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Recently, ICASE has begun differentiating between reports with a mathemat-
ical or applied science theme and reports whose main emphasis is some aspect of
computer science by producing the computer science reports with a yellow cover.
The blue cover reports will now emphasize mathematical research. In all other
aspects the reports will remain the same, in particular, they will continue to be
submitted to the appropriate journals or conferences for formal publication.

iwl I I I III I I I



The Use of Lanczos's Method to Solve the
Large Generalized Symmetric Definite

Eigenvalue Problem

Mark T. Jones*and Merrell L. Patrick*t

Abstract

The generalized eigenvalue problem, Kx = XMx, is of signifi-
cant practical importance, especially in structural engineering where
it arises as the vibration and buckling problems. A new algorithm,
LANZ, based on Lanczos's i:ethod is developed. LANZ uses a tech-
nique called dynamic shifting to improve the efficiency and reliability
of the Lanczos algorithm. A new algorithm for solving the tridiagonal
ma:rices that arise when using Lanczos's method is described. A mod-
ificztion of Parlett and Scott's selective orthogonalization algorithm
is pioposed. Results from an implementation of LANZ on a Convex
C-220 show it to be superior to a subspace iteration code.
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1 Introduction

The solution of the symmetric generalized eigenvalue problem,

Kr = AMx, (1)

where K and M are real, symmetric matrices, and either K or Af is positive
semi-definite, is of significant practical impor:ance, especially in structural
engineering as the vibration problem and the buckling problem 1BH87]. The
matrices K and M" are either banded or sparse. Usually p << n of the small-
est eigenvalues of Equation 1 are sought, where n is the ordcr of the system.
The method of Lanczos, suitably altercd for the generalized eigenvalue prob-
lem, is shown to be useful for the efficient soiution of Equation 1. ILan50]
(NOPEJ87].

A sophisticated aleorithm, ha-pd on the ,;m-ple Lanczc -;shr, is

developed in this paper. The algorithm, called LANZ, has been imple-
mented on supercomputer architectures at NASA Langley Research Center
and results from the implementation are discussed. Two applications from
structural engineering are described in Section 2. The properties of the gener-
alized eigenvalue problem and solution methods are given in Section 3. The
simple Lanczos algorithm is presented in Section 4. The use of Lanczos's
method for the generalized eigenvalue problem and the LANZ algorithm
are discussed in Section 5. An execution time cost analysis of LANZ is
developed in Section 6. The solution of the tridiagonal matrices that arise
when using Lanczos's method is considered in Section 7. Methods fcr solving
the symmetric indefinite linear systems that arise in LANZ are described in
Section 8. In Section 9, the performance of the LANZ algorithm is analyzed
and compared to the performance of subspace iteration, the most prevalent
method for solving this class of problems in structural engineering.
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2 Problems of Interest

Two important applications of LANZ which arise in structural engineering
are the vibration problem and the buckling problem. Practical problems
from these applications will be used to test the performance of the program.

In the free vibration problem, the vibration frequencies, w, and mode
shape vectors, z, of a structure are sought. The equation

Kx = w2 MX, (2)

is solved, where K is the positive definite stiffness matrix and M is the semi-
positive definite mass matrix. The mass matrix, M, can be either diagonal
(in which case it is referred to as a diagonal mass matrix) or can have approx-
imately the same structure as K (in which case it is referred to as a consistent
mass matrix). Because K is positive definite and M is semi-positive definite,
the eigenvalues of 2 are non-negative. When a dynamic load is applied to a
structure, the structure begins to vibrate. If the vibration frequency is close
to a natural frequency of the structure, w, then the resulting resonance can
lead to structural failure. Engineers want to ensure that a structure has no
natural frequencies near the range of frequencies of expected dynamic loads.
Engineers are often interested in a few of the lowest frequencies of the struc-
ture to ensure that these natural frequencies are well above the frequencies
of expected dynamic loads. [Jon89]. In some situations, all the frequencies
in a particular range may be sought. [Kni89].

In the buckling problem, the smallest load at which a structure will buckle
is sought. These buckling loads of a structure, A, are the eigenvalues of the
system,

Kx = -AKGx, (3)

where K is the positive definite stiffness matrix, KG is the geometric stiffness
matrix, and x is the buckling mode shape vector [Mah87]. The KG matrix
has approximately the same structure as K and can be indefinite and singu-
lar. Because KG is indefinite, the eigenvalues of Equation 3 can be negative,
although in most practical problems they are positive. Equation 3 can have
up to n distinct eigenvalues; although only the smallest eigenvalue is of phys-
ical importance since any load greater than the smallest buckling load will
cause buckling [Jon89]. Designers may, however, be interested in the six to
ten lowest eigenvalues in order to observe the spacing of the buckling loads.
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If the lowest buckling loads are greatly separated from other Ickling loads,
the designer may seek to change the structure in order to cause the lowest
buckling loads to become closer to the other buckling loads of the structure.

[Kii89]. Because the IC matrix can be indefinite and singu!ar, the buckling
problem is more difficult to solve numerically than the vibration problem.
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3 The Generalized Eigenvalue Problem

3.1 Properties

Equation 1 yields n eigenvalues if and only if the rank of M is equal to n,
which may not be the case in the problems under consideration [GL83]. In
fact, if M is rank deficient, then the number of eigenvalues of Equation 1
may be finite, empty, or infinite [GL83]. In practical problems, however, the
set of eigenvalues is finite and non-empty. When K and M are symmetric
and one or both of them is positive definite, the eigenvalues of Equation 1
are real (without sacrificing generality, it will be assumed tbat M i!. positive
definite). An orthogonal matrix, R, exists such that

RTM R = diag(fl) = D2 , (4)

where the fli are the eigenvalues of M and are therefore positive real. If M
is expanded to RD 2 RT, then Equation 1 becomes

(K - AM)x = (K - ARDDR T )x. (5)

Equation 5 can be rearranged to become

(K - AM)x = (RD(D-1 R T KRD- 1 - AI)DRT)x. (6)

Taking the determinant of each side yields

det(K - AM) = (det(R))2(det(D))2det(P - AI), (7)

where P = D-RTKRD- . Because R is orthogonal dei(R) = 1. Det(D) is
the product of the eigenvalues of M, which are all positive real. Therefore,
the roots of det(K- A-M) are those of det(P- AI). Because P is a symmetric
matrix, its eigenvalues are all real and therefore those of Equation 1 are all
real [Wil65].

When K is positive definite and M is positive semi-definite, as they are in
the vibration problem, the eigenvalues of Equation 1 are all non-negative. To
show that the eigenvalues are non-negative, multiply each side of Equation 1
by xT to get

XT Kx - AXTMx. (8)
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Because K is positive definite, xTKx is positive, and because Al is posi-
tive semi-definite, xTMx is non-negative; therefore, A must be non-negative
[Wil65].

The eigenvectors of Equation 1 satisfy M-orthogonality (xTMy = 0, if x
and y are Al-orthogonal). The matrix, P, has a complete set of eigenvectors,
zi, and the same eigenvalues as Equation I. Thus,

Pz1 = Ajz 1 , (9)

and,
D-1RTIKRDlz = Aizi. (10)

Then, the sequence of transformations in Equation 11 show that x = RD-1 z,

KRD-1zj = ARDzj = AIRD(DRT RD-)zi = AM(RD-'zj) (11)

Because the zi are known to be orthogonal,

0 = zTzj = (DRT a)TDRT r = xAlx3 . (12)

The methuds and algorithms discussed in this paper rely on the eigenvalues
being real and the eigenvectors being M-orthogunal. In addition, LANZ
makes use of the property that the eigenvalues in the vibration problem are
non-negative.

3.2 Solution Methods

Several methods for solving the large symmetric generalized eigenvalue prob-
lem exist. A popular method, especially in structural engineering, is sub-
space iteration [Bat82]. Nour-Omid, Parlett and Taylor provide convincing
theoretical and experimental evidence that Lanczos's method is superior to
subspace iteration on a sequential machine [NOPT83]. The parallelization of
subspace iteration was investigated by Mahajan and it remains an open ques-
tion as to whether Lanczos's method will be superior to subspace iteration
on parallel machines [Mah87]. Another solution method for the generalized
eigenvalue problem is a two-level iterative method proposed by Szyld [Szy83].

