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20. AD,.TRACT (Continued)

We address these problems by: 1) designing and implementing a prototype of a highly transparent

distributed file system: 2) collecting and analyzing data on file and directory reference patterns;

and 3) using these data to analyze the effectiveness of our design. 3
Our distributed file system, Roe, supports a substantially higher degree of transparency than ear'ler 3
distributed file systems, and is able to do this in a heterogeneous environment. Roe appears to

users to be a single, globally accessible file system providing highly available, consistent files. It

provides a coherent framework for uniting techniques in the areas of naminp rpnliriinn, rn,-

sistency control, file and director) placement, and file and directory migration in a way that pro- 3
vides full network transparency. This transparency allows Roe to provide increased availability,

automatic reconfiguration, effective use of resources, a simplified file system model, and important 3
performance benefits. I
Our data collection and analysis work provides detailed information on short-term file reference

patterns in the UNIX environment. In addition to examining the overall request behavior, we 3
break references down by the type of file, owner of file, and type of user. We find significant I

differences in reference patterns between the various classes that can be used as a basis for place-

ment and migration algorithms. Our study' also provides, for the first time, information on direc- 3
tory reference patterns in a hk ,-,, file system. The results provide striking evidence of the

importance of name resolution ov., d in UNIX environments. 3
Using our data collection analysis results, we examine die availability and performance of Roe. 3
File open overhead proves to be an issue, but techniques exist for reducing its impact. I
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Abstract

I
The last few years have seern an explosion in the research and development of distributed file sys-

tems. Existing systems provide a limited degree of network transparency, with researchers gen-

erally arguing tat fu!! nctL,-ik transparency is unachievable. Attempts to understand and address

these arguments have been limited by a lack of understanding of the range of possible solutions to

transparency issues and a lack of knowledge of the ways in which file systems are used.

We address these problems by: 1) designing and implementing a prototype of a highly transparent

3 distributed file system; 2) collecting and analyzing data on file and directory reference patterns;

and 3) using these data to analyze the effectiveness of our design.

Our distributed file sysiem, Roe, supports a substantially higher degree of transparency than earlier

distributed file systems, and iF able to do this in a heterogeneous envircnment. Roe appears to

users to be a single, globally accessible file system providing highly available, consistent files. It3 provides a coherent framework for uniting techniques in the areas of naming, replication, con-

sistency control, file and directory placement, and file and directory migration in a way that pro-

3 vides full network transparency. This transparency allows Roe to provide increased availability,

automatic reconfiguration, effective use of resources, a simplified file system model, and important

U performance benefits.

i Our data collection and analysis work provides detailed information on short-term file reference

patterns in the UNIX environment. In addition to examining the overall request behavior, we

3 break references down by the type of file, owner of file, and type of user. We find significant

I
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differences in refcrznce paltem-s between the various Classes that can be used as a ba-sis for pla~e-I

ment and mnigration algorithms. Our study also piovides, for the first time, information uti dirom-3

tor-, reference pauterrns in a hierarchical tile sy'stem. The results provide striking evidence of 'he

importance of name resoluucin overhead in UNIX ernvironments.3

Using our data collection analysis results, we examine the availability and performance of Roe.3

File open overhead proves to be an issue, but techniques exist for reducing iLs impact.
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3Chapter 1

3Introduction
I

1.1. The Problem

Recent years have seen a dramatic decrease in both the cos' and size of computer systems. This

3 has encouraged the proliferation of local area networks (LANs) of small machines. With this

trend has come the problem of sharing information among users of these machines. The problem

I of file sharing, in particular, is one that all such networks must address.

3 It is not enough to provide users with the means to specify and access files on remote machines.

The complexity introduced by the distribution of computing resources and files will quickly

3 overwhelm users unless we provide a mechanism that allows simple abstractions of the environ-

ment to be constructed. In addition, this mechanism should allow users to make effective use of

3 the resources available, and to take advantage of the distributed nature of the environment, Our

approach to achieving these goals, a highly network transparent distributed file system, is the sub-

I ject of this dissertation.

5 The remainder of this chapter provides an introduction to the problem of sharing files in a LAN, to

transparent distributed file systems, and to this dissertation. Section 1.2 maps out the range of

3 solutions that can be used to address the problem and argues that a highly transparent distributed

I
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file system is, in general, the preferred solution. Section 1.3 presents the major issues that arise in

designing such a file system. Sections 1.4 and 1.5 describe the approach used in our work and I
summarize the rest of the dissertation. Section 1.6 explains the significance of our results.

1.2. A Range of Solutions 5
1.2.1. Utilities for File Transfer 3
Perhaps the simplest solution for dealing with file sharing in a network is to provide utilities that

allow users to explicitly copy files from machine to machine. Two examples of file transfer utili I
ties are the ftp command (used in the Internet environment [Postel 82]) and the rcp command

(used between BSD U,NIXI sy'stems [Quarterman 85]). 1
There are a number of problems with this approach to file sharing. It requires that users know the 3
hosts on which their files are located and that their applications run on these hosts. It makes it

difficult to organize files, as they may be scattered across a number of hosts. Moving files (to I
avoid downtime, load balance, and so on) requires knowledge of the hosts and resources available

on the network. In a heterogeneous environment, users see several different naming conventions

and file transfer protocols. Given the ability to transfer a file, users frequently react by spreading

copies throughout the network to increase the file's availability. This raises the difficult problem

of keeping these copies consistent or, if they do become inconsistent, the problems of locating the 3
most current one and reconciling conflicting changes.

1.2.2. Transparent Remote Access I

A more sophisticated solution to the problem of file sharing in a network is to provide transparent 3
access to files on remote machines. By transparent access we mean that files on remote machines

are accessed using the same techniques used for local files. One approach for achieving this is to 5
allow a host or other device name to be explicitly included in a file specification, and to have

UNIX is a trademark of AT&T BeU Laboratones. I
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lower layers route the call to the appropriate host. VAX/VMS and RIG (Ball 76] support this

* approach.

3 An alternatc commonly used in the UNIX environment is to provide a way to patch a remote

naming tree into the local naming tree. This allows remote files to be accessed by users without

5 necessarily being aware of the existence of these remote hosts. This approach is used by Sun's

NTS [Lyon 85] and AT&T's RFS [Rifkin 861.

The major advantage of transparent access is that it can, with a careful choice of naming conven-

* tions, allow a user to run applications and access files independent of relative user and file loca-

tions. In the case of systems (such as NFS and RFS) that make the remote naming tree an exten-

3 sion of the local one, it allows users to take advantage of the file resources of a net'vork without

generall% needing to know the details of their location.

U There are a number of serious drawbacks tc this approach, though. Binding sections of the nam-

ing tree to a host means that the resources available to users of that tree are limited to those on

that machine. Limitations in storage space and processor capacity crop up in unexpected places,

3 and reconfiguration to correct problems is difficult. A more serious drawback is decreased avail-

ability due to machine crashes and other faults. The availability of an NTS-style system will most

3 likely be less than that of a host running alone, as users will generally require access to multiple

machines to perform their work. In addition, users lose the ability to replicate important files on a

3 number of different machines. The ability to replicate critical resources to improve availability is

a key advantage of networks over single site systems. A solution that takes advantage of the

3 potential benefits of distribution is needed.

3 1.2.3. Transparent Distributed File Systems

A solution to the problems described in the last two sections is to provide users with a network

transparent distributed file system. By network transparent we mean that the distributed file sys-

3 tem (DFS) allows users to create and access objects with no constraints due to the name, the loca-

tion of the user and object, and with no knowledge of the underlying systems. "-

I
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to preserve the a ,,'rcuton of a single, shared file system acros th, network.

A mrar benefit of thi., approach is that it frees users from the n-ced to understand the details of

the underlving network, and so allows them to develop a simpler model of their environment. 3
Uncoupling name from location allows the underlying system to be adapted to changing demands

by transparently adding or removing storage and to improve performance by adjusting the loca- 3
tions of files to match requests. Further, this uncoupling allows files to be replicated and distrib-

uted to enhane availaloility. 3

1.3. Issues in the Design of a Transparent Distributed File System 5
There are a number of issues that arise in the design of a distributed file system. For example, 3
what is the model of the file system that will be presented to the user? If a decision is made to

give the user the view that a single file system exists, how do we support this view,? What actions

are taken if failures or resource limitations make it difficult to maintain this view? Are there ways

that we can minimize the occurrence of these problems? How do we support such a file system in 3
a heterogeneous environment? What is the coupling between names and objects stored in the file

system? How are objects located? What effect do architectural decisions have on availability and 3
performance? If the DFS supports replication, do we insist on consistency? Are these decisions

dependent on the characteristics of the underlying hosts and network? I

The last few years have zcn an explosion in the research and development of network transparent 3
DFSs that address many of the issues we have listed here. These efforts have been hampered by

two factors: 3
(1) Limited understanding of the range of possible solutions to problems in DFS design and

of the interactions of these solutions. 3
(2) A lack of understanding of the ways in which file systems are used g

There exist a wide range of solutions to various inctividual problems that a network transparent

DFS must solve. Examples include numerous algorithms for naming, consistency control, file 3
I
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placemeit .nd file migration. For the most part, howccr, these solutions exist in isolation. There

3 is little knoledge of hoA they would interact in a fully transparent DFS. Distributed file systems

that do exist have abandoned one or more of the aspects of transparency in order to simplify

3 design. For example, LOCUS [Walker 83b] takes the approach of gluing together the name

spaces of existing hosts (V'ith additional mechanisms for limited replication), and so provides

3 access transparency, but only limited location transparency. The IBIS file system [Tichy 84], on

the other hand, supports its own name space and so can provide location transparency, but does

3 not guarantee that users at different locations will see consistent versions of files.

3 Further, most existing systems have been designed for a limited environment. In particular, there

has been little attempt by DFSs to accommodate heterogeneous environments. The rapid evolution

3 o& computer hardware and software, the proliferation of special-purpose machines, and the contin-

ued growth in the use of networks are all fa'tors that encourage heterogeneity. DFSs that arn.

3 designed for heterogeneous environments are faced with the problem of accommodating the

differing capabilities and needs of the underlying systems.

Because of the mode-t transparency goals and environmental limitations of current systems, there

3 is no real understanding of the interactions of solutions that can be used in a transparent DFS, and

of the range of applicability of these solutions. Nor is it clear to what extent the various aspects

3 of transparency are realizable.

3 Evaluating toe effectiveness of a DFq design and implementation requires knowledge of the ways

in which it will be used. There is, unfortunately, very little detailed information available on the

3 usage patterns fo a DFS, or even of single site file systems. In particular, most DFSs currently in

existence use a hierarchical directory system modeled after that used in UN IX, but there are no

3 data available on directory reference patterns.

I
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1.4. The Thesis

Our thesis is as follows: U
Full network transparency in distributed file systems offers significant benefs.

These benefits include increased availability, more effective use of resources, dhe I
ability to adapt to changing demands, tran.sparent reconfiguration to adjust to

changes in resources, a greatly simplified file system model from the I
user/application point of view and, with careful design, enhanced performance over

other DFS Approaches.

Distributed file system designers recognize that there are desirable aspects of network tran- 3
sparency, but have generally argued that heterogeneity, complexity, performancc, availabiliy, and

autonomy issues make full network transparency unachievable. Some have used these issues to I
argue against any, sort of network transparency. The lack of understanding of design choices and

of usage patterns described in the previous section makes resolving these conflicting points of view I
difficult. In this dissertation we address this lack by: g

(1) Designing and implementing a prototype of a highly transparent DFS.

(2) Collecting and analyzing data on file and directory references from a large UNIX sys-

tem.

(3) Using these reference patterns to aiialyze the effcctiveness of our DFS design. 3
As part of the process of designing a highly transparent DFS we investigate solutions to the vari-

ous problems faced by a DFS, and examine the interactions of these solutions. This process

extends our understanding of the range of possible DFS designs and of the tradeoffs between vari-

ous designs. The resulting file system design meets the transparency guidelines of our thesis. The

prototypc implementation validates the design and provides further insights. 3
The collection of usage data from a UNIX system gives us data on file reference patterns and, for

the first time, data on directory references in a hierarchical file system. Analysis of these data

I
I



provides dcuaikd information on file system usage.

Finally, the results of the data analysis are used to evaluate our DFS design and to provide guide-

3 lines for future designs. This provides further understanding of the applicability of various design

alternatives available for DFSs and demonstrates the validity of our original thesis statement.

I
1.5. The Remainder of the Dissertation!
Chapter 2 presents a survey oif related previous work. We start by examining existing distributed

file system work, particularlyv as it relates to our goal of full network transparency. We then

examine w-ork in areas that are relevant to transparent DFS design. The areas we survey include

3 network namig, mutual consist--ncY algorithms, file placement, file migration, and file and direc-

tor\ reference studies. Based on these surveys we describe areas where significant work remains

3 to be done.

Chapter 3 presents the design of Roe, a highly transparent distributed file system, We start by

presenting the goals of Roe (in terms of our earlier thesis statement) and describe the environmen-

3 tal assumptions made b\ the system. We then present an overview of the general architectural

principles used in designing Roe, and describe the techniques and algorithms used. Our general

3 approach is to integrate existing solutions wherever possible, extending and adapting where neces-

sary. vhile maximizing transparency. We include here a discussion of the interaction between the

3 various solutions chosen, and how these interactions drive the choice of algorithms and the archi-

tecture of the system. Given this higher level background, we move on to describe in detail the

3 architecture of Roe. We end the chapter with a discussion of the strengths and weaknesses of the

appro-ich used by Roe, and evaluate the extent to which Roe meets our goals.U
Chapter 4 describes a prototype implementation of Roe on UNIX, RIG, and Xerox Altos. The

5 implementation validates the design presented in Chapter 3 and demonstrates the feasibility of the

Roe approach. We start by describing the three environments and the implementation of Roe in

3 each of these en\ironments. We then discuss difficulties that arose during the implementation

I
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It describes the design and implementation of Roe, a ';ghl, transparent distributed file system.

I Roe supports a substantially higher degree of transparency than earlier distributed file systems, and

is able to do this in a heterogeneous environment. Roe provides a coherent framework for uniting

techniques in the areas of replication, consistency, file and directory placement, and file and direc-

tor. micration. It provides the information necessary to allow these techniques to work

effectivex.

3 As part of the process of designing Roe we investigate solutions to the various problems faced by

a DFS. and examine the interactions of these solutions. This process extends the understanding of

the ran cc of DFS designs and of the tradeoffs between various 6oals and techniques The resultant

dcsin and the analysis of its inmplementation also extend this understanding.

Another signifcant contribution of this dissertation is the collection and analysis of file and direc-

3 tor\ refcren:e pattern>. This work is Ynovel in several respect,. It is by far the most detailed stud\

of short term UiNIX file reference patterns that ha>., been done to date. It is alzo the only study \Xe

Phave seen that examines the differences between important user and file classes. In addition to

examining the overll request behavior, it breaks references dowkn by the type of ilc. ok ncr of file,

and type of user. Knowlede of the substantial differences between these classes Aill be useful in

designing future DFSs and can be used to analyze current DFSs.

In addiun, our> is the only study e have seen that collects and analyzes information on directory

3 reference patterns. Our results confitm earlier speculations on the importance of name resolution

overhead in UNIX environments and provide information necessary to design algorithms that

1 minimize this overhead, both in sincle site and distributed file systems.

Finally . the d,,seror descrjbcs the use of the file and directory reference results to study nam-

inc. ai! alablit., performanc,. caching. replication, and initial pla emcnt issues in DFSs. These

1 studies provide further understanding of the range of applicability of DFS designs and of the tech-

flLLC, %kc have used In addition, these studies demonstrate the validity of the highly network

3 tran .parent appra.h used , Roc

5
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Chapter 2 1

SPrevious Work il

2.1. Introduction1

There has been a considerable amount of work done in distributed file systems and related areas.

A substantial body of literature, along with a handful of implementations, exists. While many of 3
these systems provide transparency of one form or another, none has pursued it to the extent that

we desire, and there is limited understanding of man) of the key issues and tradeoffs. In this 3
chapter we survey previous work and describe how our work fits into the existing framework. I
Section 2.2 presents terms and metrics that we will be using to evaluate distributed file systems.

Section 2.3 describes a number of existing systems and characterizes them using the metrics 3
presented in section 2.2. The following sections review previous work on issues related to the

management of data and resources in a distributed system. The areas surveyed include naming

(section 2.4), replication and consistency (section 2.5), reference patterns (section 2.6), and file

placement and migration (section 2.7). S-ction 2.8 briefly surveys other related work. In section 3
2.9 we summarize what we perceive to be the weaknesses of previous work and describe the gen-

eral approach we will take in addressing these weaknesses. i

I
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.2. Terms and Metrics

1 Many measures have been used in the literature to characterize and evaluate aistributed file sys-

3tems. Examples include availability, consistency, transparency, and performance. Definitions of

such terms in the literature are often vague and contradictory, or are expressed in a way that

3 reflects most favorably on the system being described. While it is not always possible to avoid

this latter form of bias, it is important, when comparing DFSs, to clearly define the basis of

evaluation and to state its limits. This is the purpose of the remainder of this section.

5 We will be using the following terms and metrics in our description of DFSs in section 2.3, in our

characterization of Roe in Chapter 3, and in evaluations in Chapter 7:

3 * Availability

* Consistency

3 * Performance

0 Reconfigurabilitv

I * Resource utilization

3 * Transparency

The intent of this set of measures is to capture and quantify, where appropriate, key distributed file

3 system properties. These measures have all appeared in the literature in one form or another (see,

for example [Watson 81], [Saltzer 79], [Cheriton 84], [Lantz 86], [Walker 83a], [Nelson 88]).

However, this is the first time that they have been considered together as a means of evaluating

DFSs.

2.2.1. AvailabilityI
Availability is a measure of the ability of a DFS to provide service despite failures in the underly-

3ing hardware. We define availability as the fraction of valid user requests that are successful.

Here a valid request is one that could be expected to succeed if all components of a DFS were

3 accessible. For examp.1e. enumerating a directory and opening files that are not in use are valid

I
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requests. Attempung to open a file with conflicung access is not a valid request.

Our measure of availabilitv focuses on the behavior of a DFS in the presence of faults. It does not I
address the issue of operations which fail because of concurrency control and other algorithmic

sources. Performing a detailed evaluation of the availability of a DFS requires both knowledge of

usage patterns and a model of failures. These issues will be addressed in Chapter 7.

The term reliability is sometimes used in place of availability in the literature.

2.2.2. Consistency

Consistency, for our purposes, is taken to mean that the results of operations are predictable, and

that all users see the same result. In particular, write operations either completely succeed or fail 3
without a trace, and later reads show the result of the successful write operations regardless of host

failures, network partitions and so on. These two aspects of consistency are often referred to as 3
atomicitv and seria!izabiity (section 2.5).

The consistency of a DFS can be characterized by enumerating the conditions under which these I

properties hold. 3
2.2.3. Perforriance

There are two aspects to perform-ince:

(I) Throughput: The average rate at which sequences of operations (such as opening a file U
or reading a block) can be performed.

(2) Laten,:v: The mean time that it takes for a single operation to return a result.

In either case, the result is dependent on the operation requested, on the underlying OS and 3
hardware resources, on the configuration of the DFS, and on other operations in progress. Arriv-

ing at accurate performance figures and understanding the effects of architectural decisions I
requires both controlling these factors and having an understanding of the usage patterns presented

to a DFS.

I
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I
2.2.4. Reconfigurability

IReconfigurability is a measure of the ability of a DFS to adapt to changing usage patterns, to

failures, and to changes in the configuration of the underlying networks and hosts. Examples of

reconfiguration include moving files or requests between hosts to balance resource utilization,

incorporating new resources, and rerouting requests to failed components. Factors that influence

the reconfigurability of a DFS include the granularity of movement allowed and the information

3 available to aid in decision making.

We will characterize the reconfigurability of DFSs in terms of the granularity of reconfiguration

supported, the effectiveness of load balancing algorithms, and the types of failures handled.

3 2.2.5. Resource Utilization

3 A distributed file system makes use of disk, network, and CPU resources in servicing requests.

Minimizing and balancing demands on these resources allows a DFS to support more users, or can

decrease the impact of a DFS on other applications. We use the measure resource utilization to

capture this aspect of DFS operation. We will be characterizing the resource utilization of DFSs

3 in one of two ways:

(1) Usage as a fraction of the total resources available on a host for each type of resource

needed. Resources of interest include disk storage, disk bandwidth, network bandwidth,

and CPU cycles.

(2) Usage relative to that of a simple central file server implementation.

3 The first measure provides useful information on bottlenecks in a design, and on the effect it will

have on other users of these resources. The second can be used to estimate the resource cost of

various architectural and implementation decisions (for example, the resource overhead of distrib-

3 uted locking or of data replication).

I
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2.2.6. Transparency

A transparent DFS is one that allows objects to be created and accessed by a user without con-

straints on the name, the location of the user or object, and with no knowledge of the 3
configuration of the underlying system. Transparency has been decomposed as follows

[Walker 83a3: 3
* Location transparency: The name of an object does not determine its location.

• Name transparency: The meaning of a name is independent of the user's site. I
* Semantic transparency (also referred to as semantic consistency): The meaning of an

operation is independent of the site from which the request is issued.

Other aspects of transparency that may be used to characterize DFSs include: 3
" Access transparency: Objects may be accessed in the same way independent of location.

" Failure transparency: The masking of failures that occur during use of the DFS.

" Implementation transparency: The method or results of accessing an object do not 3
depend on the implementation of that object or of the resources used to support it.

The aspects of transparency that we have outlined here impact on the other measures that we have I

described. For example, limits on name and location transparency will typically affect the I
reconfigurabilizy of a DFS, and limits on implementation transparency may in turn limit the tech-

niques used to improve availability. For each of the DFSs presented in section 2.3, we will I

describe the architectural features that affect various aspects of transparency and also describe,

where possible, how this affects other measures. 3
2.3. Existing Distributed File Systems 3
This section surveys existing distributed file systems. We do not attempt to provide a complete 3
enumeration of existing DFSs, but rather present a handful that are representative of the

approaches that have been used. We emphasize DFSs that attempt to address the transparency, 3
availability, reconfiguration, performance, and user model aspects of our thesis statement. I

I
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I
2.3.1. Helix

I A common view of distributed systems is as a collection of services that are available to user

applications. This model (often referred to as the client-server model), leads to the notion of file

servers that are relatively independent of clients. These services provide file and block storage.

3 Some also provide support for directory structures. Helix [Fridrich 84] is a distributed system that

incorporates one example of such a file service.

I Helix is organized as a collection of servers that provide capability-based access to objects under

their control. Servers manage volumes, which are logically autonomoue uniLs of storage. There is

Itypically a one-to-one correspondence between a volume and a physical disk. Volumes contain

files and directories. Files contain uninterpreted data that may be read and written by clients.

Directories are repositories of capabilities, and allow users to associate names with files and other

3 directories. Capabilities encode information on object location and access control. The intent is

that volumes be highly autonomous, so capabilities in a directory, refer to objects on the same

volume (no cross-linking is allowed).

Helix supports atomic transactions that may include files on multiple volumes, with two-phase

commit protocols being used to ensure consistent results (section 2.5). One writer/multiple reader

locking is used for concurrency control, with the addition of support for access to snapshot copies

of a file [Fridrich 81].

I From a client's point of view, the effective availability of Helix is the probability that all Helix

servers that the user needs are accessible. There is no support for increasing availability by repli-

cating important resources. This would be difficult in the current architecture, given the require-

ment that directories refer to objects on the same volume.

This requirement, along with the location-dependent capabilities used by Helix, means that names

3 at both the pathname level and capability level are not location transparent. Objects must remain

on the server where the) were created. This eliminates any possibility for reconfiguration. On the

I other hand, this approach ensures that if a server is accessible, all objects on it will also be

I
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accessible.

Two systems that take an approach similar in spirit to the one used by the Helix file service are U
the Cambridge File Server [Birrell 80, Mitchell 82] and the Xerox Distributed File System 3
(XDFS) [Mitchell 82,Sturgis 80]. The Cambridge File Server is also capability-based, but is

optimized for fast, simple transfers and only supports atomicity on a single file basis. XDFS was 3
designed to support database research. It provides byte-level locking and extensive facilities for

transaction management. 3
Svobodova surveyed a number of server-based systems [Svobodova 84] and discussed desirable

characteristics of such systems. Her conclusions were that a high level of abstraction, atomicity

across multiple files, integration of local and remote storage, and replication are useful file server

properties.

2.3.2. NFS I

One alternative to a server-based approach is to patch remote directory trees into the local name 3
space. This allows the same access methods to be used independent of where a file is located

(access transparency). Sun Microsystem's NFS (Hatch 85,Kleinman 86,Lvon 85] is an example 3
of such a DFS.

NFS allows UNIX file systems on remote machines to be "mounted" in a local UNIX directory,

in the same way that local file systems may be mounted. These remote file systems may be

mounted at an arbitrary point in the local naming tree, and then are accessed by the user with

most of the same operations that would be used to access local files. Each kernel maintains a j
mount table that describes where in the naming tree file systems are mounted. File systems are

generally mounted as part of the boot sequence, although they may also be mounted manuaLy. 3
When a request to access a remote file is made, the local UNIX kernel contacts the remote kernel 5
to read the appropriate blocks. The local kernel maintains a cache of blocks read to minimize

server traffic and to increase performance. Updated blocks are also cached locally, and eventually 3
I
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(within 30 seconds) written back to the remote host. NTS uses stateless protocols to decrease

3 complexity and to simplify crash recovery. No state (beyond caching to improve performance) is

maintained on the remote host, and so concurrency control is not supported by NTS. Applications3 requiring concurrency control for NTS files either implement it themselves or use a separate lock

management semice.

NTS can, with a careful choice of naming and mounting conventions, provide name transparency3 for most files (the root file system and some administrative file systems are always local to a host).

This, combined with the access transparency described earlier, allows a user to run applications5 Iand access files independent of relative user and file locations. Users can take advantage of the

file resources of other hosts without needing to know the details of their location.

U NFS does not, however, provide complete location transparency. A UNIX file system provides3 support for a complete subdirectory of the naming tree (excluding other file systems that may be

mounted in this subtree). All files in the subtree reside on this file system, and so are bound to the

host (and disk) supporting the file system. Binding sections of the naming tree to a file system

n a.''s that the resources available !o users of that tree are limited to those on that file system.3 Limitations in storage space and processor capacity can crop up in unexpected places.

Reconfiguration to correct problems or improve performance is difficult, because of both the

3 forced grouping of files and the relatively static nature of the mount table.

1 The stateless server approach used by NTS allows it to provide limited failure transparency. If a

server fails, clients are simply suspended until the server is available again.

I The availability of an NTS-style system is less than that of a host running alone. Users will gen-

erally require access to multiple machines to perform their work. The effective availability is the

probability that all required machines are accessible.

3Consistency (or rather, the lack of it) is also a problem in NFS. NFS delays writeback of updated

cached blocks to improve performance. This allows transient cache inconsistencies to arise, and so

u t r-s on different host, can see inconsistent data. The stateless nature of NTS protocols precludes

I
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the incorporation of concurrency control mechanisms into NTS. 3
AT&T's RFS [Hatch 85, Rifkin 86] and COCANET [Rowe 82] also take the approach of mount-

ing remote file systems into a local UNIX naming tree, although both of these DFSs forward I
requests to remote systems and maintain state in order to retain UNIX semantics.

2.33. Sprite

Sprite [Nelson 88,Ousterhout 88] is a network operating system being dcveloped for the SPUR

multiprocessor workstation. Sprite provides users with a UN-IX-like environment, including a file 5
system that may be shared among machines. I
The Sprite file system is organized as a collection of domains. Domains are similar to Unix or

NTS file systems in that each domain implements a subtree of the name space and all files in a 3
domain reside on a single server machine. Each client kernel maintains a prefix table that pro-

vides hints on the server supporting a subtree. Lookup proceeds by finding the longest prefix

matching a given file name and then forwaraing the remainder of the name to the server support-

ing the prefix. Special renmote links are used to mark domain mount points. If the location of a 3
server isn't known or if the prefix table entry for a prefix is invalid (because the domain has

moved or been replaced), the client kernel broadcasts the prefix to all servers. The server manag- 3
ing the tree replies and the prefix table is updated. This allows domains to be moved dynamically. I
A major focus of the Sprite file system is caching. This was prompted by the continued growth in

workstation memory size, and by a study showing the performance benefits possible with even a

moderate-sized file cache [Ousterhout 85]. The Sprite file system, like NTS, uses main memory

block caching at both remote servers and clients. Sprite, however, guarantees that all users access- 3
ing a file simultaneously will see a consistent view of the data in the file, even in the presence of

caching and multiple concurrent writers. Sprite client kernels contact the server supporting a file

on ever open and close of that file. This is to both validate locally cached data and to allow the

screr to detect concurrent sharing of a file. If the server finds that an open for write is requested 5
v hile other clients are using the file, it disables client caching on the file and forces all operations I

I
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I to be forwarded to the server. This allows the server to enzure consistency.

The Sprite file system maintains a considerable amount of state for ongoing operations at remote

3 servers. This allows Sprite to provide richer semantics and more efficient operation than NFS, but

also results in Sprite not having NTS's failure transparency.

As with N'FS, the availability of Sprite is simply the probability that the required servers are up.

3 Prefix tables can allow Sprite to continue operation in some cases even if the server supporting the

root domain is unavailable. Sprite guarantees name transparency, since domains are mounted in

the same place in the tree by all clients, and there are no local domains corresponding to the local

file systems in NFS. The dynamic nature of prefix tables allows domains to be moved from server

to server, but the requirement that files in a given domain be moved together limits the

reconfiguration possibilities here.I
2.3.4. Andrew

F Andrew [Morris 861 is a computing environment intended for large scale networks of personal

3 computers. An important part of this environment is the Andrew file system

[Howard 88, Satvanarayanan 85]. This file system supports a UNIX-like naming tree composed of3 file s)stems local to the client machine (referred to as Virtue) and a global name space supported

by dedicated Andrew seners (collectively referred to as Vice).

U The structuring primitive in Andrew is the volume. Each volume supports a subtrec of the overall

global naming tree. All files in a volume reside on the same server. Each Vice server maintains a

Volume Location Database that dynamically maps volumes to servers. This allows volumes to be3 moved to balance server utilization and disk consumption. Studies of an earlier version of Andrew

showing that utilizaticn varied by as much as 5:1 from server to server demonstrate the importance3 of having this capability. Volumes in Andrew are typically dedicated to one user and may grow

and shrink in size depending on the disk space available on a server and on the needs of the user.

!
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As with NTS and Sprite, Andrew relies heavily on caching. However, Andrew caches on-disk

instead of in memory, and caches whole files instead of on a block basis. Caching on disk allows I

the cache to be larger and to survive crashes. Whole file caching limits the size of files that may

be accessed by a client, but UNIX files are generally small and so this is usually not an issue. 3
The decision to cache whole files was motivated by the desire for a system that would scale to

large numbers of users. Whole file caching allows interactions with Vice servers to be minimized.

When a file residing in Vice is opened, Virtue caches a cop) on the local disk and then directs all

further operations to the cached copy. When a file is modified, all work is done locally and then a 3
copy of the updated file is stored back on Vice. Clients caching a copy of a file assume that the

cache is correct. Vice keeps track of where copies of a file are cached and notifies clients to 5
invalidate their cache if the file is updated. This mechanism doesn't guarantee consistency if a file

is used concurrently by multiple clients, but it does support consistency for serial access. I

Performance comparisons betAeen NTS and Andrew show that Andrew suffers from higher latency 3
at low., loads, but performs much better a, high loads, and so can support more users per server.

Both of these characteristics are due to the use of whole-file caching. Resource utilization of the 3
network, server CPU, and server disk bandwidth are all lower for Andrew. I
The Andrew file system supports the replication of read-only volumes. This can be used to pro-

vide higher availability for volumes containing system executables and other slowly changing files. 3
There is currently no support for replication of read-write volumes; the availa)iih.y of the5.

volumes is that of their server. 3
The "serial access" consistency provided by Andrew is somewhat stronger than that provided by 3
NFS, but weaker than that provided by Sprite. Andrew provides name transparency for files stored

in Vice but not for files in file systems local to a client. The volume structure used by Andrew 5
provides for a higher degree of reconfigurability than NTS, despite the limitations on location tran-

sparency imposed by the need for all files in a subtree to reside on the same volume. I

I
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The Cedar File System (CFS) [Giffoid 88] also caches on a whole file basis. The primary use of

CFS is to support program development. Concurrent file update is extremely rare in this environ-

ment and developers are usually interested in a static snapshot of a set of files. Because of this, it

is reasonable for CFS to support only immutable files (files that cannot be changed once created).

Updating an immutable file results in a new file being creced. This neatly sidesteps cache con-

sistency problems.

I CFS supports the replication of immutable files on a directory-by-directory basis. This is done

using a background daemon that periodically copies files added to a directory to replica servers.

The immutabilit\ of files makes this a relatively simple process.

1 2.3.5. LOCUS

3 The LOCUS distributed operating system [Walker 83a, Walker 83b] emphasizes network tran-

sparency, availability, and performance on a local area network. Work has also been done to

3 extend LOCUS to the Internetwork environment [Sheltzer 85].

3 LOCUS is an extension of BSD UNIX, and so supports a UNIX-like hierarchical file system. The

file system is organized around logical filegroups. Logical filegroups resemble UNIX file systems,3 in that each one implements a subtree of the global file space. These subtrees are glued in place

using the UNIX mount mechanism. The resultinv mount table ic ctored at each host in the net-

3 work and is used in pathname resolution and file opens.

3 LOCUS allows files to be replicated to increase availability. To support replication, LOCUS asso-

ciates one or more physical containers (UNIX file systems) with each logical filegroup. A file or

3 directory in a logical filegroup may be present in any subset of the containers for its filegroup.

Access to files in a logical file group is synchronized by the current synchronization site (CSS) for

1 the file group. Updates are made to a copy of the file selected by the CSS and then propagated to

the rest of the copies. Updates to a file are atomic.I
I
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LOCUS guarantees consistency of replicated files and directories in the absence of partitions. If a

partition occurs that splits the physical container f,)r a file group, CSSs for the filegroup are esta- 3
blished in each paritiuon. This ensures the availability of the file group in both partitions, but may

allow inconsistencies to arise. LOCUS guarantees that inconsistencies resulting from updates dur- 3
ing partitioned operation will eventually be detected (and in some simple cases, resolved

[Parker 82]), but provides no means for notifying users that they may be accessing an inconsistent

copy.

LOCUS is one of the few existing distributed file systems that attempts to provide support for

heterogeneity. LOCUS supports hidden directories that stand in for machine dependent files (such 5
as executables). A hidden directory contains a different version of the machine dependent file for

each architecture supported. The correct version is selected using a per-process context. It should 3
be noted that the heavy reliance of LOCUS on UNIX would make extensive support for operating

system hcezrogencity difficult. NTS is another DFS that has atzmpted to address heterogeneity. 3
This has met with very limited success, both because of NFS's close ties to UNIX and because of

the stateless protocols used by NFS. I

A major strength of LOCUS is the high availability that results from replication and operation dur- 3
ing partitions. This high availability is at the expense of consistency during partitioned operation.

The replicated global mount table used hy LOCUS generally ensures name transparency, although 3
this can break dovn in the presence of partitions. The use of the CSS provides implementation

transparency. LOCUS provides a somewhat higher degree of location transparency than NFS, 5
since files in a logical filegroup can be located on any of the physical file systems supporting the

logical filegroup. This in turn provides a greater degree of reconfigurability. LOCUS does not 3
provide complete location transparency, though (files are bound to the logical filegroup were they

are created), and so there are limits to the amount of reconfiguration allowed. 3
I
I
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I 2.3.6. IBIS

The IBIS file system [Tichy 84 ukes a complete]% different approach from that used by LOCUS

and most of the other DFSs we have discussed. Rather than patching together a global name

space out of a number of subtres, IBIS supports its own name space. This name space is

independent of the physical and logical locations of files and directories. The IBIS glob.l direc-

tory supports a U.NIX-like hierarchical directory, tree. Each node of the directory is a separate

g IBIS file. IBIS files (and hence directory nodes) are replicated.

Replication is done in IBIS using a primary, copy, algorithm, with updates going to a copy, desig-

nated as the primary, and reads going to any copy,. When a primary is ui dated, copies can eitier

be updated or invalidated. There may be some delay between updates being made to a primary,

and propagation of updates to copies, and so transient inconsistencies can arise. If the primary

copy- of a file is unavailable, a temporary, primary, is elected. In the presence of partitions there

may be several active primaries, thereby causing inconsistencies. Temporary and actual primaries

pare merged (if possible) Ahen communication is reestablished.

Directory lookup requests go to the local copy of a directory node if one exists. If a local copy-

doesn't exist, one is created using the primary copy of the node. Each entry in a local directory

contains a pointer to the primary' of the file or directory, referenced by the entry, and to a local

copy (if an%') Referencing a file also, by default, causes a local copy to be created. This differs

from the on-disk cache used b% Andrew in that these copies are (optionally) updated as the pri-

mary copy changes and may be accessed and updated even if the primary is unavailable.

I IBIS provides complete location transparency. Because of this, the IBIS architecture would be

able to support a high degree of reconfigurability. IBIS uses location transparency to improve per-

formance by replicating copies of files and directories on nodes where they are used. IBIS also

supports a manual operation that allows the location of a primary, copy, to change (migration), but

doesn't provide support for automatic reconfiguration of this sort.

I
I
I



I
243

The availjaliin of IBIS depends on the relauve proportion of reads to updates, on whether copies

of a primar, are updated or invali,.ated on update, and on the depth of director. trees (since each

node is another component that must be accessible). IBIS provides name transparency in the

absence oi parutions. However, in the presence of partitions inconsistencies can arise in both files

and directories. The performance of IBIS is difficult to evaluate. The creation of local copies 3
should result in good performance for files with a high ratio of reads to wvites. However, per-

formance can be expccted to suffer for flies with mixed opens for read and write (due to te crea- 3
tion and invalidation of local copies).

2.3.7. ,IULTIFILE

MULTIFYLE [Gait 861 is a distributed file service that runs on an Ethceret-based LAN of 3
engineering workstotons. NTULTIFILE uses multicast to distribute file open requests. with the

first file responding handling the request. The remaining available copies shado:i this copy (per- I

forming operations sent to it on themselves \;hen necessary) and take over if it xt!ils or is too slow.

MULTIFILE provides high availabilit\, implementation transparency, location transparency, and

failure transparency. There is no support in MNULTIFILE for user-level directories, no consistency 3
guarantees, and no concurrency control. These are all left to applications. Another drawback of

MULT1TILE is the relatively high resource utilization implied by multicast and shadowing. I

2.4. Naming I

Saltier [Saltzer 79] gives a detailed discussion of centralized directory structures for resolving

user-chosen symbolic names into object references. He discusses hierarchical directories, contexts,

binding, aliases, and so on. In a distributed environment, additiona1 issues arise. These include 1
generating names in a distributed fashion, providing support for network transparency, fault toler- U
ance, object location, performance, and reconfiguration. Section 2.3 included a discussion of nam-

ing techniques used by existing distributed file systems. This section describes other work that is I

relevant Lo naming in distributed file systems. We emphasi/e the transparency and distribution

I
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aspects of this work.I
2.4.1. R*

t The R* distributed DBMS [Lindsay 81] ensures that object names gene rated in a distributed

m fashion don't conflict by embedding the creation site in the name. Names have the form

user(4user site.objectnameCacreation_site. The creation_site field is also used when looking up

3 objects. Each site maintains catalog information on objects currently at the site. In addition, a

pointer to the new site is left behind for objects that were created at the site but have moved.

5 Hence lookup requests sent to the creation site can always return either the entry or the location of

the entry.

I This approach to aame generation and lookup has the advantage of being simple and of requiring

little interaction between sites. Drawbacks are that users are required to know the creation site of

an object (objectionable both from an administrative and a transparency viewpoint) and that mov-

g ing an object decreases its availability (both its creation site and the new home must be available

for a lookup to be guaranteed to succeed).

IR* caches catalog information on accessed objects to aid in locating objects and in planning, and

to decrease access time. No attempt is made to ensure that cached information remains consistent.II
Instead, it is treated as a hint that w.ill be discarded if incorrect. Catalog entries corxin version3 numbers that are used to verify that the hint is valid.

A local area network DBMS developed at IBM Yorktown [Hailpern 82] uses the R* naming

I scheme, but treats even the creation site given in the name as a hint. To resolve a name, this sys-

tem first checks the local catalog, then the local cache (for hints), then the creation site, thenI"well known" servers, and finally does a broadcast to see if the object exists anywhere in the

g accessible network.

I
I
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2.4.2. Caching and Hints U
Both of the systems described in the previous section use caching and hinL: to improve lookup

behavior. A stud) of distributed directory' caching in LOCUS [She]Lzer 86) showed that even a

relatively small 40 page directory cache gave a surprisingly high hit ratio of 95%. Further, the

nature of references and updates in LOCUS was such that maintaining cache consistency intro- 3
duced little overhead. A more comprehensive study of directory caching in the UNIX environ-

ment s presented in Chapter 7. 1
Terry' has studied the effectiveness of caching hints under various conditions [Tcrr 871, and 5
presents an algorithm for determining effective caching strategies. His approach is to attempt to

maintain a given level of cache accuracy (instead of attempting to maintain a high hit ratio), with 5
the desired level of accuracy depending on the relative costs of accessing uncached data and

recovering from a bad hint. 3
2.4.3. Clearinghouse 3
Clearinghouse, a name service developed at Xerox [Oppen 81], also structures names so that they

contain location information. In this case, the location information is logical rather than physical.

Names in Clearinghouse have the form local.nameadomain@organizaion. These names form a

three level naming tree. Names are partitioned by domain and organization. A domain server

contains information on all objects in its domain. It also contains a table describine the servers

supporting the organization level and organization servers contain information on all domain

servers in the organization. This hierarchically structured location information allows a client in 3
contact with any domain server to locate any other domain server (and hence any object refer-

enced by Clearinghouse). 5
Clearinghouse servers are usually replicated to improve availability. The lack of actual location

information in names allows his to be done transparently. Updates to replicated information are

propagated using the mail system. This may result in transient inconsistencies. Information from 3
Clearinghouse is regarded as a (usually accurate) hint.

U
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Drawbacks of Clearinghouse for DFS use include its lack of consistency and the fixed structure

3that it imposes on names.

3 2.4.4. Cronus

Cronus [Schantz 86] is an object-oriented distributed operating system made up of a collection of

services. One of these is a directory service that may be used to catalog any object in the system,

5 The directorv service supports a tree structured name space (similar to UNIX). Each object in

Cronus is named by a unique identifier (UID) that is assigned to the object when it is created.

The director)- service provides a mapping from an absolute hierarchical name to a UID. Most

objects in Cronus can be migrated, so the UID does not usually contain useful location informa-

dion. Broadcast is used to find the object with a given UID. Mappings from UID to host are

cached to alleviate the considerable overhead of broadcast.

I Each node of the directory- tree is an object in its own right and can be migrated as desired (a

p manual operation is provided for this). Directory nodes may also be replicated. The primary

goals of the Cronus directory service are high availability and performance. Because of this, there

if is no concurrency or consistency control for replicated directories, and it is possible for incon-

sistencies to arise due to partitions or concurrent operations. If this happens, nodes are locked

3 until repaired manually (in practice this rarely occurs).

Cronus attempts to cluster directories to minimize the number of hosts necded to traverse a path.

This is done by dividing the directory tree up into a seldom-changed "root portion" and a number

g of subtrees (this division is referred to as a "dispersal cut"). The root portion is widely replicated

and an attempt is made to place directories in a subtree on the same hosts. This helps to increase

3both performance and availabihty.

The location transparency supported by the Cronus directory service makes it highly

reconfigurable. Directories can be moved as needed to balance load and improve performance,

and can be replicated to increase availability. Cronus provides name transparency in the absence

of partitions and concurrent updates, but because of consistency limitations makes no guarantees.

I
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The use of a broadcast mechanism in name resolution and object lookup can make these expensive

operations. This will be particularly true as the size of networks running Cronus grows. 3
2.4.5. Structure Free Name Distribution

All of the distributed file systems and name services that wc have described so far use the struc-

ture of the name space to aid in distributing responsibility for resolving names and locating

objects. Terry has proposed a design that is structure independent [Terry 86]. His approach is to 3
divide the name space up into a number of contexts, each of which manages names that match

some clustering condition. Clustering conditions can be any arbitrary function that spans the name 5
space and provide a mapping from name to context. Context bindings that map contexts to actual

sets of servers are also required. Terry's approach supports a wide range of naming structures and 3
allows responsibility for names to be allocated and reallocated as needed, independent of the struc-

ture of the name space. It allows a particularly high degree of reconfigurability. 3
The Emerald programming environment [Jul 88] uses a combination of forwarding addresses and !

broadcast to maintain an unstructured name space. When an object is migrated, a timestamped

forwarding address describing its new host is left behind. Path compression techniques based on

timestamp ordering [Fowler 85] are used to keep the chain of forwarding addresses for objects

that move frequently short. If a forwarding address can't be used because a host is inaccessible, 3
broadcast is used to locate the object. I
2.5. Consistency and Replication

This section examines the problem of presenting clients with a consistent view of data. There are

two aspects to the problem: 1) maintaining a consistent internal view of data; and 2) maintaining 5
mutual consistency between copies of replicated data. S

I
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1 2.5.1. Internal Consistency

3Serializable transactions have gained widespread acceptance as a general technique for insuring

consistency in the presence of failures and concurrent use of data. A transaction is a series of

S operations on a set of resources. Transactions are guaranteed to be atomic, in that they either exe-

cute completely or fail totally, leaving no trace of their actions. Serializability means that transac-

tions appear to execute one after another, with no intermediate state from one transaction seen by

another. These two properties ensure that the system always appears to be in a consistent state,

regardless of failures and the actions of other software. This greatly reduces the possibility for

software faults due to the interaction between components and masks the occurrence of hardware

faults by providing automatic recovery.

