SRR, L) B

RADC-TR-89-162
Final Technical Report
October 1989

ALGORITHMS FOR FAULT TOLERANT
DISTRIBUTED SYSTEMS

SRI Internationali

Leslie Lamport, P. Michael Melliar-Smith, Louise Moser, Ira Greenberg,

John Rushby
DTIC
ELECTE
S NOV 16 1989
B

This effort was funded totally by the Laboratory Director’s fund.

AD-A214 447

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, N 13441-5700

8

(S,

1o 016

This report has been reviewed by the RADC Public Affairs Division (PA)
and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nationms.

RADC-TR-89-162 has been reviewed and is approved for publication.

APPROVED:

’ 2
o /. %%W//‘

THOMAS F. LAWRENCE
Project Engineer

APPROVED: W / / ..

RAYMOND P. URTZ, Jr.
Technical Director
Directorate of Command & Control

FOR THE COMMANDER: Eé

IGOR G. PLONISCH
Directorate of FPlans & Programs

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,

please notify RADC (COTD) Griffiss AFB NY 13441-5700. This will assist us
in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.

UNCLASSIFIED

TTY CLASSIFICATION OF THIS PAGE
Form Approved
REPORT DOCUMENTATION PAGE OMB No, 0704.0188
1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
! UNCLASSIFIED N/A _—
zﬁ. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION / AVAILABILITY OF REPORT
_,/_A_i Approved for public release;
Zb./DECLASSIFICATION/DOWNGRADING SCHEDULE distribution unlimited.
N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
N/A RADC-TR-89-162
6a. NAME OF PERFORMING ORGANIZATION 6b. c(),;nc:‘ ich'X‘IB)OL 7a. NAME OF MONITORING ORGANIZATION
applicable
SRI International Rome Air Development Center (COTD)
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and 2{P Code)
Computer Science Laboratory Griffiss AFB NY 13441-5700
333 Ravenswood Ave
Menlo Park CA 94025
8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable) F30602-85-C~0024
Rome Air Development Center COTD hadn
8c ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
Criffiss AFB NY 13441-5700 PROGRAM PROJECT TASK WORK UNIT
: ELEMENT NO. | NO. NO ACCESSION NO.
61101F LDFP 06 c4

11, TITLE (Include Security Classi ication)
ALGORITHMS FOR FAULT TOLERANT DISTRIBUTED SYSTEMS

12. PERSONAL AUTHOR(S)
leslie Lamport, P. Michael Melliar-Smith, lLouise Moser, Ira Greenberg, and John Rushby

[73a. TYPE OF REPORT T30, TiME COVERED 14. DATE OF REPORT (Year, Month, Day} |15. PASE Eoum
Final FROM_Feb 85 TO _Feb 88 October 1989 1

16. SUPPLEMENTARY NOTATION
This effort was funded totally by the Laboratory Director's fund.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Interprocess Communication, Broadcast Protocols,
12 Q7 Interval Logic, Fault Tolerance, Multiprocessor

IS, ABSTRACT {Continue on reverse if necessary and identify by block number)

The research described in this report is presented in six parts: (1) On Interprocess
Commmication studies interprocess communication without assuming any lower-level
communication primitives. A formalism is developed for reasoning about concurrent systems
that does not assume an atomic grain of action, (2) The Intersecting Broadcast Machine is a
novel array processor architecture, capable of processing efficiently programs whose
arbitrary or complex structure would make them difficult to map onto conventional array
processors. The architecture also supports fault-~tolerant operation, (3) Broadcast
Protocols for Distributed Systems considers how the broadcast character of communications
media such as Ethernet and packet radio can be exploited to yield reliable communication with
very little overhead, (4) Extending Interval logic to Real Time Systems presents a technique
for the formal expression of the real-time constraints that are critical to the
specification of fault-tolerant distributed systems, (5) Consistency of Replicated
Information in Multichannel Fault Tolerant Systems considers the possibility of using (over)

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
O uNcLASSIFIEDAUNUMITED (B SAME AS RPT. [J oTic Users | UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) | 22¢. OFFICE SYMBOL
Thomas F. Lawrence (315) 330-2158 RADC (COTD)
DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

UNCLASSIFIED

Rlock 19 (Continued)

similar, but not identical, processing in the replicas of a fault-tolerant system.
Conventional fault-tolerant systems using replicated processing require the

replicas to be identical, so that they can be compared by exact match algorithms.
This exact replication increases the risk that a common fault will affect all
replicas and cause system failure, and (6) Experimental Implementation and Lvaluation

of the TRANS Broadcast Protocol describes an implementation and evaluation of the
broadcast protocol outlined in Part III.

Accession For v
NTIS GRAGL 6
DTIC TAR J
Unanopeources O
1 Justiricunlion
i
|

l P U —

P DinisustinS

. SENSY o UNCLASSIFIED
oAt Ity Tonns

T kil endjer

TABLE OF CONTENTS

PART I: ON INTERPROCESS COMMUNICATION

1.1 On Interprocess Communicationc..covuvennennen...

1.2 The ConstrUCtIONS .. .v vttt ettt et e eaeanennns
1.3 The Formal Modelcovviiiiiiiiiiiie i eiinennnnns

1.3.1 System Executionscciviieriiinvnnnnnencennns

1.3.2 Hierarchial Viewst
1.3.3 Register AXIOMSccitiiiutiiiinninrncnernnnerennnnn
1.3.4 Systemsoouuiiiit it e e
1.4 Correctness Proofs for the Constructions
1.4.1 Proof of Constructions 1,2,and 3

1.4.2 Proof of Construction 4ccvviiiiennnrienrinnnnns
1.4.3 Proof of Construction 5coiiiiiriineieninnennns

PART II: THE INTERSECTING BROADCAST MACHINE

2.1 ADSETaCE . oottt e e e e e
2.2 Backgroundo i

2.3 Objectivesoiiitt i e

2.4 Structure of the Intersecting Broadcast Machine

2.5 Fault Toleranceovoviviiiiiniiinee et eeeennnnanns

2.6 BUus StIUCHULE .. .ovvivt ettt iiet ettt ettt

2.7 Performance Model i
2.8 Load Balancingc.ooviiiiiiiiiiiiii i
2.0 Programmingc.oiuiiinitiniee i,
2.10 Applicationsttt i e e i

2.11 ComCIUSIONS ..ottt e e e

PART III BROADCAST PROTOCOLS FOR
DISTRIBUTED SYSTEMS

3.1 ADSEIACt .ottt e

3.2 Introduction ...ttt e
3.3 Existing Protocolsc.cooviuiiiiiiiiiii i

3.4 Requirements and Objectivesc.c.ciiiiiann...
3.5 The Broadcast Protocol ...t iinnnn.

3. 5.1 NObES ..ottt et e e e

3.6 Reliability Propertycooiiiiiiiiiiiiiii i
3.7 Performance Model ...

3.8 Broadcast Algorithms for Mutual Exclusion and
Distributed Updateot

3.0 ConClUSIONS .. oi ittt i i

PART IV: EXTENDING INTERVAL LOGIC
TO REAL TIME SYSTEMS

4.1 AbStractcoiniuiiiiii e e e
4.2 Introduction . ..ot e
4.3 The Basic Interval Logiccoviiiiiiiiii ...

4.3.1 The Interval Operators => and <—

4.3.2 Parameterized Operationsccoeuieveinnns
4.4 Some Example Specificationsoociiiiiii,
4.5 Real Time Extensionsccoiitiiiiniinnnnennnennn.
4.6 The Lift Example it e
4.7 Analysis and Conclusionscooiiiiiiiiiiiiiinn,

PART V: CONSISTENCY OF REPLICATED INFORMATION
IN MULTICHANNEL FAULT TOLERANT SYSTEMS

5.1 AbStract ...t e e
5.2 Loss of ComsiStencycoiiuiinneiiin i iineannenn
5.3 Maintenance of Approximate Consistency
5.4 Asynchronous Multichannel Systems
Part V Referencescoiuiiiiiiiiiiiiiiiiiiniiiiiiiianne.
Part V AppendiXoviiiiniiiiiiii i

PART VI: EXPERIMENTAL IMPLEMENTATION AND
EVALUATION OF THE TRANS BROADCAST
PROTOCOL

6.1 Introductioncci i i i et
6.2 Specification ¢f the TRANS Protocol
6.2.1 Clarifications and Interpretations
6.2.2 ComMentSooueinttiniiiat it e
6.2.3 Problemso e
6.3 Implementation i e e
6.3.1 Top-Level Designc.cciiiiiiiiiiiiiinneneann.
6.3.2 Implementation Decisionscoovveeneann.n.
6.3.3 Data Structuresttt
6.3.4 Algorithms i
6.4 Performance Measurementsc.ciiiiiiiinn.
6.5 Problems Discovered ...ttt
.6 Conclusions and Recommendations for Future Work
6.6.1 Corrections and Formal Specification
6.6.2 Additional Performance Measurements
6.6.3 Performance Improvements

129

131
132
138
140
145
147

i1
6.6.4 Extensions to Fctionality 194

6.6.5 Use of Broadcast Communications in
Distributed Algorithmsoo 194
6.6.6 Concluding RemarksccooiiiiiiiaL, 195
BIBLIOGRAPHY 197

v
TABLE OF FIGURES

1.1: Construction 5: The Reader’s Algorithm 17
2.1: The Formation of Intersectionsc...cccooiiiiiin.... 51
2.2: The Selection of a Processor by Means of a Race 52
2.3: The Eight Intersections Resulting from Replicated Broadcasts 54
2.4: The Selection of a Processor by Meansof a Race 55
2.5: The Selection of a Second Processorccocovvuiniiin... 56
2.6: The Selection of a Processor by Meansof a Race56
2.7: The Selection of a Second Processorcoevveiienn.... 57
2.8: Fault Toleranceot it ci e 58
2.9: The Effect of Bus Failure it 60
2.10: Continued Computation after Bus Failure 61
2.11: Recovery from Bus Failure it 61
2.12: The Queueing Theory Performance Model 64
2.13: Processor Utilizationttt 66
3.1: Determination of the Receipt of a Message 90
3.2: Comparison of Times to Positive Acknowledgment for

Point-to-Point and Broadcast Protocol............................ 93
3.3: The Effect of Delay Time on the Protocol Performance 95
3.4: The Effect of the Proportion of Messages Broadcast on the

Protocol Performance it 96
4.1: Specification of a Level in the Protocol Hierarchy 104
5.1: A Three-Charnel Majority Voted System 133
5.2: Distribution of Information from a Single Faulty Source

to a Three-Channel Systemciviiiiiiinianeennn.n, 134
5.3: Distribution of Information from a Single Channel

to Three Chanmnels it 136
5.4: The Interactive Consistency Algorithm 137
5.5: A Failure Mode of the Median Clock Synchronization

Algorithm ... e e e 139
5.6: Extrapolation from Past Values to a Most Probable

Current Value ..ottt 141
5.7. Calculation of Results at Uniform Phases within

an Interval e 143
6.1: Difficulty Introduced by nackscoiiiiin... 161
6.2: Further Difficulty Introduced by nacks 162

6.3: Reception Analysis Must Start fromanack 174

vi

6.4: Positive Acknowledgment Path Invalidated by nack 175
6.5: Positive Acknowledgment Paths not Invalidated by nack 175
6.6: Pending nack Must be Maintained for Each Transmission

Of MeSSaZeouni ittt it 190

6.7: Retransmissions Require Individual nacks.................... 191

vil

LIST OF TABLES

6.1: Performance Measurements with 4 Hosts 186
6.2: Performance Measurements with 8 Hoste 187

ix

The research described in this report is presented in six parts.

Part I: On Interprocess Communication studies interprocess comnmunica-
tion without assuming any lower-level communication primitives. A
formalism is developed for reasoning about concurrent systems that
does not assume an atomic grain of action.

Part II: The Intersecting Broadcast Machine is a novel array processor ar-
chitecture, capable of processing efficiently programs whose arbitrary
or complex structure would make them difficult to map onto conven-
tional array processors. The architecture also supports fauit-toierant
operation.

Part II1: Broadcast Protocols for Distributed Systems considers how the
broadcast character of communications media such as Ethernet and
packet radio can be expioited to y.:ld reliable communication with
very little overhead.

Part IV: Eztending Interval Logic to Real Time Systems presents a tech-
nique for the formal expression of the real-time constraints that are
critical to the specification of fault-tolerant distributed systems!

Part V: Consistency of Replicated Information in Multichannel Fault Toi-
erant Systems considers the possibility of using similar, but not identi-
cal, processing in the replicas of a fault tolerant system. Conventional
fault tolerant systems using replicated processing require the replicas
to be identical, so that they can be compared by exact match algo-
rithms. This exact replication increases the risk that a common fault
will affect all replicas and cause system failure.

Part VI: Ezperimental Implementation and Fuvaluation of the TRANS
Broadcast Protocol describes an implementation and evaluation of the
broadcast protocol outlined in Part III.

Part 1

On Interprocess
Communication

1.1 On Interprocess Communication

All communication ultimately involves a communication medium whose
state is changed by the s2nder and observed by the receiver. A sending
processor changes the voltage on a wire and a receiving processor observes
the voltage change; a speaker changes the vibrational state of the air and
a listener senses this change.

Communication acts can be divided into two classes: transienf and per-
ststent. In a transient communication, the medium’s state is changed only
for the duration of the communication, immediately afterwords reverting to
its “normal” state. A message sent on an ethernet modifies the transmission
medium’s state only while the message is in traasit; the altered state of the
air lasts only while the speaker is talking. In a persistent communication,
the state change remains after the sender has finished its communication.
Setting a voltage level on a wire, writing cn a blackboard, and raising a
flag on a flagpole are all examples of persistent communication.

Transient communication is possible only if the receiver is observing the
communication medium while the sender is modifying it. This implies an a
priori synchronization—the receiver must be waiting for the communication
to take place. Communication between truly asynchronous processes must
be persistent, the sender changing the state of the medium and the receiver
able to sense that change at a later time.

Message passing is often considered to be a form of transient communi-
cation between asynchronous processes. However, a closer examination of
asynchronous message passing reveals that it involves a persistent commu-
nication. Messages are placed in a buffer that is periodically tested by the
receiver. Viewed at a low level, message passing is typically accomplished
by putting a message in a buffer and setting an interrupt bit that is tested
on everv machine instruction. The receiving process actually consists of
two asvnchronous subprocesses: a matn process that is usually thought of
as the receiver, and an input process that continuously monitors the com-
munication medium and puts messages in the buffer. The input process is
synchronized with the sender (it is a “slave” process) and communicates
asynchronously with the main process using the buffer as a medium for
persistent communication.

The subject of this report is asynchronous interprocess communication.
so only persistent communication is considered. Moreover, we will restrict
ourselves to unidirectional communication, in which only a single process
can modify the state of the medium. With this restriction, two-way commu-
nication requires at least two separate communication media, one m.odified
by each process. However, multiple receivers will be considered. We also
restrict our attention to discrete systems, in which the medium has a finite
number of distinguishable states. The sender can therefore set the medium
to one of a fixed number of persistent states, and the receiver(s) can observe
the medium’s state.

The form of persistent communication that we have described is more
commonly known as a shared register, where the sender and receiver are
called the writer and reader, respectively, and the state of the communica-
tion medium is known as the value of the register. We will use these in the
rest of this paper, so we will consider fizite-valued registers with a single
writer and one or more readers.

While the practical applications of the algorithms described in this pa-
per will be to “small” registers, the larger purpose is to develop insight
into, and formal methods for reasoning about, nonatomic operations to
data objects. In the realm of conventional database theory, atomicity is
usually called “serializability”. Moreover, although the notation used in
describing the algorithms suggests a shared-memory implementation, these
are really distributed algorithms, since each shared register is modified by
only a single process. Thus, the results described here can be regarded as
a preliminary investigation of nonserializable operations in a distributed
database.

In assuming a single writer, we rule out the possibility of concurrent
writes (to the same register). Since a reader only senses the value, there is
no reason why a read operation must interfere with another read or write
operation. {While reads do interfere with other operations in some forms
of memory, such as magnetic core, this interference is an idiosynchracy of
the particular technology rather than an inherent property of reading.) We
‘herefore assume that a read does not affect any other read or any write.
However, it is not clear what effect a concurrent write should have on a
read.

In concurrent programming, one traditionally assumes that a writer has
exclusive access to shared data, making concurrent reading and writing im-
possible. This assumption is enforced either by requiring the programming
language to provide the necessary exclusive access, or by implementing
the exclusion with a “readers-writers” protocol [3]. Such an approach re-
quires that a reader must wait while a writer is accessing the register,
and vice-versa. Moreover, any method for achieving such exclusive access,
whether implemented by the programmer or the compiler, requires a lower-
level shared register. At some level, the problem of concurrent access to a
shared register must be faced. It is this problem that will be addressed, so
we eschew any approach that requires one process to wait for another.

Asynchroncus concurrent access to shared registers is usually considered
only at the hardware level, so it is at this level that the methods developed
here could have some direct application. However, concurrent access to
shared data occurs at high levels of abstraction. One cannot allow any single
process exclusive access to the entire social security system's database.
While algorithms for implementing a single register cannot be applied to
such a database, we hope that the formalism developed for analvzing these
algorithms will eventually prove useful for analyzing concurrent systems at
a higher-level. Nevertheless, it is probably best to think of a register as
a low-level component, probably implemented in hardware, when reading
this paper.

Hardware implementations of asynchronous communication often make
assumptions about the relative speeds of the communicating processes.
Such assumptions can lead to simplifications. For example, the problem
of constructing an atomic register, discussed below, is shown to be easily
solved by assuming that two successive reads of a register cannot be concur-
rent with a single write. If one knows how long a write can take, a delay can
be added between successive reads to ensure that this assumption holds.
We make no such assumptions about process speeds. The results therefore
apply even to communication between processes of vastly differing speeds.

We therefore make no assumptions about relative process speed and
consider a shared register in which a read can overlap (be concurrent with)
a write. Three possible assumptions about what can happen when a read
overlaps one or more writes are considered.

The weakest possibility is a safe register, in which the only assumption
made about the value obtained by a read that overlaps a write is that the
read obtain one of the possible values of the register—for example, a read
of a boolean-valued register must obtain either ¢{rue or false. A read that
is not concurrent with a write is assumed to obtain the correct value—that
is, the most recently written one. However, a read that overlaps a write
may return any possible value.

The next stronger possibility is a regular register, which is safe (a read
not concurrent with a write gets the correct value) and in which a read
that overlaps a write obtains either the old or new value. More generally,
a read that overlaps any series of writes obtains either the value before the
first of the writes or one of the values being written.

The final possibility is an atomic register, which is safe and in which
reads and writes behave as if they occurred in some definite order. In
other words, for any execution of the system, there is some way of totally
ordering the reads and writes so that the values returned by the reads are
the same as if the operations had been performed in that order, with no
overlapping. (It is also required that this ordering should be a reasonable
one; the precise condition is stated below.)

A regular register is obviously stronger than a safe one, since it places
a condition on the value returned by a read that overlaps a write. An
atomic register is stronger than a regular one because, if two successive
reads overlap the same write, then a regular register allows the first read to
obtain the new value and the second read the old value. This is forbidden
in an atomic register, in which the only allowed possibilities are old-old,
new-new, and old-new. In fact, it will be shown that a regular register is
atomic if and only if two successive reads that overlap the same write cannot
obtain the new then the old value. Thus, a regular register is automatically
an atomic one if two successive reads cannot overlap the same write.

These are the only three general classes of register that we have been
able to think of. Each class merits study. Safety seems to be the weakest
requirement that allows useful communication; we do not know how to
achieve any form of interprocess synchronization with a weaker assumption.
Regularity asserts that a read returns a “reasonable” value, and seems
to be a natura' requirement. Atomicity is the most common assumption

made about shared registers, and is provided by current multiport computer
memories.! At a lower level, such as interprocess communication within a
single chip, only safe registers are provided; other classes of register must
be implemented using safe ones.

Any method of implementing a single-writer register can be classified
by three “coordinates” with the following values:

e safe, regular, or atomie, according to the strongest assumption that
the register satisfies.

e boolean or multivalued, according to whether the method nroduces
only boole~n registers or registers with any desired number of values.

e single-reader or mullireader, according to whether the method yields
registers with only one reader or with any desired number of readers.

This produces twelve classes of implementations, partially ordered by
“strength” —for example, a method that produces atomic, multivalued,
multireader registers is stronger than one producing regular, multivalued,
single-reader registers. In this paper, we address the problem of imple-
menting a register of one class using one or more registers of a weaker
class.

The weakest class of register, and therefore the easiest to implement, is a
safe, boolean, single-reader one. This seems to be the most natural kind of
register to implement with current hardware technology, requiring oaly that
the writer set a voltage level either high or low and that the reader test this
level without disturbing it. A series of constructions of stronger registers
from weaker ones is presented that allows almost every class of register
to be constructed starting from this weakest class. The one exception is
that constructing an atomic, multireader register from any weaker one is
still an open problem. Most of the constructions are simple; the difficult
ones are Construction 4 that implements an m-reader multivalued regular
register using m-reader boolean regular registers, and Construction 5 that

'However, the standard implementation of a multiport memory does not meet our re-
quirements for an asynchronous register because, if two processes concurrently access a
memory cell, one must wait for the other.

impleraents a single-reader multivalued atomic register using single-reader
multivalued regular registers.

We have defined three classes of shared registers for asynchronous in-
terprocess communication, and provided algorithms for implementing one
class in terms of a weaker class. For single-writer registers, the only un-
solved problem is implementing a multi-reader atomic register. A solution
probably exists, but it undoubtedly requires that a reader communicate
with all other readers as well as with the writer. Also, more efficient im-
plementations than Constructions 4 and 5 probably exist. For multivalued
registters, Peterson’s algorithm [11] combined with Construction 5 provides
a more efficient implementation of a regular register than Construction 4,
and a more efficient implementation of a single-reader atomic register than
Construction 5. However, in this solution, Construction 4 is still needed to
implement the regular register used in Construction 5.

We have not addressed the question of multi-writer shared registers. It
is not clear what assumptions one should make about the effect of over-
lapping writes. The one case that is straightforward is that of an atomic
multi-writer register—the kind of register traditionally assumed in shared-
variable concurrent programs. This raises the problem of implementing
a multi-writer atomic register from single-writer ones. An unpublished
algorithm of Bard Bloom implements a two-writer atomic register using
single-writer atomic registers.

In addition to studying shared registers, we have also developed a for-
malism for reasoning about concurrent systems that is not based upon
atomic actions. Starting from a more general, relativistic viewpoint, we
showed that one can, with no essential loss of generality, think in terms
of starting and finishing times of operations. While starting and finishing
times are intuitively more appealing, and can be useful in proving metathe-
orems about general systems, rigorous reasoning about specific algorithms
is best done in the general formalism, using Axioms A1-A5. These axioms
seem to contain the fundamental properties of temporal relations among
operation executions that are needed o analyze concurrent algorithms.

1.2 The Constructions

In this section, the algorithms for constructing different classes of regis-
ters are described and informally justified. Rigorous correctness proofs are
postponed until Section 1.4, after the necessary formalism is developed.

The algorithms are described by indicating how a write and a read are
performed. I will not bother to indicate the initial state of the shared
registers—it is the one that would result from writing the initial value
starting from any arbitrary state.

The first construction implements a multireader safe or regular register
from single-reader ones. It uses the obvious method of having the writer
simply maintain a separate copy of the register for each reader. The for
all statement denotes that its body is executed once for each of the indi-
cated values of {; these separate executions can be done in any order or
concurrently.

Construction 1 Letv,, ..., v, be single-reader, n-valued registers, where
each v; can be wrilten by the same wriler and read by process i, and con-
struct a single n-valued register v in which the operation v := p 13 performed
as follous:

for all { in {1,...,m}
do v; := u od

and process t reads v by reading the value of v;. If the v; are safe or regular
registers, then v §s a safe or regular register, respectively.

Any read by process 1 that does not overlap a write of v does not overlap
a write of v;. If v; is safe, then this read gets the correct value, which shows
that v is safe. If a read of v; by process t overlaps a write of v;, then it
overlaps the write of the same value to v. It follows easily from this that if
v; is regular, then v is also regular.

This construction does not make v an atomic register even if the v; are
atomic. If reads by two different processes ¢+ and j both overlap the same
write, it is possible for ¢ to get the new value and j the old value even
though the read by ¢ precedes the read by j—a possibility no allowed by
an atomic register.

The next construction is also trivial; it implements an n-bit safe register
from n single-bit ones.

Construction 2 Letv,, ..., v, be boolean m-reader registers, each written
by the same writer and read by the same set of readers. Let v be the 2"-
valued, m-reader register in which the number with binary representation
U1 ... pa 18 written by

for all 1 in {1,...,m} do v;:=y; od

and in which the value 13 read by reading all the v;. If each v; 13 safe, then
v 13 safe.

The register v is not regular even if the v; are. A read can return any
value if it overlaps a write that changes the register’s value from 0...0 to
1...1.

The next construction shows that it is trivial to implement a boolean
regular register from a safe boolean register. In a safe register, a read that
overlaps a write may get any value, while in a regular register it must get
either the old or new value. However, a read of a safe boolean register
must obtain either true or false on any read, so it must return either the
old or new value if it overlaps a write that changes the value. A boolean
safe register can fail to be regular only if a read that overlaps a write that
does not change the value returns the other (wrong) value. To prevent this
possibility, one simply does not perform a write that does not change the
value.

Construction 3 Let v be an m-reader boolean register, and let r be a
variable tnternal to the writer (not a shared register) instially equal to the
initial value of v. Define v* to be the m-reader boolean register in which the
write operation v* := pu 13 performed as follows:

if £ # pu then v:=yu;
Ti=p

fi

and a read of v* 13 performed by reading v. If v is safe then v* 13 regular.

10

There are two known algorithms for implementing a multivalued regular
register from boolean ones. The simpler one employs a unary encoding, in
which the value g is denoted by zeros in bits O through p# — 1 and a one in
bit u. A reader reads the bits from left to right (O to n) until it finds a one.
To write the value g, the writer first sets v, to one and then sets bits g — 1
through 1 to zero, writing from right to left. (The idea of implementing
shared data by reading and writing its components in different directions
was also used in [4].)

Construction 4 Let vy, ..., v, be boolean, m-reader registers, and let v be
the n-valued, m-reader register in which the operation v := p i3 performed

by

v, =1,
for i := pu—1step —1 until 1 do v;:=0od

and a read i3 performed by:

p=1
while v, =0 do u ;= u+1o0d;
relurn p

If each v; 13 regular, then v is regular.

The correctness of this algorithm is not at all obvious. Indeed, it is not
even obvious that the while loop in the read operation does not “fall off
the end” and try to read the nonexistent register v,4,. This can’t happen
because whenever the writer writes a zero, there is a one to the right of
it. (Since I am assuming that an initial value has been written, some v;
initially equals one.) As an exercise, the reader of this paper can convince
Limselfl that whenever a reading process sees a one, it was written by either
a concurrent write or by the most recent preceding one, so v is regular.
The formal proof is given in Section 1.4.

The value of v, is only set to one, never to zero. It can therefore be
eliminated; the writer simply never writes it and the reader assumes its
value is one instead of reading it. I will oot bother writing down this
modification.

11

Even if all the v; are atomic, Construction 4 does not produce an atomic
register. To see this, suppose that the register initially has the value 3, so
vy = v, = 0 and vy = 1, the writer first writes the value 1 then the value
2. and there are two successive read operations. This can produce the
following sequence of actions:

e the first read finds v; =0
e the first write sets v; ;=1

the second write sets v, := 1

o the first read finds v = 1 and returns the value 2
» +ho sccond read finds vy = 1 and returns the value 1.

In this scenario, the first read obtains a newer value (the one written bv
the second write) than the second read (which obtains the one written by
the first write), even though it precedes the second read. This shows that
the register is not atomic.

Construction 4 uses n — 1 boolean regular registers to make an n-valued
one, so it is practical only for small values of n. We would like an algorithm
that requires O(log n) boolean registers to construct an n-valued register.
The second method for constructing a regular multivalued register uses an
algorithm of Peterson {11] that implements an m-reader n-valued atomic
register with m + 2 safe m-reader registers; 2m atomic boolean 2-reader
registers, and two atomic boolean m-reader registers. There is no known
algorithm for constructing multivalued m-reader atomic registers from sim-
pler ones. However, we can apply Peterson’s algorithm to construct an n-
valued single-reader atomic register using three safe single-reader n-valued
registers and four single-reader atomic boolean registers. The safe registers
can be implemented with Construction 2, and the atomic boolean registers
can be implemented with Construction 5 below. Since an atomic register
is regular, Construction 1 can then be used to make an m-reader n-valued
regular register from O(3m log n) single-reader boolean regular registers.

Before giving the algorithm for constructing a two-reader atomic regis-
ter, I prove a result that indicates why no trivial algorithm will work. It

12

asserts that there can be no algorithm in which the writer only writes and
the reader only reads; any algorithm must involve two-way communication
between the reader and the writer.

Theorem: There exists no algorithm lv implement an atomiec register using
only a finite number of regular registers that can be written by the writer
(of the atomic register).

Proof: 1 assume such an algorithm and derive a contradiction. Without
loss of generality, I can assume that there is only a single regular register v
written by the writer and read by the reader. (Any algorithm that works
with multiple registers must also work when those registers are combined
into a single large regular register.)

Let v* denote the atomic register that is being implemented. Suppose
that the writer performs an infinite number of writes that change the value
of v*. There must be some pair of values cssumed by v*, call them 0 and 1,
such that there are an infinite number of writes that change v*’s value from
0 to 1. Since v can assume only a finite number of values (the hypothesis
states that the original algorithm has only a finite number of registers, and
all registers are taken to have only a finite number of possible values), there
must exist values vy, ..., v, of v such that v, is the final value of v after
each one of an infinite number of writes of 0 to v*, v, is the final value of v
after each one of an infinite number of writes of 1 to v*, and, for each ¢ < n,
the value of v is changed from v; to v;4, during infinitely many writes that
change the value of v* from O to 1.

A read of v* may involve several reads of v. However, by considering
only scenarios in which each of those reads of v obtains the same value,
we may assume that each read of v* reads v only once. Since v assumes
each value v; infinitely often, it must be possible for a sequence of n + 1
consecutive reads to obtain the values v,, vp_y, ..., v;.

The read that finds v equal to v; and the subsequent read that finds v
equal to v;_; could both have overlapped the same write of v, which could
have been a write that occured in the process of changing v*’s value from 0
to 1. Therefore, if the read of v* that finds v equal to v; returns the value
1, then the subsequent read that finds v equal to v;—; must also return the
value 1, since both reads could be overlapping the same write and, in that

13

case, two successive reads of an atomic register cannot return first the new
then the old value.

Tle first read, which finds v equal to v,, must return the value 1, since it
could have occurred after the completion of a write of 1. By induction, this
implies that the last read, which found v equal to vg, must return the value
1. However, this read could have occurred after a write of 0 and before any
subsequent write, so returning the value 1 would violate the assumption
that the register v* is safe. (An atomic register is a fortiori safe.) This is
the required contradiction. i

This theorem could be expressed and proved using the formalism devel-
oped below, but doing so would lead to no new insight. The formal proof
of this theorem is therefore left as an exercise for the compulsive reader.

The theorem is false if no bound is placed on the number of values a
register can hold. Given a regular register v that can assume an unbounded
number of values, an atomic register v* is implemented as follows. The
writer sets v equal to a pair consisting of the value of v* and a sequential
version number. The reader reads v and compares the version number with
the previous one it read. If the new version number is higher, then it uses
the value it just read; if the new version number is lower, then it forgets
the value and version number it just read and uses the previously-read
value. The correctness of this algorithm follows easily from Proposition 9
of Section 1.3.3. By assuming registers hold only a bounded set of values,
I am disallowing such algorithms.

Finally, we come to the algorithm for constructing a single-reader atomic
register from regular ones. To begin, we try to implement an atomic register
v* with a regular register v that hiolds a pair of values, both normally equal.
When v is changed from (v,v) (denoting v* = v) to (u.p) (denoting v* =
p), 1t is first set to the intermediate value (v, u). The reader reads v and
returns the first component unless it obtains (v,) after having returned
the value yr the last time, in which case it must return the value g to avoid
a “new-old” sequence.

