H:erarchical Process Composition

Dynamic Maintenance of Structure in a Distributed Environment

AD-A214 325

Stuart Arthur Friedberg

Technical Report 294
1988

DTIC

¢ ELECTE By
' E B

UNIVERSITY OF

COMPUTER SCIENCE

Distributoa Ustimited

Z @
o

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

Hierarchical Process Composition
Dynamic Maintenance of Structure in a Distributed Environment

by
Stuart Arthur Friedberg

Submitted in Partial Fulfillment

of the
Requirements for the Degree
Doctor of Philosophy
Supervised by Thomas J. LeBlanc
Department of Computer Science
College of Ants and Sciences
University of Rachester
Rochester, New York
1988

L‘ (Ehserf)' pplicaticns. The emphasis in HPC i3 on structural and architectura

SECURITY CLASSIFICATION OF THIS PAGE (When Dau_Fnlered‘

b - READ INSTRUCTIONS
REPORT DOCUMENTATION PACE BEFORE COMPLETING FORM
T REPORT NUMEBER 2. GOVT ACCESSION NO| 3 RECIPIENT'S CATALOG NUMBER
294
& TITLE (and Subiitle) 5. TYPL OF REPORT & PERIOD COVERED

Technical Report
Hierarchical Process Composition:
Dynamic Maintenarice of Structiure in a Distrihuted® FERFORMING ORG. REPORT NuMBER
Fnvironment

7. AUTHOR(s) 8. CONTRACT DR GRANT NUNMBER/s)
. N00014-30-C-0197
Stuart Arthur Friednerg ‘ NO0O14-82-K-0193
' CACA76-85-C-0001 -
9. PERFORMING ORGANITATION NAME AND ADDRESS 10 PROGRAM ELEMENT. PROJECT, TASK

g AREA G WORK UNIT NUMBERS
Computer Science Department

734 Computer Studies Bldg.
University of Rochester, Rochester, NY 14627

11. CONTROLLING OFFICE NAME AND 4DDRESS 12. REPORT DATE
Adv. Pes. Pruj. Agency 1988
1400 Wilson Blvd. 3. NUMBER OF PAGES
Arlington., VA& 27209 163

14 MONITORING AGENCY NAME & ADDRESS/I{ different irom Controlling Ollice) 15. SECURITY CLASS. (of this report)

Office of Naval Res. JS Army, ETL

Information Sy:tems Fort Belvoir, VA 22061 unclassified
Arlington. VA 22217 T5e DECLASSIFICATION DOWNSRADING

16 DISTRIBUTION STATEMENT rof thix Repeort)

Distribution of this document is unlimited.

17. DISTRIBUTION STATEMENT fof the adstrect entervd In Block 20, If difterent lrom Report)

‘0 SUPPLEMENTARY 4CTES

None.

19 XEY wORDS (Continup on reverse alde Il necossary and Identily by block number)

Reconfiguration, networks, interprocess communication,
access control, consistency

20 ABSTRACY (Continue en reverae eside (I necossery and identl) - by dlock number)

This dissertation is a study in depth of a method, called Hierarchical
Process Composition (HPC), for organizing, developing, and maintaining large
distributed programs. HPC extends the process abstraction to nested collec-
tions of processes, allowing & multiprocess program in place of any single
process. and provides a rich set of structuring mechanisms for building dist-
ributed)software systems, especizlly interactions involving dynamic reconfig-
urati protection, and distriputior. The major contributions of this work

DD a7y 1473 coition oF 1 wov 6313 ORsOLETE unclassified

SECURITY CLASSITICATION OF TH|S PAGE mr Doie Entered)
E) 15sues
in distributed

20. ABSTRACT (Continued)

and a prototype implementation, of how abstraction and composition interact in
unexpected ways with each other and with a cistributed environment.

HPC ties processes togetter with heterogenous interprocess communication
mechanisms, such as TCP/IP and remote procedure call. Explicit structure deter-
mines the logical connectivity between processes, masking differences in com-
municaticn mechanisms. HPC supports one-to-one, parallel channel, and many-to-
many (multicasting) connectivity. Efficient computation of end-to-end connec-
tivity from the communication structure is a challenging problem, and a third-
party connection facility is needed to implement dynamic reconfiguration when
the logical connectivity changes.

Explicit structure also supports grouping and nesting of processes. HPC
uses this process structure to define meaningful protection domains. Access con-
trol is structured (and the basic HPC facilities may be extended) using the same
powerful tools used to define commuricatio, patterns. HPC provides escapes from
the strict hierarchy for direct communication between any two programs, enabling
transparent access to global services. These escapes are carefully controlled to
prevent interference and tc preserve the appearance of a strict hierarchy.

This wort i< also a rare case study in consistency control for non-trivial,
highly-available services in a distributed environment. Since HPC abstraction
and composition operations must be abailable during network partitiors, basic
structural constraints can be violated when separate partitions are merged. By
exhaustive case anaiysis, all possible merae inconsistencies that could arise in
HPC have been identified and it is shown how each inconsistency can be either
avoided, automaticatly reconciled by the system, or reported to the user for
application-specific reconciliation.

v

Curriculum Vitae

Stuant Arthur Friedberg was bom in Bloomington, Indiana, on 7 November 1958. Following high school at

Howe Militanv School, he joined the Lloyd House at the Califomia Institute of Technology, intending to major in

bicchemistry. Cutwre shock cut his wenure at Caltech short, but not before he discovered the joys of computing.

Fortunately, his frienc~ weaned him from a diet of Fortran and Macro-10 onto Pascal before he returned home from

Califormia.

Lacking academic credentials and work experience, Friedberg paid a visit to a wraditiona! employer of last
resort, enlisting in the United States Air Force as a Voice Processing Specialist (AFSC 20873C) in August 1977.
Foliowing a vear's training in Czech and Slovak at the Defense Language Institute - Foreign Language Center in
Monterey, California, he joined the 6913th Electronic Security Squadron in Augsburg, Federal Republic of
Germany. He was later selected for an assignment to the 6941st ESS at the National Security Agency, Fort George
G. Meade, Marvland. Before mustering out of the service in August 1982, Friedberg was awarded the Meritorious
Service Medal and the Joint Service Commendztion Medal for outstanding performance of duties.

During his miliary service, Friedberg was preparing for a permanent career in computer science. Forced to
substitute books for unprincipled bit-twiddling, and enjoying the fiexible schedule of an independent student, he
obtained the degree Bachelor of Science from the Regents of New York External Degree Program in May 1981.

Friedberg joined the Computer Science Department at the University of Rochester immediately after leaving
the Air Force. Under the initial aegis of Jerome Feldman, he eamed the degrec Master of Science in May 1983,
passing the qualifying exams in the previous year. In this first two years at Rochester, he worked as bath teaching

and research assistant, and as an independent consultant 10 the Xercx Corporation in Webs 2r, New York.

After examining carlier Activiies work, Fricdoerg joined with his thesis advisor, Thomas LeBlanc, to

investigate structuring systems for multiprocess, cistributed programs. A thesis paper presented at the Sth
International Conference on Distributed Computing Systems in May 1985 was awarded "Best Paper™ for that

conference.

Fnedoerg will yoin the faculty of the Computer Science Departmen: at the University of Wisconsin - Madison

in August 1988, with award of the degree Doctor of Philosophy from the University of Rochester in October 1988.

i

'Accassion Yor 3
—_ - 1
NTIS Gragl ?
DTI{ TAb 3
Unanoounicod O

Tustiftomtion . |

By . .
*_Dlstnibutioq/

Availat!ility Codes
"Avatl and/crv

Spezial

-
|

Acknowledgements

It has become cliche 1o acknowledge the positive environment provided by a first-class research depariment,
but 1 have greater reason than most to make s''ch acknowledgement. Rochester accepled me as a graduale student
despite a non-traditional background (disastero-:s college record, no letters of recommendation frem academics, no
industrial expericnce, publications, no track record of research) that triggered immediate rejections at many other

institutions. This prompls a certain appreciation.

In the last six years, the department has provided every reasonable resource, and a few unreasonable ones, |
needed o concentrate on my work. The administrative staff deserve many kudos for keeping things running
smoothly, despite the faculty and students. My fellow graduate students have been an invaluable leaming resource
(especially for getting through theory in the first year). I thank them all, because the list of thoughtful
conversationalists must include half the Jepantment.

The initial IPC router process was implemented by Rochester senior Derek Pitcher (now with Lockheed) and
much of the client-kerne! interface was implemented by fellow graduate student Brian Marsh. John Costanzo wrote
a special data management package for this thesis.

On the faculty, Chris Brown did his usual painstaking job of reading horrible early drafts and suggesting how
they might be converted into English. My advisor, Tom LeBlanc, deserves the phrase long-suffering, contending
with both stylistic and technical matiers in two completely different thesis documents, and uncounted iterations on
most things. I would 2lso like to take this opportunity to publically apologize for shouting 50 much in his office.

This work has been supported in part by ONR research contract number N00014-80-C-0197, in part by U.S.
Amy Engineering Topographic Laboratories research contract number DACA76-85-C-0001, in pant by NSF
Coordinated Expenimental Research grant number DCR-§320136, and in parnt by ONR/DARPA research contract
number N00014-82-K-0193. I thank the Xerox Corporation University Grants Program for providing equipment
used in the preparation of this paper.

Abstract

This disseniation 1s a study in depth of a method, called Hierarchical Process Composition (HPC), for
organizing, developing. and maintaining large distributed programs. HPC extends the process abstraction 1o nested
collections of processes, allowing a multiprocess program in place of any single process, and provides a rich set of
structuring mechamisms for buiiing distributed applications. The emphasis in HPC is on structural and
architectural 1ssues 1n distributed software sysiems, especially interactions involving dynamic reconfiguration,
protection, and distribution. The major contributions of this work come from the detaile * ¢~ 3:ln203 -, based on
case studies, formal analysis, and a prototype implementation, of how abstraction and composition interact ir
unexpected ways with each other and with a distributed environment

HPC tes processes together with heterogenous interprocess communication mechanisms, such as TCP/IP and
remote procedure call. Explicit structure determines the logical connectivity between processes, masking
differences in communication mechanisms. HPC supports one-to-one, parallel channel, and many-to-many
(mulucasting) connectivity. Efficient computation of end-to-end connectivity from the communicaton structure is a
challenging problem, and a third-party connection facility is needed to implement dynamic reconfiguration when the

logical connectivity changes.

Explicit structure also supports grouping and nesting of processes. H"7. uses this process structure to define
meaningful protecuon domains. Access control is structured (and the basi. HPC facilities may be extended) using
the same powerful tools used to define communication patterns. HPC provides escapes from the strict hierarchy for
direct communication between any two programs, enabling transparent access to global services. These escapes are
carefully controlied to prevent interference and to preserve the appearance of a strict hierarchy.

This work 1s also a rare case study in consisiency conuol for non-trivial, highly-available services in a
distributed environment. Since HPC abstraction and composition operations must be available during network
partiuons, basic structural constraints can be violated when separate partitions are merged. By exhaustive case
analysis, all possible merge inconsistencies that could anse in HPC have been identified and it is shown how each
inconsistency can be either avoided, automatically reconciled by the system, or reported 10 the user for application-

specific reconcihiation,

i

Table of Contents

1.
1.1
111
1.1.2.
1.13.
1.1.4.

1.1.5.
1.2
1.2.1
1.2.2.
1.23.
1.2.4.
1.3
1.3.1.
132
1.33.
1.34.
2.
2.1.
211
212
2.13.
2.14.
22.
221
222,
223.
224,
225.
2.26.
2.2.7.
228
23.

L
3
312
313
3.2
33.
34
3s.

4.1
42
421,
422

TNUOJUCHON ..ot veeveeccenrires s crer e emereeer e
The Probicm Areaoevevcevnvnnininninncnnnns
The Structure of Target Applications
Dynamic Maintenance of Structure
The Distributed Envircnmentc.coeevvninne

Thesis OUtING e
Hierarchical Process Composition
Explicit Communication Fattemns

NESIEd GIOUPS Of PIOCESSESvuviirivieiieicicmiinii st s e bsssstssass et s s sreserese sebsessssssssonsss ot

Actve versus Passive Hierarchies
Dynamic Process STUCIUreceecnecncnnen,
Related WOtkooocoie e ceeree s et eene

Software Design TOOISveeveenererercrriennereecnes
Programming LAngUagesccoovevcniivinnnns
Hierarchical Process Composilionco.cee.
Stuctural FEAIUTEScceuiveereereens cencreecresen
Dual Representationceecevcceenenreececeeeas
Protection and Control Structurecccceeeueee
Communication STUCIUTEccueereervenereecsns
Non-Hierarchical Souctureccoceeeviccceancee
Structural Operationsccccoeemvensrennvcacrenens
EXaMINAUON ...ooevi e e ier e cereraseseeeaes

Rights Relation . cerrereeeeasasaaensnanas
Agents Relation

..

...

...

..

...

...

...

..

...

..

...

..

§ e et a00000009000000000000000000m0000000ctect toataniattionstitatests so000tnITelans

Sests st ensereetecsncatonssansssgetctetatenanstantatctettetnistrotasastattalotsentan

..

..

L T T T T T T PR PPV TP PP PP PSPy

..

Terminal POLCY ..ot e e
Policy Filters ...
Classical Protecuon Issues ..o,
Communication STucturecccoooeucuencen.
Example: Circus Replicated RPC
Signuficant Communication Paths
Endpowunts and Extensions

..

8 s 0 antetasienssiac00ttstovacesrtotontneneticnettitarattttiottttotsatostanabortasioans

...

Imphicit New and Corresponding Componesits

00 I N L b) I D

a~ oA B LW W W W oW W N NN R)) —— e e e
- - R R R - A R S S I I i -~ v v sl v w R R

4235
424,
4.3.

431

5.5.1.
5.5.2.
5.53.
5.54.

€.1.

6.1.1.
6.1.2.
6.1.3.
6.2.

6.2.1.
6.2.2.
6.2.3.
6.24.

7.1
711
7.12.
7.13.
7.14.
72.
1.2.1.
722.
123,
13.
74.
741

PEErs aNd CRAINS ..o ciiine ettt e et sesse e sasrcrs e st st srsas s an e e s e nsben et
Mutupie End-10-End Peers and Chams ...

Managzment Properues

6118 £411t) TRFEB cenmmemmromenemomonmoromemmoomeser oA OL e XXX XL KEE

e LIVEIRESS ettt b et eaR S he S SR eb RS bee s e Sabatnbaba e bt b shetn s nen
. GCNETA PTOPEIUCS woverurvemseeresireersceisencsecrsstsssessnsmsssinesstsessssessessssssosssssssassssssssssses besacsssssssssesnssssssssssnssonss

DISCUSSION ..oveeeeeeeeeeaeeseeeseseseessseseseeesessessenssemsatemsenssassssssrmsesssesssonsrasessssersarsssssasssssssasssasssssssansssessessssonss

o OTTCNLAUON oot veeee e eeeeseeeseeeasassnsssmeecassrsssesssssosssressseessasssentssssmessensessersnsestsnseesseentanseses ossses suessassascrsne

..

 CYCIES ettt er e e et e careb R bR iR s e e e eeR e et seu s st assetas et ae s e R ettt s
. AUthenUCAUON cueereeeeceneceenes U S
. Mulucasting Semantcs
Communication Taxonomy
Non-Hierarchical Structure

TG oL IS corrorroooonorereaeeer oo SOOGS0
SPLCES ettt ettt sttt sttt s e e R R bR e e s R R abe R s s 00
Example: Accessing @ Global FUE SYSIEMooiieriiiieces ettt e s esesases

Promiscuous Splices

..

DDISCUSSION ettt eeiieieseves e coeesee sasensecsressessserssasssssnsmeseesessessessessest anseessessessessentaossssonsansansssnssnsssssanaes

Transparency is Not Always a Good Thing
Peer-10-Peer Symmetny
More and Fewer Restrictions

Implicit Composinon

Paruuon any Tom-ictency

Reconciliation and REPOrUNRcoeeeiereicin e see e e .

...

..

..

1ot 80a0nno00eandtecaresiorosnecet rerotoretannsaeecararenntretsecteretets s iocercetrtetaesttessesreetttsIaressessccsagetsatons

..

..

.................

TEIMUNAL POLICY enireieri ettt e vt sasen e et cenaes s ceaep s easasensa st essassesstssss st ses st staesesaennss comereaseses
CONMNMECUONS ...ovoeeiiieie ceeveereeeeseessaeseeeecessassas seseastess sesensssrssssssesassasessnssebesesnsenesasessnsssnbesesassanssssesnsssenssens
Prototype Implementation

Client Interface ... e e —etesaseanen e aratsee e snense
Registration reetetemeateesesesesesesemanesAosestnsrtnsasen £osesaes st sa senseena e sare e ntntetes

Discrepancies

Implementationo

eeeesteetiac et acteans deyvsetiescdecaenietacecsasstatostsosatetect trastecs Sasecdarisnacisnete

TPCROULEL ..ottt s eee st et et evesm e e ee et e bt aem as e aemt s aemeen s s atmtasmeanms ot seses s sammn e senioebensan

......

Datahase OPEIBUONS ...coveoiieiee it cen ettt e er s et s oot e e e eeeeeetemeeneeeeee e et eeeteseatesssnnonseenanssnsseees

vi

46
48

48
49
50
50
51

51

52
53
54
54
56
57
57
62
62
63
66
67
69
69
70
7n
71
74
75
76
7
78
80
81
81
82

88
88
88
89
N

91

93
93

A2l
A2
A23.
A4
A3l

A3l
A32.
A33.
Al4.
A3S.
A3
A4

b B
A42
A4l
AS.

AS.1.
AS2

Root Domain and Controller SErviceooveieviniineciirveeseeseneens

PALh MBINIENANCE covvvivievrereeeerioteeereseseseseseseststesentasssesesesesssesssnsesssonsssssmsensssesssertsessensessteisruensssene 1esseensses
TO00S caneeee et eee et et ettt ee et s et eaesues s bt aRee SR e R ke se e et es s bet et st s4eaAe s eeeben ereseren et rateseetarease et annesenne sereraeterbu
S1BIC TADIC VS TASKS oeieieie vttt seeeeesreerers et teb e st et ebasesesssassessassnesstesnssreseomerese sessessssensasoressns sressasonsors
MESSAEE LIDIAIY oottt st e bbb bbb s bbb b s s et
PTOIOCO] GIAMITIAT .oooouvievieeeestetrtstiraseee et see s esetetsectesesestanseasestasstssosassnsenssssstenssasaseseresens snsenserassassestess

o TESUSCAMIOIAINE . oerve ittt s s e bbbt st
» 13 R8RS comemmoremerroronorrromcacorooramecoesormormo o o oG OGRS

GrAPhIC INUEIACE vttt b bbb s bbb b e s e s s e
INIEITACE PIEPIOCESSOT ..oevvucmemiiniiiniisereiteminsee bbb bbb e s b ba s sb s b st bbb s st en s s s sse b ben st
COAC ASSCILONS evecuverreeerereneesserasestosestsesssessesstotstntsasssnsessiasesessssnsasassanns sasssssasssssssasossssssnsasentasessassssess oo
CONCIUSIONS .onvovveveveeeeecseectesesssssess s sssseesassasaesesasntnsassssasnssesessssasassesesnsass sessenssasssnssesssesasasasnsesnsssesssssssssases
GENETAl ODSEIVAUONS ...oviveerererreeeseesteseensesestsene st esssssasssnsssseseserassasasssaasessasessas stesssasanssosansansasenssessansontes
DYNAMIC SITUCIUIC .ovseveeeueiiieestenntise seresssessstans et tst sttt s asaessas s e sssentesscssssstsnstossnsassssusssssssreansanesn
PIOCESS SWUCIUIT ..ooitiieiis ceeieetiercitecs it sscsnsnessesesesmssnonssssassssassssnssessasansarsansessasesassessassensessessessesseseenssssoss
MANZEEMENT STUCIUIE o.eeeiee ettt cs et ee s esetetsesaes b e s s et st sttt s se st st saesssassen s bsatsbnassenes
COMMUNICITON SITUTILTC wevotivieieecerireeceierescscsesnseseeesrenscosascsesesssssesssasesasssssessssasesessssses siesesconestseesssssssos
DUSITDULON .ooiiiiiieet e irieeeit et eecereeress e saesae st srsssaesaeseessasaassast sussstonsansesass sasersensessessasasaeisbssneessesasosesnssssres
Sugesuons fOr FUITe RESSAMTN ..ottt eesensssasasesane et b sese s sess st seacmassesesses crssessens
DESIZN EXIENSIONS ...ooiiiimiiiiceecincntitir s sttt seses oo st satms st sbess st sae e sbsbe st st sbesas s sesaens st arbensbssssraran
Related High-Level Servicescooooeecvicinninnn.. teveeestetesenetereeste s st arantete e be st aaeaebe e eas st saeeR b batsassnennen

. Semanucs and FOmMal DITECUONSoociee et ettt caesesseeeatessae et e st essesssatasraesse sessesessesssassnesens

Distribution and Decentralizauonoceveeveeciecenene. teesteeeneesesrernrteshreaeraaereeastesenns e sannnaes s eheenreaaeanarn
134823 cooomommaromommenooo oo o e O T e T P D X XX EP GGG GO0
FOrMAT DESCIIPUON ...ttt cecs it ceeme e se st crems s s e saer ot sebas b sbebabesusbasras st st s s e

Characterisuc Theorem

..

FOIMNAL SITUCIUIC .ottt e cve et et e saaesbesesessasesesbbests susresassnsesnntsenssessasens or srsbesssessensrsanen

Core Immutabic Relations
Denvative Immutable Relations
Core Dynamic Relatons
Denvative Dynamic Relations

...

..

..

LERAL SIUCIUIES coiiriiiii ittt etstess st st s tetants soesessestesatassassssassbasesstesasarnss st sratonssssosasesasnsaseessens

Notational Convenuons

...

Immutable Relatons
Mutahle Relatons

...

...

Hierzrchical Constraints fen ot eseeatasassbeere st ot s ssatser et e seh e sRe et sa R sherReRsabsesatasaans Seseessnenareatesseenan

Constraints on View Strecture ..

Opceranons on Structure
Auxilianes ...

..

...

..

COME OPEIBUONSoereeeertenre et seeeesesevessoesesesesassstss sonmssesssassnsas s sessosssssessssssasassasassesssmssossessssans

HPC Pnmitives

Soundness and Compleweness

L S T L LT LT T T P P P T P PR PPNy

Soundnessoooiieneen
Completeness

Biblicgraphy ..o

vii

P e ee e et ee et ea et iaiiitentne nretestareteerenestetntet estccasrttsescoeteacacnectaseietstesrarecranteeated coeuTossritecotiantann

96

97
103
103
104
104
105
105
105
106
106
108
108
108
108
i08
109
110
110
11C
11
112
il3
114
116
116
118
118
129
121
121
124
124
125
123
127
il
128
128
129
131
139
146
146
147
149

List of Tables

4.1, Relation 10 the ISOMOACT oo errse e st e esae st asessaesuesusasassaanssestessesnessessonsassessesaesnbs
42 Communization OPCIALONScccoereeeciiririnciiiens e strisitsanmsisssssssssessies tssssssssssssstessssensasssssasssssesssrses

4.3. Configuration Operationseoveeuerierersiniesrosnenns .

viii

...

List of Figures
Sinsyells IFREINE amooomncom eI O oA A O KOO0
SIMPIE CHENLANA SCIVET ittt sa s e b s s s ha e sa et n s snae st e
[Aea e @l IFRERIES comommamommomrrmomemrmerm e rrroeeorememeeaaaoeare T O COXRRO
Muliinrocess CRent @nd SECIVET e et e st sre e e ss
Two Representations 0f @ SMall OBJECl ...ivininieinccenniemisersenninesisenseisesis st ecsesssscssassssssasssosssnsns
A NO-HICrarchical SUUCIUNC .coviiiec ettt ssccsete e s sasb st st st s aene sbessssssserentons
Three AdJacent DOMAINS ..c.ooviviiicieiiiicies et s s ssr s e s s st ssssstsins bessssssesesssnssessssses
DOMAIN WILH ARENL .ttt st st st s sas s b s s s s as sa e rs e et s s sm st as sesenessnnnones
MUIUDIEXEA SEIVET .ottt st baeas s a b e as srs s s s a s samsa shssa s s s s ba s e snre s ses
MUILCASUNEoorvoveeecrcreeectr s s ceseer e sas s s ssb st bbb s s s bt st ot s 4R bbb s ass s b sen b e s snese b st oba o

1.1.
1.2
1.3.
j.s.
2.1.
2.2,
23.
24,
25.
2.6.
2.7.
28
29.

2.10.
21
2.12.
2.15.
2.14.
2.15.
2.16.

3.1
B8
4.].
42
4.3.
44.
4.5.
4.6.
4.7.
48
49.

4.10.
4.11.
4.12.
413.

5.1
52.
53.
54,
55.
5.6.
5.7
S8
59.

5.10.

61.
62.

Clutter in a StNct TIEC cvvvvvviveveeeiee e

CONNECT ANA DISCONNEEL 1onniririrereeeteeeeetrestetas s se e stestassesssesesesesesasssestesasesssresessesssesetesassesasasssssesesssaseseses
ARIMALE, DIC, @NA KL oottt art e et stest et saae sre e e basseaesss sosones sasassansesnsessssnasasanes
COMPIEX ANIMALION ...oovvoovorereeeereeensenseseraresessessessessssssas st se s ssssissssessns st ecses sarestsesscssensssessosssans sessscsesesees
ENCIOSE QNG DISCIOSC .oooiiiiieieieietee st s e seeeaenssesasessesasestasesessasesssssss ca.sessessessassssansseenessstansst ot cosmane oeent
New and Delete ..o veverrens Ceeeteeresissessesessestesststesaseateraetteaaseresanesaartsestateressennens
Invest, Abdicate, and Depose ... e et sasreneas sesiens
SPHCE (BEIOTE) .ecoiiieeeeceeteteee et st cs e ettch et ere e st aeaes et stses o sestats < eesessotesbusesereesesssssseosasatanasssseneasasessos
SPHCE (DUMNE) ettt eseneete e st eresensss sresssssncas sessm seon consbass et eseasensenss st ssesseress ot s suessesssensassasssns

SPLCE (AIEr) .ot cnseeces e

RODUSE, OPAQUE ADCRL coiiiieie sttt ea et st e beere e resatesseraen e st e smen st an st eneeses sasenaneasstseasasaten
POMICY FULED ettt et i e sn s aeses e sea e a s s b e ses e ben s st e ens
SIMPIE CHENL ANA SEIVETouceieieeiecrerinerenesnesiesesesesssssesessssnsssasmssasanse stsersesasssssestsesenensenss st st atssssmensseses
Circus Replicated CLENTANG SEIVET ...t ssnre e s st e sesas s e st s e sesen s esnsssassesesasoss sessans
SIMPIE CRAIN Lottt et e s et s se s e e s o e s e e ee et st st e e s s m et e e et e

Complex Chain ..