3 Serializability is provided in the presence of concurrently executing transactions using concurrency

control mechanisms. There are two mechanisms in widespread use: two phase locking and time-

stamp order. Two phase locking mechanisms [Bernstein 821 place a lock on any, items referenced

by a transaction. Transactions trying to place conflicting locks (for example, a write lock on an

item with a read lock) are forced to either abort or wait until the earlier transaction has committed

(finished). The transaction is run in two phases, with the first phase acquiring all locks that are

needed and the second phase performing any updates required and releasing the locks. This two

3 phase behavior ensures that transactions see either all of the results of other transactions or none

of them.

I Timestamp order mechanisms [Bernstein 82] place a uniquely ordered timestamp on each transac-

tion. Writes by a transaction are accepted as long as no other transaction with a larger timestamp

has accessed the data being written. Otherwise, the write is rejected and the transaction must be

aborted and restarted. Similarly, reads are allowed as long as no transaction with a larger time-

stamp has updated the data. Timestamp ordering performs well when there are few conflicts

3 between transactions, but it can result in excessive aborts and restarts when there are many

conflicts or when transactions run for long periods.

I
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Atomicity is typically guaranteed using two phase commit and either logging or shadowing. Two 3
phase commit [Lampson 80] is done as follows: When a transaction has finished its reads and

updates, a site is picked to coordinate transaction commit. This site contacts all sites that have

-':n i2dltzc 1-.y 1h- , n.,tion a-" - therm' ,,"' t- perar !,, commit. These sites write r, -'r

from the transaction to stable storage (typically two locations on secondary storage) so that infor-

mation on the transaction will survive processor crashes and other faults. This is the first phase.

In the second phase, the site coordinating the transaction decides to either commit or abort the 3
transaction, depending on the responses from participating sites, and writes this information to

stable storage. It then requests ali participating sites to either commit the effects of the transac-

tion, making them visible to other transactions, or to abort them. There are several variations on

two phase commit that attempt to increase the probability that a decision can be made even in the 3
presence of a failure of the coordinating site [Dolev 82,Skeen 811. !
Two phase commit requires sites to keep intermediate information on the changes made to data, to

reliably store the status of a transaction during the commit phase, and to restore the old version of 3
data if the transaction aborts. Logging approaches do this by maintaining a log of operations on

data, including the decision to commit or abort. If a crash takes place, data values can be recon-

structed using the log. An alternative is shadowing. In shadowing, all work is done on a copy of

the data. This cop) replaces the original data at commit time. i

Nested transactions [Moss 81] are an extension of the transaction mechanism described above. 3
With nested transactions, an application can be composed of a hierarchy of multiple transactions,

with these transactions sharing data (using lock inheritance rules that ensure serializability) and 3
committing atomically. There are provisions in nested transaction models for the overall transac-

tion to commit even if some subtransactions fail. 5
2.5.2. Mutual Consistency of Replicated Data 3
Replication (maintaining multiple copies of an object) can be used to increase availability and,

under some conditions, performance. This raises the problem of insuring that copies contain the

I
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same data (that they are mutually consistent). Methods for doing this generally fall into one of

Ithree categories: unanimous update, primary copy, or voting. Unanimous update algorithms allow

reads from any copy, and force updates to be propagated to all copies. If a copy is down, updates

are saved and applied when it becomes available. This approach, used by SDD-1 [Hammer 80],

allows efficient access to replicated data when there is a high proportion of reads, but doesn't

preserve consistency in the presence of partitions.

I Prima -v ccpy algorithms [Garcia-Molina 82,Stonebraker 79] elect a single copy to receive both

reads and writes, with the remainder of the copies being updated by the primary and acting as

backups. If the primary fails, the remaining copies elect a new primary'. Primary copy, by itself,

doesn't preserve consistency in the presence of partitions. If a further requirement is added that

the majority of copies are present in a partition for operation to continue, consistency is preserved.

3 Voting algorithms [Gifford 79b] assign some number of votes to each copy and require that read

and write operations collect some number of votes (the read and write quorums, respectively)

before operations can proceed. Setting the sum of the read and write quorums to be greater than

the total number of votes ensures that consistent data is always seen. Other algorithms can have

I performance advantages over voting in many configurations, but voting operates correctly eNen in

the presence of partitions. There are several variations on voting that attempt to increase avail-II
ability for common sequences of failures [Davcev 85,Jajodia 87] or that make use of type specific

information 'Herlihy 84].

2.53. Relaxing Consistency RequirementsI
There are a number of other mutual consistency algorithms that place restrictions on the types of

failures that may be seen, or that relax consistency requirements. Available copies [Bernstein 84]

and regeneration [Pu 86] are both unanimous update algorithms that assume the absence of net-

5work partitions. In available copies, copies that are found to be inaccessible are marked invalid

and updated when the site holding them rejoins the network. Regeneration goes even further and

jut diwscard inaccessible copies, creating replacements on accessible nodes. The version vector

I
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scheme used in LOCUS ?, Valker 83b] allows inconsistencies to o'-ur during partitions, but uses

information contaned in version vectors associated with each copy to detect inconsistcr.-i-s and, if

possible, resolve them.

2.6. File System Reference Patterns i

Knowledge of file and director reference patterns is useful in both the design and operation of a

distributed file syscm. During the design of a DFS, reference information helps in understanding

the effect of architectural design decisions. In an operational file system, reference patterns can be

used in reconfiguring to improve performance, availability, and help meet other goals.

Stud':c of file system reference patterns can be grouped into three areas: long term reference stu- !

dies, short term file reference studies, and directorn reference studies. Previous work in each of

these areas is surveyed below. 3
2.6.1. Long-Term Reference Studies 3
Early studies of file reference patterns concentrated on long term (days or weeks) reference pat- i
terns that could be used in designing archival migration policies.

Stritter collected information on reference patterns in an IBM mainframe environment

[Stritter 77]. Over a period of a year he recorded, for each file on the systems studied, whether or 3
not it had been referenced in a given day. He found that there were no obvious long term trends

in access rate, no strong correlation in interaccess intervals, and that the interaccess intenals could 3
be fit by an exponential distribution. Smith analyzed these data in greater detail [Smith 81a] and

found that time since last reference, file size, file type, and file age were useful predictors of next 5
access. Lawrie et al. hav, collected similar usage data from a Cyber system [.awie 82].

Satyanarayanan took a static snapshot of the file system on a DEC-10 and used it to study recent 1
file access history [Sat\anaravanan 81]. He collected information on file age vs. siue and type. n

He found that most files werc small (5 blocks or less) and ,acre gcnerall\ not very old (I month or i
I



I
33I

less since the last change). He found significant differences based on the type of file. In particu-

3 lar, source files tended to be smaller and used longer than output files, program source was used

longer than document source, and short files tended to be used longer.

2 (2 qhort-Term File Reference Stiudier

Recent wrk has concentrated on short term (on the order of seconds) file reference patterns. This

has been motivated by the prniferation of local area networks. The relatively small time delay

and high bandwidth of LANs makes migration )n a much smaller time scale feasible. Some of

this work has focussed on block level reference patterns for use in block caching [Smith 85] or

improving file organization [Hu 86]. More interesting from the point of view ot a diqtributed file

system designer are studies of logical (operation level) reference patterns.

3 Porcar studied what was piia2y b.3,ch activity on IBM mainframe systems [Porcar 82]. The

data he collected included when the file was opened, the user, the fraction of the fiie accessed, and

the size of the file. He found that few opens resulted in the entire file being read and that intero-

pen times were short, with more than 80% being less than an hour. He was able to group files by

3 type (temporary, permanent, shared, and system) and found, as with earlier studies, substantial

differences between the classes.

U Satyanarayanan measured short-term reference patterns on an interactive DEC-10 system

3[Satyanarayanan 83]. He collected histograms of interarrival times and used them to construct a

synthetic driver for a file system simulation. This information was for the system as a whole, and

3 contained no information on individual files. He also collected information on lifetime and on the

fraction of open requests for system, temporary, and user files. He found significant differences in

read/write rates and lifetimes between the three classes. For example, 2/3 of opens were for read,

but only 4% of opens for writes went to system files; 2/3 of opens for write went to temporary

3files; system files lasted almost forever; and temporary files rarely lived more than a day. These

results indicate the importance of taking into account the purpose of files in making placement and

migration decisions.

I
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Ousterhout et al. collected and analyzed data on 4.2BSD UNIX file reference patterns

[Ousterhout 85>. They collected a trace of open, close, sock, unlink, truncate, and execve opera- 3
tions and then used them to derive information on read/wTite characteristics, file sizes, and data

lifeimes for files in this environment. The authors found that the majority of files were small (a 3
few KBytes) and accesscd sequentially. Most were open only a very short time (ess than 0.5

seconds) and had a short lifetime (80% lived less than 200 seconds). Their study did not include 3
paging activity, inode access, and directory- lookups. They noted, however, that "directory look-

ups appear to account for a substantial fraction of all file system activity," and that the impact of 3
directory lookup overhead could be expected to increase as block and cache size continue to

increase. 5
The data collection package used by Ousterhout et al. has been extended by Zhou et al. 3
[Zhou 85]. Zhou's package collects detailed trace information on opens, closes, reads, writes, file

renames, deletes, process forks, executes and exits. Directory operation,, ,, bcic lik., paging, 3
, inode actvity are not traced.

2.6.3. Directory Reference Studies

None of these previous studies collected information on directory access patterns. This informa- I

tion is not needed in systems that are concerned primarily with migration to manage disk storage,

since files are typically much larger than the directories that reference them. However, a DFS

may also migrate and replicate directories to improve performance and availability. In a DFS with 3
non-trivial directory structures, the overhead of directory access is an important performance con-

sideration. Evaluating directory design decisions in the absence of data on reference patterns is 3
difficult

The only directory reference information that we have bas been collected incidentally in other stu- S
dies. Leffler found that 40% of BSD UNIX system call overhead was due to name resolution

[Leffler 841. Sheltzer et al. found that half of all network traffic in LOCUS was in support of

name resolution [Sheltzer 86>. These resillt demonstrate the importance of directory reference 3
I
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overhead Mogul found that an average of 13 entries were searched per lookup in BSD UNIX

systems [Mogul 6a,'. suggesting that directories are small, thus easily moved.

3 Shelyer et al. also measured directory read/write ratios and investigated directory caching as part

of an effort to extend LOCUS to the InterneL They found that only 2.5% of directory references

3 were writes, ancd that directory references tended to be highly localized.

Chapters 5 and 6 examine the issue of short-term file and directory reference patterns in more

detail, and present the results of studies we have made.

2.7. File Assignment and Migration

I A significant amount of work has been done in the database field on the problem of placing repli-

cated data in a network to minimize various costs associated with accessing and maintaining data.

This problem is usually referred to in the literature as die file assignment problem (PAP) or as the

initia placement problem. If data may be moved after being assigned to a location, the related

problem of deciding when and where to move, or migrate, data arises. We consider each of these

5problems in turn bclok.

2.7.1. File Assignment

The file assignment problem is usually formulated as the problem of selecting file locations to

I either minimize cost or maximize performance. Storage, communication, and update costs are

examples o," costs that algorithms attempt to minimize. Algorithms that address performance

issues typically attempt to either maximize throughput or minimize response time. in the database

environment both of these approaches generally attempt to provide an optimal solution over the

lifetime of the asignmenl The benefits of increment- 1 improvements here make finding optimal

3 soluuons reasonable.

Dox, d': and Foster [Dowdy 82] provides a comprehensive survey of solutions to FAP. They note

3 that efcn ,Ath significant simplifications, FAP is NT-complete (by transformation from Vertex

I
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Cover [Garev 7, I ) ci,: s implifications include assuming infinite processor, storage, and net-

work cap LOtte, to a SeLS of files to be considered independently, and assuming Poisson

arrival rates to simplif. anal\ ,. !
An optimal solution is not always needed. If files ,an be nuigrated later on to adjust for changing

usage pa:tems, if files have relatively short lifetimes, or if quick placement is required (an impor- 3
tant characterisil in a distributed file system), an approximation heuristic will be a better choice.

A number of approximation heuristics have been developed. Jenny uses methods from graph 3
theory to find solutions with small communication costs [Jenny 8[. Vah creates and searches a

graph analogous to a game tree [Wah 80]. Murthy et al. describe a cost-minimizing algorithm 5
based on maximizine the incremental benefit of each nov, placement 'Nlurth v 831. Bannister and

Tnvedi sugcest making each new file assignment to the most lightly loaded servers to minimize 3
access time [Bannister 821. Barbara arid Garcia-Molina present heuristics for the assignment of

vote, to maximize availability [Barbara 86]. 1
.7.2. Migration Algorithms

File migrauon can be used to improve the initial assignment of files. It would typically be

invoked Ahcnever there is a change in the parameters upon which the initial placement decision

was based. For example, usage patterns of a file change over time and also provide more accurate j
information than that used for initial placement. File creation and deletion change the available

space on a device. Users change locations. I
Early work on the file migration problem was concerned with developing algorithms for migrating 3
to archival storage files that are no longer being used. The long term file reference studies that we

described in the previous secuon [Lawrie 82,Stritter 77] were used as a basis for this work. Stu-

dies on the effectiveness of long term file migration algorithms [i"awrie 82,Smith 81b,Stritter /7]

indicate that. ,kithout detailed information on file access patterns in the system, using a function of 3
file size and time since last reference (STWS) to decide v .hen to migrate a file produces good

results. 3
I
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Porc-ar used the daj that hc collected to stud) the effecuiveness of short-term migration algorithms

for files shared b% multiple users [Porcar 82]. His goal was to minimize network traffic and3 dela\. He found that multiple copy algorithms that attempted to control the number of copies by

minimizing a cost function incorporaung the cost to store a file and a dynamic estimate of the cost

3 to update the files produced the best resulLs.

Sheng investigated file migration as a way to dccrease file storage, communication, and I/O access

cosLs [Sheng 86]. She assumed infinite network and site capacity to allow files to be considered

independentl. She developed two types of policies: unrealizable optimal policies baed on Mar-

kov decision models (taking into account both past and future requests to the file) and polynomial

3 time heuristics t!hL: c::mted furre usage based on an exponentially decaying history of past

references. Simulation studies using Poisson-based arrival distributions showed a 5% to 10%

3 improvement over the optimal inital file assignment. One would expect to see greater improve-

ments as the locality of reference to files increased.

U The Emerald programming environment [Jul 88J stands alone in its use of automauc object migra-3 Lion. Emerald provides migration on first reference. Studies of simulated mail traffic on Emerald

showed a decrease in network traffic of 34% and a decrease in execution time of 22 17( over the

non-migrating system. These substantial improvements demonstrate the benefits that can be real-

ized with even very simple migration schemes.

I
2.8. Other Relevant WorkI
Other work relevant to distributed file systems has been done in the areas of accommodating

heterogeneity, interprocess communication, scaling, and distributed system instrumentation and

modelhng.

IThe file system for the Xerox Alto JThacker 79] associated a property page with each file tat

descnbcd, among other things, the type of the file. This inforniation was used by the Ahl, FTI

program to perform conversions Ahen transferring files to dissimilar hosts. Mot. '<centl\,U

-I
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properties have resurfaced as general means for associating information with files [Mogul 86b],

A capability-based netiork IPC developed at CMU and Rochester [Moore 82 provided support

for heterogcneity using strongly typed messages, with type conversion done by the IPC at machine 3
boundaries. An alternative approach, embodied in Sun's XDR [Hatch 85] and Cronus's Canonical

data types [Dean 87] is to pass data in a machine independent form, with conversion done at the

application level.

Other approaches that have been used in accommodating heterogeneity include using network ser- i

vices to loosely integrate .terogeneous systems [Black 85], hiding neterogeneitv using common

interfaces, and legislating the problem out of existence. Notkin et al. briefly describe each of

these approaches FNotkin 87]. i
Recent work on high performance IPC mechanisms [Birrell 84,Cheriton 83,LcBlanc 84] has

re>'lhed in implemeetations with machine to machine message passing times of a few milliseconds i
or less on current hardvkare. These times are much le s than the cost of a typical disk access (30 I
millisecond> ,ith current technology) and so it becomes quite reasonable to access data remotely.

The Andrew project that we described in section 2.3 has, as a primary goal, the ability to scale to 3
very large environments. The Xerox Grapevine name, mai, and authentication scrvice [Bir-

rell 82] had a similar goal Experience with Grapevine [Schroeder 84] showed that, while Gra- I
pevine was generally successful in meeting this goal, knowledge of the structure and state of the

network and of usage patterns would have helped. I
Three general approaches have been used in investigating the properties of distributed algorithms j
and systems: analytic techniques, simulation, and implementation in testbed and production

environments. j
Anai,'tic techniques are appropriate in cases where the mechanism being studied is fairly simple, it 5
can be exaiined in isolatioP, and simplifying assumptions have littl, impacL on the final result.

One area -,h-r analytic techniques have i'ecn widely used is in estimating the availability of 3
!
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vanous replication algorithms. Examples include the k-out-of-N model, which has been used to

calculate the availability of die regenertion and available copies replicatinn algorithms described

in section 2.3 [Pu 86, and the use of state and assignment enumeration to evaluate weighted vot-

I inc [Barbara 86, Smith 841.

Analytic approaches are intractable for complex mechanisms and in cases where the interactions

between components in a systein are important. In this case, simulation models are often used.

Two approaches are commonly used: queuing theoretical models and detailed simulation. Queuing

models have found frequent use in modelling distributed system performance

[Goldberg 83,Lazowska 86] and availability [Dugan 86]. Detailed simulation models have been

used to study performance [Satyanarayanan 83], availabilit\ [Noe 86], concurrency control

i [Bloch 87, and many other system properties. Both approaches described here are most useful if

they can be parameterized using data collected from an existing distributed system.

There is a very' real danger when using the methods described above of oversimplifying the system

5 being studied. This can be avoided by instrumenting and measuring an actual implementation in a

testbed or production enx ironrnent [Cheriton 83, Howard 88, Kohler 83].I
We will be usine a combination of analytic techniques, measurement of production systems, and

ifprototype implementation in our studies. Analytic techniques allow us to easily compare various

algorithms. Measuring production systems will give is information on file system usage that will

aid in evaluating designs. A prototype implementation %kill provide validation of analytic results

and give us a context for interpreting the effects of various usage patterns and architecturA deci-

3sions.

12.9. Discussion

5 This chapter ha, presented an extensive survey of work in distributed file systems, and of data and

resource management issues applicable to distributed file systems. This survey shows that, while

there are distributed file systems that provide various degrees of transparency, none is ablc to do

I
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so in a way that allows users to ignore the underlying network. IBIS comes closest in thi, regard,

but lacks facilities for ensuring consistency, for accommodating heterogeneity, and tor effectively

managing data and network resources. Other systems, such as Sprite, are able to ensure con-

sistency, but bind files together in ways that can make the underlying allocation of files painfully i
obvious and that limit the possibilities for reconfiguration. While there are powerful techniques

available for supporting transparent naming, ensuring consistency, increasing availability, and I
reconfiguring to increase performance and decrease costs, there is no general DFS framework

available for making use of these techniques. There is no real understanding of the interactions of

these techniques, of their range of applicability, or to what extent they can be used to realize a

highly transparent distributed file system.

We investigate these issues and address the shortcomings of existing DFSs in the context of the i
design and implementation of Roe, a highly transparent distributed file system. Roe provides a

general framework for supporting the data management techniques that we have described. The N
design of Roe is described in Chapter 3, and the prototype implementation is describcd in Chapter

4.

We have also seen that there are limited data available on short term file reference patterns. Stu- 3
dies of long term reference patterns and of short term reference patterns in batch environments

show dramatic differences between classes of files, but all existing short term data for interactive 3.
environments either fail to distinguish between classes or treat files in classes anonymously. There

is, i. any case, little data available to aid in understanding usage patterns in interactive environ- 1
ments. There arc no data available at all on directory reference patterns, despite indications of the

importance of name resolution in file system overhead. This makes it impossible to understand the

tradeoffs between various designs. 5
We address thi,, lack by collecting and analyzing data on file and directory references from a large

UNIX system. These studies are described in Chapters 5 and 6. We use the results of these stu- I
dies (in Chaptcr 7) to analyze the effectiveness of our DFS design and to explore general issues

Ithat arise in suipporting U'NIX using a DFS.

I
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I Chapter 3

I The Architecture of Roe,

A Transparent Distributed File System

3.1. Introduction

In this chapter we describe the design for Roe, a highly transparent distributed file system (DFS)

for a heterogeneous local area network. Roe presents to users the appearance of a single, globally

accessible file system. It uses a replicated global directory, automatic file placement and migra-

tion, file replication, and atomic transactions to provide available, consistent, and distributed files.

Unlike the DFSs we described earlier, the approach used by Roe allows it to provide full network

transparency, guarantee file consistency, and reconfigure itself to adapt to changing demands and

resources. These characteristics allow the user to ignore the presence of the underlying network

when creating and using files. This greatly simplifies the use of a network.

The environmental assumptions made in the design of Roe are described in section 3.2. Section

1 3.3 outlines the goals and guidelines that helped determine the design of Roe. In section 3.4 we

sketch out the general approach used by Roe and examine more carefully issues that affected the

design. Section 3.5 presens an architecture to implement this approach. Section 3.6 describes the

4
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advantages and weaknesses of the Roe approach and section 3.7 briefly summarizes our results. U
3.2. Environmental Assumptions

Roe is designed to run on a heterogeneous local area network. The design was motivated, in part,

by the hardware and software available on the University of Rochester Computer Science 3
Department's network. In this section we describe the characteristics of this and similar environ-

ments that have had an influence on the design of Roe. I

Heterogeneity, at both the hardware and software level, is an unavoidable chara-eristic of our 3
environment. The rapid advance in the state of the art in computer hardware, combined with

incremental network growth and the differing needs of various classes of users on a network, i
ensures this. Dealing ,,.-h heterogeneiy b,' enforcing a common hardware or software base is not

an effective solution in such an environment. We assume that the network hosts are made up of a

mixed collection of servers, workstations, and general time-sharing machines. These hosts will

typically not run a common operating system. This means that mechanisms that are intimately 1
tied to those provided by any given operating system will be inappropriate.

We further assume that these hosts are connected by a higi, bandwidth, low delay network. An

example wou... be an Ethernet [Metcalfe 76] or several Ethernets connected by high speed gate- 3
ways. While individual hosts or gateways may fail, we assume that the network itself will gen-

erally be available. We allow for the possibility of a network partition, but not for a total failure 3
of the communication medium or for hosts that become detached from the network. Our assump-

tions of high bandwidth and low delay, along with a highly available network, make it both rea-

sonable and appropriate to consider remote access to resources. I
The underlying interprocess communication (IPC) mechanisms are assumed to support asynchro-

nous typed message passing, long term connections, notification of connection failure due to host

failure or network partition, and some means of naming and locating remote processes. Thes .

requirements are all met by various existing IPC mechanisms [Moore 82, Sansom 861. I
I
I



II 43

i We assume that there is low write contention for any given file. Files in our environment typi-

cally either belong to a single user or are normally read-only files. While this assumption is

appropriate for our environment (see Chapter 5 for details), it would not, of course, apply in a

shared database environment.

Finally, we assume that all hosts that will be supporting and using Roe are under a single adminis-

trative control, and that autonomy (control over local resources) is not an issue. These assump-

tions are generally appropriate for hosts that are connected to a local area network, and allow us to

freely share the resources on the network.

3.3. Goals of the Roe Distributed File System

Roe is intended as a demonstration of the validity of our thesis statement:

I Full network transparency in distributed file systems offers significant benefits.

These benefits include increased availability, more effective use of resources, the

ability to adapt to changing demands, transparent reconfiguration to adjust to

changes in resources, a greatly simplified file system model from the

user/application point of view and, with careful design, enhanced performance over

other DFS approaches.

5 Using this thesis statement and the environmental assumptions presented in the previous section,

we can construct a more concrete set of goals for Roe. These goals are as follows:

3 . Network transparency: Our thesis statement argues that Roe should support complete

network transparency. This includes, as described in section 2.2.6, access transparency,

5 location transparency, name transparency, semantic transparency, failure transparency

(for at least some clasqes of failures), and implementation transparency. The intent is

3 that the user need not be aware of any network related characteristics of accessed files.

0 Simple user model: One potential advantage of network transparency is that it can free

Iusers from the need to understand the details of the underlying network. This allows

I
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them to develop a simple model of their environment. We ask that Roe support this

style of use. Roe should allow users to create and access files with no constraints on 3
the name, the location of the user or file, and with no knowledge of the underlying hosts

and networks.

• Consistency: A related goal is that of consistency. Previous experience in building dis-

tributed systems has shown that a lack of consistency makes dealing with distributed m

systems awkward and error prone for both users and applications. Because of this, we

ask that the results of operations be predictable and that all users see the same results.

This further simplifies the user's view of the system, eases the implementation of appli- I
cations that use Roe, and is necessary to support name transparency.

• Enhanced availability: The decentralized nature of a local area network, with its local- i
ized failure points, increases the probability that at least some resources will be avail-

able in the presence of failures. Roe should be structured in a way that takes advantage 5
of this characteristic to enhance the availability of the data it manages.

• Reconfigurability: The network transparency supported by Roe will allow files and

directories to be moved and distributed without user knowledge or intervention. This

might be done, for example, to incorporate new resources, avoid failures, improve per-

formance, or to dynamically balance load in response to changing demands. We ask

that Roe support the ability to reconfigure files and directories in this manner and that it f
collect and maintain the information necessary to do this effectively.

" Performance: Because of the widespread use of distributed file systems in interactive I
environments, it is important that the delay perceived by users be small. m

• Heterogeneity: Roe should take into account the heterogeneous nature of the underlying

systems. This includes differences in the hardware and software base, performance, 5
capacity, and availability of each host.

* Scalability: Local area networks range in size from networks connecting a few hosts to

those connecting hundreds or thousands of hosts. It is particularly important in the

larger and more complicated networks that the user receive help in using network 3
I
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resources. We ask that Roe scale to networks of this size without significant degrada-

I Lion.

tIn addition, the following guidelines have helped determine the design of Roe:

Use of existing host operating systems: The heterogeneous environment supporting

3 Roe makes it impractical to undertake a significant implementation for each new operat-

ing system and hardware base encountered. A decision was made early on to make use

3 of the existing file systems of each host.

" Testbed for experimentation: We expect that Roe will be used as a tool for exploring

the interactions between various file management algorithms. This has led us to use an

approach that provides a framework for incorporating a variety of algorithms, as

opposed to one that is tailored to a particular approach. In addition, Roe attempts to

3 collect information general enough to be used by a wide range of algorithms.

* Decentralizeu control: Our desire for a lerign that scales to large local area networks

fhas led us to investigate and incorporate algorithms that distribute control of data to

locations where the data reside and are accessed.

3 Operation in the presence of partial knowledge: It becomes exorbitantly expensive in

a large network to maintain complete knowledge of the state of the network and its

. resources. For this reason we have emphasized algorithms that do not require complete

knowledge of the network state.I
It is important to recognize that the goals we have specified interact and, in some cases, conflict.

3 For example, algorithms that ensure consistency do so at the expense of availability and, in many

cases, performance. One measure of the success of Roe will be the degree to which it can meet

these conflicting goals. We will return to this issue at the end of this chapter, and again in

Chapter 7.!
I
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3.4. The Roe Approach I

3.4.1. Overview !
This section is an overview of the approach used by Roe to meet the goals we have outlined. The

remainder of the chapter provides more detail on the major aspects of the Roe design. The

emphasis in this chapter is on the general techniques Roe uses to meet its goals, and on how these

techniques interact. Chapter 4 will describe an implementation of Roe based on the techniques. 3
Single site file systems generally present to users an abstraction of consistent, shared files. This

allows information to be easily shared between users and their applications. Roe preserves this

model across the network. It supports a single, globally accessible file system that provides highly 3
available, consistent, distributed, sharable files in a heterogeneous environment. The use of this

model allows users to ignore the presence of the network that supports Roe, with network details 3
being handled by Roe. This greatly simplifies the use of a network.

Roe uses file replication, atomic transactions, a replicated global directory, a detailed model of the U
network, awrnom-ric placement, and migration to provide full network transparency. It runs on top

of existing operating systems and uses the resources of the existing heterogeneous hosts for

storage. 1

File replication is used to enhance the availability of Roe files and directories. Weighted voting

and atomic transactions are used to ensure that users see a consistent view of files and directories.

Weighted voting was chosen for its simplicity, its support for decentralized control, and its ability 3
to operate in the presence of incomplete knowledge. This choice is central to the design of Roe.

Our motivation for choosing weighted voting over other alternatives is discussed more fully in sec- -
tion 3.4.2.

Roe maintains a replicated global directory that is used to name Roe files and directories. This 3
name space is separate from the name space of the hosts that support Roe. This separation allows

Roe to transparently replicate, distribute, and reconfigure files and directories. The global U
If
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directory is repli-t,' using a modified weighted voting algorithm. We describe it in more detail

I in section 3.4.3.

A network model encodes information used in placing and migrating files and directories. The

model includes information on the hosts on the network, their up/down state, available space, and

so on. Section 3.4.4 provides information on this model.

3 Roe uses automatic file placement (section 3.4.5) to free users from the need to specify locations

for newly created files. Files are placed based on available space, congestion, topographic and

3 other considerations. File migration (section 3.4.6) is used to change the locations of these copies.

This would typically be done to improve performance by moving data closer to users or to balance

Sload or adjust to changes in underlying network resources. The Roe design also supports

automatic directory placement and migration.

I A network is typically made up of a number of dissimilar machines, and Roe recognizes this by

providing extensive support for heterogeneity (section 3.4.7). This includes use of existing host

operating systems (to minimize the cost of incorporating new host types), local servers with uni-

form interfaces. type conversinn between machine boundaries, and support for machine-dependent

files in the cases (such as executable files) where automatic conversion isn't practical.

3.4.2. File Replication ind Consistency

U 3.4.2.1. Motivation

I Roe replicates files and directories. This allows it to provide increased file and directory availabil-

ity without special hardware support. Unlike earlier file systems we have seen with support for

Ireplication (for example, LOCUS [Walker 83b] and IBIS [Tichy 84]), Roe guarantees a consistent

view of these replicated resources. Enforcing consistency in this context allows Roe to provide

network transparency. In particular, consistency ensures that each user will see the same results,

3 irrespective of location, and that earlier results will not reappear because of host or network

failures. This, in turn, eases use of the system by both users and applications.

I
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Consistency in this context has two aspects: keeping a copy, internally consistent, and maintaining

mutual consistencyN betwen replicated copies The following two sections consider these aspects U
of consist.nc, and describes how Roe maintains file consistency. Section 3.4.3.2 examines the

issue of maintaining consistency in replicated directories. I
3.4.2.2. Internal Consistency

We can ensure that users see a consistent view of a file copy at any given time by serializing

access to the copy. It is also necessary to ensure that any changes made are applied atomically,

and that these changes be coordinated with the changes made to other copies. This leads us to use

serializable transactions, as de:cribed in section 2.5.1. I
Roe is intended for an environment where update sharing of a given file is infrequent, and where

conflicts seldom arise. Hence it is appropriate to treat the entire file as the object to be updated,

and to serialize access to the file as a whole. Of the two serialization methods discussed earlier

(,-k,,- -'nd t m.,amrps),. locking (at the site of the file) appears most appropriate, given the large

size of the object to be accessed, the potential for long periods of access, and the low level of

conflicts. The actual locking scheme used by a site is of little interest to Roe, as long as it serial-

izes access (e.g., RIW locks are enough, but a site could use R/I-W/C locks [Gifford 82] Lo allow

more concurrency). Locking requests are rejected if they cannot be immediately satisfied.

A two-phase commit protocol jLampson 80] is used to ensure that writes are applied atomically

and that updates are coordinated. The choice of logging vs. shadowing to implement intermediate

storage and support recovery is largely irrelevant to Roe. The decision on which to use on an),

particular host is best determined by the operating system support available.

3.4.2.3. Mutual Consistency U
We desire a mutual consistency algorithm that improves availability, has good performance. I
imposs minimal requirements on the structure of Roe, and behaves correctly under parutioning

I
I
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0 Availability: Replicating files should increase their availability.

• Performance: We wish to minimize the delay perceived by users and also the total

amount of activity.

Flexibility is a Testbed: We desire an algorithm that does not impose undue restric-

Lions on file placement, migration, reconfiguration, and other algorithms and techniques

used by Roe.

• Behavior under partitioning: The algorithm should guarantee consistency under parti-

tioning and other partial failure modes.

I There arc 3 general classes of methods for insuring mutual consistency between copieS: unanimous

update, primary' copy, and voting (see section 2.5). In addition to these three classes, there are

algorithms that provide consistency under certain circumstances, or that relax the consistency

requirement. Examples of the former include regeneration [Pu 86] and available copies [Bern-

stein 84], both of which provide consistency in the ahsence of network partitions or disconnec-

ions. The version vector scheme used in LOCUS [Walker 83b] is an example of an algorithm

that relaxes consistency requirements, atempting to compensate for inconsistencies at a later time.

Since we are requiring consistency in all situations, we will not be considering algorithms in either

of these classes.

U Unanimous update algorithms wnte to all copies of a replicated file when making an update.

These algorithms actually decrease the availability of a file in our environment and so will not be

considered further.

I Primary copy algorithms [Stonebraker 791 designate one copy to be the primary at each point in

time. All reads and writes go to the site of this copy, and it is responsible for notifying other

copies of changes. As long as the primary site is up, reads and writes may continue (one usually

3 also requires that a majority of the sites be accessible to ensure consistency during partitions). If

the primary site fails, an election [Garcia-Molina 82] is held to decide on a new primary copy,

with copies communicating among themselves to select a new primary. For example, Stonebraker

determines the primary, copy' based on the status of th" network (which sites are up) and a fixed

I
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linear ordering of the copies of an object. To determine the primary copy, each site accumulates a

list of up sites and then checks to make sure that all agree on the up-list and hence come to the I
same conclusion about the identity of the primary. This method requires that all live copies be

current. This can be handled by postulating an underlying message transmission system that can I
buffer update messages tor later transmission to a down site, or by transmitting an update log to a

site when it rejoins the network.

Primary copy, with the majority requirement described above, provides the strong consistency

desired by Roe, even in the presence of partitions. A file replicated using primary copy will be

accessible as long as a majority of sites are up, and so availability will be enhanced under normal I
conditions.

An attractive feature of primary copy is its performance. If the location of the primary copy is

known and it is up to date, opening a file requires contacting just the primary copy of that file.

Under these assumptions, 2 messages are required to open the file, and the delay is 2d (where d is

the one way messzge delay and we ignore the delay for any disk activity that might be required).

However, if the primary copy is not known, or if it is inaccessible, an election, which is an expen-

sive operation in terms of message activity, is required to open the file. I

All solutions that can be classified as primary copy share two important characteristics: the need

for agreement on a single authority governing the object (e.g. the identity of the primary copy) and

d ,.,deud for insuring the currency of candi,.ts that may take over the primary role. In our

environment, with the algorithm we have described, this reduces to the requirementi that each

copy of an object reliably knows the locations of all other copies, and that all accessible copies be

kept up to date. The requirement that each copy know the locations of other copies makes migra-

tion difficult, since all copies must be be informed when one moves. Each list of copies must I
agree in order for the determination of the primary copy to work correctly. Creating new copies

(e.g., caching a temporary copy to increase performance) also requires that all other copies be I
informed. The currency requirement also interacts with migration. A reasonable restriction in this

situation would be that a copy could migrate oniy when the file was not opened for writing.

I
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Voung algorithms, on the other hand, associate vote information with each cop), of a file and

allow or disalow actions based on collecting this voting information from each copy. We will

consider here a generalized form of voting known as weighted voting [Gifford 79b] applied to file

I opens. Weighted voting associnies with each copy of a file a timestamp and some number of

votes. A read quorum, r, and a write quorum, w, are defined for the overall replicated file. When

a file is opened, the timestamp and votes are collected from the copies. At least r votes (the read

quorum) must be collected to read a file and MAX[r,w] to write it. Reads can be from any current

copy and writes go to current copies which hold a total of at least w votes (the write quorum).

i Making r + w greater than the total number of votes in all copies of the file ensures that at least

one current copy will be in any quorum. The timestamp of each participating copy is incremented

3 when the copy is updated.

Weighted voting provides the strong consistency desired for Roe. The vote collection procedure

ensures that consistency is preserved even in the presence of network partitions.

Weighted voting allows the number of votes held by each copy to be adjusted based on host avail-

ability. This can be used to increase the overall availability over the unweighted case [Garcia-

Molina 841. In addition, read and write quorums can be adjusted to favor commonly executed

operations (Chapter 7), and variations of weighted voting exist that can allow even update opera-

Stions with fewer than a majority of copies [Jajodia 87]. These factors will allow weighted voting

to provide higher availability than primary copy in many cases.

A drawback of weighted voting is the relative complexity of file opens. Assuming a multicast

open protocol, with open requests being sent out to each of the n participating copies in parallel,

an open now takes 2n messages. However, the time de!ay remains 2d (plus any queuing delays

resulting from the multcast message traffic). Although the initial activity is fairly high, the delay

perceived by the user is comparable to the primary copy algorithms. For our purposes, n will usu-

I ally be a small number (one to three).

I
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Voting solutions do not requre that a copy be brought up to date vghcn a site recovers. The n

existence of ohsolete copie. i, acceptable as long as at least a write qu;orum of current copieN

exisL The version number associated with each copy allows obsolete data to be easily detected

and updated. It also isn't necessary for each copy to know of the locations of other copies, or for I
any central authoritv to have an accurate view of where copies are located at any given time. As

long as a quorum of copies is reachable, operations can proceed normally. These two characteris- 3
tics %ill simplify algorithms for caching and migrating copies, since they relax currency require-

rnn1S for data affected by these operations.

As gke have seen above, primary copy can be characterized by the need for agreement on a single

authority, vhich in practice leads to a requirement that candidates for primary copy be current and

that each copy has a curr2nt and correct view of the locations of other copies. Votirg, on the
I

other hand, is able to tolerate out of date copies, and can operate with partial or out of date

knowledge of copy locations. Our desire for decentralized control, operation in the presence of 3
partial knovledge, and our use of migration for reconfiguration leads us to select weigh ted voting

as the basis for mutual consistency control in Roe, despite the greater cost it imposes for some 3
operations. Weighted voting provides the desired consistency and availability pr'Nprlies without

requiring expensive state maintenance in the presence of caching. migration, netwkork partitions 3
and host crashes.

3.4.3. The Global Director% I

Unlike most other distributed file systems we have seen, Roe implements a global directory that is

independent of the directories maintained by te hosts that support Roe. Information in this direc- I
tory is used to translate operations on a Roe file into operat,,,s on individual copies of the file.

Retaining control over the director) allows Roe to transparently place, migrate and replicate both 3
files and the dlrektorx itself. It also allows Roe to easily adapt to changes in the underlying

re:-ources (for example, the addition of a neA server). This can be contrasted with systems, such 3
as LOC ' an(. NFS. that path togc-ther exisnng naming subtrees. This patching makLs it difficult

I
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to add new resources, since it requires adding new subtrees or moving existing subtrees. It is also

difficult when patching together subtrees to balance demands on existing resources and to replicate

for availability. These characteristics, when taken together, greatly complicate attempts to

preserve an appearance of transparency.

3 Two other benefits of an independently managed Roe directory are host-independent support for

heterogeneity (section 3.4.7) and added flexibility in integrating file and directory management

algonthms. Examples here include replication (section 3.4.2), network modeling (section 3.4.4),

initial placement (section 3.4.5) and migration (section 3.4.6).I
3.4.3.1. The Structure of the Global Directory

I The Roe global director-v supports a UNIX-like hierarchical directory tree. We were motivated to

adopt this organization because of its wide acceptance, ease of use, and the logical structure that it

imposes on files. Roe allows users to choose arbitrary file and director), names. There is no

encoding of location or host information in nq:ies visible to the Roe user.

The Roe directory references distributed files and is itself distributed. This raises issues that do

I not occur in centralized directories. Three key related issues are:

3 * The basis for partitioning the directory,

a Locating resources referenced through the directory, and

. Directory replication.

3 We will return to the issue of replication in the following section. The issues of partitioning and

location hae been dealt with in the past in a variety of radically different ways. We briefly sur-

veyed work in distributed naming and directories in Chapter 2. As we described there, the tech-

nique of partitoning by subtree used by NFS, LOCUS, and other DFqs leads to unacceptable limi-

tations on transparency.

R* [Lind.at 80' embeds the creation site in names and uses this information, along with forward-

inv addresces and cached hints, to access an object. Our desire to support transparency and

I
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potentially frequent migration means that the approach used by R* is not directly applicable to

Roe. However, the techniques of caching, forwarding addresses and unique name generation will

be useful in the scheme we describe below.

Clearinghouse (Oppen 81] provides a hierarchical name space restricted to three levels. Names in i
Clearinghouse are logical (based on the application), rather than physical (based on server loca- 3
Lion), with each server containing complete information on where names in the current and parent

nodes of the logical hierarchy may be resolved. This provides the network transparency that we 3
desire, but the limited hierarchy is not useful in a distributed file system. Also, the widespread

distribution of server location information complicates migrating servers. This is not an issue in 3
Clearinghouse, where such migration is relatively infrequent, but it is an issue in Roe.

We would like the Roe directory to partition directory information logically along boundaries that U
reflect the way the information is used, that do not unduly restrict the x.atioii utf "is information,

and that allow it to easily be distributed and migrated. Directories commonly support the follow-

ing operations: read an entry (where 'entry' is the information describing a cataloged file) add an 3
entry, delete an entry,, update an entry and enumerate entries contained in a node of the director-y

tree. The 'enumerate' operation and the common practice of grouping related files in a directory 3
lead us to make the unit of partitioning the set of entries in a directory node.

Resolving an absolute name (one that includes all components of the name) then involves starting i
at the root and looking up directories in turn to reach the one containing the needed entry. To 3
minimize the overhead of this, Roe caches information on frequently used directories. This would

typically include all directories from the root to the user's current working directory, but can also

include paths to other directories. The resultant cached information forms a tree of directory

information that may be used to avoid repeated lookups in frequently used directories. i

There are two types of information in a Roe directory: 1) information on the directory node itself;

and 2) information for each entry in the directory. The information on the directory node includes

voting, version number, usage history and other information that will be described later. We do 3
I
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u not keep any information on the parent directory of a node. This is in contrast to UNIX and

UNIX-like file systems, which include an explicit backpointer from a node to its parent- We have

omitted the backpointer for several reasons. One is the complexity that it adds to migration. If

backpointers are used and a directory is migrated, then children must be updated to reflect the new

3 location. Backpointers are als- used in UNIX to help preserve file system integrity. The Roe

director', will be replicated and so necessarily updated atomically. This ensures that the directory

will remain in a consistent state even in the presence of crashes, making backpointers for this pur-

pose unnecessary. -, ally, backpointers are used in UNIX to resolve relative references. Roe

caches parent directory information for this purpose.

I There are two basic types of directory entries in Roe: file entries and directory entries. In addi-

tion, there is a somewhat more complicated variant of a file entry, the machine dependent file, that

3 will be de cribed when we discuss heterogeneity (section 3.4.7). We also allow users to define

their own entries. File and directory entries contain the same information:

3 • name: The user defined name of this entry.

t ype: The type of this entry (ile or directory).

I & UID: The globally unique ID assigned to the file or directory when it was created. We

use a combination of a host id and a sequence number guaranteed to be unique on that

I host.

. location-hints: Hints on where the copies of the file or directory are located.

* r-hint, w-hint, and vote-hints: Hints on the vote distribution and quorum characteristics

I for the file or directory.

Figure 3-1 shows an example of a Roe directory describing a replicated file. Note that the voting

information in a directory entry is just a hint. The actual voting information, including the time-

stamp, is stored in the copies of the file itself. This allows a file to be referenced from multiple

locations in the directory tree.

3 The "links'' field in each file copy in Figure 3-1 indicates how many references to the file exit,

and is used to ensure that a file with multiple names is not actually deleted until the last name is
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copies of "mbox"

a directory node copy tes: 3 1
votes: 23

mr 2

director w: 3
header links: 1 

other file properties

name: mbox I
type: ROE-FILE
UID: ui.1.5 - menvostanp: 31

location_hint[0: uni votes: I
location-hm~l]: beluga r: 2

location-hint[2]: tobiko %w:3

r-hint: 2 links: 1

w-hint: 3 other file properties

vote hints: 2, 1, 1

timestamp: 30 I
votes: I
r: 7 3

3

hnks: I

other file properties

F e I
I

Figure 3-1: A Roe directory entry
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deleted. Multiple links to directories are not allowed, since this would allow the formation of

unreachable subgraphs. Garbage collection is one solution normally used to deal with this prob-

lem, but this is complicated in a truly distributed system (the description of a possible design for

garbage collection in the Emerald system [Jul 88] is a good survey of the complexity involved in

3 distributed garbage collection).