The preceaing theorem shows that this idea, by itself, is not enough.
The reader is in a quandary if three successive reads of v obtain the val-
ues (p. p), (v, u), and (v,v). The first read simply returns u; as I just

observed, the second read must also return y; but what can the third read
return? The second and third reads could both have overlapped a single
write that is changing the value from v to p, so returning v would produce
a new-old sequence. On the other hand, the third read could have seen
a completely new value, written long after the write that overlapped the
second read, so returning p could violate safety—the requirement that a
read not overlapping any write return the correct value.

To overcome this problem, I add another bit to v, which I will call the
color value. When the reader reads v, it sets a shared one-bit register cr
to v's color value. The writer first reads the register cr and sets v to the
opposite color. (Thus, the reader tries to make c¢r and v’s color the same,
and the writer tries to make them different.) The reader interprets (v, u) as
a p only if its previous read saw a g of the same color. The only source of
embarrassment is now if three successive reads return values (u, u), (v, u),
and (v,v) that are all the same color. It will be shown in Section 4 that
this can happen only if the last read actually overlaps the write of (v, 4}, so
it is allowed to return the value 4 without violating the safety requirement.

In the following construction, the variable cr is written by the reader
and read by both the reader and the writer. A two-reader register is not
needed. since the reader can maintain a local variable containing the value
that it last wrote into cr. {This is just Construction 1 with m = 2 and the
writer being the second reader.) Such a local variable would complicate the
description, so it is omitted. In the reader’s program, the primed variables
denote the values read the previous time, except that if the reader reads
(#, p) then (v.p), both with the same color, then it “forgets about™ the
latter value.

Construction 5 Let V be an n-element set; let w and r be processes; let
v.cw denote a single 2n*-valued register that can be written by w and read
by r. where v has a value in V x V and cw 13 boolean valued: and let cr be a
boolea: register that can be written by r and read by w. Define the n-valued
register v*, with values in V., written by w and read by r by letting the write
v* = p be performed by:

v, cw = (v, g), ~er;
v.cw = (g, p), cw

15

and letting the read operation be performed by the program of Figure 1.1,
where z and ' are local variables in ¥V x V, cr’ is a boolean-valued local
variable, and rin is a local variable with values sn V whose final value 13
the one returned by the read. Initially, ', cr’ equals (v, cw)ll.

16

I, cr = v, cw,
ifcr=cr
then if z, = 7,
then if z; =z} # T, Arin =1},
then skip
else z':==;
rin ;= 1,
fi
else if(z=2'Arin=z;)VI,=1,=1;
then 7' := z;

rin := 1,
else 1’ :=1;
rin = z,
fi
fi
else z',cr' :=z,cr;
rin := 1y

Figure 1.1: Construction 5: the reader’s algorithm.

1.3 The Formal Model
1.3.1 System Executions

Almost all models of concurrent processes are based upon indivisible atomic
actions as their primitive elements. For example, models in which a process
is represented by a sequence or “trace” [1,12,13] assume that each element
in the sequence represents an indivisible action. Net models (2] and re-
lated formalisms [9,10] assume that the firing of an individual trapsition
is atomic. Operations to a nonatomic shared register cannot be modeled
as atomic actions, since these formalisms have no concept of two atomic
actions overlapping in time.

One can model a single read or write operation with two atomic actions:
a start and a fintsh action. I will employ such a model to motivate the
formalism. However, in the general view of physical systems based upon
special relativity that is discussed in (7] and [5], there may be no single real
event that precedes all other events in the operation, and no single event
that follows all others. I will show that assuming such fictitious starf{ and
finish events would result in no loss of generality. However, it turns out to
be easier to reason directly in terms of the nonatomic actions than to use
starting and finishing events.

I therefore eschew more conventional formalisms in favor of one intro-
duced in 6] and refined in [5], in which the primitive elements are operation
ereculions that are not assumed to be atomic. In this formalism, an execu-
tion of a system is represented as a triple §,—,-- -, where § is a finite or
countably infinite set of operation executions, and — and - - - are prece-
dence relations on §.

The most general way of viewing the formalism is to consider an oper-
ation exccution to be a set of points in four-dimensional space-time. Such
a view is provided in {5]. While using the same formalism as {5], I will
employ a less general but more intuitive model. In this model, an opera-
tion execution A is thought of as an activity performed during some time
interval (s, f4]. where the real numbers s, and f4 are the starting and
finishing times of A. I assume that at any time, only a finite pumber of
operation executions have begun. Stated formally, a model consists of a

18

set § of operation executions, together with real-valued functions s and f
on § such that the following conditions hold for all A and B in § (where I
write 84 and f4 instead of s(A) and f(A)):

ML. 34 < fa
M2. for any real number t: {A: 34 < t} is finite

An operation execution A is said to be snstantaneous if, for any B # A. the
numbers sg and fp lie outside the interval [s4, f4]. Thus, A is instantaneous
if and only if we can set 34 equal to f, (shrinking the interval to a point)
without changing the relative order of any starting and finishing times.
Given such a model, we can define the relations — and - - » as follows:

A— B
A---B

fa<ss
84a< [B (1)

Thus, A — B means that A finishes before B starts, and A - - - B means
that A starts no later than B finishes. We read 4 — B as “4 precedes
B” and A--+ B as “A can affect B”.

M1, M2 and (1) imply that the following hold for all operation execu-
tions A, B, C,and D in S:

Al. The relation — is an irreflexive partial ordering.

A2. If A— B then A--- Band B-/- A.

A3. fA— B---CorA--+B—Cthen 4---C.
A4 fA— B--+C — Dthen A— D.

AS5. For any A, the set of all B such that A -/~ B is finite.

Instead of basing the formalism on this model, I adopt the more general
view of [5] and take A1-A5 as axioms.

Definition 1 A system execution 3 a triple S,—,- -+ such that § i3 a
finite or countably infinite set and — and -- - are relations on § that
satisfy A1-AS.

19

Observe that Al and A4 imply that if A — Band A--- P then B-/- 4,
so the “and B -/~ A” in A2 is superfluous.

Definition 1 differs from the definition of a system execution given in [5]
because I am considering only terminating operations. In the more general
formalism, Axiom AS needs the hypothesis that A terminates.

Definition 2 A global-time model of a system ezecution §,—,--- con-
sists of a pair 3, f of real-valued functions on S satisfying M1, M2 and (1).
It 13 said to be nondegenerate tf, for all A: 34 < fs and for all B # A:
347 8p and 34 # [3.

A nondegenerate global-time model is one in which no two starting or
stopping times are identical. The following result states that any global-
time model can be turned into a nondegenerate one by tiny perturbations of
the starting and finishing times of operation executions. Such perturbations
should be allowed, since no physically meaningful result could depend upon
completely accurate knowledge of these times. (It makes no physical sense
to specify the starting and finishing times of an operation execution down
to the fraction of a micropicosecond.)

Proposition 1 For any any global-time model s, f of a system ezecution
S,—.---» and any € > 0, there ezists a nondegenerate global-time model
8, f' of §,—,--- such that |8’y —sa| < e and [f\, — fa] <€ forall A€ S.

The proofs of this and all other propositions stated in this section are
given in the appendix.

In a global-time model, the starting and finishing times of operations
are totally ordered. Given two operation executions A and B, sg must be
either greater than or not greater than f,, so the following condition holds.

A#. For any operation executions A and B with A # B: 4 — B or
B---+ A

This condition does not hold for all system executions. (Trivial counterex-
amples are obtained by noting that the empty preccdence relations make
any set a system execution.) Condition A# holds only if there is global-time
model.

20

Proposition 2 A system ezecution S,—— --- has a global-time model if
and only if A# holds.

In the more general interpretation of operation executions given in [5],
condition A# fails to hold for a pair of operation executions A, B if A and
B occur at spatially separated locations, and they both happen within a
time interval that is less than the time needed for light to travel between
their locations. In most systems of practical interest, A# holds for almost
all pairs A, B of operation executions.

The following result shows that we can get a global-time model by
adding extra precedence relations.

Proposition 3 Given any system ezecution §,— --+, there exist exten-
N 1 . .
sions — of — and -1+ of -- + such that §,—— -1+ is a system ezecution

satisfying A#.

Later, I will indicate why we can consider the system execution §, —
,-~= to be a reasonable way of viewing the system execution §,—-- -.

A system execution satisfying A# is maximal in the sense that no ad-
ditional — or - -+ relations can be added. This is because, for any pair
of distinct operation executions 4 and B, A# implies that either A — B,
or B— A,or A--+- Band B--+ A. In any of these three cases, adding
an additional precedence relation would violate Al or A2.

When trying to understand an algorithm or its correctness proof, it
is useful to think in terms of a global-time model, drawing pictures of
reads and writes as time intervals. However, I find that the best way to
formalize the proof is to use Axioms A1-A5. The additional assumption
A#, implicitly introduced when using a global-time model, is not needed.

1.3.2 Hierarchial Views

The same system can be viewed at different levels of detail, with differ-
ent operation executions at each level. Viewed at the customer’s level,
a banking system has operation executions such as deposit $10. Viewed
at the programmer’s level, this same system executes operations such as
dep_amt[cust] := 1000. The fundamental problem of system building is

21

to implement one system (like a banking system) as a higher-level view of
another system (like a Pascal program).

A higher-level operation consists of a set of lower-level operations—the
set of operations that implement it. Let §,—--+ be a system execution
and let ¥ be a set whose elements, called higher-level operation ezecutions,
are sets of operation executions from §. We consider the starting time s},
of a higher-level operation execution H to be the earliest starting time of
all the operation executions it contains, and its finishing time f} to be their
latest finishing time. In other words, for every H in X:

sy = min{sy: A€ X}
fn = max{f.: A€ N} (2)

In order for this to define real-valued functions s* and f* on X that satisfy
M' and M2, it is sufficient for ¥ to satisfy the following two conditions:

H1. Each element of X is a finite, nonempty set of elements of §.

H2. Each element of § belongs to a finite, nonzero number of elements of

X.

A set ¥ of subsets of S satisfying H1 and H2 is called a higher-level view
of §. In most cases of interest, ¥ is a partition of §, so each element of
S belongs to exactly one element of ¥. However, I allow the more general
case in which a single lower-level operation execution is viewed as part of
the implementation of more than one higher-level one.

Let §,— - - - be a system execution with a global-time model s, f, and
let ¥ be a higher-level view of §. We can define s* and f* by (2) and
then use (1) to define — and - 2-, obtaining a system execution ¥,—,
- 2. having s*, f* as a global-time model. The precedence relations — and
- 24 can be obtained directly from — and - -+ as follows:

G——H = YAeG:VBeH:A— B
G--H JA€eG:3BeH: A---BorA=1B (3)

We can forget about the global-time models and take (3) to be the defini-
tions of — and - 2-. It is easy to show that if ¥ satisfies Hl and H2, and

22

— and - - - satisfy A1-A5, then —— and -7~ also satisfy A1-A5. There-
fore, if ¥ is a higher-level view of S, then ¥,—— -2 is a system execution.
If the relations — and - - » also satisfy A#, then so do — and - 2-.

Let us now consider what it means for one system to implement an-
other. If the system execution §,—,--- is an implementation of a system
execution §,—-¥. then we expect ¥ to be a higher-level view of §—that
is, each operation in ¥ should consist of a set of operation executions of
S satisfying H1 and H2. This describes the elements of X, but not the
precedence relations . and -¥-+. What should those relations be?

If we consider the system execution $ to be the “real” one and ¥ to be
a fictitious grouping of the real operation executions into abstract, higher-
level ones, then the induced relations — and - 2 » are the “real” precedence
relations on ¥. These induced relations make the higher-level view ¥ a
system execution, so they are an obvious choice for the relations ., and
-¥.. However, they may not be the proper choice. Suppose that we are
trying to implement an atomic register using several simpler ones, and
consider a read R and write W to that register—that is, R and W are
operation executions in ¥ that represent a read and write to the register.
Atomicity means that either R = W or W -2, R. However, the two
operation executions could really be concurrent. For example, there could
be some operation executions A and B in the implementation of R and an
operation execution C in the implementation of W with A — C — B,
which (by (3)) implies R-*+ W and W -2+ R. Thus, (by A2) the induced
relations — and - - cannot be the desired relations = and - ¥ -.

When implementing an atomic register from nonatomic ones, in addition
to specifying what set of lower-level operation executions corresponds to an
atomic read or write, one must also specify how to determine whether a
read, which may really be concurrent with a write (according to the induced
relations — and -), is considered to precede or follow that write. This
must be specified in such a way that the register satisfies the condition of
atomicity—namely, that each read obtains the value written by the most
recent write. Subject to that requirement, there is a great deal of freedom
in specifying the high-level relation =,

The implementor cannot be completely free to specify the precedence

23

relations in the high-level system any way he wishes. For example, if there
is at least one write of every possible value of the register, then any svs-
tem execution can be viewed as the implementation of an atomic register
by choosing the . relation to be a sequential ordering of the reads and
writes in which every read comes between any write of the value it read and
the next write operation. This could lead to a precedence relation in which
an operation is defined to precede one that really occurred several months
earlier. Such a precedence relation obviously seems absurd, but why? Ia
a real system, these reads and writes occur deep within the computer; we
never actually see them happen. What is wrong with defining the prece-
dence relation —— to pretend that these operation executions happened in
any order we wish? After all, we are already pretending, contrary to fact,
that the operations are not concurrent.

In addition to reads and writes to registers, real systems perform ex-
ternally observable operation executions such as printing on terminals. By
observing these operation executions, we can infer some precedence rela-
tions among the internal reads and writes. We need some condition on ——
and - ¥- to rule out precedence relations that contradict such observations.

These contradictions are avoided by requiring that the interval in which
we pretend an operation execution occurs (in forming the — and -%-
relations) be contained witu.. <ue interval in which it actually occured.
In other words, we require that a global-time model s*, f¥ for ¥,—— -~
satisfy

WS <A< SA (4)
where s8* and f* are defined by (2). To reformulate (4) directly in terms of
the precedence relations, I appeal to the following result.

Proposition 4 Let s, f be a nondegenerate global-time model for a system
ezecution §,— ---+ and let S, —-1. bea system ezxecution satisfying
A# such that for any A,B € S: A — B implies A — B. Then there
exists a nondegenerate global-time model 8', f' for §,— -1+ such that for
sl A€S:

84S 8y <fi</a

This result implies that, if the system executions §,— - - - and ¥,—.

24

-¥. both satisfy A#, then the ability to choose s* and f* satisfying (4) is
equivalent to the following condition:

H3. For any G, H € X: if G — H then G 2 H, where - is defined
by (3).

This should serve to motivate the following formal definition, which does
not mention global-time models.

Definition 3 A system execution S,— ,--- implements a sysiem ezecu-
tion X,—— -%+ if H1-H3 are satisfied.

To relate this definition to the preceding discussion of observable oper-
ation executions, we need the following result. Its statement relies upon
the obvious fact that if §,—,--+ is a system execution, then 7 ,— ---
is also a system execution for any subset T of §. (The symbols — and
- -~ denote both the relations on § and their restrictions to 7. Also, in the
proposition, the set T is identified with the set of all singleton sets { A} for
AeT)

Proposition 5 Let SUT,—,--~ be a system ezecution, where § and T
are disjoint; let §,— - -+ be an implementation of ¢ system ezecution X,
—N—>,—3-‘; and let —— and -2+ be the relations defined on ¥ U T by (3).

Then there exist precedence relations 2%, and - such that:

e NUT, N—T», X7, is a system ezecution that is implemented by SUT , —

Y--q'

e The restrictions ofi':v and - to ¥ equal A, and -4, respectively.

e The restrictions of 2%, and 7~ to T are extensions of the relations
—— and - 2+, respectively.

To apply this proposition to our discussion of implementations, let
§,—,--- be an execution of a lower-level system of register reads and
writes implementing a higher-level system execution ¥,——,-%. of reads
and writes. Let T be the set of all other operation executions in the sys-
tem, including the observable ones. Proposition 5 means that, while the

25

precedence relations 2 and -¥- may imply new precedence relations on
the operation executions in T, these relaticns (2T, and -".) are consistent
with the “real” precedence relations — and -2+ on T.

Note that when there are global-time models for ail the system execu-
tions, the * relations are the same as the original precedence relations on
the set T, and Proposition 4 implies that the ¥ T relations can be chosen
also to be the same as the original precedence relations on T. However,
in general, the relation SLIN may contain orderings that imply additional
orderings on the elements of T beyond those contained in —. As a simple
example, let A, B€ S, let S, T € T,let S — A, B — T be the only
precedence relations among these elements, and let ¥ = §. If A4 ~ B,

then Al implies S - T even though S -/~ T.

When implementing a register, I will ignore any operation executions
not involved in the implementation, and consider the system execution
comprised only of the reads and writes that implement the register. Prano-
sition 5 shows that the implementation cannot lead to any anomalous prece-
dence relations among the operation executions that are being ignored.

An implementation §,—--- of)(,l»,— Y. is said to be trivial if rvery
element of ¥ is a singleton set. In other words, a trivial implementation
is one in which each higher-level operation execution is imnplemented by
a single lower-level one. In a trivial implementation, the sets § and ¥
are (essentially) the same; the two system executions differ only in their
precedence relations.

Proposition 3 implies that any system execution trivially implements
one that satisfies A#, which, by Proposition 2, has a global-time model.
Implementation is transitive—if §,— - - + implements S —— -1+ whichin
turn implements)(,—1»,- Y., then §,— -- - implements)(,L,- ¥.. When
implementing a higher-level system, we can therefore assume the lower-level
system execution has a global-time model. However, there is no reason to
do so; a rigorous correctness proof using Axioms A1-A5 will be at least as
simple as one based upon starting and finishing times, and will be more
reliable than an intuitive one based upon pictures of intervals.

26

1.3.3 Register Axioms

The foregoing discussion applies to any system execution. I now consider
system executions containing reads and writes to registers. In addition
to A1-AS5, some axioms special to these kinds of operation executions are
needed, including axioms that provide the formal definitions of safe, regular,
and atomic registers.

Axioms A1-AS5 do not require that there be any precedence relations
among operation executions. However, some precedence relation between
aread and a write to the same register must be assumed. (Communication
requires a causal connection between reads and writes.) The following
axiom is assumed; the reader is referred to [5] (where it is labeled C3) for
its justification. Note that it is implied by A#.

Bl. For any read R and write W to the same register, R--+ W or W -- -
R (or both).

Each register is assumed to have a finite set of possible values—for
example, a boolean-valued register has the possible values true and false.
I assume that any read, whether or not it overlaps a write, obtains one of
these values.

B2. A read of a register obtains one of the values that may be written in
the register.

Thus, a read of a Boolean register cannot obtain a nonsense value like
“trlse”. This axiom does not assume that the value obtained by a read was
ever actually written in the register.

I assume that a register v is written by only a single writer, and that
each write precedes the next. Let VIl VIl denote the sequence of write
operations to the register v, where

vil Lyl —, ...

and let vll denote the value written by VIl (There may be a finite or
infinite number of write operations V1))

A register v is assumed to have some initial value vl%. It is convenient
to assume that this value is written by a write V1% that precedes (—) all

27

other reads and writes of v. Eliminating this assumption changes none of
the results, but it complicates the reasoning because a read that precedes
all writes has to be treated as a separate case.

Let R be a read of register v, and let

I & v gy vy
Jp & (V. VI, Ry

It follows from A2 and the assumption that V° precedes all reads that V%
is in both Ir and Jg; and it follows from A2 and A5 that Iz and Jg are
finite. The writes in Jg are the ones that could affect R. For the sake of
the following intuitive discussion, suppose that A# holds, so I is the set
of writes that precede (—) R. (The reader interested in extending his
intuition to the general case should substitute “precedes” by “effectively
precedes”—a concept defined in {5].) The difference Jp — I of these two
sets is the set of writes concurrent with R. The read R can observe “traces”
of the values written by writes in Jg — Ir, ..d by the last write in Ig. All
traces of earlier writes are assumed to vanish with the completion of the
last write in Ir, and no write later than the last one in Jg can influence R
in any way.

I will say that R sees v!™ if it can observe traces of the writes V'l
through V'/l. The formal definition is as follows:

Definition 4 A read R of register v is said to see vi"i| where:

i ¥ max{k:R-/-VH}

i Y max{k:VH ... R}

This definition makes sense because ¢ and j are defined to be the maxima
of finite, nonempty sets—A5 and A2 imply that they are finite, and they
both contain zero. Also observe that Bl implies that i < ;.

I can now give the formal definitions of safe, regular, and live registers.
A safe register is one that obtains the correct value if it is not concurrent
with any write. This is the case if it observes traces of only a single write.

28

B3. (safe) A read that sees vI*l obtains the value v!l.
A regular register is one that obtains a value that it “could have” seen.

B4. (regular) A read that sees v!*/l obtains a value vl* for some k with
i<k<j

An atomic register satisfies the additional requirement that a read is never
concurrent with any write.

B5. (atomic) If a read sees vl then i = j.

A safe register satisfies B1-B3, a regular register satisfies B1-B4 (note that
B4 implies B3), and an atomic register satisfies B1-B5.

The following two propositions state some useful properties that are
simple consequences of Definition 4. I introduce the notation of letting vl
stand for a read that sees the value vl*/. Thus, part (a) is an abbreviation
for: “If R is a read that sees vI"/l and R — V¥ then” (Recall that
VI is the k** write of v.)

Proposition 6 (a) If vi"l — VIH then j < k.
(b) If VI — il then k < i
{c) If vl — ol Il then 7 < 4" 4+ 1.

Proposition 7 If R is a read that sees vl*/], then

(a) k< if and only if VI -_L R.
(b) i < k if and only if R - -~ V41,

In a global-time view, atomicity is usually defined to mean that all
operations are instantaneous. In BS, it is defined by the requirement that
a write does not overlap a read. However, two reads may overlap, and a
write could overlap some operation execution that is not a read or write of
the register. It is easy to see that, given a global-time model for a system
execution satisfying B3, without violating conditions B1-B5. we can shrink
the intervals occupied by reads and writes so that they overlap no other

29

operations. Thus, the original system execution implements one in which
reads and writes of the atomic register are instantaneous.

For a nonatomic register, reads and writes cannot be made instanta-
neous. However, the reads can be made instantaneous.

Proposition 8 Any system ezecution §,— - -~ having a safe or regular
register v trivially implements a system ezxecution §,—— -+ in which v s
also safe or regular, such that S,—— -+ has a global-time model in which
every read of v 13 instantaneous.

I have observed that a regular register is not necessarily atomic because
two successive reads that overlap the same write could return the new then
the old value. The following result shows that this is the only way a regular
register can fail to be atomic.

Proposition 9 Let S,— - -~ be a system ezecution containing reads and
writes to a regular register v, and let ¢ be an snteger-valued function on the
set of reads such that:

1. If R sees v!"9) then i < ¢(R) < ;.
2. A read R returns the value vl*(R),
3. If R — R' then ¢(R) < ¢(R').

Then §,——,-- = trivially smplements a system ezecution tn which v i3 an
atomic register.

A function ¢ satisfying the first two properties exists if and only if v is
regular. One might be tempted to replace these three properties with the
requirement that v be regular and the {ollowing hold:

3 If vl — "7 then there exist k and k' with i < k < j and
i' < k' < j' such that v/ returns the value v/* and /"'l returns the
value vl¥],

However, this does not imply atomicity. As a counterexample, let v{% =
vi?l = 0 and v/!l = 1, let Ry, Ry, Rs be the three reads shown in Figure 1.2,
and suppose that R; and Rs return the value 1 while R; returns the value

30

ylol vl v

Writes;: ——— p—
R, R, R
Reads: F 1 = — } i
Time

>

Figure 1.2: An interesting collection of reads and writes.

0. The reader can show that this register is regular, but no such ¢ can be
constructed; there is no way to interpret these reads and writes as belonging
to an atomic register while maintaining the given orderings among the
writes and among the reads.

If two reads cannot overlap the same write, then vl"Jl — yI".4'] implies
j < ¢'. This implies that any ¢ satisfying conditions 1 and 2 of Proposition 9
also satisfies condition 3. But such a ¢ exists if v is regular, so any regular
register trivially implements an atomic one if two reads cannot overlap a
single write.

1.3.4 Systems

I have defined a sysiem execution, but not a system. Formally, a system is
just a set of system executions—a set that represents all possible executions
of the system.

Definition 5 A system s a sef of sysiem erecutions. The system S s
satd to contain a register v salisfying one or-more of the properties B1-BS5

if every syslem ezeculion in S contains a sequence Vil — ... of writes
with associated values vV, ... and a sct of reads satisfying the corresponding
properlies.

The usuzl method of describing a system is with a program written in
some programming language. Each execution of such a program describes
a system execution, and the program represents the system consisting of
the sct of all such executions. The only operation executions that councern
us are reads and writes of a register; “calculation” steps can be ignored.

31

For example, execution of the statemeut z := yV z includes three operation
executions: a read of y, a read of z, and a write of z. It does not matter
whether or not the computation of the Vv is considered to be a separate
operation execution. What is significant is that each of the two reads
precedes (—) the write; no precedence relation is assumed between the
two reads.

A formal semantics for a programming language can be given by defin-
ing, for each syntatically correct program, the set of all possible executions.
This is done by recursively defining a succession of lower and lower higher-
level views, in which each operation execution represents a single execution
of a syntactic program unit.> At the highest-level view, a system execution
consists of a single operation execution that represents an execution of the
entire program. A view in whicl an execution of the statement S;T is a
single operation execution is refined into one in which an execution con-
sists of an execution of S followed by (—) an execution of T3> While this
kind of formal semantics may be useful in studying subtle programming
language issues, it is unnecessary for the simple language constructs used
in the algorithms of this paper, so I will just employ these ideas informally.

Having defined what a system is, I should define what it means for one
system to implement another. The definition is, of course. in terms of the
definition of what it means for one system execution to implement another.

Definition 6 The system S implements a system H if there 13 a mapping
t: S — H such that, for every system ezecution §S,— --- in S, §,—.
- -~ implements (S, —,---).

Note that for S to implement H, every execution of S must correspond
to some execution of H. The converse is not required; I do not insist that
every possible execution of H have a corresponding implementation. A
higher-level description H of a system can be viewed as a specification of

2For nonterminating programs, the formalism must be extended to allow a nonterminat-
ing higher-level operation execution that consist of an infinite set of lower-level operation
executions.

31n the general case, we must also allow the possibility that an execution of S; T cousists
of a nonterminating execution of S.

32

its implementation—a specification that describes all allowed behaviors,
but does not require any particular behavior.

This definition raises the question of how we can specify that the system
must actually do anything. The specification of a banking system must
allow a possible system execution in which no customers happen to use an
automatic teller machine on a particular afternoon, and it must include the
possibility that a customer will enter an invalid request. How can we rule
out an implementation in which the machine simply ignores all customer
requests during an afternoon, or interprets any request as an invalid one?

The answer lies in the concept of an snterface specification, discussed
in [8]. The specification must explicitly describe how certain interface op-
erations are to be implemented; their implementation is not left to the
implementor. The interface specification for the bank includes a descrip-
tion of what sequences of keystrokes at the teller machine constitute valid
requests, and the set of system executions only includes ones in which every
valid request is serviced. What it means for someone to use the machine
is part of the interface specification, so the possibility of no one using the
machine on some afternoon does not allow the implementation to ignore
someone who does use it.

Since this paper considers only the internal operations that effect com-
munication between processes within the system, not the interface opera-
tions that effect communication between the system and its environment,
I will ignore interface specifications. The interested reader is referred to (8]
for a discussion of this subject.

33

1.4 Correctness Proofs for the Constructions

1.4.1 Proof of Constructions 1, 2 and 3

These constructions are all simple, and the correctness proofs are essentially
trivial. Formal proofs add no further insight into the constructions, but
they do illustrate how the formalism developed in the preceding section is
applied to actual algorithms. I therefore indicate all the formal details in the
proof of Construction 1. The formal proofs for the other two constructions
are just briefly sketched.

Recall that in Construction 1, the m-reader register v is implemented
by the m single-reader registers v;. Forinally, this construction defines
a system, which I denote by S, that is the set of all system executions
consisting of reads and writes of the v; such that the only operations to
these registers are the ones indicated by the readers’ and writer’s programs.
Thus, S consists of all system executions §,——,- -+ such that:

e S consists of reads and writes of the registers v;.

e Each v; is written by the same writer and is read only by the *t
reader.

e For any ¢ and j: if the write V,-m occurs then the write ij also ocurs,
[k-1] [&]

and v; ' — v

The third condition expresses the formal semantics of the writer’s algo-
rithm, asserting that a write of v is done by writing all the v;, and that a
write of v is completed before the next one is begun.

To say that the v; are safe or regular means that the system S is further
restricted to contain only system executions that satisfy B1-B3 or B1-B4,
when each v; is substituted for v in those conditions.

To show that this construction implements a register v, Definition 6
states that we must construct a mapping ¢ from S to the system H, which
consists of the set of all system executions formed by reads and writes to an
m-reader register v. To say that v is safe or regular means that H contains
only system executions satisfying B1-B3 or B1-B4.

34

In giving the readers’ and writer’s algorithms, the construction implies
that for each system execution §,—,--- of S, the set ¢(§) of operation
executions of ¢(§, —, - --+) is the higher-level view of §,— - - - consisting
of all writes VI*l of the form {Vlm, .., VIHY for V,-m € S, and all reads of
the form {R;}, where R; € § is a read of v;. (The write VI* exists in ¢($)
if and only if some, and hence all, V,-[k] exists.) Conditions H1 and H2 are
obviously satisfied, so this is indeed a higher-level view. To complete the
mapping ¢, we must define the precedence relations 2 and -¥- so that
t(§,—>,--+) is defined to be t(S),-L»,- ¥.. Proving the correctness of the
construction means showing that:

1. L(S),l*,-l(~ is a system execution—that is, it satisfies A1-A5.
2. §,—,--- implements t(S),—"—v,-)-(*—that is, H1-H3 are satisfied.
3. «(8),—,- ¥+ is in H—that is, B1-B3 or B1-B4 are satisfied.

The precedence relations on ¢(S) are defined to be the “real” ones, with
G 25 H if and only if G really precedes H. Formally, this means that we
let = and - ¥+ be the induced relations —— and - 2+, defined by (3). Recall
from Section 3.2 that the induced precedence relations make any higher-
level view a system execution, so 1 is satisfied. I have already observed that
H1 and H2, which are independent of the choice of precedence relations, are
satisfied, and H3 is trivially satisfied by the induced precedence relations,
so 2 holds. Therefore, we need only show that if B1-B3 or B1-B1 are
satisfied for reads and writes of each of the registers v; in §,—,--~, then
they are also satisfied by the register v of t(S),-L»,- X

Property B1 for ¢(§),—— -2~ follows easily from (3) and property Bl
for §,—,--+. Property B2 is immediate. The informal proof of B3 is as
follows: if a read of v by process ¢ does not overlap a write (in ¢(S)). then
the read of v; does not overlap any write of v;, so it obtains the correct
value. A formal proof is based upon:

X. faread R; in §,—,-- - sees vy“”, then the corresponding read { R;}
in ¢(8),—,- 2= sees v!¥¥l where ¥ < k<1< /.

35

The proof of X is a straightforward application of (3) and Defintion 4.
Property X easily implies that if B3 or B4 holds for §,—,--~, then it
holds for ¢(§),——,- > +. This completes the formal proof of Construction 1.

The formal proof of Construction 2 is quite similar. Again, the induced
precedence relations are used to turn a higher-level view into a system
execution. The proof of Construction 3 is a bit trickier because a write
operation to v* that does not change its value consists only of the read
operation to the internal variable z. This means that the induced prece-
dence relations do not necessarily satisfy Bl; they must be extended to
make B1 hold. This can be done by applying Proposition 3, though a more
“economical” extension can also be constructed.

1.4.2 Proof of Construction 4

The higher-level system execution of reads and writes to v is defined to
have the induced precedence relations — and - *+. As in the above proofs,
verifying that this defines an implementation and that B1 holds is trivial.
The only problems are proving B2—namely, showing that the reader must
find some v; equal to one—and proving B4 (which implies B3).

I first prove the following property:

Y. If a read returns the value g, then there is some k such that v!¥ =
and the read sees vl with I < k< r.

If B2 holds, then property Y implies B4.

Reasoning about the construction is complicated by the fact that a
write of v does not write all the v;, so the write of v; that occurs during
the k' write of v is not necessarily the k*® write of v;. To overcome this
difficulty, I introduce new names for the write operations to the v;. If v; is
written during the execution of V¥, then I let WJ["] denote that write of v;;
otherwise, WJ["] is undefined. Thus, every write ij of v; is also named W}"’

for some I’ > I. I will say that a read of v; sees w}""’) if it sees v!"7] and the

writes W,m and W}"l are the same writes as V;[!] and V;|r], respectively.
Note that, because the writer’s algorithm writes from “right to left”, if W'.["]

exists, then so do all the W}"l with j < 1. In particular, H"',“‘] exists for all
k.

