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SECTION 1

INTRODUCTION

.here has been considerable interest in ethylenediammonium dinitrate (EDD)

as a component of mixtures with other nitrate salts and various organic

molecules for use in melt castable explosives. Most of this work is described

in the international patent literature A review of the German activity in

this field in World Wars I and I complied by Dobratz in 1983, Reference 1.

It has long been known that DD mixtures with ammonium nitrate (AN) are more

thermally stable than EDD alone) Reference 2,71nd-tfikL±,hey have better

performance than AN alonel Reference 3. -th-e eutectic mixture has a lower

melting point than either component making it suitable for melt casting.

However, EDD/AN mixtures suffer from volume changes with temperature because of

the phase transitions of AN. The addition of potassium nitrate (KN) stabilizes

the AN and counters the expansion of AN at 32 C caused by one of the solid-

solid phase transitions Reference 1.

This Interim Report describes the fao;t thermal decomposition processes of

AN, EDD and two heterogeneous mixtures: EDD/AN (50/50) and EDD/AN/KN

(46/46/8), called EAK. The techniques employed are rapid scan Fourier

Transform Infrared (FTIR) Spectroscopy/Temperature Profiling as the main

technique and differential scanning calorimetry (DSC) to support the

temperature profiling data obtained at the high heating rates. K)c<-I

-r r" r: r czrk, zt,'
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SECTION II

EXPERIMENTAL

The IR spectroscopy studies described in this Interim Report were

conducted on a Nicolet 60SX FTIR spectrometer with an MCT-B aetector. The

sampling technique used is Temperature Profiling/FTIR Spectroscopy which was

developed in our laboratory and has been described elsewhere, Reference 4.

Typically, 1-2 mg of sample was thinly spread on a nichrome ribbon filament.

The Ar atmosphere in the cell was set at the desired pressure. The filament

was fired, and, while the temperature of the condensed phase was being measured

simultaneously, spectroscopy of the gas products was conducted. The products

were quantified by using their absolute intensities. H20, HNCO and any IR

inactive products were not quantified.

DSC measurements were made on a DuPont 9000 Analyzer with a Model 910 DSC

head. The heating rate was 50C/min.

Samples of the mixtures were prepared by mixing the appropriate quantities

of' each material by weight with a mortar and pestal and then drying them in

vacuum for 24 hours. In other cases, the samples were melted together to

optimize homogeniety. No significant difference in the thermolysis pattern was

observed for samples made in these two different ways.
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SECTION III

FAST THERMOLYSIS STUDIES OF AN AND EDD

An extensive amount of work has been performed on the thermal

decomposition of AN (References 5-7) which will not be reviewed here. Most of

this past research has involved slow heating studies or time delayed analysis

and is not directly relevant to the methods applied in our research. However,

many of the past conclusions about AN under slow heating conditions are

supported by our findings at high heating rates.

Fast thermolysis studies of pure AN and EDD were conducted as a basis for

examining the mixtures. About fifty separate experiments for each salt were

performed using controlled initial heating rates in the 70-2000 C/sec range and

for about five different pressures from 1 to 1000 psi Ar. The effect of sample

size was tested on 1 mg and 2.5-3 mg samples. The infrared active gas products

evolved by high rate thermolysis were quantified in real time by using rapid

scan infrared spectroscopy and procedures described in Reference 4.

Simultaneous with this gas product analysis, the temperature profile of the

condensed phase was measured. Representative results for AN and EDD are

provided in this report.

1. AMMONIUM NITRATE (AN)

By superimposing the quantified gas products for AN on the thermal trace of

the filament (Figure 1), some of the complex details of the fast decomposition

of AN come co iignc. The sample iijltialiy fitaus at 130-Cisec. Endothermic

melting occurs at 170 0C which is about the melting point AN measured by DSC.

At about 1800C the first products are detected. These are HNO 3(g) and NH3 (g)

which form from proton transfer followed by desorption. Shortly thereafter, AN

begins to be detected in the gas phase from the reco.ibinatioi c, !C(g) and

NH3(g). Reaction equation (1) summarizes this well known process, References 8

and 9. AN(g) is largely an aerosol.

NH4NO3 (s)- > (HNO 3 + NH3 ) absorbed- >

HNO 3 (g) + NH3(g)- > NH4NO3 (g) (1)

The sample continues to heat until about 310 0C where a combination of

significant sublimation and endothermic degradation reactions occur leading to

the products of reaction equation (2).

