectral bandwidth that scales with N.

The Gargett et al. model does not assume that the high wavenumber cutoff
scales with N. This model therefore predicts a total shear variance which scales as
N2 (instead of N3, as predicted from WKB theory). The long-range sonar's shear vari-
ance is plotted versus depth, along with N2 and N3 for the cruise-average, and his-
torical Vaisala frequency profiles, in Fig. 4.12. The best fit is for the shear variance
scaling with N2, where N is based on the historical Vaisala frequency curve (Fig.
4.11b). However, the cruise-average N3 does follow the shear variance well for
depths greater than 200 m.

Figs. 4.7a and b demonstrate the resulting wavenumber spectra obtained in
depth when WKB-scaling is either ignored(a) or applied(b). The non-linear regime's
spectral density is assumed to scale with N2, as per Gargett et al. model. The low-
pass filter applied to the long-range sonar forces the 0.03 cpm depth-independent
high-wavenumber cutoff. The depth-averaged non-WKB-stretched spectrum accu-
rately depicts the high-wavenumber cutoff, but distorts the low-wavenumber
response. The linear regime's energy band is centered at the same wavenumber
that defines its peak at the average Vaisala frequency value of N. Let the bandwidth
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of the linear regime equal 6m - m2 - ml. WKB theory suggests that both m2 and m,
vary by N with depth. The ratio mZ/im therefore remains constant. When 6m is
displayed on a logarithmic plot, it appears constant in width, although its absolute
value is proportional to N. By WKB-stretching (Fig. 4.7b), the nonlinear regime's
high-wavenumber cutoff now appears variable in depth (or similarly, the long-range
sonar's low-pass filter is now variable in depth). The depth-averaged spectrum has
now 'smeared' the high-wavenumber cutoff, while maintaining the integrity of the
linear regime. The !inear regime's peak is centered at the same wavenumber as the
non-WKB-stretched spectrum.

The long-range sonar data set was processed in three different formats. No
WKB scaling was implemented with one set (- non-WKB). Another data set had only
WKB amplitude-scaling applied, such that the shear variance was constant in depth
(- WK3-A). Amplitude was scaled using the historical Vaisala frequency profile, and
assuming that the shear variance scaled with N2 . The final data set had both WKB
amplitude-scaling and WKB-stretching in depth, so that a linear internal wave should
appear with a constant wavenumber at all depths (- WKB-SA). Time series of both
WKB-A and WKB-SA data sets are shown in Figs. 4.9 and 4.10.

To compare the effects of WKB-scaling, wavenumber-frequency spectra were
computed for all three data sets (see above section for details on spectral process-
ing). Results are shown in Fig. 4.8, based on the long-range sonar's average Vaisala
frequency of N - 2.6 cph. The non-WKB and WKB-A spectra agree well. As in Fig.
4.7b, WKB-SA has distorted the high-wavenumber cutoff of the filter. Major
disagreement between WKB-SA and WKB-A occurs only for the inertial band (16-44
hour periods), where WKB stretching has decreased the bandwidth by a factor of
two.

WKB scaling of the spectrum to a different depth requires an adjustment in
energy level and wavenumber. The Gargett et al. model hypothesizes just a shift in
energy level for wavenumbers > 0.01 cpm (the lowest wavenumber resolved in their
measurements). The long-range spectral estimates are readjusted using both tech-
niques in Fig. 4.8b. Spectra are rescaled from N - 2.6 cph to N - 5.3 cph (the aver-
age value for the short-range sonar's depth range). Shear spectral density levels are
rescaled by a factor of (5.3/2.6)2 - 4.2. The WKB approach rescales all wavenumbers
by (5.3/2.6), which shifts the spectrum over by a factor of two. For comparison,
spectral estimates from the short-range sonar are also shown.

In later sections, shear spectra are compared with estimates from vertical
strain data, which spans 0.5 to 1/256 cpm in vertica, .,avenumber. The strain's high
wavenumber band (which is well into the nonlinear regime) is not expected to fol-
low WKB-stretching. To preserve the high-wavenumber spectral shape, the strain is
not WKB-stretched. To compare strain and shear spectral estimates fairly, the WKB-
stretched long-range spectrum is not used. This allows either the non-WKB or
WKB-A spectrum to be used. Both are nearly identical in form. The non-WKB spec-
tral estimates will be used in future discussion. This decision is based primarily on
the fact that uncorrected WKB profiles have larger amplitudes at the shallower
depths. This automatically weights the high wavenumber spectral estimates in the
depth region at which the short-range sonar was located.

4.8 Discussion of Shear Spectra

The non-WKB long-range sonar spectrum is compared to the short-range
sonar spectrum in Fig. 4.1Sa. The short-range spectral energy levels appear
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approximately 40% lower than the long-range level. This may be from the effects of
range-aliasing of the short-range sonar causing attenuation in wavenumber (Chapter
2), or due to WKB rescaling of the amplitude overestimating the variance at shallow
depths (as seen in Fig. 4.12). Also shown in Fig. 4.15a (light lines) are the long-range
spectral levels optimally matched to the short-range levels (long-range spectrum
multiplied by 0.6). This optimized composite spectrum will be used in future dis-
cussion, although it's absolute variance may be 40% low of reality.

Both sonar systems are contaminated by noise. The long-range sonar esti-
mates velocity, such that its noise will appear white in velocity wavenumber spec-
tra. and with a m+2 slope in shear spectra. In Fig. 4.15b, a modeled noise spectrum
equivalent to arm - I cm/s after six minutes of averaging (which equals the noise
level observed from frequency spectra) has been removed. The short-range sonar
estimates shear, so its shear spectrum will have a white noise floor (as seen in Fig.
4.6). The short-range noise level subtracted in Fig. 4.15b corresponds to the level
seen in Fig. 4.6.

Fig. 4.15 shows a spectral shape band-limited in wavenumber. As frequency
increases, the wavenumber bandwidth decreases, with the center of the band mov-
ing to higher wavenumber (the 1-2 hour period energy is limited to 10-30 m
wavelengths, while 4-8 hour periods broaden to 10-50 m bandwidth). The inertial
period band (16-44 hr) is energetic throughout a 50-150 m bandwidth. The WKB-
stretched spectrum (Fig. 4.8a) indicates that the actual inertial bandwidth may be
closer to 50-80 m (assuming these inertial waves behave linearly). The clockwise
inertial band also displays vertical asymmetry at low wavenumbers (Fig. 4.16), with
the downward energy being twice that of the upward energy.

The counterclockwise spectra do not exhibit any strong vertical asymmetry,
and tend to show a bandlimiting process that changes its wavenumber location with
frequency. That is, 1-2 hour periods have 10-20 m bandwidth, while 16-44 hour
periods have a 20-50 m bandwidth.

When the shear variance is integrated over all frequency bands, producing a
cumulative wavenumber spectrum (Fig. 4.17), the end result is a vertical
wavenumber spectrum energetic over 10-200 m vertical wavelengths, which agrees
well with the observations of Gargett et al.(81). It is also seen that long
wavelengths are dominated by inertial motions, with higher frequencies contribut-
ing more at high wavenumbers.

4.9 CTD Data : Vertical Strain
FLIP was instrumented with two CTD packages, one profiling between 0-300

m in depth, the other from 260-560 m. The drop rate was 3.8 m/s. A complete cycle
was completed every three minutes. Sea-Bird Electrcnics CTD instruments were
deployed, with 5x10 mmho/cm, and 5xl0 °C resolution, corresponding to 5x10 -7

gm/cm 3 density precision. To avoid wake disturbances caused by the package
itself, data were recorded only while the instruments were descending.

Salinity spiking was reduced by matching the conductivity time response
characteristics to those of the temperature sensor. The method used was similar to
Williams(85), and is outlined in App. D. Briefly stated, a low salinity-gradient region
was chosen, such that the conductivity sensor was mainly responding to tempera-
ture. Cross-spectra were calculated between dC/dz and dT/dz, giving a phase and
amplitude transfer function. This correction was applied to dC/dz for each profile.
In addition, a low-pass filter having a 3 dB rolloff at -0.5 cpm was applied to both
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dC/dz and dT/dz. Salinity, potential temperature, and potential density were then
calculated for every profile.

The mean density profile for the PATCHEX cruise is given in Fig. 4.1 la. A
set of reference density values, separated by I m in depth in the mean profile, was
chosen for subsequent isopycnal following. This set of density values defines 560
isopycnal surfaces, each uniquely identified by p( ), where p is its density, and ,- is
its mean depth. An isopycnal displacement can be defined as:

(t = Z(p()),t) - q (4.3)

where Z(p,t) - depth of p( ) at time t.
For comparison with shear spectral estimates, a subset of the CTD data was

used. 512 twenty-one minute average estimates were computed in time, with -
spanning 150-406 m in depth, giving a 512x256 array. Computed displacements arp
shown in Fig. 4.13.

The strain field is fully described as a tensor, representing three-
dimensional straining of all three components of the displacement field. The CTD
data set only allows for an estimate of the vertical straining of the vertical displace-
ment field, henceforth referred to as the vertical strain.