36

Let R be a read that returns the value g, and let g be the ** value, so
R consists of the sequence of reads Ry — --- — R;, where each R; is a
read of v;. All the R; return the value 0 except R;, which returns the value
1. Let R see v!*"! and let each R; see w“(J Wi By regularity of vj, there

is some k() with I(5) < k(5) < r(5) such that W(OF writes a 1 and W[" ()
writes 2 0 for 1 < j < i. Thus, v/*@) is the value read by R, so it sufﬁces
to show that | < k(1) <

Definition 4 implies W,!""” --+ R;, which by (3) implies VI -2, R,
which implies r(7) < r. Hence, k(i) < r

For any p with p < I, Definition 4 implies that R -;1-» Vel which implies
that Ry - /- W/, which in turn implies that p < I(1). Hence, { < I(1).4
Since I(j) < k(j), it suffices to prove that k{j) < l(j+1)for1 <j < 1.

Since k(j) < r(j), Definition 4 implies that W*W! __. R, Because

W[k(zll writes a zero, W}i‘i’ ! exists, and we have

W}i‘;” - W}k(m --+ Rj — Rjp
where the two — relations are implied by the order in which writing
and reading of the individual v; are performed. By A4, this implies that
W}:,(l’” ;+1, which, by A2, implies R4, -/- W J[i(l’". By Definition 4,
this implies that k(5) < (7 + 1), completing the proof of property Y.

To complete the proof of the construction, I must only prove that every
read does return a value. Let R and the values {(j), k(j), and r(j) be as
above, except let 1 = n and drop the assumption that R; obtains the value
1. To prove B2, I must prove that R, does obtain the value 1.

The same argument used above shows that if R; obtains a zero, then
that zero was written by some write W”’(")] which implies that W“‘(j)] exists
and k(j) < I(j + 1). Since R, obtains ’the value written by W["("” it must
obtain a 1 unless k(n) = 0 and the initial value is not the n*® one. Suppose
the initial value vl% is the p** value, encoded with v, = 1, p < n. Since R,
obtains the value 0, we must have k(p) > 0, which implies that k(n) > 0,
so R, obtains the value 1. This completes the proof of the construction.

‘Note that the same argument does not prove that ! < I{i) because W‘[pl does not
necessarily exist.

37

1.4.3 Proof of Construction 5

This construction defines a set ¥, consisting of reads and writes of v*, that
is a higher-level view of a system execution $,—.--+ whose operation
executions are reads and writes of the two shared registers v, cw and cr. As
usual, — and da* denote the induced precedence relations on § that are
defined by (3).

Let u denote the shared register v, cw of the algorithm. In this con-
struction, the write V*!¥l of v*, for k > 0, is implemented by the sequence
R — Ultk=tl , U4 where R is a read of ¢r and U is the ¢** write of
u. The initial write V*!% of v* is just the initial write Ul of u.

Since there is only one reader, the reads of v* are totally ordered by
—2.. The ** read S; of v* consists of the sequence R; —+ CRIl where R; is
the #*t read of u and CRU is the ©*® write of cr. For notational convenience,
I assume an imaginary read R, of u that returns the value u/%, and I define
So to be the sequence of operations Ry, — CRU. The operation Sj is
taken to be the one that sets the initial values of z' and cr.

The proof of correctness is based upon Proposition 9. Letting (i)
denote ¢(S;), to apply that proposition, it suffices to choose the ¢(i) such
that the following three properties hold:

e S; returns the value v*!¢®)].
o If S; sees v*!"! then I < o(1) <r.
o If j < i then 6(j) < (i).

I start by defining a function ¥ such that R; returns the value ul¥®)l and,
if R; sees ul'*} then ! < ¢¥(i) € r. Since u is regular, such a ¢ exists.
Proposition 6 implies:

Z1. If j < i then ¥(j) < ¥(i) - 1.

By Proposition 7, UNG -« Ry - - o UNVG+Y Syppose v(i) = 2k. Since
U4 is part of V*IM U2+l js part of V! and R; is part of S;, this
implies V** -2 §; - 2. Vb1 Hence, property 2 is satisfied if ¢(i) = k.
Next, suppose that y:(f) = 2k — 1, where k > 0. Since V(%=1 js part of
V¥ we have VeIH _2. 5, -2, Vel =2, yel oy property 2 is satisfied

38

if (i) = k — 1. But we also have V*IF=1l 2, yoldl_2, R 5o property 2 is
also satisfied if ¢(i) = k — 1. To summarize, property 2 is satisfied by ¢ if
the following holds:

Z2. (a) If v(¢) = 2k then ¢(¢) = k.
(b) If (i) = 2k — 1 then ¢(1) = kor ¢(¢) =k - L.

The second statement in the algorithm of Figure 1 consists of nested
if statements, so executing it executes exactly one innermost then or else
clause. I will use a sequence of t (for then) and e (for else) characters
to denote such an innermost clause; for example, tee denotes the second
innermost else clause, which is executed if z, # z; and 7} = 7} = r».

Let a ttt-read be one that executes the ttt clause of the reader’s algo-
rithm, and let a nice read be one that is not a ttt-read. The initial read S
is defined to be nice. For any i > 0, let 7(?) denote the largest integer such
that m(7) < ¢ and Sy(;) is nice. In other words, S,(; is the last nice read
before S;. A ttt-read does not change the value of rtn, z', or cr’. Therefore,
when the execution of S; begins, rtn has the value returned by Sy(; and
', cr has the value ul¥(*0)l read by R,.

I first define ¢(7) inductively for all nice reads, starting with ¢{0) =
0. The definition will be made so that Z2 holds for all i. Let ¢ be a
nice read, 1 > 0, and assume that properties 1-3 and Z2 hold with =(¢)
substituted for ¢. In the following discussion, I will refer to the values
of variables immediately after the execution of the first statement in the
reader’s algorithm during the operation execution S;. Thus, z,cr is the
value ul*®) read by R;, rtn is the value v**" returned by Sy, and
2, cr' is the value ulY")l read by Ry;).

Consider first the case ¥(i) = 2k — 1. In this case, z; = v*l¥=1 apd
z, = v'¥. If 2, # z,, then properties 1 and Z2 are satisfied only by
defining ¢(¢) to equal k — 1 if S; returns the value z, and to equal & if S;
returns the value z,. In other words, #(¢) equals k if S; executes the tet
clause and equals & — 1 otherwise. Since Z2 is satisfied, property 2 holds.

To prove property 3 for ¢, it suffices to prove that ¢(mr(:)) < ¢(¢), since
property 3 is assumed to hold for m(#). Property Z1 implies that ¥(¢(¢)) <
2k, so Z2 implies that ¢(x (7)) can be greaier than ¢(¢) only in two cases:
(1) ¥(=(#)) = 2k and ¢(i) = k-1, or (ii) Y(7x (7)) = 2k —1, ¢(7(¢)) = k, and

39

é(1) = k—1. But ¢(x(i)}) = 2k implies that z| = 4 = z,, so 5; executes the
tet clause and ¢(i) = k. Hence, case (i) is impossible. If ¢¥(7(i)) = 2k -1
and ¢(1) = k, then ' = r and S, executes the tet clause, so rtn' = z5.
Hence, S; must also execute the tet clause, so ¢(1) = k, showing that
case (ii) is impossible. This completes the case y(1) = 2k — 1 and z, # ..

If (i) = 2k -1 and z, = z., then I define ¢(¢) to be the maximum
of 5 — 1 and ¢in(i)). Z1 and Z2 (for x(¢)) imply that ¢(m(¢)) < k, so this
defines ¢(i) to equal either k — 1 or k. At this point, I note the following
property for later use:

Z3. If v(¢) = 2k -1, ; = z,, and ¢(i) = k, thewu there is a nice read f;
with j < 7 such that ¢(;) = 2k.

The proof of Z3 is by induction on i. The hypothesis, Z1 and Z2 imply that
either ¥(m(?)) = 2k, in which case we can let j = (¢}, or else v(7(i)) =
2k — 1 and o¢(m{i}) = & in which case we apply Z3 with () substituted
for 1.

Returning to the definition of ¢(7), in the case under consideration
(¥(i) = 2k — 1 and z, = z,), properties I, 2, and Z2 are satisfied because
#(1) equals either k — 1 or k. Moreover, we obviously have ¢(7 (7)) < ¢(z),
so property 3 is also satisfied. This completes the case y(¢) = 2k — 1 and
zy # I3

Finally, I consider the case ¥/(¢) = 2k, where ¢(¢) must be defined to
equal k£ to satisfy Z2. In this case, z; = z; = v*¥] and S; executes the
tte clause, returning the value z,. (Since S; is assumed to be nice, it does
not execute the ttt clause.) Hence, property 1 is satisfied. Since Z2 holds.
property 2 is satisfied. To prove property 3 for 1, it suffices to show that
#(m(7)) < ¢(?), since the property holds for w(z). By Z1, ¥(m(:)) < 2k+1,s0
¢(m(7)) can be greater than ¢(¢) only if Y(7(7)) = 2k+1 and ¢(x(2)) = k+1.
There are two possibilities to consider: (i) z} # z5 and (ii) z} = z,. In
case (i), 6(m(¢)) can equal k + 1 only if S,(;) executes the tet clause, which
implies that z} # z% and rtn = z); but this is impossible since S; executes
the tte clause. In case (ii), Z3 implies that if ¢(7(7)) = k + 1, then there
exists j < m(7) with ¥(y) = 2k + 2. But Z1 implies that this is impossible,
since j < t and (i) = 2k. Hence, property 3 holds. This completes the
construction of ¢(¢) for all nice reads S;.

40

To complete the definition of ¢, if S; is a ttt-read, I define ¢{¢) to equal
#(r(i)). Since S; returns the same value as S,(;), property 1 is satisfied.
Property 3 obviously holds, since it holds for nice reads and ¢ assigns to
every ttt-read the same value as it assigns the most recent nice read. The
only thing loft to prove is that property 2 holds for a ttt-read S;. This is
perhaps the most subtle proof of the entire paper. It involves proving the
remark made earlier, that if a sequence of reads obtains the values (u. pt),
(v, u), and (v, v), all of the same color, then the last read overlaps the write
of (v, u).

Let S; be a ttt-read, and let (g, #), ¢ be the value ul*® read by R;. Since
S; executes the ttt clause, z', c#’, which is the value ul*™) read by R,
must equal (v, u), ¢ for some v # p, so (7 (#)) is odd. Let y(m(i)) = 2k—1.
Since S; executes the ttt clause, S;(;) must return g, so it must execute the
tet clause. This implies that ¢(7(¢)) = k, so ¢(i) = k, and that the value of
cw read by the operation execution S,(;)-, must also equal ¢. so CRIF0)-1l
writes the value c¢. The following operation executions must therefore be
performed in sequence by the reader (each one —’s the next, but the
reader may peiform other. intervening operation executions):

o CRI"O-1: writes er[r(:) = 1] = ¢
o R,y reads ul®*=Y = (v, p),c

e R;: reads ul*®) = (v, 1), ¢

o CR!: writes erll = ¢

Moreover, the reads between Sp(;y and S; also write the value ¢ in cr.
Therefore, crll = ¢ for all j with 7(i) =1 < j < ¢. Note also that
o(t) = o(n(1)) = k- 1.

It follows from Z1 that ¥ () > 2k—2. If ¥(1) = 2k—2, then Proposition 7
implies that R; --- UP*~1. However, that proposition also implies that
Ukt -, R,;). Since Uik=2) ., -1 and R.; — R;, we see that
Ulk=2l —, R, --. Ulzk=1_ This implies V*I*~1 -2, §; -2, V*I¥ Since
#(i) = k — 1, property 2 follows from Proposition 7.

I have shown that ¥(¢) > 2k — 2 and property 2 holds if ¥(¢) = 2k — 2.
To finish the proof, I now show that %(i) = 2k — 2 by assuming ¥(¢) >

41

2k — 2 and obtaining a contradiction. Since ul**=Y equals (v,), ¢ and U[*4
equals (g, #), neither of which equals ul*®)l (because u # v), we must have
(i) > 2%, Let =7l denote the read of cr in the write of ©* of which L/[¥(9]
is a part. Since U0 sets cw to ¢, the read cr*) must obtain the value
—c¢. The writer must therefore perform the following sequence of operation
executions, where each —’s the next. {There may be other, intervening
operation executions.)

o UM: writes ul**l = (p,), ¢
o crlvl: reads the value —¢
o UL writes ulv®) = (v 1), ¢

By Proposition 7 (and the definition of ¥). Ry -~- UP*. We therefore
have
CRI"-1 __, Regy -+ Uikl opilr]

so CRI"O-YW ., ¢rltrl By part (b) of Proposition 6, this implies 7(i) — 1 <
(.
Proposition 7 implies UYW - -4 k;, so

erlbrl — pl®I__L R, — CRIY

This implies cré*! — C R, so part (a) of Proposition 6 implies r < i. We
therefore have (i) — 1 < [< r < 1, so regularity of cr implies that crlt!
obtains a value crlil with Y(i) — 1 € j < i. However, I already observed
that all such values equal ¢, and crlt"! obtains the value —¢. This is the
required contradiction, completing the proof.

Part 11

The Intersecting Broadcast
Machine

43

2.1 Abstract

This section of the report proposes a new ar:ay processor architecture that
is

e Effective for arbitrary programs that cannot be mapped onto regular
array structures and that, consequently, perform poorly on existing
array processors

e Capable of operation in a fault-tolerant mode

e Physically structured to permit high-performance VHSIC implemen-
tation.

2.2 Background

There is no need to enumerate the problems for which our current high-
performance computers are inadequate; the list would be endless. More-
over, there are many important problems for which our current computers
are several orders of magnitude too slow. Remarkable as have been the
improvements in computer performance over the past 40 years, there is
nonetheless no possibility that the undoubted continued increases in per-
formance will suffice tc meet our future needs.

The improved performance of conventional von Neumann computers has
been due largely to improved electronic-component technology that allows
faster clock cycles and the use of more complex faster circuits, as well as to
improved designs that permit operations to be executed in fewer cycles and
several operations to be performed concurrently. While further improve-
ments in electronics can be expected, there are very real limitations on the
extent to which increased concurrency is possible while still maintaining
the von Neumarn illusion of purely sequential operation.

Even better performance has been achieved by making the processors
more specialized in structure. Two primary examples are the vector proces-
sors, such as the Cray and Star computers, which are very effective for pro-
cessing large matrices uniformly, and the systolic processors, which are very
effective for FFT, conv~lution, and similar signal-processing applications.
Unfortunately, there are many applications that do not lend themselves to
such specialized procassing strategies. For such applications, only parallel
processing of the problem by many cooperating processors (whether von
Neumann or not) can result in substantially faster processing.

Not oaly do improvements in electronic-component technology allow th=
construction of very-high-performance circuitry, but they also permit uni-
form replication of relatively simple electronic circuits at very low cost. It is
clear that the ideal structure for VLSI implementation of a multiprocessor
arch’tecture consists of a regular array of processors.

46

Past experience in using array processors, however, has not been very
encouraging. The prototypical Illiac IV computer and the generally simi-
lar Intel Hypercube have shown to be effective only when communication
within the array is almost entirely between adjacent processors. Commu-
nication between arbitrary processors requires that the data be passed via
a chain of intermediary processors, which is slow and absorbs an ex~es-
sive amount of system resources. Even for suitable problems, it has been
found to be difficult to map the problem domain onto the array so as to
obtain reasonable efficiency; moreover, the approach appears to be almost
completely ineffective for less suitable problems.

Another class of array processors is the SIMD (single instruction — mul-
tiple data) machines, exemplified by the Connection Machine. SIMD ma-
chines are very effective whenever substantially the same sequence of oper-
ations must be applied to a large proportion of the cells of the array. The
Connection Machine-which, with its one-bit processors, is highly suited
to image-processing applications~has been used with great ingenuity in a
number of applications. But many applications require a significant pro-
portion of special-case processing and are not implemented efficiently in an
SIMD architecture. Furthermore, the problem of communication between
arbitrary processors in the array is still significant.

More general are the MIMD (multiple-instruction multiple-data) ma-
chines, exemplified by the Butterfly Machine. Such machines contain a set
of processors and a set of shared storage modules, the processors access-
ing the memory through an array of delta switches. The Butterfly Machine
also provides a direct link between each processor and its associated storage
mecdule. Access to the memory by means of delta switches maintains the
appearance of a single uniform memory, equally accessible to all processors,
but involves contention among processors for use of the switches, and thus
substantially increases memory access time. Consequently, efficient use of
the machine requires that most of a processor’s memory references be made
to its own associated module; this results in allocation problems similar to,
but less critical than, those encountered with the Illiac IV type machines.

47

The problem of mapping an application onto an array is greatly aggra-
vated by the presence of faulty processors. In any large array, it is inevitable
that there will be processors that have failed. Allowance must also be made
for transient faults, which are much more frequent than solid faults and may
cause a significant rate of erroneous results from a large array. The use of
VLSI with very small device dimensions, as might be expected in an array
implementation, inevitably increases the rate of transient faults.

Errors resulting from faults must be detected and corrected so as to
protect the validity of the results. While it is conceivable that adequate
protection against solid faults could be provided (at least for batch rro-
cessing) through some form of periodic testing of the processors, detection
of errors resulting from transient faults necessarily requires some form of
replication and comparison for all processing operations.

The presence of a faulty processor requires that either

e The error detection and correction algorithms be strong enough to
mask the faulty processors coutinuously (e.g. by majority voting), and
that repair be rapid enough to reduce the rate of multiple concurrent
faults to an acceptable level, or

e The mapping of the application onto the array be modified to avoid
having to use the faulty processor.

Mapping the application onto an array can be quite difficult even in the
absence of faulty processors, and is certainly not simplified by introducing
irregularities into the array structure. Local adaptation, such as transfer-
ring the workload of the faulty processor onto neighboring processors, may
overload the processors and increase communication delays. Global adapta-
tion, if possible, will involve movi‘ng large amounts of data to accommodate
the revised mapping of the application onto the array. The difficulties of
adaptive reconfiguration suggest tha:¢ continuous error detection and cor-
rection, which is also effective against transient faults, may be preferable
in many circumstances.

48

Of course, there are some applications in which most of the calculation
comprises a search and for which a comparatively short check can be made
at the end to confirm the validity of the solution. For such calculations, fault
tolerance may be less essential. There are also some applications for which
the rate of processor failure may be substantial and, in addition, immediate
recovery from error is essential-the most obvious example thereof being the
SDI Battle Management System.

In considering an array processor intendea for, say, ten years hence, we
can reasonably make certain assumptions:

¢ Main storage will become very inexpensive, and moderate perfor-
mance processors will become quite inexpensive.

e The major costs and the primary physical constraints will be associ-
ated with the interconnection interfaces; the performance of the array
will be determined largely by communication costs.

¢ High-density packaging and interconnection techniques can be applied
most effectively if the logical structure of the system corresponds to
a feasible physical structure.

e Although individual nodes in the array will be quite reliable, a large
array must necessarily contain faulty nodes.

2.3 Objectives

For some applications, a very close match between the structure of the
application and the structure of the array processor is not only possible,
but offers some advantages from the standpoint of performance. The In-
tersecting Broadcast Machine is not intended to be competitive for such
applications, however.

But there are important applications that do not map easily onto an
array and for which the performance of array processors is poor. Our ob-

49

jective is an architecture that performs well for arbitrary applications in
which there does not seem to be any preferable mapping onto a regular
structure. In the absence of a systematic mapping, the allocation of activ-
ities among processors becomes essentially random; thus, the architecture
must perform well with such a random allocation and with the consequent
random communication.

To ensure reasonable performance, we seek a connectivity structure in
which data located randomly within the array can be communicated di-
rectly from its source to its point of use without being fcrwarded through
intermediate nodes.

To ensure feasible construction with existing high-density packaging as
well as eventual construction on the surface of a wafer, we seek a two-
dimensional structure.

To ensure correct operation in the presence of faults, both solid and
transient, we seek an architecture that is inherently fault-tolerant.

2.4 Structure of the Intersecting Broadcast
Machine

The Intersecting Broadcast Machine consists of two orthogonal sets of
buses. Processors are iocated at the intersections between buses, each pro-
cessor having two interfaces, one connecting to each of the two buses at
that intersection. Thus, for n buses in each set, there are n? processors. An
arbitration mechanism for each bus allocates that bus among contending
processors. The information broadcast on a bus is received and stored by
every processor connected to the bus. Processors that will never use the in-
formation must still store it, at least temporarily, thus entailing additional
storage that is substantial in volume but modest in cost.

Consider a processor, randomly located within the array, that has com-
puted a value, denoted in Fig. 2.1 as A. That processor broadcasts its result

50

Figure 2.1: The Formation of Intersections. The broadcasting of two results, A
and B, from random locations in the array always yields at least two nodes at
the intersections of the broadcast, where the next stage of the computation can
be executed.

on each of the two buses to which it is connected, and every processor along
both buses receives and stores that value. Another processor, also randomly
located, computes another value B, which is similarly broadcast over two
buses and stored by processors along those buses. There are now two pro-
cessors, at the intersection of the broadcasts, that have both values and
can continue the computation. It should be noted that there was no need
to plan or even to know in advance where the results would be computed;

the design thus lends itself to complex calculations for which such planning
would be difficult

It is anticipated that the array processor will normally be operated in
a fault-tolerant mode, as described below. However, it may be appropriate
to run some calculations without fault tolerance. We describe such an
operation here.

Since each computation is preferably done only once in the array, it is
necessary to select one of the two processors at the intersections to perform
the computation. This processor can be selected algorithmically, but here

51

Figure 2.2: The Selection of a Processor by Means of a Race. One of the two
processors at the intersections wins the race and broadcasts its results (shown
solid). Auxiliary broadcasts (shown broken) inhibit the other processor from
broadcasting its results.

wa nrefer 70 advocate a race. Each processor enqueues the operation along
with other operations it must perform and, when the operation has been
completed, the result f(A,B) is broadcast on the two buses to which the
processor is connected. As shown in Fig. 2.2, one of the processors will win
the race. Its broadcasts not only communicate the resuié, but also inform
the processors that had computed and broadcast the A and B values that
the result f(A,B) has been computed. These two processors then gener-
ate auxiliary broadcasts on the orthogonal buses. Because the auxiliary
broadcasts carry the identity or designator of the result f(A,B) but not
its value, they can be much briefer. In the figure the auxiliary broadcasts
are denoted by broken lines. These broadcasts inform the fourth processor
that the computation has been completed and broadcast, and that there is
consequently no need for it to broadcast that result as well.

In the event the auxiliary broadcasts do not reach the fourth processor in
time to inhibit its broadcasts, every processor on the four buses will receive
both a main and an auxiliary broadcast for the value f(A,B); each processor
would then apply an algorithmic selection criterion. It is possible, if not

52

likely, that some of the processors may have already initiated subsequent
operations on the basis of a broadcast when the auxiliary broadcast is
received that inhibits that broadcast. The processor can readily abandon
internal processing, but special action is required to cancel results that
have themselves already been broadcast. The technique required, known
as a chase protocol, is discussed below in the section on fault tolerance.

The main and auxiliary broadcasts also serve other functions:

e Along each bus there are many processors that have received and
stored one of the two values and are waiting for the second value,
which they will never receive. The receipt of the main or auxiliary
broadcast for f(A,B) indicates that such processors will not be re-
quired to compute f(A,B), and therefore can be used to drive the
storage management algorithms.

o If the caiculation involves the updating of a value and there are several
possible updates, the race is not just between the two processors
at the intersections but also between concurrent calculations. The
broadcasts may indicate which calculation should proceed and which
should be restarted with the new updated value. In more complex
cases, the race should be to claim a semaphore.

Even though the structure described in this section is not intended
to be fault-tolerant, it does exhibit some measure of tolerance for faulty
processors. If one of the two processors at the intersections has failed, the
other is available to perform the operation.

2.5 Fault Tolerance

The concept is readily extended to provide fault tolerance and, indeed, we
do not believe that a large-array processor can be operated effectively in
any other mode. To provide fault tolerance, each value is computed and

53

broadcast by two processors in the array. Fig. 2.3 shows the values A and
B, each computed and broadcast by pairs of randomly located processors
in the array; the broadcasts for B are indicated by broken lines. Note that
there are eight nodes at which the values A and B are both available. It
would, of course, be inappropriate for the result f(A,B) to be computed and
broadcast by all eight; our objective is to have the result f(A,B) broadcast
by two nodes, just as the values A and B are.

A ul jual
e ¢ L=+
1. {T1— B)\
T e
3 A e S
|5* o
m BA gs]
W S

cigwie 2 7. The Eight Intersections Resulting from Replicated Broadcasts. When
each value is computed and broadcast by two processors in the array, there are
eight nodes at the intersections of the broadcasts, where the next stage of the
computation can be performed.

Here too it is possible to select the two nodes algorithmically or by
means of a race condition. For the latter approach, two alternatives are
available, depending on how the auxiliary broadcasts are generated. We de-
scribe first the alternative that follows more closely the approach described
above for the unreplicated case.

Fig. 2.4 shows that one of the processors has completed the next stage
of the computation, denoted by f(A,B), and has broadcast its value on the
two orthogonal buses. These broadcasts serve not only to communicate the
value, but also to inform two of the other processors in the set of eight

54

Al (a8 |
w8 :

feal
ki
TU«"_

oy

i

o
-

$—

Figure 2.4: The Selection of a Processor by Means of a Race. One of the eight
processors at the intersections wins the race and broadcasts its results (shown
solid). These broadcasts inhibit two of the other processors, and auxiliary broad-
casts (shown broken) inhibit yet another three processors from broadcasting their
results. Auxiliary broadcasts are generated by the processors that provide the
input values.

that the result has been computed and broadcast. As above, auxiliary
broadcasts arc gencrated by the two processors that broadcast the A and B
values, shown in the figure by broken lines. The auxiliary broadcasts serve
to inhibit three more processors of the set of eight, leaving two processors
from that set.

As shown in Fig. 2.5, one of the two remaining processors has computed
and broadcast the value f(A,B). Here again two auxiliary broadcasts have
been generated by the processors that broadcast the A and B values.

Fig. 2.6 shows an alternative approach to auxiliary broadcasts. Here the
set of eight intersection nodes divides into two groups of four each: a group
that receives A on a horizontal bus and B on a vertical bus, and a second
group that receives A and B in the other directions. We must select one
node from each group to continue the computation. The figure shows that
one processor has completed the computation of f(A,B) and has broadcast

55

& .
A {(A,B)
o 11

g

ool

-

Figure 2.5: The Selection of a Second Processor. One of the two remaining
processors wins the race and broadcasts its results. In this case too, auxiliary
broadcasts inhibit the other processor.

ATLf(A,B)l ja_

o
h
Y

)

fasl

Foal
g
8

Figure 2.6: The Selection of a Processor by Means of a Race. One of the eight
processors at the intersections wins the race and broadcasts its results (shown
solid). These broadcasts inhibit two of the other processors. Here auxiliary
broadcasts (shown broken) are generated by the inhibited processors and inhibit
only one other processor.

56

its result value on the two buses. These broadcasts inform two of the group
of four processors that the result has already been computed and thus to
inhibit them from also broadcasting the result. These two processors then
generate the auxiliary broadcasts. This differs from the foregoing approach,
in which the auxiliary broadcasts were generated by the processors that
had provided the A and B values. The auxiliary broadcasts indicate to
the fourth processor of the group that the result has been computed and

broadcast.
Al f(A,BL

i
4~ Jg-BI_

AL
fas)l 8 l:{

e ol
o

Figure 2.7: The Selection of a Second Processor. The second group of four
processors is handled similarly. The main broadcasts, done by the processor
winning the race, inhibit two of the processors, while the auxiliary broadcasts
inhibit the fourtk.

The second group of four processors is handled similarly, as shown in
Fig. 2.7.

In both of these alternatives, we started with the computation and
broadcastingof the values A and B by two processors in the array; now the
next computation is similarly performed and broadcast by two processors,
as shown in Fig. 2.8. Note that for each alternative, on each bus carrying a
broadcast value, there are three processors that hold independent versions
of that value:

57

Alwe] | L

ool
L= 24

1% o =

e

Figure 2.8: Fault Tolerance. Initially the A and B values are each broadcast by
two processors in the array and, subsequently, f(A,B) is also broadcast by two
processors. On each bus there are three processors with independently computed
values, thereby allowing majority voting if necessary.

e The processor that computed and broadcast the value
e Another processor that can compute the result but lost the race

e A processor that cannot compute the result but received it on an
orthogonal bus.

Consider the upper horizontal bus in Fig. 2.8. There is a processor that
has computed and broadcast the value f(A,B), whiie to its right another
processor has computed the result but was inhibited by prior broadcast of
that result. To the left is a processor that has not computed the result but
received the value f(A,B) from the broadcast by the selected processor of
the second group of four. Anv difference between the broadcast value and
these alternative values results in the latter’s also being broadcast; every
processor on the bus then has three independently computed values, among
which it can choose by majority voting.

Unfortunately, this majority vote occurs after the first, possibly erro-
neous value has been received by all of the processors along the bus. If the

58

majority vote indicates that the first value is indeed erroneous and provides
another, different vaiue, it is possible that some of the processors may have
commenced further operations based on the erroneous value and may even
have broadcast the results of such operations. It is clearly essential that
these erroneous results be retracted as rapidly as possible. This problem is
not unique to the Intersecting Broadcast Machine, but arises in almost all
fault-tolerant distributed systems. It has been investigated by Randell and
Merlin(1], who refer to it as the chase protocol problem, and by Liskov et
al.[2], who call it orphan detection. The chase protocol is so named because
the retraction message must chase after erroneous results, possibly through
several intermediate processors. Of interest with regard to these algorithms
is the question of convergence, namely, whether the chase after erroneous
values ever actually terminates. Convergence depends on the ratio of the
time for computation and transmission of new result values to the time
it takes to propagate the chase messages. Provision may be made to give
chase messages priority over other broadcasts, su as iv improve convergence
of the protocol.

The first of the alternatives, in which the auxiliary broadcasts are gen-
erated by the processors that supply the input values, matches closely the
approach required for unreplicated operation. However, the second alter-
native, in which the auxiliary broadcasts are generated by processors at
intersections, has better fault tolerance properties. In particular, as re-
gards the second alternative, if one of the values is broadcast by only one
node, while the other is broadcast by two, the result of the operation is
broadcast by two nodes. Of course, all three independently computed val-
ues are not available on each bus for majority voting, if so required. Some
buses may have only two values available, allowing error detection but not
correction. Consequently, the second alternative permits recovery from a
situation in which, for whatever reason, a value is broadcast by only one
node of the network. The first alternative does not possess this property.

We must consider not only the possibility of processor failure, but also
bus failure. First, we note that solid failure of a bus prevents all of the nodes
along it from receiving any further broadcasts on that bus. Consequently,

59

since that entire row of processors can no longer be at an intersection,
they are therefore essentially lost to the system. Thus, in view of the very
detrimental effect on system performance, the design should attempt to
minimize the rate of bus failure.

Ail f(A.BL (AB)

A
]

Figure 2.9: The Effect of Bus Failure. Some broadcasts do not take place, and
some of the processors may not be inhibited. There may be three broadcasts of
a value in one direction, but only a single broadcast in the other direction.

Immediately after a bus failure, the processors along the bus may still
be executing operations based on values received prior to failure of the bus.
The effect of bus failure on such operations is shown in Fig. 2.9. If one of
the processors connected to the faulty bus wins the race in its group of four,
it will be able to broadcast its result on the working bus but not cn the
one that has failed. Consequently, the other processor of the group of four
that is attached to the faulty bus will not receive the broadcast and will
not know that it should refrain from broadcasting its result value. Thus,
as is shown in the figure, the value may be broadcast on three buses in one
direction, but on just one bus in the .her.

Fig. 2.10 shc+'s the possible next computation, with the values renamed
for convenience. The value C is broadcast on three vertical buses and on«
horizontal bus, while D is broadcast on two buses in each direction.

60

I

{
1

Figure 2.10: Continued Computation after Bus Failure. To examine the effects
of continued computation after bus failure, we consider a computation in which
one of the arguments has the three/one-broadcast pattern.

f(C.D C

Figure 2.11: Recovery from Bus Failure. Starting with one argument in the
three/one pattern, the neat result is broadcast by two processors and carried on
two buses in each direction.