Voting and link information are actually properties of the file. Each file may have additional pro-

I perty information associated with it, as shown in the figure. This includes information useful to

Roe (for example, usage information for migration) and user defined information. Properties will

I be described further when we discuss heterogeneity and Roe protocols.

3 The location information in a directory entry is also a hint. When a file is migrated it may not be

possible to update the directory entry. Situations where this may ari;e and the techniques Roe

3 uses to deal with it will be described when we discuss migration (section 3.4.6).

3 We keep voting hints in directory entries to aid in optimizing opens. An open for read, for exam-

ple, only needs to contact enough copies to collect a read quorum. The voting hints can be used

3 to limit the number of copies that are contacted when opening the file. The information here is

regarded as only a hint to minimize the amount of information that must be kept current The

3 actual information is kept with the data to decentralize, as much as possible, the control of the

data. If a voting is found to be incorrect because of changes in the file configuration, it can be

3 updated with information gleaned from the open. Location hints are treated in a similar manner.

3 The preceding describes and motivates the basic structure of the Roe directory. There are a few

other issues worth noting. These include finding the root of the directory during initialization,

handling structural changes (such as directory renames) in the presence of caching, and caching

file information.

Roe will generally run on most or all of the hosts on a network, with these hosts joining and leav-

ing the network. When Roe is started on a host, it will need to open the root of the global direc-

tory tree as part of its ir.;,ialization sequence. Since copies of the root directory may migrate, just

I
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hli any other directory, the new instantiation of Roe may not have up to date information on

where the root is located. This information can be obtained by querying any running instantiation I
of Roe. In the unlikely case that there are no accessible instantiations, Roe uses information on

the last known location of the root that it has saved in a local state file. This information may be I
slightly out of date, but should generally be current enough to allow the root to be opened. In the

extremely unlikely case that this strategy also fails, the new instantiation of Roe can simply wait

until an instantiation with more recent information on the root is started.

Renaming a director-y can invalidate parts of the cached tree of information maintained by an

instantiation of Roe. In order to provide users with a consistent view of the directory, we need to

detect changes of this nature and flush or correct outdated information. This is done by having an

instantiation that caches information on a directory register an interest with at least a read quorum I
of the copies. When structural changes are made, this registration information is used to notify

affected parties. The same technique may be used to maintain a cache of information on fre- I
quently opened files.

3.4.3.2. Replicating the Global Directory

The availability, consistency, transparency, and reconfigurability requirements that we described

earlier for files also apply to directories. Availability requirements lead us to insist on replicated

directories. Consistency in this case includes seeing the effects of adding, deleting or modifying

an entry when we subsequently do a lookup on the entry or enumerate a directory. Transparency

and reconfigurability can be addressed, as with files, by migration. These considerations lead us to

choose weighted voting as the basis for mutual consistency control in replicated directories. I

Weighted voting, as described by Gifford [Gifford 79b], locks the entire object being accessed. 3
While this is appropriate for files in our environment, it is not appropriate for directories. The

specialized entry-onented nature of operations on a directory, combined with the need for shared 3
access, concurrency (especially at higher levels in the directory, tree), and long term connections,

makes whole-node locking both unnecessary and inadequate. U
I
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Variations on weighted voting that address these issues have generally done so by either reducing

the granularity of locking or by using other concurrency control mechanisms. Bloch, Daniels, and

Spector (Bloch 871 took the first approach. They associated a timestamp with each entry in a

directory, and also with gaps between entries (to aid in collecting quorums after deletions). While

5 this approach allows for higher concurrency, the large number of timestamps raises significantly

the cost of connecting to a directory and verifying the currency of the directory as a whole. This

3 is inappropriate in an environment where connections to directories are frequently made and bro-

ken. It complicates caching as well. Herlihy [Htciihy 94] 7-"oposed a- vaz,-ioP of weighted voting

3 that performed concurrency control based on timestamps and relations between operations on

abstract ty-pes. While his work provides a powerful set of general techniques for increasing con-

3 currency in replicated objects, the complexity of log-based concurrency control mechanisms are

difficult to justify in our environment, particularly given its heterogeneous nature. They also do

i not address the need for maintaining low cost connections.

The following variant of weighted voting provides the concurrency control we need, with support

for caching and long-term connections that don't lock out other users. While it does not have the

3 generality of the other approaches and limits concurrency for writers (neither of which is expected

to be an issue in our env~onment), it is easy to implement, inexpensive, and meets the needs of

3 Roe.

The algorithms is as follows: When an instantiation of Roe connects to a directory, at least a read

quorum of votes is collected from the node copies. At this time, the user of the directory is

3 registered with these copies. Registration differs from holding a lock in that the registration may

be 'broken', with notification, as explained below. From the read quorum, a current copy is

selected and read requests are directed to it.

3 Writing requires that updates be made atomically to current copies containing at least a write

quorum of votes (currency is verified during read quorum collection). We send to all current

3 copies the update requests (to add, delete or modify an entry). If they are willing to make the

,hpne thev renond with an acknowledgemenL If a write quorum is collected, then the user can

I
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instruct the servers to commit. At this point, the ,Lidnges are actually made (become permanent

and visible to readers) ard the timestamps of the participating copies incremented. If a write

quorum cannot be collected, the request is aborted and, depending on the error, may be retried.

To preserve the meaning of the version number, only one write may be active (in the process of 3
collecting votes or committing) for a directory node at a time.

An operation, such as modifying an entry, that depends on the previous information needs a bit of

special handling to guard against making changes based on invalid data. We send, in the request

to modify an entry, both the new information and the data in the entry upon which the changes are

based. If these data do not agree with the information currently in the directory, the request is 3
rejected. Since an individual directory entry is small, little extra overhead is involved in doing

this. 3
The registration information is used when a writer finds that he cannot update all current copies of 3
a node, even though he is able to collect a write quorum. In this case, the writer, in the commit

message, tells the participating directory copies to notify registered reade," '.hat;X; may no I
longer be reading a current copy. Since the sum of read and write quorums is greater than the total

number of available votes, there is always some overlap between the quorums and so all readers 3
will be notified. Readers also receive notification when copies they have registered with become

inaccessible due to partitioning or node crashes. This is handled by maintaining IPC connections I
to these copies and using the automatic failure detection facilities of the underlying IPC

[Moore 82]. The combination of these two notifications ensures that readers will be reliably I
informed of problems.

The registration mechanism can also be used to handle directory cache invalidation due to renames

or other updates. In this case users would register interest in node modifications and be notified 3
when significant changes are made. I

I
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3.4.4. The Network Model

Intelligently placing and migrating files and directories requires current information on the under-

I lying hosts and networks. Roe maintains an abstract network model that contains this information.

The Roe design we are presenting here attempts to place and migrate to minimize delay and max-

I imize availability, consistent with the overall goal of transparency. The information maintained in

the network model we will be describing reflects this. Information in the network model is also

used to support heterogeneity, and to allow Roe to take advantage of the varying capabilities of

* hosts in a heterogeneous network.

The network model coniAIns both static and dynamic information on hosts and networks. Each

3 host with an instantiation of Roe maintains its own network model of hosts and network fragments

that it is actively usipg. To aid in decentralized decision making and to simplify interpretation,

U this information is expressed relative to the host maintaining the model. Only partial information

is kept to avoid scaling problems that wuud result if an attempt were made to maintain a current

U model of the entire network.

3 A network model contains 3 elements: hosts, network switching elements (gateways), and the net-

work itself. The model maintains at least the following information on each host:

I . Availability: A static estimate of the fraction of time the host can be expected to be

available.

Slardware base: The type of host hardware.

0 H tost operating system: This, combined with the hardware base, can be used to make

machine-dependent decisions.

3 ° Free space: A dynamic estimate of the amount of free space currently available for use

by Roe on the host-

3 . Delay: A dynamic estimate of the delay involveG in performing an operation. This

includes network and switching delays from the current host.

I * State: LP if the host is known to be currently accessible, DOWN if it is known to be

currently unaccessible, and ULNKNOWN othcrisc.

I
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This can, of course, be extended as necessary to meet the needs of new placement or migration I

algorithms. For each network segment and gateway, at least the following information is main-

tained:

" Availability: A static estimate of the fraction of time a network segment or gateway can

be expected to be available.

" Bandwidth: A measure of the rate at which data can be transferred by the network or 5
gateway.

" Delay: A dynamic estimate of the delay to be expected in passing through a gateway or

network segment.

• State: UP, DOWN or UNKNOWN. 3
The model also encodes information on the network topology that allows the various components 3
to be pieced together. Figure 3-2 shows an example of a network model for two bus networks

connected by a gateway. 3
Information contained in the network model comes from three sources: from a static network state 5
file maintained by Roe administrators, from the hosts being modeled, and from dynamic measure-

ments. The network state file contains information on well-known hosts supporting Roe and on 3
the network itself. An instantiation of Roe on a host can be asked to return infurmation on the

host on which it is running. This includes both static information such as the host operating sys- I
tem, and dynamic information on free space. Delay can be calculated either by direct measure-

ment of the time required for operations or by combining estimates from network and host com- 3
ponents. Hosts are added to the network model as they are accessed (for example, when a direc-

tory is opened) and can be deleted if the model grows too large or if they haven't been accessed

recently.

Using the information in the network model, it is meaningful to talk about such things as the dis-

tance from a host to a file copy (in terms of delay) and to estimate the likelihood of that copy

being available. These figures can be used in migrating copies and placing new ones. They may

also be used in making decisions on which copy of a file or director' to access when performing 3
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I
name: uni name: belugaavailability: 0.95 availability: 0.98

hardware: VAX hardware: Sun-3
OS: VMS OS: UNIX
space: 10MB space: -

delay: lOOms delay: -

state: UP state: UP

I
I availability: 1.0

bandwidth: 10Mb
delay: -

I name: tobiko
i availabtty: 0.98
aadabidity: 08 hardware: Sun-3bandwidth: 3N OS: UNIX

delay: 20ms __

State,: DOWN space: 50MBdelay: 60ms

3 state: UP

I-_
I

Figure 3-2: The network modelU
operations.I
3.4.5. Initial Placement

U When Roe c.eates a new file or directory, a decision must be made on how many copies to create

and where they are to be placed. Users will generally not know, or wish i k jow, what resources

are available for storing new information. Instead, the replication and placement of files and

I
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directories is managed by Roe to preser-ve network transparency. Varying the placement of files

can have a dramatL effect on performance. Studies of some versions of the Andrew file system I
[Morris 86] have shown as much as a 5 to 1 difference in utilization between file servers, which

results in dramatic differences in response time under load. It is important that Roe takes into I
account factors such as this when placing files.

Most of the previous work on initial placement that we described earlier (section 2.7) was con-

cerned with finding optimal solutions that minimized various cost functions. This previous wc:k U
was motivated by the need to carefully place portions of a DBMS, where there is a large potential

benefit to minimizing access costs. Optimal file placement is NP-complete, even without consider- I
ing resource limitations. In this case, the cost of solving the NP-complete placement problem is

justified.

In our case, optimal solutions are not appropriate for several reasons. The interactive nature of Roe 3
makes it important that file placement decisions be made quickly, and so algorithms that find

optimal solutions slowly are unacceptable. We expect that issues such as congestion, which 5
depend on the interaction of accesses to many files, will play an important part in determining

expected delays, and hence placements. This further complicates attempts to find optimal place- I
ments. We will also, in general, have only partial knowledge of the network that Roe is running

on, and limited or no knowledge of the activities of other users. Finally, Roe has the ability to I
migrate files based on usage informaticn that isn't available when the file is initially placed, so

mistakes do not necessarily have a permanent impact.

For these reasons, Roe is designed to make use of placement heuristics. There has been some pre- 3
vious work in placement heuristics that is relevant to the goals of Roe. Bannister and Trivedi sug-

gested making new assignments to the most lightly loaded servers to minimize delay [Bannis- I
ter 821. Barbara and Garcia-Molina presented heuristics for vote assignment to maximize avail-

ability [Barbara 86]. Factors present in Roe that complicate the use of these and other algorithms I
include the heterogeneity of the environment (both in terms of performance and machine types).

the interaction of placement with migration, resource lim~iations, and our desire for algorithms thai

I
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exhibit decentralized control and are able to operate with partial knowledge.

The use of decentralized control in Roe means that each instantiation may, if it wishes, use a

different placement heuristic, depending on its needs. The primary objective of file placement in

Roe, based on the goals we discussed earlier, is to attempt to minimize access delays while insur-

3 ing high availability, subject to the other constraints we have described. This can be done, in the

architecture we have been describing and using the information provided by the network model, as

I follows: When a file is created a replication factor is selected. This will, by default, be based on

the replication factor of the drectory ,here the file wil be cataloged. The creator of the file may

specify additional information on the ty-pe of the file (temporary or permanent) and important

characteristics of the file (high availability vs. high performance, usually read vs. usually written,

and so on) as part of creation. These are used to modify the default replication factor and to

3 assign tentative vote quorums. For example, files that are marked as being temporar, are normally

only given one copy. Fiis where high availability is requested are given a higher replication fac-

3 tor.

Each copy of the potentially replicated file is then independently placed. This is done using state,

free space, delay, and availability information in the network model maintained by this instantia-

tion of Roe. By default, hosts that currently have the lowest delay are chosen, but onl) if their

availability exceeds a threshold and if sufficient space is available. If a machine-dependent file is

being created, there is a further restriction that the new host be of the same type as the one creat-

ing the file. If the creator of the file has asked that placement emphasize availability, this will be

3 given primary consideration, with delay being secondary. In this case an attempt is also made to

locate copies on hosts that currently support the directory, as this will tend to decrease failure

3 points and so increase availability.

While the algorithm we have descr~bcd here is by no means optimal, it does provide a low cost

approach to automatically placing files. It takes advantage of the transparency provided by the

3 Roe design to dynamicall balance load among active scrvers, to increase performance by select-

ing ightly Icaded and higher pcriormancc servers, to increase availability through replication and

I
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the use of rchab* servers, and it takes into account constraints imposed by hmited resources and

heterogeneit\. 3
3.4.6. Migration 3
The conditions that determined the init;al placement of file and directory copies change over time.

For example, congestion makes some servers less attractive than they originally were. Users

change luations. Usage patterns of a file change and a history of usage provides more accurate 3
informabon than that used for initial placement. File creation and deletion change the available

space on a device. Faster or more reliable servers become available. If the changes are 3
significant, it may be wort]-while to move, or migrate, copies to adjust to the changes. The

benefits of migration can be significant. Using migration in the Emerald system [Jul 881 resulted 3
in a 22/c decreasc in cxecu;ion time relative to the execution time without migration.

This section describes Lhe architectural support that Roe provides for migration. We also outline I
here in general terms migration stratezies that Roe supports, but defer discussion of actual migra- 3
Lion algoridims until Chapter 7. We expect migration to be sensitive to file and directo -" refer-

ence patterns, and so algorithms are best discussed i, ,.at context. 3
Most of the previous work in file migration that we described in Chapter 2 focussed on long-term

archival migrati( n. That work showed that file size, type, age, and ime since last reference we, - I

all useful predictors cf the time until next reference, and hence could be used as a basis for

archival migration. While archival migration is one strategy that Roe supports, the relatively sma!,

time delay and high bandwidth of LANs make migration on a much smaller time scale feasible. 3
The temporal locality that we expect to see in file reference patterns also argues in favor of short-

term migrauon strategies. The Emerald system took advantage of this temporal locality by migrat- 3
ing '+je , to the user x-,hcn they v, ere first referenced and saw substant-' performance improve-

irenLs. Work on optimal an-' heuristic migratior algorithms by Sheng [Sheng 861 al,. demon- 3
strated the advarntac, of Thort-term migration. Even with an optimal initial file assignment. she

,a ale to alhi.,c a 10"; decrease in storace communication, and I/0 cost, uinc a n1ratin 3
I
U



I
* 67

3 heuristic Lh)t estimated future usage based un recent access history

Our needs and consLrain s are somewhat different than that of earlier work. As with file place-

ment, v4e will be migrating to increase availability and decrease delay, subject to processor, space,

and hctcrogeneity constraints. The arguments for using hiuurisuc algorithms able to operate in a

decentralized fashion and with partial (possibly incorrect) knowledge that we used for replication

and ini.ial placement also apply to migration. Hence our concern here is in providing support for

heuristics to meet these goals.

I Migration algorithms can be divided into three general categories: demand-based, anticipator% and

compensatory. Demand-based migration is done in response to an. explicit request for a resource.

Emerald support for migration or, first refercnce is an example ol demand-based migration. Anti-

cipaton rragraiton is done based on expected usage. If resources are typically used together (a

trivial example is a directory and files that it references), migrating one to meet a demand may

trigger further migration in anticipation of further references. Compensatory migration is done to

compensate for changes in the system that hae taken place since initial file placement was done.

3 Examples here include migrating files away from heavily used servers to ease congestion (and

decrease delay), migrating to ne. servers to balance load, and grouping together directories and

3 the files they r.,crence to increase availability. This 1Te of migration is perhaps best thought of

as an o going background activity.

I Making intcllhgcni migration decisions requires an estimate of future accesses that will be made to

a file or dieltorN Previous work has suggested that future accesses tnay be estimated u sing past

access hst,. Roe keep. %ith each file and directory, as a property, information on recent

3 access. For each access Roe records the user, what host it was from, when it was made, the

typ- <'f a,-2,-, -uid th percentage of the file read or written. File sze, type, and age, other Itred-

3 ~cu.r, of futur u,,ge, arc alsc) available as proprties of files and directories. In addition, infonca-

ujor. on te state of the nct',ork i, required. This is particularly important for compensatory

3 nIZirat)M N .:A ork infOrmati(,n reqtircmcnts for migration arc sinilar to those for mtia" plice-

'!, Th." r:",i n:.tr,,rk in f:rrdatim i asaiiat c fromi the nctpkork modcl.I
I
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From the point of view of the lower levels of Roe, there are two types of migration: migration by 3
name and migration by internal identifier (LiD,. Migration by nanc is typicall, done response

to an explicit user request of some sort (demand or anticipatory migration), or to group together 3
related objects in the naming tree (compensator, migration). Migration to relieve congestion or

free up space on a server (compensatory, migration) is more easily done by UID, based on files or 3
directories on the affected server.

Migration by name is done by first opening auid locking the copy to be migrated. This ensures

that the copy will not be able to vote multiple times while it is being moved (otherwise it might 3
be possible for the old copy' to participate in one quorum and the new one in another, resulung in

inconsistencies). The old cop is also flagged for deletion at this time. A coje is tentatively 3
made on the destination host, and the director,., is updated to indicate the ncw location. These

changes arc then atomically committed. 3
If a file is referenced by more than one directory'. then updating the directory the file is referenced

through is not enough. The other directories wifl still contain obsolete information on the old

location of the copy. In this case a forwarding address is left behind on the old host. The fcr- 3
warding address contains the rew address of the copy and a count of the number of directon(s

containing obsolete information Oust one less than the link field from the file). Unlike R, where 3
forwarding addresses exist for the lifetime of the object, forwarding addresses in Roe can be dis-

carded after all directories containing obsolete information are updated. When a file copy is refer- 3
enced from an out of date directory and a forwarding address is encountered, the directoryv is

updated and the reference count in the forwaraing address is decremented. When it falls to 0, the 3
forwarding address can be deleted. If a file referenced by multiple directories moves fequoently,

resulting in a chain of forwarding addresses, path compression technioues [Fowler 85, may be 3
used to eliminate ,,needed links in the chain. I
It :,hould be noted that this technique only works because the algoriths used by Roe assume that

information contained in directones is only a hint. Treating this information as a h;nt places 3
actual contrd of tiles with the files themselves and minimizes the amount of \korl thai i, required

I
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for migration.

Migration by UID proceeds az with migration by name, except that it isn't possible to update the

directory. In the case of migation by UID, a forwarding address with a reference count equal to

i the link count of the copy is left behind. Directories are updated the next time they are used to

reference the copy'.

1 3.4.7. Support for Heterogeneity

3 Roe is intended for use in a heterogeneous environment. The support Roe provides for hetero-

geneity may be grouped into the following an as:

5 • The network model.

i Automatic conversion of basic types.

* Machine-dependent files.

5 . Properties.

0 Globally consistent naming and interfaces.

I The network model, as we described earlier, includes information on the hardvare and software

3 base, and on delay, availability, and free spac- for each host it describes. The information on

hardware and software base is used in making decisions that depend on this base. An example is

the selection of a quorum in a machine-derendent fiie (described below), The remaining informa-

tion provides a represent" .:in of the relevar ,ties of hosts that allows hosts of dissimilar

3 performance, capacity, and reliabilities to be integrated, while still making effective use of the

strengths of each hosL

I The Roe design provides for the automatc conversion of basic data types bet\&een hosts This can

either be done automaucally by the IPC mechanism (as it is done in Rochester's IPC (Moore 82])

or explicitly by conversion to and from some canonical form (see, for example, Sun's XDR

(Lyon 5 or Cronus's Cantyp-es IDean S3JI

I
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Not all files can or should be converted when moving between hosts. Executable files containing

machine code. for example, are only useful on machines of certain types running a particular I
operating system. To retain ansparency and allow' the Roe naming tree to be shared between

hosts of dissimilar types, we introduce a new file type, the machine-dependent file. A machine-

dependent file appears to the casual user to be a single Roe file, but it contains separate file suites 3
for each distinct machine/operating system combination on which it may run. When the file is

opened, Roe chooses the correct file suite using information on the user's host as contained in the 3
network model. Figure 3-3 shows an example of a directory entry for a machine-dependent file.

Roe associates a properr, list with each file and directory. A property list is jusl a list of I
name/value pairs. They were included in the Alto file system [Thacker 79] ,n describc, among

other things, the data type of a file. They perform a similar function in Roe, but ma) also specify

arbitrary.' user and Roe system information. For example, voting and usage information for a file 3
or directory' copy is stored as properties of the copy. Information such as file size and last

modification date is also represented as file properties, with Roe converting between property and 3
actual system representation as necessary'.

In addition, information that is specific to particular host operating systems (for example, record I
structure) is stored as file properties. This provides an unobtrusive method for accommodating the

needs of a wide range of heterogeneous systems.

Properties may also be specified in file creation and other operations. They provide a means of 3
allowing the user to specify optional advisory information to Roe. Examples here include file

type, desired availability, and performance characteristics. I

Finally, we have developed an architecture for Roe that defines a common host-independent inter- 3
face between local hosts and those portions of Roe that interface with many hosts. We have also

defined a file access protocol that supports transparent access to Roe files and directories. This 3
acces protocol has. been designed to be flexible enough to support higher-level translation of host

spi:fi file operation, to operations on Roe files for a wide variet, of operating sy,,icms. The I
U
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U
a directory node copy

directory
header

I __

UID: un.2.50
location_hint[0: uni .

name: trof locationhint[ 1]: beluga

type: MACHINEDEFT locationjhint[2] sevruga

machine: Sun-2, Sun-3 r-hint: 2

OS: UNIX w-hint: 2

3 suite information votehints: 1, 1, 1

machine: VAX
OS: VMS

suite information

I

I
Figure 3-3: A machine-dependent file entryU

Roe architecture and protocols are the subject of the next section.I
3.5. The Architecture of Roe

The previous section presented the general approach used by Roc to provide transparency. In this

3 section we outline an architecture that may be used to implement the Roe approach. Our purpose

here is to define a framework that will allow Roe to be easily implemented in a heterogenecusU
I
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environment. Our general approach has been to dcfine common host-independent interfaces for 3
components that provide access to resources on a host, and to structure higher levels of Roe in a

way that supprL dkii.bution and replication of functionalit, and allows decentralized access to 3
Roe resources. The architectur, we describe here should be thought of as a logical one, not neces-

sarily a physical one. 3
Section 3.5.1 describes the pt rpose and distribution of Roe components in our architecture. Sec- 3
tions 3.5.2 and 3.5.3 outline protocols that define the interfaces between these components. The

material presented here forms the basis for the prototype implementation that we will be describ- 3
ing in Chapter 4.

3.5.1. Organization and Distribution

Roe may be logically broken down into five different types of components. Three of these com- 3
ponents provide access to local information (files, directories, and host status), one manages tran-

sactions on replicated resources, and one performs the work necessary for name translation and I
opens. The local components provide a uniform, host-independent interface to the two higher

level components. The two higher level components piece together the local resources, using the

techniques we outlined in section 3.4, to give users a transparent, globally consistent view. 3
The five types of components, and their purposes, are:

" Local File Servers: provide access to individual copics of files located on a host. I
" Local Directory Servers: provide access to individual copies of directory, nodes on a

host.

* Local Representatives: provide higher levels with information on the status of the host 3
(hardware and software base, space available and so on) and spawns new servers on

request. 3
" Transation Coordinators: distrihute user requests to replicated copies of files, coordi-

nate commits, and mask single c'-py failures. 3
i
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3 . Global Directory Servers: accept user requests to open files or access directories and

map the requests into operations on a set of file or directory copies. Global Director3y

Servers also perform initial placement and migration for files and directories.

3 A Local File Server (LFS) provides access to file copies located on a host There is one local file

server for each host that provides file storage. An LS supports an abstraction of a file as a

stream of data, with an associated list of properties. Applications may use property lisL to impose

more structure on the data. The LFS on a machine manages file space used by Roe on the host,

3 provides atomic access to data and properties in files (including voting information), and imple-

ments the copy-level locking needed by the weighted voting algorithm.

I A Local Directorv Server (LDS) mediates access from Global Directory Servers to copies of direc-

i,,r odes on a host. An LDS supports the abstraction of a directory as a collection of entries

(name, quorum information pairs) plus a list of properties. It services requests to read, update,

if dclote, add. and enumerate entries in a node copy, provides access to properties, maintains voting

information for the directo-y, and ensures that updates are performed atomically. There is one

3 Local DirectorN Server on each machine that has director)' information.

A Local Representative (LR) provides Global Directory Servers with information on the status of

the host (hardware and software base, space available, and so on) ani spawns new servers on

rc.>vc-t. There is at most one local representative per host.

A Transaction Coordinator (TC) distributes updates to replicated copies of files, coordinates com-

U mils, and masks ingle copy failures. It is the TC that handles user operations on open files. It

dirucLs reads to a current file copy near the user, switching to a new copy if the one in use fails

and a quorum is still held. It transforms a write operation into updates on all open copies of a

file. When a file is closed it ensures that updates are atomically applied. There is one transaction

cooidinator per active user.

3 A Global Director. Server (GDS) accepts user requests to open files or accvss directories and

maps the rcquests into opens on a quorum of file copies or operations on a quorum ot dire~tor-N

I
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copies. GDSs maintain the hierarchical Roe name space and i: it in resolving reque,, on files I
and directories. Each GDS also maintains a ne-twork md!, La u,', it to trtor;' iitia] place-

ment and migration of files and directories, and to place the transcLtion coordinator that will han- -
dle user operations on open files. The number of global director) servers depend, on the network

load and configuration. 3
Figure 3-4 show, an example of how the components interact iVr opcning and using a file (in this I
case, an unreplicated one). The user sends the initial request aI to- the GDS. Th. GDS makes

use of cached directory copies and, if necessary, contacts LDS t, road entries necesarv to reach

the file (b). The GDS then opens the file with the requested rm, .i, ,, using the, ,seiehed voun

algorithm to collect and ve-,fy a quorum if the file i, repiicateo, -IiI resultant quorum is passed 3
(di to the TC, which accepts user requests (e), and na- es th.- o,. to one or more selcted file

copies (f). The protocols that are used bttween the vvious coir:-'nent, are describ-1 in the next 3
two .sections.

The actual amount of interprocess communication equLrd here iqepnd, on the rcla.ia locations

of the user and Roe components involved, and on the degree of I JatLion of the components. An 3
implementation of Roe t!'at was concerned with performance v,. n uL LhtC% bind toe the coM-

ponents on a host to decrease communication overhead. 3
In an environment Ahere it is important to be able to gain acec> to netwoik resources with

minimal implementation effort (often the case ir, a rapidly cvols irn: heterogeneous en\,,onment), a I
new host could choose to implement a subset of Roe components and rely on other hosts in the

network fir the rest of the services. Figure 3-5 shows an example where two hosts (belupa and

scvruga) support all of the Roe components, but another, uni, only provides storage for files. The

host tobiko just implements the common IPC used by Roe components. This gives users on

tobiko access to Roe through components on beluga and sevruga Performance may suffer, since 3
all access is remote, but functionality does not. Implementing portions of Roe on tobiko at a later

time would result in transparent performance improvem-_nts for user., sinc,. it would then be possi- 3
ble for Roe to migrate information to this host and so avoid network penalties. This incremental I

U
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buy-in strategy encourages heterogeneity by allowing new types of hosts to be easily integrated.

CC

I LUS

3 LRS

Iwa

Figure 3-4: Opening and reading a file
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beluga tobiko I

I
TC ] GDS

LFS FLDS L ______

IPC IPC

T I I
IPC PC

TFS LIDS LF |

I
sevruga un.!

i

Figure 3-5: Roe component location 3

3.5.2. User Protocol 1
This section defines the protocol usea to access Roe. The Roe file access protocol is distinguished 3
by its suport for properties, atumicity, and distribution.

I
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3Properties allov, both users and Roe itself to associate information with files that aids in interpret-

ing dau. Properties are used by Roe to store information needed for voting, data conversion (to

support heterogeneity), and migration. They are also used to specify special characteristics of files

used in initial placement and migration, and may be used to set and retrieve information about

3 files (or example, size and modification dates). As such, they provide a method for extending the

Roe protcxol, and for adipting it to the needs of other systems. Given the ability to associate pro-

pertics viLth a file, mapping host file access calls into the Roe file access protocol is generally

straichffor -ard. This can be used to make Roe appear to be an extension of a host's file system.I
Atomi,:itv allows users of Roe to guarantee the state of files at any, given time. This predictability

3 simplifies the implementation of higher level applications that use Roe.

The protocol has been designed with a message-based distributed environment in mind. The pro-

tocot iLelf is message-oriented, and it includes support for streaming of data, and third party

trancfr,.

TI-_L protocol is oriented around the notion of port types. A port is any unique identifier that pro-

1vides a vay to address a potentially remote component of Roe. There are 3 types of ports in the

user protocol. each of which accepts a different class of messages and serves a different purpose.

Packports pro,,!, .tess to the file system. Directoryports support commands creating and read-

ing directory entries, opening files, and so on. Fileports are used for operations on an individual

open file. Each operation given below is specified using the format "OPERATION (arguments)

I -- repl%." Optional arguments are ent, i,-d in brackets. The source and destination ports are

implicit in the description that follows.

I There is one message to packports:

I LOGIN (username, password, -- directoryport

3 A user must be logged in to the Roe system in order to issue requests. A LOGIN message

containing information necessary for authentication is sent to a packport. The serverI
Ii
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checks the validity of the user and establishes the user's working directory. The reply con- 5
tains a directorsyport to which the user sends subsequent directory, operations.

The following messages are sent to directoryports: I

CHDIR (path) -- success

Changes the default directory- used for interpreting operations on this directoryport.

CREATE_DIR (path 1, properties]) -- success 3
Creates a directory node with the specified path name. The optional properties list may be I

used to specify the performance and availability characteristics of the new directory and to

initialize properties in the directory. 3
CREATEENTRY (path, value) -4 success I

Creates a directory entry with the given path and value. This allows objects other than

files to b, stored in the Roe global director. 3
DELETE (path) -) success I

Deletes the file, directory, or entry with the given path. 3
LOGOUT ( ) - success 5

This ends the server-client relationship. I
OPEN (access, file path [,properties]) - fileport

Opens a file, returning a fileport that may be used for file operations. "Access" describes I
the mode of the file open (read, wTite. read/wri'z. cre ac if necessary). The optional pro- 3
perties may be used when creating a file that does not already exist to specify availability

I
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and other properties of the file and to initialize its property list. This operation is successful

if the appropriate quorum of copies can be gathered.

n READDIR (destination port [, pattern]) -- number of items iaad

Returns a list of files in the working directory, optionally filtered through a pattern matcher.

The file names are sent to "destination port" in a WRITE operation.]
READENTRY (path) -- value

U Returns the value associated with given user-defined entry.

m READPROPERTIES (path [, property names]) -4 property list

3 Returns properties associated with the named object. Optionally, return the properties with

the given names.I
RENAME (old path, new path) -- success

I Changes the name of a file, directory, or user entry.

WRITEPROPERTIES (path, property list changes) - number of properties changed

n This operation modifies the objcct's properties according to the changes given. Users may

only modify user-defined properties.

I The remaini ng messages are sent to fileports:

ABORT ( -4 success

3 Undoes all operations since the last commit on this file.

1 CLOSE ( - succes

U
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Closes the 6!e ind deallocate its fileport. If the file was opened with atomic access, any 3
uncommitted operations are aborted. I

COMMIT ( - success

Makes changes since the last COMMIT or OPEN permanent. This is the second phase of I
the two-phase commit protocol.

READ (destination port, number of items to read, number of items per block) -4 number of 3
items read

This message requests that some number of items from the file be written (using the 3
fileport WRITE operation with the given blocking factor) to the specified destination port.

Reading begins at the current position of the read-write pointer; when the operation is done 3
the read-write pointer is positioned after the last datum read. I

READPROPERTIES ([property names]) --- property list

Return the file's property list. Optionally, returns the properties with the given names.

SEEK (position) - success

Changes the vilue of the read-write pointer to "position." 3
SYNC ( ) -- success 3

The first phase of the two-phase commit protocol. A success reply indicates a willingness 3
and ability to commit.

TELL () -4 position

This operation returns the current value of the read-write pointer. 3
I
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(WRITE (data) }* WRITEACK (data) -4 number of items written

g The WRITE operation is special in that it is composed of multiple messages. The result

returned is the total number of items (from the preceding stream of WRITE messages and

3 Ithe final WRITEACK message) that were successfully written.

WRITEPROPERTIES (property list changes) -4 number of properties changed

This operation modifies the file's properties according to the changes given. Users may

3 only modify user-defined properties.

3.,3.3 . iiiternai Protocols

This section outlines the protocols recognized by the various components of Roe. The intent of

3 this section is to define the interfaces between the components, and to characterize the abstraction

supported by each type of component.

I Local File Server Protocol

3 The local file server recognizes the user fileport protocol described in the previous section. In

addition, it implements the following operations used by GDSs:U
ENUMERATE (destination port [, properties]) -+ number of UTIDs returned

Returns the UIDs of file copies currently maintained by the LFS. Optionally, only returns

3 UIDs matching the specified properties, The LRDs are sent to -destination port" in a

WRITE operation. This operation is intended for use with migration algorithms that work

* at the host level.

3 INQUIRE (access, UID [, properties]) -4 fileport, quorum information

Used by a GDS to open a file copy. It differs from OPEN in that it specifies the internal

I
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UID used by Roe to identify objects (and recognized by the LFS) and returns the quorum

information contained in the file copy. I

LOGIN ("roe", roe password) - LFSport I
Authenticates a GDS and returns to it a port for future operations.

LOGOUT ( ) --- success 3
Used by a GDS to terminate its connection to the LFS.

The LFS attaches special significance to some file properties. For example, the type of data in the

file is a property, and is used to type messages containing the data. Another property specifies the 3
"state" of the file, and is used by the GDS for synchronization during migration. An example of

this is given at the end cf the section.

Local Directory Server Protocol 5
A GDS authenticates itself with an LDS using the standard LOGIN protocol. This operation 3
returns an LDSport, which may be used to manipulate complete directory nodes. LDSports sup-

port the following operations: 3
CREATENODE (UID) -- success 3

Creates an new, initially empty, directory node on this host with the given UID. I
DELETENODE (UID) -4 success

Deletes the empty directory node with the given UID. I

ENUMNERAIE (destination port (, propeitesi) -* nuniber of UTIDs returned

Returns the UIDs of directory nodes currently maintained by this LDS. Optionally, only 3
returns UliDs matching the specified properties. The UIDs arc sent to "destination port" in I

II
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a WRITE operation. This operation is intended for use with migration algorithms that

I work at the host level

I OPENNODE (UID [, register]) -4 nodeport, node state, quorum information

3 Opens the directory node with the given UID, returning a nodeport for it, along with

quorum information and information about the node state. "Node state" specifies whether

or not the node is currently in use and up to date. Version numbers are ignored for nodes

that are in use (since ongoing transactions may update them while votes are being col-

3 lected). If "register" is specified, the GDS will be notified of changes in the directory or

its state.

LOGOUT () -- success

Used by a GDS to terminate its connection to an LDS.

I READPROPERTIES (UID [, property names]) - property list

3 Returns properties associated with the named directory node. Optionally, return the proper-

ties with the giver, names.

WRITEPROPER rIES (UID, property list changes) -- number of properties changed

This operation modifies a directory node's properties according to the changes given.

Nodeports are used primarily to access entries insid, .ode. Nodeports suppon the following

g operations:

ADDENTRY (entry [, transaction class]) -4 success

Adds a new entry to the directory node, By default, node updates such as ADDENTRY

3are applied when recei .j. if an entry addition, deletion, or modification is part of a tran-

saction, "transaction class" will be present. If it has a value of ENDING, w,, ImplicitI
I
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SYNC is done for this node before returning. This avoids the need for an explicit SYNC 5
which, given the small size of directory) entries, would be a significant additional overhead. I

CLOSE ( ) -4 success

Closes an open directory node. I
DELETEENTRY (entry name 1, transaction class]) - success I

Removes the entry with the given name from the direciory. 3
ENUMERATEENTRIES (destination port, {ALL I JUSTNAMES) [, pattern]) --+ number of

entries matched

Returns all entries in the node (if "ALL") or the names of al entries in the node matching I
"pattern." The UlDs arz sent tc "desination port" in a WRITE operation.

READENTRY (entryname) -+ entry

Returns the contents of the entry with the given name.

I
READPROPERTIES ([, property names]) -4 property list

Returns properties associated with the directory node. Optionally, returns the properties I
with the given names. 3

UPDATEENTRY (new entry [. transaction class] [,old entry]) -+ success 3
Changes an existing entry. If included, "old entry" must match the current value of the

entry. 3

WRITEPROPERTIES (property list changes) - number of properties changed 3
Modifies a directory node's properties according to the changes given. p

I
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In addition, nodcports recognize the ABORT and COMMIT operations used for two-phase commit

(S'. NC is implicit) and the WRITE operation defined in the user protocol. The WRITE operation

is used in conjunction with READPROPERTIES, W1RITEPROPERTIES, and

ENUMERATEENTRIES to migrate directory copies and to bring up to date obsolete copies.

3 Copies are frozen (by setting a special state property in the copies) for the brief period of time that

is required to do this.

i Local Representative Protocol

3 The LR supports the following operations:

3 LOGIN ("roe", roe password) ---) LRport

Authenticates a GDS and returns to it a port for future operations,

5 LOGOUT ( - success

Used by a GDS to terminate its connection to the LR.I
STATUTS( ) properties of this host

I Returns to the GDS information on the local host. This information is returned in the form

of a property list to allow it to be easily manipulated and expanded.

3 SPAWN() --- TCport

Creates a new Transaction Coordinator on this host and returns a port to it.

Transaction Coordinator Protocol

3 The TC supports the uer fileport protocol defined in the previous section and translates fileport

operations into operations on multiple fileports. In addition, it accepts the following operation from

the GDS:

I
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FILE SUITE (userport, access, r, w, votes, LFSports [, entryport]) -- fileport

Used by the GDS to supply a TC with a description of a newly opened file. "Userport"

identifies the user and a~lo,;s the TC to return a fileport to the user. "Access" is from the 3
OPEN. "R", "w", 'votes", and "LFSports" describe the file quorum. "Entryport" is

present if there is a directory change that should be committed as part of file commit.

Global Directory Server Protocol 3
The GDS supports the user packport and directorypor, protocols defined in the previous section.

In addition, it accepts two-phase commit operations (ABORT, COMMIT, and SYNC) from TCs

for use in synchronizing entry changes with file commits, and WRITE operations from LDSs and

LFSs as part of retrieving information on file and directory copies on a hosL

Finally, changes in directory nodes that the GDS has registered with are sent using the following 3
operation:

NOTIFY (condition, description)

Used by an LDS to notify a GDS of changes in the state of a directory copy. This can be

generated in response to directory updates (in which case "condition" contains the opera- 3
tion and "description" the new entry), or to notify a GDS of update failures or other con-

ditions. 3
Examples3

,Is an example of how these protocols are used, consider migrating a file. A GDS first selects a

file copy to migrate and does an INQUIRE on the copy. This may have already been done as part 3
of another operation (for example, if this is a demand migration, the INQUIRE would have

already been done as part of quorum collection). 1
The GDS does a WRITE_PROPERTIES to mark the copy as migrating, and to indicate that it is 3
to be deleted at commit time. It then uses an INQUIRE to create a copy at the new location. It I
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3 does a READPROPERTIES on the old copy to get the property list, edits Roe propertes if

needed, and sends the properties to the new copy with a WRITEPROPERTES. It then does a

READ on the old copy, specifying the new one as the destination. After this finishes, a SYNC is

done on both copies, an UPDATEENTRY is done for the entry pointing to the file, and then a

3 COMMUT is done to finalize the changes.

U 3.6. Discussion

3.6.1. Meeting the Goals of Roe

In section 3.3 we derived a set of goals, based on our thesis statement, that Roe was to meet.

Roe's methods for addressing each of these goals are as follows:

• Network transparency: Roe supports its own network transparent global directory and

provides transparent access to distributed resources through this directory. This ensures

network transparency.

• Simple user model: Roe appears to users to be a single, globally accessible file system

3 that providec highly available, consistent, sharable files.

° Consistency: Atomic transactions are used to ensure internal consistency in any, given

I file or directory copy. The use of weighted voting guarantees that users will always see

the latest copy.

a Enhanced availability: Roe supports replication of files and directories to increase

3 availability. It also maintains a network model that includes information on host avail-

ability and uses this to place resources to maximize availability.

3 . Reconfigurability: Roe uses automatic file placement, file migration, and replication to

mask and adapt to failures and other changes in underlying resources. The network

3 model maintains information about the state of these resources and allows placement

and migration to be done effectively.

3 • Performance: Roe uses automatic placement and migration to place data near those

using it. The network model includes information on host performance and congestion

I
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that can be used to balance load and reduce delays. Directory information is cached to

reduce the overhead of name interpretation.

Heterogeneity: Roe supports data conversion between machine boundarie: where possi- 3
ble, machine-dependent files, file properties for storing information useful to particular

host types, and a modular structure thAt encourages heterogeneity by minimizing the ini- 3
tial "buy-in" cost.

* Scalability: Roe uses algorithms, such as weighted voting, that are able to operate in the 3
presence of partial knowledge. This minimizes the need to maintain network state.

Control of access to data is placed with the data. This simplifies the replication and dis- 3
tribution of higher levels, and allows these levels to be spread across the network. I

3.6.2. Weaknesses of the Roe Approach

A significant weakness cf Roe is its lack of support for autonomy. Once a file is stored in Roe, I
users have no control over where it will be located. This makes stand-alone operation of a host 5
using Roe unreliable at best. This is not an issue in the LAIN environment that we have been con-

cerned with, but it complicates extending Roe to other environments. I

This lack of autonomy is the result of three factors: Roe's use of a separate global directory to

ensure transparency, replication to increase overall availability, and our insistence on consistency

for replicated files and directories.

Two related issues are security and the use of Roe in wide area networks. The current design of

Roe doesn't explicitly address security issues, although it would be straightforward to add access 3
control mechanisms given our assumption of a single administrative domain. However, if Roe

crosses administrative domains or is on a network that includes untrusted hosts, placement and I
migration algorithms would need to take security implications and autonomy requirements into

account. This is more likely to be an issue in wide area networks. This, combined with autonomy

issues in wide area networks, would make it difficult to extend the Roe model to this level. A

more appropriate model here might be a separate Roe system controlling resources on each LAN.

I
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3with provisions to access Roe systems on other LANs.

Performance may also be an issue in some Roe configurations. Roe includes algorithms to place,

migrate, and group data to improve performance. However, the use of a separate distributed glo-

bal director-, combined with the overhead of ensuring the consistency of file and directory data

may result in substantial performance penalties, particularly if Roe is implemented on top of host

operating systems, as planned.

Roe caches directory information to reduce the overhead of name lookup. One wayv to reduce the

overhead of ensuring file consistency would be to place advisory locks (which are broken, wvith

notification, on a write) on frequently used files. This would eliminate the need to collect

quorums ever-v time these files are opened. The degree of success such a tactic would have would

depend on the amount of file sharing, on update rates, and on reference locality. We will examine

this issue again in Chapter 7 in the context of data on file usage patterns.