He uses a combination of the inverse iteration and Rayleigh quotient meth-
ods at the outer level, and an iterative solver for indefinite systems at the
inner level. Szyld assumes, however, that Al is non-singular, which is not
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always the case for the applications under examination. A promising method
for parallel machines based on the Sturm sequence property is proposed by
Ma [Ma88]. He uses multi-sectioning or bi-sectioning to obtain the eigen-
values, and then uses inverse iteration to recover the eigenvectors. Again,
the assumption is made that M is non-singular. Schwarz proposes a method
which minimizes the Rayleigh quotient by means of the conjugate gradient
method. The method uses a partial Choleski decomposition as a precon-
ditioner to speed convcrgence [Sch89]. SOR-based methods have also been
proposed for the generalized eigenvalue problem, but these suffer from two
flaws: 1) the methods have difficulty when the eigenvalues are clustered, and
2) the methods require that Ml be positive definite [Ruh74]. Other meth-
ods have also been proposed [SW82] [Sch74]. Block Lanczos methods have
been developed but are more complicated than the simple Lanczos process.
Block methods are limited in that the user of the method must choose the
size of the blocks [NOC85]. One significant advantage of the block methods
is that they can easily reveal the presence of multiple eigenvalues [GU77].
To the best of the authors' knowledge, no satisfactory method of choosing
this block size to best determine the multiplicity of eigenvalues has been
proposed. The block size is usually chosen to take advantage of a particular
computing architecture [Ruh89].

7



4 Lanczos's Method

4.1 Execution in Exact Arithmetic

In order to understand Lanczos's method when applied to the generalized
eigenvalue problem, it is first necessary to examine the method when applied
to

Ax = Ax, (13)

where A is an n x n real symmetric matrix. In Lanczos's method, the matrix
A is transformed into a tridiagonal matrix, T, in n steps in exact arithmetic.
However, roundoff errors make the simple use of Lanczos's method as a di-
rect method for tridiagonalizing A impractical [Sim84]. Palge suggests using
Lanczos's method as an iterative method for finding the extremal eigenvalues
of a matrix [Pai7l]. At each step, j, of the Lanczos algorithm, a tridiagonal
matrix, T,, is generated. The extremal eigenvalues of Ti approximate those
of A, and as j grows, the approximations become increasingly good [GL83].
Both Kaniel and Saad have examined the convergence properties of Lanczos
in exact arithmetic [Kan66] [Saa80). The convergence results that they de-
rive imply that the speed of convergence of the eigenvalues of the T matrices
to eigenvalues of A depends on the distribution of the eigenvalues of A; if an
extreme eigenvalue of A is well separated from its neighbors, convergence to
this eigenvalue will be fast. However, clustered eigenvalues, or eigenvalues
that are in the middle of the spectrum of A, will not be converged to as
quickly as the extremal eigenvalues.

In Lanczos's method, a series of orthonormal vectors, q, ... q, is gener-
ated which satisfy:

T = QTAQ, (14)

where the vectors qj are the columns of Q. If each side of Equation 14 is
multiplied by Q to yield,

QT = AQ, (15)

and the columns on each side are set equal, then

o3+lqj+l + qjai + qj-10j = Aq.. (16)

where the ca's and O's are the diagonal and subdiagonal, respectively, of T,



the tridiagonal matrix in Equation 17 [GL83).

032 a2 /3

Tj =3 a 3  04 (17)

#j- a,- 1 Pi,

/3, a,

Equation 16 can be rearranged to become the three-term recurrence relation

plj+lq.+, = Aqj - qja, - qj--flj. (18)

From this recurrence relation at step j:

AQj = QjTj + rje, (19)

where rj = qj+1/fi+1 and ej is the jth column of the j x j identity ma-
trix [GL83]. These q vectors, also called Lanczos vectors, are the key to the
algorithm. They are generated as shown in Equation 18. That this recur-
rence relation generates a set of Lanczos vectors, q, ... qj, which belong to the
Krylov subspace, K (A, q1, j), can be shown by construction. That these Lanc-
zos vectors are also orthonormal, and therefore span the Krylov subspace,
K(A, qi,j), is shown by induction in [GL83]. If the Lanczos vectors are not
orthonormal, then this three-term recurrence relation does not generate the
correct T matrix.

Two of the major benefits of the simple Lanczos algorithm are: 1) the
structure of the matrix A is not important for the Lanczos algorithm; the only
access to A that the algorithm requires is a routine that returns the product
of A times a vector, and 2) at step j, only two of the Lanczos vectors, qj-1
and qj, are required to be stored in core memory, the rest can be stored in
secondary memory until needed for the computation of the eigenvectors. The
simple Lanczos algorithm is shown in Figure 1 [GL83].

The tridiagonal eigenvalue problem generated by Lanczos's method can
be written in the form

Tis = Os, (20)

where the O's are sometimes called Ritz values. The eigenvalues of T will
approximate those of A, especially the extremal ones. Approximations to the
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ro = starting vtctor

# = II ro II
qo = 0
j=1

while (3, 5 0)
qj= rj-1 /j
ct= qT Aqj
rj= Aqj - ajq, - Ojqj-l

#j1= (1 rj
j=j+l

Figure 1: The simple Lanczos algorithm

eigenvectors of A, called Ritz vectors, can be calculated using the equation

yi = Qjsi, (21)

where yj is the Ritz vecLor coiLesponding to s, [PNO85]. These Ritz vectors
satisfy: [NOPEJ87]

Ay, = yj= 9 4- rjs,(j). (22)

4.2 Effect of Roundoff Errors

The algorithm and equations in Subsection 4.1 hold only in exact arithmetic;
they degenerate in the presence of roundoff errors, and, therefore, the Lanczos
vectors can no longer be assumed to be orthonormal. When roundoff errors
are taken into account, Equation 19 becomes

AQj = QTj + rjc'+ Fj, (23)

where F is used to represent roundoff error. Then,

j1 Ay, - y2 , 1i 11_< ,+ 1F, j1, (24)

can be used to bound the error in the Ritz pair (0,, y,). The norm of F can
be bounded by n1 /2 c 11 A !'. where c is a constant based on the floating point
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precision of the combuter, and flj. = 3j+l I si(j) [ PN0851. The bound on
I! F(j) is small and can be disregarded. The most important factor then
becomes /3i. From [Pai7l]

I yqj+ I= "00/%ii, (25)

where -y is a roundoff term approximately equal to 11 A 11. From Equation 25,
the conclusion can be drawn that as Oji becomes small (and hence the error
in the Ritz pair, (0j, yi), also becomes small), the q vectors lose orthogonality
[Par8O]. Equation 25 implies that convergence of a Ritz pair to an eigenpair
of A results in a lack of orthogonality among the Lanczos vectors. More
specifically, significant components of yi, the converged Ritz vector, creep
into subsequent qj's, causing spurious copies of Ritz pairs to be generated by
the Lanczcs process.

Several remedies for the loss of orthogonality have been proposed. Paige
suggests full reorthogonalization, in which the current Lanczos vector, q,, is
orthogonalized against all previous Lanczos vectors [Pai7l]. Full reorthogo-
nalization becomes increasingly expensive as j grows. Cullum and Willoughby
advocate a method in which the lack of orthogonality is ignored and sophis-
ticated heuristics are used to detect the eigenvalues that are being sought
among the many spurious eigenvalues that are generated [CW85]. Simon
proposes a scheme called partial reorthogonalization in which estimates for
the orthogonality of the current Lanczos vector, qj, against all previous Lanc-
zos vectors are inexpensively computed. Based on the estimates, a small
set of the previous Lanczos vectors are orthogonalized against qj [Sim84].
Partial reorthogonalization maintains semi-orthogonality among the Lanc-
zos vectors. For all q vectors, semi-orthogonality is defined by:

qTqt<I/2 i7j. (26)

"Semi-orthogonality" among the q vectors guarantees that the T matrix gen-
erated by the Lanczos algorithm executed with roundoff errors will be the
same up to working precision as the T matrix generated using exact arith-
metic [PNO85]. Selective orthogonalization is used by LANZ in an adapted
form to maintain semi-orthogonality among the Lanczos vectors [PS79]. The
strategy of selective reorthogonalization, as proposed by Parlett and Scott,
orthogonalizes the current residual vector, rj, and the last Lanczos vector,
qj-,, at the beginning of each step in the Lanczos algorithm against "good"
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Ritz vectors (more details of how this occurs will be given in Section 5).
"Good" Ritz vectors are those which correspond to Ritz values for which
the value of /3 ji is below c'/2 11 A 11. A low /3ji value suggests that the Ritz
value is converging and, therefore, from Equation 25, I Y, qj+l I is increasing.
The value of fl/2 II A 11 is used to ensure that the quantity I yTqj+l I never
rises above O/2. As a result, semi-orthogonality, as defined in Equation 26,
is maintained.
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5 The LANZ Algorithm

5.1 The Spectral Transformation

In order to use Lanczos's method to find the lowest eigenvalues or the eigen-
values closest to some value, a, of Kx = AMx, a transformation of the
problem must be made. The Lanczos algorithm described in Section 4 is
applicable only to Ax = Ax. Two transformations are available when K and
M are symmetric and M is positive semi-definite. Each transformation in
this section will be represented by a capital letter that has no other mean-
ing. Transformation A, proposed by Ericsson and Ruhe, replaces A with
WT(K - aM)-'W to yield,