Fig. 2.11 shows the result of the next computation. The value f(C,D) is
broadcast on two horizontal and two vertical buses, as desired. On three
of these buses, at least three independently computed values are available
for majority voting if necessary. But there may be one bus on which only
two values are available. Thus, during recovery from bus failure, some
buses may transiently only be able to provide error detection but not error
correction.

2.6 Bus Structure

The architecture is built largely around the bus structure. The buses might
be quite similar in design to those employed by such companies as EXLSI,
Sequent, Encore and Alliant. Such buses, which can accommodate up to
30 interfaces, currently run at about 40 MHz with 32 or 64 data signals.
100 MHz or more may soon be possible, and optical versions of such a bus
should be able to operate at even higher rates. Transfers across the bus
must carry both an identity for the value and the value itself, which might
be as small as a single word or could be quite large.

Since the buses are of course contention buses, arbitration circuitry
is required to allocate their use to the processors. This circuitry can be
separate from the bus itself and need impair performance.

The regular two-dimensional bus structure has physical characteristics
that are suitable for mass production and permit the design of very-high-
performance buses. In particular, a two-dimensional structure is very
appropriate-perhaps even essential-if the array processor is to be imple-
mented directly across a single wafer, as may be possible in the future.

62

2.7 Performance Model

Since all the processors in a row or column must share the same bus, there
is contention for use of the buses; access to them therefore can become a
limiting factor in the design. As the array is made larger, with constant
processor and bus performance, there will necessarily come a point at which
the buses become overloaded. When this occurs, further increases in array
size will add little to overall performance. Hence, the design scales well
only up to the point at which the buses become saturated.

The number of processors that can share a bus withou* saturating it
depends on (1) the ratio of the performance of the processors . > the perfor-
mance of the bus, (2) the length of the typical computation, and (3) the size
of the typical result to be transmitted across the bus. If the typical compu-
tation is very short, perhaps a single operation as in z dataflow machine,
it can be expected that the time to perform an operation will be less than
or equal to the time to transmit the result (probably a single word). With
many processors competing for the bus, saturation is clearly inevitable.

But a coarser granularity of computation should increase the duration
of the computation by more than it increases the size of the results, particu-
larly if the computations and data structures are carefully chosen. Current
designs for fast buses, such as will be necessary here, can accommodate up
to 30 interfaces on the bus. Consequently, a good objective would be to
find programs in which the typical program fragment takes about 30 times
a= jong to execute as the bus needs to transmit the result.

A simple queueing theory model has been constructed to determine the
effect of the ratio of processing time to bus transfer time. The model, as
shown in Fig. 2.12, considers one column (or row) of processors together
with the bus that serves that column.

63

n procesane bus

| na—

s/m

} .gure 2.12: The Queueing Theory Performance Model. The model considers
one column of n processors and the bus that serves that column.

Let n be the number of processors in a row or column
3 the mean time for a processor to process an operation
(excluding time in queues waiting for operands or the processor)
e the mean utilization of a processor
m the ratio of bus speed to processor speed,

giving s/m as the mean time to transmit a result over the bus.

Since the utilization of a processor is e, by elementary queueing theory,
the mean number of operations being performed or waiting in the queue to
be performed by that processor is I%c'

Since n processors make requests on ..1e bus and since the bus is m times
as fast as a processor, the utilization of the bus is ne/m. Consequently,
the mean number of operations being L oadcast or queued, waiting to be

broadcast, is
ne

m(m — ne)’

There are n? processors in the system and n buses (we do not count the
orthogonal set of buses, since each broadcast must use one bus from each

64

set. Thus the number of concurrent operations to achieve the processor

utilization of e is

nle nle

l1-e¢ m(m—ne)

Fig. 2.13 shows the results of this queueing model for a system with
n = 30. When m = 30, high utilization of the processors requires many
more concurrent operations than processors, but acceptable utilization is
obtained when the number of concurrent operations is equal to the number
of processors. For a slightly slower bus, with m = 20, there is a loss of
processor utilization resulting from bus saturation when there are a great
many concurrent operations. But, if the number of concurrent operations is
comparable to the number of processors, the loss of processor utilization is
not substantial. Significantly slower buses, as when m = 10, become satu-
rated before adequate processor utilization is achieved. There is no benefit
from using much faster buses; the curve for m = 50 is indistinguishable
from that for m = 30.

2.8 Load Balancing

The queueing theory model above makes an assumption that the load is
spread across the array uniformly and randomly. But how can we be sure,
even if we start with a uniform and random distribution, that execution of
the program will not tend to cluster much of the load onto a few processors,
leaving others underutilized. We consider a simple stochastic model of the
system:

Let p; be the proportion of the load on the ith horizontal bus
¢; the proportion of the load on the jth vertical bus
r;; the proportion of the load on processor ¢,

65

1.0 Processor

j Utilization
(900 processors)
0.8_|
0.6_
0.4_
0.2_]
° |
|
100 1000 10000

Number of Concurrent Activities

Figure 2.13: Processor Utilizat’»n. Processor utilization depends on the number
of concurrent operations as well as on the ratio m of bus to processor sneed. The
figure is drawn for a system of 900 processors and two sets of 30 buses.

66

We can relate these by
1) Sin=L¢=Si;rij=1
(2) P = Ej Ti;
3) gi=Zir;
(4) ri; = kpig;

The first of these equations is clearly valid, while the second and third
depend on the assumption that results generated by different processors
are drawn from the same size of distribution, which is not an unreasonable
premise. Equation (4) is open to some doubt, for the program does not
select operands for processing entirely at random and thus can distort the
distribution. However, even if we assume the validity of Equation (4), it
is evident that these equations have no unique solution. Thus there can
be no expectation that the load will remain uniformly distributed, nor, in
particular, any expectation that the load will be self-stabilizing.

But all is not yet lost. Consider a system in which the probability of

a processor’s performing an operation depends on that processor’s current
load.

(1) Tipi=%¢ =it =1

(2 pi = 2Ty

(3) g5 = 2 Tij

(4) ri; = kpig; X 17> or r;; = 0, where b > 0 (b = 0 is the previous case)

or (4) rij = (kpig)) ™.

67

The revised version of (4) contains a factor r;;* that reduces the prob-
ability that a heavily loaded processor will undertake an operation and,
conversely, increases the probability that a lightly loaded processor will do
so.

o e
Now p; =3; (kP:'Qj)TiT =k™p; ™ ¥ g%

]
e
and I = k™5, g7 if i # 0,
showing that p; is independent of 1.

— 1 T | - _1
Thus p;=¢; =+, r; = 35, and k = 5.

We do not expect that, in practice, the actual form of the term describ-
ing the probability of a processor’s performing an operation will be precisely
as presented here; this form was chosen to facilitate analysis, with the ob-
jective being merely to show that negative feedback can indeed stabilize
the load. The race algorithms described above provide this feedback.

Not only should the algorithms of the system spread the load uniformly,
but they should also be stable. Unfortunately, since a more detailed analysis
involves both queueing theory and control theory, it is quite difficult. For
the present, we note that system software usually appears to be heavily
damped and seldom becomes unstable.

One of the most significant differences between the Intersecting Broad-
cast Machine and other array processor architectures is now apparent.
Other architectures require a particular geometric mapping of the appli-
cation onto the array in order to obtain minimal communication and high
performance. The Intersecting Broadcast Machine operates on the basis of
a random allocation of the application to the processors of the array, and
performs acceptably for that random allocation. There are many applica-
tions for which the particular mapping is hard to find or does not exist,

68

and so the resulting performance may be very bad. But all applications
can be allocated at random and should perform acceptably on the Inter-
secting Broadcast Machine. Furthermore, a particular mapping may be
seriously disrupted by faulty processors, while a random allocation should
not be affected significantly. Consequently, the Intersecting Broadcast Ma-
chine should be more general and more robust than other array processor
architectures.

2.9 Programming

In some ways the architecture resembles a data-driven dataflow machine.
Most of what has been learned about dataflow architectures is applicable,
especially as regards the naming of values. However, there are significant
differences. In a dataflow machine, the selection of data to be processed is
determined primarily by the dataflow program,; it is largely independent of
the values of the data. The Intersecting Broadcast Machine, in contrast,
is perhaps most effective when the selection of data items to be processed
together depends on the values of the data; for this reason, the allocation
of data to processors cannot be preplanned.

Dataflow architectures are usually purely functional, whereas it is possi-
ble to operate the Intersecting Broadcast Machine as an imperative machine-
while taking precautions, of course, to avoid unintended interactions be-
tween concurrent operations.

Like many other dataflow structures, operations are necessarily monadic
or dyadic (one or two inputs). However, it is possible to show that, if the n
values are randomly distributed across the array, the number of broadcasts
necessary to collect all n values at one node is not increased by gathering
them in pairs.

Because our objective is to reduce communication costs, it would appear
that a relatively coarse granularity of computation will be appropriate. Re-
search is currently in progress at the University of Illinois and elsewhere

69

on automatic decomposition of conventional programs into fragments of an
appropriate granularity that can be executed in parallel. This research is
essential to the effective operation of the University of Illinois Cedar super-
computer; it promises to be equally effective for the Intersecting Broadcast
Machine. As yet, no substantive results have been reported.

2.10 Applications

There are many applications for which the Intersecting Broadcast Machine
is no better than other array processors. Where the geometric structure of
the application matches closely the structure of the array processor, com-
munication among processors can be efficient and the overall performance
of the array processor can be very good. Typical applications of this type
are image and signal processing and the solving of partial differential equa-
tions. But even programs, whose inner loops perform regular calculations
suitable for array processing, may have substantial sections of initialization
and analysis that are not so regularly structured and efficiently processed.
In some cases, the inefficiency of processing these unstructured portions of
a program are sucl that they dominate overall processing time.

The Intersecting Broadcast Machine should be capable of running a
wider range of programs than some other array processors, since it is not
dependent on finding a good mapping of an application onto the array.
Many programs have a very complex structure that is often not well un-
derstood; this is especially true of command and control programs and Al
programs.

An example of an application that appears to be ideal for the Intersect-
ing Broadcast Machine is that of discrete Monte Carlo particle dynamics.
This application is very important to Lawrence Livermore Laboratory be-
cause it allows the modeling of very violent events that are not well modeled
by the fluid dynamic approximations used for events that are less violent.
Discrete particle dynamic simulations track each particle individually and

70

model the interactions amcng particles. If the event is sufficiently violent,
the spatial relationships among particles can differ substantially between
time steps, so that it is continuously necessary to reascertain which particles
are close enough to one another to interact. The nature of the interaction
calculations depend on the separation, velocities, and types of the inter-
acting particles and, in addition, may involve a number of different code
sequences; each particle may interact with only a few or with many other
particles, depending on its situation. It has been found difficult to vectorize
this calculation, and the differences in the calculations for each individual
particle make an SIMD approach less effective. The huge amount of calcu-
lation required, however, clearly indicates the need for an array processor.
From a superficial standpoint, the Intersecting Broadcast Machine appears
to be quite suitable.

Rather similar calculations that might also be very appropriate include
the problem of conflict prediction in air traffic controi conflict prediction
problem and ray tracing for three-dimensional computer graphics.

Another application for which the Intersecting Broadcast Machine ap-
pears to be quite suitable is SDI Battle Management. Here again the match-
ing of information from diverse sources and the dynamic allocation of battle
resources on the basis of complex optimization criteria may well be beyond
the computational abilities of sequential processors. Furthermore, it is not
easy to implement these procedures on conventional array processors. The
battle management software is likely to be changed and elaborated rather
more frequently than is necessary for other types of applications. Such
modifications may be difficult to make if the design of the software has to
be tied to a specific mapping of the application onto the array processor;
an architecture that also allows the data structures to be readily modified
is more suitable. The battle management application is one for which fault
tolerance is clearly imperative.

71

2.11 Conclusions

The Intersecting Broadcast Machine array processor architecture is cur-
rently only an interesting idea that shows promise of being

e Effective for arbitrary programs that cannot be mapped onto reguler
array structures and that, consequently, perform poorly on existing
array processors

e Capable of operation in a fault-tolerant mode

¢ Physically structured to permit high-performance VHSIC implemen-
tation.

There is still much to be done before we can be confident that the archi-
tecture will indeed perform as envisaged. It is necessary to investigate, in
particular,

e More details of the design, including

— Broadcast protocols

— Naming of result values

— Representation of programs

— Recognition of intersections at which operations must be per-
formed

e Methods of programming the architecture

e Studies of sample applications.

Part II1

Broadcast Protocols for
Distributed Systems

3.1 Abstract

This section of the report prcposes a novel reliable broadcast protocol for
the link level cf the protocol hierarchy. The protocol exploits the broadcast
nature of the physical communication media typically used in local area
natworks. A combination of positive and negative acknowledgment strate-
gies allows reliable operation without requiring a separate acknowledgment
from every recipient of a message. This work was undertaken in collabora-
tion v ith Professor L. E. Moser of California State University, Hayward.

3.2 Introduction

Marny distributed computer systems use a communication mechanism that
is physically a broadcast medium, such as the Ethernet or a packet radio
system. Other common communication media, such as the token ring,
¢nuld function as broadcast media, even though they are not normally

sc used. The advantage of a broadcast communication medium is that
it makes it physically possible to distribute a message simultaneously to
several destinations.

There are important activities in a distributed computer system that
involve many processors simultaneously and that would beneft from broad-
cast communication. Among these are scheduling and load balancing, syn-
chronization, access to distributed information, update and commit for
distributed databases, and transaction logging.

Existing communication protocols do not allow distributed computer
systems to make use of this broadcast capability, but rather require all
messages to be point-tc-point, from a single source to a single destination.
If the nature of the application is such that broadcast communication is ap-
prop: nte, existing systems must send many individual messages and receive
corresponding individual acknowledgments. In a network of N nodes, this
results in a total of 2N messages, when perhaps a single broadcast message
might have sufficed. The high cost of broadcast communication is not only
wasteful of the communication resource, but it also limits the size of the
distributed system bv saturating the communication system and discour-
ages the use of truly distributed algorithms because of their unnecessarily
high communication cost.

Reliable transmission of a message requires the ability to retransmit
the message because of damage or loss in transit. Within the ISO protocol
hierarchy, the primary responsibility for ensuring this reliable transmission
across thr broadcast communication medium lies with the link-level com-
munication protocol. This protocol is directed towards that level of the
hierarchy. Consequently, the protocol nrovides only services appropriate to
the link level, in contrast to other atomic broadcast protocols that ignore
the hierarchy and are designed to be entirelvy self-contained. For example,
our protocol can determine whether a node has acknowledged receiving
a message, but has no responsibility for network membership or network
reconfiguration following a failure. Some of what we describe below may
also be relevant to other levels in the protocol hierarchy, particularly the

transport level that ensures reliable transmission between hosts.

Most existing link-level protocols use positive acknowiedgaents, in which
the recipient of a message explicitly transmits an acknowledgment of its
receipt, either as a separate message or as part of another message. The
sender of the original message uses a timeout to trigger retransmission if no
acknowledgment is received from the recipient. In a broadcast context, such
protocols require individual acknowledgments from each recipient, even if
it is possible (which it usually is not) to take wdvantage of the broad-
cast medium to disseminate the initial message to all recipients. Thus,
broadcasting with positive acknowledgments could reduce the number of
messages from 2N to N+1, which is still far from taking full advantage of
the broadcast medinm.

To eliminate this overhead, we must use a negative-acknowledgment
strategy, in which most nodes transmit no acknowledgment if they receive
a message successfully, but rather transmit a negative acknowledgment if
they become aware that they have not received a message.

We should also uote that realistic systems will contain many semi-
independent processes within each node. The overall communication sys-
tem may need to deliver the broadcast message to several such processes,
but such delivery is not the responsibility of the ISO link-level protccol.
We do not consider further multiple delivery within a node.

The negative-acknowledgment broadcast protocol described here does
involve costs, particularly computation costs that might in many cases be
borne by an interface microprocessor. There are also delay costs that must
be compared with the delays caused by the heavier communication load
of existing protocols and algorithms. The utility of such protocols also
depends on some assumptions:

The performance of individual processors and the demand for commu-

nication generated by such powerful local computation will outstrip
the available bandwidth of the communication medium.

7

e Many applications will require distributed computation and consis-
tent distributed data spread across a local distributed system.

¢ Requirements for consistency with remote sites (beyond the broadcast
communication medium) will be minimized.

There is a possibility that continued progress in communication tech-
nologyv, such as 100 MHz fiber links, will eliminate any communication bot-
tlenecks and eliminate the need for more efficient broadcast protocols. But
techi iques applicable to communications are also effective in enhancing the
performance of processing nodes. It is possible, even likely, that advances
in semiconduv~tor technology will allow much greater increases in processor
performance, in that an entire processor can be contained in a small con-
trolled package, while interprocessor communication will be subject to gross
physical constraints. Consequently, we anticipate that the communication
medium will continue to be a limiting resource in distributed systems and
that broadcast protocols will become an important technique for distributed
systems.

Given a reliable and efficient broadcast protocol, it then would be pos-
sible to take advantage of it tc construct efficient distributed application
algorithms. We have started to investigate such algorithms for distributed
mutual exclusion, locking, and synchronization, as well as for update and
commit in a distributed database.

3.3 Existing Prctocols

The most detailed existing description of a reuable broadcast protocol is
that by Chang and Maxemchuk|3]. Their protocol requires that all mes-
cages pass through an intermediary node. called the token site. A node
wishing to broadcast a message must communicate it to the token site, us-
ing a positive-acknowledgment protocol. Using a negative acknowledgment
nrotocol, the token site then broadcasts the message to all recipients; any

78

missing messages are detected by gaps in the sequence. The use of a single
common intermediary makes the negative-acknowledgment technique more
effective. A complex token passing protocol is used to detect failures at
the token site, to select a new token site, and to retransmit messages af-
fected by the failure. Although two messages and one acknowledgment are
required for every message broadcast in the absence of errors, the token
passing protocol can, in fact, add significantly to the number of messages
if transmission errors are frequent.

Schneider has described a reliable broadcast protocol capable of oper-
ating on partially connected networks{4]. His protocol can operate in a
more complex network structure with gateways, but does not have high
efficiency on a local network. It might approriately be implemented using
the protocol described here at the local level.

Several authors[5,6] have described broadcast protocols in which each
message is followed by an empty pause or a null message for a token ring.
A node that detects the presence of the message, but is unable to receive
it uncorrupted, transmits a negative acknowledgment in the pause or null
message. Such algorithms are effective against reception faults, but not
against transmission faults, momentary network-partitioning faults, or pro-
cessor fail-stop faults.

A further class of broadcast protocols—asynchronous atomic broadcast
protocols[7]|-is more concerned with maintaining completely globzl consis-
tency of message ordering and delivery in the presence of node failures (the
Chang and Maxemchuk protocol also provides asynchronous atomic broad-
casts). Such protocols necessarily involve maintenance of a configuration of
currently operating nodes and mechanisms for reconfiguration in the event
of node failure. These features are not appropriate to the link level of the
hierarchy, but are more appropriate to the network, transport, and higher
levels of the hierarchy. They can be built on top of the reliable link-level
broadcast provided by our protocol.

79

3.4 Requirements and Objcctives

Our objective is to provide a reliable link-level or transport-level protocol.
Messages should be capable of being broadcast simultaneously to many des-
tinations, without the need for explicit acknowledgment by every recipient.
The originator of the message should be assured that all working destina-
tions have received the message, or that one or more destinations did not
receive the message and that it should therefore be retransmitted. It should
also be possible to confirm that certain specified destinations were working
and did receive the message.

The protocol must also be able to ensure that messages from one source
will be delivered in the order in which they were originated by that source.
Since some messages may have to be retransmitted to compensate for errors,
this may require the use of sequence numbers to reorder the messages after
reception. There is no requirement that messages from different sources be
received in any particular order.

Reliable communication that depends on backward error recovery and
retransmission necessarily incurs a delay before the originator of a message
can be certain that all the intended recipients of the message have indeed
received it. In a positive-acknowledgment system, that delay is represented
by the time until the last acknowledgment is received. In a negative ac-
knowledgment system, the situation is more complicated. Some kinds of
messages are such that it is the time to the first response that is important
(e.g., “Give me the value of X”). For other types of messages (e.g., “Update
the curicat value of X”), the delay may be the time until the originator can
be certain that every working node has received the message. This time
is much less certain in a negative-acknowledgment system, but may be
an important performance parameter in some contexts. The performance
measures for the protocol must therefore be

e The load placed on the communication medium

e The load that causes the medium to become saturated

80

e The delay incurred until the originator can be certain of delivery.

Generally, the load imposed in the absence of errors is more important
than the additional load induced when errors occur, since they are not
very frequent. Similarly, the delay until confirmation of delivery is usually
more important for delivery to a working node. Deduction that a node has
failed may be based in part on information provided by this level of the
hierarchy to the effect that no response has been obtained from the node;
the decision, however, lies above the link level.

The protocol must operate reliably in a network subject to a variety of
faults. Among these, in particular, are the following:

¢ Transmission faults, in which the transmitted message is either not
received by any destination or is received in a garbled condition by
all destinations. We assume that transmission faults are relatively
infrequent.

¢ Reception faults, in which one or more destinations do not receive
the message or receive it garbled, while other destinations receive
it correctly. Again we assume that reception faults are relatively
infrequent, say, substantially fewer than one error per N messages in
an N node system.

o Network-partitioning faults, in which the network is divided by the
iault into two or more subnets, with communication remaining pos-
sible within each subnet but not among subnets.

¢ Node fail-stop faults, in which a node ceases operation. We assume
that a failed node rejoining the network is aware that it has failed,
since transitional acknowledgment rules must be applied.

We assume that a node can apply adequate checks to a message it has
received to ensure that it has been received uncorrupted. We exclude faults
involving babbling nodes and faults resulting in the total inability of all

81

nodes to use the communication medium, since there is no way of ensuring
recovery from such faults with a single communication medium. Malicious
nodes are excluded. We also exclude faults that result in one or more
pairs of nodes being systematically unable to communicate, even though
there are other nodes with which both members of a pair can communicate.
Such faults could result from misadjusted transmitters and receivers that
are marginally operative and thus able to communicate witL some, but
not all, other nodes. We exclude this type of fault because it does not lie
within the scope of a link-ievel protocol; we do not wish to complicate the
protocol with a forwarding requirement that is properly the responsibility
of the network level.

3.5 The Broadcast Protocol

Expressed in informal terms, the proposed broadcast link-level protocol
requires that

¢ Each message be broadcast with a header in which there is a message
identifier containing the source of the message and a message sequence
number. A version number is also included in the identifier to distin-
guish retransmissions. Sequence numbers can be repeated over some
suitably long interval. The message also carries an error-detecting
code. Other fields of the header, such as a message destination list,
may be present but do not play any part in this protocol.

¢ Each node maintains a list of positive- and negative-acknowledgment
message identifiers. Whenever it broadcasts a message, it appends
this list of acknowiedgments to the message and then clears its list.

e When a node receives a message not previously received in an uncor-
rupted state, it adds the identifier as an acknowledgment to its list.
If the message is uncorrupted, the identifier is added as a positive ac-
knowledgment; if the message is corrupted but with an uncorrupted
header, the identifier is added as a negative acknowledgment.

82

e When a node sees a positive acknowledgment appended to a message
that it receives, it deletes from its own list any positive acknowledg-
ment for that message. When it sees a negative acknowledgment for a
message, it deletes from its list any acknowledgment for that message,
whether positive or negative.

¢ When a node sees a positive acknowledgment for a message that it
has not received, it adds a negative acknowledgment to its list.

e Tf a nod. L1as no messages pending, it may be necessary to . unstruct
a null message to carry acknowledgment messages. The acceptable
delay before transmitting a null message may differ for positive and
negative acknowledgments.

¢ When a node receives a negative acknowledgment for one of its mes-
sages, or has received no positive acknowledgment within some time
interval, it retransmits the message. The retransmission must be
identical to the prior transmission, and thus must carry with it all
of the acknowledgments, positive or negative, carried by the prior
transmission of that message.

As an example, consider the following message sequence, in which upper-
case letters represent messages (we do not bother to denote the source of
the message directly), lower-case letters represent acknowledgments, and
ovierhead bars denote negative acknowledgments.

A Ba Cb Dt Cbd Ec

Jere the negative acknowledgment of C that accompanies message D trig-

gers a retransmission. Note that the node broadcasting message E also
acknowledges message C; in doing so, it implicitly acknowledges messages
B and D and through B message A as well. This implicit acknowledgment
is the basis of the reliability property described below.

83

The effect of missing several messages can be considered in this example.
A Ba Cb Dt Cbd Ecb Bae I'b

Here the node broadcasting message D received message C garbled and saw
nothing of message B. When C is retransmitted with a positive acknowl-
edgment for B, that node becomes aware that it missed B and transmits a
negative acknowledgment. Thus a short sequence of missing messages can
be recovered; however, it would be unwise to depend on this technique for
recovery from a lengthy node failure.

3.5.1 Notes

Depending on the format of messages and the form of error-detecting codes
used, it may not be possible to determine with confidence the identifier of
a message that is received corrupted. If so, nodes that receive such cor-
rupted messages cannot enqueue a negative acknowledgment for fear that
the identifier might be incorrect, but instead must simply ignore the cor-
rupted message. If some other node has received the message uncorrupted
and broadcasts an acknowledgement, then one or more of the nodes that
received the message corrupted will generate the negative acknowledgment,
based on the positive acknowledgment for a message that they have not yet
seen. If no node receives the message uncorrupted, no positive acknowl-
edgment will be generated and the originating node will retransmit the
message after the timeout. Because of the nature of the acknowledgment
protocol, the timeout need not be long and thus the effect on performance
should be negligible.

It is permissible but not essential for a node to broadcast a positive
acknowledgment for a message that it had already received uncorrupted.
Nodes should not broadcast negative acknowledgments for such messages,
as this can cause additional, unnecessary retransmissions, possibly never
terminating if errors are sufficiently frequent.

84

Because a retransmission must be identical to each previous transmis-
sion of the same message, a node that receives a message carrying a neg-
ative acknowledgment of one of its own messages must not append the
positive acknowledgment of that message to the retranamission; the posi-
tive acknowledgment must wait in the queue for some subsequent message.
Permitting further acknowledgments to be added to a message on retrans-
mission would preclude a node that has already received the message from
ignoring the retransmission, and would thus risk incurring the nontermi-
nating sequence of retransmissions.

When 2 node joins or rejoins an already operating network, the first
few positive acknowledgments that it receives will be for messages that
were broadcast prior to its entry into the network and that it therefore
has not received. If the node broadcasts negative acknowledgments for
those messages, forcing their retransmission, it will receive with those mes-
sages the positive acknowledgments to even earlier messages. This results
in replaying the entire message history of the network in reverse order!
To avoid this, we require that a processor joining or rejoining the net-
work should broadcast negative acknowledgments only for messages with
sequence numbers greater than the sequence number of a message that it
nas received correctly.

The description of the protocol given above is a rather operational de-
scription that requires immediate performance of the operations, without
regard to other node performance constraints or the need to make con-
tinuous use of the broadcast medium. Clearly, the performance of the
protocol is improved if each node can respond very rapidly to each message
it receives. Ideally, on seeing an acknowledgment appended to a message,
the node should be able to ensure that it will not also transmit the same
acknowledgment, even if it - next in line to transmit a message that has
already been prepared with that same acknowledgment attached. Similarly,
on receiving a message, a node might be able to include the acknowledgment
with its next message, even if the latter must be transmitted immediately.

In practice, however, it takes time to check the cyclic redundancy check

code, manipulate acknowledgment queues, and construct message packets,
while efficient use of the communication medium requires that the next
message be transmitted with as little delay as possible. The idealized expec-
tation that reception of a message can be reflected in the acknowledgments
that accompany the next message is unrealistic. Nevertli-less, delays in
broadcasting acknowledgments ana extra acknowledgments, either positive
or negative, have no logical effect on the protocol and only a very small
effect on performance. Thus it is of little significance if processing con-
straints do not permit immediate acknowledgment or immediate removal
of acknowledgments from pending messages, so that scme acknowledgments
are delayed a few messages while others are broadcast twice. The formal
temporal logic specifications impose temporal constraints on acknowledg-
ments that do not imply the unrealistic requirements inherent in the be-
havioral description.

3.6 Reliability Property

Provided that the proportion of messages received corrupted is much less
than 1/N for an N node network and that there are no pairs of nodes
that are systematically unablr - communicate, the protocol appears quite
rchust. We can define for it a strong reliability property:

When a node acknowledges a message, if there are no unac-
knowledged messages prior to that message and if no prior
message has an outstanding negative acknowledgment, then the
node must have received correctly every message prior to the
message it acknowledged.

The proof of this property is based on the representation of messages
and acknowledgments as a finite direrted acyclic graph G4. Nodes of the
graph represent messages, while it edges represent positive acknowledg-
ments. We use the term graph node to denote the nodes of the graph, so

86

as to distinguish them from network nodes. The construction of the graph
G4 is as follows:

¢ Transmission (or retransmissicn) of a message M adds a graph node
M to G,A

¢ Transmission (or retransmission) of a message M with a positive ac-
knowledgment of message N adds an edge from graph node M to
graph node N

¢ Transmission (or retransmission) of a negative acknowledgment of
message [V deletes the graph node N and all its in and out edges.

Lemma 1. The graph G4 is acyclic.

Proof. In the construction of G4, an edge is added from node M to
node N if message M acknowledges message N; thus message M must have
been sent after message V.

Lemma 2. if there are no unacknowledged messages, there exists a
single root in the graph G ..

Proof. If there are no unacknowledged messages, every node of G4,
except for the one most recently inserted, has an in edge. Thus, the most
recently inserted node is the root of G4.

Lemma 3. If an acyclic graph G has a single root R, every node of G
is reachable from R.

Proof. This is a standard result in graph theory whose proof follows
by structural induction on the set of subgraphs of G with the subg:aph
relation.

Lemma 4. If there are no unacknowledged messages and if the most re-
cently transmitted message A does not contain a negative acknc./ledgment
of Z, then the network node originating A has received Z or a previous
version thereof correctly.

87

Proof. Consider the graph G4 constructed above. Let P be a path
from A to Z in G4. The proof is by structural induction on the set of
subpaths of P that start at A with the subpath relation.

Base. P = ({A,2},{(4,2)}). The lemma follows.

Step. P # ({A,Z},{(A,Z)}). Assume that the lemma holds for all
subpaths P' of P that start at A. Let Y be the immediate predecessor of
Z on the path P, and let P’ be the subpath of P from A to Y. By the
inductive assumption, the network node originating A has received Y or
a previous version thereof correctly. Furthermore, Y contains a positive
acknowledgment of Z. Hence, A knows of the existence of Z. Since A does
not contain a negative acknowledgment of Z, the network node originating
A has received Z or a previous version thereof correctly.

Theorem 1. If there are no unacknowledged messages and no out-
standing negative acknowledgments, then the node that sent the most re-
cent message has received all messages correctly.

Proof. Consider the graph G4 constructed abeve. By Lemmas 1 and
2, G4 is acyclic and has a single root A, which corresponds to the most
recent message sent. Let M be an arbitrary message. Then, by Lemma
3, there exists a path P from A to M. By Lemma 4, the network node
originating A has received M or a previous version tliereof correctly.

We can also provide predicates on the message history that determine
whether a given node has received a specific message correctly and thus,
by enumeration, whether all nodes have received a specific message cor-
rectly. Again the proof of these properties is based on the representation
of messages and acknowledgments as a finite directed acyclic graph G4.
The graph differs from the one above in that edges of the graph represent
positive or negative acknowledgments or retransmissions. The construction
of the graph G, is as follows:

o Transmission (retransmission) of a message M (M;) adds a graph
node M (M,) to G4

88

e Transmission of a message M with a positive (negative) acknowledg-
ment of message N adds an edge labeled positive (negative) from
graph node M to graph node NV

¢ Retransmission of a message M, adds an edge labeled retransmission
from graph node M, to graph node M.

Lemma 5. If there exists a path of positive acknowledgments in G4
from A to Z and no negative acknowledgment has been issued for any
message M on the path by A or by a message N that has been acknowledged
(directly or indirectly) by A, then the network node originating A has
received Z correctly.

Proof. Consider the graph G4 constructed above. Let P be a path
from A to Z in G4. The proof is by structural induction on the set of
subpaths of P that start at A with the subpath relation.

Base. P = ({A,2},{(A,Z)}). The lemma follows even without the
second hypothesis.