Muluple End-to- F.nd Pccrs ..
Muluple ENG-10-ENG CRAINS ..ocveiiicecrrereereet et ercssr st sesssssscvsesssssssssssassaesesssssssssnsesasasssenssserten
Onentation RELAUVE 10 ODJECLSocoviiercieteteiesterseriaeccee e s s sseseseeses s e e ssssesssssesssssssstesessssssnssssssasssesss
Onentation Relative 10 EXIEMAL VIE'NS wo...oiiitiietteeeecetetceteenr et seae st s asets e sressnssssssassssnssnans
Onentation Relative 10 INEMA! VIEWS ..ot cerscsesnesesesssesensasesssessssestensasee o srasssscsmssssasssnens
TAP ON A PAN ...ttt secsetei et st e et a st s sa s et et e en s esshs et esta e s e aa e seseens s enebnsa bt et ans
REBECUNG Path ...t et ss s tesssass st v s sserans st s s e s sa sassssssnsss e matasssssnsssesbe sesmnn
TOIVIRE CYCIE oo st e as sttt sts st sessasstas stes et as babensasesensasssrssbessssneas eeeresnennes
Complex Cycle AUE 10 MUIUCASUNRcocverueretecronneneessssosasasssssesssssessessssssassssasssmseses scssessess nascssasessces

Unwanted Plumbingcocciverneceneieee e e e

Complete Splicecoovevcereanrccnriense e

INCOMPIELE SPLICEcooiieire ettt et et ees e e aes s sse s e ces s ta et st st s erstesete e asess s santassanssnans

Unsplced Leaves ..

Hidden Access o Global Fﬂc Scmcc

Client- Server SYmmenyo..oeeececeeciens

eectsetescecutocncatate et osstacsene stessacsnsntansnn

Client Contacts Swatchboard

ensrecoorsnacannsnes

S=.-hboard Commurucates with Client

CLent-Server SPUCE ESMDIUSNEAo oot ee e e ere et see s et e sssaesasssas seoes et sesan s e

Parallel Edgesin the Dual Grapho

10

*
)

19
20
20
21
23
24
24
25
26
26
27
21
28
28

29
35
39
43

47
47
48
48
s
52
52
53

b))
5
63

65
65

83

6.3, Breaking Loops through EVETSION ... st ssess s sessaes e sssesans 83
6.4. Hicrarchical View OF EVEISION ... ccoivieieeeremnicnnanesenssreensessssesesssoscostorsaseseasssansonsansssrssseseserssossesses 83
6.5. Nultiple SUPCriOr DOMAINS ...c...oeveeisecteciieisesrssens e enssiss e ssssiessssrsssssasss et sssssasse - sbseassesemssssecsssssssesses RS
6.6. Supcriors 1501ated At the ROO! ...t eseisis e sisesess s sssesssessnsssnas 85
7.1, Kemel SOftware SHUCIUTE ..ovivr cevnvreemnines covesessaenrcssesesnees et ettt n e anens 95
7.2, Principal Database Linksccoevvverenee fteet fereetsiesesseteessererstesat st es s et enth s e s e h et ebes s s s shbeerabebabenneretranes a6
7.3. Binding-Justificationi Graphcccveevvirens et ereL e et b et ses b eae et sentRae Sbebeesetetessessestes stnsrssaeses 98
T4, TYPICAI CYCHC PAUN ..ottt esiesreseresisesets cotecsisnessesnesassssmsssasssesasscssssssssnssssns st srsssssssssssasassastases 99
7.5. A Resultng Self-Justifying Binding OO DA DX XXX KOO CL X0 100
7.6. Binding AddiBON ...cocvivevcrenecenrieneenercenene e ceisaned U ——— 102
7.7, BINAINE REMOVA ..ot ot esstensissre et stasastsesansssssssssess senchsnsssessss e ssessstansasassssassessosssesss sansnnse 102

Chapter 1

Introductior

»~

1. Introduction

A thesis wits a long tide snch as Hierarchical Proces; Composition ard ¢the Dyncmic Maintenance of
Structure in the Distribrted Environment is either very wics ranging or narrowly focused. s thesis is a study in
depth. rather than breadth, of cne method for ormanizing larje, distributed programs. The eruphasis is on structural
or archiiectural 1ssues in distributed software, especially interactions involving change, protection, and diswibution.
Tte major contribution or novelty of this work is fouad not ir the organization method, but in the detailed
consideration of how its features interact with each other and wit®: the environment.

This irtreduction addresses the questions "what”, "how", and "what’s different”. Section 1.1 discusses the
kind of programs under consideration. the environmen: in which they run, and what we want to do with them.
Section 1.2 describes the basic features of the organizational method (HPC), and Secticn 1.3 describes how this
methou differs from a variety or releted systems.

1.1. The Problem Area

This thesis studies the structural implications of one method for structuring large, distributed programs. As
neither the method nor the problem it addresses are relevant for all programs, here we describe the computational
environment, the typical progra~., and the type of operations on programs we are addressing.

1.1.1. The Structure of Target Applications

The number of large, distributed applications is gradually increasing while the set of wols for structuring and
managing them is not. Here are selected, real applications and some of their relevant structural properties.

Complex productuon automation software is becoming common in industrial plants [Dou84], (Ran83),
(FHH87). It is characterized by a hierarchical structure with well defined communicaticn patterns between nodes,
great heterogeneity of computercontrolled processing and handling stations, and a significant degree of dynamic
reprogramming of statons on the fly. There is also less frequent reconfiguration to add and remove stations and to
modify their groupings; dunng a reconfigurador: most of the plant is in continuous operation. The upper levels of
the production avtomation tuerarchy interact with independently mairtained and administered suites of management
and engineering software.

Many of these characteristics are present, but less pronounced, in process control software for industrial
applications and scientific instrumentation. For example, GPIB instruments are remotsly programmed for each
experimant or test within an experiment [IEE75), [LoA78), [MuJ78), while space probes msy t= reprogrammad in
flight once or twice in a year [LMW86). A scientific experiment might be organized into & small hierarchy with
several instruments controlled by laboratory minicomputers at the bottom, and the labp minis, a database iachine, a
numenc proc-.sor and a display workstation at the next level.

Collavorative network services are another class of dutribeted application. What a clizal pereives as 2
unified logical se.vice may be implemented as a dynamically varyirz coliection of peer saivers. Tue DARPA
Intemnet domzin name service is a well developed example of a collahwrative service (Moc87h), (Moc87a). Ths
actual servers are independenuy administered, and none of them orovides complete servics. Instead they provide
service only for pieces of the domain name space and refermals W cther servers with adjacent pans of the name
space. The domain name service can be dynamically reconfigured 10 change the pastition of the n2me spacs amcag

|

L%}

servers, and to change the degree of replication of given servers, witiiout affcctng the service provided. As each
server 1s managed autonomously, configuration is a cooperative ang iicremental process. The Xermy Clraringhouse
and Grapevine services are cther, earlier, examples of this kind of collaboration [SBN83].

A significant class of distributed application emphasizes robustness and :be ability to survive failures by
recognizing failures and taking correciive action. Such actions often change the operations of th- ap-licaton. This
is a more general approach than convenuunal fault-tolerance 1n which failuces wre masked and ide «y have o0 effect
on the application. A classic robust application is distributed network routing as impiemented ‘he ARPANET
{MFR78), [MRRS80]. The individual packet switching nodes collaborat: 10 recompute the best rout © ‘om onc node
to another as nodes and links fail and recover, and as links become raore or less congested. (Here we are
considenng the internal routing algorithm as the application, rather than th: service provided by the ARPANET.)
This examole differs from the domain name service by being centrally adr .nistered, but shares the property of
having long-lived and clearly defined communication patterns Letweei coeperating peers.

Work in distributed problem solving has stimulated a wide rauyc of relevant progrem structures’. Contract
net systems are a good example, having been used for distributed tracking of vehicles within a geographic area
(Smi78), solving heuristic search problems [Smi80], and factory automaton [SEW88]. A contract net system is a
dynamically self-organizing program for allocating work to a set of processing nodes. A node breaks a cemplex
task into several subtasks that can be processed concurrently, and requests (usually all) other nodes to bid for a
contract on a subtask. The requesting node evaluates the bids received and awards one or more contracts. A

contract net is the graph of contracts that specify how the resporsibilitv for completing a top-level task has been
broken up and distributed among nodes. Contract net systeins smooth'ly adapt to varying loads, automatically
migrating nev’ processing to the nodes with idle capacity. They organize conperative activily among autonomous
nodes. Robustness is provided by periodically reissuing reques:s for bids if a wsk is uncompleted for whatever
reason.

There are also obvious military appiicadons under the broad heading of command and control systems. A
combinauon of satellites, airborme pladorms, microwave links, and ground mobile packet radio networks, operating
under conditions hat encourage frequent loss and reconfguration, provide the data communication layer for
military command and contrel activities. Applications, as well as the underlying communication networks, must
support reconfiguration and continuous operation.

To summarize, the tyrical application under coasiderasion has most or al of the following characteristics:

) It displays a hierarchical structure where a furctional unit ui one evel is implem=nted as a collection of
cooperating units at the next level down.

. It has long-lived, well-defined communication patterns defining the interactions between the siblings at a
givea level.

. Iis components aie loosely coupled, able to do s “aificant work without an immediate response from a
neighdor. They are often organized as functionzl pecrs, rather than master/slave or clienyserver.

' 7 7 excelent introductory survey is [Dec871.

[

. lts components represent active computationa! elements, like processes or tasks, rather than passive objects,
like code modules or data files.

° Parts of it are managed autonomously so that both computation and administration are distributcd.

. 1t 1s robust and adaptive o the changing conditions of a distributed environment.

1.1.2. Dynamic Maintenance of Structure

Distributed applicasions emphasize change. Adaptive programs are expected to change not only their
behavior, but their internal structure, in response to new demands and environmental conditions. A long-lived
application may be expected to run continuously for longer than any given host machine or software version will
survive. Failure, migration, reconfiguraticn, and changing requirements all may force changes within an

application.

The interactions between applications are subject to change as well. Stable distribated services usually have
dynamically changing clients. In a complete distributed processing system, complex multiprocess programs are
manipuiated even at the highest level, where entire applications (i.c., jobs) are introduced and semoved over the

lifeume of the system

This *mphasis on change is a Jenarture from the conventional environment, where the pieces of an
application a;:d their relationships are specified statically and relatively easily. Controlling and constraining change
is a majo: technical challenge that confronts distributed programming. A static (or compiled) description of an
application's structure, iis distribution across host machines, and its interactions with other applications is
insufficient. A framework for structuring large, distributed programs must also provide operations that modify
applicauon structure during execution.

. In genera!, maintenance encompasses functions such as replacement of failed components, compensation for
paruitioning, upgrading components to more recent softwsre, and reconfiguring an application to handle more
or fewer tasks.

. The combinaton of autonomously administered components and dynamic change requires runtims access
coatrol 10 ensure that only authorized pieces of an application are cxamined or modified. The same
restriclions are necessary to ensure that different applications do not interfere with one another.

) Performance and engineering issues dictaie consideration of migration or relocation of an spplication’s pieces
to accomplish load bzlancing, exploi locality, compensate for loss or gain of physica! resources, and so forth.

. Every complex application will require some formm of siruciral debugging to supplement conventional
debugging of individual components. Debugging may ke the form of examining the spplication’s current
structure, momtonng the communication between components, and making temporary alterations. When
bugs are found, the mainterence procedures allow the necessary repairs.

1.13. The Distributed Enviroomeut

There is 2 contnuum between the cxtremes of centralized and distributed computing and no clear boundary
can be drawn between the two. Indeed, much work has been invested in supporting the centralized behavior W
which programmers (and paying customers) are accustomed using ever more widely distnibuted hardware. Remote
procedure calls, nev<ork file systems, atomic sctions, and even network-wide shared memory are (not always)

successful attempts to mask the distribution of the system, or provide network transparency.
However, we are interested in the distributed exrreme of the contisiuum for several reasons.

. Extremely distributed systems have several clear, intrinsic chu acteristics. Primarily, their processors (sites,
hosts) are asvachronous, and subject o independent failure, T.ese properties have significant impact on the

software that must run on them.

. Distnbuied systems are often (but not intrinsically) divided into awtonomous regions for administrative
reasons, and composed of heterogenous elements. Many systems can be temporarily partitioasd inlo
subsystems able to communicate internally but isolated from one another by failures.

. Beyond a cerain physical size, it is no longer reasonable, even if possible, to mask distribution Instead,
distribution should be made explicit in order to exploit locality, both vhysically and functicnally.

. There are definite physical and engineering limits 1o masking distribution. For example, the speed of light is
already a signiticant factor in the latency of satellite assisted communication. The availability of services that
depend on simultaneous access to all copies of heavily replicated data decreases rapidly with increase in
replicaton. Sofiware that accounts for distrita.on explicily may scale, while systems that depend on a

centralized environment will not.

3 Extremely distributed systems can not make the closed world assumption common to centralized systems,
where all the interacting pieces (programs, modules, applications, client, servers) can be described all at once
and in one place. Instead, they must assume an open system, allowing new pieces to be added o the existing
framework.

. Distributed systems must admit dynamic structure, so that pieces can be added w and removed from the
system at different tnes and places.

The ARPANET and SATNET [JBH78) wide-areca networks and their anached hosts exemplify distributed
environments, while packet radio networks [JuT87], [KGB78] and the NASA Deep Space Network [Yue83)
reprecent some extreme cases. However, the characternistics at the end of the continuum describe distribution
independently of hardware issues like relative speed, geography, and cost. The blackboard and contract net
program structurss used in some artificial intelligence work yield extremely distributed software by our criteria,
even when implemented on centralized hardware. Therefore, we will treat the distributed environment as a
programming environment, no matter where it is found, rather than a physical environment.

1.14. Goals
This thesis has three general goals:
° Develop a structural representation for target applications.

The representations must be adequate 1o describe any snapshot of a targe. application. it must allow for the
application features described in Section 1.1.1. This will make the transition from structured design to implemented
application direct, and therefore fast and easy.

* Provide operations o manipulate structural representations during execution.

These operations must provide sufficient mechanism o implement the dynamic maintenance features of Section
1.1.2. It must not be possible to create illegal representations from legal ones (soundness). and it should be possibic

to create any legal representation (completeness). There must alsc be a practical method for implementing the
operauons and making tiiem available to application designers and managers.

. Identify specific environmental influences on application structure and management.

Independent failure, asynchrony, and autonomy have pervasive effects on the organization of an application. These
effects will be reflected in many extremely distributed applications, whether they use our particular representation or
not, and we seek to identify them. In the context of our representation, the environment oftens limit our ability w
express or guarantee desirable propertizs. In other cases, ig suggests a unification and simplification of several

features.

Many interesting topics in distributed systems have been deliberately omitted from discussion. This thesis
does not do many things. It does not formally define processes or active computation. It does not develop a formal
model of concurrency. It does not provide a new design methodology. It does not promote new programming
language concepts. It does not provide a performance model. It does not schedule processes. It does not develop
new commurication protocols or network architectures. It does not manage resources. It does not mask failures. It
does not serialize application operations. Most of these issues are independent of any form of program structuring
and represent services that can be provided by host facilities beneath the system to be described or by utility
applications above il.

1.1.5. Thesis Outline

The remainder of this Introduction ske.iches the HPC apprcach to structuring applications, based of process
abstraction and explicit composition, and compares it to related work. Chapter 2 introduces three of the four
exploratory themes cf this thesis: protection and control structure, communication structure, and non-hierarchical
structure, and illustrates thc HPC operations for run-time reconfiguration. The interactions among these features
and between them and the environment are noted throughout the following four Chapiers.

The HPC protection svstem defines what an agent is permitied to examine or change. Chapter 3 shows how
we exploit nch and explicit process structure to define meaningful domains of protection, and how control is
configured using the same powenul tools as communication. Some major benefits from this unique protection
system are direct association of protection and management, arbitrary user-defined access control policies, and a
simple mechanism for extending or modifying the built-in HPC system facilities.

In Chaper 4, we focus on interprocess communication (IPC). Starting with simple one-1o-one
communication patierns, HPC incorporates multiple parallel channels and arbitrary many-to-many patterns. These
complex interactions are all expressed structurally, instead of using addressing or other properties of specific IPC
mechanisms. HPC suppons heterczencous IPC mechanisms with differing behaviors, while presenting a single
mechanism for the configuration of communicating processes. This prompts a division of communication functions
into logical configuration, transpont implementation, and actual commurnication.

A purely functional approach o composition involving strict trees and explicit composition is impractical. In
particular, access 1o global services is clumzy and potentially dangerous. Chapter S demonstrates the clash beiween
transparent abstractions and purely functional compositons. HPC resolves the clash by aliowing direct nen-local
communicauon between any two points in the hicrarchy, while preserving the appearance of a strict tree.

The target environment is subject to partition, and HPC permits highly available applications that continue o
run with reduced resources while partitioned. Because process structure may be freely modified during partition,
inconsistencies can be discovered upon merge. The fourth exploratory theme is the reintegration of applications that
have beer modified inconsistenty during partivon. Chapter 6 identifies all possible HPC merge inconsistencies, and
shows how they are either avoided, automatically reconciled while preserving the pre-merge behavior, or reported
to the user with tools for application-specific reconciliation. The techniques we use for avoiding inconsistencies are
not specific to HPC, and provide useful lessons for building other, highiy available, reconfigurable systems.

Chapter 7 reports the prototype HPC implementation and early experiences wiih it.

Following our conclusions in Chapter 8, we present a formal description of HPC structure and the operations
on it in Appendix A. Soundness and completeness results are related te HPC structure considered as a formal
system. Based on our experiences, we suggest investigation of new laws of distritution and composition for strictly
hierarchical formal systems such as CSP and CCS, in part to provide sharing that those systems do not support.

1.2. Hierarchical Process Composition

The process abstraction has been used successfully as a tool to structure complex systems since the late
1960's. The THE {Dijé8) and RC4000 [Bri69, Bri73] opsrating systems with their layers of cooperating processes
are imponant early examples of such process structuring [HoR73]. When considering how to organize a target
application, consisung of loosely-coupled, active peer elements with well-defined communication patterns, process
structuring should come to mind immediately as an appropriate choice.

Brian Randell has ernphasized the additional structuring principles of abstraction and composition in his work
on reliable software.
Thus the sons of structuring that we have discussed so far can be described as structuring within 2 single level of
sbstraction, or horizontal siructuring. ... In choosing to identify a set of levels of abstraction ... and to define their in-
terrelatonshups one 15 once again imposing a structure on a system, but this is a rather different form of structure
which we will refer o as vertical structuring. Thus vertical structurings describe how components are constructed,

whereas horizontal structunngs describe how components intsract. {Ran79)

He also described the degree to which the logical structure of an application intended by the designer is supponed
and enforced by the underlying system as the degree of acrual as opposed o conceptual structure.

We are motivated by distribution rather than reliability, but the concepts of process structuring, abstraction,
and composition are the basis for Hierarchical Process Composition (HPC). In Randell's terminaiogy, we will put
actual structure into distributed programs, with explicit vertical and horizontal structuring.

Our focus is on process structuring and how complex applications can be built from smalier ones, and not on
the internal behaviors of individual processes. For this reason, the definition of process is not critical o HPC. Any
favorite definiuon (fnite state automata, infinite sequences of primitive events, or state vectors plus threads of
control) may be used. The only things we need to know about any particular process are its name and the interfaces
where it may interact with other processes. These external properties define the process abstraction.

Horizontal structure defines a graph of processes and the interactions between them. We often call the pattern
of communicauon in tus graph the composition of processes, because it defines the behavior of the overall structure
as a funcuon of the behaviors of its components. Vertical structure groups related processes together. By extending

the process abstraction 1o groups of processes, verucal structure provides the hierarchical structure typical of a
target application. By making the representation of horizontal and ventical structure explicit, maintaining it during
cxceution, and forcing applications to reflect their representations, actual structure can be enforced using the

mechanisms provided for dynamic maintenance.

1.2.1. Explicit Communication Patterns

To gain the greatest actual honizontal structure, we must make interfaces and the bindings between them as
explicit and visible as the associated processes. We will consider only communication between explicitly identified
partrers. Each pair of partners interacts via a communication medium, whose characteristics do not concem us here.
(Examples are TCP/IP connections. semaphores, shared files, remote procedure call bindings, wires, and UNIX?
pipes.)

A process has a fixed set of communication interfaces, one for each potential partner, thai may be thought of
as endpoinis or sockels for communication inedia. A process’s interfaces are distinguished according (o the role
played by the partner: kemnel port, logging, auditing, standard input, standard output, mailbox server. A connrection
is an instance of a communication medium joining two interfaces. We identify connections by the interfaces at their

ends.

We will now consider two small examples. Take a typical UNIX pipeline of processes A, B, and C. Every
UNIX process has a conventional abstraction: three interfaces (file descriptors) for standard input, standard output,
and stundard error. In a pipeline, the output interface of one process shares a UNIX pipe with the input interface of
the next process in line. One process views the pipe as a sink, while the other views it as a source. The remaining
interfaces are connected to the termmal device by default. In Figure 1.1 this pipeline (without the terminal device)
is shown in the notation that will be used throughout Processes are drawn as shaded rectangles; interfaces as small
labs on processes; and connectons as heavy lines.

| it m——:f ()™

Figure 1.1. Simpie Pipeline

The example illustrated in Figure 1.2 uez; remote procedure call (RPC) bindings rather than UNIX pipes as
the basic communication media. Processes FileServer and NameServer each has an RPC interface, corresponding
to its external entnes, 0 provide its service. Process Clienr has two interfaces, comresponding 1o its stubs, onc 1o
obtain file service and the other 10 oblain name service. Connections between interfaces indicate RPC bindings. It
is imporuant that Clien:’s interfaces are disunguished so that an appropriate server can be bound to each set of siuus.

T UNIX 11 8 regustered vademark of AT&T.

' Cannide. channei idenufiers in [Bla8)}

E Client NameServe:

FileServer

Figure 1.2. Simple Client and Server

We are not so cavalier about the semantics of communication media as might appear from this introduction.
Later Chapters explore the integration of muluplexing, multicasting, and bundling paths into this initially one-to-one
model of communication, the implications of requiring explicit partners, the distinction between physical and logical
media, and the degree o which several common interprocess communication mechanisms fit the HPC model.

1.2.2. Nested Groups of Processes

When two multiprocess programs are connected, the boundary between them is lost in the compositon. Tc
retain the abstract grouping of related processes, we must incorporate vertical structure. An HPC odject is & named,
active entity with distinct interfaces, just like a process. However, an object is implemented by an explicit
composition of processes that can be described and manipulated in the HPC sysism, while processes are
implemented by some primitive behavior that can ot The boundary between the extiernal abstraction and the
internal composition of an object is a shell.

Objects obvinusly capuure nesting or verucal saucture at one level, and it is nawral w0 extend the process
abstraction by allowing an object anywhere a process could be used. This leads immediately o a hierarchy or tee
of object . 3ther than a single level of clustering or grouping. The leaves of the tree are real processes running on
some machine. All the nodes of the tree can be treated like real processes, but the interna! nodes are collections of
abszact precesses, somz of which may be real processes and some of which may themselves be collections. Near
the 1op of the te2 we find abstractions dealing with aciivities of %oad scope and complexity. Near the bottom are
abstractions with simple bebavior and mited complexity.

A UNIX pipeline car itself be used as a2 componert in a larger pipeline. Thec command w1 B | © | Oy
defines a pipeline of two components, each of which is a pipcline of two components. However, in UNIX this
logical nesting is completely lost by the time the command is impiemented. In HPC we represent the nesting
explicitly as shown in Figure 1.3. A shell is drawn as a rectargle surrounding the contents of the couresponding
object.

10

" - T

! (AlB) (C|D)

1 4 A o B Ak ~ C - ‘r) e
: (] e (] e] 1) | et {] o] }
| = = S =

f = t3-

Figure 1.3. Pipelinc of Pipelines

By encapsulating our complex client and server programs as objects we can readily separate their intemal
process structures from the interacuons between them. Figure 1.4 shows how the Clienr and NameServer of Figure
1.2 can he expanded intemally to more complex structures without affecting the interacuons between them.

% Chenm NameServer
(G L] AN1 N2
{ ~ EJ—'(J-—-L)-HJ: [e] _
| | R |
T N3 d NG
C

() ,j:ileServer]

Figure 1.4. Muluprocess Client and Server

Hierarchical organization s ¢ natur (- wm¢ of applying the principie of abstraction generously. It is a
good method for implementing complex i+ v.¢, be wuse it closely appruzimates the structure designers actually
use in creating thewr applicauons (Secs: .« - '} A e there other, perhaps betier, ways (0 organize complex
applications than to force everything into hies. . €s? Qur response 15 “probably not.” To quote from Simon:

The fact, ther:, that many comples sytievas h. & mearly docompossbie, hierarchic szucture 1 & major {acilitating fac-
tor enabling w1 1o wnderstand, to des:nbe, W ren io see such syswans and ther pars. Or perhags the proposiuon
should be put the other way round. If tvze ¢ imponant systams in Uy world which are complex without bewng
Rerarchic, they may 1o & consid ‘able exva escape our obsarvaiion and our understanding. Analysis of their
behavior would involve such de. iled knowledge and calculaion of the interactioss of the clementary pens that «
would be beyond our capacities b memary or computaton. {Suné2]

11

However, strict hierarchies can not realistically express the kind of sharing and access to globa! resources
necded in a real svstem. Unless the mathematical elegance of strict functional composition is the sole criterion, this
limitation must be overcome. This issue is explored in detail in subsequent Chapters.

