"1 FILE COP¥

AD-A214 430

Transparency in Distributed File Systems

Richard Allen Flovd

Technical Report 272
January 1989

UNIVERSITY OF

ROCHESTER

COMPUTER SCIENCE
89 i1 15 044

Transparency in Distributed File Systems
by
Richard Allen Floyd
Submited in Partial Fulfillment
of the

Requirements for the Degree

Doctor of Philosophy

Supervised by Carla Schlatter Ellis

Department of Computer Science
College of Arts and Sciences

University of Rochester
Rochester, New York

1989

READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORF COMPLETING FORM

1 REPORT NUMBER

12 GOVY ACCESSION NOI!I 3 RECIPIENT'S CATALOG NUMBER

272 |

4 TiTLE (and Subtitie)

S TYPE OF REPORT 8 PERIOD COVERED

Transparency ir Distrivuted fije Systems Technicel Report

6. PERFORMING ORG REPORT NUMBER

7 AUTHORSs.

B CONTRAZY OR GRAN~ NUMBER's)

Richard Allen Floyd NO0014-82-K-0193

10. PROGRAM ELEMENT PRCJEZY, TASK

. PERFORMING ORGANIZATION NAME AND ADDRESS
AREA & WORK UNIT NUMBE RS

Computer Science Department
734 Computer Studies Bldc.
University of Rochester, Rochester,NY 14627

11. CONTROLIING OFFICE NAME AND ADDRESS 12. REPORT DATE

Adv. Res. Proi. Agenc: January 1983
1400 Wilson Bivd. 13 NUMBER OF PAGES
Arlington, VA 22209 261
15. SECURITY CLASS. (of this rernrt)

14, MONITORING AGENCY NAME & ADCRESS(if dilterent {rom Controlling Office)
Office of Naval Res.

Information Systems Unclassified

Arlington, VA 22217 T5a. DECL ASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of th:s Repor:,;

Distribution of this document is unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, ! differen. f2:.. Rep. -t}

18. SUPPLEMENTARY NOTES

None

9. KEY WORDS (Continue or reverse side if necessary and identify by block number)

Heterogeneogs Networks, File Reference Patterns, Directory Reference Patterns,
File Migration. =~ .. '

- - o it 4e 1l mmme e

20 AETTT 7

The last few ycars have scen an explosion in the rescarch and development of distributed file sys-
tems. Existing systems provide a limiled degree of network transparency, with researchers gen-
erally arguing that full network transparency is unachievable. Atempts to understand and address

these arguments have been limited by a lack of understanding of the range of possibic solutions 10

Nornmm——

$
DD |, ,i75; 1472 €o0imion OF 1 NOV 6515 0BSOLETE

ransparency issucs and a lack of knowledge of the ways in which file systems are used. e

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

‘i

20.

ACSTRACT (Continued)

We address these problems by: 1) designing and implementing a prototype of a highly transparent
distnibuted file system; 2) collecting and analyzing data on file and dircctory reference patierns;

and 3) using these daw to analyze the cffectiveness of our design,

Our distributed file system, Roe, supports a substantially higher degree of transparency than caslicr
distributed file systems, and is able to do this in a heterogeneous environment. Roe appears 10
users 10 be a single, globally accessible file sysiem providing highly available, consistent files. It
provides a coherent framework for uniting techniques in the areas of naming renlication, ron.
sistency conuol, file and directory placement, and file and directory migration in a way that pro-
vides full network transparency. This transparency allows Roc to provide incrcased availability,

automatic reconfiguration, effective use of resources, a simplified file system model, and important

performance benefits.

Our daw collection and analysis work provides detailed information on short-term file reference
patterns in the UNIX environment. In addition to examining the overall request bchavior, we

break refercnces down by the type of file, owner of file, and type of user. We find significant

differences in reference patterns beiween the various classes that can be uscd as a basis for place-
ment and migration algorithms. Our study also provides, for the first time, information on dircc-
tory reference patterns in a hic . -wal file system. The results provide striking evidence of the

importance of name resolution ove. .d in UNIX environments.

Using our data collection analysis results, we cxamine the availability and performance of Roc.

File open overhcad proves (o be an issuc, but techniques cxist for reducing its impact.

Aeeession Yor

UNTIS GRA&I
PTIC TAB

Unamneunced 0
Justification
By

Digt;}_!gu_tion/

Ava}lebillty Codes
.) "Avail and/or
Curriculum Vitae o [past Special

L

PR

B] —

i 4

Richard Allen Floyd was bom in Rochester, Minnesota on St. Patrick’s Day, March 17th, 1953, a
fact that his Irish mother has never let him forget. In 1971 he entered Iowa State University. He
worked his way through school at a number of jobs, the most memorable of which was as a pro-
grammer for the High Energy Physics group at lowa State. It was here that he was first intro-
duced to computers and where he developed his distinctive late-night working style. He majored
in Physics (with a minor in Electrical Enginecering) and graduated, with distinction and several

achievement awards, in 1977.

He started his graduate career at the University of California, Berkeley in September of 1977, but
quickly discovered that it was the computer aspects of his earlier physics work that had made it so
appealing. He left in 1978 to take a position at the Clinton P. Anderson Meson Physics Facility in
Los Alamos, New Mexico, where he developed data acquisition and analysis software for particle
physics experiments. He also began his education in Computer Science at the University of New
Mexico. In 1981 he entered the University of Rochester’'s Computer Science program, and in
1982 was awarded a Masters in Computer Science. While at Rochester he was a teaching assis-

tant and a research assistant.

N .- e

Acknowledgements

My advisor, Carla Ellis, has put up with me for an extraordinary amount of time. In addition to
being my advisor, she has been a good friend and colleague. Her help has meant more than [z3+
say. I would not have been able to wrile this dissertation without her advice, support, and friend-
ship. 1 would also like to thank the other past and present members of my commitiee, Tom
LeBlanc, Chris Brown, Bezalel Gavish, Michael Scott, and Bruce Arden. Their direction and

encouragement has been of great value.

The efforts of the Computer Science Department’s faculty, students, and staff have made the
department’s facilities first rate. I would like to acknowledge in particular Liud Bukys, who pro-
vided extensive help and advice on various arcane aspects of RIG, and on IPC matters. He also
developed a file access protocol that provided a starting point for the Roe file access protocol.
Mike Dean ported the initial Local File Server to UNIX, Josh Tenenberg ported it to the Alio, and
Doug Ierardi implemented the first Roe Transaction coordinator. In addition, Jill Forster and Rose

Peet provided assistance with administrative details and endless encouragement

Many friends, both in and out of the department, have helped with their encouragement and dis-
tractions. It’s impossible 10 mention them all. I'd like to give special thanks to Kok Heong, for
her boundless enthusiasm and her proofreading, to Jaii, who supported my fondness for things
New Mexican, 1o E, for too many things to list, and to Mark, Brux, Jennifer, Liralen, George,

Judy, Lee, Joan. Mike, Beth, Jini, Stuart, Diane, Steve, and Lydia.

This work has been supported in part by the Natonal Science Foundation under grant number
DCR-8320136, in part by the Office of Naval Research under grant number NOOO14-82-K-0193,

znd, thanks to the efforts and faith of Steve Vinter, in part by BBN Laboratorics.

Abstract

The last few years have scen an explosion in the research and development of distributed file sys-
tems. Existing systems provide a limited degree of network transparency, with researchers gen-
erally arguing that full nctwoik transparency is unachievable. Attempts to understand and address
these arguments have been limited by a lack of understanding of the range of possible solutions to

transparency issues and a lack of knowledge of the ways in which file systems are used.

We address these problems by: 1) designing and implementing a prototype of a highly transparent
distributed file system; 2) collecting and analyzing data on file and directory reference patterns;

and 3) using these data to analyze the effectiveness of our design.

Our distributed file sysiem, Roe, supports a substantially higher degree of transparency than earlier
distributed file systems, and i able to do this in a heterogeneous envircnment. Roe appears to
users to be a single, globally accessible file system providing highly available, consistent files. It
provides a coherent framework for unitung techniques in the areas of nzming, replication, con-
sistency control, file and directory placement, and file and directory migration in a way that pro-
vides full network transparency. This transparency allows Roe to provide increased availability,
automatic reconfiguration, effective use of resources, a simplified file system model, and important

performance benefits,

Our dawa collection and analysis work provides detailed information on short-term file reference
patterns in the UNIX environment. In addition to examining the overall request behavior, we

break references down by the type of file, owner of file, and type of user. We find significant

—

vi

differences in reference patterns between the various classes that can be used as a basis for place-
ment and migraton algorithms. Our study also piovides, for the first time, information on dire -
tory reference patterns in a hierarchical file system. The results provide striking evidence of the

importance of name resoluuon overhead in UINIX environments.

Using our data collection analysis results, we examine the availability and performance of Roe.

File open overhead proves to be an issue, but techniques exist for reducing its impact.

1 Introducton ...
1.1 The Problem

Table of Contents

1.2 A Range Of SOIULONS ..ottt ettt et e
1.2.1 Uulities for File Transfer ...t
1.2.2 Transparent REMOLIE ACCESS ..c..coveeririiieireieeaniiie e etieeeteeeeresesae st te s ene e eee et e et seanese e e
1.2.3 Transparent Distributed File SYSIEMS .ooooiiiiiieociiee e

1.3 Issues in the Design of a Transparent Disiributed File System ..o,

1.4 The Thesis

2.2.1 Availability ..
2.2.2 Consistency ..
2.2.3 Performance .

2.2.4 Reconfigurability ..ot e e s
2.2.5 ReSoUrCe UUIZAUIONM 1ovvvviiiieiie et et sttt st en e st et a e e et vane e

2.2.6 Transparency

2.3 Existing Distributed File SYSIEMS oo e

2.3.1 Helix ..oeoee.
232 NFS ..o
2.3.3 Sprite
2.3.4 Andrew

2.3.5LOCUS ...

241 R*

2.4.2 Caching @nd HINLS .oooiieiiiie ettt et ettt sr s e

2.4.3 Cleannghouse

vii

00 ~1 O A LN R P =

10
10
11
11
12
12
13
13
14
14
15
16
18
19
21
23
24
24

&K

viii

2 CTOMUS ottt oottt b bt et e R e et 27
-.4.5 Structure Free Name Distibution ..o 28
2.5 Consistency and REPUCAtION ..o 28
25T INIEMAL CONSISIENCY 1oiitiiiii ettt e e et et e e oot e et 29
2.5.2 Mutual Consistency of Replicated Data oot 30
2.5.3 Relaxing Consistency REQUITEMENTS .oiiiiiiiioiii ettt 31
2.6 File System Reference PAUEIMS ..ottt e, 2
2.6.1 Long-Term Reference SIUAIES ...oooiiiiiiiiiiiiiiie e 32
2.6.2 Short-Term File Reference Studies oo 33
2.6.3 Direcwory Reference Swdies T DT O USRI PTUTIUPRURORPPRN: 3
2.7 File Assignment and MIgTation ... Kh)
271 FUR ASSIENMIENT tooiiiiii ittt ettt er et shae et e ase s re s te st s e emneetbabaessnes 35
272 Migranion AIGOMIRIMS Lo 36
2.8 Other Relevant WorK oo ettt 37
28 DISCUSSION oo oot ottt ettt et e e 39
3 The Architecture of Roe, A Transparent Distributed File System ... 41
3.1 INUOAUCHION ciiiitieti et er e ree sttt e et e st et et et e e ettt e et e s es s e eteetae e e s e eeeeaae e 41
3.2 Environmental ASSUIMPLONS ..eiiiireiriiieseteee et . 42
3.3 Goals of the Roe Distributed File System ... e 43
3.4 The RO APPrOACTR Lottt 46
Fi3 T ONVEIVICW ottt ettt et et et et et ettt ettt 46
3.4.2 File Replication and COonsiSIENCY oottt 47
3201 MOUVAUOM Lottt ettt ettt ettt e et et es et 47
3420 Internal CONSISIENCY oottt ettt et ettt et et ee s eeanee 4%
3323 MUttal CONSISIENICY wreeiiiitie ettty ettt ettt et ees 4%
3.4.3 The Global DITECIOTY .ooiiiri ittt et et ea e S2
3.4.3.1 The Soucture of the Global DIrectory ..ot e 53
3.43.2 Replicating the Global DIFECIOTYocoovieiiiiriiiei et et 58
344 The Network Mod@l e 61
345 InUal PLBOCMCNL oottt ettt et 63
3460 MUETAUON ittt ettt 66
3.4.7 Support for HELETOZCNCIIY oooiiiiiee et 69
3.5 The Architecture Of ROC oottt eree s 71
3.5.1 Organization and DiStNDULON ...t 72
F.5.2 USCT PrOMOCO] ittt ettt et eae s 76
3.5.3 11N ProtOCOIS ittt s e 81
3.6 DHSTUSSION ottt ettt e 87
3.6.1 Meeting the Goals 0f RO .o e 87
3.6.2 Weaknesses of the RO APProach ...+ oo 88
3.6.3 Strengths of the Roe APProach ... e 89
3.7 SUMIMATY ottt ettt et o1t es e e st ehe b et e ae et eae et e 90
4 Tue Roe Imiplementation ... 92
ST INITOQUCIION e 92

4.2 The Implementation EnVIiroNmMent ... e
4.2.1 The HOSUENVITONMETILS .ovveiiieiiieeiuiieeersrestietesaneemasreesiestesateesmnnseesncesiess sasnensesssesssonee
422 Interprocess COMMURICAUION ..ovuiiviiiiiiiiictit et st

4.3 The Roe IMPIZMENTALION ooioiiiiiiiiee sttt er e e
4.3.1 General APPIOACR .o s
4.3.2 Roe Server IMPIEMENLALONS 1ooviveeiuiirireeeircreneir et sttt ter et e e s sae s ssenn o

4.3.2.1 Local FlE SCIVEL oottt et san e et b e e e eee e
I e T U 61 5 OO OO U PO U SUREO U PTUUOTOTOTUOURSUP TP
G332 1.2 RIG ittt et e et sttt sa i e
4.3.2.1.3 ANO/MESA oottt ettt e eebae s

4.3.2.2 1.0Cal REPIESENLALIVE .oitieeiiiiiiriisisienii e cbesreneit e eams e eseeniessons bt saesbsssaeseensaneas
4.3.2.3 Transaction COOFGINALOT ..oviciiiiiv e ereere st esiiraniee bt e evaesaancessesnceereeraesonensaeesneenss

4.3.2.9 Local DIFECIOTY SEIVET Looveiiiiiit e crietie et e e et s s enaenae s n e

4.3.2.5 Global DIreCtory SEIVET ...ttt sttt e s e
4.3.2.5.1 INIUBHZAUOM oottt ettt en e se s vt
4.3.2.5.2 The NEtwork Model Lot e
4.3.2.5.3 File and Directory Management ..o eias s
4.3.2.5.4 Inital Placement and MIZTAUON oo e

4.3.3 What the Implementation Provides ... iccrecsinie e
4.3.4 Implementation Weaknesses and OMSSIONS ..o erce et

4.4 Implementation DICUIUES .o e
3.4.1 MUltplexed SEIVEIS it s e s
4.4 2 TPC PIODICIMIS coriiiiiictieciesiveere et et eete v s ev et e ettt s sen s en e sas s
44,2 A SOLULOM tooviiieire et iets it ettt et etb e e e e et e s eb e er e he e e ase e saesraeane st sraeare s n e e
4.4.4 Towards a Beller TPC oot e e e et
4.4.5 OLCT DINICUTLES 1oviiiiie it crercer e r st ere e se et e e e essentssaess b b samsnbe e s sannes

4.5 Performance CONSIETALONS ..cocuiiriiriiiieie ettt st e sr e seeete et e sresba s e sna e
4.5.1 HOSU PErfOrMANCE ..ovoiiieciiic ittt e sm e s s ere s
4.5.2 The Performance Of RO .oo.ivieiiiviiii e rercieereetintenc e sttt arenen s seesnsssss s s bt nees
4.5.3 TMPIDVEIMICNLS .oiiieiiiriitireertesterieeestsseessass et sts s st sieebe st s es s et sasse s e ness s e besaneb e sesatenrns

4.6 ODSEIVALIONS .oevveereetiareieeeeesirteeseerearaes e vaeseestasbs et st sans e as s et e sss e sabessssc st eas s ssebe st bsansssestesssens

4.7 SUIMMMIATY .oioieieccterite st eese et e etree st aes e eanes e eretaee e st e e sb s aese smbeatt s e et euaneaesetreabassransassarna srsans

5 Short-Te:m File Reference Patterns in @ UNIX Environment ...
5.1 INUOAUCUION .iieriiiiiieie et ereerre st e erisasbases s ab e s s er e sassrasmas e se e sh e s resrae st aeate vefon bt a e neanbeni s
5.2 Data Collection ENVITONMENLiciriiie ettt s scese e renss e sans s srnresanessaaeeees
5.3 Data Collection MCUIOA ... et sie s b sresre s seates oebbeerssansnenasaans

5.3.1 SLAUC SNAPSHOL ot
5.3.2 Logging File SySIem ACUVITY it et st e s s
S4 ANalysis Method oo e et e
S.4.1 BASIC APPrOACH oottt e s e e
S, 2 CULS oot ettt ettt oottt e et et eaesae s e ehesh et e e et et eaeen b ee st et e e st par R eraee
5.4.3 Analysis COMPLCALONS ..oiiiieiiiiieiiiivieies ce e e
S.5 Fule RefErence Patlarms oot coe ettt et st aeestr e etbe e ere s s satesab s ss e annes
5.5.1 Overall Open and Read/Wrie PAUCIS oo,

93

95
97
97
98

12
162
103
103
104
106
107
108
109
111
112
113
116
117
118
123
125
127
129
129
131
133
135
136

138
138
140
140
140
141
145
145
146
149
150
150

S.8. 1.1 BASIC SLAISUCS treriiiiieie et ettt et e e ta et e e e e e et
S5 L2 Per Open ReSullS oo e e
S S 1.3 Per FUC RESUIS sttt e r e et e s e s e et et s e e

<

S 2 EXCCULE PAUEITIS oo oooieeieietiseccieertis e ct e eeeseemteesessreeeereseree st sonnesareeeaseesasesseeaassssasseseanns

5.5.3.2 Per Open Results for User Files oo i
5.5.3.3 Per File Results fOr USET FUES ...oviiiiiireieiiiinnisre s vssesvt e vetvevstann e revseransns

5.6 Summary

6 Directory Reference Patterns in a UNIX Environment ...
6.1 INUOGUTHON L1ttt ettt et er ke eae st et st st e st e te st ste st et ssaaeeraesresareatbesseeeasansseeens
6.2 Data Collect:on MethOQOIOEY coverereeiieie ittt ettt ste et sn st er e ea eaass e e
6.3 ANAIYSIS MEUIOU .oviiiiciiiiiiie et e s sr et e e e eeteaseeb e eesatretssss e assenane e seaaeessreensentes

6.3.1 CONVENLIONS «.oiivieeeritetietiscetes ittt st er et et ass et aae st ebteter s s s et s e anse et et eseseerenrnsanansenesees

6.2 Direclory Reference PAUSITIS .ovviiviicieiiiie it eese et ete e ene e et v sneevasane e
6.4 1 BASIC S1AUSUCS toviitirieerrentieieeetineesimrireeseessestentaese st sbaessessaesssansessssssesasssssssesenssessaenas

6.4.3 Per DIrectory ReESUILS .ovoivviiciiiiiii st et ettt sae v asv et beat et e ens s e sbees
6.4.4 The High Cost Of OPCNS .ociiiiiiei ittt et ere v v et aa s st e er e s

6.5 Summary

7 Implications for the Design of Distributed File Systems i,
7.1 IRUOAUTHON ottt ettt er et et es et et et aa e s sttt eeesen s saa e s ers e ars s ese
7.2 AvallabIlity oo et et e r e er et b e s et ases

7.2.1 Availability Model ..ot b e e
7.2.2 Basic Distributed File System Availabilitycoooviiiiiiiiiciieee e
7.2.3 Adding Read/Write and Semantic Informationcccceeeiiveccveeecce e e
7.3 Reconfigurability: Initial Placement and MIgrationccc.ccocevevriioeeene e ceeseeeees
7.4 PEIfOIMNANCE ..ouiiveiieniiiietieiee et stat ettt ea s bt a s s st e s et e s ereas b ee s e e st seaasseere e

7.4.3 Implications for Other Distributed File System APproachescococovveeeieveveresieenn,

7.5 Summary

8 Summary and FUuture WOTK ...t nsr et st

8.1 Summary

8.2 FULUTE WOTK ..iiiiiiiiieiinentiiriene vt stictaanetssrestese et ssses st ebesreasassssseasaseessseasaecasensaaneesasaans enee
8.2.1 Extension and Evaluation 0f ROEcccocviet vt
8.2.2 Reference Datd COUECUONcocooviurevieeereeeerarearireerisiessevabs e st s e seeneseemeseanseennsennnsesnes
8.2.3 Initial Placement and Migration AIZORAMS (oo

Bibliography

151
154
166
173
180
181
182
188
191

194
194
195
196
196
197
198
199
203
208
216
223

225
225
226
226
22§
239
233
236
236
238
243
245

247
247
249
249
250
251

-’ — -

I List of Tables
4-1 File access times for 4.2BSD UNTX it terte st er et creensesn e aees 129
I 4-2 Message and PO MANAZEMENL COSIS woururinmmerirunieetreesmeressssssesimssssmsssesemsstosssssssssssesessones 130
4-3 Time 10 send @ SIMPIE MESSAZE .evcriuiverrieiriniieniieeriiesree e rere e esrssesreereebsereesesasessesransessens 130
4-4 Time to open an existing local Roe file, by phase of opencccovciveccevcceie e 131
l 4-5 Time 10 open an existing local Roe file, by type of aCUVILY .ovoveeeoveceereeeeeeess e, 132
4-6 Opening remote and replicated ROe fI18S ..ot e e a s 132
l 5-1 SNAPSHOL OULPUL 1ottt sttt es et et et esebessse st seseeen s enssssesareseees 141
5-2 DyRamicC J0Z SHUCIUIE ...c.oriiiierieiiis ettt ciestesrer et e se e st st sssrsesaasbeensestsseasserbesasreensasesans 142
5-3 ReCOTAS JOZEEA ..oooiiiii ittt e e e ae s st en e arae st sr et e ere e rae s e et enraanes 151
. 54 OPENS, DY ODJECT IYPE ovurvveriiearrcieisesiseeeseee s ses s ass st 152
5-5 Class and owner of opened regular fllesccivoiiieiniiinie v e ss e 153
5-6 Mode of open for OPen-ClOSE SESSIONS ...ccociiiviiiiereiiiire et ireieeerecrrereesrees s teereeveeraessenesiaens 153
l 5-7 Function of opened Perm fllES ..ot et 154
5-8 Bytes read/written for 1egular filles ..o s 158
5-9 File $12€ QISIMIBULIONS .oo.iioiicicrriireer ettt svae et eretaesrestess e s esesnseseesraneasassssssnns 159
I S-10 File sizes, weighted by number of byles readoooooevveiieiiverecrcie et e 160
5-11 Percentage read (read-only OPENS) viveeiiiiie e ctccciitesriees et sitstan et ervesraesesnessseens 163
5-12 Percentage written (WrE-0NlY OPENS) ..oiiiiviviiiieieiiereeenrrseesresenrnneneraeeresaessersessesransnensasee 163
' 5-13 Percentage read (Tead/WTIte OPENS) .oovciviiereiiieiriecriiiieeeecressesseerssesessessassessessesvessessnens 164
5-14 Percentage writlen (read/Write OPENS) c.ooiiiiviieciie e ere et ere s cs s e st see b e 164
5-15 Percentage read, by size (read-Only OPENS) ..oiicvviecieieie vt see e e sreee e ens 166
. 5-16 Percentage written, by size (WrHE-ONlY ODENS) .ovvvivieeveii i e ree e st sresseesereeseae s 166
S5-17 Number of OPens/flle ..ot sra e et e e erenas 167
5-18 Open distribution (as a function of OPENS/IE) ..oeceeceiciiiniinc s 167
. 5-19 Frequently opened INOGCS ..ooiiiiiiiviiccinieiiee et rreeraestasneses et et st esatesteesreesaaesns saaesssseess 169
5-20 OPen tmME (SECONAS) 1ovviiviiiiiies creetiieeercstcerereetereesere e e s e e st rse e enesbeetesseaenbeaeen sresesreneens 170
5-21 File interopen Inervals (SECONAS) .ovovieviriiiiiciiireceee s ere et s s st 170
. 5-22 File sharing, by file class @and OWRNETc...ccocooiniiiiinniincececcevren et e 173
5-23 Readers, writers, users and iNVErsions (NO CULS)ivvrevvecovrecoiresverereeesseessreeseeeessaeessseesnee 174
5-24 Basic aclive eXeCutable SLAUSUCS ..ovvevveriiurevreeer et st st are b e 174
I 5-25 Executable file SIZS (DYIES) ...vviviveerrieieiirnrirereeeeennercsies e sesbms s eecbsbe e sessr s eeas s 175
5-26 Number of executes/active execulable ..ot e 175
l 5-27 Execute distribution (as a function of executes/executable) ..o 176
I Xi

xii l
5-28 Frequently executed INOACS .o 178 .
5-29 Interexecute INErvals (SCCONAS) oeviviiiriiiiiiic ittt ettt es e ee e eeeeas 179
5-30 Process Letimes (SECONMS)v.orrereeveeeerssseeeeesreesesesees s seeeessseeess e eos e oo 179 l
5-31 Executable ShATINE oot ettt et 180
5-32 User opens 10 USEE fIIES uoiiuiiiiieiesr ettt ev e et ettt arene st ans 181
5-33 Modes of open for user open-close sessions L0 user filescovvvveicvieeivicicenic, 181 l
5-34 Funcuon of opened user perm files ...t e 182
5-35 Bytes read/writicn by USers 10 USET fllES ...uiiiveriiiiieeeieeerce et et s eresreeseneenees 182
5-36 User file S12€ QISUIDULIONS ..ooveiieiieinieenririetitrees e e s s srees s teretrer et st sae e sveeenessensseens 183 l
5-37 Percentage of users files read (read-only opens) ..c.occceniioiininceevenecncs e 187
5-38 Percentage of user files writien (WIte-ONly OPENS) ..ccvcerivrinreriiirccieiere s es e 187
5-39 Percentage of user files read (read/Write OPENS) .o.ocvoveiviecivieeececrcc e 187 l
5-40 Percentage of user files written (read/WTile OPENS)occoveervieveiiiemrieeieeieeeee e e 187
541 Number Of user Opens/USETr fIle ..vvrcriiieiiiicie ettt et ee et en e 188
5-42 User file interopen intervals (SECONAS) oviiiviiiviniceieeie ettt ettt e et e e 189 l
S-43 User file SN .ocooii ittt sttt es st ee et se e ss e 191
5-44 Readers, writers, users and inversions (user references 1o user files)ooovvviveeeeenns 191
6-1 RecOdS I0ZECA oottt sttt as e ss et s sa st et r s e et ones 199 l
6-2 OPENS, DY ODJECL LYPE 1oiiie ittt ettt bbb ms e s e et s e teasennabensanes 200
6-3 Palh SLALISHCS .ovveeriiieeiriesitescresesreneariescsteseteetsteeseresressenasaessraessase st sestessassossntornesssrensonssaasesns 201 '
6-4 COMPONENIS/PAR .o ettt te e e s e r et st aeae sbe st senesanenserneenan 202
6-5 REfErENCE SLALISHES ..oviviii ittt sttt e et e s sae st sme et et ese et ebe seatesentnes 202
6-6 RefErenCeS/AITECIONY ..vvvieieieiire sttt sttt e sttt e et b e ees st nt et b en s 203 '
6-7 Direclory size diStribulions (N ERLIIES) ..c..ioovviiieeeitereies s ereteteoesseoreesseeeesraenesaeseaeessaeseanes 206
6-8 Number of references/direClony ..ottt et et 208
6-9 Reference distribution (as a function of references/direclory) ..oooeeinvvccveevieriecvercenans 210 '
6-10 Frequently referenced QireCtones (N0 CUL) ...ooviiieeiiiicieiree ettt ee et eevees e saasaers e 211
6-11 Frequently referenced directories (owner_USER+ruid_USER cul) ..ccoveoveivvvecveienne, 211
6-12 Directory interreference intervals (SECONAS) ...vvvierieriireiieeeiereceeetieeereeseneesteeesessesrenes 213 .
6-13 ReadS/AITECIOTY VETSION ..covierivireieenierreritiesissetesss et ste e et st ste st as s e se st s esetsas st resesesatessasesne 214
6-14 DITCCIOTY SRATITE .vevveieiieinsireeriniesintetiseaeseeee et ereessntansasaesessetsssessssvssssesessesssssssssessesntosenseneas 215
6-15 Directory Sharing (USET CULS)icciiveriviieiesiiteceviveesrirssanrsesseesseseesassessstesasasesssessenssanessenes 215 l
6-16 Blocks accessed/path resolution (512 byle BIOCKS) cvevvcervrenirriemiieiectie e 217
6-17 Directory overhead (512 DY1e DIOCKS) oouiivivioiiienrreeinicrinerntcseseeesnarees st essessess s e ennne 218
6-18 Block counts for regular file opens, reads, and writes (512 byte blocks)ccccvrrencnnne 219 l
6-19 Blocks accessed/path resolution (4K byte blOCKS) ..c.veviirceiimeincincnrnernnrcrsseciine e 222
6-20 Directory overhead (4K byle BIOCKS) .ooviciviiieniccniseccee e s s rcecserne e srasssnsrsesons 222
6-21 Block counts for regular file opens, reads, and writes (4K byte blocks)coomvvivnnennne 222 l
7-1 Availability based on path length diStrBULIONScccovvereririeiirerrernie s e 229
7-2 Worst case availability using semantic and read/write informationcccocevecnininnns 232 '
7-3 Miss ratio vs. Cache SIZ€ (iN NOAES)ccoueveveveirieiriarrrrrerrssseise st se e sas st seesessisaesesanes 239
7-4 Miss ratio vs. cache $ize (N DYIES) Locooiriiiiieeiieieeteecee et eer e sens e 240 '

List of Figures

3-1 A ROe dIFeClOry €NMTY .oovioiieieeeeieeceneeerentrcens e cveesreesae e
3-2 The network model ..o
3-3 A machine-dependent file €Ny ..o,
3-4 Opening and reading a file ...coocoiivrrecinnieceeee
3-5 Roe component 10CALUONccoeeerreeerieceririereviienecverrsceeennes

4-1 U of R Computer Science Department 3MB network (cira 1983) .ooeveevcievveceeree e,

4-2 A port in CMU-IPC .ot
4-3 A multiplexed SEIVETcccovieeirermcrvnreresiirenrie e
4-4 Structure of a Roe file on UNIX
4-5 Structure of a Roe directory ...c.occeevvvveneinneiiicnienrenens
4-6 Initial placement of file and directory copies

5-1 Average number of regular file opens per second ("2 hour resolulion) .c..cccevevrvervenn..
5-2 Average number of regular file opens per second (715 minute resolution)cceveeeene

5-3 Bytes read from regular files ("2 hour resolution)
5-4 Bytes written to regular files ("2 hour resolution)

5-5 Bytes transferred to and from regular files (10 second resolution)ccceevevrveenenrnnae,
5-6 Dynamic file size distributions (cumulative, measured at cloSe) ...oovevvvceriveviereeeeneenene
5-7 Dynamic file size distributions, weighted by bytes read (cumulative, at close)

5-8 Percent of file read for read-only opens (cumulative)
5-9 Percent of file written for write-only opens (cumulative)

5-10 Percent of file read for read/write opens (cumulative) ...
5-11 Percent of file written for read/write opens (cumulative)
5-12 Percent of file read for read-only opens (cumulative, by
5-13 Percent of file written for write-only opens (cusaulative,
5-14 Number of opens per active file (cumulative)
5-15 Fraction of opens per active file (cumulative)
5-16 Times from file open to close (cumulative)
S-17 File interopen intervals (cumulative)ccoeveeererreennnne.
5-18 File lifetimes (Cumulative)coeeveviivveieeceiveceieese e
5-19 Version lifetimes (Cumulative)cccocvevevvncivennivennanns
5-20 Dynamic executable file size distributions (cumulative)

xiii

SIZE) toviieereeeereesinresereerneeennens
DY SI1Z€) cvvvrecrerree e,

...

63
71
75
76

93
96
100
101
105
112

155
155
156
157
157
158

161
162
162
163
165
165
167
168
169
170
171
172
175

Xiv
5-21 Number of executes per acuve executable (cumulalived e 176
5-22 Fracuon of executes per active executabl? (CUMUlRUIVe) oo 177
5-23 Fule interexecute intervals (CUMUIALIVEY oot e s e e sene e 178
S5-24 Process Letimes (CUMUIBLVE) oo e e oot e oo e e e e e 180
§-23 Average number of file opens per sccond (72 hour resolution, U €ul) woeeveeeceveceeenn, 183
5-26 Dynamic file size distributions (cumulauve, measured at close, U cul) .oovvvvvveeieveecnn. 184
5-27 Percent of file read for read-only opens (cumulative, U cul) .o 185
5-28 Percent of file written for write-only opens (cumulative, U cul) oveeeeeeevereveeeeeen. 185
5-29 Percent of file read for read/write opens {cumulative, U CUL) ooovvecrreeeeeeeeeeieea 186
5-30 Percent of file written for read/write opens (cumulative, U cUl) covveeeeeeeeeeeceereeeeeenee. 186
5-31 Number of opens per active file (cumulative, U Cul) .ovovvveoiiciiieece e 188
5-32 File interopen intervals (cumulative, U CUL oo 189
5-33 File lifetimes (CUmMulative, U CULY oot e ee et s e eae e e et e essr e e eeaaeseseesteesaanesnasens 190
5-34 Version lifetimes (Cumulative, U CUL) oo e ee e ve e e vaane e e 190
6-1 Directory references per second (T2 hour resolution) ...oviviciiiicii et 204
6-2 Dircectory references per second (T2 hour resolution, user CULS) woovvveriveiovveeeree e, 205
6-3 Size of referenced directories (Cumulative, IN ERITIES) uovviiceiiveeiiieeee e e eeree e 205
6-4 Size of referenced directories (cumulative, in entries, USET CULS) wovievreeeriireeeeeeeeeeeeeeerana 207
6-5 Number of references per directory (CUMUBIAUVE) ..oooviiivie ettt 207
6-6 Fraction of references per direciory (Cumulative) ..oo.oociiviieceieeen e e 209
6-7 Number of references per active directory (cumulative, USEr CULS) voovvvvvveiiivecrieirreennne. 209
6-8 Directory interreference intervals (CUmMulalive) oo 212
6-9 Directory version lifetimes (CUMUIALIVE) ..ttt eeee e 212
6-10 Reads per directory version (CUMUIAUVE] L....ocooiiiiiiiiiiie e e ste et st seest e en e : 213
6-11 Reads per directory version (Cumulative, USEr CULS) oviveriiuieieireeeeie e ereeseeneeenen oo 215
6-12 Path resolution cost (cumulative, 512 byte BIOCKS) tviveiiieniireet et eeee oo 217
6-13 Name resolution overhead for file opens (cumulative, 512 byte blocks) wcoovecrvreninnenee. 218
6-14 Path resolution cost (cumulative, 4K byle BIOCKS) .oovvvivecriiercericne et 220
6-15 Name resolution overhead for file opens (cumulative, 4K byte blocks) ...cccooveverveennnnn. 220
6-16 Path resolution cost (cumulative, 4K byte blocks, USEr CULS) .vovvverveeviivececeevectee e 221
6-17 Name resolution overhead for opens (cumulative, 4K byte blocks, user cuts) ..oooee...... 221
7-1 Availability based on path length diSTIDULONSoovvvieiiieeeiee et 228
7-2 Availability based on path length distributions, @ > 0.9ccoovivniieniinene e 230
7-3 Worst case availability using semantic and read/write informationc.cecevevveenvennnn 231
7-4 Worst case availability using semantic and read/write information, a > 0.9c..cc...... 231
7-5 Whole directory cache ffECUVENESSocviueriiececeiererime et s e aes s s evaasene 239
7-6 Whole directory cache effectiveness (USET CULS) .oovicivuecviuieeerieiei vttt 240
7-7 Whole directory cache effectiveness (byte size lIMit) ..ooooiiceriiineieioniene s 241

Chapter 1

Introduction

1.1. The Problem

Recent years have seen a dramatic decrease in both the cos' and size of computer systems. This
has encouraged the proliferation of local area neiworks (LANSs) of small machines. With this
trend has come the problem of sharing informauon among users of these machines. The problem

of file sharing, in particular, i1s one that all such networks must address.

It is not enough to provide users with the means to specify and access files on remote machines.
The complexity introduced by the distribution of computing resources and files will quickly
overwhelm users unless we provide a mechanism that allows simple abstractions of the environ-
ment o be constructed. In addition, this mechanism should allow users to make effective use of
the resources available, and to take advantage of the distributed nature of the environment. Our
approach 1o achieving thesc goals, a highly network transparent distributed file system, is the sub-

ject of this dissertaton,

The remainder of this chapter provides an introduction to the problem of sharing files in a LAN, to
transparent distributed file systems, and to this dissertation. Section 1.2 maps out the range of

solutions that can be used to address the problem and argues that a highly transparcnt distributed

(8]

file system 1s, in general, the preferred solution. Section 1.3 presents the major issues that arisc in
designing such a file system. Sections 1.4 and 1.5 describe the approach used in our work and

summarize the rest of the dissertaton. Section 1.6 explains the significance of our results.

1.2. A Range of Solutions

1.2.1. Utilities for File Transfer

Perhaps the simplest solution for dealing with file sharing in a network 1s 10 provide utilities that
allow users to explicitly copy files from machine to machine. Two examples of file transfer uuli-

ties are the fip command (used in the Intermet environment [Postel 82}) and the rcp command

(used between BSD UNIX' systems [Quarterman 85)).

There are a number of problems with this approach to file sharing. It requires that users know the
hosts on which their files are located and that their applications run on these hosts. It makes it
difficult to organize files, as they may be scatiered across a number of hosts. Moving files (10
avoid downtime, load balance, and so on) rcquires knowledge of the hosts and resources available
on the network. In a heterogencous environment, users see several different naming conventions
and file transfer protocols. Given the ability to transfer a file, users frequently react by spreading
copies throughout the network to increase the file’s availability. This raises the difficult problem
of keeping these copies consistent or, if they do become inconsistent, the problems of locating the

most current onc and reconciling conflicting changes.

1.2.2. Transparent Remote Access

A more sophisticated solution to the problem of file sharing in a network is to provide transparent
access 1o files on remote machines. By transparent access we mean that filcs on remote machines
arc accessed using the same techniques used for local files. One approach for achieving this is to

allow a host or other device name 10 be explicitly included in a file specification, and to have

YUNIX 15 a trademark of AT&T Bell Laboratories.

7]

lower lavers route the call to the appropriawec host. VAX/VMS and RIG [Ball 76] suppo:t this

approach.

An alternative commonly used in the UNIX environment is to provide a way 1o patch a remote
naming tree into the local naming tree. This allows remote files to be accessed by users without
necessarily being aware of the existence of these remote hosts. This approach is used by Sun's

NFS [Lyon 85] and AT&T's RFS [Rifkin 86].

The major advantage of transparent access is that it can, with a careful choice of naming conven-
tions, aliow a user to run applications and access files independent of relatve user and file loca-
uons. In the casc of systems (such as NFS and RFS) that make the remote naming tree an exten-
sion of the local one, it allows users to take advantage of the file resources of a netvork without

generally needing to know the details of their location.

There are a number of serious drawbacks e this approach, though. Binding sections of the nam-
ing tree to a host mcans that the resources available 1o users of that tree are limited to those on
that machine. Limitations in storage space and processor capacity crop up in unexpected places,
and reconfiguration to cormrect problems is difficult. A more serious drawback is decreased avail-
ability due to machine crashes and other faults. The availability of an NFS-style system will most
likely be less than that of a host running alone, as users will generally require access to multiple
machines to perform their work. In addition, users lose the ability to replicate important files on a
number of different machines. The ability 1o replicate critical resources to improve availability is
a key advantage of networks over single site systems. A solution that takes advantage of the

potential benefits of distribution is needed.

1.2.3. Transparent Distributed File Systems

A solution 1o the problems described in the last two sections is to provide users with a network
transparent distributed file system. By network transparent we mean that the distributed file sys-
tem (DFS) allows users to crecate and access objects with no constraints due to the name, the loca-

tion of the user and ohject, and with no knowledge of the underlying systems. M= Rocie gort e

10 preserve the abstraction of a single, shared file svstem across the network.

A maior benenit of this approach is that 1t frees users from the need to understand the detaiis of
the underlying nctwork, and so allows them to develop a simpler model of their environment.
Uncoupling name from location allows the underlying system to be adapted to changing demands
by transparently adding or removing storage and to improve performance by adjusting the loca-
tons of files to march requests. Further, this uncoupling allows files 10 be replicated and distrb-

uted to enhance availavility.

1.3. Issues in the Design of a Transparent Distributed File System

There are a number of issues that arise in the design of a distributed file system. For example,
what is the model of the file system that will be presented to the user? If a decision is made o
give the user the view that a single file system exists, how do we support this view? What actions
arc taken if failures or resource limitations make it difficult to maintain this view? Arc there ways
that we can minimize the occurrence of these problems? How do we suppon such a file system in
a heterogenzous environment? What is the coupling between names and objects stored in the file
system? How are objects located? What effect do architecwral decisions have on availability and
performance? If the DES supports replication, do we insist on consistency? Are these decisions

dependent on the characteristics of the underlying hosts and network?

The last few years have secn an explosion in the rescarch and development of network transparent
DFSs that address many of the issues we have listed here. These efforts have been hampered by
two factors:

(1) Limited understanding of the range of possible solutions to problems in DFS design and

of the interactions of these solutions.

(2) A lack of undcrstanding of the ways in which file systems are used

There exist a wide range of solutions 1o various individual problems that a network transparent

DFS must solve. Examplcs include numerous algorithms for naming. consistency control, file

placement .nd file migrauon. For the most part, however, these solutions exist in isolation. There
is little knowledge of how they would interact 1n a fully transparent DFS. Distributed file systems
that do exist have abandoned one or more of the aspects of transparency in order to simplify
design. For example, LOCUS [Walker 83b] wakes the approach of gluing together the name
spaces of existing hosts (with addiuonal mechanisms for hmited replication), and so provides
access transparency, but only limited location transparency. The IBIS file system [Tichy 84], on
the other hand, supports its own name space and so can provide location transparency, but does

not guarantee that users at different Iocations will see consistent versions of files.

Further, most existing svstems have been designed for a limited environment. In parucular, there
has been little attempt by DFSs 1o accommodate heterogencous environments. The rapid evolution
oi computer hardware and software, the proliferation of special-purpose machines, and the contin-
ued growth in the use of networks are all factors that encourage heterogencity. DFSs that arc
designed for heterogeneous environments are faced with the problem of accommeodatng the

differing capabilitics and needs of the underlying sysiems.

Because of the modest transparency goals and environmenta! limitations of current systems, there
is no real understanding of the interactions of solutions that can be used in a transparent DFS, and
of the range of applicability of these solutions. Nor is it clear 1o what extent the various aspects

of transparency are realizable.

Evaluating the effectiveness of a DFS design and implementation requires knowledge of the ways
in which it will be used. There is, unfortunately, very litle detailed information available on the
usage patterns for a DFS, or even of single site file systems. In particular, most DFSs currently in
existence use a hierarchical directory system modeled after that used in UNIX, but there are no

data available on directory reference patterns.

1.4. The Thesis

Our thesis 1s as follows:

Full network transparency in distributed file systems offers significant benefits.
These benefits include increased availability, more effective use of resources, the
ability to adapt to changing demands, transparent reconfiguration to adjust to
changes in resources, a greally simplified file system model from the
user/application point of view and, with careful design, enhanced performance over

other DFS approaches.

Distributed file system designers recognize that there are desirable aspects of network tran-
sparency, but have generally argued that heterogencity, complexity, performancc, availability, and
autonomy issucs make full network transparency unachievable. Some have used these issues 1o
argue against any sort of network transparcncy. The lack of understanding of design choices and
of usage patterns described in the previous section makes resolving these conflicting points of view
difficult. In this dissertation we address this lack by:

(1) Designing and implementing a prototype of a highly transparent DFS.

(2) Collecting and analyzing data on file and directory references from a large UNIX sys-

tem.

(3) Using these reference patierns 10 analyze the effeciveness of our DFS design.

As part of the process of designing a highly transparent DFS we investigate solutions to the vari-
ous problems faced by a DFS, and examine the interactions of these solutions. This process
extends our understanding of the range of possible DFS designs and of the tradeoffs between vari-
ous designs. The resulting file sysicm design meets the transparency guidelines of our thesis. The

prototype implementation validates the design and provides further insights.

The collection of usage daw from a UNIX system gives us data on file reference patterns and, for

the first time, data on directory references in a hierarchical file system. Analysis of these data

provides detatled information on file system usage.

Finally. the results of the dawa analysis are used to evaluate our DFS design and to provide guide-
lincs for future designs. This provides further understanding of the applicability of various design

alternatives available for DFSs and demonstrates the validity of our original thesis statement.

1.5. The Remainder of the Dissertation

Chapter 2 presents a survey of related previous work. We start by examining existung distributed
file svstem work, parucularly as it relates to our goal of full network transparency. We then
examine work in areas that are relevant to transparent DFS design. The areas we survey include
network naming, mutuzl consistency algorithms, file placement, file migraton, and file and direc-
tory reference studies. Based on these surveys we describe arcas where significant work remains

to be done.

Chapter 3 presents the design of Roe, a highlyv transparent distributed file system. We start by
presenung the goals of Roe {in terms of our earlier thesis statement) and describe the environmen-
tal assumpuons made by the svstem. We then present an overview of the general architectural
principles used in designing Roe, and describe the techniques and algorithms used. Our general
approach is o integrate existng solutions wherever possible, extending and adapung where neces-
sary. while maximizing transparency. We include here a discussion of the interaction between the
various solutions chosen, and how these interactions drive the choice of algorithms and the archi-
tecture of the system. Given this higher level background, we move on to describe in detail the
architecture of Roc. We end the chapter with a discussion of the strengths and weaknesses of the

approach used by Roe, and evaluate the extent 1o which Roe meets our goals.

Chapter 4 describes a prototype implementation of Roe on UNIX, RIG, and Xerox Altos. The
implementauon validates the design presented in Chapter 3 and demonstrates the feasibility of the
Roc approach. We start by describing the three environments and the implementauon of Roe in

cach of these environments. We then discuss difficultics that arose during the implementation

irarte e an the area of 1PC pnontives) and miake sugeestons for how those difticulties could

Jlrosasd i tuture ssswms, The remainder of the o

127 presents some figures on the per-

forman.e of Rov and discusses the strengths and weaknesses of the miplementanion.

In Charor S we tum our consideraton to the issue of file svstem usage pattens. We start by jus-
Gl nead tor data collecnion, and then desenbe a kernel tracing package, implemented under

N

BT NING that wedlecis the required data. The rest of the chapter presents the results of an

[N
1o

analoss el il reterenos patierns on 2 large S.2BSD UNIX sysiem supporuing university research.

The analvaes nddudes o breakdown of the daw into classes based on file twpe, file owner, and file

ool T caly wnew e b bsolate varous parts of the e sysiem and user commumity, and are
e b undensian s the source of references und predicting the behavior of various DES
Croarnor s Conunues U sady of reference patterns, turning o the assue of directory reference pat-
- Loowork preceniad here confirms earhior congectures [Ousterhout 831 on the importance of

fat fosciunon overhead i UNIN-Like hierarchica) file svsiems, and provides a bavs for analve-

1o nars sorsee i embated Gle svstems,

Charier 7 ouses the results of our analvsis of fiie and directory reference patterns 1o nvestigate
sore peges an supportne UNIX using distnbuted file systemis such as Roe. We siart by eaamining
the avaclubibny that one can expect with simple repheation echmgues, and how this avadabihity
mas heancreased by makeing use of information on cxpected usage. Next we consider the imphica-
unns cur measurements have for file placement and migrauen algorthms. Finally, we then wm

our auenuon to the PCTfumexnCC (SSUCS our megsurements rand.

Chaptor 8 bnefly summarizes our results and presents suggestions for future work.

1.6. The Significance of This Work

Thiv disseraton advances the ficld in a number of sigmbicant ways

It describes the design and implementation of Roe, a Mghly transparent distributed file system.
Roe supports a substantially higher degree of transparency than earher distributed file svstems, and
1s able to do this in a heterogencous environment. Roe provides a coherent framework for uniting
techniques in the arcas of replication, consistency, file and directory placement, and file and direc-
tory migrauon. It provides the information necessary to allow these techniques to work

effectvely,

A pant of the process of designing Roe we investigate solutions 1o the various problems faced by
a DFS. and examine the interactions of these solutions. This process extends the understanding of
the range of DIFS dexigns and of the tradeoffs between various goals and techniques The resultant

desrgn and the analvsts of 1ts implementaton also extend this undersanding.

Ancther ssgnificant contribution of this dissertation is the collection and analvsis of file and direc-
tony reference patterns. This work as novel in several respects. It s by far the most detailed study
of short torm UNIX file reference patterns that has been done 1o date. It is alzo the only study we
have seen that examines the differences between importamt user and file classes. In addiion 10
examining the overall request behavior, it breaks references down by the type of fiic. owner of file,
and type of user. Knowledge of the substantial differences between these classes will be useful in

designing future DFSs and can be used to analyze current DFSs.

In addivon, ours 1s the only study we have seen that collects and analyzes information on direclory
reference patterns. Our results confirm earlier speculations on the importance of name resolution
overhead in UNIX environments and provide information necessary to design algorithms that

mimmize this overhead, both in single site and distributed file systems.

Finally. the dissertation describes the use of the file and directory reference resulls to study nam-
ing. avatlahtlity, performance. caching. replication, and inival placement issucs in DFSs. These
studies provide further understanding of the range of applicability of DFS designs and of the tech-
nigues we have used. In additon, these studies demonstrate the validity of the highly network

transparent approach used by Roe.

Chapter 2

Previous Work

2.1. Introduction

There has becn a considerable amount of work done in distributed file systems and related areas.
A substantial body of literature, along with a handful of implementations, exists. While many of
these systems provide transparency of one form or another, none has pursued it to the extent that
we desire, and there is himited understanding of many of the key issues and tradeoffs. In this

chapter we survey previous wark and describe how our work fits into the existing framework.

Section 2.2 presents terms and metrics that we will be using to evaluate distributed file systems.
Section 2.3 describes a number of existing systems and characterizes them using the metrics
presented in section 2.2. The following sections review previous work on issues related to the
management of data and resources in a distributed system. The areas surveyed include naming
(secion 2.4), replication and consistency (section 2.5), reference patterns (section 2.6), and file
placement and migration (section 2.7). Szction 2.8 briefly surveys other rclated work. In section
2.9 we summarize what we perceive o be the weaknesses of previous work and describe the gen-

eral approach we will take in addressing these weaknesses.

10

” @ ==

11

2.2. Terms and Metrics

Many measures have been used in the literature 10 characterize and evaluate aistributed file svs-
tems. Examples include availability, consistency, transparency, and performance. Definitions of
such terms in the literature arc often vague and contradictory, or are expressed in a way that
reflects most favorably on the system being described. While it is not always possible to avoid
this latter form of bias, it is important, when comparing DFSs, to clearly define the basis of

evaluation and to state its limits. This is the purpose of the remainder of this section.

We will be using the following terms and metrics in our description of DFSs in section 2.3, in our

charactenization of Roe in Chapter 3, and in evaluations in Chapter 7:
e Availability
« Consistency
* Performance
+ Reconfigurability
» Resource vulization

¢ Transparency

The intent of this set of measures is 1o capture and quantify, where appropriate, key distributed file
system propertics. These measures have all appeared in the literature in one form or another (sce,
for example [Watson 81, {Salzer 79], [Cheriton 84), [Lantz 86], [Walker 83a], [Nclson 88]).
However, this is the first time that they have been considered together as a means of evaluating

DFSs.

2.2.1. Availability

Availabihty 15 a measure of the ability of a DFS to provide service despite failures in the underly-
ing hardware. We define availability as the fraction of valid user requests that are successful.
Here a valid request is one that could be expected w succeed if all components of a DFS were

accessible. For example, enumerating a directory and opening files that are not in usc arc vahd

requests. Attlempung to open a file with conflicting access is not a valid request,

Cur measure of availability focuses on the behavior of a DFS in the presence of faults. It does not
address the 1ssue of operations which fail because of concurrency control and other algorithmic
sources. Performing a detailed evaluation of the availability of a DFS requires both knowledge of

usage patterns and a model of failures. These issues will be addressed in Chapter 7.

The term reliebility is sometimes used in place of availability in the literature.

2.2.2. Consistency

Consistency, for our purposes, is taken t0 mean that the results of operations are prediciable, and
that all users sec the same result. In particular, write operations either compleicly succeed or fail
without a trace, and later reads show the result of the successful write operations regardless of host
failures, network partitions and so on. These two aspects of consistency are often referred to as

atomicity and serializability (section 2.5).

The consistency of a DFS can be characterized by enumerating the conditions under which these

properties hold.

2.2.3. Performance

There are two aspects to performince:
(1) Throughpui: The average rate at which sequences of operations (such as opening a file
or reading a block) can be performed.

(2) Laten:y: The mean ume that it takes for a single operauon to return a result.

In either case, the result is dependent on the operation requested, on the underlying OS and
hardware resources, on the configuration of the DFS, and on other operations in progress. Arriv-
ing at accurate performance figures and understanding the effects of architectural decisions
requires both conuolling these factors and having an understanding of the usage pattemns presented

o a DFS.