Step. P # ({4,2},{(A,Z)}). Assume that the lemma holds for all
subpaths P' of P that start at A. Let Y be the immediate predecessor
of Z on the path P, and let P' be the subpath of P from A to Y. By
the inductive assumption, the network node originating A has received Y
correctly.

Suppose now that the network node originating A did not receive Z
correctly. Then, since the network node originating A saw Y’s positive
acknowledgment for Z, either A contains a negative acknowledgment for
Z or there exists a negative acknowledgment for Z contained in a message
that the network node originating A has acknowledged. In either case, we
have a contradiction of the second hypothesis.

Theorem 2. If there exists a path of positive acknowledgments or
retransmissions in G4 from A to Z and no negative acknowledgment has
been issued for any message M on the path by A or by a message N that
has been acknowledged (directly or indirectly) by A, then the network node

89

originating A lias received Z or some version thereof correctly.
Proof. By direct extension to the proof of Lemma 5.

The various situaticns involved in Lemma 5 and Theorem 2 are depicted
in Figure 3.1.

7 Ret Z
Neg Pos Pos
I Pos
Pos Pos Ret
Negi l Pos
Pos\ T Pos Posf T Pos

© ®.

Figure 3.1: Determination of the Receipt of & Message. Analysis of Lhe graph ean-
ables one to conclude that message Z has been received by the node broadcasting
the three messages 4, B and C.

We are currently working on a more formal statement of the protocol
and an accompanying more formal proof of this reliability property.

3.7 Performance Model

In order to compare the broadcast protocol with existing link-level pro-
tocols, a simple queuing theory analysis has been done. To ensure a fair

90

comparison, we require for the reliable broadcast protocol that every node
broadcast a message, possibly null, within a prescribed time interval to
ensure that the originators of broadcast messages can be certain that ev-
ery recipient has the message. We shall compare the time to obtain such
positive acknowledgment with the corresponding time for other protocols.
This positive-acknowledgment comparison imposes a heavy burden on the
negative-acknowledgment broadcast protocol, but by almost any other mea-
sure the broadcast protocol is so much better that there is little point in
even making a comparison.

Consider first a simple point-to-point positive-acknowledgment system.

Let the
Number of nodes in the network be n
Time to transmit a message be s
Ratio of the time to transmit a message to the time
to transmit an acknowledgment be p
Proportion of messages awaiting broadcast be r
Rate of demand for message transmission be v.

Then the load on the broadcast medium is
A=sv(l~r+nr)(l+p),

and the time to broadcast a message and receive the corresponding ac-
knowledgments is
s(1+p)(1 ~r +nr)
1-2A '

This may be rather optimistic, since it assumes random initiation of broad-
casts and thus understates the amount of contention that arises between
message broadcasts and attempts to acknowledge prior broadcasts. Careful
implementation of such a protocol may succeed in reducing such contention.
To some extent, it also disregards the effects of disparities in the lengths of
messages and acknowledgments.

91

Turning to the reliable broadcast protocol, we must define the time
period for which a node must wait before sending a null message to indicate
that it is still present in the network and has received prior broadcasts. We
also denote by ¢ the probability that a node will not have transmitted a
regular message within d and thus will require a null message.

Then, the load on the broadcast medium is

A =sv(1—r)(1+p)+svr(l+npq)

oo (i259).

while the delay incurred before it is certain that the broadcast message has
been received by all destinations is

where

8(1 = r)(1 + p) ~ rs(1 + npq)
1 —_—

These equations were solved nume.ically by using a simple Pascal pro-
gram to obtain the results shown in the following figures.

Figure 3.2 compares the time to receipt of a positive acknowledgment in
systems of three sizes~10, 20 and 50 nodes. We assume that transmission of
a typical message requires use of the broadcast medium for 1 ms, while an
acknowledgment alone requires only 0.1 ms. In this figure, we assume that
a node will transmit an acknowledgment within 100 ms if it has not sent
any other message within that time. As expecied, the results of the analysis
show that a 10-node point-to-point protocol becomes saturated at about 90
messages per second, a 20-node system at about 45 messages per second,
and a 50-node system at about 18 messages per sec.. . In contrast, the
10- and 20-node broadcast protocol results are almost "7+ .:ical, becoming
saturated at about 1000 messages per second; at that loau all acknowledg-
ments can be piggybacked onto other messages. In the 50-node system, the
broadcast protocol becomes saturated at about 250 messages per second.
At all sizes, the broadcast protocol provides an order-of-magnitude increase
in potential traffic load.

92

Time to
Positive
Acknowledgement

point to point broacast
f 1 T —
50 20 & 10
nodes nodes
0 20 50 100 200 500 1000

Broadcast messages per second

Figure 3.2: Comparison of Times to Positive Acknowledgment for Point-to-point
and Broadcast Protocols.

93

It is also appropriate to investigate the effect of a node’s waiting time
before broadcasting an acknowledgment when it has no other message to
transmit. When the delay is as long as one second, Figure 3.3 shows that
the results for systems containing 10, 20 and 50 nodes are almost identical
and that all become saturated at about 1000 messages per secord. But, of
course, the time to positive acknowledgment is long. Reducing the delay
to 10 ms greatly reduces the time to positive acknowledgment, but now
causes all sizes to become saturated below 1000 messages per second. In
each case, however, the broadcast protocol is able to support much more
traffic than a point-to-point protocol, with comparable times to positive
acknowledgment.

Finally, we consider the possibility that not all of the messages require
broadcasting to all other nodes; some messages are intended for only a single
destination. Figure 3.4 shows results for 100%, 10%, and 1% of all mes-
sages requiring broadcast. The point-to-point protocol shows substantially
better performance as the proportion of broadcast messages diminishes.
The broadcast protocol results are identical except for the 50 node, 100%
broadcast case. Clearly, the advantage of the broadcast protocol lessens
commensurately as the proportion of broadcast messages is reduced.

94

Time to
Positive
Acknowledgement

1.0

41 1 cec delay
1
|
|
|
|
100 ms delay 50 20 & 10
nodes nodes
.2
10 ms delay 50
.1
(4]
10 20 50 100 200 500 1000

Broadcast messages per second

Figure 3.3: The Effect of Delay Time on the Protocol Performance.

95

Time to
Positive
Acknowledgement
point to point 100% broadcast broacast
. 1 T 1
50 nodes other
100% cases
21 50 20 10
) nodes nodes nodes broadcast
10%
1.‘ §) I h] 1%
0 \opr .
0 20 50 100 200 500

Messages per second

Figure 3.4: The Effect of the Proportion of Messages Broadcast on the Protocol
Performance.

96

1000

3.8 Broadcast Algorithms for Mutual
Exclusion and Distributed Update

We have started to consider various applications for which the reliable
broadcast protocol would be advantageous. Mutual exclusion, locking, and
synchronization algorithms exemplify an application in which broadcast
communication can provide substantial benefits. A simple mutual exclusion
protocol, based on the algorithms of Ricart and Agrawala|8], uses claim,
reject, and release messages. A node seeking the lock broadcasts a claim
message and waits. If no other node disputes this claim by broadcasting a
reject message within that period, the node may enter the critical section.
A node may broadcast a release message as it leaves the critical section,
though such messages are necessary only when other nodes are waiting.
Contention among nodes can be resolved by timestamps in the usual way(9].

The above protocol will work under ideal conditions, but is hardly ro-
bust; any one of a number of errors could result in more than one node
in the critical section simultaneously. There is no easy way to guarantee
recovery when a node fails while in the critical section other than through
an audit and restoration of the shared resource. However, much can be
done to make the mutual exclusion protocol more robust.

The protocol can be refined by defining a caucus of nodes responsible
for administration of the lock. Only members of the caucus maintain a
record of lockholders and thus need to respond to claim messages, rejecting
them because of conflict or because fewer than a majority of those in the
caucus are currently able to communicate. While this ensures reliability in
the presence of network partitioning, or failure of caucus members, it does
not, of course, guarantee against failure of the node holding the lock.

A similar protocol permits updates and commitment in a replicated
database. The caucus is composed of the set of nodes holding copies of
the data in question. Updates are performed by a single broadcast mes-
sage conveying the update request and whatever additional timestamps are

97

needed by the conflict detection algorithms, which unfortunately are not
themselves simplified by the broadcasting. After a delay during which the
update can be rejected by reason of conflict or lack of a majority, it is
automatically committed. The protocol also provides for reading data reli-
ably from the database, for readmitting a failed node (particularly a caucus
member) and for rejoining a partitioned network.

3.9 Conclusions

Aside from intellectual interest, the utility of such protocols depends on
the cost and speed ratios for processing and communication, the load on
the communication medium, the nature of the traffic, and the effect of the
delays required by the broadcast protocols.

98

Part IV

Extending Interval Logic to
Real Time Systems

99

4.1 Abstract

Interval logic is a temporal logic that provides a higher-level framework
for specifying distributed systems. The concepts of intervals and inter-
val composition form the basic structure of many specifications. Interval
logic allows such conceptual requirements to be stated rather directly and
intuitively.

Temporal logic has suffered from its orientation towards eventuality
rather than immediacy in real time; indeed, pure temporal logic makes no
reference to time! There are many real time properties that are critical
to the specification of disuributed systems. We have been able to extend
interval logic to allow real time bounds on intervals and to allow events to
be defined by real time offsets from other events. The extension is clean
and sufficient to describe real time constraints directly and easily.

The interval logic is demonstrated by application to the lift specification
example.

101

4.2 Introduction

Temporal logic has been found useful for specifying distributed asynchronous
systems. Traditionally, such specifications have been expressed as interact-
ing state machines, but that approach inevitably suffers from over specifica-
tion for the state machines represent an implementation. If the application
is such that only one implementation is envisaged, an implementation ori-
ented specification may be acceptable; but other applications, for example
communications protocol specifications, envisage many distinct implemen-
tations. By specifying the minimum required externally visible behavior,
leaving all other aspects to lower levels of description, one can be obtain
a more general specification that reflects the necessary requirements of the
distributed system or protocol. A specification that is oriented towards
one implementation may discourage or even preclude other equally valid
implementations. Specifications expressed in temporal logic do not suffer
as severely from implementation bias as do state machine specifications.

A specification for a distributed system can serve to define the exter-
nally observable function of the system, in effect the service provided by
the system. Such specifications are called service specifications. A service
specification regards the entire distributed system as a single entity, with
multiple interfaces at separate nodes of the distributed system. The specifi-
cation defines how operations at each interface, performed asynchronously,
affect results at other interfaces. Ideally, a service specification defines
only the behavior visible at the external interfaces, without suggesting any
internal structure for the system.

Many service specifications define that all operations at the external
interfaces be serializable, a characteristic that is often desirable for user
interfaces. Such specifications can often be expressed with simpler specifi-
cation lai.guages that provide only the concepts of parallel operation and
of atomicity.

102

Alternatively, a specification can define the manner in which the sep-
arate components of the distributed system interact witn each other so
as to provide the required function. Such a specification is called an im-
plementation specification or a protocol specification. An implementation
specification defines separately the behavior of each component, so that
each distributed component can be implemented separately. The specifi-
cations describe how the components communicate with each other using
a communication facility, which is defined by a service specification, as is
shown in Figure 4.1. The communication facility is, of course, itself a dis-
tributed system for which there is, in addition to the service specification,
also an implementation specification dependent on an even more primitive
communication mechanism. In many distributed systems, the hierarchy of
such specifications is several levels deep.

If there are to be several independent implementations of some of the
components, in the future even if not immediately, it is important that the
implementation specification describe only how the components interact
with each other without unnecessarily constraining the internal implemen-
tation of any component. The ideal specification is one in which

e any component, that satisfies its specification, will operate satisfac-
torily in the system, and

¢ any component, that operates satisfactorily in the system, will satisfy
the specification.

If both a service specification and an implementation specification have
heen constructed for a distributed system, it is possible to validate the im-
plementation specification by confirming that it satisfies the service speci-
fication. This ability is very valuable for the implementation specification
is often quite complex and prone to error, while the service specification
is much shorter and simpler. Unfortunately, the current state of the art,
and particularly of tools, has not yet advanced to the point at which such
a validation is feasible for typical distributed systems.

103

Service Implementation

Service Implementation
Specifications U U :

for Level i
Specifications b

for Level i-1

Figure 4.1: Specification of a Level in the Protocol Hierarchy.

104

4.3 The Basic Interval Logic

In a previous survey paper{10|, we examined how several different temporal
logic approaches express the conceptual requirements for a simple protocol.
Our conclusions were both disappointing and encouraging. On one hand,
we saw how the very abstract temporal requirements provided an elegant
statement of the minimal behavior for an implementation to conform to
the specification. We were able to distill a set of requirements express-
ing the essence of the desired behavior, stating only requirements without
implementation-constraining expedients.

While we were happy with the level of conceptualization of the specifi-
cations, their expression in temporal logic was rather complex and difficult
to understand. The relatively low level of the linear-time temporal logic
operators encourages the inclusion of additional state components that are
not properly part of the specification, but that help to establish the context
necessary to express the requirements. Without these components, context
can only be achieved by complex nestings of temporal until constructs to
establish a sequence of prior states. The survey paper showed how the
introduction of state simplifies the temporal logic formulas at the expense
of increasing the amount of “mechanism” in the specification. The specifi-
cation that defined only the minimum required externally visible behavior,
without any additional internal state components, was also the least read-
able. As a result of this survey, the interval logic was developed to allow
the specification of distributed systems in a manner that corresponds more
closely to the intuitive intent and understanding of the designers.

At the heart of our interval logic are formulas of the form:

[7]e

Informally, the meaning of this is: “The nezt time the interval I can be
constructed, the formula a will ‘hold’ for that interval.” This interval
formula is evaluated within the current interval context and is vacuously
satisfied if the interval I cannot be found. A formula ‘holds’ for an interval

105

if it is satisfied by the interval sequence, with the present state being the
beginning of the interval.

The unary O and { temporal logic operators retain their intuitive
meaning within interval logic. The formula [I]Da requires that property
o must hold throughout the interval, while [I k>a expresses the property
that sometime during the interval I, a must hold. For simple state predicate
P, the interval formula [I] P expresses the requirement that P be true in
the first state of the interval.

Interval formulas compose with the other temporal operators to derive
higher-level properties of intervals. The formula

(7][J]e

states that the first J interval contained in the next I interval, if found, will
have property a. The property that all J intervals within interval I have
property a would be expressed as[I] Q[J]Jo. More globally, the formula
D[I]a requires all further I intervals to have property a.

Each interval formula [I]« constrains « to hold only if the interval
I can be found. Thus only when the context can be established need the
interval property hold. To require that the interval occur, one could write
= [I]Fa.lse. The interval language defines the formula * I to mean exactly
this.

Thus far, we have described how to compose properties of intervals
without discussing how intervals are formed. At the heart of a very general
mechanism for defining and combining intervals is the notion of an event.
An event, defined by an interval formula 8, occurs when 3 changes from
False to True, i.e., when it becomes true. In the simplest case, § is a
predicate on the state, such as z > 5 or at Dq . Note that, if the
predicate is true in the initial state, the event occurs when it changes from
False to True, and thus only after the predicate has become False.

Intervals are defined by a simple or composed interval term. The prim-
itive interval, from which all intervals are derived, is the event interval. An

106

event, defined by 3, denotes the interval of change of length 2 containing
the =8 and S states comprising the change. Pictorially, this is represented
as

[]
L J
*ﬂlﬂ

event §

Two functions, vefore and end, operate on intervals to extract unit inter-
vals. For interval term I, before] denotes the unit interval containing the
first state of interval I. Similarly, end/ denotes the unit interval at the end.
Application of the end function is undefined for infinite intervals. Again,
pictorially, the intervals selected are

I —]
beforel LP__] end] F__j

Fora P predicate event, the following formulas are valid.
[enaP]P
[betore P |- P
[P]-P

4.3.1 The Interval Operators = and <«

Two generic operators exist to derive intervals from interval arguments.
We take the liberty of overloading these operators to allow zero, one or two
interval-value arguments. Intuitively, the direction of the operator indicates
in which direction and in which order the interval endpoints are located.
The endpoint at the tail of the arrow is first located, followed by a search
in the direction of the arrow for the second endpoint. A missing parameter
causes the related endpoint to be that of the outer context.

107

The interval term I = denotes the interval commencing at the end of
the next interval I and extending for the remainder of the outer context.
The right arrow operator, in effcct, locates the first I interval, relative to
the outer context, and forms the interval from the end of that I interval
onward. With only a second argument present, = J denotes the interval
commencing with the first state of the outer context and extending to the
end of the first J interval. Thus,

T
e = I_Ll

The term I = J, with two interval arguments, represents the compo-
sition of the two definitions. This constructs the interval starting at the
end of interval I and extending to the end of the nezt interval J located
in the interval I =. Given this definition, the interval formula [I=>J]a
is equivalent to [I =][= J] a. Recall that the formula[] = J]«
is vacuonsly true if the I = J interval cannot be found. Pictorially, the
interval selected is

The right arrow operator with no interval arguments selects the entire
outer context.

The left arrow operator <= is defined analogously. For interval term
I < J, the first J interval in context is located. From the end of this J
interval, the most recent I interval is located. The derived interval I < J
begins with end] and ends with endJ. Thus,

108

L1

—
—
€y

Similarly, the interval term I < selects the interval beginning with the end
of the last I interval and extending for the remainder of the context. For
a context in which an interval I occurs an infinite number of times, the
formula [I <] a is vacuously true. The interval terms <= and < J are
strictly equivalent to = and = J, respectively.

The following examples illustrate the use of the interval operators.

z=y =>y=16]|0z>z 4.1)
[] (

l OCz>=z l

N N
zZ=y y=16

For the interval beginning with the next event of the variable z becoming
equal to y and ending with y changing to the value 16, the value of z is
asserted to remain greater than z. The first state of the interval is thus
the state in which z is equal to y and the last state is that in which y is
next equal to 16. Note that the events z = y and y = 16 denote the next
changes from z # y and y # 16.

To modify the above requirement to allow z > 2 to become False as y
becomes 16, one could write

[z=y = vetore(y =16)] O > 2 (4.2)

Nesting interval terms provides a method of expressing more compre-
hensive context requirements. Consider the formula

[(A=B)=>C]OD (4.3)

109

The formula requires that, if an A event is found, the subsequent B to C
interval, if found, must sometime satisfy property D. The cuter = operator
selects the interval commencing at the end of its first argument, in this case,
at the end of the selected A = B interval. The interval then extends until
the next C event — establishing the necessary context.

In the previous example, the formula was vacuously true if any of the
events A,B, or C could not be found in the established context. In order
to easily express a requirement that a particular event or interval must be
found if the necessary context is established, we introduce an interval term
modifier *. For interval term I, *I adds an additional requirement that B
must be found in the designated context. The formula

[(A= «B)=C]OD (4.4)

strengthens formula (3) by adding the requirement that, if an A event
occurs, a subsequent B event must cccur. This is equivalent to formula (3)
conjoined with [4 =] *B.

The * modifier can be applied to an arbitrary interval term. The formula
[*(A=>B)=>C]OD, for example, would be equivalent to (3) conjoined
with *(A=>B), or equivalently, *A A [A =] *B. The * modifier
adds only linguistic expressive power and can be eliminated by a simple
reduction (given in the Appendix).

As an example of specifying context for the end of the interval, consider

the formula
[A=(B=>C)]OD (4.5)

110

Here, the interval begins with the next occurrence of A and terminates with
the first C that follows the next B.

By modifying formula (3) to begin the interval at the beginning of
A= B, i.e.,

[before(A = B) =>C]OD (46)
[oD]
,'l I —|
A B C

we obtain a requirement similar to that of (5), but allowing events B and
C to be arbitrarily ordered.

Introducing the use of backward context, to find the interval A = B in
the context of C, we have

[(A=B)«<C]oD (4.7)

Here the occurrence of the first C event places an endpoint on the context,
within which the most recent A = B interval is found. Note the order of
search: looking forward, the next C is found, then backward for the most
recent A, then forward for the next B. Thus, the formula is vacuously true
if no B is found between C and the most recent A.

As a last example, consider

[bctore(A <~ B) «C]OD (4.8)

111

[__op

ag ¢

A B

O A Y s

The interval extends back from the first C event to the beginning of the
most recent A < B interval.

4.3.2 Parameterized Operations

Within the language of our interval logic we include the concept of an ab-
stract operation. For an abstract operation O, state predicates atO, inO,
and aterO are defined. These predicates carry the intuitive meanings of
being “at the beginning”, “within”, and “immediately after” the opera-
tion. Formally, we use the following temporal axiomatization of these state
predicates.

[atO => before afterO] OinO
[afterO = beforeatO] O -in0
[-at0 = anerO] 0 —atO

Ll A

[—atterO = at0] O —atteeO

Axioms 1 and 2 together define inO to be true exactly from atO to the state
immediately preceding arterO. Axiom 3 allows atO to be true only at the
beginning of the operation, and axiom 4 requires that aterO be true only
immediately following an operation. Note that, in axiom 1 for example,
the predicate »tO used as an event term defines the interval commencing
with the entry to the operation.

The axioms do not imply any specific granularity, duration or mapping
of the operation symbol to an implementation. Any interpretation of these

112

~ state predicate symbols satisfying the above arioms is allowed. In addition,
no assumption of operation termination is made. To require an operation
to always terminate, one could state as an axiom

[a:O = * afterO]True

Abstract operations may take entry and result parameters. For an op-
eration taking n entry parameters of types Ty,...,T,, and m result param-
eters of types Tny1,-- -3 Tntm, the at and aner state predicates are overloaded
to include parameter values. aO(vy,...,v,) is true in any state in which
a2tO is true and the values of the parameters are vy,...,v,. The predicate
after is similarly overloaded.

As an example of an interval requirement involving parameterized oper-
ations, consider an operation O with a single entry parameter. To require
that this parameter increase monotonically over the call history, one could
state

Va,b [:][atO(a) = a0(b)] b>a

Since a and b are free variables, for all a and b such that we can find an
interval commencing with an a«O(a) and ending with an «O(b), b must be
greater than a. Recall that the formula is vacuously true for any choice of
a and b such that the interval cannot be found.

It is also useful to be able to designate the nezt occurrence of the oper-
ation call, and to bind the parameter values of that call. The event term
atO : (a) designates the next event atO and binds the free variavble a to
the value of the parameter for that call. Thus the previous requirement
constraining all pairs of calls, can be restated in terms of successive calls as

O[«0(a) >0 : (b))]b>a

The requirement is now that for every a, the call atO(a) is followed by
a call of O whose parameter is greater than a. This parameter binding
convention has a gene:al reduction, which we omit here. For this specific

113

formula, the reduction gives

l:][atO(a) =] ([endato]a:O(b)) D> [= a0]b >a

4.4 Some Example Specifications

Consider a queue with two operations, Enq which takes a single parameter
value, which it enqueues, and Dq which removes the value at the front of the
queue and returns that value as its result. We assume in this specification
that the queue is unbounded, and require that values enqueued must be
distinct. No assumptions are made about the atomicity of, or temporal
relationships between, the Enq and Dq operations. These operations can
overlap in an arbitrary manner. We do assume that at most one instance
of the Enq and Dq operations will be active at any given time.

The specification expresses the fundamental first-in first-out behavior
that characterizes a queue. It requires that, for all a and b, if we dequeue
b, then any other value a will be dequeued in the interim if and only if it
was enqueued prior to b. Further axioms are needed to express liveness
requirements on the two operations.

Queue. [<= aneeDq(d) J(*arerDq(a) = *(aEnq(a) < aEnq(b)))

As a second example, consider a specification to ensure exclusive access
to a shared critical section by some set of processes. Each process is to make
an independent decision based on a shared global data structure. In stating
the specification, we assume a state predicate cs(¢) which, for process 1,
indicates that ¢ is in the critical section. For a shared global data structure,
we assume a state oredicate x(i) which, for process 1, indicates ¢'s intention
to enter the critical section. We wish to state minimal requirements on the
use of state predicate x by a process to ensure mutual exclusion. Pictorially
we represent the required behavior as follows:

114

Vi#1 Ox(1)
O-x(7)

| o |

F

*x(1) cs()

As shown, an entry of the critical section by process ¢ must be preceded
by an earlier setting of x(7) to true. Throughout this interval x(i) must
remain true, and, for every other process j, there must be some moment
within the interval at which x(j) is false. This specification imposes no
requirement on the order or frequency of inspecting the x(j)s; it suffices
that, at some time during the interval, each x(j) is false. Herein lies the
basic reason for exclusion. x(7) remains true through the interval, and no
other x(s) can be true for that interval. Thus no other process j can find
x(1) false between the time that ¢ signals his intention and the time that i
leaves the critical section (or abandons his claim). The specification does
not, however, ensure the absence of deadlock.

In interval logic, we express these requirements as follows.
Init. Vm -x(m)

Al. i#j D [x(1) < cs(t)]O-x(5)
A2, cs(i) D x(2)

Given an initial condition in which all processes have relinquished their
claims, axiom A1 expresses our previous pictorial requirement that, if pro-
cess ¢+ enters the critical section, then for the interval back to the most
recent setting of x(i), each x(7) must be found to be false. Axiom A2 re-
quires that x(z) remains true while ¢ is in the critical section. We have not
needed to state explicitly that there must be a setting of x(i) prior to the
entry; this is deducible from the specification. Similarly we can deduce that
x(f) remains true through that interval.

From this specification, we can demonstrate (omitted here) the mutual

115

exclusion property that henceforth no pair of processes can both be in the
critical section at the same time, i.e.,

Vm -x(m)Ai#5 O O-(cs(s)Aes(s))

4.5 Real Time Extensions

Temporal logic has suffered from its orientation towards eventuality rather
than immediacy in real time; indeed, pure temporal logic makes no reference
to time! A temporal logic specification defines only invariants, eventuality,
and order constraints on the sequence of states resulting from the execution
of the distributed system without reference to when the states actually oc-
cur. But the specification of distributed systems typically depends criticlly
on the specification of real time properties.

Surprisingly, in view of the orientation of temporal logic towards even-
tuality, there are useful eventuality properties, superficially independent
of real time, that cannot be written without reference to real time. For
example, the service specification for a lift, without consideration of the
possibility of lift failure, can be expressed as a requirement that if a re-
quest is made for floor a then, eventually, the lift will be at floor a with the
door open.

O (Request(a) D ¢ atfloor(a) A dooropen(a))

Unfortunately, any practical lift inevitably has occasions when it is out
of service, expressed as

0< -inservice.

If we are to avoid expedients such as regarding an out of service state as a
terminal state, or of raquiring that the lift remember the request for floor a
through the out of service state (an unreasonable requirement), we would
like to modify the service specification to state that the lift will eventually
be at floor a unless it goes out of service first. There is no way to express
that requirement; the best that can be achieved is

116

O (request(a) D O ((atfloor(a) A dooropen(a)) V —inservice))

Careful examination shows that this specification is completely satisfied by
the eventual out of service condition and it thus contributes nothing to the
requirement that a request be serviced by moving to the requested floor.
In effect, the lift can satisfy the specification doing nothing but wait until
it breaks.

To overcome this problem, we must place a real time bound on the
period of time throughout which the lift must be operational to guarantee
that the service will be provided. The service specification then becomes

O [request(a) = request(a)+max_service_time |
O inservice O {(atfloor{a) A dooropen(a))

This states that for an interval commencing with the request and of length
max_service_time, if the lift is never out of service during the interval then
the service will be provided within that interval.

Thus we need to extend interval logic to include real time constraints,
but we do not want, in so doing, to destroy what is valuable about the
logic. Temporal logics are valuable because they allow the expression of
necessary properties while precluding other forms of expression that would
be inappropriate. For example, if time is represented explicitly as a numeric
variable in our specifications, it is possible to express any useful temporal
property, including those involving real time constraints. But, the explicit
representation of time makes possible expressions that have no meaning,
such as those in which a property depends on whether the time is even or
odd! Thus the extension must not expose the numeric nature of time.

Further, temporal logics mask quantifications over time. An explicit
representation of time could require that those temporal quantifications
be explicit, complicating both the formulae and also deduction involving
the formulae. If it possible to hide the quantifiers, and to process them
automatically during deduction, as it is with temporal logics, we should
try to do so.

117

The interval logic can be extended to include real time by:

¢ imposing real time bounds on the length of intervals, and

¢ allowing events to be defined by real time offsets from other events.

Defining events by real time offsets is achieved by two new operators
+, — syntactically defined by

+,—: event X duration constant — event.
Thus if E is an event then so are E+1 second and E—1 day.

Bounds on the length of intervals are provided by two relational opera-
tors, syntactically defined by

>, <: duration constant — boolean.

These relational operators are monadic because they relate the length of
the enclosing context to the duration constant. Used within an interval,
they therefore relate the length of that interval to the constant. Thus, if
I is an interval, [I] <1 second is a boolean predicate on the length of that
interval. Similarly, we might write {I] >10 seconds A & x=4.

The relational operators can be derived form the event constructors
by defining a event offset from the start of the interval and determining
whether that event lies within the interval. However, the availability of the
relational operators adds directness and clarity to the specifications.

These extensions to interval logic are clean and appear sufficient to de-
scribe almost all real time constraints directly and easily. They do not
permit the construction of undesired expressions in which timme is manipu-
lated inappropriately.

The decidability of interval logic is unaffected by these extensions. It
is not appropriate to digress here into a lengthy analysis of decidability,
but rather we give only a brief outline of the necessary extensions to the
decision process. A decision procedure for interval logic can be constructed
as a standard semantic tableau, building a graph of possible states. The

118

transitions between states are determined by the order of events, and thus
the predicates on the states comprise the conjunction of the normal state
predicates with a set of relations on the order of events.

To extend this semantic tableau decision process to the real time ver-
sion of interval logic, the real time relational operators are first reduced
to terms invoiving event constructors, as described above. The semantic
tableau procedure is applied, as before, but order relations on events are
regarded as linear inequalities in a real number domain, and real time event
constructors are replaced by arithmetic operations in that domain. Linear
arithmetic and linear inequalities in a real number domain aie decidable by
a Presburger procedure, thus maintaining the decidability of the logic.

4.6 The Lift Example

The objeztive of the Interval Logic specification is to express precisely and
formally the behavior required from the lift. It is also an objective to ex-
press as few constraints on that behavior as possible while still ensuring
correct behavior. It is, perhaps, easier to provide a specification that de-
scribes the lift in minute and mechanistic detail, but to do so precludes,
or at least makes much less obvious, many valid implementations that are
structured rather differently. Our specification, indeed, permits quite a
wide range of behaviors; lifts that demonstrate some of the less obvious,
but still permissible, strategies can be found in operation on occasion.

Floors

The floors are 0 to n, and the lift will not go outside this range. There
can be no down button on floor 0, and no up button on floor n.

1. ~-atfloor(—1) A -atfloor(n + 1)
2. ~light(0,down) A -light(n, up)

3. -request(0,down) A —request(n,up)

119

The lift is at only one floor at a time and moves only to adjacent floors.
4. b#aAatfloor(a) D -atfloor(b)
5. [atfloor(a)=>befors(atfloor(a + 1) V atfloor(a — 1))] Jatfloor(a)
Derived Predicates

To simnlify the spccifications, we introduce a derived event newrequest,
since requests are significant only if there is not already an outstanding
request, if the lift does not already have its doors open at the requested
floor, and if the lift is in service.

6. newrequest(a,dir) = request(a, dir)
A -light(a, dir) A closed(a) A inservice

We also introduce an auxiliary event dectsion to represent the moment
at which the lift decides what to do next. The event decision(a) occurs
sometime after the doors open and before the lift leaves at that floor. If
the lift does not stop at floor a, the event occurs some time between being
at floor a and not being at floor a. Note that, at the time of the event
decision(a), atfloor(a) must still be true.

7. [atfloor(a)=>beforematfloor(a)]~ * open(a) O = decision(a)
8. [(atfloor(a)=>open(a))=>beforematfloor(a)]* decision(a)

The predicate goingup is introduced to represent the decision made by
the lift about which direction to move. The predicate is true if the next
floor that will be visited is above the current floor, and false if it is below.
It must, of course retain that value until the next decision point. The
curious option of remaining at the same floor and thus making a second
decision at that floor is necessary in the case that the lift arrives at a floor
in response to a request indicating continued travel in the same direction,
but the request then made inside the lift is for travel in the other direction.
The real time constraint is imposed to allow the passengers time to enter
the lift and press a button.