Vertical strain can be estimated from either an Eulerian approach (fixed
depth reference frame), or a semi-Lagrangian method, where isopycnals are fol-
lowed, and strain is estimated from the vertical separation between surfaces (Fig.C. 1):

-(S) s dq/d" = /( +±) -± () (4.4)6

where 6- - mean separation between isopycnals (- 1 m). The Eulerian definition of
vertical strain is (c.f. App. C):

qzd,/dz =- d (4.5)
P dz

where F, - mean density gradient, and p' - fluctuation density about its mean (p(t) -
+ p'(t) ). Thus Y1. represents the fractional change of the density gradient from its

mean value.
??, can be expressed in terms of , to first approximation as (Desaubies and

Gregg(8 1), App. C):

-[1 +(4.6)

where 7( (t))+s(t) - z.. Note for small strain, 7, - I,. Also, (4.6) will fail when the
mean density is not locally linear (tlz is no longer negligible). rtz's temporal charac-
teristics are determined by multiple , since different isopycnals are advected past
the fixed depth zo in time. The relation between tiz(t) and rt,(t) depends upon the
correlation of q() with depth, and how quickly q(t) varies in time. Therefore, there
is no simple translation between the frequency dependence of qz and r?,. Both q, and
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1/, were estimated for the PATCHEX data set, with time series shown in Fig. 4.14.

4.10 Vertical Strain Frequency-Wavenumber Spectral Estimates

Wavenumber-frequency spectra were computed for both q, and 1,, and are
shown in Figs. 4.18 and 4.19. ' and qi differ most strongly at high wavenumber,
where il, exhibits the same band-limited behavior as the shear spectrum. The semi-
Lagrangian spectrum shows the near-inertial band rolling off with a m-3 2 slope in
wavenumber at 10 m scale, while the higher frequencies are more nearly white in
wavenumber. The question then arises on which spectrum most truly represents
the actual oceanic field. ri, estimates are not contaminated by vertical advection of
finestructure, and should be more accurate (although both will still be contaminated
by horizontal advection effects). It is worthwhile to better quantify the spectral
response to finestructure contamination.

4.11 Finestructure Contamination of a Generalized Background Field

Finestructure contamination of a fixed-depth sensor has been addressed by
many authors (e.g. Phillips(71), Garrett and Munk(71), and McKean(74)). It is typically
assumed that the finestructure field behaves like a 'sheet and layer' model, exhibit-
ing a Poisson probability distribution. However, Desaubies and Gregg(81) have
pointed out that observations of 'sheet and layer' finestructure may just be an
artifact of internal wave straining. The approach here is to model the finestructure
as some background spatial field 9 which can be represented by its Fourier com-
ponents:

M
e(x,y,z) = 3eisin(aix+O1y+mz+Oj) (4.7)

i-I

where al and 31 are the corresponding wavenumber components for the x and y
directions, and Oi is some random phase.

An observer at a fixed position X " (xo,y.,z0 ) will see e being advected by
internal waves, with a velocity field U(x) - (u,v,w). At any time t, the amount of
advection will be:

t

x(To,t) = f u(T,.t)dt
0

t

y(Xo,t) = f v(xot)dt (4.8)
0

t

z(3o.t) - f w(x0 ,.)dt (-- 7 (o0 t)).
0

This assumes that straining of e by the internal wave field is minimal. This is not
realistic at high wavenumbers (where measured strain is large), but does allow for
easy simulation. It will also be assumed that a - 3, with a2 + 32 - k2, and that the
aspect ratio 6 =_/m is constant << 1. (4.7) reduces to:
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M
E(T0,t) = -e Osin[m1(z(t)-z 0 + 6(x(t)-x. + y(t)-y.) )+(bi. (4.9)

i-i

Velocity estimates from the long-range sonar, coupled with vertical dis-
placements measured from the CTD system (both averaged over 60 m in depth),
were substituted into (4.8) to estimate the advected distances expected at 150 m
depth. Rms advected distances were 500 m in the horizontal, and 6 m in the verti-
cal. The time series from (4.8) were substituted into (4.9), along with assuming eO -
constant, to simulate the observed background signal. Forty vertical wavenumber
components were used, varying from 0.01-.4 cpm, in 0.01 cpm increments. e was
Fourier transformed in (w,m) space, and summed into frequency bands, such that
the display is similar to Fig. 4.15. The results are shown in Fig. 4.20 for 6 - 1/25,
and 1/100. At low vertical wavenumbers, e's variance is mainly comprised of low
frequency motions. As m increases, more high-frequency contamination is observed.
At high wavenumbers, E appears white in frequency.

The cumulative wavenumber spectrum (variance integrated from 1 to 44
hour periods) demonstrates that the observed E is attenuated only at low
wavenumbers. The amount of low-wavenumber attenuation is dependent on the
aspect ratio. If the high-wavenumber variance of the shear spectrum is solely due
to finestructure contamination, then ei(m) must have the same cumulative spectral
shape and energy level as shown in Fig. 4.17. The finestructure vertical
wavenumber spectrum was modeled with mo slope out to 0.07 cpm, and m- slope
at higher waverumbers. Results are shown in Fig. 4.20c for 6 - 1/100, along with
the measured shear spectrum from Fig. 4.15. Both spectra agree well for m > 0.06
cpm.

By not allowing any vertical displacement, the effects of only horizontal
advection can be explored. Calculations were repeated with the same input spec-
trum used in Fig. 4.20c, and 6 - 1/100. Results are displayed in Fig. 4.20d. Com-
parison with the semi-Lagrangian strain spectrum (Fig. 4.19c) shows disagreement
over all wavenumbers. This could result from finestructure strain variance being
much less than the finestructure shear variance. This would imply that the Eulerian
strain spectrum should also show less contamination. The similarities between the
Eulerian strain and shear spectral shapes tend to contradict this argument, although
absolute energy levels must also be considered. This can be further clarified by
investigating relationships between shear and strain, and comparing with predic-
tions from linear internal wave theory.

4.12 Consistency Tests of Linear Theory
Linear internal wave theory predicts that the shear and strain variance

should be related by (App. C):

N2  _ (w2+f 2 ) N2

where U2 - (au/az)2 + (av/az)2 - vertical shear variance. Let 4'(w,m) equal the meas-
ured ratio of N2 U2, such that /q, indicates how well the observed field agrees
with linear theory. Estimates were computed over the same frequency bands as in
Fig. 4.15, and averaged over eight different wavenumber bands. Results are shown
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in Fig. 4.21, using both U, with and without modeled noise removed. It is seen that
at low wavenumbers (>100 m scales) there is fair agreement with linear theory. q,
slightly overestimates the amount of strain expected by linear theory in the near-
inertial band over all wavenumbers, while underestimating at all other frequenci s
at higher wavenumbers. This underestimation indicates that the observed motions
have less strain per unit shear than linear theory predicts. For linear theory to be
correct, this implies that the high-frequency waves observed include lower fre-
quency waves (or perhaps vortical mode) that have been advected past the sensor
by the large scale field. If range-aliasing has attenuated the observed shear vari-
ance by 40%, then the true strain/shear ratios will be 40% lower than shown in Fig.
4.2 1, and disagreement with linear theory is even greater.

Another consistency test is to compare clockwise(cw) and
counterclockwise(ccw) variances from the rotary spectra. Linear internal wave
theory predicts (c.f. Muller et al.(78)):

ccw W-f (4.11)
cw L w+f I

Measured values are shown in Fig. 4.22, where it is seen that at high wavenumber
(>1/64cpm), near-inertial waves exhibit nearly a magnitude more counterclockwise
variance than expected. For the ccw/cw ratio and linear internal wave theory to be
correct, this would imply high-frequency waves are being Doppler-shifted to near-
inertial frequencies, while near-inertial waves (which have a strong sense of rota-
tion) are not Doppler-shifted to high frequencies. For this result to agree with the
above qz/U. measurements, the extra shear variance seen at high frequencies must
come from vortical-mode contamination, while the strain seen at the inertial fre-
quency at high wavenumbers must be mainly comprised of high-frequency strain
Doppler-shifted to near-inertial frequencies. It is worthwhile to consider the effect
of vertical advection on rotary spectral estimates.

Consider a rotary velocity field defined by M inertial waves of varying verti-
cal wavenumber being observed at a fixed depth - zo:

(u+iv)(z0 ,t) = m A-ei(Miz(xo"t)ft+Oj) (4.12)
J-1

where z(c0 ) is the vertical advection displacement, as defined in (4.8), f - Coriolis
frequency, and Oj is some random phase. It is seen that if mjdz/dt > f, then the
observed rotational sense will be counterclockwise instead of clockwise. (4.12) was
modeled using z(x0 ) averaged over 60 m in depth, Aj equal for all j, and mj ranging
from 1/512-1/16 cpm (M-64 components). This simulated time series was pro-
cessed in the same manner as the actual shear data, with the modeled ccw/cw ratio
shown in Fig. 4.22. Results suggest that the measured ccw/cw ratios are contam-
inated at high wavenumbers by vertical advection, and therefore do not serve as a
good indicator of linear theory, and should not be used as a cross-check with the
strain/shear consistency test.

4.13 Shear Spectral Models
Given that the wavenumber-frequency spectrum of Fig. 4.15 is contaminated

by smaller-scale waves Doppler-shifted to different encounter frequencies, it is
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worthwhile to try to reconstruct the 'actual' spectrum. One approach is to assume
that YI, is a correct representation of the strain field, and that the linear prediction 41
is accurate, allowing U. to be calculated from (4.10). This 'semi-Lagrangian
equivalent' shear spectrum is shown in Fig. 4.23c, and reflects the q,(Wm) spectrum.
There are two faults to this approach. Since 77, - 0 when w - f, the true amount of
inertial shear will be underestimated, even if the spectrum of ??, is absolutely accu-
rate. Furthermore, if the observed , spectrum has high-frequency strain Doppler-
shifted to near-inertial frequencies, then this will mistakenly lead to an overesti-
mate of near-inertial shear. The 'semi-Lagrangian' shear spectrum does not provide
the truth, but merely an alternative view, which is hopefully less contaminated by
the vertical advection of finestructure.