2.2.4. Reconfigurability

Reconfigurability is a measure of the ability of a DFS 1o adapt to changing usage patterns, to
failures, and to changes in the configuration of the underlying networks and hosts. Examples of
reconfiguration include moving files or requests between hosts to balance resource utilization,
incorporating new resources, and rerouting requests to failed components. Factors that influence
the reconfigurability of a DFS include the granulanty of movement allowed and the information

available 10 aid in decision making.

We will characterize the reconfigurability of DFSs in terms of the granularity of reconfiguration

supported, the effectiveness of load balancing algorithms, and the types of failures handled.

2.2.5. Resource Utilization

A distributed file system makes use of disk, network, and CPU resources in servicing requests.
Minimizing and balancing demands on these resources allows a DFS 1o support more users, or can
decrease the impact of a DFS on other applications, We use the measure resource utilization 10
capture this aspect of DFS operaton. We will be characterizing the resource utilization of DFSs
in one of two ways:
(1) Usage as a fraction of the wotal resources available on a host for each type of resource
nceded. Resources of interest include disk storage, disk bandwidth, network bandwidth,
and CPU cycles.

(2) Usage relative to that of a simple central file server implementation.

The first measure provides useful information on botilenecks in a design, and on the effect it will
have on other users of these resources. The second can be used to estimate the rescurce cost of
various architectural and implementation decisions (for example, the resource overhead of distrib-

uted locking or of data replication).

14

2.2.6. Transparency

A transparent DFS is one that allows objects o be created and accessed by a user without con-
straints on the name, the locauon of the user or object, and with no knowledge of the
configuration of the underlying system. Transparency has been decomposed as foliows
[Walker 83a}:

o Location transparency. The name of an object does not determine its location.

e Name transparency: The meaning of a name is independent of the user's site.

« Semantic transparency (also referred to as semantic consistency): The meaning of an

operation is independent of the site from which the request is issued.

Other aspects of transparency that may be used to characterize DFSs include:
o Access transparency: Objects may be accessed in the same way independent of location.
o Failure transparency: The masking of failures that occur during use of the DFS.

« Implementation transparency. The method or results of accessing an object do not

depend on the implementation of that object or of the resources used 10 support it.

The aspects of transparency that we have outlined here impact on the other measures that we have
described. For example, limits on name and location transparency will typically affect the
reconfigurability of a DFS, and limits on implementation transparency may in turn limit the tech-
niques used to improve availability. For each of the DFSs presented in section 2.3, we will
describe the architectural features that affect various aspects of transparency and also describe,

where possible, how this affects other measures.

2.3. Existing Distributed File Systems

This section surveys existing distributed file systems. We do not attempt to provide a complete
enumeration of existing DFSs, but rather present a handful that arc representative of the
approaches that have been used. We emphasize DFSs that attempt to address the transparency,

availability, reconfiguration, performance, and user model aspects of our thesis statement.

bt
wm

2.3.1. Helix

A common view of distributed systems is as a collection of services that are available to user
applications. This model (often referred 10 as the client-server model), leads to the notion of file
servers that are relatively independent of clients. These services provide fhle and block storage.
Some also provide support for directory structures. Helix [Fridrich 84] is a distributed system that

incorporates one example of such a file service.

Helix is organized as a collection of servers that provide capability-based access to objects under
their control. Servers manage volumes, which are logically autonomous units of storage. There is
typically a one-to-onc correspondence between a volume and a physical disk. Volumes contain
files and directories. Files contain uninterpreted data that may be read and written by clients.
Directories arc repositories of capabilities, and allow users 10 associate names with files and other
directorics. Capabilities encode information on object location and access control. The intent is
that volumes be highly autonomous, so capabilities in a directory refer to objects on the same

volume (no cross-linking is allowed).

Helix supports atomic transactions that may include files on multiple volumes, with two-phase
commit protocols being used 1o ensure consistent results (section 2.5). One writer/multiple reader
locking is used for concurrency control, with the addition of support for access to snapshot copies

of a file [Fridrich 81).

From a client’s point of view, the effective availability of Helix 1s the probability that all Helix
servers that the user needs are accessible. There is no support for increasing availability by repli-
cating important resources. This would be difficult in the current architecture, given the require-

ment that directories refer to objects on the same volume.

This requirement, along with the location-dependent capabilities used by Helix, means that names
at both the pathname level and capability level are not location transparent. Objects must remain
on the server where they were created. This eliminates any possibility for reconfiguration. On the

other hand, this approach ensurcs that if a server is accessible, all objects on it will also be

16

accessible.

Two svstems that take an approach similar in spirit 1o the one used by the Helix file service are
the Cambridge File Server (Birrell 80, Miwchell 82] and the Xerox Distributed File System
(XDFS) [Miichell 82, Stwurgis 80). The Cambridge File Server is also capability-based, but 1is
optimized for fast, simple transfers and only supports atomicity on a single file basis. XDFS was
designed w0 support database research. It provides byte-level locking and extensive facilities for

transaction management.

Svobodova surveyed a number of server-based systems [Svobodova 84] and discussed desirable
charactenistics of such systems. Her conclusions were that a high level of abstraction, atomicity
across multiple files, integration of local and remote storage, and replication are uscful file server

propertics.

2.3.2. NFS

One alternative to a server-based approach is to patch remote directory trees into the local name
space. This allows the same access methods to be used independent of where a file is located
(access transparency). Sun Microsystem’s NFS {Haich 85, Kleinman 86,Lyon 85] is an example

of such a DFS.

NFS allows UNIX file systems on remote machines to be “‘mounted’ in a local UNIX directory,
in the samc way that local file systems may be mounted. These remote file systems may be
mounted at an arbitrary point in the local naming tree, and then are accessed by the user with
most of the same operations that would be used 10 access local files. Each kerncl maintains a
mount table that describes where in the naming tree file systems are mounted. File sysiems are

generally mounted as part of the boot sequence, although they may also be mounted manualiy.

When a request to access a remote file is made, the local UNIX kernel contacts the remote kernel
to read the appropriate blocks. The local kernel maintains a cache of blocks read to minimize

server traffic and 1o increase performance. Updated blocks are also cached locally, and cventually

17

(within 30 seconds) wrilien back to the remote host. NFS uses staieless protocols to decrease
complexity and to simplify crash recovery. No state (beyond caching 1o improve performance) is
maintained on the remote host, and so concwrency control is not supported by NFS. Applications
requiring concurrency control for NFS files either implement it themselves or use a separate lock

management service.

NFS can, with a careful choice of naming and mounting conventions, provide name transparency
for most files (the root file system and some administrative file systems are always local to a host).
This, combined with the access transparency described earlier, allows a user to run applications
and access files independent of relative user and file locations. Users can take advantage of the

file resources of other hosts without needing to know the details of their location.

NFS does not, however, provide complete location transparency. A UNIX file system provides
support for a complete subdirectory of the naming tree (excluding other file systems that may be
mounted in this subtree). All files in the subtree reside on this file system, and so are bound to the
host (and disk) supporting the file system. Binding sections of the naming tree 1o a file system
m~ans that the reseurces available to users of that ee are limited 10 those on that file system.
Limuations in storage space and processor capacity can crop up in unexpected places.
Reconfiguration to correct problems or improve performance is difficult, because of both the

forced grouping of files and the relatively static nature of the mount table.

The stateless server approach used by NFS allows it to provide limited failure transparency. If a

server fails, clients are simply suspended until the server is available again.

The availability of an NFS-style system is less than that of a host running alone. Users will gen-
erally require access to muliiple machines 1o perform their work. The effective availability is the

probability that all required machines are accessible.

Consistency (or rather, the lack of it) is also a problem in NFS. NFS delays writcback of updated
cached blocks to improve performance. This allows transient cache inconsistencies 10 arise, and so

users on different hosts can see inconsistent data. The stateless nature of NFS protocols precludes

18

the incorporation of concurrency control mechanisms into NFS.

AT&T's RFS [Hatch 85,Rifkin 86] and COCANET (Rowe 82] also take the approach of mount-
ing remote file systems into a local UNIX naming tree, although both of these DFSs forward

requests to remote systems and maintain state in order to retain UNIX semantics.

2.3.3. Sprite

Sprite [Nelson 88, QOusterhout 88] is a network operating system being doveloped for the SPUR
multiprocessor workstation. Sprite provides users with a UNIX-like environment, including a file

system that may be shared among machines.

The Sprite file system 1s organized as a collection of domains. Domains are similar to Unix or
NFS file systems in that each domain implements a subtrec of the name space and all files in a
domain reside on a single server machine. Each client kernel maintains a prefix table that pro-
vides hints on the server supporting a subtree. Lookup proceeds by finding the longest prefix
matching a given filc name and then forwarding the remainder of the name to the server support-
ing the prefix. Special remote links are used 10 mark domain mount points. If the location of a
scrver isn't known or if the prefix table entry for a prefix is invalid (because the domain has
moved or been replaced), the client kernel broadcasts the prefix to all servers. The server manag-

ing the tree replies and the prefix table is updated. This allows domains to be moved dynamically.

A major focus of the Sprite file system is caching. This was prompted by the continiued growth in
workstation memory size, and by a study showing the performance benefits possible with even a
moderate-sized file cache [Ousterhout 85). The Sprite file system, like NFS, uses main memory
block caching at both remote servers and clients. Sprite, however, guarantees that all uscrs access-
ing a file simulaneously will sec a consistent view of the data in the file, even in the presence of
caching and multiple concurrent writers. Sprite client kernels contact the server supporting a file
on every open and close of that file. This is to both validate locally cached data and to allow the
server 1o detect concurrent sharing of a file. If the server finds that an open for write is requested

v hile other clients are using the file, it disables client caching on the file and forces all operations

S R TN S I ST Ay R S -

19

10 be forwarded to the server. This allows the server (o en<ure consistency,

The Sprite file system maintains a considerable amount of state for ongoing opecrations at remote
servers. This allows Sprite to provide richer semantics and more efficient operatuon than NFS, but

also results in Sprite not having NFS's failure transparency.

As with NFS, the availability of Sprite is simply the probability that the required servers are up.
Prefix tables can allow Sprite to continue operation in some cases even if the server supporting the
root domain is unavailable. Sprite guarantees name transparency, since domains are mounted in
the same place in the tree by all clients, and there are no local domains corresponding to the local
file systems in NFS. The dynamic nature of prefix tables allows domains to be moved from server
to server, but the requirement that files in a given domain be moved together limits the

reconfiguration possibilities here.

2.3.4. Andrew

Andrew [Morris 86] is a computing environment intended for large scale networks of personal
compulers. An important part of this environment is the Andrew filc system
[Howard 88.Satyanarayanan 85]. This file system supports a UNIX-like naming tree composed of
file systems local 10 the client machine (referred to as Virtue) and a global name space supported

by dedicated Andrew servers (collectively referred to as Vice).

The structuring primitive in Andrew is the volume. Each volume supports a subtrec of the overall
global naming tree. All files in a volume reside on the same server. Each Vice server maintains a
Volume Location Database that dynamically maps volumes to servers. This allows volumes to be
moved to balance server utilization and disk consumption. Studies of an earlier version of Andrew
showing that utilizaticn varied by as much as 5:1 from server 10 server demonstrate the importance
of having this capability. Volumes in Andrew are typically dedicated to one user and may grow

and shrink in size depending on the disk space available on a server and on the needs of the user.

_

As with NFS and Sprite, Andrew relies heavily on caching. However, Andrew caches on-disk
instead of in memory, and caches whole files instead of on a block basis. Caching on disk allows
the cache 10 be larger and to survive crashes. Whole file caching limits the size of files that may
be accessed by a client, but UNIX files are generally small and so this is usually not an 1ssue.
The decision to cache whole files was mouvated by the desire for a system that would scale to
large numbers of users. Whole file caching allows interactions with Vice servers 1o be minimized.
When a file residing in Vice is opened, Virtue caches a copy on the local disk and then directs all
further operations to the cached copy. When a file is modified, all work is done locally and then a
copy of the updated file is stored back on Vice. Clients caching a copy of a file assume that the
cache is correct. Vice keeps track of where copies of a file are cached and notifies clients to
invalidate their cache if the file is updated. This mechanism doesn't guarantee consistency if a file

is used concurrently by multiple clients, but it does support consistency for serial access.

Performance comparisons between NFS and Andrew show that Andrew suffers from higher latency
at low loads, but performs much better at high loads, and so can support more users per server.
Both of these characteristics are due to the use of whole-file caching. Resource utihzation of the

network, server CPU, and server disk bandwidth are all lower for Andrew.

The Andrew file system supports the replication of rcad-only volumes. This can be used to pro-
vide higher availability for volumes containing system executables and other slowly changing files.
There 1s currently no support for replication of read-write volumes; the availapiiiiy of thes

volumes 1s that of their server.

The *‘serial access’’ consistency provided by Andrew is somewhat stronger than that provided by
NFS, but weaker than that provided by Sprite. Andrew provides name transparency for files stored
in Vice but not for files in file systems local to a client. The volume structure used by Andrew
provides for a higher degree of reconfigurability than NFS, despite the limitations on location tran-

sparency imposed by the need for all files in a subtree to reside on the same volume.

The Cedar File System (CFS) [Gifford 88] also caches on a whole file »asis. The primary use of
CFS 1s w0 support program development. Concurrent file update is extremely rare in this environ-
ment and developers arc usually interested in a static snapshot of a set of files. Because of this, it
is reasonable for CFS to support only immutable files (files that cannot be changed once created).
Updating an immutable file results in a new file being crecied. This neatly sidesteps cache con-

sistency problems.

CFS supports the replication of immutable files on a directory-by-directory basis. This is done
using a background daemon that periodically copies files added to a directory to replica servers.

The immutability of files makes this a relatively simple process.

2.3.5. LOCLS

The LOCUS distributed operating system [Walker 83a, Walker 83b] emphasizes network tran-
sparency, availability, and performance on a local area network. Work has also been done o

extend LOCUS 10 the Internetwork environment [Sheltzer 85).

LOCUS is an extension of BSD UNIX, and so supports a UNIX-like hierarchical file system. The
file system is organized around logical filegroups. Logical filegroups resemble UNIX file systems,
in that each one implements a subtree of the global file space. These subtrees are glued in place
using the UNIX mount mechanism. The resulting mount table i stored at each host in the net-

work and is used in pathname resolution and file opens.

LOCUS allows files to be replicated to increase availability. To support replication, LOCUS asso-
ciates onc or more physical containers (UNIX file systems) with each logical filegroup. A file or
directory in a logical filegroup may be present in any subset of the containers for its filegroup.
Access o files in a logical file group is synchronized by the current synchronization site (CSS) for
the file group. Updates arec made 10 a copy of the file selected by the CSS and then propagated to

the rest of the copies. Updates 1o a file are atomic.

LOCLUS guarantees consistency of replicated files and directories in the absence of partitions. If a
parution occurs that splits the physical container for a file group, CSSs for the filegroup are esta-
blished in each partiuon. This ensures the availability of the file group in both partitions, but may
allow inconsistencies to arisc. LOCUS guarantecs that inconsistencies resulting from updates dur-
ing partiioned operaton will eventually be detected (and in some simple cases, resolved
(Parker 821}, but provides no means for notifying users that they may be accessing an inconsisient

copy.

LOCUS is one of the few existing distributed file systems that attempts to provide support for
heterogeneity. LOCUS supports hidden directories that stand in for machine dependent files (such
as cxecutables). A hidden directory contains a different version of the machine dependent file for
each architecture supported. The correct version is sclected using a per-process context. [t should
be noted that the heavy reliance of LOCUS on UNIX would make extensive support for operating
system hcwerogeneity difficult. NFS is another DFS that has atcmpted to address heterogeneity.
This has met with very himited success, both because of NFS’s close ties to UNIX and because of

the stateless protocols used by NFS.

A major strength of LOCUS is the high availability that results from replication and operation dur-
ing partitions. This high availability is at the expense of consistiency during partiioned operation.
The replicated global mount table used by LOCUS generally ensures name transparency, although
this can break down in the presence of partiuons. The use of the CSS provides implementation
transparency. LOCUS provides a somewhat higher degree of location transparency than NFES,
since files 1n a logical filegroup can be located on any of the physical file systems supporting the
logical filegroup. This in turn provides a greater degree of reconfigurability. LOCUS does not
provide complete location transparency, though (files are bound to the logical filegroup wiere they

are created), and so there are {imits to the amount of reconfiguration allowed.

NI D "N S S T TR D W e

2.3.6. IBIS

The IBIS file system [Tichy 843] uikes a completely different approach from that used by LOCUS
and most of the other DFSs we have discussed. Rather than patching together a global name
space out of a number of subtrees, IBIS supports its own name space. This name space is
independent of the physical and logical locatons of files and directories. The IBIS gloh:l direc-
tory supports a UNIX-like hierarchical directory tree. Each node of the directory is a separate

IBIS file. IBIS files (and hence directory nodes) are replicated.

Replication is done in IBIS using a primary copy algorithm, with updates going 1o a copy desig-
nated as the primary, and reads going to any copy. When a primary is ujdated, copies can eitiser
be updated or invalidated. There may be some delay between updates being made to a primary
and propagation of updates to copics, and so transient inconsistencies can arise. If the primary
copy of a file 1s unavailable, a temporary primary is elected. In the presence of partitions there
may be several active primaries, thereby causing inconsistencies. Temporary and actual primaries

are merged (1f possibie) when communication is reestablished.

Directory lookup requests go to the local copy of a dircctory node if one exists. If a local copy
doesn’t exist. one is created using the primary copy of the node. Each entry in a local directory
contains a pointer to the primary of the file or directory referenced by the entry and to a local
copy (if any). Referencing a file also, by default, causes a local copy to be created. This differs
from the on-disk cache used by Andrew in that these copics are (optuonally) updaed as the pn-

mary copy changes and may be accessed and updated even if the primary 1s unavailable.

IBIS provides complcte location transparency. Because of this, the IBIS architecture would be
able to support a high degree of reconfigurability. IBIS uses location transparency to improve per-
formance by replicating copies of files and directories on nodes where they are used. IBIS also
supports a manual operation that allows the location of a primary copy to change (migration), but

docsn’t provide support for automatic reconfiguration of this sort.

The availahility of IBIS depends on the relauve proporuon of reads w updates, on whether copies
of a pnimary are updated or invalidated on update, and on the depth of directory trees (since each
node 1s another component that must be accessible). IBIS provides name transparency in the
abscnce ot parutions. However, in the presence of partitions inconsistencies can arise in both files
and directories. The performance of IBIS is difficult to evaluate. The creation of local copics
should result in good performance for files with a high ratio of reads to writes. However, per-
formance can be expected to suffer for files with mixed opens for read and write (due to the crea-

ton and invahdation of local copics).

2.3.7. MULTIFILE

MULTITILE [Gait 86} is a distributed file service that runs on an Ethernct-based LAN of
engincering workstations. MULTIFILE uses muliicast 1o distribute iile open requests, with the
first file responding handling the request. The remaining available copics shadow this copy (per-

forming opcrauions sent to it on themselves when necessary) and take over if it Lails or is 100 slow.

MULTIFILE provides high availability, implementation transparency, location transparency, and
fallure transparency. There is no support in MULTIFILE for user-level directories, no consistency
guarantces, and no concurrency control. These are all left to applications. Another drawback of

MULTIFILE is the relauvely high resource utilization imphied by multcast and shadowing.

2.4, Naming

Sdalizer [Saltzer 79) gives a detailed discussion of centralized directory structures for resolving
user-chosen symbolic names into object references. He discusses hicrarchical directories, contexts,
binding, aliases, and so on. In a distributed environment, additiona! issucs arisc. These include
generaung names in a distributed fashion, providing support for network transparency, fault toler-
ance, object location, performance, and reconfiguration. Section 2.3 included a discussion of nam-
ing technigues used by existing distributed file systems. This secuon describes other work that 1<

relevant w naming in distributed file systems. We emphasize the transparency and distribution

t9
n

aspects of this work.

2.4.1. R*

The R* distributed DBMS [Lindsay 81] ensures that object names generated in a distributed
fashion don't conflict by embedding the creation site in the name. Namcs have the form
user@ user_site.object_name@ creation_site. The creation_site field is also used when looking up
objects. Each site maintains catalog informaton on objects currently at the site. In additon, a
pointer to the new site is left behind for objects that were created at the site but have moved.
Hence lookup requests sent to the creation site can always return either the entry or the location of

the entry.

This approach to aame gencration and lookup has the advantage of being simple and of requiring
little interaction between sites. Drawbacks are that users are required 1o know the creation site of
an object (objectionable both from an administrative and a transparency viewpoint) and that mov-
ing an object decreases its availability (both its creation site and the new home must be available

for a lookup te be guaranteed to succeed).

R* caches catalog information on accessed objects to aid in locating objects and in planning, and
1o decrease access time. No attempt is made to ensure that cached information remains consistent.
Instead, it is treated as a hint that will be discarded if incorrect. Catalog entrics coni:n version

numburs that are used to verify that the hint is valid.

A local area network DBMS developed at IBM Yorktown [Hailpern 82] uses the R* naming
scheme, but treats even the creation site given in the name as a hint. To resolve a name, this sys-
tem first checks the local catalog, then the local cache (for hints), then the creaton site, then
“‘well known’” servers, and finally does a broadcast to sce if the object exists anywhere in the

accessible network.

2.4.2. Caching and Hints

Both of the systems described 1n the previous secuon use caching and hints to improve lookup
behavior. A study of distributed directory caching in LOCUS [Sheltzer 86) showed that even a
relatively small 40 page directory cache gave a surprisingly high hit ratio of 95%. Further, the
nature of references and updates in LOCUS was such that maintaining cache consistency intro-
duced littiz overhead. A more comprehensive study of directory caching in the UNIX environ-

ment is presented in Chapter 7.

Terry has studied the effectiveness of caching hints under various conditions [Terry 87], and
presents an algorithm for determining effective caching strategics. His approach is to attempt to
maintain a given level of cache accuracy (instcad of attempting to maintain 2 high hit ratio), with
the desired level of accuracy depending on the relative costs of accessing uncached data and

recovering from a bad hint.

2.4.3. Clearinghouse

Clearinghouse, a name service developed at Xerox {Oppen 81], also structures names so that they
contain location information. In this case, the location information is logical rather than physical.
Names in Clearinghouse have the form local_name@ domain@organization. These names form a
three level naming tree. Names are partitioned by domain and organization. A domain server
contains information on all objects in its domain. It also contains a table describing the servers
supporting the organization level and organization servers contain information on all domain
servers in the organization. This hicrarchically structured location information allows a client in
contact with any domain server to locate any other domain server (and hence any object refer-

enced by Clearinghouse).

Clearinghouse scrvers are usually replicated to improve availability. The lack of actual location
information in names allows this to be done transparently. Updates to replicated information are
propagated using the mail system. This may result in transient inconsistencics. Information from

Clearinghouse is regarded as a (usually accurate) hint.

27

Drawbacks of Cleaninghousc for DFS use include its lack of consistency and the fixed structure

that it imposes on names.

2.44. Cronus

Cronus (Schantz 86] is an object-oricnted distributed operating system made up of a collection of
services. One of these is a directory service that may be used to catalog any object in the system.
The directory service supports a tree structured name space (similar 1o UNIX). Each object in
Cronus is named by a unique identifier (UID) that is assigned to the object when it is created.
The directory service provides a mapping from an absolute hierarchical name to a UID. Most
objects in Cronus can be migrated, so the UID does not usually contain useful Jocation informa-
ton. Broadcast is used to find the ohject with a given UID. Mappings from UID 1o host are

cached 1o alleviate the considerabie overhead of broadcast.

Each node of the directory tree is an object in its own right and can be migrated as desired (a
manual operation is provided for this). Directory nodes may also be replicated. The primary
goals of the Cronus directory service are high availability and performance. Because of this, there
1S no concurrency or consistency control for replicated directories, and it is possible for incon-
sistencies to arise due 0 partitions or concurrent operations. If this happens, nodes are locked

unti] repaired manually (in practice this rarely occurs).

Cronus attempts to cluster directories o minimize the number of hosts needed 1o traverse a path.
This is done by dividing the directory tree up into a seldom-changed ‘‘root portion”” and a number
of subtrees (this division is referred to as a “*dispersal cut’”). The root portion is widely replicated
and an attempt is made to place directories in a subtree on the same hosts. This helps to increase

both performance and availability.

The location transparency supported by the Cronus directory service makes it highly
reconfigurable. Directories can be moved as needed to balance load and improve performance,
and can be replicated to increase availability. Cronus provides name transparency in the absence

of partitions and concurrent updates, but because of consistency limitations makes no guarantees.

The use of a broadcast mechanism in name resolution and object lookup can make these expensive

operations. This will be particularly true as the size of networks running Cronus grows.

2.4.5. Structure Free Name Distribution

All of the distributed file sysiems and name services that we have described so far use the struc-
ture of the name space to aid in distributing responsibility for resolving names and locating
objects. Terry has proposed a design that is structure independent [Terry 86). His approach is to
divide the name space up into a number of contexts, each of which manages names that match
some clustering condition. Clustering conditions can be any arbitrary function that spans the name
space and provide a mapping from name to context. Context bindings that map contexts to actual
sets of servers are also required. Terry’s approach supports a wide range of naming structures and
allows responsibility for names 1o be allocated and reallocated as needed, independent of the struc-

ture of the name space. It allows a particularly high degree of reconfigurability.

The Emerald programming environment [Jul 88] uses a combination of forwarding addresses and
broadcast to maintain an unstructured name space. When an object is migrated, a umestamped
forwarding address describing its new host is left behind. Path compression techniques based on
timestamp ordering [Fowler 85] are used to keep the chain of forwarding addresses for objects
that move frequentdy short. If a forwarding address can't be used because a host is inaccessible,

broadcast is used to locate the object.

2.5. Consistency and Replication

This section examines the problem of presenting clients with a consistent view of data. There are
two aspects to the problem: 1) maintaining a consistent internal view of data; and 2) maintaining

mutual consistency between copies of replicated data.

/ ,
v q , | d

29

2.5.1. Interna) Consistency

Serializable transactions have gained widespread acceptance as a gencral technique for insuring
consistency in the presence of failures and concurrent use of data. A transaction is a series of
operations on a set of resources. Transactions are guaranteed to be aromic, in that they either exe-
cute completely or fail totally, leaving no trace of their actions. Serializability means that transac-
tions appear to exccute one after another, with no intermediate state from one transaction seen by
another. These two propertics ensure that the system always appears to be in a consistent state,
regardless of failures and the actions of other software. This greatly reduces the possibility for
software faults duec to the interaction between components and masks the occurrence of hardware

faults by providing automatic recovery.

Serializability is provided in the presence of concurrently executing transactions using concurrency
control mechanisms. There are two mechanisms in widespread use: two phase locking and time-
stamp order. Two phuse locking mechanisms [Bernstein 82] place a lock on any items referenced
by a transaction. Transactions trying to place conflicting locks (for example, a write lock on an
item with a rcad lock) are forced to cither abort or wait unul the earlicr transaction has committed
(finished). The transacton is run in two phases, with the first phase acquiring all locks that are
needed and the sccond phase performing any updates required and releasing the locks. This two
phase behavior ensures that transactions see either all of the results of other transactions or none

of them,

Timestamp order mechanisms [Bernstein 82] place a uniquely ordered timestamp on each transac-
tion. Writes by a transaction are accepted as long as no other transaction with a larger timestamp
has dccessed the data being written. Otherwise, the wrile is rejected and the transaction must be
aborted and restarted. Similarly, reads are allowed as long as no transaction with a larger time-
stamp has updated the daa. Timestamp ordering performs well when there are few conflicts
between transactions, bul it can result in excessive aborts and restarts when there are many

conflicts or when transactions run for long periods.

Atomicity is typically guaranteed using two phase commit and either logging or shadowing. Two
phase commit [Lampson 80} is done as follows: When a transaction has finished its reads and
updates, a site is picked to coordinate transaction commit. This sitc contacts all sites that have
bren opduted By the trancaction and instrecte them tn prenaro tn commit. These sites write v ,Ults
from the transaction to stable storage (typically two locations on secondary storage) so that infor-
mation on the transaction will survive processor crashes and other faults. This is the first phase.
In the second phase, the site coordinating the transaction decides 1o either commit or abort the
transaction, depending on the responses from participating sites, and writes this information o
stable storage. It then requests ali participating sites to either commit the effects of the transac-
tion, making them visible to other transactions, or to abort them. There arc several vanations on
two phase commit that attempt o increase the probability that a decision can be made even in the

presence of a failure of the coordinating site [Dolev 82, Skeen 81].

Two phase commit requires sites to keep intermediate information on the changes made w data, o
reliably store the status of a transaction during the commit phase, and to restore the old version of
data if the transaction aborts. Logging approaches do this by maintaining a log of operations on
data, including the decision to commit or abort. If a crash takes place, data values can be recon-
structed using the log. An alternative is shadowing. In shadowing, all work is done on a copy of

the data. This copy replaces the original data at commit time.

Nested transactions [Moss 81] are an extension of the transaction mechanism described above.
With nested transactions, an application can be composed of a hierarchy of muluple transactions,
with these transactions sharing data (using lock inheritance rules that ensure serializability) and
committing atomically. There are provisions in nested transaction models for the overall ransac-

tion to commit even if some subtransactions fail.

2.5.2. Mutual Consistency of Replicated Data

Replication (maintaining multple copics of an object) can be used to increase availability and,

under some conditions, performance. This raises the problem of insuring that copics contain the

‘.- -
.

same data (that they are mutually consistent). Methods for doing this generally fall mto one of
three categories: unanimous update, primary copy, or voling. Unanimous update algorithms allow
reads from any copy, and force updates to be propagated to all copies. If a copy is down, updates
are saved and applied when it becomes available. This approach, used by SDD-1 [Hammer 80],
allows efficient access to replicated data when there 1s a high proportion of reads, but doesn’t

preserve consistency in the presence of partitions.

Primary ccpy algorithms [Garcia-Molina 82, Stonebraker 79] elect a single copy to receive both
reads and writes, with the remainder of the copies being updated by the primary and acting as
backups. If the primary fails, the remaining copies elect a new primary. Primary copy, by itself,
doesn’t prescrve consistency in the presence of partitions. If a further requirement is added that

the majority of copies arc present in a partition for operation to continue, consistency is preserved.

Vating algorithms [Gifford 79b] assign some number of votes to each copy and require that read
and wrnite operations collect some number of votes (the read and write quorums, respectively)
before operatuons can proceed. Sctting the sum of the read and write quorums to be greater than
the total number of votes ensures that consistent data is always seen. Other algorithms can have
performance advantages over volting in many configurations, but voting operates correctly even in
the presence of partitions. There are several variations on voting that attempt 1o increase avail-
ability for common sequences of failures [Davcev 85,Jajodia 87] or that make use of type specific

informaton 'Herlihy 84].

2.53. Relaxing Consistencv Reguirements

There are a number of other mutual consistency algorithms that place restricions on the types of
failures that may be seen, or that relax consistency requirements. Available copies [Bemnstein 84]
and regeneration [Pu 86] arc both unanimous update algorithms that assume the absence of net-
work partitions, In available copies, copies that are found to be inaccessible are marked invalid
and updated when the site holding them rejoins the network. Regeneration goes even further and

just discards inaccessible copies, creating replacements on accessible nodes. The version vector

scheme used in LOCUS [Walker 83b] allows inconsistencies o occur during partitions, but uses
information containcd in version vectors associated with each copy to detect inconsistern ~2s and, if

possible, resolve them.

2.6. File System Reference Patterns

Knowledge of file and directory reference patterns is useful in both the design and operation of a
distributed file system. During the design of a DFS, reference information helps in understanding
the effect of architectural design decisions. In an operatonal file sysiem, reference patierns can be

used in reconfiguring to improve performance, availability, and help meet other goals.

Studics of file system reference patterns can be grouped into three areas: long term reference stu-
dies, short term file reference studies, and directory reference studies. Previous work in each of

these areas is surveved below.

2.6.1. Long-Term Reference Studies

Early studies of file reference patierns concentrated on long term (days or weeks) reference pat-

terns that could be used in designing archival migration policies.

Stritter collected nformaton on reference patterns in an IBM mainframe environment
{Stritter 77}. Over a period of a year he recorded, for cach file on the systems studicd. whether or
not it had been referenced in a given day. He found that there were no obvious long term trends
in access rate, no strong correlation in interaccess intervals, and that the interaccess intervals could
be fit by an exponential distribution. Smith analyzed these data in greater detail {Smith 8la] and
found that time since last reference, file size, file type, and file age were useful predictors of next

access. Lawric et al. have collected similar usage data from a Cyber system {Lawric 82].

Satyanarayanan took a static snapshot of the file system on a DEC-10 and uscd 1t to study recent
file access history [Satvanaravanan 81]. He collected information on file age vs. size and type.

He found that most files were small (5 blocks or less) and were generally not very old (1 month or

v

less since the last change). He found significant differences based on the type of file. In particu-
lar, source files tended to be smaller and used longer than output files, program source was used

longer than document source, and short files tended to be used longer.

2672 Shart-Term File Reference Studies

Recent work has concentrated on short term (on the order of seconds) file reference patterns. This
has been motivated by the proliferation of local area networks. The relatively small time delay
and high bandwidth of LANs makes migration »n a much smaller time scale feasible. Some of
this work has focussed on block level reference patterns for use in block caching [Smith 85] or
improving file organization {Hu 86]. More interesting from the point of view ot a dictributed file

system designer are studies of logical {operation level) reference pattems.

Porcar studied what was pruuaiily b2ch activity on IBM mainframe systems [Porcar 82]. The
data he collected included when the file was opened, the user, the fraction of tie f{iie accessed, and
the size of the file. He found that few opens resulted in the entire file being read and that intero-
pen times were short, with more than 80% being less than an hour. He was able to group files by
type (temporary, permanent, shared, and system) and found, as with earlier studies, substantial

differences between the classes.

Satyanarayanan measured short-term reference patterns on an interactive DEC-10 system
[Satyanarayanan 83]. He collected histograms of interarrival times and used them to construct a
synthetic driver for a file system simulation. This information was for the system as a whole, and
contained no information on individual files. He also collected information on lifetime and on the
fraction of open requests for system, temporary, and user files. He found significant differences in
read/write rates and lifetimes between the three classes. For example, 2/3 of opens were for read,
but only 4% of opens for writes went to system files; 2/3 of opens for write went 10 temporary
files; system files lasted almost forever; and lemporary files rarely lived more than a day. These
results indicate the importance of taking into account the purpose of files in making placement and

migration decisions.

Ousterhout et al. collected and analyzed data on 4.2BSD UNIX file reference patterns
{Ousterhout 85). They collected a trace of open, close, seek, unlink, truncate, and execve opera-
tions and then used them to denve information on read/write charactenstics, file sizes, and data
lifetimes for files in this environment. The authors found that the majority of files were small (a
few KBytes) and accesscd sequentially. Most were open only a very short time (less than 0.5
seconds) and had a short lifetime (80% lived less than 200 seconds). Their study did not include
paging activity, inode access, and directory lookups. They noted, however, that ‘‘directory look-
ups appear to account for a substantial fraction of all file system activity,”” and that the impact of
directory lookup overhcad could be expected to increase as block and cache size conunue to

increasc.

The daw collection package used by Ousterhout et al. has been extended by Zhou et al
[Zhou 85]. Zhou's package collects detailed trace information on opens, closes, reads, writes, file
renames, deletes, process forks, executes and exits. Directory operations, s,7ubslic links, paging,

1% inode acuvity are not traced.

2.6.3. Directory Reference Studies

None of these previous studies collected information on directory access patterns. This informa-
tion is not necded in systems that are concerned primarily with migration to manage disk storage,
since files are typically much larger than the directories that reference them. However, a DFS
may also migrate and replicate directorics to improve performance and availability. In a DFS with
non-trivial directory structures, the overhead of directory access is an impornant performance con-
sidcration. Evaluating directory design decisions in the absence of data on reference patterns is

difficult.

The only directory reference information that we have bas been collected incidentally in other stu-
dies. Leffler found that 40% of BSD UNIX system call overhead was due to name resolution
(Leffler 84]. Sheltzer et al. found that halfl of all network traffic in LOCUS was in support of

name resolution [Shelizer 86]. These results demonstraw the importance of directory reference

R ..

'
n

overhcad. Mogul found that an average of 13 entries were searched per lookup in BSD UNIX

systems [Mogul 883!, suggesting that directories are small, thus easily moved.

Shelwer et al. also measured directory read/write ratios and investigated directory caching as part
of an effort to extend LOCUS to the Internet. They found that only 2.5% of directory references

were writes, and that directory references tended to be highly localized.

Chapters S and 6 examine the issue of short-term file and directory reference patterns in more

detail, and present the results of studies we have made.

2.7. File Assignment and Migration

A significant amount of work has been done in the database field on the problem of placing repli-
cated data in a network 10 minimize various costs associated with accessing and maintaining data.
This problem is usually referred to in the literature as iue file assignment problem (FAP) or as the
initial placcment problem. If data may be moved after being assigned to a location, the related
problem of deciding when and where to move, or migrate, data arises. We consider each ot these

problems in turn below.

2.7.1. File Assignment

The file assignment problem is usually formulated as the problem of selecting file locations 1o
either minimize cost or maximize performance. Storage, communication, and update costs are
examples of costs that algorithms attempt 10 minimize. Algorithms that address performance
issues typically attempt (o =ither maximize throughput or minimize response time. In the database
environment both of these approaches generally attempt to provide an optimal soluuon over the
lifetime of the assignment. The benefits of incrementa! improvements here make finding optimal

soluuons reasonable.

Dowdy and Foster [Dowdy 82] provides a comprehensive survey of solutions to FAP. They note

that cven with significant simplifications, FAP is NP-complete (by transformation from Veriex

Cover [Garey 79 Typical simphifications include assuming infinie processor, storage, and net-
work capabiitics o allow sets of files 1o be considered independently, and assuming Poisson

arrival raes o simphify analvsis,

An optumal solution is not always needed. If files van be migrated later on o adjust for changing
usage paitems, if files have relatively short lifetimes, or if quick placement is required (an impor-
tant characteristic in a distributed file sysiem), an approximation heuristic will be a better choice.
A number of approximation heuristics have been developed. Jenny uses methods from graph
theory to find solutions with small communication costs [Jenny 821 Wah creates and scarches a
graph analogous to a game tree [Wah 80]. Murthy et al. describe a cost-minimizing algorithm
based on maximizing the incremental benefit of each new placement {Murthy 83]. Bannister and
Trived: suggest making each new file assignment to the most Lghty loaded servers to minimize
access time {Bannister 82}, Barbara and Garcia-Molina present heuristics for the assignment of

votes to maximize availability {Barbara 86].

2.7.2. Migration Algorithms

File migrauon can be used to improve the iniual assignment of files. It would typically be
invoked whenever there 18 a change in the parameters upon which the initial placement decision
was based. For example, usage patterns of a file change over time and also provide more accurate
information than that used for initial placement. File creation and deletion change the available

spacc on a device. Users change locations.

Early work on the file migration problem was concerned with developing algorithms for migrating
to archival storage files that are no longer being used. The long term file reference studics that we
described in the previous secuon (Lawrie 82, Stritter 77] were used as a basis for this work. Stu-
dies on the effectivencss of long term file migration algorithms [Lawrie &2,Smith 81b, Stntter /7]
indicale that. without detailed information on file access patterns in the system, using a functen of
file size and Ume since last reference (STWS) o decide when to migrate a file produces good

esulls.

x- 'n - -

- S .

Porcar used the dat that he collected to study the effecuveness of short-term migrauon algorithms
for files shared by muluple users [Porcar 82]. His goal was to minimize network traffic and
delay. He found that muldple copy algonthms that attempted to control the number of copies by
minimizing a cost function incorporating the cost 1o store a file and a dynamic estimate of the cost

to update the fifes produced the best results.

Sheng invesugated file migration as a way 10 decrease file storage, communication, and 1/O access
costs [Sheng §6i. She assumed infinite network and site capacity to allow files to be considered
independently. She developed two types of policies: unrealizable optimal policies based on Mar-
kov decision models (tuking into account both past and future requests to the file) and polynomial
time heunstcs thar cotimated fumre ucage based on an exponentially decaving history of past
references. Simulauon studies using Poisson-based arrival distributions showed a 5% 10 10%
improvement over the opumal inital file assignment. One would expect 10 see greater improve-

ments as the locality of reference to files increased.

The Emerald programming environment [Jul 83 stands alone in its use of automautc object migra-
ton. Emerald provides migrauon on first reference. Studies of simulated mail traffic on Emerald
showed a decrease in network traffic of 34% and a decrcase in exccution time of 22% over the
non-migrating system. These substantial improvements demonstrate the benefits that can be real-

ized with even very simple migration schemes.

2.8. Other Relevant Work

Other work relevant 1o distributed file systems has been donc in the areas of accommodating
heterogeneity, interprocess communication, scaling, and distributed system instrumentation and

modelling.

The file system for the Xerox Alo {Thacker 79) associated a property page with cach file that
desenbed, among other things, the type of the file. This information was used by the Alie FTP

program 0 perform conversions when transferring files o dissimilar hosts, Moro recently,

ropertics have resurfaced as general means for associaung information with files {Mogul 86bh].
g £ £

A capability-based ncrwork IPC developed at CMU and Rochester [Moore 82) provided support
for heterogeneity using swongly typed messages, with type conversion done by the 1PC at machine
boundaries. An aliernative approach, embodied in Sun's XDR [Hatch 85} and Cronus's Canonical
data types [Dean 87] 1s 1o pass dala in a machine independent form, with conversion done at the

application level.

Other approaches that have been used in accommodating heterogencity include using network ser-
vices o looscly integrate hoterogencous systems [Black 85), hiding neierogeneity using common
interfaces, and legislating the problem out of existence. Notkin et al. briefly describe cach of

these approaches MNotkin §7).

Recent work on high performance IPC mechanisms [Birrell 83, Cheriton 83,LeBlanc 84] has
resthied moamplemeniations with machine to machine message passing times of a few milliseconds
or less on current hardware. These umes are much le s than the cost of a typical disk access (30

milliseconds with current technolegy) and so it becomes quite reasonable 10 access data remotely.

The Andrew project that we described in section 2.3 has, as a primary goal, the ability 1o scale 0
very large environments. The Xerox Grapevine name, mai, and authenucation scrvice [Bir-
rell 82] had a similar goal Experience with Grapevine [Schroeder 84] showed that, while Gra-
pevine was generally successful in meeting this goal, knowledge of the structure and state of the

nctwork and of usage patterns would have helped.

Three general approaches have been used in investigating the properues of distribuied algorithms
and systems: analytic techniques, simuladon, and implementation in testbed and production

environments.

Analviic techmgues are appropriate in cases where the mechanism being studied is fairly simple, it
can be examined in tsolatior, and simplifving assumputons have httl? impac. on the final result.

Ornc area whero analvuce technigues have teen widely used is in esumating the availability of

-‘---'--*--

y

various replication algorithms. Examples include the k-out-of-» model, which has been used w
calculate the availability of the regeneration and available copies replication algorithms described
in section 2.3 [Pu 86; and the use of state and assignment enumeration to evaluate weighted vot-

ing [Barbara 86,Smith 84].

Analvtic approaches are intractable for complex mechanisms and in cases where the interactions
between components in a systein are important. In this case, simulation models are often used.
Two approaches are commonly used: queuing theoretical models and detailed simulation. Queuing
models have found frequent wuse in modelling distributed system performance
[Goldberg 83, Lazowska 86] and availability [Dugan 86]. Detailed simulation models have been
sed to study performance [Satvanarayanan 83], availability [Noe 86], concurrency control
[Bloch 87]. and many other system propertics. Both approaches described here are most useful af

they can be paramelerized using data collected from an existing aistributed system.

There is a very real danger when using the methods described ahove of oversimplifying the system
being studiecd. This can be avoided by instrumenting and measuring an actual implementation in a

testbed or producticn environment [Cheriton 83, Howard &S, Kohler 83].

We will be using a combination of analytic techniques, measurement of production systems, and
prototype implementation in our studies. Analytic technmiques allow us to easily compare various
algorithms. Measuring production systems will give ns information on file system usage that will
aid in evaluating designs. A prototype implementation will provide validation of analyuc resulls
and give us a context for interpreting the effects of various usage patterns and architectural deci-

sions.

2.9. Discussion

This chapter has presented an extensive survey of work in distributed file systems, and of data and
resource management issucs applicable to distributed file systems. This survey shows that, while

there are distributed file systems that provide various degrees of transparency, none is able to do

so in a way that allows uscrs 1o ignore the underlying network. IBIS comes closest in this regard,
but lacks facilitics for ensuring consistency, for accommodating heterogeneity, and tor cffectively
managing daw and network resourcss. Other systems, such as Sprite, are able w ensure con-
sistency, but bind files together in ways that can make the underlying allocation of files painfully
obvious and that limit the possibilites for reconfiguration. While there are powerful techniques
available for supporting transparent naming, ensuring consisiency, increasing availability, and
reconfiguring to increase performance and decrease costs, there is no general DFS framework
available for making use of these techniques. There is no real understanding of the interactions of
these techniques, of their range of applicability, or to what extent they can be used to realize a

highly transparent distributed file system.

We investigate these issucs and address the shortcomings of existing DFSs in the context of the
design and implemenwation of Roe, a highly transparent distributed file system. Roe provides a
general framework for supporting the data management techniques that we have described. The
design of Roce is described in Chapter 3, and the prototype implementation is described in Chapter

4.

We have also scen that there are limited data available on short term file reference patterns. Stu-
dies of long term reference patterns and of short term reference patterns in batch environments
show dramatic differences between classes of files, but all existing short term data for interactive
environments either fail to distinguish between classes or treat files in classes anonymously. There
is, in any case, linde data available to aid in understanding usage pattemns in inicractive environ-
ments. There are no data available at all on directory reference patiems, despite indications of the
importance of name resolution in file system overhead. This makes it impossible to understand the

tradcoffs between various designs.

We address this lack by collecting and analyzing data on file and directory references from a large
UNIX system. These studies are described in Chapters 5 and 6. We use the results of these stu-
dies (in Chapter 7) to analyze the effectivencss of our DFS design and o explore general issues

that arisc in supporung UNTX using a DFS.

GE - A an 2w W) EE D S N G AN Oy my A e AP & We

Chapter 3

The Architecture of Roe,

A Transparent Distributed File System

3.1. Introduction

In this chapter we describe the design for Roe, a highly transparent distributed file system (DFS)
for a heterogeneous local area network. Roe presents to users the appearance of a single, globally
accessible file system. It uses a replicated global directory, automatic file placement and migra-

tion, file replication, and atomic transactions to provide available, consistent, and distributed files.

Unlike the DFSs we described earlier, the approach used by Roe allows it to provide full network
transparency, guarantee file consistency, and reconfigure itself to adapt to changing demands and
resources. These characteristics allow the user to ignore the presence of the underlying network

when creating and using files. This greatly simplifies the use of a network.

The environmental assumptions made in the design of Roe are described in section 3.2. Section
3.3 outlines the goals and guidelines that helped determine the design of Roe. In section 3.4 we
sketch out the gencral approach used by Roe and examine more carefully issues that affected the

design. Section 3.5 presents an architecture to implement this approach. Section 3.6 describes the

41

advantages and weaknesses of the Roe approach and section 3.7 briefly summarizes our results.

3.2. Environmental Assumptions

Roe is designed to run on a heterogencous local area network. The design was motivated, in part,
by the hardware and software available on the University of Rochester Computer Science
Department’s network. In this section we describe the charactenistics of this and similar environ-

ments that have had an influence on the design of Roe.

Heterogeneity, at both the hardware and software level, is an unavoidable chara-eristic of our
environment. The rapid advance in the state of the art in computer hardware, combined with
incremental network growth and the differing reeds of various classes of users on a network,
ensures this. Dealing ith heterogeneity by enforcing a commoen hardware or software base is pot
an effective solution in such an environment. We assume that the network hosts are made up of a
mixed collection of servers, workstations, and general time-sharing machines. These hosts will
typically not run a common operating system. This means that mechanisms that are intimately

tied o those provided by any given operating system will be inappropriate.

We further assume that these hosts are connected by a higi: bandwidth, low delay network. An
example wou.. be an Ethenet [Metcalfe 76) or several Ethemnets connected by high speed gate-
ways. While individual hosts or gateways may fail, we assume that the network itself will gen-
erally be available. We allow for the possibility of a network partition, but not for a total failure
of the communication medium or for hosts that become detached from the network. Our assump-
tions of high bandwidth and low delay, along with a highly available network, make it both rea-

sonable and appropriate to consider remote access to resources.

The underlying interprocess communication (IPC) mechanisms are assumed to support asynchro-
nous typed message passing, long term connections, notification of connection failure due to host
failure or network partition, and some means of naming and locating remote processes. Thesc

requircments are all met by various existing IPC mechanisms [Moore 82, Sansom 86].

(mm B TE ek Aam e e

B BN GE e e = W S Al EE s e
.

We assume that there is low write contention for any given file. Files in our environment typi-
cally either belong 1o a single user or are normally read-only files. While this assumption is
appropriate for our environment (sce Chapter 5 for details), it would not, of course, apply in a

shared database environment.

Finally, we assume that all hosts that will be supporting and using Roe are under a single adminis-
trative control, and that autonomy (control over local resources) is not an issue. These assnmp-
tions are generally appropriate for hosts that are connected to a local area network, and aliow us to

freely sharc the resources on the network.

3.3. Goals of the Roe Distributed File System

Roe is intended as a demonstration of the validity of our thesis statement:

Full network transparency in distributed file systems offers significant benefits.
These benefits include increased availability, more effective use of resources, the
ability to adapt to changing demands, transparent reconfiguration to adjust to
changes in resources, a greatly simplified file system model from the
user/application point of view and, with careful design, enhanced performance over

other DFS approaches.

Using this thesis statement and the environmental assumptions presented in the previous section,
we can construct a more concrete set of goals for Roe. These goals are as follows:

o Network transparency: Our thesis statement argues that Roe should support complete
network transparency. This includes, as described in section 2.2.6, access transparency,
location transparency, name transparency, semantic transparency, failure transparency
(for at least some clasces of failures), and implementation transparency. The intent is

that the user need not be aware of any network related characteristics of accessed files.

+ Simple user model: One potential advantage of network transparency is that it can free

users from the need to understand the details of the underlying network. This allows

them to develop a simple model of their environment. We ask that Roe support this
style of use. Roe should allow users to create and access files with no constraints on
the name, the location of the user or file, and with no knowledge of the underlying hosts
and networks.

Consistency: A related goal is that of consistency. Previous experience in building dis-
tributed systems has shown that a lack of consistency makes dealing with distributed
systems awkward and error prone for both users and applications. Because of this, we
ask that the results of operations be predictable and that all users sec the same results.
This further simplifies the user’s view of the system, eases the implementation of appli-
cations that use Roe, and is necessary 10 support name Wransparency.

Enhanced availability: The decentralized nature of a local area network, with its local-
ized failure points, increases the probability that at least some resources will be avail-
able in the presence of failures. Roe should be structured in a way that takes advantage
of this characteristic 10 enhance the availability of the data it manages.
Reconfigurability: The network transparency supported by Roe will allow files and
directories to be moved and distributed without user knowledge or intervention. This
might be done, for example, to incorporate new resources, avoid failures, improve per-
formance, or to dynamically balance load in response to changing demands. We ask
that Roe support the ability to reconfigure files and directories in this manner and that it
collect and maintain the information necessary 10 do this effectively.

Performance: Because of the widespread use of distributed file systems in interactive
environments, it is important that the delay perceived by users be small.

Heterogeneity: Roe should take into account the heterogeneous nature of the underlying
systems. This includes differences in the hardware and software base, performance,
capacity, and availability of each host.

Scalability: Local area networks range in size from networks connecting a few hosts to
those connecting hundreds or thousands of hosts. It is particularly imponant in the

larger and more complicated networks that the user receive help in using network

’ ' ‘ -

45

resources. We ask that Roe scale to networks of this size without significant degrada-

uon.

Ir. addition, the following guidelines have helped determine the design of Roe:

« Use of existing host operating systems: The heterogeneous environment supporting
Roc makes it impractical to undertake a significant implementation for each new operat-
ing cystem and hardware base encountered. A decision was made early on to make use
of the existing file systems of each host.

o Testbed for experimentation: We expect that Roe will be used as a tool for exploring
the interactions between various file management algorithms. This has led us to use an
approach that provides a framework for incorporating a variety of algorithms, as
opposed to one that is tailored to a particular approach. In addition, Roe attempts to
collect information general enough to be used by a wide range of algorithms.

+ Decentralizeu control: Our desire for a decign that scales to large local area networks
has led us to investigate and incorporate algorithms that distribute control of data to
locations where the data reside and are accessed.

» Operation in the presence of partial knowledge: It becomes exorbitantly expensive in
a large network to maintain complete knowledge of the state of the network and its
resources. For this reason we have emphasized algorithms that do not requirc complete

knowledge of the network state.

It 15 1mponant 10 recognize that the goals we have specified interact and, in some cases, conflict.
For example, algorithms that ensure consistency do so at the expense of availability and, in many
cases, performance. One measure of the success of Roe will be the degree to which it can meet
these conflicing goals. We will return to this issue at the end of this chapter, and again in

Chapter 7.

3.4. The Roe Approach
3.4.1. Overview

This section is an overview of the approach used by Roe 1o meet the goals we have outlined. The
remainder of the chapter provides more detail on the major aspects of the Roe design. The
emphasis in this chapter is on the general techniques Roe uses to meet its goals, and on how these

techniques interact. Chapter 4 will describe an implementation of Roe based on the techniques.