120

9. [((atfloor(a) A goingup = v)=>decision(a))
=>beforedecision : (b)]> min_open_time
A b > a D Ogoingup
A b < a D O-goingup
A b=a D Ogoingup = v

T~

> minopentime]
|

5 5
=di —

L

atfloor(a) decision(a) beforedecision:(b)
A goingup=v

Lights

The lights are used not only to represent the lights visible to the pas-
sengers, but also to provide the memory of pending requests. Others might
prefer to introduce an additional predicate to represent the pending re-
quests explicitly.

While out of service the lights must not be lit, and following a return
to service the lights must not be lit until a new request has been made.

10. [-inservice=>(inservice=>betorenewrequest(a, dir))] O -light(a, dir)

[0O -light(a, dir)]

1 L

~p —d —>|

-inservice inservice newrequest(a, dir}

Three axioms defining when the lights must not be lit between the
satisfaction of a request and the making of the next request. The case for
the lift light is simple, but the other cases must consider the direction of
motion of the lift and also ensure that the prohibition applies from the first
time that the doors open at that floor.

121

11. [open(a) =>beforenewrequest(a, lift)] 0 -light(a, lift)

[O-light(a,lift)]
»| o}
open(a) newrequest(a, lift)

12. [before((atfloor(a)=>open(a)) <=open(a)<=atfloor(a + 1))
=>beforenewrequest(a, up)] g -light(a, up)

[0O -light(a, up)]

N
L 1,]
A ™ 1

N N
ds e

atfloor(a) open(a) atfloor(a+1)
open(a) newrequest(a, up)

13. [before((atfloor(a)=>open(a))<open(a)<«=atfloor(a — 1))
=>beforenewrequest (a, down)] 0 —light(a, down)

[O ~-light(a, down)]
| g 1 :I‘
A—— S
atfloor(a) open(a) atfloor(a—1)
open(a) newrequest(a,down)

An axiom that defines when the lights are required to be illuminated.
the lights can be turned off as early as the previous decision point, i.e.
shortly before reaching the requested floor. They can remain lit for longer
but other axioms require that they be out at least by the time that the
doors are open at the requested floor. The lights need only remain on so
long as the lift is inservice.

122

14. [newrequest(a,dir)=>
before(decision : (b)<«= decision(a) A ((dir = up A goingup) V
(dir = down A —goingup) V
dir = lift))]
Oinservice D Olight(a, dir)
A [=-inservice] Olight(a, dir)

—

[Olight(a, dir)]
! k d
newrequest(a, dir) decision : (b) decision(a)

Movement

This axiom is a lift scheduling constraint that requires continued motion
in one direction so long as there are further requests outstanding in that
direction. When the lift decides to change its direction of motion, i.e. when
goingup changes from false to true or from true to false, there must be no
further request outstanding in the original direction of motion.

15. b<a D [beforegoingup=>]atfloor(a) O -light(b, dir)
16. b>a D [beforemgoingup=>]atfloor(a) O -light(b, dir)

When appropriate, the lift will stop and open its doors. Fast lifts need
time to decelerate and stop, time that is not provided by this versicn of the
specifications. The necessary modifications do not affect these two axioms
but rather impose a speed dependent advance on the decision point defined
in axiom 7.

123

17. b>a D [(decision(a) A goingup A (light(d, up) V light(5, lift)))
=>-atfloor(b)]« open(b) V * —inservice

*-inservice
V *open(b)]

—

L S,

71

decision(a) -atfloor(b)

18. b<a D [(decision(a) A —goingup A (light(b, down) V light(b, lift)))
=-atfloor(d)]« open(d) V * —inservice

These requirements allow the wide range of behavior that we encounter
in lifts, as for instance in allowing the lift to always return to the ground
floor, in allowing the lift a home floor when inactive, or even in allowing
the cattle car to stop at every floor regardless.

The local liveness axioms require that lift should not stay at one floor
indefinately if there are requests outstanding from other floors. The first
of the two axioms constrains the doors to close within a time constraint
if they are not obstructed. The second requires timely movement to an
adjacent floor if the lift is in service.

19. b#a D [(open(a) A light(b,dir))=
(open(a) A light(b, dir)) + max_open_time]
0O (inservice A —obstructed(a)) D * closing(a)

L *closing(a)]

N
open(a) A light(d, dir) open(a) A light(b, dir)
+max-open-time

124

20. b#a DO [(closed(a) A light(b,dir))=
(closed(a) A light(b,dir)) + movement_time]
Oinservice O (*atfloor(a + 1) V * atfloor(a — 1))

+atfloor(a + 1) V
[+atfloor(a — 1)

X)

closed(a) A light(b,dir) closed(a) A light(b, dir)
+movement._time

Service Specification

We must next provide our lift with a service specification. Basically,
the service specification states that if a request is made for floor a, then
eventually the lift will be at floor a with the doors open. As discussed
above, we must temper this idealistic requirement with the possibility that
the lift may go out of service. We must also allow for the possibility that
the doors may be obstructed to prevent them from closing. We can now
state an informal service requirement:

If a request is made for floor a by pressing a button inside the lift or
at that floor, and if, throughout a sufficiently long interval commencing
with the request, the lift is never out of service and the doors are never
obstructed, the lift will eventually be at floor ¢ with its doors open.

21. [newrequest(a, dir)=>newrequest(a,dir) + max_service_time]

=

N

o

O (inservice A —obstructed) = *open(a)
O (inservice A —obstructed)
[= *open(a)]
>

newrequest(a, dir) _r:_ewrequest:,(a, ta{ir)
max_service_time

It is possible to elaborate this requirement to allow occasional obstruc-
tion of the doors while still guaranteeing service, but at the cost of greatly

125

complicating the specification. The complexity arises not from any inability
of the specification language but from the inherent complexity of determin-
ing to what extent it is possible to obstruct the doors while still requiring
the lift to provide timely service.

Door opening and closing

We now encounter a sequence of relatively simple axioms that closely
control the opening and closing of the doors. Their interest lies largely
in the extent to which real time constraints are necessary to specify this
aspect of the lift.

Opening, open, closing, and closed are complete and mutually exclusive.

22. opening(a) V open(a) V closing(a) V closed(a)
A (opening(a) V open(a)) = —(closing(a) V closed(a))
A (opening(a) V closing(a)) = —(open(a) V closed(a))

23. [open(a)=>betoreclosing(a)] Clopen(a)
A [closed(a)=>betoreopening(a)] O closed(a)

The lift must be at a floor to open its doors and the doors of the lift
and that floor open and close together.

24. opening(lift) = Ja:0 < a < n Aopening(a)

25. 0 < a < n D [opening(a)=>closed(a)] Jatfloor(a)
A opening(lift) = opening(a)
A open(lift) = open(a)
A closing(lift) = closing(a)
A closed(lift) = closed(a)

The next five axioms place real time constraints on the sequence of
opening and closing actions of the doors, allowing for the possibility that
the doors may be obstructed. The last axiom states that the doors are only
obstructed while closing.

26. [opening(a)=>open(a)] Oinservice O < opening-time

126

27. [closing(a)=>closed(a)] O (inservice A ~obstructed(a))
D < closing_time

28. [obstructed(a)=>opening(a)] Oinservice O < reaction_time
29. [(obstructed(a)=>open(a))=>closing(a)] Dinservice > < dwell_time
30. [open(a)=>closing(a)]> min_open_time

31. [obstructed(a)=>]closing(a)

4.7 Analysis and Conclusions

We have presented an outline of our interval logic with an extension to
permit the specification of real time constraints, and have applied it to
the lift specification example. We are reasonably satisfied with its success,
although we feel that further experimentation is necessary. Current work
is proceeding on providing the interval logic with the abilitv to describe
multiprocess systems and to compose the specifications of singte processes
into a multiprocess specification. We are also working on integrating the
interval logic into the specification language for a full verification system,
and on verification techniques for concurrent programs. Future projects
may investigate a human interface based on the graphical representation
for interval logic rather than on the linear syntax.

We are reasonably satisfied with the style of expression of the interval
logic. It appears to correspond quite closely to the intuitive forms of reason-
ing and explanation used by human designers while considering concurrent
systems. In particular, the graphical representation for interval logic ap-
pears to be very close to typical human design sketches. The behavioral
style of specification and the basing of interval formation on events derived
from state changes, motivated by our observation that establishing con-
text almost always required seeing a change in state, have been justified
in our experience of the use of the logic for examples. But, despite the
relatively behavioral style of specification, the specifications can be quite

127

abstract with relatively little auxiliary state information introduced to es-
tablish context. This allows specifications expressed in interval logic to
remain more general, and to impose less implementation bias, than more
state oriented methods.

The real time extensions to interval logic are important for making the
logic useful for the specification of real systems. Despite the power of the
extension, we believe that the integrity of the logic has been maintained.
That the logic with the real time extensions is still decidable is helpful in
retaining the opportunity to provide mechanical support. Unaided human
reasoning about concurrent systems is very falible.

The specification of, and reasoning about, complex concurrent systems
is difficult, and interval logic does not eliminate that difficulty. The dif-
ficulty is inherent in the multiplicity of possible cases that must be con-
sidered, and in determining the relationships that are significant to the
operation of the system. Our objective with interval logic can only be to
allow the designer to express his intentions and understanding in a manner
that is close to his natural intuition.

Part V

Consistency of Replicated
Information in Multichannel
Fault Tolerant Systems

129

5.1 Abstract

The need for reliable computation has induced many designs for fault tol-
erant computer systems based on the replication of the processors and
appropriate error detection and masking algorithms. Typical of such sys-
tems are SIFT and FTMP, which use majority voting for error masking,
and Stratus, which uses a dual-dual structure for error masking. It is clear
that these approaches, coupled with the steadily improving reliability of
components, now allow the construction of very reliable systems.

All fault tolerant systems depend on some form of error masking al-
gorithm, coupled with error detection to allow the repair of faults. Some
such systems depend on backward error correction, in which a result is
computed, the ac-eptability of that result is checked, and in the event of
error the computation of the result is repeated. Typical of such systems
are classical Checkpoint-Restart systems and Recovery Blocks2. Backward
error correcting algorithms necessarily incur a significant overhead for re-
peating the computation when an error is detected, and also involve an
acceptance test on the results, a test that is usually system and applica-
tion specific. We do not consider backward error correcting systems in this
paper but rather we examine Forward Error Correcting systems, in which
the results are computed in a redundant form that allows error masking
without repeating any computation.

Two forward error correcting algorithms are currently used for masking
processor errors in reliable systems, majority voting and dual-dual. The
majority voting approach can mask errors caused by one faulty channel out
of three, while a dual-dual approach masks one faulty channel out of four.
Both approaches have the advantage that they are completely application
independent. However majority voting and dual-dual both depend for their
operation on exact match comparison between results of computations.
Thus, for successful masking of errors, it is essential that the fault free
channels should generate identical results. Both algorithms guarantee, with
only a single faulty channel and with fauit free channels producing identical
results, that fault free channels remain error free and continue to generate
identical results.

131

Two questions arise from this. The first concerns whether there are any
single point faults that couid cause fault free channels to generate differ-
ent results, thus invalidating the presumptions of both majority voting and
dual-dual. We describe below a class of such faults azd give algorithms for
precluding them. The second question relates to the possible increase in the
risk of common mode faults resulting from the need for all channels to per-
form exactly the same computation on identical data at approximately the
same time. We show below that error masking algorithms can be devised
that aliow each channel to perform a different computation on different
data at different times.

5.2 Loss of Consistency

Figure 1 shows a majority voted three channel system, with one faulty
apd two working channels. The successive levels of the diagram might
represent distinct units within the channel, but equally they can represent
successive iterations of a computation performed by the same units. It
1s clear that, provided that the two working channels generate identical
results initially, each voting operation will receive as inputs two identical
values and one erroneous value. The voters in the two working channels will
therefore both produce the same value for the majority. Thus the working
channels continue to generate identical results, and consistency between
working channels is maintained. However, if at any time the three channels
generate different results, the voters can find no majority and the system
fails.

Consider Figure 2, which shows a system of three working channels
and an input to that system from a single faulty source. The nature of
the fault is that the source distributes different values to each of the three
channels (the values A, B, and C). Even on a broadcast bus, such faults
can result from marginal timing faults or from a marginal trapsmitter at
the source and receivers with slightly different, but within specification.
characteristics. More complex communication mechanisms, particularly
where software is involved, permit many more such faults. The figure shows
that. if the faulty source distributes different values to each channel, the
three channels generate different results, the voters can find no majoerity.

WORKING WORKING FAULTY
CHANNEL CNANNEL CHANNEL

Lo | v | :

Figure 5-1: A Three-Channel Majoritv Voted Svstem

133

WORKING WORKING WORKING FAULTY
CHANNEL CHANNEL CHANNEL SOURCE

Figure 5.2: Distribution of Information from a Single Faulty Source to a
Three-Channel System

134

and the system fails.

Figure 3 shows a three channel system with two working and one faulty
channels. Here information present in just one of the channels is to be
distributed to all three chanrels and be used in a replicated calculation. The
faulty source distributes different values to the two working channels, and
compounds the problem by repeating the same erroneous values (suitably
transformed if necessary) in the next, voted, stage of the system. Note
that not only do the two working channels continue to receive inconsistent
values, even after voting, but also each of the two working channels can be
mislead into believing that it is the other working channel that is faulty.

The existence of this problem was discovered during the design of SIFT,
a reliable aircraft control system, and is discussed in Pease et al., JACM
April 1980, where it is shown that no solution is possible in a purely three
channel system. An algorithm, called the interactive consistency algorithm,
is given for a four channel system containing a single faulty channel, and
extended to the masking of N faults in a 3N+1 channel system.

The basic interactive consistency algorithm is given in Figure 4. One of
the four channels is the single point source of the information, and the three
other channels are used to replicate that information. Once the information
is replicated, any or all of the channels can vote the replicated information
with confidence that all voters in working channels will produce the same
majority value, or alternatively all working voters will find no majority and
will return a default value. For this algorithm to be effective against all
faults, the channel that is the source of the information must be distinct
from the three channels that perform the replication.

Consider the possibility that the source channel is faulty. It may then
distribute different values to the other channels. The three replicating
channels must all be working, and ‘nus every working voter must get the
same set of inputs. If at least two of the replicating channels have the same
value, every working voter will find that value as its majority, while if all
three replicating channels have different values, every working voter will
return the default value. (If the source is faulty, the interactive consistency
algorithm cannot of course guarantee a correct value from that source, but
only a value that is consistent across all working channels.)

Consider the possibility that one of the three replicating channels is

135

WORKING WORKING FAULTY
CHANNEL CHANNEL CHANNE L

?

+ 1
8 B ?
A 8 / A
VvOTE VOTE VOTE
A 8 ?

Figure 5.3: Distribution of information from a Single Channel to
Three Channels

136

REPLICATING SOURCE
CHANNEL CHANNEL

Figure 5.4: The Interactive Consistency Algorithm

137

faulty. Now the source is necessarily working and will distribute the same
correct value to each of the two working replicators, which will replicate it.
Thus each working voter obtains at least two correct inputs and is able to
produce the correct value as its result.

In SIFT, four circumstances were found in which a value from a single
source had to be distributed to three replicated channels, namely:

e input from a sensor

e error reports from a voter

e interfaces between unreplicated and replicated tasks
e synchronization of processor clocks.

The first three of these require the use of the interactive consistency
algorithm to protect the system against malicious faults. The fourth is of
special interest in that exact agreement is rot necessary for clock synchro-
nization, and thus slightly simpler algorithms guaranteeing approximate
agreement suffice.

5.3 Maintenance of Approximate Consistency

In SIFT, as in many other fault tolerant systems, each processor has its
own clock and operation of the system depends on these clocks remaining
synchronized (to within 50ms in SIFT). Many prior systems used three
channels, three clocks, and a clock synchronization algorithm based on each
clock synchronizing itself periodically to the median clock of the three. It
is instructive to consider why this “obviously sound” approach is invalid.
Figure 5 shows a system with two working clocks (A and B) and a
faulty clock (C). We may assume that clock A runs slightly faster than
clock B. Clock C presents to clock A an erroneous clock value indicating
that clock C is running faster even than clock A, causing clock A to assume
that it is the median clock. Thus clock A makes no correction to its value.
Similarly, clock C presents to clock B a value indicating that it is behind
even clock B, causing clock B to assume that it is the median clock and
make no correction to its clock value. By this strategy, the faulty clock C

138

Slock | | I

SEEN BY l I
CLOCK B

& APPARENT TIME

Figure 5.5: A Failure Mode of the Median Clock Synchronization Algorithm

can induce clocks A and B to operate without correcting their clock values
as they gradually drift apart until the system fails. Single point component
faults that could cause this “malicious” behavior have been found even in
purely analog clock systems.

It is tempting to attempt minor corrections to the three channel clock
synchronization algorithms, aimed at preventing this behavior. As yet we
have no rigorous mathematical proof that no three channel algorithm can
exist, bu™we believe that the approximate agreement needed for clock syn-
chronization requires the same number of channels as the exact agreement
discussed above.

In SIFT, a four channel clock synchronization algorithm is used in which
each clock is periodically resynchronized to the mean of the four clocks.
To protect against wildly erroneous clock values, the algorithm imposes a
bound within which a clock value must lie to be included in the averaging
calculation. For n processors of which at most m are faulty, with R as the
resyachronization interval and S as the time taken for resynchronization,
and if € is the maximum clock reading error and p the maximum rate of

139

clock drift, it can be shown that the maximum skew between working clocks
will not exceed

2(n - m)S

(2¢ + p(R +).

n
(n - 3m)
A similar problem has been examined by L. Webster in closed loop con-
trol systems. lle found that use of a median voting algorithm in a three
channel system favors the median channel, effectively disconnecting the two
other channels from the closed loop. Without cross coupling between the
integrators of the three channels, this results in uncontrolled accumulation
of error terms in the integrators of two of the channels, rendering them use-
less for error masking. With cross coupling, the integrators are vulnerable
to precisely the same problem as the clocks above.
The possibility of failure to maintain approximate consistency appears
to exist in any three channel system containing embedded integrators.

5.4 Asynchronous Multichannel Systems

Existing fault tolerant multichannel systems using forward error correction,
whether majority voted or dual-dual, depend on an exact equality between
the result values of the various channels. To ensure this exact equality
of their outputs, the various channels must all perform exactly the same
calculation on exactly the same input values at approximately the same
time. This exposes such systems to an unquantifiable risk of correlated
faults generating errors simultaneously in several channels. Such correlated
faults might result from some external influence, such as lightning or cosmic
rays, or from accumulation of latent faults not within the coverage of the
diagnostics, or from design faults in the hardware logic or the software.

A much higher degree of confidence in the resilience of the system to
correlated faults would result from a system design in which each channel
performs its calculation at different times, on different input values, and
obtains different outputs. It is even possible to consider the use of different
algorithms in each of the channels. Unfortunately, as exhibited above,
without an exact match between channels, standard voting techniques are
vulnerable to faults that cause loss of consistency between channels and

VALUE

NOw
- TIME

Figure 5.6: Extrapolation from Past Values to a Most Probable
Current Value

thus system failure. We seek here to provide alternative algerithms that
permit differences between channels without risk of loss of consistency.

The first thoughts on an approach to such asynchronous error masking
envisage a system of four channels. Each channel operates at the required
iteration rate but completely unsyschronized with the other channels, thus
minimizing interaction between channels. Each result produced would carry
a timestamp. A processor, when voting such a result, would have access
to the four most recent values, one from each channel, together with their
timestamps. From these it would be possible to extrapolate to a most
probable current value, as shown in Figure 6.

More formally, if R;, is the ’th broadcast result from processor p, con-
taining a value v;, and a timestamp ¢;,, and if the most recent result so
far received from processor p is n,, the algorithm can be expressed as:

consensus value = F(vn..ay tn.,ay Un,,bs tn..b, YUn,,c» tn,.c: Ung.d» tnd,d)

where F is some function to be determined, and a, b, ¢, d are the four pro-
Cessors.

141

Unfortunately, it is easy to show that the timestamps do not assist in the
maintenance of consistency in the absence of any constraints on the times
at which results are calculated. If greater weight is given to more recent
values, those values may be erroneous values increasing the vulnerability
of the system. In particular, consider the case in which three good values
are reported approximately simultaneously and subsequently an erroneous
value is reported. Any preference given to recent values can only render
the consensus less reliable than that obtained by ignoring the timestamps.

Consideration can also be given to the clock synchronization algorithm
described above. Here, if processor @ is considering the values generated
by processors b, ¢, d, with current values v,, v, v. and vy,

Foriinb,c,d:vi=ifvy>v,+6 orvi<v,—$6
then v,
else v;

. vat+v +vi4v!
and then: consistent result = ‘—‘75—4

That algorithm does indeed maintain consistency between channels, but
the rate of convergence is very weak and the drift and error signals that
can be introduced by undetected faulty clocks are much larger than the
permitted drift and jitter of working clocks. In the clock synchronization
application this is not critical for the individual clocks have performance
characteristics much better than those required for typical system applica-
tions. For a control system application however, the errors introduced by a
faulty channel can easily overwhelm the control action of the system, and
thus such an algorithm is clearly unacceptable.

A possible alternative approach requires that the four channels compute
their results at uniform phases within the iteration interval, one channel
generating a value at the start of the interval, a second channel generating
its result a quarter of the interval later, etc., as shown in Figure 7. This
additional information allows the algorithm an improved ability to compute
a most probable current value and to reject erroneous values. The uniform
spacing at which results are generated through the interval greatly simplifies
calculations compared with a system in which such spacings are arbitrary,
and thus assists in reducing the voting calculation overhead.

142

T

» TIME

Figure 5.7: Calculation of Results at Uniform Phases within an Interval

An initial evaluation of such a system, using the arithmetic mean of
the four values for the most probable current value, as in the clock svn-
chronization algorithm. Each channel uses fixed limits for the acceptable
deviation of the values computed by other channcls from its own most re-
cent value, but those limits can differ for each of the other channels. Thus
if § is an appropriate acceptable deviation for the channel whose result was
computed one quarter of an iteration later, then 1.36 is an appropriate limit
for the channel computing half an iteration later and 1.26 for the channel
computing three quarters of an iteration later.

Here, if processor a is considering the values generated by processors
b, c,d, with current values v,, vy, v. and vy,

v,=ifvs>v,+0 orvy<v,—96
then v,
else v,
vi=ifv,>v,+136 orv, <v,—-136
then v,
else v,

143

vi=ifvy> v, +1.28 orvg<v,—126
then v,
else vy

X +v' :‘+ '
and then: consistent result = 'ﬁ—"f‘i—"i

Unfortunately, while this algorithm appears to be better than the basic
clock synchronization algorithm, it is only slightly so and the drift and
error signals introduceable by a fault are still at least comparable to the
maximum permissible control action of the system. Thus the algorithm is
still unacceptable.

We can refine the algorithm by giving different weights to each of the
values, for instance:

consistent result = '3—4'2—"1?—:"—214—"4"
but the effect is marginal and still far from providing acceptable margins
for control purposes.

Error masking algorithms such as these act as filters and, like all filters,
necessarily introduce delay into the control loop. The algorithms above
introduce a delay of about 2/3 of an iteration. To maintain the same
margins of loop stability, the introduction of such a delay would require an
increase in the iteration rate of about 33%.

A number of possible improvements to the algorithm are under consider-
ation. We are currently working on algorithms that make better use of the
relative timing of results, both by giving greater weight to more recent re-
sults in estimating the most probable current value, and also by considering
the values generated by other channels when determining the acceptability
of a result. A further possibility is the use of a five channel system fully
capable of rejecting the most malicious faults which degrades on the first
reconfiguration to a four channel system capable of rejecting all faults ex-
cept those malicious faults in which different information is delivered to
different destinations by the broadcast mechanisms. Since the probability
of a second fault during a mission is low, and the probability of a malicious
fault is also low, such a system might be judged to be adequately reliable.

References

(1]

(2]

(8l

[4]

(5]

(6]

8]

9]

[10]

A. Mazurkiewicz. Semantics of Concurrent Systems: A Modular Fized
Point Trace Approach. Technical Report 84-19, Institute of Applied
Mathematics and Computer Science, University of Leiden, 1984.

W. Brauer, editor. Net Theory and Applications. Springer-Verlag,
Berlin, 1980.

P. J. Courtois, F. Heymans, and David L. Parnas. Concurrent con-
trol with “readers” and “writers”. Communications of the ACM,
14(10):190-199, October 1971.

Leslie Lamport. Concurrent reading and writing. Communications of
the ACM, 20(11):806-811, November 1977.

Leslie Lamport. The mutual exclusion problem. To appear in JAC)M.

Leslie Lamport. A new approach to proving the correctness of mul-
tiprocess programs. ACM Transactions on Programming Languages
and Systems, 1(1):84-97, July 1979.

Leslie Lamport. Time. clocks and the ordering of events in a dis-
tributed system. Communications of the ACM, 21(7):558-565, July
1978.

Leslie Lamport. What it means for a concurrent program to satisfy a
specification: why no one has specified priority. In Proceedings of the
Twelfth ACM Symposium on Principles of Programming Languages,
ACM SIGACT-SIGPLAN, New Orleans, January 1985.

Peter E. Lauer, Michael W. Shields, and Eike Best. Formal Theory
of the Basic COSY Notation. Technical Report TR143, Computing
Laboratory, University of Newcastle upon Tyne, 1979.

R. Milner. A Calculus of Communicating Systems. Springer-Verlag,
Berlin, 1980.

145

[11} Gary L. Peterson. Concurrent reading while writing. ACM Trans-
actions on Programming Languages and Systems, 5(1):46-55, January
1983.

[12] A. Pnueli. The temporal logic of programs. In Proc. of the 18th
Symposium on the Foundations of Computer Science, ACM, November
1977.

[13] Glynn Winskel. Events in Computation. PhD thesis, Edinburgh Uni-
versity, 1980.

Appendix

Proof of Proposition 1

It follows from (1) that, for any operation execution A in §, the relations
— and - -~ are not changed by either of the following two changes to the
global-time model, where § > 0:

1. Changing s4to 84— 0 if, forall Be §: fp < 34 implies fg < 34— 4.
2. Changing fato fa+ 6 if forall BE S: f4 < 3p implies f4 +6 < 34.

Let T denote the set of numbers s4 and f4 for all A in S, and for any real
t,let S(ty={reT:r<tiand F(t) = {reT:r>t}. M2implies that
for any ¢, max S(¢) < t and ¢t < min F(¢).

For any A, if 84 equals sg or fg for some B # A, I can change 34 to
84 — 6, where 0 < § < ¢ is chosen so that s, — 6§ > max S(s,4). Similarly,
if fo equals sg or fp for some B # A, I can change f4 to f4 + 6, where
0<b6<eand f4 +6 <minF(s,).

The details of the formal proof, which involves an inductive definition
of s’ and f’ based upon the countability of §, is left to the reader.

Proof of Propositions 2 and 3

The “only if” part of Proposition 2 follows immediately from (1). To prove
Proposition 3 and the “if” part of Proposition 2, I prove that for every
system execution §,— - - - there exists a global-time model s, f such that
for every 4, B€ S:

e 4 — B implies f4 < 35
e 4--- B implies 354 < fg

The relations — and - !+ defined by this global-time model satisfy the

requirements of Proposition 3. Moreover, if §,— - -+ satisfies A#, then

- -~ must equal ---, since if A# holds then A - /- B implies B — A,
!

which implies B —— A, so A -#+ B, and A -~ B implies B --+ A, which
]
implies B--- 4, so A -~ B.

The following proposition is used in this proof and in a later one.

Proposition 10 Let T be the set consisting of all elements of the form s,
and fo for A€ S (the elements of T are uninterpreted symbols, not nec-
essarily real numbers), and let < be the smallest transitively closed relation
such that

e If A— B then f4 < sp.
e IfA---B or A= B then 35 < fp.

Then < 1s an irreflexive partial ordering.

Proof: Define the relations —, —, and 2, on T as follows:
e Forall A: 84 = fa4.
e f4 — sp if and only if A — B.
e 34 —% fpif and only if A--~ B.

Let — be the union of the three relations ==, ——, and —~, so < is the
transitive closure of —. It suffices to prove that — is an acyclic relation.

The proof is by contradiction. Choose a shortest cycle formed by the
— relation. A cycle composed entirely of — and —— relations would
violate Al, so the cycle must contain a portion of the form:

fA-L’SB_L’fC—'_’sD

since — is the only relation from an f to an s and there areno sto sor f to
f relations. I can apply A4 to deduce that f4, — sp, which contradicts our
assumption that the cycle had minimai length, proving Proposition 10. B

Returning to the proof of Propositions 2 and 3, we see that < is an
irreflexive acyclic relation. Moreover, A5 implies that forany t € T, ¢ < s
for all but a finite number of elements s. This, together with the countabil-
ity of T, implies that < can be completed to a total ordering < such that
there is an order-preserving isomorphism of T with a subset of the natu-
ral numbers. Identifving the elements of T with the corresponding natural
numbers provides the desired global-time model.

148

Proof of Proposition 4

Let T be the set of all numbers s, and f,4 for A € §, and let < be the partial
ordering on T defined as in Proposition 10 for the precedence relations —
and -!-,namely, the smallest partial order such that A — B implies
fa < s, and A -2+ Bor A = B implies 34 < fp. Observe that the
following hold for all A and B in §:

(a) Either s4 < fg or fg < 34 (by A#).
(b) fa < sp implies f4 < sg (by H3).

To prove the proposition, it suffices to construct s, f' such that® 3 < s’ <
f' < f and for all A and B: f4 < sg implies f, < s and s4 < fp implies
8y, < fg.

Let &', f' be any global model satisfying

fi < s implies f4 < 3p (3)

The pair of operation executions A, B is said to be out of order for ', f'
if fa < 8p and 8 < f,. It follows from (a) and (b) that if there are no
out-of-order pairs, then s', f’ satisfies the conditions of the proposition.

I will construct s', f' inductively by constructing a sequence of nonde-
generate models &', f* with s* < st! < f*! < f* having s°. f© equal to
3, f and ¢, f' equal to their limit. This is done by first choosing the enu-
meration of all out-of-order pairs of 3, f such that, for any subset of them.
the minimal element is the one A. B having the smallest value of f4 and,
among all such pairs 4, B', the one having the largest vaiue of sg. It follows
from M2 that such a minimal element exists for any nonempty set, so this
defines an enumeration of the out-of-order pairs of s, f.

If A, B is the i*® out-of-order pair, then s*, f* will be defined to be the
same as s'~1, fi=! except that si! < fi < s§ < fi'. This implies that
the set of out-of-order pairs for s*, f* equals the set of out-of-order pair for
8! f*~! minus the pair A, B. Moreover, it follows from A5 and (b) that
any operation execution belongs to only a finite number of out-of-order

5] employ the usual notation that for functions f and g with the same domain, f < g if
and only if f(z) < g(z) for all z in their domain.

pairs of 8, f, so the limit ¢, f' of the models s’, f* exists, satisfies (5), and
has no out-of-order pairs, proving the proposition.

For notational convenience, the construction of s*, f* from s'~!, fi-! is
given for the case 1 = 0. So, I assume that 3, f satisfies (b), which is the
same as (5). and has a minimal out-of-order pair A, B. I construct ¢!, f!
by decreasing f4 and increcsing sp to get fi < sk, without creating any
new out-of-order pairs. (The construction for any ¢ is the same except with
more superscripts.)

Let X be the operation execution with the largest value of sx such that
8x < fa; if there is no such X, let sx = —oc. It follows from (b) and the
nondegeneracy of s, f that sx < fs4. Observe that there is no C with s¢
in the interval (max(sx, sg), fal, since, by choice of sx, this would imply
fa < 8x, which would contradict the maximality of sg. Therefore, if 1
define f} to be max(sx,sg)*, then s, f! satisfies (5) and has the same set
of out-of-order pairs as s, f, where t* denotes a value larger than ¢ such
that there is no value s¢ or fc in the interval (¢, t%].

If sg > sx, so fi = s}, then I can define s} to be (f})* and it is clear
that s!, f! also satisfies (5) and has the same set of out-of-order points as
8, f! except that A, B is not out of order for ¢!, f!, so we are done.

Therefore, I need only consider the case sg < sx. (Since sx < fa, we
must have sg # 3x.) I claim that there is no f¢ in the interval [sg, sx]. If
there were, then (a) and (b) imply that fo < sx and sg < f¢, which, since
8x < f4, would imply sp < f4, contrary to the assumption that A, B is
out of order for 3, f. Therefore, defining s to be the same as s except with
sg = 8%, we see that s, f! satisfies (5) and has the same set of out-of-order
pairs as s, f'. Replacing s by s* and starting our argument again. we are
in the case s < s that was considered above. This completes the proof.