Another approach is to assume that the measured ratio 4(w,m) can be
modeled as:

N2 2(w,im)4'(w,7) U )(4.13)U2C ,M)+FC U Cf, m)

where F(w) is the fraction of the inertial band Doppler-shifted to frequency W. (4.13)
states that the measured 7z is correct, and that the measured Uz is comprised of
both the true amount of shear for w, plus an inertial component (where 7, = 0)
which has been Doppler-shifted to w by advection. Since ?7z(w)/Uz(w) can be com-
puted from '1 (again assuming linear theory), F(W)U2(f) and U2(w) can be calculated,
allowing reconstruction of the 'uncontaminated' spectrum. This technique removes
the 'extra' observed shear variance from the high frequency bands and redistributes
it into the near-inertial band (thus retaining the same cumulative spectrum). Results
are shown in Fig. 4.23e. By assuming all 'contamination' is from near-inertial waves,
Fig. 4.23e overestimates actual inertial energy, while underestimating other fre-
quency components (which will also be Doppler-shifted). T his can be viewed as the'extreme inertial' spectrum. In actuality, the near-inertial band stays within a factor
of two of the 'semi-Lagrangian' spectrum. The tidal frequency band begins to
disagree at 50 m scale, with higher frequency bands deviating at even larger scales.
This might be the result of the 'extreme inertial' model not redistributing energy
into mid-frequency bands.

Both the 'semi-Lagrangian', and 'extreme inertial' spectra have assumed a
linear relationship between q, and U. This will be correct for weak nonlinearities,
where waves still behave linearly, although energy is being transferred to other
wavenumbers and frequencies. However, this will not be the case for strongly non-
linear motion, where the relationship between strain and shear is unclear.

4.14 Richardson Function Estimates

An inverse Richardson Function (IRF) can now be calculated in the spirit of
Munk(81) and Pinkel(85), where:

IRF(w.m) = - o O(w,"n) dw dm (4.14)

and 6(w,m) is the shear spectral density at frequency w and vertical wavenumber m.
IRF is simply the integrated shear variance measured over a specified frequency and
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wavenumber range normalized by the Vaisala frequency. An average Vaisala fre-
quency value of 5.3 cph was used, based on the value derived from the CTD data
set. IRF was calculated across the increasing frequency bands, and plotted in Fig.
4.24 using the three different shear spectra shown in Fig. 4.23. Results show that
up to 1.4 cph and 3 m scales, IRF - 0.7-0.9. Both the 'extreme inertial' and 'semi-
Lagrangian' spectral models show approximately half the variance in the inertial fre-
quency band. In contrast, the Eulerian spectrum shows high frequencies contribut-
ing most of the variance at high wavenumbers.

Since frequency estimates only go up to 1.4 cph, it is difficult to estimate
the total shear variance expected over all frequencies. An imprecise estimate is
attempted with the Eulerian spectrum by extrapolating the curve out to the Vaisala
frequency. d(IRF(m))/dw is linearly extrapolated out to 5.3 cph. Beyond 0.3 cpm, it
is assumed that O(m) has a m- 1 slope, such that

lRF(m)=ln(m)+C0 .

where C, is chosen to match the value at 0.3 cpm. It is seen that IRF(N,m) Z 1 at 0.2
cpm, and approaches IRF-4 at m = 2-4 cpm, corresponding to a vertical scale of
1/4-1/8 m. Since this extrapolation uses the shear spectrum with no noise removal,
it overestimates IRF at high wavenumbers.

The extrapolated high-frequency variance corresponds to computing more
inertial variance in the 'extreme inertial' model, with the end result being both spec-
tra having the same IRF(N,m) curve (simply by energy conservation being enforced
upon the model). The 'semi-Lagrangian' IRF can only agree with the above if more
inertial variance is added, since any other frequency would require more 77, to have
been observed in other frequencies (assuming linear theory). Both of these extra-
polated models would still predict that the near-inertial shear contributes most of
the total variance at fine scales.

4.15 Discussion

Garrett and Munk's spectral model assumes that the wavenumber spectral
shape is independent of frequency. This is certainly not the case for the Eulerian
spectrum, but is a more appropriate description of the 'semi-Lagrangian' spectrum
for m < 0.1 cpm, and the 'extreme inertial' spectrum for m < 1/50 cpm. This is
more apparent when the different wavenumber bands are viewed in frequency (Fig.
4.23b,d,f), where the semi-Lagrangian spectrum has nearly W-2 slope for all
wavenumber bands.

The frequency-integrated wavenumber spectrum (Fig. 4.17) agrees well with
the Gargett et al.(81) model. The spectrum begins to roll off at a 15-20 m scale (mc

0.5-0.7 cpm), with a m- 1 to m - 2 slope at higher wavenumbers, depending upon the
noise correction scheme. This compares with their estimated values of m c - 0.1
cpm, with a m- 1 high-wavenumber slope. The measured spectrum also suggests
that a low-wavenumber rolloff for m<0.01 cpm should be included. The estimated
inverse Richardson Function at the cutoff scale is 2: 0.3. This does not support the
Gargett et al. hypothesis that IRF(m,) - 1. but is more in line with Munk's(81) predi'-
tion of IRF(m,) - 0.5. Both the Eulerian and semi-Lagrangian spectra suggest that m,
is frequency-dependent, with higher frequencies cutting off at higher wavenumbers.

McComas and Muller(81) predict a shear spectral shape with a m* 1 slope out
to some cutoff wavenumber. and an -' depender,.e in frequency, assuming weak-
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interaction theory (weak nonlinear resonant interactions). The Eulerian spectrum
has an ml-m 2 slope for m < 0.01-0 05 cpm, depending upon the frequency band.
The frequency dependence varies between , - 2 and -l for m < 0.05 cpm. The
semi-Lagrangian and extreme-inertial spectra have a m+1 slope only for the inertial
band for m < 0.01 cpm. They display an w-2 slope for m < 0.01 cpm. This might be
an indication that the parametric subharmonic instability (PSI) mechanism is affect-
ing near-inertial waves for m<0.01 cpm, with stronger nonlinearities being more
important at higher wavenumbers and frequencies. The PSI mechanism describes
the interaction between an internal wave and two higher wavenumber waves with
half the original frequency. PSI transfers energy into the high-wavenumber, near-
inertial band.

It is of interest to investigate the effect of caustic zones and critical layers.
A critical layer occurs when the background flow velocity equals the horizontal
phase speed of the internal wave (Ukz) - w/k). As a wave approaches the critical
layer, refraction occurs, causing a shift to higher vertical wavenumber, a lower
intrinsic frequency (the frequency as measured relative to the background flow),
and a focusing of the energy.

When the background flow is from another internal wave (referred to as the
'background' wave), a 'caustic zone' is a more appropriate parameterization. A
'caustic' is a term from ray theory which describes the condition when neighboring
rays cross, invalidating the slow-variation principles originally assumed. This
occurs when the vertical group velocity of the 'smaller' wave (-Cg(small)) equals the
vertical propagation speed of the background wave (-Ca(large)), with the result
being amplitude intensification of the smaller wave while it is being refracted
through the caustic (Broutman(86)).

Broutman(86) investigates the effects of a 'small' (high wavenumber) inter-
nal wave propagating through a large-scale background inertial wave. Broutman
defines :) as the intrinsic frequency of the small wave, as measured relative to the
background velocity field. 02 is defined as the frequency measured by an observer
moving at a vertical velocity - Ca(large) (so the background inertial wave appears
stationary), such that 0 remains constant (the observer has no horizontal velocity).
The intrinsic frequency measured along a ray is given by:

= Q2 - kU + iCa(large) (4.16)

where k and m are the horizontal and vertical wavenumber of the small wave..-, k,
and m are related to each other through the linear dispersion relationship of (4.1).
For mid-frequencies (f<<<<N), C,(small) is equal to -2/m, and D - Nk/m (Broutman
shows this is a reasonable assumption for 2f<L<N/2). The condition that Cg(small)
- Ca(large) leads to the expected vertical wavenumber at the caustic (-m,) occur-
ring at a background velocity Uca, where:

inca = (Nk/Ca(large)) y2, Uca = £/k - 2(NCa(large)/k) y' .4.17)

The condition that the rms velocity of the background wave _Urm - fl/k insures
that caustics will occur, independent of CO(large). For no background wave present,
n - D, and for mid-frequencies. :2/k - N/r. Let m. equal the vertical wavenumber
before distortion by the background wave. Caustics are guaranteed of occurring
when:

Urms > ,Q/k = N/too for f<<f2<<N. (4.18)
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Let b(m) denote the shear spectrum, so that the velocity spectrum is
estimated from l(rm)/m 2. The velocity variance can be calculated from:

Urms(m) = fo(m)/m dm (4.19)
0

where Urr (m) - rms velocity associated with all scales larger than m- 1. By using
the shear wavenumber spectrum from PATCHEX, Fig. 4.25 is obtained, which shows
Ur, = 6 cm/s for m > 1/50 cpm. This indicates that caustics will occur for m o >
1/40 cpm at N - 5.3 cph. (4.18) is the same criterion Holloway(80) used to define
when strong nonlinearities are to be expected, so it is not surprising that the
results agree.