WT(K - aM)-'Wy = vy, (27)

where M = WW T , y- WTX, and A = a + 1/v [ER80]. Transformation B,
suggested by Nour-Omid, Parlett, Ericsson and Jensen, replaces A with (K-
aM)-M and uses the M-inner product, because the operator is no longer
symmetric [NOPEJ87]. Note that M does not form a true inner product
because M is not positive definite. This semi-inner product is acceptable,
however, because the only situation in this algorithm in which zTMx = 0,
for a non-trivial x, is when Pj+l = 0, which indicates exact convergence in
the Lanczos algorithm. (Hereafter, the semi-inner product will be referred
to as just an inner product). Equation 1 becomes

(K - aM)-'Mx = vx, (28)

where the eigenvalues of the original system can be recovered via

A = (7 + 1/u. (29)

Transformation B is a shifted inverted version of Equation 1 by virtue of the
following steps. Substituting Equation 29 in Equation 1 yields

Kx - aMx = 1/vMx. (30)

Then, solving for x and multiplying by t/ gives

vx = (K - aM)-1 Mx. (31)
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1) Choose an initial vector, guess
2) ro = (K - aM)-'Mguess (Purge n(B) from guess)
3) Pi = Mro
4) I1 = (rojPi)' '

5) For j = 1, maximum number of iterations
6) Reorthogonalization phase
7) q. = r. I /8
8) p, = p / 8
9) (K - aM)ri = pj (synunetric indefinite solve)
10) rr= - 1
11) a T

12) rj =r - q crj
13) P.+l = Mrj

14) /fj+1 = (r=pj+1)1 / 2

15) Compute the eigenvalues of Ti and the corresponding error bounds
16) Compute any converged Ritz vector
17) Halt if enough eigenvalues have been found
18) End of Loop

Figure 2: The Lanczos Algorithm Using Transformation B

Transformation B is superior to transformation A in both storage and
operation count requirements [NOPEJ87]. Transformation B requires some
modifications to the original algorithm, including the solution of the system
(K - aM)x = y for x, and the use of the M-inner product. The vector p has
also been added to the original Lanczos algorithm to hold the intermediate
quantity Mri. In the initialization step, the initial guess vector is multiplied
by B to ensure that r0 is contained in r(B), where B = (K -aM)-M. The
efficient implementation of these operations is described in later sections. The
modified algorithm is shown in Figure 2 [NOPEJ87]. Reorthogonalization in
step 6 is much the same as that described in Section 4, with the exception
that the reorthogonalization is done in the M-inner product [NOPEJ87].

If the matrix M is singular, then n(B) might not be null. The eigen-
vectors of Equation 1 have no components in n(M) (also, n(M) = n(B))
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[NOPEJ87]. In exact arithmetic, if the starting vector, qo, of the Lanczos
process is restricted to r(B), then all subsequent Lanczos vectors will be re-
stricted to r(B), because they are computed by multiplying by B. However,
in finite precision arithmetic, roundoff error allows components of subsequent
Lanczos vectors to be in n(B); therefore, the Ritz vectors calculated from
them will have components in n(B) [NOPEJ87]. Purifying these Lanczos
vectors is an expensive process, but a method exists that instead will in-
expensively purify the calculated Ritz vectors. The vector wi is computed,
where wi is a j + I-length vector whose first j components are calculated as,

w, = (1/0,)(Tjs,), (32)

and whose last component is

(S,(lj+1)/8,. (33)

Equation 21 then becomes:

yi = Qj+wi, (34)

where wi has replaced si.

5.2 Transformations for Buckling

Transformations A and B are not applicable to the buckling problem because
KG can be indefinite. Transformation A fails because it requires the Choleski
factorization of KG. Transformation B fails because it requires the use of a
KG-inner product which would be an indefinite inner product and introduce
complex values into the calculations. Transformation C, suggested for the
buckling problem in [Ste89b], uses the operator (K + aK) - 'K. The trans-
formation (K - aKG) is actually suggested in [Ste89b], but (K + aKG) is
preferred because it yields the correct inertia for the buckling problem (note
that the inertia referred to here is not the inertia of a physical body, it is
the definition of inertia used in Sylvester's inertia theorem relating to the
number of positive, negative, and zero eigenvalues of a matrix). The inertia
of (K + aKG) reveals how many eigenvalues of Equation 3 are less than a.
Transformation C can be derived from Equation 3 by substituting orv/(v- 1)

15



for A in Equation 3, multiplying each side by (v - 1), rearranging terms, and
finally, multiplying each side by (K + oKG)- 1 to yield

vx = (K -, aK)-'Kx. (35)

To recover A, use Equation 36.

A = cV/(v - 1). (36)

Transformation C requires that a be non-zero. The factorization of (K +
aKG) and the use of the K-inner product are necessary for transformation
C.

In exact arithmetic, the convergence rate of the Lanczos algorithm is the
same for transformations B and C when a is fixed (B performs the same
transformation on the spectrum as A). The Kaniel-Page-Saad theory is used
to explain the convergence of eigenvalues when using the Lanczos algorithm
and is now introduced to allow a comparison of the transformations and
to show the effects of moving a on the convergence rate [Saa8O]. Three
definitions that will be useful in this explanation are:

i-I

Ki' = 1- (0' - vf)/(v, - vi), (37)
M=1

"yj = 1 + 2(vi - vi+ , )/(v+ 1 - v1,f), (38)

and the Chebyshev polynomial,

C.(x) = l/2((x + (x2 - 1)1/ 2 )n + (X - (X2 - 1)1/2)n). (39)

The bound on the difference between an eigenvalue of the Tj matrix, 0,, and
an eigenvalue of the transformed system, vi, at the jth step of the Lanczos
algorithm is

0 < vi - 04 < (vi - vinf)(Kitan w(xj,ro)/Cj_i(-y,))2 , vi > vi+,. (40)

The tan w(x,, ro) is determined by the angle between the eigenvector, xi,
associated with V, and the starting Lanczos vector, r0 . Because the angle be-
tween xi and r0 does not change during the Lanczos algorithm and because
K does not vary greatly, the term that governs the rate of the convergence
is Cij(-t). As j increases, Ciji(-yi) grows more quickly for large Oi than for
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Eigenvalue order o =0 a=10 a=25 a=25.9

26 A, 0.2199 0.3214 4.2857 42.3442
30 A2  - - -

100 A, I - - I-

Figure 3: Effects of transformation on eigenvalue separation

small qOi (0i is a term, I(vi-v+1 )/(v+l-j,) - , obtained from the definition
of -y). The €j reflect the separation of individual eigenvalues from their neigh-
bors relative to the remaining width of the spectrum. Transformations are
used to increase gi for the desired eigenvalues by transforming the spectrum
such that the desired eigenvalues are well-separated from other eigenvalues.
It can be shown that, if used with the same a, transformations B and C have
the same effect on the 4i. However, moving a closer to a desired eigenvalue,
A,, increases the corresponding Oi (and therefore speeds convergence of 01 to
A1). The increase in qj as a is moved closer to A, is shown in Figure 3. Thus,
as a is moved closer to A, the convergence of 01 to A, is speeded up.

Transformations B and C have the same effect on the convergence rates
of the Lanczos process and C can be used in both the buckling and vibration
problems, so the question arises "Why not use transformation C for both the
buckling and vibration problems?" Although B and C have the same effect
in exact arithmetic, they each yield different v's for the same a. In finite
precision arithmetic, transformation C is inferior to transformation B when
a is small relative to the desired A's. Although each transformation requires
the solution of a linear system and the multiplication of a matrix by a vector,
the distribution of the v's for small a in transformation C leads to large
errors in the computation of the A's. For small a, the v's of transformation
C become close to 1 while the same effect is not seen when transformation
B is used (note that the Oi's in each case are identical). The v's that result
when using transformation C become increasingly close to 1 as a is moved
from 1.0 to 0.01, whereas the v's that result when using transformation B
show little change (this trend is shown in Figure 4). Because the Lanczos
algorithm consists of the same calculations for each transformation, in finite
precision arithmetic the algorithm computes perturbed values asbumcd to be

17



Eigen- order a = 1.0 a = 1.0 or = 0.01 a=0.01
value v for v for v for v for

Trans. B Trans. C Trans. B Trans. C
26 A, 0.04000 1.04000 0.03848 1.0003848

26 A, 0.04000 1.04000 0.03848 1.0003848
30 A2 0.03448 1.03448 0.03334 1.0003334
100 A, 0.01010 1.01010 0.01000 1.0001000

Figure 4: Effects of transformation on eigenvalues

of the form, (1 + c)v, instead of an exact v. The effect of this perturbation on
the computed A's is the difference between the two transformations. Recall
that in transformation B, A = a + 1/vB, and that in transformation C,
A = a + a/(vc - 1) (the subscript on v is introduced because the v's are
different in each transformation and these values are being compared). If vc
is solved for in terms of vB, then

VC = aVB + 1. (41)

Let 6 AB and bAC denote the difference between the true A and the A computed
using transformations B and C, respectively. These 5A'- ar. cpressed in
terms of perturbed v's in the following equations:

A+ AB = O + 1/(1 + )VB, (42)

A + bAc = a + a((1 + c)vc -1). (43)

If Equation 41 is substituted into Equation 43, then

A + bAc = U + al(a B + oCVB + E). (44)

If the true A is subtracted from each side of Equations 42 and 44, then

6AB = 1I(VB + fVB) - 1/IB. (45)

6Ac = 1I(VB + (:VB + c/a) - 1/VB. (46)

Thus, the error in the computed A for transformation C increases sharply
as a decreases. To show the increase in error for transformation C, the

18



errors in the two transformations (from Equations 45 and 46) are plotted in
Figure 5 for A = 10 and e = 0.0001. From this derivation and the graph of
the functions, it is clear that transformation C should be avoided when a is
small compared to the desired A.