Proof of Proposition 5

If — and - -+ are any relations on a set §, let the completion of — and
--- be the relations — and -Z-, where — is the smallest transitively
closed extension of — such that A — B --+C — D implies 4 — D,
and -!- is the union of --- and —. Thus, 4 — B if and only if there

150

exists a chain
A=A = --= A, =B

where = denotes either — or — C --+ D — for some C and D.

Proposmon 11 If — satisfies A5 L., -2+ i3 the completion of —
.- --: and — 13 acyclic; then S, ~-1. {3 a system ezecution.

Proof: 1 must show that §, — - 15 satisfies Al- AS The only nonob-
vious part is, in the proof of A2, showing that if A —— B then B-/- A.
However, as observed above, this follows from Al and A4.

To prove Proposmon 5, let —— be the union of the relations —— and
.. and let - 2~ be the union of . and the restriction of — to T Note
that the restriction of — to ¥ equals L (by H3). I define 2T, M4 to be
the completion of ——,-2-.

I claim that to prove Proposmon 95, it sufﬁces to show that 27, is acyclic
and the restrictions of 2 and - to ¥ equal -2 and - ¥-. Proposition 11
then implies that ¥ U T,— Al -" TLisa system execution, which is easily seen
to be implemented by S U T —,--+. (The deﬁnition of —”l- and -
implies that their restrictions to T are extensions of —+ and -1

Moreover I claim that it suffices to prove that the restrlctlon of 25 to
X equals A follows 1mmednately from the definition of -~ and A2 that
if the restrnctxon of 25 equals -, then the restriction of - 75 to ¥ must
equal - = +. Furthermore, the deﬁnxtxon of the completion and the acyclicity
of — 1mply that any cycle of 27, relations must include an element of ¥,
so A 2L A must hold for some A € N. If the restriction of 25 to X equals
-X., then the acyclicity of 25 follows from the acyclicity of 2. Thus, it
suffices to prove that lf AL B then A == B.

By definition of 27, it A XL B then there exists a cham A= 4, =

. = A, = B, where = denotes either ~~ or — C -2+ D —.
Note that if A; and A4, are both in ¥, then A; = A;y, implies that
A; 25 Aipr, and if they are both in T then A; => Ay implies that
A; —— A;4,. Therefore, it suffices to show that any such chain that is of
minimal length has length one.

151

If three consecutive elements A;, 4;41, and A, in this chain are either
all in ¥ or all in T, by the transitivity of - and = it follows that
A; = Ai42. Therefore, in a minimal-length chain, A; must be in ¥ if i is
odd and in T if 7 is even. If n > 0, then we have 4, = A, = A;, with
A, and As in ¥ and A, in T. A — relation between an element of ¥ and
an element of T must be a — relation. Considering the two possible cases
for each = relation, using Al and A4 for the relations — and - -, it
follows from A; => A, = A; that 4; — A, — A;, so A; = A;. This
contradicts the assumption of the minimality of n, proving that n = 1 and
A =5 B, which completes the proof of the proposition.

Proof of Propositions 6 and 7

Parts {a) and (b) of Proposition 6 are immediate consequence of Defini-
tion 4. To prove part (c), observe that this definition implies VU1 - - - o1,
The result is immediate if j = 0. If j > 0, then VU~ — V'll. Combining
these two relations with the hypothesis, we have

VU=t il glidl , plitd)

Axiom A4 implies that V=t — "1 which, by A2, implies vl"7'l - /-
VIi=1 This finishes the proof of Proposition 6.

To prove part (a) of Proposition 7, observe that it follows immediately
from Definition 4 that V¥ - -4 R implies & < . Conversely, I assume k& < ;
and show this implies VI - -4 R. Since VUl -~ . R, the desired conculsion
is immediate if k = j. If k < 7, then VI# — V'l and it follows from A3.

For part (b), Definition 7 implies that if i < ¥’ then R - - - VI¥'l. Letting
k' = k + 1, this shows that if i < k then R --+ VI¥*U_ Conversely, suppose
R--- VI Thenk+1#4i lfk+1 < i, then VI — VIl 56 A3 would
imply R --- VUl contrary to Definition 4. Hence, we must have i < k + 1
so 1 < k eanipliiug the proof of Propositinn 7,

Proof of Propositions 8 and 9

Apply Proposition 3 to extend the given — and --- relations so they
satisfy A#. It follows from Bl that this extension does not add any new

precedence relations between reads and writes. A read sees vl as defined
by these new relations, if and only if it sees vl“/l in the original system
execution. Hence, the new system execution, which satisfies A#, satisfies
the hypotheses of the appropriate proposition. Applying Proposition 2, I
can therefore assume a nondegenerate global-time model for the system
execution.

For the proof of Proposition 9, let ¢ be the assumed function. For the
proof of Proposition 8, ¢ is defined as follows. If R is a read that sees
vl for a safe register define ¢(R) to equal j, and for a regular register
define it to be a value satisfying conditions 1 and 2 in the hypothesis of
Proposition 9. (B4 implies that such a definition is possible.)

I first show that §,—,--- (which I am assuming to have a nondegen-
erate global-time model) trivially implements a system execution in which
reads are instantaneous, which is all that is required to prove Proposition 8.
Given the nondegenerate global-time model s, f for §,—,--~, it suffices
to find a global-time model &', f’ with 8 < s’ < f' < f in which all reads
are instantaneous, such that B1-B4 hold for the system execution defined
by ¢, f'.

For notational convenience, let s; and f; denote sy and fy (i, respec-
tively. Let s, f' be the same as s, f except that, for a read R, define s} to
equal the maximum of the following three quantities:

® Sp

o (s4(r))T
e max{sp : ¢(R') < ¢(R) and sp < fr}*

and define f} to equal (sz)*. When the appropriate careful definition of t*
is given, this results in a nondegenerate global-time model in which every
read is instantaneous. I must check that, for any read R: sg < 83 < fr <
fr, B1-B3 remain satisfied, and B4 remains satisfies when v is regular.

It is immediate by the definition of s that sg < sp. Since fp = (sk)*,
to establish the remaining inequalities, I need to show that f, < fg. If R
sees vl*/l then, by Definition 4, s; < fg (the strict inequality comes from
nondegeneracy), and, since ¢(R) < j, 84(r) < fr- The required inequality
now follows easily from the definition of sj.

153

I must now show that B1-B3 and, if v is regular, B4 hold for the new
precedence relations. Bl and B2 are trivial. For B3 and B4, consider what
a read sees in the new system execution if it sees 1%/ in the original one.
There are three cases:

1. If f4r) < 8g then

(a) if sp < 84(r)+1 then R sees yl¢(R)4(R)]
(b) if 84(r)41 < Sr then R sees yl#(R)}#(R)+1]

2. If s8p < f¢(R) then R sees v("(R}'lvO‘(R”.

Moreover, it is immediate from Definition 4 that case 1(b) is impossible
if ¢(R) = j, which is the case when v is assumed to be only safe. This
definition also implies that f; < sg if and only if ¢ = ;. Thus, when v is
only safe, R sees vl*! in the new system execution if and only if it does
in the old, proving B3. For the case when v is regular, B3 and B4 follow
immediately from the fact that R returns the value v!*®! This finishes
the proof of Proposition 8.

To complete the proof of Proposition 9, I first show that if ¢(R) < ¢(S)
for reads R and S, then f; < s5. The third hypothesis about ¢ implies that
if o(R) < ¢(S), then sgp < fs. By the definition of s, this implies that s
is greater than each of the three quantities of which 8% is the maximum, so
8k < 85. Since reads are instantaneous with respect to &', f', this implies
fr < 3k

I must construct a new global-time model s", f', in which writes are
also instantaneous and B1-B3 are still satisfied, so that s", f" is the same
as 8', f' except for writes, and for any write VI*l: &, < s < f" < fI. (Note
that B5 follows from the fact that reads and writes are instantaneous, and
B4 follows from B3 and B5.)

Let s} be the maximum of the two quantities s} and max{ f; : o(R) =
k —1}*, and let fI be (s%)*. Since v[*(R)l is one of the values “seen” by
R in the system execution defined by ¢, f', if ¢(R) = k — 1 then sk < f}.
which implies that s} < fi. We therefore have 8' < 8" < f" < f’, and reads
and writes are both instantaneous in 8", f”. Again, Bl and B2 are trivial,
so I need only prove B3.

154

Since reads and writes are instantaneous, B5 holds—a read R sees vl*#:
I must show that ¢ = ¢(R). The definition of s” implies that fp = f} <
84(r)+1- | must therefore show that s < sk. In the global-time model
s, f', the read R “sees the value” vl*(®)], 5o o o) < si. By definition of 5",
we can have s} p) > s only if there exists some R' with ¢(R') < ¢(R) and
frr > si. However, I showed above that R’ < R implies fh < s, which
completes the proof.

155

Part VI

Experimental Implementation
and Evaluation of the Trans
Broadcast Protocol

157

6.1 Introduction

An earlier section of this report (Part III) introduced a novel link-level pro-
tocol for broadcast environments. The protocol, known as TRANS, exploits
the characteristics of broadcast communications media in order to achieve
reliable communication with minimal overhead.

This section of the report describes a prototype implementation of
TRANS, which was undertaken so that the design and performance of the
protocol could be evaluated. A great deal was learned about the behavior
of the protocol during this process, including subtle problems in its design.
However, this experimental implementation was undertaken towards the
very end of the project, when time and funds were almost exhausted, and
we were therefore unable to completely resolve some difficulties in the de-
sign of TRANS, or to collect as much data on its performance as we would
have wished.

We believe that the subtle problems and difficulties encountered in the
implementation of TRANS vindicate the decision to undertake that imple-
mentation. Protocols are notoriously difficult to get right, and claims based
on only informal specifications and correctness arguments (as was the case
with the previous description of TRANS) should be viewed with skepticism.
The problems discovered in TRANS do not appear major and we believe
they can be corrected. Unfortunately, there simply was not enough time
to address them during this contract. The performance measurements that
we were able to make are encouraging and suggest that broadcast protocols
such as TRANS offer useful benefits in certain situations.

This experimental implementation and evaluation of TRANS has sug-
gested several directions for future research. An increased understanding
of the protocol has indicated several modifications that would lead to im-
proved performance. It has become clear that the protocol should be spec-
ified and proved formally, and that implementation considerations must be
addressed. Additional performance measurements are required to complete
the evaluation of the protocol and comparisons should be made against al-
ternative approaches. There are also several extensions to the protocol that
can be examined. Finally, the protocol can be used as the basis for the de-

sign, implementation, and evaluation of a variety of distributed systems
algorithms.

159

6.2 Specification of the TRANS Protocol

The starting point for our implementation of TRANS is the description of
the protocol given in Part III of this report. However, rather than simply
reproducing that description here, it will be useful to first provide some
additional motivation and discussion.

The context in which TRANS is to operate assumes a communications
medium using physical broadcast (such as Ethernet, or packet radio), and
an applications environment that requires reliable broadcast communica-
tions. Conventional protocols that assume point to point communications
could require a minimum of 2 X (n — 1) messages to transmit a message from
one of n hosts to all the others (composed of n — 1 individual transmissions
from the sender to each recipient, and the same number of acknowledg-
ments). A protocol that allows broadcast transmission but that requires
individual acknowledgments could reduce this to n messages (1 transmis-
sion and n — 1 acknowledgments).

If we are prepared tc wait for acknowledgments until receiving hosts
have messages of their own to transmit, then no additional messages may
be required beyond the initial broadcast: receiving hosts simply save up
acknowledgments and append them to their own messages. Assuming a
community of n hosts all broadcasting at approximately the same rate, this
could require each host to append an average of n — 1 acknowledgments to
each of its own messages.

The novel contribution of TRANS is that it attempts to reduce the
number of acknowledgments that must be appended to each message by
exploiting the broadcast character of the communications medium and the
transitivity of acknowledgments.! If a host needing to acknowledge a mes-
sage Y sees another message X carrying an acknowledgment for Y, then it
need not acknowledge Y explicitly: its acknowledgment of X will implic-
itly acknowledge receipt of Y. Under favorable circumstances, this could
result in each host having to explicitly acknowledge only 1 message in each
of its own messages—the remaining n — 2 being acknowledged implicitly.
This can significantly reduce the bandwidth needed for a given degree of
communication. In addition, it can significantly reduce the amount and
frequency of communications required from individual hosts. This could

!The name of the protocol is derived from TRANSitivity.

160

be beneficial in packet radio situations, for example, where certain stations
are attempiing to operate under near radio-silence.

The naive protocol outlined above must obviously be modified to deal
with the circumstance where a host fails to receive a message. Accordingly,
negative acknowledgments are introduced so that hosts can indicate such
failures. Henceforth, a (positive) acknowledgment will be referred to as an
ack, while a negative acknowledgment is called a nack. (Machines will be
referred to as hosts, although the earlier section on TRANS refers to them
as nodes.) A host should append a nack to its next message if it receives
a message in a corrupted state (but is able to recover the identity of the
message), or learns—through the presence of acks on other messages—of
the existence of a message that it has not received. Such nacks provoke
the sender of the message concerned to retransmit it. A host that has a
pending nack can discard it if it sees another message carrying a nack for
the same message, since that prior nack will already be sufficient to provoke
the retransmission that is desired.

Although the incorporation of nacks into the protocol may seem a small
change, concerned solely with liveness, it turns out to greatly complicate
the “reception analysis” component of the protocol.

This problem can be seen in the example shown in Figure 6.1. In this

Z
nack / \ ack
/ 0\

Y X
ack \ / ack
\/

W

Figure 6.1: Difficulty Introduced by nacks

and subsequent similar figures, the named nodes (X, Y, Z etc.) represent
messages, and the arcs between them represent (some of the) acks and
nacks carried by the message at the bottom of the arc. The time dimension
runs down the page, so tne exawnple in Figure 6.1 indicates that messages
Y and X were sent sometime later than Z, and that Y nacked Z while

161

X acked it. Message W carried acks for both X and Y. The question is:
can we deduce whether or not the host that sent W saw message Z? The
answer is that it is very difficult to make such deductions in the presence
of nacks. Suppose the sender of W did see Z, and that it then saw X.
Since X carries an ack for Z, the sender of W will discard its own ack for
Z and acknowledge it implicitly in its ack for X. On the other hand, if we
assume that the se; der of W did not see Z, then exactly the same argument
applies mutatis mutandis with respect to Y and nacks. It might seem that
this ambiguity could be resolved if the sender of W were not so hasty to
discard its own pending ack for Z: then it could ezplicstly ack Z once it
saw the nack carried by Y. A little thought will show that this stratagem
cannot be relied upon. Consider the situation picturad in Figure 6.2. Here,

Figure 6.2: Further Difficulty Introduced by nacks

the host that sent W (w’.ich is assumed to have seen Z) might have been
prepared to directly ack Z had it known of the ambiguity introduced by
the nack carried by X, but it may not itself have seen X (the nack carried
by Y will have caused it to discard its own nack for X) and may therefore
be unaware of the nack which X carries for Z.

These examples show that a nack introduces uncertainty as to whether
any messages further along an ack chain have been seen or not. Thus there
is little point in retaining acks for messages that others have nacked—and
so the TRANS protocol discards both pending nacks and acks whenever a

162

nack is seen for the message concerned.

The previous discussion should have motivated the essential components
of the TRANS protocol, whose description from Part III of this report is
repeated below:

Each message is broadcast with a header in which there is a mes-
sage identifier containing the source of the message and a message
sequence number. A version number is also included in the identifier
to distinguish retransmissions. Sequence numbers can recycle over
some suitably long interval. Each message also carries with it ac-
knowledgments (positive and negative) to previous messages, and an
error detecting code. Other fields in the header, such as a message
destination list (for multicast), may be present but do not play any
part in this protocol.

Each node maintains a list of positive and negative acknowledgment
message identifiers. Whenever it broadcasts a message, it appends
this list of acknowledgments to the message, and then clears its list.

When a node receives a message it has not previously received in
an uncorrupted state, it adds the identifier as an acknowledgment to
its list. If the message is uncorrupted, the identifier is added as a
positive acknowledgment; if the message is corrupted, but with an
uncorrupted header, the identifier is added as a negative acknowledg-
ment.

Vvhen a node sees a positive acknowledgment appended to a message
that it receives, it deletes from its own list any positive acknowledg-
ment for that message. When it sees a negative acknowledgment for a
message, it deletes from its list any acknowledgment for that message,
whether positive or negative. '

When a node sees a positive acknowledgment for a message that it
has not received, it adds a negative acknowledgment to its list.

If a node has no messages pending, it may be necessary to construct
a null message to carry acknowledgment messages. The acceptable
delay before transmitting a null message may differ for positive and
negative acknowledgments.

163

e When a node receives a negaiive acknowledgment for one of its mes-
sages, or has received no positive acknowledgment within some time
interval, it retransmits the message. The retransmission must be
tdentical to the prior transmission, and thus must carry with it ex-
actly the same acknowledgments, positive and negative, carried by
the prior transmission of that message.

That part of the TRANS protocol described above is called transmission
control. Transmission control is the set of rules used by a host to decide
which acknowledgments are required and when it should reissue messages.
One of the main functions of transmission control is to ensure liveness: a
message must be retransmitted whenever there is doubt that it has been
received by all hosts. The task of determining whether all hosts have def-
initely received a particular message (so that the sending host may take
the irrevocable step of discarding the message) is the responsibility of a
companion algorithm known as reception analysis. Although they appear
to be separate, the transmission control and reception analysis algorithms
must cooperate in order for the protocol to be implemented correctly and
efficiently. Transmission control must cause all messages to be reliably de-
livered to all hosts. It must also provide enough information in the message
traffic to permit reception analysis to be performed correctly. In particular,
messages cannot be removed before they have been received everywhere and
they should be removed as soon as they have been received everywhere. It
would be advantageous if the information in the message traffic also allowed
reception analysis to be performed very efficiently.

The reception analysis algorithm for TRANS is based on Theorem 2
of Part 5. The statement of that Theorem given in the zarlier section is
not completely accurate (and inconsistent with the picture presented there).
The host doing the analysis must follow paths through the acknowledgment
graph starting from a set of nodes representing messages sent by the host
being checked. It cannot just check paths resulting from the last message
received. The revised wording of Theorem 2 reads as follows:

Theorem 2

If there exists a path of positive acknowledgm~nts or retrans-
missions to message Z from messages sent by host T and no

164

negative acknowledgment has been issued for any message on
the path by T or by any message acknowledged directly or in-
directly by T then T has received message Z correctly. O

In order to construct a message reception algorithm based on Theorem 2,
it is necessary that each host should construct an “acknowledgment graph”
whose nodes are messages and whose arcs indicate acks, nacks, or retrans-
missions. A later section of this specification describes how the graph is
constructed. The algorithm for analyzing the acknowledgment graph based
on Theorem 2 is the following:

e Assume host S has sent message Z and requires confirmation that T
received it.

¢ S must have observed message M,, broadcast by T prior to the broad-
cast of Z.

e M,, ..., M, are messages broadcast consecutively by T after M,.

e Nocde S constructs the acknowledgment graph starting with M,, and
adding M3 ... incrementally.

o The leaves of the graph must be messages prior to Z.

¢ If any part of the graph cannot be constructed then it is undetermined
whether the message Z has been received by the host T and the
algorithm fails.

e If any one version of the graph satisfies Theorem 2, the message has
been received.

The specifications of the transmission control and reception analysis
algorithms of the TRANS protocol given above were found to require con-
siderable development and interpretation during the implementation effort.
The impleme. tation was finally based on the descriptions given above and
a set of assumptions governing their interpretation. During the implemen-
tation, several additional problems with the specification were uncovered.
Solutions for some of these problems were incorporated in the program,
but others were discovered so recently that there was insufficient time to
implement them.

165

6.2.1 Clarifications and Interpretations

The following clarifications and interpretations were developed during our
prototype implementation and apply to the TRANS protocol as described
above.

e There are two timeout values in the transmission control section of
the protocol. If a host transmits a message and does not receive an
acknowledgment of any kind within a certain time period then it will
retransmit the message. This timeout will be called the message time-
out. If a host creates a pending acknowledgment and does not have a
genuine outgoing message to attach it to within a certain time period,
then it will create a null message to carry the acknowledgments. This
timeout will be called the no-message timeout.

e Unless stated otherwise, when the term “a message” is used in the
transmission control section, it means any version of a message. A
message identifier, however, is a particular [host name, sequence num-
ber, version number] triple. The distinction is between a conceptual
message that is unchanged regardless of the version being considered
and a particular transmission of a message. In the remainder of this
report, the term transmission will be used to refer to a particular
version of a message.

e Related to the previous item, if a host receives one version of a mes-
sage uncorrupted then any other versions of that message that are
received uncorrupted are not a new message.

e Acks and nacks must refer to specific versions (i.e., transmissions) of
messages. To see this, suppose it were not so, and suppose that a host
transmits a message X and later retransmits it in response tc a nack.
It is the sender’s responsibility to keep retransmitting the message
until the host that sent the nack receives it correctly. Accordingly, it
must restart its message timeout timer and keep retransmitting until
it receives an acknowledgment of some kind.. Now suppose a belated
ack arrives for the original transmission. In the absence of version
numbers, the sender might assume that this ack is acknowledging its
retransmission and it will therefore turn off its message timer and

166

stop further retransmissions—even though those who needed them
have not acknowledged and may not have received them.

Related to the item above: a host will not retransmit a message if
the version number of the nack it receives is less than the version
number of the most recent transmission of the message. This “old”
nack can occur for a variety of reasons such as if the host missed the
first transmission of the message that carried the nack or if the host
that sent the nack missed a retransmission of the original message.
The purpose of the nack was to cause a retransmission of the original
message. This has already occurred and the normal operation of the
protocol will cause the retransmission to be delivered to the host
that issued the nack or another nack to be sent causing yet another
retransmission. Responding to an “old” nack, however, can cause the
unnecessary replay of a sequence of messages.

A host will ignore a transmission of a message if it has previously seen
that message uncorrupted. This implies that it will not examine the
acknowled zments carried by the retransmission and it is fer this rea-
son that retransmissions must carry exactly the same acks and nacks
as their originals. Another comment in the original specification of
TRANS: “It is permissible, but not essential, for a node to broadcast
a positive acknowledgment for a message that it had already received
uncorrupted”, does not appear meaningful because the transmission
control rules do not allow a host to create two acks for the same
message.

A host is only required to ack a message once (directly or indirectly),
not each version.

The rule “when a node sees a positive acknowledgment for a message
that it has not received, it adds a negative acknowledgment to its
list” is interpreted to mean that 1) a host only needs to send one
nack for a message that it has not received, not one for each version
of the message, and 2) if a host has a pending nack for a message,
then it does not need to add another if ". sees an ack for a different
version of the message. These assumptions follow from the previous
assumptions about messages and transmissions.

167

The statements “Node S constructs the acknowledgment graph start-
ing with M, and adding M3 ... incrementally” and “If any one ver-
sion of the graph satisfies Theorem 2, the message has been received”
imply that the following procedure is used for reception analysis. A
group of nodes are added to the acknowledgment graph as a result of
the first message transmitted by T after Z was transmitted, in this
case M,, and the transmissions that it acknowledges (directly or in-
directly). The reception analysis algorithm is then applied. If it fails,
then nodes are added as a result of the next message transmitted by
T and the algorithm is applied again. This continues until the algo-
rithm succeeds, the host runs out of messages, or part of the graph
cannot be constructed.

Messages from a host that follow a specific message M from that
host do not afiect the conclusions that can be drawn by analyzing
the messages up to M from that host and the messages that they
acknowledge. This is implied by the statement “if any one version of
the graph satisfies Theorem 2, then the message has been received.”

The statement “If any part of the graph cannot be constructed then
the algorithm fails” implies that analysis must stop if an acknowl-
edgment is encountered for an unknown message (a message that the
host performing the analysis has not seen) or if there is a gap in the
sequence of messages from “he host being checked.

The sequence numbers issued by a host follow a regular pattern and
are not just unique identifiers. Otherwise, a host would not be able to
detect that there was a gap in the messages that it has received from
another host and reception analysis would not be usable as described.
This is based on the need to detect gaps mentioned in the previous
assumption.

The statement “S must have observed message M,, broadcast by T
prior to the broadcast of Z” refers to a message actually seen by S
prior to broadcasting Z and not to the message that was actually last
broadcast by T before S broadcast Z. S may not know the identity
of the message that was actually last because it may have missed it
due to an error. Similarly, M, is not necessarily the first message

168

broadcast by T after S broadcast Z (it could have preceded Z). S
knowing the identities of the messages from T whose broadcasts pre-
ceded and followed the broadcast of Z would improve the efficiency
of the analysis but is not necessary.

6.2.2 Comments

This section contains comments about the TRANS protocol. Its purpose is
to illuminate some of the properties of the protocol.

During reception analysis, a nack carried by a message acts as a barrier.
No information along the path indicated by the nack could have been known
to the host that issued the nack unless it can be reached by a different path.
If the host knew about this other information, then the message carrying
the nack would have also carried acks for these other transmissions.

When a nack is encountered during reception analysis, the host doing
the analysis must assume that the host being checked did not know any
information along the path indicated by the nack, even if this is not true.
The host doing the analysis just cannot tell from the available information.
The difference from the previous paragraph is that the message carrying
the nack may not have been transmitted by the host being checked. It may
just have been encountered along an acknowledgment path.

Nacks turn out to be self-healing. A nack will cause a new chain of acks
to be started, which will eventually detour around the site of the error. So
even if information indicating a valid reception is discarded when a host
tssues a nack, it will eventually be recovered due to the actions initiated
by the nack.

When a host removes a pending ack for a message M because of a nack
for M carried by another message, it agrees to wait and indirectly ack a
future versioi. of M. It will not create another pending ack for a version of M
because it has already received an uncorrupted version of M. Removing the
ack saves transmitting an acknowledgment, but it will probably increase
reception latency.

With respect to transmission control, a nack for version v of a message
indicates to the host that originated the message that a subset of the other
hosts have not seen any version of the message up to v ard that a new
transmission is necessary. In effect, a new transmission due to a nack
starts a new round of acknowledgment for the message with a smaller set

169

of receivers. Hosts that have seen earlier versions of the message will ignore
the new transmission, while the remaining hosts will try to ack it (directly
or indirectly). (Note that, according to the previous paragraph, hosts that
have seen the message before may still have to ack it indirectly.)

A host cannot remove a message until it has been received by all other
hosts. Initially, it might appear that a message can be unremovable for
an indeterminant amount of time because some host might not be broad-
casting messages or might be sending messages without acknowledgments.
In practice, neither of these conditions can occur for an appreciable length
of time. If they do persist, then there is a serious problem with the host
or the network that should be handled by other mechanisms. Note that
determining that a message has been received by a particular host can take
an indeterminant amount of time, but it would be for Jifferent reasons such
as an unforturate sequence of errors that cause key messages to be missed.

Every host must broadcast a message in a bounded amount of time un-
less there is a serious problem in the network. This time period depends on
the values of the protocol timeouts and the number of errors that will be
tolerated until a network problem is considered to exist. Consider a host
H. Assume that H was the last host to broadcast a message. If no acknowl-
edgment for the message is received within a message timeout period, then
H will retransmit the message. If a nack is received then H will automat-
ically retransmit the message. If an ack is received then H will create a
pending ack for the new message. If a client message is not received within
a no-message timeout period, then H will create a null message to carry
the pending ack. Now assume that H was not the last host to broadcast a
message. If H saw the message then it has a pending acknowledgment for
it. If a client message is not received within a no-message timeout period,
then H will create a null message to carry the pending acknowledgment.
If H did not see the message then the original host will retransmit the
message after a message timeout period because no host responded with
an acknowledgment or another host will send a message acknowledging the
first message. This new message will now be the last message and H will
respond to it in the same way. If H does not respond to some number of
messages in a row then there is a serious problem in the system.

Once a host has a pending acknowledgment it cannot simply remove that
acknowledgment because of information seen in a new message. Instead,
it must replace that acknowledgment with a different one depending on

170

the contents of the new message. Thus, once a host creates a pending
acknowledgment, it must send a message and that message must carry an
acknowledgment. If no client message arrives it must create a null message
when the no-message timer goes off.

The TRANS protocol causes a never-ending sequence of messages to
occur. Even if no client messages are being received anywhere, the protocol
will continue sending null messages or retransmissions to respond to the last
message sent. Usually, there will be a lot of activity in the system because
many hosts will be broadcasting client messages. This helps overcome the
effect of a few errors.

Each message sent by a host must in general carry an acknowledgment
for at least one other message. This acknowledgment will then indirectly
acknowledge a series of other messages. The main reason that there must
be an acknowledgment is that once a host has a pending acknowledgment
it must send it or replace it with another acknowledgment, as discussed
above.

it is possible for a message to be sent without any acknowledgments.
This can occur if a host sends two messages before another host has sent
any. Since the first message carried all of the host’s pending acknowledg-
ments, the second will not carry any. In some sense, the second message
is implicitly acknowledging the first message. Another way this can occur
is if a host issues a message after missing, due to errors, all messages that
were sent from the time it sent its previous message. Once again, the first
message will carry all of the pending acknowledgments and the second will
not carry any. Neither of these situations can occur for long unless the
network is having serious problems. (The first message transmitted also
does not carry any acknowledgments.)

6.2.3 Problems

Several problems with the TRANS specification were uncovered during the
implementation. This section identifies problems that were addressed in
the implementation.

¢ The specification indicates that a message will be retransmitted if no

acknowledgment is received for that message before a message time-
out occurs. Presumably additional retransmissions will be made if

171

additional message time out periods elapse without an acknowledg-
ment being received. The protocol does not specify what happens if
the timeout is satisfied by receipt of an acknowledgment, but then
a retransmission occurs because of a nack. Should a new timeout
period be started or is it unnecessary? It turns out that a new time-
out period must be started whenever a new version of a message is
transmitted.

This can be seen from the following counter-example. Let there be
three hosts A, B, and C. A sends a message W that is seen by B and
missed by C. B sends a message X that carries an ack for W. A and
C see X. A turns off its message timer for W. C sends a message Y
that carries an ack for X and a nack for W. A retransmits W as W',
B ignores W' and C misses it. A now sends Z which carries an ack
for Y. C sees Z and turns off its message timer for Y. At this point, C
has not seen W and W can no longer be retransmitted. It will not be
automatically sent because its message timer is off. The one message
that carries a nack for W, Y, will also no longer be retransmitted.
Y’s message timer is also off, and all other hosts saw Y so a nack will
never be issued for it.

According to the previous item, there is a sequence of timeout periods
for a message, some started because no acknowledgments have been
received and some started because of nacks. As was mentioned in the
comment section above, each retransmission issued because of a nack
starts a new round of acknowledgments for a message. A problem
will occur if a message timer is turned off because of an ack for an
earlier round. That is, if the last round was started because of a nack
for version v of a message then the message timer cannot be turned
off for an ack for a version w of the message where w < v. An “old”
ack for some message M can occur if the host that issued M missed
previous transmissions of the message carrying the ack and is now
seeing it for the first time.

The problem that occurs is that the message may not have been seen
by some hosts but will not be retransmitted because of the message
timer or a nack. This can be seen in the following scenario. Let there
be three hosts A, B, and C. A sends a message W that is seen by B

172

and missed by C. B sends a message X that carries an ack for W.
X is seen by C and missed by A. C sends a message Y that carries
an ack for X and a nack for W. Y is seen by A and missed by B. A
retransmits W as W', B ignores W' and C misses it. Now the message
timer for X goes off and B retransmits it as B’. B’ is seen by A and
ignored by C. A now sees the ack for W and turns off W’s message
timer. At this point, C has not seen any version of W and W can no
longer be retransmitted. It will not be automatically sent because its
message timer is off. In addition, the only nack for W is for an earlier
version and will he ignored.

The specification given earlier states: “Each message carries with it,
one or more acknowledgments to previous messages.” This is not
true as was discussed in the comments section above. Later, in the
reception analysis section, it states that “The leaves of the graph must
be messages prior to Z.” This is aiso not true for the same reasons.

Theorem 2 contains the clause “and no negative acknowledgment has
been issued for any message on the path by T or by any message ac-
knowledged directly or indirectly by T.” Initially, it was assumed that
the phrase “or by any message acknowledged directly or indirectly by
T” meant that there would be a chain of positive acknowledgments
leading from a message issued by T to a message that contained a
negative acknowledgment. It turns out that this is insufficient and
that some negative acknowledgments can be missed, allowing mes-
sage reception to be falsely detected. The phrase should read “or by
any message acknowledged directly or indirectly by T with a chain
of positive or negative acknowledgments starting with a positive ac-
knowledgment.”