As the caustic is approached, energy is amplified, such that there will be a
peak at ca. If inca is expressed in terms of the undistorted vertical wavelength (m),
(4.17) reduces to:

inca = (Omo/Ca(large))%. (4.20)

The value of inca should increase by fOl (assuming m. - is frequency independent).
Using the bandwidth peak of the 2-4 hour period band of the semi-Lagrangian spec-
trum, peaks for the other frequencies are computed from (4.20) and plotted on Fig.
4.23c. Good agreement is seen. Broutman and Young(86) argue that, for the strength
of the oceanic background velocity field, a much broader band of waves interact,
and the peak wil! no longer be centered about inca. The w response of the spectral
peak therefore may not be the result of caustic interactions.

Broutman(86) indicates that wave breaking due to amplification at a caustic
is not considered likely if the initial wave is not already close to breaking. Since IRF
< I for m < 0.2 cpm, it is not clear what the final role caustic zones play in internal
wave energy dissipation. Given a broad-band background wave field with random
caustic zone locations, short wave propagation (m>1/40 cpm) might best be
modeled as a random-walk phenomena, similar to Cox and Johnson's(79) diffusion
model caused by triad interactions. At 0(5 m) scales, where IRF approaches unity,
caustics may cause enough amplification to create 'whitecapping' events, with more
complete mixing occurring at smaller and smlIer scales. This suggests the typical
Isaturation' model, such as proposed by Munk(81), where the shear magnitude con-
trols dissipation, and thus the total energy level of the internal wave spectrum.

4.16 Summary

Vertical shear data were analyzed from two different Doppler sonars cover-
ing 3-600 m vertical range. Vertical wavenumber shear spectra display band-limited
energy between 10-50 m wavelengths which narrows at higher frequency bands.
The shear spectrum was compared with estimates of vertical strain from CTD data
covering 256 m in depth. Vertical strain was estimated from both a fixed-depth
reference frame (Eulerian z), and a semi-Lagrangian viewpoint, where strain was
estimated following isopycnals (- I). The Eulerian strain spectrum exhibits the
same characteristics as the shear spectrum, whereas the semi-Lagrangian spectrum
;s quite different.

This discrepancy led to an investigation of spectral contaminatioa caused
by advective Doppler-shifting of the signal by the low-wavenumber internal waN 2
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field. Computer simulation of a background field with a m -' dependency for m >
0.07 cpm, and ml slope for m < 0.07 cpm produced a spectral shape similar to the
Eulerian spectrum at high wavenumbers. Calculations of the same spectral model
contaminated only by horizontal advection e,timated a spectrum which differs from
the measured semi-Lagrangian strain spectrum. If this difference is due to fines-
tructure strain having less variance than finestructure shear, then the Eulerian
strain spectrum should also show less contamination. However, the observed spec-
tral shapes of both spectra are similar.

Linear internal wave theory predicts a vertical strain/shear ratio dependent
upon frequency. The estimated ratio from the measured data show more shear vari-
ance than expected at high frequencies and wavenumbers. The observed motions
are either not linear internal waves, or the Eulerian spectrum is contaminated by
waves Doppler-shifted by the low-wavenumber internal wave field. An attempt to
compare counterclockwise/clockwise shear variances was found to be unsuccessful
at high wavenumbers due to vertical advection contaminating the sense of rotation
in time. It remains ambiguous whether the extra high-frequency shear variance is
from a Doppler-shifted inertial wave, or some high-shear, low-strain finestructure,
being advected past the sensor.

Two other spectral estimates are made assuming that the linear theory's
strain/shear ratio is correct, even though nonlinearities are expected at high
wavenumbers. The 'extreme inertial' model assumes that the measured shear spec-
trum is contaminated by inertial waves, while the q, spectrum is correct (since
Doppler-shifted inertial waves have q,-O). The amount of contamination is com-
puted, and added to the inertial band. This model overestimates the amount of
near-inertial energy. The 'semi-Lagrangian' spectral model assumes that the q7 spec-
trum is correct, and uses linear theory to estimate the shear spectrum. Since q€ - 0
at the inertial frequency, the semi-Lagrangian model cannot accurately estimate the
inertial shear variance. Both models incorrectly assume that none of the observed
near-inertial strain is from high frequency waves Doppler-shifted to the inertial fre-
quency. The two models actually agree well for the inertial band, and disagree at
progressively higher wavenumbers with higher frequency. The Eulerian, semi-
Lagrangian, and extreme-inertial spectra provide three different perspectives cf the
vertical wavenumber shear spectrum, with each view suffering from its own set of
deficiencies.

Estimates of an Inverse Richardson Function(IRF) based on Lhe semi-
Lagrangian spectral model show half of the shear variance is from near-inertial
waves, even at high wavenumbdrs. This would enable low Richardson number
regions to persist for inertial period time scales, possibly leading to mixing patches
which show activity over inertial time periods, as observed by Gregg et al.(86). A
simplistic extrapolation of IRF out to the Vaisala frequency and high wavenumbers
suggest Ri - 1/4 on a 1/4-1/8 m vertical scale.

The frequency-integrated wavenumber spectrum compares well with the
Gargett et al.(81) model. It is white out to 16 m scale, and then rolls off with a m -1
to m -2 slope, depending upon how noise and finestructure contamination are
modeled. However, the cutoff wavenumber (1/16 cpm) occurs at a IRF 0.3, not 1,
as suggested by Gargett et al.(81), implying that the Richardson number is not the
deciding factor on wiiere the spectrum begins to roll off.