1 3.6.3. Strengths of the Roe Approach

3 An important strength of the Roe approach is its support for complete network transparency, and

the approach it uses to ensure transparency. This provides a framework that allows Roe to3 integrate exisung solutions for file placement, migration, consistency control, and other problems.

i Using these techniques, Roe can transparently integrate new resources, make effective use of exist-

ing ones, reconfigure to balance load and adapt to failures, and replicate resources to increase

3 availability. Roe does this while ensuring consistency, network transparent naming, and transpar-

ent access, thus supporting a particularly simple user model.

Roe provides extensive support for heterogeneity, including transparent data conversion, machine-

3 dependent files, file properties for extending Roe's file abstraction, and a modular structure that

reduces the initial "buy-in" cost. As we will see in Chapter 4, this allows heterogeneous

3 resources to be easily integrated into a network.

I
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Ro. is designed to Wscalc vcll to large LANs. It makes extensive use of algorithms, such as 3
weighted voting, that are able to vkork in the presence of partial netork knowkledge. Control ol

data is placed v.ith the data. This use of distributed control eliminates bottlenecks that occur in 3
centralized designs, The network model and the use of automatic migratioi can be used to bal-

ance load and avoid congested "hot spots" that plague large networks. 3

3.7. S ummna ry3

This chapter has presented a design for Roe, a fully transparent distributed file system for a het-ro- 3
geneous local area net'Aork. Roe appears t users to be a single, globally accessible file system

providing highly available, consistent files. Roe uses file replication. atomic transactions, a repli-

cateu global director, a detailed model of the network, automatic placement, and migration to

provide full network transparency. 3
File replication based on weighted voting is used to enhance the availability of Roe files and direc-

tories. Weighted voung vas chosen because of its simplicity, its support for decentralized control.

and its abilit to operate in the presence of partal knowledge. £
Roe maintains a replicated global directory that is used to name Roe files and directories. The 3
separation of this name space from that of hosts supporting Roe allowks Roe to transparently repli-

cate, distribute, and reconfigure files and directories. The global director\ is replicated using a 5
modified weighted voting algorithm that supports long-term connections and caching.

A network model encodes information used in placing and migrating files and dir.tories. The I
model includes information on host congestion, available space, availability, state, and so on. This I
netw*ork model is usd to perform automatic file placement and migration. Files are placed based

on available space, congestion, topographic, and other considerations. File migration may be used 3
to adjust to changes in underlying network resources, to improve performance by movmi data

closer to users, and to balance load. 3
I
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A network is tv'picalty made up of a number of dissimilar machines, and Roe recognizes this by

providing support for heterogeneity. This includes typed files, convercion between machine boun-

5 daries, support for machine-dependent files, file properties to allotk Roe's file mode! to be

extended, and a modular structure that eases the integration )f new hosts into Roe.

i As we have seen in this chapter, the full network tansparency supported by the Roe design allows

it to integrate these techniques and to use them to provide increased availability, transparent

reconfiguration, effective use of resources, a simplified file system model, and performance

benefits such as load balancing and migration to reduce overhead. The design provides a strong

vindication of our thesis statement.

I
I
I
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Chapter4 3

The Roe Implementation

I
4.1. Introduction 3
An implementation of Roe was undertaken to validate the design presented in Chapter 3. This

implementation was also intended to provide an environment for experimenting with other file sys-

tem designs, with file placement and migration algorithms, and, eventually, a file storage and 3
management facility for the department's network.

It is frequently argued in systems research circles that an implementation is the most effective I
(and sometimes only) way to validate a system design. It often uncovers problems and complica-

tions that were not anticipated in the original design, and points up areas where future work is I
badly needed. As we will see, the experiences gained in implementing Roe confirm this view.

In this chapter, we first describe the environment in which Roe was implemented. We then sketch

out the implementation approach used and present the resultant system. Given this background, 3
we describe problems that were encountered in the implementation and make some suggestions for

future systems. Finally, we discuss the extent to which our goals were met and detail lessons I
learned from the implementation.

I
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4.2. The Implementation EnvironmentI
Roe was conceived and designed in the context of a larger researci project on a testbed system for

distributed file systems. Implementation cf this testbed system was started in late 1981. At that

time, the University of Rochester Computer Science Department's network consisted of several

3 Data General Eclipses running RIG (a locally developed message passing system), VAXen running

BSD UNIX, and a number of Xerox Alto [Thacker 79] workstations running Alto/Mesa. These

3 hosts were connected together with a 3NB Ethernet [Metcalfe 76] (see Figure 4-1). Roe was

implemented on all 3 classes of hosts. This gave us an opportunity to explore some of the compli-

i cations introduced by a heterogeneous environment.

3 The following section briefly describes the environments provided by RIG, UNIX, and Alto/Mesa.

Section 4.2.2 describes the interprocess communication mechanism (IPC) used in the5

m D/G Eclipse DIG Eclipse VAX 11/780 VAX 11/750

I RIG RIG BSDUNIX BSD UNIX 0 0

I 500MB disk 250MB disk 560MB disk 470MB disk

3 3MB Ethernet

I Xerox Alto Xerox Alto Xerox Alto

S S Alto/Mesa Alto/Mesa Alto/Mesa 6 0 S

I 5MB disk 5MB disk 5 disk

Figure 4-1: U of R Computer Science Department 3MB network (cira 1983)

I
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implemenauon.

4.2.1. The Host Environments 1

RIG [Ball 76,Lantz 82] ran on several Data General Eclipse minicomputers. It was a message- I
based system that provided file service, ARPANET access, printing services and a number of other

functions for client hosts (primarily Xerox Altos). RIG supported a tree-structured file system. 1

Files were managed by a file server process and presented to the user as seekable streams of bytes. m
Requests to read or write a file were limited to 1K bytes per message.

For the developer of RIG software, the primary characteristics of the system were that typed mes- 3
sages were the basic method of communication, process address space was limited (64K bytes),

physical memory' was limited, context switching was slow, and process creation was very slow. 1
These factors worked together to encourage a structure where one server process was responsible

for a resource. Such a server typically handled a number of client sessions simultaneously, multi- 1
plexing between them and processing as much as it could of all active sessions before blocking.

The development (and only) language on RIG was bcpl. Bcpl is an ancestor of C, with similar

structuring facilities, but with a cleaner syntax and no typing. 5
UNIX [Ritchie 78] is a general-purpose, interactive time-sharing system. UNIX supports a tree- I
structured file system containing both files and devices. Files are represented as seekable streams

of bytes. Associated with each file is additional information on the size of the file, creation date,

protection, and so on.

Process creation in UNIX is generally much cheaper than on RIG, although still significant relative

to file access times. The version of UNIX used in this effort (4.1 and 4.2BSD UNIX) supports a 3
large virtual address space, and so allows servers to retain significant amounts of state. C [Ker-

nighan 781 is the language of choice for most system development on UNIX. 3
The Xerox Alto is a microprograrnmable, single-user workstation with a bit-mapped display and

mouse. Files on the Alto are seekable streams of items (generally bytes or words) plus a leader

I
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page that contains hints about file size, name, file type, and so on. User information may also be

Istored here.

Development on the Alto was done using Mesa in the Alto/lesa environment

[Mitchell 79, Xerox 791. The distinguishing features of the Mesa language are strong typing, ela-

borate facilities for modularization and information hiding, and support for cheap shared-address

processes. The language provides monitors to synchronize access to this state. In addition to the

programming language, the Alto/Mesa environment provides a number of packages for file access,

process management, display manipulation and so on.I
4.2.2. Interprocess Communication

1 When the implementation of Roe was started only RIG, of the 3 environments described above,

had a native IPC mechanism that provided a sufficiently rich set of functions. There was, how-

ever, an add-on IPC environment developed by Rashid at CMU [Rashid 80] for 4.1BSD UNIX. It

was the logical successor to RIG's IPC and was generally compatible with it. This [PC was

adapted for our UNIX machines, necessary extensions were made to RIG's IPC and a compatible5 implementation was done for the Altos. Servers were written for each environment to extend the

IPC across the network. This work is described elsewhere [Moore 82].

I The remainder of this section describes the facilities provided by the network IPC, presenting only

those aspects important to the Roe implementation. For the sake of brevity, we will discuss pri-I!
marily the UNIX implementation, generally referred to as CMU-IPC. The Alto implementation isg basically identical from a user's viewpoint, the differences in the RIG IPC had little effect on the

implementation, and the extension across the network was, for the most part, transparent.

I CMU-IPC provides two basic types of objects: ports and messages. A port is a FIFO queue of

messages. One process may receive messages from a port and any number of processes may send

messages to the port (Figure 4-2). All access to a port is through a secure capabiliry, which is a

process-local name for the port. CNI-IPC notifies processes with capabilities to a port when the

port is destroyed or becomes unreachable and the capability becomes invalid.

I
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I

Sender I Sender 2 Receiver

user level -

kernel/network servers

message queue I
Figure 4-2: A port in CMU-IPC 3

Ports in CMU-IPC are anonymous. Given the local capability for a port there is no way to deter- 5
mine the location of the process receiving messages sent to the port. This would, in theory, allow

the receiving process to change during the lifetime of the port, but the protocol for doing this 3
across the network is non-trivial and was never implemented at Rochester.

A message is a collection of typed data objects. Supported data types are currently limited to I
character, integer, port, uninterpreted, and arrays of any of these. In addition to the data, messages i

have a priority (normal or emergency), an integer ID (set by the sender), a destination port (where

the message will be deliveed) and a reply port. Normal messages follow the FIFO queue discip-

line described above. Emergency messages are also received FIFO, but they are queued ahead of

normal messages sent on a port. Messages are delivered reliably. 5
The queue for a port is limited in size. Flow control is invoked when a process attempts to send a

normal message to a full port (emergency messages are not flow controlled). One of three flow

control actions (specified by the sender) is taken:

I
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* The sender is blocked until there is room for the message; or

3 • The send fails; or

The message is accepted and the sender is notified when it is actually queued (limited to

I outstanding message per sender per pon).

It is possible to associate a string name with a port. Other processes may then lookup a port by

name and receive send rights to it. If a name lookup request cannot be satisfied locally, the

i request is broadcast to other machines on the network. There is no other structure in the IPC

name space. There are two other ways for a process to gain send rights to a port: the parent of a

process may request send rights to the two default ports created with the process (the data and ker-

nel ports) or a process may receive them from another process in a message.

The IPC described above was extended across the net using user-level servers. PUPs [Boggs 80]

are used as the underlying transport mechanism. This limits messages to a maximum of 512 bytes

on some systems. Typed data in messages is converted to a network standard format

(VAX/UNIX) before being placed on the network and converted back when received by a serer.

14.3. The Roe Implementation

3 This section describes the actual implementztion of Roe. We first describe the general approach

used in the implementation. We then present each of the servers that make up Roe in turn.

Finally we summarize what was and was not implemented in the context of the architecture given

I in Chapter 3.

4.3.1. General ApproachI
Our general approach was to implement enough of Roe to both validate the approach used and to

i make the system usable. In practice this means that a fairly complete implementation of the sys-

tem was done in the UNIX environment and a limited subset of the system was implemented in

3 the RIG and Alto/Mesa environments. This allowed us to validate the overall design, investigate

I
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the heterogencii. aspects of Roe, and implement a working system in a reasonable amount of

time. !

The structure of the implementation follows closely the architecture given in Chapter 3. Local 1
File Servers and Local Representatives have been implemented for all three host environments.

This allows files to be stored on all hosts on the target network. Transaction Coordinators, Local 3
Directory Servers and Global Directory Servers have been implemented in the UNIX environment.

Servers ar implemented as separate processes, with information exchanged only through mes-

sages. T1 is approach has obvious performance disadvantages, but allows for easier development,

monitoring, experimentation, and incremental implementation. The two obvious alternatives, 3
implementing Roe as one process per machine and implementing Roe in the kernel of the hosts

are le'.s appropriate for a research prototype of this complexity. !

We maide minimal changes to the host environments. This was in keeping both with our goal of 3
gracefully accommodating heterogeneity and with the limited manpower available. The most

striking example of this is our reliance on the file systems of the hosts. Roe files and directories

are implemented as files residing on the regular file systems of the hosts. In a similar spirit (and

because we were not the sole users), we used CMU-IPC without any modifications as a base for 5
the implementation.

Roe has not been released to the general public, but it was implemented with this possibility in

mind. There are two important consequences of this: 1) servers never block on user processes or !

other servers, and 2) a functional implementation was done. We will come back to these points in

the following sections. 1
4.3.2. Roe Server Implementations 3

'As we shall see, ihis is a clasic example of buidding on sand. U
U
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4.3.2.1. Local File Server

I Local File Servers were implemented in the UNIX, RIG and Alto/Mesa environment. We will

g describe first the UNIX implementation and then use this as a base for discussing the other two

implementations.

S 4.3.2.1.1. UNIX

i The UNIX Local File Server supports the fileport protocol described in Chapter 3 (with the excep-

tion of crash recovery). The UNIX LFS also supports most of the directoryport protocol. This

allows users to access files local to UNIX machines (files that lie outside the control of Roe) using

the same protocol used to access Roe files,

The initial UNIX LFS created a new process for each user that logged in and for each file that was

opened. Dedicating a separate process to each user and file resulted in a very simple implementa-

tion. Requests from users could be mapped in a fairly straightforward fashion into UNIX system

Ecalls, with no need to worry about a server process having to deal with multiple outstanding

requests. Unfortunately, the performance using this approach was not very impressive. The time

3 required to fork a new LFS process (lOOms on a VAX 11/750) was an order of magnitude greater

than the time required for the new process to open the file (an fopen call typically takes 5-10ms

3 under 4.2BSD UNIX) and so dominated the cost of opening a file.

3 This led us to re-implement the UNIX LFS as a multiplexed server. A new process is still forked

when a user logs in (for protection purposes), but now all file requests for a given user are handled

3 by a single process. A user may have a number of files open at once, and in various stages of

reading and writing. We wished to preserve the appearance of a non-blocking server (that is, an

active request on one file shouldn't preclude operations on another file). We do this as follows:

When a process receives a request to open a file, it allocates a new port to handle requests for the

3file and passes the port back to the user. Requests on the file always arrive at this port. Associ-

ated with the port is a processing routine that is called when a message is received on the port,

I and a context to use in interpreting the message.

U
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processor = prL' 1;

h hio (TR UE

receive (rnes;age c

processor(messoge, context); 

procl(message, context)

start processing on the request;
processor = proc2;
save context for proc2;
return: I

proc2(message, context) I
finish processing;
processor = prodl';
return: ]I

Figure 4-3: A Multiplexed Server £
All messages are received at a single location and are then dispatched to the processing routine

associated with the port. This routine handles as much of the request as ossiblle ano, if it isn't

able to finish the request without blocking on a message send or receive, sets up a processing rou- 5
tine arid context to continue the request. It then returns to the central dispatching loop. The

overall structure of a Roe server using this approach is shown in Figure 4-3. 1
This fairly crude approach allows us to write multiplexed servers without any underlying system or

compiler support (an important consideration in a heterogeneous environment). It does, however, I
result in an implementation that is harder to understand and modify, since the flow of control in

the server is much less obvious. We will come back to this in section 4.4.

The LFS maintains a property list with each Roe file (files opened using INQUIRE) that it 5
manages. This list is stored at the front of a file and is read in when the file is first opened.

There is no limit on the size of this property list. The structure of a Roe file in UNIX is shown in 3
Figure 4-4. It should bc noted that this approach doesn't allow properties to be stored in non-Roe

U.>NIX files. A number of other representations were considered that would have allowed

I
U



I
101

properties to be associated with any UNIX files, including adding a pointer to a properties page in

3the UNIX file system mode structure, maintaining a properties "database" containing properucs

for all files on the system, and maintaining a "properties directory tree" that shadowed the direc-5 tory tree and files of the associated UNIX file system. These were all eventually dropped because

of complexity or performance reasons.

I There are actually two types of properties stored in the property list of a file: properties Used by

the Roe file system and user properties. By convention, Roe properties have names of the form

"ROE*." Five of these properties are present in every Roe file and have special meaning to tlic5 LFS. "ROEtimestarmp," "ROEr-quorum," "ROEwquorum," and "ROEvotes" are used in thc

weighted voting algoriLhm. The) must be present in the INQUIRE request when a Roe file is

offset =0

i check word

data offset

number of propertiesg name length

properties name

i _ _value type

offset = data offset

number of values

file data,

3- values

file format property entry

i Figure 4-4: Structure of a Roe file on UNIX
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re.'atd and arc returned b the LFS Ahen a Roe file is opened. If the file is opened for writ.

access, the LFS ncremrLem thC urmestamp ("ROEtimestamp"). "ROEtype" specifies the type of 3
the data in the ile , is ud' to determine the size of the basic object in the file and to type mes-

s.ces contatnin dau. 3
T c UNIX LFS scpports atomic actions on files. If a file is opened %ith atomic access, a copy of 3
the i1e 'Aill be made tLf first time it is written and all work vill be done on this copy 2. At com-

mi time the copY rCpILI. he original. The fsyrc system call is used to ensure that a consistent

copy of the file is on disk. Full crash recovery' is, however, not currently implemented.

4.3.2.1.2. RIG

The RIG Local File Server Aas also heavily multiplexed, with one process handling all requests U
for a given machine. On RIG, file system requests were done using messages to the file server

process. This resulted in more fragmentation in LFS processing routines, with the corresponding

complexity in development and maintenance. 3
In parallel wkith the dcveIpment of the RIG LFS, plans were made to rewrite the RIG file server.

This rewrite ,kould have provided a more robust on-disk structure, support for atomic transactions I
and stable storage, support for properties, and information on disk space available. When it

became clear that RIG was to be phased out, these plans were dropped, along with the remainder I
of the Roe implementation effort on RIG. Of the proposed file system changes, only support for

atomicity would have been strictly necessary for Roe. I

4.3.2.1.3. Alto/Mesa U
In the Alto/Mesa environment we were able to take advantage of the lightweight processes pro-

vided by, Mesa. Lightweight processes allowed us to avoid explicit multiplexing. The resultant

implementation is a comparative joy to read. The Alto/Mvesa LFS implements the entire LFS 3
X2' is is not a pamiculart. ciecer Lmplementation, but it has the significant advantage of requirng no changes to the

UNiX fie s',swm ic imnplement 3
I
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protocol (including crash recovery) and took considerably less time to implement than either the

3 RIG or UNIX LFSs. Each user login session and each opened file is handled by a separate proc-

ess. In situations where it is necessary to access shared state (the file lock table and the intentions

5 logs), Mesa monitors are used for synchronization. Properties are stored in the Ako leader page.

4.3.2.2. Local Representative

3 The LNIX Local Representative supports two requests: 1) SPAWN a new Transaction Coordinator

and 2) return STATUS information on the local pack and machine. The TC is part of the LR in

the U-NIX implementation and so SPAWN reduces to a fork call. Returning status information is

somewhat more complicated.

I When the LR starts up, it reads a configuration file containing the name of the pack it is represent-

ing. along with information on the operating system type, machine type, availability, and basic

page access ume. This is the status information that doesn't change while the LR is running.

When a STATUS request is received, the LR gets the amount of disk space currently available

(using the shell-level command "df") and estimates the current page access time (we use as a

rough estimate (basic page access time)*(Ioad average)). This information is returned along with

the static status information.

The RIG and Alto LRs support a reduced form of the status command. On the Alto only the

available space changes dynamically and on RIG all returned status information is stauc (and

hence not very accurate).

1 4.3.2.3. Transaction Coordinator

3 The Roe Transaction Coordinator takes a user request on an open file suite and distributes the

request to the appropriate file copies in the suite. A TC has been implemented for UNIX. It has a

3multiplexed structure similar to the LFS, but with the added complication that there is an error

handling routine associated with each allocated port. As with the processing routine, the error

3 handling rouune may be changed as needed. This allows us to easily express the different error

I
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handling requirements of, for example, a READ versus a COMMIT. There is at most one TC for

each active user of Roe, and se a given TC may be handling mutiple file suites simultaneously. 3
The multiplexed structure keeps the TC from becoming a bouleneck. I
Reads on a file suite are sent to one cop), of the file. Writes go to all accessible copies. If a copy'

of the file fails, it is removedl from the quorum. If a quorum no longer exists for an operation, 3
then the operation fails. If the copy being read fails in the middle of a read operation, an attempt

is made to s ,itkh to another copy. This change is transparent to the user process. The TC main- 3
tains for each file suite the current file offset, calculated based on the last SEEK and on accumu-

lated READ and WRITE operations. Data read from a file are sent first to the TC, the offset is

updated, and then the data are forwarded to the user. If a cop;,' fails in mid-stream, another cop)

is selected, a SEEK is done and a READ is started from the point where the last READ failed.

The TC's intenal file offset is also used to do a SEEK before doing a WRITE (to all copies) that

tollovds a READ (to a single copy). £
4.3.2.4. Local Directory Server

The UNIX Local Director,' Server manages, for Global Directory Servers, Roe directones on a 3
host It is implemented as a single process per host. Roe directories are stored as regular UNIX

files, with one diurctory node copy per file. A directory' copy contains some administrative infor-

mation, a propert\ list, and the directory entries. The structure of a directory file is shown in Fig-

ure 4-5. Figure .4-5 also shovs a sample director, entry (this is the on-disk format, with each of

the strings being stored in <length. characters> format). This entry dcscribes a plain file. Other

entry types describe directories, user entries and machine-dependent files. These types are 3
described in more detail in Chapter 3.

When a directory node is opened, the directory, is read into memory' and cached in the LDS.

imce directories are typically very small and we expect references to be fairly localized (Chapter

6). the memory and processing cost involved here are insignificant. Reads are handled from

memor,. Updates are made first to the in-memory copy of the node and then the modified node is 5
U
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check word offset = 0

5 data offset

number of properties type (file)

properties name
~ offset = data offset

LDS version number global ID

5 number of entries number of copies

-- entries copy locations

directory format a file entry

Figure 4-5: Structure of a Roe directory

5forced to disk. Atomic updates are supported using the protocol described in Chapter 3. There is

currently a limit of one such update pending per directory node, although it may contain multiple

1 operations. Crash recovery has not been implemented.

i When a directory node copy is first opened, the LDS allocates a new port that will be associated

with the node and returns it to the opener. Requests to open an already opened node are handled

5 by simply making a note of the GDS making the request and then returning the port already asso-

ciated with the node. The LDS maintains a list of all processes with access to a node. This list is

used to notify GDSs when a copy is out of date or otherwise potentially invalid. This list is also

used to keep track of the number of GDSs actually connected to a node. When this number drops

I to zero (because of CLOSEs or lost connections), the node is closed.

I
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The LDS also associates with each node a state. This state may take one of three values:

*CU RRENT: The node copy, has been read or updated and has not lost connec-tions to

GDSs.

STALE: The LDS has been unable to make at least one update to the node (due to disk I
problems, for example).

SUNNKNOW,.%N: Before a node has seen any reads or updates or after it has lost conn-I

tions to GDSs. 3
If a node is STALE, requests to read o- write the node are rejected until the copy is updated by a

GDS. The other two states (CURRENT and UNKNOWN) are sent to the GDS along with

weighted voting information when a node is opened (see Chapter 3).

4.3.2.5. Global Directory Server I
The Global Directory Ser'ci is the glue that holds Roe together. It maps user requests into

requests on Roe file and director-y suites, maintains the network model, determines initial file 5
placement and manages migration The GDS described here is a concrete realization of the GDS

described in Chapter 3. Its structures and algorithms generally follow closely those presented in j
Chapter 3. One exception is the representation of information on host storage capabilities. The

implementation of Roe described here organizes storage by pack, rather than by host. A pack is a

unit of storage whose contents and space may be treated at a whole by Roe. A pack may or may

not actually be tied to a particular host. It can be thought of as corresponding, on Altos, to a phy-

sical disk that may be moved from machine to machine or, on UNIX systems, to a file system.

In the next section we describe the initalization procedures for the UNIX implementation of the

GDS. Following sections cover the network model maintained by the GDS, file and directory

suite management (opening files, deleting them, updating obsolete copies and so on), and file

placement and migration. 3
I
i
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4.32.5.1. Initialization

When Roe is first started up on a UNIX host, a Local File Server, a Local Representative and,

5 optionally, a Local Directory Server and Global Directory Server are created. When a GDS is

started up, it first reads a GDS state file containing the last GDS incarnation number on this

3 machine and a record describing the location of the root of the directory tree. The incarnation

number is incremented each time a GDS is forked and is used when generating unique file

identifiers. The record describing the root contains the file ID and packs of the copies of the root

(in the format used by the LDS to store directory entries). The GDS uses this information to open

51 the root of the directory tree.

gThe GDS reads two other files on startup. The first, the local pack file contains the name that the

local pack will be known under. This name is unique across Roe. The GDS uses this name when

5generating unique file IDs. It is also used as the default location for newly created files, direc-

tories and processes. The network status file contains, for the network, information on packs and

their hosts. Each entry contains the name of a pack, the machine type and operating system of its

host, the pack availability, and access time and free space estimates. This information is used to

I! initialize the network model maintained by the GDS. It is updated when packs are contacted.

After the GDS on a host has finished its initialization, it asserts the CMU-IPC name "pack.roe."

A user wishing to contact Roe does a name lookup on "pack.roe" and logs in, If there is a GDS

server running on the user's local host, it will be used. Otherwise a broadcast name lookup is

done. The GDS on the first host to respond will be used.

i When a user logs in, a new GDS process is forked for the user. This GDS process handles all

3i user requests that don't involve internal file operations (these are handled by the TC). The GDS is

not multiplexed, but instead handles user requests serially. This is generally not a problem, since

3 the GDS, unlike the LFS and TC, isn't involved in ongoing transactions.

I
i
I



108

4.3.2.5.2. The Network Model

When the GDS receives a user request to, for example, create a file, it contacts LDS and LFS

processes to read and create directory entries and to create file copies. Each GDS maintains a net-

work model centaining information about the state of the hosts and servers in the network. This

state is use d to contact servers and to place newly created objects.

The network model is organized by pack. The following information is kept for each active pack: 3
" Pack name.

" Host status (up, down or unknown).

" Last update (time of last STATUS request to the LR for this pack).

" LDS, LR and LFS ports for this pack (if available). U
• Machine type (VAX, Alto, ...).

* Host operating system (UNIX, RIG, ... ).

0 Host availability. 3
. Free space (dynamic estimate).

& Delay (a dynamic estimate of the time for a host to complete a page read).

When a pack record is first read in from the network status file, it is given a host status of "unk-

nown." The first time the GDS acquires a port for one of the pack's local servers, the status is

changed to "up." If connections to all local servers on a pack are broken, the host is marked as

being "down" (or at Isast inaccessible). A GDS will periodically try to recontact down hosts.

The machine type, host operating system and availability information are from the network status 3
file, or, if this is a machine that wasn't in the status file, from the pack's LR. The free space and

delay information are updated periodically using the replies to STATUS requests sent to up LRs. 3
GDS processes maintain current state information for packs that they expect to be using in the 3
near future. Packs are ordered on an LRU basis. Connections to a new pack are added when a

request is made to access or place an object on the pack. A GDS process periodically polls LRs 3
on active packs to update free space and delay estimates. This is currently done every 10 minutes. U

I
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Polling for network status can be expensive, particularly in a large network. The GDS tries to

control this overhead by only contacting a limited number of recently used packs. A better solu-

tion would be to have a GDS process maintain connections with a limited number of LRs and to

have these LRs send notifications when there are significant changes in free space or delay esti-

mates. This has the advaitage of both decreasing the amount of unnecessary network traffic and

of providing timely notification of important changes. This approach was not used because it

would have required potentially major structural changes in the non-multiplexed GDS.

The general approach used in this implementation of the network model was one of 'minimal

I impact" and attention to scaling issues. A GDS process only acquires connections to packs as

they are needed. The obvious alternative, attempting to acquire connections to all known packs at

I startup time, would provide the GDS 'i,,th considerably more information about the network, but

also incurs substantial rnzsts from name lookup and connection establishment. These costs become

prohibitive -n large networks. A GDS also only maintains current state for recently accessed

packs. We make no attempt to maintain enough information to do optimal file and directory

placement. However, the approach used, when combined with the placement heuristics that will

be described in the following subsections, can be expected to provide effective placement in our

environment with relatively little overhead.

4.3.2.5.3. File and Directory Management

3, The major task of the GDS is to open files for the user. When a request is received to open an

existing file, the GDS first reads the directory entry for the file. This is done using connections

3 maintained by the GDS to copL- of the user's current working directory and to other recently used

directories. If this is a regular file, the GDS iei sends an INQUIRE request to all copies of the

Ifile and collects the responses. If a quorum is received, the result can be sent to the users's Tran-

saction Coordinator. Before this is done, the GDS checks to make sure that all copies of the files

are current. Obsolete copies are updated by rewriting both the file data and properties. Only the

voting information is left unchanged. Once the TC receives the ports and other information for

the file quorum, it can accept user requests to access the file data. The sequence described above

I
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is shown, for an unreplicated file, in Figure 3-4. i

Opening files is not always as simple as the description given above suggests. If the file doesn't I
exist and is being opened with create access, the GDS first composes a unique file ID for the new

file. The file ID has the form

<local-packname>.<incanationnumber>.<sequence number>. 3
Here the incarnation number is from the GDS state file and the sequence number is incremented

for each new file created by this GDS incarnation. The GDS then selects locations for copies of

the new file (see the next subsection), places the copies and creates a directory entry describing

the file.

The file being opened may be a machine-dependent file (returns data that depend on the machine I
and operating system being used). If the file is an existing file, the machine-dependent characteris-

tic vill be specified in the directory entry for the file. The entry will also contain a list of file

suites, one suite for each machine and operating system combination that the file supports. The 3
GDS attempts to match the target machine and operating system with one of the file suites in this

lisL The target machine type and operating system may be specified as properties in the OPEN

request. If they are not given, the GDS uses the machine type and operating system of the user's

home pack. This is the pack that the user supplies when he logs in. If no match exists, the open

fails. A machine-dependent file may be created by specifying a machine type and operating sys-

tem when a file is created. 5
Another complication is file migration. The open request may trigger migration of this file. This is 3
done before the file is opened. Finally, there may be no Transaction Coordinator active for this

user when the file is opened. In this case, the GDS sends a SPAWN request to the Local 3
Representau,,e on the user's home pack to create one.

A GDS process maintains connections to directories it expects to be using dgain soon. This is i

presently limivd to the current working directory and its ancestors, but could easily be expanded. g
!
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When a directory node is first referenced, the GDS reads from its parent the entry describing the

I node. It then contacts the copies of the node and collects a quorum. If any of the copies of the

director), are obsolete, they are updated at this ime. The GDS selects a copy of the node (gen-

erally the first one to respond to the open request) and uses it for subsequent reads. Updates are

applied to all copies in the quorum. Emergency messages are used to notify a GDS when a copy

fails. Failed copies are removed from the quorum. If a quorum no longer exists, the node is

i clr~edl

4.3.2.5.4. Initial Placement and MigrationI
When creating a file or directory, the user may specify the number of copies to create, locations to

place the copies, and the voting configuration to use. This information is a property of the object

and is given in the property list that is part of the OPEN or CREATEDIR request. If the user

1 omits this information, defaults will be used. In this case, the GDS must select locations for

copies. The network model plays an important part in this selection process.!
The GDS attempts to place files and directories to minimize access time, subject to loose availabil-

5 ity constraints. The first copy of a new object goes on the user's home pack. We are assuming

here that access to local resources takes less time than access across the network. This is not true

3 in general, but is definitely the case in our environment. Locations for the rest of the copies are

found by picking from the active packs represented in the network m,,-iel thos,. with the lowest

5 delay, subject to static minimum free space and availability constraints. C-like pseudo-code for

the placement algorithm is given in Figure 4-6.i
The GDS supports migration on reference for files. If a file is opened by a user and a copy does

not exist on his home pack, a copy will be moved there. Migration proceeds as follows:

(1) Open the cop, to be moved, specifying DELETLNG and MIGRATING properties

3 (this causes future INQUIRIES on the copy to be rejected and marks the copy for

delete on close).I
I
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pack[O] = user's home pack;
for (i = 1; i < number of copies; i++)

pack[i] = a pack such that it has not yet been selected
&& delay < all other unselected packs
&& free space > space threshold
&& availability > availability threshold
&& pack state != down;}N

Figure 4-6: Initial placement of file and directory copies

- I
(2) Tentatively create a copy on the user's home pack, copying over all data and proper-

Lies.

(3) Tentatively update the directory entry for the file.

(4) Atomically close the old file copy (causing it to be deleted) and commit the directory i
changes and the new copy.

4.3-. What the Implementation Provides

The previous sections of Chapter 4 have covered the Roe implementation at a fairly low level.

This section presents a high-level view of the capabilities of the implementation.

The Roe implementation provides: 3
• Fully network transparent access to files and directories. The user has no need to know

any of the details of the underlying network, or even if there is one. I
" File and directory replication. Both files and directories may be replicated and distrib-

uted across the network. This can be done under user control or automatically by Roe. I
" Automatic placement of files and directory copies based on user location, access delay,

free space and availability considerations. 3
" Transparent migration of files. The implementation provides migration on reference,

with a copy of a file being moved to the user's home pack when the file is opened. 1
" Transparent reconfiguration to adjust for failed, recovering, and new hosts. Host failures i

during file opens, reads and writes are masked (if possible). Hosts are recontacted when

I
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they recover. New hosts may be added to the network with no user-visible changes.

Limited support for atomicity. Atomic operations on individual files are supported.

However, only the Alto implementation provides crash recovery.

. File properties for UNIX and Alto files, for use by both the user and the Roe file sys-

tem.

I Support for heterogeneity. UNIX, RIG and Alto hosts all provide storage for and access

to Roe files. UNIX hosts implement the Roe directory. File and property data are

typed. In most cases, these data are transformed from one host representation to another

when it crosses machine boundaries, and so the heterogeneous nature of the network is

masked. For cases where this masking is not possible or desirable, the implementation

provides machine-dependent files that return data that depend on the machine and

operating system. Roe can automatically select, based on the location of the user, the

5 correct version of a machine-dependent file.

t 4.3.4. Implementation Weaknesses and Omissions

The Roe implmentation is a powerful validation of the architecture described in Chapter 3, but it

Pis by no means complete. Previous experience has shown that developing a system of this size to

the point where it can be released takes far more effort than one or two people can provide. For

example, the LOCUS distributed operating system is reported to have taken in excess of 70 man-

years to implement. Roe has about 4 man years of effort invested in it, and so omissions and

weaknesses are to be expected. The major areas where work remains to be done on Roe are as fol-

lows:

Error and crash recovery. Roe supports protocols for atomic transactions on replicated

objects but, with the exception of the Alto LFS, doesn't support crash recovery. Error

handling, particularly in the area of failure during transaction commit, needs work.

These are problems that have received a considerable amount of attention in the litera-

ture, though (see Chapter 2). There are a number of solutions available that would be

3appropriate in the Rue environment. A lack of time and resources, combined with the

I
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presence of other, more pressing problems, prevented us from fully implementing any of

them.

" Protocol omissions. Some parts of the Roe protocols described in Chapter 3 were omit-

ted, again due to lack of time. The omissions are: ENUMERATE (get a list of file or

directory copies on a host), CREATEENTRY (to create a user entry), and NOTIFY 3
(support for directory copy caching and joining).

" Security and protection. There is no way in the current implementation for one Roe

user to protect files from another user. Further, file and directory properties used by

Roe are not distinguished from user properties and so are not protected from users. The

latter problem can be easily addressed in the Transaction Coordinator, but adding higher

level protection for Roe files and directories would require network authentication facili- 3
ties, support for file ownership and access rights specifications (kept, for example, in the

property list of the file), and the addition of host security information to the network 5
model.

" Initial file and directory placement. The current placement algorithm uses static avail- U
ability and space thresholds. Better results would be obtained if these were adjusted

depending on the state of the network. Along similar lines, there is currently no way

for a user to specify the relative importance of performance, availability and storage

costs for a file.

" File and directory migration. The current implementation does not support directory

migration at all. This is relatively straightforward, except for the cases of migrating in-

use directories (connected GDSs must be notified of the move) and migrating a copy of

the root (connected GDSs should be notified so that they can update their state files).

File migration is limited to the migration-on-demand algorithm described above. More 5
sophisticated algorithms would require the LFS to keep usage information (as part of a

file's property list), support for iterating over files by pack, and the implementation of 3
"forwarding addresses."

1
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& Interface libraries. Roe uses a uniform protocol across the network that is not, in gen-

eral, compatible with a host operating system's file access protocol. Writing an inter-

face library that converts between these protocols would make Roe much more accessi-

ble from a hosL This has not yet been done for any of the systems on which Roe has

been implemented, although, as we described in Chapter 3, the flexibility of the Roe

protocol and support for properties should make this straightforward.

a GDS path interpretation. The GDS isn't able to handle paths with multiple director),

specifications.

. GDS directory state. The GDS maintains connections to directories from the root of the

directory tree to the current working directory. Maintaining a tree of recently accessed

directories and their ancestors, combined with a path interpretation algorithm that short-

circuited evaluation of path components that were already cached, could be expected to

significantly decrease open overheads under some conditions.

0 Network reconfiguration. The procedure to add a new pack to the network is somewhat

awkward. The network status file for each GDS is updated to include the new pack and

then the initial GDSs on hosts are killed and restarted (this doesn't affect transactions in

progress). A new pack will also be used by a GDS after an object is explicitly placed on

the pack. An alternative to all of this would be to have the network status file shared

by all GDSs (as a Roe file) and to have a mechanism to inform active GDSs of

significant changes.

* Network state maintenance. Dynamic network state (space used and delay information)

3 is collected by GDSs using synchronous polling of Local Representatives. This is

undesirable from a message traffic standpoint and may also lead to delays in processing

3 user requests. Alternatives are discussed in section 4.3.2.5.2.

0 Network structure. GDSs have no knowledge of the actual structure and implementation

i of the underlying network. This is fine in the current implementation, since remote hosts

on an Ethernet are all equally easy to access, but is not acceptable in general.I
I
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" Direztry updates. The current LDS implementation only allows one transaction to be

outstanding on a director at a time. Most directories are updated slowly and so this is

not important, but there are significant exceptions (see Chapter 6 for an example).

* Obsolete directory copies. Obsolete directory copies are updated when the directory I
node is first opened, but there is no mechanism in the current implementation to add a

copy that becomes available after the node is opt-ned.

" Performance. The current implementations of both Roe and CMU-JPC are, in many

senses, prototypes. With the exception of multiplexed servers, no attempt has been

made to optimize performance. The results are predictable. Section 4.5 presents some 3
figures on the performance of Roe and makes some suggestions for improvements.

I
4.4. Implementation Difficulties U
There have been relatively few large scale distributed system implementations, particularly in

heterogeneous environments. One consequence of this is that there is no good understanding of 3
techniques appropriate for implementing such systems, or of the problems most likely to arise.

These are areas of current research [Notkin 87]. The distribution strategies and algorithms used

by Roe are all straightforward, and were picked, in part, for their orthogonality and ease of imple-

mentation. Despite this, implementing Roe was non-trivial. It consumed far more time and effort

than we had expected. Part of this was due to the heterogeneous nature of our environment, and

to the lack of a common language and common system interfaces for low-level servers. However, 3
a larger part can be attributed to a lack of appropriate implementation tools, and to problems with

existing tools, approaches, and environments.

In the following sections we will describe the problems and experiences we had in actually imple- 3
menting Roe once the system was designed. The emphasis here is on problems one would

encounter in implementing any distributed application in this environment. Our observations on 3
Roe-related experiences will be presented in section 4.6. I

I
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The two major areas of difficulty were with implementing and maintaining multiplexed servers and

with CMU-IPC. We discuss each of these in the following two sections and then present a solu-

ion that deals with both problems. We then discuss changes to the IPC that would make future

I implementation easier. Finally, we briefly describe other implementation problems that arose.

4.4.1. Multiplexed Servers

Most of Roe was implemented using multiplexed servers. In a multiplexed server, one process

handles multiple requests in various stages of completion, switching between them to avoid block-

ing on one request when it is possible to make progress on others. This approach is described in

section 4.3.2.1.1 and shown in Figure 4-3. Using multiplexed servers increases the concurrency

allowed in Roe without incurring the high process creation overheads imposed by many operating

systems. Unfortunately, the multiplexing approach requires that an) particular processing routine

be non-blocking and so processing for many requests must be broken up into a number of explicit

steps. As Figure 4-3 shows, this fragmentation, along with the need to explicitly store and restore

3 state and to manage storage across multiple routines, complicates the strcture of the server. This

makes servers more difficult to implement, understand. .. d modify.I
Further complications were introduced by our use of a buffered message passing system with finite

length queues and asynchronous error notification. Finite length queues are generally of no help

when implementing non-blocking servers. In some situations we chose to avoid using multiplex-

3 ing to deal with finite length queues by queuing data internally when a port filled up and then

sending the data later. Using internal queues simplified the structure of servers, but it made it

more difficult to handle errors and exceptions (particularly CANCEL for stream requests) and

complicated management of queued ports (see the next section).I
There are alternatives to multiplexed servers. One is to provide compiler support for "lightweight"

3 processes (sometimes referred to as threads or tasks). These are shared-state processes that may

be created and destroyed with relatively little overhead. Lightweight processes are provided by

wthe AhoNIe, compiler and environment. Lynx [Scott 85) is another example of a compiler that

I
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supports lightweight processes. In the case of Lynx, this facility was prompted by' the difficulty of

implementing multiplexed servers. We chose not to use compiler support on RIG and UNIX

because it wasn't available, we needed a solution that required minimal effort to implement and,

because of the heterogeneous nature of our environment, needed a solution that would work with

several languages. I
We did, however, use lightweight processes when we implemented the Alto/Mesa Local File

Server. This allows us to compare the two approaches. While it is impossible to give a direct 3
comparison of sizes because of differing library support, the Alto LFS "feels" smaller and simpler

than either the UNIX or RIG LFSs, despite the Alto LFS being a more complete implementation.

It took less time to implement (roughly half of what it took to implement either the UNIX or RIG

LFS), is easier to read, is far easier to maintain, and allows more concurrency than the UNIX

implementation (particularly for stream requests). I
Another alternative to multiplexed servers is to provide a library' that allows lightweight processes

to be constructed explicitly. One example of this is the tasking package implemented b%

Stroustrup for C++ [Stroustrup 84]. A similar package is nowk available and being used at

Rochester [Mayer 86,. While we did not implement any Roe servers using this package, %ke did

experiment with using it in conjunction with CMU-IPC. We will come back to this after wke

describe our experiences with CMU-IPC.

4.4.2. IPC Problems 3
A brief dcscription of CMIJ-IPC was given in section 4.2.2. In this section we evaluate CMU-IPC 3
in light of our experiences in implementing Roe. It should be noted that CMU-IPC is closely

related to the Accent [Rashid 81] and Mach [Young 87] IPC facilities. Hence, many of the 3
observations presented belowk will apply to these two environments.

There were some aspects of CMU-IPC that we found quite useful in implementing Roe. The abil- I
ity to send typed data and have the data transformed appropriately at machine boundanes allow'cd

us to ignore the heterogeneous nature of the network, even at the local scrver level, when it was

I
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not important. Strongly typed messages also provide a substantial amount of implicit error check-

Sing.

Notificaton of dead or unreachable servers was assumed in the design of Roe and used heavily in

the irr)lementation. It allows Roe servers to keep a sufficiently current network model containing

3 the status of an appropriate subset of hosts and servers. If this facility had not been present, we

would have implemented something like iL

Roe makes extensive use of the asynchronous message passing features of CMU-IPC. Statically,

most of the Roe protocol could be handled, with no loss of functionality, using a simple RPC

(remote procedure call) mechanism [Bir-rell 84]. However, two of the exceptions, collecting

quorums and streaming data, are also two of the most heavily used interfaces in Roe and so they

determine the overall performance of the system. Quorums in Roe are collected asynchronously,

with requests being sent out to all copies before responses are collected. This allows processing to

proceed concurrently at the copies and so decreases open overhead. Using an RPC mechanism

3 here would result in the loss of this concurrency. The streaming WRITE protocol allows us to

transfer large amounts o" data without the need for multiple high-level requests or acknowledg-

3 ments. Our experience, then, is that asynchronous message passing has its benefits. It placed no

constraints on the structure of our system, and we were able to use this flexibility to our advan-

tage. RPC, despite its attractive simplicity, is not always the best paradigm.

Not all of our experiences with CMU-IPC were as po;itive as the ones described above. Overall,

we found CMU-IPC to be the weakest of the tools used in the implementation. Some of the prob-

3 lems were weaknesses of the particular implementation we used, some can be attributed to the

way that we used the IPC, and others to basic design flaws. The problems we had fell into four

3 broad areas: port allocation and deallocation, interpreting emergency messages, sending messages,

and name lookup. We discuss each of these areas below.

I Roe servers allocate a new port to handle requests for each object opened. The Iort is deallocated

when the object is closed. This allows Roe servers to handle an arbitrary number of objects (up to

I
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t:e port allcation limit mlposed b) CML'-IPC) without hasing to pre-allocate resljrces and pro-

vides a convericnt way to associate nssages with obje-s. Unfortunately, this approach interacts

badl. with the port allocation and mapping algorithms us ed by CMU-IPC and with emergency

message-based link failure notification.