From the previous discussion the conclusion can be drawn that trans-
formation B is preferred to C whenever possible. However, as was pointed
out previously, transformation B is not applicable to the buckling problom.
Therefore, a new transformation, D, which transforms the eigenvalues in the
same fashion as transformation B (when or = 0) is introduced. Transforma-
tion D can be used with an indefinite KG matrix but can only be used when
a is 0. Transformation D is derived from Equation 3 in the following steps
[CW85]: first, substitute 1/v for A and then multiply each side by K-1v to
yield

vx = K - Kx; (47)

next, expand the implicit identity matrix in each side as I = C-TCT, where
K = CCT, let y = CTx, and, finally, multiply each side by CT to y;,Id

vy = C- 1 KGC-Ty. (48)

The operator for transformation D is C-KGC-T. This transformation re-
quires the Choleski factorization of K and uses the standard inner product.

The eigenvectors, x, must be recovered via the solution of a triangular linear
system, using the foregoing equation for computing y. When an initial non-
zero guess for a exists, the method used in LANZ for solving the buckling
problem uses transformation C exclusively; when an initial guess for a isn't
available, the method used begins by using transformation D with a at 0,
and then switches to transformation C when a shift of a is needed (the use
of shifting will be described in the next subsection). Thus, the use of trans-
formation C with small a is avoided, and, yet, the advantage resulting from
shifting is maintained.

5.3 The Use of Shifts

An efficient algorithm for computing several eigenva]ues requires that the
shift, a, be moved as close as possible to the eigenvalues that are being com-

puted. The closer that a is to an eigenvalue being computed, the faster the
convergence to that eigenvalue. Ericcson and Ruhe describe a method for
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Figure 5: Errors in Transformations B and C
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selecting shifts and deciding how many Lanczos steps to take at each shift
[ER80]. The efficiency of the algorithm depends on how well these shifts are
chosen, and how many Lanczos steps are taken at each shift. Normally, the
most expensive step in the Lanczos process is the factorization of (K - 0,M),
which must be done once for each shift. But if j becomes large, the calcu-
lation of an eigenvector, Equation 21, caii be very expensive. In addition,
many steps could be required to converge to an eigenvalue if the shift is far
away from this eigenvalue, or if the eigenvalue is poorly separated from its
neighbors. The method used by Ericcson and Ruhe first estimates that r
eigenvalues will converge in j steps, where r is calculated based on the fact
that the eigenvalues of Equation 1 are linearly distributed. A cost analysis of
the algorithm is performed, and from this analysis, a determination of how
many steps to take at a shift is made. Their choice of shift depends on the
inertia calculation in the factorization step [ER80].

In the problems from the NASA structures testbed [Ste89a], the distribu-
tion of the eigenvalues is often anything but linear. This distribution makes
the above estimates invalid and requires a different method for deciding how
many steps to take at each shift. Instead of calculating the number of steps
to take for a shift prior to execution, LANZ uses a dynamic criterion to
decide when to stop working on a shift. Later, in Section 6, a cost analy-
sis of the Lanczos algorithm shown in Figure 2 is given. This cost analysis
is part of the basis for the dynamic shifting algorithm. The implementa-
tion of LANZ, however, uses execution timings, rather than a precalculated
cost analysis, because the cost analysis is different for each architecture on
which the implementation is run. These timings let LANZ know how long
each Lanczos step takes and the cost of factorization at a new shift. In
addition to the timing information, the estimated number of steps required
for unconverged eigenvalues to converge is calculated. The step estimate
is computed by tracking the eigenvalues of T (and the corresponding error
bounds) throughout the execution of the Lanczos algorithm. The method for
this tracking and computation of eigenvalues is described in Section 7. With
estimates for the number of steps required for eigenvalues to converge and
the time needed for a step (or new factorization) to execute, the decision to
keep working on a shift or choose a new shift can be made efficiently.

The selection of a new shift depends on the information generated dur-
ing the execution of LANZ on previous shifts and on inertia calculations at
previous shifts. The inertia calculations are used to identify any eigenvalues
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that were skipped over in previous steps, including eigenvalues of multiplicity
greater than one. The estimated eigenvalues and their error bounds gener-
ated during the execution of Lanczos enable the selection of a new shift based
on these estimates (if no eigenvalues were skipped in the previous run). Be-
cause convergence to an eigenvalue is faster if the shift, a, is chosen to be
close to that eigenvalue, LANZ seeks to choose a shift that is near to the
desired unconverged eigenvalue. However, a must not be chosen so close to
an eigenvalue that the system (K - aM)x = y becomes very ill-conditioned.
In the authors' experience, Lanczos's method generates approximations to
all nearby eigenvalues, so that even if an eigenvalue is not converged to, an
estimate along with an error bound for a nearby eigenvalue is generated. If
the initial Lanczos vector is not deficient in the eigenvector corresponding
to an eigenvalue, and if that eigenvalue is close to o,, then the Kaniel-Page-
Saad theory shows that Lanczos's method will generate an estimate to that
eigenvalue in a few steps [Kan66]. In practice, even if the initial Lanczos
vector is deficient in the eigenvector, round-off error will quickly make that
eigenvector a component of the Lanczos vectors [ER80].

When a new shift is chosen, the initial Lanczos vector is chosen to be
a weighted linear combination of the Ritz vectors corresponding to the un-
converged Ritz values of the previous shift, where the weights are chosen as
the inverse of the error bounds of those Ritz values [PS79]. The number of
Ritz vectors chosen is based on the number of eigenvectors still to be found
and the number of Ritz vectors with "reasonable" error bounds. To exam-
ine the effect of using a linear combination of Ritz vectors rather than a
random vector as the initial vector, several structural engineering problems
(both buckling and vibration) were solved using both methods for selecting
an initial vector (for an explanation of the problems used, see Section 9). The
number of steps taken by each method to get the same number of eigenvalues
is given in Figure 6 and from this it appears that using the linear combination
of Ritz vectors is always as good or better than choosing a random vector.

To give the reader a clearer picture of the overall execution flow of LANZ,
a flow chart is shown in Figure 7.

5.4 Selective Orthogonalization

The method used to maintain "semi-orthogonality' among the Lanczos vec-
tors is a modification of selective orthogonalization as proposed by Parlett
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Problem Size Random Linear Combination
Mast n = 1980 19 steps 19 steps
(buckling) = 58
Mast n = 1980 10 steps 10 steps
(vibration) = 58
(diagonal M)
Mast n = 1980 11 steps 8 steps
(vibration) = 58
(non-diagonal M)
Cylinder n = 7644 3 steps 2 steps
(buckliug) /3 = 385

Figure 6: Methods for choosing initial vector

and Scott [PS79]. As described in Section 4, the Lanczos vectors do not
lose orthogonality until a Ritz pair converges to an eigenpair of the system.
At this point, significant components of the Ritz vector that have converged
begin to creep into subsequent Lanczos vectors. Selective orthogonalization
monitors the level of orthogonality between converged Ritz vectors and Lanc-
zos vectors. If at step j, the orthogonality level between a converged Ritz
vector and the Lanczos vector qj is above a given threshold (Parlett and Scott
suggest that c1/2 be used), the Ritz vector is purged from both qj and qi-j.