3



4NH4NO3 - > 2NH 3 + 3NO 2  + NO + N2  + 5H20 (2)

NH3 , unlike HNO 3 , persists in the gas phase while the relative concentration of

NO2 from HNO 3 decomposition grows. NO is detected later in the reaction and is

probably associated with the decomposition of NO2 at the hot filament.

At 500 psi Ar, many of the same events take place but are compressed more

in time. As shown in Figure 2, melting still takes place at 170'C. AN(g) is

detected at the time melting occurs. The sawple then gradually heats witri

sublimation of AN being detected until about 230'C. At about this temperature

N20 is detected. At about 310'C the endotherm which occurs at 15 psi Ar is

replaced by an exotnerm at this higher pressure indicating that a self-

acceleratory reaction takes place. The reaction leads predominately to N20 and

H20.

As is true of many other energetic materials, Reference 10, pressures above

atmospheric are required to achieve ignition or explosion of hot AN. This

observation is in keeping with the fact that confinement of the gas

decomposition products around AN is needed to create ignition, Reference 5.

2. ETHYLENEDIAMMONIUM DINITRATE (EDD)

The IR active gas products from EDD heated at 70°C/sec under 15 psi Ar are

shown in Figure 3. The thermal trace for this process is more informative when

it is presented as a difference trace (the reference trace minus the sample

trace) because of the subtleties that are difficult to see in the sample

thermal trace alone. This difference trace is shown superimposed on Figure 3.

The difference trace reveals considerable detail about the decomposition

mechanism of EDD.

Melting takes place at 1800C which is about equal to the melting point of

EDD measured by DSC. Melting is cmrplete by 200 0C. This is not an isothermal

event because, at fast heating rates, the solid and melt are in equilibrium at

one temperature. The melt heats to 270 0C at which temperature the first gas

products are detected. HNO 3(g) from proton transfer initialiy dominates as

shown by reaction equation (3).

[H3NCH2CH2NH3 ](NO 3)2 - >[H 3NCH 2CH2NH2](N0 3 ) + HNO 3 (g) (3)

However, C-N bond fission and, possibly, H. migration also occur leading to

NH3 (g). Reaction equation (3) and the C-N bond fission step must be net

endothermic because an endotherm is clearly present in the difference trace



while these re , -ions are occurring. The recombination of NH3 (g) and HNO 3 (g)

leads to i: -m.ll amount of N1I4NO 3 (g) which is an aerosol that is detected, but

not quantified. At 330 'C an exotherm occurs that appears to involve oxidation

of" the backbone. CO2 , HCN and NO rise in concentration, while HNO 3 (g), which

is a major oxidizer, sharply drops in concentration.

At 500 psi Ar (Figure 4) melting is still detected at 180 0C. HN0 3 (g) i

detected at 2600C. Exothermic ignition occurs at 2800C which causes a sharp

drop in HNO 3 (g), the oxidizer, and a sharp rise in NO, CO, CO2 , HNCO, H2 0 and

HCN. An ignition exotherm of EDD can be induced by as little as 40 psi Ar

pressure at these heating rates. The magnitude of exotherm involvirng ignition

is accentuated as the pressure becomes higher.

5



SECTION IV

FAST THERMOLYSIS STUDIES OF MIXTURES

1. EDD/AN (50/50)

About 40 complete studies of this mixture were conducted at various heating

rates from 70-200°C/sec and pressures from 2 to 500 psi Ar using rapid scan

infrared spectroscopy. Figure 5 gives the gas products quantified when the

mixture is heated at 95°C/sec under 15 psi Ar superimposed on the temperature

profile for the condensed phase. Superimposing these two figures shows that a

me tin6 endotherm occurs at about 110'C, which is well below that of pure AN

(170'C) and EDD (1800C), but closely matches the melting endotherm for the

mixture measured by DSC of 1090C. The melt then heats liberating HNO 3 (g) at

210'C and then NH3(g) at about 230'C. The initial decomposition closely

resembles that for this mixture measured by Qthers (Reference 2, 11) to be 200-

210°C. HNO 3 (g) and NH3 (g) continue to dominate until about 310 0C where an

exothermic event takes place. An exotherm was previously noted at 300'C in

Reference 11. At this temperature NO2 , CO2 , N20, H20 and HNCO increase snarply

in concentration and some NH4NO3(g) appears. A notable difference between the

decomposition of this mixture and the pure compounds is that NH4NO3 sublimation

is strongly suppressed in the mixture.