Single site file systems generally present to users an abstraction of consistent, shared files. This
allows information to be easily shared between users and their applications. Roe preserves this
model across the network. It supports a single, globally accessible file system that provides highly
available, consistent, distributed, sharable files in a heterogenecous environment. The use of this
model allows users o ignore the presence of the network that supports Roe, with network details

being handled by Roe. This greatly simplifies the use of a network.

Roe uses file replication, atomic transactions, a replicated global directory, a detailed model of the
network, awtomatic placement, and migration to provide full network transparency. It runs on top
of existing operating systems and uses the resources of the existing heterogeneous hosts for

slorage.

File replication is used to enhance the availability of Roe files and directories. Weighted voting
and atomic transactions are used 10 ensure that users see a consistent view of files and directories.
Weighted voting was chosen for its simplicity, its support for decentralized control, and its ability
to operate in the presence of incomplete knowledge. This choice is central to the design of Roe.
Our motivation for choosing weighted voting over other alternatives is discussed more fully in sec-

tion 3.4.2.

Roe maintains a replicated global directory that is used to name Roe files and directories. This
name space is separate from the name space of the hosts that support Roe. This separation allows

Roc o transparently replicate, distribute, and reconfigure files and directories. The global

MM - EE ¥ Ok By Eh TE @ =

47

directory is replicated using a modified weighted voting algorithm. We describe it in more detail

in section 3.4.3.

A network model encodes information used in placing and migrating files and directories. The
model includes information on the hosts on the newwork, their up/down state, available space, and

so on. Section 3.4.4 provides information on this model.

Roe uses automatic file placement (section 3.4.5) to free users from the need to specify locations
for newly created files. Files are placed based on available space, congestion, topographic and
other considerations. File migration (section 3.4.6) is used to change the locations of these copies.
This would typically be done to improve performance by moving data closer to users or to balance
load or adjust to changes in underlying network resources. The Roe design also supports

automatic directory placement and migration.

A network is typically made up of a number of dissimilar machines, and Roe recognizes this by
providing extensive support for heterogeneity (section 3.4.7). This includes use of existing host
operating systems (to minimize the cost of incorporating new host types), local servers with uni-
form interfaces. type corversion between machine boundaries, and support for machine-dependent

files in the cases (such as executable files) where automatic conversion isn’t practical.

3.4.2. File Replication and Consistency

3.4.2.1. Motivation

Roe replicates files and directories. This allows it to provide increased file and directory availabil-
ity without special hardware support. Unlike earlier file systems we have seen with support for
replication (for example, LOCUS {Walker 83b] and IBIS [Tichy 84]), Roe guarantees a consistent
view of these replicated resources. Enforcing consistency in this context allows Roe to provide
network transparency. In particular, consistency ensures that each user will see the same results,
irrespective of location, and that earlicr results will not reappear because of host or network

failures. This, in turn, eases use of the system by both users and applications.

Consistency in this context has two aspects: keeping a copy internally consistent, and maintaining
mutual consistency between replicated copies The following two sections consider thesc aspects
of consistency, and describes how Roe maintins file consistency. Section 3.4.3.2 examines the

iscpe of maimaining consistency in replicated directorics.

3.4.2.2. Internal Consistency

We can ensurc that users see a consistent view of a file copy at any given time by serializing
access 1o the copy. It is also necessary to ensure that any changes made are applied atomically,
and that these changes be coordinated with the changes made to other copies. This leads us 1o use

serializable transactions, as de:cribed in section 2.3.1.

Roe is intended for an environment where update sharing of a given file is infrequent, and where
conflicts seldom arise. Hence it is appropriate to treat the entire file as the object to be updated,
and to serialize access to the file as a whole. Of the two serialization methods discussed earlier
(Inckine »ad timectamps), locking (at the site of the file) appears most appropriate, given the large
size of the object to be accessed, the potential for long periods of access, and the low level of
conflicts. The actual locking scheme used by a site is of little interest to Roe, as long as it serial-
izes access (e.g., R/W locks are enough, but a site could use R/I-W/C locks [Gifford 82] o allow

more concurrency). Locking requests are rejected if they cannot be immediately satisfied.

A two-phase commit protocol [Lampson 80] is used to ensure that writes are applied atomically
and that updates are coordinated. The choice of logging vs. shadowing to implement intermediate
storage and support recovery is largely irrelevant to Roe. The decision on which 10 use on any

particular host is best determined by the operating system support available.

3.4.2.3. Mutual Consistency

We desire a mutual consistency algorithm that improves availability, has good performance,
imposes minimal requirements on the structure of Roe, and behaves correctly under parutioning

and other failures. In more detail, the factors we consider arc:

49

« Availability: Replicating files should increase their availability.

« Performance: We wish to minimize the delay perceived by users and also the total
amount of activity.

« Flexibility as a Testbed: We desire an algonithm that does not impose undue restric-
ticns on file placement, migration, reconfiguration, and other algorithms and techniques
used by Roe.

« Behavior under partitioning: The algorithm should guarantee consistency under parti-

uoning and other partial failure modes.

There arc 3 general classes of methods for insuring mutual consistency between copies: unanimous
update, primary copy, and voting (see section 2.5). In addition to these three classes, there are
algorithms that provide consistency under certain circumstances, or that relax the consistency
requrement. Examples of the former include regeneration [Pu 86] and available copies [Bern-
stein 84], both of which provide consistency in the ahsence of network partitions or disconnec-
tions. The version vector scheme used in LOCUS [Walker 83b] is an example of an algorithm
that relaxes consistency requirements, adlempting to compensate for inconsistencies at a later time.
Since we are requiring consistency in all situations, we will not be considering algorithms in either

of thesc classes.

Unanimous update algorithms wnte to all copies of a replicated file when making an update.
These algorithms actually decrease the availability of a file in our environment and so will not be

considered further.

Primary copy algorithms [Stonebraker 79 designate one copy to be the primary at each point in
tme. All reads and writes go to the site of this copy, and it is responsible for notifying other
copies of changes. As long as the primary siic is up, reads and writes may continue (one usually
also requires that a majority of the sites be accessible to ensure consistency during partitions). If
the primary site fails, an election [Garcia-Molina 82] is held to decide on a new primary copy,
with copies communicating among themselves to select a new primary. For example, Stonebraker

determines the primary copy based on the status of the network (which sites are up) and a fixed

hinear ordering of the copies of an object. To determine the primary copy, each site accumulates a
list of up sites and then checks to make sure that all agree on the up-list and hence come to the
same conclusion about the identity of the primary. This method requires that all live copies be
current. This can be handled by postulating an underlying message transmission system that can
buffer update messages tor later transmission to a down site, or by transmitting an update log to a

site when it rejoins the network.

Primary copy, with the majority requirement described above, provides the strong consistency
desired by Roe, even in the presence of partitions. A file replicated using primary copy will be
accessible as long as a majority of sites are up, and so availability will be enhanced under normal

conditions.

An attractive feature of primary copy is its performance. If the location of the primary copy is
known and it is up to date, opening a file requires contacting just the primary copy of that file.
Under these assumptions, 2 messages are required to open the file, and the delay is 2d (where d is
the onc way messcze delay and we ignore the delay for any disk activity that might be required).
However, if the primary copy is not known, or if it is inaccessible, an election, which is an expen-

sive operation in lerms of message activity, is required to open the file.

All solutions that can be classified as primary copy share two important characteristics: the need
for agreement on a single authority governing the object (e.g. the identity of the primary copy) and
a uwthod for insuring the currency of candidaics that may take over the primary role. In our
cnvironment, with the algorithm we have described, this reduces to the requirements that each
copy of an object reliably knows the locations of all other copies, and that all accessible copies be
kept up to date. The requirement that each copy know the locations of other copies makes migra-
don difficult, since all copies must be be informed when one moves. Each list of copies must
agrec in order for the determination of the primary copy to work correctly. Creating new copies
(e.g., caching a temporary copy to increase performance) also requires that all other copies be
informed. The currency requirement alse interacts with migration. A rcasonable restriction in this

situation would be that a copy could migrate only when the file was not opened for writing.

51

Voting algorithms, on the other hand, associate vote informauon with each copy of a file and
allow or disallow actions based on collecting this voting information from each copy. We will
consider here a generalized form of voung known as weighted voung [Gifford 79b] applied to file
opens. Weighted voling associates with each copy of a file a timestamp and some number of
votes. A read quorum, 7, and a write quorum, w, are defined for the overall replicated file. When
a file 1s opened, the timestamp and votes are collected from the copies. At least r votes (the read
quorum) must be collected to read a file and MAX([r.w] 1o write it. Reads can be from any current
copy and writes go to current copies which hold a total of at least w votes (the write quorum).
Making r + w greater than the total number of votes in all copies of the file ensures that at least
one current copy will be in any quorum. The timestamp of each participating copy is incremented

when the copy is updated.

Y/eighted voting provides the strong consistency desired for Roe. The vote collection procedure

ensures that consistency 1s preserved even in the presence of network partitions.

Weighted voting allows the number of votes held by each copy to be adjusted based on host avail-
ability. This can be used to increase the overall availability over the unweighted case [Garcia-
Molina 84). In additon, read and write quorums can be adjusted to favor commonly executed
operations (Chapter 7), and variations of weighted voting exist that can allow even update opera-
tions with fewer than a majority of copies [Jajodia 87]. These factors will allow weighted voting

to provide higher availability than primary copv in many cases.

A drawback of weighted voting is the relative complexity of file opens. Assuming a multicast
open protocol, with open requests being sent out to each of the n participating copies in parailel,
an open now lakes 2n messages. However, the time delay remains 24 (plus any queuing delays
resulting from the mulucast message traffic). Although the initial activity is fairly high, the delay
perccived by the user is comparable to the primary copy algorithms. For our purposcs, n will usu-

ally be a small number (onc to three).

n
1o

Voting solutions do not require that a copy be brought up o date when a site recovers. The
existence of obsolete copres 1 accepiable as long as at least @ wnie quorum of current copies
exist. The version number associated with each copy allows obsolete data to be easily detected
and updated. It also isn't necessary for each copy to know of the locauons of other copies, or for
any central authority to have an accurate view of where copies are located at any given ume. As
long as a quorum of copies is reachable, operations can proceed normally. These two characteris-
tics will simplify algonithms for caching and migraung copies, since they relax currency require-

ments for data affected by these operations.

As we have scen above, primary copy can be characterized by the need for agreement on a single
authority, which in practice leads tc a requirement that candidates for primary copy be current and

that each copy has a currant and correct view of the locations of other copies. Votirg

=3l

on the
other hand, is able 10 tolerate out of date copics, and can operate with partial or out of date
knowledge of copy locauons. Our desire for decentralized control, operation in the presence of
partal knowledge, and our use of migration for reconfiguration leads us to select weighted voung
as the basis for mutual consistency control in Roe, despite the greater cost it imposes for some
opcrations. Weighted voting provides the desired consistency and availability properties without
requiring expensive state niaintenance in the presence of caching. migration, network partilions

and host crashes.

3.4.3. The Global Directory

Unlike most other distributed file systems we have seen, Roe implements a global directory that is
independent of the directories mainwined by tie bosts that support Roe. Information in this direc-

torv is used to translate operauons on a Roe file into operativu$ on individual copics of the file.

Retaining control over the directory allows Roc to transparently place, migrate and replicate both
files and the directory itself. It also allows Roe 1o easily adapt to changes in the underlying
recources (for example, the addition of a new server). This can be contrasted with systems, such

as LOCUS and NTS. that patch together existing naming subtrees. This patching makes 1t difficult

—~

to add new resources, since it requires adding new subtrees or moving existing subtrees. It is also
difficult when patching together subtrees to balance demands on existing resources and to replicate
for availability. These charactenistics, when taken together, grealy complicate attempts (0

preserve an appearance of transparency.

Two other benefits of an independently managed Roe directory are host-independent support for
heterogeneity (section 3.4.7) and added flexibility in integrating file and directory management
algornithms. Examples here include replication (section 3.4.2), network modeling (section 3.4.4),

initial placement (section 3.4.5) and migration (section 3.4.6).

3.43.1. The Structure of the Global Directory

The Roe global directory supports a UNIX-like hierarchical directory tree. We were motivated to
adopt this organization because of its wide acceplance, ease of use, and the logical structure that it
imposes on files. Roe allows users to choose arbitrary file and directory names. There is no

encoding of location or host information in na:iies visible to the Roc user.

The Roe directory references distributed files and is itself distributed. This raises issucs that do
not occur in centralized directorics. Three key related issues are:

» The basis for partitioning the directory,

« Locating resources referenced through the directory, and

« Directory replication.

We will return to the issue of replication in the following section. The issues of partitioning and
location have been dealt with in the past in a variety of radically different ways. We briefly sur-
veyed work in distributed naming and directories in Chapter 2. As we described there, the tech-

nique of parttioning by subtree used by NFS, LOCUS, and other DFSs leads to unacceptable limi-

tations on transparcncy.

R* [Lind.ay &0; embeds the creation sitc in names and uses this informauon, along with forward-

ing addresses and cached hints, to access an object. Our desire to support transparency and

potenuially frequent migration means that the approach used by R* is not directly applicable to
Roe. However. the techniques of caching, forwarding addresses and unique name gencration will

be useful in the scheme we describe below.

Clearinghouse [Oppen 81] provides a hicrarchical name space restricted to three levels. Names in
Clearinghouse are logical (based on the application), rather than physical (based on server loca-
tion), with each server containing complete information on where names in the current and parent
nodes of the logical hierarchy may be resolved. This provides the network transparency that we
desire, but the limited hierarchy is not useful in a distributed file system. Also, the widespread
distribution of server location information complicates migrating servers. This is not an issue in

Clearinghouse, where such migration is relatively infrequent, but it is an issue in Roe.

We would like the Roe directory to partition directory information logically along boundaries that
reflect the way the information is used, that do not unduly restrict ihe location of this information,
and that allow 1t 1o easily be distributed and migrated. Directorics commonly support the follow-
ing operations: read an entry (where ‘entry’ is the information describing a cataloged file) add an
entry, delete an entry, update an entry and enumerate entries contained in a node of the directory
tree. The ‘enumcrate’ operation and the common practice of grouping related files in a directory

lead us to make the unit of partitioning the set of entries in a directory node.

Resolving an absolute name (one that includes all components of the name) then involves starting
at the root and looking up directories in turn to reach the one containing the needed entry. To
minimize the overhead of this, Roe caches information on frequently used directorics. This would
typically include all directories from the root w the user’s current working directory, but can also
include paths to other directories. The resultant cached information forms a tree of directory

information that may be used to avoid repeated lookups in frequently used directories.

There arc two types of information in a Roe directory: 1) information on the directory node itself;
and 2) information for each entry in the directory. The information on the directory node includes

voting. version number, usage history and other information that will be described later. We do

no! keep any information on the parent directory of a node. This is in contrast to UNIX and
UNTX-like file systems, which include an explicit backpointer from a node to its parent. We have
omitted the backpointer for several reasons. One is the complexity that it adds to migration. If
backpointers are used and a directory is migrated, then children must be updated to reflect the new
location. Backpointers are als~ used in UNIX to help preserve file system integrity. The Roe
directory will be replicated and so necessarily updated atomically. This ensures that the directory
will remain in a consistent state even in the presence of crashes, making backpointers for this pur-
pose unnecessary. T ally, backpointers are used in UNIX to resolve relative references. Roe

caches parent directory information for this purpose.

There arc two basic types of directory entries in Roe: file entries and dircctory entrics. In addi-
tion, there is a somewhat more complicated variant of a file entry, the machine dependent file, that
will be de cribed when we discuss heterogeneity (section 3.4.7). We also allow users o define
their own entrics. File and directory entries contain the same information:

» name: The user defined name of this entry.

« npe: The type of this entry (ule or directory).

o UID: The globally unique ID assigned to the file or directory when it was created. We
use a combination of a host i1d and a sequence number guaranteed to be unique on that
host.

» location-hints: Hints on where the copies of the file or directory are located.

e r-hint, w-hint, and vote-hints: Hints on the vote distribution and quorum characteristics

for the file or directory.

Figure 3-1 shows an example of a Roe directory describing a replicated file. Note that the voting
information in a directory entry is just a hint. The actual voting information, including the time-
stamp, is stored in the copics of the file itself, This allows a file to be referenced from multiple

locations in the directory tree.

The *'links™ ficld in cach file copy in Figure 3-1 indicates how many refcrences to the file exist,

and 1s used to ensure that a file with multiple names is not actually deleted until the last name is

copies of "mbox”

a directory node copy ——| tumesamp: 31
votes: 2
) n2
directory] w:3
— header — ——
_ i other file properties
name: mbox
type: ROE_FILE :
UID: uni.1.5 tmestamp: 31
location_hint{0]: uni VO:CS: 1
location_hint[1]: beluga K
location_hint[2]): tobiko V& 3
r_hint: 2 links: 1
w_hint: 3 other file properties
vote_hints: 2, 1,1 .

be———@{ tmestamp: 30

voles:

r.?

Vo3

links: 1

i_othe:r file properties

Figure 3-1: A Roe directory entry

Za aE e

57

deleted. Muluple links to directories are not allowed, since this would allow the formaton of
unreachable subgraphs. Garbage collection is one solution normally used to deal with this prob-
lem, but this is complicated in a truly distributed system (the description of a possible design for
garbage collection in the Emerald system [Jul 88] is a good survey of the complexity involved in

distributed garbage collection).

Voting and link information are actually properties of the file. Each file may have additional pro-
perty information associated with it, as shown in the figure. This includes information useful to
Roe (for example, usage information for migration) and user defined information. Properties will

be described further when we discuss heterogeneity and Roe protocols.

The location information in a directory entry is also a hint. When a file is migrated it may not be
possible to update the directory eniry. Situations where this may arise and the techniques Roe

uses to deal with it will be described when we discuss migration (section 3.4.6).

We keep voling hints in directory entries to aid in optimizing opens. An open for read, for exam-
ple, only needs to contact enough copies to collect a read quorum. The voting hints can be used
to limit the number of copies that are contacted when opening the file. The information here is
regarded as only a hint to minimize the amount of information that must be kept current. The
actual information is kept with the data o decentralize, as much as possible, the control of the
data. If a voting is found to be incorrect because of changes in the file configuration, it can be

updated with information gleaned from the open. Locauon hints are treated in a similar manner.

The preceding describes and motivates the basic structure of the Roe directory. There are a few
other issues worth noting. These include finding the root of the directory during initialization,
handling structural changes (such as directory renames) in the presence of caching, and caching

file information.

Roe will generally run on most or all of the hosts on a network, with these hosts joining and leav-
ing the network. When Roe is started on a host, it will nced w0 open the root of the global direc-

tory trec as part of its initialization sequence. Since copics of the root directory may migrate, just

likc any other directory, the new inslantiation of Roe may not have up to date information on
where the root is located. This information can be obtained by querying any running instantiation
of Roe. In the unlikely case that there are no accessible instantiations, Roe uses information on
the last known location of the root that it has saved in a local state file. This information may be
shghtly out of date, but should generally be current enough to allow the root to be opened. In the
extremely unlikely case that this strategy also fails, the new instantiation of Roe can simply wait

until an instantiation with more recent information on the root is started.

Renaming a directory can invalidate parts of the cached tree of information maintained by an
instantiation of Roe. In order to provide users with a consistent view of the directory, we need to
detect changes of this nature and flush or correct outdated information. This is done by having an
instantiation that caches information on a directory register an interest with at least a read quorum
of the copics. When structural changes are made, this registration information is used to notify
affected partics. The same technique may be used to maintain a cache of information on fre-

quently opened files.

3.4.3.2. Replicating the Global Directory

The availability, consistency, transparency, and reconfigurability requirements that we described
earlier for files also apply to directories. Availability requirements lead us to insist on replicated
directorics. Consistency in this case includes seeing the effects of adding, deleting or modifying
an entry when we subsequenty do a lookup on the entry or enumerate a directory. Transparency
and reconfigurability can be addressed, as with files, by migration. These considerations lead us to

choose weighted voting as the basis for mutual consistency control in replicated directories.

Weighted voting, as described by Gifford [Gifford 79b], locks the entire object being accessed.
While this is appropriate for files in our environment, it is not appropriate for directories. The
specialized entry-oricnted nature of operations on a directory, combined with the need for shared
access, concurrency (especially at higher levels in the directory tree), and long term connections,

makes whole-node locking both unnecessary and inadequate.

Vanations on weighted voting that address these issues have generally done so by either reducing
the granulanty of locking or by using other concurrency control mechanisms. Bloch, Daniels, and
Spector (Bloch 87] took the first approach. They associated a timestamp with each entry in a
directory, and also with gaps between entries (to aid in collecting quorums after deletions). While
this approach allows for higher concurrency, the large number of timestamps raises significantly
the cost of connecting to a directory and verifying the currency of the directory as a whole. This
is tnappropriate in an environment where connections 1o directories are frequently made and bro-
ken. It complicates caching as well. Herlihy {Heilihy $4] rroposed 2 variation of weighted voting
that performed concurrency control based on timestamps and relations between operations on
abstraci iypes. While his work provides a powerful set of general techniques for increasing con-
currency in replicated objects, the complexity of log-based concurrency control mechanisms are

difficult to justify in our environment, particularly given its heterogeneous nature. They also do

not address the need for maintaining low cost connections.

The following vanant of weighted voting provides the concurrency control we need, with support
for caching and long-term connections that don’t lock out other users. While it does not have the
generality of the other approaches and limits concurrency for writers (neither of which is expected
to be an issue in our envuronment), it is easy to implement, inexpensive, and meets the needs of

Roe.

The algorithms is as follows: When an instantiation of Roe connects to a directory, at least a read
quorum of votes is collected from the node copies. At this time, the user of the directory is
registered with these copies. Registration differs from holding a lock in that the registration may
bc ‘broken’, with notification, as explained below. From the read quorum, a current copy is

selected and read requests are directed to it.

Writng requires that updatcs be made atomically to current copies containing at least a write
quorum of votes (currency is verified during read quorum collection). We send to all current
copies the update requests (o add, delete or modify an entry). If they are willing 10 make the

change thev respond with an acknowledgement If a write quorum is collected, then the user can

60

instruct the servers to commit. At this point, the cuanges are actually made (become permanent
and visible to readers) ard the timestamps of the participating copies incremented. If a write
quorum cannot be collected, the request is aboried and, depending on the error, may be retried.
To preserve the meaning of the version number, only one write may be active (in the process of

collecting votes or committing) for a directory node at a time,

An operation, such as modifying an entry, that depends on the previous information needs a bit of
special handling to guard against making changes based on invalid data. We send, in the request
to modify an entry, both the new information and the data in the entry upon which the changes are
bascd. If thesc data do not agree with the information currently in the directory, the request is
rejected. Since an individual directory entry is small, little extra overhead is involved in doing

this.

The registration information is used when a writer finds that he cannot update all current copies of
a node, even though he is able to collect a write quorum. In this case, the writer, in the commit
message, tells the participating directory copies to noufy registered readere that i, may no
longer be reading a current copy. Since the sum of read and write quorums is greater than the total
number of available votes, there is always some overlap between the quorums and so all readers
will be notified. Readers also receive notification when copies they have registered with become
inaccessible duc to partitioning or node crashes. This is handled by maintaining IPC connections
to these copies and using the automatic failure detection facilities of the underlying IPC
[Moore 82]. The combination of these two notifications ensures that readers will be reliably

informed of problems.

The registration mechanism can also be used to handle directory cache invalidation due to renames
or other updates. In this case users would register interest in node modifications and be notified

when significant changes are made.

2 =N s

61

3.4.4. The Network Model

Intelligendy placing and migrating files and directories requires current information on the under-
lying hosts and networks. Roe maintains an abstract nerwork model that contains this information.
The Roe design we are presenting here attempts to place and migrate to minimize delay and max-
imize availability, consistent with the overall goal of transparency. The information maintained in
the network modecl we will be describing reflects this. Information in the network model is also
used to support heterogeneity, and to allow Roe to take advantage of the varying capabilites of

hosts in a heterogeneous network.

The network model conwins both static and dynamic information on hosts and networks. Each
host with an instantiation of Roe maintains its own network model of hosts and network fragments
that it is actively using. Tc aid in decentralized decision making and to simplify interpretation,
this information is expressed relative to the host maintaining the model. Only partial information
is kept 1o avoid scaling problems that wouid result if an attempt were made 10 maintain a current

model of the entire network.

A network modc! contains 3 elements: hosts, network switching elements (gateways), and the net-
work itself. The model maintains at least the following information on each host:
o Availabilitv: A static estimate of the fraction of time the host can be expected 1o be
available.
o Hardware base: The type of host hardware.
» Host operating system: This, combined with the hardware base, can be used to make
machine-dependent decisions.
« Free space: A dynamic estimate of the amount of free space currenty available for use
by Roe on the host.
o Delav: A dynamic estimate of the delay involved in performing an operation. This
includes network and switching delays from the current host.
o State: UP if the host is known 10 be currently accessible, DOWN if it is known to be

currendy unaccessible, and UNKNOWN otherwisc.

This can, of course, be extended as necessary to meet the needs of new placement or migration
algorithms. For each nctwork segment and gateway, at least the following information is main-
tained:
o Availabilirv: A static estimate of the fraction of time a network segment or galeway can
be expected to be available.
e Bandwidih: A measure of the rate at which data can be transferred by the network or
gateway.
e Delay: A dynamic estimate of the delay 10 be expected in passing through a gateway or
network segment.

o State: UP, DOWN or UNKNOWN.

The model also encodes information on the network topology that allows the various components
10 be pieced together. Figure 3-2 shows an example of a network model for two bus networks

connected by a gateway.

Information contained in the network model comes from three sources: from a static network state
file maintained by Roe administrators, from the hosts being modeled, and from dynamic measure-
ments. The network staic file contains information on well-known hosts supporting Roe and on
the network itself. An instantiation of Roe on a host can be asked to return infurmation on the
host on which it is running. This includes both static information such as the host operating sys-
tem, and dynamic information on free space. Delay can be calculated either by direct mcasure-
ment of the time required for operations or by combining estimates from network and host com-
poncnis. Hosts are added 10 the network model as they are accessed (for example, when a direc-
tory is opened) and can be deleted if the model grows too large or if they haven't been accessed

recently.

Using the information in the network modcl, it is meaningful to talk about such things as the dis-
tance from a host to a file copy (in terms of delay) and to estimate the likelihood of that copy
being available. These figures can be used in migrating copies and placing new oncs. They may

also be used in making decisions on which copy of a file or dircctory to access when performing

63
name: uni name: beluga
availability: 0.95 availability: 0.98
hardware: VAX hardware: Sun-3
0S: VMS 0S: UNIX
space: 10MB space: -
delay: 100ms delay: -
state: UP state: UP
.]

availability: 1.0
bandwidth: 10Mb

delay: -
name: tobiko
availability: 0.8 ﬁ;raél:r:rhetys &9§
bandwidth: 3MB 0s: UNIX
O o ace: SOMB
state: DOWN gglay_. 60;ns
state: UP

Figure 3-2: The network model

operations.

3.4.5. Initial Placement

When Roe creates a new file or directory, a decision must be made on how many copies to create
and where they are to be placed. Users will generally not know, or wish 1 kiow, what resources

are available for storing new information. Instead, the replication and placement of files and

64

directorics 1s managed by Roc to preserve network transparency. Varyving the placement of files
can have a dramauic effoct on performance. Studies of some versions of the Andrew file system
{Morris 86) have shown as much as a S w 1 difference in utilization between file servers, wiich
results in dramatic differences in response time under load. It is important that Roe takes into

account factors such as this when placing files.

Most of the previous work on initial placement that we described earlier (secton 2.7) was con-
cerned with finding opumal solutions that minimized various cost functions. This previous wc.k
was motvated by the need to carefully place portions of a DBMS, where there is a large potential
benefit o minimizing access costs. Optimal file placement is NP-complete, even without consider-
ing rcsource limitations. In this case, the cost of solving the NP-complete placement problem is

justified.

In our case, optimal solutions arc not appropriate for several reasons. The interactive nature of Roe
makes it important that file placement decisions be made quickly, and so algorithms that find
optimal solutions slowly are unaccepiable. We expect that issues such as congestion, which
depend on the interaction of accesses o many files, will play an important part in determining
expected delays, and hence placements. This further complicates attempts to find optimal place-
ments. We will also, in general, have only partial knowledge of the network that Roe is running
on, and limited or no knowledge of the activities of other users. Finally, Roe has the ability to
migrate files based on usage informaticn that isn’t available when the file is initially placed, so

mistakes do not necessarily have a permanent impact.

For these reasons, Roe is designed 10 make use of placement heunstics. There has been some pre-
vious work in placement heuristics that is relevant to the goals of Roe. Bannister and Trivedi sug-
gested making new assignments 1o the most lighly loaded servers to minimize delay [Bannis-
ter 82]. Barbara and Garcia-Molina presented heuristics for vote assignment to maximize avail-
ability [Barbara 86]. Factors present in Roe that cemplicate the use of these and other algorithms
include the heterogencity of the environment (both in terms of performance and machine types,

the interaction of placement with migration, resource limitations, and our desire for ajgorithms thal

exhibit decentralized control and are able to operate with partial knowledge.

The use of decentralized control in Roe means that each instantiation may, if it wishes, use a
different placement heuristic, depending on its needs. The primary objective of file placement in
Roe, based on the goals we discussed earlier, is to attempt to minimize access delays while insur-
ing high availability, subject to the other constraints we have described. This can be done, in the
architecture we have been describing and using the information provided by the network model, as
follows: When 2a file is created a replication factor is selected. This will, by default, be based on
the replication factor of the directory where the file wiil be cataloged. The creator of the file may
specify additional informauon on the type of the file (temporary or permanent) and important
characteristics of the file (high availability vs. high performance, usually read vs. usually written,
and so on) as part of creation. These are used to modify the default replication factor and 1o
assign tentative voite quorums. For example, files that are marked as being temporary are normally
only given one copy. Fiics where high availability is requested are given a higher replication fac-
tor.

&

Each copy of the potentially replicated file is then independently placed. This is done using state,
free space, delay, and availability information in the network model maintained by this instantia-
tion of Roc. By default, hosts that currently have the lowest delay are chosen, but only if their
availability exceeds a threshold and if sufficient space 1s available. If a machine-dependent file is
being created, there is a further restriction that the new host be of the same type as the one creat-
ing the file. If the creator of the file has asked that placement emphasize availability, this will be
given primary consideration, with delay being secondary. In this case an attempt is also made to
locate copies on hosts that currently support the directory, as this will tend to decrease failure

points and so increase availability.

While the algorithm we have described here is by no means optimal, 1t does provide a low cost
approach to automatically placing files. It takes advantage of the transparency provided by the
Roc design to dynamically balance load among active servers. to increase performance by select-

ing lightls loaded and higher performance servers, o increase availability through replication and

66

the use of reliah!~ servers, and it wkes into account constraints imposed by limited resources and

heterogeneity.

3.4.6. Migration

The conditions that determined the initial placement of file and directory copies change over ume.
For example, congestion makes some servers less attractive than they orginally werc. Users
change locatons. Usage patterns of a file change and a history of usage provides more accurate
information than that used for initial placement. File creation and deletion change the availabie
space on a device. Faster or more reliable servers become available. 1f the changes are
significant, it may be worthwhile to move, or migrate, copies 1o adjust to the changes. The
benefits of migraton can be significant. Using migration in the Emerald system [Jul 88] resulted

in a 22% decrease in execudon time relative to the execution ume without migration.

This secuon describes the architectural support that Roe provides for migrauon. We also outline
here in general terms migration strategies that Roe supports, but defer discussion of actual migra-
von algorithms untl Chapter 7. We expect migration to be sensitive to file and directo - refer-

ence patierns, and so algorithms are best discussed 17 «.at context.

Most of the previous work in file migrauon that we described in Chapter 2 focussed on long-term
archival migraucn. That work showed that file size, type, age, and time since last reference wei .
all usefu! predictors cf the time until next reference, and hence could be used as a basis for
archival migrauon. While archival inigration is onc strategy that Roe supports, the relauvely small
time delay and high bandwidth of LANs make migration on a much smaller time scale feasible.
The temporal locality that we expect to see in file reference patterns also argues in favor of short-
term migration strategics. The Emerald sysiem took advantage of this temporal locainty by migrat-
ing nbjecis to the user when they were first referenced and saw substant ' performance improve-
inenis. Work on opumal an” heuristic migratior algorithms by Sheng [Sheng 86] alvo demon-
strated the advartages of short-term migration. Even with an opumal iniual file assignment. she

wae ahle o achiove a 107 decrease 10 storage communication, and [/ cosls uang @ migrghon

67

heuristic that esumated future usage based on recent accese history

Our needs and constraints are somewhat different than that of earlier work. As with file place-
ment, we will be migraung to increasc availability and decrease delay, subject to processor, space,
and heterogeneity constraints, The arguments for using heurisuc algorithms able to operate in a
decentralized fashion and with partial (possibly incorrect) knowledge that we used for replication
and iniual placement also apply 10 migrauon. Hence our concern here is in previding support for

heunistics to mect these goals.

Migraton algorithms can be divided into three general categories: demand-based, anticipatory and
compensatory. Demand-based migraiion 1s done in response to an explicit request for a resource.
Emerald support for migration orn first refercnce s an example of demand-based migration. Anti-
cipatory migraien 1s done based on expected usage. If resources are typically used together (a
trivial example 1s a directory and files that it references), migrating one to meet a demand may
trigger further migrauon in anticipation of further references. Compensatory migration 1s done
compensate for ¢hanges in the system that have taken place since inital file placement was done.
Examples here include migrating files away from heavily used servers to ease congesuon (and
decrease delay), migraung w ncw servers o balance load, and grouping together directones and
the files they r..crence to increase availability. This type of migration is periaps best thought of

as an o going background activity.

Making ntelligent migration decisions requires an estimate of future accesses that will be made o
a file or direciory. Previous work has suggested that future accesses may be esumated using past
access histers. Roe keeps with each file and directory, as a property, information on recent
accesses. For cach access Roc records the user, what host it was from, when it was made. the
vpe of aciess, and the percentage of the file read or written. File size, type, and age. other pred-
icters of future usage, are also available as properties ¢f files and directories. In additon. informa-
bor on the stae of the network is reguued. This is particularly important for compensatory
muraton Noework informaton requirements for pugrauon are similar o these for it place:

ment The relovant network anformation s avaiiat le from the nerwork model.

From the point ot view of the lower levels of Roe, there are two tvpes of migration: migration by
name and migration by internal identifier (UID). Migrauon by nanc is typically done i response
to an explicit user request of some sort (demand or anticipatory migration), or 10 group together
relatcd objects in the naming tree (compensatory migratbon). Migration 10 relieve congestion or
free up space on a server (compensatory migration) is more easily done by UID, based on files or

directories on the affected server.

Migration by name is donc by first opening and locking the copy t© be migrated. This ensures
that the cops will not be able to vote muluple umes while it is being moved (otherwise it might
be possible for the old copy to participate in one quorum and the new one in another, resulung n
inconsistencies). The old copy is also flagged for deletion at this tme. A copy s tentatively
made on the destination host, and the direcwory is updated to indicate the ncw location. These

changes are then atomically committed.

If a file is referenced by more than one directory. then updating the directory the file 1s referenced
through 1s not encugh. The other directorics will still contain obsolete information on the old
location of the copy. In this case a forwarding address is left behind on the old host. The fer-
warding address contains the new address of the copy and a count of the number of directorics
containing obsolcte information (just one less than the link field from the file). Unlike R*, where
forwarding addresses exist for the lifetime of the object, forwarding addresses in Roc can be dis-
carded after all directories containing obsolete information are updated. When a file copy s rcfer-
enced from an out of datc directory and a forwarding address is encountered, the directory is
updated and the reference count in the forwaraing address 1s decremented. When it falls to 0, the
forwarding address can be deleted. If a file referenced by multiple directories moves frequently,
resuling 1n a chain of forwarding addresscs, path compression techniaues [Fowler 857 may be

used o eliminate »nneeded links in the chain.

It should be noted that this technique only works because the algorithius used by Roe assume that
information conuned 1n directories 1s only a hint. Treaung this information as a hint places

actual control of tiles witr the files themselves and minimizes the amount of work that 1 requared

fa A .

69

for miyration.

Migration by UID proceeds a< with migration by name, except that it isn't possible to update the
directory. 1n the case of migration by UID, a forwarding address with a reference count equal (o
the link count of the copy is left behind. Directories are updated the next ume they are used to

reference the copy.

3.4.7. Support for Heterogeneity

Roc is intended for use in a heterogencous environment. The support Ro¢ provides for hetero-
geneity may be grouped into the following ar as:

+ The network model.

« Automatic conversion of basic types.

« Machine-dependent files.

« Properties.

+ Globally consistent naming and interfaces.

The network model, as we described earlicr, includes information on the hardwarc and software
basc, and on delay, availability, and frec spac~ for each host it describes. The information on
hardware and software base is used in making decisions that depend on this basc. An example is
the sclection of a quorum in a machine-dependent fiie (described below). The remaining informa-
tion provides a represent~iion of the relevar: .itics of hosts that allows hosts of dissimilar
performance, capacity, and reliabilities to be integrated, while still making effective use of the

strengths of each host

The Roc design provides for the automatic conversion of basic data types between hosts. This can
either be donc automatically by the IPC mechanism (as it is done in Rochester's IPC {Moore 82
or expiicitly by conversion 0 and from some canonical form (see, for example. Sun’s XDR

iLvon 35} or Cronus’s Cantypes {Dean 87

70

Not all files can or should be converted when moving between hosts. Executable files containing
machine code. for example, are only uscfyl on machines of cerain types running a particular
operating system. 7o retain cansparercy and allow the Roc naming trec to be shared between
hosts of dissimilar types, we introduce a new file type, the machine-dependent file. A machine-
dependent file appears o the casual! user to be a single Roe file, but it contains separate file suites
for each dwisunct machine/operating sysiem combination on which it may run. When the file is
opened, Roe chooses the correct file suite using information on the user’s host as contained in the

network model. Figure 3-3 shows an example of a directory entry for a machine-dependent file.

Roc associates a property list with each file and directory. A property list 1s just a hist of
name/value pairs. They were included in the Alwo file sysiem [Thacker 79} o descnbe, among
other things, the data type of a file. They perform a similar function in Roe, but may also specify
arbitrary us¢r and Roc system information. For example, voting and usage information for a file
or directory copy is stored as propertics of the copy. Information such as file size and last
modification date is also represented as file properties, with Roe converting between property and

actual system representation as necessary.

In addiuon, information that is specific to parucular host operating systems (for example, record
structure) 1s stored as file propertics. This provides an unoburusive method for accommodating the

needs of a wide range of heterogeneous systems.

Propertics may also be specified in file creation and other operatons. They provide a means of
allowing the user to specify optional advisory information to Roe. Examples here include file

type, desired availability, and performance characteristics.

Fually, we have developed an architecture for Roe that defines a common host-independent inter-
face between local hosts and those portinns of Roe that interface with many hosts. We have also
defined a file access protocol that supports transparent access to Roe files and directortes. This
access protocol has been designed to be fliexible enough to support higher-level translanon of host

spectfic file operations to operations on Roe files for a wide variety of operaung svstems. The

N I G = AEm e A G B s

71

a directory node copy
directory]
f— header =
}—- —
. UID: uni.2.50
. location_hint{0]: uni
pp—— lomn:on_hi.m[ll: beluga
lype: MACHINE_DEPT locz.mon_hmt[Z] sevruga
machine: Sun-2, Sun-3 r_hu.m 2
OS. UNIX w_hint 2
suite informaton vow hints: 1.1, 1
machine; VAX
0OS: VMS

suite information = | Tt ee--..

Figure 3-3: A machine-dependent file entry

Roe architecture and protocols are the subject of the next section.

3.5. The Architecture of Roe

The previous section presented the general approach used by Roc to provide transparency. In this
section we outline an architecture that may be used to impiement the Roe approach. Our purpose

here is to define a framework that will allow Roe to be easily implemented in a heterogenecus

environment. Our gencral approach has been 1w define common host-independent interfaces for
compongents that provide access o resources on a host, and 1o structure higher levels of Roe in a
way that supperic disuibution and replication of functionalitr and allows decentralized access to
Roe resources. The architectur - we describe here should be thought of as a logical one, not neces-

sarily a physical onc.

Section 3.5.1 describes the porpose and distribution of Roe components in our architecture. Sec-
tions 3.5.2 and 3.5.3 outline protocols that define the interfaces between these components. The
material presented here forms the basis for the prototype implementation that we will be describ-

ing in Chapter 4.

3.5.1. Organization and Distribution

Roe may be logically broken down into five different types of components. Three of these com-
ponents provide access to local information (files, direclories, and host status), one manages tran-
sactions on replicated resources, and one performs the work necessary for name translation and
opens. The local components provide a uniform, host-independent interface to the two higher
level components. The two higher level components piece together the local resources, using the

techniques we outlined in section 3.4, to give users a transparent, globally consistent view.

The five types of components, and their purposes, are:
« Local File Servers: provide access to individual copies of files located on a host.
» Local Directory Servers: provide access to individual copies of directory nodes on a
host.
e Local Representatives: provide higher levels with information on the status of the host
(hardware and software base, space available and so on) and spawns new servers on

request.
o Transaction Coordinators: distribute user requests 1o replicated copies of files, coordi-

natc commits, and mask single ¢opy failures.

73

« Global Directary Servers: accept user requests to open files or access directories and
map the requests into operations on a set of file or directory copies. Global Dircctory

Servers also perform initial placement and migraticn for files and directories.

A Local File Server (LFS) provides access to file copies located on a host There is one local file
server for each host that provides file storage. An LFS supports an abstraction of a file as a
strcam of data, with an associated list of properties. Applications may use property lists 0 1:pose
more structure on the data. The LFS on a machine manages file space used by Roc on the host,
provides atomic access to data and properties in files (including voting information), and imple-

ments the copy-level locking needed by the weighted voting algorithm.

A Local Directory Server (LDS) mediates access from Global Directory Servers to copies of direc-
1oy nodes on a host. An LDS supports the abstraction of a directory as a collection of entries
(namc, quorum information pairs) plus a list of properties. It services requests to read, update,
delete, add, and cnumerate entries in a node copy, provides access to properties, maintains voting
information for the directoy, and ensures that updates are performed atomically. There is one

Local Directory Server on each machine that has directory information.

A Local Representative (LR) provides Global Directory Servers with information on the status of
the host (hardware and sofiware base, space available, and so on) and spawns new servers on

reuest. There 1s at most one local representative per host.

A Transaction Coordinator (TC) distributes updates to replicated copies of files, coordinates com-
mits. and masks single copy failures. It is the TC that handles user operations on open files. It
directs reads 1o a current file copy near the user, switching to a new copy if the one in use fails
and a quorum is stll held. It ransforms a write operation into updates on all open copies of a
file. When a file is closed it ensures that updates are atomically applicd. There is one transaction

coordinator per active user.

A Global Direciory Server (GDS) accepts user requests to open files or access directorics and

maps the requests inlo opens on a quorum of file copies or operations on a quorum of directory

74

copics. GDSs maintain the hierarchical Roc name space and w1 an resolving requests on files
and directorics. Each GDS also maintuns a network model and uses 31 to perforns 1minal place-
ment and migration of files and directonies, and to place the wansacuon coordinator that will han-
dic user operations on open files. The number of global directony servers depends on the network

load and configuraton.

Figure 34 shows an example of how the components interact i opening and using a file (in this
case, an unrcplicated onc). The user sends the initial request ‘a: to the GDS. The GDS makes
usc of cached directory copies and. if necessary, contacts LDSs v read entries necessary to reach
the file (b). The GDS then opens the file with the requested moxle v, using the weighwed voting
algorithm to collect and vemify a quorum if the file is replicated. Tae resultant quoruns s passed
(d; o the TC, which accepts user requests (¢), and passes thom on to one or more selected file
copies (£, The protocols that are used between the various companents are described in the next

two seclions.

The actual amount of interprocess communicauon L equu.d here éepends on the relative Jocations
of the user and Roc components involved, and on the degree of i ;rauon of the comporents. An
implementation of Roe thal was concemed with performance would ughty bind togedier the com-

ponents on a host to decrease communication overhcad.

In an cavironment where it is important 10 be able 1o gain acvess 10 network resources with
minimal implementation effort (often the case ir. a rapidiy evolving heterogencous envaonment), a
new host could choose o implement a subset of Roe components and rely on other hosis in the
network for the rest of the services. Figure 3-5 shows an example where two hosts (beluga and
scvruga) support all of the Roe components, but another, uni, only provides storage for files. The
host tobiko just implements the common IPC used by Roe components. This gives users on
tobiko access o Roe through components on beluga and sevruga. Performance may suffer, since
all access is remote, but functionality does not. Implementing portions of Roe on tobiko at a later
lime would result in transparent perfortnance improver.2nts for users. since # would then be possi-

ble for Roe to migrate information to this host and so avoid network penalues. This incremental

buy-in strategy encourages heterogeneity by allowing new types of hosts to be easily integrated.

75

G

local
file
system

Figure 3-4: Opening and reading a file

76

3.5.2. User Protocol

This section defines the protocol used to access Roe. The Roe file access protocol is distinguished

by its support for properties, atomicity, and distribution.

beluga tobiko
TC GDS
LFS JF LDSL LR
IPC IPC
IPC PC

LFSL LDSI LR LFS J LR

TC] GDS

sevruga un

Figure 3-5: Roe component location

S I Th &y O Gr B O B T B A T AR I A & B e

77

Properucs atlow both users and Roe itself to associate information with files that aids in interpret-
ing dats. Properties are used by Roe to store information needed for voung, data conversion (10
support heterogeneity), and migraton. They are also used to specify special characteristics of files
used in iniual placement and migration, and may be used to set and retrieve information about
files (for example, size and modificadon dates). As such, they provide a method for extending the
Roe protocol, and for adaptng 1t 1o the needs of other systems. Given the ability 1o associate pro-
pertcs with a file, mapping hosi file access calls into the Roe file access protocol is generally

straightforward. This can be used to make Roe appear to be an extension of a host’s file sysicm.

Atomicity allows users of Roe to guarantee the state of files at any given time. This prediclability

simplifics the implementation of higher level applications that use Roe.

The pretocol has been designed with a message-based distributed environment in mind. The pro-
tocol itsell 15 message-oriented, and 1t includes support for streaming of data, and third pany

transfors,

Tho protocol 1s oriented around the notion of port types. A port is any unique identificr that pro-
vides a way to address a potentially remote component of Roe. There are 3 types of ports in the
user prolocol. each of which accepts a different class of messages and serves a different purpose.
Packports provic .cess to the file system. Directoryports support commands creating and read-
ing directory entrics, opening files, and so on. Fileports arc used for operations on an individual
open file. Each operation given below is specified using the format ““OPERATION (arguments)
— reply.”” Optional arguments are encivsed in brackets. The source and destination ports are

implicit in the description that follows.

There 1s one message o packports:

LOGIN (usermame, password) — directoryport

A user must be Togged in to the Roe sysiem in order to issue requests. A LOGIN message

containing information nccessary for authentication is sent w0 a packport. The server

78

checks the validity of the user and establishes the vser’s working directory. The reply con-

tains a directoryport o which the user sends subsequent directory operations.

The following messages are sent to directoryports:

CH_DIR (path) — success

Changes the default directory used for interpreting operations on this directoryport.

CREATE_DIR (path {, properties]} — success

Creates a directory node with the specified path name. The optional properties list may be
used 10 specify the performance and availability characteristics of the new directory and to

iniualize propertics in the directory.

CREATE_ENTRY (path, value) — success

Creates a directory entry with the given path and value. This aliows objects other than

files 1o be stored in the Roe global directory,

DELETE (path) — success

Deletes the file, directory, or entry with the given path.

LOGOLUT () — success

This ends the server-client relationship.

OPEN (access, file path [,propertics]) — fileport

Opens a file, returning a fileport that may be used for file operations. “*Access™ describes
the mode of the file open (read, write, read/writz. cre we if necessary). The optional pro-

perties may be used when ~reating a file that does not already exist to specify availability

79

and other propertics of the file and to initialize its property list. This operation is successful

if the appropnate quorum of copics can bhe gathered.

READ_DIR (destination port [, pattern]) — number of itcims 1zad

Returns a list of files in the working directory, optionally filtered through a pattern matcher.

The file names are sent to ‘‘destinauon port”” in a WRITE operation.

READ_ENTRY (path) — value

Returns the value associated with given user-defined entry.

READ_PROPERTIES (path [, property names]) — property list

Retumns propertics associated with the named object. Optionally, return the propertics with

the given names.

RENAME (old path, ncw path) — success

Changes the name of a file, directory, or user entry.

WRITE_PROPEKTIES (path, property list changes) — number of properties changed

This operation modifics the object’s properties according to the changes given. Users may

only modify user-defined propertics.

The remaining messages are sent to fileports:

ABORT () -» success

Undocs all operations since the last commit on this file.

CLOSE (1 — success

80

Closes the file and deallocate its fileport. If the file was opened with atomic access, any

uncommitted operations are aborted.

COMMIT () — success

Makes changes since the last COMMIT or OPEN permanent. This is the second phase of

the two-phase commit protocol.

READ (destination por, number of items 1o read, number of items per block) — number of

items read

This message requests that some number of items from the file be written (using the
fileport WRITE operation with the given blocking factor) to the specified destination port.
Reading begins at the current position of the read-write pointer; when the operation is done

the rcad-write pointer is positioned after the last datum read.

READ_PROPERTIES ([property names]) — property list

Rewm the file’s property list. Optionally, returns the properties with the given names.

SEEK (position) — success

Changes the value of the read-write pointer to ‘position.”’

SYNC () - success

The first phasc of the two-phase commit protocol. A success reply indicates a willingness

and ability to commit.

TELL () — position

This operation retumns the current value of the read-write pointer.

81

{ WRITE (data) }* WRITE_ACK (data) — number of items written

The WRITE operation is special in that it is composed of multiple messages. The result
returned is the total number of items (from the preceding stream of WRITE messages and

the final WRITEACK message) that were successfully written.

WRITE_PROPERTIES (property list changes) —» number of properties changed

This operation modifies the file's properties according to the changes given. Users may

only modify user-defined properues.

3.53.3. internai Protocols

This section outlines the protocols recognized by the various components of Roe. The intent of
this section is to define the interfaces between the components, and to characterize the abstraction

supported by each 1ype of component.

Local File Server Protocol

The local file server recognizes the user fileport protocol described in the previous section. In

addition, it implements the following operations used by GDSs:

ENUMERATE (destination port {, properties]) ~ number of UIDs returned

Returns the UIDs of file copics currently maintained by the LFS. Optionally, only returns
UIDs maiching the specified properties, The UIDs are sent to ‘‘destination port’ in a
WRITE operation. This operation is intended for use with migration algorithms that work

at the host level.

INQUIRE (access, UID [, properties]) — fileport, quorum information

Used by a GDS w open a file copy. It differs from OPEN in that it specifies the internal

UID used by Roe to identify objects (and recognized by the LFS) and returns the quorum

information contained in the file copy.

LOGIN (‘‘roe’’, roe password) — LFSport

Authenticates a GDS and returns to it a pont for future operations.

LOGOUT () — success

Used by a GDS 10 terminate its connection to the LFS.

The LFS attaches special significance 10 some file propertics. For example, the type of daw in the
file is a property, and is used to type messages containing the data. Another property specifies the
“‘state’” of the file, and is used by the GDS for synchronization during migration. An example of

this is given at the end cf the section.

Local Directory Server Protocol

A GDS authenticates itself with an LDS using the standard LOGIN protocol. This operation
returns an LDSport, which may be used 10 manipulate complete directory nodes. LDSports sup-

port the following opcrations:

CREATE_NODE (UID) — success

Creates an new, initially empty, directory node on this host with the given UID.

DELETE_NODE (UID) — success

Deletes the empty directory node with the given UID.

ENUMERATE (destination port {, propeidesjy — number of UlDs returncd

Rewrns the UIDs of directory nodes currenty maintained by this LDS. Optionally, only

returns UIDs matching the specified propertics. The UlDs are sent 1o *‘destination port”” in

a WRITE operation. This operation is intended for use with migration algorithms that

work at the host level

OPEN_NODE (UID [, register]) — nodeport, node state, quorum information

Opens the directory node with the given UID, returning a nodeport for it, along with
quorum information and information about the node state. ‘‘Node state’’ specifies whether
or not the node is currently in use and up to date. Version numbers are ignored for nodes
that arc in use (since ongoing transactions may update them while votes are being col-
lected). If “‘register’’ is specified, the GDS will be notified of changes in the directory or

its state.

LOGOUT () — success

Used by a GDS to terminate its connection to an LDS.

READ_PROPERTIES (UID [, property names]) — property list

Returns properties associated with the named directory node. Optionally, return the proper-

ties with the givern names.,

WRITE_PROPERTIES (UID, property list changes) — number of properties changed
This operation modifies a directory node’s properties according to the changes given.

Nodeporis are used primarily to access entries inside .ode. Nodeports support the following

operations:

ADD_ENTRY (entry [, transaction class]) — success

Adds a new entry w the directory node. By default, node updates such as ADD_ENTRY
are applied when recenved. If an entry addition, deletion, or modification is part of a tran-

saction, *‘transaction class'’ will be present. If it has a value of ENDING, an unplicit

84

SYNC is done for this node before returning. This avoids the need for an exgplicit SYNC

which, given the small size of directory entries, would be a significant additional overhead.

CLOSE () — success

Closes an open directory node,

DELETE_ENTRY (entry name |, ransaction class]) — success

Removes the entry with the given name from the direciory.