Investigation of caustic zones indicate that caustics should occur for m
>1/40 cpm scales. The semi-Lagrangian shear spectrum demonstrates an )'" spec-
tral )eak dependence. Broutman's(86) formula for the caustic wavenumber also has
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a . dependence. This may be purely coincidental, since Broutman and Young(86)
argue that the formula is not valid for the typical strength of the oceanic velocity
field.
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Figure 4.1. Gargett et al.(81) based a universal shear spectral model on measurements
from the FAME experiment. The mo slope at low wavenumbers has its energy level scale in a
WKB fashion as N2. The break in slope at m c :z 0.1 cpm is thought to be a depth-independent
parameter occurring when IRF(m c) - 1. The m - 1 slope is then followed by an intermittent
high-wavenumber region, dependent upon mixing events.
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Figure 4.2. a) is a composite of available shear spectra from the literature. Included is
Gargett et al.(81, original data set from the FAME cruise. Toole and H-ayes(84) measurements
are near- equatorial. Evans(82) is also from the FAME cruise. Pinkel(85) is from the same
location as the PATCHEX cruise. Duda's(86) measurements are from three different locations
off the Southern California coast. PATCHEX marks the results outlin-d in this chapter. Data
has been normalized by the given Vaisala frequency for each site. b) is the same data set,
now arbitrarily normalized so that the energy level is the same for all spectra at 0.1 cpm.
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Figure 4.3. a) The PATCHEX 1986 cruise was located at 34' N, 127' W. b) FLIP was config-
ured with two rapid profiling CTh's, a Janus -conf igured long-range incoherent sonar, a
Janus-configured short-range coherent sonar, and two surface wave/mixed layer sonars (not
shown).
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Figure 4.4. FLIP's heading, wind speed, and wind direction are shown for the PATCHEX
cruise. Highlighted are the 7.5 days when the short-range (coherent) sonar was operational.
Figures are courtesy of Chuck Lumbardo of University of Washington.
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Figure 4.6. Vertical wavenumber spectral estimates are computed from the short-range
sonar. The 'all profiles' curve is computed from all 512 profiles during the 7.5 day time
period. 'Daytime profiles' is comprised of the daytime-only profiles, between the day/night
migration times. 'Daytime minus noise' is based on the daytime curve minus a modeled
white-noise floor level. This has been further corrected for vertical advection by applying a
boxcar filter of width 1.2 m (1.2 m - rms vertical displacement on a 20 minute time scale),
represented by the 'daytime/c 1 c(x)' line.
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Figure 4.7. a) The vertical wavenumber shear spectrum is comprised of both a linear
(solid line) and nonlinear regime (dashed line). Gargett et al. hypothesize that the high-
wavenumber cutoff is depth-independent, with the nonlinear regime's spectral density scal-
ing as N2. The long-range sonar's 0.03 cpm low-pass filter forces this to be the case. The
linear regime has a spectral energy level that varies as N2 , and wavenumber that scales as N.
As N decreases, the linear band moves to lower wavenumbers. The depth-average spectrum
has the linear band centered at the average N wavenumber value, and accurately depicts the
high wavenumber cutoff. The linear band's shape has been distorted. b) If the spectra in a)
are WKB-stretched, so that the linear regime has the same bandwidth and center wavenumber
at all depths, then the high-wavenumber cutoff becomes variable. The depth-average spec-
trum accurately estimates the linear band, but has now distorted the high-wavenumber cut-
off.
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Figure 4.8. a) Three versions of the long-range data set (WKB-SA, WKB-A, and non-WKB, as
defined in text) were Fourier transformed in both space and time. Frequency spectral esti-
mates were averaged into different time-period bands. As in Fig 4.7, the WKB-stretched data
,et (WKB-SA) ha: di:z:orted Ihc h~gh-wavernumber cutoff. Each frequency band has been
offset by a factor of 2 for easier comparison. b) The spectra in a) are computed for an aver-
age Vaisala frequency of 2.6 cph. To adjust to the depth of the short-range sonar (N - 5.3
cph), WKB theory conjectures that both energy levels must rise, and wavenumbers be
increased. The Gargett et al. model suggest that only energy levels should increase. Both
hypotheses are shown in b). Also shown is the spectrum as computed from the short-range
sonar.
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Figure 4.9. a) and b) are time series for both components of shear as estimated from the
long-range sonars. Amplitudes are WKB-corrected in depth. A four hour running-mean-filter
has been applied in time.
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Figure 4.11. a) 7.5 day mean oj profile from CTD data is plotted, along with b) the average
Vaisala frequency profile. Also shown in b) is the curve fit to the historical data set. per Wil-
liams(85).
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Figure 4.12. The N2 and N3 values of Fig. 4.11b are plotted versus depth. Also shown is
the long-range sonar's average shear variance with depth. WKB theory predicts shear vari-
ance should scale as N3, while Gargett et al.,81) claim shear scales with N2.
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Figure 4.13. lsopycnal displacement time series (with A 2 hour running-mean-filter
applied) displays a dominant low-modal tidal frequency.
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Figure 4.14. The Eulerian (a) and semi-Lagranglan (b) strain time series have a running-
mean-filter of 4 hours in time and 20 m in depth applied.
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Figure 4.1S. The composite wavenumber-frequency spectrum includes both the long-range
and short-range sonar estimates. Average spectral density levels are shown for six bands
44-16, 16-8, 8-4, 4-2. 2-1, and 1-0.7 hour periods. Long-range data is averaged over 3
wavenumber estimates, incre, ng its spectral precision as compared to the short-range
sonar, a) shows the long-range sonar's non-WKB spectrum and the short-range sonar spec-
trum, with energy levels as estimated (dark lines). The light lines are the non-WKB spectral
levels reduced by 40%, giving the best fit to the short-r ige data. b) is the resulting spec-
trum when noise floor estimates are removed (m+2 slope for long-range sonar, m0 slope for
short-ran~ge sonar).
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Figure 4.16. Rotary spectral estimates are displayed for a)c! :'.::vise, downward energy
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Figure 4.17. lntegr:'..on of energy across frequency bands yields a cumulative vertical-
wavenumber spectrum, with the top curve representing total variance between 0.7-44 hour
time periods. a) includes noise, while b) has modeled noise removed.
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Figure 4. 18. a) downward, b) upward, c) and combined (m,w) spectra based on fixed-depth
(Eulerian) strain are shown with the same frequency bands as described in Fig. 4.15. d) is
the integrated variance over frequency. Spectral estimates have been logarithmically-
smoothed in m, with a bandwidth equal to 6m - ±O.lm.
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Figure 4.20. (mw) spectra are computed based on a background field 'white' in
wavenumber being advected past a fixed sensor by the internal wave field. The 'cumulative'
lines are the frequency-integrated (1-44 hour periods) wavenumber spectra. They have been
offset for easier visual display. a) has 6 - 1/25, b) 6 - 1/100, and c) 6 - 1/100, with the back-
ground field having a m ° slope for m < 0.07 cpm, and a m -1 slope for m > 0.07 cpm. The
dashed lines are the measured shear spectra, as per Fig. 4.15a. d) The same background
field in c) is now only horizontally advected, to simulate what the semi-Lagrangian strain
field might see.
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Figure 4.21. The measured ratio of strain/shear variance is divided by the ratio predicted
by linear theory. Therefore a value of 1 means perfect agreement, > I too much strain, <1I too
little strain to agree with linear theory. Estimates are averaged over wavenumber bands to
provide better precision. In b), the shear variance has estimated noise levels removed.
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Figure 4.22. a) measured counterclockwise/clockwise shear variance ratio, with the solid
curve being the prediction from linear theory. Values have been averaged over various
wavenumber bands, and shows disagreement with linear theory at high wavenumbers. b) A
purely inertial shear field, with equal energy distributed between S12-16 m vertical
wavelengths, is vertically advected past a fixed sensor by the measured low-wavenumber
isopycnal displacement time series. The estimated ccw/cw ratio is displayed from this simu-
lated data set, showing that the vertical advection has contaminated the sense of measured
rotation. r)isagreement in a) from linear theory can therefore be explained by vertical
advection contamination.
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Figure 4.23. Shear (m,w) spectra are averaged into eight different wavenumber
bands(5 12-256,256-128,..4-2 mn wavelengths), a) is the Eulerian spectrum based on Fig. 4.15a.
c) is computed from the 'semi-Lagrangian' model, and e) is from the 'extreme inertial' model.
b). d). and f') are the same spectra, but now viewed with frequ_..1 .y on the x axis.
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Figure 4.24. Estimates are shown of the Inverse Richardson Function, based on Fig. 4.23.
a) uses the Eulerian spectrum, and also displays an extrapolated curve out to the Vaisala fre-
quency. b) is derived from the 'semi-Lagrarg'an' spectra] model, while c) is from the
extreme inertial' spectrum.
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Figure 4.25. a) Rms horizontal velocity is estimated, with energy integrated up
wavenumber m. b) Given Urms(m), ("n) is calculated such that the horizontal phase speeo
(k/k) - Urms. For internal waves with (.,,) to the right of this line (Munk's(81) compiiant
region) caustics are highly probable, while waves with (.,,m) to the left (Munk's intrinsic
region) should move fast enough to avoid caustics.
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APPENDIX A

Technical Description of the MPL Coherent Sonar

A. 1 Hardware

The MPL coherent sonar was developed to investigate fine-scale shear in the
upper ocean from the research platform FLIP. An illustration of the instrument is
shown in Fig. Al. The instrument is configured as a four beam janus system, with
each beam oriented downwards at a 55° arile from the azimuth. Each beam con-
sists of a transmit and receive transducer pair (both of identical design) oriented in
a T configuration. Each transducer has a 1 x 3° main lobe. The 'T' geometry gives
a composite beam pattern of 1 x 1. Pertinent dimensions are given in Table Al.

The instrument is suspended from a 0.8" diameter electro-mechanical cable
such that its depth can be adjusted to the desired level. Deployment is from a boom
mounted on FLIP approximately 10 m above the water (geometry is shown in Fig.
A2). Although the sonar was built to go to 1 km, the system is presently con-
strained by the length of cable, giving it a maximum depth of 145 m. To avoid side
lobe interference from FLIP (which draws 90 m in its vertical position), the instru-
ment is typically deployed near its 145 m maximum.

The sonar transducers are mounted to a pressure case which contain3 the
receiver pre-amp electronics (which amplify the signal by approximately 60 dB), and
the positional sensor electronics. Positional sensors include a compass, two
accelerometers, a pressure sensor, and temperature sensor. Receiver pre-amps are
required to eliminate noise piLkup problems between the instrument and electron-
ics located in the lab on FLIP. The instrument package does no processing, allowing
easy debugging of the system from topside.

Located in the lab are the transmit electronics, the receive amplifiers (giving
another 30 dB of gain), mixers (to remove the carrier frequency), low pass filters,
A/D converters, and processing computer. Processing is done on a Motorola VME
system 1000, with graphics display and backup recording on a HP 217 system. A
block diagram of a generic Doppler sonar system is shown in Fig. A3.

A.2 Instrument Motion Estimates
FLIP's motions create both horzontal and vertical movements of the pack-

age. FLIP has a broadband response to wind, currents, and waves, resulting in angu-
lar and translational motions. The coherent sonar package has its own response
characteristics to the dynamics of FLIP, which varies with the sonar's depth and
environmental conditions.

Instrument motion causes Doppler shifting of the return signal. The
bandwidth associated with this instrument motion must be estimated to calculate
the overall velocity variance. The MPL Doppler sonar first-differences veiocity in
range once every two seconds, and then averages these estimates. This removes
instrument motion with periods greater than two seconds, limiting the bandwidth
to frequencies greater than 0.5 Hz.

Instrument motion bandwidth is estimated from a 38 minute data set of the
positional sensors. The data was recorded at a 10 Hz sampling rate, with sea
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conditions representative of the PATCHEX data cruise. Spectral analysis is
employed to obtain information of what frequency motions are dominant, and to
estimate the amount of total variance above 0.5 Hz. Variance is also calculated over
two second time periods, and averaged over the 38 minute data set. The difference
between the two variance estimators is due to the spectral integration leaving out
all low frequency information, and thus underestimating the actual variance.

Vertical motions can be derived from the pressure sensor. The pressure
signal due to surface waves experiences an exponential rolloff with depth, with the
e-folding distance being a function of wave period. At 145 m depth, a 20 second
period wave has its pressure attenuated to 2S% of its value at the surface, a 10
second period to 0.36%. 8 second period to 0.04%, etc. High-frequency pressure
fluctuations at 145 m depth represent the true vertical displacement of the instru-
ment package. This signal can be first-differenced in time to produce vertical ve!c-
city estimates. Spectra of both vertical displacement and velocity are shown in Fig.
A4. Also shown are plots of the integrated variance between a given frequency and
the Nyquist sampling frequency (- 5 Hz). The narrow-band high frequency sources
(above 1 Hz) are probably due to cable strumming. Fig. A4 shows a vertical velocity
standard deviation of 1.6 cm/s for all frequencies greater than 1/2 Hz. This agrees
with the value of 1.6 cm/s obtained from the variance calculated over the two-
second time periods. The dominant 26 second period ene:gy peak corresponds
well to Rudnick's(64) computed vertical resonance period of 27 seconds.