Whei, CNU-IPC delivers a message to a prx:evs, it maps the ports in the message to process local

capabilities. These capabilities are sma!! integers and are reused after a process deallocates the

port assxiated with the capabiiiNy or, for a port owned by another process, after the process dis- 3
cards send rights to or loses contact with a port. It is possible that a server may have messages

that are being sent or are queued to be sent that contain this port. If the local capability is reused 3
before the messages are actually sent, these messages will be delivered with the incorrect port

information (or perhaps to the wrong port). This sort of race condition is generally not reproduci- 3
ble and so is very difficult to track dow, n. The lack of association between local capability names

and port locations and owners enforced by CM TU-IPC complicates the process. This is a situation 3
,Ahere the explicit <process number><port number> specification used by RIG would have made

implementation easier. I

It is not just Roe that has difficulty with mapping port capabilities. What happens if a message 3
containing a port has been accepted by CMU-IPC and is in transit when the port is deallocated

and then reallocated (perhaps by another process)? In this case, the message may contain a refer-

ence to a port that the sending process did not have access to, thereby circumventing the CMU-

IPC protection mechanisms. I

It is, of course, possible to keep this from happening, at least inside CNIU-IPC, by explicitly 3
checking all in-transit messag-.s whcn a port is deallocated and invalidating references to it. This

is done for messages queued on the port's home machine. One side effect of this check is that, on 3
UNIX machines, deallociting a port takes 4-10 times what it takes to send and receive a local

message. The check could be extended across the network but, given the user code

3At one roit. Roe. intcrmadihne mail and ne's were &D using CMU-iPC There w.ere several instances of personal
letters and nes pwstings being inserted nte nc'l. created Roe files
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implementation of the network servers, this would significantly increase the already high cost of

port deallocation. The point here is not that it can't be done but rather that CMU-IPC's use of a

small name space for ports Alh reusable names makes it difficult to do correctly, both inside

CMU-IPC ana in processes that use iL

As mentioncd earlier, Roe servers deallocate a port associated with an object when the object is

closed. This introduces another interesting race condition. If the Roe server sends a SUCCESS

response to the CLOSE request and then deallocates the port associated with the object, the

intended recipient of the success response will receive an emergency message notifying it of the

death of the port. Depending on the sequence of events and the particular IPC implementation,

the SUCCESS message will either be received before the emergency message, after it (but with no

indi-ation as to the source), or not at all. The problem here is that the server would like to deallo-

cate the port so that it can use it for future requests, but has no way of knowing if there is still

interest in the port. Since there is no easy way, given the current Roe implementation, to reliably

deliver responses to CLOSE requests, we have dropped the response from the protocol. Unfor-

tunately, this still leaves other race conditions. For example, the sender of the CLOSE may not

get a chance to deallocate the port before the server receives the request and does its deallocation.

If the sender then reuses this capability for another purpose it may get a spurious emergency mes-

sage concerning the capability. However, this is rarer and generally easier to deal with than the

CLOSE response race condition.

The problems described above are not due to any particular failing of CMIU-IPC. Rather, they are

caused by the interaction of dynamic port allocation, reusable capabilities, and the inability of a

process to determine outside interest in one of its ports.

CMU-IPC emergency messages, particularly emergency messages that contain notification of link

failures, can be difficult to interpret. As we saw above, it isn't possible to tell why an emergency

message is reporting a link failure. Was the port deallocated, did the process die, or was the host

unreachable? Further, since emergency messages are delivered before any queued regular mes-

sages, it isn't possible to tell v wn the emergency message was sent relative to the other data in

I
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the stream. Should we wait for more, or have we received everything outstanding on this port?

Fi,,ally, it is difficult to control who receives link failure notifications. These emergency messages I
come in on a special capability (since the capability they refer to no longer exists). This makes it

awkward to integrate multiple packages that use CMU-IPC. An example would be integrating the

Tr---ac:z C'or ,,"' i' a uscr pr,:css. The TC uses nudificauon of link failures to maintain

quorums, but if it is part of another application it can't be assured of getting them.

Sending a message in CMIU-IPC, as in many IPCs, can be a complicated affair, particularly when I
compared to a procedure call. The major complication is the relatively large number of possible

failure modes. The initial send may fail (perhaps because of an invalid port or unreachable desti- I
nation). The destination process may die or become unreachable before the message is received,

or before a reply can be sent. The destination process may die after a reply has been sent but

before we receive the result. Finally, the result may itself be a failure notification. Each of these

possible errors must be guarded against. This is one area where an RPC paradigm would simplify

implementation. 3
Our final area of difficulty was with the unstructured string name space maintained by our network

[PC implementation. A process may associate any name with a port, provided the name is not I
already being used on that host. In the case of Roe local servers, the name asserted is a combina- I
don of the server type and the host name. For example, an LDS started for pack "coho" asserts

the name "lds.coho." Suppose a GDS wishes to contact Coho's local directory server. It does a

name lookup on "lds.coho." If the name is not found locally (the GDS is not on Coho), a broad-

cast is done to find the name. There is no way to specify that a name be looked up on a particular 3
host, so what we have done is to encode the needed information in the server name. The broad-

cast, which is processed by every name server on the network, is excessive for our purposes.

Consider now the case of a user trying to locate a GDS. Each copy of the replicated Roe GDS

asserts the same name, "pack.roe." When a user does a name lookup, the GDS on the first host to

respond is used. In the case where the GDS is local, no broadcast is needed. In any, case, the 3
user doesn't need special knowledge of the network. The name lookup facility is appropriate for

I
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this situation. However, for some purposes contacting just one GDS isn't enough. It would occa-

sionally be useful in Roe to notify a number of active GDSb of a change in the network (for

example, the addition of a host). The name lookup facility would appear to be a natural way to

do this, but it isn't generally possible to do this.

3 4.4.3. A Solution

In this section we present a proposed solution to some of the problems described in the last two

sections. Our central goals in designing this solution were avoiding the complexity of multiplexed

3 servers and providing simpler communication primitives than the ones supplied by CMU-IPC,

while still maintaining its asynchronous message passing features. We were constrained by our

unwillingness to make modifications to CMU-IPC (it was being used by others and would be

difficult to modify in any case) and by our need for a language independent solution.

Central to our solution is a library that provides support for lightweight processes ("tasks") inside a

3conventional process. This approach to writing servers is not new. The novelty here lies in our

use of the tasking package to substantially simplify the user's view of CMU-IPC. This will be

3 described below. Our solution was inspired by the C++ tasking class [Stroustrup 84] and by the

observation that a Roe server can be organized as a collection of independent tasks, each of which

is dedicated to a single object. Allowing a dedicated task to block on message sends and receives

will not affect service for other users and objects. With this approach, new tasks are created for

each new object that the server is asked to managed (for example, an LFS would create a new task

for each successful LOGIN and OPEN). This is done explicitly by the task that processes the

request to create a new object. Tasks are destroyed when the object is closed.

With this solution, a server has a central dispatcher that receives all messages sent to the server.

To receive a message, an active task calls a special version of receive that puts the task at the

I head of the receive list (the list of tasks waiting for a message) and then returns control to the cen-

tral dispatcher. The dispatcher does the actual message receive. When a normal message is

received on a port, the dispatcher removes from the receive list the task that last did a receive on

I
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the port and returns control to the task, passing it the message. This task runs until it blocks on

another receive, a message send, or until it exits.

When a task does a message send, it can specify a blocking or a non-blocking send. If the desti- 3
nation port is full and the task is willing to block (the normal case in a Roe server), the task is

placed at the end of the send list and control is returned to the central dispatcher. When CM.U- 3
IPC returns notification that a port is no longer full (using an emergency message), the dispatcher

removes from the send list the task that has been waiting the longest to send a message on this 3
port, sends the message, and returns control to the task. If a task is not willing to block on a send,

the message is queued internally and the task continues running. This is useful when a server 3
wishes to present a consistent view of an object that might otherwise change (for example, a list-

ing of the contents of a director-y node). In either case, the use counts for ports in messages that 3
aren't immediately sent are incremented to keep the ports from being inadvertently deallocawd by

other tasks. 3
Emergency messages are handled somewhat differently. We associate with each active port a list 3
of emergency message handlers. Tasks can add and later remove emergency message handlers at

the head of the list for a port of interest. When an emergency message is received on a port, the

dispatcher starts at the front of the list and calls handlers in turn until one is wiling to accept the

emergency message. This approach, inspired by the nested exception handlers supported by Mesa,

allows routines to easily specify special emergency message processing for certain sections of code

without disturbing the handlers set up by higher levels. 3
Emergency messages reporting link failures require some extra handling. They come in on a spe- 5
cial port (the datapo,-it), are converted by the dispatcher to messages on the defunct port, and then

passed to emergency message handlers for the port. If none of the emergency message handlers 3
for the port accepts the message, the dispatcher checks to see if a receive is pending on the port.

If so, the emergency message is converted to a normal message with ID FAILURE (in the format 3
used by Roe) and passed to the task doing the receive. This both prevents receives from hanging

forever because of lost connections and allows tasks to use the same enor handling mechanisms 3
I
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for both link failures and failure returns from other servers. Receives on an already dead port also

3 return a FAILURE message. This handling of link failure emergency messages means that

receives will always return a result, regardless of process or network failures (assuming, of course,

I that a result would have been returned in the absence of such failures). Using a non-blocking send

in combinaton with such a receive provides, when needed, a predictable RPC facility.

Finally, a change was made in the way CMU-IPC allocates local capabilities. Instead of immedi-

3 ately reusing released capabilities, CMU-IPC now allocates them circularly. This change, which is

transparent to user processes, makes it unlikely that a local capabili.y will be reused while invalid

3 references to it still exist. A more reliable solution would have been to associate a timestamp with

each local capability, incrementing it each time the capability was reused and using it to validate

3 capabilities before use. This was not worth the implementation effort and run time overhead

involved.I
The approach described above provides an environment that is considerably easier to deal with

3than the one currently used by Roe. Its central features are the simplification of send and receive

primitives (without significant loss of functionality), the masking of the multiplexed nature of

3 servers, flexible and unobtrusive handling of emergency messages, and uniform failure handling.

While we have not converted Roe servers to use this approach (with the exception of incorporating

emergency message handlers, send simplifications, and circular port allocation), we expect that it

would both simplify servers and increase their reliability.U
4.4.4. Towards a Better IPC

In the last section we presented mechanisms that would allow us to make effective use of the

3 existing CMU-IPC implementation. In this section we make, based on our experiences implement-

ing Roe, some recommendations for changes to CMU-IPC. Our intention here is not to address

3 the basic philosophy of CMU-IPC, but rather to make relatively minor changes to the existing IPC

that correct the shortcomings described in section 4.4.2. Our suggestions are in four areas: local

3 capability generation, port allocation and deallocation, emergency messages and naming.
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CNU-IPC reuses port names and local capability names when they are freed. As we have seen,

this can lead to serious cases of mistaken identity. This could be avoided by making these names

unique over the lifetime of a host or process. Unique names would allow obsolete port informa-

Lion to be easily detected, and would allow us to avoid the expensive invalidation process that is 3
now done on port deallocation.

The mapping of ports to process local capabilities means that the name of a port depends on

where it is being used. This allows a compact representation of sets of ports and avoids the prob-

lem of generating globally unique names. However, the complications this introduces when trac-

ing and debugging a system more than offset the benefits. This could be avoided by either giving 3
a port a common name across the network or by giving the user a way to translate a local name to

a globally consistent one when needed. 3
Ports in CM11J IPC are limited in number and must be explicitly allocated and deallocated. This 3
leads to situations where ports are deallocated too soon or, for long-lived servers, ports are not

deallocated soon enough (or at all) and the limit enforced by CMU-IPC is reached. Users of 3
dynamically allocated memory will recognize this as being similar to the familiar "memory leak"

problem, but complicated by the asynchronous nature of the environment. One problem is that a 3
process has no way of finding out when there are no other processes holding references to a port.

This could be solved by adding a reference count to a port, possibly with optional notification 3
when the reference count drops to zero. Since CMU-1PC already keeps track of references to a

port for security reasons, this is not a major modification. 3
Another approach would be to drop the need for dynamic port allocation and deallocation. One of 3
the reasons for explicit allocation and deallocation is that the CMU-IPC kernel maintains internal

state for each allocated port. Even if a port is not being referenced by others, this state is needed 3
to perform the mapping from the local capability used by the process that owns the port to the

internal port name. However, if the name were global, it would not be necessary to always main- 3
tain state for a port. In particular, if no other processes can refer to the port, there is no reason for

the CMU-IPC kernel to know about it. Processes would still need to get a unique name for a port 3
I
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when "creating" it, but no other action would be necessary until the port was shared. For shared

U ports, state would be needed for security and perhaps performance reasons.

CMU-IPC uses emergency messages to report link failures. These messages would be more useful

if they provided information on the teason for the failure. For example, the distinction between

3 port deallocation and host failure is an important one to some Roe servers. Next, delivering these

messages through the defunct local capability rather than using a special port would allow a proc-

I ess to incorporate multiple packages that use CMU-IPC without worries of destructive interference.

Finally, it is sometimes useful to know when an emergency message was sent relative to regular

messages that are waiting to be received. One way of doing this would be to place a transparent

mark in the incoming message stream (this is the approach used in the 4.2BSD IPC [Leffler 83]).

The string to port mapping facility maintained by CMU-IPC has two levels: 1) local, and 2) the

rest of the network. There are situations in Roe where a more structured name space (perhaps

broken up by subnet and host), combined with a facility for returning all occurrences of a given

3 name, would have been useful. Another interesting possibility would be to allow parameters

("location," "operating system," and so on) to be associated with a name lookup request

I [Bukys 83].

3 4.4.5. Other Difficulties

3 Two other problems we encountered were: I) inadequate file system support on some hosts, and 2)

lack of distributed debugging facilities.

Roe requires some minimal file system support in order to implement atomic file operations on

hosts that store replicated files, directories, and files that will be accessed atomically. In practice

this means that there must be a way to ensure that data written to a file is actually on disk and is

likely to survive a machine crash. UNIX and the Alto/Mesa environment provided this facility.

RIG did not. RIG also did not provide information on the free disk space on a machine and both

RIG and Alto/Mesa had no information on the level of activity on a machine. The shortcomings

of RIG would have prevented it from being a full member of the Roe community if we had everI
I
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implemented crash recovery. Plans were made to add some of the needed features to the RIG file

system, but this was never donc. I
One major surprise was the degree of difficult), distributing a system adds to the debugging proc- 3
ess. The lack of a debugger that would work across multiple processes, combined with CMU-

IPC's anonymous ports, timing problems, and race conditions present in an asynchronous environ- I
ment, led to situations %khere it sometimes took days to track down even fairly simple problems.

Our general approach to debugging Roe was to have each server generate a log of all messages U
sent and received. These logs were then combined to produce an overall trace of the activity in 3
the system. There were probler is with this approach. The use of local port capabilities by C\IU-

IPC made it difficult to correlate the logs. The message-by-message logs were too "detail inten- 3
sive" for many applications. Finally, this approach didn't give us any control over the relative

timing of operations. In fact. turning on logging sometimes affected the timing enough that prob- 3
lems we were trying to trace disappeared.

Based on our experience, it is clear that a distributed debugger is essential when implementing a

distributed application of any size. At a minimum, such a debugger should be able to trace the 3
message flow in a system. Other desirable features include the ability to examine and modify

messages in transit, to control the relative timing of events, and facilities for debugging a process

in isolation, using synthetic or previously recorded message traces. Spider [Srrith 81c] and Idd

[larter 85] are two distributed debuggers that provide many of these facilities but were, unfor- 3
tunately, unavailable for this implementation effort. Taking a somewhat more sophisticated

approach, it would be useful to be able to retain a high degree of control over individual processes

(including single step, variable examination and so on), while allowing grouping and abstraction

where needed. For example, if the code to migrate files is being tested, there is generally no need 3
to see the details of quorum collection. Finally, when debugging Roe, it would have been very

useful to be able to place constraints on the order of transmission of messages and then to have I
the system run with unconstrained times being varied. This could have helped us track down a

number of timing problems. 3
I
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4.5. Performance Considerations

In the following sections we present some rough performance figures for Roe. It should be

pointed out that both Roe and the IPC it uses are prototypes and have not been optimized for per-

formance. Despite this, it is illuminating to look at where the time performing Roe operations is

spent. We *.,ill use for our example opening an existing Roe file on a UNIX host. The next sec-

tion presents some timing figures for basic operations in the host environment. Section 4.5.2 uses

these figures, along with measurements of Roe, to provide a breakdown of the time required to

3 open a Roe file. Section 4.5.3 makes some suggestions for improvements.

4.5.1. Host Performance

Our measurements were done on VAX4 11/750s with 2MB of memory, Fujitsu M2351A/AF Win-

3 chester disk drives (18ms average seek; 7.5ms latency), connected by a 3MB Ethernet. The sys-

tens were running 4.2BSD UNIX in multiuser mode. They were idle except for normal back-

ground activity (rwhod, cron and the like). All of the results given below are elapsed times in

milliseconds. Timing was done using the software clock maintained by UNIX. This clock has a

resolution of lOins, and so we generally timed repeated calls to improve the effective reso.tion.

We ran 10 sets of measurements for each call or sequence of calls being tested and then calculated

the average and standard deviation.

I sequence msec/sequence description
fopen/fclose 6.4±0.3 open/close file; single path component; inode cached
first fread 90±11 read 1024 bytes from an opened file (first read)
subsequent freads 32±11 repeatedly reading 1024 bytes from an opened file
20*getw+100*getc 6±2 reading a small property list (after first fread)
ftell/rewind/fseek 1.6_-0.2 file positioning

Table 4-1: File access times for 4.2BSD UNIX

3 4VAX is a trademark of Digital Equipment Corporation
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Table 4-1 sho\s 4.21SD UNIX file system access Umes for some operations commonly used by

Roe. The value gi'en for fopen/felose is for opening an existing file in the current director)' when I
its node is alreadv cached. This is the most common type of open performed by Roe.

In Table 4-2 we have listed some times for message and port management. Note the relatively

high cost of releasing a pn. Most of the cost may be attributed to CML'-IPC's attempts to locate 3
and invalidate any existLt, references to the port. Since there was no other IPC activity on the

system when this meas urement was done (and so no outstanding messages), this figure is a 3
minimum. The cost for remote name lookup is also surprisingly high. The user code impiementa-

Lion of the netv, ork portion of the IPC requires a number of context switches to send the lower 3
level packets and acknowledgements used to reliably send a message across the network (in this

case, the reply to the broadcast request). There is clearly substantial room for improvement here. I

Tac:e 4-3 shows thc elapsd time required to send a simple message and have it received bx 3
&iotpicr process. In al) cases the ume was found by measuring the round trip time for a message

and then halving to lid We one-way time. In the case where there are two destinations, the 5
oper,".: msec/operation description 3

new,_-port 2.3:0.3 allocate a port and increment its use count
rleaseport 15.71.3 decrement use count and deallocate port
message formatting 2.6±0.1 typical message formatting sequence I
local name lokup 2.6_*0.4 look up port associated with local name I
remote name l19Cup 90-_30 look up port associated with remote name 3

Tdlle 4-2: Message and port management costs

destination message contents
,_ empty 512 bytes I port

locW !4.9±0.2 6.8__0.3 7.4:0.7
remote 1004 143±7 117+7
2 remote j 175±10 19,I(-_11 17011

Table 4-3: Time to send a simple message

I
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sending process sent both messa ces and then waited for replies (CN U-IPC doesn't have a multi-

3 cast capability and so Roe is also forced to take this approach), The most striking result in this

uble is the poor performance of the network IPC. Sending a message to a remote process takes

3 20 times as long as sending one to a local process. A remote procedure call using this IPC would

take 200ms. For comparison purposes, an RPC using 4.2BSD UDP on similar hardware takes

5 26.5ms [Cooper 853 and an RPC in the V system takes 2.54ms on a 10MHz Sun workstation

[Cheriton 833. These figures tell us that in our environment IPC costs are likely to dominate for

3 any operation in Roe that requires access to remote resources, but that this is not necessarily the

case in other environments. We will have more to say on this in the next section.I
4.5.2. The Performance of Roe

I In this section wke analyze the cost (in terms of time delay) of opening a Roe file. Opening a file

3 is one of the most complicated and frequently used operations in Roe, and so the time required to

open a file determines, to a large extent, the overall performance of Roe. We consider in detail

only the case of opening an existing unreplicated file. The message uaffic for this case in the

current implementation was shown earlier (Figure 4-6). We assume that all resources and servers

3 are local and that connections exist to all servers we will be using. Times for remote cases may

be found b; adding the appropriate cost for each message shown in Figure 4-6 that crosses a

machine boundary.

phase estimated time (is) fraction actual time (ms)

send/accept request 8.0 3% est
read directory (LDS) 26.3 10c9 28±3
open file (LFS) 154.1 59% 135±36
GDS overhead 31.1 12% est
return result (TC) 41.0 16% est
total 260.5 100% 268±32

3 Table 4-4: Time to open an existing local Roe file, by phase of open

I
I
I



I
132 I

Table 4"- shows the elapsed time required to open a Roe file, broken down by the phases of the

open. The estimates shoAn here were done by counting calls made by servers to the various rou- 3
tines shown in earlier tables. These estimates agree with the actual measurements given in the

table. Note that the actual open of the file copy (managed by the Local File Server) takes almost 3
2/3 of thie time. The remainder of the time is fairly evenly divided between reading the director)

entry of the file, returning the result to the user (through the Transaction Coordinator), and internal I
Global Director,. Server overhead.

The time to open a file is broken down by types of activity in Table 4-5. Note that IPC related

activity (message sendreceive, message formatting, and port management) accounts for half of the 3
total cost. Most of the rest of the cost is due to reading the property list of the file copy. I

activity estimated time (ms) fraction
message send/receive 53 205,
message formatting 19 7,7
port management 6 24%
table/list search 10 4%,
file open 6 -q

read file properties 105 3 9%
other 11 4% 1
Itotl 268.32 100% I

Table 4-5: Time to open an existing local Roe file, by type of activity

copy locations I estimated time (ms') fraction of local I
I local 261 1.0
I remote 490 1.9
2 remote 600 2.3
1 local, 2 remote 610 2.3
3 remote 710 2.7
5 remote 930 3.6

Table 4-6: Opening remote and replicated Roe files I

I
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The Ro file open uime oF 26Mm for local files is not very impressive vwhen compared to the

5 measured UNIX time of 6.4nrs. To be fair, Roe also reads in the first block of a file and so the

equialent UNIX ime u, 96ms, making a Roe open of a local file roughly 3 times slower than the

equivalent UNIX open. If the file is remote or replicated, the Roe open is considerably slower.

Table 4-6 shows estimates of the cost to open remote and replicated Roe files. Rough measure-

3 ments (where possible) confirm these figures. The drastic increases in open times for the remote

and replicated cases are due to the poor performance of our network IPC (Table 4-3). For the case

of a single remote copy, IPC overhead accounts for 3/4 of the file open overhead.

£ 4.5.3. Improvements

5 There are a number of changes that could be made to the Roe implementation to improve its per

forman'e. The following changes offer the possibility of significant performance improvements

3 1-ilout compromising the transparencyv goals of Roe:

* Preallocation of ports. A quarter of the tme required to open a local Roe file is spent

if managing ports. Nearly all of this time is used allocating and deallocating ports used to

represent short-lived objetLs and requests. If servers prealhocated ports and then

3 managed these ports internally, this overhead could be avoided.

Consolidation of servers. Another quarter of the time used opening a local Roe file is

spent sending messages between local servers and to and from the users. Consolidating

local ser,ers into fewer processes would decrease the number of local mess'ges sent.

Consolidating ali Roe servers on a machine into one process would reduce the message

passing cosLs by 7 0c/. Placing Roe in the kernel would eliminate message costs for

local file opens.

3 . Advisory' locks The two changes described above would cut in half the time required

to open a local Roe file in the current implementation. If these changes are made, 85%

of the remaining time would be spent actually opening a file and reading its property

list to get voting information. This overhead could be avoided in many cases by plac-

Sing ,isr-o locks on frequentlyv used files. An advisory lock would work as follows:

I
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If a GDS believes that a copy of an opened file will be used again shortly, it would

specify, when the file was closd, that the LFS not actually close the file but rather 5
demote the read or write lock on the file to an advisory lock. If the file copy is opened

for write b another GDS, this lock is "broken" and the GDS is advised that the copy 3
is not available. If a GDS holding an advisory lock on a tle copy wishes to open it for

write, it asks the LFS managing the copy to change the advisory lock into a write lock. 3
If opening for read, the GDS can either change the lock to a read lock or use the

advisory lock. In either case, since the copy's data and properties have not changed, 3
th,:re is no need to explicitly collect a quorum again and locally retained information

could be used. This is a particularly effective technique when a file is replicated, with 5
one copy being local and the others remote. In this situation, the advisory locks could

be used to eliminate remote operations for read access. 3
File and directory caching. There are a number of techniques for maintaining consistent

distribue:i caches of information (see, for example, [Archibald 84,Sheltzer 86]). These I
techniques could be used in addition to or in place of advisory locks in Roe. Since we

expec t a high degree of locality in both file and directory references and a high propor-

tion of read references (see Chapters 5 and 6), local caches of file and directory infor- 3
mation should result in a significant decrease in network activity. Note that it is neces-

sary to keep local caches consistent, since the design of Roe doesn't allow for "best

guess" hints here.

IPC performance improvements. There is significant room for improvement in the per- 3
formance of our network IPC. A kernel implementation followed by careful tuning

would be, at least at the application level, the least disruptive approach. An alternative 3
would b. to consider the use of a simple RPC mechanism that would lend itself more

readily to a high performance kernel implementation (see, for example, the V kernel 3
RPC [Cheriton 83]).

Lower level host system interfaces. The current Roe implementation uses existing host I
file systems. This adds some layers of software between Roe and its eventual destina-

tion (the disk). Using a lower level interface to these file systems (e.g., read instead of I
I
I
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fread on UNIX) or ignoring the host file systems altogether and implementing Roe on

the raw disk would decrease software overhead. Unfortunately, the implementation

costs of the second approach can be quite high, particularly in a heterogeneous environ-

I ment.

4.6. Observations

I We can make the following observations about Roe based on our implementation experiences:

The approach used by Roe is a powerful means of accommodating the heterogeneity

present in a network. Minimal host changes allow new types of hosts to be easily

j added. The combination of local servers with a uniform interface, typed file data, and

automatic type conversion at machine boundaries allows heterogeneity to be ignored

3 where it is not important. Machine-dependent files, property "escapes," and the net-

work model maintained by Roe provide mechanisms for recognizing situations where

3 heterogeneity is important and for exploiting it when possible.

* The modular structure of Roe makes it easy to partially integrate new hosts. Func-

3 tionality can be added as needed to increase performance and availability. This modular

structure also helps reduce complexity by providing well-defined interfaces and simple

3 absu actions.

* The underlying host file system support expected by Roe is not always present. At a

I minimum, Roe requires a means of insuring that information written to a file will sur-

vive a machine crash (usually this means insuring that it has reached the disk). In addi-

tion, information on free space and congestion is useful when making placement and

migration decisions. It is also worth noting that the Roe file access protocol assumes

that files are represented and used as seekable streams. Insuring that operations survive

a machine crash is useful outside the context of Roe and so this expectation is not

unreasonable. Status information can be approximated (or maintained by local servers if

3 Roe is the only user of a file system). Record and other file abstractions can be imple-

mented using SEEK and properties (although ,Lth some loss of efficiency).

I
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" Properties are a surprisingly useful concept. Properties were originally introduced in

Roe to provide a means for users to associate additional information with their files 3
[Bukys 82]. However, they were quickly recognized as a convenient way of associating

Roe-specific information with files, as a flexible method for specifying arbitrary parame- I
ters in LOGIN, OPEN and other requests, and as a way to specify host-specific file

operations. I
" A system that pro, ides transaction support should provide facilities for transactions that

span multiple objects. This is convenient both for the user and the implementor of

higher levels of the system. In the case of Roe, this would have made implemeritation 3
of the Global Directory Server considerably easier.

" The lack of need for global knowledge simplified the Roe implementation. In particu- 3
lar, we were able to avoid complicated and potentially expensive global consistency and

snapshot algorithms. Roe maintains a partial view of the network, with status changes 3
propagated only where the), are likely to be needed. Information on objects managed

by Roe is kept with the object and verified only when the object is used. 3
* Finally, and perhaps most important, our implementation validates the design presented

in Chapter 3. The Roe prototype implementaion shows that it is both possible and 3
practical to provide a fully transparent distributed file system for a heterogeneous local

area network. In addition to providing transparent access to replicated and distributed 3
heterogeneous resources, Roe is able to transparently reconfigure to adapt to losses and

additions to the network and to adjust to changing usage patterns. Roe scales well as 3
the size of a LAN increases. These factors make Roe a powerful tool for effectively

using the resources of a network, without the need to know the details of these I
resources.

4.7. Summary 3
In this chapter we have described the Roe prototype implementation. The implementation runs on

a heterogeneous local area network of UNIX, RIG, and Alto/Mesa hosts. It supports a distributed

3
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and replicated global directory (on UNIX hosts), replicated files (on all hosts), automatic file

5 placement, and simple demand-based migration. The system provides full) transparent access to

its distributed and replicated resources.

I Implementing the Roe prototype turned out to be surprisingly difficult. Although the structure of

3 Roe and the algorithms used were straightforward, the approaches and tools we used greatly com-

plicated matters. The majority of the implementation was done in C using multiplexed servers and

3 an asynchronous message-based IPC. It is clear in retrospect that a project such as this should

probably not be attempted without appropriate language support and a distributed debugger. Using

5 remote procedure call as tre basic IPC mechanism would have also avoided several problems.

The Roe implementation meets the transparency, availability, heterogeneity, reconfigurability, and

scalability goals described in Chapter 3. The only major failing of the implementation is in the

3 area of performance. Many of the performance problems may be attributed to the prototype nature

of both Roe and the IPC it uses. Reimplementation and tuning would correct these problems. Our

3 use of remote, replicated, and distributed resources, along with the insistence on consistency, also

had a negative impact on performance. Techniques such as advisory locking and caching could be

* used to minimize this impact.

Our experiences with the Roe implementation show that a fully transparent distributed file system

for a heterogeneous LAN is achievable. The high degree of transparency supported by Roe lets the

3 user ignore the presence of the underlying network and allows Roe to respond to changing

demands and resources. These benefits provide compelling justification for the approach used by

3 Roe.

I
I
I
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Chapter5 

Short-Term File Reference Patterns

in a UNIX Environment 5
I

5.1. Introduction 3
Roe provides users with a distributed, hierarchically structured file system similar in appearance to

the UNIXI file system. A number of other DFSs have also adapted this model I
[Lyon 85,Satyanarayanan 85,Tichy 84,Walker 83b]. Understanding the benefits and drawbacks

of the approaches used by each of these systems has been hampered by a lack of information on I
the ways in which they are used. In particular, there is little data available on short-term file

reference patterns, and no data at all on directory usage, despite the observation by several I
researchers that name resolution appears to account for up to half of the activity in systems that

they have studied [Leffler 84,Ousterhout 85,Sheltzer 85].

Data on file and directory reference patterns can be used to evaluate the performance of existing 3
DFSs, and as an aid in identifying and correcting problems. It can also be used as a guide in

developing new DFSs by providing information on key areas such as name lookup overhead, I
'UNLX is a tradcmark of AT&T BeU Laboratories. 3
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read/write rauos, interreference intervals, data lifetime, and sharing. Traces of reference activity

can be used as an input to simulations that evaluate DFS design, or examine individual issues that

arise in designing DFSs. Examples include developing algorithms for file and directory placement,

migration, update propagauon, and investigating the overhead introduced by replication.

3 Inspired by these benefits and frustrated by the lack of information, we instrumented a local UNIX

system and collected information on file system requests. The UNIX file system is particularly

3 appropriate for this study. It places relatively few constraints on user behavior and has been used

as the design model for many" recent DFSs.

This chapter describes the data collection method and presents our analysis of short term file refer-

3 ence patterns. Chapter 6 presents an analysis of short term directory reference patterns. We have

generally ried to present results in a way that gives a qualitative feel for the characteristics of the

3 data we have measured. Quantitative fits and distributions are, for the most part, sacrificed in

favor of observations that would aid in developing and operating DFSs.U
The work described in these two chapters is novel in several respects. It is by far the most

3 detailed and comprehensive study of short term UNIX file reference patterns that has been done to

date. It provides the only results we have seen on directory reference patterns. It is also the only

3 study we have seen that examines the differences between important user and file classes. In addi-

tion to examining the overall request behavior, we have broken down references by the type of3 file, direcr-v, -,i requestor. We see large differences in behavior between the various classes.

Knowledge of these differences should be useful in designing future DFSs.I
Section 5.2 describes the environment in which our measurements were made. Sections 5.3 and3 5.4 present an overview of the data collection and analysis methods. In section 5.5, we present

some of the results of the analysis. A summary of our results is presented in section 5.6

I Familiarity with UNIX [Ritchie 78] is assumed. Knowledge of 4.2BSD UNIX [Joy 831 may also

3 be useful.

I
I
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5.2. Data Collection Environment

The data used here waere collected from a VAX 11/780 on the University of Rochester Computer

Science Department Internet. At the time that the da= were collected (September 1985), the inter- 3
net consisted of a VAX' 11/780, 4 VAX 11/750's, 7 Sun workstations, 13 Xerox Dandelion

workstations, 3 Symbolics LISP machines and a number of special purpose devices. The 1 1/780,

Seneca 3, was selected as the primary machine for data collection because it was by far the most

heavily used of our systems. Seneca had, at the time, 4MB of memory, 560MB of disk storage 3
and was running 4.2BSD UNIX. The system supported roughly 200 users. The primary user

activities were program development (as part of our research effort), text editing and formatting, 3
reading news and reading personal mail. Seneca also acted as a USENET news and UUCP mail

relay [Nowkitz 78]. There was relatively little database activity.

Data were also collected from two of the 11/750's. Preliminary analysis of the 11/750 data merely 3
confirmed the importance of Seneca in our environment. Neither of the 11/750's had file system

activity levels greater than 15C- of that seen on Seneca. Because of this, only the Seneca data

were fully analyzed. I
5.3. Data Collection Method

Two types of data were collected: 1) a static "snapshot" of the file system, and 2) a running log

of file system activity. 3
5.3.1. Static Snapshot 3
The static snapshot provides a picture of the entire file structure on a machine at a given point in 3
time. The information generated for each file system object that we are interested in is given in

Table 5-1. Processing starts at the root of the file system hierarchy and recursively traverses the 3
directory tree, logging each object encountered.

2VAX is a trademark of DigiLal [qu;pment Corporation 3
|
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A static snapshot was taken of the Seneca file system when file system logging (section 5.3.2) was

5 started. This snapshot was used as a starting point for the analysis programs (section 5.4) and also

provided information on the static file size distribution.I
5.3.2. Logging File System Activity

The 4.2BSD UNIX kernel was modified to log selected system calls made by users. The calls

3 logged can be classified as follows:

(I) Directory structure modifications: mkdir, rename, rmdir and symlink.

3 (2) Process context: chdir, chroot, exit, fork/vfork and setreuid.

(3) Other references: close, execv/execve, link, open/creat, truncate, unlink.

The logging of these calls has a negligible effect on the performance of the host (less than 1%).

i A number of other file-system related calls were judged unnecessary for our purposes (due to our

ability to infer them from other calls or to their infrequent use) and were ignored. These included:

3 I(1) Internal file operations: read, write, Iseek. Actually, code was added to log reads,

writes and seeks. However, running with this code enabled increased the size of log

files by 500% and resulted in a 5-10% degradation in host performance. Since we

were concerned primarily with operations on files as a whole, this additional overhead

was unacceptable. Instead, we summarized some of the information in close records

object output
directory name, device, mode
regular file name, device, inode, size (bytes)
symbolic link name. target file
special we I name3

Table 5.1: snapshot output

30,r local VAXcn are named after Westem New York Szte's Finger Lakes.I
I
I
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(see Table 5.2).

(2) Protection calIls chmod, fchmod, chown, fchown. I
(3) Status calls: readlink, fstat, Istat, stat, utimes, access.

(4) Other calls: fcntl, flo-k, fsync, mknod, ftruncate.

Each log record included the time that the call finished (with a resolution of lOms) and the pid I
(process identifier) of the process making the request. In addition, most records contained infor-

mation describing the call arguments and result. The record contents are given in Table 5-2. 1
A brief explanaAon of LL coen.s of Table 5-2 is in order at this point. The first four records 3
(mkdir, rename, rmdir and symlink), combined with the results of a static snapstiot taken at the

start of logging, allow us to construct and maintain a model of the directory, tree for the file sys- 3
tems on the machine. MAkdir creates a new directory. Rename changes the path used to reach an

object Rindir deletes a director),. Symlink creates a symbolic link containing a path to a file or 3
directory. When a symbolic link is encountered during path resolution, the path in the symbolic

F call output
<all> time, pid of caller 3
mkdir + file id of new directory, path of new directory
rename + old path, new path
rmdir + path of deleted directory
symlink + target of link, link name
chdr + path to new working directory
chroot + path of new root 3
exitI

fork (fork/vfork) + child pid
setreuid + new ruid
close + file id, final size, bytes read, bytes written 3
execute (execv/execve) + file id, uid of file owner, size, path
link + target path, link path
open (open/creat) + file id, open flags, mode of file, size, uid of file owner, path 3
truncate + path, new size
unlink + path

ITable 5-2: dynamic log structure

I
I
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I link is substituted into the partially resolved path before resolution is continued. This is the onh

way in 4.2BSD UNIX to make links across file systems.

The next 5 records (chdir, chroot, exit, fork and setreuid) give us the "nformation we need to keep

I track of the working directory and real uid (ruid) of each process. Chdir changes the directory

used to resolve relative references made by a process (those not starting from the root of the file

system tree). Chroot changes the root of the file system as seen by a process. Fork (fork and

vfork system calls) and exit create and destroy processes. Logging these allows us to keep track

of processes created for each user. Setreuid chang; the effective "owner" of the current process.

This is the mechanism for logging into the system.

The remaining records (close, execute, link, open, truncate and unlink) are the actual references to

files. Execute (execv and execve system calls) executes a file, replacing the current process with

the image given in the file. Link and unlink add and delete directory entries for files. If unlink

3 removes the last link to a file, the file is deleted. Open (open and creat system calls) opens or

creates a file or opens a directory. Processes access files either by explicitly opening them or by

inheriting open files from their parents. Truncate shortens a file. Close records indicate that a

process no longer has a file open. They are generated by either a close system call or by a proc-

ess exit. As mentioned earlier, a process may inherit open files from its parent. If this happens,

the close record is generated when the last process having access to a file due to the open closes

the file or exits (for those in the know: we log the release oi the kernel open file table entry). We

only log closes for regular (data) files. Closes are not logged for directories or for special files

(files corresponding to devices). Since directories are shoit, completely scanned when opened and

3 can only be opened for reading, close records for directory opens would have given us little useful

information. Special files are not analyzed in this study (except for a count of opens).

I The calls listed in Table 5-2 are logged for all processes in the system. In addition, a small

number of administrative records having to do with enabling and disabling data collection are

logged. The most important of these is the process state record. A process state record contains

3 information on the ruid, working directory, root directory and command name for a process. One

I
I
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-s Vis e , L:. ,, • I fir-: Line i0 appears in a io . hat only if we don't already have

,s informa:ion It~c~ >.:- Ericess state records are o:!:,. necess Ary for processes that exist 3
be iogre LoT ing is . ir U- r h.cLldren until %ke le the parent). They give us a way to

loc~ate te proc0ss iL :,., ree and to classify it as a user..system or net process.

The 4.2BSD traci F e h.ve described differs fro,; Lhe o,-e developed independently at 3
Bcrkele\ by Zhou et a.. [:u 85' in a number of wa-s. i,. most important difference is that

%ke don't collect infor:,,-., o7, internal file operations. T1,Is means that we have less information 3
on the timing of these opera:1,ns to files and on which bytes are accessed. We do, however, log

the number of bytes rea, fremi or written to an opened file. As we will see later on (section 3
5.5.1), most files in our environment are read or written completely and are usually open for only

a short period of tine. These results, combined with the fact that most DFSs treat files as a 3
wkhole, mean that tie omission of internal file operations is not important for our particular appli-

cation. 3
We also collect less information per record. In particular, all of our times are real times at the 3
finish of the system call. Zhou el al. record, in addition to real times, the duration of the call and

process virtual times. We made a decision early on to collect the minimum information necessary 3
for our purposes. This allows us to collect and process data for a longer period, but means that

our trace is sensitive to the capacity of the machine that the data were collected on. Adjusting for 3
this would be difficult in an) case. I'
Finally, we collect information on high level directory operations (create, delete and open). This

allows us to track process locations in the director) tree so that we can accurately analyze relative 3
file references. It also gives us the data needed to analyze directory reference patterns.

The trace dat collected by Ousterhout et al. [Ousterhout 85] includes information on seeks (so I
that read and write data may be derived), but lacks information, which we record, that allows 3
references to be classified by file type and file owner. We also include directory and process

information not present in their trace. 3
I
I
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Note that our package does not collect a full trace of file system activity. We don't collect infor-

arntion on inode accesses, paging activity, internal file operations (except for the total number of

b)tes read and vritten), or protection and status related calls. However, our package does generate

3 detailed information on the most common operations on files and directories as a whole (open,

close, create, delete, execute and so on) and on overall read and write activity for opened files.

3This information provides a useful basis for investigating file usage patterns and is sufficient for

trace driven studies of most DFSs.

I 5.4. Analysis Method

5.4.1. Basic Approach

The data in, the raw form described in Table 5-2 are difficult to analyze. There is no obvious

3 correspondence between opens and closes, unlinks are not associated with the files the), affect, no

direc.t information is available on process working directory or owner and so on. A library of

I analysis routines was written to address these difficulties. The routines maintain enough state

about the system being analyzed to allow the necessary associations to be made. Alernatives

3~would have been to reformat the file reference logs so that each record contained the information

necessary for its analysis (see, for example [Zhou 85]) or to collect more information for each

reference. We chose to derive the information at the time of analysis to minimize the disk

resources needed (and so maximize the logging period). Of course, one pays a penalty in analysis

time for doing this. Using this approach, a simple analysis of the trace described in this chapter

(2.5 million events occupying 70MB of disk) takes about 5 hours of 11/780 CPU time. This is

adequately fast for our needs.

Analysis proceeds in two phases. During the initialization phase, a snapshot of the directories in

the system being analyzed is read in and used to set up a model of the original directory structure.

During data analysis, log records are read and passed, one by one, to user analysis routines. These

log reC4ord.s are also used to update state information on files, directories and processes in the sys-

tem, creating and destroyir,, them to maintain an accurate model. Given this up-to-date state

I
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information, the library routines can perform the associations mntioned above and pass this infor-

mation on to the user routines. 3
There are some conventions worth mentioning here that are used by all analysis programs: 3

(1) Calculations involving file sizes are always based on the size of the file when it is

closed or executed. I
(2) File reads and writes are assumed to occur at the time a file is closed (we didn't have

more accurate information on these operations). Since the time most files are open is 3
usually considerably shorter than an) of our histogram resolutions, this has no notice-

able effect on our results. 5
(3) File lifetimes run from the time a file is created (based on a create flag in the open

call) until the time the underlying inode supporting the file is deleted. This doesn't 3
happen until there are no links to the file left and there are no active opens, so the

delete time can (and frequently does) differ from the time of the last unlink. File I
version lifetimes are handled in a similar fashion.

(4) Processes occasionally open a file and then open it again before closing it. This is I
usually done to get both read and write access to a file without using the mechanisms

for this built into the 4.2BSD kernel. We honor the intent (not the method) by com-

bining these opens into one open with both access modes. This affects only 0.7% of 3
the opens and so is not an important consideration in any case.

5.4.2. Cuts U
We are interested in investigating both the overall pattern of requests to the file system and in the 5
patterns for various classes of users and files. Past work has often ignored the distinction between

batch and interactive use, system and user files, log and permanent files and so on. We believe 3
that information on the behavior of each of these file and user classes can be of great value in

developing a DFS and have developed a number of data cuts to separate the classes of interest. I
We use three basic types of cuts:

I
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(1) Cuts on the rud t.ov, ner) of processes making requests (UUCP/USENET network,

5 system and user).

(2) Cuts on the owner of files (UUCP/USENET network, ystem and user).

(3) Cuts based on the purpose of files (log, permanent, temporary).

3 Some of these can be combined to give other more specific cuts. 14 cuts are used in this analysis.

The cuts and their meanings are:

3 (1) no cut: This cut passes all records in the log to the user analysis routines.

(2) ruidNET: Passes references by' what we term net processes. Net processes are

I those running under UUCP, USENET news or notes accounts. Most of these

processes run in batch mode and so this cut gives us a sample tha is considerably

I different from an interactive one. This category has been broken out from the system

and user categories because of the batch-oriented nature of the references and the

large number of references by net processes (roughly 1/3 of the references in this

study' and as much as 70% of the non-system references in earlier studies

[Floyd 85,). We don't include references due to Seneca being on the Rochester

Internet in the ruidNET category.