1.2.3. Active versus Passive Hierarchies

Even after a decision to use hierarchical grouping as a method for crgamzing complex software, there remains
a choice between active and passive hierarchies. In an active hierarchy the intemal nodes in the trez are processes.
All interactions with a subtree are acially interactions with the process at its root. In a passive hierarchy the
internal nodes of the tree are abstractions. All processes are at the leaves of the tree. In both cases we assume that,
to obtain the benefits of the hierarchical discipline, a node can be conrnzcied only to its parent, its children and its
immediate siblings.

To some, active hierarchics may seem like the natural choice. No unfamiliar abstract objects are introduced,
it is clear where control of a process group resides, and the process hierarchies supported by most existing operating
systems {c.g., UNIX) are of this type. However, they are an inadequate solution to the problems we are rying to
solve. Let us examine the obstacles active hierarchies would present

First of all, an acuve hierarchy is insufficiently gbstract. We really do want to introduce those unfamiliar
abstract objects. It is very important to distinguish a complex application from the processes that happen to be
implementing it at the moment. There must be a name or placeholder for a subtree independent of its root process,
or else the root process can not be transparently replaced by another.

Second. acuve hierarchies do not extend the process abstraction well. A subtree can not cleanly replace an
arvitary process. Replacing a leaf with & subtzee, or vice versa, is clean, but replacing an internal node (subtree
root) with a non-trivial subtree always destroys the relation its children had with the internal node, and genesally
desoys the sibling relation among them as well. Permissible connections depend on the sibling relation, so this is a
serious problem.

Third, a single process at the root of a subtree represents an unacceptable potential for single-point control
failure. Redudant control is cntical for some distributed applications. There must be a way o spread control
responsibilities {or a subtree among several processes, or at least ensure an automatic promotion to the root for
alternate processes in the event of the failurs of the curreat root.

These obstacles can be overcome by the introduction of something akin to our abstract object, so that active
hierarchies are now trees of objects, which might have a singie process or an active hicrarchy within them. But now
the active hierarchy has become a passive hierarchy! Provision for redundant control requires even further
extensions.

1.2.4. Dyasmic Process Structure

A sutic snapshot of an application is intrinsically simpler than a specification that describss how the
spplication is 0 adapt and evolve over ume. In an open system, future components (and the future policies
goveming further changes) may not even exist when a snapshot is taken, so a fully general specification must be
open-ended in some sense: i can not encompass all future configurations of the application. For this reason, we use
8 procedural. rather than declarauve, description of change, and define the mechanisms by which an appli.zcon may

12

be modified, rather than the policies governing the appropriate modifications. In fact, we will have no completely
stauc representations. All application structure is described dynamically; even a nominally static structure must be
buiit incrementally from an empty structure using the transformation operations.

There are six basic operations on process structure in HPC. These are create and destroy process, create and
destroy connection, and create and destroy shell. There are no general tree editing operations such as move subtree,
only operations which create new structure, have generally local effects, and their inverses. Creating and destroying
processes cre basic operauons in most operating systems, but the other operations are usually limited or unavailablc.

There is also an operation to examine the process structure at any moment This gives an immediate
advantage over existing systems for inspectirg and manipulating multiprocess programs. Most operating systems
can provide a list of the currently active processes, but not a list of which processes are interacting with which
others. By examining the process structure, we can tell exactly how processes are interacting and what the logical

significance of each interaction is.

A (distributed) service maintains a database of the current dynamic process structure, and translates the basic
HPC operations into the necessary low-level host operations on processes and so forth. This HPC service runs as a
user program on top of conventional host operation systems, and provides an abstract .aterface for application
managers. Most operations on HPC process structure require only local database manipulations, and involve no
physical resources from the underlying hosts.

1.3. Related work

In some ways, HPC represents the last of a long perind of loosely-coupled distributed systems work at the
University of Rochester. The well-known Rochester Intelligent Gateway [BFL76) distributed operaung system and
PLITS ([Fel79) distributed programming language established a surong departmental interest in an asynchronous,
message-passing model of interaction. Two subsequent projects, Activities (EFH82) and Super [Ary81) are
specially related to HPC.

The Acuvities work is the primary starting print for HPC. The activity model provides a tool to describe the
relationships between objects involved in the execution of a shared, distributed task. A single object may parucipaic
in raany different activities and a single activity may be made up of numerous subactivitics. At the language level,
tags are used w identify the activity affiliaticn of data and messages (Hel84). HPC began as an anempt (o define, in
deuwail, operaung sysiem support for the activity mcdel. It quickly diverged, although previous work on activitics
had importan: influence throughout.

Super is an exploration of communication via broadcast source-addressed messages, and of how language
support of programs using such a medium could be provided. that parallels HP< in several ways. The Super
programining ianguage provided nested groups of pr. “2sses, together with distinguished processes to control and
manage such groups. Both of these constructs are prin “ve in HPC structural representations. Super also requires
the concept of a secretaty process (communication filie:). Such filters are frequenty convenient in HPC, but are
neither cnitical nor built in o the system. We indicate these parallels as evidence for the universal nature of the
stuctures, at least in a loosely coupled environment, as Super had no direct influence on HPC.

a1

13

1.3.1. CONIC

Bevond a doubt, the related work most closely related to HPC is the CONIC toolkit, develoned independenty
of, and earher than, HPC at University College London [KMS87], [KrM8S]. Like HPC, CONIC provides for
explicit communication interfaces and bindings, a process abstraction generalized to nested groups of processes, and
fully dynamic structure. The CONIC system implementation is far more developed than the HPC system prototype

and has been apphied o several industnal applications.

The major onginal contributions of HPC are easiest to evaluate by comparison to CONIC. First, CONIC as
currently implemented provides a single native communication mechanism, while HPC was designed 0 use a
variety of (heterogeneous) mechanisms. As a result, HPC has facilities to "type-check” communication paths to
ensure cach logical path can be implemented. More significandy, HPC provides tor explicit expression of
muluplexing, multicasung, and bundling of multiple communication paths as part of the horizontal structure 0

capture the rchness of communication media.

CONIC has no provision for protection or domains of autonomous management. Most systems that use a
general protection system such as access control Lists or capabilities, do so because they have no obvious structure
exploit. HPC uses rich verucal structure in the definition of protection domains that provide common management
for related objects. In addition, the “controls” relation, which is as important as the "communicates with” relation, is
manifest in HPC. Control behavior is subject to the sarne principles of abstraction and composition as other process

interacuons.

While both sysiems concentrate on hierarchies of processes, HPC also allows exceptions to a strict tree. This
permits more natura! ascess 1o global services than is possible in a tree. The more general graph structures resulting
from excepuons have w carefully disciplined to preserve the behavior of a strict hierarchy, while stll allowing
access between arbitrary points in the tree; it would not be practical in HPC without exploiting the protection

system.

CONIC and HPC had somewhat different mouvatons that account for some less well defined differences.
HPC has an emphasis on extemely distributed systems. This led 1o features, e.g, continued operation dunng
paruuon and reporung end-to-end connectivity without violating abstraction boundaries, that are not as well
developed in CONIC. As the HPC svstem was not intended as a stand-alonc sysiem nor as a complete one, its
relation to application processes and 10 host operating systems is more precisely defined than in CONIC. In
paricular, manipulations of rich, abstract application structure are completely distinguished from the primitive
ODCralions on sparse, natve processes and communication media. This precise abstract structure, in tum, has
suggested specific research into additional distributive laws for formal systems such Hoare's CSP [Hoa85).

13.2. Task Forces

Since the late 1970, sevenal Lines of operatng sysiem research have explored an explicit foem of structuring
for muluple processes ofien known as task forces. A task force usually consists of a vanable number of processes
performing the same or sumilar funcuions.

Onc prominent Line of rescarch stresses the independence of address space and thread of control, and the
resulung efficiencies due W shared memory communicauon and faster context switches between processes using the
same address space. The r=lated Thoth [Che82). Verex [Loc79), and V kemel [Che$4] sysiems, and the unrelated

14

Mach [YTRR7), [ABB8&] system are examples of this development. While the grouping of processes into task
{nrces (Thoth. tasks into teains, Mach: threads into tasks) is very well defined in these systems, there is litle or no
suppott for fusiher strecturing of processes in the same task foice, or of muliiple task forces. Communication is
based on promiscuous brcaccast within a group or other mechanisms (ports, links, addresses) that can not be treated
3s eaplizit, visibie Lindings.

A se~ond line of development emphasizes a object-invocation model of interaction, where multiple active
processes may servics vonc:wrent invocations of a given object. Three weli-known examples are Argus [LiS83)
Eden {ABLRS5]. and Clouds {LeW8S). Communication interfaces in these systems are defined and controlled very
clearly on the receiving side of a1 invecation, but the binding between calling and called objects is left implicit in
the pattern of invocations during runtime. Most analyses (e.g., for dearlock freedom, or for debugging) of
applications run on such systems require the "calls” or "depends” rsi-uun Getween objecis, which again suggests
that the horizontal siruciure should be manifest in the structure, as in HPC, ard not inferred from the dynmamic
behavior.

Vertical process structure is limiied to the single level of process clustering within objects. However, both
Argus anc Clouds provide additional structuring in the form of transactions that define apparently atomic activities
that may involve processes within several objects. Even ignoring the aspect of atomicity, :IPC has no coinparable
facility fur defining activities that involve several applications, perhaps overlapping with other such activities, only

for grouping applications into a larger one.

1wo important systems based on capability-controlied access and message passing were implemented as part
of the CM* muluprocessor project {[SFS77}, {[SBL77]). These are StarOS [JCD79), and Medusa [Ous@1], and both
systems allow the creation of disrributed 1ask forces of cooperating processes. StarOS focuczs on case of use and a
general capability mechanism, while Medusa stresses the effect of distributed hardware on system sofisare (Secuon
8.2.: [Ousdl]). Medusa, more than any of the other task force system, addresses the structwal issues central 1o
HPC.

Each Medusa process has a private capability list, the processes in a task force share a list, and every process
has access 10 a list of global utility capabilities. Horizontal structure in Medusa is explicitly controlled by these lists,
which are distinct from the processes that may access them. Each slot in a list can be treated as an abstract
interface, where the capability in the slot specifies the implemention. This definition of explicit interfaces is so
clean and comprehensive that the complete state of a process, including its memory pages and access to secondary
storage, 1s accessible through its capability lists. One pleasant result is that one process can take over completely for
another in the same task force either wemporanily ("buddy”™ exception handling) or permanently. Dynamic load
balancing and system reconfiguration is possible by replacing the capabilities for overioaded or failed processes on
the fly. HPC can only approximate this clcan replacement, because process state is a primitive feature outside the
HPC structural system.

In Medusa, unlike $1arOS, the vertical structuring of processes into task forces is maintined during
execution, available for debugging and monitoring. However, Medusa is a one level system. There is no facility for

* This, despite HPC's direct roots in Rochener Activities.

15

grouping task sorces into larger applications, and utility tack forces are treated somewhat specially by the system.
The same directness applies to communication; wiile capabilities can be replaced, they can not be chained,
indirecied, or sent in messages. One result is that a task force must explicitly provide for each of its users, there is
no way 1o export or otherwise transmit access to a task force. HPC provides much more powerful organizing ton!s

in this area.

13.3. Software Design Tools

Software design tools emphasize methodical development, clean abstraction, and reuseable modules. This
emphasis often encourages (or enforces) software architectures that have a great deal in common with loosely
coupled, distributed applications. In pariicular, they invariably provide nested sbstractions with explicit interfaces
and intermodule bindings. When a design tool provides active entities as a basic component, the possidle structures
are much like static HPC structures.

The SARA system is one such tool that has been used to design, raodel, and simuiate both sequential and
concurrent software (EFR86]. SARA distinguishes vertical and horizontai structure to the extent that difterent
languages are used to describe them [PeB79], but goes beyond structuring (syntax) o include a third language o
describe the behavior (semantics) of an application. Intentionally, there is no comparable feature in HPC.

There are many other software design tools with some relevance to HPC, but we will mention in passing only
SADT (Ros85}, and DREAM [Rid81]). The relationship of HPC to SARA, along with these other tools, is more
complementary than competitive. While HPC has nc semantic component, and the design tools dc not ailow for
dynamic structure (failure, reconfiguration, etc), the methodology and design-time support provided by the tools can
be usefully matched by the run-time support provided by dP(.

This match has been realized by the STILE/GEM combination [SBW87). STILE is a software d=sign sys:em
of the type discussed here, while GEM is a real time coperating system for rovotic applications. The GEM
multiprocessors are physically closc together, the software environment is qaite loosely coupled, and STILE/AGEM
allows for direct run-time support of design abstractions, explicit distribution and (limited) dynamic reconfiguration.
Because GEM was intended for specific applications and hardware environments, it does not address issues like
protection, parttion, and dynamic process creation ihat are addressed by dPC. Like CONIC, GEM provides a
compiete, native, run-time system, whiie HPC does not.

13.4. Programming Languages

Several programming languages support nested processes, il either passive or active hierarchies. A .aumber
of these languages are related to Hoare's CSP [Hoa85), either directly or by parallel develepment; ECSP [BRT84},
Occam [Ta'W82]. Plane: (CrE84], and Platon [StS75) ac four examples. Because these languages ex ress structure
directly in program syntax, they have very Lmited ~»ility to express either dynamic or persistent strucwre. ECSP,
for example, allows for dynamic reconfiguration, but all potental modul: bindings must be manifest in the original
program. Process lifetimes are Lmited to a strict fork-join discipline, so piocesses can nit be detazhed 1o run on
their own, nor can new vnes be added 1o a group once it has been created. These limitations are intrinsic to any

system that treats each appiication (program) as a closed sysiem. HPC manages applications ac an open collection
of persistent data structures.

14

While interfaces and bindings between siblings are fairly well defined in CSP-like languages, the bindiags
between processes at greater distances in wne tree are extended by scoping and visibility rules of the languags.
These rules limir the possible pattemis of communication but do not make the specific patterns explicit. (In ECSP,
the specific patterns are not even decidable in general.) A more §eriou= problein is that each process must name its
communication partner(s) directly 1o create a binding. This limits the use of abstraction, because 2 pr cecc must
have information about arbitrarily distant structure. All HPC connections are strictly loczl, which allows neorous

information hiding, and bindings are coinputed incrementally on the basis of possibly many connections.

The PRONET {LeM82] programming language is more attractive for extremely distributed software than the
CSP-like languages. It uses a separate sci'anguage (NE1TSLA) for explicic module interconnection tirat avoids the
objections raised in the previous paragraph. Modules and intermodule bindings can be created and destroyed at any
time, arJ the contents of each abstract object are managed and controlled by preciselv the NETSLA code that
created the abstract object Rich communication structure, for example explicit multiploxing, multicasting, and
bundling of interfaces, czn be expressed in the module definition sublanguage (ALSTEN).

However, PRONET ctill sufiers from a ciosed world assumption, because there is no way to introduce new
types of moduies into a running system nor any way to name or communicate with an independent program (e.g.,
contact a global service). While asyncihronous creation and destruction of modules are addiessed by PRONET,
more general issues ¢f decentralized control (partition and multiple agents) are noi. In fact, the coriro! and
managemcnt pertions of a PRONET program are implicitly single threaded and centralized, even if the primitive
prucesses run concurrently.

There are of course very many cther programming languages that allow multiple processes. The ones
discussed he-e are most relevant to HPC and the structures it can express, and space prohibits even a simple listing
of such languages. For examplc, DPL-82 [EriB2} is a language very diffeicnt from PRONET ano the CSP-like
languages that also provides resied groups of processas with explicit interfaces and bindings, but the similarity adds
nothing significant.

{"hapter 2 rierarchical Process Composition

17

18

2. Hierarchical Process Coraposition

Black boxes are good physical abstractions. They are distinguished by the sockets on their exterior panels
and their behavior at those sockets. Their internal structure and state are not accessible. All we know about a black

box is its name, its sockets for cables, and the signals it produces at those sockets.

Interesting ensembles of several black boxes are creatcd by connecting pairs of sockets with cables. In such
an ensemble, any cable may be replaczd by an equivalent one, but generally no box or socket can be substituted for
any other. Therefore, we must distinguish boxes and sockets, but need not distinguish cables.

We often wish to enclose an interconnected collection of boxes in a chassis or cabinet for convenience (or
perhaps, 1o introduce a level of abstraction). This will hide all the internal wiring that is irrelevant to user of the
overall collecticn. To accomplish this, we must have some sockets that pass entirely through the cabinet. On the
exterior, the cabinet appears to be a black box and the sockets are used as we have already described. On the
interior, the sockets must be connected to the "free” sockets of the connected black boxes.

Objects, interfaces, connections, and shells are the HPC analogues to black boxes, sockets, cables and
cabinets. The hierarchical organization of modem electronic equipment is clear: gates composed into integrated
circuits, integrated circuits and discrete components composed into circuit boards, boards composed into shared bus
modules, modules composed into computers, computers composed into networks ... At each level there is an
explicit composition of black boxes, which are abstractions of the next lower level. This is the way HPC uses the

principles of absracuon and composition to organize complex, multiprocess programs.

However, a realistic system must be fleshed out with protection against unauthorized access or interference
between applicauons, escapes from the strict object hierarchy when appropriate, and provision for a rich set of
interprocess communicauon patterns. The interactons of these additional structural features are the subject of much
of this dissertation. They are introduced in Section 2.1, and examined in detail in the subsequent three Chapters.

HPC, unlike black boxes, supports dynamic reconfiguration of both abstractions and compositons under
program control. The system provides operations that incrementally modify process structure during exscution.
Secuion 2.2 presents the entire set of fourteen HPC operations, organized by the structural features they affect

The first significant interacdon between multiprocess abstractions and the distributed environment is a
requirement for an asynchronous sysiem interface. Section 2.3 notes the clash between synchronous operations on
process stucture and the asynchrony among agents and between agents and sources of failure. By stressing
dynamic structure, we are led to adopt an unconventional system interface when compared to most distributed
software systems.

2.3. Structural Features

2.1.1. Dual Representation

Nested HPC shells define a rooted tree of objects. A tree is often the most intuitive representation for
complex applicauons, but a more general representation is sometimes needed. The HPC dual graph captures the i
deswed escapes from a strict hierarchy and simplifies the presentation of the protection and communication
structures.

4

19

The hierarchy emphasizes vertical structure, where objects are nodes and the parent-child relation defines the
cdges. The dual graph5 emphasizes the horizontal structure of a system, where compositions are nodes and the
abstract interfaces define the edges. Both interpretations of a small object are shown in Figure 2.1. (Hierarchics arc
alwavs drawn as nested rectangles, while dual graphs are always drawn using circles.) Shells above and edges
below correspond directly, while nodes in the dual graph represent spaces between shells in the hierarchy. Figure

2.1 successively highlights cach dual node and its hierarchical equivalent.

& / /I
% A // 7 {{{7/////////%’/ A . ’ A
A [s c |V Ws Uc Y C 8 | [
Z 1 . /
% 7V AU 2 it
% %V ctf-/////,f//////%
SIS IS0 S0 IS0

o O

Figure 2.1. Two Representations of a Small Object

The parent and child shells in the hierarchy are the edges incident on a space in the dual graph. A space has
one set of interfaces from each of these edges. In a simple space, these interfaces are accessed directly by a process,
and in a complex space, they are composed by a set of HPC connections. An active hierarchy would have simple
spaces throughout, while the passive HPC hierarchy has simple spaces only at the leaves.

The dual graph has a distinguished root space and the subtrees rooted there form a forest of hierarchical
objects. These top-level objects are the most independent activities in the system, generally corresponding 1o user
terminal sessions and to long-lived system services.

Every HPC hierarchy has a dual graph, but Figure 2.2 demonstrates a dual graph that can not be expressed as
a hierarchy. The dual graph ignores the hierarchical orientation, which simplifies several technical definitions and
allows a uniform treatment of composition in strictly tree-like and cyclic process structures.

! Acually. s linc graph for those fussy about graphtheoratic terminology.

. O
| D

Figure 2.2. A Non-Hierarchical Structure

2.1.2. Protection and Control Structure

The basic concepts of the standard protection model are domain and agent (or principal) (Jon79). A domain
is a set of entities and specific operations on them. An agsrt is an active entity authorized to apply a domain's
operations on its endties. In general, the mappings between agents and domains, and between domains and
contents, may be many-to-many. That is, domains may have several agents, an operation may be in several
domaing, and so forth. The protection relation is the mapping among agents, domains, and domain contents. In
conventional protection systems, the protection relation is associated either with the domains (access control lists),
or with the agents (capability lists). In both cases, it is difficult to determine the inverse mapping.

HPC exploits the coherence and locality of the rich, explicit process structure to define protection domains,
instead of using a conventional protection system that makes few, if any, assumptions about the structure of
domains. Domains are disjoint, connected subtrees in the dual structure graph. Every space belongs to exactly one
domain. In the hierarchical view, this defines a coarse hicrarchy of domains on top of the hierarchy of objects.
Some, but not all, shells delineate domains while all shells delineate objects. Figure 2.3 illusirates three domains.
(Domain boundaries are drawn as double lines.)

B —— E !
C F
D G

Figure 2.3. Three Adjacent Domains

All features of a space and all operations on them are in its domain, but operations requiring operands in
muluple domains are not included in any domain. This omission is the fundamental protection featwre, and
effecuvely confines the effects of an operation 1o a single domain. An agent cither has compleie control over a
domain or none at all. The protection mechanism provides no form of limited access such as “read only” but we
will see this docs not impede arbitranly complex access policies.

21

Operations on HPC suructure are provided through a built-in controller object in each domain. A controller
accepts control messages from connected objects and invokes the corresponding operations on structure. It refuses
1o carry out operations cutside i1s domain. (The controller docs not have any physical existience, it is simply an
explicit placeholder for the HPC system, and therefore can be made robust, available everywhere and whenever the
HPC system is working.)

Objects connected 10 a controller, and thus able to exen their control over a domain, are, de facto, agents.
Multiprocess agent objects immediately allow redundant control of robust or dccentralized applications. However,
partition or site failurc can lead to situations where no agent is physically able 10 exert its control over a domain.
The HPC system provides positive control to ensure every domain is under contro! of some agent at all times.

A small domain is shown in Figure 2.4. Domain D is a short pipeline implemented by two worker objects, A4,
and B. Object M manages the domain, monitoring and instructing A, and sending HPC commands to the controlier
C as needed. (Controller objects are drawn in dark grey.)

Figure 2.4. Domain with Agent

Chapter 3 discusses protectio and control structure in more detail, especially positive control and the user
deiinition of arbitrary access policies.

2.13. Communication Structure

Compositon is fundamental to the behavior of any system, while abstraction is merely an unavoidable
convenience. That is, raw, primitive, individual components can be composed into a useful system without the
benefits of further abstraction, while complex abstractions remain isolated and collectively useless without a way of
specifying interactions between them and within them. Therefore, it is not surprising that communication structure,
defining the possible compositions of objects, is the most complex part of HPC.

HPC supports heterogenous communication mechanisms and manipulations of multiple related
communication paths in a single operation. It also extends the onc-w-0ne communication patterns shown so far
with a gencral many-to0-many multicasting facility. These features are introduced here, with considerably more
detail in Chapter 4.

Both sides of an interface can be manipulated separately. The independent parts, called views, are basic
building blocks that can be combined in two ways. Pairs of views can be connected o form links in a
communicauon path, and vicws can be assembled into tree structures to form morc complex interfaces

Simple views contol individual communication media such as a UNIX pipe, a TCP/IP connecuon, or a
remote procedure call binding. When a view is cieated, the appropriate mechanism is specified together with any
constraints such as crientauon. For example, pipes and RPC bindings are always oriented (out/in and client/sesver,
respecuvely) while TCP/IP connections are gencrally not. Some simple view structures are:

[struczure: siple UND-sirea~ i]
—

| struzure: siple "TF F in-out)

| struczure: sirple Courier client)

We say views are compatible when their specified mechanisms are the same (and their constraints are
complementary). HPC requires that both views of an interface, and both views of a connection, be compatible 0
ensure a transport medium can be implemented for each logical communication path.

Often it is desirable to connect two objects with a single abstract medium, while allowing an implementation
using more than one physical communication channel. A physical example is a cable with multiple conductors, the
programming analogyv is the record data structure, and distributed program examples are paired half-duplex
channels, and out-of-band channels. To support this kind of grouping we use bundle views. A bundle has a fixed,
ordered set of possibly heterogeneous component structures. The bundle corresponding to the conventional UNIX

standard 1O interface is:®

[role: "D sidac,
stroczure: buc.e
| role: “swd:in",
structure: sitple UWIX-stream in
]
{ role: "staoct ",
sirocTure: sule WWk-sireas oot
]
[role: "s derr®,
strocure: sirpie (NIX-stream o

Another common requirement is for dynamically changing numbers of homogencous media. A physical
example is the trunk line’, the programming analogy is the set data structure, and a distributed program example is a
multiplexed service. This motivates the multiplex view. A multplex view has a single, ixed component structure,
but varying numbers of component views with that swucture can be freely created and destroyed during execution.
Each view represen:s a distinct communication channel.

* The reus keyword 1 introduced here 10 danfy the example. b full ugnificance will be cxplained later.

? Cansidenng virtual curcunts as the media, inniead of the wares.