ENUMERATE_ENTRIES (destination port, {ALL | JUST_NAMES) [, pattern]) — number of

entrics matched

Returns all entrics in the node (if **ALL"") or the names of all entrics in the node matching

“‘pattern.”” The UlIDs are sent tc “‘desiinalion port”” in a WRITE operation.

READ_ENTRY (entryname) — entry

Returns the contents of the entry with the given name.

READ_PROPERTIES ([, properly names]) — property list

Returns properties associated with the directory node. Optionally, returns the propertics

with the given names.

UPDATE_ENTRY (ncw entry {, transaction class] [,old entry]) — success

Changes an existing entry. If included, ‘‘old entry’’ must match the current value of the

entry.

WRITE_PROPERTIES (property list changes) — number of propertics changed

Modifies a directory node’s propertics according to the changes given.

' R R R R B SR D A DA BN N B WS o GE BN .

In addiuon, nodeports recognize the ABORT and COMMIT operations used for two-phase commit
(S NC is implicit) and the WRITE operation defined in the user protocol. The WRITE operation
is used in conmuncuon with READ PROPERTIES, WRITE_PROPERTIES, and
ENUMERATE_ENTRIES to migrate directory copies and to bring up to date obsolete copies.
Copies are frozen (by setting a special state propertv in the copies) for the brief period of time that

1s required to do this.

Local Representative Protocol

The LR supports the following operations:

LOGIN (“*roe™’, roe password) — LRport

Authenticates a GDS and returns 10 it a port for future operations.

LOGOUT () — success

Used by a GDS o terminate its connection to the LR.

STATUS() — properties of this host

Returns to the GDS information on the local host. This information is retumned in the form

of a property list to allow it 1o be easily manipulated and expanded.

SPAWN() — TCport

Creates a new Transaction Coordinator on this host and returns a port to il.

Transaction Coordinator Protoco!

The TC supports the user fileport protocol defined in the previous section and translates fileport
opcrations into operations on multiple fileports. In addition, it accepts the following operation from

the GDS:

86

FILE_SUITE (userport, access, 1, w, votes, LFSports [, entryport]} — filepont

Used by the GDS to supply a TC with a description of a newly opened file. *‘Userport™
identifies the user and allows the TC to return a fileport to the user. “‘Access’” is from the
OPEN. “R", “‘w”, *‘votes”’, and *‘LFSports’’ describe the file quorum. ‘‘Entryport’ is

present if there is a directory change that should Le¢ committed as part of file commit

Global Directory Server Protocol

The GDS supports the user packport and directorypor. protocels defined in the previcus section.
In addition, it accepts two-phase commit operations (ABORT, COMMIT, and SYNC) from TCs
for use in synchronizing entry changes with file commits, and WRITE operations from LDSs and

LFSs as part of retrieving information on file and directory copies on a host.

Finally, changes in directory nodes that the GDS has registered with are sent using the following

operation:

NOTIFY (condition, description)

Used by an LDS to notify a GDS of changes in the state of a directory copy. This can be
generated in response to directory updates (in which case ‘‘condition’’ contains the opera-
tion and ‘“‘description’’ the new entry), or to notify a GDS of update failures or other con-

ditons.

Examples

/18 an example of how these protocols are used, consider migrating a file. A GDS first selects a
file copy to migrate and does an INQUIRE on the copy. This may have already been done as part
of another operation (for example, if this is a demand migraton, the INQUIRE would have

already been done as part of quorum collection).

The GDS docs a WRITL_PROPERTIES to mark the copy as migrating, and to indicate that it is

10 be deleted at commit ume. It then uses an INQUIRE 1o create a copy at the new location. It

87

does a READ_PROPERTIES on the old copy to get the property list, edits Roe properties if

needed, and sends the properties to the new copy with a WRITE_PROPERTIES. It then docs a

READ on the old copy, specifying the new one as the destination. After this finishes, a SYNC is

done on both copies, an UPDATE_ENTRY is done for the entry pointing to the file, and th=n a

COMMIT is done to finalize the changes.

3.6. Discussion

3.6.1. Meeting the Goals of Roe

In section 3.3 we derived a set of goals, based on our thesis statement, that Roe was to meet.

Roe’s methods for addressing each of these goals are as follows:

Network transparency: Roe supports its own network transparent global directory and
provides wransparcnt access to distributed resources through this directory. This ensures
network transparency.

Simple user model: Roe appears to users to be a single, globally accessible file system
that providec highly available, consistent, sharable files.

Consistency: Alomic transactions are used to ensure internal consistency in any given
file or directory copy. The use of weighted voting guarantees that users will always see
the latest copy.

Enhanced availability: Roc supports replication of files and directonies to increase
availability. It also maintains a network model that includes information on host avail-
ability and uses this o place resources to maximize availability.

Reconfigurability: Roe uses automatic file placement, file migration, and replication to
mask and adapt 1o failures and other changes in underlying resources. The network
model maintains information about the state of these resources and allows placement
and migration to be done effectively.

Performance: Roc uses automatic placement and migration o place data ncar those

using it. The network model includes information on host performance and congestion

88

that can be used w balance load and reduce delays. Directory information is cached 10
reduce the overhead of name interpretation.

+ Heterogeneity: Roc supports data conversion between machine boundariec where possi-
ble, machine-dependent files, file properties for storing information useful to particular
host types, and a modular siructure that encourages heterogeneity by minimizing the ini-
tial *‘buy-in’’ cost.

+ Scalability: Roe uses algorithms, such as weighted votng, that are able to operate in the
presence of partial knowledge. This minimizes the need to maintain network state.
Control of access to data is placed with the data. This simplifies the replication and dis-

tribution of higher levels, and allows these levels to be spread across the network.

3.6.2. Weaknesses of the Roe Approach

A significant weakness cf Roc is its lack of support for autonomy. Once a file s stored in Roe,
users have no control over where it will be located. This makes stand-alone operation of a host
using Roe unreliable at best. This is not an issue in the LAN environment that we have been con-

cermed with, but it complicates extending Roe to other environments.

This lack of autonomy 1s the result of three factors: Roe’s use of a separate globa! directory (o
ensure transparency, replication 1o increase overall availability, and our insistence on consistency

for replicated files and directories.

Two related issues are security and the use of Roe in wide area networks. The current design of
Roe doesn’t explicitly address security issues, although it would be straightforward 10 add access
control mechanisms given our assumption of a single administrative domain. However, if Roe
crosses administrative domains or is on a network that includes untrusted hosts, placement and
migration algorithms would need 1o take security implications and autonomy requirements into
account. This is more likely to be an issue in wide arca networks. This, combined with autonomy
issues in wide arca networks, would make it difficult to extend the Roe model 1o this level. A

morc appropriatc model here might be a separate Roe system controlling resources on each LAN,

g A o A am

89

with provisions to access Roe sysiems on other LANs,

Performance may also be an issuc in some Roe configurations. Roe includes algorithms to place,
migrate, and group data to improve performance. However, the use of a separale distributed glo-
bal directory, combined with the overhead of ensuring the consistency of file and directory data
may result in substantial performance penalties, particularly if Roc is implemented on wop of host

operating systems, as planned.

Roe caches directory information to reduce the overhead of name lookup. One way o reduce the
overhead of ensunng file consistency would be 10 place advisory locks (which are broken. with
notification, on a write) on frequently used files. This would eliminate the need to collect
quorums every ume these files are opened. The degree of success such a tactic would have would
depend on the amount of file sharing. on updatc rates, and on reference locality. We will examine

this issuc again in Chapter 7 in the context of data on file usage patiemns.

3.6.3. Strengths of the Roe Approach

An important strength of the Roe approach is its support for complete network transparency, and
the approach it uses to ensure transparcncy. This provides a framework that allows Roc to

integrate exisung solutions for file placement, migration, consistency control, and other problems.

Using these techniques, Roe can transparcntly integrate new resources, make effective use of exist-
ing oncs, reconfigure to balance load and adapt to failures, and replicate resources o increase
availability. Roe does this while cnsuring consistency, network transparent naming, and transpar-

ent access, thus supporting a particularly simple user model.

Roc provides extensive support for heterogeneity, including transparent data conversion, machine-
dependent files, file properties for extending Roe’s file abstraction, and a modular structure that
reduces the imitial ‘‘buy-in’’ cost. As we will see 1n Chapier 4, this allows heterogencous

resources to be casily integrated into a network.

90

Roc is designed 1o scale well to darge LANs, It makes extensive use of algorithms, such as
weighted voting, that are able to work 1n the presence of partial network knowledge. Control of
dawa is placed with the data. This use of distnbuted control eliminates bottlenecks that occur in
centralized designs, The network model and the use of automatic migration can be used to bal-

ance load and avoid congested “*hot spots™ that plague large networks.

3.7. Summary

This chapter has presented a design for Roe, a tfully transparent distributed file system for « hetero-
gencous local arca network. Roc appears 1o users to be a single, globally accessible file system
providing highly available. consistent files. Roe uses file replication. atomic transactions, a reph-
catca global directory. a detailed mode' of the network, automatc placement, and migration o

provide full network transparcncy.

File replication based on weighted voung is used to enhance the availability of Roe files and direc-
tories. Weighted voung was chosen because of its simplicity, 1ts support for decentralized control.

and its ability to operate 1n the presence of parual knowledge.

Roc maintains a replicated global directory that is used to name Roc files and directories. The
scparauon of this name space from that of hosts supporting Roe allows Roe to transparently reph-
cate, distribute. and reconfigure files and dircctorics. The global directory 1s replicated using a

modificd weighted voting algorithm that supports long-term connections and caching.

A network model encodes information used in placing and migraung files and directones. The
modet includes information on host congestion, available space, availability. state, and so on. This
nctwork mode! is used 10 perform automatic file placement and migrauon. Files are placed hased
on available space, congesuon, topographic, and other considerations. File migrauon may be used
10 adjust to changes in underlving network resources, o improve performance by moving data

closer to users, and o balance load.

91

A network is typically made up of a number of dissimilar machines, and Roe¢ recognizes this by
providing support for heterogeneity. This includes typed files, conversion between machine boun-
daries, support for machine-dependent files, file properuics to allow Roe’s file mode! 10 be

extended, and a modular structure that eases the integration of new hosts into Roe.

As we have seen in this chapter, the full network transparency supported by the Roe design allows
it to integratc these lechniques and to use them to provide increased availability, transparcat
reconfiguration, effective use of resources, a simplified file system model, and performance
benefits such as load balancing and migration to reduce overhead. The design provides a strong

vindication of our thesis statement.,

Chapter 4

The Roe Implementation

4.1. Introduction

An implementaton of Roe was undertaken to validate the design presented in Chapter 3. This
implementation was also intended to provide an environment for experimenting with other file sys-
tem designs, with file placement and migraton algorithms, and, eventually, a file storage and

management facility for the department’s network.

It is frequently argued in systems rescarch circles that an implementation is the most effective
(and sometmes only) way to validate a system design. It often uncovers problems and complica-
tions that were not anticipated in the original design, and points up areas where future work is

badly needed. As we will see, the experiences gained in implementing Roe confirm this view.

In this chapter, we first describe the environment in which Roe was implemented. We then sketch
out the implementation approach used and present the resultant system. Given this background,
we describe problems that were encountered in the implementation and make some suggestions for
future systems. Finally, we discuss the extent to which our goals were met and detail lessons

learned from the implementation.

4.2. The Implementation Environment

Roe was conceived and designed in the context of a larger researcii project on a lestbed system for
distributed file systems. Impicmentation cf this testbed system was started in late 1981. A1 that
time, the University of Rochester Computer Science Department’s network consisted of several
Data General Eclipses running RIG (a locally developed message passing system), VAXen running
BSD UNIX, and a number of Xerox Alto [Thacker 79] workstations running Alto/Mesa. These
hosts were connected together with a 3MB Ethemet [Metcalfe 76] (see Figure 4-1). Roe was

implemented on all 3 classes of hosts. This gave us an opportunity to explore some of the compli-

cations introduced by a heterogeneous environment.

The following section briefly describes the environments provided by RIG, UNIX, and Alto'Mesa.

Section 4.2.2 describes the interprocess communication mechanism (IPC) used in the
D/G Eclipse D/G Eclipse VAX 11/780 VAX 11/750
RIG RIG BSD UNIX BSD UNIX . o
500MB disk 250MB disk 560MB disk 470MB disk
3MB Ethernet
Xerox Alto Xerox Alto Xerox Alto
¢ o 0 Alto/Mesa Alto/Mesa Alto/Mesa e 0.
5MB disk 5MB disk 5MB disk

Figure 4-1: U of R Computer Science Department 3MB network (cira 1983)

94

implementanon.

4.2.1. The Host Environments

RIG [Ball 76,Lantz 82] ran on several Data General Eclipse minicomputers. It was a message-
based sysiem that provided file service, ARPANET access, printing services and a number of other
functions for client hosts (primarily Xerox Altos). RIG supported a tree-structured file system.
Files were managed by a file server process and presented to the user as seekatle streams of bytes.

Requests to read or write a file were limited to 1K bytes per message.

For the developer of RIG software, the primary characteristics of the system were that typed mes-
sages were the basic method of communication, process address space was limited (64K bytes),
physical memory was limited, context switching was slow, and process creation was very slow.
These factors worked together 10 encourage a structure where one server process was responsible
for a resource. Such a server typically handled a number of client sessions simultaneously, multi-

plexing between them and processing as much as it could of all active sessions before blocking.

The development (and only) language on RIG was bepl. Bepl is an ancestor of C, with similar

structuring facilities, but with a cleaner syntax and no typing.

UNIX [Riwchie 78) is a general-purpose, interactive time-sharing system. UNIX supports a tree-
structured file system containing both files and devices. Files are represented as scekable streams
of bytes. Associated with each file is additional information on the size of the file, creation date,

protection, and so on.

Process creation in UNIX is generally much cheaper than on RIG, although still significant relative
to file access umes. The version of UNIX used in this effort (4.1 and 4.2BSD UNIX) supports a
large virtual address space, and so allows servers 1o retain significant amounts of state. C [Ker-

nighan 78] is the language of choice for most system development on UNIX.

The Xerox Alo 1s a microprogrammable, single-user workstation with a bit-mapped display and

mouse. Files on the Alo are seekable streams of items (generally bytes or words) plus a leader

R W eE B U B B T O8N &G W

page that contains hints about file size, name, file type, and so on. User information may also be

stored here.,

Development on the Al was done using Mesa in the Alto/Mesa environment
[(Mitchell 79, Xerox 79]. The distinguishing features of the Mesa language are strong typing, ela-
borate facilities for modularization and information hiding, and support for cheap shared-address
processes. The language provides monitors to synchronize access to this state. In addition to the
programming language, the Alto/Mesa environment provides a number of packages for file access,

process management, display manipulation and so on.

4.2.2. Interprocess Communication

When the implementation of Roe was started only RIG, of the 3 environments described above,
had a native IPC mechanism that provided a sufficiently rich set of functions. There was, how-
ever, an add-on IPC environment developed by Rashid at CMU [Rashid 80] for 4.1BSD UNIX. It
was the logical successor to RIG’s IPC and was generally compatible with it. This IPC was
adapted for our UNIX machines, necessary extensions were made 1o RIG’s IPC and a compatible
implementation was done for the Altos. Servers were written for each environment to extend the

IPC across the network. This work is described elsewhere [Moore 82).

The remainder of this section describes the facilities provided by the network IPC, presenting only
those aspects important 1o the Roe implementation. For the sake of brevity, we will discuss pri-
marily the UNIX implementation, generally referred 1o as CMU-IPC. The Alio implementation is
basically identical from a user’s viewpoint, the differences in the RIG IPC had liule effect on the

implementation, and the extension across the network was, for the most part, transparent.

CMU-IPC provides two basic types of objects: ports and messages. A port is a FIFO queue of
messages. One process may receive messages from a port and any number of processes may send
messages o the port (Figure 4-2). All access to a port is through a secure capatulity, which is a
process-local name for the port. CMU-IPC notifics processes with capabilities W a port when the

port is destroyed or becomes unreachable and the capability becomes invalid.

Sender 1 Sender 2 Receiver

user level A

kernel/network servers

|

—

message queue

Figure 4-2: A port in CMU-IPC

Ports in CMU-IPC are anonymous. Given the local capability for a port there is no way to deter-
mine the location of the process receiving messages sent to the port. This would, in theory, allow
the receiving process 1o change during the lifetime of the port, but the protocol for doing this

across the network is non-trivial and was never implemented at Rochester.

A message is a collection of typed data objects. Supported data types are currently limited to
character, integer, port, uninterpreted, and arrays of any of these. In addition to the data, messages
have a priority (normal or emergency), an integer ID (set by the sender), a destination port (where
the message will be delivesed) and a reply port. Normal messages follow the FIFO queue discip-
line described above. Emergency messages are also received FIFO, but they are queued ahead of

normal messages sent on a port. Messages are delivered reliably.

The queue for a port is limited in size. Flow control is invoked when a process attempts 10 send a
normal message to a full port (emergency messages are not flow controlied). One of three flow

control actions (specified by the sender) is taken:

TR U R e a A BN A e

- iy AN s A W S ay

S SN Iy am n I W .

97

e The sender is blocked until there is room for the message: or
» The send fails; or

s The message is accepted and the sender is notified when it is actually queued (limited to

1 outstanding message per sender per port).

It is possible 10 associate a string name with a port. Other processes may then lookup a port by
name and receive send rights to it. If a name lookup request cannot be satisfied locally, the
request is broadcast to other machines on the network. There is no other structure in the IPC
name space. There are two other ways for a process to gain send rights to a port: the parent of a
process may request send rights to the two default ports created with the process (the data and ker-

nel ports) or a process may receive them from another process in a message.

The IPC described above was extended across the net using user-level servers. PUPs [Boggs 80]
are used as the underlying transport mechanism. This limits messages to a maximum of 512 bytes
on some systems. Typed dala in messages is converted to a network standard format

(VAX/UNIX) before being placed on the network and converted back when received by a server.

4.3. The Roe Implementation

This section describes the actual implementation of Roe. We first describe the general approach
used in the implementation. We then present each of the servers that make up Roc in tumn.
Finally we summarize what was and was not implemented in the coniext of the architecture given

in Chapter 3.

4.3.1. General Approach

Our general approach was to implement enough of Roe to both validate the approach used and to
make the system usable. In practice this means that a fairly complete implementation of the sys-
tem was donc in the UNIX environment and a limited subset of the system was implemented in

the RIG and Alto/Mesa environments. This allowed us to validate the overall design, investigate

98

the heterogene'ty aspects of Roe, and implement a working system in a reasonable amount of

time.

The structure of the implementation follows closely the architecture given in Chapter 3. Local
File Servers and Local Represeriatives have been implemented for all three host environments.
This allows files to be stored on all hosts on the target network. Transaction Coordinators, Local
Directory Srrvers and Globa! Directory Servers have been implemented in the UNIX environment.
Servers art implemented as separate processes, with information exchanged only through mes-
sages. Ttis approach has obvious performance disadvantages, but allows for easier development,
monitoring, experimentation, and incremental implementation. The two obvious alternatives,
implementing Roe as one process per machine and implementing Roe in the kemel of the hosts

are le<s appropriate for a research prototype of this complexity.

We made minimal changes to the host environments. This was in keeping both with our goal of
gracefully accommodating heterogeneity and with the limited manpower available. The most
striking example of this is our reliance on the file systems of the hosts. Roe files and directories
are implemented as files residing on the regular file systems of the hosts. In a similar spirit (and

because we were not the sole users), we used CMU-IPC without any modifications as a base for

the implementation®.

Roe has not been released to the general public, but it was implemented with this possibility in
mind. There are two important consequences of this: 1) servers never block on user processes or
other servers, and 2) a functional implementation was done. We will come back to these points in

the following sections.

4.3.2. Roe Server Implementations

YAs we shall see, this s a classic example of building on sand.

T R RN B R N B U oa Em W

99

4.3.2.1. Local File Server

Local File Servers were implemented in the UNIX, RIG and Alto/Mesa environment. We will
describe first the UNIX implementation and then use this as a base for discussing the other two

implementations.

4.3.2.1.1. UNIX

The UNIX Local File Server supports the fileport protocol described in Chapter 3 (with the excep-
tion of crash recovery). The UNIX LFS also supports most of the directoryport protocol. This
allows users 1o access files local 10 UNIX machines (files that lie outside the control of Roe) using

the same protocol used to access Roe files,

The initial UNIX LFS created a new process for each user that logged in and for each file that was
opened. Dedicating a separate process to each user and file resulied in a very simple implementa-
tion. Requests from users could be mapped in a fairly straightforward fashion into UNIX system
calls, with no need to worry about a server process having to deal with multiple outstanding
requests. Unfortunately, the performance using this approach was not very impressive. The time
required 1o fork a new LFS process (100ms on a VAX 11/750) was an order of magnitude greater
than the tme required for the new process 1o open the file (an fopen call typically takes 5-10ms

under 4.2BSD UNIX) and so dominated the cost of opening a file.

This led us o re-implement the UNIX LFS as a multiplexed server. A new process is still forked
when a user logs in (for protection purposes), but now all file requests for a given user are handled
by a single process. A user may have a number of files open at once, and in various stages of
reading and writing. We wished to preserve the appearance of a non-blocking server (that is, an
active request on one file shouldn’t preclude operations on another file). We do this as follows:
When a process receives a request to open a file, it allocates a new port to handle requests for the
file and passes the port back 10 the user. Requests on the file always arrive at this port. Associ-
ated with the port is a processing routine that is called when a message is reccived on the por,

and a context o use in interpreting the message.

100

processor = proc!;

while (TRUE)
TeCeIVe (MassaEl s
processor(message, context);

}

proc 1(message, conlext)
(
start processing on the request;
pro<essor = proc;
save context for proc2;
return:

)

proc2(message, context)
finish processing;
processor = procl;,
retum,

Figure 4-3: A Multiplexed Server

All messages are received at a single location and are then dispatched to the processing routine
associated with the port. This routine handles as much of the request as possibic ang, if it isn’t
able 1o finish the request without blocking on a message send or receive, sets up a processing rou-
tine and context to continue the request. It then returns to the central dispaiching loop. The

overall structure of a Roc server using this approach is shown in Figure 4-3.

This fairly crude approach allows us to write multiplexed servers without any underlying system or
compiler support (an important consideration in a heterogeneous environment). It does, however,
result in an implementation that is harder to understand and modify, since the fiow of contro! in

the server is much less obvious. We will come back to this in section 4.4.

The LFS mainwins a property list with each Roe file (files opened using INQUIRE) that it
manages. This list is stored at the front of a file and is read in when the file is first opened.
There is no limit on the size of this property list. The structure of a Roe file in UNIX is shown in
Figure 44, It should be noted that this approach doesn't allow properties to be stored in non-Roe

UNIX files. A number of other representations were considered that would have allowed

101

properuies 10 be associated with any UNIX files, including adding a pointer 1o a properties page in
the UNIX file system inode structure, maintaining a properties ‘‘database’” containing propertics
for all files on the system, and maintaining a *'properties directory tree'" that shadowed the direc-
tory uee and files of the associated UNIX file system. These were all eventually dropped because

of complexity or performance reasons.

There are actually two types of properties stored in the property list of a file: properties used by
the Roe file system and user properues. By conventon, Roe properties have names of the form
“ROE®."" Five of these properties are present in every Roe file and have special meaning to the
LFS. “ROEumestamp,” *‘ROEr_quorum,”” *‘ROEw_quorum,” and *‘ROEvotes’" are used in the

weighted voung algorithm. They must be present in the INQUIRE request when a Roe file s

fT =
check word offset =0
data offset
number of properties
prope name length
. name
- properties]
- -
value type
offset = data offset
number of values
file data
P— -4
= values —
file format property entry

Figure 4-4: Structure of a Roe file on UNIX

102

credated and are rcwmed by the LFS when a Roe file 1s opened. If the file 1s opened for wrike
access, the LFS increments the umestamp ('ROEtmestamp™). “*“ROE1ype’” specifies the type of
the data in the file. s used o determine the size of the basic object in the file and 10 type mes-

sages conwining duta,

The UNIN LFS sepports atomic actions on files. If a file is opened with atomic access, a copy of
the file will be made the first ume it is written and all work will be done on this copy?. At com-
mit time the copy replaces the onginal. The fsvae system call is used 10 ensure that a consistent

copy of the file 1s on disk. Full crash recovery is, however, not currently implemented.

4.3.2.1.2. RIG

The RIG Local File Server was also heavily muliiplexed, with one process handling all requests
for a given machine. On RIG, file system requests were done using messages to the file server
process. This resulied in more fragmentation in LFS processing routines, with the corresponding

complexity in development and maintenance.

In parallel with the develepment of the RIG LFS, plans were made o rewrite the RIG file server.
This rewrite would have provided a more robust on-disk structure, support for atomic transactions
and swble storage, support for properties, and information on disk space available. When it
became clear that RIG was to be phased out, these plans were dropped, along with the remainder
of the Roe implementation effort on RIG. Of the proposed file system changes, only support for

atomicity would have been strictly necessary for Roe.

4.3.2.1.3. Alto/Mesa

In the Aliwo/Mesa environment we were able 10 take advantage of the lightweight processes pro-
vided by Mesa. Lightweight processes allowed us to avoid explicit multiplexing. The resultant

implementation is a comparative joy to read. The Alto/Mesa LFS implements the enure LFS

2This 15 not a partcularly ciever implementation, but it has the significant sdvantage of requinng no changes to the
UNIX file system to implement

protocol (including crash recovery) and took considerably less time o implement than either the
RIG or UNIX LFSs. Each user login session and each opened file is handled by a separaie proc-
ess. In situauons where it is necessary 10 access shared state (the file lock table and the intentions

logs), Mesa monitors are used for synchronization. Propertics are stored in the Alio leader page.

4.3.2.2. Local Representative

The UNIX Local Representative supports two requests: 1) SPAWN a new Transaction Coordinator
and 2) return STATUS information on the local pack and machine. The TC is part of the LR in
the UNIX implementation and so SPAWN reduces to a fork call. Returning status information is

somewhat more complicated.

When the LR starts up, it reads a configuration file containing the name of the pack it is represent-
ing, along with information on the operating system type, machine type, availability, and basic
page access ume. This 1s the status informauon that doesn’t change while the LR is running.
When a STATUS request is received, the LR gets the amount of disk space currently available
(using the shell-level command *‘df"’") and estimates the current page access time (we usc as a
rough estimate (basic page access time)*(load average)). This information s retumed along with

the static status information.

The RIG and Alw LRs support a reduced form of the status command. On the Alio only the
available space changes dynamically and on RIG all returned status information is static (and

hence not very accurate).

4.3.2.3. Transaction Coordinator

The Roc Transaction Coordinator takes a user request on an open file suite and distributes the
request to the appropriate file copies in the suite. A TC has been implemented for UNIX. It has a
multiplexed structurc similar 1o the LFS, but with the added complication that there is an error
handling routine associated with each allocated port. As with the processing routine, the error

handhing routinc may be changed as needed. This allows us to easily express the different error

104

handling requirements of, for example, a READ versus a COMMIT. There is at most one TC for
each acuve user of Roe, and s¢ a given TC may be handhng muluple file suites sumultancously.

The multiplexed structure keeps the TC from becoming a boulenack.

Reads on a file suite are sent to one copy of the file. Writes go w all accessible copies. If a copy
of the file fails, it is removed from the quorum. If a quorum no longer exists for an operation,
then the operation fais. 1f the copy being read fails in the middle of a read operation, an attempt
is made w switch 1o another copy. This change 1s transparent to the user process. The TC main-
tains for each file suite the current file offset, calculated based on the last SEEK and on accumu-
lated KEAD and WRITE operations. Data read from a file are sent first 1o the TC, the offset is
updated, and then the data are forwarded to the user. If a copy fails in mid-stream, another copy
15 selected, a SEEK 15 done and a READ 1s started from the point where the last READ failed.
The TC's imemal file offset is also used e do a SEEK before doing o WRITE (10 all copies) that

follows a READ (1o 4 single copy).

4.3.2.4. Locul Directory Server

The UNIX Local Durectory Server manages, for Global Direcory Servers, Roe directonies on a
host. Tt is implemented as a single process per host. Roe directones are stored as regular UNIX
files. with one dircctory node copy per file. A directory copy contiins some adminisuative infor-
mation, a property hst, and the directory entries. The structure of a directory file is shown in Fig-
ure 4-5. Figure 4-5 also shows a sample directory entry (this is the on-disk format, with each of
the strings being stored in <length, characters> format). This entry descnbes a plain file. Other
entry types describe directories, user entries and machine-dependent files. These types are

described in more detal an Chapter 3.

When a directory node is opened, the directory is read into memory and cached in the LDS.
“ince directorics are typically very small and we expect references to be fairly localized (Chapter
6). the memory and processing cost involved here are insignificant. Rcads are handled from

memory. Updates are made first to the in-memory copy of the node and then the modified node is

mll EGF Ay & ==

108
check word offset = 0
data offset
number of properties type (file)
— properties - name
offset = data offset
LDS version number global ID
number of entries number of copies
- entries - - copy locations —
- — e —
directory format a file entry

Figure 4-5: Structure of a Roe directory

forced to disk. Atomic updates are supported using the protocol described in Chapter 3. There is
currendy a limit of one such update pending per directory node, although it may contain multiple

operations. Crash recovery has not been implemented.

When a directory node copy is first opened, the LDS allocates 8 new port that will be associated
with the node and retumns it to the opener. Requests to open an already opened node are handled
by simply making a note of the GDS making the request and then retuning the port already asso-
ciated with the node. The LDS maintains a list of all processes with access to a node. This list is
used to notify GDSs when a copy is out of date or otherwise potentially invalid. This list is also
used 1o keep track of the number of GDSs actually connected to a node. When this pumber drops

to zero (because of CLOSES or lost connections), the node is closed.

106

The LDS also associales with each node a state. This state may take one of three values:
¢« CURRENT: The node copy has been read or updated and has not lost connections 10
GDSs.
+ STALE: The LDS has been unable to make at least one update to the node (due o disk
problems, for examplc).
« UNKNOWN: Before a node has seen any reads or updates or after it has lost conne-

tions 10 GDSs.

If a nodc is STALE, requests to read or write the node are rejected untl the copy is updated by a
GDS. The other two states (CURRENT and UNKNOWN) arc sent to the GDS along with

weighted voting information when a node is opened (see Chapter 3).

4.3.2.5. Globai Directory Server

The Global Directory Server is the glue that holds Roe together. It maps user requests into
requests on Roc file and direclory suites, maintains the network model, determines inital file
placement and manages migration The GDS described here is a concrete realization of the GDS
described in Chapter 3. Its structures and algorithms generally follow closely those presented in
Chapter 3. Onc exception is the representation of information on host storage capabilities. The
implementation of Roe described here organizes storage by pack, rather than by host. A pack is a
unit of storage whose contents and space may be treated at a whole by Roe. A pack may or may
not acwally be tied to a particular host. It can be thought of as corresponding, on Altos, to a phy-

sical disk that may be moved from machine to machine or, on UNIX systems, to a file system.

In the next section we describe the initialization procedures for the UNIX implementation of the
GDS. Following sections cover the network modcl maintained by the GDS, file and directory
suite management (opening files, deleting them, updating obsolcte copies and so on), and file

placement and migration.

.

Il - Ol W B s
)

107

4.32.5.1. Initialization

When Roe is first started up on a UNIX host, a Local File Server, a Local Representative and,
optonally, a Local Directory Server and Global Direclory Server are created. When a GDS is
started up, it first reads a GDS state file containing the last GDS incarnation number on this
machine and a record describing the location of the root of the directory tree. The incarnation
number is incremented each time a GDS is forked and is used when generating unique file
identifiers. The record describing the root contains the file ID and packs of the copies of the root
(in the format used by the LDS 1o store directory entries). The GDS uses this information to open

the root of the directory tree.

The GDS reads two other files on startup. The first, the local pack file contains the name that the
local pack will be known under. This nams is unique across Roe. The GDS uses this name when
generaung unique file IDs. It is also used as the default location for newly created files, direc-
torics and processes. The network status file contains, for the network, information on packs and
their hosts. Each entry contains the name of a pack, the machine type and operating system of its
host, the pack availability, and access time and free space estimates. This information is used o

initialize the network model maintained by the GDS. It is updated when packs are contacted.

After the GDS on a host has finished its initialization, it asserts the CMU-IPC name *‘pack.roe.”’
A user wishing to contact Roe does a name lookup on *‘pack.roe’” and logs in. If there is a GDS
server running on the user’s local host, it will be used. Otherwise a broadcast name lookup is

done. The GDS on the first host to respond will be uscd.

When a user logs in, a new GDS process is forked for the user. This GDS process handles all
user requests that don’t involve internal file operations (these are handled by the TC). The GDS is
not muluplexed, but instead handles user requests serially. This is generally not a problem, since

the GDS, unlike the LFS and TC, isn’t involved in ongoing transactions.

108

4.3.2.5.2. The Network Model

When the GDS receives a user request o, for example, create a file, it contacts LDS and LFS
processes 1o read and create directory entries and to create file copies. Each GDS maintains a net-
work model ccniaining information about the state of the hosts and servers in the network. This

state is used 1o contact servers and 10 place newly created objects.

The network mode! is organized by pack. The following information is kept for each active pack:
o Pack name.
« Host status (up, down or unknown),
» Last update (ume of last STATUS request to the LR for this pack).
« LDS, LR and LFS ports for this pack (if available).
« Machine type (VAX, Alto, ...).
« Host operating system (UNIX, RIG, ...).
« Host availability.
» Free space (dynamic estimate).

« Delay (a dynamic estimate of the time for a host 10 complete a page read).

When a pack record is first read in from the network status file, it is given a host status of *‘unk-
nown.”” The first time the GDS acquires a port for one of the pack's local servers, the status is
changed to "up." If connections 1o all local servers on a pack are broken, the host is marked as
being ‘‘down’’ (or at lcast inaccessible). A GDS will periodically try to recontact down hosts.
The machine type, host operating system and availability information are from the network status
file, or, if this is a machine that wasn't in the status file, from the pack’s LR. The free space and

delay information are updated periodically using the replies to STATUS requests sent to up LRs.

GDS processes maintain current state information for packs that they expect to be using in the
near future. Packs are ordered on an LRU basis. Connections to a new pack are added when a
request is made 1o access or place an object on the pack. A GDS process penodically polls LRs

on active packs to update free space and delay estimates. This is currently done every 10 minutes.

109

Polling for network status can be expensive, particularly in a large network. The GDS tries
contro! this overhead by only contacting a limited number of recently used packs. A better solu-
tion would be to have a GDS process maintain connections with a limited number of LRs and o
have these LRs send notifications when there are significant changes in free space or delay est-
mates. This has the advantage of both decreasing the amount of unnecessary network traffic and
of providing timely notification of important changes. This approach was not used because it

would have required potentially major structural changes in the non-multiplexed GDS.

The general approach used in this implementation of the network model was onc of ‘minimal
impact’” and attention to scaling issues. A GDS process only acquires connections to packs as
they are needed. The obvious aliernative, attempting 1o acquire connections to all known packs at
startup time, would provide the GDS ‘aith considerably more information about the network, but
also incurs substantial costs from name lookup and connection establishment. These costs become
prohibitive in large nctworks. A GDS also only maintains current state for recently accessed
packs. We make no atiempt to maintain enough information to do optimal file and directory
placement. However, the approach used, when combined with the placement heuristics that will
be described in the following subsections, can be expected to provide effective placement in our

environment with relatively litle overhead.

4.3.2.8.3. File and Directory Management

The major task of the GDS is to open files for the user. When a request is received to open an
existing file, the GDS first reads the directory entry for the file. This is done using connections
maintained by the GDS to copi- of the user’s current working directory and to other recenuly used
directories. If this is a regular file, the GDS5 ihein scnds an INQUIRE request to all copies of the
file and collects the responses. If a quorum is received, the result can be sent to the users’s Tran-
saction Coordinator. Before this is done, the GDS checks to make sure that all copies of the files
are current. Obsolete copies are updated by rewriting both the file data and propertics. Only the
voling information is left unchanged. Once the TC receives the ports and other informauon for

the file quorum. it can accept user requests to access the file data. The sequence described above

—\7

110

1s shown, for an unreplicated file, in Figure 34

Opening files is not always as simple as the description given above suggests. If the file doesn't
exist and is being opened with create access, the GDS first composes a unique file ID for the new

file. The file ID has the form

<local_pack_name>.<incamation_number>.<sequence_number>.

Here the incarnation number is from the GDS state file and the sequence number is incremented
for each new file created by this GDS incarnaton. The GDS then selects locations for copies of
the new file (see the next subsection), places the copies and creates a directory entry describing

the file.

The file being opened may be a machine-dependent file (retums data that depend on the machine
and operating system being used). If the file is an existing file, the machine-dependent characteris-
tic will be specified in the directory entry for the file. The entry will also contain a list of file
suites, one suite for each machine and operating system combination that the file supportis. The
GDS attempts to match the target machine and operating system with one of the file suites in this
list. The target machine type and operating system may be specified as properties in the OPEN
request. If they are not given, the GDS uses the machine type and operating system of the user’s
home pack. This is the pack that the user supplies when he logs in. If no match exists, the open
fails. A machinc-dependent file may be created by specifying a machine type and operating sys-

tem when a file is created.

Another complication is file migration. The open request may trigger migration of this file. This is
done before the file is opened. Finally, there may be no Transaction Coordinator active for this
user when the file is opened. In this case, the GDS sends a SPAWN request to the Local

Representative on the user’'s home pack to create one.

A GDS process maintins connections to directories it expects to be using again soon. This is

presently himited to the current working directory and its ancestors, but could easily be expanded.

- S e B N S aE DN Bl -l

| Y-

1mn

When a directory node is first referenced. the GDS reads from its parent the entry describing the
node. It then contacts the copies of the node and collects a quorum. If any of the copies of the
directory are obsoiete, they are updated at this ume. The GDS selects a copy of the node (gea-
erally the first one to respond to the open request) and uses it for subsequent reads. Updates are
applied to all copies in the quorum. Emergency messages are used to notify a GDS when a copy
fails. Failed copies are removed from the quorum. If a quorum no longer exists, the node is

cloced.

4.3.2.5.4. Initial Placement and Migration

When creating a file or directory, the user may specify the number of copies o create, locations to
place the copies, and the voting configuration to use. This information is a property of the object
and is given in the property list that is part of the OPEN or CREATE_DIR request. If the user
omits this information, defaults will be used. In this case, the GDS must select locations for

copies. The network model plays an important part in this selection process.

The GDS attempts to piace files and directories to minimize access time, subject to loose availabil-
ity constraints. The first copy of a new object goes on the user's home pack. We are assuming
here that access to local resources takes less time than access across the network. This is not true
in general, but is definitely the case in our environment Locations for the rest of the copies are
found by picking from the active packs represented in the network model those with the lowest
delay, subject o static minimum free space and availability constraints. C-like pseudo-code for

the placement algorithm is given in Figure 4-6.

The GDS supports migration on reference for files. If a file is opened by a user and a copy does
not exist on his home pack, a copy will be moved there. Migration proceeds as follows:

(1) Open the copy to be moved, specifying DELETING and MIGRATING properties

(this causes future INQUIRIES on the copy to be rejected and marks the copy for

delete on close).

112

pack{0] = user’s home pack:
for (1 = 1; 1 < number of copies; i++)

{

pack(i] = a pack such that it has not yet been selected
& & delay < all other unselected packs
& & free space > space threshold
& & availability > availability threshold
& & pack state '= down;

Figure 4-6: Initial placement of file and directory copies

(2) Tentatively create a copy on the user's home pack, copying over all data and proper-
ties.
(3) Tentatively update the directory entry for the file.

(4) Atomically close the old file copy (causing it to be deleted) and commit the directory

changes and the new copy.

4.3.3. What the Implementation Provides

' Il T e
) - N B N

The previous sections of Chapter 4 have covered the Roe implementation at a fairly low level.

This section presents a high-level view of the capabilities of the implementation.

Y

The Roe implementation provides:
« Fully network transparent access o files and directories. The user has no need to know

any of the details of the underlying network, or even if there is one.

« File and directory replication. Both files and directories may be replicated and distrib-
uted across the network. This can be done under user control or aultomatically by Roe.

« Automatic placement of files and directory copies based on user location, access delay,
free space and availability considerations.

¢ Transparent migration of files. The implementation provides migration on reference,
with a copy of a file being moved to the user's home pack when the file is opened.

« Transparent reconfiguration to adjust for failed, recovering, and new hosts. Host failures

during file opens, reads and writes are masked (if possible). Hosts are recontacted when

Ml EE BN -l AE am

—e

I I W T N A e U Y BN El

113

they recover. New hosts may be added to the network with no user-visible changes.
Limited support for atomicity. Alomic operations on individual files are supported.
However, only the Alo implementation provides crash recovery.

File properties for UNIX and Alio files, for use by both the user and the Roe file sys-

tem.

Support for heterogeneity. UNIX, RIG and Alto hosts all provide storage for and access
10 Roe files. UNIX hosts implement the Roe directory. File and property data are
typed. In most cases, these data are transformed from one host representation to another
when it crosses machine boundaries, and so the heterogeneous nature of the network is
masked. For cases where this masking is not possible or desirable, the implementation
provides machine-dependent files that return data that depend on the machine and
operating system. Roe can automatically select, based on the location of the user, the

correct version of a machine-dependent file.

4.3.4. Implementation Weaknesses and Omissions

The Roc implementation is a powerful validation of the architecture described in Chapter 3, but it

is by no means compleie. Previous experience has shown that developing a system of this size to

the point where it can be released takes far more effort than one or two people can provide. For

example, the LOCLUS distributed operating system is reported to have taken in excess of 70 man-

years to implement. Roe has about 4 man years of effort invested in it, and so omissions and

weaknesses are (o be expected. The major arcas where work remains to be done on Roe are as fol-

lows:

Error and crash recovery. Roe supports protocols for atomic transactions on replicated
objects but, with the exception of the Alio LFS, doesn't support crash recovery. Error
handling, particularly in the area of failure during transaction commit, needs work.
These are problems that have received a considerable amount of attention in the litera-
ture, though (see Chapter 2). There are a number of solutions available that would be

appropriate in the Roe environment. A lack of time and resources, combined with the

114

presence of other, more pressing problems, prevented us from fully implementing any of
them.

Protocol omissions. Some parts of the Roe protocols described in Chapter 3 were omit-
ted, again due to lack of time. The omissions are: ENUMERATE (get a list of file or
directory copies on a host), CREATE_ENTRY (to create a user entry), and NOTIFY
{support for directory copy caching and joining).

Security and protection. There is no way in the current implementation for one Roe
user to protect files from another user. Further, file and directory properties used by
Roe are not distinguished from user properties and so are not protected from users, The
latier problem can be easily addressed in the Transaction Coordinator, but adding higher
level protection for Roe files and directories would require network authentication facili-
ties, support for file ov;ncrship and access rights specifications (kept, for example, in the
property list of the file), and the addition of host security information 1o the network
modcl.

Initial file and directory placement. The current placement algorithm uses static avail-
ability and space thresholds. Better results would be obtained if these were adjusied
depending on the state of the network. Along similar lines, there is currently no way
for a user to specify the relative importance of performance, availability and storage
costs for a file.

File and directory migration. The current implementation does not support directory
migrauon at all. This is relatively straightforward, except for the cases of migrating in-
usc directories (connected GDSs must be notified of the move) and migrating a copy of
the root (connected GDSs should be notified so that they can update their state files).
File migration is hmited to the migration-on-demand algorithm described above. More
sophisticated algorithms would require the LFS to keep usage information (as part of a
file’s propenty list), support for iterating over files by pack, and the impiementation of

**forwarding addresses.”’

HE I A Eh T WA BN B S B 3O o an B s SR B B Ee

T 0 .

Interface libraries. Roe uses a uniform protocol across the network that is not, in gen-
eral, compatible with a host operating system’s file access protocol. Writing an inter-
face library that converts between these protocols would make Roe much more accessi-
ble from a host. This has not yet been done for any of the systems on which Roe has
been implemented, although, as we described in Chapter 3, the flexibility of the Roe
protocol and support for properties should make this straightforward.

GDS path interpretation. The GDS isn’t able to handle paths with muluple directory
specifications,

GDS directory state. The GDS maintains connections to directories from the root of the
directory tree to the current working directory. Maintaining a tree of recently accessed
directorics and their ancestors, combined with a path interpretation algorithm that short-
circuited evaluation of path components that were already cached, could be expected to
significantly decrease open overheads under some conditions.

Network reconfiguration. The procedure to add a new pack to the network is somewhat
awkward. The network status file for each GDS is updated to include the new pack and
then the initial GDSs on hosts are killed and restarted (this doesn’t affect transactions in
progress). A new pack will also be used by a GDS after an object is explicitly placed on
the pack. An alternative to all of this would be to have the network status file shared
by all GDSs (as a Roe file) and 10 have a mechanism to inform active GDSs of
significant changes.

Network state maintcnance. Dynamic network state (space used and delay information)
is collected by GDSs using synchronous polling of Local Representatives. This is
undesirable from a message traffic standpoint and may also lead to dclays in processing
user requests. Alternatives are discussed in section 4.3.2.5.2.

Network structure. GDSs have no knowledge of the actual structure and implementation
of the underlying network. This is fine in the current implementation, since remote hosts

on an Ethernet are all equally easy to access, but is not acceptable in general.

116

« Direcory updates. The current LDS implementation only allows one transaction to be
outstanding on a directory at a time. Most directories are updated slowly and so this is

not important, but there are significant excepuons (see Chapter 6 for an example).

¢ Obsolete directory copies. Obsolete directory copies are updated when the directory
node is first opened, but there is no mechanism in the current implementation to add a
copy that becomes available after the node is opened.

e Performance. The current implementations of both Roe and CMU-IPC are, in many
senses, prototypes. With the exception of multiplexed servers, no attempt has been
made 10 optimize performance. The resulls are predictable. Section 4.5 presents some

figures on the performance of Roe and makes some suggestions for improvements.

4.4. Implementation Difficulties

There have been relatively few large scale distributed system implementations, particularly in
heterogeneous environments. One consequence of this is that there is no good understanding of
techniques appropriate for implementing such systems, or of the problems most likely to arise.
These are areas of current research [Notkin 87]. The distribution strategies and algorithms used
by Roe are all swraightforward, and were picked, in part, for their orthogonality and ease of imple-
mentation. Despite this, implementing Roe was non-trivial. It consumed far more time and effort
than we had expecied. Part of this was due to the heterogeneous nature of our environment, and
to the lack of a common language and common system interfaces for low-level servers. However,
a larger part can be attributed 1o a lack of appropriate implementation tools, and o problems with

existing tools, approaches, and environments.

In the following sections we will describe the problems and experiences we had in actually imple-
menting Roe once the system was designed. The emphasis here is on problems one would
encounter in implementing any distributed application in this environment. Our observations on

Roe-related experiences will be presented in section 4.6.

y&E &E e

117

The two major areas of difficulty were with implementing and maintaining multiplexed servers and
with CMU-IPC. We discuss each of these in the following two sections and then present a solu-
uon that deals with both problems. We then discuss changes to the IPC that would make future

implementation easier. Finally, we briefly describe other implementation problems that arose.

4.4.1. Multiplexed Servers

Most of Roe was implemented using muliiplexed servers. In a multiplexed server, one process
handles muliiple requests in various stages of completion, switching between them to avoid block-
ing on one request when it is possible to make progress on others. This approach is described in
secuon 4.3.2.1.1 and shown in Figure 4-3. Using multiplexed servers increases the concurrency
allowed in Roe without incurring the high process creation overheads imposed by many operating
systems. Unfortunately, the multiplexing approach requires that any particular processing routine
be non-blocking and so processing for many requests must be broken up into a number of explicit
steps. As Figure 4-3 shows, this fragmentation, along with the need to explicitly store and restore
state and o manage storage acrass muluple routines, complicates the structure of the server. This

makes servers more difficult to implement, understand, «..d modify.

Further complications were introduced by our use of a buffered message passing system with finite
length queues and asynchronous error notification. Finite length queues are generally of no help
when implementing non-blocking servers. In some situations we chose 0 avoid using multiplex-
ing to deal with finite length queues by queuing data internally when a port filled up and then
sending the data later. Using internal queues simplified the structure of servers, but it made it
more difficult o handle errors and excepuons (particularly CANCEL for stream requests) and

complicated management of queued ports (see the next section).

There are alternatives to multiplexed servers. One is to provide compiler support for "lightweight”
processes (sometimes referred 10 as threads or tasks). These are shared-state processes that may
be created and destroyed with relatively little overhead. Lightweight processes are provided by

the Alto/Mesa compiler and environment. Lynx [Scott 5] is another example of a compiler that

118

supports lightweight processes. In the case of Lynx, this facility was prompted by the difficulty of
implementing muluplexed servers. We chose not to use compiler support on RIG and UNIX
because it wasn't available, we needed a solution that required minimal effort to implement and,
because of the heterogencous nawre of our environment, needed a solution that would work with

several languages.

We did, however, use lightweight processes when we implemented the Alio/Mesa Local File
Server. This allows us to compare the two approaches. While it is impossible to give a direct
comparison of sizes because of differing library suppon, the Alto LFS "fecls” smaller and simpler
than either the UNIX or RIG LFSs, despite the Alto LFS being a more complete implementation.
It took less ume to implement (roughly half of what it took to implement either the UNIX or RIG
LFS), is easicr to read, is far easier 10 maintain, and allows more concurrency than the UNIX

implementation (particularly for strcam requests).

Another alternative to multiplexed servers is to provide a library that allows lightweight processes
to be constructed explicitly. One example of this is the tasking package implemented by
Stroustrup for C++ [Stroustrup 84]. A similar package is now available and being used at
Rochester {Mayer 86). While we did not implement any Roe servers using this package. we did
experiment with using it in conjunction with CMU-IPC. We will come back to this after we

descnbe our experiences with CMU-IPC.

4.4.2. IPC Problems

A brief description of CMU-IPC was given in section 4.2.2. In this section we evaluate CMU-IPC
in light of our experiences in implementing Roe. It should be noted that CMU-IPC is closely
related to the Accent [Rashid 81] and Mach [Young 87) IPC facilities. Hence, many of the

observations prescnted below will apply to these two environments.

There were some aspects of CMU-IPC that we found quite useful in implementing Roe. The abil-
ity 1 send typed data and have the data transformed appropriately at machine boundancs allowed

us 1o ignore the heterogencous nature of the network, even at the local server level, when it was

119

not imporiant. Strongly typed messages also provide a substantial amount of implicit error check-

ing.

Notification of dead or unreachable servers was assumed in the design of Roe and used heavily in
the irrnlementation. It allows Roe servers to keep a sufficiendy current network model containing
the status of an appropriate subset of hosts and servers. If this facility had not been present, we

would have implemented something like it

Roe makes extensive use of the asynchronous message passing features of CMU-IPC. Statically,
most of the Rne protocol could be handled, with no loss of functionality, using a simple RPC
(remote procedure call) mechanism [Birrell 84]. However, two of the exceptions, collecting
quorums and streaming data, arc also two of the most heavily used interfaces in Roe and so they
determine the overall performance of the system. Quorums in Roe are collected asynchronously,
with requests being sent out to all copies before responses are collected. This allows processing to
proceed concurrently at the copies and so decreases open overhead. Using an RPC mechanism
here would result in the loss of this concurrency. The streaming WRITE protocol allows us 10
transfer large amounts ol data without the need for multiple high-level requests or acknowledg-
ments. QOur experience, then, is that asynchronous message passing has its benefits. It placed no
constraints on the structure of our system, and we were able 10 use this flexibility to our advan-

tage. RPC, despite its attractive simplicity, is not always the best paradigm.

Not all of our experiences with CMU-IPC were as positive as the ones described above. Overall,
we found CMU-IPC 1o be the weakest of the wols used in the implementation, Some of the prob-
lems were weaknesses of the particular implementation we used, some can be attributed to the
way that we uscd the IPC, and others 10 basic design flaws. The problems we had fell into four
broad areas: port allocation and deallocation, interpreting emergency messages, sending messages,

and name lookup. We discuss each of these areas below.

Roe scrvers allocate a new port 1o handle requests for each object opened. The port is deallocated

when the object is closed. This allows Roe servers to handle an arbivary number of objects (up o

120

the port allocation lunit imposed by CMU-IPC) wathout having 1o pre-allocote rescurces and pro-
vides a convenient way o associae messages with objects. Unfortunately, this approach interacts
badly with the port allocation and mapping algorithms used by CMU-IPC and with emergency

message-based hink failure nouficaton.

When CMU-IPC delivers a message o a process, it maps the ponts in the message o process local
capabilives. These capahilites are smu!l integers and are reused afwer a process deallocates the
port associated with the capability or, for a port owned by another process, after the process dis-
cards send rights to or loses contact with a port. It is possible that a server may have messages
that are being sent or are queucd to be sent that contain this port. If the local capability is reused
before the messages are actually sent, these messages will be delivered with the incorrect port
informauon (or perhaps to the wrong port). This sort of race condition is generally not reproduci-
ble and so 1s very difficult to track down. The lack of association between local capability names
and port locatons and owners enforced by CMU-IPC compiicates the process. This is a situation
where the explicit <process number><port number> specification used by RIG would have made

implemeantation easier.

It 15 not just Roc that has difficulty with mapping port capabilitics. What happens if a message
containing a port has been accepted by CMU-IPC and is in transit when the port is deallocated
and then reallocated (perhaps by another process)? In this case, the message may contain a refer-
ence 0 a port that the sending process did not have access to, thereby circumventing the CMU-

IPC protection mechanisms?®.