(3) ruid.SYSTEM: Passes references by system processes (those running under root,

3 daernon, games and other miscellaneous system accounts). System processes are pri-

marily daemons that provided widely used services (such as spooling and networh

3 status reporung), processes created on behalf of users to perform privileged opera-

tions, and periodic maintenance processes.

1 (4) ruid USER: Passes references by' processes running under user accounts.

(5) ownerNET: Passes references to files owned by UUCP, USENET news and notes

3 accounts. These are primarily news articles and UUCP spool files.

(6) owner_SYSTEM: Passes references to files owned by the system accounts mentioned

above. This includes major administrative and status files (for example, /etc/passwd),

system libraries, sstern include files and so on.

I
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(7) oner_USER: Passes references to user files.

(S) fileLOG: A number of files on any UNIX system are used to keep logs of activity. I
Examples include /usr/adm/messages, /usr/adm/wtmp and user mbox files. Since we

expect the access paterns for these files to be considerably different from that for 3
files as a whole and since these files are generally quite large, we use a cut,

fileLOG, that allows us to analyze only these logs. I
We had originally intended to place in this category just those files opened with

append-only access. However, it soon became clear that this mode of access is basi-

cally never used. Instead, most logs are opened write-only, a seek is done to the end

of the file and then the log entry is appended. If several processes are trving to

update a log simultaneously, the results are unpredictable. Some of the busier logs 3
on our system are scrambled on a regular basis using this "method."

We Aere eventually forced to use the name of the file given in the open call to make 3
this cut. Luckily, most of the log files on the system have well known names and an

examination of the sources for commonly run programs and of the file reference logs 3
enabled us to find the rest of the log files on the system.

(9) filePERNI: Passes references to permanent files. This includes all files that aren't 3
log files (fileLOG) or temporary files (fileTEMP).

(10) file TEMP: Passes references to temporary' files. This includes files that are created I
on a special file system (/uip'), temporary spool files, lock files and other such transi-

tory files. Most temp files are clearly, identified by either their name (a special tem- U
plate is usually used to create temp file names) or by' the directory' in which they are

created. I
(1 l)oxlner_USER+ruid_USER (shown as U in tables and figures): Passes references that 3

satisfy both the owner USER and ruidUSER cuLs. These are user references to user

files. The owne _USER+ruidUSER cut produces results similar to the ownerUSER 5
cut. There are about 9.59c fre'wer references for ue U cut, but the resultant distribu-

tions are nearly ,iJenti,'a. It i. included here for comparison A ith the n ',, hre cuts. 3
I
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I (12)o%%ner_USER.ruidL'SER.fileLOG (shown as U+fileLOG in tables and figures):

5Passes user references to user log files.

(13)iownerUSER-ruidUSER+filePERM (shown as U+filePERM in tables and

figures): Passes user references to user permanent files.

(14)owiner_USER+ruidUSER+fileTENIP (shown as U+fileTEMP in tables and

3figures): Passes user references to user temporary files.

3 5.4.3. Analysis Compli ations

The data analysis did not proceed as smoothly as we had hoped. This section describes some of

the problems we experienced and suggests changes in the data collection and analysis that would

help avoid these problems in the future. None of these problems was serious enough to have a

noticeable effect on our results.

It was not always possible to pair up opens and closes correctly. In most cases there was only one

open for a given file to associate a close with, or the process numbers of an open and close

matched. In cases where this was not true, we looked for an open that was made by an ancestor

of the process making the close request. Sometimes there were multiple opens to a file outstand-

ing among those made by ancestors. This problem occurred less than 0.03% of the time and was

dealt with by using the most recent open by an ancestor. A more accurate solution would have

b.2,:n in record an open session number in the log and use this to make the associarie-, but the low3 frcquency of occurr:-nce of this problem and the relative unimportance of the derived numbers

make this solution unnecessary for us.

I There were two peculiarities in the 4.2BSD kernel that resulted in some surprises in the logs.

One, hawing to do with incorrect returns from the fork call, was caught and corrected before the

damt analyzed here were collected. The other, an inconsistent handling of error indicators when a

pro,:cs was forcilh' terminated, caused us to lose some close and exit records. This was not

dieuvcred until fairly late in the analysis. Less than 0.03% of the close records and about 0.5%3 o 01L: exit re -orj, %,ere not rccorded because of this problem. Since the number of close records

I
I
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lost was so low, we made no attempt to correct the problem.

Files were classified (as log, perm or tetup) the first ine they were seen in the logs. Occasionally £
this classification was incorrect. While we were developing the cuts, we classified a number of

files by hand, using information on the programs making the requests and the full history of refer-

ences to the files. Comparing our classifications to those done by the analysis routines (using file 3
name and directory information) showed that only a few tenths of a percent of files were

incorrectly classified. It would be difficult to do better than this without explicit information on 3
the intended usage of files. This information is just not available under UNIX.

We had to retain a lare amourt of state in order to associate unlink records with files and to I
interpret their meaning. Since we needed most of this state for other reasons (uid classification,

directory studies and so on) this was not really a problem for us. Including the file id and a count

of the number of remaining references in unlink records would make it possible to interpret them

in the absence of the state information.

I
5.5. File Reference Patterns

Roughly 7 days of data were collected on Seneca (16S.82 hours, from 3:21am on Monday, Sep- 1
tember 16, 1985 to 4:10am on Monday, September 23). During this period there were 142 active 3
users of ,.e system. There were generally 20 to 30 logged-in users at an)' given time on weekday

afternoons. with loiad averages running between 5 and 10. 3
In section 5.5.1, we examine the overall pattern of open and read/write requests. Section 5.5.2

briefly examines execvc patterns. Section 5.5.3 concentrates on user files. Our approach in all I
cases is to present only those tables and histograms that are particularly characteristic or striking.

5.5.1. Overall Open and Read, Write Patterns I
I
I
I
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5.5.1.1. Basic Statistics

A summary of the records collected is given in Table 5-3. The first three columns give the

number of records of each type collected, the average rate for that type of record, and the percen-

tage of the collected records that this represents. The remaining columns show the number of

3records collected cut by the ruid of the calling process and the percentage of the total for the ruid

class.

U From this table we can see that each of our ruid categories accounted for roughly 1/3 of the

Iactivity on the system. The majority of the file system requests v cre for opns and closes, with

most of the rest of the categories being a factor of 5 or more do' n from this (of course .ke didn't

record reads, writes and seeks, all of which would be a significant component of a full trace).

Processes made, on the average, 5.3 open requests.

no cut ruid_NET ru2 SYSTE.M mid USERrecoMaI
count per hr I fraction count fraction count fractior. count fraction

mkir 936 5 0.05 oDq, 7)5 0.11% 2 0% 139 0 02,

32;1 19 0..13 1946 0.261 40S 0.04T 857 0Ilq
dirmr 913 5.4 10.04% 780 0.110 - 133 0.02%

symLJ',k 16 0.1 0% 3 0%' 13 0 "

chdir 136063 806 5.4q. 19102 2.6% 71854 7.1 45106 5.7%

ch 1 0 0 - 0 0

180270 s070 7.1% 31219 4.2% 85917 8.5% 63133 8.0%fork 18511 ISo 7.1% 29271 4.0% 90735 8.9% 61503 7.8%

setre u d 16772 99 0.66% 4372 0.59% 9698 0.95% 2701 0.34%

close 754072 447U 29.7% 249837 34.0% 295164 29.4% 205666 26.2%

execute 125064 741 4.9% 26761 3.6% 38093 3.8% 60209 7.7%
Ilink 142929 254 1.7% 25694 3,5% 7301 D.72% 9934 1.3%
oPen 965087 5720 38.0% 277350 37.7% 393661 38.8% 294070 37.4%

truncat 0 - 0 -0 - 0

unlr' 13D929 776 5.2% 68342 9.3% 19861 2. 0% 42726 5.4%

total 253773 15040 106. _35469 1_ _1015697 1 1 0I0, 786190 100%

Table 5-3: records logged

I
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Table 5-4 gives the number of opens to each type of file object on the system. For the purposes

of comp.mson, the SLAC tra ce [Portar 821 inclded abxu 237,,000 opens to data (regular) files in

a similar period. The remainder of the analysis in this chapter deals with only regular files, the 3
largest cateor\ in Table 5-4. Directory access patterns (including explicit directory opens) are

analyzed in Chapter 6. Block and character special files are used in UNIX to provide access to 3
dev ices and are not of interest to us. They are, in any case, a small fraction of the total number of 3
opens.

Opens may be furthier broken down by the class of file being opened and by the owner of the file.

This information, plus statistics on how many files there are in each category, is given in Table 5- 3
5. We see here that 2/3 of the references were to pern files, although temp files made up 4/5 of

the f.1es ,cfercnced. Relatively few references were made to user files. The large number of net 3
fIes may be attributed to a daily news expiration procedure that reads the headers of all news arti-

cles. I

Information on read/write modes for open-close sessions is given in Table 5-6 (note that percen- 3
tages in this table sum horizontally). Overall, files opens were evenly split between opens with

read-only access and opens for write-only or read-write. Users, however, opened most files read- 3
no CL. ruidNET ruiJSYSTEM ruidUSER 3

" opens fractioj i opens I fraction K opens fraction opens fraction

regular file 754285 78.2% 249825 90.1% 298186 75.7% . 206268 70.1% I

direc tory 170448 17.7% 17275 6.2% 72625 18.4% 80548 27.4% I
block special 1 922 0.1% 0 - 60 0.02% 862 0.3%
character cial 39432 4.1% 10250 3.7% 22790 5.8% 6392 2.2%

ta9650K- if 277350 ltk .iL 393661 100% 294070 100N

Table 5-4: Opens, by object type 3
I
I
I
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cut opens - % opens files fiIls opens/file
fileLOG 35662 1 4.7% i 506 0.5% 'i 70.5
file PERM 499193 66.2% 16352 16.2% 30.5

1file TE.M IP 219430 29.1% 8.1327 83.3% 2.6

owner NET 249733 33.1% 46207 45.7% i 5.4
ownr-SYSTEM 392790 52. 1 25062 24.8% 15.7

I owncr-USER 111762 14. 8 30S22 30.5% 3.6
no cut !,754285 100,OV-, 10118.5 100 i 7.5

3 Table 5-5: Class and owner of opened regular files

only. Log files were generally opened Arite-only.

3 Perm files are categorized by their function in Table 5-7. This categorization was done using the

directories that files appeared in and/or based on file names and extensions. "System

5 configuration" files are those appearing in / and /etc. Examples are /vmunix (the bootable kernel

image) and /etc/passwd (passwords and other information on accounts). "Rwho daemon" files are

sed t r.z, in SLaLus information about machines on the network. "Library" files are those in

/lib, /usrIib arid so on (these include both program libraries and additional configuration files).

Files with names beginning with .. " are grouped into the category "personal configuration."

cut read-onlv write-only read/write total

cu_ I opens fraction i opens fraction opens fraction opens

file LOG 735 2.1% 1 34819 97.7% 97 0.3% v 35651
file PERM 1 282853 56.7% 180976 36.3% 35200 7.1% 1 499029

file _TEMP 104828 47.8% 96766 44.1% V 17794 8.1% 219388
ownerNET 148150 59.3% 79739 31.9% 21830 8.7% 249719
ownerSYSTEM 175787 44.8% 198183 50.5% 118712 4.8% 392682
owner USER 64479 57.7 , 34639 3 1.0% 1 12549 11.2% 111667
ruid_NET 146993 58.8c,i 79111 31.7% 23713 9.5% j249817
ruidSYSTEM 99205 33.3cJ 188233 63.1% 10723 3.6% 1 298161
ruid USER 141822 69.0% ' 45189 22.0% 18654 9.1% , 205665
no cut 38416 51.5c% ! 312561 41.4 %. 53091 7.0 754068

TTable 5-6: Mode of open for open-close sessions

I
I
I
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These files traditionalIl contain s.rtup commands and status information for various programs and

are used to ur and maintiin an individoal's environment. Examples include login, profile and I
.Pewsrc:. The rest of the categories have the obvious meaning. Note that over half of the opens to

perm files w.er made to 0.7% of the files (those in the first two categories). These files were basi- I
cally all system congIcuration and status files. Activity to these tvo categories represents roughly

40% of the total file opens Ae obscrved, indicating that a substantial fraction of the system activity

was de\oted to communicating and maintaining information about itself and about other hosts on 3
the network.

5.5.1.2. Per Open Results I

The open activity over time is shown in Figure 5-1. Opens followed a daily pattern with a busy 3
period between 9am and 6pm, overlaid by strong bursts due to net actvity (mostly news expiration

and news re'eption. Weekends were relatively quiet. 3
Figure 5-2 plots the open activity for just the first day of the trace. This shows the %k ork day busy i
period more clearly. Looking closely, we can see that user activity accounted for roughly half of

the daytime load. System opens had a base level (the rwho daemon) overlaid by activity that 3
cateeory opens % opens files I % files opens/f!ie

system contiurotion 12348 1 24.7- 100 0.6% , 1235
rAho daemon 166761 33.4% 13 0.1% II 12830
library 59245 1 1.9,C 222 1.4% 267
manual paes 18371 3.7% 1597 9.8% 11.5

nev 40022 8.0% 5828 35.6% i 6.9
program source 10596 2.1% 1499 9.21 7.1

includes 13767 2.8% 344 2.1% 40
obiects 5618 1.1% 468 2.9% 12
personal configuration 23125 4.6% 1676 10.2% L 13.8
madl spool 3621 0.7% 524 I 3.2% 6.9

other 34586 6.9% 40.1s 25.0% ' 8.5

Table 5-7: Function of opened perm files

I
I
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I followed or lagged slightly behind user and net activity. That is, a significant part of the system

activity was indirectly due to the other classes. This activity may be attributed to logins, spoolers,

I mailers and so on.
3.0

ruidUSER
....... ridNET

........ rid SYSTEM

1.0 
no cut

U opens

0:00 (Tue) 0:00 (Thu) 0:00 (Sat) 0:00 (Mon)

Line of open

Figure S-1: Average number of regular file opens per second (2 hour resolution)1 6.0
............. ruidUSER
.......... ridNET
........ ridSYSTEM

no cut

I a~erage 4.

per second

12.0

4:0Nn :012:00 1:0 20:00 0:00 (Tue)

Fiur S-2: Average number of regular file opens per second (- 1S minute resolution)
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The read and write activity to regular files corresponded only roughly to the open activity. This

can be seen by comparing Figures 5-3 and 5-4 with Figure 5-14. Reads and (especially) writes

were fair1' burst, on the resoluuon used in these figures (about 2 hours). The burstiness increased

as the resolution us4d increased. Figure 5-5 shows the throughput of the file system during a typi-

cal period of heavy user activity, averaged over 10-second intervals. This represents activity for

about 25 logged-in users. It is interesting to note that the peak rates in this figure, 35K !

bytessecond, would present little problem for today's LA.N technologies, even with fairly hefty

open and transfer protocol overheads. Our results here are similar to those presented by 3
Ousterhout et al. [Ousterhout 851 and support their contention that such networks can support

large numbers of users. 3
Table 5-8 shows the average throughput of the file system over the life of the trace for each class

of user. Note that reads accounted for 841 of the bytes transferred. Users accounted for over

half of all bytes transferred, even though they made only about a quarter of the opens to regular 3
I5

ruid_'SER
S .. ruidNET

ruidSYSTEM
no cut

kb',tes
read I

per second

55

'5:.',:..

0:00 (Tue) 0:00 (Thu) 0:00 (Sat) 0:00 (Mon)

time of close 5
Figure 5-3: Bytes read from regular files (-2 hour resolution)

'The unusually heavy reas/.nte acivit .y on 'huriday was caused by repeated execution of a large user text formai-
ung ro (fonraung a Ph D dissertatior,) Most of the acuvyiry was to temp files.

I
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ruidUSER
............. ruid_ NET

.......... rind_SYSTEM
3 no cut

kbytes3 ,Wntten "
per second

'/./ . .!. : 5::g. jF

0:00 (Tue) 0:00 (Thu) 0:00 (Sat) 0:00 (Mon)

5tume of close

Figure 5-4: Bytes wTitten to regular files (-2 hour resolution)

3O

30

kbvtes 20

pe" seconA 15 1

10o 2;

14:00 (Mon) 14:10 14:20 14:30 14:40

Ime of close

3 Figure 5-5: Bytes transferred to and from regular files (10 second resolution)

1 files (Table 5-4).

Referenced files on Seneca were small, particularly when compared to IBM mainframe environ-

I ments such as the ones studied by Porcar. Figure 5-6 and Table 5-9 show file size distributions on

U
I
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reads N ,Tite S overall (r+w)

bytes/sec fraction bytes/sec fraction I bvtes/sec fraction

ruidNET 870 21% 250 31% 1120 22.5%
ruidSYSTEM 1060 25% 110 14% 1170 23.5%
ruidUSER 2260 54% 1 440 55% 2700 54%

no cut 4190 100 % 800 100%1 4990 i00%

Table 5-8: Bytes read/!Titten for regular files
1.0

.0 ..... filePERM --- -

........ fileLOG "

file-TEMP
. no cut

- -a - ,,s.all/

0.6 I
ftacuon /

of
opens 0.4_ i

0.2 , ,,'

0 L I
1 10 100 1000 100 100000 1I

file size (b tes e6

Figure 5-6: Dynamic file size distributions (cumulative, measured at close) I

Seneca, weighted by the number of opens made and cut by the class of file. Note that these are 3
cumulative distributions. At any point on a curve, the y value is the fraction of files with sizes

less than or equal to the x value. For comparison nurposes, we have included here the static file 3
size distribution, as derived from a snapshot of the file system taken at the beginning of data col-

lection (this is the distribution that would result if each file on the system were opened once). 3
Table 5-9 also includes statistics for on-disk permanent files referenced during the SLAC trace. I
From Figure 5-6 we see that there were substantial size diffLrences between opened log, perm and

temp files. The large number of zero length temp files was due to frequent creation of lock files 3
I
I
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disunbution I mir max mean ! median I std deviation
file-LOG, dynamic 0 i1. 2 8e6 105000 38900 1.5e5
filePERM, dynamic 0 2. 4 9e6 19600 620 5.9e4
fileTEMP, dynamic 0 1.3e6 2980 620 1.9e4
all, dynamic 0 2. 4 9e6 18800 710 6.2e4
all, static 0 7.95e6 8020 1600 5.6e4
SLAC, disk filePERNI 0 94.0e6 549000 80000 2.3e6

Table 5-9: File size distributions

(these lock files serve as a very crude mutual exclusion mechanism). Log files, on the other hand,

were generally an order of magnitude or more bigger than other files. The jump at 60 to 100

bytes in the perm file distribuion was due to the rwho daemon, which was updating a set of status

files describing machines in the network every 60 seconds. By comparing the dynamic and static

distributions, we find that opens tended to favor small files (due to lock and rwho daemon files)

and, to a lesser extent, a few larger files (administrative files such as /etc/passwd).

fThe small size of opened files (55% are under 1024 byw , a common block transfer size, and 75%

are under 4096 bytes) suggests that director) lookup and open overhead will play a large part in

file access uimes, particularly in a disuribited environment.

While most files opened in our environment were small, the majority of bytes came from files that

were much larger, 2/3 of all bytes were read from files greater than 20,000 bytes long. This is

shown by Figure 5-7 and Table 5-10, which give distributions for the size of opened files,

weighted by the number of bytes read. We have also included here, for comparison purposes, the

3" static space used distribution (the distribution that would result if each file on the system were

completely read once). The staircase effect in the dynamic distributions is due to repeated opens

and read, of a few large administrative files. /etc/passwd, for example, at 21,000 bytes, accounts

for almost 20q of the bytes read. This file is infrequently modified and so would be a good can-

didate for replication in a disuibuted environment We saw earlier (Table 5-7) tha a relatively

small number of files received a high fraction of the open traffic. Figure 5-7 gives graphic evi-

d:&nc ( f the corr,->ponJing impq.ct in 1/0 traffic.

I
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1.0
. ...... file_ R. 

......... le LO G

.-.... file TEMP
0.8 no zu: 1'

u).6

frac t r'

bytes read
/ 0-

0.40.2 . .

0.0 . ... . .... . ........

1 10 100 1000 10000 100000 1

file size (butes) e3b

Figure 5-7: Dynamic file size distributions, weighted by bytes read (cumulative, at close)

distribution min m max mean median std deviation
file LOG, dynamic 0 1.28e6 1.91e5 1.2e5 1.6e5
filePERM, dynamic 0 2.49e6 1.19e5 2.2e4 2.0e5
fileTEMP, dynamic 0 1.3e6 1.12e5 6.8e4 1.5e5
all, dynamic V 0 2.49e6 1.19e5 3.4e4 l.9e5
all. static 0 7.95e6 - 3.6e4 1.29e4 5.le4 3

Table 5-10: File sizes, weighted by number of bytes read

Our distributions for the overall sizes of opened files and for the source of bytes read (Figures 5-6 3
and 5-7) agree with the distributions found by Ousterhout et al.. By these measures, at least, our

data appear to be representative of a university research environment f
Two figures that are useful in estimating the appropriateness of dynamic migration are the fraction 3
of a file opened for reading that is actually read and the fraction of a file opened for writing that is

actually written. As mentioned in section 5.3, we don't have complete information on which bytes 3
of opened files were read and written. However, if we make the reasonable (for our environment)

assumption that a given byte in a file was not usually read or written repeatedly in a single ses- 5
sion, we czn use the counts of bytes read and written from the close record to calculate the

I
I
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fraction of a file read or written. Figure 5-8 shows the percentage read for files opened read-only,

5 ut by the class of the file. Figure 5-9 shows the percentage wriuen for files opened write-only

and Figures 5-10 and 5-11 are for files opened read/,rite. In all cases, the size used is the size of

the file when closed. Zero length files are omitted. Tables 5-11 through 5-14 provide some statis-

tics on the distributions in these figures.

From these figures we see that most opens with read-only or write-only access resulted in the file

3 being completely read or written. The notable exception was for log files. For these files, writes

usually just incrementAlly extended the file. This is shown clearly in Figure 5-9 and indicates that

3 we have successfully extracted log files from our data. Much less can be said about the read/write

behavior of files opened with read/write access. For these files, information on usage histoD or

3 more detaled information on the intended usage of the file would be needed to predict the

readwTitc behavior. Recall (Table 5-6) that this category represents only 7c of the opens and so

n the additional information wii' not usially be needed

........... .Ie f PE RM
........ ffie_LOG

file_TEMP
no cut

U fraction 0.

I,,
SOpens 0...

0 0 .....

1 I

5 10 50 100 500 1000

perLent read

IFigure 5-8: Percent or file read for read-only opens (cumulative)
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O . ............ file PERMI
fraction ........ file LO

of - file TEMP I
opens 04 no cut

c _ I I
L30 0 =... ..-... .. ... .. _i'2 --. '-.............................. I

so I00 50I CUJi
percent vnten

Figure 5-9: Percent of file written for write-only opens (cumulative) I
3

-- -- - F, I ......I

n o cu F
0££

4 . . . . . ... - .- .- - . .-. . . . -. . . . ... r , ... . .. . .

l ' I

(II

0 0
V10 SOOY50 1000

pere r'

Figure 5-10: Percent of file read for read'write o)pens (cumulati,.e) I
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U0

....... f'.c. LOG
. . . . . .... . ............ ...... .. _.. . .. .

I -. ...... 'P
flS t . ........ "

ot-

I opens 0

I!

I 10 50 100 5, 1000

percent % riuen

Figure 5-11: Percent of file ITitten for read"'Tite opens (cumulative)

I
dismrbution min max mean median std dev <100%7c >1001/(
fileLOG 0 690 85.8 100 72 26% 3.3%
filePERM 0 64100 83.2 100 235 36% 3.2%
fileTEMP 0 3600 85.8 100 53 18% 2.1

no cut 0 64100 83.9 100 202 31 % 2.917c

3 Table 5-11: Percentage read (read-only opens)

dist-ibution min max I mean median std dev < 1001 >I00%/c

fileLOG i 0 100 I 2.8 <1 12 98.8% 0%
filePERM 0 200 96.6 100 18 3.9%'c 0%
file TEMP 0 9600 100.8 100 85 0.7%c 0.2%
no cut 0 1 9600 85.7 100 53 15% 0.1%

I
Table 5-12: Percentage Titten (write-onb opens)I

I
I
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U
distribution mIT max mean median std dev <100C' >(IW
filILOG 0 10h 60.2 100 49 40,7 0I 

file PERM 0 1900 62.5 100o 66 4 1 0.4,
fil_ TEMP 0 65000 138 100 1180 37% 371,],
no cut 0 65000 82.9 100 615 40% 11,

Table 5-13: Percentage read (read/w-rite opens) 3

ditributio m ix n ean median std de\ <l(X i >lU( '

fileLOG 0 10o 43.0 <1 49,5 57 0%
file_PERM 1 0 20000 36.4 <1 275 70% 0.1q
fileTEMP 0 3600 93.5 100 150 37 % 9.8%
no cut 0 20000 2451.8 <1 2.9 61% 2.7%

Table 5-14: Percentage written (read/write opens) I
Overall, 68Q of files opened with read access (read-only or readjwrite) were completely read and 3
78% of files opened with write access (write-only or read/write) were completely written. This

may be contrasted vith the SLAC data, where only 17% of opened permanent files were corn- 5
pletely accessed. The high percentage of files completely accessed on Seneca is due to the much

smaller file size and to the lack of any serious database actvity.

As one might expect, the fracUon of a file that was accessed depended strongly on the size of the

file. Very small files were usually completely read or written. Large files were rarely completely

read or written. This is shown for files opened read-only and write-on!y in Figures 5-12 and 5-13 3
and in Tables 5-15 aed 5-16. Files opened with read/wnte access followed a similar pattrn.

I
5
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I .
........ size < 512 - -

512 < size < 4K - -

- 4K < size < 32K,-
0.8 size > 32K /

no cut

fraction0. 6 ,

opens 0.4

0.0 =*----------

. . .. . .. . . - ---

& 0 - . -.. - 7. . . -i . . .. .-i................. ... .... ... .. .. .. ..

I 10 50 S I w000

percent read

SFigure 5-12: Percent of file read for read-only opens (cumulative, by size)

1.0 --

size < 512I ........ 512 < size < 4K

------ 4K <size < 32K
size > 32K

frcE . 0.6 no cutOnoutfracuon
or - - -- --. . . - -. . .

opens .

0 .0 . . .. .. .
0.2 " .-. -. . . ... ... ... -. .. .___ _......... , _ ___ __ -

1 10 50 100 500 1000

peent ritten

Figure 5-13: Percent of file written for write-only opens (cumulative, by size)I
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fr1.2110fl of m a
size r no ma mean median ! sid dev <100 % >100%

S 512 b ,tes 2.? ' 0 3600 100.1 100 19 1.2% 3.81/7
512 < size _ 4K 46.7% 0 64100 88.4 100 158 17% 1.7%

4K < size _ 32K 18. 5 0 55500 97.0 80 382 59% 6.7%
size > 32K bytes 12.1% 0 12500 15.6 7.7 I10 95% 0.4q%

al 17C 0 1 64100 83.9 100 202 31%o 2.9%

Table 5-15: Percentage read, by size (read-only opens)

size i ~fractin f mn;

Sze aon of mi , max mean median std dF < 100 ,

512 bytes 71.5c 0 6800 99.5 100 35 1.o% 0.1%
512 < size _ 4K 13.0% F 0 9600 79.7 101 84 22% 0.3%
4K < size 5 32K 7.3% 0 101 48.8 12 49 54% 09,;
size > 32K bytes 8.2% 0 100 6.5 <1 24 94.2% 0%
all 100 0 9600 85.7 100 53 15% 0.1%

Table 5-16: Percentage written, by size (write-only opens)

5.5.1.3. Per File Results !

The number of opens per file gives an indication of the potential benefits and penalties of migrat- I
inz files to a user's machine (the degree of sharing is also a factor here). Most files in our f
environment were opened only once or twice (Figure 5-14 and Table 5-17). This may be attri-

buted to the large number of lightly used temp files; log and perm files saw considerably more

activity. We have also included in Table 5-17 information on the distribution for on-disk per-

manent files in tI,e SLAC trace (for a period of 310 hours). SLAC perm files saw, on average, 5
considerably less activity than the perm files in our environment, despite the longer SLAC logging

period. I

I
I
I
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Figure 5-14: Number of opens per active file (cumulative)

opened opened opened moredistribution mean , median max
_______________________I__ once twice than t-wice

filkLOG 70.5 3 5% 36% 59% 5330
filePERM 30.5 4 16% 16% 68% 26800
fileTEMP 2.6 1 55% 36% 97 1920
no cut 7.5 82 8% 33% 19% 26800
SLAC, disk file PERM , 12 2 46,c 23% 31% 2660!

Table 5-17: Number of opensifile

distribution I mean median Istd dev140 90 1700
filePERM 8120 >5000 8100
file_TEMP 57 3 210
no cut 5400 480 7600

Table 5-18: Open distribution (as a function of opens/file)i
I
I
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Figure 5-15: Fraction of opens per active file (cumulative) U
Most opens went to files opened many times. 75% went to files opened more than 10 times and 3
half to files opened more than 480 times (Figure 5-15 and Table 5-18). The most frequently

opened files on Seneca (Table 5-19) were administrative and configuration files in /etc and in i
library directories, rwho daemon files and news databases.

Files in our environment were usually only open for a few tenths of a second (Figure 5-16 and

Table 5-20). Temp files were open for relatively long periods of time. This is to be expected, 3
since they are often used to store intermediate results as they are being calculated. The distribu-

tion for perm files is consistent with the small files sizes and whole file transfers we saw earlier.

Programs open these files, transfer data and then immediately close the files.

3This table actually lists the most frequently accessed Inodes, with the given name being the path used to first access
the wode. For she rnost part, this distinction doesn't matter. There are a few modes listed here, though, that re one of I
several versions of a heavily usd system file. An example is /etc/passwd, which starts Ife as /etc/psmp Occurrtnces of

this are noted in the table

5
I
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rank opens fracton path of first open

1 26801 5.4 c Ietc/hosts
2 2067 5 4.1 7 /usr/spool/rwho/w hod.keuka

[2 more rwho daemon files]
14977 3.0c /eLc/passwd [35485 (7.1%) with /etc/ptmp versions]

6 12036 2.41c /etc/utmp7 10594, 2.1 ,c tusr/spool/rho/whod.capella
.. .. ... .. 9 m o r e r w h o d a e m o n fi l e s ]

17 9386 1. 9 % /usr/include/whoami.h
18 8881 1.089 /ec/ptmp [version of/etc/passwd]
19 8630 11.7' /etc/ptmp [version of/etc/passwd]
20 7533 1.5% /usr/lib/sendmail.st
21 7295 1. 5 % /vmunix
22 6908 1.4 -' /etz/ermcap

6400 1.317c /etc/group [6947 (1.4%) for all versions]
. ,6 2 9 4 1 .3 t tc ts e 'i*c C s

25 6211 1. 2 i~ etc/gettyt'-ab

I Table 5-19: Frequently opened inodes

I 0

I frcto

opens
0,4

0 -............ filePERMI -- ........ file LO G

-IlTEMP

oo L 
Ino cut

0 01 0. 1 10 10o
0,0 length of time file open (seconds)

I Figure 5-16: Times from file open to close (cumulative)

I
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KnoAIedke of file inLeropen intervals (the time from one open of a file to the next, is useful in 3
estimaung both the appropriate time scale for migration and the possibilities for za.;hing. Figure

5-I7 and Table 5-21 shoA that interopen intervals in our environment were short (opens to a file 5
dtsrnbuuon min max mean median I std devL3u,,.,-
fiie_LO)G 0 8.6e4 33.4 0.08 1140
filePERM 0 7.6e4 6.5 0.08 251
fileTEMP 0 4.8e4 20.5 0.22 335
no cut 0 8.6e4 11.8 0.1 369 I

Table 5-20: Open time (seconds) 3
distribuuon min max mean 1 median sti de a

fle_LOG 0 5.4e5 965 1715 9
file PERM 0 5.4e5 8215 60 2 "<
tie_TE MP 0 4.2e5 6655 36
no cut 0 5.4e5 7502 60 2.2c,
SLAC, diA: file PERM 0 9.7e4 8350 50 4.4 U

Table 5-21: File interopen intervals (seconds)

..... ...... . . f i e P E R M -- --- .. . ..

........ filk_ L OG
file_ TEMP I" no cu"

045 06 " I

0.0

0,0 0.1 1 10 100 1000 10Y' 10000 0

ume since last open Iseconds)

Figure 5-17: File interopen inter~als (cumulative) i

I
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were strongly clustered). When a file %kas opened, the following open (if any) had a 50% proba-

bility of occurring within the next 60 seconds. Interopen intervals for temp files were pariculary

short. If a temp file was opened muluple umes (many were not), the next open often occurred

5within a few seconds of the last one. This is to be expected for files that are used to hold results

between job steps. Log files also had shorter interopen intervals than files as a whole. Most log

file opens were made by net processes and these processes show intense bursts of activity (Figure

5-21, so this is not surprising. The jump at 60 seconds in the distribution for perm files is due to

rwho daemon activity.

The lifetime of a file in our environment depended strongly on the class of the file. Most temr

files lived less than a minute. The overwhelming majority of perm files had hfetimes that

extended beyond the logging period. Log files fell in between (mostly due to short lived LLCP

work logs). File lifetime distributions are shown in Figure 5-18. Here files that existed before

logging was started or that conunued to exist after logging was terminated were given lifeumes

exceeding the logging period (lie to the right of the histogram). Because so many log and perm

files fell into this category, we have not included the moments of these distributions.

............ file PERM.
-------- file LOG
------ file TEP P

no cut

U.6

files "'

0.. 
. ......... .... ,

00l 01 i 1 0 8: 100 l0W I 0(A) 100000

file lifeume (seconds)

Figure 5-18: File lifetimes (cumulative)I
I

II
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Figure 5-19: Version liretimes (cumulativ.e)

Even though most pot-rn files have long happy Lifetimes,, the data in these files is not so fortunate.

This is shown in Figure, 5-19, where we have histogrammed the time from when a file is createdI

or written to the time- vkhen a file is overw-ritten or deleted (this is the file lifetime used 1,.

Ousterhout et al.' Filce> that were only partially wrTitten are not included in this histogram. Again.3

data %~hose lifetime ,xicnded beyond the limits of our log were given lifetimes exceeding the log-

ging period. The J&~ump at 60 seconds is due to rv~ho daemon activity. Since Nk~ include all3

files here and Ousicerho1ut -e. al. included just new data, our results are not directly comparable.

The first two columns oil -able 5-22 show the mean number of readers per file, as indicated by the

accounc (ruid) of the re-ader, and the percentage of files with more than one reader, cut by the file

class and owner. The next four columns show this information for writers and for the overall

number of file user , The last two columns show the mean and maximum number of inversions5

per file. The number of inversions is the number of times that the most recent user of the file

changes (this is basicall>. Ule inversion clusteriiig metric used by Porcar [IPorcar 82,]). For a file

used by only one user, the number of inversions will be zero.
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We can see from Table 5-22 that 1 .S% of the files scen duri..g the logging period were accessed

Ib multuple users (users A ith separate accounts). Multiple readers were much more common than

multiple writers. Most shared files belonged to net. These were predominately news articles

Iperrn files). Logs were also heavily shared. They frequently had multiple writers and separate

readers. Although system files were not as heavily shared as net files, in terms of the number of

shared files, the high mean number of inversions (2.92) indicates that the system files that were

shared were not shy about it. Few user files were shared, and the low mean number of inversions

(0.11I) indicates that this sharin was incidental to the normal use of user files.

t The overall distributions arc show- n in more detal in Table 5-23. Note that very fe, files had

5more than 2 writers and thot even the distribution of the number of users per file drops off quite

shLI y.

1 5.5.2. Execute Patterns

3The basic calls to run an executable file under 4.2BSD UNIX are execv and execvc. These calls

are grouped together under the heading "execute" in Table 5-3. Users were responsible for half

of the execute requests in our log (Table 5-23), even though, as we saw in section 5.5.1, they

noImde only a Lluarter of the opens to regular files. Most execuLes were done on system files. Users

I re aers ,vrateri q+,, (r I %,k inversior-5, cut rcars'! (

'm 1 I mean >l mean >1 mean I max
file_LOG 0. 3.8% 1.86 26.7%1 2.67 76.9% 5.25 293

Eie PERM 1.575 17.9,% 0.4-14 3.4c 1.711 20.9% 5.52 12529
fileTEM~ 0.639 4.4%c, 1.02 ..2.1% 1.212 9.6% '0.93 92

ownerNET 0.905 11 9" 0.433 4.1, I 1.501 20.7% 0.874 1288
ovnerSYSTEM 0.483 3.0% 0.962 0.12% 1.196 3.8% 2.92 12529

owner USER 0.15 1.3% 0.876 0.84-1% 1 1.053 2.7% 0.111 169
-; Cut .0.792 6.6,_ 0.930 2.4%7 1.30 11.8% 1.16 1 1252Y

I
Table 5-22: file sharing, by file class and ow-ner

I
I
I
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rea.drw swriters usr r A , inversions
number i; c c cC, ., Cul, count C 1111 COU , CU c r I C; CU i

0 4411 44.2% 11252 1.1% 89272 8 .2
1 49845 93.4% 87510 97.6% 89272 88.2q 5838 9.0%

2 3022 96.4% 2009 99.59% 7555 95.7% 21S2 96.2%
3 1214 97.7% 209 99.80c,, 1818 97.5% 666 96.8% I

685 98.3% 66 99.86q, 758 9 2 799 97.6F

5 421 98.8% 23 99.89% 448 98.7% 389 98.0% I
6 356 99.s% 18 99.90CC 36 1 99.05% 339 98.3% I
7 245 99.35% 20 99.92% % 99.30% 318 98.t
8 167 99.52% 8 99.93% i75 99,47% 291 98.9%

9 80 99.60% 12 90.94% 8s 99.56% Ki 213 99.13%
10 105 99.70% 8 99.95% 111 99.67% 156 99.29G'

>10 ] 304 1 C 50 100% !  333 100 %c 722 1001,

total 1011-5 - 1011 5 lolS: 101185 111

Table 5-23: readers, writers, users and inversions; no cuts U
ow*ried alm ost half of Lhe execuables seen but there were few executes of thes. files. I

Most executable files were between 5,000 and 100,000 bytes long (Figure 5-20 and Tablc 5-25). U
The relatively large size of executables is a reflection of the lack oi run-'ine library sharing. All

executables contan ,khatever code they need to run.

cut eeCu:es % executes I eecutahLes % exeutabes I execues/ex'cua

ruJ NET 26761 21.4% 4i 7.1% 5

ruid S YSTEM1 3I803 30.5% 13 23.6%c, 278
InidUSER , 60210 48.1% 528 90.9% 114

owner_NET 12190 9.7% 34 5.9% 359
ownerSYSTEM 108646 86.9% 291 50.1% 373

i owner_ USER 4228 3.4% 256 44 1% 17

no cut 121064 100% ' sl li 215

Table 5-24: Basic active executable statistics

I
I
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size of executable (ttes)

Figure 5-20: Dnamic executable fiJl. size distributions (cumulative)

disu-ibuuuon min max mean median 1std deviation
ow ner_ NIT 9216 8.8e 4-4400 35500 2'3900
ownerSYSTEM 4096 LIZe 34 500 21400 84900
ownerUSER 4228 3.2e6 550 18200 135000
no cut 4096 3.2,-6 36200 22400 83400)

Table 5-25: Executable file sizes (bytes)

I ....___ _ __ _ _ _

distribution I K min max me-an median std deviationI owknerNET 1 2152 359 60 570
ownerSYSTEMI 1 17519 373 24 1340
oA ncrUSER 1 675 17 3 59
no cut 1 17519 215 8 I 970

Table 5-26: Number of executesfactive executable

FiueI2:Dnmceeual i iedsrbtos(uuaie

I
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Figure 5-21: Number of executes per active executable (cumulative)

An executable file saw considerably more activity than other regular files (Figure 5-21 and Table

5-26). Almost half were executed 10 times or more. This is not surprising, considering the small

number of active executables.

Most executes went to files executed a large number of times. Half went to files executed more

than 2000 times (Figure 5-22 and Table 5-27) and 95% went to files executed at least 100 times. 3
distribution mean median std dev

owner NET 1270 1380 634 i
owner SYSTEM 5150 2600 5850
ownerUSER 230 105 244
no cut 4600 2000 5640

Table 5-27: execute distribution (as a function of executes/executable)

I
I

I
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Figure 5-22: Fraction of executes per active executable (cumulative)

i The most frequent]y executed files on Seneca were sheUs and system utilities to delete files, evalu-

ate conditionals, list directories and distribute files to other machines (Table 5-28). Over half of

the executes went to only 13 files. These files, taken together, occupied 0.46MB ,f disk space

5 (0.08c of the total). This suggests that even a very modest amount of caching or other special

treatment for frequently requested programs will produce significant improvements. Evidence for

3 this was also seen in a study of 2MB diskless Sun workstations running a version of LNIX similar

to the one on Seneca at the University of Washington [Lazowska 84]. For the Suns studied, 80%

of the bytes transferred were due to file accesses and only 20% were for paging. If we take our

average executable size times the execute rate (most 4.2BSD executables are loaded using demand

paging), we get a very crude paging estimate of 7500 bytes/second, or about 170% of the transfers

due to opens (Table 5-8). The difference betwen our crude estimate and the blhavior seen at the

5University of Washington is probably due to both the caching of pages of frequently executed files

and to code and debugging information in executables that is not used.I
The distribution of time between executes for executables is given in Figure 5-23 and Table 5-29.

i These distributons lend support to our caching arguments.

I
I
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I

rank executes I fraction path of first execute I
1 17519 14.0% /bir/sh
2 6946 5.6% /bin/rrn

6511 5.2% /bmi 
4 6402 5.1% /bin/csh

5 4568 3.7% /binAs
6 4497 3.6% /etcrdist
7 3776 3.05 /usr/ucb/more
8 2517 2.0% /usr/ucb/vi
9 2514 2.0% /bir/login

10 2197 1.8% /bin/echo I
11 2152 1.71% /usr/bin/rnews
12 2143 1.7% /usr/lib/sendmail
13 2026 1.6% /etc/logld
14 1891 1.5% /binAhosmame
15 1803 1.4% /bin/rmdir

Table 5-28: Frequently executed inodes

............ oAncr -USER------. o k ner- NUT

-. -. o,nerSYSTEM0 .S - no cu t -, :- , ' ."

fac 0.6 I
of

intervals
0.4. ..

0.2 -

001 01 1 10 100 1000 10000 100000

time since last execute (seconds)

Figure 5-23: File interexecute intervals (cumulative) I
I
I
I
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Executing a progran on UNIX is usually done using the sequence fork (to create a copy, ol the

running process): execv or execve (to replace that cop) with the new program); exit (when done).

Since over 2/3 of the forks on Seneca were followed by an execute we can, by looking at process

lifetimes (time from fork to exit) estimate how long execumbles were in use. Process lifetime dis-

tributions, cut by the ruid of the requester, are given in Figure 5-24 and Table 5-306. Over half of

I all processes recorded in the log lived less than a second. System processes were particularly

short-lived. With the exception of the large number of cys:m processes that lived less than a

tenth of a second (due mostly to local network servers), our results agree with process lifetime

resuits given bNy Lnou et al. [Zhou S31.

Executable files were more heavily shared than opened files (Table 5-31). ]-his should come as no

surprise, since there were relatively few executables and these were usually located in public

directories. User executables were relatively lightly shared.p
distribution M rMa.A mean median ' sid deviation

ownerNET U.i5 2.2e5 1160 65 6550

owner_SYSTEM 0 5.6c5 983 40 7680
ownerUSER 0.52 4. 1e5 6290 730 23600
no cut 0 5.6,25 1170 47 8610 j

I Table 5-29: Interexecute intervals (seconds)

distribution mu, max ! mean , median ' std deviation I
ruidNET 0.02 7250 15.7 3.0 88
ruidSYSTEM 0.01 215000 52.2 0.09 1380
ruidUSER 0.02 76100 118 2.4 1190
no cut 0.01 215000 165 0.95 2560

I Table 5-30: Process lifetimes (seconds)

I 6Some processcs. such as logm shells, start life in one ruid class and exit in another. These are included only in the

overall distri utiunI
I
I
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Figure 5-24: Process lifetimes (cumulative) N
executors inversions !

cut
mean median >1 >5 max mean >0 >.s max

ownerNET i 103 4 70.6% 41.2% 45 92.9 70.6% 55.9c 957
ownerSYSTEM 1 12.0 2 61.5% 34.4% 111 126 61.5q 38.8% 6539

ownerUSER 1.38 1 9.8% I  1.6% 28 1.74 9.8%I 4.7F 205
no cut 7.2 1 ]_ 39.2% f03% ill 6. j392 24.% 63

Table 5-31: Executable sharing

5.5-3. User File Patterns 3
In this section we take a closer look at user files. Some distributed file systems (for example, the 3
ITC DFS [Satyanarayanan 85)) deal primarily or wholly with user files. In addition, we expect

that user file access patterns will be less dependent on the operating system used. These factors

make user file reference patterns particularly interesting.