Parlett and Scott use the following derivation to monitor the level of
orthogonality [PS79]. In finite precision arithmetic the Lanczos recurrence
relation is

oj+lq.+, = Bq - aq, - Ijqj_ + f, (49)
where B is one of the operators described in Subsection 5.1 and f, represents
the roundoff error. The bound on 11 f; 11 is cc 11B 11 where c is a constant
independent of j derived from B. If each side of Equation 49 is multiplied
by yT, where y is a Ritz vector computed from Equation 21, then

y Tpj+lqj+l = yTBq, - yTaiq,i - yT/3jqjl + yTf,. (50)

Multiply each side of Equation 23 by s to yield

By = Oy + r (51)
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Start with the user's initial shift
or use 0 if none is specified

Execute the Lanczos algorithm until
1) The desired number of eigenvalues are found,

2) No storage space is left, or
3) LANZ determines a new shift is needed

(2) or (3) (1)

LANZ examines the converged
LANZ selects a new shift based and unconverged eigenvalues
on accumulated information along with the inertia counts

to ensure that no eigenvalues
~have been missed.

Not Okay __Okay

Finished

Figure 7: Execution flow of LANZ
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where r is not rj and will be discussed below. If the bound for 11 f; I1 and
Equation 51 are substituted into Equation 50, Equation 52 results.

3j+IYT qj+, = (OYT + J 0 3 yT)qj _ gjyTq_, + CC 11 B II (52)

Parlett and Scott assume that r = qk+I/3 ki for some k < j, and therefore,
that

I qj 1< Oki I q+ 1 q3 I. (53)
They then state: 1) I q ,+1q 1< /, because semi-orthogonality among the

Lanczos vectors is maintained, and 2) if y is a converged Ritz vector, then
6Pj is less than or equal to fl/2 11 B 11. Fact 2 is caused by the definition

of a "good" Lanczos vector given in Section 4. If facts 1 and 2, along with
7j =1 yTqj 1, are substituted into Equation 52, then Equation 54 :s derived.

-j+, < (1 0 - cj I ri +/3jTj.I+ )I B )) +cc )I B II)/,3j+l (54)

Because c and B 11 are small and not readily available, Parlett and Scott
ignore these terms and derive the following recurrence relation for 7j+,:

rj+l < (1 0 - ai I Tj + / ,)/ 3 +,. (55)

The values r0 and rl are initialized to c and whenever y is purged from qi,
-rj is reset to f. From this recurrence relation, the conclusion can be drawn
that the Lanczos vectors should be orthogonalized in pairs.

This recurrence relation predicts the actual level of orthogonality very well
in practice with two exceptions. The first problem occurs when calculating
,rj+l after y has been computed at step j - 1 and purged from qi, and qj. In
this situation, a small increase in rj+l over Ti and rj-1 is expected. However,
a large increase occurs. This increase is caused by the assumption on Parlett
and Scott's part that I q',qj j< 0/2, when in fact that equation only holds
when k < -. The quantity, I q'+qj J, is 1 when k = 3-1. Thus,
Equation 55 holds when k < j - 1, but when k = I - 1 Equation 55 becomes:

rs+, < (I 0 - aj I r, + j/rj-1 + i-,.,)/3+,. (56)

The second problem arises when using Equation 34 to compute y. In this
case r = Oy + .%-1,1qj + flj-%,Bq/0 assuming y is computed at step j - 1;
therefore,

I r qj 1 o0rj + _-,, i1 ,4 ., 1a'/. (57)
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The recurrence relation used for rj+l then becomes:

Tj,+l : (I 0 - C'j I 7j + fjTj_ 1 +e j-,i + Ij-l,itajlo)lflj+l (58)

If y has been computed at step j - 2, then

I rJqi 1 + _ 07 + /_ 2+ _2.,8j±o, (59)

and, because the second term is very small, the recurrence relation for rj+l
becomes

TJ+1 -< (I - aj I Tj + ljri + flj_ 2,,flj/o)/flj+1 . (60)

5.5 Orthogonalization Methods

Selective orthogonalization and partial reorthogonalization are the two best
known orthogonalization methods other than full reorthogonalization. Par-
tial reorthogonalization monitors the orthogonality of qi and q,+, versus the
other Lanczos vectors. Partial orthogonalization measures the ortlhogonality
between qi and qk, Wjk, via the recurrence relation dcfined in the following
set of equations [Sim84]:

Wkk=I for k =,...,j, (61)
Wkk-1 = qqk-1 for k =2,...,j, (62)

j+lWj+l+k = fj+lWjk+l + (ak - aj)wjk + / 3kWjk-1-%jIj- + q fk- qT fj (63)
andWjk+l = Wk+lj for 1 < k < j. (64)

Simon has stated that the theoretical relationship between partial reorthogo-
nalization and selective orthogonalization is not known [Sim84I. The follow-
ing discussion explains the relationship between the two methods. If y7 on
the left side of Equation 50 is expanded to sTQT, and the resulting equation
is divided by /3j+,, the right side becomes rj+,i, yielding

=T - T (65)Si tj qj+l -- Tj+l'i (5

From the recurrence relation for partial reorthogonalization, the product
QT qj+ is the vector Wj+l,k, where k runs from 1 to j. Thus the relation-
ship between the w's and the 7's is governed by

ST=j+l,k = 
Tj+l,k, wherc k = 1,...,j. (66)
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This relationship in Equation 66 has also been observed in numerical exper-
iments run by the authors. When a Ritz vector, yi, is purged from qj+l and
therefore rj+i,i becomes small, the Wj+l,k's for which the values of si,k are the
largest decrease significantly.
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6 Execution-Time Cost Analysis

An analysis of the execution-time cost of the Lanczos algorithm when using
transformation B is given in Appendix A. Because the costs for the other
transformations are almost identical their cost will not be analyzed in this
section. The analysis has two purposes: 1) to allow the computation of the
tradeoff point between re-starting the Lanczos algorithm at a different shift
and continuing with the current shift, and, 2) to allow analysis of performance
on parallel and vector/parallel machines. Throughout the analysis, only the
cost of floating point operations is included. The assumption is made for
this analysis that the matrices have a band structure and that the Bunch-
Kaufman method (or an LDLT decomposition) is used for the solution of
the linear systems. In order to simplify the analysis, the assumption is made
that the bandwidth of K is greater than or equal to the bandwidth of M. This
assumption has no effect on the analysis other than to avoid making some of
the operation costs conditional on which matrix has the larger bandwidth.
Much of this analysis does not take into account "end conditions," such as
those that arise near the end of a factorization when less work needs to be
done than in the middle of a factorization. Thus, some of the expressions are
necessarily approximations.

Several observations regarding the shift tradeoff can be made from the
cost analysis: 1) the single most expensive step in the algorithm is the fac-
torization phase (2B) which is O(np2), 2) the cost of the reorthogonalization
phase increases as j increases because of the increasing number of "good"
Ritz vectors to orthogonalize against, 3) the cost of computing a converged
Ritz vector is based on j 2 and therefore increases rapidly as j increases, and
4) the cost of the rest of the operations in the program loop is not affected by
growth in j (with exception of step 15 but this step is not costly enough to
consider). To illustrate how the costs of the four operation groups per Lanc-
zos step change, the number of floating point operations per step is plotted
against j, the number of Lanczos steps, in Figure 8. The costs in the Fig-
ure 8 are from an actual LANZ run during which a new shift was selected
beginning at step 22. These costs, of course, will differ for each problem.
From the cost analysis and this graph it can be seen that a tradeoff exists
between the benefits of a taking a new shift (smaller reorthogonalization and
eigenvector computation cost as well as accelerated convergence to desired
eigenvalues) and the benefit of continuing work on the current shift (avoiding
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Figure 8: Operation costs plotted against Lanczos step number

the cost of refactorization).
The LANZ implementation uses actual timings of the various steps dur-

ing the current run to analyze the tradeoff, rather than substituting values
for the cost of various operations for the machine being used. The use of
timings is simpler to implement and makes the code more portable.
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7 Solution of the system Ts = Os

The size, j, of the tridiagonal system, Ts = Os, generated by the Lanczos
algorithm is 1 at step 1 and increases by 1 at each Lanczos step. The size
of T is usually very small compared to the size of the original problem, n.
Therefore, the time used to solve the tridiagonal system does not greatly
affect the sequential execution time of the LANZ algorithm. However, if the
rest of the algorithm is parallelized, the solution of the tridiagonal system
could well become a large factor in the parallel execution time. Parlett
and Nour-Omid have proposed a method of tracking a small group of the
eigenvalues of the T matrices as they are produced by the Lanczos algorithm.
An inexpensive by-product of their method is the error bounds for the Oi's
[PN085). Their algorithm monitors the outermost O's whose error bounds,
Ilji, indicate that they will converge in the next 2 or 3 steps; it actually
monitors 8 eigenvalues at a time. There are two phases: 1) the previous
O's and their error bounds are updated and any new O's are detected, and
2) converged O's are detected and removed from the data structure. This
algorithm is not suitable for use by LANZ for 3 reasons: 1) it is not easily
par, Ilelizable, 2) it does not track an eigenvalue for many steps to get a
convergence rate estimate, and 3) in tests run by the authors, it often failed.

