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A note on the maximum size of a rectilinear maze

Man-Tak Shing” Michael M. Mayer® Kim A.S. Hefner®

ABSTRACT

In this paper, we study the problem of searching through an unknown maze by a
robot and show that the size of the largest rectilinear maze the robot can explore in at

most k steps is bounded by 2 k242 k + 1 for mazes with circuits, and is bounded by

-‘31- k?+ g- k + 1 for mazes without circuits. Furthermore, we show that the bounds are

tight,

1. Introduction

One of the central problem-solving techniques in Al is the use of search. In this
paper, we focus our attention on the problem of searching through an unknown terrain by
a physical agent such as a robot. The unknown terrain over which the robot will travel is

represented by a rectilinear graph or grid-graph as shown in Figure 1.

Nodes are arranged in a rectangular fashion with arcs connecting nodes immediately
above and below and to the right and left (north, south, east and west respectively). Each
node (except those on the boundary) then has four possible immediate s. ..ceszors which

are distinguished from one another by their x and y coordinates.
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Figure 1

Locations within the maze are either passable or impassable. Impassable locations
in the maze are represented by disconnected nodes in the graph, making them unreach-

able from any direction.

The robot begins with no knowledge of the graph. It can leam about the graph only
as it moves from node to node via the edges connecting them. The robot’s ability to
sense its surroundings is limited to determining whether the immediate successors of the
current state are passable or impassable. In effect, the robot can judge whether it can
move to the north, south, east or west. Since the terrain is a grid-graph, the robot is only

able to move and survey in the four cardinal directions.

Additionally, the robot knows its position relative to the goal. Several different
means could be used to accomplish this. If the robot initially knows the goal’s position
relative to its own, it can maintain this knowledge through dead reckoning as it moves
about the maze from its initial starting point. Using this information the robot can deter-
mine its rectilinear distance from the goal as well as the distance from the goal to any
immediate successor state. Rectilinear distance is a lower bound for the number of steps
necessary to move from the current position to the goal. The following formula com

putes rectilinear distance from the node's X and Y coordinates:
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er -Xg|+|Yr _Ygl

The subscript 7 is used to indicate the robot’s present coordinates while the subscript g

indicates the goal’s.

Using a different methou, either an active or passive guidance system could also be
used to direct the robot to the goal (e.g., either a form of radar or a beaconing system).
While only lines of bearing are required to choose which immediate successor is closer to
the goal, an exact location for the goal is required to totally order the search space. If the
goal is northeast of the current location, then the immediate successor states to the north
and the east are closer to the goal and have the same rcctilinear distance to the goal.
However, when comparing widely separated locations, a ranking for the locations based
on their closeness to the goal cannot be determined without an exact location for the
goal. If location P is north of the goal and location Q is south of the goal, there is no
static way to tell which one is closer merely by their direction to the goal. However, by
triangulating lines of bearing taken from different locations, an exact location for the

goal can be determined.

2. The maximum size of an unknown rectilinear maze

In analyzing the complexity of the algorithms for solving the above maze searching
problem, it is essential to estimate the size of the area that the robot can explore in at

most k steps.

For the mazes with circuits, the area reachable by the robot from the starting node in
at most k steps corresponds to a complete grid-graph G with diameter 2k +1, as illus-
trated in Figure 2 for & = 7. Let us number each node by the length of the shortest path
from the node to the center. It is easy to see that there is one node with label 0 and 4 j

nodes with label 7 for 1 <7 < k. Hence. the number of nodes in a complete grid-graph

with diameter 2k+1 = 1 + ﬁ:‘m‘ = 2k 4+ 2k 4+ 1.
1=




For the mazes without circuits, the analysis becomes more complicated. Let T (k)
be the maximum number of nodes reachable by a robot from the starting node in any

tree-maze, i.e. maze without circuits, in at most k& steps.

. 4 .2 8 .
Theorem 1. Tk) < —3-k +3-A + 1.

Proof. The largest tree-maze that the robot can explore in k steps must be a subgraph
of the complete grid-graph G with diameter 2k+1. A necessary condition for any sub-

graph of G to be a tree is that
the number of nodes in the subgraph = (*)

I + the number of edges in the subgraph

Hence. it suffices to show that at least (2k2~2k)/3 nodes and their adjacent edges

must be removed from G to form a tree-maze, since the number of nodes in any tree-

maze will be less than or equal to (2kZ + 2k + 1) - 11;—(21\'2—21\') =
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Let V and E be the set of nodes and edges in G respectively. We can partition V

into three disjoint sets V1, V5, and V3-as follows:
V1 = the set of all nodes with degree one in G
V, = the set of all nodes with degree two in G

V3 = the set of all nodes with degree fourin G .

We have
IVil = 4 (1)
IVal = 4k -4 (2)
[ Vol = 2k242k+1-4k = 2k2-2k +1 3)
|E| = 71-[4+2(4k—4)+4(2k2—2k+1)] = 442 4)

Let x be the minimum number of nodes that have to be removed (together with their
adjacent edges) from G to obtain a subgraph satisfying the condition (*). It is easy to see
that x places a lower bound on the number of nodes that have to be removed to obtain the
largest tree-maze embedded in G. In order to minimize x, the best we can do is to

reduce the number of edges by four for every node removed from G. Hence, we want to

find x such that
2k?+2k+1-x = 1 +4k2-4x o)

Solving the above equation, we have x = (242 — 2k)/3.

Theorem 2. There exists a tree-maze with 4— k? + ’8;‘ k + 1 nodes for k =2/ -1,

i 20,




Proof.
The theorem is obviously true fori =0. Fori 21 and k = 2/ — I, we can construct
a maze with -g- k% + %— k + 1 nodes as follows.
Start with a single node at the center of the complete grid-graph G. Allow the

maze to fully expand level by level as long as it does not result in any circuits,

as illustrated in Figure 3 fork = 7.
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Figure 3

The resultant maze corresponds o a tree rooted at the center of the complete grid-graph
with diameter 2k+1. The tree has four identical subtrees hanging from the root, each of
which in tumn corresponds to the trec-mazc generated by the above procedure for a com-

plete grid-graph of diameter & .

Let M (k) be the number of nodes in the tree-maze generated by the above pro-
cedure on a complete grid-graph of diameter 2k +1. We can express M (k) recursively as

follows:

M®E) = daMk=-1)2) + 1 where bk =2 -1 for i >0 (o




MO =1

Solving the above recurrence relation, w'¢ have

M(k):-g—k2+-§—k+l. ")
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