{,___ .
! Chent

Server

Chent |

Figure 2.5. Multiplexed Server

The X Window svstem is a typical multiplexed service. Clients of the X Window system each have a view
with this simple structure

{ rcle: "X Winacw cliem™,
sTructure: sirple T2/ oot

while the network interface of the X Window system server has this multiplex structure

[role: "X Rndow semver”,
struccure: mUiizlex
[role: "X Woaow service”,
sirocture: sirple T2/ P immon
}
]

The different kinds of complex viaws can be combined hierarchically. Here, for example, is a multiplex view
with a bundle component, the bundle having two simple components:

[role: "two-fnctiar senve™,
structure: multip.ex
| role: "“package binding”,
structure: hardle
[role: "func-. emiy”,
sructure: sitple Courier server
}
! role: “Sne-l enim,
SLoucTure: sitp.e Courier senver

1
i

One-to-many and many-lo-many communication pattemns are a third imponant class of relationships.
Physical examples are the bus and triple modular redundancy systems, a programming example is the FORTRAN
common block, and a diszibuted program example is the contract bidding algorithm. HPC must demonstraze that
these relationships can be expressed in abstract structure, rather than physical addressing.

The multicast view is the building block for all ot: .-to-many and many-l0-many COMMUNICALIOn patiems.
Like muluplex views, multucast views are defined with a single, fixed component stucture, and component views
can be created dynamically. However, each component of a multiplex view represents a distinct medium passing
through the view, while all components of a multicast view represent a single medium. Messages arriving at any
multcast componcent on one side of an interface depan from all components on the other side. In Figure 26, 2
message sent by AMuln will be delivered 10 both Uni-J and Uni-2.

| . A Umi-1
| Multi | .j I

j ‘Li_ {Uni-2

Figure 2.6. Multcasting

2.1.4. Non-Hierarchical Structure

So far, our structural representation allows only trees. Every space defines a purely functional composition of
the adjacent subtrees. From the viewpoint of a functional programming purist, this purity of composition is very
nice. From the viewpoint of a practical system designer, it can be more trouble than it is worth.

To use a module (object) in a purely functional fashion, its user must provide explicity all needed external
resources. Uninteresting plumbing accumulates higher in the object hierarchy for the sole purpose of connecting
global services to modules at lower levels. The housekeeping and clutter hide the structure relevant w the object’s
behavior.

Extornal External
P —— Itigtitl Resource

Resource

External
e It HH)'C)_q Resource

Figure 2.7. Cluner in a Strict Tree

The problem is worse in an open system. To make use of a newly installed service in a purely fwictional
system, the shells between the service and its client must be ripped cut and recreated with an additional interface 10
pass the new service. This is chearly inadequate and motivates violations of the strict hierarchy.

To provide the necessary escape, we let any two complex spaces be joined by a splice. For communication, 2
splice behaves just like a shell, providing a set of interfaces that communicale between the spaces. However, bot.
ends of a splice appear 10 be domain boundaries pointing “down”. This preserves the appearance of a strict uirected
tree even when a splice joins two spaces in the same domain (even one space 10 itself). Chapter 5 discusses non-
hierarchical structure further.

to
N

2.2, Structural Operations

2.2.1. Examination

An agent must know the current process structure before it can make sensible decisions about how 1o manage
it. The inquire operaucn provides the necessary access to the HPC system’s structural database. It iakes a
structural element, such as a sheil or an interface, and returns information abaut its properties and its ncighborhood

in the process structure. The process structuic is unmodified by exarination.
There are specialized inquines for:

e The parent and children of a shell

e The interfaces of a shell

e The parent and chilaren of = view

e The shell of an view

e The view (if any) connected 10 a view

e The root shell and controller of a domain

e The kind of structural element represented by an arbitrary name

The data returned from these inquiries is sufficient to write simple tree-search algorithms to traverse a domain
exhaustively. Different database access mechanisms could have been provided. For example, a snapshot of the
entire domain could be provided for off-line consideration, but such snapshots may be arbitrarily large and become
out-of-dai= with the slightest change to the domain.

Because inquire is an operation on struciure, the protection system makes domain boundaries opaque. Only
agents of a domain can examine that domain's intermal structure.

2.2.2. Connections

Communication paths between processes are incrementally created and destroyed by creating connections
betwesn otjects. The connect operation takes two views as arguments and creates a connection between them. The
views must belong to the same space, be distinct, compatible, and have no existing connecuons. Disconnect ts the
inverse operations. It takes two views that must be joined by a connection, and removes the connection.

|

g —,) Connect (i, Q | |

| | %3 19 - (] (]}
' -

i

Disconnect (l,)

Figure 2.8. Connect and Disconnect

223. Mddia

Whnen a <cnzs of connz=ct operauons has created a complete logical path between two processs, the HPC
Syst m creates 3 commumcation mediem. The processes then communicate using the operaucns appropnale o U
med um. Typical operations are send and receive for messages and datagrams, write and read for fiics, pipes, and

26

streams, and call, accept and reply for remote procedure calls.

Tne HPC sys.em makes these operations available for each communicaion mechanism it supports, but does
not definc their semantics or the behavior of the communication medium. Operations on media have no effect on

HPC process structure.

2.2.4. Processes

To creatc a new process, the animate operation takes a empty object, a host identificr, a host-dependent
image identifier, and a list of strings. The host is contacted, the image is started on the host, and the new process is
placed in the empty object. The process receives the strings as initial arguments in a host-dependent way. There are
two versions of the inverse operation. A process uses die to terminate itself. The kill operation terminates another
process. Both operations take a simple domain as argument and destroy its intemal process, leaving an empty
object. (Processes are shown in light grey, empty spaces with a dot)

Animate (S, host, image, parameters)

Ol

Kill (S) / Die (S)

Figure 2.9. Animate, Die, and Kill

These operations also apply to complex objects. A process decides to become a simple or complex object
during its animauon in a negotiation with the HPC system. This decision is not visible to the agent invoking
animate. To animate a complex domain, two new empty objects are created inside the previously empty leaf, a
controller and the new process are placed inside the new objects, and a connection is created to joir: them.

Complex Animate //C)
O F O
< 1

Kill/ Die

Figure 2.10. Complex Animation

As a convenience, kill and die can be applied 10 arbitrary subtrecs. The entire subtree is removed, no matter
how complex or how many subordinate domains are affected.

22.5. Shells

A shell is created explicidy by calling the enclose operation with a space, a partition of its incident interfaces,
and 3 l:st of interface descriptions. There must be no connections between interfaces in different panitions. The
space is divided into two spaces. both in the same domain, and one group of interfaces 1s moved 10 each space The
spaces are joined by a new shell with the desired interfaces. To destroy a shell using disclose. its interfaces must

[N
~)

havc wo connccuons, and the spaces it joins must be in the same domain. Tiosc spaces and their incident edges are

merged together into a single space, and the shell is destroyed.

p /\/ Enclose (descr’s, {P};‘L{A,B})

O— <

Disclose (Q)

Figure 2.11. Enclose and Disclose

The names of these operations are taken from their effects in the hierarchical view. Creating a shell has the
effect of surrounding the lower partition of shells, while destroying a shell releases the intemnal structure. And,
because both a space and a bipartition are implicitly defined by a set of sibling objects in the hierarchy, the actual
arguments for enclose are just a list of shells and a list of interface descripuons. Spaces are never explicitly
manipulated in HPC, only shells.

2.2.6. Interfaces

Most interfaces are automatically created and destroyed when their parent or ajtached sheil is manipulated,
but multcast and muldplex interfaces have a dynamically varying number of omponent views. Each such
component is created by the new operation on its paren: view. A component view is destoyed by the delete
operation. It must be a component of 2 multicast or multiplex view, and must not be connected.

—_— . New(P) ..
L P] > P
~<

Delete (C)

Figure 2.12. New and Delete

22.7. Domains

The domain creauon operation, invest, takes a shell and an empty object as arguments. The object and the
cusung conuolier must be on opposite sides of the shell. The existing domain is reduced 10 the subtree on the
controller’s side of the shell, and the rest of the tree becomes a new domain. The controller for the new domain is
placed in the empty object

The abdicate opcration takes as its argurent an adjacent domain bouidary © remove. The cxecuting
conuoller 1s removed. and the domarn is merged with the adpcent domain. The depose is simils-, but takes coatrol
from the adjacent domarn instead of yielding contn ! to it. Figure 2.13 illustrates these operations. The argumetas

for domain opcrauons must be in the domain of the agent, just as for any other operations. An edge with an cllipsis
(...) represents a sequence of onc or more shells that must belong to a single domain.

_{D__Q._@

Invest | Depose / Abdicate

Figure 2.13. Invest, Abdicate, and Depose

2.2.8. Splices

Splices are created between existing empty objects using a two-step operation. Suppose objects A and B are
to be spliced.

Figure 2.14. Splice (Before)

The agent for A invokes the splice operation with two empty shells. The existing shell A and space are

replaced by the splice C, one end of which is hidden in a space accessible only to the HPC system. There is no
immediate effect on B.

Figure 2.15. Splice (During)

When the agent for B decides 1o complete the splice, it invokes splice with the arguments reversed. The
existing shell B and space are replaced by the previously hidden end of the splice C.

Figure 2.16. Splice (After)

2.3. Discussion

We begin o find interactions between multiprocess abstractions and the distributed environment already.
Failures, concurrency, and dynamic structure lead to a model of interaction between application managers and the
operating system quite different from most distributed systems.

A domain may have several agents (or a multiprocess agent) and the agerit processes may choose to operate
on a common piece of process structure. Executing on separate sites, their decisions are intrinsically asynchronous
with respect to one another. In the absence of failures, cooperative action could be left to an explicit distributed
consensus among agents, or provided in some form through communication between agents and the HPC system.
However, failures of processes and hosts will occur at arbitrary times even if decision making among agents is
synchronized. The environment is an additional agent with whom we can not debate or negotiate. As a result, an
agent’s view of process structure can become out-of-date at any time, even while trying 1o decide what to do about
the previous state.

Transaction facilities are one conventional response to this possibility. They prevent the appearance of
outside interference during a sequence of operations, but they do so by delaying or undoing operations in order to
obuain the desired serialization. A transaction that is affected by a failure will be aborted, and the system reset to its
original state. This is inappropriate for applications that must always make forward progress, are fundamentally
asynchronous and therefore non-serial, must meet certain minimum performance requirements, or, most
significantly, must adapr explicitly to failures and changing conditions. Obviously failures and other changes must
not be hidden from applications in the latter class.

This raises a classic question: Should an agent monitor the process struciure by pelling, or should it receive
an asynchronous notification of a change? Polling is obviously the wrong answer. An agent could easily spend all
its time futilely looking for something that chianged since the last time it was examined. Therefore, any system
designed for adaptation to failure under user control must, a2 a minimum, provide asynchronous notification of the
tailure of processes and communication lirks (partition).

Any 2gent is a potenually distributed object, capable of carrying out several plans of action concurrently. If
n agent blocked or was otherwise prevented from invoking an operation uniil some previous operation completed,
this desireable concurrenc; would be eliminated. HPC obtains a mor powerful system interfzce by allowing
structural operauons to procecd asyn hronously with respect o the invoking agent, and using the 2synchronous
noufication system 1o report the results of agent-requested operations as well as process and neiwork (ailurcs.

30

The HPC system gives operations an al-most-once semantics within sach partition, internally synchronizing
when necessary 1o preserve the internal consistency of the process structure. An agent will see a serialization of

operations, but it may be a different sequence for each agent due to asynchrony.

The disadvantage of this more flexible interface ts that agents must be prepared for asynchronous
interruptions of their plans and arbitrary delays while waiting for an operation to complete (or fail). Most
distributed systems present a synchronous interface to their clients, usually in terms of local system calls on a host
operating system, or remote procedure calls between application processes, or object-oriented operations on a
distributed data structure. Asynchronous notification of ch'anges in the environment (e.g., signals, upcalls, or
callbacks) are usuallv restricted to special cases and circumstances. For example, under UNIX a process can
receive notificatuon that more daua is available in a file, but not that the file has been deleted, renamed, or opened by
other processes. This simplifies programming of the processes that are not involved in configuration and on-line
management, but makes it difficult or impossible to write a manager process.

Chapter 3 Protection and Control Structure

31

3. Protection and Control Structure

The potential for change raises the questions of who may change 2 thing and what things they may change.
Answers are usually given in terms of a standard protection model [Jon79], in which there is a collection of distinct
objects, with operations that may access them in various ways. The righis to perform specific accesses on specific
objects are collected into sets called domains. Privileges are distributed among active enuties, known as principals,
by associating a principal with a set of domains. A principal may carry out an access if one of its domains contains

a corresponding right.

HPC does not require the full generality of the standard model. An object in the standard model is an HPC
structural feature, such as a process, shell, or interface. HPC does not distinguish types of access, focusing on rights
10 specific operations, such as connect(viewl, view2). Domains are sets of rights, as in the standard model, and
HPC agents are principals.

Policy and mechanism are clearly distinct in protection issues. A protection system provides a mechanism to
enforce access control or information contro! policies established outside the system. These control policies are not
arbitrary; they are based on the management of objects. Managers set policy and the implementation of policy
requires action and change. Agents camrying out policy must be empowered to make the necessary changes.
Conversely, an agent should not possess rights it does not need in order to implement policy.

Conventional protection systems (access control lists, capability lists) must allow for arbitrary collections of
rights (and by implication objects) because there is no other mechanism capable of expressing the relationships
among the objects in the system. This is unnecessarily general, because random collections of objects never have a
common manager, while related objects often do. A contribution of HPC is the exploitation of the rich and explicit
vertical process structure in the definition of protection domains. To date, protection mechanisms associated with
hierarchically organized software have all been based on (static) scope rules for identifier visibility.

We believe that “controls”, as a relationship, as important as “communicates with". It should be possible to
build sophisticated cortrol behavior out of iess complex components, with the same compositional properties, and
benefits, as communication bakavior. HPC's second contribution in protection structure is the appiication of a
powerful mechanism for identifying, composing, debugging, and controlling control behavior. These functions are
racely, if ever, available in conventional protection systems.

Secuon 3.1 motivates these contributions, building on the static domain, agent, and controller definitions
presented in Chapter 2. We observe several inieractions between the protection system, the hierarchy, and the
requirements of distributed applications that can lead 10 internal contradictions and show how they have been
avoided in HPC.

Section 3.2 conunues the investigation of these interactions with the preservation of structural invaniants by
operations on struciure. Creation and destruction of most structural features interact nicely with the protection
system, but direct Jomain manipulation and process creation require special anention (o avoid violating structural
constraints and to limit the structural damage a malicious or erroneous agent can inflict.

User agen: control of a domain may be lost, and some form of clean-up or recovery acuon must take place.

Secuon 3.3 introduces the policies that the HPC system can be asked (o apply automabcally when user agents are
uravailable, and shows how losses of control can occur either temporarily and permanenty.

[
DY

The basic HPC protection mechanism does not distinguish among types of access, or provide for arbitrary
collections of rights. Because control is explicily composed, user-defined objects can implement finer or more
complex access policies, and transparently extend the system primitives, without addiuonal support from the HPC

system. (Section 3.4.)

The concluding Section looks bricfly at some classic issues in protection, such as amplification and revocation
of rights in the context of HPC.

3.1. Static Structure

The possible agents and rights of any HPC protection mechanism can be easily defined. Processes are the
primitive active components in HPC, do all the work, and thus make all the contro! policy. By abstraction, an
arbitrary object should be able to do anything a process can do, making objects the obvious candidates for agents.
Applications are described in terms of shells, interfaces, connections, and processes. The protection mechanism is

to control the rights to operate on these structural features.

A protection system also incorporates two relations, one between domains and rights, and the other between
agents and domains. The invariant properties of these relations are the interesting features of a system. HPC tghuy
restricts the rights relation to follow vertical structure. Some necessary properties of the agents relation can be
deduced from the principles of abstraction and composition, and from the need for redundancy and robustness.

3.1.1. Rights Relation

Arbirrarily coitructed domains can and should be avoided. The grouping defined by vertical structure gives a
strong guideline for the construction of domains. Grouping within a shell shows a coherent collective activity. If
two activities don’t interact directly, shells should be used to make their boundaries, and independence, manifest
When an application is structured properly, the contents of a space define a tight composition of cooperating objects
that should be managed as a unit Therefore, HPC defines domains at the granularity of spaces. The views incident
on a space and the connections between them belong to the same domain,

Vertical suucture also guides the clustering of spaces into domains. We do not expect common development
and management of arbitrarily chosen pieces of an application. However, several levels of related abstractions that
interact closely are ofien managed as a unit. For example, a program module may include many functions with
independent interfaces, but the functions in a module are all related.

HPC exploits this locality in constraining domains to be disjoint, contiguous subtrees of the dual graph.
Because domain contents are localized, domains are readily identified and traversed on the basis of local
informadon. Every space knows which of its neighbors are in the same domain, and there is no need for an explicit
list of a domain's spaces. Restricting a space (0 exactly one domain induces a cogrse domain graph on top of the
dual structure graph. This is an elegant relation that allows acceptably simple operations on domains and is
sufficient for our target applications.

Other chbices of domains are worth further study. For example, a nested relation on domains provides a
protecuon model analogous to conventional programming language scope rules: inner agents (code) can affect
enclosing structure (vanables) while outer agents are more restricted. Operations on nested domains probably
would be much more complex in order to preserve the more complicated structural invariants. This objection would

34

not apply to the most general protecuon model with arbitrary domain overlaps, because there would be no

constraints 10 preserve.

3.1.2. Agents Relation
The rights relauon has remained stable throughout the HPC project, but an acceptable relation between agents
and domains was more difficult to achieve. Two significantly different versions have been developed since the HPC
protection system's introduction in [LeF85] and [LeF8S].
There are several criteria to consider:
3 Preserve abstraction
A complex domain should be opaque, indistinguishable from a process.
. Redundant control
Robust applications must have redundant agents to provide robust control, even if they have no other redundant
components.
. Positive control
Loss of control should be prevented. Every domain should have at least one agent
e Control structure
Control is a behavior as fundamental as communication, zad should be subject to the same principles of manifest
expression, abstraction, and composition.
. Control over control

Agents, domains, and the relation bztween them are not static. Changes to the protection relation, as well as process
structure, must be protected.

. Simplicity
"Everything should be as simple as possible, but no simpler.” -- A. Einstein. (Ironically, restrictions designed 0
simplify the protection system were at the root of many early problems.)

Primitive processes are opaque in HPC. In effect, every simple space (containing a process) comprises a
domain, acting as its own agent. This interpretation is necessary if processes and (opaque) arbitrary objects gre to
be treated equivalently.

Because an agent may be a complex object, it is natural to obtain redundant control by propagating privileges
10 more than one of its components (via control composition). There may be several processes distributed across
scveral sites, able W implement the agent's policy. As long as a singlc process remains, the domain is under
positive control.)

It is tempting W permit exactly one agent for each domain, using complex objects to obuin multiple agent
processes. That restriction leads to a distinction between an agent cbject and the componznt processes that are
authonized on its behalf. Propagation of this authority was a principal problem with one version of the proiaction
system. Another reason to allow multiple agents for a domain is dynamic repiacement of onc. agent with another.
To maintain positive control, a new agent must be established before the old one is removed, requiring two agents a1
least momentarily.

We can also show that an agent must be allowed o control multiple domains 1o preserve the abstraction of
robust applications. Consider an autonomous, complex object as an agent and assume that agents may control only
one domain. (This assumpuon was the major problem with the other earlicr version of the protection system.) Call
the object, O, the domarn it conurols, £, and the domain of its intenal structure, /.

|
! |
e p———
[

Figure 3.1. Robust, Opaque Agent

By assumption, the subobjects of O controlling £ may not also control /. There must be a separate object to act as
agent for /. Invoking the abstraction principle, autonomous agents should be allowed for /, since an individual
process obviously must be allowed. If O is robust, its internal agent must be robust, therefore redundant, and thus
an autonomous, complex object. This leads to infinite regress. If abstraction is to be applied uniformly, and robust
control is to be possible, some agent must be allowed control of more than one domain. Specifically, it must be
allowed control of itself, as well as an external domain. The interpretation of processes as their own agents leads to
a similar argument: Some of the leaf processes of a complex agent must be agents for the domain it controls, as
well as their own domains, because only processes can actually do work.

We invesugated several rules for propagating the privileges of an agent object to its components, and
concluded that a complex agent’s control behavior should be defined using the same tools as a complex object’s
communication behavior. Propagation rules similar to programming language scope rules do not allow empowering
only selected components. The hierarchical direction of propagation leads to unnecessary technical complexity and
restrictions, and fails o preserve absuraction by distinguishing non-hierarchical structures from opaque subtrees.
Positive control could be tested only by examining an entire subtree for live processes. Similarly, the full protection
relation wouid not be manifest from looking at local structures.

3.13. Controllers

Composition of communicaiion in HPC provides a clean implementation of a complex agent’s behavior by
selected components, manifest relationships, dynamically and incrementally defired paths, no hierarchical
restriction, an¢ the ability 10 debug at several levels of abstraction. The problems with hierarchical control
propagation strongiy suggest using the same tools to compose control. Agent processes are at one end of control
paths and contnllers were introduced to provide a explicit destination for such paths.

There is no way 10 disconnect and reconnect an interface atomically. For an agent to replace itself with
another, the new agent must be connected (o the controller before the old one is disconnected. This requires either a
muluplex interface on the conuolicr, or a multicast interface somewhere along the path, preferably on the controller
so that direct connections can be replaced.

36

A special TPC mechanism named conzrol is used as the structure of simple controller views, and controller
objects present an interface with the following partial specification.

| rc.e: "2C se~ix”,
tyre: “muiticast senv.at,
ex.ema.: encpcTt,
structure: muticast
{ role: "HPT conirciler",

type: "HPC Lwssiions”,
exiermna.: ex.ensicT,

structure: onirT.
v

Control streams from the agents are merged into a single stream into the controller, and notifications from the
controller are replicated for all the agents. Checking for positive control uses the mechanism for detection of end-

to-end communication paths.

Agent privileges propagate across domain boundaries along co ro! paths. There is no limit on the number of
agents that may be connected to a controller, either directly or as multicast components inside a direcly connected
agent Likewise, an cbject can have any number of control interfaces and can be agent to several domains. Activity
on behalf of different domains is explicily distinguished by using a separate interface for each stream of control

messages.

3.2. Preserving Invariants

There are three ways protection relations can change. Agents associated with a domain can change, domain
rights can change, and domains can be created and destroyed. Agents are defined by communication paths to
controllers, and operations on connections or processes may affect the agent relation as side effects, but special
anention is required only when the last agent for a domain is removed (1o ensure positive control)

The direct effects of most HPC operations on the protection relations are minimal. Every view or other
structural feature is always associated with one domain. When a feature is created or destroyed, rights to operate en
it are added or removed from its domain. However, not all rights belong to a3 domain. Some types of access may
require sitaultaneous access 10 multiple features, for example disclose requires access 10 both sides of a shell. A
domain contains the night fer a multiple access only when 2ll the features accessed are in the domain.

Domain creation and destruction have more powerful effects. Only these operations affect the partitioning of
featres into domains. A feature is created in a well-defined domain, and it remains there until the domain is
destroyed or a new domain is created around it Rights can be added 10 a domain only by creating new features or
by destroying another domain. However, the effects of abstract process creation &nd destruction have the greatest
effect on all forms of structure, including domains.

There arc three structural invariants that may be violaied by kill/die and depose/uddicate. First, every
process must be direcly encapsulatzd within a domain bwndary. Merging a simple domain with the neighboring
domain above it violates this invanant by exposing a “raw” process. We cannot preclude this situation by restricting
depose 1o complex domains, because this weuld violate abstraction. However, by interpreting a process as its own
controller, 1t will be removed automaucally when its domain is destoyed. Destruction of the superior domain is
protubited by an asymmetnc constrain: introduced below.

37

Second, every domain must have one controlier. When Kill is extended 1o arbitrary subtrees for convenience,
it is possible 1o remove a conuoller, without removing its entire domain. This could be avoided by doing without
the convenient extension. Alternatively, the operation could be restricted by an additional precondition. HPC
preserves the invanant by destroying a domain as a side-effect of removing its controller. Any remaining contents

are abdicated to a neighbonng domain.

The HPC system disunguishes the root space and acts as agent for a domain consisting of just that space. 1f a
top-level domain merges with the root, HPC kills the subtree and removes its shell to restore the desired root
structure.

The naive definition of kill and die replaces the subtrec on one side of a shell with a single empty space. The
subtree that includes the root space also include all the top-level applications. Clearly, it should not be possible o
destroy these from arbitrary places in the hierarchy. Similar considerations apply to depose. Repeated depositions

would give an agent control over all process structure.

Hierarchical organization makes strong assumptions about the control privileges of supenor and inferior
levels. Components are usually considered implementing modules chosen by, and subordinate to, their parent. A
superior level is expected 10 have the privileges to create and destroy infeniors, while infenors are expected to have

no control over supenors.

A single asymmetric constraint based on the hierarchy avoids interference between top-level applications and
disruption of a superior domain by an inferior. An agent may depose or kill only inferior domains, and may
abdicate or die only to the (unique) superior domain. Given this restriction, a single operation suffices for each of
the depose/abdicate and kill/die pairs. These unified operatons could be applied by agents on either side of a
domain boundary to remove the infenior domain or subtree. (The HPC implementation uses such operations
internally, but the pairs of distinct operations are retained in the application interface to increase the chances of
detecting errors.)

33. Terminal Policy

An agent controls a domain when it has a logicaily complete and physically implemented communication path
to the domain’s controller. There are four ways to lose control of a Acruain.

° An agent causes the domain 1o be destroyed.
The domain’s agents are forcibly taken out of control by the (possibly distant) side-effects of another agent.
° All paths from the conuoller terminate within the domain.

Only a connected agent can make a new connection inside the domain, and an agent can be added only by making
onc. Accordingly, if all the paths 1o the controller are broken inside the domain, control has been permanently lost.

o Nonc of the paths from the controlier into other domains is complesz.

If some paths pass into other domains, but none are compleic (there are no processes al their ends), control has been
temporanly losL Agents for other domains might complete a paih #nd restore control,

. None of the complete paths from the controller are physically viable.

When no logically connected agent process is physically reachable due to a partiton, control has been temporarily
lost. When the paruticn ends, conuol may be restored.

a8

The HPC system normally will do nothing without an agent. This is a (trivial) null policy. 1t is convenient to
specify a more complex terminal policy o be applied directly by the HPC system during temporary or permancnt

losses of control. Such policies sn~wld be very simple.