This problem can be seen in the example shown in Figure 6.3. Assume
the messages shown in the Figure were each sent by a different Fost
and Let H(z) denote the host that sent message z. Given the infor-
mation in the Figure, can H(Z) deduce that H(U) saw Z? (Assume
that H(X) did not see Y and that H(Y) did not see X when X and
Y were transmitted.) According to the discussion above, H(Z) would
not be able to conclude that H(U) had seen Z. Although there is
a positive acknowledgment chain U—-W—-X—Z from U to Z, it is

173

YA
nack / \ ack

/ 0\

Y X
nack \ / ack
\/

W
| ack

|
U

Figure 6.3: Reception Analysis must start from an ack

negated by the acknowledgment chain U-W AY /A7 (where — and
#» indicate acks and nacks, respectively.) As shown in the following
discussion, H(Z) can plausibly deduce both that H(U) has seen and
not seen Z. [t must assume the worst and assume tha¢ H(U) has not
received Z.

Case 1. Assume that H(U) has seen Z.
Assume that H(U) first sees Y. It will replace its ack for Z with
an ack for Y. Assume that H(U) then sees X. It will then create
an ack for X. When H(U) sees W, it will replace the acks for X
and Y with an ack for W. U can then be issued with only an
ack for W.

Case 2. Assume that H(U) has not seen Z.
Assume that H(U) first sees X. It will then create an ack for X,
and a nack for Z. Assume that H(U) then sees Y. It will then
replace its nack for Z with an ack for Y. When H({U) sees W,
it will replace the acks for X and Y with an ack for W. U can
then be issued with only an ack for W.

¢ Theorem 2 gives contradictory information about the effect of a nack
on a path of positive ackncwledgments or retransmissions. In the ex-
ample shown in Figure 6.4, the positive acknowledgment path W - X — 2

174

Z
nack / \ ack
/ N\

Y X
ack \ / ack
\ /

W

Figure 6.4: Positive Acknowledgment Path Invalidated by nack

should be invalidated by the acknowledgment path W—Y /4 Z. How-
ever, in the two examples shown in Figure 6.5, the positive acknowl-
edgment paths W—2'~+Z and U—~Z'~+Z (where ~+ indicates re-
transmission) should not be invalidated by the acknowledgment paths
W —Y /7. In the second (rightmost) example of Figure 6.5 W and X
are issued by the same host, with W preceding X. This problem could

setransmit retransmit
Z-~-~~=-= YA Z2----=--- Z’
nack / \ ack | nack | |
/ 0\ ! ! I

Y X / Y | ack

ack \ / ack / ack ack | |
\/ / [[
W--==~- W U

Figure 6.5: Positive Acknowledgment Paths not Invalidated by nack

be solved by carefully rewording the theorem, but it is not clear why
the path —ust return to the initial version of Z. Another approach is
to drop retransmission arcs from the graph and reword the theorem
to read “If there exists a path of positive acknowledgments to message
Z or one of its retransmissions from messages sent by node T ... has

175

received message Z correctly.” A retransmission of a message carries
exactly the same acknowledgments as the original message so it can
be used directly to continue analysis of the graph.

6.3 Implementation

The protocol was implemented on a network of Sun workstations connected
by an Ethernet. Two programs were written, one for the protocol and one
for a driver used to exercise the protocol. The programs were written in C
and run under the UNIX operating system. Each workstation contains a
protocol and a driver process. The driver periodically sends a message to
its protocol process, which then broadcasts the message to other protocol
processes. The protocol program consists of two main sections: one for
transmission control and the other for reception analysis. Initial perfor-
mance measurements were made with two host sets and four error levels.

The program is written modularly so that alternate protocol ruies can
be examined. In particular, the reception analysis section is completely
separate from the rest of the program and can be replaced by more efficient
versions in the future. There are a variety of program options that can be
set when the protocol programs are started. This permits a wide variety of
configurations to be set up for experimentation.

Reception analysis coula not be implemented directly from the speci-
fication given in the original description of TRANS. As explained earlier,
that description mixes existence-proof arguments with implementation di-
rections, aud does not describe an efficient algorithm for building, main-
taining, and examining the acknowledgment graph. In addition, certain
implementation details were missing—such as an indication of when graph
information can be discarded. It was decided to maintain an up-to-date
graph and to add information as transmissions arrived. When information
was added to the grap.., the appropriate analysis would be performed to
determine whether new receptions could be confirmed. Information would
be remcved from the graph as soon as it was no longer needed. Specific
version numbers must be indicated for information in the acknowledgment

graph.

176

6.3.1 Top-Level Design

A prototype version of the TRANS protocol was implemented to run on a
network of Sun workstations connected by an Ethernet. The workstations
were running the Sun 3.4 version of the UNIX operating system. Although
TRANS is a link-level protocol, it was implemented at the presentation
layer. This greatly simplified the implementation while still allowing a
realistic and thorough evaluation.

The protocol was written in the C programming language and was run
as a single process. A second program called the driver was also written in
C and was also run as a single process. Each workstation contained a single
protocol process and a single driver process. A driver represented the set
of clients on a workstation using TRANS, and sent broadcast messages to
the protocol process on its workstation. The drivers sent messages with
a Poisson inter-arrival rate. When a protocol process received a message
from its driver, it broadcast the message to the other protocol processes.

Communication between the processes was accomplished with the User
Datagram Protocol (UDP). Each protocol process was connected to its
driver through a port bound to the host’s address and the set of proto-
col processes were connacted through a port bound to the broadcast ad-
dress. Messages were broadcast among the protocol processes with the
UDP broadcast mechanism. No errors were simulated for communication
between a driver and its protocol process. An error rate could be individ-
ually set for each protocol process, however, to control message reception
from other protocol processes.

6.3.2 Implementation Decisions

The following decisions were made when the protocol was implemented:

¢ It would not be possible for a host to receive a message with a cor-
rupted body and an uncorrupted header. A message would either be
fully received or not received at all.

o The length of the no-message timeout would be the same for pending
acks and nacks.

e A list of old nacks would not be maintained. An old nack refers to
a transmiss. 1 for which the current host previcusly issued a nack.

177

As a resuit, a host can issue multiple (redundant) nacks for the same
transmission. (A host must issue a new nack for a new version of a
message that it has not seen to indicate that it missed that retrans-
missicn too.)

6.3.3 Data Structures
Transmission Control

The data structures for transmission control are straightforward. A list
for pending acks and a list for pending nacks must be maintained until a
message is sent and these lists can be cleared. A list of pending messages
must also be maintained. These are messages that have been sent by the
host but have not yet been verified as received by all other hosts. One
additional list is maintained of old acks. This list represents messages that
have been seen by the host in an uncorrupted form. Any message the host
has seen, whether or not the host actually issued an ack for it, is represented
in this list (except those still in the pending ack list).

The oid-ack list is actually represented in a condensed form. There is a
separate number/linked-list pair for each host. The number is the largest
message sequence number from a host that the current host has seen such
that all preceding messages from that host have been seen. The linked
list, which is mainriained in ascending order, keeps track of more recent
messages. The {irst node in the linked list represents a missing message
and the last node in the linked list represents the most recent message seen
from that host. As gaps are filled in, the linked list is condensed and the
latest consecutive sequence number is raised. A more sophisticated data
structure will be needed if sequence numbers can be reused.

Acknowledgment Graph

Several data structures are used to represent the acknowledgment graph.
The main data structure is the node list. It represent- aph of all
known messages that may be needed to help detect .ception of a
host’s messages. Another structure, called the host list, keeps track of the
messages that have been seen from each host. It is not required, but it
simplifies examination of the node list.

178

The node list maintains an up-to-date representation of the pertinent
message traffic. Each node represents a single message. When a new mes-
sage is sent or a new, reievant message arrives, a new node is added to the
list. A special node, called an unknown node, must also be added when a
message that has not been seen before is detected as an acknowledgment
in another message. Unknown nodes are filled in when their corresponding
messages are seen. Nodes are removed from the node list when they are
no longer needed in the message graph. Nodes that represent a host’s own
messages must also be kept until that message has been verified as received
by all other hosts.

Each node has two linked lists, one for the acks carried by the message
and one for the nacks. Acknowledgments are only added to one of these
lists if they are needed in the graph. An acknowledgment is not needed if it
refers to a message that has already been seen but is no longer represented
by a node in the graph. These linked lists contain full message identifiers,
not pointers to nodes.

The host list is similar to the old-ack list used for transmission control.
There is a separate number/linked-list pair for each host. The number is the
largest message sequence number from a host that the current host has seen
such that all preceding messages from that host have been seen and removed
from the node list. The linked list, which is maintained in ascending order,
keeps track of more recent messages. A more recent message can be in one
of three states:

gap: not received or referred to by an acknowledgment.
gone: received and nc longer represented in the node list.

node: received or referred to by an acknowledgment and still represented
in the node list (including “unknown” nodes).

The first message in the linked list is either “gap” or “node”, and the last
message in the list is either “gone” or “node”. As messages at the beginning
of the list become “gone”, the list is condensed and the latest consecutive
sequence number is raised. A more sophisticated data structure will be
needed if sequence numbers can be reused. Once again, the linked lists
contain full message identifiers, not pointers to nodes.

179

Reception Analysis

Message reception analysis is performed with the data structures that form
the acknowledgment graph. A matrix is used to keep track of which mes-
sages have been received by which hosts. The columns of the .natrix are
the Losts in the system and the rows are the pending messages.

6.3.4 Algorithms
Transmission Control

The algorithms for transmission control follow directly from the rules. They
control what happens when a message arrives from a client or another host
or a timer goes off. The important transmission control algorithms are:

New Client Message Arrives
increment sequence number
add pending acknowledgments to message
broadcast message
start message timer
turn off no-message timer (if necessary)
make a node for the message
add the node to the graph

New Broadcast Message Arrives
create a pending ack for the message
start no-message timer (if necessary)
process message ack list
process message nack list
make a node for the message
if node is needed

add node to graph

Process Message Ack List
if ack for my message
if for latest round for message
turn off message timer
else if acked message is unknown
create nack for unknown message

180

start no-message timer (if necessary)
else if pending ack exists for message

remove pending ack

cancel no-message timer (if necessary)

Process Message Nack List
if nack for my message
if for most recent version of message
start new round for message
rebroadcast message
restart message timer
else if pending nack exists for message
remove pending nack
cancel no-message timer (if necessary)
else if pending ack exists for message
remove pending ack
cancel no-message timer (if necessary)

Message Timer Goes Off
rebroadcast message
restart message timer

No-message Timer Goes Off
increment sequence number
create null message
add pending acknowledgments to message
broadcast message
start message timer
make a node for the message
add the node to the graph

Acknowledgment Graph

The acknowledgraent graph algorithms are use to add nodes to and remove
nodes from the graph. When a node is made for a message, acknowledg-
ments are added only if they refer to other graph nodes. An important
task of the algorithms is creating and filling in unknown nodes. When an

181

unknown node is filled in, all hosts are checked to see if any new mes-
sage receptions can now be detected—the unknown node(s) may have been
blocking many paths. When a new message is added, only the host that
sent that message must be checked. When it is determined that a message
has been received by all other hosts, an attempt is made to remove the node
for that message from the graph. Removal of a node can cause a sequence
of node removals to occur. The important algorithms are:

Make a Node for a Message
for each (n)ack in the message (n)ack list

if (n)acked message is unknown
create unknown node for (n)acked message
add unknown node to graph
add reference for unknown node in host list
add (n)ack to node (n)ack list

2lse if (n)acked message has a node in the graph
add (n)ack to node (n)ack list

Add a Node to the Graph

if node was unknown node in graph
fill in all copies of unknown node
if new node is for a new version of message

add node to node list

check all hosts for new reception

else
add node to node list
add reference for node in host list
check host for new reception

Remove Nodes from the Graph
repeat

look for a node that
1. has empty ack and nack lists, and
2. if it is my message, has been received by all hosts

if found
remove node from node list
remove all references to node from other node’s ack and nack lists
mark as “gone” in host list

182

until no such node is found

Reception Analysis

Detecting whether another host has seen any of a specific host’s messages is
accomplished by examining the acknowledgment graph in a specific order.
The search starts with the first message from the other host that has not
been marked as “gone.” It then continues sequentially through the remain-
ing messages known to have been sent by that host. If a gap is found in the
node’s message sequence or an unknown node is found in the graph, then
the search is aborted. This corresponds to detecting that a portion of the
graph cannot be constructed in the reception analysis specification. Any
receptions that have been detected up until the search is aborted are valid.

The graph is searched in two phases. First, all paths leading from the
other host’s current message are examined for unknown nodes and baa
nodes. Bad nodes are nodes that cannot be used in a positive acknowledg-
ment path because they are nacked by some acknowledgment path. The
list of bad nodes continues to grow as the analysis proceeds through the
other host’s mnessages. If an unknown node is found the search is aborted.
The second phase examines all positive acknowledgment path leading from
the other host’s current message. No unknown nodes should be found now
because they would have been detected in the first phase. A positive ac-
knowledgment path is abandoned if it leads to a bad node. When one of
the messages from the host doing the analysis is found, it is marked as
received.

The important algorithms for reception analysis are:

Check All Hosts
for all hosts (except mine)
check host

Check Host
start with first non-“gone” message for host being checked
while not “gap” message
if node is unknown
break
if any nack’s in node’s nack list are unknown
break

183

add nacks in node’s nack list to bad list
find bad nodes starting from node’s ack list
if unknown node found while searching for bad nodes
break
search for received messages from node’s ack list
move to next message for host being checked
if any of my messages were received by all hosts
remove nodes

Find Bad Nodes
for each acknowledgment on list being checked

if unknown node
break

if one of my messages
ignore (this earlier message has already been checked)

else find bad nodes starting from node’s ack list

if unknown node found while searching for bad nodes
break

find bad nodes starting from node's nack list

if unknown node found while searching for bad nodes
break

Search for Received Messages
for each ack on node’s ack list

if in bad list
ignore ack

else if one of my messages
mark as received
if received by all other hosts

set received-by-all flag
else search for received messages from node’s ack list

6.4 Performance Measurements
Several preliminary performance measurements were taken to obtain a gen-

eral tnderstanding of the behavior of the TRANS protocol. Our main in-
terests were determining how much storage would be required for the ac-

184

knowledgment graph and for reception analysis, how long it would take for
a host to detect that one of its messages had been received by all other
hosts, how long the pending message queue would grow, and how many
extra messages would be required for reliable delivery. We also wanted to
see how these values would change as the error rate or the number of hosts
in the network grew.

The system can be configured by setting the number of hosts in the
network, and for each host 1) the message reception error rate, 2) the
message timeout value, 3) the no-message timeout value, and 4) the average
client message inter-arrival rate. The number of hosts was set at four and
eight. The error rate was the same for all hosts during a trial. With four
hosts, it was set at 0%, 1%, 5%, and 10%. With eight hosts, it was set at
0% and 1%. Relatively low error rates were used because the protocol is
really intended for networks with very reliable basic communication media
such as an Ethernet. The no-message timeout value was set at 1.5 times the
average inter-arrival rate. This ensured that there would be times when the
no-message timer would go off. The message timeout value was set at twice
the no-message timeout value. The message timeout value should probably
be set to be greater than the no-message timeout value so that hosts have
a chance to return acks before the original message is rebroadcast. The
timeout values and the inter-arrival rate were set the same for all hosts, at
18, 36, and 12 seconds respectively.

The results from the trials are shown in Tables 6.1 and 6.2.

The performance figures obtained were reassuring and show that TRANS
does perform well. There were very few surprises, with most values rising as
the error rate grew or the number of hosts grew. The extra messages that
were sent were divided into those attributed to nacks, message timeouts,
and no-message timeouts. Pending messages were messages that had been
sent by a host but not yet detected as received by all other hosts. Latency
indicates the time between when a message is sent and when it is detected as
received by all other hosts. “Latency to remove” is the time between when
a message is sent and when its related information is actually discarded.
This would be expected to be longer that the simple latency time because
graph information sometimes needs to be kept in order to resolve paths to
other nodes.

The percentage of extra messages grew as the error rate increased and
the number of hosts increased. It was always very low however and com-

185

Number of hosts = 4 error rates
0% 1% 5% ! 10%
of client messages | 308 | 308 | 308, 307
of messagessent | 367 | 383 428 498
of extra messages sent 59 75 120 191
% extra messages 19 24 39 62
extra messages due to:
nack 0 11 50 101
message timeout 0 0 5 22
no-message timeout 59 64 65 66
max. pending messages 8 8 11 17
ave. pending messages | 1.25| 1.40|{ 2.02{ 3.20
max. nodes in graph 12 33 44 83
ave. nodes in graph | 2.46 | 3.00 | 5.56 | 11.17
latency times in seconds:
max. latency 19 89 102 172
ave. latency | 12.29 | 13.36 | 18.00 | 26.54
max. latency to remove 19 89 102 172
ave. latency to remove | 12... | 13.56 | 19.61 | 30.62

Table 6.1: Performance Measurements with 4 Hosts

186

Numbc of hosts = 8 | error rates

0%] 1%

of client messages | 303 | 303
of messages sent 378 403

of extra messages sent 75 100
% extra messages 25 33
extra messages due to:
nack] 26 |
message timeout 0 .5
no-message timeout 74 74
max. pending messages 8 8

ave. pending messages | 1.56 | 1.79
max. nodes in graph 23 64
ave. nodes in graph | 6.72 | 8.91
latency times in seconds:
max. latency 19 67

ave. latency | 14.94 | 16.43

max. latency to remove 19 67
ave. latency to remove | 14.96 | 17.12

Table 6.2: Performance Measurements with 8 Hosts

187

pares very favorably with point to point protocols that would require O(N)
messages for every message sent. Here, the number of extra messages was
O(1). Even more favorable results could have been obtained by increasing
the no-message timeout with respect to the inter-arrival rate so that client
messages could carry more pending acknowiedgments. This would possibly
cause more message timeouts, but they seem rare anyway.

The number of message timeouts increased as the error rate increased.

This implies that a few messages carrying key acknowledgments were dropped,

thereby forcing hosts to retransmit some messages.

The number of pending messages grew with the error rate but the aver-
age number was very small. Similarly, the average number of nodes required
in the acknowledgmeut graph was pleasingly small, even with an error rate
of 10%. It was encouraging to see that the amount of storage required was
not prohibitive.

The latency times were also very respectable and were close to the client
message inter-arrival time. The other latency ‘ime of interest is the time
between when a message is sent and when it is actually received by all other
hosts. This value was not measured but it is expected to be very small. It
interesting to note that the removal latency time is very close to the simple
latency time. This indicates that when a message is detected as received by
all hosts its related information is basically ready for removal. This helps
prevent large storage requirements.

6.5 Problems Discovered

Several problems and suspected problems were discovered in our imple-
mentation of the TRANS protocol. Further analysis may determine that
the suspected problems are actually handled correctly, but there was in-
sutficient time to find solutions to the known problems or examine the
cuspected problems. It is believed that the problems are not too deep and
can be solved.

TRANS seems to work well in ideal situations where there are fow errors,
all hosts see all messages in order, and actions occur instantaneously. The
problems with the protocol that were descrived earlier and in this section
arise from several sources:

188

¢ Because of errors, it is possible for a host to see messages out of order.
This means that acknowledgments for later versions of messages can
be seen before acknowledgments for earlier versions, later versions
of messages can be seen before acknowledgments for earlier versions,
later messages from a host can be seen before any version of an earlier
message from that host, and so on. The effect is that actions can be
required before a host knows the full message history.

e Version numbers are important in certain situations. It is not always
sufficient to consider which message is involved before taking an ac-
tion, sometimes the specific transmission must be considered. For
example, an ack for an earlier version of a message cannot turn off a
message timer for a later round.

¢ Reception analysis seems to require more information to work prop-
erly than transmission control. Both use information acquired from
acknowledgments in messages to perform their duties, but it seems
that the acknowledgments that are sufficient to perform transmission
control are insufficient to perform reception analysis. More study
is required to determine whether transmission control needs to be
redesigned to include more acknowledgments or reception analysis
needs to be redesigned to make better use of the information that is
currently available.

e Multiple acknowledgments can be received for the same message. This
can occur because errors keep one host from seeing another host’s
message or because the network is not ideal and two hosts can act
simultaneously.

The following problems have been identified.

o The way that message timers are handled is still not correct. The
current approach will not work if the following occurs. Assume that
the latest round for a message from host H starts with version 1 and
that H has also transmitted versions 2 and 3. Because of errors, H
has not seen message M which carries an ack for version 1 or message
N which carries a nack for version 2. M now arrives and H turns off
the message’s timer. Now N arrives and is ignored because it nacks

189

an old version of the message. The timer for M will not be turned on
again and some host has still not seen M. The rules for determining
when a message timer can be turned off, an ack or nack for an old
version of a message can be ignored, a message can be removed, and
a message should be rebroadcast must be reexamined.

e A host must form a pending nack for every version of a message that
it sees acked in another message. This contradicts the rule that says
that only one pending nack must be maintained for a message. In
fact, a pending nack must be inzintained for each transmission of a
message. This can be seen in the following situation (see Figure 6.6).
Assume that there are four hosts A, B, C, and D. A broadcasts mes-

yA Z’
ack |\ nack | ack
[\ |
[\ [

Y | X
ack \ | ___/ ack
\I/
W

Figure 6.6: Pending nack must be Maintained for each Retransmission

sage Z which is seen by B and missed by C and D. Before B can
respond, Z’s message timer goes off and A retransmits Z as 2’. Z' is
ignored by B, seen by C and missed by D. Now B transmits message
Y which carries an ack for Z. It is seen by A and D but missed by C.
D forms a pending nack for Z. C now transmits message X which car-
ries an ack for Z’. X is seen by everyone. D does not form a pending
nack for Z' because it already has one for Z. Now D issues message
W which carries a nack for Z. The current situation is shown in Fig-
ure 6.6. If A now performs reception analysis, it would incorrectly
determine that D has received Z’. This is an example of a situation

where reception analysis requires more information than transmission
control.

190

o A similar situation occurs when a host H has a pending nack for mes-
sage M and sees a message N which carries a nack for M. According
to the transmission control rules, H should replace its pending nack
with an ack for N. Actually, it should just add a pending ack for N
if its nack is for a different version of M than the nack carried by
N. Otherwise, reception analysis would incorrectly find a reception
path. This situation is shown in Figure 6.7. Assuming that the host

YA YA
ack | | nack
| |
Y X
ack \ / ack
\/

w

Figure 6.7: Retransmissions Require Individual nacks

that issued W did not see Z, message W should carry a nack for Z
and shouldn’t have removed it because of the nack for Z' carried by
message X.

e Similar questions arise about other rules for replacing acknowledg-
ments. For example, it appears likely that older acknowledgments for
a message should not replace newer acknowledgments for the message.

6.6 Conclusions and Recommendations for
Future Work

Our prototype implementation of the TRANS broadcast protocol was un-
dertaken very near the end of the contract with only very liruited time and
money available. Unfortunately, it did not prove possible tc implement the
protocol, solve its outstanding problems, and undertake an extensive per-
formance evaluation within the resources available. We chose to concen-

191

trate on completing the prototype implementation, identifying problems,
and obtaining preliminary performance measurements.

Our initial measurements on the performance of TRANS have been fa-
vorable. Its storage requirements, network bandwidth usage, and reception
detection latency were all found to be quite low. It appears that TRANS
would make an excellent foundation for a variety of protocols and dis-
tributed systems algorithms for broadcast environments.

Our prototype implementation of TRANS provides an excellent test-bed
environment for further work on this and related broadcast protocols. Some
recommendations for future work that could build on the our achievement
so far are presented peiow.

6.6.1 Corrections and Formal Specification

A great deal was learned about the behavior of TRANS during this inves-
tigation and several subtle problems were uncovered. We do not consider
the remaining problems to pose significant difficulties, but simply had in-
sufficient time to resolve them. Further investigation and development of
TRANS must begin with the correction of the problems already discovered.
Because of the subtlety of the issues involved, it is important for a corrected
version of TRANS to be specified formally and completely, and subject to
formal analysis and proof. There are at least three properties of TRANS
that should be specified and formally verified:

Liveness of Transmission Control: we need to be sure that a message
will be rebroadcast until all hosts have received it.

Safety of Reception Analysis: we need to be sure that when the re-
ception analysis algorithm declares that a particular host has seen a
particular message, then indeed it has seen that —e<sage.

Liveness of Reception Analysis: we need to be swr- .t if a host has
received a message, then eventually the reception analysis algorithm
will enable the sender of the message to discover that fact.

The proof given for Theorem 2 in Part III of this report is a proof of
the second of these properties. Although valid, it is deficient in that it
is conservative: it does not address the issues surrounding retransmissions

192

and multiple versions. A complete formal analysis of TRANS would be an
extremely challenging and worthwhile exercise, since the protocol is one of
the most subtle distributed algorithms we have encountered.

6.6.2 Additional Performance Measurements

In the time available, we were able to perform only very limited performance
measurements on our implementation of TRANS. Additional measurement
and performance evaluation is clearly necessary in order to determine the
practical utility and characteristics of TRANS. Among the performance
properties that should be investigated we suggest the following as particu-
larly relevant:

¢ Compare against point to point and existing protocols for brozdcast
communications.

e Vary more parameters, and vary paramcters over 2 wider range. Pa-
rameters include message timeout, no-messagc timeout, error rates,
number of hosts, and their communication patterns (e.g., equally ac-
tive hosts, one major sender with the rest mainly passive). Observe
the change in performance characteristics of the protocol as these
parameters change, and check that it is robust.

6.6.3 Performance Improvements

Although TRANS performed well in the izitial measurements, there are sev-
eral alternative versions that appear to offer better performance or different
trade-offs. There are many ways to measurc a protocol, such as the number
of packets sent, the total number of bits sent, the percentage of overhead
information sent, the amount of state that must be kept, the amount of
processing required, the time until all hosts have received a message, the
time until a sender realizes that all hosts have received one of its messages,
etc. There are tradeoffs between these properties that should be evaluated
for different environments and requirements.

TRANS is optimized to reduce network traffic, especially the number of
acknowledgments that need to be sent. This is accomplished by establishing
acknowledgment chains and reducing the number of explicit acknowledg-
ments to a L ‘nimum. The problem is that these acknowledgment chains

193

become very tenuous and contain very little redundant information. As the
error rate increases, it can be very difficult for a host to determine that other
hosts have received particular messages. This can cause so many retrans-
missions that the initial network traffic savings will be negated. TRANS
tends to tavor low network traffic over low latency, storage, and process-
ing times. As the error rate increases, there is the danger of significant
increases in storage, processing, and recepiion detection latency times. In
general, it appears that minimizing the number of acknowledgments is not
always the best choice.

Small changes in the protocol can address these problems. A receiver
always knows exactly what it has seen whereas it may be hard for a sender or
a third party to determine whether that receiver has received a particuiar
message. The TRANS reception analysis algorithm must err on the-side
of caution—it must fail to conclude that a message has been received if
there is any doubt that it has. We believe that considerable improvements
in some performance characteristics can be obtained by having receivers
send a few redundant acks and nacks in order to resolve ambiguities in
a sender’s reception analysis. For example, a direct ack can always be
believed, even if other acknowledgment paths to the same message contain
nacks. Thus a host that has received a message that it sees cthers nacking
can unambiguously affirm its reception of the message by appending its ack
directly to one of its own messages, rather than relying on transitivity.

6.6.4 Extensions to Functionality

Our implementation of TRANS provides for broadcast communication us-
ing a physically broadcast medinm. Extensions to the functionality of the
protocol could include multicast and the extension to bridged collections of
broadcast networks where only a subset of hosts sees each broadcast.

6.6.5 Use of Broadcast Communications in Distributed
Algorithms

Mutual exclusion, locking, synchronization, and distributed database up-
date algorithms provide good examples of applications in which broadcast
communication can provide substantial benefits.

194

Consider, for example, a tactical environment comprising multiple sen-
sors, databases, and actuators using broadcast communications. As each
sensor broadcasts its readings, those databases that hear the broadcast will
update their records. When an actuator subsequently broadcasts a request
for a value, any database that hears the request can broadcast a value in
reply. Other databases will see this request-response and can use it to up-
date their own records of the value concerned (if they missed the latesi
sensor broadcast), or can override it with a broadcast of their own if they
see that the first response produced an obsolete value. In this way, replica-
tion and consistency of the databases is achieved in a very robust manner,
with very little message overhead, and very little explicit coordination. Of
course, the metric that determines which values are more desirable need
not be based simply on time (where newer values are preferred), but could
consider accuracy or other properties of the data.

6.6.6 Concluding Remarks

T

As far as we are aware, TRANS is the first protocol that exploits the charac-
teristics of broadcast communications in order to achieve more than simple
broadcasts. TRANS uses the fact that all parties see the traffic of all others
to significantly reduce the number of explicit acknowledgments that are
required. The price paid is in the latency of confirmed message reception,
in the complexity of the reception analysis algorithm, and in the space
required to store information needed by that algorithm. Our prototype im-~
plementation indicates that these costs are not excessive and that protocols
of this kind should be viable in practice.

Our implementation revealed some problems with the protocol as it
stands at present. In the time available we were unable to correct all the
problems encountered and were also unable to collect all the performance
data required for a full evaluation. Given our prototype implementation,
it would require relatively little additional work to remedy the outstanding
problems and perform a substantial performance evaluation. We have iden-
tified simple modifications to the TRANS protocol that could significantly
improve some of its performance characteristics and we have identified sit-
uations (such as the management of replicated databases) in which the use
of broadcast communications could support new algorithms for the coor-
dination of distributed systems. Our prototype implementation of TRANS

195

provides an excellent test-bed environment for further work on this and
related broadcast protocols and algorithms.

196

Bibliography

1]

[2]

[s]

(6]

(7]

P. M. Merlin and B. Randell, “State Restoration in Distributed Sys-
tems,” JEEE Fault Tolerant Computing Symposium-8, 1978, pp. 129-
134.

B. Liskov et al., “Orphan Detection,” IEEE Fault Tolerant Computing
Symposium-17, 1987.

J. Chang and N. F. Maxemchuk, “Reliable Broadcast Protocols,” ACM
Transactions on Computer Systems, Vol. 2, No. 3, August 1984, pp.
251-273.

F. Schneider et al., “Reliable Broadcast Protocols,” Setence of Com-
puter Programming, Vol. 3, No. 2, March 1984.

P. V. Mockapetris, “Analysis of Reliable Multicast Algorithms for Lo-
cal Networks,” ACM Fighth Data Communications Sympossum, 1983,
Er. LU0 1R7,

R. Gueth et al., “Broadcasting Source Adressed Messages,” IEEE 5th
International Conference on Distributed Computer Systems, 1985, pp.
108-115.

F. Cristian, “High Availability of Computer Service despite Compo-
nent Failure,” Canadian Annual Information Processing Symposium,
1987.

197

8]

(9]

[10]

G. Ricart and A. K. Agrawala, “An Optimal Algorithm for Mutual
Exclusion in Computer Networks,” Communications of the ACM, Vol.
24, No. 1, January 1981, pp 9-17.

L. Lamport, “Time, Clocks, and the Ordering of Events in a Dis-
tributed System,” Communications of the ACM, Vol. 21, No. 7, July
1978, pp. 558-565.

R. L. Schwartz and P. M. Melliar-Smith, “From State Machines to
Temporal Logic: Specification Methods for Protocol Standards,” IEEE
Transactions on Communscations, Vol. COM-30, No. 12, December
1982, pp. 2486-2496.

198

A o LF A o L S 1SS o S S o SF o S o K S S S S o 4D

PO R CRUE OV CHV SRS CRNLS CQR LR COE PO R O O o O ul O

)

MISSION
of

Rome Awr Development Center

RADC plans and executes research, development, test and
selected acquisition programs in support of Command, Control,
Communacations and Intelligence (C%1) activities. Technical and
engineering support within areas of competence is provided to
ESD Program Offices (POs) and other ESD elements to
perform effective acquisition of C®I systems. The areas of
technical competence include communications, command and
controi, battie management information processing, surveillance
sensors, intelligence data collection and handling, solid state
sciences, electromagnetics, and propagation, and electronic
reliability/ maintainability and compatibility.

LARF O AF HCAF 9SS 9C S S 1 IS o 5K IO 1K o £ A S D

L b 5 o 5 o (5 S P A g 1 I LS o LS il 1 ol AP o 155 A