Estimating horizontal motions from accelerometer data is more compli-
cated. The accelerometer signal is comprised of instrument acceleration plus the
tilt angle of the sonar. For high-frequency motions, where tilt angles are small com-
pared to accelerations, the signal can be interpreted as pure acceleration. At low
frequencies, where accelerations are quite low, the signal can be interpreted as pure
tilt. Worse case values can be obtained for both tilt and acceleration by assuming
that the accelerometer signal is comprised entirely of one or the other. Accelera-
tion estimates can be integrated to give values of horizontal velocities. Spectra, and
integration of spectra, are given for both tilt and velocities for both accelerometers
in Figs. AS and A6. The worse case tilt values are extremely low (.05 ° rms). Horizon-
tal velocity estimates give 0.55 cm/s rms for both x and y accelerometers combined.
The velocity standard deviation for frequencies>0.5 Hz decreases to 0.1, cm/s.
Since much of the variance comes from frequencies just lower than 1/2 Hz, the
estimated standard deviation from two-second time blocks is increased to 0.3 cm/s.

Analysis of compass data shows motions dominated by low frequency oscil-
lations, with less than 0.1 rms rotation for frequencies above 1/2 Hz (Fig. A7). Stan-
dard deviation based on the two-second time period give an rms rotation of 0,3* .

For a 1° beam angle, this implies thirty percent signal decorrelation every two
seconds due to instrument rotation.

Due to the deployment cable being constructed with a double-armored
opposite-lay stainless steel outer wire, the instrument experiences very little long-
term rotation. This is seen in the complete time series of the PATCHEX cruise(Fig.
A8f), where compass direction varies by less than ± 15° over the 7.5 day time span.
Also shown are the time-series records for the rest of the positional sensors.
Instrument depth varies by less than 25 cm, most probably due to FLIP tilting from
wind and ocean currents. The temperature sensor reflects the internal tide signa-
ture. The low frequency tilting of the instrument is of order 0.1X, with possible
causes being 'dragged' through the water by FLIP drifting on her two-point moor,
and by currents acting on the deployment cable.
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Total velocity variance along the beam due to instrument motion will be
equal to:

a = (.Y,,tsin(O))1 + (OhorizCOS(0)) 2

where o - angle of the sonar with respect to the azimuth - 55 ° . Substitution gives
a[ - 1.3 cm/s. The major contributer is from vertical motions, which the pressure
spectrum (Fig. A4) suggests comes from FLIP tilting in response to surface waves,
plus possible cable strumming at higher frequencies.
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MPL Coherent Sonar Specifications

Instrument Dimensions

Height (top of cage) ................. 1.5 m

Maximum width ...................... 1.8 m

W eight (in air) ......................... 272 kg

Transducer Panels Information

height ....................................... 56 cm

width ....................................... 20 cm

beam width ............................. 1 x 3 degees
(composite transmit/receive .... 1 x 1 degrees)

Angle of panels wrt vertical .... 55 degrees

PATCH1EX Transmission Information

Transmission frequency ........ 164 kHz

Pulse duration ........................ 1 Ims

Instantaneous power/beam .... 300 watts

A = repetition period ............. 60 ms

Sampling Information

sampling rate ............................ 1 kHz

Number of ranges sampled ...... 60

Ambiguity Velocity value ...... 3.8 cm/s

Table Al. The MPL coherent sonar specifications are given for its configuration
during the PATCHEX experiment.
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Figure Al. The MPL coherent sonar is shown in its four beam JANUS configuration. Beams
are pointed downwards at a 55" angle. Each beam consists of a transmit and receive trans-
ducer, arranged in a T configuration. The fourth beam (which faces into the page) is hidden
from view by the beam facing out of the page.
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FLIP: PATCHEX configuration

Lat. 34 N

Long. 127onW

mixed layer

-50 rn deep

soon--rr e onar1 kmn ran,e

'upper' CTD

55° 0-300m

'coherent', 
-> m de t

30mrange 'lower' CTD
1.5 m resolution 280-560 m

Figure A2. The coherent sonar is deployed from a boom off the research platform FLIP,
typically at a 145 depth. Shown is the configuration of FLIP during PATCHEX.
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Figure A3. A typical sonar system operates In the following fashion: A master timing dev-
ice (the controller) provides the synchronization needed for the various system components,

controlling the transmission of the sonar pulse, and the sampling of the receive signal. A
signal generator forms the transmission wave form, and provides the in-phase and quadra-
ture reference signals for heterodyning the return signal. The power amplifier boosts the
transmission signal to the required energy level for the sonar. This pulse propagates
through the ocean, undergoing spreading and absorption losses, while also scattering off of
particles along the way. This backscattering, or volume reverberation, propagates back to
the receiver, where the signal is boosted through the pre-amplifier before making its way to
the mixers. The mixers, using the waveform from the signal generator, remove the transmis-
sion frequency by heterodyning, leaving just the complex Doppler-shifted signal. This signal
goes through low-pass filters to remove out-of-band noise, and is then sampled by an
analog-to-digital converter, where it can finally be processed by the computer using the
chosen algorithms.
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Figure A4. a) The pressure spectrum shows possible cable strumming at high frequency,
along with a lower frequency (1/26 Hz) response, which is characteristic of FLIP's resonant
response. b) The Integrated variance values shows the sonar movilag up and down -5 cm
rms over the thirty-eight minute time span, with the sonar only moving -0.25 cm rms for fre-
quencies above 1/2 Hz. c) The pressure signal was first-differenced in time to give vertical
velocity estimates. This spectrum shows that cable strumming now contributes most of the
velocity signal. d) Integrated variance shows -1.6 cm/s rms vertical velocities from motions
above 1/2 Hz.
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Figure AS. The x (E-W direction) accelerometer is interpreted as both pure tilt(a) and pure
acceleration. Accelerations can be integrated to give horizontal velocities(c). b) and d) show
that rms tilt values are less than 0.04 ° , while rms velocity - 0.49 cm/s for all frequencies.
and 0.12 cm/s for frequencies above 1/2 Hz.
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Figure A6. The same as Fig. AS, but now for the y (N-S direction) accelerometer. Rms velo-
city estimates are lower than the x axis, giving 0.25 cm/s for all frequencies, and 0.06 cm/s
for frequencies above 1/2 Hz.
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Figure A. The compass spectrum is dominated by low-frequency motons, which

correspond to 7" rms over the thirty-eight minute time span.
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Figure AS. Time series for all sensors is shown for the 7.5 day PATCHEX data run. Each
point corresponds to a forty minute average, with 256 total points plotted. FLIP was two-
point moored, and the major (10) heading changes seen in e) reflect re-tensioning of the
mooring lines.
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APPENDIX B

The Effect of Scatterer Distribution on the

Precision of the Rummier Autocovariance Estimator

By heterodyning the return signal of (3.4), the carrier frequency can be
removed, thus giving:

R(t) = L b(aj)eJ t  - Ro(t)eie(t) (B. 1)

where N - number of individuals in the ensonified volume, with a size distribution
such that the jth organism has radius aj and backscattering strength cb(aJ). The
phase information 6j can be divided into three components:

Oj(t) = 2x(xoj + Vt + vj'(t)) (B.2)

whre oc is the - avenumber of the transmission frequency, x0j is the individual's ini-
tial location, V represents the mean velocity of all scatterers within the volume, and
vj'(t) is the organism's time-dependent variance from V. O(t) represents a weighted
average of all oj, and is the phase available at the processing end to estimate the
Doppler shift (do/dt).

The Rummier autocovariance method estimates d9/dt by computing the
complex autocovariance

C(-) = <R*(t)Rtt+,)> (B.3)

where . is the time lag (- sampling period for an incoherent sonar, or the transmis-
sion repetition period for a coherent sonar), and * denotes the conjugate. The velo-
city estimate is obtained from

Q= 4--arg[ C(,%) (

The effect of a finite number of scatterers on V can now be investigated. It
is instructive to begin by assuming ab(aJ)=l, and V=vj'=O for all j ( all scatterers are
of equal size with no mean velocity or variance). The estimate of C(A) for a single
time lag sample is:

C(A) = Z ei 2 (xok-xoJ) (B.5)

Note for each ei 2K(x k- x J) there exists its complex conjugate pair e i2
K(X0,

j- X~k)
Thus the summation of (B.5) has no imaginary component, and V - 0, as expected.
fhe result is independent of N.
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The next step is to assign each particle som- normally distributed velocity.
Let the volume-averaged velocity V - 0, although each scatterer is moving at vi.
This is even further simplified if it is assumed that vj':vj'(t). That is, for the time
involved in estimating C(A), each particle's velocity can be assumed to be constant.
For instance, this would be appropriate for descibing a steady-state shear flow
through the ensonified volume. (B.3) then becomes:

N N iK
C(A) = E Ze i2p(Xok-XoJ)e i2K(Vk(t+A)-vJt) (B.6)

j-I k-i

N 2e(,' N N Xok-.-j)e2.(v k v j' ) t e i 2- v k'
- e""' + E Se \akJe K/ek
j-I j-1 kq'j

The first term (when j-k) is the self-correlated component of the signal. The first
term consists of the sum of N normally distributed phases, and on average will be
equal to Ne-(64A)2 /2, where C2 - velocity variance. The second term represents

cross-products between scatterers. Due to the (e i 2
K

v k'A ) component of the second
term, a complex conjugate pair no longer exists. The second term consists of a N(N-
1) summation of randomly distributed phases, giving it an average amplitude of
(N(N-1))2 with some random phase orientation. The second term can be viewed as
the noise component due to uncorrelated cross-product terms, while the first term
is the desired signal. Therefore a signal-to-noise ratio can be defined as:

SNR- NI e_(A)2 _ N for a<< I . (B.7)

The implication is that that it is marginally better to have fewer individuals present,
with the limiting case being one scatterer giving perfect correlation. If vj' is time-
varying, the second term obviously still stays uncorrelated, while the first term will
be degraded in value even more. However, the N/(N-1) relation will still be correct.