Domain structure controls visibility as well as other access. Autonomous applications are opaque; their
intemal structure is completely hidden and complex applications can not be distinquished from single processes.
This opacity is preserved by die and kill, because the internal structure is always removed before the domain is
merged into its superior. However, depose removes control from the application and reveals its internal structure.
Some applications may wish to hide their implementation under all circumstances. By specifying die as the
terminal policy for permanent losses of control, an agent can ensure the privacy of its internal structure.

Policies stronger than null, but less drastic than die, must be applied to avoid subversion of access control,
consistency control, and similar user policies duning a temporary loss of conwol. For example, orphancd
transactions should not be allowed unsupervised interactions with other processes. The suspend policy stops all
communication passing through the domain. Even communication between processes unaffected by the physical
partition is halted by forcing all interfaces across the domain boundary to the suspended sate. (See Chapter 4.)

Suspension lets component objects continue internal processing, but prevents any interactions between them.

Giving control to another user agent is also a suitable response. The systemn could animate a new agent
object and connect it to the controller, or abdicate, merging the domain with its parent in the hierarchy. Trying to
create a new agent introduces complexity. When this policy is selected, the HPC system must record the desired
agent parameters and a fallback policy, as it may be impoessible to create the necessary agent processes,

A complete terminal policy is a sequence of the basic policies null, suspend, abdicate, die, and an.mate
(with parameters). The policy sequences for temporary and permanent losses of control are independently specifi~d
by a domzin’s agent. When a loss of control occurs, the HPC system applies each basic policy in tum until one
succeeds. (The first four policies cannot fail.) A default policy is applied if the sequence is exhausted. The defaults
are abdicate for permaneat losses of control, and suspend for temporary losses.

The HPC system will not accept permanent responsibility for any domain, so null or suspend are not
permitted in the terminal policies for permanent losses of control. However, any basic policy is permitied for
temporary losses.

3.4. Policy Filters

Every control message requesting 2 legal operation that amives at s controller is acted on. The HPC
protection mechanism does not distinguish among agents, or among the legal operations, and therefore provides
nothing like “read only” or “restricted” access to a domain. However, arbitranly complex and sophisticated access
control policies can be implemented without extending the basic mechanism

Because command invocations are explicitly modelled as messages 1n a stream, they can be monitored and
filiered. A trusted policy filter agent can be interposed between the controlier and a restricted agent with limited
privileges. (Figure 3.2.) It forwards authorized control messages from the partially trusted agent o the controller,
and rejects unauthorized invocations. Notifications from the controller are forwarded in the opposite direction.

Restricted . J] Policy -

Agent ﬁ Filter U'_L

Full i
Agent

Figure 3.2. Policy Filter

A policy filier presents the same abstract control interface as a controllzr, although it does not have the same
intnnsic robustness and availability properties. Controllers are placeholders for the HPC system and can be handled
specially, vhile policy filters are ordinary objects and can fail independently of the HPC system. A reliable filter
must be a complex object wiu: intemal replication, multiplexed delivery of incoming messages, and coordination
between components to avoid multiple deliveries of the same operation to the contreller.

Read-only access is easily provided by authorizing only inquire operations. More general forms of access
control require checking the arguments of an invocation against a list of accessible structure. For example, it might
be desirable 10 restrict an agent to managing the connections among a specific group of interfaces. The policy filter
to enforce this restriction would forward thoss invocations whose arguments are on the specifi~d list, and reject any
others. The contoller will rzject 1legal operstions, so the policy filter doesn’t needd 1o make other explicit checks.
Only nouificauo::s conceming the specified interfaces would be passed back to the resticted agent.

Policy filters need not tell the truth. For example, inquire can provide information about the parent and
children of an interface. some of which might be inaccessible. A stricter version of the fil'er discussed ahove would
tell the restricted agent o1y what it needs i know by modifying notificatios to delete references 1o inaccessible
interfaces.

A policy filter w. ciase all references w itselfl from notfications. report all conaections o itself as
connecuons directy to the controller, and translate all operations involving the cortroller into operations on itself,
This technique pro “ides a wansparent illus on of unfiliered conwrol, and penni: user-level extensions to the HPC
system. Most generally, a (hidden) policy filier can translate abstractions of new structures and operations into
concrete HPC feawres the same way the HPC system translates abstract hierarchies inio concrete host processes and
medua. The new abstracuons need not have any strong relation o HPC at all.

A jourral of invocatio:: and their sources is one useful extension s requires no change o the HPC
interface. A journ v would ailow transparent debugging and enforcement of audit trails - An extension that involves
only a smail change in the system interface would augment the host idenuficrs g0 1o animate (this host and
specific host X) with Medusa-style location specifiers like same host as process I overy far from process P, and near
process P bu: defferent host [Ous81). The hidden policy filter would cvaluate the arguments of extended animate
calls, perhaps with the help of a resource management uulity, and then invoke the basic HPC animate opcrauon
with specific hosts. All other control messages wouid be forwarded without ¢l

40

Hidden policy filters are the natural interface between the HPC system and important administrative funcuons
and access control features outside the system, such as native protection systems, charging, resource quotas, and
classes of service. While the HPC system has no concept of authentication or user identity, and will simply repon
"process creation failed”, an extended system could add addituonal properties such as (identity), new operations such
as (login as user X). and extended reporing ("failed due to insufficient funds/privileges/resources™).

The flexibility and power of policy filters is available only when the basic interface 1o system facilities can be
intercepted and wransparently replaced. Most system do not make this possible. The Accent operating system is one
exception. An Accent kernel port is a system interface similar to the HPC controller, but interception must take
place when the partally trusted process is created, or depend on that process to cooperate when reconfiguring.

3.5. Classical Protection Issues

Security policies are usually divided into access contro! policies and informaticn control policies, and there
are classical questions concerning the ability of a protection model to express and enforce them.

Because process state and the content of interprocess communication are outside the HPC system, HPC can
not address the basic information control issues, which are modification and spoofing (how change to data is
cortrolled), and retention and confinement (how propagation cf data is contrclied).

The primary access control issues are propagation and conservation (how privileges are tiansferred),
revocation (how privileges are removed), and mutua! suspicion and amplification (how two agents can grant each
other only selective access). These problems have been examined most closely in protection systems that allow
transfer of rights between domains (e.g., capability systems). The HPC domain system has quite different
properties, because the rights in a domain are fixed, but access can be propagated and fil:ered without affecting the
domains. The righss relation is modified in capability systems, while the agent relation is modified in FX-C.

Amplificaton of rights is an important issue in capability systems where the owner of an object instance may
not operaie on it, while the manager for the vbject type does not have any rights for the instance. hen the owner
passes the ubject 1o its manager as a parameter, the manager is temporarily granted full righis to the object
Amplification has no analng in HPC because objecis are never passed as parameters, rights are rever transferred
between domains, and there are no user-defined types.

HPC privileges at any moment are determined by the composition of agents and controllers. Connections and
poiicy filters provide explicit propagation. mutual suspicion through filtering, and immediate revocation o7 acces: by
disconnecting an agent. However, there is no way 10 restrict a partially trusted agent from propagating its current
access further. This 15 consistent with the basic structuring principles. A strong conservation facility would violaie
absiraction by preventing a compiex agent from implementing its control services any way it chooses.

Chapter 4 Communication Structure

4. Communication Structure

Connections and interfaces are the HFC structural features that tie processes and objects together into useful
applications, Explicit communication is the only form of direct int>raction between processes in HPC. Interfaces
provide abstract destinations so that a process does not need to know the location or identity of its partners in
communication, and the actual destinations are determined by chains of cormections joined end-10-end at interfaces.

Because the possible patterns of interactior are exoressed and limited by the available communication
structures, HPC exiends the intuitive one-to-one channels (simple interfaces) to multiple paraliel channels (bundle
and muluplex interfaces), and to many-to-many communication patierns (multicast interfaces). To illustrate the rich
patterns that HPC can describe, we begin this Chapter an HPC specification for a replicated remote procedure call
svstem taken from the literature.

Section 4.2 rigorously defines the significant communication paths, replacing the intuition of sequences of
connections and incorporating the effects of complex interfaces. Sectinn 4.3 presents the view properties intended

for use by agents to manage structure in their domains.

There are several notable interactions between apparently independent features of communication structure,
abstraction, and IPC implementations. For example, the information hiding provided by shell abstractions can be
partially defeated by interface properties, and the hierarchicai intcrpretation of nested objects is poor for labelling
the direction of communication flow. Multicasting offers yet another set of problems. These issues are discussed in
Section 4.4.

Section 4.5 concludes with a disection ¢f communication into three functions that are quite distinct i~ HPC,
and a comparison with the ISO reference model.

4.1. Example: Circus Replicated RPC

The Curcus system extends the Courier RPC mechanism to groups of replicated processes [Coo84). Circus
will serve as a good demonstration of the expressive powe: of communication structure and hierarchical process
composition in HPC.

In Circus terminology, a replicated group of processes is culled a troupe. All members of a troupe are
functionally equivalent. They may run at differcnt speeds, and have different intemal states, but must execute the
same sequence of RPC operations. An RPC call from any mesber of a client troupe is replicated to every member
of the server troupe. Similarly, a reply is replicated io all of the callers. Code in the Tircus RPC library counts the
number of requests or replies and applies various redundancy policies, like majority voting or quorum consensus, 1o
decide i a valid replicated call has taken place. A special troupe, called the ringmaster, monitors the number of
members in each toupe, which may vary dynamically, and makes this information aveilable to the RPC library so it
can check for the required degree of redundancy.

The Cucus communication patern can be expressed using s combination of multiplex and multicast
interfaces, and troupes can be composed using a single coanection. Consider Figure 4.1, which shows a single
client connected (o a muluplex server. Partial specificauons for the clisnt and server interiaces are:

! rele: "fanctior sior”,

siroz o siwle Courier cuiert

e =N GRSk

Server

Chient

Figure 4.1. Simple Client and Server

Circus wrouper are moueled as HPC objects, theit member processes aie simple objects within the troupe. The
replication of RPC calls requires one minor change to the specification of individual troupe members. The RPC
library expects sequences of calls rather than single calls, so we will use the type replicared-Courier rather than
caxrier. The relevant specification of client troupe member interfaces is thus:

{ role: "&mctica stub",

siracure: sirple reglicated-Courier client
1
J

For server troupe members it is:

[struzure: multizlex
[role: "finction entny”,
structure: simple rep.icated-Courier senver
]
)

Each troupe replicates communication for each of its members, so the interfaces for each troupe should be
multicast, The interface for the overall client troupe i3 specified as:

[role: "truupe stk
structure: mAiticast
[rcle: "function stw”,
structure: simple replicated-Courier client
)
]

Each scrver cotaponant must be compatible with this client structure, and the server must multiplex its service to
many clients, so the specification for tiie eniire serves troup interface is a multiplexed, multicast RPC interface.

[structure: multiplex
| role: “trogpe emny”,
structure: multicast
[role: "function entry”,
structure: simple replicated-Courier server
}
)]
)

When 2 new client is added o the server, components are created on both sides of the scrver’s main multiplex

interface. (These components arc mulucast views.) The manager responsible for the intenal structure of the server

44

troupe creates one component of the intenal multicast view for each individual server process. (These components
are replicated RPC views.) It then takes each of the individual server processes in tum and creales a new replicated
RPC comporent for 1ts main multiplex interface. Connections are then created between the external RPC views of

the server processes and the intemal RPC vicws of the troupe.

A server troupe with two members and a client roupe with three members are illustrated in Figure 4.2, The
roupes in this Figure have the same relationship as the individual objects in Figure 4.1. In both cases, 2 multiplexcd
server with components for three clients is shown servicing one. The only difference is that the client troupe
interface is a multicast RPC interface, instead of a simple RPC interface, and the server is, of course, compatible.
The individual clienc and server processes have the same interfaces as before, except for the expected replication of
calls.

Client Troupe Server Troupe

':E Server
Server
Client [}
b

Client |,

—

Client

Figure 4.2. Circus Replicated Client and Server

Using HPC multiplex and multicast views, Circus troupes can be created using almost unmodified
conventional clients and servers. Any degree of replication within a troupe is supported, and grea‘er flexibility is
possible than in the origiral Circus structure, because server troupes can chose (o assign differing sets of server
processes to service different clients, by controlling the server processes connected to a given internal multicast

view,

Since the ringmaster is just a trcupe, albeit a special one, the same communication structures could be used o
communicate between troupe members and the ringmaster. A typical clienyserver relationship (especially for
global services like the ningmaster) would be implemented using thase multiplex and multicast interfaces on splices
across the hierarchy, rather than through connections between clients and the server.

4.2. Significant Communication Paths

Earlier presentation of communication paths leaned heavily on inwition o simplify discussion. At the
expense of some additional terminology, we present he:c the remaining details. The most important detail is the
recursive definition of end-to-end chains, whict. are the only communication paths where action at one end can be
reflected at the other. The concepts of cadpoint/extension and of corresponding components are needed for this
crucial definicion.

L -8
o

4.2.1. Endpoints and Extensions

The vievs "at the ends” of a communication path, and those "in the middle” are distinct. The send operation
can be sensibly applied to the former, whiie connect makes sense for the latter. We call thern endpoint and
extension vizws, respectvely, Every view is created as one or the other, and it retains that property throughout its
lifetime. The fixed distinction between endpoints and extensions improves abstraction, simplifies the system
implementation, and eliminates a class of inconsis’ 'ncies due to network partition.

Extensinns are related 10 endpoints somewhat the same way opaque abstract data types are relaied to their
concrete representations. Primitive behaviors are implemented at endpoints in terms of message contents, but the
behaviors are composed and combined at extensions without access 10 the internal contents of the communication.
Specifically, operations like send and receive, and the HPC primitives new and delete, can be invoked only on
endpoints, while connect and disconiiect can be invoked only on extensions.

Additionally, while both endpoints and extensions may be complex (with componen. structures), component
views are elaborated only at endpoints. The hidden component structu¢ of an endpoint is said to be masked.

Consider the Circus server interface given earlier in more detail. (Figure 4.2.)

[intemal: encpeint,
extermal: endgpeint,
structure: muliipiex
| internal: endpoint,
exterral: extensicr,
structure: multicest
[intemal: exens:ior,
external: maskec,
structure: sinple replicated-Courier server
} ,
)
There are three levels to this interface tree structure. At the top level, the multiplex views on both sides of the shell
are endpoints, and their components are visible. Each of these components is a multicast view, but the external
views are extensions while the internal ones are endpoints. On the outside, this is the lowest accessible level of the
view hierarchy becaus. the third level structure is masked, while inside, the third layer is available as simple

extensions of the multicas: views.

Besides the abstraction benefits, allowing messages or procedure calls only at views witih certain fixed
properties eliminaies the need to implement media for all communication paths. Only a subset of pathe terminate in
two simple endpoints, and only this subset requires the rmanipulation of physical media. In fact, we go furiher and
implement media only for paths where hoth endpaints are internal views of real processes, and when both processes
have expressed an interest in actually using their endpoints. This allows the HP’C system tn prepare the transport
media used by a given process at convenient times.

It also means that a complex object can not send a message directly, enforcing passive hierarchies. (An agent
could perfectly well send on any interface in its domain without this restriction.) All communication is performed
by simple precesses and the connections inside a complex object determine which zubobjects, 2nd ultimately
processes, communicate on its behalf,

A chain would unplicitly multicast to all points along it without the restriction of deliverv 10 endpoints. The
siwation for sending 1s analogous. Since most paths are one-to-one, the distincion between endpoints and
exiensions avoids unwanted generality (and implementation complexity), requiring explicit inroduction of

46

muldcasting when it 1s desired.

Finally, a class of possible inconsistency due 1o network partition is eliminated, and the reconciliation rules
are simplified accordirigly. Because the endpoint/extension propenty is fixed for a given view, there will never be a
conflict between its usc with abstract connections (extension) or with tansport media (endpoints). All

inconsistencies in paths can be reduced 1o a single type of illegal structure: multiple connections to a single view.

4.2.2. Implicit New and Corresponding Components

Paths involving complex interfaces represent several component paths, and it is important to keep track of
which component views at onc end are associated with which component views on the other. Bundles have a fixed
number of components, and they are associated in the obvious way. Multicast interfaces have dynamically created
components, but thev all represent the same communication channel. However, each multiplex component
represents a distinct channel and it is necessary to identify the other end of the channel.

It would be pointless for the new primitive to create a unique, one-ended channel. There would never be any
way 10 communicate. Instead, under certain circumstances new creates views for both ends of the new channel.
When two multiplex endpoints are joined by a complete path, a new component is created for both endpoints.
(Because of mulucastng, components may be created for more than one remote multiplex endpoint.) This is one of
the two cases where an HPC primitive can have a significant non-local effect (The other is splicing to a
proriaiscuous service.) The delete primitive affects only its argument.

We can now define the useful notion of corresponding components. Correspondence for bundle views is
determined by the fixed order of the component structures; the ath component of one bundle corresponds to the ath
component of another. Given two compatible multicast views, all components of one correspond to all components
of the other. Correspondence for multiplex views depends on the order in which the component views were created;
a multicast component corresponds to just those components that were created by the same invocation of new.,

4.2.3. Peers and Chains

Views that have been bound together as a link in a communication path are called peers. There are links
through connections and links through shell boundaries. Views bound by a connection are called public peers, since
the binding is manifest whensver the views are visible. Views bound through shell boundaries are called private
peers, because the binding is not always known, even to the owners of the views, due to protection and visibility
boundanies. A communication path, or chain, is a sequence of alternating private and public peers.

End-to-end chains, which ierminate at endpoints, are the most important. When their structure is simple, they
must be implemented with transport media. When their structure is muliiplex, they allow implicit creation of
components. We often call the terminal pair of endpoints end-w-end peers. In Figure 4.3 A and D are endpoints,
and B and C arc connected extensions. <A, 8> and <C, D> are private peers, while <B, C> are public peers. The
oniy end-to0-end pecrs are <A, D>, which are neither private nor public peers.

(] D]

[]

Figure 4.3. Simple Chain

Public peers are defined only by direct connections, but private peers are defined by a recurrence involving
interfaces, chains, and corresponding components. In the base case, the two halves of an interface or complete
splice are private peers. In the recursion step, corresponding components of end-to-end peers are privale peers.
This is another significant feature of end-to-end chains: private peers can cross an arbitrary number of shell
boundariss. Figure 4.4 illustrates how these rules interact. Interfaces <A, B> , <C, D> , <E, F> , and <G, H> have

relevant structure

[intemal: encpoint,
ex.erad.: exiensior,
struzure: foc

]
Interfaces <A, N> , and <O, P> have structure

[imemal: extensicar,
exiemal: endpeint,
structure: burdie
{ intermal: maskec,
extermal: extens:or,
structwe: foo

[intermal; masked,
e Ll extensicr,
structure: foo

]

i

By the base case, each interface defines a set of private peers. The public (connested) peers are <B, /> , <D, K> ,
<J,E>,<L,G>,and <\, 0> . By definition, <M, N, O, P> is ar end-to-end chain, and therefore </, J> and <X, L>
are private peers. From this, we obtain <A, B,[,J,E, F> and <C, D, K. L, G, H> as additional end-10-end chains. If
feo is @ simple structure, the last two chains are the only ones that might require implementation.

) G

Figure 4.4. Comp!ex Chain

48

4.2.4. Multiple End-to-End Pcers and Chains

The semantics of one-10-one communication paticrns are straightforward. An operation like send, for simple
views, or new, for compiex ones, invoked at an endpoint of an end-to-cnd chain has the appropriate effect at the
other end However, HPC mulucasung allows both multple end-toend peers (Figure 4.5) and multiple end-t¢-cnd

chains between a single pair of peers (Figure 4.6).

‘ JUm-'I

Multi

Uni-2

Figure 4.5. Muluple End-10-End Peers

Figure 4.6. Multple End-10-End Chains

Tlis raises a very important question. Is communication associated with peers or chains? In HPC, chains
define connectivity, not implementation, so one copy of a message should be delivered 10 each end-to-end peer,
regardless of the number of paths to a peer (and subject 1o the semantics of the communication medium). Similarly
for muliiplex end-to-end chains, only one new component is crzated for each remote peer no matter how redundant
the paths are.

The semantics of multiple peers and chains can be summarized as:
(1) Redundan: chains between end-to-end peers are equivalent 10 a single chain.
(2) Anoperation at an endpoint is reflected, in a mechanism-dependent way, a1 each of its end-to-end peers.
(3) Operations at multiple end-10-end peers are reflected as multiple operations from a single peer.

43. Management Properties

Views have some additional properties that are maintained by the HPC system for the use of agents. These
arc static role and type labels, useful for identification, and 3 dynamic indication of reachability, useful for
riggening applicauon-level flow contol and authentication. In genenal, however, an independent property service
should make these pruperties available to clients, not the HPC sysiem.

49

4.3.1. Roleand Type

In addition o its structure (simple, bundle. eic), each view has a fixed role and type. Roles and types are
arhitrary, uninterpreted strings of characters. Type describes the data representation or application-level protocol
expected at an interface. Typical types would be oyesirear, rmc-upcate, and self-cescrisinc—dataava~. For complex

interfaces, type generally describes the constraints or inieractions between the component streams.

Role defines the abstract behavior presented or expected at an interface. The UNIX conventions of staur,
stdous, and swgerr are well-known roles. The Accent kemel pe= is another standard role for a communication

interface.
Ar increasingly common configuration is:

{ ro.e: “temmirel erulatcr,
tyme: "X winacw c.ienl”,
structure: syple T /P in-oot

The complete description of the conventional UNIX interface to a process is:

imermal: exaeint,
exemal: encpoint,
struccure: bndle
| role: "suds-v,
type: "oviesireat',
ntermal: encxeiny,
extemal: exension,
structure: sirpie WWIX-stream in
' role: "staaot",
type: "oytestrea-”,
intermal: encgeins,
external: mxcens.con,
sracture: sirple UWIX-sirear o

©role: “staers®
type: "oyhesirex”,
intemal! enx.l,
extemal: exiension,
strocturs: simle INIX-stream o

Role and type properties provide a general mechanism for user-defined semantic interpretation of interfaces.
Each agen’ is free 1o interpret labels as it sess fit and is not required to understand any particular label. Simple
agents will check izbels for conventional compatibility (e.g., role stdin connected 10 stdar). Sophisticated agents
might interpose protocol or representation translation objects between views that are not immediately compatibie
{€.8., type var-£laat-x rea connecied through a conversion process 10 IEEE-£loat -st ream).

A software development system that supports strong typing and separate compilation could generate distinct
roles for each interface and use only agents that validate roles against a database before establishing connections
betwee objects. Another good use for roles and separate interfaces would be 10 distinguish between the various
entry points of an object accepung remote procedure calls or Ada-style rendezvous. A good development system
can exploit the rype informaiion :0 make available at runtime a detailed description of the language and runtime
dependent message types, remoie procedure call arguments and retum types, and so forth. This can be used by

50

agents (o help ensure the sensible interconnection of objects. Because interface type labels specify the proper
interpretation of daa transmitted through an interface, they are valuable in monitoring and debugging. Type
informaton can make the difference between low-level packet traces and raw dumps and symbolic debugging of

communicated daia 1n a format relevant to the application,

4.3.2. Liveness

Usually an agent can not contro! or even trace a compiete communication path, but even the most rudimentary
conurol lechniques require some indication that two processes are in contact with one another and remain so. A
dynamic view propeny called liveness provides this indication based on viable endpoints, which are simple

endpoints backed up by transport media and complex endpoints in complex domains.

While a view's structure is fixed. uis liveness changes to reflect the communication paths that pass through the
view. A viahle endpoint is reachable through any alive view. When a viable endpoin: is alive, a useful end-10-end
chain exists. Flow control and (re)authentication procedures can be triggered by changes in liveness.

Liveness is computed by examintng the chains that start with a view and continue with its private peers. The
view is alive if at least one of these chains terminates in a viable endpoint, it is dead if none of these chains
terminaies in a viable endpoint, and it is suspended if neither of these two liveness values can be confirmed due toa

nerwork partition.

43.3. General Prcpertes

There is no reason arbitrary properties couldn’t be associated with interfaces, lstting convention determine the
significance of role and 1ype. For example, the X window system incorporates a general facility for associating
properties with windows. However, many things can have properties, not just HPC views or X windows. Property
registration is a problem that should be solved once, not repeatedly, and that suggests a general context or property
service, independent of the HPC agent or other services.

Kole, type, and more gencral propertics can be registered by clients without involving the HPC system. This
applies o all static and many dynamic properties, most of which are uninterpreted by the HPC system. However,
liveness is an example of a property with a non-trivial definition, interpreted by HPC, 221d with abstraction and
protection boundaries that deny any single client access w0 all tiie data needed to compute it Such properties should
be computed by the HPC system, but made svailable to clients through the propescy service.

Expedient compromiscs develop in the absence of a property service. On one hand, a system that depends on
a nonexistent service is not very useful, therefore the X developers provided the service themselves. On the other
hand, 2 general property service is peripheral w0 the issues this dissertation is intended 10 address. Only some
properues are nceded to tll otherwise anonymous views apart. So, just two specific properties were built into HPC.

Properues arc useful for objects as well as views. Consider UNIX filter processes, all with the same
conventional interfaces and radically different behaviors. Role or a similar property would identify the function of a
given Blter. For simple objects (processes), several properties would be useful, including the physical location of
the process, the image file from which it was animated, and its initial arguments.

The lack of object properties is especually acute duning maintenance, as opposed 10 construction. As it stands,
all pmeesses arc indisunguishable after animation. A post moriem examination of & failed process shows only an

tn

empty object. There 1s no record of the image that ran in the object, or what its paramelers were, making it difficult
to know how to repair the failure. We made no provision for recording properties of objects. This 1s arguably a
significant oversight, but the carrect soluton is an independent propeny service not specific to HPC.

4.4. Discussion

Composiuon in HPC is expressed by its communication structures. The features of connections and interfaces
have somic unexpected interactions with each other, with the abstraction expressed by nested objects, with the
protcction system, with parutioning due to distnbuuon, and with the semantics of real IPC implementations. We

highlight the most impornant such interactions here.