The results presented in this section are actually for user references to user files

(owner_USER+ruidUSER cut, referred to as the "U" cut below). These references represented

I
I
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over 90% of the references to user files. The remaining references were mostly infrequent

periodic references made by system processes and had little effect on the distributions we see

Lw,.th thc exception of some of the sharing results). The organization of this section follows

closely that of section 5.5.1.

5.5.3.1. Basic Statistics for User Files

The majority (62%) of user references to user files were to perm files (Table 5-32), even though

less than a third of the referenced user files were perm files. There were few references to log

files. Most of these files were logs of mail sent or read and so the low level of acti,.:, io .ne

surprising. With the exception cf a somewhat higher proportion of perm files, these figures agree

I with what we saw for the overall distributions (Table 5-5).

55c% of the opens \ere read-only with most of the read-only opens going to nerm files (Table S-

33). Users showed a strong tendency to open peim files read-rnl,, and other files write-only or

I cut opens 17c opens files % files opens/file
U+fileLOG 837 0.8% I ' 101 0.3% 8.3
U+filePERM 65051 62.4% 8662 29.0c7 7.5.UJ+fileTEMP 38420 2136.8% 1127 70.7% 1.8

U 104308 100% 2980 100% .5

Table 5-32: User opens to user files

read-only write-only read/write total
cut -- _ _ _ _ ____-_ _ _ _I___,__ opens fracton opens fraction opens fraction opens

U+fileLOG 117 14.0% 623 74.4% 97 11.6% 837
U+file PERM 150193 77.5% 13296 20.5% 1310 2.0% 64799U+file-TEMNP l 7349 19.1%o 19891 51.817 1! 0 29.0% I 38380

U 5-659 55.4% } 33810 32.5%7 12547 12.1% 104016

I Table 5-33: Modes of opcn for user open-close sessions to user files

I
I
I
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catecor' V opens % opens U files % files opens'file'
library 2036 3.1% 91 1.1%1 22.4 I

manual pages 776 1.2% II 181 2.1 .3
program source 10538 16.2% 1486 17.1% 7.1
includes 3093 4.8% 306 3.5% 10.1
ob ec ts 5617 8.6% 467 5.4% 12.0
personal configuration 20278 31.2% 1638 18.9% 12.4

mail spool 20-1"') 3.1% 453 5.2% 4.5

other r 20644 31.8 4040 46.6% 5.1
i, I

Table 5-34: Function of opened user perm files I
readl/Tie. I
30% of the activity to perm files was to program development files ("program source,"

"includes," and "objects" in Table 5-34). A similar number of references were to personal

configuration files (often referred to as "dot files"). Most of the rest of the references were

unidentifiable.

5.5.3.2. Per Open Results for User Files I

User open activity to user files (Figure 5-25) showed a busy period during the work day, with

activity tapering off in the late evening. This is typical of a university environment. There was I
some early morning activity due to user background jobs. The overall level of activity was much

reads writes overall (r+w)
cut bytes/sec fraction bytes/sec fraction bytes/sec fraction

U~fileLOG 9.6 1.0% 4.6 1.% i 14.2 1.0 /U+filePERM 401 41.0% 121 28.6% 522 37.3%

U+fileTEMP 568 58.0% 297 70.4% 865 61.7%.2 ] 978 1009C 423 100% 1401 100%

no cut (Table 5-8) 4190 10 3 800 4 14990

Table 5-35: Bytes read/written by users to user files I
I
I
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I Figure 5-25: Average number of file opens per second (-2 hour resolution, U cut)

I less than that we say for the system as a whole (user opens to user files accounted for 14% of

the open activit)) and was generally less burst'.

User reads and writes to user files accounted for 28% of the bytes transferred during the logging

period. Most of the transfers (61.7%) were to and from temp files (Table 5-35). Few bytes were

transferred to er from log files.

distribution min max mean median std deviation

U+fileLOG, dynamic ' 0 I 1.28e6 90400 39000 1.7e5
U+file PERM, dynamic 0 2.49e6 6205 1230 4.0e4
U+filc-TEMP, dynamic 0 1.30e6 5006 310 2.4e4
U, dynamic 0 2.49e6 6440 930 3.9e4

'all, dynamic (Table 5-9) 01 2.49e6 18800 710 6.2e4
all, static 0 7.95e6 8020 1600 5.6e4

Table 5-36: User file size distributions

I
I
I
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Figure 5-26: D',namic file size distributions (cumulative, measured at close, U cut)

Cumulative file size distributions for users files, weightcd by the number of user opens and cut by

the file class, are given in Figure 5-26 and Table 5-36. Referenced user files were, on average,

smaller than other referenced files. This was due, in part, to the large number of zero length temp

files and to the absence of the large, frequently accessed administration files seen in the overall

data.

Usciz accessed most of their files completely (Figures 5-27 through 5-30 and Tables 5-3-i through I
5-40. 901% of opens with read access (read-only or read/write) resulted in the file being com-

pet-ly reAd (compared to 6 8 qC for the system as a whole). 83% of files opened with rite access

vere completely writuen (compared to 78% for the system as a whole). Nearly all files opened

read-only were completely read.

I
I
I
I
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Figure 5-27: Percent of file read for read-onl.% opens (cumulative, L' cut)
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II
* dISLtrIbut)II min max mean mcd ian sd d!J <]I ( l% >]O(')l
UIfileLOG 0 100 75.3 100 40 28c 0%
U+filePERM 0 12500 99.9 100 110 5.7% 5.2%
U+fileTEMP 0 1160 109 100 47 7.2% 11.4%

0 12500 100.9 100 104 5.9% 6.0%
no cut (Table 5-11) 0 64100 83.9 1 202 31% 2.9%

Table 5-37: Percentage of users files read (read-only opens)

diLributlion nii, ma. . inW-an median sW dcv <1(W% >I 00D%

i--fil LOG 0 100 12.4 1.9 2o 94: 0.
U+file PER, 0 i 200 90.8 '100 27 14-
U+fileTEMP 0 9600 106.4 100 201 2.0% 1 0.7% 1
U 0 9 600 95.6 100 134 11( 0. 8
no cut (Table 5-12) 0- 9600 i 85.7 100 53 15%, 0.l%,

3 Table 5-38: Percentage of user files wTitten (wvrite-only opens)

distribution min max mean median std dev <10(1 >10(01 I
L+file_LOG 0 100 60.2 100 49 40 0%
U+filePERM 0 100 81.8 100 39 18% 0% C
U+fileTEMP 0 65000 159 100 1670 34% 19%
U 0 65000 145 100 1500 31 % 16% i

Ino cut (Table 5-13, 0 65000 82.9 100 F 615 I 407, 1 F1%

Table 5-39: Percentage of user files read (read/write opens)

distribution min max mean median std dev <100, >100-,1 4

U-#file LOG 0 100 43.0 <1 50 57,7 0%
U+file_ DERM 0 100 17.0 <1 37 83 17c %
'U+filcTEMP 0 3600 112 100 156 23% 12%

U0 3600 95.7 100 1l 7 3-4 10.3MYq

no cut (Table 5-14) 0 =20000 51.8 <1 249 61% 27%, i

Table 5-40: Percentage of user files written (read'N% rite opens)

I
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opne opnd oee more
distribution mean median once , twice than twice max

U--fileLOG 8.3 5 13% 18% 69% 79

U+filePERM 7.5 3 23% 21% 56% 562

U+fileTENP 1.8 2 35% 61% 3.9%'( 198
LU 3.5 2 1 31% 50% 19% 562

no cut (Table 5-17) 17.5 2 i -8 3 3 c 1 19 7 268_00__ _ _ _ __ _ _ _ _ __ __ __ __ __ I260

Table 5-41: Number or user opens/user file

5.5.3.3. Per File Results for User Files 3
User temp files were generally accessed twice. User log and perm files saw somewhat more

activity (Figure 5-31 and Table 5-41). Although only 19% of the user files seen were referenced

more than twice during the week of logging, these files accounted for 63%" of the opens. User file

distributions don't show the frantic activity to a few files that we saw for the overall ditribution,

but there was still a small group of relatively active files tiat accouted for the majority of the 3
I
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ope ns.

U Interopen intervals for user files (Figure 5-32 and Table 5-42) bore little resemolance to th,! results

we sa. for the overall data. Intervals for user files could generally be expressed in minutes

instead of seconds. Temp files were an exception here. The second open to a temp file utually

followed immediateil after the first one.

File and data lifetimes for user files are shown in Figures 5-33 and 5-34. Most user perm and log

I files had lives exceeding our logging period. Data in user log and perm files were also long lived

I distribution m in max mean median std deviation

U+fileLOG 0.02 5.4e5 3110W) 3100 5.7e5
U+file PERM U 5.4e5 21400 450 4.1e4

U+file TEMP 0.01 4.2e5 1390 0.38 1.2e4

S1 0 5.4e5 16900 120 3.7e4

It no cut (Table 5-21) ; 0 54e5 7502 60 2.2 e4

Table 5-42: User file interopen intervals (seconds)
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Figure 5-33: File liretimes (cumulative, U cut)
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Figure 5-34: Version lifetimes (cumulative, U cut) 3
(this was not the case for the overall data). Half of al user temp files lived less than 15 seconds. 3
Tables 5-43 and 5-44 provide some statistics on user sharing of user files. Sharing was restricted

to log and perm files. The low mean number of inversions (0.069) indicates that sharing was U
I
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incidental to the normal use of user files.

5.6. Summary

This chapter has described in detail the collection and analysis of short term file reference data

I from a 4.2BSD UNIX system supporting university research. As is true with all studies of this sort,

our results can be guaranteed to be valid only for our system at the time of data collection. Care

should be taken in applying the results to other situations. Given this caveat, our major findings

readers writers users (r I') I inversions
I cut red r writr I[mean >1 mean i >1 mean >1 mea~n max

I U~file_LOG 0.634 ' 3.0% 0.99 3.0% '1.099 5.9% 0..56 9

U+file PER-M 0.936 2.7% 0.632 2.1% 1.12 4.9% I 0.231 163
iable>1G 0.63 3. ean, 0.9 3.0c >1.9 mean, ma25U+fileTEMP 0.798 0.02% 0.995 0% 1.0 0.04% 0 2

U 0.838 0.80% 0.889 0.63% 1.035 1.5% 0.069 163

no cut (7able 5-22) '0.792 6.6% 0.930 2.4% 1.30 11.8% 1 1.16 12529

Table 5.43: User file sharing

3 readers writers users (r I w) inversions

number count cum II count (cure count cum fl count cum

0 5367 18. 3826 12.8% 29452 98.5%3 1 24284 99.20% 25877 99.37% 29452 98.5% 198 99.20%
2 146 99.69% 98 99.70% 255 99.39% 109 99.56%
3 45 99.84% 28 99.80% 74 99.64% 27 99.65%
4 21 99.91% 19 99.86% 40 99.77% 23 99.73%
5 11 99.95% 8 99.89% 19 99.83% 14 99.78%
6 2 99.95% 7 99.91% 9 99.86% 7 99.80%
7 3 99.96% 7 99.93% 10 99.90% 5 99.82%I 2 99.97% 3 99.94% 5 99.91% 7 99.84%
9 2 99.98% 5 99.96% 7 99.94% 7 99.86%
10 0 99.98 2 99.97% 2 99.94% 4 99.88%

>10 7 1007 10 100 17 100% 37 100%
total I29890 ~ 29890 129890 29890 _

I Table 5-44: readers, wTiters, users and inversions; user references to user files

I
3
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are as follos:

(1) Opened files in our environment are small, with half being under 710 bytes long.

(2) The majority of bytes read come from larger files (greater than 20,000 bytes long).

(3) 68% of files opened with read access are completely read and 78% of files opened I
with write access are completely wTitten. The percentage read and written depends

strongly on the class of the file (log, perm or temp), the mode of open, the file opener I
and the size of the file. In particular, log files are almost never completely written

and users completely read 94% of files they open read-only. I
(4) Temporary files are usually accessed only once or twice and most 1,'., u less than a

minute. Log and permanent files live for much longer periods and see more open

activity. 3
(5) Most opens go to files opened hundreds or thousands of times a week. Large admin-

istrative files account for a substantial fraction of this activity.

(6) Files are generally open for only a few tenths of a second.

(7) Interopen intervals in our environment are short. Half are under 60 seconds. The 3
interopen interval depends strongly on the class (log, permanent or temporary) and

owner of the file. I
(8) Most sharing is restricted to system and net files in our environment. Sharing of user

files is incidental to their normal use.

(9) Executed files are relatively large (half are over 20,000 bytes), heavily used and few 3
in number.

(10)Half of all execute requests go to a very small number of executable files (13 files; 3
2.2% of the referenced executables).

(11)We see substantial differences in file access patterns based on the class of the file, the

owner of the file and the class of the file opener. In particular, overall reference pat-

terns do not match user file reference patterns and reference patterns for logs, per- 3
manent files and temporary files bear little resemblance to each other.

I
I
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U These results have a number of interesting implications for DFS design. These implications will

3be explored in Chapter 7.

I
I
I
I
i
I
I
I
i

I
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Chapter6 

Directory Reference Patterns N
in a UNIX Environment

I
6.1. Introduction 3
This chapter continues the analysis of UNIX file system reference patterns that we began in

Chapter 5. In that chapter we focussed on file reference patterns. This chapter examines directory

reference patterns in some detail. 3
Our study of directory reference patterns is motivated by studies that found that 40% of BSD

UNIX system call overhead was due to name resolution [Leffler 84], that half of all network I
traffic in LOCUS was in support of name resolution [Sheltzer 86], and by our file reference results

showing that most referenced files were small enough to read in a single disk access.

Chapter 5 described modifications that were made to the UNIX kernel to collect a log of accesses 3
to files. This log includes a complete record of the paths used to create, open, execute and delete

files, to open directories, and to create, delete, and modify directories. This chapter uses that path 3
information to examine the overhead of name resolution in accessing files, directory read/write

ratios, the rate of change of directory nodes, and directory sharing. As in Chapter 5, we have tried I

I
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to present the information in a way that gives a qualitative feel for the way that directories are

3 used on our UNIX system.

Section .2 describes aspects of our data collection methodology that are important in analyzing

directory reference patterns. Section 6.3 outlines the approach we used in analyzing the data.

3 Section 6.4 presents the results of this analysis. Section 6.5 summarizes our results.

I 6.2. Data Collection Methodology

Section 5.2 described the method we used to generate a trace of file references. This trace

includes, among other things, a complete record of the paths used to create, open, execute and

3 delete files, to open directories, and to create, delete, and modify directories. Our original purpose

in collecting data was to track references to files. Because of this, some calls that cause direc-

tories to be referenced (for name resolution) were omitted from the log. These calls were:

(1) Protection: chmod, chc-wn.

(2) Status: readlink, Istat, stat, utimes, access.

(3) Administrative: acct, mknod, mount, setquota.

(4) UNIX domain IPC (side effect of the 4.2BSD implementation): bind, connect.

I Of these calls, only Istat and stat are likely to occur with any frequency. These two calls retrieve

3 status information on a file (size, protection, access date, and so on) from the file inode. Mogul

found [Mogul 86b], in studying another 4.2BSD system, that [stat and stat were used nearly twice

as often as the calls that we logged. Most of these status calls were made, though, by an adminis-

trative process that scanned the entire file system on a regular basis. A similar program is run on

our system, but only half as often and on a smaller, busier file system. Based on this, we estimate

that lstat and stat calls occur about half as often as open and creat calls on Seneca. Further, these

3 status calls are generally tightly clustered in time (most will occur during the 4AM scan of the file

system) and so we expect that they will have little effect on the results we will be presenting.I
I
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Another potential contribution to director) references that we have not logged is from system calls

that fail. We logged only successful calls.

6.3. Analysis Method I

6.3.1. Conventions,3

Our method for analyzing directory reference patterns is similar to the method used for file refer- 3
ence (section 5.4). There are a few conventions, observed by all analysis programs, that are

specific to the analysis of directory references:

(1) Ail of aic anaysis presented here is at the node (entire directory) level. We haven't

attempted to analyze references to individual directory entries or pages. See Chapter

5 (particularly the file interopen interval and lifetime distributions) and [Leffler 84)

for information on individual entries. 3
(2) Directory sizes include entriez for "." (the directory itself) and ".." (the parent).

These entries are always present in a UNIX directory and so the minimum directory

size is 2 entries.

(3) Directory sizes given in bytes or blocks assume that the 4.2BSD directory layout is

used (that is, an 8 byte header, space for the name itself, and a I byte trailer, padded 3
out to a 4 byte boundary) and that there are no "empty" entries. This last assump-

tion means that we probably understate somewhat the number of blocks required to 3
read a directory.

(4) All component resolutions are marked as having taken place at the time the system 3
call being analyzed finished. In real life, of course, these resolutions won't occur

simultaneously. Becduse of this, intervals of less than lOOms should not be taken 3
seriously.

(5) When we encounter a record in the log that contains a path to resolve, we take each I
path component in turn, resolving it individually. Each directory used in the resolu-

tion is marked as having been referenced and the appropriate histograms are I
I
I



197

incremented. Resolution sirts either at the root of the file system (for an absolute

path) or in the current working directory of the process that generated the record. So,u for example, an OPEN record that specifies a path of "/u/rick.login" generates 3

director), references: to "/" to resolve "u"; to "u" to resolve "rick"; and to "rick"

to resolve ".login."

(6) All components in a path are resolved. No attempt is made to short-circuit degen-

3 erate components or path segments. So, for example, resolving "./.login" requires

two references (one for "." and one for ".login") and resolving "/ulrick/.login"

3 would require 3 references even if the working director), of the process making the

request is "/u/rick." This is consistent with the approach used by 4.2BSD.

6.3.2. Cuts

I One expects that directory reference patterns will be different for user versus system processes,

user versus system directories, batch versus interactive work, and so on. This was certainly the

case for file references (Chapter 5). To investigate these effects, we use the three basic types of

i cuts described in section 5.4.2 (on process owner, object owner, and file type). In addition, we use

a cut based on the UNIX file system of the referenced directory. The overall file name space on a

3 UNIX machine is actually made up of a number of physical file s,'stems that form subsets of the

overall naming tree. There were 5 physical file systems on Seneca at the time data was collected,

3 mounted as follows: "' (the root of the file system), "/u" (user files), "/usr" (system files),

"/usr/spool" (USENET news and spooling space for printers and ULJUCP), and "/tmp" (scratch

* space).

I These cuts may be combined to give other more specific cuts. 9 cuts are used in this chapter (the

first 8 cuts were also used in Chapter 5 and are described in detail in section 5.4.2):

3 (I) no cut: This cut passes all records in the log to the user analysis routines.

(2) ruidNET: Passes references by net processes.

3 (3) ruidSYSTENI: Passes references by system processes.

U
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(4) ruidUSER: Passes references by processes running under user accounts.

(5) dir ownerNET: Passes references to directories owned by UUCP, USENET news,

and notes accounts.

(6) dir_owner_SYSTEM: Passes references to directories owned by system accounts. I
(7) dir ownerUSER: Passes references to user directories.

(8) owner_USER+ruid_USER: Passes references made by user processes, but only if I
the leaf object is owned by a user. This gives a trace of directories accessed in 3
resolving user references to user files.

(9) ruidUSER+/u: Passes references made by user processes to directories in the /u file 3
system (this is the file system on Seneca that holds all user directories). While the

ownerUSER+ruidUSER cut includes all directories that are refer(,nced in accessing 3
user files (including, for example, "tmp" for temp files and "/" for absolute path

names), the ruidUSER+/u cut only includes that subset of files and directories on /u. 3
This cut will be of particular interest to DFS designers who combine a global user

file space with local system directories [Satyanarayanan 85].

6.4. Directory Reference Patterns I

This section presents the results of our analysis. A full analysis of the data was done using 21 3
different cuts (the 9 cuts listed in section 6.3.2 plus cuts on other file systems and on ruid, file sys-

tem, and directory owner combinations). It is clearly impractical to present results for the full set 3
of cuts. We have generally included only those tables and histograms that are particularly charac-

teristic or striking. 3
Overall system activity and per call results are presented using ruid cuts. These cuts show the

overall contribution from each of the user classes and point out some of the differences in the way

that these classes use the file system. Analysis that concentrates on individual directories is 3
presented using directory owner cuts. Directory owner cuts show us roughly where in the file sys-

tem activity is concentrated and allow us to investigate the activity on a di-ectory-by-directory 3
I
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basis.

In some cases we give more detailed results on user acuvity using the owner_USER+ruid_USER

3 and ruidjUSER+/u cuts. These cuts give us a data sample that allows us to invesugate reference

pattems that a DFS dealing primarly or wholly with user files would see.

I 6.4.1. Basic Statistics

I Table 6-1 gives a summa-y of records collected for events that referenced directones (this is a

I subset of the recorcts shown in Table 5-3). The first 3 columns give the number of records of each

type collected, the average rate for that type of record, and the percentage of collected records that

I th., epresents. The remaining columns showA the number of records collected cut t, the ruid of

3 the calling process and the percentage of the total for the ruid class. Opens accounted for 2/3 of

the path requests we logged. Chdir. unlink, and execute calls accounted for most of the rest of the

5 requests. There were relatively few directory structure modfication requesLs.

r no cut nrud_NET IrudSYSTEM ruiijSERrecord

count per hr fracton ount fraction cc; n: fracuon count fraction

mkdrI 936 55 0.07% 795 0.19% 2 0; 139 0.03%

rename 32l 19 0.23% 1946 0.,46 408 008, 85 019%

rdr d ' 913 5.4 006% 780 0.19% 0 - 133 003%

I sNmbnk ' 16 0.1 0 0% 13 0%

chdir 133'63 806 9.7% f 19102 4.5% 71854 13.5% 45106 10.0 %O
,cn root 0 - 0l o0

execute ' 125 04 >4 741 9.0% 26761 6.4% 38093 7.2% 60209 13.3IT,
hnk 42929

I 
254 3 1% i25694 6. 1 % 7301 1, 49c 9934 i29%

open 965087 !5720 68,7% 1 277350 65.9% 1931 74,1%c 294070 649%

unlink I309. ' . 9.3% 68342 16.2% 19861 3.7% 42726 94%
1405148 8323 100% 1420770 100% -.531183 100% 45318- 1 CX~q,I

Table 6-1: Records loggedI
I
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Opens ma'. be further brk.'r. ' Av the type of object being opened (Table 6-2), While most

requests .ere to open reguLt tiles, there were also a significant number of director opens.

Processes open directoriC wi UNIX to scan the contents (as opposed to resolving a single name). 3
This is commonlyv done h, u,4'r prcesses to satisfy interactivc ;equ,.csts to list directory contents.

Director", open activit' ',- ste processes was due to daemons examining spool directories for

work and to houskee:n;: -in, of the file system. In our analysis we have counted the open of a 3
director% as a single rel to 'he directory.

Each of our rui, clav< - . ,ntcd for roughly 1/3 of the path resolution requesLs (Table 6-3).

Most of thc-< paths A lx I ,seifled ah.olutely (that is, were resolved starting at the root of the 3
naming trce O'erall, onl, atju a quarter of the objects being referenced were hsted in the

'%korkini dircctor-, of the pr,. e'.s making the request. This is a reflection, in part, of the high level

of actiVn it , ystem filc..-\, s c say, in Chapter 5, over half of all file opens went to system 3
tiles. 4.2BSD makes hc% u,< of system files to store system configuration and status informa-

tion. Since these file. are oltcn opened as an incidental part of other activity, they are usually not 3
in the current working dtrectoCr and so are referenced absolutely.

n "'. cU: mid NET ruidSYSTEM ruidUSER

.opens fraction opens fraction opens fr'ac ton opens fraction
regular file 754285 78.2% 249825 90.1q 298186 75.7% 206268 70.1,

director 170448 17.7% 17275 6.2% 72625 18.4% 80548 27.4%

block 9'iecial 9 22 0.1% 0 60 0.02% 862 0. 1Ic
character special 39432 4. 1I -50 3.7 9? 22790 5.8% 6392 2.2%

t t., 96,5()7, 10 1 -'7350 100% 393t61 100 [2 4070 1 00-I,

Table 6-2: Opens, by object type 3
I
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I p absolute leaf in
cutpaths ___paths____ path working dir

ruidNET 4.48c5 30.8% 74.2% 17.1%
ruid_SYSTEM 5.39e5 37.0% 70.9% 28.3%
ruid USER 4.69e5 32.2 cl _ 66.6% 32.817c

ownerUSER+ruidUSER 2.55c5 17.5 % 54.3% 45.9%
ruidUSER+iu 1.57e5 10.8% 35.2% 64.7%

no cut 1.46e6 100% 70.59, 25.9%7

I Table 6-3: Path statistics

I Our compound user cuts eliminate this activity to system fi!cs. If we look at just user actvity to

files on /u (the usei file system), we find that 2;3 of the paths we saw specified an object in the

working directory of the process making the request. Note, though, that user references to objectL

on /u accounted for only a third of the overall user paths and a tenth of the system activity. For

references by users to all user objects (those on /u plus user files in shared system directones such

as /unp and /usr/spoollmail), the fraction of paros specifying an object i, the working director

drops to less than 1/2.

i Each path resolved may (and usually does) have more than one component. Table 6-4 gives some

information on the number of components per path for each of our ruid classes. Note that each

path had, on average, almost 3 components, each of which required a directory reference to

resolve. Paths for net procsses were paruicularly long. This was caused by the relative depth of

the net directory trees (rooted in /usr/spool/news, /usr/spool/uucp, and so on) coupled with the

3 heavy use of absolute path names by net processes.

User paths specifying user objects were generally shorter, with an average of slightly more than

two name components to resolve per path If the target object was on /u, an average of 1.57 of

3 the components resolved were on the /u file system (note that this doesn't include references to

"/" for absolute paths, since "" is not on the /u file system).I
U
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cu men median 2
component 24 > a

ruidNET 3,45 4 8.017, 34.9% 6.3 25.71, 25.2c, 8
ruidSYSTEM 2.48 2 28.4% 31.0% 6.3% 33.5% 0.7% 8

niid USER 2.22 2 32.5% 34.'% 19.2qc .), 4.7% 11

ovnerUSER-ruidUSER 2.11 2 42.2% 25.3% 18.2% 10.5% 3.8% 11

ruidUSER,/u 1.57 ] 61.9% 26.7% 6.5 q 2.7% 2.1 , 9

no cut 2.70 2 23.4% 33.4% 60.5% 23.2% 9 U

Table 6-4: Components/path I

total reads rites rads'
cut I f -

refermces Ifraction references fraction references fraction wntes

ridNEI 1.59e6 37.5% i 1.44e6 36.4% 1.42e5 52.1% 101

ruid_SYSTEM 1.48e6 34.9% 1.44e6 36.4% 4.03e4 14.8% 357

ruid USER 1.17e6 27.6% 1.08e
6  27.2% 9.01e4 33 1% 120

dir ownerNET 
7

.42,e5 17.5% 6.17e5 15.6% 1.25e5 46,1 % 4.9

dir ownerSYSTEM 3,09e6 73.0% 2.96e6 74.7% 1.23C5 45.4% 24.1

dir owner USER 4.06e5 9.6% 3.83e5 9.7% 2.32e4 8.6% 16.5

owner USERruidUSERI 6.16e5 14.5% 5.36:5 13.5% 7 .99e4 294% 67

ruid-USER-,'u 3.07e5 7.2% 2.8&5 7.2% 2.2 O 4  8. 1 13,

no cut 4.24e6 100% 3.96e6 1 l0.7 2.72e5 , 100 146

Table 6-5: Reference statistics 3

While each of the ruid categories accounted for a roughly equal number of references, nearly 3/4 3
of all references went to system directories (Table 6-5). This is not surprising, since most refer-

ences were absolute and so this implies that even references to files in user or news subtrees often I
required two or three system directories to resolve. There was relatively little activity to user

directories. Overall, 93,4%? of the references were directory reads and 6.6% were directory I
U
I
I
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3 writesl ,  Nearly half of the writes were to system directories (mostly to /mp and

/usr/spool/mqueue), with most of the rest going to net directories. Net directories were not heavily

3 used overall, but had a particularly low read/write ratio and so a high fraction of the writes.

User references to their files and directories accounted for only 14.5% of the references on the sys-

tem and about half of the references made by users. Relatively few user writes were to user direc-

tories. As we will see in section 6.4.3, most were to system temporary and spool directories.

n Most directories belong-d to users (Table 6-6) but, as we saw above, there was relatively little

3 acuvity to these directories. Again, this is a reflection of the heavy activity to system directories.

I
6.4.2. Per Reference Results

The directory reference activity over Lime is shown in Figure 6-1. References followed a daily

5 pattern with a busy period between 9am and 6pm, overlaid by bursts from net activity (news

reception) and a strong peak in the early morning (news expiration and the housekeeping scan of

3 the file system). Weekends were relatively quiet. Except for the strength of the early morning

cut directories % directories references/director
dirownerNET 1275 23.5% 582
dirownerSYSTEM 427 7.9% 7230
dirownerUSER 3713 68.6% 109

"-no cut ![ 5415 100% 782

Table 6-6: References/directory

I 'Nocte Lhat director writes in UND represent changes in the naming tree (such as adding and deleting files) Infor-
mauon ,n the objects named (size, last use and so On) is kept else'.. here.I

I
3
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Figure 6-1: Directory references per second (-2 hour resolution) I
peak, this pattern foLlows closely the one we saw in Chapter 5 for file opens. The relative strength

of the morning peak is due to the long length of paths used by net processes and the inclusion of

directory opens (the primary housekeeping activity we logged). 3
User activity to user dire-tories (Figure 6-2) showed a busy period dining the day, with activity

tapering off in the late eve4iing. This is typical of a university environment. There was some 3
early morning activity due to user backgroimd jobs. 3
Figure 6-3 shows the size (in entries) of referenced directories, weighted by the number of refer-

ences made and cut by the owner of the referenced directory. Note that these are cumulative dis- 3
tributons. At any point on a curve, the y value is the fraction of directories with sizes less than

or equal to the x value. For comparison purposes, we have included here the static director) size I
distribution (this is the distribution that would result if each directory on the system were refer-

enced once). Table 6-7 gives some statistics on these distributions. I
I
I
3
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I Figure 6-2: Directory' references per second (-2 hour resolution, user cuts)
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Figure 6-3: Size of referenced directories (cumulative, in entries)
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distribution min max mean median std deviation

dirownerNET, dynamic 2 500 63.1 51 65.3
dir owner_SYSTEM, dynamic 2 471 55.1 26 63.3
dir ownerUSER, dynamic 2 327 34.2 20 40.2

owner USER+ruidUSER 2 484 60.8 29 64.2
owner USER+/u 2 282 82.9 40 80.6
ruid USER 2 484 66.0 33 69.8

all, dynamic 2 500 54.5 26 62.2all, static 2 471 15.8 8 27.3

Table 6-7: Directory size distributions (in entries) l

From Figure 6-3 we see that most directories on Seneca were small (half had under 8 entries).

Referenced directories were considerably larger (median of 26 entries), but sill small by most

standards. Since "/," "/usr," and "/usr/spool" had 26, 35 and 26 entries respectively and

accounted for nearly half of the references, this result was inevitable. The median size of 26

entries implies that, in the absence of other factors, the median number of comparisons needed to 3
resolve a component was 13. This agrees with 4.2BSD measurements done elsewhere

[Mogul 86a]. The small static median is also typical of 4.2BSD systems [Mogul 86b]. These dis- 3
tributions all have long tails and so the means are considerably higher.

Directories on /u referenced by users (weighted by the number of references) were generally some- I
what larger than referenced directories on the system as a whole (Figure 6-4 and Table 6-7). This

was due, in part, to the relatively high level of activity to /u (at 200 entries) and the absence of

the heavily referenced system directories (at 26 entries). 3

I
I
I

I
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Figure 6-4: Size of referenced directories (cumulative, in entries, user cuts)
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Figure 6-5: Number of references per directory (cumulative)
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distribution mm max mean median std deviation
dirowner_NET 8 1.45e5 582 28 5.9e3

dir ownerSYSTEM 28 1.06e6 7230 28 6.3e4
dir owner USER 2 1.38e4 109 28 4.le2 I

owner USER+ruidUSER 1 1.44e5 327 12 4.0e3
ruidUSER+/u 1 7.18e4 219 18 2.0c3
ruid USER I 3.24e5 582 20 8.1e3

no cut 2 1.06e6 782 28 1.8e4

Table 6-8: Number of references/directory 3
I

6.4-3. Per Directory Results I
The number of references to a directory over a period gives an indication of the potential benefits

of caching or, for a DFS, of migrating or replicating a directory (update activity and sharing are 3
also important factors). If we ignore scans of the entire file system (at least 28 references per

directory over the course of the week) we see that half of the directories on the system were not 1
referenced at all (Figure 6-5 and Table 6-8). Many of the rest were referenced a few tens of

times. 3
There were some net and system directories, though, that were referenced tens of thousands of 3
times. Over half of the references, in fact, went to system directories referenced more than

100,000 times each. This is shown in Figure 6-6 and Table 6-9, where we have weighted the dis- 3
tributions in Figure 6-5 by the number of references made. This gives us the fraction of overall

references as a function of directory activity. Note that 85% of the reft.rences went to dL'enc~ris 

referenced more than 10,000 times.

Figure 6-7 and Table 6-8 show, for each of the user cuts, the number of references made to active I

directories (those actually referenced given the cuts). If a directory was referenced at all by users 3
(only 37% were), it was likely to see enough activity to make trying to minimize the access over-

head (through caching, migration, or other mechanisms) worthwhile.

I
I
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distribution mean median std dev

dirownerNET 6.09e4 4.47e4 5.6e4
dirownerSYSTEM 5.54e5 6.17e5 4.Ie5
dirownerUSER 1.67e3 4.68e2 2.9e3
no cut 4.15e5 1.78e5 4.2e5

Table 6-9: Reference distribution (as a function of references/directory)

U
The most frequently referenced directories are listed in Table 6-10. Note that the four busiest

directories accounted for over half of the references and received, between them, just 9 writes in a

week. These directories are clearly very good candidates for extensive replication in a DFS, since

update overhead is not an issue. The 15 most active directories accounted for 76% of the refer- 3
ences. This suggests that even in a local environment, special treatment of a small number of

directories could result in substantial improvements in name resolution performance. I

The directories most frequently referenced by users in accessing their files and data are listed in 1
Table 6-11. Most arc sharcd user dirctories.

Knowledge of directory interreference intervals (the time from one reference of a directory to the I
next) is useful in estimating both the appropriate time scale for migration and the possibilities for 3
caching. Figure 6-8 and Table 6-12 show that interreference intervals were short (opens to direc-

tories were strongly clustered). When a directory was referenced, the following reference (if any) 5
had a 50% probability of occurring in the next 1/4 second. Part of this may be attributed to the

heavily used system directories, but net and user directories also had short median interreference 3
times 2. There is strong reference locality in both time and space. I

2The large fracuon of zero length intervals for user directories was due to redundant references and opens to the
current working directory, and to routines such as getwd that find the path of the current working directory by traversing up
the directory tree to the root and then back down. That these arm all bimed at zero is partly an artifact of our analysis tech-
nique (see secuon 6.3. 1).

I
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references fracton reads writes reads/writes path
1058380 25.0% 1058374 6 176400
587013 13.9% 587013 0 - /usr
395132 9.3% 395129 3 131700 /usr/spool
168205 4.0% 168205 0 - /usr/spool/rwho
145318 3.4% 118865 26453 4.49 /usr/spool/uucp
136363 3.2% 136121 242 562 /etc114227 2.7% 104485 9742 10.7 /usrpool/news

i 105239 2.5% 51857 53382 0.97 /tmp
85579 2.0% 85566 13 6580 /usr/lib
78696 1.9% 78696 0 -/u

76778 1.8% 22820 53958 0.42 /usr/spoolmqueue
74590 1.8% 74590 0 /bin
71P37 1.7% 71037 0 /dev
69093 1.6% 69093 0 - /usr/spool/news/net
47737 1.1% 38770 8967 4.32 /usr/lib/news
35091 0.82% 35085 6 5800 /usr/spool/notes 1.nyu

3 Table 6-10: Frequently referenced directories (no cut)

references fraction reads i tes reads/writes path
143956 23.4% 143954 2 72000 /
63235 10.3% 63235 0 /u
58955 9.6% 22917 36038 0.64 limp
27744 4.5% 27744 0 /usr
20988 3.4% 20988 0 /usr/spool
14836 2.4% 4614 10222 0.45 lusr/spool/mqueue
13138 2.1% 11770 1368 8.6 /u/ken
12286 2.0- 5521 6765 0.82 /usr/spool/mail
8967 1.5% 8963 4 2240 /u/ken/S rc
6358 1.0% 4712 1646 2.86 /usr/spool/uucp
5980 0.97% 5336 64-4 8.29 /u/goddard/c400/assg2/coding
5328 0.86% 5233 95 55 lu/lee
5159 0.84% 4823 336 14.4 /usr/spool/news
3665 0.59% 3456 209 16.5 /u/scott/src/window
3510 0,57% 3510 0 - /usr/local

I Table 6-11: Frequently referenced directories (ownerUSER+ruidUSER cut)

I
U
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- -r

dLstibuion min max mean ; nedio,, j std devI dir owner NET 0 8.7e4 351 0.33 4.1e3

diro,.ownerSYSTEM 0 8.7e4 73 0.27 2.2e3
di(r ownerUSER 0 8.7e4 4680 0.15 1.8eA
nocut 0 8.7e4 560 0.27 64e3

5 Table 6-12: Directory inter-reference intervals (seconds)

Directory version lifetimes (the time from one write of a directory to the next) are shown in Fig-

ure 6-9. Versions whose lifetime extended beyond the logging period were given infinite lifetimes

(lie to the right of the histogram). Note that half of all directory versions exist for a second or

3 less. Part of the reason for these short version lifetimes is heavy write activity to the system direc-

tories Amp and /usr/spool/mqueue and to net spool directories. Most system directories and the

3 majority of user directories remaineA' mnchanged for relatively long periods of time.

* 1.0 ......... ............ .... _--,--_ .

I~~~~~~~~~ 
0 

.............................................

I .
fraction0.
of

I versions 0.4

0.2 ............ dir_ownerUSER
2........ dirownerNET

dir ownerSYSTEM
no t

0.0
0 5 10 15 20 25

number of reads to version

3 Figure 6-10: Reads per directory version (cumulative)
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" I
distribution min max mean median std dev

dir_owner_NET 0 6.91 e4 4.88 1 220
dirownerSYSTEM 0 6.17e5 23.9 0 2800
dir owner USER 0 3.90e3 14.2 1 74
ownerUSER+ruidUSER 0 1.04e5 6.6 0 470
ruidUSER+/u 0 7.18e4 12.2 1 470
ruidUSER 0 2.38e5 11.7 0 970
no cut 0 6.17e5 14.3 0 1870

Table 6-13: Reads/directory version 1
Figure 6-10 and Table 6-13 present us with another view of directory versions: the number of I
reads that are made to any given version. Half of all versions are written again without being read.

Roughly 4/5 of thc remainder are read only a few times before being updated. While there are

directory versions that can be safely cached or replicated regardless of the setup and update costs

(some receive hundreds of thousands of references without being changed), separating them out

from the majority of relatively useless versions may be difficult Very cheap caching mechanisms, 1
semantic knowledge, or knowledge of recent reference history would be useful here. For example,

the knowledge that /tmp is used to store temporary files and so is frequently updated could be used

to avoid potentially wasteful caching of this directory.

If we consider only tser references to active dirpr"ories holding user objects, we see similar distri- I
butions for reads per version (Figure 6-11 and Table 6-13). 86% of the versions received one or

fewer user references before being updated by users. Directory versions on the /u file system saw

slightly more read activity (not surprising, since heavily written system directories such as /tmp 3
are not included here).

The first two columns of Table 6-14 show the mean number of readers per directory, as indicated U
by the account (ruid) of the reader, and the percentage of directories with more than two readers 3
(we use two here because every directory is referenced by the housekeeping process). The next 4

columns show similar information for writers, but give the fraction with more than one writer, and

for users (the overall number of distinct readers and writers). The last two columns show the I
I
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Figure 6-11: Reads per directory version (cumulative, user cuts)

readers writers users (r 1 w) inver;ions5mean 1>2 I:Mean >I1en > en1- x
dir ownerNET Ij 3.23 28.0% Ii 1.35 1 14.6% 3.33 28.2% 34.6 6.56e3

I diowner_ SYSTEM 1: 8.53 26.9% . 0.857 3.0% 8.55 27.2% 1750 3.0le5

dir_owner_USER 1.60 9.0% 0.149 0.8 1.60 9.0, 3.7 2.90e2
no cut 2.53 14.9% 0.487 4.2-, 2.56 15.0% 149 3.01e5

3 Table 6.14: Directory, sharing

I cutreaders wr iters . users (r , Inersons

1mean >1 mean >1 1i mean >1 [1mean max

ownerUSER+ruidUSER 2.50 27.9% 0.609 1.3% 2.57 28.3% 41.2 2.9e4
rid USER+/u 1.47 18.89% 0.351 0% 1.49 18.8c 1 10.8 1.3e4

I Table 6-15: Directory sharing (user cuts)

I me-an and maximum number of inversions per directory. The number of inversions is the number

of Umes that the most recent user of the directory changes (this is basically the inversion cluster-

ing metric used by Porcar [Porcar 82]). For a directory used by only one user, the number of

I
I
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inversions will be zero. I
From Table 6-14 we can see that 15% of the direcvries had multiple users (u!ers with separate

accounts). Multiple readers were much more common than multiple wTiters. Most of the shared

directories belonged to net and system accounts. These were predominantly directories containing

news articles read by many users, spool directories accessed by a number of net accounts, and I
directories holding widely used system files. There was relatively little sharing of user c-rectories. U
Shared system directories often had a number of active users and so a high number of inversions.

In a distributed environment, replication or caching of these irectories would be essential. !

Statistics on the sharing of active directories holding user objects are given in Table 6-15. 1/5 of 3
the active directories on the user file system were read by more than one user. None had multipi,

writers. Active directories used to resolve user objects showed a higher degree of sharing

(because of shared system directories). U
6.4.4. The High Cost of Opens I
Based on the relatively small file sizes seen in studies of 4.2BSD systems and the long pathnames

we have seen, it is reasonable to expect that directory overheads will be an important part of the I

cost of accessin,- a file. If we assume for the moment that no caching is done (or, for relative

comparisons, that caching is equally effective for inodes, filc data, and directory data), we can esti- 1
mate both the number of disk blocks that are required to resolve a path and how this compares to

the number of actual file data blocks that are read or wr-itten. Reading a UNIX directory requires

reading a minimum of 2 blocks: one block containing the file descriptor (inode) for the directory 3
and at least one data block. Assuming a block size of 512 bytes, directories with no holes (empty

directory entries), an average of half the entries in a directory search for a name resolution, and no 3
caching gives the distributions shown in Figure 6-12 and Table 6-16. The median of 7 blocks to

resolve a path is impressively large, especially when compared to the median file size of 710 bytes i
I
I
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Figure 6-12: Path resolution cost (cumulative, 512 bvte blocks)

N distribution in max mean median std dev
ruid-NET 2 22 8.43 8 4.2
ruidSYSTEM 2 23 5.85 7 2.8
ruidUSER 8 574 5 3.4 I
no cut 2 28 6.61 7 3.7I

Table 6-16: Blocks accessed/path resolution (512 byte blocks)3
seen in our earlier study. Paths used by net processes are particularly long and hence expensive.U
Accessing file data once a path is resolved also requires a minimum of 2 blocks: one block con-

taming the file descriptor (we ignore indirect blocks here) and at least I data block. If we take the

ratio of the blocks required for resolving an open path to the total number of blocks required

(resolution cost plus file data cost based on the amount read or written and assuming contiguous

access), we get the fraction of the cost (in blocks accessed) due to the directory overhead. This is

shown in Figure 6-13 and Table 6-17.

I
I
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Figure 6-13: Name resolution overhead for file opens (cumulative, 512 byte blocks)

distribution mm max mean median std dev -

ruid_NET 0.0005 0.99 0.71 0.77 0.19
rmidSYSTEM 0.002 0.98 0.68 0.81 0.20
ruidUSER 0.0001 0.99 C.55 0.59 0.26
no cut 0.0001 0.99 0.66 0.76 0.22 I

Table 6-17: Directory overhead (512 byte blocks) I
The directory overhead accounted for an average of 66% of the cost of accessing a regular file.

This overhead accounted for the majority of the cost in 80% of the file accesses. For references 3
made by user processes, the fraction of cost due to name resolution overhead is somewhat lower.

This is due to users specifying shorter path lengths, accessing larger files, and reading a larger per-

centage of accessed files.

The cost distribution weights all files equally. This gives us useful information on the average

overhead to access files (and so the effect of the overhead on response time), but is less useful in 3
predicting the effect on throughput. For this we need the fraction of overall block requests that

directory overhead accounts for. This information is given in Table 6-18. Note that half of all

I
I



I
i 219

i - NONE ruidNET ruid SYSTEM ruid USER I

blocks fraction 1 blocks fraction blocks fraction blocks fraction

file data 6.32e6 46.9% I.45e6 34.1% 1.56e6 38.3% 3.30e6 66.2%
file mode 7.54e5 5.6% 2.50e5 5.9C 2.98e5 7.3% 2.06e5 4.1%
directorv data 4.01e6 29.8% 1.58e6 37.2% 1.26e6 31.0% 9.94e5 20.0c
dirctry mode 2.39e6 17.?% ]! 9.65e5 22.8% 9.50e5 23.3%F 4.83e5 97%

total 1.35e "7 100%c 4.23e6 100% 4.07e6 L 100%17 4.98e6 1 001,c

3 Table 6-18: Block counts for regular file opens, reads, and writes (512 byte blocks)

I accesses ,cre to directory data and inode blocks.