The products and thermal profiles of EDD/AN mixtures above the melting

point resemble those of the pure components. However, AN decomposition in the

form of NH3(g) and HNO 3 (g) dominates in the 210-260'C range. Endothermic

chemistry characteristic of EDD then occurs at 260°C producing more or less the

same initial product ; as NH4NO3 . At 3101C endothermic chemistry occurs in

which EDD backbone products are liberated. About 11 percent of the products

should be CO2 provided that no undetected carbon-containing species are

produced. Figure 5 shows that the amount of CO2 is about 10 percent.

Increasing the pressure to 40 psi and then to 200 psi Ar causes

approximately the same decompositiun pattern and temperature of events, but the

exotherm at 300'C is accentuated. In effect, diffusion of the reactive gas

products away from the condensed phase is retarded at higher pressure which

narrows the reaction zone. The exothermic reactions become self-accelerating

creating at least partial ignition. HNO 3 appears to be the oxidizer. NO, CO2

and H20 are the predominant products detected by IR spectroscopy.

6



2. EDD/AN/KN (46/46/8)

This mixture was studied at 1 to 40 psi Ar and at heating rates from 75-

120°C/sec. As shown in Figure 7, melting occurs at about 110 0C which compares

to a value of 107 0C by DSC. At about 2000C, the first gas products are

detected which resembles the results for pure AN and EDD/AN. A second

endotherm is detected resembling that of pure EDD. Finally, a third endotherm

appears at about 325 0C resembling that of pure AN. Thus, the mixture

decomposition process bears a strong resemblance to the decomposition of the

pure components.

A curious difference between EDD/AN/KN and the EDD/AN mixture is that

NH3 (g) is usually detected in advance of HNO 3 in the former while the reverse

is true of the latter. Since NH3 is a known inhibitor to the decomposition of

AN, References 12 and 13, the excess NH3 during fast heating may limit the

buildup of HNO 3 and, therefore, stabilize this mixture relative to the EDD/AN

mixture. In other words, KN changes the characteristics of the decomposition

of AN and EDD with respect to the formation of NH3.

7



SECTION V

CONCLUSIONS

1. AN

The following are the principal conclusions to be drawn about the fast

thermal decomposition of AN: In all fast heating experiments up to the 200°C/s

limit used for this compound, melting is detected at about 170 0C. Melting

always occurs in advance of detection of the first gas decomposition product

(HN0 3 ). The HNO 3 results from endothermic N-H bond heterolysis. AN(g) is

always detected at or above the melting point. The time increment separating

the melting point and the detection of AN(g) depends on the applied Ar

pressure. Above 200 psi Ar, these two elements are not separable by our

method. The endotherm present at 310 0C when the Ar pressure is less than 200

psi is replaced by an exotherm when the pressure is above 200 psi. This is

probably because the HNO3 is forced to remain in contact with the condensed

phase for a longer period of time.

2. EDD

As with AN, melting of EDD is detected at about the known melting point

when fast heating conditions are employed. The first detected gas

decomposition products result from endothermic reactions. As the pressure is

raised, the temperature range in which endothermic chemistry is detected

becomes the temperature range at which exothermic chemistry occurs. However,

by conducting the experiment under a pressure (such as 15 psi Ar) at which the

classes of gas products can be distinguished, some of the sequential

decomposition steps are apparent. The initial reaction appears to be proton

transfer (NH bond heterolysis) to liberate HNO 3 (g). Some endothermic CN bond

fission and H- transfer then take place, leading to NH3 (g). The desorbed HNO 3

and NH3 recombine to form NH4NO 3 (g). Exothermic reactions involving the

backbone then occur between adsorbed HNO 3 and the residue, leading to C02 , NO,

HCN, N20, HNCO, and possibly, IR-inactive products.

3. EDD/AN

The thermochemical events of this mixture resemble the sum of the pure

components except that the melting point is suppressed to about 110 0C. AN

decomposition dominates initially, producing HNO 3 (g). However, the sublimation

8



of AN is suppressed in the mixture implying that NH3 is not released. This

buildup of NH3 in the condensed phase would have a stabilizing influence on the

mixture, References 12 and 13, as is known to be the case in other work,

Reference 2. Raising the pressure causes the highest temperature endotherm to

become an exotherm.

4. EDD/AN/KN

The major thermochemical events of this mixture resemble the sum of the

thermochemical event of the individual components. However, the addition of KN

to the EDD/AN mixtu~re appears to alter the decomposition of AN and EDD to some

extent as evidenced by the fact that NH3 (g) is released in advance of HNO 3 ,

while the reverse is true of AN and EDD/AN mixtures. The excess NH3 may

prevent the buildup of HNO 3 . The lower amount of HNO 3 reduces the rate and

extent of heat release which has a stabilizing effect on this mixture.

9
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