4.4.1. Orientation

Until now, we have not been careful about specifying the orientation of simple structures. Surprisingly, there
is no consistent way to label an object’s interfaces such that both the description of flow relative to the hierarchical
object, and the description of flow relative to the views, are inwitive and indepe::dent of context. This is a subtle
issue that may lead to complex or error-prone programming. There are three related issues to clarify: the effect of
the hierarchy on orientations, the flow direction specified by an crientation, and the side of an interface affected by

an onicntauon.

I an onientation label is applied relaive to an object, the labelling of Figure 4.7 results. These labels are
appropnate in the hierarchical interpretation of yrocess structure, and initially appear to be the right ones to use.
However, Figure 4.7 shows that 1 is sometimes compatible with in and other times with ax. Views can not be
checked for complementary orientations without considering their relative positions in the hierarchy in zddition to
their labels. Worse, there is no local indication of the direction of communication flow. (Communicaiion between
an in and an oz may flow in either direction, depending upon context.)

Sender Receiver

(| e | e e [(]

out out outjout in in out out in in

Figure 4.7. Orentation Relative to Objects

Automatic reconciliation of inconsistencies in the hierarchy due to network partitions sometines requires
iking a shell’s parent and making, it a sibling. This operation (Section 6.2.3) would be unnecessanly complicated
by uic nced 1o reonent its interfaces {0 preserve complementary pairs of views.

If we apply onentauon Labels based only on the flow of communication and independent of the hierarchy, we
have two more labellings as shown in Figures 4.8 and 4.9. The first labelling is appropriate for describing the flow
relative to the exermal views of an object, while the sccond is appropriate for describing the flow from the internal

'
ta

pomnt of view. It is clear that ncither labelling intuitively describes the flow with respect 10 the other point of vicw,

(1 all three labellings, the actual flow of communicauon is the same.)

Re\.(‘lv‘.

in out injout In out In out n out

Sender

Figure 4.8. Orientation Relative to External Views

Sender [1 ﬁeceiver

out in out]lin out in out in out in

Figure 4.9. Orientation Relative to Intemal Views

We select the labelling of Figure 4.8 because it provides the expected labels for the (external) abstractions
presented by objects. The views of an interface (indeed, any pair of peers) have complementary orientations,
therefore only the orientation of the external side of an interface must be given explicitly in an interface structure.
Confusion over the orientations of internal views is possible, but there is a consistent rule goveming communication
flow. Messages flow out of of a view where receives are performed, and into views where sends are performed. For
RPC mechanisms where the orientations are client and server, a client process makes calls on a serer view, while
the server process accepts and replics on a clierx view.

4.4.2. Endpoint/Extension Promotion

The endpoint/extension distnction has several auractive festures, but it panially negates the information
hiding provided by domain boundaries. We want to treat single processes ard opaque complex objects
indistinguishably. However, we aiso don't want to send on simple endpoints anywhere except inside 2 process, and
we don't want 1o support coancctions and interfaces inside a process, at least not any further than its boundary 10 the
outside worid.

These are conflicting desires. If a complex object is animated inside a shell with a simple endpoint, it can't
use that interface. If a simple object (process) is animated inside a shell with an exiension of any stucture. it can't
use that interface. Conversely in either casc, if the interface is used, the simplicity of complexaty of the obect can

NH
‘o

be determined from outside. The creator of an object should not know the complevine ot us implementauon or how

1l manages 1S intemal communicanons, cither before or after the object is creatc

Our soluuon 1< to allow an objec! 10 promote its internal views 1o either endpsint. or extensions, as desired.
Promotion actualiy replaces the enure interface; when the object dies or is killed, e inierna' views do not revert 1o
the onginal structure. The intemnat components of a complex view are creaced or destroved (not masked) as
necessary to match the chanse in suructure.

To eliminate some inconsistencics that could anise during network partitons. the domain boundary shell and
all its interfaces must be replaced whenever an interface is promoted. This preserves the invariance of a shell's
interfaces, which is an imponant assumption of the conflict resolution procedures. To reducs the possible confiicts
further, promotion is only allowed during the animation and investure operations. This 1s & simplifying feature,

rather than a cnucal onc.

4.43. Taps

Corresponding components are easily defined, but the tap problem illustrates a limitaton with multiplex
components. A valuablc feature of dynamic communication structure is the ability to insert a monitonng process, or
wp, at any point along a communicaton path to debug or filter the contents of the communication. Figure 4.10
illustrates the inscrtion and removal of a tap in the middle of 2 connection.

Insert

> ATap

4
-

- . Remove o :

Figure 4.10. Tap on a Path

Ignoring changes i liveness. it is possible to insert and remove a wp transparenty at any time on any
structure excepr a muluplex interface. For multiplex structures, the tap must be inserted before a component path 1
be monitored is created and must remain in place until the last path has been destroyed.

For simple structures, aps forward communication from one side 0 the other. More generally, taps intercept
the results of endpoint operatons from one side and reinvoke the operations on the other. Of the complex
structures. only rew 0n 2 multiplex endpoint has an effect at its end-toend peer. A mulliplex tap detects the
automauc creauon of 2 ncw component on one side, and invoke: new On the other side. This in tum creates a
component al the ulumate end of the intercepted path. The up remembers which components on each side maich
up as parts of an intercepied component path, so that communication on the components can be properly forwarded
through the ap.

The problem comes 1n removing the ap. The obvious approach of disconnecting the tap and reestablishing
the intercepted connecuon won't work because of the multiplex component correspondence rule. New views
created while the &p s in place only have corresponding components in the ap’s 1nterface. When the p is
removed those views are peamancnty dead Stmilarly, component paths established before the ap can not be

4]
4

monitored (except at the or:ginal corresponding components.)

We did not atiempt a soluuon Lo this problem. Definition of corresponding component pairs by agents is a
possibiliiy worth investigation. Ideally, a solution to the tap probiem would also address the cycle-avoiding and

authentication problems discussed below,

4.44. Reflectors

Besides the multple paths discussed earlier, multicasting can build somc non-obvious communication
pauterns. Refleciors are one of these. Reflectors allow a chain to pass through the same view twice, once in each

direction. (Figure 4.11.)

Figure 4.11. Reflecting Path

In erder to connect the components of the multicast endpoint 1o each other, they (and all their component
structuies) must Lave a neutrai orientation, such as in-ax. This neutrality necessarily applies to the entire chain due
to the compatibility restriction. Mechanisms lacking the ability to talk to themselves, like RTC, can not have neutral
onicntatons.

Since reflection is jus. a specific consequence of multicasting, it has all the usual effects on component
strucrurss. Suppose an endpoint is one of its own end-to-end peers due to reflection. If it is a multiplex view, then a
rew Operation on it will create rwo components. If it is multicast, communication through any of its components will
be reflected through all of its components. If it is a bundle, the paths through each of its components will be
individually reflected.

4.4.5. Cycles

A rtrivial cycle is shown in Figure 4.12. It has no endpoints and represents no path between processes.
However, with multicasting, cycles can be introduced in the middle of end-to-end chains, as shown in Figure 4.13.
For every such chain, there will be an infinite number of others, each with one more repetiuon of the cycle.

n
n

B =

Figure 4.12. Tnvial Cycle

Figure 4.13. Comp'ex Cycle due to Multicasting

These repetitions have no pathological effects on the HPC model, because redundant chains have the effect of
a single chain. However, cycles, refieciors and multiple paths require a subtle algorithm to compute end-to-end
chains without infinite looping or expensive checks for overlapping cycles and paths.

The prohibition of cycles might be suggested to simplify the system, because a system without them can
express all the same useful communication paterns, but there is no obvious benefit to prohibiting cycles. First, it is
the agent’s job, not the system’s, o determine which chains are sensible and which are foolish. From the system's
perspective, the work required to detect cycles in order 1o forbid them is not less than the work needed to detect and
ignore them. From the agent’s perspecuve, liveness provides a rudimentary protection against waiting indefinitely
for communication {rom useless channels. It must be admitted, however, that an agent requires more information o
make a truly informed choice.

Forbidding cycles actually has some undesirable consequences. A cycle is detected only when the last link is
created, typically due 1o a connect. Responsibility for the cycle (and the error) is distributed, but blame is not.
There is no way 10 decide which agent should best take action, and the efmor is detected arbitrarily long after
construction of the cycle begins. This is aggravated by network partitioning. During a partition the prohibition
against cycles can not be gunranteed. When a cycle is detecied upon nerwork merger, it must be reported 10 an
agent {or removal. However, there is no obvious “last” link in the cycle and therefore no obvious agent 0 hold
responsible. Yet removal of the cycle musi be enforced (else cycles really are allowed). Most inconsistencies of
Uus type are forced 0 a safe siaie by suspending all their views until an agent resolves the conflict, but that
terhnique has no sigmficance for cycles.

Forbidding cycies also means that operaiions like connecting two views arc sometimes illegal based on
informauon that 15 not available 1o the concerned sgents. The cycle can involve masked structure that is not even
accessible at the views in quesuon. This problcm could be avoided if agents had access 1o conncctivity information
thay idenufied views at the end of (parual) chaing 1n addibon 10 the anonymous liveness propeny.

56

4.4.6. Authentication

Many access control pelicies are a function of a requesier’s identity as well as the type o1 access. There are
two extreme views concerning the authentication of & communicating peer. The trusting view is that every
conncetion has been made correcdy. Every interface of z complex objec’ is connected to a child that is autherized
10 receive or provide the corresponding service. As a result, processes are always put in contact with authorized
peers. Authentication is a de facto property of process structure. Many hosts take fhis view regarding their machine
console. Anyone at the console has privileges by definition.

The suspicious view is that ar end-to-end peer could be anything at all. Through error or malice, every
connection might be o an unauthorized peer and authentication must be carried out whenever a new peer is
established. Most hosts take this view regarding their terminals. User identity must be established for each session.

Authendcation procedures, encryption, and related topics are cutside the scope of HPC, but ve have a clear
obligation to provide a mechanism to inform: suspicious objects whk2n a peer is (re)established and must be
authenticated. Failing to end a session when a user loses telecommunication contact is a common security problem.
The next user 10 establish contact with the host gains the privileges of the previous user.

View liveness 1s one mechanism for reporting changes in connected peers. For one-to-one chains, HPC
guarantees that an endpoint will make a transition to the dead state whenever its end-to-end peer changes. Liveness
can be 100 comservative 1o preserve abstraction, because a complex object can not change its internal
implementation without triggering reauthentication. In principle, we should authenticate an sbstract object, not the
collection of leaf processes that happen to implement its services. If the object is trusted to provide the eppropiiate
service, it should be trusted 1o manage its implemer:tation.

In other cases, liveness is 00 weak for safety, because molticast interfaces allow the replacement of an
authentication peer with an unauthenticated one without signalling a change in liveness, and because the addition of
(unauthorized) peers after the first live pecr is not reported.

In a trusting environment, the liveness pruperty could be supplemented by notifying objects when their
immediate external connections change. Neighboriiig objecis could reauthenticate at the appropriate leve! of
abstraction. (This mechanism would havc to reflect changes in the degree of multicasting, as well.) In a suspiricus
system, one could record the partial chains reachable through each view. By associating an authenticated peer with
a particular view on a particular chain (thus some specific object), substitution or insertion of an unauthenticated
object on the near side of the selected view can be deiected, while ignoring changes on the far side (irside the
object).

Recording chains can be used 10 avoid cycles and address the tap problem, as well as to trigger authentication.
Cycles can be detected or avoided by checking connected views for membership in each other’s chains. If
multplex corresponding components are made explicit, some form of user selection of comespondence to address
the wap problem becomes possible. Unfortunately, providing so much information about arbitrarily reinote process
structure 1o facilitaie one aspect of security is difcult to reconcile with abstraction, information hiding, and acoess
control. An adequate solution to these problems remains to be found.

o alinding ol i

PSP .

57

4.3.7. Multicasting Semantics

HPC demonstrates that essential communication patiems can be expressed structurally. Multicasting is
cntical for many appiications, and it has been easily integrated :nto the HPC model as a structural feature, rather
than an addressing or special transpont mechanism. Unfortunately, even simple uses of multicasting may not be
compatible with the semantics of the underlying IPC mechanism.

f o structure:r melticast

stiucture: suple T2/F 1ol
Protocols such as TCP/IP designied for reliable data streams between two processes make very strong assumptions
about exactly one set of peer processes. The HPC system can prohibit such mechanisms at the leaves of mu'ticast
trees, or do something more complex than c:eate a single transport medium to implement the 2ffect of muldcasting.
For TCP/iP, a central redistribution process is introduced w0 replicate and merge indivicual TCP streams. This
provides a useful service, but it certainly doesn't provide the general semantics of reliable multipie delivery.

It is often not obvious how to use an existing [IPC mechanism in an HPC multicast context. For example, the
behavior of one mailbox shar d among all peers is not the same as a separat¢ mailbox shared by each pair of peers.
In the first case, only one peer removes a copy - “essage, while in the second, all peers get a (separate) copy.
There is pot enough experience with multica - .aisms to select a general set of principles for extending
conventonal IPC mechanisms to multicasting. 1he interactions between multiple delivery and communication
mechanisms with varying amounts of state will prgbably remain unclear in the foreseeable future.

4.5. Communication Taxonomy

Direct interactions between processes in HPC are determined by three factors: logical configuration, transport
medium implementation, and communication. Each factor is controllzd separately by distinct agents. Configuration
is a dynamic, incrementuil process of modifying abstract structure and responsibility for one end-to-end chain is
distributed over many agents. The HPC system is responsible for creating and destroying transport media to reflect
the changiag logical configuration. And the conten: of communicsuion is controlled solely by the processes at the
ends of the banspurt media.

In mout systemis these distinct functions can nct be separated. Usually, configuration is merged with
communicauon. For example, configuration in a link-based system (DEMOS, Charloue, Accent/Mach) is
accomplished by sending a link in a message, while conneciion setup in TCP/IP is controlied by the two
communicating processes. A proper taxonomy of computer communication should distinguish these fuactions.

While the correspondence is not exact, in terms of the 1SO seven-layer modei, communication is user

invocation of the transport layer, composition is user invocation of the session layer, and implementation is carried
2u: by the session layer. (Table 4.1.)

o
el

How Rslated

purpose, intent

data encoding

~yser invocation

layer function

user specification

HPC Feature I1SO Layer
role application
type presentation

composition session

implementation session
structure transport
signalliné transport

user invacation

Tabie 4.1. Relation 1o the ISO Model

Different IPC mechanisms generally hze different operations for communication.

For example,

communicating with messages involves deciding when to send and receive messages, and what the contents of
messages should be. Communicating with a semaphore involves deciding when to wait (P) and signal (V).
Signalling with RPC involves deciding when to call a procedure, when to return from a call, and what the arguments

and return valucs should be. (Table 4.2.)

Mechanism Configuration Operations
HPC connect, disconnect
CONIC link, unlink
Hydra connect, disconnect
RPC bind
socket bind, listen, accept, connect, disconnect
memory link, load, address
file create, open, close, inherit
mailbox create, name
link create, transfer
filter set-filter
Linda set-pattern

Table 4.2. Communication Operations

NMechanism Communication Operations
HPC unspecified
CONIC send, receive, reply
Hydra send, receive, reply
RPC call, accept-reply
socket various, usually send, receive

memory read, write, P, V, fetch-and-phi

file read, write, seek

mailbox deposit, withdraw

link send, receive
filter send, receive
Linda insert, remove, retrieve, eval-and-expand

Table 4.3. Configuration Operations

The configuration operations for these three example mechanisms are deciding whom to send a message to
(whom to receive from), deciding which processes have access to the semaphore, and deciding which client stubs
are bound to which server entries, respectively. (Table 4.3.) Implementaton of conventional IPC mechanisms is
usually triggered directly by configuration operations and managed by the host operating system.

Communication, composition, and implemer.tation are rot just conceptually ditferent activities. If distributed
programming is to incorporate more complex abstructions than the weil-known client-server model, these activities
must actually be carried out by different agents. We argue that configuration mus! be an activity distributed among
multiple agents. Further, the configuring agents are generally not the same as the communicating processes. These
statements are already true in simple ways for svstems other than HPC. Designers of future IPC mechanisms shou!d
provide for their full realization.

To see that this functional separation 1s important to multiprocess, distributed systems more general than
HPC, consider a system offering only one service with multiple server processes, a file service, say. Every process
either belongs to, or is a client of, the file service, and the multiprocess implementation of the file service is
transparent W the clients. Before a client and a server process communicate, the client must decide to access the file
service and some agent in the file service must decide which server process is 10 handle the client’s request. Neither
the client, nor the file service agent, can decide nnilaterzliy to bind the client and server processes. The logical path
beiween the communicating processes has two segments. (There are two independent contnbutions to the decision
10 bind that particular pair of processes).

To exteng this argument somewhat, assume that a protection system allows a process in one process group 0
access only public feaiurcs (such as expoited names or interfaces) of other groups, and that groups do not export the
names of their intcmal processes. This already rules out the common situation (TCP/IP) where a communicating
process § chooses its pariner process P. If S and P are in different groups, S can only specify a public feature of the

60

group G to which P belongs. The choice of P 1o complete the configuration must be made by some process in group
G. This process can not be § and, symmetrically, P can not directly chose S.

Suppose the abstraction presented by a process group could be implemented in terms of other, less complex
abstractions. This seems like a fundamenial ohjective of any strﬁcluring system. One way (o do this is allow
nesting of groups, perhaps to bounded depth. Another way to achieve some of the same effect, even with a fla:
space of groups (no nesting), is to forward communication addressed to one group on to a second group, bypassing
all the members of the first group. (A null modem has this kind of inteal structure.} Access control or visibility
constraints will prevent a client in one process group from Knowing whether it is interacting with a process of 2
server group or some other group. In such cases, configuration can involve groups that do nat contain either of the
communicating processes. Establishing a path through several process groups requires the involvement, and
implicit cooperation, of a configuring process in each of them.

Static process structures avoid run-time configuration choices altogether. Configuration is then typically an
activity of human designers, while implementation is carried out by support software. Communications remains a
run-time activity. However, static structures make the question of dist~huted and incremental configuration a moot
issue of design methodology. We suggest that in successful methodologies configuration remains distributed and
incremental, where distribution refers to separation among specification modules rather than process gr ups.

Chapter 5

Non-Hierarchical Structure

61

5. Non-Hierarchical Structure

Despite the familiarity of a strictly hierarchical structure, there are two reasons non-hierarchical relationship
between objects must be accomodated. A strict hierarchy with exphicit composition has nice formal properties, but
is impractical for systems with real applications, even when their structure s static. Section 5.1 discusses the need

for ransparent access Lo shared resources.

Operations on HPC structure during a partition can easily lead to inconsistent hierarchies. Strict hiezarchies
are insufficient 1o express the merge of two sirict hisrarchies. A full discussion of this problem is deferred until the
next Chapter, but the necessary tools are developed here.

The first step is separating shells’ role in defining communication paths from their role in defining the
hierarchy. Section 5.2 extends the dual graph of the object hierarchy with splice edges having no effect on the
hierarchy, but allowing communication between arbitrarily distant objects. Splices are then carefully integrated into
the protection system to preserve the local appearance of a strict hierarchy, and to preveat unwanted interference
between distant objects. (Splices differ substantally from the mechanism originally described in [LeF85] and
(LeFES).)

Managers of global services use a promiscuous splice facility to accept splices from arbitrary clients. This
provides effective multplexing of splices to complement multiplexing of interfaces. (Section 5.4.)

Section 5.5 concludes with some design interactions between splices and the existing structural features, and
discussion of the pitfalls and wadeoffs of hidden violations of the hierarchy.

5.1. Transparency

The typical UNIX filter program has an input interface and an output irterface, and only these interfaces are
relevant to its composition with other programs. In addition, it may interact with resources like the file system.
However, access to such resources is rransparent to the user of the filter. That is, accass to external resources does
not change how the user sees the filter. The filter provides a public abstraction (interfaces) and transparently makes
use of additional private interfaces to external services. These implementation details are not part of the public filter
abstraction.

A sinct hierarchy with explicit compesition has nice formal properties, but is impeactical for systems with real
applications. A purely functional mcthodology requires upper levels of the hierarchy to know, a:d provide, all the
exiemnai resources required by lower levels. There is no way for an object (0 access a resource snbeknownst 10 its
parent unless it complete encloses that msource. This methodology has some definite problems.

. Abstraction is unnecessarily limited.

? There u & regrettable clash in the use of the terms iroaspareas and opaque. As ordmary words they are contradictory, bt as tochrical
terms they both indicaie that cenam details are act visible 1o the user. The operaung rystiams commurnity uses phosses like “virnial snemory i
transparent”, while the programming languages comununity writes things like “this type 15 opaque.” The ruoom imterest in tbject-onienisd rywam:
has brought both cammuniues, and their jargon, nlo intimate contact. We will comsinuzntly use “opaque” to indicsse domain, and thes visibilizy,
baundanet, and “transparent” 1o mdicate that sn cbject’s abetraction, and thus s iwerfaces, does not define all of s Wserections with exwema
resources. If this muddses the water funther, we ask 1o be forgiven.

63

A module’s public interface should define its abstraction and hide its implemeniauon. There is no way 10 separate

the HPC interfaces used in "public” and "private” interacuons.

J The bencfits of exphicit composinion are lost.

AL higher levels of the hierarchy there is an accumulation of unminteresting “plumbing” whose sole purpose is
providing global services to lower levels. The cornectons relevant 1o the higher abstractions are obscured. (Figure
5.1,

° The system 1s not modular.

Gaining access 1o a new service, or changing the implemeutaticr of an object, requires traumatic changes to the
object hierarchy. All shells between a service and its client must be destroyed and recreated with a different set of
interfaces to provide a different sct of resources.

. The system 1S not opzn.

Top-level objects. including independent global services, are only trivially composed. No connections are ever

made among them, and they can never interact.

These defects can be remedies by relaxing either strictly explicit compositior or strictly nested abstractions.
HPC provides transparent violations of the object hierarchy.

§.2. Splices

Shells normally represent boundaries or separations. There is an inside and an outside; the inside defines an
object while the outside defines its environment However, the dual graph emphasizes shells’ role in
communication. Communicaton between spaces must travel over the edges representing shells. We will now
isolate this communication furctien, and unify the previously distinct structural features of shells and interfaces in
the dual graph.

Each shell has a fixed number of attached interfaces, each of which is the root of a tree of views. A shell can
be replaced by a pair of bundle endpoints bound as private peers. Its interfaces are demoted from roots to the

Externai {. : [!External
Resource P rem——— e 7 Dee(C IResource‘
5] External

Itigt Itigti Resource

JR——

Figure 5.1. Unwanted Plumbing

64

immediate children of the new endpoints. Chapter 4's discussion of communicauon structure is unaffected. Besides
the parsimony of features, this elimination of shells makes a nice sort of sense. A shell defines the abstract interface
between two spaces by grouping together several communication interfaces, which is the function of bundles.

The HPC structure visible to clients retains the noton of shell, and the interfaces, rather than the bundle
endpoints, are presented as the roots of view trees. However, intemal computations of communication paths
disregard shells, and use the bundle endpoints insiead. The (internal) root of a view hierarchy is always attached o
a single space, and all its descendant views are in that space. The root is always bound as a private peer to another
view, and this binding d=fines a path of communication between spaces. (A related simplification is that there is
exactly one direct private binding between view for each edge between spaces, rather than one for each interface on
the shell. The corresponding component rule binds an number of interface subtrees.)

We can add now add arbitrary edges to the dual graph, even multiple edges between the same two spaces, in
confidence that non-hierarchical abstraction and composition are well-defined. Each edge from a space represents
one abstract interface between neighbors, and composition is defined by edges between spaces and connections
within them An object can present one inierface o its immediate parent in the hierarchy, others to its immediate
children, and still others to unrelated objects through which it transparently accesses global services.

However, hierarchical organization should not be discarded simply because it can not be used everywhere.
Violations of the hierarchy should retain the appearance of a directed tree by providing every edge with a direction
and every space (save the root space) with exacly one parent. The second constraint means only a rooted spanning
tree can be associated with the object hierarchy. (We continue 1o call its edges shelis.) The remaining edges
(splices) are fundamentally undirected, affecting communication paths but no: the object hierarchy.

Splices are presented o clients as opaque subuees to disguise the non-hierarchical structure. Both ends of a
splice appear to be inferior domain boundarics, regardless of the real relationship between the endpoints. No
violations of a strict tree will be apparent through inspection or traversal of a static object hierarchy.

These boundanies allow splices that join any pair of spaces, between domains, within one domain, or even a
self-loop on one space. Splices within a dornain must be accounted for because merging domains through abdicate
or depose can easily transform splices between domains into splices within one. Similarly, merging spaces through
disciose can transform splices between spaces 1o self-loops.

The apparent domain boundaries make it easy to provide dynamic behavior consistent with a strict hierarchy.
The only operations applicable 10 an inferior domain boundary are kill and depose. The kill operation replaces an
arbitrary subtree with an empty leaf space, and the HPC sysiem is free (o assume the convenient terminal policy die
for an illusory domain, so depose is treated the same way. (Actually, creating and destroying a splice is a two-step
process. Each endpoint 15 manipulated separately, but the enure splice is rot destroyed until both endpoints have
been removed from their incident spaces.)

Becanse creauon of & splice must specify the remote end of the edge, ii is a ripe opporumity for emror and
malice. A fl: system client can not be responsible for understanding the internal management of a global file
service wel! enough 10 know where 10 put the other end of a splice. The agent for the file service should decide that.
Nor 15 any agent allowed 10 unilaterally change the internal structure of unrelated domains that don't wish to be
interfered with. Therefore, splicing 1s a two step process, requinng the acuve cooperation of agents controlling both
affecied domains

| L

63

First consider the destruction of the sphice <A, B> shown in Figure 5.2 by invoking kill or depose on the

(apparent) shell A.

1

.__(D.i‘ BO_..

Figurc 5.2. Complete Splice

The endpoint A is moved from its space to a hidden space available only to the HPC system, and replaced with the
shell C and an empty leaf space (Figure 5.3).

el

Figure 5.3. Incomplete Splice

|
i
1
|

|
|
;
!

When the other endpoint B is destroyed, it is similarly replaced by the leaf D (Figure 5.4). The splice is
destroyed when both endpoints have been moved to the hidden space.