It 1s, of course, possible to keep this from happening, at least nside CMU-IPC, by expliciily
checking all in-transit messag:s when a port is deallocated and invalidating references to it. This
1s done for messages queucd on the port’s home machine. One side effect of this check is that, on
UNIX machines, deallocatung a port wkes 4-10 times what it takes to send and receive a local

message. The check could be extended across the network but, given the user code

3A1 one pownt, Roe, iniermachine mail and news were all using CMU-IPC. There were scveral instances of personal
letters and news postings being insenied into newly created Roe files

implementation of the network servers, this would significantly increase the already high cost of
port deallocation. The point here is not that it can't be done but rather that CMU-IPC’s use of a
small name space for ports with reusable names makes it difficult 10 do correctly, both inside

CMU-IPC and in processes that use it

As mentioned earlier, Ro¢ servers deallocate a port associated with an object when the object is
closed. This introduces another interesting race condition. If the Roe server sends a SUCCESS
response to the CLOSE request and then deallocates the port associated with the object, the
intended recipient of the success response will receive an emergency message notifying it of the
death of the port. Depending on the sequence of events and the particular IPC implementation,
the SUCCESS message wili either be received before the emergency message, after it (but with no
indization as to the source), or not at all. The problem here is that the server would like to deallo-
cate the port so that it can use it for future requests, but has no way of knowing if there is still
interest in the port. Since there is no easy way, given the current Roe implementation, to reliably
deliver responses to CLOSE requests, we have dropped the response from the protocol. Unfor-
tunately, this still leaves other race conditions. For example, the sender of the CLOSE may not
get a chance to deallocate the port before the server receives the request and does its deallocation.
If the sender then reuses this capability for anothcrA purpose it may get a spurious emergency mes-
sage concernirg the capability. However, this is rarer and generally easier to deal with than the

CLOSE response race condition.

The problems described above are not due to any particular failing of CMU-IPC. Rather, they are
caused by the interaction of dynamic port allocation, reusable capabilities, and the inability of a

process to determine outside interest in one of its ports.

CMU-IPC emergency messages, particularly emergency messages that conuin notfication of link
failures, can be difficult to interpret. As we saw above, it isn’t possible to tell why an emergency
message is reporung a link failure. Was the port deallocated, did the process die, or was the host
unreachable? Further, since emergency messages are delivered before any queued regular mes-

sages. it isn’t possible to tell when the emergency message was sent relative W the other data in

the stream. Should we wait for more, or have we received everything outstanding on this port?
Faaally, 1t 1s difficult to control who receives link failure notifications. These emergency messages
come in on a special capability (since the capability they refer to no longer exists). This makes it
awkward to integratc multiple packages that use CMU-IPC. An example would be integrating the
Tranzacticn Coordmator with 5 user process. The TC uses nouiicauon of link failures to maintain

quorums, but if it is part of another application it can’t be assured of getting them.

Sending a message in CMU-IPC, as in many IPCs, can be a complicated affair, particularly when
compared 1o a procedurc call. The major complication is the relatively large number of possible
failure modes. The iniual send may fail (perhaps because of an invalid port or unreachable desu-
nation). The destination process may die or become unreachable before the message is received,
or before a reply can be sent. The destination process may dic after a reply has been sent but
before we receive the result. Finally, the result may iwself be a failure notification. Each of these
possible errors must be guarded against. This is one area where an RPC paradigm would simplify

implementation.

Our final area of difficulty was with the unstructured string name space maintained by our network
[PC implementation. A process may associate any name with a port, provided the name is not
alrcady being used on that host. In the case of Roe local servers, the name asserted is a combina-
tion of the server type and the host name. For example, an LDS started for pack "coho” asserts
the name “lds.coho.” Suppose a GDS wishes to contact Coho's local directory server. It does a
name lookup on "lds.coho.” If the name is not found locally (the GDS is not on Coho), a broad-
cast is done 1o find the name. There is no way to specify that a name be looked up on a particular
host, so what we have done is to encode the needed information in the server name. The broad-

cast, which is processed by every name server on the network, is excessive for our purposcs.

Consider now the case of a user trying to locate a GDS. Each copy of the replicated Roec GDS
asserts the same name, "pack.roc.” When a user does a name lookup, the GDS on the first host o
respond is used. In the case where the GDS is local, no broadcast is needed. In any case, the

user doesn’t need special knowledge of the network. The name lookup facility is appropriate for

this situauon. However, for some purposes contacting just one GDS isn’t enough. It would occa-
sionally be useful in Roe to notfy a number of active GDSs of a change in the network (for
example, the addition of a host). The name lookup faciiity would appear to be a natural way to

do this, but it isn’t generally possible to do this.

4.4.3. A Solution

In this section we present a proposed solution to some of the problems described in the last two
sections. Our central goals in designing this solution were avoiding the complexity of multiplexed
servers and providing simpler communication primitives than the ones supplied by CMU-IPC,
while still maintaining its asynchronous message passing features. We were constrained by our
unwillingness to make modifications 10 CMU-IPC (it was being used by others and would be

difficult to modify in any case) and by our need for a language independent solution.

Central to our solution is a library that provides suppont for lightweight processes (“tasks”) inside a
conventional process. This approach to writing servers is not new. The novelty here lies in our
use of the tasking package to substantially simplify the user’s view of CMU-IPC. This will be
described below. Our solution was inspired by the C++ tasking class [Stroustrup 84] and by the
obscrvation that a Roe server can be organized as a collection of independent tasks, each of which
is dedicated 1o a single object. Allowing a dedicated task to block on message sends and receives
will not affect service for other users and objects. With this approach, new tasks are created for
each new object that the server is asked to managed (for example, an LFS would create a new task
for each successful LOGIN and OPEN). This is done explicitly by the task that processes the

request (o create a new object. Tasks are destroyed when the object is closed.

With this solution, a server has a central dispatcher that receives all messages sent to the server.
To receive a message, an active task calls a special version of receive that puts the task at the
head of the receive list (the list of tasks waiting for a message) and then returns control 1o the cen-
tral dispatcher. The dispatcher docs the actual message receive. When a normal message is

received on a port, the dispaicher removes from the receive list the task that last did a receive on

124

the port and rewumns conwrol 1o the task, passing it the message. This task runs until it biocks on

another receive, a message send, or until it exits.

When a task does a message send, it can specify a blocking or a non-blocking send. If the dest-
nation port is full and the task is willing to block (the normal case in a Roe server), the task is
placed at the end of the send list and contro! is returned to the central dispaicher. When CMU-
IPC returns notification that a port is no longer full (using an emergency message), the dispatcher
removes from the send list the task that has been waiting the longest 10 send a message on this
port, sends the message, and returns control to the task. If a task is not willing o block on a send,
the message is queued intenally and the task contnues running. This is useful when a server
wishes to present a consistent view of an object that might otherwise change (for example, a list-
ing of the contents of a directory node). In either case, the use counts for ports in messages that
aren’t immediately sent are incremented to keep the ports from being inadvertently deallocated by

other tasks.

Emergency messages are handled somewhat differently. We associate with each active port a list
of emergency message handlers. Tasks can add and later remove emergency message handlers at
the head of the list for a port of interest. When an emergency message is received on a port, the
dispatcher starts at the front of the list and calls handlers in tumn until one is w.iling to accept the
emcrgency message. This approach, inspired by the nested exception handlers supported by Mesa,
allows routines to easily specify special emergency message processing for certain sections of code

without disturbing the handlers set up by higher levels.

Emergency messages reporting link failures require some extra handling. They come in on a spe-
cial port (the datapoit), are converted by the dispatcher to messages on the defunct port, and then
passed to emergency message handlers for the port. If none of the emergency message handlers
for the port accepts the message, the dispatcher checks to see if a receive is pending on the port.
If so, the emergency message is converted to a normal message with 1D FAILURE (in the format
used by Roe) and passed to the task doing the receive. This both prevents receives from hanging

forever because of Jost connections and allows tasks o use the same error handling mechanisms

125

for both link failures and failure returns from other servers. Receives on an already dead port also
rewrn @ FAILURE message. This handling of link failure emergency messages means that
receives will always return a resul(, regardless of process or network failures (assuming, of course,
that a result would have been returned in the absence of such failures). Using a non-blocking send

in combinaton with such a receive provides, when needed, a predictable RPC facility.

Finally, a change was made in the way CMU-IPC allocates local capabilities. Instead of immedi-
ately reusing released capabilities, CMU-IPC now allocates them circularly. This change, which is
transparent to user processes, makes it unlikely that a local capability will be reused while invalid
references to it sull exist. A more reliable solution would have been to associate a imestamp with
each local capability, incrementing it each time the capability was reused and using it to validate
capabilities before use. This was not worth the implementation effort and run time overhead

involved.

The approach described above provides an environment that is considerably easier to deal with
than the one currenty used by Roe. Its central features are the simplification of send and receive
primitives (without significant loss of functionality), the masking of the multiplexed nature of
servers, flexible and unobtrusive handling of emergency messages, and uniform failure handling.
While we have not converted Roe servers to use this approach (with the exception of incorporating
emergency message handlers, send simplifications, and circular port allocation), we expect that it

would both simplify servers and increase their reliability.

4.4.4. Towards a Better IPC

In the last section we presented mechanisms that would allow us to make effective use of the
existng CMU-IPC implementation. In this section we make, based on our experiences implement-
ing Roe, some recommendations for changes 1w CMU-IPC. Our intention here is not to address
the basic philosophy of CMU-IPC, but rather w make relatively minor changes to the existng [PC
that correct the shortcomings described in section 4.4.2. Our suggestions are in four areas: local

capability generation, port allocation and deallocation, emergency messages angd naming.

CMU-IPC reuses port names and local capability names when they are freed. As we have seen,
this can lead to serious cases of mistaken identity. This could be avoided by making these names
unique over the lifetime of a host or process. Unique names would allow obsolete port informa-
ton to be easily detected, and would allow us to avoid the expensive invalidation process that is

now done on port deallocation.

The mapping of ports to process local capabiliies means that the name of a port depends on
where it is being used. This allows a compact representation of sets of ports and avoids the prob-
lem of gencrating globally unique names. However, the complications this introduces when trac-
ing and debugging a system more than offset the benefits. This could be avoided by either giving
a port a common name across the network or by giving the user a way to translate a local name to

a globally consistent one when needed.

Ports in CMU IPC are limited in number and must be explicitly allocaied and deallocated. This
leads to situations where ports are deallocated too soon or, for long-lived servers, ports are not
deallocated soon enough (or at all) and the limit enforced by CMU-IPC is reached. Users of
dynamically allocated memory will recognize this as being similar to the familiar *‘memory leak™
problem, but complicated by the asynchronous nature of the environment. One problem is that 2
process has no way of finding out when there are no other processes holding references to a port.
This could be solved by adding a reference count to a port, possibly with optional notification
when the reference count drops to zero. Since CMU-IPC already keeps track of references 1o a

port for security reasons, this is not a major modification.

Another approach would be to drop the need for dynamic port allocation and deallocation. One of
the reasons for explicit allocation and deallocation is that the CMU-IPC kemel maintains internal
state for each allocated port. Even if a port is not being referenced by others, this state is needed
to perform the mapping from the local capability used by the process that owns the port to the
internal port name. However, if the name were global, it would not be necessary to always main-
wain state for a port. In parucular, if no other processes can refer to the port, there is no reason for

the CMU-IPC kernel to know about it. Processes would still need o get a unique name for a port

when ‘‘creating’ it, but no other action would be necessary until the port was shared. For shared

ports, state would be needed for security and perhaps performance reasons.

CMU-IPC uses emergency messages to report link failures. These messages would be more useful
if they provided information on the reason for the failure. For example, the distinction between
port deallocation and host failure is an important one to some Roe servers. Next, delivering these
messages through the defunct local capability rather than using a special port would allow a proc-
ess to incorporate multiple packages that use CMU-IPC without worries of destructive interference.
Finally, it is sometimes useful to know when an emergency message was sent relative to regular
messages that are waiting to be received. One way of doing this would be to place a transparent

mark in the incoming message stream (this is the approach used in the 4.2BSD IPC [Leffler 83]).

The string to port mapping facility maintained by CMU-IPC has two levels: 1) local, and 2) the
rest of the network. There are situations in Roe where a more structured name space (perhaps
broken up by subnet and host), combined with a facility for returning all occurrences of a given
name, would have been useful. Another interesting possibility would be w0 allow parameters
(*‘location,” ‘‘operating system,”’ and so on) to be associated with a name lookup request

[Bukys 83].

4.4.5. Other Difficulties

Two other problems we encountered were: 1) inadequate file system support on some hosts, and 2)

lack of distributed debugging facilities.

Roe requires some minimal file system support in order to implement atomic file operations on
hosts that store replicated files, directories, and files that will be accessed atomically. In practice
this means that there must be a way to ensure that data written to a file is actually on disk and is
likely to survive a machine crash. UNIX and the Alto/Mesa environment provided this facility.
RIG did not. RIG also did not provide information on the free disk space on a machine and both
RIG and Alio/Mesa had no information on the level of activity on a machine. The shoricomings

of RIG would have prevented it from being a full member of the Roe community if we had ever

128

implemented crash recovery. Pluns were made to add some of the needed features to the RIG file

system, but this was never done.

One major surprise was the degree of difficulty distributing a system adds to the debugging proc-
ess. The lack of a debugger that would work across multiple processes, combined with CMU-
IPC’s anonymous ports, timing problems, and race conditions present in an asynchronous environ-

ment, led 10 situations where it sometimes 0ok days to track down even fairly simple problems.

Our general approach o debugging Roe was to have each server generate a log of all messages
sent and received. These logs were then combined to produce an overall trace of the activity in
the system. There were probicenis with this approach. The use of local port capabilities by CMU-
IPC made 1t difficult to correlawe the logs. The message-by-message logs were 00 ‘‘detail inten-
sive”’ for many applications. Finally, this approach didn’t give us any contro! over the relative
uming of operations. In fact. turning on logging sometimes affected the timing enough that prob-

lems we were trying to trace disappeared.

Based on our expericnce, it is clear that a distributed debugger is essenual when implementing a
distributed application of any size. At a minimum, such a debugger should be able to trace the
message flow in a system. Other desirable features include the ability to examine and modify
messages in transit, to control the relative timing of events, and facilities for debugging a process
in isolation, using synthetic or previously recorded message traces. Spider [S\"fnith 8lc] and Idd
{Horter 85] are two distributed debuggers that provide many of these facilities but were, unfor-
tunately, unavailable for this implementaton effort. Taking a somewhat more sophisticated
approach, it would be uscful 10 be able to retain a high degree of control over individual processes
(including single step, variable examination and so on), while allowing grouping and abstraction
where needed. For example, if the code to migrate files is being tested, there is generally no need
1o see the details of quorum collection. Finally, when debugging Roe, it would have been very
useful to be able to place constraints on the order of transmission of messages and then to have
the system run with unconstrained times being varied. This could have helped us track down a

number of uming problems.

2 NN e

129

4.5. Performance Considerations

In the following sections we present some rough performance figures for Roe. It should be
pointed out that both Roe and the IPC it uses are prototypes and have not been optimized for per-
formance. Despite this, it is illuminating to look at where the time performing Roe operations is
spent. We #:ill use for our example opening an existing Roe file on a TJNIX host. The next sec-
ton presents some timing figures for basic operations in the host environment. Section 4.5.2 uses
these figures, along with measurements of Roe, to provide a breakdown of the time required 10

open a Roce file. Section 4.5.3 makes some suggestions for improvements,

4.5.1. Host Performance

Our measurements were done on VAX* 11/750s with 2MB of memory, Fujitsu M2351A/AF Win-
chester disk drives (18ms average seck; 7.5ms latency), connected by a 3MB Ethemnet. The sys-
tems were running 4.2BSD UNIX in multiuser mode. They were idle except for normal back-
ground activity (rwhod, cron and the like). All of the resuits given below are elapsed umes in
milliseconds. Timing was done using the software clock maintained by UNIX. This clock has a
resolution of 10ms, and so we generally timed repeated calls to improve the effective resoi.tion.
We ran 10 sets of measurements for each call or sequence of calls being tested and then calculated

the average and standard deviation.

sequence msec/sequence description |
fopen/fclose 6403 open/close file; single path component; inode cached 1
first fread 90+11 read 1024 bytes from an opened file (first read) ‘
subsequent freads 32+11 repeatedly reading 1024 bytes from an opened file i
20*getw+100*getc 62 reading a small property list (after first fread) |
flell/rewind/fseck 1.620.2 file positioning |

Table 4-1: File access times for 4.2BSD UNIX

“VAX 15 8 trademark of Digital Equipment Corporation

Table 4-1 shows +.2BSD UNIX file system access times for some operations commonly used by
Roe. The value given for fopen/fclose is for opening an existing file in the current directory when

its inode is already cached. This is the most common tyvpe of open performed by Roe.

In Tabie 4-2 we have listed some times for message and port management. Note the relatively
high cost of releasing a pon. Most of the cost may be auributed to CMU-IPC’s auempts to locate
and invalidate any existng raferences to the port. Since there was no other IPC activity on the
system when this measurement was done (and so no outstanding messages), this figure is a
minimum, The cost for remote name lookup is also surprisingly high. The user code implementa-
uon of the network portion of the IPC requires a number of conlext swikches to send the lower
level packets and acknowlcdgements used to reliably send a message across the network (in this

case, the reply 1o the broadeast request). There is clearly substantial room for improvement here.

Tubic 4-3 shows the elupsed ume required to send a simple message and have it received by
ancther process. In all cases the ume was found by measuring the round trip time for a message

and then halving to find the one-way time. In the case where there are twao destinauons, the

| onerulin msec/operation - description '
new _port 2.320.3 allocate a port and increment its use count
reiease_port 157213 decrement use count and deallocate port

| message formatuiing 2.6£0.1 typical message formatting sequence

{local name lookup 2.6+0.4 look up port associated with local name

- remote name lookup 190=30 look up port associated with remote name

Table 4-2: Message and port management costs

message conlents
__empty 512 bvtes | 1 port
locl 49402 | 68203 | 7.420.7
remote 1004 14317 11727
_Zremole 175210 | 190=11 170=11

destinauon

Table 4-3: Time to send a simple message

sending process sent both messages and then waited for repliecs (CMU-IPC docsn't have a multi-
cast capability and so Roe is also forced 10 take this approach). The most striking result in this
uble 15 the poor performance of the network [PC. Sending a message to a remote process takes
20 umes as long as sending one t0 a local process. A remote procedure call using this IPC would
take 200ms. For comparison purposes, an RPC using 4.2BSD UDP on similar hardware takes
26.5ms [Cooper 85) and an RPC in the V system takes 2.54ms on a 10MHz Sun workstation
{Cheriton 83}, These figures tell us that in our environment IPC costs are likely to dominate for
any operauon in Roe that requires access 10 remote resources, but that this is not necessarily the

case in other environments. We will have more 10 say on this in the next section.

4.5.2. The Performance of Roe

In this secuon we analyze the cost (in terms of time delay) of opening a Roe file. Opening a file
15 onc of the most complicated and frequently used operations in Roe, and so the time required o
open a file determines, o a large extent, the overall performance of Roe. We consider in detail
only the case of opening an exisung unreplicated file. The message traffic for this case in the
current implementation was shown earlier (Figure 4-6). We assume that all resources and servers
are local and that connections exist o all servers we will be using. Times for remote cases may
be found bv adding the appropriate cost for each message shown in Figure 4-6 that crosses a

machine boundary.

_phase | estimated time (ms) | fraction |! actual time (ms) ‘
send/accepl request |, 8.0 3% est
read directory (LDS) |i 26.3 10% 28+3
open file (LFS) | 154.1 59% 13536
| GDS overhead | 311 12% est
{ return result (TC) Af 41.0 16% est
| ot 3 260.5 100% 26832

Table 4-4: Time to open an existing local Roe file, by phase of open

Table 44 shows the elapsed ume required 1o open a Roe file, broken down by the phases of the
open. The estimates shown here were done by counting calls made by servers 1o the various rou-
unes shown in earlier tables. These estimales agree with the actual measurements given in the
table. Note that the actual open of the file copy (managed by the Local File Server) takes almost
2/3 of the ume. The remainder of the time is fairly evenly divided between reading the directory
entry of the file, returning the result to the user (through the Transaction Coordinator), and internal

Global Directory Server overhead.

The time to open a file is broken down by types of activity in Table 4-5. Note that IPC related
acuvity (message send/receive, message formatiing, and port management) accounts for half of the

total cost. Most of the rest of the cost is due to reading the property list of the file copy.

i - g

actvity | estimated time (ms) fracuon
| message send/receive 53 20%]
| message formatting 19 7%
port management 64 L 24% i
table/list search 10 i
, file open 6 oo
| read file properties 105 bo39% |
i other : 11 | 4% |
L tow] : 268:32 L 100%

Table 4-5: Time to open an existing local Roe file, by type of activity

| copv locations | estimated time (ms) - fraction of local |
1 local 261 1.0
1 remote 490 1.9
2 remote 600 23
1 local, 2 remote 610 23
3 remolte 710 2.7

| S remole 930 36 |

Table 4-6: Opening remote and replicated Roe files

n
N
o S N TS P OB W EE T R O G B WS T T T T e

The Roe file open ume of 265ms for loval files 15 not very impressive when compared to the
measured UNIX time of 6.4ms. To be fuir, Roe also reads in the first block of a file and so the
equivalent UNTX ume 1s 96ms, making a Roe open of a local file roughly 3 umes slower than the
equivalent UNIX open. If the file is remote or replicated, the Roe open is considerably slower.
Table 4-6 shows estimates of the cost 0 open remote and replicated Roe files. Rough measure-
ments (where possible) confirm these figures. The drastic increases in open times for the remote
and replicated cases are due to the poor performance of our network IPC (Table 4-3). For the case

of a single remote copy, IPC overhead accounts for 3/4 of the file open overhead.

4.3.3. Improvements

There are a number of changes that could be made w the Ro¢ implementation 1o improve its per
formance. The following charnges offer the possibility of significant performance improvements
without compromising the wansparency goals of Roe:

» Preallocation of ponts. A quarter of the ume required to open a local Roe file is spent
managing ports. Nearly all of this time is used allocating and deallocating ports used 10
represent short-lived objects and requests. If servers prealiocated ports and then
managed these ports internally, this overhead could be avoided.

« Consolidation of servers. Another quarter of the time used opening a local Roe file is
spent sending messages between local servers and to and from the users. Consolidating
local servers into fewer processes would decrease the number of local mess~ges sent.
Consolidating ali Roe servers on a machinc into one process would reduce the message
passing costs by 70%. Placing Roe in the kemnel would eliminate message costs for
local file opens.

« Advisory locks The two changes described above would cut in half the time required
to open a local Roe file in the current implementation, If these changes are made, 85%
of the remaining tme would be spent actually opening a file and reading its propery
list to get voung information. This overhead could be avoided in many cases by plac-

ing adusory locks on frequenty used files. An advisory lock would work as follows:

134

If a GDS belicves that a copy of an opened file will be used again shortly, it would
specify, when the file was closed, that the LFS not actually close the file but rather
demote the read or write Jock on the file to an advisory lock. If the file copy is opened
for wnte by another GOS, this lock is ‘‘broken” and the GDS is advised that the copy
is not available. If a GDS holding an advisory lock on a t:le copy wishes 1o open it for
write, it asks the LFS managing the copy to change the advisory lock into a write lock.
If opening for rcad, the GDS can either change the lock to a read lock or use the
advisory lock. In either case, since the copy’s data and properties have not changed,
there is no need to explicitly collect a quorum again and locally retained information
could be used. This is a particularly effective technique when a file is replicated, with
one copy being local and the others remote. In this situation, the advisory locks could
be used to eliminate remote operations for read access.

File and directory caching. There are a number of techniques for maintaining consistent
distribuizd caches of information (see, for example, [Archibald 84, Sheltzer 86]). These
techniques could be used in addiuon to or in place of advisory locks in Roe. Since we
expect a high degree of locality in both file and directory references and a high propor-
tion of read references (see Chapters 5 and 6), local caches of file and directory infor-
mation should result in a significant decrease in network activity. Note that it is neces-
sary to keep local caches consistent, since the design of Roe doesn’t allow for ‘‘best
guess”’ hints here.

IPC performance improvements. There is significant room for improvement in the per-
formance of our network IPC. A kemel implementation followed by careful tuning
would be, at least at the application level, the least disruptive approach. An alternative
would b¢ 10 consider the use of a simple RPC mechanism that would lend itself more
readily to a high performance kemel implementation (see, for example, the V kemel
RPC (Cheriton 83]).

Lower level host system interfaces. The current Roe implementauon uses existing host
file systems. This adds some layers of software beiween Roc and its eventual destina-

tion (the disk). Using a lower level interface o these file systems (¢.g., read instead of

135

fread on UNIX) or ignoring the host file systems altogether and implementing Roe on
the raw disk would decrease software overhead. Unfortunately, the implementation
costs of the second approach can be quite high, particularly in a heterogeneous environ-

ment.

4.6. Observations

We can make the following observations about Roe based on our implementation experiences:

The approach used by Roe is a powerful means of accommodating the heterogeneity
present in a network. Minimal host changes allow new types of hosts 10 be easily
added. The combination of local servers with a uniform interface, typed file data, and
automatic type conversion at machine boundaries allows heterogeneity w be ignored
where it is not important. Machine-dependent files, propenty ‘‘escapes,’”” and the net-
work model maintained by Roe provide mechanisms for recognizing situations where
heterogeneity is important and for exploiting it when possible.

The modular structure of Roe makes it easy to partially integrate new hosts. Func-
tionality can be added as needed to increase performance and availability. This modular
structure also helps reduce complexity by providing well-defined interfaces and simple
abstacuons.

The underlying host file system support expected by Roe is not always present. At a
minimum, Roe requires a means of insuring that information written to a file will sur-
vive a machine crash (usually this means insuring that it has reached the disk). In addi-
tion, information on free space and congestion is useful when making placement and
migration decisions. It is also worth noting that the Roe file access protocol assumes
that files are represented and used as seekable streams. Insuring that operations survive
a machine crash is useful outside the context of Roe and so this expectation is not
unreasonable. Status information can be approximated (or maintained by local servers if
Roe is the only uscr of a file system). Record and other file abstractions can be imple-

mented using SEEK and propertics (although w.th some loss of efficiency).

136

« Propertes are a surprisingly useful concept. Propertics were originally introduced in
Roe to provide a means for users to associate additional information with their files
{Bukys 82]. However, they were quickly recognized as a convenient way of associating
Roe-specific information with files, as a flexible method for specifying arbitrary parame-
ters in LOGIN, OPEN and other requests, and as a way to specify host-specific file

operatons.

» A system that provides transaction support should provide facilities for wransactions that
span multiple objects. This is convenient both for the user and the implementor of
higher levels of the system. In the case of Roe, this would have made impiementation

of the Global Directory Server considerably easier.

» The lack of need for global knowledge simplified the Roe implementation. In particu-
lar, we were able to avoid complicated and potentially expensive global consistency and
snapshot algorithms. Roe maintains a partial view of the network, with status changes
propagated only where they are likely to be needed. Information on objects managed
by Roe is kept with the object and verified only when the object is used.

« Finally, and perhaps most important, our implementation validates the design presented
in Chapter 3. The Roe prototype implementation shows that it is both possible and
practical to provide a fully transparent distributed file system for a heterogeneous local
area network. In addition to providing transparent access to replicated and distributed
heterogeneous resources, Roe is able to transparently reconfigure to adapt to losses and
additions to the network and to adjust to changing usage patterns. Roe scales well as
the size of a LAN increases. These factors make Roe a powerfu! tool for effectively
using the resources of a network, without the need to know the details of these

resources.

4.7. Summary

In this chapter we have described the Roe prototype implementation. The implementation runs on

a heterogencous local area network of UNIX, RIG, and Alio/Mesa hosts. It supports a distributed

137

and replicated global directory (on UNIX hosts), replicated files (on all hosts), automatic file
placement, and simple demand-based migration. The system provides fully transparent access to

its distributed and replicated resources.

Implementing the Roe prototype turned out 10 be surprisingly difficult. Although the structure of
Roe and the algorithms used were straightforward, the approaches and tools we used greatly com-
plicated matters. The majority of the implementation was done in C using multiplexed servers and
an asynchronous message-based IPC. It is clear in retrospect that a project such as this should
probably not be attempted without appropriate language support and a distributed debugger. Using

remote procedure call as the basic IPC mechanism would have also avoided several problems.

The Roe implementation meets the transparency, availability, heterogeneity, reconfigurability, and
scalability geals described in Chapter 3. The only major failing of the implementation is in the
area of performance. Many of the performance problems may be attributed to the prototype nature
of both Roe and the IPC it uses. Reimplementation and tuning would correct thesc problems. Our
use of remote, replicated, and distributed resources, along with the insistence on consistency, also
had a negative impact on performance. Techniques such as advisory locking and caching could be

used to minimize this impact.

Our experiences with the Roe implementation show that a fully transparent distributed file system
for a heterogencous LAN is achievable. The high degree of transparency supported by Roe lets the
user ignore the presence of the underlying network and allows Roe to respond to changing
demands and resources. These benefits provide compelling justification for the approach used by

Roe.

Chapter 5

Short-Term File Reference Patterns

in a UNIX Environment

5.1. Introduction

Roe provides users with a distributed, hicrarchically structured file system similar in appearance 1o
the UNIX' file system. A number of other DFSs have also adapted this model
(Lyon 85,Satyanarayanan 85, Tichy 84 Walker 83b]. Understanding the benefits and drawbacks
of the approaches used by each of these sysiems has been hampered by a lack of information on
the ways in which they are used. In particular, there is litle data available on short-term file
reference patterns, and no data &t all on directory usage, despite the observation by several
researchers that name resolution appears to account for up tn half of the activity in systems that

they have studied [Leffler 84,Ousterhout 85, Sheltzer 85].

Dawa on file and directory reference patterns can be used to evaluate the performance of existing
DFSs, and as an aid in identilying and correcting problems. It can also be used as a guide in

devcloping new DFSs by providing information on key areas such as namc lookup overhead,

YUNIX 15 a trademark of AT&T Bell Laboratores.

138

- mmEmEmmEEEmEmEmE---m .-

139

read/write ratos, interreference intervals, data lifetime, and sharing. Traces of reference activity
can be used as an input o simulations that evaluale DFS design, or examine individual issues that
anise in designing DFSs. Examples include developing algorithms for file and directory placement,

migrauon, update propagauon, and investigating the overhead introduced by replication.

Inspired by these benefits and frustrated by the lack of information, we instrumented a local UNIX
system and collected information on file system requests. The UNIX file system is particularly
appropriate for this study. It places relatively few constraints on user behavior and has been used

as the design mode! for many recent DFSs.

This chapter describes the data collection method and presents our analysis of short term file refer-
ence patlerns. Chapter 6 presents an analysis of short term directory reference patterns. We have
generally tried to present results in a way that gives a qualiwative feel for the characteristics of the
data we have measured. Quantitative fits and distributions are, for the most part, sacrificed in

favor of observations that would aid in developing and operating DFSs.

The work described in these two chapters is novel in several respects. It is by far the most
dclailed and comprehensive study of short term UNIX file reference patierns that has been done to
date. Tt provides the only results we have seen on directory reference patierns. It is also the only
study we have seen that examines the differences between important user and file classes. In addi-
tion to examining the overall request behavior, we have broken down references by the type of
file, directorv. and requestor. We see large differences in behavior between the various classes.

Knowledge of these differences should be useful in designing future DFSs.

Section 5.2 describes the environment in which our measurements were made. Sections 5.3 and
5.4 present an overview of the data collection and analysis methods. In section 5.5, we present

some of the results of the analysis. A summary of our results is presented in section 5.6

Familiarity with UNIX (Ritchie 78] is assumed. Knowledge of 4.2BSD UNIX (Joy 83] may also

be uscful.

140

5.2. Data Collection Environment

The data used here were collected from a VAX 11/780 on the University of Rochester Computer
Science Department laternct. At the time that the data were collected (September 19835), the inter-
net consisted of a VAX? 117780, 4 VAX 11/750’s, 7 Sun workstations, 13 Xerox Dandelion

workstations, 3 Symbolics LISP machines and a number of special purpose devices. The 11/780,

1
Seneca-,

was selected as the primary machine for data collection because it was by far the most
heavily used of our svstems. Seneca had, at the time, 4MB of memory, 560MB of disk storage
and was running 4.2BSD UNIX. The system supported roughly 200 users. The primary user
acuvities were program devclopment (as part of our rescarch effort), text editing and formatung,

reading news and reading personal mail. Seneca also acted as a USENET news and UUCP mail

relay [Nowitz 78], There was relatively litde database activity.

Data were also collected from two of the 11/750's. Preliminary analysic of the 11/750 data merely
confirmed the importance of Seneca in our environment. Neither of the 11/750's had file system
activity levels greater than 15% of that seen on Seneca. Because of this, only the Seneca data

were fully anatyzed.

5.3. Data Collection Method

Two types of data were collected: 1) a static *‘snapshot’” of the file system, and 2) a running log

of file system activity.

5.3.1. Static Snapshot

The static snapshot provides a picture of the entire file structure on a machine at a given point in
time. The informatian generated for each file system object that we are interested in is given in
Table 5-1. Processing starts at the root of the file system hicrarchy and recursively traverses the

directory tree, logging each object encountered.

3VAX is & trademark of Digial Equipment Corporation

141

A static snapshot was taken of the Seneca file system when file system logging (section 5.3.2) was
started. This snapshot was used as a starting point for the analysis programs (section 5.4) and also

provided informaton on the stauc file size distribution.

5.3.2. Logging File System Activity

The 4.2BSD UNIX kemel was modified to log selected system calls made by users. The calls

logged can be classified as follows:
(1) Directory structure modifications: mkdir, rename, rmdir and symlink.
(2) Process context: chdir, chroot, exit, fork/vfork and setreuid.

(3) Other references: close, execv/execve, link, open/creat, truncate, unlink.

The logging of these calls has a negligible effect on the performance of the host (less than 1%).

A number of other file-system related calls were judged unnecessary for our purposes (due to our
ability 1o infer them from other calls or to their infrequent use) and were ignored. These included:
(1) Internal file operations: read, write, lseek. Actually, code was added to log reads,

writes and seeks. However, running with this code enabled increased the size of log

files by 500% and resulted in a 5-10% degradation in host performance. Since we

were concerned primarily with operations on files as a whole, this additional overhead

was unacceptable. Instead, we summarized some of the information in close records

object output
directory name, device, inode
regular file name, device, inode, size (bytes)
svmbolic link | name. target file
| special nte | name

Table 5-1: snapshot output

30ur local VAXen are named afier Western New York State's Finger Lakes.

142

(see Table 5-2).
(2) Protection calls: chmod, fchmod, chown, fchown.
(3) Suwutus calls: readlink, fstat, Istat, stat, utimes, access.

(%) Other calls: fentd, flock, fsync, mknod, fuuncate.

Each log record included the time that the call finished (with a resolution of 10ms) and the pid
(process identifier) of the process making the request. In addition, most records contained infor-

mation describing the call arguments and result. The record contents are given in Table 5-2.

A bricf explanation of the conienis of Table 5-2 is in order at this point. The first four records
(mkdir, rename, rmdir and svmlink}, combined with the results of a static snapshot tiken at the
stant of logging, allow us w0 construct and mainwin a model of the directory tree for the file sys-
tems on the machine. Afkdir creates a new directory. Rename changes the path used to reach an
object. Kmdir deletes a directory. Symlink creates a symbolic link containing a path w0 a file or

directory. When a symbolic link is encountered during path resolution, the path in the symbolic

call ! output

<all> | ume, pid of caller

mkdir + file id of new directory, path of new directory
rename + old path, new path

rmdir + path of deleted directory

symlink + target of link, link name

chdir + path t0 new working directory

chroot + path of new root

exit -

fork (fork/vfork) + child pid

setreuid + new ruid

close + file id, final size, bytes read, bytes written
execute (execv/execve) | + file id, uid of file owner, size, path

link + target path, link path

open (open/creat) + file id, open flags, mode of file, size, uid of file owner, path
truncate + path, new size

unlink + path

Table 5-2: dynamic log structure

143

link is substituted into the parually resolved path before resolution is continued. This is the onh

way in 4.2BSD UNIX to make links across file systems.

The next S records (chdir, chroot, exit, fork and setreuid) give us the nformation we need o keep
track of the working directory and real uid (ruid) of each process. Chdir changes the directory
used to resolve relative references made by a process (those not starting from the root of the file
system tree). Chroot changes the root of the file system as seen by a process. Fork (fork and
vfork system calls) and exit create and destroy processes. Logging these allows us to keep track
of processes created for each user. Setreuid chang: the effective “‘owner” of the current process.

This is the mechanism for logging into the system.

The remaining records {close, execule, link, open, truncate and unlink) are the actual references to
files. Executre {cxecv and execve system calls) executes a file, replacing the current process with
the image given in the file. Link and wnlink add and delete directory entries for files. If unlink
removes the last link to a file, the file is deleted. Open (open and creat system calls) opens or
creates a file or opens a directory. Processes access files either by explicitly opening them or by
inheriting open files from their parents. Truncate shortens a file. Close records indicate that a
process no longer has a file open. They are generated by either a close system call or by a proc-
ess exit. As mentioned earlier, a process may inherit open files from its parent. If this happens,
the close record is generated when the last process having access to a file due to the open closes
the file or exits (for those in the know: we log the release o1 the kernel open file table entry). We
only log closes for regular (data) files. Closes are not logged for directonies or for special files
(files corresponding to devices). Since directories are shoit, completely scanned when opened and
can only be opened for reading, close records for directory opens would have given us little useful

information. Special files are not analyzed in this study (except for a count of opens).

The calls listed in Table 5-2 are logged for all processes in the system. In addition, a small
numboer of administrative records having to do with enabling and disabling data collection are
logged. The most important of these is the process state record. A process state record contains

information on the ruid, working directory, root directory and command name for a process. Onc

134

OGSy Logged or g orro o e first ume 3 appears 1 a dog. but only if we don’t already have
as antormation for e rrocoss Process state records are only necessary for processes that exist
ofore togging 1s stried wand for thewr children untl we log the parent). They give us a way W

locate the process in the cuooiery bree and 10 classify it as a usor. system of net process.

The 4.2BSD vacing pacaap we huve descnibed differs from the one developed independendy at
Berkeley by Zheu et @l {Zhou 85) in a number of ways. The most important difference is that
we don’t collect informaten on internal file operations. Tiis means that we have less information
on the uming of these operations to files and on which byles are accessed. We do, however, log
the number of bytes read {rom or wrilien 10 an opened file. As we will see later on (section
5.5.1), most files in our environment are read or written completely and are usually open for only
a shon period of time. These results, combined with the fact that most DFSs weat files as a
whole, meun that the omission of internal file operations is not important for our particular appli-

cation.

We also collect less information per record. In particular, all of our times are real umes at the
finish of the system call. Zhou et al. record, in addition 1o real times, the duration of the call and
process virtual times. We made a decision early on to collect the minimum information necessary
for our purposes. This allows us to collect and process data for a longer period, but means that
our trace is sensilive 1o the capacity of the machine that the data were collected on. Adjusting for

this would be difficult in any case.

Finally, we collect information on high level directory operations (create, delete and open). This
allows us lo track process locations in the directory tree so that we can accurately analyze relative

file refercnces. It also gives us the data needed 10 analyze directory reference patterns.

The trace data coliected by OQusterhout ¢t al. [Ousterhout 85} includes information on sceks (so
that read and write data may be derived), but lacks information, which we record, that allows
references to be classified by file type and file owner. We also include directory and process

informauon not present in their trace.

A - G S N O 0 BN R Y5 D S A s Y S a2 T .

145

Note that our package does nor collect a full trace of file system activity. We don’t collect infor-
mation on inode accesses, paging actvity, internal file operations (except for the total number of
bytes reud and written), or protecuon and status related calls. However, our package does generate
dewiled informaton on the most common operations on files and direclories as a whole (open,
close, create, delete, execute and so on) and on overall read and write activity for opened files.
This 1nformauon provides a useful basis for investigating file usage patterns and is sufficient for

trace driven studies of most DFSs.

5.4. Analysis Method

5.4.1. Basic Approach

The duw in the raw form described in Table 5-2 are difficult 10 analyze. There is no obvious
correspondence between opens and closes, unlinks are not associated with the files they affect, no
direct information 1s available on process working directory or owner and so on. A library of
analysis routines was written to address these difficulues. The routines maintain enough state
about the system being analyzed to allow the necessary associations to be made. Aliernatives
wouid have been to reformat the file reference Jogs so that each record contained the information
necessary for its analysis (see, for example {Zhou 85]) or to collect more information for each
reference. We chose 1o derive the information at the time of analysis to minimize the disk
resources needed (and so maximize the logging period). Of course, one pays a penalty in analysis
ume for doing this. Using this approach, a simple analysis of the trace described in this chapter
(2.5 million events occupying 70MB of disk) takes about 5 hours of 11/780 CPU ume. This is

adequately fast for our needs.

Analysis proceeds in two phases. During the initialization phase, a snapshot of the directories in
the system being analyzed is read in and used to set up a model of the original directory structure.
During data analysis, log records are read and passed, one by one, to user analysis routines. These
log revords are also used to update state information on files, directorics and processes in the sys-

tem, creating and destroyirg them to maintain an accurate model. Given this up-to-date state

information,

146

the library routines ¢an perform the associations mznuoned above and pass thus infor-

maton on to the user routings.

There are some conventions worth mentioning here that are used by all analysis programs:

(M

@)

3)

(=)

wm
=
[]

Cut

Calculations involving file sizes are always based on the size of the file when it is
closcd or executed.

File reads and writes are assumed to occur at the time a file is closed (we didn't have
more accurate information on these operations). Since the time most files are open is
usually considerably shorter than any of our histogram resolutions, this has no notice-
able effect on our resulis.

Fiie lifetimes run from the time a file is created (based on a create flag in the open
call) until the ume the underlying inode supporting the file is deleted. This doesn’t
happen until there are no links to the file left and there are no active opens, so the
delete ume can (arnd frequentdy does) differ from the time of the last unlink. File
version lifetimes are handled in a similar fashion.

Processes occasionally open a file and then open it again before closing it. This is
usually done to get both read and write access to a file without using the mechanisms
for this built into the 4.2BSD kernel. We honor the intent (not the method) by com-
bining these opens into one open with both access modes. This affects only 0.7% of

the opens and so is not an important consideration in any case.

S

We are interested in investigating both the overall pattern of requests to the file system and in the

patterns for various classes of users and files. Past work has often ignored the distinction between

batch and interactive use, system and user files, log and permanent files and so on. We believe

that information on the behavior of each of these file and user classes can be of great value in

developing a DFS and have developed a number of data cuts to separate the classes of interest.

We use three basic types of cuts:

147

(1) Cuts on the ruid (owner) of processes making requests (CUCP/USENET network,

system and user).

2} Cuts on the owner of files (UUCP/USENET network, system and user).

(3) Cuts bused on the purpose of files (log, permanent, temporary).

Some of these can be combined to give other more specific cuts. 14 cuts are used in this analysis.

The cuts and their meanings are:

(N

@

4

(6)

no cut: This cut passes all records in the log to the user analysis routines.

ruid_NET: Passes references by what we term ner processes. Net processes arc
those running under UUCP, USENET news or notes accounts. Most of these
processes run in batch mode and so this cut gives us a sample that is considerably
different from an interactive one. This category has been broken out from the system
and user categories because of the batch-oriented nature of the references and the
large number of references by net processes (roughly 1/3 of the references in this
study and as much as 70% of the non-system references in earlier studies
[Floyd 85]). We don't include references due to Seneca being on the Rochester
Internet in the ruid_NET category.

ruid_SYSTEM: Passes references by systam processes (those running under root,
dacmon, games and other miscellaneous system accounts). System processcs are pri-
marily daemons that provided widely used services (such as spooling and network
status reporting), processes created on behalf of users to perform privileged opera-
tions, and periodic maintenance processes.

ruid_USER: Passes references by processes running under user accounts.
owner_NET: Passcs references w files owned by UUCP, USENET news and notes
accounts. These are primarily news articles and UUCP spool files.

owner_SYSTENM: Passes references to files owned by the system accounts menuoned
above. This includes major administrative and status files (for example, /etc/passwd),

system librarics, systen include files and so on.

()

(5)

148

owner_USER: Passes references 1o user files.

file_LOG: A number of files on any UNIX svsiem are used 1o keep logs of activily.
Examples include /usr/adm/messages, /usr/adm/wimp and user mbox files. Since we
expect the access patterns for these files 10 be considerably different from that for
files as a whole and since these files are generally quite large, we use a cul,
file_LOG, that allows us 1o analyze only these logs.

We had originally intended to place in this category just those files opened with
append-only access. However, it soon became clear that this mode of access is basi-
cally never used. Instead, most logs are opened write-only, a seck is done 1o the end
of the file and then the log entry is appended. If several processes are Uying 10
upduate a log simultaneously, the results are unpredictable. Some of the busier logs
on our system are scrambied on a regular basis using this “‘method.””

We were eventually forced to use the namg of the file given in the open call 10 muke
this cut. Luckily, most of the log files on the system have well known names and an
examination of the sources for commonly run programs and of the file reference logs

enabled us o find the rest of the log files on the system.

file_PERM: Passes references to permancnt files. This includes all files that aren’t

log files (file_LOG) or temporary files (file_TEMP).

(10) fite. TEMP: Passes references to temporary files. This includes files that are created

on a special file system {uup), temporary spool files, lock files and other such transi-
tory files. Most temp files are clearly identified by either their name (a special tem-
plate is usually used to create iemp file names) or by the dircctory in which they are

created.

{11)owner_USER+ruid_USER (shown as U in wbles and figures): Passes references that

satisfy both the owner_USER and ruid_USER cuts. These are user references 1o user
files. The owne: _USER+ruid_USER cut produces results similar o the owner_USER
cut. There are about 9.5% fewer references for we U cut, but the resuliant distribu-

tons are nearly identical, 1tis ancluded here for comparison with the noat three cuts.

149

(12jowner _USER-ruid_USER+file_LOG (shown as U+file_LOG in wbles and figures):
Passes user references 1o user log files.

(13yowner _USER+ruid_USER+file_PERM (shown as U+file_PERM in tables and
figures): Passes user references to user permanent files.

(14)owner_USER+ruid_USER+file_TEMP (shown as U+file_TEMP in wbles and

figures): Passes user references to user temporary files.

5.43. Analysis Compli ations

The data analysis did not proceed as smoothly as we had hoped. This scction describes some of
the problems we expericnced and suggests changes in the data collection and analysis that would
help avoid these problems in the future. None of these problems was serious enough 0 have a

noticeable effect on our results.

It was not always possible to pair up opens and closes correctly. In most cases there was only one
open for a given file 1o associate a close with, or the process numbers of an open and close
matched. In cases where this was not true, we looked for an open that was made by an ancestor
of the process muking the close request. Sometimes there were multiple opens 1o a file outstand-
ing among those made by ancestors. This problem occurred less than 0.03% of the ume and was
dealt with by using the most recent open by an ancestor. A more accurate solution would have
b22n 1o record an open session number in the log and use this to make the association, tut the low
frequency of occurrance of this problem and the relative unimportance of the derived numbers

make this solution unnecessary for us.

There were two peculiarities in the 4.2BSD kemel that resulted in some surprises in the logs.
One, huving to do with incorrect returns from the fork call, was caught and corrected before the
data analyzed here were collected. The other, an inconsistent handling of error indicators when a
process was forcibly terminated, caused us to lose some close and exit records. This was not
discovered unul farly late in the analysis. Less than 0.03% of the close records and about 0.5%

of thy exit records were not recordad because of this problem. Since the number of close records

lost was so low, we made no attempt to correct the problem.

Files were classified (as log, perm or tempy the first ume they were scen in the logs. Occasionally
this classification was incorrect. While we were developing the cuts, we classified a number of
files by hand, using informaton on the programs making the requests and the full history of refer-
ences to the files. Companng our classificatons to those done by the analysis routines (using file
name and directory information) showed that only a few tenths of a percent of files were
incorrectly classified. It would be difficult 10 do better than this without explicit information on

the intended usage of files. This information is just not available under UNIX.

We had to retain a large amount of state n order to associate unlink records with files and 0
interpret ther meaning. Since we needed most of this state for other reasons (uid classification,
directory studies and so on) this was not really a problem for us. Including the file id and a count
of the number of remaining references in unlink records would make it possible to interpret them

in the absence of the state information.

5.5. File Reference Patterns

Roughly 7 days of dala were collected on Seneca (168.82 hours, from 3:21am on Monday, Sep-
tember 16, 1985 to 4:10am on Monday, September 23). During this period there were 142 active
users of t.e system. There were generally 20 w 30 logged-in users at any given ume on weekday

afternoons. with lead averages running between 5 and 10.

In scction 5.5.1, we examine the overall patlern of open and read/write requests. Scction S.5.2
brielly examines exccve patterns. Section 5,5.3 concentrates on user files. Our approach in all

cascs is to present only those tablkes and histograms that are particularly characterisuc or striking.

5.5.1. Overall Open and Read Write Patterns

151

5.5.1.1. Basic Statistics

A summary of the records collected is given in Table 5-3. The first three columns give the
number of rzcords of each 1ype collected, the average rate for that type of record, and the percen-
tage of the collected records that this represents. The remaining columns show the number of
records collected cut by the ruid of the calling process and the percentage of the owal for the ruid

class.

From this tabie we can see that each of our ruid categores accounted for roughly 1/3 of the
activity on the system. The majority of the file system requests v ere for opens and closes, with
most of the rest of the categories being a factor of 5 or more down from this {of course we didn't
record reads, writes and secks, all of which would be a significant component of a full trace).

Processes made, on the average, £.3 open requests.

4 i no cut || midNET)0 medSYSTEM ! nud USER

| et e

. I count perhr ! fracuon @ count ! fraction {° count fraction i count | fraction
‘{mm.r 1 936 | 55| 004% 1 795 0% | 2| o0 1{ 139 1 002%
[rename 3N 19 [013% 0 1946 026% 1 4Cs | 0.04%] 85T L 0%
| mdir | 913 | 541 004% | 780 | G1% || 0 . 133 | 0.02%
symizk | 16 o1l oow | 0 - 30 0% | 131 0%
fchiir [0 136063 | 806 | 54% | 19102 | 26 TSt Tas | as106 | s7%
chroot | 0 - - i 0 - i 0 - ; 0 -
exit !y 180270 | 1070 71% l 31219 4.2% || 85917 8.5% 63133 8.0%
fok | 1sisit | 1080 7.1% 26271 4.0% (| 90735 8.9% 61503 7.8%
| setreund ‘ 16772 99 0.66% a2t oosow | oges | 0gsa Il 2701 0.34%
close |i 754072 | 4470 290.7% | 249837 | 34.0% 298164 | 294% || 205666 | 2624
execate | 125064 741 49% 26761 3.6% 38093 3.8% 60209 17%
link {; 42929 | 254 1.7% 25694 3.5% 7301 072% 9934 13%
open || 965087 | 5720 38.0% || 277350 | 377% 393661 | 38.8% || 294070 | 37.4%
truncate l‘ 0 - - 0 - 0 - 0 -
unlink | 130929 [776 52% 68342 9.3% 19861 | 20% || 42726 | S.4%
wal 2537773 L asoso | 1o0m | 735469 | 100% 1015697 | 100% 1 786190 | 100%

Table §5-3: records logged

Table 5-4 gives the number of opens w0 each type of file object on the system. For the purposes
of comparison, the SLAC wace [Porcar 82) included about 237,000 opens to data (regular) files in
a similar period. The remainder of the analysis in this chapter deals with only regular files, the
largest caicgory in Tuble 5-4. Direciory access patterns (including explicit directory opens) are
analvzed in Chapter 6. Block and character special files are used in UNIX to provide access to
davices and are not of interest to us. They are, in any case, a small fraction of the total number of

opens.

Opens may be further broken down by the class of file being opened and by the owner of the file.
This information, plus statistics on how many files there are in each category, is given in Table 5-
5. We s2¢ here that 273 of the references were 1o permn files, although temp files made up 4/5 of
the files ~elferenced. Relatively few references were made to user files. The large number of net

files may be atributed to a daily news expiration procedure that reads the headers of all news arti-

cles.

Information on read/write modes for open-close sessions is given in Table 5-6 (note that percen-
tages in this wble sum horizontally). Overall, files opens were evenly split between opens with

read-only access and opens for write-only or read-write. Users, however, opened most files read-

g e | no cu. | rud NET || ruid SYSTEM || ruid_USER

i ’ opens fraction |' opens l fraction |: opens Lfraclion AiLopcnsA fraction
regular file | 754285 | 78.2% [249825 | 90.1%] 298186 | 7S.7% || 206268 ‘ 70.1%
directory 170448 | 17.9% || 17275 62% || 72625 | 18.4% || 80548 | 27.4%

| block special H 922 01% || 0 - 60 | 002% || 862’ 0.3%

| character o zcial 1| 39432 4.1% || 10250 37% || 22790 58% || 6392 2.2%

L total 465057 | 160% | 277350 | 1005 | 393661 | 100% |l 294070 | 1005

Table 5-4: Opens, by object type

! 1o cu I 753285 | 100% | 101185 | 100% 4 1.5

‘ cut I opens | % opens | diles ¢ G files i. opens/file |
(1l _LOG AR N 705
| file_PERA 499193 J 66.2%]’ 16352 | 16.2% 1| 30.5 }
| file_TEMP 1219430 | 291% | 8s327 | g332 i 26 |
10wncr_NET | 299733 [330% | 46207 [45 7% 1 54
Lowner_SYSTEM | 392790 | 521% |l 25062 | 248% || 157 |
Cowner USER | 111762 | 148% || 30822 | 30s% || 36 |

! !

Table 5-5: Class and owner of opened regular files

only. Loy files were generally openced write-only.