The last step is to substitute the modeled values of N and aj from Chapter 3
into (B.1), assign each particle a random value of x0 j and a normally distributed
value of vj', and do computer simulations of C(a) and V Fig. 3.6b shows standard
deviation estimates for varying values of total biomass present, which corresponds
to varying N from 10 to 870. The number of 'significant scatterers' present and the
percent return from the largest individual are given in Fig. 3.4. Estimated standard
deviation values are within 30% of the expected value, and average 10% higher in
value. No trend is apparent with varying N.

In summary, the Rummler autocovariance technique shows no strong prefer-
ence to how many scatterers are present, and reasonably estimates the simulated
variances input to the model.
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APPENDIX C

Review of Linear Internal Wave Theory

C.1 Equations of Motion
For an incompressible, inviscid fluid, the equations of motion are:

ut + uu, + vuy + wu' - fv = -a,/ (C.1)

vt + uv x + vvy + wv, + fu =-Cy/

Wt + uw x + VWy + WWz + pg/i = -8z/

Pt + Up + VPY + WPz = wpN/g

Ux + Vy + Wz = 0 .

Subscripts refer to differentiation (u, du/dt), f - Coriolis force, N - Vaisala fre-
quency, P - mean density, and p and p are the density and pressure perturbations
from their mean values. The equations are linearized by assuming that the pro-
ducts of the zeroth order terms are small compared to the terms themselves, and
therefore negligible, reducing (C.1) to:

Ut - fv = -ax/ (C.2)

vt + fu = -a

w, + pg/l = -az/

Pt = wpN/g

Ux + vy + Wz = 0.

(C.2) has a solution of form:

w = Real wo ei(X+ '9+mz-t) (C.3)
P PO
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which satisfies the linear dispersion relation:
_ N  -°  Y (C.4)

k - 1 ±[2-f2j

where a 2 + 2  k2. The relations between components are given by:

uo-m (a+i3f/ w) (C.5)

-"Io
Vo- k2 (fl-iaf/w)

vo k--2

i-PN 2W0
gw

and
-(N2-_WZ)w.

ao MWo

Let r be defined as dt/dt w, such that ?7 = iw/u, and qr- -mw/. The Vaisala fre-
quency is related to the mean density gradient (- ) by N2 

- Using (C.5), p

can also be expressed as:

iw -
P Pz---- 7 Pz

Differentiating p with respect to z gives:

Pz - 17z Pz + '7 Pzz

If a smooth density profile is assumed, such that 7 << F, then 1, is related to pz
by:

17z = Pz/P"• (C.6)

This allows for an estimate of q7z from density gradient perturbations at a fixed
depth.

The expected ratio of (strain variance)/(shear variance) can now be calcu-
lated from (C.5) and (C.5). The ratio, for a single sinusoidal solution (normalized by
N2), is:

2(w<,
2 -fz) N2

,1,( 2_W2= (C.7)
<u'u, + vv,> (w2+f 2 ) (N2-w2)

where * denotes complex conjugate, and <> signifies temporal averaging. 41 can be
compared with measured values as a consistency test for linearity.

The linear solutions can be substituted back into (C.1) to estimate when
nonlinearities are no longer negligible. This will occur when the advective terms
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become the same order as the time derivative components:

uu x  vuV. + wu z  etc. for rest of (C.1) (C.8)

For simplicity it will be assumed that:

U = (U•U + VV 0)l = "2.(W2-+-fM-) = mw0/k for u>>f. (C.9)
a kw

(C.9) gives uux - uwm, and wu z - uwm, such that the nonlinear contributions in (C.8)
from both horizontal and vertical advection are of the same order. These terms will
equal ut when:

ut = uW = uwm -.- 1 = mw/=,. (C.10)

The nonlinear terms are of the same magnitude as the linear components when 17, Z
1.

C.2 Eulerian vs. Semi-Lagrangian Strain
Fig. CA is a schematic of an isopycnal field passing by a fixed-depth sensor.

It is assumed that the mean density profile is linear (T(z) = pa-Fzz). Let p() define an
isopycnal with mean depth , and density p = po-z. Its displacement at time t from
" is defined here as t7(-,t). The depth of p(5) is given by:

Z(f,t) = f + ,7( ,t)

Two adjacent isopycnals have a mean separation equal to b;. At any instance in time
they will be separated by 6z = 6b + 6&(t). The semi-Lagrangian strain is estimated
from:

61,q - (C.13)

The density gradient fluctuation from its mean value can be estimated at a fixed
sensor from:

p(+6f) -p( ) - [ (z+6z/2) - T(z-6z/2)] (C. 14)
Sz

which reduces to:

Pz + ==z _ bf
PZ 6z 6z

Using (C.6), the Eulerian strain can be written as:

7z = = (C.15)
6z 6q+S(
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which, dividing the top and bottom by 6 gives

qz -q(C. 16)

or equivalently,

17z

For small strain, ?z - i, as expected. If isopycnals are closer together than average
(&<O,,,<0), then Iz, > 1,7,1, while, if farther apart, then r?,>0, and rl,< .

(C.13) and (C.14) are valid approximations of a derivative in the limit
(,6f)--0. This is equivalent to assuming that 'iz<< (gradients remain nearly con-
stant across length scales &,6). This must also hold true for T(z), implying (C.16) is
also inappropriate if a 'sheet and layer' density field is present.
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8 Z S + BE

Z -... .... sensor depth

t time

Figure C1. A schematic Is shown of two isopycnals moving past a sensor at a fixed depth
- Z,. At time t, the lsopycnals are separated by a distance b5z - bc(t) + bf, where 6 is their
mean separation. The estimation of the density gradient pertubation at Z, assumes that the
mean density profile is linear : (z) = -Fzp,*
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APPENDIX D

CTD Data Analysis

D. I Processing of the CTD Data
Vertical strain is computed from density gradient estimates, which in turn

are based on conductivity (C), temperature (T), and pressure (P) measurements from
the CTD instrument. C,T, and P are substituted into the equations of state (Fofonoff
and Mlllard(83)) to estimate salinity (S), potential temperature (e), and potential
density (p,). Due to the conductivity and temperature sensors having different time
response characteristics, and being spatially separated on the CTD package, the
measured values of C and T have different frequency responses in both amplitude
and phase. This mismatch will lead to salinity spiking and erroneous po estimates.

The measured values of C and T are related to the true oceanic values
through transfer functions, which depend upon the sensor response to the signal,
and how this response is processed. The transfer function is comprised of both a
gain and phase response. The 'true' and measured data are related in Fourier space
by:

Xm(f) = X(f)G(f)e iO( f )

where f - frequency, G = gain response, 0 - phase response, and Xm = measured
Fourier transform.

Sea-Bird Electronics (SBE) CTD instruments were deployea during the
PATCHEX cruise. The SBE unit averages measurements over 1/12 second periods,
automatically causing temporal smoothing of the data. The temperature sensor
deployed was model SBE 3-01/F, having a resolution of 5x0-4"C at the 12 Hz sam-
ple rate. It's transfer function can best be modeled as a double-pole filter (Peder-
son and Gregg(79)), which, combined with the temporal smoothing effect, gives a
gain response function:

G-r(f) - sin(,rf/12) (D.1)

(rf/12)(1 + (2lrff-T) 2 )

where f - frequency (Hz), and rT time response 7 70 milliseconds.

For the conductivity sensor, Model SBE 4-01 was deployed, having a 5x10-
mmho/cm resolution, with it's gain response approximated by a single-pole filter:

Gc(f) - sin(rf/12) !
(rf/12)[1 + (2,rfrc)2 ] (D.2)

The time response rc largely depends upon the flushing rate of the sensor. A. the
3.8 m/s drop rate for the PATCHEX cruise, r, = 110 ms.

If the instrument drop rate is assumed constant, then the frequency depen-
dence of (D.1) and (D.2) can be transformed into vertical wavenumber m, where I
cpm - 3.8 Hz. Fig. Dla demonstrates that, although rC>r T, the single-pole response
has a gentler rolloff, so that the conductivity sensor responds better at higher fre-
quencies (wavenumbers). It is also seen that for a 2 Hz (0.5 cpm) input signal, the
measured temperature will be approximately half the true amplitude. In Fig. Dib,

106



SIO Reference 89-11

the ratio GT/Gc is compared with the estimates based on the first fifty profiles of
PATCHEX, showing that the above modeling of GT and Gc appears to be appropriate.

Two approaches can be taken to correct C and T. The expected gain and
phase response functions can be modeled (as done with the gain above) and
directly applied to the measured data. However, any errors in the model (for
instance, unaccounted-for time response characteristics of the electronics) will
result in inaccurate estimates. Another approach is to take the cross-spectrum
between conductivity and temperature, giving the measured relative phase and gain
differenct between C and T, and then applying this correction to the data set. This
insures that C and T are correctly matched to each other. However, they will still be
'incorrect' in an absolute sense (high wavenumbers will be attenuated, and will have
some associated phase lag). The cross-spectral method is best suited for removing
salinity spiking, and is employed in the present study.