The authors have developed a new solution method that is: 1) inherently
parallel, 2) tracks all the eigenvalues of T from step to step, and 3) has been
used successfully with LANZ to solve real structures problems. The method
uses information from step j- 1 to solve for all the eigenvalues and their error
bounds at step j. It uses Cauchy's interlace theorem, shown in Equation 67,
to find ranges for the all the eigenvalues (except the outermost eigenvalues)
of Tj from the eigenvalues of Tj-,.

Oil' < 60 < Oj+ ' < Oj... jj+' < 0" < 0, + '  (67)

Cauchy's interlace theorem states that the eigenvalues of Ti interlace those
of Ti+l [Par80]. In addition to the interlace property, the error bounds, /ji,
from the previous step can be used to provide even smaller ranges for some
eigenvalues. If good error bounds, fjj, are not available for the outer eigenval-
ues (the interlace property only gives a starting point for these eigenvalues),
they can be found by extending an interval from the previous extreme eigen-
value. However, a property of the Lanczos algorithm is that the extreme
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eigenvalues are usually the first to stabilize. The algorithm for the method
just described is given in Figure 9. For simplicity, the algorithm does not
show the code for handling extreme eigenvalues. The algorithm requires two
subroutines, the root finder described below and a function, numless, that
uses spectrum slicing to determine the number of eigenvalues of Tj less than
a value. Details of how to efficiently implement these subroutines are given
by Parlett and Nour-Omid [PN085].

A root finding method, such as bisection or Newton's method, can be
used to find the eigenvalues in the ranges given by the algorithm in Figure 9
[PN085]. Newton's method is preferred for its fast convergence and because
it generates the jth element in s, as a by-product, which allows for the inex-
pensive computation of the error bound for Oi [PN085]. For safety's sake, the
Newton root finder is protected by a bisection root finder to ensure that New-
ton's method converges to the desired root. If the Ritz vector corresponding
to a particular eigenvalue, Oi, needs to be computed, inverse iteration can be
used to compute si. Because the calculation of every eigenvalue is indepen-
dent, this algorithm is inherently parallel. In order to save time, it may be
beneficial to keep track of which eigenvalues of T have stabilized, as these do
not need to be recomputed. The major difficulty in parallelizing this algo-
rithm appears to be load balancing; it will take different numbers of Newton
iterations to find each eigenvalue, and only occasionally will inverse iteration
be necessary.

The algorithm developed by the authors for solving the tridiagonal system
also tracks the eigenvalues of T from step to step. This tracking is necessary
for two reasons. First, selective orthogonalization requires the computation of
the Ritz vectors corresponding to the eigenvalues of Ti that become "good"
(as defined in Section 4) at step j. Those Ritz vectors can be used from
step j + 1 until the end of the Lanczos run if the eigenvalues in T+ 1 (and
subsequent Ti's) that correspond to the eigenvalues in T can be identified.
Second, the rate of convergence of a particular eigenvalue is predicted by
tracking its convergence over several steps (the use of the convergence rate
was described in a previous section).
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bounded[i] 0 , for i = 1, j
do i = 1, j -1

if ((2*#ii <D8i - Oi-1) and (2*fli, < Oi+I - Oj)) then
probe = 0, + fi
less = numless(probe)
if (less = i) then

bounded Ii] = i
else 1* i and i + 1 are the only values numless will return, if

it returns something else, a grave error has occurred *
bounded[i + 1] = i

endif
endif

enddo
do i = 1, j

if (boundedlil = 0) then
leftbound = Oj-1

rightbound = 0,
newtonroot(leftbound,rightbound,newO, ,newfij,)

else if (bound[i] = i) then
leftbound = 0, - i
riglitbound = 0,
newtonroot(leftbound,rightbound,new0, ,new3 11 )

else if (bound[i] = i - 1) then
leftbound = O-
rightbound = Oi-I + /Jji-1

newtonroot (leftbound ,rightbound,new0, ,newpi3~)
endif

enddo

Figure 9: Tridiagonal Eigenvalue Solver
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8 The Solution of the system (K - aM)x = y

The solution to the possibly indefinite system,

(K - aM)x = y, (68)

is normally the most time-consuming step in the Lanczos algorithm for trans-
formations A, B, and C (unless there are very few non-zero elements in
(K - aM)). Therefore, it makes sense to try to optimize this step of the
algorithm as much as possible. Two approaches can be taken to solving
this system: 1) the use of direct solution methods, or 2) the use of iterative
solution methods. Because the problems under consideration can be very
ill-conditioned, the use of iterative methods has been avoided.

Because this paper is focused on the problem in which K and M are
banded, the discussion in this section is limited to the banded case. In the
vibration problem, because K is positive definite and M is semi-positive
definite, if a < 0, then the system in Equation 68 is positive definite. In the
buckling problem, because K is positive definite, if a = 0, then only K must
be factored because transformation D is used. Because K and M are always
symmetric, Choleski's method can be used to solve these systems. Choleski's
method is the direct method of choice for this class of banded linear systems
because it is stable and results in no destruction of the bandwidth [BKP76].
Choleski's method is used by LANZ for the vibration problem whenever
cr < 0 and in the buckling problem whenever a = 0.

The system in Equation 68 can be indefinite whenever a > 0 in the
vibration problem and may be indefinite in the buckling problem when a
is non-zero. When the system is indefinite, Choleski factorization will fail
because a square root of a negative number will be taken, and the LDLT
decomposition is not stable because the growth of elements in L cannot be
bounded a priori [Wil65]. The methods of choice for factoring a full symmet-
ric indefinite matrix are the Bunch-Kaufman method and Aasen's method
[BG76]. It was believed that both methods, however, would destroy the
structure of a banded system and not be competitive with Gaussian elimi-
nation with partial pivoting, which does not destroy the band structure but
ignores symmetry [BK771. To address this, the authors have developed a
new method of implementing the Bunch-Kaufman algorithm which is the
method of choice for factoring symmetric indefinite banded systems when
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the systems have only a few negative eigenvalues [JP89]. This is exactly the
case which arises when moving the shift in search of the lowest eigenvalues
of Equation 1 in the vibration problem and is often the case in the buckling
problem as well. The modified algorithm takes full advantage of the sym-
metry of the system, unlike Gaussian elimination, and is therefore faster to
execute and takes less storage space. LANZ uses this algorithm whenever
the system can be indefinite. As an additional benefit, the inertia of the
system can be obtained virtually for free [BK77].

Regardless of which factorization method is used, the system is only fac-
tored once for each a. After the factorization has taken place, each time
the solution to Equation 68 is required, only back and forward triangular
solutions (and a diagonal solution in the Bunch-Kaufman case) must be ex-
ecuted.
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9 Performance Analysis

9.1 Vectorization

From the analysis in Appendix A it appears that vectorizing LANZ would
:czult in sg:nificant speedup of the solut.'n procedure. The LANZ code
was compiled using the Convex Vectorizing Fortran compiler [Cor87]. The
code was executed using double precision on a Convex 220 in both vector
and scalar modes. Seven free vibration problems and five buckling problems
of varying sizes from the NASA Langley testbed were run. The problems
consisted of varying sizes of three different structures. The first structure is a
thin circular, cylindrical shell simply supported along its edges. The buckling
eigenvalues for this structure are closely spaced and present a challenge for
eigensolvers. The actual finite element model only needs to model a small
rectangle of the cylinder to correctly simulate the behavior of the structure.
A plot of the entire cylinder that shows the 15 degree rectangle of the cylinder
that is modeled is given Figure 20 of Appendix A. The two lowest buckling
modes for an axially-compressed cylinder are are also plotted in Figure 21 of
Appendix A. The second structure is a composite (graphite-epoxy) blade-
stiffened panel with a discontinuous center stiffener. The finite element model
for this structure is shown in Figure 22 of Appendix A. The third structure is
a model of a deployable space mast constructed at NASA Langley Research
Center. A picture of the deployable mast along with a plot of the finite
element model is shown in Figure 23 of Appendix A. Descriptions of the first
two structures can be found in [Ste89a]. A description of the deployable mast
can be found in [HWHB86]. In every problem, at least ten eigenpairs were
found. All times in this section are given in seconds. In each problem, n will
refer to the number of equations, and / will refer to the semi-bandwidth of
the K matrix. The execution times for the vibration problem with a diagonal
mass matrix are given in Figure 10 where a speedup due to vectorization of
up to 7.83 is shown. Speedups of up to 7.30 for the vibration problem with
a consistent mass matrix are given in Figure 11. For the buckling problem,
speedups of up to 7.79 can be observed in Figure 12. These speedups are
similar to the speedups obtained by other linear algebra applications on the
Convex 220. From these comparisons the conclusion can be drawn that
significant speedup of the solution procedures due to vectorization can be
achieved.
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Problem Size Vector Scalar Speedup
(seconds) (seconds) Factor