Perm files are categorized by their funcuon in Table 5-7. This categorization was dong using the
directorics that files appeared in and/or based on file names and extensions. ‘‘System
configuration”” files arc those appearing in / and /etc. Examples are /vmunix (the bootable kernel
image) and /ewe/passwd (passwords and other information on accounts). ‘*‘Rwho dacmon’’ files are
used 10 mzinin swus information about machines on the network. “‘Library™ files are those in
flib, Jusrlib and so on (these include both program libraries and additional configuration files).

Files with names beginning with **.”" are grouped into the category ‘‘personal configuration.”

* read-only h write-only | read/write ol
! cut ~_opens | fraction |- opens fraction ! opens | fraction !f opens
file_LOG ! 735 2.1% 34819 97.7% |; 97 0.3% 1 35651
file_PERNMI i 282853 56.7% 180976 36.3% |, 35200 7.1% 1, 499029
file_TEMNP - 104828 478% ' 96766 4419 117794 | B.1% 219388 |
owner_NET | 148150 | 59.3% 79739 31.9% || 21830 8.7% || 249719 |
owner_SYSTEM 1 175787 | 44.8% 198183 50.5% I 18712 4.8% || 392682

owner_USER 64479 57.7% 34639 31.0% | 12549 11.29 11 111667

ruid_NET 146993 | 58.8% || 79111 | 31.7% || 23713 | 9.5% | 249817
ruid_SYSTEM ’ 99205 | 33.3% || 188233 | 63.1% 110723 3.6% |l 298161
ruid_USER 141822 | 69.0% | 45189 | 22.0% 1118654 | 9.1% | 205665
' 10 cul 3%%416 | S1.5S% | 312561 | 41.4% ! 53091 | 7.0% | 754068

Table 5-6: Made of open for open-close sessions

124

These files raditionally contain swariwp commands and status information for various programs and
are used to wilor and maintain an individaal’s environment. Examples include Jogin, .profile and
pewsre. The rest of the categories have the obvious meaning. Note that over half of the opens 1o
perm filzs were made o C.7% of the files (those in the first two categories). These files were basi-
cally all system configuration and status files. Actvity 1 these two categories represents roughly
40% of the towl file opens we obscrved, indicaung that a subsiantal fraction of the sysiem acuvity
was devoted to communicating and maintining information about itself and about other hosts on

the network.

5.5.1.2. Per Open Results

The open activity over ume is shown in Figure 5-1. Opens followed a daily pattern with a busy
period between 9am and 6pm, overlaid by strong bursts due 10 net activity (mostly news expiration

and news recepiion). Weekends were relatively quiet.

Figure 5-2 plots the open acuvity for just the first day of the vace. This shows the work day busy
period more clearly. Looking closely, we can see that user activity accounted for roughly half of

the daytume load. System opens had a base level (the rwho duemon) overlaid by activity that

CAISHOrY . _opens % opens M files | G files ! opens/file
. svstem conliguration : 123481 24.7% 100 0 0.6% |, 1235
' rwho dazmon 166761 | 334% |, 131 0% || 12830
library Los9245 1 119% | 222 0 149 | 267
- manual pages L18371 37% | 1597 | 9.8% | 11.5
[news 40022 0 8.0% [5828 | 356% | 6.9
| program source | 10596 | 21% | 1499 9.2% |l 7.1
b includes ! 13767 2.8% 344 2.1% 40
objects 5618 1.1% | 468 29% i 12
| personal configuration | 23125 4.6% |} 1676 | 10.2% || 13.8
| mail spool 3621 | 07% ! s | 329 0 6.9
" other 34586 6.9 1 4081 1 2509 © 8.5

Table §-7: Function of opened perm files

155

followed or lagged slighlly behind user and net activity. That is, a significant part of the system
activity was indirectly due 1o the other classes. This activity may be attributed to logins, spoolers,

mailers and so on.

3.0

----------- ruid_USER
ruid_NET
ruid_SYSTEM
no cut

average
opens
per second

0:00 (Tue) 0:00 (Thu) 0:00 (Sat) 0:00 (Mon)
ume of open

Figure 5-1: Average number of regular file opens per second ("2 hour resolution)

6.0
s rnd_USER
------------- ruid_NET
O ruid_SYSTEM
————— nocut
40t
average
opens -
per second
20
0.0 L o ‘L‘d “ e gt]
4:00 (Mon) 8:00 16:00 20:00 0:00 (Tue)
ume of open

Figure 5-2: Average number of regular file opens per second (" 15 minute resolution)

156

The read and write activity to regular files corresponded only roughly to the open actvity. This
can be seen by comparing Figures 5-3 and 54 with Figure S-1¢. Reads and (especially) writes
were fairly bursty on the resoluuon used in these figures (about 2 hours). The burstiness increased
as the resolutnn used increased. Figure 5-5 shows the throughput of the file sysiem during a typi-
cal period of heavy user acuvity, averaged over 10-second intervals. This represents activity for
about 25 logged-in wsers. It is interesting 1o note that the peak rates in this figure, 35K
bytes/second, would present litde probiem for oday’s LAN technologies, even with fairly hefty
open and transfer protoco! overheads. Our results here are similar to those presented by
Ousterhout et al. [Ousterhout 85] and support their contention that such networks can support

large numbers of users.

Table 5-8 shows the average throughput of the file system over the life of the trace for each class
of user. Note that reads accountzd for 84% cf the bytes transferred. Users accounted for over

half of all bytes uansferred, even though they made only about a quarter of the opens to regular

15
------------ ruid_USER
............. ruid_NET
1 N T ruid_SYSTEM
' ———— nocut
10 +
kbytes
read F
per second
S
v
o g ' :
0:00 (Tue) 0:00 (Thu) 0:00 (Sa1) 0:00 (Mon)
ume of close

Figure 5-3: Bytes read from regular files ("2 hour resolution)

“The unusually heavy read/wnie activity on Thursday was caused by repeated execulion of a large user text format-

tng job (formating 8 Ph D dissertation). Most of the acuvity was to temp files.

157

4=

-earaevrmemsaorens mld_USER
............. m]d_ NE’T
--------- ruid_SYSTEM
1 L —— nocul

kbytes
wrilten 2k
per second

eraniyl

RS EN l'\ .
DLl kb Loy

e hd PARTRS
0:00 (Thu) 0:00 (Sav) 0:00 (Mon)
ume of close

L

.l'.“l :s', el 53

2%

sef

Figure 5-4: Bytes written to regular files ("2 hour resolution)

tas
wh

30

kbvtes 0 b
transferred
persecond |s | i

LI
iy I‘Ir U‘
TR WPl

14:00 (Mon) 14:10 14:20 14:30 14:40

ume of close

Figure 5-5: Bytes transferred to and from regular files (10 second resolution)

files (Table 54).

Referenced files on Seneca were smail, particularly when compared to IBM mainframe environ-

ments such as the ones studied by Porcar. Figure 5-6 and Table 5-9 show file size distributions on

158
‘ cut ; reads I writes | overall (r+w)
L . ._bytes/sec | fraction | bytes/sec | fraction | bytes/sec | fraction
i ruid_NET 1 870 21% ‘ 250 31% 1120 22.5%
ruid_SYSTEM |. 1060 i 25% g 110 14% 1170 23.5%
ruid_USER L2260 1 549% 1i 440 5S% |1 2700 549
no cut [4190 1 100% | 800 100% |1 4990 | 100%
Table 5-8: Bytes read/written for regular files
1.0
............ file_ PERM
e fle LOG
------ file_TEMP
08 no cut
—— = - slaw
fracuon
of
opens
1000 10000 100000 1
eb

file size (bytes)

Figure 5-6: Dynamic file size distributions (cumulative, measured at close)

Seneca, weighted by the number of opens made and cut by the class of file. Note that these are
cumulative distributions. At any point on a curve, the y value is the fraction of files with sizes
less than or equal to the x value. For comparison nurposes, we have included here the static file
size distribution, as derived from a snapshot of the file sysiem taken at the beginning of data col-
lection (this is the distibution that would result if each file on the system were opened once).

Table 5-9 also includes statistics for on-disk permanent files referenced during the SLAC trace.

From Figure 5-6 we sec that there were substantial size differences between opened log, perm and

temp files. The large number of zero length temp files was due to frequent creation of lock files

159

distribution ' min _ max . mean : median | std deviation '
i file_LOG, dynamic L0 1286 | 105000 | 38900 1.5¢5 |
| file_PERM, dynamic |’ 0 249:6 | 19600 620 5.9¢4 ‘
| file_TEMP, dynamic || 0 1.3e6 2980 620 1.9e4
' all, dynamic [0 | 2496 | 18800 710 6.2¢4 |
| all, suatic 0 | 7956 | 8020 | 1600 5.604]
| SLAC, disk file_ PERM | 0 | 94.0e6 | 549000 | 80000 | 2.3e¢6

Table 5-9: File size distributions

(these lock files serve as a very crude mutual exclusion mechanism). Log files, on the other hand,
were generally an order of magnitude or more bigger than other files. The jump at 60 10 100
bytes in the perm file distribution was due to the rwho daemon, which was updating a set of status
files describing machines in the network every 60 seconds. By comparing the dynamic and static
distributions, we find that opens tended to favor small files (due to lock and rwho daemon files)

and, to a lesser extent, a few larger files (administrative files such as /ete/passwd).

The small size of opened files (55% are under 1024 bytes, a common block transfer size, and 75%
are under 4096 bytes) suggests that directory lookup and open overhead will play a large part in

file access umes, particufarly in a distribited environment.

While most files opened in our environment were small, the majority of bytles came from files that
were much larger; 273 of all bytes were read from files greater than 20,000 bytes long. This is
shown by Figure 5-7 and Table 5-10, which give distributions for the size of opened files,
weighted by the number of bytes read. We have also included here, for comparison purposes, the
static space used distribution (the distribution that would result if each file on the system were
completely read once). The staircase effect in the dynamic distributions is due to repeated opens
and reads of a few large administrative files. Jetc/passwd, for example, at 21,000 bytes, accounts
for almost 20% of the bytes read. This file is infrequenuy modified and so would be a good can-
didate for replication in a disuibuted environment. We saw earfier (Table 5-7) thar a relatively
smail number of files received a high fraction of the open waffic. Figure 5-7 gives graphic evi-

dence of the corresponding impazt on 1O waffic,

fracton
of

byvtes read

10
............ file_PERM
o fle_LOG

I fie_TEMP

6.8 + no <ul
—_——— = RERN

ub

4

02

00 L 4 —

1 10 100 1000 10000 100000

file size (bytes)

160

Figure 5-7: Dynamic file size distributions, weighted by bytes read (cumulative, at close)

Our distributions for the overall sizes of opened files and ifor the source of bytes read (Figures 5-6

and 5-7) agree with the distributions found by Ousterhout et al.. By these measures, at least, our

L distribution ! min | max mean | medizn | std deviation |
| file_LOG, dynamic || 0 | 1.28¢6 | 191eS ‘ 1.2¢5 1.6¢5 {
| file_PERM, dynamic ?f 0 | 249e6 | 1.19e5 | 2.2e4 2.0e5

‘ﬁlc_TEMP. dynamic | 0 | 13¢6 | 1.12¢5 | 6.8e4 1.5e5 |
| all, dynamic L0 | 249¢6 | 1.19eS | 3.4ded 1.9¢5 |
[all. static I! 0 | 7956 | 3.6e4 | 1.294 Sled |

Table 5-10: File sizes, weighted by number of bytes read

data appear 1o be representative of a universily research environment

Two figures that are useful in estimating the appropriateness of dynamic migration are the fraction
of a file opened for reading that is actually read and the fraction of a file opened for writing that is
actually written. As mentioned in section 5.3, we don't have complete information on which bytes
of opened files were read and written. However, if we make the reasonable (for our environment)
assumption that a given byte in a file was not usually read or written repeatedly in a single ses-

sion, we ¢on use the counts of bytes read and written from the close record to caleulate the

161

fracton of a file read or written. Figure 5-8 shows the percentage read for files opened read-only,
cut by the class of the file. Figure 5-9 shows the percentage writuen for files opened write-only
and Figures 5-10 and S-11 are for files opened read/write. In all cases, the size used is the size of
the file when closed. Zero length files are omitted. Tables S-11 through 5-14 provide some statis-

tics on the distributions in these figures.

From these figures we see that most opens with read-only or wrile-only access resulled in the file
being completely read or written. The notable exception was for log files. For these files, writes
usually just incrementally extended the file. This is shown clearly in Figure 5-9 and indicates that
we have successfully extracted log files from our data. Much less can be said about the read/wnte
behavior of files opened with read/write access. For these files, information on usage history or
more detailed information on the intended usage of the file would be needed to predict the
read/write behavior. Recall (Table 5-6) that this category represents only 7% of the opens and so

the addiuonal information wii' not usaally be needed.

" —_—— i}
e, ﬁ!e_P‘.:RM AT - -
= file_LOG

O file_TEMP

U8 nocut

0e +

fraction
of
opens

500 1000
percent read

Figure 5-8: Percent of file read for read-onlyv opens (cumulative)

fracucn
of
opens

4 P : .
08 k. ;
0t F .l file_ PERM 1
AR IR file_LOG
------ file_ TEMP
04 b no cut
0oL
.]
f’—'_ :
OU Lo e SIS ‘ _ ‘-!_.AA--— B
. $ 1o S0 100 SO0 HILY
percent wnilen
Figure §.9: Percent of file written for write-oaly opens (cumulative)
1o . e
------------ fiic _PERM Y el)
e fle_1OG I ’1
Lo file_TEMP F -
0s + no cut .
i . 4!
ne L i
02 L
00 ¢ - 1 1 Sl . 1
| § 1n St 100 500 1000

Figure S-10:

perzent read

Percent of file read for read write opens (cumulative

163

10,
----------- fiie_PERM I
-------- fic_LOG *
b mmems fie _TEMP
ng L s\ i)
ne cul ;
... H
!
06 : /:
fracuon |7t Aemesecemae b =T e
of
opens 0s L ,'
I S .- --o T
0o i - L 1
. S 16 50 100 SO0 1000
percent wnien
Figure 5-11: Percent of file written for read'write opens (cumulative)
. distribution__min _._max__: mean _median | sid dev <100% _>100%
I file LOG 1+ 0 690i 85.8 l 100 72 6% | 33% |
| file_PERM 0 I 64100 'l 832 | 100 235 6% | 32% |
Gl _TEMP | 0 | 3600 | 858 } 100 2 18% | 2%
| no cut 0 | 64100 - 839 100 20 | 3% | 29% |
Table 5-11: Percentage read (read-only opens)
| distibution | min | max_| mean | median | sid dev | <100% ' >100%
I file_LOG 1 0 100 | 28 <1 12 98.8% 0%
(Al PERM 0 | 206 | 966 | 100 18 39% | 0%
file_ TEMP 0 9600 | 100.8 100 85 0.7% 0.2%
| no cut 0 | 9600 | 857 | 100 53 15% 0.1%

Table 5-12: Percentage written (write-only opens)

164

Ld:stribx_gon ' _min max | meun _median __sud dev L <100% | >1009 |
(e LOG 0y 100 602 100 | 49 40% 0%

| file_PERM 0 1 1900 | 625 10 | 66 419% 0.4%

| file_TEMP | O | 65000 | 138 100 | 1180 37% 37%
o cut L0 iesoon o829 1 100 1 615 | 40% | N%

Table 5-13: Percentage read (read/write opens)

[distribution | n may | mean | median | sid dev | <100 L »100¢

file_LOG 100 ¢ 43.0 ! 495 §7% 1 0%
file_PERM 120000 1 36.4 <1 275 70% . 01%

i
3600 | 935 | 100 | 150 | 37% | 98%
20000 | 518 | < | 29 | oe1a | 20%

oo oo

| ,
| i
| file_TEMP 5
;l no cut |

Table 5-14: Percentage written (read/write opens)

Overall, 68% of files opened with read access (read-only or read/write) were completely read and
78% of files opened with write access (write-only or read/write} were completely written. This
may be contrasted with the SLAC data, where only 17% of opened permanent files were com-
pletely accessed. The high percentage of files completely accessed on Seneca is due to the much

smaller file size and to the lack of any serious database acuvity.

As one might expest, the fracuon of a file that was accessed depended strongly on the size of the
file. Very small files were usually completely read or written. Large files were rarcly completely
rcad or written. This is shown for files opened read-only and write-only in Figures 5-12 and 5-13

and in Tables 5-15 and 5-16. Files opened with read/wnite access followed a similar patern.

165

fi——_—rtrr———
........ size < 512 /,_—/"_77-1{“”
----- 512 < size <€ 4K -7
---- 4K {sze £ 32K, -~
08 F——— sized> 32K f/
Lo cut \
| [
! .
i 0.6 F] N
traction | !
of ' ,
opens ' -
PP et | Lo
! .
I ‘/_/Y
]
S00 1000
percent read
Figure 5-12: Percent of file read for read-only opens (cumulative, by size)
1.0
________ f
0§ b size < S12
ER R 512 < size € 4K
------ 4K ¢size € 32K
- - size > 32K v
06 + —— no cut b
fracuon .
s e]
opens T
P 04 |
02 . T
’/,'_;-—————“_'___ —
0.0 L - [e aaaataaaciease booene o 1 1
1 S 10 50 100 500 1000

percent wrnitten

Figure 5-13: Percent of file written for write-only opens (cumulative, by size)

166

Cofract f !) i 1
‘ size : frastion o I min | max | mean | median . std dev | <100% | >100%
| ! r-o opens ! : : ‘
L€ 512 bytes PR | 0 3600 1 1001 | 100 19 | 12% | 38%
|S12 <size < 4K | 46.76% 0 | 64100 | 884 | 100 158 179 1.7
! |
|4K <size 32K | 1859 | O | 55500 | 97.0 | 80 82 | 9% | 67%
|size > 32K bytes | 12.1% l 0 ’ 12500 | 156 77 110 | 95% 0.4%
| all b0 0 164100 | 839} 100 | 200 | % 2.9%

Table 5-15: Percentage read, by size (read-only opens)

 fracti “ } !
size | fraction of ! min | max | mean | median | std dev ‘ <100% | >1006 |
w-0 Opi‘l"‘.S ' ! {

| < 512 bytes O T15% { 0 | 6800 | 995 | 100 33| 10% | 01%
ISi2<szesdK | 130% | 0 | 9600 | 797 | 100 83 | 29 | 03%
) 1 i i
(4K <size<3K | 73% | 0 | 101 | 488 12 49 | sS4 | 0%
jsze>3ﬂ< byles | 8.2G { 0 l 100 | 65 <l 24 94.2% | 0%
| all I oo Lo 19600 ! 857 | 100 53 15 1 01%

Table 5-16: Percentage written, by size (write-only opens)

5.5.1.3. Per File Results

The number of opens per file gives an indication of the potential benefits and penalties of migrat-
ing files 10 a user’s machine (the degree of sharing is also a factor here). Most files in our
environment were opened only once or twice (Figure 5-14 and Table 5-17). This may be atun-
buted to the large number of lightly used temp files; log and perm files saw considerably more
acuvity. We have alsc included in Table 5-17 information on the distribution for on-disk per-
manent files in the SLAC trace (for a period of 310 hours). SLAC perm files saw, on average,
considerably less activity than the perm files in our environment, despite the longer SLAC logging

period.

167
fracuorn
of :
files ;
03 ', file_PERM
S L e file_LOG
R ARan file_TEMP
SR no cut
OO)i L 1
1 5 10 50 100
number of opens to fiie
Figure 5-14: Number of opens per active file (cumulative)
distribution | mean | median opened | opepcd opened More - max |
N once wice than twice ¢
i file_LOG 70.5 } 3 5% 36% 59% | 5330
| file_PERM 30.5 4 16% 16% 68% } 26800
' file_TEMP 26 | 1 55% 36% 9% 1920
; no cut 7.5 | 2 4A8% 33% 19% ! 26800
SLAC. disk file PERM | 12 ! 2 465 23% 31% L2660

Table 5-17: Number of opens/file

distnbution | mean i median j std dev
file_LOG 1480 950 1700
file_PERM 8120 >5000 8100
file_ TEMP 57 3 210
no cut 5400 480 7600

Table 5-18: Open distribution (as a function of opens/file)

168

-
08 LS
) 06 e -
fracuon :
of
opens
S
07 koeve-- file_PER\!
file_LOG
: LT T file_TEMP
...... et _J —_— no cut
0.0 Lo G et T R . ‘ . B
! 3 i S0 100 500 000

number of opens to file

Figure 5-15: Fraction of opens per active file (cumulative)

Most opens went to files opened many times. 75% went 10 files opened more than 10 times and
half to files opened more than 480 times (Figure 5-15 and Table 5-18). The most frequendy
opened files on Seneca (Table 5-19°) were administrative and configuration files in /etc and in

library directories, rwho daemon files and news databases.

Files in our environment were usually only open for a few tenths of a second (Figure 5-16 and
Table 5-20). Temp files were open for relatively long periods of time. This is to be expected,
since they are often used to store intermediale results as they are being calculated. The distnbu-
tion for perm files is consistent with the small files sizes and whole file transfers we saw earlier.

Programs open these files, transfer data and then immediately close the files.

$This wble actually lists the most frequenty accessed inodes, with the given name being the path used to first access
the inode. For the most pan, ths distincuon doesn't matter. There are a few inodes listed here, though, that are one of
several versions of a heavily used system file. An example is /eic/passwd, which stans life as /etc/ptmp. Occurrences of
this are noted in the lable

169

__rank opens | fracuon path of first open
1 26801 } 54% | feic/hosts
200 20675 1 4% : fusr/spool/rwho/whod keuka
: 1 © [2 more rwho daemon files]
s 14977 . 3.0% b Jetc/passwd [35485 (7.1%) with /elc/ptmp versions)
6 . 12036 . 24% | Jewchump
7 10594 . 214) fusr/spool/rwho/whod.capella
.- 1 | (9 more rwho daemon files]
17 | 9386 | 19% | fusr/include/whoamih
18 8881 | 1.8% | Jew/ptmp [version of /etc/passwd]
19+ 8630 1.7% : fewc/ptmp [version of /etc/passwd]
20 7533 | 1.5% : Jusr/b/sendmail st
21 7295 1.5% ' /vmunix E
22 6908 1.4% ' Jew/iermcap ;
23 6400 1 1.3% ' fetc/group [6947 (1.4%) for all versions) ;
24 1 6294 1.3% b fetc/services '}
25 0 6211 12% ¢ jew/geltylab

ay N G Iy En &M On . EE .

Table 5-19: Frequently opened inodes

fracuon
of
opens

............ file PERM
NP file_LOG
------ file_TEMP
—_— no cut
00 1 I —
0.01 0.1 1 10 100

length of time file open (seconds)

Figure 8-16: Times from fiie open to close (cumulative)

170

Knowledye of file interopen intervals (the ume from one open of a file to the next: 15 useful in
esumaung both the appropnate ume scale for migration and the possibilities for caching. Figure

5-17 and Table §-21 show that interopen intervals in our environment were short (opens to a file

_distnbution | min___max | mean ' median | sid deviaticr
(Bic LOG |1 0 | 86ed | 334 | 008 & 1140
"fle_PERM | 0 " 7.6e4 6.5 f 0.08 251
file_ TEMP |© O . 4.8e4 1 20.5 ’ 0.22 335
| no cut 0 86e4 | 11.8 0.1 369

Table 5-20: Open time (seconds)

distnbution . _min_© max | mean | median_| std deviaton
file_LOG | 0 | S4es | 965 | 15 Y
file_PERM 0 | 54e5 | 825 60 | 2
file TEMP 0 | 425 | 6655 | 36 | lac
no cut L0 | S4es | 7502 | 60 o 22
SLAC. disk file PERM ' 0 ' 97e4 | 8350 | S0 R

i

Table 5-21: File interopen intervals (seconds)

"""""""" fite_ PERM ST -
""""" file_L.OG
------ file_TEMP
vtk no cut
06 - g :
fracuor -
of et T
tenalc . .
mnlena 04 L l.
02 F .~/:'
00 Y L) L . L
00! ¢l ! 10 100 1000 10006

ume since last open (seconds)

Figure 5-17: File interopen intervals (cumulative)

100000

171

were strongly clustered). When a file was opened, the following open (if any) had a 50% proba-
bility of occurring within the next 60 seconds. Interopen intervals for temp files were parucularly
short. If a temp file was opened muluple umes (many were not), the next open often occurred
within a few seconds of the last one. This is to be expected for files that are used o hold results
between job steps. Log files also had shorter interopen intervals than files as a whole. Most log
file opens were made by net processes and these processes show intense bursts of activity (Figure
5-21, so this 1s not surprising. The jump at 60 seconds in the distribution for perm files 1s duc to

rwho daemon acuvity.

The lifcume of a file in our environment depended strongly on the class of the file. Most iemp
files lved less than a minute. The overwhelming majority of perm files had lfetimes that
extended beyond the logging period. Log files fell in between (mostly due to short lived UUCP
work logs). File lifetime distributions are shown in Figure 5-18. Here files that exisied before
logging was started or that continued to exist after logging was terminated were given lifeumes
exceeding the logging period (lie o the night of the histogram). Because so many log and perm

files fell into this category, we have not included the moments of these distributions.

A

............ file_PERM e
T file_LOG PR
R fiie_TEMP
U » _— nocut
) 06 b
fracuon
ol
files
04 |
02«
00
G0l

file lifeume (seconds)

Figure 5-18: File lifetimes (cumulative)

172
1.0
----------- file_PERM
------- fie_LOG
sl T fle_TEMP
—_ no cut
) 06 L
fracuon
of
versions
04 +
02+
,v' _ _ -
0.0 Pl - PUNT S L -l 1
0.0 (1 1¢ [0 100G 100G(100000

version Lifeume rseconds)

Figure 8-19: Version lifetimes (cumulative)

Even though most perm files have long happy lifeumes, the data in these files 1s not so fortunate.
This is shown in Figure 5-19, where we have histogrammed the ume from when a file 1s created
or written to the ume when a fle is overwritten or deleted (this is the file hifetime used by
QOusterhout et al.). Files that were only partally written are not included in this histogram. Again.
data whose lifetime extended bevond the limits of our log were given lifeimes exceeding the log-
ging period. The large jump at 60 seconds is due :0 rwho dacmon acuvity. Since we include all

files here and Ousterhiout et al. included just new data, our results are not directly comparable.

The first two columns of Tabie 5-22 show the mean number of readers per file, as indicated by the
account (ruid) of the reader, and the percentage of files with more than one reader, cut by the file
class and owner. The next four columns show this information for writers and for the overall
number of file users. The last two columns show the mean and maximum number of inversions
per file. The number of inversions is the number of times that the most recent user of the file
changes (this is basicall: wie inversion clustering metric used by Porcar {Porcar 82]). For a file

used by only one user, the number of inversions will be zero.

‘R W) S 0N iy a4 aE am =

- e Gy mE s Ay W

We can see from Tuable §-22 that 11.8% of the files scen duri..g the logging period were accessed
by muluple users (users with separate accounts). Multiple readers were much more common than
multple writers. Most shared files belonged o net. These were predominately news articles
(perm files). Logs were also heavily shared. They frequently had multiple writers and separate
readers. Although system files were not as heavily shared as net files, in terms of the number of
shared files, the high mean number of inversions (2.92) indicates that the system files that were
shared were not shy about it. Few user files were shared, and the low mean number of inversions

(0.111} indicates that this sharing was incidental w the normal use of user files.

The overall distributions are shown in more detul in Tuble 5-23. Note that very few files had
more thun 2 writers and that even the distribution of the number of users per file drops off quite

sharply.

5.5.2. Execute Tatterns

The busic calls to run an executable file under 4.2BSD UNIX arc execv and execve. These calls
are grouped together under the heading ‘‘execute’” in Table 5-3. Users werce responsible for half
of the execute requests in our log (Table 5-23), even though, as we saw in secticn S5.5.1, they

made only a ¢uarter of the opens o regular files. Most execuies were done on system files. Users

<o

na cul
—

? i readers wrilern U e (riw; I inversions !
cut 1 - | !
I'm an 1 I mean | >] " mean | >1 ' mean | max |
I file_LOG 098 | 38% || 186 | 267% 11267 | 769% || 525 293
! file_PERMI i 1575 1 17.9% |1 0.444 | 34% |1 1711 | 209% [l 552 | 12529
file_TEMP 0639 © 4.4% | 1.02 215 111212 1 9.6% || 0.293 92 |
owner_NET (0.905 | 11.9% 10933 | 41% | 1.501 | 20.7% (| 0.874 | 1285
owner_SYSTEM l 0.483 | 3.0% | 0962 | 0.12% [/ 1.196 | 38% |j 292 | 12529
owner_USER {1045 | 132 |l 0876 | 084% /1053 | 279 [io1n 169
[

792 1 66% 10930 | 24% D130 | 118% |l 106 | 12529

Table 5-22: file sharing, by file class and owner

i

5 : reader writers USSIS (T W inversions
| number 5
! TR 50 S cum count cum cournt cum count
S w26 [1252 | 1LG : : 9272
} 1 o845 | 93w ' 87510 | 97.6% I 8922 | 882w 5838
2 D se) gsea 2009 | 99.59% . 71535 | 95.74 2182
3 o 917% 209 | 99.80% | 1818 | 97.5% 666
| E ‘ S
e [eS| 9834 66 | 99.86% 758 95 2% 799
s 421 988w 23 | 99.89% a1 987% | 389
LIl 356 99.11% 18 | 99.90% 36y 0 99.05% | 339
L a5 9935% 20 | 99926 258, 9930% ! 318
s e | s 8| 9993% | .75 99.47% 291
9 80 9960% 12| 9994% |1 8 | 99.56% | 213
b0 L 105 | 99704 8 | 99.956 11 99.67% || 156 |
f>100 L 308t 100 50 | 100% 333 100% 722
ol 1 10118 - Thoss 16118 101185

Table 5-23: readers, writers, users and inversions; no cuts

owned almost half of the executables seen but there were few eaccutes of these files.

Most executable files were between 5,000 and 100,000 byvies long (Figure 5-20 and Tatle 5-25).

The reiatively large size of executables is a reflection of the lack os run-*ime library sharing. Al

exccutables contain whatever code they need to run.

€ exe~utables ‘ execules/exocuiabie |

cut . execules | G executes | execurables
Cruid_NET 26761 2Laq | 41 i 71t
Cruid_SYSTEM 38093 30.5% 13 i 23.6%
! ruid_USER || 60210 481% | s28 | 909%
’ owner NET 12190 9.7% , 34 5.9%
| owner_SYSTEM ;. 103646 86.9% 291 50.1%
| owner_USER 4028 3.4% ‘ 256 . 4116
! no cut 123064 100% A 10 2

Table 8-24: Basic active executable statistics

l

E T TR W

lE W i D egE) an e

175

1.6 -
------------ owner_LUSER
EEREE R owner _NET
------ owner_SYSTEM

0f r —— wocwt --

fracucn

ot

executes /—/ :
0l v L

02 P
‘(A,.-—/‘-‘ .‘,..._-

Y, 500¢ 10000 SO0 100000
size of executable (hytes)

Figure S-20: Dynamic executable fil. size distributions (cumulative)

'-

. distribuuon min ' max mean median | std deviation
“owner_NET | S216 | 8.8es | 44400 | 35500 23900
~owner_SYSTEM | 4096 | 1.1e6 l 34500 1 21400 | 84900
owner_USER 14228 | 326 | 55900 | 28200 | 135000
_no cut | 4096 326 | 36200 | 22400 | 83400

Table 5-25: Executable file sizes (bytes)

:_ distribution | min_|_max_| mean | median ! sid deviation |
| owner_NET P 2152 | 359 60 570 |
- owner_SYSTEM i 1 17519' 373 24 1340 |
(owner USER | 1 675 | 17 3 59
I no cut 1 laTsio] 215 |8 970 |

Table 5-26: Number of executes/active executable

176

1 G
0.8
0.¢
fracuon
of

executables .

ar b e 3 owner_USER
- et B owner_NET
....... : owner_SYSTEM
~——— nocut
0,0 """"""" 1 L H 1 L
: 3 H 50 100 500 1000

number of executes to fie

Figure 5-21: Number of executes per active executable (cumulative)

An executable file saw considerably more activity than other regular files (Figure 5-21 and Table
5-26). Almost half were executed 10 times or more. This is not surprising, considering the small

number of active executables.

Most executes went 1o files executed a large number of times. Half went o files executed more

than 2000 tumes (Figure 5-22 and Table 5-27) and 95% went to files executed at least 100 times.

distribution meanil median | std dev
owner_NET 1270 1380 634
owner_SYSTEM | 5150 2600 5850
owner_USER 230 105 244
no cut 4600 2000 5640

Table 5-27: execute distribution (as a function of executes/executable)

177
1.0
ettt owner_USER
............. ov.ner_NET
.......... owner_SYSTEM
08 ¢ no cut
06
fracuon
of
executles
04 b
02 L 7~
Ve
=
0.0 RN A
) 10 !

number of executes to file

Figure §-22: Fraction of executes per active executable (cumulative)

The most frequently executed files on Seneca were shells and system utilities to delete files, evalu-
ate conditionals, list directories and distribute files to other machines (Table 5-28). Over half of
the executes went to only 13 files. These files, taken together, occupied 0.46MB ~f disk space
(0.08% of the total). This suggests thal even a very modest amount of caching or other special
treatment for frequently requested programs will produce significant improvements. Evidence for
this was also seen in a study of 2MB diskless Sun workstations running a version of UNIX similar
to the onc on Seneca at the University of Washington [Lazowska 84]. For the Suns studied, 80%
of the bytes transferred were due 1o file accesses and only 20% were for paging. If we take our
average executable size times the execute rate (most 4.2BSD executables are loaded using demand
paging), we get a very crude paging estimate of 7500 bytes/second, or about 170% of the transfers
due to opens (Table 5-8). The difference betwsen our crude estimate and the behavior seen at the
University of Washington is probably due to both the caching of pages of frequently executed files

and to code and debugging information in executables that is not used.

The distribution of time between executes for executables is given in Figure 5-23 and Table 5-29.

These distributions lend support to our caching arguments.

178
| rank executes | fraction : _path of first execute :‘
] 1] 17519 | 14.0% /bin/sh
! 2 | 6946 5.6% foin/ma

3 ! 6511 52% foin/l
| 4 | 6402 5.1% /bin/csh
| 5 : 4568 3.7% /oin/ls
} 6 4497 3.6% ferc/rdist
’ 7 3776 3.0% fusrfucb/more
j 8 1 2517 2.0% fusrfucb/vi
‘: 9 . 2514 2.0% fbinflogin
‘ 10 f 2197 1.8% foinfecho
! 11 i 2152 1.7% fustibin/mews
oon 2143 | 1.7% fusrflib/sendmail '
; 12 2026 { 1.6% fetcNogld _
| 14 1891 1.5% /bin/hostname !
: 15 1803 1.4% /binfmdir
Table 5-28: Frequently executed inodes
10
............ owner_USER
-------- owner_NET
------ owner_SYSTEM
08 b — no cut
06 -
fracuon
of
intervals
04 |
02t
0.0 — fmem il 1 n 1
0.0 0.1 1 10 100 1000 10000 10000

ume since last execute {seconds)

Figure §-23: File interexecute intervals (cumulative)

Il Il G B T W

_ _ - -

179

Executing a program on UNIX is usually done using the sequence fork (1o create a copy of the
running process); execy or execve (1o replace that copy with the new program); exit (when done).
Since over 2/3 of the forks on Seneca were followed by an execute we can, by looking at process
lifetimes (time from fork o exit) estimate how long execuiables were in use. Process lifetime dis-
tributions, cut by the ruid of the requester, are given in Figure 5-24 and Table 5-30%. Over half of
all processes recorded in the log lived less than a second. System processes were particularly
short-lived. With the exception of the large number of cysi>m processes that lived less than a
tenth of a second (due mostly to local network servers), our results agree with process lifetime

resuits given by Znou et al. [Zhou 83).

Executable files were more heavily shared than opened files (Tuble 5-21). This should come as no
surprise, since there were relatvely few executables and these were usually located in public

directorics. User executables were relatively lightly shared.

| distribution ! min_ . max_| mean | median | sid deviauon |
owner_NET I 0.05 l 2.2e5 | 1160 | 65 6550 1
[owner_SYSTEM 0 5.6e5 983 40 7680 |
owner_USER | 0.52 1 4.1es | 6290 | 730 23600 |
' no cut PO 565 1170 1 47 8610 |

Table 5-29: Interexecute intervals (seconds)

| distribution | min max | mean | median © std chiagiqn_vl
ruld_NET ' 002 | 7250 15.7 30 | 88
ruid_SYSTEM | 0.01 | 215000 2.2 0.09 1380
ruid_USER 10.02 76100 | 118 24 1190
no cut L 0.01 | 215000 | 165 095 2560

Table 5-30: Process lifetimes (seconds)

6Some processes, such as login shells, start Life in one ruid class and exit in another. These are included only in the
overall distribution

180
1.0 —~
0% +
06
fracuon
of
1oCesses
P 04 ¢
on L ! K m'd—LtsER
- s ~ememe rutd_NET
S s ruid_SYSTEM
. — necut
0.0 st 1 1
0.0} 0.1 1 10 100
process lifetime (seconds)
Figure 5-24: Process lifetimes (cumulative)
‘: execulors ! inversions '
! cut ; ;
. } mean] median | >1 | >5 { max | mean | >0 | >5 max |
owner NET 1103 | 4 7065 | 41.2% | 45 |} 929 | 70.6% | 559G | 957 |
}owner_SYSTEM 0 12.0 ! 2 615G | 344% 111 126 61.5% | 38.8% | 6539
owner_USER L1381 98% | 1.6% | 28 174 | 98% | 479 | 205
no cut 72 11 13929 | 203% | 111]| 695 | 39.2% | 246% | 6539

Table 5-31: Executable sharing

5.5.3. User File Patterns

In this section we take a closer look at user files. Some distributed file systems (for example, the
ITC DFS [Satyanarayanan 85)) deal primarily or wholly with user files. In addition, we expect
that user file access patterns will be less dependent on the operating system used. These factors

make user file reference patterns particularly interesting.

The results presented in this section are acwally for user references to user files

(owner_USER+ruid_USER cut, referred 10 as the "U" cut below). These references represented

‘R Ml = m

Y EE 2 N .

0 B &N B e

181

over 90% of the references 10 user files. The remaining references were mostly infrequent
periodic references made by system processes and had little effect on the distributions we see
{with th: exception of some of the sharing results). The organization of this section follows

closely that of section 5.5.1.

§.5.3.1. Basic Statistics for User Files

The majority (62%) of uscr references to user files were to perm files (Table 5-32), even though
less than a third of the referenced user files were perm files. There were few references to log
files. Most of these files were logs of mail sent or read and so the low level of acuv:r; i= not
surprising. With the exception ¢f a somewhat higher proportion of perm files, these figures agree

with what we saw for the overall distributions (Table 5-5).

559 of the opens were rcad-only with most of the read-only opens going to nerm files (Table S-

33). Users showed a strong tendency to open perm files read-onlv and other files write-only or

cut __opens % opens I files | % files | opens/file
U+file_LOG | 837 0.8% 101 0.3% 8.3

| G+file_PERM | 65051 | 624% | 8662 | 290% || 75
 Usfile TEMP | 38220 | 368% | 21127 | 707% || 18
T
|

‘U 1104308 1 100% | 29890 | 100% 35
Table §-32: User opens to user files
cut | read-only write-only | read/write | total
=ropcns | fraction opens | fraction | opens | fraction || opens
U+ile_LOG |} 117 14.0% 623 | 74.4% 97 11.6% 837
U+file_PERM || 50193 | 77.5% 13296 | 20.5% 1310 2.0% 64799
| U+file_TEMP

+-

7349 | 19.0% [19891 | S1.8% ! 11110 i 29.0% 38380
57659 | 55.4% |/ 33810 | 32.5% |l 12547 | 12.1% || 104016

L |

Table 5-33: Modes of opcn for user open-close sessions to user files

category J opens | % opens || files | % files |! opensiiile
library ﬂ 2036 3.1% 91 1.1G 224
manual pages v 776 1.2% 181 2.1% 43
program source | 10538 | 16.2% || 1486 | 17.1% 7.1
mgludcs ‘ 3093 4.8% 306 3.5% 10.1
cbjects 5617 8.6% 467 54% 12.0
personal configuration 'i 20278 31.2% 1638 | 18.9% 12.4
mail spool bo2040 1% 453 5.2% 4.5
other © 20644 1 31.8% 4040 | 46.6% 5.1

read/write.

Table 5-34

: Function of opened user perm files

30% of the acuvity 1o perm files was 10 program development files (‘‘program source,”
) pe prog

“‘includes,”” and ‘‘objects”’ in Table S5-34). A similar number of references were o personal

configuration files (ofien referred to as ‘‘dot files’).

unidentifiable.

5.5.3.2. Per Open Results for User Files
e

Most of the rest of the references were

User open activity to user files (Figure 5-25) showed a busy period during the work day, with

activity tapering off in the late evening. This is typical of a university environment. There was

some early morning activity duc to user background jobs. The overall level of activity was much

cut 3 reads writes | overall (r+w)

i | bytes/sec | fraction ;' bytes/sec | fraction || bytes/sec | fraction
U+file_LOG 9.6 1.0% 4.6 1.1% 14.2 1.0%
U+file_PERM 401 41.0% 121 28.6% 522 37.3%
U+file_TEMP I 568 58.0% 297 70.4% 865 61.7%
U | 978 100% 423 100% 1401 100%
no cut (Table 5-8) Il 4190 | - 800 - 4990 -

Table 5.35: Bytes read/written by users to user files

S B OGS S S W =N 2 . .

183

0.5 —

................ LU +file_PERM
............. U« ﬁ]e_l_OG
---------- U +file_TEMP

average
opens
per second

i L - -
000 Tuesda, 0-00 Thursdas 0:00 Saturda:
ume of open

Figure 5-25: Average number of file opens per second ("2 hour resolution, U cut)

less than what we saw for the system as a whole (user opens to user files accounted for 14% of

the open acuvity} and was generally less bursty.

User reads and writes to user files accounted for 28% of the bytes transferred during the logging
period. Most of the transfers (61.7%) were to and from temp files (Tabie 5-35). Few bytes were

rransferred to cr from log files.

distribution ' min ;max mean | median | sid deviation |
U+file_LOG, dynamic 0 | 1.28e6 | 90400 39000 1.7e5
U+file_PERM, dynamic 0 2.49¢6 6205 1230 4 Oed
U+file_TEMP, dynamic 0 1.30e6 5006 310 2.4e4
U, dynamic [0 12496 | 6440 930 3.9e4
all, dynamic (Table 5-9) || 0 | 24%9e6 | 18800 | 710 6.2e4
! all. static J 0 | 795¢6 | 8020 | 1600 | S6es |

Table 5.36: User file size distributions

184
10 T
............ U~ file_PERM '
e U+ file_LOG
...... U +file_TEMP ‘
08 b & ;
staug A
06 ;
fracuon i
or ‘
opens .
02
00 b F DT e ; - l
1 ¢ 100 1000 10000 100000 1
et

file size (bytes)

Figure 5-26: Dynamic file size distributions (cumulative, measured at close, U cut)

Cumulative file size distributions for users files, weighicd by the number of user opens and cut by

the file class, are given in Figure 5-26 and Table 5-36. Referenced user files were, on average,

smaller than other referenced files. Thus was due, in par, to the large number of zero length temp

files and 1o the absence of the large, frequently accessed administration files seen in the overall

data.

Uscrs accessed most of their files completely (Frgures 5-27 through 5-30 and Tabies 5-37 through

5-40). 90% of opens with read access (read-only or read/wrie) resulied in the file being com-

pletely read (compared to 68% for the system as a whole). 83% of files opened with wnie access

were completely written (compared to 78% for the system as a whole). Nearly all files opened

read-only were completely read.

e U+ file_LOG
...... U+ file_TEMP
08 +

06

l Lo
............ U - file_PERM

fracuon
Of

opens

00 = A S 1 1 :
: s 10 50 jou 506 1000

percent read

Figure 5-27: Percent of file read for read-only opens (cumulative. U cut)

1.0 =

z=a
y
.
\
\
1
\
.

|
0% Lk - l
. |
_ 06 b (
fracuon - :
of ’ E
opens L ;
A U+ file_PERM l
[LU +fle_LOG ;

...... U «fle TEMP

$00 1000

percent writien

Figure §-28: Percent of file written for write-only opens (cumulative, U cut)

186
Lo - ,
------------ U~ file_PEP M i //"""
SRR U-file_LOG ! :
------ U~ file_TEMP —
os b ___ L -
fracuen i
of |
opens !
P S U 1
b
|
|
K [L A L L o ‘J
s 10 50 100 SO0 1000
percent read
Figure 5-29: Percent of file read for read write opens (cumulative, U cut)
LG r -
i
¥
D8 Brrr g
!
XIS]
fracuon fermimemininan o e «’
S O L+ file_PERM !
e N L~ fic_LOG '
N L ~file_TEMP
L .
0ok ~
SR PO oo - Il 1
S 10 50 100 SO 1000

percent wntten

Figure .20 Percent of file written for read'write opens (cumulative, U cut)

S N O I E Y BN S EE

187
distribution min max ' mean © median | osid dev | <100% , >100¢ |
- U+tile_LOG 0 100 753, 100 | &40 | 28% | 0%
» U+file_PERM ; 0 | 12500 | 999 ! 100 | 110 57% ' 52%
| U+file_TEMP 0 | 1160 | 109 | 100 ‘ 47 7.2% ‘ 114% 1
U L0 112500 1 1009 1100 14 | 599
|nocut (Table S-11) - 0 - 64100 | 839 | 100 | 202 | 31 | 9 j
Table 5-37: Percentage of users files read (read-only opens)
distribution ! mid_ Max . inean _median | sid dev L <1n00% >100¢ |
| U+file_LOG S0 100 124 1y 200 0 9, 0% |
{ U+file_PERM o 200'\ 90.8 | 100 27 | 14 08% |
U+file_TEMP 1 0 | 9600 | 106 E 100 201 20% | 07% |
v ¢ 1ssoo ! 956 1 100 134 1% | 08 |
"nocut (Table 5-121 © 0 ! 9600 | 857 i 100 53 . 15% 015 |
Table 5-38: Percentage of user files written (write-only opens)
distribution min | max_ | mean ;_median Dstd dev <1006 0 >1005 |
U+ile_LOG BRI L6022 T 10U 49 1 40% v 0% |
| U+file_PERM o 100 818 100 39 | 18% 0% |
| U+file_TEMP 0 | 65000 ' 159 100 1670 ’ 34 195 |
v | 0 ! 65000 | 135 10 | 1s00 | o312 16 |
Tno cut (Tabie 5-13) | 0 65000 ' 829 ' 100 615 | 40% 1% |
Table 5-39: Percentage of user files read (read’write opens)
T - . 7 T 5 i PP ne. i oo
distribution min_ ! max . mean i median | ostd dev ' <100% ! >100%
U+file_LOG 0 | 100 | 430 | <1 | S0 | 5% | 0% |
U+file_PERM 0 100 | 170 <1 37 83% 1%
U+filc_TEMP 0 3600 1 112 100 156 23¢ 126 t
U 0 | 3600 | 957 100 147 349 1 1039 |
no cut (Table 5.1, . 01 20000 | 518 | <1 | 239 | 61% | 27% |
Table 5-40: Percentage of user files written (read’write opens)

188
1u r
08 b
ol ,
fracuon ! ’ ;
of
files R
il S R
porerneenens 1]
L ; - L ~-file
02 : ~file_PERM
o e L-fiz_LOG
........................... [-l TEAP
L
00 L 4 - {
.) i NE 100
number of opens to file
Figure 5-31: Number of opens per active file (cumulative, U cut)
| o | | ; ‘
L distribution | mean | median } opened | opencd | opencd more | max
‘ ‘ ! |_once | twice than twice | :
tU+file_LOG . 83 \ 5 i 13% 18% 69% 79 |
- Usfile_PERM 75 3 * 2% | 21% 56% 562
;U+ﬁle_TEMP ' 1.8 I 2 35% 61% 39% 198 |
v 3.5 2 | 3% | 50% 199 | se2 |
‘nocut (Table 5-17) | 75 | 2 | 48% 3G | 19% | 26800

Table 5-41: Number of user opens/user file

5.5.3.3. Per File Results for User Files

User temp files were generally accessed twice. User log and perm files saw somewhat more
activity (Figure 5-31 and Table 541). Although only 19% of the user files seen were referenced
more than twice during the week of logging, these files accounted for 63% of the opens. User file
distributions don't show the frantic activity to a few files that we saw for the overall distribution,

but there was still a small group of relatively active files that accounted for the majonty of the

s N

189

opens.

Interopen intervals for user files (Figure 5-32 and Table 542) bore little resemolance to the results
we saw for the overall data. Intervals for user files could generally be expressed in minutes
instead of secconds. Temp files were an excepuon here. The second open to a temp file u:ually

followed immediately after the first one.

File and dats lifeumes for user files are shown in Figures 5-33 and 5-34. Most user perm and log

files had lives exceeding our logging period. Data in uscr log and perm files were also long lived

distnbution ' min max ' mean median | sid deviation
+ U+file_LOG ﬂ0.0Z C5.4eS 0 31100 3100 5.7eS !
| U+file_PERM LU | Sd4eS 21400 | 450 4ded
|U+file_TEMP 11001 | 42e5 | 1390 | 038 124 |
U 10 ©Sdes 116900 1 120 3.7e4
no cut (Table §-21) + O + §4eS 7502 60 2.2ed
Table 5-42: User file interopen intervals {seconds)
ne—
B L - file_PERM ‘—_,,_---"'
S L ~file_LOG
------ U+ file_TEMP LT e
08 + - L L .

fracuon
OA’
inter ais

0.0 PR Lo el Rt i Uiy 4L 1 1 1
00: 0.1 1 10 100 1000 10000 100000
ume since last open (seconds)

Figure 5-32: File interopen intervals (cumulative, U cut)

190
10
............ U+ file_PERM R
- U +file_LOG Lo
------ U« file_TEMP -7
U8 U e
06 +
fracuon
of
files
04 |
02 +
0.0
0.01
file lifeumne (seconds)
Figure 5.33: File lifetimes (cumulative, U cut)
1.0
............ U +file_PERM P
R AR U -file_LOG -7
------ U - file_TEMP
0% -
_ L
06 k
fracuon
of
versions \
- r
02 ’
0.0
0.01 0.1 1 10 100 1000 10000 100000

version lifetime (seconds)

Figure 5-34: Version lifetimes (cumulative, U cut)

{this was not the case for the overall data). Half of all user iemp files lived less than 15 seconds.

Tables 5-43 and 544 provide some statistics on user sharing of user files. Sharing was restricted

to log and perm files. The low mean number of inversions (0.069) indicates that sharing was

-‘ - -

incidental to the normal use of user files.

5.6. Summary

191

This chapter has described in detail the collection and analysis of short term file reference data

from a 4.2BSD UNIX system supporting university research. As is true with all studies of this sort,

our results can be guaranteed 10 be valid only for our system at the ime of data collection. Care

should be taken in applying the results to other sitvations. Given this caveat, our major findings

‘)
i readers i

wrilers users (r | w) | Inversions ‘
cut !mcari >] | mean | >1 mean >1 mean max
U+file_LOG i 0.634 | 3.0% |; 099 3.0% 1.099 59% | 0.256 9
U+file PERM | 0.936 ’ 27% [0632 | 21% [[1.12 | 49% |l 0231 163
U<+file_TEMP l 0.798 | 0.02% || 0.995 0% 1.0 0.04% | O 2
U | 0838 | 080% |1 0889 | 063% |l1.035 | 15% |l0069 | 163
no cut (Table 5-22) | 0.792 | 6.6% | 0930 | 24% | 130 | 11.8% |1 1.16 | 12529
Table $§-43: User file sharing
4' readers l writers { users (rlw) i inversions
number | T T :
' _count cum count . cum i _count cum count cum
0 5367 18.0% 3826 12.8% - - 29452 98.5%
1 24284 99.20% || 25877 99.37% || 29452 98.5% 198 99.20%
2 146 99.69% 98 99.70% 255 99.39% 109 99.56%
3 45 99.84% || 28 99.80% 74 99.64% 27 99.65%
4 21 99.91% 19 99.86% 40 99.77% 23 99.73%
5 11 99.95% 8 99.89% 19 99.83% 14 99.78%
6 2 99.95% 7 99.91% 9 99.86% 7 99.80%
7 3 99.96% 7 99.93% 10 99.90% 5 99.82%
8 2 99.97% 3 99.94% 5 99.91% 7 99.84%
9 2 99.98% S 99.96% 7 99.94% 7 99.86%
10 0 99.98 2 99.97% 2 99.94% 4 99.88%
>10 7 100% 10 | 100% 17 100% 37 100%
total 20890 | - [l29890 | . 29890 - | 29890 -

Table 5-44: readers, writers, users and inversions; user references to user files

192

are as follows:

N
)]

3

#

&)

(6)

7

®

©

Opened files in our environment are small, with half being under 710 bytes long.

The majority of bytes read come from larger files (greater than 20,000 bytes Jong).
68% of files opened with read access are completely read and 78% of files opened
with write access are completely written. The percentage read and written depends
strongly on the class of the file (Jog, perm or temp), the mode of open, the file opener
and the size of the file. In partcular, log files are almost never completely wntten
and users completely read 94% of files they open read-only.

Temporary files are usually accessed only once or twice and most Live 10 less than a
minute. Log and permanent files live for much longer periods and sec more open
activity.

Most opens go to files opened hundreds or thousands of times a weck. Large admin-
istrative files account for a substantial fraction of this activity.

Files are generally open for only a few tenths of a second.