From the equations of state, the change of conductivity with depth can be
approximated from:

dC/dz = adT/dz + sdS/dz (D.3)

where a ; 0.9 (mmho/cm)/°C, and z 1 (mmho/cm)/(ppt) for T - 100C, and S - 34.7
ppt (part-per-thousand). (D.3) can be Fourier transformed in depth to give:

c(m) = ct(m) + 3s(m) . (D.4)

The cross-spectral estimate with respect to temperature is:

<c't> = a<t't> + O<st>. (D.5)

The phase response between conductivity and temperature is given by:

a(Ms) = arctan imago<s*t>) (D.6)a<t't> + real(,3<s't>)I

where imagO, real() denote the imaginary and real components of 0. Fourier
transforms of the measured temperature and conductivity are related to the true
values by:

tm.(m) = t(m)G-r(m)ei b(m) (D.7)

c ..(m) = c(m)Gc(m)eiO( m )

where V5, are the phase response functions for the temperature and conductivity
sensors respectively, and the subscript m denotes the measured quantity. The
measured cross spectrum will now be:

<cmtm> = <c t>el('P O)GGc. (D.8)

The needed phase information (0-o) will only be recovered if <c~t> is real. This will
occur if <s't> is either very small compared to <t't> and/or s and t are always in
phase. Since the estimated value of s is dependent upon c, it is impossible to know
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the true value of <s't>, making it difficult to assess the accuracy of the transfer
function. The best recourse of action is to choose a low salinity-gradient region
where few intrusions are present, such that variations in dC/dz are mainly due to
dT/dz. For instance, for depths > 200 m, the PATCHEX salinity and temperature
profiles are nearly linear (see Fig. D2), with S varying by (33.98-34.16) ppt, and T
varying by 4.97-7.6°C. These values predict that adT/dz = 103dS/dz.

During PATCHEX two CTD's profiled between 0-300 m and 260-560 m in
depth once every three minutes. Data were recorded over a three week period
(>10,000 profiles for each CTD). Estimates of <c't> were computed for both CTD's
at depths with low salinity gradient (>200 m). A subset of 2700 profiles inter-
spersed throughout the entire cruise was used to compute <c*t>. Gain and phase
response functions between C and 1 were calculated, and then modeled with a
cubic fit (c.f. Fig D3).

Conductivity and temperature gains can be matched by either attenuating C
at high wavenumbers, or amplifying T. Since amplification also increases noise lev-
els, it was decided to attenuate C, resulting in an underestimation of high
wavenumber amplitude. To further remove noise at high wavenumbers, both T and
C were low-pass filtered with the filter shown in Fig. D4, effectively removing signal
and noise above 0.5 cpm. Fig. D3 shows that at 0.5 cpm the gain correction is ; 0.9.
and phase correction is = 5, thus no large corrections have been made in amplitude
or phase.

The data were processed in the following manner: Average C and T values
were computed between 20-40 m depth (in the mixed layer). dC/dz, and dT/dz
were Fourier transformed (E c(m), t(m)), the gain and phase matching were applied
to c(m), and both c(m) and t(m) were low-pass filtered before being inverse Fourier
LrditsLA.rned. C and T profiles were re-integrated, with the average C and T values
between 20-40 m depth matched to the pre-processed values. Salinity, E, and p
were then computed (with reference depth - 0 m ). A sample of -re- and post-
processed salinity profiles is given in Fig. D5.

D.Z Error Analysis
The low-pass filtering of Fig. D4 removes instrument noise between the

Nyquist wavenumber ( Nyquist frequency - 6 Hz - 1.58 cpm) and 0.5 cpm, lowering
the noise variance to 25 % of it's original value (increasing the precision by two).
The dependency of p# on C and T can be approximated from the equations of state
using the same mean S and T as in (D.4)):

pxP(gm/cm 3) - 0.72x10-3 AT(°C) + 0.78x 10-3 AC(mmho/cm). (D.9)

The expected precision of p# is 2(.8x10- 3*2.5x10) - 3x10 -7 gm/cm 3. This
assumes that C and T have been properly phase-matched.

The strain can be estimated from (c.f. (C.6)):

riz = -g dp/dz (D.10)

where N - Vaisala frequency, and - - mean density. The precision of ,z ranges from
0.16 at N - 2.4 cph (-560 m depth) to 0.01 at N - 10 cph for a vertical wavenumber
m - 0.5 cpm (dz - I m). Estimates of , have also been averaged over twenty-one
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minute periods (seven profiles), which increases the precision to 0.06-0.004 at
N-2.4-10 cph for m - 0.5 cpm.

If noise appears white in wavenumber for p9 , corresponding to a +2 slope
for ,,z, 'hen an input of pure noise which has been low-pass filtered using Fig. D4
will have the spectral response as shown in Fig. D6. This is compared with the
measured vertical wavenumber spectrum, which appears well above the noise.

Effects of pressure fluctuations have so far been ignored. Fluctuations
cause an inaccurate measure of Az, adding another source of error to 77. More
importantly, if fluctuations are truly due to a variable instrument drop rate (versus
water turbulence at the sensor), then the assumption that the sensor's frequency
response is directly related to wavenumber is incorrect, and the phase and ampli-
tude matching in wavenumber is inappropriate. Fig. D7 shows a typical profile drop
rate, along with it's associated wavenumber spectrum. Pressure fluctuations are
comprised of two wavenumber regions. A peak is seen at low wavenumber, which
corresponds to the surface wave frequency band. Due to the signal's lack of
attenuation with depth, it is assumed that these fluctuations are due to the
response of the boom to surface waves acting on FLIP, causing 5-10% variation in
drop rate over 20-50 m vertical scales. This corresponds to 5-10% distortion
between wavenumber and frequency. Due to the smoothness of the gain and phase
response functions, this is not viewed as a significant problem.

dP/dz fluctuations increase at high wavenumbers (frequencies), presumably
due to instrument-induced water turbulence at the pressure sensor. These fluctua-
tions have I-,, !o,'-pass filtered below 0.2 cpm, resulting in the smooth profile of
Fig. D7a. To minimize error propagation, all pressure profiles were low-pass fil-
tered before any calculations involving P were performed. q, is calculated at Az -
0.32 m intervals. Since AP fluctuations have been low-passed at 0.2 cpm, errors in
estimating Az are minimal.

If these high-wavenumber pressure fluctuations are a measure of turbulence
at the sensor, it is only fair to assume that both C and T are affected in a similar
maimer. The +1 slope seen at high wavenumbers in the dP/dz spectrum (Fig. D7b)
implies that the turbulent signal appears with a -1 slope in P (as compared with 0
slope for white noise). Since the dP/dz spectrum does not change to a +2 slope at
the highest wavenumbers, this suggests that the instrument-induced turbulence
dominates the electronics noise. Such a turbulent-noise source (based on the +1
slope) is modeled in Fig. D6. It is displayed with an arbitrary energy level, since no
direct measurement exists for instrument-induced turbulent noise for C and T. The
flattening of the spectrum at high wavenumber may I e due to the instrument-
induced noise level, indicating low signal-to-noise levels.
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Figure D1. a) Temperature (T) exhibits a double-pole filter gain response with a time con-
stant 2 70 ms, while conductivity (C) has a single-pole response with a time constant 2 110
ms. b) The ratio of the temperature gain/conductivity gain from a) is compared with the
average from 50 measured profiles from the CTD.
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Figure D2. The three-week average salinity and potential temperature profiles for the
PATCHEX cruise are shown for the upper and lower CTD's. The low salinity gradient below
200 m allows gain azud phase response functions to be estimated between the conductivity
and temperature sensors.
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Figure D3. The a) phase and b) gain response functions are shown for the upper CTD
between the temperature and conductivity gradients. The temperature and conductivity sen-
sors have different gain at low wavenumbers due to the sensitivity of each sensor. The gain
response correction is therefore renormalized such that at low wavenumbers the gain func-
tion - 1.
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Figure D4. The low-pass filter applied to both conductivity and temperature is equal to

Gem) = 1

with M, - 0.55 cpm, and m2 - 1 cpm.
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Figure D5. a) Ten salinity profiles (each separated by 3 minutes in time) are calculated
from C and T as measured from the CTD. b) The same ten profiles are computed using C
and T which have been gain and phase-matched, plus low-pass filtered.
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Figure D6. The measured strain spectrum is compared with the estimated white noise
spectrum (processed through Fig. D4's filter, showing the +2 slope at low wavenumber).
Also shown is the instrument-induced water turbulence spectrum, as seen from the pressure
sensor data (Fig. D7), with a +1 slope. The energy level of the turbulence noise is not
known, such that it's vertical position cannot be estimated. However, the flattening of the
measured spectrum at high wavenumbers could be due the turbulence noise becoming signi-
ficant.
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Figure DT. a) Measured instrument drop rate from one CTD profile is estimated from the
pressure sensor data. Offset by 2 decibars/sec is the same profile with a 17 point (: 5 m in
depth) running-mean-filter applied. b) The spectrum of the first-differenced pressure signal
(averaged over 100 profiles) shows a low wavenumber component which corresponds to the
surface wave frequency band, plus a high-wavenumber +1 slope region, thought to be due to
instrument-induced water turbulence.
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