Mast n - 1980 2.80 9.28 3.31
# =58 _

Cylinder n = 16 0.40 0.92 2.30
3=65

Cylinder n = 1824 3.64 20.42 5.61
# = 185

Cylinder n = 7644 34.77 256.47 7.38
# = 385

Cylinder n = 12054 75.79 593.48 7.83
#_= 485

Panel n = 477 1.04 3.69 3.55
# = 142 1_1

Panel n = 2193 6.04 35.49 5.88
_ _ = 237

Figure 10: Vectorization Results for the Vibration Problem with a Diagonal
Mass Matrix
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Problem Size Vector Scalar Speedup
I (seconds) (seconds) Factor

Mast n = 1980 4.05 10.52 2.60
3= 58

Cylinder n = 216 0.44 0.96 2.18
/3 = 65

Cylinder n = 1824 4.69 22.12 4.72
3 = 185

Cylinder n = 7644 39.26 263.73 6.72
3 = 385

Cylinder n = 12054 82.88 605.30 7.30
_3 = 485

Panel n = 477 1.74 5.18 2.98
S3 = 142 1 1 1

Panel n = 2193 10.61 43.82 4.13
3 = 237

Figure 11: Vectorization Results for the Vibration Problem with a Consistent
Mass Matrix

Problem Size Vector Scalar Speedup
(seconds) (secnds) Factor

Mast n = 1980 5.16 14.72 2.85
,8 = 58

Cylinder n = 216 0.43 1.01 2.35
3 =65 1

Cylinder n - 1824 5.18 27.54 5.32
/3 = 185

Cylinder n - 7644 70.32 510.75 7.26
/3 = 385

Cylinder n = 12054 10.57 1172.39 7.79
_ _ = 485 _ __

Figure 12: Vectorization Results for the Buckling Problem
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9.2 Comparison With Subspace Iteration

The claim was made in Section 3 that Lanczos's method is significantly faster
than subspace iteration. The results presented in this section support this
claim. The LANZ code was compared with the EIG2 processor from the
NASA Langley testbed code. The EIG2 processor uses the subspace itera-
tion method [Ste89b]. Both codes were compiled and executed as in Sub-
section 9.1. The same problems that were solved in 9.1 were used for this
comparison in which the the lowest ten eigenvalues were sought. Both pro-
grams were able to find the lowest ten eigenvalues in every case, although
EIG2 took an unusually large number of iterations (over three times the rec-
ommended maximum) to find them in the Mast case for both the buckling
and free vibration problems. The Mast problem has a difficult distribution
of eigenvalues, and the LANZ code makes use of shifting to quickly find the
eigenvaiues. Both codes were directed to find the eigenvalues to a relative
accuracy of 10 - . However, the subspace iteration code used an accuracy
measure which was more lax than that used in the LANZ code. The mea-
sure used in the subspace code,

(Ak+1 _ k)/A k+1 (69)

where k is the iteration number, is only a check to determine whether an
eigenvalue has stabilized relative to itself. In the LANZ code

(11 Ky - OMyj II) 1 , (70)

is used to check the relative accuracy of the combination of the eigetivalue
and the eigenvector. Therefore, the LANZ code is at a disadvantage to the
subspace code in this comparison because the eigenpairs are computed to
greater accuracy than in the subspace iteration code.

When the results comparing the two codes are given, two times are re-
ported for LANZ: the processing time required by the code and the total
of the system and processing time required by the code. The two times are
given because the EIG2 processor can only report its execution time as the
total of system and processing time. For the free vibration problem with
a diagonal mass matrix, LANZ is shown in Figure 13 to be about 7 to 14
times faster than subspace iteration. In Figure 14, LANZ is shown to be
about 7 to 26 times faster than subspace iteration for the vibration problem
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Problem Size LANZ LANZ Subspace Iteration Ratio
Program Total Total

(seconds) (seconds) (seconds)
Mast n = 1980 2.80 2.85 29.40 10.32

13 = 58
Cylinder n = 216 0.40 0.41 5.70 13.9013 = 65
Cylinder n = 1824 3.64 3.73 46.40 12.44

t= 185
Cylinder n = 7644 34.77 35.18 313.80 8.92

S =385
Cylinder n = 12054 75.79 76.65 541.50 7.06

)3 = 485
Panel n = 477 1.04 1.07 12.30 11.50

03 = 142

Panel n = 2193 6.04 6.17 82.30 13.34
-P 237 1 1

Figure 13: LANZ vs. Subspace Iteration: Vibration Problem with Diagonal
Mass Matrix
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Problem Size LANZ LANZ Subspace Iteration Ratio
Program Total Total

(seconds) (seconds) (seconds)
Mast n = 1980 4.05 4.08 107.60 26.37

/=58
Cylinder n = 216 0.44 0.44 5.90 13.41

/3=65
Cylinder n = 1824 4.69 4.77 51.60 10.82

/3 = 185
Cylinder n = 7644 39.26 39.74 357.10 8.99

/= 385
Cylinder n = 12054 82.88 83.80 585.10 6.98

/3=485
Panel n = 477 1.74 1.77 20.50 11.58

# = 142 1
Panel n = 2193 10.61 10.72 109.80 10.24

/3 = 237 1 1 _1 _

Figure 14: LANZ vs. Subspace Iteration: Vibration Problem with Consis-
tent Mass Matrix
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Problem Size LANZ LANZ Subspace Iteration Ratio
Program Total Total

(seconds) (seconds) (seconds)
Mast n = 1980 5.16 5.22 108.9C 20.86

_ = 58
Cylinder n = 216 0.43 0.44 5.60 12.73

_ = 65
Cylinder n = 1824 5.18 5.30 92.80 17.51

= 185
Cylinder n = 7644 70.32 70.84 523.90 7.40

# = 385 1 1 1
Cylinder n - 12054 150.57 151.44 992.30 6.55

8 = 485 _

Figure 15: LANZ vs. Subspace Iteration: Buckling Problem

with a consistent mass matrix. LANZ is shown to be about 6 to 21 times
faster than subspace iteration for the buckling problem in Figure 15.

LANZ's advantage over subspace iteration appears to be diminishing as
the problem sizes increase because the factorization of the matrices takes a
larger proportion of the time as the matrix size increases. Because each code
could use the same factorization technique, the time spent in factorization
distorts the advantage that LANZ holds over subspace iteration. To more
clearly illustrate the advantage of LANZ over subspace iteration, the time
for factorizing (K - aM) was removed from the results in Figures 13, 14,
and 15. Only the totals of system and processing time were accessible when
computing the modified times. Although the time for triangular linear sys-
tem solutions (the backward, forward, and diagonal linear solutions required
at each step) is still included, the modified times will give the reader a bet-
ter comparison of the time spent in the eigensolving routines. In Figure 16,
LANZ now shows an advantage of up to 47.18 for the vibration problem with
a diagonal mass matrix. For the vibration problem with a consistent mass
matrix, a speedup of up to 31.31 can be observed in Figure 17. A speedup
for the buckling problem of up to 23.64 is shown in Figure 18. In Figures 16
and 17 the LANZ code used only one factorization per problem except for
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Problem Size LANZ Subspace Iteration Ratio
(seconds) (seconds)

Mast n - 1980 2.13 121.80 47.18
/3 =58

Cylinder n 216 0.36 5.30 14.72
/=65 1

Cylinder n = 1824 2.07 39.20 18.94
0= 185 _

Cylinder n = 7644 12.65 235.50 18.62
/P = 385

Cylinder n = 12054 23.45 362.00 15.44
/6 = 485

Panel n = 477 0.87 11.50 13.22
/# = 142 _ 1

Panel n = 2193 3.63 71.70 19.75
S= 237 ' I

Figure 16: Comparison without Factorization: Vibration Problem with a
Diagonal Mass Matrix

the mast problem where two factorizations were required for ten eigenval-
ues to converge. In Figure 18 the LANZ code used only one factorization
per problem to converge to ten eigenvalues except in the two large cylinder
problems and the mast problem, where two factorization were required.