Interopen intervals in our environment are short. Half are under 60 seconds. The
interopen interval depends strongly on the class (log. permanent or temporary) and
owner of the file.

Most sharing is restricted to system and net files in our environment. Sharing of user
files is incidental to their normal use.

Executed files are relatively large (half are over 20,000 bytes), heavily used and few

in number.

(10)Half of all execute requests go to a very small number of executable files (13 files;

2.2% of the referenced executables).

(11)We see substantial differences in file access patterns based on the class of the file, the

owner of the file and the class of the file opener. In particular, overall reference pat-
terns do not match user file refecrence patterns and reference patterns for logs, per-

manent files and temporary files bear little resemblance to each other.

193

These results have a number of interesting implications for DFS design. These implications will

be explored in Chapter 7.

Chapter 6

Directory Reference Patterns

in a UNIX Environment

6.1. Introduction

This chapter continues the analysis of UNIX file system reference patierns that we began in
Chapter 5. In that chapter we focussed on file reference patterns. This chapter examines directory

reference patterns in some detail.

Our study of directory reference patterns is motivated by studies that found that 40% of BSD
UNIX system call overhead was due to name resolution [Leffler 84], that half of all network
traffic in LOCUS was in support of name resolution [Sheltizer 86], and by our file reference results

showing that most referenced files were small enough to read in a single disk access.

Chapter 5 described modifications that were made to the UNIX kemnel to collect a log of accesses
to files. This log includes a complete record of the paths used to create, open, execute and delete
files, 10 open directories, and o create, delete, and modify directories. This chapter uses that path
information to examinc the overhead of name resolution in accessing files, directory rcad/write

ratios, the rate of change of directory nodes, and directory sharing. As in Chapter 5, we have tried

194

SE S O B B S En 2 = E

1o present the information in a way ihat gives a qualitative feel for the way that directories are

used on our UNIX system.

Section <.2 describes aspects of our data collecuon methodology that are important in analyzing
directory refercnce patierns. Section 6.3 outlines the approach we used in analyzing the data.

Section 6.4 presents the results of this analysis. Section 6.5 summarizes our results.

6.2. Data Collection Methodology

Section 5.2 described the method we used to generate a trace of file references. This trace
includes, among other things, a complete record of the paths used to create, open, execute and
delete files, to open directories, and to create, delete, and modify directories. Our original purpose
in collecting data was to track references to files. Because of this, some calls that cause direc-

tories to be referenced (for name resolution) were omitted from the log. These calls were:
(1) Protection: chmod, chown.
(2) Swatus: readlink, lstat, stat, utimes, access.
(3) Administrative: acct, mknod, mount, setquota.

(4) UNIX domain IPC (side effect of the 4.2BSD implementation): bind, connect.

Of these calls, only Istar and star are likely o occur with any frequency. These two calls retrieve
status information on a file (size, protection, access date, and so on) from the file inode. Mogul
found [Mogul 86b], in studying another 4. 2BSD system, that Istat and stat were used nearly twice
as often as the calls that we logged. Most of these status calls were made, though, by an adminis-
trative process that scanned the entire file system on a regular basis. A similar program is run on
our system, but only half as often and on a smaller, busier file system. Based on this, we estimate
that Istat and stat calls occur about half as often as open and creat calls on Seneca. Further, these
status calls arc generally tightly clustered in time (most will occur during the 4AM scan of the file

system) and so we expect that they will have little effect on the results we will be presenting.

196

Another potential contribution to directory references that we have not logged is from system calls

that fail. We logged only successful calls.

6.3. Analysis Method

6.3.1. Conventions

Our method for analyzing directory reference patterns is similar to the method used for file refer-
ence (section 5.4). There are a few conventions, observed by all analysis programs, that are
specific to the analysis of directory references:

(1) Al of ihc analysis presented here is at the node (entire directory) level. We haven’t
attempted to analyze references to individual directory entries or pages. Sec Chapter
S (particularly the file interopen interval and lifetime distributions) and [Leffler 84)
for information on individual entries.

(2) Directory sizes include entries for **."" (the directory itself) and *‘.."" (the parent).
These entries are always present in a UNIX directory and so the minimum directory
size is 2 entries.

(3) Directory sizes given in bytes or blocks assume that the 4.2BSD directory layout is
used (that is, an 8 byte header, space for the name itself, and a 1 byte trailer, padded
out to a 4 byte boundary) and that there are no *‘empty’’ entries. This last assump-
tion means that we probably understate somewhat the number of blocks required to
read a directory.

(4) All component resolutions are marked as having taken place at the time the system
call being analyzed finished. In real life, of course, these resolutions won’t occur
simultancously. Because of this, intervals of less than 100ms should not be taken
seriously.

(5) When we encounter a record in the log that contains a path 1o resolve, we take each
path component in turn, resolving it individually. Each directory used in the resoly-

tion is marked as having been referenced and the appropriatc histograms are

197

incremented. Resolution sturts either at the root of the file system (for an absolute
path) or in the current working directory of the process that generated the record. So,
for example, an OPEN record that specifies a path of *‘fufrick/.login’’ generates 3
directory references: to **/"" to resolve ‘‘u’’; to “‘u”’ to resolve “‘rick’’; and to ‘‘rick”
to resolve “‘login.”

(6) All components in a path are resolved. No attempt is made to short-circuit degen-
erate components or path segments. So, for example, resolving ‘‘./login’" requires

6

two references (one for **.”" and one for ‘‘login’) and resolving ‘‘jufrick/.login’’
would require 3 references even if the working directory of the process making the

request 1s “‘/u/rick.”” This is consistent with the approach used by 4.2BSD.

6.3.2. Cuts

Onc expects that directory reference patterns will be different for user versus system processes,
user versus system directories, batch versus interactive work, and so on. This was ccrtainly the
case for file references (Chapter 5). To investigate these effects, we use the three basic types of
cuts described in section 5.4.2 (on proccss owner, object owner, and file type). In addition, we use
a cut based on the UNIX file system of the referenced directory. The overall file name space on a
UNIX machine is actually made up of a number of physical file s;stems that form subsets of the
overall naming tree. There were 5 physical file systems on Seneca at the time data was collected,
mounted as follows: ‘S’ (the root of the file system), ‘‘/u’’ (user files), ‘‘/usr’” (system files),
*fusr/spool”” (USENET news and spooling space for printers and UUCP), and *‘/tmp’" (scratch

spacc).

These cuts may be combined to give other more specific cuts. 9 cuts are used in this chapter (the
first 8 cuts were also used in Chapter 5 and are described in detail in section 5.4.2):

(1) mo cut: This cut passes all records in the log to the user analysis routines.

(2) ruid_NET: Passes references by ner processes.

(3) ruid_SYSTEM: Passes references by system processes.

198

(4) ruid_USER: Passes references by processes running under user accounts.

(5) dir_owner_NET: Passes references o directories owned by UUCP, USENET news,
and notes accounts.

(6) dir_owner_SYSTEM: Passes references to directories owned by system accounts.

(7) dir_owner_USER: Passes references to user directories.

(8) owner_USER+ruid_USER: Passes refercnces made by user processes, but only if
the leaf object is owned by a user. This gives a trace of directories accessed in
resolving user references to user files.

(9) ruid_USER+/u: Passes refercnces made by user processes to directories in the /fu file
system (this is the file system on Seneca that holds all user directories). While the
owner_USER+ruid_USER cut includes all directories that are refercnced in accessing
user files (including, for example, *‘ftmp" for temp files and **/”’ for absolute path
names), the ruid_USER+/u cut only includes that subset of files and directories on /u.
This cut will be of particular intcrest to DFS designers who combine a global user

file space with local system directories [Satyanarayanan 85].

6.4. Directory Reference Patterns

This section presents the results of our analysis. A full analysis of the data was done using 21
different cuts (the 9 cuts listed in section 6.3.2 plus cuts on other file systems and on ruid, file sys-
tem, and directory owner combinations). It is clearly impractical to preseni results for the full set
of cuts. We have generally included only those tables and histograms that are particularly charac-

terisuic or striking.

Overall system activity and per call results are presented using ruid cuts. These cuts show the
overall contribution from cach of the user classes and point out some of the differences in the way
that these classes use the file system. Analysis that concentrates on individual directories is
presented using directory owner cuts. Directory owner cuts show us roughly where in the file sys-

tem activity is concentrated and allow us to investigate the activity on a directory-by-directory

199

basis.

In some cases we give more detailed results on user activity using the owner_USER+ruid_USER
and ruid_USER+/u cuts. These cuts give us a data sample that allows us to invesugate reference

paterns that a DFS dealing primarily or wholly with user files would see.

6.4.1. Basic Statistics

Table 6-1 gives a summa-y of records coilected for events that referenced directones (this 1s a
subsct of the records shown in Table 5-3). The first 3 columns give the number of records of each
1ype collected, the average rate for that type of record, and the percentage of collected records that
this represents. The remaining columns show the number of records collected cut by the ruid of
the calling process and the percentage of the total for the ruid class. Opens accounted for 2/3 of
the path requests we logged. Chdir, unlink, and execute calis accounted for most of the rest of the

requests. There were relauvely few directory structure modification requests.

t 1 no aut | nwd NET | rud SYSTEM || mud_USER
record ; ; T ,
' count . perhr . fracuon |’ count { fraction | coun: ! fracuon | coun: fracion
(mkdir 936 [SS | 007% | 795 | 019% |, 2 0% 139 00%
! | i ‘
| rename '+ 3211] 19 023% |1 1946 | 0.46% 408 , 0.08% 857 | 019%
mdr | 93| sa | o0oe% o780 | 019% 0 | 133, 003%
’symlmk 16 01 0% | 0 1l 0% 17l ox
| 7 |
Pehdr |! 136063 | 806 979 | 19102 | 4S5% | 71854 , 135% || 45106 ' 100%
' | i
| chroot I 0 | 1| 0 - 0 | 0
icxccule 125064 | 741 90% || 26761 64% | 38093 | 729 wzoo‘l 1334,
| |
| link | 42929 Y 3% || 25694 | 61% l 7301 [14% 934 | 229
iqxn | 965087 | 5720 68.7% |{ 277350 | 65.9% |l 393661 | 74.1% || 294070 | 649%
| wunrate E 0 - - l Q - . 0 - 0]
lunbnk 1 130909 ¢ T 93% || 68342 | 162% || 19861 37% i 42726 | 94%
Jtal | 1405148 | 8323 | 100% || 420770 | 100% Fsar183 | 100% 453187 | 100%

Table 6-1: Records logged

Opens may be further brokor & an by the type of object being opened (Table 6-2). While most
requests were 1o open regular tiles, there were also a significant number of directory opens.
Processes open directorics in UNIX o scan the contents (as opposed 1o resolving a single name).
This is commoniy done by user provesses o satisfy interactive requosts to list directory contents.
Directory apen activity by svstern processes was due to daemons examining spool directornies for
work and 10 housckeepin, scans of the file system. In our analysis we have counted the open of a

directory as a single reicrence toothe directory.

Each of our ruid classes acconnwd for roughly 1/3 of the path resolution requests (Table 6-3).
Most of these paths were speditied absolutely (that is, were resolved starting at the root of the
naming tree; Overall, onls about a quarier of the objects being referenced were listed in the
working directory of the process making the request. This is a reflection, in part, of the high level
of acuvity w system files. As we saw in Chapter 5, over half of all file opens went o system
files. 4.2BSD makes hedavy use of svstem files 1o store sysiem configuration and status informa-
ton. Since these files are often opened as an incidental part of other activity. they are usually not

in the current working directony and so are referenced absolutely.

' I, e cus ruid_NET | ruid_SYSTEM ruid_USER
type [i —t .
" opens ' fraction opens | fraction ' opens | fraction opens frachon |
[regular file 751285 - 7829 | 249825 | 90.1% | 298186 | 757% | 206268 70.1%
‘\dueclor)‘ I 170448 1776 | 17275 | 62% || 72625 | 18.4% | 80548 | 27.4%
\ o i I
| block special | 2 01% | 0 1 .l e0 | 002% | 82 | 03 !
| character special | 39432 a1e | 10250 | 37% f 22790 | 58% I 6392 224 |
| wial | 96S0NT 1007 | 277350 I 100% | 393661 | 100% |1 204070 | 1005

Table 6-2: Opens, by object type

S & & B &N SN NN T NE &

201

i cut : paths % paths ‘!‘ at;;;l:lc wol:l?ifn:dir
ruid_NET 4ases T 308% | 742% 17.1%
' ruid_SYSTEM 1 539¢S | 37.0% || 709% 28.3%
' ruid_USER L 469es 3226 || 66.6% 32.8%
| owner_USER+ruid_USER || 2.55¢5 ~ 17.5% | 54.3% 45.9%
ruid_USER+/u 157¢s 0 108% || 3509 64.7%
no cut L1466 1009 1 705% | 25.9%

Table 6-3: Path statistics

Our compound user cuts eliminate this activity to system files. If we look at just user activity 1o
files on /u (the user file system), we find that 273 of the paths we saw specified an object in the
working directory of the process making the request. Note, though, that user references 10 objects
on /u accounted for only a third of the overall user paths and a tenth of the system acuvity. For
references by users to all user objects (those on /u plus user files in shared sysiem directones such

as fimp and /usr/spool/mail), the fraction of patns specifying an object i, the working directory

drops to less than 1/2,

Each path resolved may (and usually does) have more than one component. Table 64 gives some
information on the number of components per path for each of our ruid classes. Now that each
path had, on average, almost 3 components, each of which required a directory reference w
resolve. Paths for net processes were particularly long. This was causcd by the relative depth of
the nct directory trees (rooted in fusr/spool/news, fusr/spool/uucp, and so on) coupled with the

heavy use of absolute path names by net processes.

User paths specifying user objects were generally shorter, with an average of slightly more than
two name components to resolve per path If the targel object was on /u, an average of 1.57 of
the components resolved were on the /u file system (note that this doesn't include references to

‘/" for absolute paths, since *‘/*" is not on the /u file sysiem).

202
| i . 1 |
cut | mean | median 2 l 3 4 > | max
‘ : 1 component ,
ruid_NET | 3.45 4 80% | 3495 | 63% | 257% | 252% | & |
i ruid_SYSTEM 2.48 2 28.4% 31.0% 639 | 33.5% 0.75 8]
» ruid_USER] 222 2 32.5% 34.7¢ 19.2% L% 476 11
| owner_USER+ruid_USER | 211 2 42.2% 253% | 182% | 10.5% | 38% | 11
| ruid_USER+/u l 1.57 1 61.9% 26.7% 6.5% 2.7% 2.1% 9 |
[no cut [270 | 2 23.4% 33.4% | 105% | 2329 | 95% | 11 |
Table 6-4: Components/path

f 1otal reads i writes reads |

| cut t - 1 i

L: | references | fraction | references | fraction || references | fracuon || wntes

| nud_NE1 | 1.59e6 37.5% || 1.44e6 36.4% || 1.42eS $21% || 101

| ruid_SYSTEM \ 1.48¢6 349% || 1.44e6 36.4% || 4.034 1ag% || 357 |

{ ruid_USER | 1.17e6 276% || 1.08e6 27.2% || 9.0le4 331% || 120 :

dir_owner_NET l 7.42e8 17.5% 6.17e5 - 15.6%) 1.25eS 46.1% 49 “

dir_owner_SYSTEM | 3.09e6 73.0% || 2.96e6 747% || 123e5 45.4% || 241

dir_owner_USER 1 4.06e5 9.6% L 3.83e5 9.7% 2324 8.6% 16.5 :

;Iowncr_USER‘ruid_USER | 6.16es 145% || 5.36¢S 13.5% || 7994 | 294% || 67

! ruid_USER+"u | 3.07es 729 || 2.86¢S 72% || 2.20c4 81% || 13 |

| ne cut | 4246 | 100%)| 396e6 | 100% || 2725 | 100% || 146 |

Table 6-5: Reference statistics

While each of the ruid categories accounted for a roughly equal number of references, nearly 3/4
of all references went to system directories (Table 6-5). This is not surprising, since most refer-
ences were absolute and so this implies that even references to files in user or news subtrees often
required two or three system direclories to resolve. There was relatively little activity 1o user

direciorics. Overall, 93.4% of the references were directory reads and 6.6% were directory

wntes'. Nearly half of the writes were 10 sysicm directories (mostly 1o /tmp and
/usr/spool/mquecue), with most of the rest going to net directorics. Net directories were not heavily

used overall, but had a particularly low read/write ratio and so a high fraction of the writes.

User references to their files and directories accounted for only 14.5% of the references on the sys-
tem and about half of the references made by users. Relatively few user writes were 1o user direc-

torics. As we will see in section 6.4.3, most were to system temporary and spool directories.

Most directories belong=d to users (Table 6-6) but, as we saw above, there was relatively liule

acuvity 10 these directories. Again, this is a reflection of the heavy activity to system directories.

6.1.2. Per Reference Results

The directory reference activity over time is shown in Figure 6-1. References followed a daily
pattern with a busy period between Sam and 6pm, overlaid by bursts from net activity (news
reception) and a strong peak in the early moming (news expiration and the housekeeping scan of

the file system). Weekends were relatively quiet. Except for the strength of the early moring

| cut f directories | % directories |i references/directory |
dir_owner_NET I 1278 23.5% 582
dir_owner_SYSTEM || 427 7.9% 7230
dir_owner_USER 1 3713 68.6% 109
no cut 5415 100% | 782

Table 6-6: References/directory

'Note that directory wntes in UNIX represent changes in the naming tree (such as adding and deleung files) Infor-
maton un the objects named (siz¢, last use and so on) is kepl elsevhere.

204
25
Etstaeteeed ruid_USER
............. m‘d_NET
---------- ruid_SYSTEM
20 — Do cut

average
references
per second

; ; . LTI
0:00 (Tue) 0:00 (Thu) 0:00 (Sat) 0:00 (Mon)
time of reference

Figure 6-1: Directory references per second ("2 hour resolution)

peak, this pattern follows closely the one we saw in Chapter § for file opens. The relative strength
of the moming peak is due to the long length of paths used by net processes and the inclusion of

directory opens (the primary housekeeping activity we logged).

User acuvity to user dire-tories (Figure 6-2) showed a busy period dvring the day, with activity
tapering off in the late evening. This is typical of a university environment. There was some

early morning activity due 1o user background jobs.

Figure 6-3 shows the size (in entries) of referenced directories, weighted by the number of refer-
ences made and cut by the owner of the referenced directory. Note that these are cumulative dis-
tributions. At any point on a curve, the y value is the fraction of directories with sizes less than
or equal to the x value. For comparison purposes, we have included here the static directory size
distribution (this is the distribution that would result if each directory on the system were refer-

enced once). Table 6-7 gives some statistics on these distributions.

205

6.0
— owner_USER +nuid_USER
ruid_USER +/u
- ruid_USER
40 -
average
references -
per second
20}
0:00 (Tue) 0:00 (Thu) 0:00 (Sat) 0:00 (Mon)
time of reference
Figure 6-2: Directory references per second (*2 hour resolution, user cuts)
1.0 — == =
........... dir_owner_USER P Y
------- dir_owner_NET P S
N dir_owner_SYSTEM e
. 7 /
— ~—- stauc :
06 o
fraction :
of
references
02 }
00 i Lo 1
1 5 10 50 100

directory size (entries)

Figure 6-3: Size of referenced directories (cumulative, in entries)

500

206

distribution min_| max | mean | median | std deviation
dir_owner_NET, dynamic 2 500 63.1 51 65.3
dir_owner_SYSTEM, dynamic 2 471 55.1 26 63.3
dir_owner_USER, dynamic 2 327 42 20 40.2
owner_USER+ruid_USER 2 484 60.8 29 64.2
owner_USER+/u 2 282 829 40 80.6
ruid_USER 2 484 66.0 33 69.8
all, dynamic 2 500 5.5 26 62.2
all, statc 2 471 15.8 8 27.3

Table 6-7: Directory size distributions (in entries)

From Figure 6-3 we sec that most directories on Seneca were small (half had under 8 entries).
Referenced directorics were considerably larger (median of 26 entries), but still small by most
standards. Since “¢/,"" ‘“‘fusr,”” and ‘‘fusr/spool’” had 26, 35 and 26 entrics respectively and
accounted for nearly half of the references, this result was inevitable. The median size of 26
entries implies that, in the absence of other factors, the median number of comparisons needed to
resolve a component was 13. This agrees with 4.2BSD measurements donc elsewhere
{Mogul 86a]. The small static median is also typical of 4.2BSD systems [Mogul 86b]. These dis-

tributions all have long tails and so the means are considerably higher.

Directories on /u referenced by users (weighted by the number of references) were generally some-
what larger than referenced directories on the system as a whole (Figure 6-4 and Table 6-7). This
was duc, in part, 1o the relatively high level of activity 10 /u (at 200 entries) and the absence of

the heavily referenced system directories (at 26 entries).

207
1.0
----------- owner_USER + ruid_USER
------ ruid_USER +/u
ruid_USER
08 }
06
fracuon
of
references
04 }
02 ¢+
v.0
1 S 10 50 100 500
directory size (entries)
Figure 6-4: Size of referenced directories (cumulative, in entries, user cuts)
10
............ d”_owner_l_;SER ."”,.-""::'::'.‘:':---"" TTTT R .
------------- dir_owner_NET cenmmTTT
-------- dir_owner_SYSTEM
08 b — no cut
06 }
fracuon
of
directories
04 |
02
00 y s
1 10 100 1000 10000

number of references to directory

Figure 6-5: Number of references per directory (cumulative)

208

distribution min max mean | median | sid deviation
dir_owner_NET 8 1.45e5 582 28 5.9¢3
dir_owner_SYSTEM 28 1.06e6 | 7230 28 6.3e4
dir_owner_USER 2 1.38c4 109 28 4.1e2
owner_USER+ruid_USER 1 1.44e5 327 12 4.0e3
ruid_USER+/u 1 7.18e4 219 18 2.0e3
ruid_USER 1 3.24e5 582 20 8.1¢3
no cut 2 1.06e6 782 28 1.8¢4

Table 6-8: Number of references/directory

6.4.3. Per Directory Results

The number of references to a directory over a period gives an indication of the potential benefits
of caching or, for a DFS, of migrating or replicating a directory (update activity and sharing are
also important factors). If we ignore scans of the entire file system (at least 28 references per
directory over the course of the week) we see that half of the directories on the system were not
referenced at all (Figure 6-5 and Table 6-8). Many of the rest were referenced a few tens of

times.

There were some net and system directories, though, that were referenced tens of thousands of
times. Over half of the references, in fact, went to system directories referenced more than
100,000 times each. This is shown in Figure 6-6 and Table 6-9, where we have weighted the dis-
tributions in Figure 6-5 by the number of references made. This gives us the fraction of overall
references as a function of directory aclivity. Note that 85% of the reicrences went to directories

referenced more than 10,000 times.

Figure 6-7 and Table 6-8 show, for each of the user cuts, the number of references made to active
directorics (those actually referenced given the cuts). If a directory was referenced at all by users
(only 37% werc), it was likely to see enough activity 0 make trying to minimize the access over-

head (through caching, migration, or other mechanisms) worthwhile.

fracuon
of
references

fraction
of
directones

10

08

0.6

04

00

08

0.6

0.4

209

dir_owner_USER ;
dir_owner_NET)
dir_owner_SYSTEM ;
0o cut

10

. =k === - A 1
100 1000 10000 100000 1
number of references o directory &

Figure 6-6: Fraction of references per directory (cumulative)

: L
---------- owner_USER +ruid_USER
---------- ruid_USER + /u -
—_— ruid_USER e
A 1 —
10 100 1000 10000

number of references to directory

Figure 6-7: Number of references per active directory (cumulative, user cuts)

210

distribution mean median | std dev
dir_owner_NET 6.094 | 4.47e4 5.6e4
dir_owner_SYSTEM | 5.54e¢5 | 6.17eS 4.1e5
dir_owner_USER 1.67¢3 | 4.68¢2 2.9¢3
no cut 4.15¢5 | 1.78e5 4.2e5

Table 6-9: Reference distribution (as a function of references/directory)

The most frequently referenced directories are listed in Table 6-10. Note that the four busiest
directories accounted for over half of the references and received, between them, just 9 writes in a
week. These directories are clearly very good candidates for extensive replication in a DFS, since
update overhead is not an issue. The 15 most active directories accounted for 76% of the refer-
ences. This suggests that even in a local environment, special treatment of a small number of

directories could result in substantial improvements in name resolution performance.

The directories most frequently referenced by users in accessing their files and data are listed in

Table 6-11. Most arc shared uscr directorics.

Knowledge of directory interreference intervals (the time from one reference of a directory to the
next) is useful in estimating both the appropriate time scale for migration and the possibilities for
caching. Figure 6-8 and Table 6-12 show that interreference intervals were short (opens to direc-
torics were strongly clustered). When a directory was referenced, the following reference (if any)
had a 50% probability of occurring in the next 1/4 second. Part of this may be attributed 10 the

heavily used system directories, but net and user directories also had short median interreference

times?. There is strong reference locality in both time and space.

¥The large fraction of zero length intervals for user directories was due to redundant references and opens w the
current working directory, and to routines such as getwd that find the path of the current working directory by traversing up
the directory tree 10 the root and then back down. That these are all binned at zero is partly an artifact of our analysis tech-
nique (see section 6.3.1).

I |_references fraction reads | writes reads/writes __path
1058380 25.0% 1058374 6 176400 /
l 587013 13.9% 587013 0 - fasr
395132 9.3% 395129 3 131700 fust/spool
168205 4.0% 168205 0 - fusr/spool/rwho
145318 3.4% 118865 26453 4.49 fusr/spool/uucp
' 136363 3.2% 136121 242 562 fewc
i’ 114227 27% 104485 9742 10.7 fusr/spool/news
| 105239 2.5% 51857 53382 0.97 Amp
. 85579 2.0% 85566 13 6580 fusr/lib
| 78696 1.9% 78696 0 - fu
1 76778 1.8% 22820 53958 042 /usr/spool/mqueue
l L 74590 1.8% 74590 0 - fbin
| 71037 1.7% 71037 0 - /dev
; 69093 1.6% 69093 0 - fusr/spool/news/net
47737 1.1% 38770 8967 432 fusr/lib/news
l 35091 | 0.82% 35085 6 5800 fusr/spool/notesl.nvu
. Table 6-10: Frequently referenced directories (no cut)
i;rcterences | fraction reads | writes | reads/writes BN path [
l | 143956 | 234% | 143954 | 2 | 72000 / 1
b 63235 10.3% 63235 0 - /u f
58955 | 9.6% | 22917 | 36038 064 | Amp |
27744 4.5% 27744 0 - Jusr 1
l 20988 34% 20988 0 - fust/spool }
14836 24% 4614 10222 045 fust/spool/mqueue i
13138 2.1% 11770 1368 8.6 fu/ken [
. 12286 | 2.0% 5521 | 6765 0.8z | /usr/spool/mail |
8967 1.5% 8963 4 2240 fu/ken/Src ‘
6358 1.0% 4712 1646 2.86 fusr/spool/uucp |
5980 0.97% 5336 644 829 | A/goddard/c400/assg2/coding |
l 5328 0.86% 5233 95 55 fu/lee i
l‘ 5159 0.84% 4822 336 144 Just/spool/news ;
| 3665 0.59% 3456 209 16.5 fu/scoty/src/window \
' L3510 0.57% 3510 0 - fusr/local N
l Table 6-11: Frequently referenced directories (owner_USER+ruid_USER cut)

fraction
of
intervais

fraction
of
versions

212

1.0
08
06 f
04 +
0.2". dl.r_o“~ne|:_USER
< r e dir_owner_NET
------ dir_owner_SYSTEM
- no cut
0.0 L — 4 -
0.0} 0.1 1 10 100 1000
tme since last reference (seconds)

Figure 6-8: Directory inter-reference intervals (cumulative)
wvWe—_—_— ~
08 L ’1 . T
06 I ‘s ” ’ I.-

e -Z,"'“
04 |
02 L :I .,~I djr_owner_USER
' v R R dir_owner_NET
e eeeae- dir_owner_SYSTEM

AT Do cut

00 E —L 4 : 5 : n
0.01 0.1 1 10 100 1000 10000 100000

version lifetime (seconds)

Figure 6-9: Directory version lifetimes (cumulative)

213

[distnbution 1 min ' max | mean | median | std dev l
| dir_owner_NET l 0 | 874 | 351 | 033 | 41c3
| dir_owner_SYSTEM 0 8.7e4 73 0.27 2.:3 ‘
| dir_owner_USER l 0 | 87e4 | 4680 | 0.15 |
| no cut 0 | 874 | 560 | 027 | 6.4e3 (

Table 6-12: Directory inter-reference intervals (seconds)

Directory version lifetimes (the time from one write of a directory to the next) are shown in Fig-
ure 6-9. Versions whose lifetime extended beyond the logging period were given infinite lifeumes
(lie 10 the right of the histogram). Note that half of all directory versions exist for a second or
less. Part of the reason for these short version lifetimes is heavy write activity to the system direc-
tories /imp and /usr/spool/mqueue and 10 net spool directories. Most system directories and the

majority of user directories remaine” uinchanged for relatively long periods of ume.

fraction ' 7
of K
versions
04
L e d_jr_owner_USER
] [. e dir_owner_NET
...... dir_owner_SYSTEM
no cut
0.0 — : - -
0 5 10 15 0 =

number of reads to version

Figure 6-10: Reads per directory version (cumulative)

214

L distnbution min | max mean | median | std dev

[dir_owner_NET 0 | 69led | 4.88 1 220
dir_owner_SYSTEM 0 6.17e5 | 23.9 0 2800
dir_owner_USER 0 390e3 | 142 1 74
owner_USER+ruid_USER 0 1.04e5 6.6 0 470
ruid_USER+/u 0 7.18¢e4 | 12.2 1 470
ruid_USER 0 2.38e5 | 11.7 0 970
no cut 0 6.17e5 | 143 0 1870

Table 6-13: Reads/directory version

Figure 6-10 and Table 6-13 present us with another view of directory versions: the number of
reads that are made to any given version. Half of all versions are written again without being read.
Roughly 4/5 of th¢ remainder are read only a few times befcre being updated. While there are
directory versions that can be safely cached or replicated regardless of the setup and update costs
(some receive hundreds of thousands of references without being changed), separating them out
from the majority of relatively useless versions may be difficult Very cheap caching mechanisms,
semantic knowledge, or knowledge of recent reference history would be useful here. For example,
the knowledge that /tmp is used to store temporary files and so is frequently updated could be used

10 avoid potentially wasteful caching of this directory.

If we consider only user references to active directories holding user objects, we see similar distri-
butions for reads per version (Figure 6-11 and Table 6-13). 86% of the versions received one or
fewer user references before being updated by users. Directory versions on the /fu file system saw
slightly more read activity (not surprising, since heavily written system directories such as /tmp

are not included here).

The first two columns of Table 6-14 show the mean number of readers per directory, as indicated
by the account (ruid) of the reader, and the percentage of directories with more than rwo readers
(we use two here because every directory is referenced by the housekeeping process). The next 4
columns show similar information for writers, but give the fraction with more than onc writer, and

for uscrs (the overall number of distinct readers and writers). The last two columns show the

215

fracuon .
of
versions
04 |
02 + . .
------------ owner_USER + ruid_USER
------ rutd_USER + 7u
ruid_USER
0.0 _— A — A
0 5 10 15 20 25

number of reads to version

Figure 6-11: Reads per directory version (cumulative, user cuts)

; L readers) WTiers users (r | w) f INVersions g
; cut - ‘ + ‘ y ;
: - mean | >2 | mean | >1 mean | >2 | mear | max |
dr_owner NET		323	28.0%	135	146%		333	282%		346	6.56e3
dir_owner_SYSTEM , 853	26.9% i 0.857 3.0%	855	27.2% j 1750 3.01e5								
gir_owner USER	160	9.0%		0149	08%		160	90%	37 290c2		
no cu 253 ! rasw foasr	a2w		256	1508		169	301es				
Table 6-14: Directory sharing

! ‘ readers ‘\ wTilers ©users (r ! w) : Inversions
| cut - t + +

i mean |, >1 mean | >} mean | > | mean | max
owner_USER+ruid_USER || 2.50 27.99% |) 0.609 1.39 257 28.3% || 412 29e4
ruid USER+/y 147 | 188% |{0351 | o% || 149 | 188% || 108 | 13

Table 6-15: Directory sharing (user cuts)

mecan and maximum number of inversions per directory. The number of inversions is the number
of umes that the most recent user of the directory changes (this is basically the inversion cluster-

ing metric used by Porcar [Porcar 82]). For a directory used by only one user, the number of

]

216

inversions will be zero.

From Table 6-14 we can sce that 15% of the directories had multiple users (users with scparate
accounts). Multiple readers were much more common than multiple writers. Most of the shared
directories belonged 1 net and system accounts. These were predominantly directories containing
ncws articles read by many users, spool directorics accessed by a number of net accounts, and
directories holding widely used system files. There was relatively litle sharing of user directorics.
Shared system directorics often had a number of active users and so a high number of inversions.

In a distribuied environment, replication or caching of these airectories would be essential.

Staustics on the sharing of active directories holding user objects are given in Table 6-15. 1/5 of
the active directories on the user file system were read by more than one user. None had mulupi.
writers. Active directorics used to resolve user objects showed a higher degree of sharing

(because of shared system directories).

6.4.4. The High Cost of Opens

Based on the relatively small file sizes seen in studies of 4.2BSD systems and the long pathnames
we have seen, it is reasonable w expect that directory overheads will be an important part of the
cost of accessine a file. If we assume for the moment that no caching is donc (or, for relative
comparisons, that caching is equally effective for inodes, filc data, and directory data), we can esu-
mate both the number of disk blocks that are required to resolve a path and how this compares to
the number of actual file data blocks that are read or written. Reading a UNIX directory requires
reading a minimum of 2 blocks: one block containing the file descriptor (inode) for the directory
and at least onc data block. Assuming a block size of 512 bytes, directories with no holes (empty
directory entrics), an average of half the entries in a directory search for a name resolution, and no
caching gives the distributions shown in Figurc 6-12 and Table 6-16. The median of 7 blocks to

resolve a path is impressively large, especially when compared to the median file size of 710 byles

A E.E =N

217
1.0
O.S -
0.6
fracuon %
of
th
pams 04 |
09 ¢ . .1. ruid_USER
ol R ruid_NET
S === ruid_SYSTEM
T ——— nocut
0.0 1 1 4
0 5 10 15 20

number of blocks accessed

Figure 6-12: Path resolution cost (cumulative, 512 byte blocks)

distribution | min | max | mean | median | sid dev |
Tuid_NET 2 [2 s § a2 |
ruid SYSTEM | 2 | 23 | s8s 7 28 |
ruid_USER 2 | 28 | s7a 1 s 34 |
no cut Lo lag lest | 9 37|

Table 6-16: Blocks accessed/path resolution (512 byte blocks)

seen in our earlier study. Paths used by net processes are particularly long and hence expensive.

Accessing file data once a path is resolved also requires a minimum of 2 blocks: one block con-
taining the file descriptor (we ignore indirect blocks here) and at least 1 data block. If we take the
ratio of the blocks required for resolving an open path to the total number of blocks required
(resolution cost plus file data cost based on the amount read or writlen and assuming contiguous
access), we get the fraction of the cost (in blocks accessed) due to the directory overhead. This is

shown in Figure 6-13 and Table 6-17.

218
1.0
............ ruid_USER
LR EE RS nud_NET
------ rutid_SYSTEM
0& » noe cut
06 F ’
fracuon i
of :
opens sl
p 0s L ; L
02+ -
0.0 "--.".-’*"'""1'“-_4 1 1 a1
0.0 0.2 04 0.6 0.8 1.0

fraction of cost due o name resoluton

Figure 6-13: Name resolution overhead for file opens (cumulative, 5§12 byte blocks)

distribution min max | mean | median | sid dev
ruid_NET 0.0005 | 099 | 0.71 | 0.77 0.19
ruid_SYSTEM | 0.002 | 098 | 0.68 | 081 020
ruid_USER 0.0001 | 099 | €55 | 0.59 0.26
no cut 0.0001 | 099 | 066 | 076 | 022

Table 6-17: Directory overhead (512 byte blocks)

The directory overhead accounted for an average of 66% of the cost of accessing a regular file.
This overhead accounted for the majority of the cost in 80% of the file accesses. For references
madc by user processes, the fraction of cost due 10 name resolution overhead is somewhat lower.
This is due w0 users specifying shorter path lengths, accessing larger files, and reading a larger per-

centage of accessed files.

The cost distribution weights all files equally. This gives us useful information on the average
overhead 10 access files (and so the effect of the overhead on response time), but is less useful in
predicting the effect on throughput. For this we need the fraction of overall block requests that

directory overhead accounts for. This information is given in Table 6-18. Note that half of all

| NONE | rwd NET)| ruid SYSTEM || ruid USER |

|
|

ty
; i ~ blocks | fraction I' blocks

file data , 6.32e6 46.9% |i 1.45¢6 | 34.1% || 1.56e6 38.3% || 3.30e6 66.2%
file inode | 7.54e5 5.6% | 2.50e5 59% || 2.98eS 73% || 2.06e5 41%
directory data J 4.01e6 29.8% 1 1.58e6 37.2% || 1.26e6 31.0% || 9.94eS 20.0%
directory inode | 2.3%e6 17.7% ' 9.65e5 | 22.8% || 9.50e5 2339 || 4.83e5 9.7%

! otal 135¢7 | 1009 | 4236 | 1005 || 4076 | 1009 || 498e6 | 1005

fraction || blocks | fraction || blocks ! fraction |

Table 6-18: Block counts for regular file opens, reads, and writes (512 byte blocks)

accesses were to directory data and inode blocks.

512 bytes is a small block size by today’s standards. The 4.2BSD file system on Seneca uses a
block size of 4096 bytes. Figures 6-14 and 6-15 and Tables 6-19 and 6-20 show what happens
when we use the larger block size. The number of blocks required to resolve a path has dropped
by 18%, but the fraction of cost due to the directory lookup overhead has risen sharply. It now
makes up an average of 75% of the total cost and accounts for at least half of the cost in 97% of
the file references. Big block sizes help most when reading file data. Directories and descriptor

blocks are 0o small for the bigger block size to matter much.

Table 6-21 shows the no-caching breakdown of the number of blocks of various types accessed for
a 4K byte maximum block sizc. Note that directory data and inode blocks now account for about
3/4 of the blocks accessed. The total number of blocks accessed has been reduced to 54% of the

512 byte maximum block size figures.

Figure 6-16 and Table 6-19 show the number of directory inode and data blocks accessed to
resolve paths for our user cuts (assuming no caching and 4K byte maximum block sizes). Figure
6-17 and Table 6-20 give the corresponding cost distributions. For the ruid_USER+/u distribution,

L]

we have included all regular file references made by user processes, but only “‘charged™ for

blocks on the /u file system. References to files on other file systems have zero resolution cost

220
1
i
ae | l
fracucn
of
aths
P 04 r l
0n ruid_USER
- r rud_NET l
ruid_SYSTEM
no cut
0.0
0 S 10 15 20
number of blocks accessed
Figure 6-14: Path resolution cost (cumulative, 4K byte blocks) l
1.0
------------ ruid_USER l
SRR REERR ruid_NET
------ ruid_SYSTEM
R J— no cutl .
fraction
of
opens
1.0 I
fracuon of cost due to name resolution
Figure 6-15: Name resolution overhead for file opens (cumulative, 4K byte blocks) .

T Em B

fracuon
of
paths

fraction
of
opens

221
1.0
08 F
06 +
04
02k
------------ owner_USER + ruid_USER
i meemee ruid_USER +/u
——— ruid_USER
0.0 i I —L e
0 5 10 15 20
number of blocks accessed

Figure 6-16: Path resolution cost (cumulative, 4K byte blocks, user cuts)
1.0 -

------------ owner_USER +ruid_USER A

------ ruid_USER + /u)

L —— rud_USER -7
0.8
00 - I —_ 1
0.0 0.2 04 0.6 0.8 1.0

fraction of cost due to name resolution

Figure 6-17: Name resolution overhead for file opens (cumulative, 4K byte blocks, user cuts)

distribution min | max | mean | median | std dev
ruid_ NET 2 16 6.93 8 33
ruid_SYSTEM 2 16 497 4 2.5
ruid_USER 2 22 4.44 4 2.5
owner_USER+ruid_USER 2 22 422 4 2.5
| rmd_USER+/u G 18, 1.05 0 1.8
| no cut 2 | 22 | 540 4 3.0

Table 6-19: Blocks accessed/path resolution (4K byte blocks)

distribytion min max | mean | median | std dev
ruid_NET 0004 | 099 { 0.80 0.84 0.11
ruid_SYSTEM 0.01 098 | 0.76 0.81 0.10
ruid_USER 0.001 | 099 { 0.69 0.74 0.18
owner_USER+ruid_USER | 0.001 | 098 | 0.68 0.73 0.18
ruid_USER+/u 0 0.99 | 0.21 0 0.32
no cut 0.001 | 099 | 0.75 0.81 0.14

Table 6-20: Directory overhead (4K byte blocks)

| NONE ruid_NET ruid_SYSTEM ruid_USER
pe ’ blocks | fraction || blocks | fraction || blocks | fraction || blocks | fracton
file data | 1.26e6 173% || 3.23e5 12.1% || 4.07¢5 15.4% || 5.27e5 28.5%
file inode | 7.54e5 10.3% || 2.50e5 9.4% |1 2.98e5 11.3% || 2.06e5 11.1%
directory data 2.90e6 39.7% || 1.12e6 422% |t 9.94e5 37.5% |} 6.36e5 3439
directory inode J 2356 32.7% || 9.65e5 36.3% || 9.50e5 35.9% |} 4.83eS 26.1%
total 7.30e6 | 100% 2.66e6 | 100% 2.6536 | 100% || 1.85e6 | 100%

Table 6-21: Block counts for regular file opens, reads, and writes (4K byte blocks)

here and the cost of resolving in *‘/’’ for absolute paths is not included. Since 65% of the files
referenced by user processes were actually on other file systems, the average directory overhead

for this cut is low.

It should be noted that the results in this section don’t apply directly to BSD UNIX. 4.2BSD

maintains an extensive cache of inode, dircciory, and file data. 4.3BSD has added a cache of

& - N TS T hE Eu Wl BN El

recenty used directory entries. These results show, though, that *“‘hidden costs’” in UNIX file sys-
tems arc significant and demonstrate how rapidly their importance increases as the block size

INCreascs.

6.5. Summary

This chapter has analyzed in some deiail dircctory reference patterns resulting from primarily open
activity on a 4.2BSD UNIX system supporting university research. As with the results of our file
reference studics, the results should be applhied to other situations with care. The major findings of
our analysis:
(1) Directories are mostly small, with half holding under 8 entries. Referenced direc-
tories arc somewhat larger (median of 26 entries).
(2) 3/4 of all references are made to system directories. Most references go to a few
very active system directorics.
(3) Reads account for 93.49% of the references we see and writes for 6.6% of the refer-
ences.
(4) 70% of all paths are specified absolutely. Relatively few paths (26%) reference
objects in curreni working directories.
(§) Pathe are “‘long’’, having an average of 2.70 components.
(6) Interreference umes are short. Half are 1/4 second or less.
(7, Directory versions are usually short lived (half live less than a second) and receive
fow reads.
(8 The combination of small file sizes and long access paths means that name resolution
overhcad is high. In the absence of caching and using a 4K byle maximum block

size. 72% of the blocks accessed in opening and using files are for namc resolution.

The implications of these results for DFS design will be explored in Chapter 7.

224

Chapter 7

Implications for the Design of

Distributed File Systems

7.1. Introduction

File and directory reference patlerns can have a substantal effect on file system behavior. This
effect ranges from catastrophic congestion and failure when file systems are used in ways that
designers never antcipated or allowed for, to enhanced availability and performance when file sys-
tems are able 10 anticipate and adjust to requests. Careful file system design and dynamic "tun-
ing” are particularly important in a distributed file system. In a DFS, network overhead, scaling
and congestion issues, the potential for parallelism, independent failure modes, and greater flexibil-

ity in design make both the penalty for failure and the rewards for success much more dramatic.

Chapters S and 6 concentrated on studying short term file and directory reference patterns in UNIX
environments. In this chapter we use the results of those studies to investigate mechanisms used by
Roe and to evaluate their strengths and weaknesses. We also briefly examine implications the data

have for the design and behavior of distributed file systems in general.

~
to
th

~ A

We start, in section 7.2, by examining the availability that one can expect in a Roe system that
sees reference patterns similar to what we have measured. Section 7.3 considers the implications
our measurements have for file placement and migration algorithms. Section 7.4 examines per-

formance issues raised by our measurements and section 7.5 briefly summarizes the chapter.

It should be emphasized that the observations and analysis presented here are most applicable to
systems that see reference patterns similar 10 ours. They will not necessarily carry over o other

environments.

7.2. Availability

7.2.1. Availability Model

In Chapter 2 we defined availability to be the fraction of valid requests that are successful, and
assumed that all request failures are due to hardware or catastrophic operating system failures. In
the discuss.or: that follows we represent host availability by a single number, the availability aver-
aged over the time period of interest. This figure ranges from O for a permanently inaccessible
host to 1.0 in the unlikely case that a host is always accessible. Machines or the Universivy of
Rochester Computer Science Department network typically have an average avai. ility of roughly
0.98. This is equivalent 10 one half hour crash per day, 2 days of down time every 100 days, or
some combination of these. An average availability figure does not completely represent host
failure modes. It does, however, allow us to produce analytic results that will give us a good fecl-

ing for the issues involved. We will return 1o this point in section 7.2.3.

For a distributed file system, the availability for a given call depends on the availability of the
name service and the availability of the object being referenced. If we take the case of Roe,
which supports a hierarchical direcory distributed at the node level, the name service availability
is in turn dependent on the availability of the path components. Assume that these availabilities
are independent. This implies that all required path components and the target object are on dis-

tinct hosts, and that these hosts fail independently. The availability for a given call is then just the

mE S N T NS I Y D B E e

227

product of the availabilites of each of the path components and of the wrget. Let g, be the avail-
ability of the th path component, @, the availability of the object being referenced by the path

(if any), and n the path length. The overall availability for a given call is then

=1

n
8can = {Han}amrgn

We have, from Chapter 6, the distribution of path lengths we can expect. Letting p, be the frac-
tion of paths seen that have n components, we can express the overall availability of the system as

follows.

- [s]
Qoverall = z/’ﬂcall = an [HG‘JGW’R”
A=l =1 =1

The availability of an unreplicated component is the host availability, a. If a resource is repli-
cawed, the availability may be found by calculating the probability of each state of the resource
and then summing over the states that result in the resource being available. If weighted voting is
being used and all hosts have equal availabilities, the read availability of a ¢ copy suite having one
vote per copy and a read quorum r is given by [Smith 84):

c o

awpy = ¥ ———d/(1-g)~
W= Ly e

The write availability is found in a similar fashion.

Another eeplication method that has been suggested for use in local area network environments is
available copies [Bernsizin 84]. With this algorithm, an operation succeeds if even one copy of a
resource is available. This is appropriate when consistency is not important or when an unavail-
able copy is known to be unavailable everywhere and that it can be updated before being used.

The availability of available copies when ¢ copies are used is given by

228

axc = 1-(1-a)*

7.2.2. Basic Distributed File System Availability

Using the results given by these equations aid the distribution of path lengths we found, we can
calculate the availability of a variety of distributed file systems. Figure 7-1 and Table 7-1 show
the resulis for a central file server (located entirely on one host), an unreplicated but distributed
file systcm, one replicated using available copies (3 copies of each object), and a system replicated
using weighted voting (3 copies, with a read quorum of 2 and a write quorum of 2). For weighted
voling, the tnple "(2,2.3)" specifies the read quorum, the write quorum, and the total number of

copies, in that order.

In this figure, *‘worst case’ refers to our assumption that all path components and the target of the
call are on distinct hosts (that is, (ailures are independent). ‘‘Best case'’ is the situation where ail
objects referenced in a call are on the same host, or n hosts in the case of objects replicated n

tumes (components on a particular path do nor fail independently). We include both the worst and

1.0 =
............ central ”',—-I/’.’ .
crmeeeen unrepicated - worst case e g
------ available copies - worst case L7 s)

08 voting (2.2.3) - worst case o e
—_——— voting (2.2.3) - best case L7 d

. //_.
0.6 L’ //.
overal! o Pl
availability i .
04 e .

host availability

Figure 7-1: Availability based on path length distributions

1.0

7 = e

host central . available voung (2,2,3) | voung (2,2.3
Cavailohility ¢ server , unreplicated copies : wori(case x‘ besg(case)
0.6 e 0n S0y 026 0.65 :
08 1 08 | 0348 1 0972 | 069 0.89 |
09 ' 09 | 07 0996 | 0.0 0972 |
095 I 095 | 084 09996 | 0974 099 |
0S8 | 098 0931 099997 © 009058 | 09988 |
009 099 | 0965 ! 099999 | 09989 | 09997 1

Table 7-1: Availability based on path length distributions

best cases for our weighted voting configuraton. The best case here is clearly considerably better
than the worst case. This shows the benefits to be had by grouping together related resources. In
Roe this can be done oy nighly repiicating root directories and by migration algorithms that tend
10 favor grouping together objects that are used together. The flexible approach used by Roe also
allows the system to place new resources to avoid hosts that are down or that have relatively low
availability (this is not represented in the model we are using here). Other DFSs such as NFS
{Lyon 851 and LOCUS {Walker 83b] are distributed by subtree. NFS is unreplicated, which
makes its availability at best equivalent 1o the central seiver approach. LOCUS doesn't attempt w
prescrve availability, and so its availability is closer to that of available copies. The approach
used by Roe allows for more flexibility in adapting to changing needs and networks but, as we see

here. care must be taken to preserve availability.

Available copies fares well compared to the rest of the algorithms used here. This is a classic
example of trading off consistency (or limiting the domain) for availability. Available copies is,
in fact, highly available, but in an environment where partitions can occur or updates can be tem-
porarily *‘lost’" duec to host failures, it can allow old versions of files to reappear. Because of this

1t violates our transparency and user model requircments.

If we look in more detail at availabilities we ¢ pect to see during normal operation (Figure 7-2),
we see that all of the replication methods considered here are able to significantly enhance avail-

ahility. It should be clear from this that transparent access to replicated resources can be used to

230

0.98

0.9¢6

overall
availability
0.94

....... unreplhcated - worst case

..... - available copies - worst case,’

——— voung (2,2.3) - worst case ,’

— — =~ - \0ung(2.2.3)- best case J
n P i

0953 0.96 0.98 1.00
host availability

Figure 7-2: Availability based on path length distributions, a > 0.9

support file systems with higher availability than could be expected in a centralized system,

regardless of the distribution algorithm used.

7.23. Adding Read/Write and Semantic Information

One of the attractive features of weighted voting is the ability to adjust read and write quorums o
take advantage of differing read and write rates. We saw in our data that 93.4% of directory
accesses and slightly over half of file accesses were for read. Using S copies of each object, with
a read quorum of 2 and a write quorum of 4, gives the results shown in Figures 7-3 and 74 and in
Table 7-2. Again, these are all worst case results (no grouping of related resources). These
figures show the read and write availability of the system separately. The write availability is
about the same as what we saw with the (2,2,3) configuration. Even though the availability of an
object actually being written is lower, the availability of directory components read to reach the
object is considerably higher, lecading to no degradation. The read availability is dramatically
better. Taken together, the result is a significan. improvement in overall availability without any

increased acces overhead for reads, which are by far the most frequent operation on Roe objects.

|

host availability

Figure 7-4: Worst case availability using semantic and read/write information, a > 0.9

231
l 1.0 =
------------ voung (2.4.5) - reads /’-’
...... voung (2.4.5) - wnites P e
08 —rmreaan voung (2.4.5) - overall e
l B vouing - semantk info 0
voting (2.2.3) 7
/ .
06
overall
availability
. 04 -
I 02
0.0
' 0.0 1.0
host availability
l Figure 7-3: Worst case availability using semantic and read/write information
LO0 e e —
098 pb--"" .7
096 |
overall
l availability
0,94 -
l voting (2.4,5) - reads
ot - e volng (2.4.5) - writes
...... voting (2.4.5) - overall
— —— voling - semantic info
' voling (2.2.3)
0.9 . !
0.90 092 0.94 0.96 098 1.00

| host | voung (2.4.,5) , voung (24.5) : votng (2:4,5) , voting

| availability Il reads | wriles ’ overall semantic info |

.06 072 025 0.55 | 061 |

t 0.8 0975 1 0.70 0.87 091

09 | 09983 0.909 0.964 0979

| 095 I 09999 0975 0.9902 0.9947

‘ 098 1l >0.9999 ' 0.9957 0.9983 0.9991
095 | >6.99999 09989 09996 | 09998

Table 7-2; Worst case availability using semantic and read/write information

More improvements may be had by using semantic information to decide on a replication factor,
We know, f{or example, that temp and log files have a lower read/wrile ratio than perm files.
There are also several directorics that we identified in our studies as having particularly low
read/write ratios. If we use a voting configuration of (2,2,3) for these files and directories, while
retaining the (2,4,5) configuration for everything else, we arrive at the curve shown in Figures 7-3
and 74 (we have assumed here that path length distributions for requests with differing
configurations are the same). Once again, we see a significant improvement. Based on this, it is
clear that replication strategies that make use of semantic information or past usage history can
significantly increase the availability of a system. At our reference host availability of 0.98, even
this fairly simple use of semantic and read/write information decreases the probability of an opera-
tion failing by 80% when compared o voung without using this informaton. The probability of

an operation failing 1s now less than 5% of what it would be in the central server (NFS-like) case.