Figure 5.4. Unspliced Leaves

Creating a splice inverts these steps. To splice D and C, one agent invokes the splice operation with D and C
as arguments (order 1s significant). D must be an empty leaf. It is replaced by the splice <A, B> with A hidden.

If C is an empty leaf with struciure complementary to D, HPC remembers that D was to be spliced to C.
When the other agent invokes splice with arguments C and D, HPC finds the hidden end of the splice <A, B> and
replaces C with it

If C and D are not compatible, the new splice will be created, but it will not be associated with the remote
interface. (C{. new on a dead or suspended interface.) This ensures structural compatibility for all private peer
bindings, while prevenung an agent from learning about another domain by blind probing for leaves.

The splice openation is cooperative, symmetric, and secure. The agents controlling both leaves must
explicitly invoke splice, and it doesn't mauer which invocation comes first. If onc agent splices D o C. the only
effect on C is that a subsequent splice(C, D) will complete the splice. If C is spliced 10 some other leaf, the
incomplete splice from D 1o C 1s entirely ignored. The agent controlling D gains no information about C unless and

606

unti! the agent controlling C chooses to complete the splice.

The splice and enclose operations arc about cquivalent in complexity. Both creatc a new pair of bound views
and attach them to spaces. Enclose must partition a space, while splice must look for an incomplete complementary

sphice

3.3. Example: Accessing a Global File System

Accessing a top-lavel service from arbitrary points in the hierarchy is a primary motivation for splices. Here
we use a file server application 1o illustrate how such access can be organized, glossing over the deails of splice
creation. In many file systems, a client must perform a directory operation, such as open, to obtain some abstraction
or handle for a file through which file-specific operations, such as read or write, must be invoked. The natural HPC
representation gives the client a splice 1o the file system directory, and an additional splice for each open file. The
different types of operations available from a directory and from a file will be encoded in the interfaces of the

splices.

The example client shown in Figure 5.5 will reduce a stream of data by adaptive filtering and issue a
smoothed version of its output. Intemnally, it will use files to log filtering parameter changes, for off-line analysis of
input characteristics and filter performance, and journal the input data currently within the filtering window,
allowing the managing agent 10 recover or migrate the filtering process. Given an initial splice to the file system
directory, the client can negotiate the cooperative creation of an additional splice by first telling the HPC system
where its end of the splice is 10 be located and then invoking the file system open operation with its credentials and
the name of the desired iile.

Filter
Filter File Sys
Manager Snhice
il
G q Filter Process h &
Log Analysis Journal
File Splice | [File Splice] [File Spiice

Figure 5.5. Hidden Access to Global File Service

If the file server finds the operation accepiable, it tells the HPC sysiem to complete the splice. The ssrver is
frec 10 do anything with its end of the splice. It may, for example, use a sepanale internal process W service each
splice representing a file, perhaps distributed across hosts (0 provide the luwest cost communication with the
respective clients. The resulting structure with separate server processes is shown in Figure 5.6. Mote the client-
scrver symmetry.

e

o

67

Server Client

ok ||

Ve

/

Figure 5.6. Client-Server Symmetry

5.4. Promiscuous Splices

The symmetric splice opcration presupposes that agents can negouate an agreement on the leaves to splice,
which itself assumes some existing communication path. The "plumbing” needed for negctiating splices is not
significantly less than the plumbing needed to access external services in the first piace.

To provide an escape from this circular dependence, the HPC agent reserves a small set of promiscuous shell
names for special treatment. Let S be a promiscuous shell, and A be a compatible leaf. If the agent controlling A
invokes splice(A, S), the other end of the splice will be immediately installed as a sibling of S. With this special
treatment, the agent controlling § does not need 1o take any action to create the splice.

(This operation, and new, are the only HPC primitives that can have a direct, vnilateral effect on remote
structure. Their ability to interfere with the remote domain is limited 10 the nuisance leel because new structure is
always created, and no existing structure is modified. Creating a splice or a new component therefore can not
interfere with any ongoing activities involving other structure.)

These reserved shell names are the equivalent of well-known service numbers or well-known port numbers.
In fact, this mechanism is taken more or less direct!y from the DARPA TCP/AP protocol for establishing a
connection. A TCP/IP server listens on a socket with a well-known port number. Clients initiate connections
between a local socket and the server's well-known socke:. The TCP/IP protocol creates a new server socket and
establishes the actuai connection between the client socket and the new server sockel, leaving the well-known server
socket free for initiating other connections.

It is unnecessary, and ultimately painful, for every server 10 use 2 well-knoswn name 10 advertise its services.®
Here we demonstrate a a global name registry or swilchboard service. Any object can create a splice 10 the
switchboard using its well-known special shell and then send a message to register 2 component shell 10 be used for
splices, of (0 request the switchboard 10 facilitate a splice with another obje “L

In Figures 5.7 through 5.10, a client is shown locating a server and creating a splice to it Initially, in Figure
5.7, Server has spliced SX 10 the special switchboard shell X. (Dashed curves will indicate pairs of shells that have
been spliced.) Afier creaung the path 1o the switchboard, Server registered (by stnng or any convenient identifier)
SC as a shell 1t is wilhiag 1o sphce o a chent.

'The DARPA ‘quﬂ e2penences with tus probicm are reflected i the features of the new Iniema “doman name server” which_for the
frat tene, climmnates » global dependence on well-known. suudally aliocsted, pont numbers and host asmben

| Server _ 1 — |Switchboard
€ 1 SX l’ t 0
X
Chent
Qm ceX

Figure 5.7. Se-ver Registered with Switchboard

In Figure 5.8, Client has spliced its shell CX to special shell X. Notice that a new sibling of X is created for
the splice. Client can detect when the switchboard connects a process to the new she!:, as in Figure 5.9, due 1 the
liveness property. At that ume, it will register its shell CS as the shell it wishes to splice to a server.

Any time thereafter, Client can send another message to the switchboard asking for assistance in negotiating a
splice to Server, for which Client knows the appropriate identifier. The switchboard response is to send Server the
name of shell CS through the spliced shell SX, and to send Client the name of shell SC through the spliced shell CX.
The two objects can then carry out the two step splice operation, as illustrated in Figures 5.2 through 5.4. The final
structure is shown in Figure 5.10.

A point should be stressed here. The HPC agent supports promiscuous shell names, and permits the
switchboard 10 use one. Other than that, all that has been described here is defined as an application. The interface
10 the switchboard. the messages 1o be used, the kinds of strings which can be used w register a shell, and so forth

Server 1 — |Switchboard
SChm] ij E;

X
Client .
SHOR| |

Figure 5.8. (lieat Contacts Switchboard

|
|
|
|
!
|

T —andll

6y

f Server 1 - _~Switdﬁ1board
SCm] pm XK E L
jLa— 1
X
Chent ‘
A [
CS]).qécq ﬁ

Figure 5.9. Switchboard Communicates with Clicnt

Server 4} — |Switchboard
RO
, /
| l X
&lient
aimcinl
T-1

Figure 5.10. Client-Server Splice Established

have no impac at all on HPC. They are established by convention, and can be freely extended and changed.

§.5. Discussion

55.1. Traesparency is Not Always a Good Thing

Transparent abstracuon f{ulfills a pragmatic nced at the expense of the aesthetics of pure composition.
However, even from the purely practical point of view, hidozn violauons of the hicrarchy can have disadvantages.
Ignore software for a moment and consider apartment layout Residents want hot and cold (resh water, sewage
disposal, heaung, and electncity provided without worrying aboui where these services come from. For its
occupants, an aparument 1S a convenient selfl-contained unit independent of ather apartments. However, for
architects, contractors, and reparr persors the bounds of a given apartment are comewhat artificial. They are much
more interested 1n the network of plumbing and wining that ties a whole building together.

HPC does nut reconciic these two points of view. 11 allows construction of complcx objects using cither

explicit provision of service irom above, or hidden direct access W services Howcever, archiects and building

70

managers can prevent residents from tapping electrical trunl directly, ar.d are obliged to provide residents with the
standard services. In hierarchical process composition, an “bjeci can not prohibit a sububject from obtzining
transparent access and a subobject can not force its parent to provide a needed service.

Future research should investigate the problem of controlling hidden access paths Residenis of an apartment
complex necd to be prevented from wpping services directly for two pamary reasons. First, resource utilization
must be controlled and accounted for. The second issue is safety; Uncoordinated access to a resource can endanger
all users of the resource. In large-scale software, similar issues arise. An object may need t0 restrict or account for
the resources it consumes, and can only do so by controlling the access of its subobjects. Cycles, sterage, and
communication cost real money, and most hosts shared among several user groups have some fca of accounting,
billing ard quotas which must be observed.

As an example of the safety problem, consider the lightweight transaction mechanism proposed by
Zwaenepoel and Almes, which could be built easily on top of the HPC agent [ZwAS8S). In their scheme, each
worker process pariicipating in a distributed computation is given a unique identifier, 2 set of input files, and a set of
output files. A centralized job manager is responsible for assigning resources to workers and collecting their results.
The manager gives a worker process unique temporary files to use for output, so a2 worker has no effect on shared
data prior to a commit. When the manager dacides to commit a computation, it (atomically) renames temporary
output file as shared dauw files. Since - worker’s results are coinpletely writien into a temporary file before a
commil, the actions of a worker process appear atomic. If the manager process is aborted, the rename operadon wiil
never be executed, hence the workers will have no effect on shared data. If a worker process is partitioned irom the
manager, a new worker process can be created by the manager with a new identifier. The output fiies of the
previous worker process will never be renamed since only the most receni identifier is allowed to cause a commit.
Eventually the orpnan worker process will complete or abort; In either case its results will be discarded.

As long as worker processes use only resources obtained from the manager, this form of lightweight
transaction works nicely. However, if worker processes can transparently bypass the manager and obtain fle access
directly from the file sysiem, the apparent atomicity of a transaction can not be guaranteed.

It may be possible to ex7'oit the hierarchy when establishing limits on shells that may be spliced together.
The following skeich attracts further concideration. An object could limit the subtrees (anywhere in the tree) o
which its componens objects may create splices. That is, a server can usually be identified with an object, and
therefore & subtier of the structre graph. An objec: might allow its components transparent access to specified
subtrees (services), or forbid access 10 certain services, and so forth. Existing experience with scope nules for
programming languages with import and export shouid be quite relevant.

552. Peer-to-Peer Symmetry

Splices avoid the usual asymmetry between clients and servers. Returning to the principfe motivation for
transparei! non-local access and thus the splicing mechanism, a client of a global service can splice a leaf she: o
one belonging 1o the server and ther commuwicate direcily with the server. The client’s spliced shell retuins its
structural position as an implementing component withir: the client. Non-locai access through a splice appears to be
access 10 a completely enclosed subcomponent

71

It is a short step 1o realize thi: the server can think of a client as 2 subcomponent as readily as the other way
around. This is an extension of the parent-child symmetry made apparent by the dual graph, ard it holds even in the
hierarchical view. Splices provide naturally for peer-peer relationships as well as the more common, but limited,

master-slave organization.

The dual graph displays even greater symmstry. An object is simply a subwree and the abstraction it
implements is the shell at its roor. The global process structure can be broken into subtrees at any space and the
composition inside the spac. defines the global behavior s a furiction of the subtree behaviors. Because there is no
distinction between parent and child in the dual graph, a subtree can treat an incident shell (representing its parent)
as a logically subordinate cbject, but the parent can treat the other side of the shell (representing the child) the same
way. Itisall a matter of perspective; the root of the dual graph can be chosen arbitrarily.

§.5.3. More una Fewer Restrictions

The strict tree structure could be retained by simulating the splice operation outside the HPC system.
Specifically, instead of splicing two shelis, an agent could animate an appropriate pmcess in an empty shell, passing
parameters to indicate tne shells to e spliced. Processes of this type would interact outside the HPC system,
locaung processes with complementa-y arguments, and forwarding communication frem one process to the other.
(Splices between morg than two endpoints could be simulated.)

As with multicasting, we are obligated to demonstrate how impor:ant relationships can be directed expressed
in terms of process structure. Therefore, we integrated splices into the object hierarchy to express transparent, non-
hierarchical access as directly as is consistent with protection and visibility restrictions, rather than depend on a
mechanism outside the system.

Instead of maintaining a canonical spanning tree of shells, with all other edges distinct splices, parts of the
troe conld be left indeterminate until a hierarchical operation uctvally affects that structure. This option has not
becu carefully explored. but it l.as some attractions. Any system that maintains a canonical tree must break all
symmerries in the complete graph. Any time rwo spaces share mulriple parallel edges, one edge must be identified
u$ part of the tvee. Delaying this identification until needed permits greater symmetry. It is probable that this would
reduce the number of merge conflic's (Chapter 6; that must actually be reconciled.

It is possible to give clients an explicitly d:fferent representation for splices, instead of disguising them as
opaque shells. However, this puis a greater barden on agents by adding structural features and operations they must
unde. ..and, and the overail functionalicy (th::s system complexity) remains the same.

In the direction of accepting still less restricted graphs, some merge inconsistencies could be avoided by
giving up trees (and even DAGs) and using general directed graphs or even the undirect dual graph as the basic
structure. Comimunication and protection structu~e could zarry over essentially unchanged, but a replacement for
the asymmetric privileges of supericr doniains over infenor ones would have o be found. The basic methodology
of nested abstractions would be lost, and that se~ms like 100 great a cost for too litt’e retum.

55.4. Implicit Composition

Instead of relaxing the strictness of the hierarchy, we could have relaxed explicit composition. For example,
programming language open scope rules avoid the clutuer associated with explicit configuration of all related

72

components, especially shared access to globally exported modules.

These default ruiss are not aypropriatc for systems where configurations are to be inspected and inciementally
modified during execution. Sorting through all the implicit compositions for the ones actually used by an object is
not an efficient technique for determining its actual configuration. Splices (and shells) identify the interfaces
actually in use by an object, not ali the potential interfaces. Promiscuous splices are a convenient analog to global

exports when they are really desired, while ordinary splices allow greater control over configuration.

It also szems implicir composition would complicate communication structure substantially, by the
introduction of default rules for configuration, and by the extension ¢ ¥ chains with an third form of binding bétwe=n

views.

Chapter 6

Partition and Consistency

73

74

6. Partition and Consistency

A well-formed HPC structure satisfies a number of constraints. For example, an endpoint raay be part of at
most one connection, a space must belong to exactly one domain, and the directed edges (shells) must comprise a
strict vee. Under normal circumstances, HPC primitive operations preserve these constraints, transforming well-
formed structures into well-formed strucures. Enforced preconditions on HPC primitives prevent invocations that

would result in ill-formed structure.

In general, a distributed application subject to partition and merge can not offer completely consistent service.
It may provide service that s consisteni over time for each client or service that is consistent over all clients (in a
partition) at any given time. Stated another way, a distributed service must decide between discontinuous service
over time or over clients. To give every client the same service, interactions with specific clients will be disrupted
as previously partioned states are reconciled and service is resumed on the basis of the new stae. The service may
avoid these disruptions by retaining the previously partitioned states and serving clients differently accerding to
their differing histories. A simplifying compromise is more common. A distributed service usually maintains a
single canonical state and allows access to clients in at most one partition (chosen by a quorum of resources). No
matter which choice 1s made, the specification of a service must define the allowable inconsistencies over time and

between clients.

When a partition occurs, each partition inherits the pre-partition structure, and subsequent operations can be
checked for soundness within each pariition. Obvioasly it is not possibie 1o evaluate preconditions ou Structure that
may have been created or modified in othier partitions, and locally-sound operaccrs may produce structure that is
inconsistent between partitions. While a partidon lasts, these inconsistencies are of no practical significance
because (by definiton of partition) they cannot be detected. When a merge occurs, however, a well-formed
structure must be reestablished.

There are three basic strategies for dealing with inconsistencies due to merge. Avoidanze restricts service so
that inconsistencies at merge time are prohibited. Reconciliation combines several states into a single state
algonthmically, possibly with a change in service. Reporting presents the inconsistencies W clients explicidy,
permitting client resolution. All thres techniques have an impact on system Jesign.

Most distributed database consistency control techniques involve avoidance [SLR76), [BeG81), [BeG84).
Generally, the database can be writien in at most one partition, ensuring the existerce of exactly one authoritative
"most recent” version. Avoidance is appropriate when the system does not undersiand the structural constraints that
must be preserved (the application semantics of entries in a databasc), and when clients cannot tolerate
asynchronous structural change (as in transaction systems). Avoidance by denying service is inappropriate for
systems offering high availability, for applications that wish o apply their own consistency contrel policies, and for
environments with a high expected frequency of partition.

The Locus file sysiem aliows updates w partitioned files in all partitions [PWCS1), [WPES3). Two forms of
resolution are applied to inconsistent files. A history of updases and partitions (called a version vecior) is used 10
replace inconsistent copies of arbitrary files with a dominating update, if any exists. Remaining inconsistencies in
specialized files, such as mail boxes, are resoived by merging the partitioned conients of a tile. Network clock
synchronizavon protocols that maintain a distributed monotone value, with fixed upper and lower bounds on its rate
of change. are good examples of complex resolution algonitbms [Lam78), (Mar84), IRay&7), ([WelL88). R-solution

) |

2
th

is appropriate when the system understands the constraints that must be preserved (e.g., an update dominates a

previous update on the same file, the behavior of a clock), and clients can 1olerate asynchronous changes.

Resolution is not always possible, however. For example, in Locus there is not always a dominating update to
a file. For arbitrary files, Locus cznnot resolve such inconsistencies in a principled way, and reports them to the file
owner. The inconsistent copies and their version vectors are made available so the owner can apply an arbitrary
resolution policy. Locus suspends normal access to the file until the owner installs the definitive, resolved copy.
Reporting moves much of the burden of dealing wich inconsistency from the system to its clients. All possible
system states, both ill-formed and well-formed, must be defined, the behavior of its operations must be defined on
ill-formed states, and clients must have tools that can move ill-formed states closer to well-iormed ones.

HPC client applications chose their own responses o partition and failure. Applications that aggressively
adap to such events can radically restructurs themselves 10 restore lost resources and recover the desired degree of
redundancy, but almost all applications will modify some aspect of process structure during a lengthy pantition.
HPC uses all three basic strategies to deal with the various types of inconsistent process structure that can arise
during merge. The use of unique identifiers, globally known functions, and immutable properties avoids
inconsistency in many HPC features. Section 6.1 shows how HPC uses these techniques, which are not spacific to
HPC and can be used to advantage in many distributed applications.

Applying avoidancc techniques leaves a small number of strictural features for reconciliation and reporting
(Secuon 6.2). HPC reconcilation is guided by a preservarion principle: anything that works or may be even
passively of interest to an agent in any partition should be preserved in a merger invoiving that partition. The
mathematiral operation of meet on a lattice can often be used to merge partitioned structures while preserving their
individual behaviors, and HPC uses several special cases of meet for reconciliation. However, some divergent
structures are. simply incompatible and can not be merged naturally. HPC ensures that such confliciing structures do
not interfere with consistent narts of the process structure, reporis the conflicts to the relevant agents, and gives
agents the ols needed to reduce an inconsistent state into a consistent one.

6.1. Avoicdance

Change, sharing, and partition are the major ingredients in the recipe for inconsistency. Any feature of the
system that is immutable may be known uniformily throughout the system without the need for observation. In the
absence of partition, all observations may be made consistent by globally simulating a single sits using well known
technigues, such as serialization. In the absence of sharing, all observations are trivially consistent because only one
observer may look at a given piece of the system. Partition can't always be avoided {it is, after all, a failure mode),
but the degree of change and sharing can be reduced as part of an avoidance strategy.

There are conflicts about privilege and authority that HPC can’t mezge vhile preserving the pre-merge
behavior and can't trust clients to reconcile for themselves. Becausc HPC can acither reconcile nor report these
problems, they must be avoided By careful design, additional inconsisiencies in HPC process structure can be
svoided, simplifying both the (static) HPC interface 10 clients and the run-time merge procedures, while retaining
complete availability of HPC operauons during partition. These simplifications are sought {or their ¢ wu sake.

Despite the emphasis on dynamic change of structure, it was possibie to design HPC so that most properties
and stuctural relations are immuiable. completely avoiding the possibility of inconsistent updates. (Appendix A

76

gives HPC structure a formal description in terms of sets, relations, and predicates on those mathematical objects.
We will refer to some of them in this Chapter.) The role, type, and structure of views, the interfaces of an
abstraction, and tie controller for a domain are prominent fixed properties. Less obvious examples are the pair of
views that comprise a shell, and the parent of a component view. (A view's known children 11ay change, but not its

parent.)

Inconsistent changes can also be eliminated by leaving properties unconstrained, or explicity defining sets of
states 10 be equivalent. HPC uses at least four variations of this technique. First of all, HPC is history-less. Legal
operations on a structure depend solely on its current state, and the sequence of operations that created it is both
unknown and irrelevant. Second, the hierarchical relation is the only dynamic ordering in HPC. All other dynamic
sets (e.g., multiplex or multicast views, shells adjacent to a space) are unordered, and all other orderings (e.g..
bundle components, terminal policies) are immutable. Third, there are few upper bounds on numbers of
dynamic. lly created structures. Partitions that individually satisfy an upper bound can easily violate the bound
when merced, while this cannot happen with lower bounds. Fourth, connections and spaces are unnamed, and
defined by the views they relate. Making them first-class entitics would increase redundancy, and the opportunities
for inconsistency, without adding to the possible structures.

HPC uses three techniques to reduce sharing. Physical resources are literally tangible; they have real physical
locations, and can be examined and modified only if they are in the current partition. Instead of atempting 1o share
physical resources between partitions, HPC reports partidoning of processes and interprocess communication media
via suspended liveness of affected communication paths. Suspension avoids inconsistencies by making the status
of partitioned resources explicitly indeterminate, and therefore consistent with any state. The suspended terminal
policy allows agents to generalize this behavior to multi-process abstractions that do not have any specific physical
location. Third, globally unique names are created for cach new piece of structure, so that similar operations in
different partitions will create difterent structure, rather than have conflicting effects on the same structure. These
unique names includs the name of the generating host, so name creation does not need to be synchronized.

The wisibility constraints imposed by the protection domain system also reduce sharing. First, disjoint
domains drastically limit the visible effects of an operation. Only the new operation and promiscuous splices have
direct effects in two domains; the liveness property also propagates across domain boundanics. Second, the HPC
system is free to hide information from its clients, especially non-hierarchical structure. If the exact relations
between domains were visiole to clients, the facade of a strict hierarchy could not be maintained.

6.1.1. Domain Contents

The contents of domains are formally described by the relation verberiv, d), where structural element v is 2
member of domain ¢. (Because shells havs been equated (o pairs of views, snd both spaces and connections can be
formally defined in terms of views, we can treat views as the only kind of stuctural element) It is a critical
property of the protection system thal any view is a member of at most one domain. There is no way 10 express
membership in multiple domains, there is no way o designaie an intelligent, neutral panty to arbitrate coaflicts
between agerits of different domains, and the cooperation of agents cannot be assumed in matters as crucial as
protection, control, and authorization. For these reasons, membership in multiple domains must be: avoided.

During a partiuon, one agent for 8 domain ola that existed before the parution started could invest a new
domain re- in a subtree containing view v. Suppose that v is moved from cid 10 new. NO matter what agents in other

77

partitions do, when the partitions are merged together, v will belong 10 rew and at least one other domain. If they do
nothing to v, it will beiong to i« If they create a differeat new domain through another invocation of invest, v will
belong to the new domain. (There is no way agents in different parutions can independently create the same new

domain.)

These violations of the constraint are avoided by making the domain of a view an immutabic property fixed
when the view is created. When domain creaton and destruction transfer structure between domains, a distinct
copy is created in the new domain, isomorphic to the affected structure, then the original structure is deleted.
Another interpretation is that the affected structure is renamed, because the HPC system’s internal representations
of abstract structurc can be modified in place.

An object seidom will be an agent for both the old and the new domains. When on'y the old or the new is
visible, the exact isomorphism between them is not critical. However, there will be occasions when the
correspondence is useful o necessary. It can be easily preserved by structuring the name space. An HPC unique
idendfier consists of a (unique) domain field and a (unique) element field. When a view 15 renamed, only the
domain fizld is altered. This also reduces the consumption of unique name space, as only one new name is required
to rename arbitrary subtrees.

6.1.2. Characteristics and Immutable Relations

Renaming is a basic technique for wreating a fixed set of things with dynamic properties «s a dynamic set of
things with fixed properties. It avoids fatal inconsistencies (such as conflicts about privileges) by introducing less
dangerous ones. For example, a view may exist in some partitions but not in others. However, creating and
desroying views produces exactly the same effect, so renaming does not introduce a new problem. HPC's
preservation principle resclves presencefabsence conflicts during merge by retaining views present in any merged
partition. Specifically, that means that a view that was deleted (or renamed) in one partition may be resurrected in a
later merge.

Creaton, destruction, and renaming of views and related structure within the current partition are dynaraic
operations, but HPC formal consistency is simplified by treating the set of views and the relatonships among them
as immutable. The technique of characteristics and immuuable relations used in this formal treatment is not specific
to HPC and can be applied 1o many data structures that are dynamically created and destroyed but otherwise have
fixed properties throughout their lifetimes.

The HPC process structure in the current partition is a subset of the structure in entire environment. The local
stucture is known exacdy, but the non-local structure, by definition, can’t be known, so we can assume anything
about the global structure that is consistent with the local structure as a cubset. Specifically, we assume the global
structure is immutable, and define the structure wathin a partition as the intersection of the fixed global sructure
with 2 dynamic local charactenstic function (or set) that defines the views and other feaiures known in the partition.
As views are created and destroyed, they are added to and removed from the local characterisiic, but the global
structure remains ynchanged.

When this definition can be applied, an especially simple merge procedure is possible. Partitions can be
merged by taking the sct union of the !ocal characieristics and the local structures. This preserves the defined
relauonship among the resulting characteristic, local strucuire, and global structure. A proof of ihe consistency of

78

this merge procedure, and other advantages of the technique, are given in Section A.1.