3 512 bytes is a small block size by today's standards. The 4.2BSD file system on Seneca uses a

block size of 4096 bytes. Figures 6-14 and 6-15 and Tables 6-19 and 6-20 show what happens

when we use the larger block size. The number of blocks required to resolve a path has dropped

byI 18%, but the fraction of cost due to the directory lookup overhead has risen sharply. It nov

makes up an average of 75% of the total cost and accounts for at least half of the cost in 97% of

3 the file references. Big block sizes help most when reading file data. Directories and descriptor

blocks are too small for the bigger block size to matter much.I
Table 6-21 shows the no-caching breakdown of the number of blocks of various types accessed for

3 a 4K byte maximum block size. Note that directory data and inode blocks now account for about

3/4 of the blocks accessed. The total number of blocks accessed has been reduced to 54 % of the

i 512 byte maximum block size figures.

Figure 6-16 and Table 6-19 show the number of directory node and data blocks accessed to

resolve paths for our user cuts (assuming no caching and 4K byte maximum block sizes). Figure

1 6-17 and Table 6-20 give the corresponding cost distributions. For the ruidUSER+/u distribution,

i we have included all regular file references made by user processes, but only "charged" for

blocks on the /u file system. References to files on other file systems have zero resolution cost

I
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Figure 6-14: Path resolution cost (cumulative, 4K byte blocks)
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Figure 6-17: Name resolution overhead for file opens (cumulative, 4K byte blocks, user cuts)
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distribution minI max mean median std dce
ruidNET 2 16 6.93 8 3.3
ruidSYSTEM 2 16 4.97 4 2.5
ruidUSER 2 22 4.44 4 2.5
ownerUSER+ruidUSER 2 22 4.22 4 2.5
r _Lud ER+/u /u 0 18 i.05 0 1.8
no cut 2 22 5.40 4 3.0

Table 6-19: Blocks accessed/path resolution (4K byte blocks)

distribution min max mean median std dev
uidNET 0.004 0.99 0.80 0.84 0.11

ruidSYSTEM 0.01 0.98 0.76 0.81 0.10
ruidUSER 0.001 0.99 0.69 0.74 0.18
ownerUSER+ruidUSER 0.001 0.98 0.68 0.73 0.18
ruidUSER+/u 0 0.99 0.21 0 0.32

no cut i 0.001 0.99 0.75 0.81 0.14

Table 6-20: Directory overhead (4K byte blocks) U
NONE ruid_NET uid_SYSTEM ruidUSER d

blocks fraction blocks fraction blocks fraction blocks fraction
file data I 1.26e6 17.3% 3.23e5 12.1% 4.07e5 15.4% 5.27e5 28.5%
file mode 7.54e5 10.3% 2.50e5 9.4% 2.98e5 11.3% 2.06e5 11.1%
directory data 2.90e6 39.7% 1.12e6 42.2% 9.94e5 37.5% 6.36e5 34.3%
director3' mode 2.3' 6 32.7% 9.65e5 36.3% 9.50e5 35.9% 4.83e5 26.1%

total 7 .30e6 100% ! 2.66e6 100% 2.6536 100% 1.85e6 100%

Table 6.21: Block counts for regular file opens, reads, and writes (4K byte blocks) I

here and the cost of resolving in "/" for absolute paths is not included. Since 65% of the files

referenced by user processes were actually on other file systems, the average directory overhead

for this cut is low.

It should be noted that the results in this section don't apply directly to BSD UNIX. 4.2BSD

maintains an extensive cache of inode, directory, and file data. 4.3BSD has added a cache of I,I
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recently used directory' entries. These results show, though, that "hidden costs" in UNIX file sys-

I tems are significant and demonstrate how rapidly their importance increases as the block size

i increases.

6.5. Summary

This chapter has analyzed in some detail dircctory reference patterns resulting from primarily open

activity on a 4.2BSD UNIX system supporting university research. As with the results of our file

reference studies, the results should be applied to other situations with care. The major findings of

our analysis:

I (I} Directories are mostly small, with half holding under 8 entries. Referenced direc-

tories are somewhat larger (median of 26 entries).

(2) 3/4 of all references are made to system directories. Most references go to a few

very active system directories.

(3) Reads account for 93.4% of the references we see and writes for 6.6% of the refer-

ences.

I (4) 70% of all paths are specified absolutely. Relatively few paths (26%) reference

objects in current working directories.

(5) Pathq are "long", having an average of 2.70 components.

(6) Interreference times are short- Half are 1/4 second or less.

(7) Director,' versions are usually short lived (half live less than a second) and receive

few reads.

(8' The combination of small file sizes and long access paths means that name resolution

overhead is high. In the absence of caching and using a 4K byte maximum block

si/e. 72' of the blocks accessed in opening and using files are for name resolution.I
I
I
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The implications of these results for DFS design will be explored in Chapter 7.

I
I
I
I
I
I
I
I
I
I
U
U
I
I
I
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I Chapter7

I Implications for the Design of

I Distributed File Sy.stems

I
I '?.i. Introduction

File and directory' reference patterns can have a substantial effect on file system behavior. This

effect ranges from catastrophic congestion and failure when file systems are used in ways Lht

designers never anticipated or allowed for, to enhanced availability and performance when file sys-

tems are able to anticipate and adjust to requests. Careful file system design and dynamic "tun-

ing" are particularly important in a distributed file system. In a DFS, network overhead, scaling

and congestion issues, the potential for parallelism, independent failure modes, and greater flexibil-

ity in design make both the penalty for failure and the rewards for success much more dramatic.

Chapters 5 and 6 concentrated on studying short term file and directory reference patterns in UNX

environments. In this chapter we use the results of those studies to investigate mechanisms used by

Roe and to evaluate their strengths and weaknesses. W: also briefly examine implications the data

have for the design and behavior of distributed file systems in general.

IIi
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We start, in section 7.2, by examining the availability, that one can expect in a Roe system that

sees reference patterns similar to what we have measured. Section 7.3 considers the implications

our measurements have for file placement and migration algorithms. Section 7.4 examines per-

formance i.ssues raised by our measurements and section 7.5 briefly summarizes the chapter. 3
It should be emphasized that the observations and analysis presented here are most applicable to

systems that see reference patterns similar to ours. They will not necessarily carry over to other

environments.

7,2. Availability I

7.2.1. Availability Model

In Chapter 2 we defined availability to be the fraction of valid requests that are successful, and

assumed that all request failures are due to hardware or catastrophic operating system failures. In

the discussor. hat follows we represent host availability by a single number, the availability aver-

aged over the time period of interest. This figure ranges from 0 for - permanently inaccessible

host to 1.0 in the unlikely case that a host is always accessible. Machines or; thc Univ fy f U
Rochester Computer Science Department network typically have an average avai, ility of roughly

0.98. This is equivalent to one half hour crash per day, 2 days of down time every 100 days, or

some combination of these. An average availability figure does not completely represent host

failure modes. It does, however, allow us to produce analytic results that will give us a good feel-

ing for the issues involved. We will return to this point in section 7.2.3. I
For a distributed file system, the availability for a given call depends on the availability of the

name service and the availability of the object being referenced. If we take the case of Roe,

which supports a hierarchical direc'ory distributed at the node level, the name service availability

is in turn dependent on the availability of the path components. Assume that these availabilities 3
are independent. This implies that all required path components and the target object are on dis-

tinct hosts, and that these hosts fail independently. The availability for a given call is then just the 3
I
I
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product of the availabilites of each of the path components and of the targLt. Let a, be the avail-

ability of the ith path component, a,,, the availability of the object being referenced by the path

(if any), and n the path length. The overall availability for a given call is then

{]all = 12f aja asetI a,.,

We have, from Chapter 6, the distribution of path lengths we can expect. Letting p. be the frac-

tion of paths seen that have n components, we can express the overall availability of the system as

follows.

ao,,,,.,, = Y p macall = i p ,. r a a ta ge rI ai-i -

The availability of an unreplicated component is the host availability, a. If a resource is repli-

cated, the availability may be found by calculating the probability of each state of the resource

and then summing over the states that result in the resource being available. If weighted voting is

being used and all hosts have equal availabilities, the read availability of a c copy suite having one

vote per copy, and a read quorum r is given by [Smith 841:

Icaw E iO-a)"
'_' J! ,C-J):

The write availability is found in a similar fashion.

Another ieplication method that has been suggested for use in local area network environments is

available copies [Bernsfrin 84]. With this algorithm, an operation succeeds if even one copy of a

resource is available. This is appropriate when consistency is not important or when an unavail-

able copy is known to be unavailable everywhere and that it can be updated before being used.

The availability of available copies when c copies are used is given by

I
I
I
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aAC = 1(-~ I

7.2.2. Basic Distributed File System Availability

Using the resultu given by these eq ;ations ,id the distribution of path lengths we found, we can

calculate the availability of a variety of distributed file systems. Figure 7-1 and Table 7-1 show

the results for a central file server (located entirely on one host), an unreplicated but distributed

file systecm, one replicated using available copies (3 copies of each object), and a system replicated

using weighted voting (3 copies, with a read quorum of 2 and a write quorum of 2). Fcr weighted

voting, the triple "(2,2.3)" specifies the read quorum, the write quorum, and the total number of

copies, in that order.

In this figure. "worst case" refers to our assumption that all path components and the target of the

call are on distinct hosts (that is, tailures are independent). "Best case" is the situation where all

objects referenced in a call are on the same host, or n hosts in the case of objects replicated n

times (components on a particular path do not fail independently). We include both the worst and

1.0
............ central -- - 5
........ .unreplcted - ,orst case -
...... a'aila..e copies - worst case , . .. ,0.8 o~~wunz(2.2.3) - wors case " / ."" .
---- oting (2.2.3) - best case " "

0.6 . .
overall

a ,ailabihtl*.",0.4'

0.2"

a~hostlit a- Ibii
Figure- . '-, / p

00 * -- r .. . . - -

0.0 0. 0.4 06 0 h0

host av ailability

Figure 7-1: Availability based on path length distributions
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host central uble rotng (2,2,3) votng (22,3)
avaiLbilitv server Curpat worst case best case

0.6 0.6 0.21 0.79 0.26 0.65
0.8 0.8 0.4S 0.972 0.69 0.89
0.9 0.9 0.7 0.996 . 0.972
0.95 0.95 0.84 0.9996 0.974 0.9928
0.98 0.98 0.931 0.99997 0.°Q58 0.9988
0. 9 0.99 0.965 >0.99999 1 0.9989 0.9997

Table 7-1: Availability based on path length distributions

best cases for our weighted voting configuration. The best case here is clearly considerably better

than the worst case. This shows the benefits to be had by grouping together re&ated resolirces. in

Roe this can be done ov highly repiieating root directories and by migration algorithms that tend

to favor grouping together objects that are used together. The flexible approach used by Roe also

allows the system to place new resources to avoid hosts that are down or that have relatively low

availability (this is not represented in the model we are using here). Other DFSs such as NTS

[Lyon 851 and LOCUS [,Walker 83b] are distributed by subtree. NTS is unreplicated, wAhich

makes iLs availability at best equivalent to the central seiver approach. LOCUS doesn't attempt to

I preserve availability, and so its availability is closer to that of available copies. The approach

used by Roe allows for more flexibility in adapting to changing needs and networks but, as we see

I here, care must be taken to preserve availability.

Available copies fares well compared to the rest of the algorithms used here. This is a classic

example of trading off consistency (or limiting the domain) for availability. Available copies is,

3 in fact, highly available, but in an environment where partitions can occur or updates can be tem-

porarily "lost" due to host failures, it can allow old versions of files to reappear. Because of this

it violates our transparency and user model requirements.

If Ae look in more detail at availabilities we e,,pCct to see during normal operation (Figure 7-2),

we see that all of the replication methods considcr:d here are able to significantly enhance avail-

abilht,. It should be clear from this that tranprc:t acess to replicated resources can -" used to

I
I
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1.00 I

0.98 - - .

0.%9,"6

overall
availabiht.

0.94 '

0.92 ....... unreplicated - worst case 3
- -- av.ailable copies - worst case,*

voung (2,2.3) - worst case

0.90 %~oung (2.2.3) - bcscas:0.90- ,"*Li

0.90 0.92 0.94 0.% 0.98 1.00

host availabiliry

Figure 7-2: Availability based on path length distributions, a > 0.9 1
support file systems with higher availability than could be expected in a centralized system, I
regardless of the distributon algorithm used.

7.2.3. Adding Read'NWrite and Semantic Information

One of the attractive features of weighted voting is the ab;lity to adjust read and write quorums to

take advantage of differing read and write rates. We saw in our data that 93.47 of directory

accesses and slightly over half of file accesses were for read. Using 5 copies of each object, with

a reaid quorum of 2 and a write quorum of 4, gives the results shown in Figures 7-3 and 7-4 and in

Jable 7-2. Again, these are all worst case results (no grouping of related resources). These

figures show the read and write availability of the system separately. The write availability is

about the same as what we saw with the (2,2,3) configuration. Even though the availability of an

object actually being written is lower, the availability of directory components read to reach the

object is consideiably higher, leading to no degradation. The read availability is dramatically

better. Taken together, the result is a significan improvement in overall availability without any

increased acces overhead for reads, which are by far the most frequent operation on Roe objects.

I
I



I
231I

1.0I 1.0 ~ ~~~............ voting (2,4.5)" -read~s ..... ' . "

- .-y---- voting (2.4.5) - wntes. -........ oting (2.4.5) - o~erall ." / ,0.8 .... voting - semnanti info..'"/,," ,,

0 .6... young (2.2.3) .

oyerall
availability

0.4.
0.4... /.,.

10.0 0.2 04 0.6 0.8 1.0
host availabijiv

Figure 7-3: Worst case availability using semantic and read/write information

1.00...........

0.98

0.96
ov erall

availabilityh

0.94

......voting (2,4,5) - readsI 0.92 ,--. voting (2,4.5) - writes
• -...... voting (2,4.5) - overall

- - - voting- • manbc Lnfo
voting (2,-3)

0.9 0.92 0.94 0.96 0.98 1.00

Ihost availability

Figure 7-4: Vorst case availabilitv using semantic and read/rite information, a > 0.9I
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avaltv voting (2,4,5) V.oting (2,4,5) voting voting) infonavailability v reads writes overall semantic info

06 0.72 0.25 0.55 0.61
0.8 0.975 0.70 0.87 0.91
0.9 0.9983 0.909 0.96.4 0.979
0.95 0.9999 0.975 0.9902 0.9947 m
0.98 1i >0.99999 0,9957 0.9983 0.9991
0.99 >r'.99999 0,9089 0.9996 0.9998

Table 7.2: Worst case availability using semantic and read/lTite information

More improvements may be had by using semantic information to decide on a replication factor. I
We knoA, for example, that temp and log files have a lower read/write ratio than pern files. n

There are also several directories that we identified in our studies as having particularly low

read/write ratios. If we use a voting configuration of (2,2,3) for these files and directories, while I
retaining the (2,4,5) configuration for every-thing else, we arrive at the curve shown in Figures 7-3

and 7-4 (we have assumed here that path length distributions for requests with differing 3
configurations are the same). Once again, we see a significant improvement. Based on this, it is

clear that replication strategies that make use of semantic information or past usage history can

significantly increase the availability of a system. At our reference host availability of 0.98, even

this fairly simple use of semantic and read/write information decreases the probability of an opera-

tion failing by 80% when compared to voting without using this information. The probability of

an operation failing is now less than 5% of what it would be in the central server (NFS-like) case.

We can further increase availability by making more extensive use of read/write and semantic

information. For example, some directories and files in our study were heavily read and rarely, if

ever, written. Giving them a voting configuration of (t,3,3) makes their availability equivalent to

what we saw for available copies.

We have assumed up to this point that hosts on a network have uniform availabilities. This is 1

unlikely to be true in a heterogeneous environment. The Roe network model includes estimates of

host availabilities, and the placement algorithm that we described in Chapter 3 places resources

I
I
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based on these estimaies. Further, hosts generally fail, are inaccessible for some period of tme,

and then recover. Roe recognizes these failures and reconfigures around them. These considera-

tions, combined with the short file lifetimes that we measured and the use of placement and migra-

tion algorithms that group related resources, mean that the calculations we have made will tend to

underestimate the actual availability of a running Roe system. More accurate availability figures

may be acquired using a simulation of Roe or measurements of the running system, but the results

we have presented above provide conclusive evidence of Roe's ability to provide highly available

I files.

1 7.3. Reconfigurabilitv: Initial Placement and Migration

I Our analysis of file and directory reference patterns in Chapters 5 and 6 revealed striking

differences in reference patterns between classes of files. Differences also exist in the reference

pauerns generated by each of the user classes. The large differences between classes point out a

need for a distributed file system, such as Roe, that can adapt to and exploit these differences. In

I this section we examine placement and migration policy considerations based on file class, user

class, and other characteristics of the data we have observed.

The differing reference patterns between file classes can be us,.1 to help determine appropriate ini-

tial placements that are based in the intended use of the file. For example, most temp files in our

environment were opened only once or twice. These files were also short lived, generally existing

for only a few seconds. There is no need to replicate a temp or other short-lived file. In addition,

the very short lifetime of these files argues for placing based on delay and other performance fac-

tors, not on availability. In contrast to temp files, the overwhelming majority of perm files had

lifetimes that extended beyond the wcek long logging period. Migration can be expected to be an

issue for these files.

We also saw differences based on the owner and user of files. Data in user penn files were long

lived (Figure 5-34), which was not the case for the overall data. The long life of data in these

I files indiates that they will benefit from placement that favors reading o'er writing.

I
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The differing placement needs of the various file types also points out the need for a consistency

control algorithm that can be adjusted to take these needs into account. As we saw in section 7.2,

our use of weighted voting, which lets us specify placement quorums based on anticipated

read/write ratios, allows us to use these differences to increase availability without a significant

effect on performance. This issue is particularly important for directories, where our data showed

that a few directories accounted for the majority of reads and were rarely modified. User perm

files also had high read/write ratios. I
While files of a given type tended to occur more frequently in some directories than others, there

were many cases where pern, log, and temp files all occurred in a single direct3ry. Because of

this, the common practice of distributing and configuring directory subtrees and the files that reside

in them based on expected usage is not always appropriate. Significant differences exist between

files even within a given subtree. For a DFS such as Roe, information from the user on the type

of a file or on its expected usage will allow for more effective placement. 

Three figures that are useful in estimating the appropriateness of dynamic migration are the size of 3
a file, the fraction of a file opened for reading that is actually read, and the fraction of a file

opened for writing that is actually written. Most referenced files in our environment were small,

with the median file size being 710 bytes. Log files were significantly larger, with a median size

of 39,000 bytes. Referenced directories were also small. We found that 68% of files opened with 3
read access were completely read and 78% of files opened with write access were completely writ-

ten. The percentage read and written depended strongly on the class of the file (log, perm, or 3
temp), the mode of open, the file opener, and the size of the file. In particular, log files are almost

never completely written, users completely read 94% of files they open read-only, and large files I
are rarely completely accessed.

The high percentage of a file that was read or written, combined with the small file sizes we have

observed, tells us that migrating a file as a whole, the approach used by Roe, is usually appropri- 3
I
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ate. Log and very large files are an exception'. In enviionments limited by bandwidth corlsidera-

Utions, file class, open mode, user, and file size will provide a simple basis for making migration

decisions.

Knowledge of file interopen and directory' interreference intervals are useful in estimating both the

3 appropriate time scale for migration and the possibilities for caching. The short na.crvals that we

saw for files (a median of 60 seconds) and directories (a median of just 0.27 seconds) suggests that

I fast response to changing patterns is important. User files had substantially longer interopen inter-

vals, making quick migration a iess critical issue in their case.

The number of opens by a user to a file gives an indication of the potential benefits of migrating

the file to a user's machine. Locality of reference and the degree of sharing are also factors here.

Most files L-, our environnicnt were opened only once or twice. However, most opens went to files

opened many times. 757c went to files opened more than 10 times and half to files opened more

than 480 times. For these frequently opened files (and hence for a distributed file system as a

, whole), migration, caching, and replication may be useful. This will be especially true for perm

files, since they receive so much open activity per file and tend to be opened read-only. As we

mentioned above, file sharing is also a factor here. Overall, only about 12% of the files on the

system were shared. Few users files were shared. Other classes of files saw more sharing, but,

except for heavily used system and news log, perm and executable files, sharing was incidental to

the normal use of the file. Most sharing was read-only, indicating that extensive replication of

these files is appropriate.

3 The lack of file sharing and the locality of reference implied by the short interopen times we see

for both files and directories suggest that migration algorithms that respond to references by

3 migrating a copy, to the user's host or by caching a copy', subject to the file size and log con-

straints we mentioned, are appropriate. For most files it will not be necessary to worry about

"migratory' thrashing" or frequent cache invalidation due to accesses from other users. This is

3 'One might prefer to use a differe;.t Iugp;mg mechanism in a distributed environment in any case.

I
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particularly the case with user files, which are effectively never shared. The lack of sharing also

provides justification for our earlier decision to lock on a whole file basis in Roe.

The burst), nature of requests (for our background activity in particular) indicates that congestion 3
may be a serious problem at times. Results from the VICE/Andrew system [Svobodova 85]

confirm the importance of this issue. Algorithms that place and migrate files to minimize conges- 3
tion will be particularly appropriate in the case of background activity of this nature.

I
7.4. Performance

7.4.1. General Considerations

Our results may also be used to investigate performance issues in distributed file systems, and as I
an aid in pointing out areas where problems are likely to occur. In this section we summarize

results that are relevant to DFS performance and briefly describe their significance. The following

two sections examine the performance implications of these results for Roe, and for distributed file

systems in general.

We found that referenced files in our environment were small, with ,2f ,cing lcs than 710 bytes I

long, and 75% less than 4096 bytes long (a common block transfer size). We also found that path

lengths tended to be relatively long, with an average of almost 3 name components per path. I
Taken together, these two results suggest that directory lookup and open overhead will tend to

dominate file access time, particularly in a distributed environment. I

Directories were generally small, with half holding under 8 entries. Referenced directories were 3
somewhat larger, but also relatively small, with a median size of 26 entries per directory. This

means that the trend towards larger block sizes won't help name resolution costs and will, in fact, 3
work to increase their relative importance. However, the small size of directories does mean that

there is little space overhead for caching them. I
U
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70% of the logged paLhs were absolute references. This implies that deep directory trees raise the

I cost of references. The root of the file system must be cheap to access, since it will be heavily

used.

93.4% of director- references were for read in our data (the actual overall figure for the system

was probably somewhat higher). Clearly directories should generally be optirnized for lookup.

Some dir-,nries are heavily written and rarely read, though. Other organizations or placements3 may be appropriate for these directories. The use of semantic information or past history would

be useful here.I
Reads accounted for 847 of the bytes transferred in the system. Many of these reads were from

large administrative files that were frequently read and rarely if ever written. Replication and

caching of even a few such files could substantially increase the performance of a DFS.

There was an extrem,y high degree of locality of re-ftrence to files and directories. Half of all

p opens to perm files went to just 0.7% of the files. Over half of all execute requests went to just

13 files. The 15 most active directories accounted for 76% of the references. This intensely local-

ized activity suggests that even a very modest amount of caching or other special treatment for

such files and directories could produce significant improvements in system performance.

U We found that most directory versions were short lived. Over half lasted less than a second. This

was due largely to high update rates to system and net scratch and spool directories. There is lit-

tle poir, in wriung these versions back to disk. Delaying writes of such directories could be

3 expected to improve performance (although not, perhaps, reliability).

Most directory versions also received only a few references. Half of all versions were written

again without being read. Roughly 4/5 of the remaining versions were read only a few times

before being updated. This, combined with the short lifetime of most versions, implies that cach-

ing these versions serves no purpose. However, some directories were heavily read and rarely, if

ever, updated. The four busiest directories accounted for over half of the references and received,

between them, just 9 writes in a week. Versions of these directories could be safely cached or

I
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replicated regardless of the setup and update costs. Separating them out from the majority of rela-

tively useless versions may be difficult, though. Very cheap caching mechanisms, semantic

knowledge, or knowledge of recent reference history would be useful here. For example, the

knowledge that tmp is used to store temporary files and so is frequently updated could be used to

avoid potentially wasteful caching of this directory.

Directory activity was concentrated on system and network directories. References to user direc- I

tories accounted for less than 109 of the overall directory references in the system. There was lit- 3
tie sharing of user directories.

As we described in section 7.3, we saw substantial differences in reference patterns betweeli the I
file and user classes we examined. Placement and migration decisions made based on these

differences can be used to improve the overall performance of a system. There is, for example, I
generally no need to replicate a temp file, and files (such as user perm files) that are likely to have

high read/write ratios can be replicated and placed to favor reads. Significant differences between

classes were seen in areas such as reference locality, number of opens over the logging period,

read/write ratios, data lifetime, and interopen intervals. These class differences are described in

section 1.3 _nd in Chapters 5 and 6. 3
7.4.2. Performance Issues in Roe

The small file sizes and relatively long paths that we observed indicate that the overhead to open a

file in Roe will be a significant component of the access cost. We saw indications of this in the

UNIX name resolution overhead studies that we performed in Chapter 6. Roe separates directories

and the objects that they reference, and allows them to migrate independently. The open overhead I
imposed by this separation and distribution can be high relative to a more integrated approach,

which makes this cost of special concern in Roe. I

The cost to open a file can be broken down into two components: 1) name resolution cost, and 2) 3
the cost to actually open the (possibly replicated) file once it is found. Roe addresses rname resolu-

tion cost by caching directory information. The cost to perform the actual open can be reduced in 3
I
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I Roe usirg the advisory locks thai we alludd LL in Chapters 3 and 4, or by adjusting voting

quorums base, on expected usage.

Our measurements of high directory reference locality, combined with the small size of directories

and the low level of updates to many heavily used directories, suggest that a directory cache can

be an effective, low cost method for reducing name resolution overhead. To test this idea, we

I simulated an LRU whole directory cache using our reference trace as input. We found (Figure 7-5

and Table 7-3) that even a cache holding as few as 10 directory nodes achieved an 85% hit ratio.

I A 30 node cache gave a 95% hit ratio.

•........... ruidL'SER

rudNE7
-, - .....- ruid_SYSTEM

0._ no cut

0.6

miss
Srautic

0.4I
0-')
0.0

0 10 20 30 40 50

cache size (directones)

Figure 7.5: Whole directory cache effective:ess

ownerUJSER+ ruid_USER+

nodes no cut ruidNET ruidSYSTEM ruidUSER mid USER u_____

5 0.37 0.46 0.17 0.34 0.25 0.14
10 0.15 0.12 0.072 0.18 0.11 0.079
15 0.099 0.070 0.045 0.12 0.076 0.065
30 0.050 0.042 0.031 0.050 0.047 0.051

Table 7-3: Mlik ratio vs. cache size (in nodes)
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Figure 7-6: Whole directory cache effectiveness (user cuts)

bytes no cut ruid NET ruid SYSTEM ImidUSER
5K 0.37 0.40 0.22 0.40
O 0 0.16 0.11 0.24 I

15K 0.14 0.10 0.067 0.17
20K 0.10 0.079 0.052 0.13
30K 0.070 0.060 0.036 0.075
40K 0.052 0.043 0.030 0.047

Table 7-4: Miss ratio "s. cachz :ize (in bytes) I
User references to user objects also show a high degree of locality (Figure 7-6 and Table 7-3). A I
10 node LRU whole directory cache captured 92% of user references to the user file system /u) 1
and 89% of references required to reach user objects.

Since directories are not generally very big, whole directory caches don't require much space (Fig- 1
ure 7-7 and Table 7-4). For the overall trace, a 14K byte cache gave the 85% hit ratio seen with

the 10 node cache. Using a 41K byte cache raised the hit ratio to 95%. 1
I
I
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Figure 7.7: 'Whole directory cache effectiveness (byte size limit)

As we mentioned in Chapter 6, our log of file system activity doesn't include all directory refer-

3ences. Adcing in the Istat and stat calls missing from our data could be expected to increase the

effectivenes of our cache. These calls usually follow an open of the director), referencing the

3 object of the status call and so they will all result in "hits" on the cache. Using the estimates of

Istat and stat frequency made in section 6.3 and assuming short paths leads to a 15%-20%

3 decrease in the miss ratios given above.

Two other studies of directory caching in UNIX environments focussed on page level caching

[Sheltzer 86] and entry level caching [Leffler 84,Leffler 86]. Sheltzer et al. looked at page level

3 caching for references on a LOCUS system [Walker 83b) (an enhanced, distributed version of

4.IBSD UNIX). Their simulations assume, though, that directories fit in a single page. While this

3 is true for most directories on a BSD UNIX system, there are a few large, heavily used system

directories that typically contain in excess of 100 entries (see figure 6-3). These directories are

3 referenced irequendy enough to make the high hit ratios found by Sheltzer et al. questionable for

page sizes one might typically use with directories (IK bytes or less because of the small size of

3 directories). As Figure 6-3 shows, inferring dynamic distributions from static ones can be

I
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dangerous. Their simulatons are at , iuj, then, for a whole directory, LRU cache. Their result of

hit ratios of 87c)-96% (dependlry on t'K system) for a 40 page (node) cache agrees with our result 3
of a 96L hit ratio for a 40i node cache arid indicates that our results are typical for thc environ-

meit. I

Leffler et al., in tuning and enhancing 4.2BSD, found that a system-wide entry level cache con-

taming 400 entries (about 18K bytes) gave a 601% hit ratio. This was coupled with a per process

directory, offset cache having a 25%,( hit ratio (to catch directory scans), giving an overall hit ratio 3
of 85c%. This is effectively an entry cache and a per process single directory cache, with invalida-

tion on update. We saw a hit ra:io of 89 for an 18K byte whole directory' cache. Our hit ratios 3
are higher because we effectively "read ahead" for processes scanning directories by caching the

entire node on 1st reference, don't tnvaadn¢e on update or working directory changes, and cache 3
globally. I
Two other factors affect directory caching in a distributed environment: 1) the amount of director),

sharing, and 2) the update rate for shared nodes. Directories that are widely cached will be rela- 3
tively expensive to update, due to the need to send out update notifications to each cached copy.

As we indicated in the previous section, the busiest directories (those near the root of the file sys-

tem) are heavily read and rarely if ever written. These may be cached with impunity. Most other

system directories were also rarely modified, and so are appropriate candidates for distributed 3
caching. I
Sharing of user directories is incidental to their normal use. For these directories, caching is not

really necessary'. Migration to the current location of the user is a more appropriate approach. 3
The outlook is less bright for shared, frequently updated system and net directories such as /ip 3
and spool directories. As we saw earlier, most versions of these directories were short-lived and

received few if any reads. Maintaining a coherent distributed cache of such directories would be 3
prohibitively expensive. Roe could recognize these directories based on usage histories or seman-

informatior, and respond by not caching them and by optimizing them for writes. An 3
I
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alternative, used b\ LOCUS and Andrew, is to remove such directories from the global name

3space, making them visible only from the lociL machine. However, this reduces transparency,

making it dif:icult to distribute applications that use such directories, and making it impossible to

3 balance load across srvers and local machines. Other possible approaches here are attempting to

cache at the entry level, partitioning the name space of these directories in some fashion (perhaps

I by user), or recognizing the inherently undistributcd nature of such directories and eliminating

them.

Opening a replicated file once the name is resolved generally involves contacting multiple copies

3 of the file and collecting quorum information. One technique we have suggested is maintaining

ad;isory locks on frequently opened files that are broken, with notification, if the file is opened for

writing. This is similar to the "broken read lock" mechanism that Gifford proposed for Violet

[Gifford 79a], although thy were proposed there as a means of increasing concurrency.I
This approach would work best if files are generally not shared or, for files that are shared ,,.ially

3 accessed read-only. In addition, a high degree of reference locality is necessary to minimize the

overhedd inolved in setUng up and maintaining locks. As we have seen, these are in fact the

3 conditions that we see for most files in the system. The primary exceptions are temp files, which

would generally not be created as replicated files, and log files, which were frequently written and

3 rarely read.

3 For files whose references are highly localized in time, an alternative to advisory locks is collaps-

ing the quorum down to a single or a few copies when the file is first accessed, and then restoring

3 the original quorum when the burst of accesses has finished. This trades a small loss in availabil-

it' for performance. The high degree of locality we have seen suggests that this approach has

3 promise, but further analysis would be necessary to understand the issues involved.

3 7.4.3. Implications for Other Distributed File System Approaches

Name resoluuon and open overheads will also be an important consideration in other DFS designs.

A we saw in Chapter 6. the combination of relauvely long path names and small files means that,

I
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in the absepce of caching, the majority of UNIX file system activity it in support of name resolu-

Lion. The same considerations will hold for DFS designs that interpret remote directories locally.

Optimizations in the area of name resolution are likely to produce significant performance

improvements, particularly as the block size used for data transfers increases. i
One approach to dealing with this problem, taken by the V system [Chcntron 84], is to grou,.,

names and objects together, and to have servers holding objects manage name interpretation them-

selves. This reduces distribution possibilities (and hence transparency), but it also reduces the cost 3
of resolving names for remote objects. I
For designs that access remote directories locally, caching or some other means of short circuiting

remote operations will be essential. We found that entry level caches, by themselves, are much i
less effective tan node level caches because of the frequent sequential access of entries in a

d-ireCtory. Caching strategies that recognize and exploit this sequentiality will oo well. 3
Large block sizes help whe!n reading some files, but many, files, mc-t directories and all descriptor3

blocks are too small to benefit from larger block sizes. For file systems in general (and so for

DFS file servers), coupling larger block sizes with a file system design that ties file descriptors, 3
directories, and data together on disk could be expected to lead to substantial performance

improvements. The 4.2BSD file system does this by attempting to allocat these related items 3
close together on disk .McYtusick 84]. Further improvement (at the cost of increased crash

recovery complexityc) could be achieved by allocating inodes and at least the initial data in files 3
conuguously on disk. On a 4K block siz? file system, this could be expected to lead to about a

40Qc7 dccrease in transfers tor file open, read, and .te activity, given equivalent caching

effectiveness for data, inodes and directories. This observation is similar to one made by Mul-

lender ard Tanenbaum [MAllender 8.4], although our results are based on an analysis of actual file 3
and directory reference patterns (as opposed to a less reliable static analysis of file sizes). I
Nearls )/4 of ali references weot to system directories. Less than 109i went to user directories.

Further, ori, : 4;it 15'5I of file opens were to files owncd by users, and some of these -. ere temp 3
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files placed in system scratch directories. For DFSs, such as Andrew [Satyanarayanan 85], that

I support access to local file systems coupled with access to a global user file system, minimizing

the performance impact of adding the global file system on local accesses is clearly important.

Conversely, carefully coupling L-ansparent access to a network file system holding user files with

cheap access to local files can result in a coherent distributed file system with good overall per-

formance, even in situations where network or server access is expensive.

3 A significant drawback of this approach is that a user's file requests are concentrated on a single

host (the local one). In the case of Andrev,, where a primar) goal was to support large numbers of

3 clients with relatively few server and network resources, this is appropriate. However, the poten-

tial performance benefits of balancing load across multiple servers and of the parallelism possible

I with distributed access are lost when file systems are segregated in this fashion.

I 7.5. Summary

3 This chapter has examined some of the implications the patterns we saw Ln our file and directc-,

reference data have for distributed file systems in general, and for Roe in particular.

One potential area of concern in the Roe design was that the node-level fragmentation and distri-

3 but _n of directories would seriously impact the overall availability of Roe. We found that with

the reference patterns we saw and using a simple probabilistic failure model, Roe can use replica-

3 tion to provide significantly increased availability over a centralized server, even assuming worst-

case distribution of components. Further, the flexibility inherent in the Roe replication approach

allows it to make use of read/write rates, semantic information and failure information tu further

increase availabilitv without impacting the performance for reads, the most frequent operation.

An examination of the reference data characteristics affecting migration showed that Roe's

approach to migrating files and directories as a whole is the correct one ir. our environment- The

strong locality of reference we see for files and directories dictates a short time scale for migra-

3 t:on. We s ,x Sb jbtantal diflerences in access patterns for various classes of files and users that

I
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can he used in making placement and migration decisions. I
Further examination of the data pointeJ to name resolution and file open costs as potential per-

formance concerns in Roe. The high degree of locality in directory' references led us to investi-

gate whole node LRU directory: caching as a possible solution. We found that, because of the

locality, even a small cache gave good results. This approach appears workable for most direc- 3
tories. However, there are a small number of frequently updated system directories that do not

appear to be cacheable in a distributed environment. Finali,, we examined advisor" file locks as a 3
way to reduce the open overhead for replicated files. Highly localized file references combined

with a low write rate for most shared files make advisory locks an attractive option. 3
I
I
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3 Chapter 8

I Summary and Future Work
I
1 8.1. ,ummary

The major claim of this dissertation is embodied in our thesis statement:

Full network transparency in distributed file systems offers significant benefits.

These benefits include increased availability, more effective use of resources, the

g ability to adapt to changing demands, transparent reconfiguration to adjust to

changes in resources, a greatly simplified file system model from the

3 user/application point of view and, with careful design, enhanced performance over

other distributed file system approaches.

I As we pointed out in Chapter 1, evaluating the validity of this thesis had been hampered by two

factors:

(1) Limited z;pcrM.ce with the design and implneieiLaLion of transparent distributed file

3 systems.

(2) A lack of understanding of the ways in which file systems are used.

I
I
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We have addressed the first shortcoming by designing and implementing Roe, a fully transparent

distributed file system. Roe supports a substantially higher devree of transparency than earlier dis-

tributed file systems, and is able to do this in a heterogeneous environment Roe provides a

coherent framework for uniting techniques in the areas of naming, replication, consistency control,

file and directory placement, and file and directory migration. Roe does this in a way that pro-

vides full network transparency. This network transparency allows Roe to provide increased avail- 3
ability, automatic reconfiguration, effective us.2 of resources, a simplified file system model, and

important performance benefits. I

We have addressed the second problem by collecting data on file and directory references from a

large UNIX system. Our analysis of these data provides by far the most detailed information to

date on short-term file reference patterns in the UNIX environment. In addition to examining the I

overall request behavior, it breaks references down by the type of file, owner of file, and type of

user. We find significant differences in reference patterns between the various classes. These 3
differences emphasize the need for a distributed file system, such as Roe, that can adapt to and

exploit them. 3
Our study also provides, for the first time, information on directory reference patterns in a 3
hierarchical file system. The results provide striking evidence for the importance of name resolu-

tion overhead in UNIX environments and supply information necessar), to design algorithms that 3
minimize this overhead, both in single site and distributed file s.stems. I
Two potential concerns in Roe are the availability impa. of its distributed structure and its per-

formance. We have used the results of our reference studies to investigate these issues. We find 3
that Roe's ability to transparently replicate resources based on semantic and usage information

allows it to provide enhanced availability over other commonly used approaches. File open over- 3
head proves to be a performance issue in Roe, but simple techniques exist for reducing its impact.

Taken together, the results we have presented in this dissertation are both a compelling I

justification for our thesis statement and a significant contribution to Compw'-r Science. 3
I
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8.2. Future WorkI
The work described in this dissertation is not the final word on network transparency, or on dis-5 ributed file systems. It provides a foundation for future research in many directions. This section

briefly describes some possibilities for future research based on the work we have presented.

8.2.1. Extension and Evaluation of Roe

I The Roe design that we have presented here doesn't explicitly address security issues. It would be

straightforward to add file and director), level security mechanisms (such as access control lists)

given our assumption of a single administrative domain. However, if Roe crosses administrative

domains or is on a network that includes untrusted hosts, these mechanisms will not be adequate.

Untrusted hosts can be incorporated, with some loss of perform,-Ice, by performing validations3 outside of these hosts and not placing protected files and directories on them. Validation in the

presence of multiple administrative domains is perhaps best done in the context of the domain

where the object was created.

Multiple administrative domains also raise the issue of autonomy. In an environment containing

multiple domains it will generally not be appropriate for Roe to place resources created in one

domain in another domain, or to have operation in one domain be dependent on operation in

another. A more appropriate model in this environment may be that of mutually suspicious Roe

systems interacting to provide a global service. Representing this in Roe and understanding the

effect that it would have on transparency requires further work.

3 Roe was designed for high bandwidth, low delay networks. Its ability to migr .te and place

resources based on usage and network considerations may make it useful in network environments

where bandwidth and delay are important considerations. Further work is needed to understand

the impact of our design decisions on operation in such environments.

The directory algorithms that we presented in Chapter 3 were intended to support low overhead

5 caching of directory nodes that had relatively low update rates, and so provide concurrency control

I
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and voting at the node level. Not all directories in the data we saw fit this model. It would be

interesting to investigate the possibility of algorithms that support quick verification of currency at 3
the node level but allow concurrency control to be invoked at the entry level. An alternative

might be to support entry-level caching for frequently updated directories. 1

The design of Roe is conceptually fairly simple. However, the flexibility inherent in the approach 1

used by Roe makes predicting the behavior difficult. In Chapter 7 we did a simple analysis of

Roe availability and performance based on the data we collected. A more detailed analysis, based 3
on simulation or on actual usage, is necessary to gain a greater understanding of Roe. I
Measurements that would help evaluate the Roe design include the overhead for directory

accesses, file opens, replication, consistency control, and state maintenance, the read/write per-

formance under various replication configurations, and the availability of the system. Two addi-

tional measurements that are particularly sensitive to work load are overall resource utilization and 3
the distribution of network and disk traffic devoted to various activities.

A trace driven simulation using the data we have collected as input is one way to gain experience 1

with Roe and to collect this information. There is, however, no substitute for using a system in 3
the environment for which it was intended. Using Roe on a day-to-day basis would provide

experience and feedback that no simulation could match. I

8.2.2. Reference Data Collection 3
The collection and analysis of file system traces can soak up endless resources. We stopped at the

point were we felt that we had enough information to understand the implications that our data I
had for file system design. There is a great deal of additional ccllection and analysis that could be

done. Some possibilities include: 1

Studie. of open frequency as a function of file age. Smith found that for long term file

reference patterns, open f equency falls off as the age of the file increases [Smith 81a].

A survey of files on Seneca made at about the time our data were collected showed that 3
2/3 of all user files (user log and perm files) hadn't been accessed in over one month

I
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(Friedberg 85]. This suggests that oinith's finding holds true in our environment for at

3 least some classes of files.

Studies of interopen intervals as a function of file size. Porcar found that smaller files

I tend to have shorter interopen intervals [Porcar 82]. We don't expect this to be truc for

the overall activity in our system (because of the large heavily used administrative files),

but it may be true for user files.

* Measuring the paging and inode access activity. It would be interesting to see what

fraction of the file system bandwid!h is devotd to each of these activities.

3 . Examining in more detail the activity per user. This information would be useful in

designing distributed file systems that include personal workstations. Ousterhout et al.

1 [Ousterhout 85] have done some of this work.

* Fitting curves to various distributions (size, interopen time, and so on). These would be

3 useful in writing synthetic drivers for use in simulating distributed file systems

[Satyanarayanan 83].

3 . Investigating the correlation between directory depth and activity. Since most paths are

absolute, one would expect that directories close to the root of the directory tree will be

3 refcrence6 rore frequently than those towards the leaves.

* Further data collection and analysis for different environments and work loads. This

would give us a better feeliiig for where our data fit into the universe of file system

usage.

8.2.3. Initial Placement and Migration Algorithms

Entire dissertations have been written on the subject of file placement and migration algorithms.

This might have been one of them, had we not found the architectural and transparency issues

involved in supporting automatic placement and migration so interesting.I
Roe provides architectural support for a wide range of placement and migration algorithms. The

I file and directory refcrence traces that we have collected provide a rich source of data for use in

U
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designing and evaluaung algorithms. Possibilities for research in the context of Roe include:

" Placement and migration based on the class of the file and user. The substantial I
differences we saw in reference patterns between the various classes should make them

useful predictors of future usage. I
" The use of additional parameters specified by file creators to place and later migrate

files.

" The amount of information that should be kept in a network model to allow placement 3
and migration to be done effectively.

" The importance of the currency of network model information. 3
• The interaction between initial placement and migration algorithms.

" Placement and migration algorithms that dynamically balance server load to reduce 5
congestion.

• Algorithms that selectively attempt to increase performance or availability. I
" Algorithms that dynamically vary the number of copies of a resource. Porcar has done

some initial studies of on-demand replication MPor-ar 82] that show this to be a promis-

ing approach. i
" The effect of migration on network and host resource utilization in Roe.

" Algorithms that act based on usage information collected by Roe. This could include 3
both migration algorithms that make use of information in individual files, and place-

nient algorithms that act based on overall user behavior. 3
* Algorithms that attempt to group files and directories together. Two possible uses of

grouping information are prefetching to increase performance and co-locating resources 3
that are used together to increase effective availability. I

I
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