9.3 Performance Benefits of Tracking Eigenvalues
The value of tracking the eigenvalues will now be shown. In Section 7 an
algorithm for tracking and computing the eigenvalues of Tj is given. The code
was run on a Convex C-1 computer for five free vibration problems from the
NASA Langley testbed. Ten eigenvalues were sought for each problem. To
assess the benefits of the tracking algorithm, the code was run with the
tracking algorithm first turned on and then turned off. The M matrices in
this experiment are diagonal; however, the benefits would be even greater
for non-diagonal M matrices. Reductions in execution time of up to 23
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Problem Size LANZ Subspace Iteration Ratio
(seconds) (seconds)

Mast n = 1980 3.36 105.20 31.31
fl=58

Cylinder n = 216 0.39 5.50 14.10
6= 65

Cylinder n = 1824 3.11 43.90 14.16
P3 = 185

Cylinder n = 7644 17.21 284.60 16.54
/3 = 385

Cylinder n = 12054 30.60 407.80 13.33
fl = 485

Panel n = 477 1.57 19.80 12.61
fl = 142

Panel n = 2193 8.18 99.20 12.73
1_ = 237 __

Figure 17: Comparison without Factorization: Vibration Problem with a
Consistent Mass Matrix

Problem Size LANZ Subspace Iteration Ratio
(seconds) (seconds)

Mast n = 1980 4.50 106.40 23.64
# = 58

Cylinder n = 216 0.39 5.20 13.33
# = 65 _

Cylinder n = 1824 3.64 86.00 23.63
03 = 185 1

Cylinder n = 7644 25.78 445.90 17.30
1_/3 = 385

Cylinder n = 12054 45.04 808.70 17.96
_ _ = 485

Figure 18: Comparison without Factorization: Buckling Problem
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Problem Tracking No Tracking
n 486 1.440 1.870
/3= 16

n 476 8.540 8.880
/3= 117

n = 1980 25.070 26.210
/3 = 58____

n = 1824 36.990 40.150
/3 = 239 1 1

n - 3548 82.920 88.610
/3 = 259 _ _

Figure 19: Execution time with and without tracking

percent are shown in Figure 19. The data in Figure 19 are from a version of
the program that existed prior to changes made in early 1989. The current
version of the program will not work with the tracking algorithm turned off.
The gain in execution time would actually be more marked if the the tracking
algorithm could be turned off in the current version because other parts of
the LANZ algorithm that aren't affected by the tracking algorithm have
been optimized.

9.4 Multiple Eigenvalues

Although the test problems from NASA Langley had no low eigenvalues
of multiplicity greater than one, some of the eigenvalues in the Mast case
were very closely clustered. However, the performance of the algorithm with
exact multiple eigenvalues is of interest. Therefore, diagonal test matrices
with multiple eigenvalues were constructed to test whether LANZ would
reveal their presence. In these test cases, the correct number of copies of
each eigenvalue were found by LANZ.
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10 Concluding Remarks

10.1 Conclusions

For the large, generalized eigenvalue problem arising from two structural
engineering applications, the vibration and buckling problems, the LANZ
algorithm was shown to be superior to the subspace iteration method. Re-
sultP from sev'ral str,'ctura! engineering prcb!:ms were given to suppc. L tLL,
claim. LANZ is based on the Lanczos algorithm and makes use of spectral
transformations, dynamic movement of a shift, and a modified version of
selective reorthogonalization to quickly converge to desired eigenpairs. The
dynamic shift-moving algorithm used by LANZ was described. The shifting-
moving algorithm is based on a cost analysis of the Lanczos algorithm with
spectral transformations and selective reorthogonalizations. A parallel algo-
rithm for efficiently solving the tridiagonal matrices that arise when using
Lanczos's method was also given.

10.2 Future Work

LANZ has been shown to perform well on vector machines, an important
class of scientific computing machines. These classes show the most promise
for solving very large problems. The next step is to shown that LANZ will
perform well on parallel and vector/parallel computers. An examination of
the LANZ algorithm based on the analysis in Section 6 is the logical first
step in determining a strategy for parallelizing LANZ. A possible next step
is to use the Force programming language to parallelize the code [Jor87].
This language allows parallel loops to be easily expressed and can be used
on several different shared-memory computers. The Force has been shown
to be a good language for parallel linear algebra applications [JPV89]. The

outlined approach would most likely provide a good barometer with which
to assess the performance of LANZ on parallel machines.
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A Sequential and Vector Cost Analysis

A step-by-step cost analysis for the Lanczos algorithm when using trans-
formation B (shown in Figure 2) is given below for sequential and vector
machines.

Definitions:
AK: The semi-bandwidth of the K matrix.
IM: The semi-bandwidth of the Al matrix.
n: The number of eauations in the system.
daxpy: A double precision vector operation that computes ax-ry,

where a is a scalar and x and y are vectors.

Initialization
1.) Choose an initial guess, guess

Small cost (O(cn)), but might be larger depending on the
method used for choosing the guess.

2.) r0 = (K - aM)-'Mgues (Purifying ro)
A.) Formation of the matrix (K - aM)

The matrix is formed from K and M and made available
to the factorization routine.
Sequential. pmn subtractions and multiplications
Vector: 1 pzMn-length daxpy operation

B.) Factorization of (K - o'M)
Using Bunch-Kaufman (or LDLT decomposition) as de-
scribed in Section 8
Sequential: n divisions

O(npK) multiplications
O(nP2/2) multiplications and additions

Vector: n scalar divisions
n 1K-length vector by scalar multiplications
nP1K daxpy operations of avc;-age length IK

C.) Forward Solve using factored matrix from B
Sequential: O(n1K) multiplications and divisions
Vector: n YK-length daxpy operations

D.) Diagonal Solve using factored matrix from B
Sequential: 3n multiplications
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2n additions
Vector: 3 n-length daxpy operations

E.) Back Solve using factored matrix from B
Sequential: O(nuK) multiplications and divisions
Vector. n p--length inner products

3.) Pi = Afro
An n x n banded matrix-vector multiplication
Sequential: O((2PK + 1)n) multiplications

O(21UKn) additions
Vector: n pK + 1-length inner products

n /K-length daxpy operations
4.) I8 = (ropl)1/2

An n-length inner product and a square root
Sequential: n multiplications

n - 1 additions
1 square roct

Vector. 1 n-length inner product
1 square root

Program Loop
5.) For j = 1, maximum number of iterations
6.) Reorthogonalization phase

Orthogonalize rpi- and q,-, against "good" Ritz vectors
if necessary (see section on orthogonalization for details).
Steps A and B are done only once and only if reorthog-
onalization is needed. Steps C and E are done for each
Ritz vector that is orthogonalized against rj-1. Steps D
and F are done for each Ritz vector that is orthogonalized
against qj-,.
A.) tj = Mrj-l

Same cost as 3
B.) t2 = Mqj- 1

Same cost as 3
C.) Yi = yft1

Multiplication of an n-length vector by a scalar
Sequential: n multiplications
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Vector: 1 n-length vector by scalar multiplication
D.) ¢ = yft 2

Same cost as C
E.) rj-1 = rj- 1 - iyi

Orthogonalize rj against y,
Sequential: n multiplications

n additions
Vector. 1 n-length daxpy operation

F.) qj-1 = q-- ikiy
Same cost as 6E
Orthogonalize rj against y,

7.) qj =ri_,/ l

Division of an n-length vector by a scalar
Sequential. n multiplications

1 division
Vector. 1 n-length vector by scalar multiplication

1 division
8.) pj = pj/ j

Same cost as 7
9.) (K - uM)rj = pi

Same cost as parts C, D, and E of 3
10.) rj = rj - qj-llj

Orthogonalize rj against qj-1
Same cost as 6E

11.) = T

Same cost as 4 except no square root is needed
12.) rj = rj - qjaj

Same cost as 10
13.) pj+l = Mri

Same cost as 3
14.) g,+, = (rp,+,)1/2

15.) Compute the eigenvalue of Tj and the corresponding error bounds

A.) Calculate j eigenvalues via Newton's method
Sequential and Vector. Variable, but very small (0(j32 ))

B.) Calculate j error bounds, 3ji
Sequential: j multiplications
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16.) Compute any converged Ritz Vectors
Cost per Ritz vector of computing y,
A.) Compute correction factor, wi = 1/0j(Tjsj)

Sequential: 3j multiplications
2j additions
j multiplications
1 division

Vector. 3 j-length daxpy operations
1 j-length vector by scalar multiplication
1 division

B.) Compute y, = Qj+jwj
Seque-ntial: nj multiplications

n(j - 1) additions
Vector. n j-length inner products

17.) Halt if enough eigenvalues have been found
18.) End of Loop
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Axially- Comnpressed Cylinder

Lp

R

-~ 6V Model for SMOOTH Mode

(uniform) 15' Model-for OIAMONO/AXI.SYM. Modes

(R/h 300) (L/R =3)

]Figure 20: Axi ally- compressed circular cylindrical shell
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Figure 21: Lowest two buckling modes of an axially-compressed cylinder
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Figure 22: Composite blade-stiffened panel with a discontinous stiffener
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w77,3"A

F ,'lre 23: Deployable space mast
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