We can further increase availability by making more extensive use of read/write and semantic
information. For example, some directorics and files in our study were hcavily read and rarely, if
ever, written. Giving them a voting configuration of (1,3,3) makes their availability equivalent o

what we saw for available copies.

We have assumed up to this point that hosts on a network have uniform availabilities. This is
unlikely to be true in a heterogencous environment. The Roe network model includes estimates of

host availabilities, and the placement algorithm that we described in Chapter 3 places resources

based on these estimates. Further, hosts generally fail, are inaccessible for some period of ume,
and then recover. Roe recognizes these failures and reconfigures around them. These considera-
tons, combined with the short file Lifetimes that we measured and the use of placement and migra-
tion algorithms that group related resources, mean that the calculations we have made will end 0
underestimate the actual availability of a running Roe system. More accurate availability figures
may be acquired using a simulation of Roe or measurements of the running system, but the results
we have presented above provide conclusive evidence of Roe’s ability to provide highly available

files.

7.3. Reconfigurability: Initial Placement and Migration

Our analysis of file and directory reference patierns in Chapters 5 and 6 revealed striking
differences in reference patterns between classes of files. Differences also exist in the reference
paterns generated by each of the user classes. The large differences between classes point out a
need for a distributed file system, such as Roe, that can adapt to and exploit these differences. In
this section we examine placement and migration policy considerations based on file class, user

class, and other characteristics of the data we have observed.

The differing reference patterns between file classes can be usca o help determine appropriate ini-
tial placements that are based in the intended use of the file. For example, most temp files in our
environment were opened only once or twice. These files were also short lived, generally existing
for only a few scconds. There is no need to replicate a temp or other short-lived file. In addition,
the very short lifetime of these files argues for placing based on delay and other performance fac-
tors, not on availability. In contrast to temp files, the overwhelming majority of perm files had
lifetimes that extended beyond the wezk long logging period. Migration can be expected to be an

issue for these files.

We also saw differences based on the owner and user of files. Data in user perm files were long
lived (Figure 5-34), which was not the case for the overall data. The long life of daw in these

files indicates that they will benefit from placement that favors reading over wriung.

234

The differing placement needs of the various file types also points out the need for a consisiency
control algorithm that can be adjusted o take these needs into account. As we saw in secuon 7.2,
our use of weighted voting, which lets us specify placement quorums based on anticipated
read/write ratios, allows us 0 use these differences to increase availability without a significant
effect on performance. This issue is particularly important for directories, where our data showed
that a few directoriecs accounted for the majority of reads and were rarely modified. User perm

files also had high read/wnite ratios.

While files of a given type tended o occur more frequently in some directories than others, there
were many cases where perm, log, and temp files all occurred in a single directory. Because of
this, the common practice of distributing and configuring directory subtrees and the files that reside
in them based on expected usage is not always appropriate. Significant differences exist between
files even within a yiven subtree. For a DFS such as Roe, information from the user on the type

of a file or on its expected vsage will allow for more effective placement

Three figures that are uscful in estimating the appropriateness of dynamic migraton are the size of
a file, the fraction of a file opened for reading that is actually read, and the fraction of a file
cpened for writing that is actually written. Most r2ferenced files in our environment were small,
with the median file size being 710 bytes. Log files were significantly larger, with a median size
of 39,000 bytes. Referenced directorics were also small. We found that 68% of files opened with
read access were completely read and 78% of files opened with write access were completely writ-
ten. The percentage read and writien depended strongly on the class of the file (log, perm, or
temp), the mode of open, the file opener, and the size of the file. In particular, log files are almost
never completely written, users completely read 94% of files they open read-only, and large files

are rarely completely accessed.

The high percentage of a file that was read or wrilten, combined with the small file sizes we have

observed, tells us that migrating a file as a8 whole, the approach used by Roe, is usually appropri-

(8]
b
N

ate. Log and very large files are an exception'. In environments limited by bandwidth considera-
uons, file class. open mode, user, and file size will provide a simple basis for making migration

decisions.

Knowledge of file interopen and directory interreference intervals are useful in estimating both the
appropriate time scale for migration and the possibilities for caching. The short inicrvals that we
saw for files (a median of 60 seconds) and directories (a median of just 0.27 seconds) suggests that
fast response 1o changing patterns is important. User files had substantialiy longer interopen inter-

vals, making quick migration a less critical issue in their case.

The number of opens by a user to a file gives an indication of the potental benefits of migrating
the file 10 a user’s machine. Locality of reference and the degree of sharing are also factors here.
Mast files in our environnicnt were opened only once or twice. However, most opens went to files
opened many tumes. 75% went to files opened more than 10 times and half to files opened more
than 480 times. For these frequently opened files (and hence for a distributed file system as a
whole}, migration, caching, and replication may be useful. This will be especially true for perm
files, since they receive so much open activity per file and tend to be opened read-only. As we
mentioned above, file sharing is also a factor here. Overall, only about 125 of the files on the
system were shared. Few users files were shared. Other classes of files saw more sharing, but,
except for heavily used system and news log, perm and executable files, sharing was incidental to
the normal use of the file. Most sharing was read-only, indicating that extensive replication of

these files is appropriate.

The lack of file sharing and the locality of reference implied by the short interopen times we see
for both files and directories suggest that migration algorithms that respond 1o references by
migrating a copy to the user’s host or by caching a copy, subject to the file size and log con-
straints we mentioned, are appropriate. For most files it will not be necessary o worry about

“‘migratory thrashing™ or frequent cache 1nvalidation due to accesses from other users. This is

'One might prefer o use & different logging mechanism in 2 distributed environment 1 any case.

236

particularly the case with user files, which are effectively never shared. The lack of sharing also

provides justification for our earlier decision to lock on a whole file basis in Roe.

The bursty nature of requests (for our background activity in particular) indicates that congestion
may be a serious problem at times. Results from the VICE/Andrew system [Svobodova 85]
confirm the importance of this issue. Algorithms that place and migrate files to minimize conges-

tion will be particularly appropriate in the case of background activity of this nature.

7.4. Performance

7.4.1. General Considerations

Our results may also be used to investigate performance issues in distributed file systems, and as
an aid in pointing out arcas where problems are likely to occur. In this section we summarize
results that are relevant 1o DFS performance and briefly describe their significance. The following
two secuons examine the performance implications of these results for Roe, and for distributed file

systems in general.

We found that referenced files in our environment were small, with half being less than 710 bytes
long, and 75% less than 4096 bytes long (a common block transfer size). We also found that path
lengths tended 10 be relatively long, with an average of almost 3 name components per path.
Taken together, these two resulls suggest that directory lookup and open overhead will tend to

dominate file access time, particularly in a distributed environment.

Directories were gencrally small, with half holding under 8 entries. Referenced directories were
somewhat larger, but also relatively small, with a median size of 26 entries per directory. This
means that the rend towards larger block sizes won't help name resolution costs and will, in fact,
work to increase their relative importance. However, the small size of directories does mean that

there is little space overhead for caching them.

(]
'~
~3

70% of the logzed paths were absolute references. This implies that deep directory trees raise the
cost of references. The root of the file system must be cheap 1o access, since it will be heavily

used.

93.49% of directory references were for read in our data (the actual overall figure for the system
was probably somewhat higher). Clearly directories should generally be optimized for lookup.
Some dirertones are heavily written and rarely read, though. Other organizations or placements
may be appropriate for these directories. The use of semantic information or past history would

be useful here.

Reads accounted for 84% of the bytes transferred in the system. Many of these reads were from
large administrative files that were frequently read and rarely if ever written. Replication and

caching of even a few such files could substantially increase the performance of a DFS.

There was an extremcly high degree of locality of reference to files and directories. Half of all
opens to perm files went to just 0.7% of the files. Over half of all execute requests went to just
13 files. The 15 most active directories accounted for 76% of the references. This intensely local-
ized activity suggests that even a very modest amount of caching or other special treatment for

such files and directories could produce significant improvements in system performance.

We found that most directory versions were short lived. Over half lasted less than a second. This
was due largely to high update rates to system and net scratch and spool directories. There is lit-
tle poini in writung these versions back to disk. Delaying writes of such directories could be

expected to improve performance (although not, perhaps, reliability).

Most directory versions also received only a few references. Half of all versions were written
again without being read. Roughly 4/5 of the remaining versions were read only a few times
before being updated. This, combined with the short lifetime of most versions, implies that cach-
ing these versions serves no purpose. However, some directories were heavily read and rarely, if
ever, updated. The four busicst directories accounted for over half of the references and received,

between them, just 9 writes in a week. Versions of these directories could be safely cached or

238

replicated regardless of the setup and update costs. Scparating them out from the majority of rela-
tively useless versions may be difficult, though. Very cheap caching mechanisms, semantic
knowledge, or knowledge of recent reference history would be useful here. For example, the
knowledge that imp is used to store temporary files and so is frequently updated could be used o

avoid potentially wasteful caching of this directory.

Directory activity was concentrated on system and network directories. References 1o user direc-
tories accounted for less than 10% of the overall directory references in the system. There was lit-

tle sharing of user directories.

As we described in section 7.3, we saw substanual differences in reference patlerns between the
file and user classes we examined. Placement and migration decisions made based on these
differences can be used to improve the overall performance of a system. There is, for example,
generally no nced to replicate a temp file, and files (such as user perm files) that are likely to have
high read/write ratics can be replicated and placed to favor reads. Significant differences between
classes were secn in areas such as reference locality, number of opens over the logging period,
read/write ratios, data lifetime, and interopen intervals. These class differences are described in

section 7.2 and in Chapters § and 6.

7.4.2. Performance Issues in Roe

The small file sizes and relatively long paths that we observed indicate that the overhead to open a
file in Roe will be a significant component of the access cost. We saw indications of this in the
UNIX name resolution overhead studies that we performed in Chapter 6. Roe separates directories
and the objects that they reference, and allows them to migrate independently. The open overhead
imposed by this separation and distribution can be high relative to a more integrated approach,

which makes this cost of special concem in Roe.

The cost to open a file can be broken down into two components: 1) name resolution cost, and 2)
the cost to actually open the (possibly replicated) file once it is found. Roe addresses rame resolu-

tion cost by caching directory information. The cost o perform the actual open can be reduced in

239

Roe using the advisory locks that we alluded t in Chapters 3 and 4, or by adjusting voting

quorums based on expecied usage.

Our measurements of high directary reference locality, combined with the small size of directories
and the low level of updates to many heavily used directories, suggest that a directory cache can
be an effective, low cost method for reducing name resolution overhead. To test this idea, we
simulaied an LRU whole directory cache using our reference trace as input. We found (Figure 7-5
and Table 7-3) that even a cache holding as few as 10 directory nodes achieved an 85% hit ratio.

A 30 node cache gave a 95% hit ratio.

1.0
S e mld-L'SER
4 rmeoe rud_NET
08 °\ ------ ruid_SYSTEM
& . — ne cut

0.6
miss
raue

0.4

cache size (directones)

Figure 7-5: Whole directory cache effectivezcss

nodes | nocut | ruid NET | ruid_SYSTEM | ruid USER | O¥Per-USER+ | rid USER+
ruid USER fu
5 | 037 0.46 0.17 0.34 025 0.14
10 | 01s 0.12 0.072 0.18 0.11 0.079
15 | 0.099 | 007 0.045 0.12 0.076 0.065
30 | 0050 | 0042 0.031 0.050 0.047 0.051

Table 7-3: Mi<< ratio vs. cache size (in nodes)

owner_USER + ruid_USER

ruid_USER +/u

ruid_USER
miss
rauo

nnnnnnn I NN .|
e
40 S0

cache size (directories)

Figure 7-6: Whole directory cache effectiveness (user cuts)

bytes | nocut | ruid NET | ruid SYSTEM | ruid USER
SK | 037 0.40 0.22 0.40
i0K | 020 0.16 0.11 0.24
15K | 0.14 0.10 0.067 0.17
20K | 0.10 0.079 0.052 0.13
30K | 0.070 0.060 0.036 0.075
40K | 0.052 0.043 0.030 0.047

User references o user objects also show a high degree of locality (Figure 7-6 and Table 7-3). A
10 node LRU whole directory cache captured 92% of user references to the user file system (/i)

and 89% of references required to reach user objects.

Since directories are not generally very big, whole directory caches don't require much space (Fig-

ure 7-7 and Table 7-4). For the overall trace, a 14K byte cache gave the 85% hit ratio seen with

Table 7-4: Miss ratio vs. cach: size (in bytes)

the 10 node cache. Using a 41K byte cache raised the hit ratio to 95%.

R B B U S SR BN IS EE

-

e e

" WY O AN S N aw

241
1.0 I
............ mld_LS[‘Q
REE RS ruid_NET
L e rud_SYSTEM
08 b no cut
06 F '\
miss A
raue . \.
04 b o %
02 } o .
0.0 . Pt Sttt s
0 10000 20000 30000 40000 50000

cache size (bytes)

Figure 7-7: Whole directory cache effectiveness (byte size limit)

As we mentioned in Chapter 6, our log of file system activity doesn't include all directory refer-
ences. Adding in the Istar and star calls missing from our data could be expected o increase the
effectiveness of our cache. These calls usually follow an open of the directory referencing the
object of the status call and so they will all result in “‘hits’’ on the cache. Using the estimates of
Istat and star frequency made in section 6.3 and assuming short paths leads 0 a 15%-20%

decrease in the miss ratios given above.

Two other studies of directory caching in UNIX environments focussed on page level caching
[Sheltzer 86] and entry level caching [Leffler 84, Leffler 86). Shelizer et al. lccked at page level
caching for references on a LOCUS system [Walker 83b] (an enhanced, distributed version of
4.1BSD UNIX). Their simulations assume, though, that directories fit in a single page. While this
is truz for most directories on a BSD UNIX system, there are a few large, heavily used system
directories that typically contain in excess of 100 entries (see figure 6-3). These directories are
referenced rrequently enough to make the high hit ratios found by Shelwzer et al. questionable for
page sizes one might typically use with directories (1K bytes or less because of the small size of

directonies). As Figure 63 shows, inferring dynamic distributions from static ones can be
g g dyn

242

dangerous. Their simulations are actuaily, then, for a whole directory LRU cache. Their result of
hit ratios of 87%-96% (depending on the system) for a 40 page (node) cache agrees with our result
of a 96% hit raudo for a 40 node cache and indicates that our results are typical for the environ-

ment.

Leffler et al., in tuning and enhancing 4.2BSD, found that a system-wide entry level cache con-
taining 400 enirics (about 18K bytes) gave a 60% hit ratio. This was coupled with a per process
directory offset cache having a 25% hit ratio (to catch directory scans), giving an overall hit ratio
of 85%. This is effectively an entry cache and a per process single directory cache, with invalida-
tion on update. We saw a hit ratio of 89% for an 18K byte whole directory cache. Our hit ratios
are higher because we effectively ‘‘read ahead’ for processes scanning directories by caching the
entire node on Ist reference, don't invandae on update or working directory changes, and cache

globally.

Two other factors affect directory caching in a distributed environment: 1) the amount of directory
sharing, and 2) the update rate for shared nodes. Directories that are widely cached will be rela-
tively expensive to update, due to the need to send out update notifications to each cached copy.
As we indicated in the previous section, the busiest directories (those near the root of the file sys-
tem) are heavily read and rarely if ever written. These may be cached with impunity. Most other
system directories were also rarely modified, and so are appropriate candidates for distributed

caching.

Sharing of user directories is incidental o their nommal use. For these directories, caching is not

really necessary. Migration to the current location of the user is a8 more appropriate approach.

The outook is less bright for shared, frequently updated system and net directonies such as /tmp
and spool directories. As we saw earlier, most versions of these directories were shon-lived and
received few if any reads. Maintaining a coherent distributed cache of such directories would be
prohibitively expensive. Roe could recognize these directories based on usage histories or seman-

*= information, and respond by not caching them and by optimizing them for writes. An

alternative, used by LOCUS and Andrew, 1s to remove such directorics from the global name
space, making them visible only from the locul muchine. However, this reduces transparency,
making it difficult to distribute applications that use such directories, and making it impossible 10
balance Joad across scrvers and local machines. Other possible approaches here are attempting 10
cache at the entry level, parutioning the name space of these directories in some fashion (perhaps
by user), or recognizing the inherendy undistributed nature of such directories and eliminating

them.

Opening a replicated file once the name is resolved generally involves contacting multiple copies
of the file and collecting quorum information. One technique we have suggesied is maintaining
advisory locks on frequently opened files that are broken, with notification, if the file is opened for

1

writing. This 1s similar to the ‘*broken read lock’’ mechanism that Gifford proposed for Violet

[Gifford 79a], although they were proposed there as a means of increasing concurrency.

This approach would work best if files are generally not shared or, for files that are shared wenally
accessed read-only. In addition, a high degree of reference locality is necessary to minimize the
overhead nvolved in sewing up and maintaining locks. As we have scen, these are in fact the
conditions that we see for most files in the system. The primary exceptions are temp files, which
would generally not be created as replicated files, and log files, which were frequently written and

rarcly read.

For files whose references are highly localized in time, an alternative 1o advisory locks is collaps-
ing the quorum down to a single or a few copies when the file is first accessed, and then restoring
the original quorum when the burst of accesses has finished. This trades a small loss in availabil-
ity for performance. The high degree of locality we have seen suggests that this approach has

promise, but further analysis would be necessary to understand the issues involved.

7.4.3. Implications for Other Distributed File System Approaches

Name resoluton and open overheads will also be an important consideration in other DFS designs.

As we saw in Chapter 6, the combination of relatively long path names and small files means that,

in the absence of caching, the mujority of UNIX file system activity 15 in support of name resolu-
uon. The same considerations will hold for DFS designs that interpret remote directorics locally.
Optimizations in the arca of name resolution are likely to produce significant performance

improvements, partculiarly as the block size used for data transfers increases.

One approach to dealing with this problem, taken by the V system [Cheriton 84], is to grou,
names and objects together, and 10 have servers holding objects manage name interpretation them-
selves. This reduces distribution possibiliies (and hence transparency), but it also reduces the cost

of resolving names for remote objects.

For designs that access remote directonies locally, caching or some other means of short circuiting
remote operations will be essential. We found that entry level caches, by themselves, are much
less effecdve than node level caches because of the frequent sequenual access of entries in a

directory. Caching strategies that recognize and exploit this sequenuality will go well.

Large block sizes help when reading some files, but many files, met directories and all descriptor
blocks are 100 small to benefit from larger block sizes. For file systerns in general (and so for
DES file servers), coupling larger block sizes with a file sysiem design that ues file descniptors,
directories, and daw together on disk could be expected to lead to substanual performance
improvements. The 4.2BSD file system does this by attempting to allocat these related items
close together on disk [McKusick 83]. Further improvement (at the cost of increased crash
recovery complexity; could be achieved by allocating inodes and at least the iniial data in files
conuguously on disk. On a 4K block siz» file system, this could be expected to lead to about a
40% dccrease in transfers for file open, read, and de activity, given equivalent caching
cffectiveness for data, inodes and directories. This observation is similar 0 one made by Mul-
lender and Tanenbaum {Mullender 84], although our results are based on an anulysis of actual file

and directory reference patierns (as opposed to a less reliable static analysis of file sizes).

Nearly 3/4 of ali references went o system directonies. Less than 10% went w user directories.

Further, anly about 15% of file opens were 1o files owned by users, and some of these were temp

files placed in system scratch directories. For DFSs, such as Andrew [Satyanarayanan 85), that
support access w local file systems coupled with access 10 a global uscr file system, minimizing
the performance impact of adding the global file system on local accesses is clearly important.
Conversely, carefully coupling transparent access W a network file system holding user files with
cheap access to local files can result in a coherent distributed file system with good overall per-

formance, even in situations where network or server access 1S expensive.

A significant drawback of this approach is that a user’s file requests are concentrated on a single
host (the local one). In the case of Andrew, where a primary goal was to support large numbers of
chents with relatively few server and network resources, this is appropriate. However, the poten-
tial performance benefits of balancing load across multiple servers and of the paralielism possible

with distributed access are lost when file systems are segregated in this fashion.

7.5. Summary

This chapter has examined some of the implications the patterns we saw in our file and directcn

reference data have for distributed file systems in general, and for Roe in particular.

One potential arca of concern in the Roe design was that the node-level fragmentation and distri-
but un of directories would seriously impact the overall availability of Roe. We found that with
the reference patierns we saw and using a simple probabilistic failure model, Roe can use replica-
ton to provide significantly increased availability over a centralized server, even assuming worst-
case distribution of components. Further, the flexibility inhzrent in the Roe replication approach
allows it to muke usc of rcad/write rates, semantic information and failure information {u further

increase availability without impacting the performance for reads, the most frequent operation.

An examination of the reference data charactenstics affecting migration showed that Roe's
approach o migrating files and directories as a whole is the correct one in our environment. The
strong locality of reference we see for files and directories dictates a short ume scale for migra-

ion. We saw substantial differences inaccess patterns for vanous classes of files and users that

246

can be used in making placement and migrauon decisions.

Further examination of the data pointed to name resolution and file open costs as potential per-
formance concerns in Roe. The high degree of locality 1n directory references led us to invest-
gate whole node LRU directory caching as a possible soluuon. We found that, because of the
locality, even a small cache gave good results. This approach appears workable for most direc-
tories. However, there are a small number of frequenty updated system directories that do not
appear to be cacheable in a distributed environment. Finally, we examined advisory file locks as a
way to reduce the open overhead for replicated files. Highly localized file references combined

with a low write rate for most shared files make advisory locks an attractive option.

I

Chapter 8

Summary and Future Work

8.1. Summary

The major claim of this dissertation is embodied in our thesis statement:

Full network transparency in distributed file systems offers significant benefits.
These benefits include increased availability, more effective use of resources, the
ability to adapt to changing demands, transparent reconfiguration 1o adjust to
changes in resources, a greatly simplified file system model from the
user/application point of view and, with careful design, enhanced performance over

other distributed file system approaches.

As we pointed out in Chapter 1, evaluating the validity of this thesis had been hampered by two

factors:

(1) Limited capenicce with the design and implemeniauon of transpareni distributed file
systems.

(2) A lack of understanding of the ways in which file systems are used.

247

248

We have addressed the first shoricoming by designing and implementing Roe, a fully transparent
distributed file system. Roe supports a substantially higher deerce of transparency than earlier dis-
ributed file systems, and is able to do this in a helerogeneous environment. Roe provides a
coherent framework for uniting techniques in the areas of naming, replication, consistency control,
file and directory placement, and file and directory migration. Roe does this in a way that pro-
vides full network transparency. This network transparency allows Roe 10 provide increased avail-
ability, automatic reconfiguraton, effective us: of resources, a simplified file system model, and

important performance benefits.

We have addressed the second problem by collecting data on file and directory references from a
large UNIX system. Our analysis of these data provides by far the most detwiled information to
date on short-term file reference patterns in the UNIX environment. In addition to examining the
overall request behavior, it breaks references down by the wype of file, owner of file, and type of
user. We find significant differences in reference patterms between the various classes. These
differences emphasize the need for a distributed file system, such as Roe, that can adapt to and

exploit them.

Our swdy also provides, for the first time, information on directory reference patterns in a
hierarchical file system. The results provide striking evidence for the importance of name resolu-
tion overhead in UNIX environments and supply information necessary to design algorithms that

minimize this overhead, both in singie site and distributed file systems.

Two potential concems in Roe are the availability impac. of its distributed structure and its per-
formance. We have used the results of our reference studies to investigate these issues. We find
that Roe’s ability to wansparently replicate resources based on semantic and usage information
allows it 10 provide enhanced availability over other commonly used approaches. File open over-

head proves to be a performance issue in Roe, but simple techniques exist for reducing its impact.

Taken together, the results we have presented in this dissertaton are both a compelling

justificaton for our thesis statement and a significant contribution to Compu~r Science.

249

8.2. Future Work

The work descnibed in this dissertation is not the final word on network transparency, or on dis-
tributed file systems. It provides a foundation for future research in many directions. This section

briefly describes some possibilities for future research based on the work we have presented.

8.2.1. Extension and Evaluation of Roe

The Roe design that we have presented here doesn’t explicitly address security issues. It would be
straightforward to add file and directory level security mechanisms (such as access control lists)
given our assumption of a single administrative domain. However, if Roe crosses administrative
domains or is on a network that includes untrusted hosts, these mechanisms will not be adequate.
Untrusied nosts can be incorporated, with some loss of performonce, by performing validations
outside of these hosts and not placing protected files and directories on them. Validation in the
presence of multple administrative domains is perhaps best done in the context of the domain

where the object was created.

Multiple administrative domains also raise the issue of autonomy. In an environment containing
multiple domains it will generally not be appropriate for Roe to place resources created in one
domain in another domain, or to have operation in one domain be dependent on operation in
another. A more appropriate model in this environment may be that of mutually suspicious Roc
systems interacting % provide a global service. Representing this in Roe and understanding the

effect that it would have on transparency requires further work.

Roe was designed for high bandwidth, low delay networks. Its ability to migrile and place
resources based on usage and network considerations may make it useful in network environments
where bandwidth and delay are important considerations. Further work is needed 10 understand

the impact of our design decisions on operation in such environments.

The directory algorithms that we presented in Chapter 3 were intended to support low overhead

caching of directory nodes that had relatively low update rates, and so provide concurrency control

250

and voung at the node level. Not all directories in the data we saw fit this model. It would be
interesting to investigate the possibility of algorithms that support quick verification of currency at
the node level but allow concurrency control 10 be invoked at the entry level. An altemative

might be 1o support entry-level caching for frequently updated directories.

The design of Roe is conceptually fairly simple. However, the flexibility inherent in the approach
used by Roe makes predicting the behavior difficult. In Chapter 7 we did a simple analysis of
Roe availability and performance based on the data we collected. A more detailed analysis, based

on simulation or on actual usage, is necessary to gain a greater understanding of Roe.

Measurements that would help evaluate the Roe design include the overhead for directory
accesses, file opens, replication, consistency control, and state maintenance, the read/write per-
formance under various replication configurations, and the availabiiity of the system. Two addi-
tional measurements that are particularly sensitive to work load are overall resource utlization and

the distribution of network and disk wraffic devoted to various activities.

A trace driven simulation using the data we have collected as input is onc way to gain experience
with Roe and to collect this information. There is, however, no substitute for using a system in
the environment for which it was intended. Using Roe on a day-to-day basis would provide

experience and feedback that no simulation could match.

8.2.2. Reference Data Collection

The collection and analysis of file system traces can soak up endless resources. We stopped at the

point were we felt that we had enough information to understand the implications that our data

had for file system design. There is a great deal of additional ccilection and analysis that could be
done. Some possibilities include:

« Swdie. of open frequency as a function of file age. Smith found that for long term file

reference pattens, open f equency falls off as the age of the file increases [Smith 81a].

A survey of files on Seneca made at about the time our data were collected showed that

2/3 of all user files (user log and perm files) hadn't been accessed in over one month

o
wm
—

{Friedberg 85]. This suggests thai snith’s finding holds true in our environment for at
least some classes of files.

« Studies of interopen intervals as a function of file size. Porcar found that smaller files
tend to have shorter interopen intervals (Porcar 82]. We don’t expect this to be true for
the overall acuvity in our system (because of the large heavily used administrative files),
but it may be true for user files.

» Measuring the paging and inode access activity. It would be interesting to see what
fraction of the file system bandwidth is devoted to each of these activities.

» Examining in more detail the activity per user. This information would be useful in
designing distributed file systems that include personal workstations. Ousterhout et al.
[Ousterhout 85] have done some of this work.

« Fiuing curves to various distributions {size, interopen time, and so on). These would be
useful in writing synthetic drivers for use in simulating distributed file systems
[Satyanarayanan 83).

» Investgating the corrclation between directory depth and activity. Since most paths are
absolute, one would expect that directories close to the root of the directory tree will be
referencea roore frequendy than those towards the leaves.

« Further data collection and analysis for different environments and work loads. This
would give us a betwer feeling for where our data fit into the universe of file system

usage.

8.2.3. Initial Placement and Migration Algorithms

Entire dissertations have been written on the subject of file placement and migration algorithms.
This might have been onc of them, had we not found the architectural and transparency issues

involved in supporting automatic placement and migration so interesting.

Roe provides architectural suppont for a wide range of placement and migration algorithms. The

file and directory reference traces that we have collected provide a rich source of daw for use in

designing and evaluaung algorithms. Possibilities {or research in the context of Roe include:

Placement and migration based on the class of the file and user. The substantial
differences we saw in reference patterns between the various classes should make them
useful predictors of future usage.

The use of additional parameters specified by file creators to place and later migrate
files.

The amount of information that should be kept in a network model o allow placement
and migration to be done effectively,

The importance of the currency of network model information.

The interaction between initial placement and migration algorithms.

Placement and migration algorithms that dynamically balance server load to reduce
congestion.

Algorithms that selectively attempt to increase performance or availability,

Algorithms that dynamically vary the number of copies of a resource. Porcar has done
some initial studies of on-demand replication Porrar 82] that show this to be a promis-
ing approach.

The effect of migration on network and host resource utilization in Roe.

Algorithms that act based on usage information collected by Roe. This could include
both migration algorithms that make use of information in individual files, and place-
ment algorithms that act based on overall user behavior.

Algorithms that attempt to group files and directories together. Two possible uses of
grouping information are prefetching to increase performance and co-locating resources

that are used together to increase effective availability.

------—--:-—-T

Bibliography

[Archibald 84] Archibald, J. and Baer, J.,, "An Economical Solution to the Cache Coherence
Problem," Proceedings of the 11lth International Symposium on Computer Architeciure, 1984,
355-362.

{Ball 76] Ball, J., Feldman, J., Low, J., Rashid, R. and Rovner, P., "RIG. Rochester’s Intelligent
Gateway: System Overview,” J[EEE Transactions on Software Engineering 2:4, December 1976,
321-32R8

[Bannister 82] Bannister, J. and Trivedi, K., "Task and File Allocation in Fault-Tolerant
Distributed Systems,” Proceedings of the Second Symposium on Reliability in Distributed
Software and Daiabase Svstems, July 1982, 103-111.

[Barbara 86] Barbara. D. and Garcia-Molina, H., "The Vulnerability of Vote Assignment,” ACM
Transactions on Computer Svstems 4:3, August 1986, 187-213.

[Bernstein 82] Bernstein, P. and Goodman, N., "A Sophisticate’s Introduction to Distributed
Database Concurrency Control,” TR-19-82, Aiken Computer Laboratory, Harvard University, 1982,

[Bernstein 84] Bernstein, P. A. and Goodman, N., "An Algorithm for Concurrency Control and
Recovery in Replicated Distributed Databases,” ACM Transactions on Database Systems 9:4,
December 1984, 596-615.

[Birrell 80] Birmrell, A. and Needham. R., "A Universal File Server,” IEEE Transactions on
Sofrware Engineering SE-6:5, September 1980, 450-453.

[Birrcll 82] Birrell, A., Levin, R., Needham, R. and Schroeder, M., "Grapevine: An Exercise in
Distributed Computing,” Communications of the ACM 25:4, April 1982, 260-274.

[Birrell 84] Burrell, A. and Nelson, B., "Implementing Remote Procedure Calls,” ACM
Transaciions on Computer Systems 2:1, February 1984, 39-59.

(Black 85] Black, A., Lazowska, E., Levy, H., Notkin, D., Sanislo, J. and Zahorjan, J., "An
Approach 10 Accommodating Heterogencity,” TR 85-10-04, Department of Computer Science,
University of Washington, October 1985,

2
n
o

[]
n
&

[Bloch 87 Bloch, J.. Daniels, D. and Spector, A., "A Weighted Voting Algorithm for Replicated
Directories,” Jowrnal of the ACM 34:4, October 1987, 859-909.

[Boggs 80} Boggs, D.. Shoch, I, Taft, E. and Metcalfe, R, "Pup: An Intemetwork Architecture,”
[EEE Transactions on Communications COM-28:4, April 1980, 612-623.

[Bukys 82} Bukys, L. and Floyd, R., "Even More FTP Cogilation,” Intemal Document, Computer
Science Deparunent, University of Rochester, June 19832,

[Rukys 83] Bukys, L., Private communication, April 1983,

[Cheriton 83] Cheriton, D. and Zwacnepoel, W., "The Distributed V Kemel and its Performance
for Diskless Workstations,” Operating Systems Review 17:5, October 1983, 129-140.

[Cheriton 84] Cheriton. D. and Mann, T., "Uniform Access to Distributed Name Interpretation in
the V-System,” Proceedings of the 4ih International Conference on Distributed Computing
Systems, May 1984, 290-297.

[Cooper 85] Cooper, E., "Replicated Distributed Programs,” Operating Systems Review 19:5,
December 1985, 63-78.

[Davcev 85) Davcev, D. and Burkhard, W., "Consistency and Recovery Conwrol for Replicated
Files,"” Operating Systems Review 19:5, December 1985, 87-96,

(Dean 87} Dcan, M., Sands, R. and Schantz, R., "Canonical Data Representation in the Cronus
Distributed Operating System,” Proceedings of the IEEE Infocom '87, March 1987, 814-819.

[Dolev 82] Dolev, D. and Strong. R., "Distributed Commit with Bounded Waiting,” IBM Research
Report RJ3417, San Jose, CA, March 1982.

(Dowdy 82] Dowdy. L. and Foster, D., "Comparative Models of the File Assignment Problem,”
ACM Computing Survers 14:2, June 1982, 287-313.

{Dugan 86} Dugan, J. and Ciardo, G., "Stochasiic Petri Net Analysis of a Replicated File System,”
TR CS-1987-1, Department of Computer Science, Duke University, December 1986.

[Floyd 85) Flovd, R. A, "Short Term File Reference Patterns in a UNIX Environment
Preliminary Results,” Internal Note, Department of Computer Science, University of Rochester,
August 1985.

[Fowler 85] Fowler, R., "Decentralized Object Finding Using Forwarding Addresses,” TR 85-12-
01, Department of Computer Science, University of Wshington, December 1985.

(Fridrich 81] Fridnch, M. and Older, W, "The Felix File Server,” Operating Systems Review 15:5,
December 1981, 37-44.

[Fridnch 84] Fndrich, M. and Older, W., "HELIX: The Architecturc of a Distrnibuted File
Sysiem,” Proceedings of the 4th International Conference on Distributed Computing Systems, May
1984, 422431

t9
th
"’

[Frnedberg 85} Friedberg. S., Private communication, July 1985,

[Gait 86] Gait. J., "Highly Available, Enhanced Response File Service in Network Computers,”
Proceedings of the 6th Imiernational Conference on Distributed Computing Systems, May 1986,
548-554.

(Garcia-Molina 82] Garcia-Molina, H., "Elections 1n a Distributed Computing System,” JEEE
Transactions on Computers C-31:1, January 1982, 48-59.

[Garcia-Molina 84) Garcia-Molina, H. and Barbara, D., "Optimizing the Reliability Provided by
Voung Mechanisms,” Froceedings of the 4ih International Conference on Distributed Computing
Svstems, May 1984, 340-346.

[Garey 79] Garey, M. and Johnson, D., Computers and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman and Company, 1979,

[Gifford 79a] Gifford, D., "Violet, An Experimental Decentralized System,” TR CSL-79-12, Xerox
Pualo Alto Rescarch Center, Sepiember 1979,

{Gifford 79b] Gifford, D.. "Weighted Voting for Replicated Data,” Operaiing Svsitems Review
13:5. December 1979, 150-163.

[Gifford 82} Gifford, D., "Information Siorage in a Decentralized Computer System,” TR CSL-
81-8, Xerox, March 19582,

[Gifford 88] Gifford, D., Needham, R. and Schroeder, M., "The Cedar File System,”
Communications of the ACM 31:3, March 1988, 288-298.

[Goldberg &3] Goldberg, A., Popck, G. and Lavenberg, S., "A Validated Distributed System
Performance Model," Proceedings 9tk International Symposium on Computer Performance
Modelling. Measurement, and Evaluation, May 1983, 251-268.

(Hailpern 82] Hailpern, B. and Korth, H., "An Experimental Distributed Database System,” 1BM
Research Report RC 9678, Yorktown, November 1982.

{Hammer 80; Hammer. M. and Shipman, D., "Reliability Mechanisms for SDD-1: A Svstem for
Disuributed Databases.” ACM Transactions on Database Systems 5:4, December 1980, 431-466.

(Harter 85] Harter. P., Heimbinger, D. and King, R., "Idd: An Interactive Distributed Debugger,”
Proceedings of the 5th International Conference on Distributed Computing Systems, May 1985,
498-506.

(Hatch 85} Hatch, M., Katz, M. and Rees, J., "AT&T’s RFS and Sun’s NFS: A Comparison of
Heterogeneous Distributed File Systems,” UNIX/World 2:11, December 1985, 39-52.

[Herlihy 83) Herlihy, M., "Replication Methods for Abstract Data Types,” MIT/LCS/TR-319,
Laboratory for Computzr Science, Massachusetts Insttute of Technology, May 1984,

[(Howard 88} Howard, J., Kazar. M.. Menees. S., Nichols, D., Satvanarar~- ., M., Sidcbotham, R,
and West. M., "Scale and Performance in a Distnbuted Fie Svstem.” ACA Transactions on
Computer Svsiems 6:1, February 1988, S1-K1.

(&7
7
(=

[Hu 86} Hu, 1., "Measunng File Access Patterns in UNIX." Performance Evaluation Review,
December 1986, 15-20.

[Jajodia 87] Jajodia, S. and Mutchler, D., "Enhancements to the Voting Algorithm,” Proczedings
of the 13th VLDB Conference, 1987, 399-406.

{Jenny 82] Jenny, C., "Placing Files and Resources in Distributed Systems: A General Method
Considering Resources with Limited Capabiluy,” IBM Research Report RZ 1157, Zurich, July
1982.

[Joy 83] Joy, W., Cooper, E., Fabry, R., Leffler, §., McKusick, K. and Mosher, D., "4.2BSD
System Manual,” in The UNIX Programmer's Manual, Seventh Edition, Virtual VAX-11 Version,
vol. 2, Bell Laboratories, modificd by the University of California, Berkeley, California, March
1983.

(Jul 88] Jul, E., Levy. H., Hurchinson, N. and Black, A., "Fine-Grained Mobility in the Emerald
System,” ACM [ransactions on Computer Systems 6:1, February 1988, 109-133.

{Kemighan 78] Kemighan, B. and Riwchie, D., The C Programming Language, Prentice-Hall,
1978.

[Kleinman 86] Kleinman, S., "Vnodes: An Architecture for Muliiple File Sysiem Types in Sun
UNIX," Proceedings of the 1986 Summer USENIX Conference, June 1986, 238-247.

[Kohler 83] Kohler, W, and Jeng, B., "CARAT: A Distributed Software Testbed,” TR CS-84-113,
Electrical and Computer Engincering, University of Massachuseils at Amherst, December 1983,

[Lampson 80] Lampson, B., "Atomic Transactions,” in Lecture Notes for Advanced Course on
Distributed Svstems - Architecture and Implementation, Instutut fur Informauc Technische,
Universitat Munchen, Munich, Germany, March 1980.

[Lantz 82} Lantz, K., Gradischnig, K., Feldman, J. and Rashid, R, "Rochester’s Intelligent
Gateway.," Computer 15:10, October 1982, 54-70.

[Lantz 86] Lantz, K., Edighotfer, J. and Hitson, B., "Towards a Universal Directory Service,”
Operating Systems Keview 20:2, April 1986, 43-53.

[Lawric 82] Lawrie, D., Randal, J. and Barton, R., "Experiments with Automatic File Migration,”
Computer 15:7, July 1982, 45-56.

[Lazowska 86] Lazowska, E.. Zahorjan, J., Cheriton, D. and Zwaenepoel, W., "File Access
Performance of Diskless Workstations,” ACM Transactions on Computer Systems 4:3, August
1986, 23R-268.

{LeBlanc &3] LeBlanc, T., Gerber, R. and Cook, R., "The SwarMod Distributed Programming
Kernel,” Software - Practice and Experience 14:12. December 1984, 1123-1140.

[Leffier 83) Leffler. S., Jov. W. and Fabry, R., "42RSD Newworking Implementation Notes,”
CSRG TR/6, University of Culitornia, Berkeley, July 1953,

|~

[]
12
~3

(Leffler 84} Leffler, S., Karels, M. and McKusick, M., "Measuring and Improving the Performance
0" 42BSD." Proceedings of the 1984 USENIX Summer Confercnce, june 1984, 237-252.

[Leffler 86] Leffler, S., Pnvate Communication, August 1986.

(Lindsay 80] Lindsay, B. and Selinger, P., "Site Autonomy in R*: A Distributed Database
Management System,” IBM Research Report RJ 2927, San Jose, CA, Septeraber 1980.

{Lindsay 81) Lindsay, B., "Object Naming and Catalog Management for a Distributed Database
Manager," Proceedings of the 2nd International Conference on Distributed Computing Systems,
April 1981, 31-40.

[Lyon 85] Lyon, B., Sager, G., Chang, J., Goldberg, D., Kleinman, S., Lyon, T., Sandberg, R,
Walsh, D. and Weiss, P., Overview of the Sun Network File System, Sun Microsystems, Inc.,
January 1985, (see also: Nerworking on the Sun Workstation, 800-1177-01, Sun Microsystems,
Inc., May 1985.).

[Mayer 86] Mayer, J., Privatc communication, May 1986.

[McKusick 84] McKusick, M., Joy, W., Leffler, S. and Fabry, R., "A Fast File System For
UNIX," ACM Transactions on Computer Systems 2:3, August 1984, 181-197.

[Metcalfe 761 Metca'fe, R. and Boggs, D., "Ethernet: Distributed Packet Switching for Loca
Computer Networks," Communications of the ACM 19:7, July 1976, 395404,

[Miwchell 79] Mitchell, J., Mavbury, W. and Sweet, R., "Mesa Language Manual, Version 5.0,"
CSL-79-3, Systems Development Department, Xerox PARC, April 1979.

[Mitchell 82] Mitchell, J. and Dion, J., "a Comparison of Two Network-Based File Servers,”
Communications of the ACM 25:4, April 1982, 233-245,

[Mogul 86a] Mogul. J., Private Communication, July 1986.

[Mogu!l 86b) Mogul. J., "Representing Information about Files,” TR STAN-CS-86-1103,
Department of Computer Science, Stanford University, March 1986.

{Moore 82] Moore. L., Bukys, L. and Heliotis, J., "Design and Implemecntation of a Local
Network Message Passing Protocol,” Proceedings of the 7th Conference on Local Computer
Networks, October 1982, 70-74.

(Morris 86] Morris. J., Satvanaravanan, M., Conner, M., Howard, J., Rosenthal, D. and Smith, F,,
"Andrew: A Distributed Personal Computing Environment,” Communications of the ACM 29:3,
March 1986, 184-201.

[Moss 81]) Moss, J. E., "Nested Transactions: An Approach to Reliable Distributed Computing,”
MIT/LCS/TR-260, Laboratory for Computer Science, Massachusets Institute of Technology, April
1981.

[Mullender 8] Mullender. S. and Tanenbaum, A., “Immediate Files,” Software—Practice &
Experience 14:4, April 1984, 365-368.

9
‘N
o

[Murthy 835 Murthy, K. Kam, I ana #rishnamoorihy, M. "An Approximation Algorithm 10 e
Fiie Allocauon Probiem in Computer Netwouks.” 2nd Symposium on Principies of Databuse
Systems, March 1983, 258-266.

[Neison 88, Neison, M., Welch, B. and Ousterhout, J.. "Caching in the Sprite Network File
Svstem,” ACM Transactions on Computer Svstems 6:1, February 1988, 134-154.

[Noe 86} Noe. J. and Andreassien, A., "Effectiveness of Replication in Distributed Computer
Networks.” TR 86-06-05, Department of Computer Science, University of Washington, July 1986.

{Notkin 87} Notkin, D.. Hutchinson, N., Sanislo. J. and Schwartz. M., "Heterogencous Computing
Environments: Report on the ACM SIGOPS Workshop on Accommodat'ng Heterogeneity,”
Communications of the ACM 30:2, February 1987, 132-140.

[Nowitz 787 Nowitz, Do and Lesk, M., "A Dial-Up Network of UNIX Swvstems.” in The UNIX
Pragrammer’s Manual. Seventh Eduion. vol. 2, Bell Laboratorics, August 1978,

{Oppen 811 Oppen. Do and Dalal, Y., "The Clearinghouse: A Decentralized Agent for Locating
Named Objects in a Distributed Environment,” TR OPD-T8103. Xerox Office Products Division.
October 1981,

1Qusterhout 837 Ousterhout, J., Da Costa. H., Harrison, D.. Kunze, J.. Kupfer, M. and Thompson,
I 7A Truce Drniven Analyvsis of the UNTX 4.2BSD File System.” Operating Svsiems Review 19:5,
December 1955, 135-24,

‘Dusternout 85! Ousterkout, J., Cnerenson, A, Douglis, F., Nelson, M. and Welch, B, "The Sprite
Newwork Operating System,” Compuer 21:2, February 1988, 23-36.

[Parker &2; Parker. D. and Ramos, R, "A Dist-." . ied File Svstem Architecture Supponing High
Availubilty. Proceedines of the 6 Berkcley Workshop on Distributed Data Managemen: and
Computer hetworks, 1982, 161-1%3.

fPorcar 821 Porcar, J., "File Migration in Disuibuted Computer Systems,” TR LBL-14763,
Laarence Berkeiey Laboratory, July 1982,

Poste!l €27 Postell 1. "File Transfer Protocol.” ARPANET RFC-763, Internet Protocol Transition
Workbook, Network Intormation Center, SRT International, March 1982,

"Pu &6] Pu. C., Noc, J. and Proudfoot, A., "Regencration of Replicated Gbjects: A Technigue and
Itv Eden Implamertaton,” Proceedings of the Internacional Conference on Data Engincering,
Fobruary 1956, 175187,

fQuarterman 85 Quaricrman, J., Silberschatz, AL and Peterson, J. "4.2BSD and 4.3BSD a-
Exaples of the UNIX Sy iem ACM Computing Survers 17:4, Dece nber 1985, 379418,

fRastnd %08 Rashid, R 7An Inter-Process Commumeation Facility for Unix.” TR CMU-CS-80-
124, Depariment of Compnter Science, Carnegie-Mellon University, March 198,

Jaa R s Rand Roberton, G SAcent A Communn dnon Onentec et ok

Crwerunne Sostom Kol Operatine Svuiers Review 155 December TN 62278

[
tn
z

[Rifkin 6] Rk, AL Torbes. M., Hamilion, R.. Sabrio, M., Shah. S. and Yuech, K "RFS
Archuectural Overview " Proceedings of the 1986 Sumr-er USENIX Conference. June 1986, 23K8-

259,

(Richie 78] Riwhie. D. and Thompson, K., "The UNIX Timc-Sharing System,” Bell Syvstem
Technical Journal S7:6, Part 2, July-August 1978, 1905-1930.

[Rowe 82} Rowe, L. and Birman, K., "A Local Network Based on "he UNIX Operaung System,”
[EEE Transacucns on Software Engineering SE-8:2, March 1982, 137-146.

[Salzer 79} Salwzer, J., "Naming and Binding of Objects,” in Operating Systems: An Advanced
Course, Springer-Verlag, 1979, 99-208.

{Sansorn 86] Sansom, R., Julin, D. and Rashid, R., "Extending a Capability Based System into a
Network Environment,” TR CMU-CS-86-115, Computer Science Department, Carnegic-Mellon
University. April 1986,

{Satyanarayanan &1] Satyanarayanan, M., "A Swudy of File Sizes and Functional Lifetimes.”
Onerating Systems Review 15:5, December 1981, 96-108.

{Satyanarayanan 53] Satvanaravanan, M., "A Methodology for Modelling Storage Svstems and its
Application to a Newwork File Sysiem,” TR CMU-CS-83-1(%9, Department of Computer Science,
Carnegic-Mellon University, March 1983,

[Satvanarayanan X2} Satyanaravanan, M., Howard, J., Nichols, D., Sidebotham. R., Spector, A.
and West. M. "The ITC Distnbuted File System: Principles and Design,” Operating Svstemc
Review 195, December 1983, 35-50.

[Schantz 86, Schantz, R., Thomas, R. and Bono, G.. "The Architecture of the Cronus Distributed
Operaung System.” Proceedings of the 6th International Conference on Distributed Computing
Systems, May 19%6, 250-259.

[Schroeder 831 Schroeder. M., Birrell. A, and Needham, R., "Experience with Grapevine: The
Grow h of a Distnbuted System.” ACM Transacuons on Computer Svstems 2:1, February 1984, 3-

~a
PR N

A R aN NN A BN S I B T EBE am

[Scott &5% Scott, M. "Design and Implementation of a Distributed Systems Language,” TR 596,
Computer Sciences Deparument, University of Wisconsin-Madisen, May 1985,

(Sheltzer 85) Shelzer, AL Network Transpare. oy Issues in an Iniernemwork Environmen:. Ph.D.
Dissertauon, Computer Science Department, UCLA, 19453,

{Shelwer 86 Shelwzer. AL Lindell, R. and Popek, G., "Name Scrvice Locabity and Cache Design
in g Distnbuted Operating System, Proceedings of the 6k Internanonal Conterence cn
Dusiribuied Corpuiiry Swsiems, May 1986, 515522,

{Sheng ®6! Sierz. O R L Models for Dyvnamic File Migratnon in Dustribuwed Computer Sssiemy,
Ph D Dissertaunn. Graduate School of Management, University of Rochester, November 195

\

PSkeen &1 Skeewvr s D0 A Decsnralized Termination Protow ol Proceedin < o7 the Sumpown, on

Foloran o Do D50 ware and Svaeer July 19N 2

260

fSmith 8147 Smuth. A "Analvsis of Long Term File Reference Patterns for Application 1o File
NMigration Algonthms.” JEEE Transacuons on Sofoware Engineering SE-750 July 1981, 403-417.

[Smith &1 Smith, A "Long Term File Migration: Development and Evaluation of Algorithms,’
Communicauons of the ACM 24:%, August 1981, 521-532.

pled Processes,”
1

[Smith &4 Smith. W. and Decitre, P., "An Evalvation Method for Analysis of the Weighted
Voung Algorithm for Mainwining Replicated Daia,” Proceedings ¢ the Fourth Iniernattonal
Conference on Distributed Compunng Svstems, May 1984, 494-207

(Smith &3] Smith, A., "Disk Cache-Miss Rauo Analysis and Design Considerations,” ACAM
Transactions on Compucer Systems 33, August 1985, 161-202.

iStoncbruker 79 Stoncbraker, M., "Concurrency Control and Consistency of Muluple Copies of
Data in Distnibuted INGRES." JEEE Transactions on Software Engincoring SE-5:3, 1979, 188-194.

(Striter 77] Stnwer, E., "File Migration,” TR STAN-CS-77-592, Swnford Uriversity, March 1977,
{Swoustrup &3, Swoustrup. B., "A Set of C++ Clusses for Co-Rowtine Stvle Programming,”
Computer Science Technmical Report 90, AT&T Bell Laboratonies. November 1983,

[Sturgis 80 Swrgis, Ho, Michell 3. and Isracl, T "Issues in the Design and Use of a Distributed
File System.” Operaung Sysiems Review J4:3, Julv 1980, S5-6Y.
. I - -

[Svobodova 8] Svobodova, L., "File Servers for Network-Buased Distnbuted Systems,” ACM
Computing Survevs 164, December 1984 353-3ys,

[Svobodova &3) Svobodeva, L. "Workshop Summary - Opeiaung Systems i Comaputer
Networks,” Uperating Svstenis Review 192, April 1955, 6238,

1 Terry &6} Terry, D., "Structure-free Name Manzgement for Evolving Distributed Environments.”
Proceedings of the 6k Internaiional Conference on Distribuied Compuing Systems, May 1986,
SO2-SHK.

ITerry K7} Terry, D. B., "Caching Hints in Distnibuted Systems.” J/ELL Transactions on Software
Engineering SE-13:1, January 1987, 48-54.

[(Thacker 79° Tnacker, C., McCreight, E., Lampson. B., Sproull. R. and Boggs. D, "Ano:r A
Personal Computer.” TR CSL-79-11, Xerox Palo Alto Rescarch Center. August 1974,

“Tichy R Tichy, Woand Zuwang, R., "Towards a Distributed Fue Svatem” Proceedings of the
Tond DSENTY Tummer Conference, June 1984, 87-97.

"Wk S0 Woho B "An Efncient Heunstco for File Placement «n Distnibuted Databases.”
COMPYAT N Octeber 1980, 362-46K,

Wb st Wl B Livwes o Nemword Transparens and fac Foepiianon oo Dierdueed
coes Lo T PR D Diserwaunn, Compuisr Saence Departiners. Lnnveraty of Caliorn, pe

Angeles, 1983,

Walker 83b) Waiker. B., Popck, G., English, R, Kline, C. and Thiel, G, "The LOCUS
Distnibuted Operating System,” Operating Systems Review 175, December 1983, 45-70.

[Watson 81} Watcon, R., "Identifiers (Naming) in Distributed Systems." in Distributed Systems -
Architecture and Implemeniatior.: An Advanced Course, Springer-Verlag, 1981, 191-210.

[Xerox 7v] Mesa Svstem Documentation, Version 5.0, Xerox PARC, Systems Development
Department, Apnl 1979.

[Young 87} Young. M., Tevanian, A., Rashid, R., Golub, D., Eppinger, J., Chew, J., Bolosky, W,
Black, D. and Boron, R., "The Duality of Memory and Communication in the Implementauon of a
Muldprocessor Operavcng System,” Operating Systems Review 21:5, November 1987, 63-76,

[Zhou 85} Zhou. S.. Da Costa. H. and Smith. A., "A File System Tracing Package for Berkeles
UNIX," TR UCR/CSD 85/235, EECS Department, University of California, Berkeley, May 1985,