HPC structural features that have fixed properties throughout their lifetimes can be defined this way. The
role, tvpe. and stucture of a view are such fixed properties, as is domain membership. Let the characteristic
..« define the views known in the current parution, and let c-reer (v, o define the domains they belong to. As
cach view 1s created. it 1s added 1o the local ~-.ev, and its permanent domain is added to the local crercer. When a
view Is destroved, 1t is removed from e~ and creroer. The global rerbe: (v, & is a similar, immutable relation
defined for all views, all ume. and all parutions. By defining c-rerter as the intersection of cview and reme:, we are
assured that taking the union of several partitions’ cview's and c-merer’s is consistent with the definition. Wniting
down rerrez (+, < would require full knowledge about the future, but we den’t actually have to compute it. Instead,
it can be "virwwal'; The idenufier or domain of a view is never needed until it is created or made available through
merge. Destroving a view simply removes it from the known local structure. If it has not been removed from all
partitions. it may become known again after a merge, consistent with HPC's preservation principle. Other fixed
view propenies are treated the same way.

View hierarchies are a more interesting example, because the components of a view may change dynamically.
The charactensu. is again o-.ew, while the relation corporen: (¢, p) holds when c is a component view of its parent p.
Here, a technical constraint on the arguments of the global relations is very impenant. When we create a view we
certainly know its ancestors, but certainly not all its (as-yet uncreated) descendants. Therefore, we will insist that
the second argument of a local relauon is characteristic whenever the first argument is characteristic.'® For example,
the apparently equivalenl parer:(z, c) can not be used as a local relation, because we can not know all futre

descendants of any currendy known view.

Use of the charactensuc technique interacts with other HPC design options, ¢.g., if deleteing a view caused its
compenents o be inherited by its parent rather than destroyed, the global campener relation could not be immutable.
The carc relaton that defines direct pnvate peer bindings (from shells and splices) is constrained similarly. When
one vigw of a shell 1s renamed, beth views must be renamed to keep band immutable and single-valued. That means
that opaque domwain beundanes may “spontaneously” rename even when the domain on the visible side is
unchanged. This in tum implies that the domain field of a structured HPC identificr does not suffice when renaming
domain boundarics.

6.13. Splices

As dzscnbed previously, the splice operation is a cooperative, two-step operation. In a centralized
environment this offers no difficulty, but there are many opportunities for confusion in s partitionabic environment.
The partial ordenng of distributed events in separate partitions can make “first™ and “second” steps undefinable.
Inconsistent sieps can be taken in different partivons, which are exposed at a later merge. Different numbers of
consistent sieps can be taken in different partitions, causing inconsistent merges. Beczuse the other HPC operations
are one-siep and effectively atomic within a single domain, the technique used 10 avoid inconsistencies with splice
merits a detailed examination.

" Relauons with thu propenty are jometinas called seria!

. M.—-—-_i#‘_w.-.;m . e——— |

79

Both first and second splice steps take an empty shell and create a new domain boundary. Call the local and
remate shells in the first step oo and oo, respectively. To keep track of associated first and second steps, there is
«r.mplicit relaton between the old and new views. Let prestiicecicioi. cléR new®) selate the arguments of
splice(old-L. old-R) with the hidden view created to replace ols=. An invocation of splice wili execute the first
step if there is no tuple with its arguments reversed in the presplicec relation, and complete the splice using the
hidden rews otherwise. To be well-behaved, presplicec must identify a unique new view for a given pair of old
views, and identify no view if the old views have not been prgspliced.

Without restrictions, partition will violate these constraints. A first step camed out in two partitions could
create both presi:cecicie-l, cloi, X and prespliced(ole-L, oléR, ¥). After » merge, will splice(old-R, old-L)
complete a splice using », v, or both? A first step carried out in only one partition could lead, after a merge, 10
prestlicec(zic—, cizf., X al the same ume tial ole-L is in the partition. Will sptice(old-R, old—L) complete a splice
usin; x or take the first step in splicing 10 ol6-L? The likelihood that agents for borh ends carried out their splice
while partitioned complicates this scenario, making the operaticns first sieps in opposite directions, rather than a first
and a second step. Do two opposing first steps complete a splice?

Fiat removes some of the ambiguity. In HPC a prespliced shell takes precedence over an unspliced shell in 2
second step, by definition. However, multiple first steps in one direction, aué opposing first steps, remain a

problem.

A partitoned second step following a first step that establishes presplioec (olo-L, ole-®, X is less awkward. We
can determine the identifiers for the complete splice bowdnawi, new-R during either the first or second steps, with
differing results. The first step can establish x as rew-_, and fix the binding between rew-i. and new-r even though it is
not used untl the second step. which would always replace ol with new+. Identically named structure i3 idenuical,
so this produces one splice, even when the second step is executed in multiple partitions. The alternative is ©
determine rew-r during the second step. The first step would replace ola-L with x, which would be bound to some
hidden view, and the second step would replace x with new-L a1 the same time that ola-R is replaced with newR
Executing the second step in multiple partitions would produce distinct splices because each partition would select
unique value: for new~. and rewr. The effect is as if both steps had teen executed while partinoned.

There arc three general ways to avoid the remaining inconsistencies in the prespliced relation: enforce a
centralized decision, enforce a consistent distributed decision, and accept lower standards of consistency. Four
specific mechanisms were considered for the HPC design.

. Synchronous splice

If the two steps in splicing were splice(old-L, old-R): splice(old-R, new-L), the operation would be synchronous,
delaying the second step unul the results of the first step are available. The agent taking the second step explicitly
resolves any ambiguity. Besides introducing asymmetry 10 the agents negouiating the splice, ti..: mechanism adds
another step the negotiauon, because the first agent must communicaie new—. 10 the second.

) Issue a ticket

Another way o enforce a centralized decision would be 1o ask the HPC agent to precompute new-L and rew- and
issue a tcket that associates all four affected views. Splice would then take a ticket and the local view as arguments
ruther than two views. This wouid require another basic operation for ticket creation, but has some autractions.
While the tcket buyer must know both views w be spliced, the ticket user need only know the view in its domain.

80

This adds a littie modularity. The implicit relation of ticket 4~tuplcs is obviously an immutabie (virtual) relation.

It is tempung to usc tickets for splices that are not tied to specific target views. Tickets could be created
independently of the views 1o be spliced, and passed ‘-~ agent to agent. However, like other capability schemes,

there would be a insoluble use-once problem in a purutionable, fully-available environment
. Accept multiple pnvate bindings

The acceptable structures could be extended to allow a second step o splice a view 10 more than one other view at a
time. There is nothing fatal about allowing a view 10 be bard 10 more than one view, although we chose not to do
so0. The effect of muitiple private peers on communication patierns is well-defined: mulucasting. Multiple binding
might also sc-ve as a way 10 accept the effects of multple ticket uses. However, these multiple bindings would be
completely hidden, unlike the multicasting introduced by complex views. This seems undesirable, especially if
some media may not be mulucast.

° Knowr: function on structured names

Distributed agents will reach consistent conclusions if they apply the same deterministic algorithm to the same data.
A pairing function globally and consistenly can compuic unique identifiers (ew:, newR) as a function of
(ole-Z, ola=). Appending the old names or interleaving their bits are typical pairing functions. However, a pairing
function requires some structure in the name space to avoid generating "fresh’ identifiers that might be given to a
completely new structure. Also, a paired number has all the bits of its inputs, so the name space mus! be big enough
10 contain the largest result. These conditions are met in HPC. A (pre)spliced shell can not be spliced again since it
is not an empty shell, so a pairing function will be applied only to fresh names. (When the splice is removed, a
completely fresh nanie 1s assigned to the empty she.)

Despite the sparse use of name space, HPC uses this technique because it is fundamentally distributed and
preserves the desired symmetry and asynchrony of the splice operaticn. It also has the side-cffect of creating one
splice, even when the affected views are spliced in multiple domains, or when the both ends are spliced in sepamic
partitions. The ucket mechanism also has these nice effects if a single ticket is uszd. and avoids wasting any narme
space.

6.2. Reconciliation and Reporting

Through careful design, most dynamic aspects of HPC process structure can be treated as partial local
knowledge about immutable global structure, using the technique of charactensucs. These structura! features can be
reconciled upon merge simply by taking the set union of the data in each partition. Set union is one specific
function in the general class of meets over latrices of values (vid., Chapter 6 of [Sto77]). The meet operation has
some highly desirable properties for reconciliation. It is stable, idempolent, and convergent; merging any number of
partitions any number of umes in any order produces the same ulimate result The preservation principle we
adopied to guide reconcilauon can be oblained by careful choice of lattice. Max and min are other examples of
meeis over appropnate latuces.

There are only three relations in the formal descripuon of HPC structure that can not be handled by
characiensucs. Merges of these features are handied by specialized meets for reconciliauon, with explicit reporting
of cases where a structwe-preserving meet couid not be chosen. rolicyic. tyse, pi, defines the temporary and
permanent erminal policies for a domain. Connections are defined by the symmetric relation cavececivi, v2), and

81

spaces are defined by the equivalence classes of the relation aijace=: (vi, v2), which identifies pairs of views incident

on a common spacce.

6.2.1. Terminal Policy

There can be only one terminal policy of each type for a domain. Within a partition, the most recently
specified policy is used, but different policies can be specified in different partitions. (Once again, partial ordering
of events 1n different partiions means that the "last” modification is not defined during a merge.) Inconsistencies in
policy cannot be reported to the client, becau.. the policy specifies what o do when there is no cli=nt *~ ~~nort 10. A
merger may continuz a temporary loss of control or reveal a permanent loss of control, so a well Jeiined policy

must be available immediately.

Reconciliatior. uses a non-trivial example of meet over a lattice. Because IIPC understands what terminal
policies mean, it can resolve inconsistencies according to a sensible set of prioritics. For example, susperd prevents
unauthonized interactions, while null does not, and die hides structure from the outside domain, while abdicate does
not. Our priorities in descending order are to conceal structure, exert control, and keep running. Accordingly, the
basic policies are parually ordered:

suspend/animate < null < die < abdicate,
where suspend is incomparable with animate, and animates with different parameters are incomparable with each
other. Policy sequences are partially ordered lexicographicilly, taking the default basic policy as the first element
(the reverse of the order in which basic policies are applied.) For exampie:

die < die suspend

abdicate suspend < abdicate die

... animate(x) is incomparable with ... animate(y)

... animate(z) < ... null

The mect on this lattice is the greatest element less than or eqaal o its inputs. For example, the meet of:
die suspend animate(x)
die suspend animate(y)
dic abdicate
is die suspend. The effsct is to take the longest common prefix of incomparable scquences, and keep the best,
according to our pricrities, of the sequences that remain. Since HPC applies one basic policy at a ime uniil it gets
10 one that werks, the interpretation of incomparable policies is that the conflicting portions don't work.

There are other reconciliation strategics worth consideration. The basic policies can be ordered differenty,
sccording 1o different prionues, and lexicographic ordening is not the only way 10 compare sequences. For
example, rone of the basic policies in a sequence up to the last (first applied) non-animate will ever be tried
(becausc a ron-animate policy never fails), so this prefix could be discarded as irrelevant.

622. Connections

The comeczec relation can not be modelled as the intersection of a characteristic with an immutable relation,
because connections are created and destroyed without creating and destroying the views they join. A view may
have at most one connecuon, and this constraint can obviously be violated upon merge. HPC cannot resolve the
inconsistency without making an arbitrwry choice of connection(s) to remove and this would violate the basic

principle of retaiming all structure from all parttions, so the meetlattce technique was not used.

Instcad. the HPC svstem reports this inconsistency to the agents of the domain to which a muluply connected
view belongs. Undefined behavior is avoided by suspending the view, and all communication paths passing
through i1, unul a legal number of connect.ons 1s restored. Agents can usc the disconnect primitive 16 remove eatra

connecuons as casily as legal oncs, so the tools needed for user reconcihation already exist.

There are two imphcatons for system design. Furst, the format of public peer notifications must allow
arbitrary numbers of pecrs even though at most one is nommally permitted. Second, the connect and disconnect
primitives cannot be exact inverses, because the preconditions for disconnect must be more general than the
postconditions that connect can establish. This asymmetry could be removed by allowing connect to create more

than one connection 10 a view, automatically suspending it.

6.2.3. Space Hierarchy

The piaper nesting of objects is the most dufficult structural invariant to restore during a merge, and the dual
graph representation 1s essential when expressing the possible inconsistencies and their reconciliations. Since
enclose and disclose modify the dual graph without creating and destroying all the vicws of the affected spaces, a
representation for spaces is a fundamentally mutable relation. Two formal relations define the dual graph:
pard (vl, v2), which descnibes the immutable edges (shells and splices), and a mutable relation, adjacent (vi, v2),
which indirectly describes spaces by their incident views. The pairs of views incident on a common space satsfv
asjacesz, SO the complete set of views incident on a space is an equivalence class of the relation. This indirect
description is technically more convenient than the obvious relation between views and explicit spaces

incioere (v, s).

Merge can transform a set of strict rees into an arbitrary directed graph. This is the primary difficuity in
rcconciling the object hierarchy. Figure 6.1 shows the merger of a partition with three nested shells, A, B, and C,
and a partition in which B has been disclosed. (The arrows shown on directed edges point away from the root)

|
|
5
L

Figure 6.1. Loop in the Dual Graph

Figure 6.2 shows two pantiuons in which enclose(B) has been executed on a common initial structure of nested
shells. A and B, and their merger.

82

J

'

\
-/

Figure 6.2. Parallel Edges in the Dual Graph
More complicated examples with larger loops and incomparable branches can easily be constructed.

The violauons of the stnct hierarchy can be removed by converting some of the directed, non-trec edges into
undirected splices. For exampie, the simple lcop of Figure 6.1 can be converied as shown in Figure 6.3.

Figure 6.3. 8reaking Loops through Eversion

<ne hicrarchical view of the pre-merge and post-conversion structures (Figure 6.4) shows that shell B is effectively
tumned inside out, with one ead of the opaque splice (B]) representing the exterior of 8. and the other end (B2)
represenung its intenor. Because of this effect, we call the conversion technique eversion.

A
B (=] B

e | + Qf = b

Figure 6.4. Hicrarchical View of Eversior:

We can now describe the reconciliation of the hierarchy within a single don.vin under the assumption that the
domain has a unique root. The procecure ts as follows:

(1) Find (vansparcnt, duccied) shells that have been convened inwo (opaque. undirccted sphice format 1n some
partiuon, and cven them w1 the merger

84

(2) Take the transitive closure of the union of the local adsace: relatons. In general this will merge spaces and

give spaces multiple parents.

{31 Compute immediate dominators and back-edges in a single pass over the dual graph. Break all loops by
everting back-edge shells.

(4) I a space has more than one incoming shell, evert them all, and merge the space with its immediate
dominator.

Spaces with incident edges vi and v2 are merged by adding i, v2) and (v2, v) tO adjacent and taking the
transitive closure of the relation. This closure step may be performed once, after all spaces have been processéd.

Any number of partitions can be merged in any ordei, and the eversions and space merges during a partition
merge can be performed in any order and still yield a unique result This procedure hides all noa-nierarchical
structure behind splices. Equally imponant, it preserves all compositions, and therefore all behavior. It does so by
modifying the hi:rarchy in ways that clients can not, so this automatic reconciliation is not transparent. Unlike
renaming, eversion can not be disguised as asynchronous behavior by another client agent.

The root domain, which consists of one space with incident edges for the top-level objects, requires slightly
different treatment. Because there is no root shell, and tecause the top-level objects in different partiions might be
disjoint, the root space may be represented by several equivalence classes of adjacent instead of one. The problem is
avoided simply by distinguishing the rooi space.

The v'rst step given above, everting shells that have already been everted in a previous merge, could be
omitted and still result in a consistent object hierarchy. However, the reconciliation procedure would no longer give
the same result for merges of partitions in different orders. As with splicing, eversion offers a choice of creating
new splices every time any shell must be converted, or 2 single splice for.a given sheil, no matter how many times
the shell was converted in previous merges. We chose to create a single splice to reduce the amount of structure
created during merge, and use a pairing function to unambiguously relate a shell and its post-eversion splice.

Earlier reports described a mechanism for reporting and user reconciliation of inconsistencies in the object
hierarchy (detach) [1.eF8S), {LeF8S), but the full implications on HPC system design were not understood at that
time. Both system and agent complexity are reduced by sutomatic reconciliation of the directed tre~.

6.2.4. Domain Hierarchy

Now consider domains with multiple superior domains. There may be no unique root within the domain to
base intra-domain reconciliation on, and operations like abdicate/depose and die/kill are no longer well-defined,
because there is no unique superior domain boundary or well-defined subtree to remove. Partition and merge can
casily produce such situations. Starting with two pre-partition domains above and below, during a partition an sgent
for above can invest control of the subtree containing belov 10 a new domain, siddle. In one partition, belov's superior
domain is atow, in the other it is mddle. More complex sequences of domain and space operaticas can lead 10
structures as shown in Figure 6.5. (Domain boundaries are shown with doubie lines.)

o 4
th

—

Figure 6.5. Muluple Superior Domains

Each domain is prepared for intra-domain reconciliation by merging all the spaces with an incideat superior
domain boundary before reconciling the domain i.temally. This ensures a unique root space within the domain,
makes all the superior domain boundaries incident to the same space, and brings each of the part tioned domain
roots up W the root of the merged domain. Figure 6.6 shows this <tep applied to the structure of Figure 6.5.

Figure 6.6. Superiors Isolated at the Root

The remaining inconsistency of multiple supesiors to 2 domain is treated similarly as multiple connections 0 a
view. Theie is no funcucn-preserving transformation that can be automatcally applied, so the multiple superior
boundary views are reported to the agent of the inferior domain, and forced su .pended. Because only the superior
domain boundaries are suspended. the domain agent process(es) are able 10 coordinate and execuie a response (but
see below)

To allow chients tc reconcile this kind of inconsisiency, the delinitions of abdicate/depose and die/kill are
cxiended to excess superior domain bourdanes. Inside the domain, an excess domain boundary is simply removed.
Outside the domain, the domain is replaced by an empty keaf. When only onc superior domain boundary remains, it

86

is unsuspended and the domain operations will have their usual effects. This is externally consistent with the
behavior of depose on a domain suspended because its agents are temporarily partitioned. An implication is that
kill on a given shell only destroys the structure it dominates. For DAGs rather than trees, this may be stricuy less

than the structure it precedes in the hierarchy.

Terminal policies of abdicate and die are extended to excess superior domain boundaries simply by applying
them to all superior boundanes rather than the usual unique boundary that is implicit in the policy. All boundaries
will be treated as excess and the domain will be effectively killed.

While this strategy ieads to DAGs, rather than trees of domains, the graph of domains still behaves like a tree.
Domains can interact through communication or domain operations only when the subgraph relating them is a tree.

As a simplification of the HPC interface 1o processes, simple domains are treated specially to ensure a single
superior domain. Because processes are physical resources, they belong to a single, well-defined partition (unlike
abstract complex objects). If a merge gives a process multiple superior domains, the boundary known in the
partition of the physical process is retained, and the boundaries known in other partitions are replaced with empty
leaves. During the partition, these other boundaries will be suspended, representing uncertainty about the process’s
continued activity, so this treatment, like renaming, is masked as asynchronous behavior of other agents.

Because structure is reported to clients strictly in the hierarchical view, the format for reporting a shell’s
parent must allow arbitrary numbers of parents even though only immediate children of the superior domain
boundaries will have muldple parents. Similarly to the case of multiple connections, inverse domain operations are
not exact inverses, but the asymmetry can not be as easily removed in this case because there is no operation to
create a directed domain boundary between arbitrary domains.

There is a further, subtle, interaction with protection structure and the system interface. It is possible, if
unlikely, for all paths to the domain’s controller to pass through one or more of the superior domain boundaries,
leading to a temporary loss of control when the paths are suspended. In this simagon, an extemnal agent can not
restore control directly, it can only give up control by destroying one of the surplus domain boundaries. When all
but one of boundanies have been destroyed, conool may be restored via paths through the remaining boundary.
Because the (possibly many) exiernal agents have no way 1o coordinate their actions, resioration of control is
unlikely. Even "generous™ agents willing 10 yield control can get into trouble because of the gsynchrony in the
system interface. An agent could destroy the final boundary before leamning the suspension had been lifted.

We declined the aggressive investigation of more general structures that this interaction suggests. We could
accept multipie superior domain boundaries as well-formed structure, but would prefer an explicit operation
create such boundanes instead of making it an exclusive side-effect of unconuollable partition and merge.
Aliematively, the hierarchical relation between domains oruld be done away with, 30 that all domain boundaries are
undirected splices, but the problem of destroying ancther domain, and any suxiliary domains it created, remains.
Authorization to destroy a domain, without knowing or controlling its internal structure, must be expressed
somehow, if not hierarchically.

Chapter 7

Prototype Implementation

88

7. Prototype Implementation

At a distance, the HPC system is a three laver cake. At the bottom is a coliection of host operating systems, at
the top is a collection of client processes, and in between is HPC software. The middle layer consists of three types
of processes: kernel, host IPC router, and host process manager. The kemel maintains the dalabase of abstract

structure, and determincs the resources needed to implement an abstract operation.

The client-HPC interface provides agent processes access 1o abstract structure like shells and interfaces, and
worker processes the host IPC resources needed for end-to-end communication. Clients interact with the HPC
kemne! using a complex application protoco! on top of standard network connections (TCP/IP). (Section 7.1.)

The host-HPC interface deals with physical resources like IPC media and processes. The router and manager
processes isolate host dependencies of resource creation, destruction, and status monitoring from the rest of the
software. They are the only system components 1o communicate directly with hosts. Sections 7.2 and 7.3 discuss
their internal structures and interacuons with the kemel.

The ke.nel process is the heart of the system. Section 7.4 desciives the basic software packages that handle
interactions with the ourside world and maintain the intemnal database of abstract structure. Incremental updating of
global connectivity as a result of local abstract operations is an important function of the database.

The final Section presents some experiences with essential, desirable, or inadequate tools and programming
support.

7.1. Client Interface

The client-kernel interface has three funcuons: integrate new clients into the HPC system, implement the
interactions between agent clients and the HPC kemel, and provide worker clients with the real IPC capabilites
represented by abstract endpoints. These functions are summarized here. For a full description of the C
language/UNIX operating system interface binding and the underlying network application protocol, see [Fri86).

7.1.1. Registration

Client processes are integrated into the HPC sysiem by two TCP/IP connections. Clients ccanect to a well-
known kemel pont to register with the kemel. The first siep of the registration protocol creates the second
connection.

The client sends its host and process numbers 1o the kemel, which deiermines if the client hos been animated.
If not, the kemel creates a new shell with no interfaces &s an immediate child of the HPC root. This is how new
independent applications enter the system. After locating or creating the appropriate shell, the kemel sends its
interface descripuons to the client.

if the client is implementing a complex domain, it describes the interfaces it wants on the new shell 10 be
created, and specifies the interface 10 be connected 1o the new controller. The kemel acknowledges. For both
simple and complex domains, the client sends an explicit end 10 the registration: protoco:.

7.1.2. Agents

Interz tions between agents and HPC use both client-kernel connections. One connection i used in a
synchronous, bidirectional protocol. For every invocation of an HPC primitive. the cliest seads 3 ngidly formatied

89

message. The HPC kemel responds immediately with a mess.ge containing a globally unique “"request” number
that will be used latcer 1o refer to the invocation.

The kernel uses the second connection asynchronously and unidirectionally to send the client three types of
information messages: invocauon error reports, notifications of structral change, and responses to the inquire
operation. Every message follows a rigid format, and begins with the request number for the invocation that
ultimately prompted it. For messages triggered by events outside the HPC system (e.g., failures) the request fumber
is a distinguished value.

Every time a structural element is created, destroyed, or modified, a notification is sent to all agents for the
affected domain. This is the response to successful invocations of HPC primitives. One invocation may generate
many notifications carrving the same tag. These potifications are copious and brief to eliminate the need for polling
by agents.

° An enclose operation generates a creation message for the new shell, creation messages for every one of its
interface views, change messages for its children, and a change message for its parent. A disclose operation
generates a deletion message for the shell, deletion messages for every one of its interface views, change
messages for its children, and a change message for its parent.

. When a new interface component is created a creation message for the new view, and a change message for
its parent are created. If the new view is complex (e.g., a bundle) creation messages are generated for all its

components.
) When liveness or connectivity changes on a view, a change message is generated.

. When a shell becomes a domain boundary, deletion messages for all the previously visible structure are
gencrated. When a domain boundary is dissolved, creation messages for all the previously invisible structure
are gencrated. In both cases, a change message for the slicll is generated.

7.13. IPC Terminals

Real communication between worker processes requires transtation of abstract simple endpoints inside simpic
domains inw host-specific 1/0 facilities accessible from the worker processes. Worker processes then use host /O
operations (o cominunicate with one another.

An IPC terminal is a host 1/O handle (e.g., UNIX file descriptor) together with any additonal resources
needed for the HPC system to connect and disconnect workers. Before a client can use an endpoint, it must be
tanslated into a terminal. Clients must explicitly begin transiation to swnid unnecessary consumption of per-host
and per-process resources. Clients can reclaim terminal resources by destroying the terminal.

Creation and destruction of a terminal has no effect on the abstract endpoint except that liveness reflects
connecuivity 1o real terminals. Roughly, terminal are to endpouits as physical pages are 10 virwal pages, except that
clients must do their own resousce management

To associate the YO handle with the endpoint, and (0 create any other needed resources, the client end keme!
use a synchronous protocol over the first connection. In thic implementaticn, lesminz! cication reguises sn exchanze
of five messages. This is only pan of the protocols needed for terminal maniplsiions. The kemel is engaging in a
similar, but more complex, protocol with the IPC router process at the same time.

90

The client interface library hides the terminal protocols, just as it hides the invocation protocol, and so

prevents client programming errors.

7.1.4. Discrepancies

The client-kernel interface was frozen early in the development of HPC, leadin; to some discrepancies
between design and implementation. The most glaring discrepancy involves control mess. ges between agents and
controllers. As designed, an agent process wishing to invoke some operation sends a muss23e o, th: -atroller of
domain to be affected, using a control interface. The usual rules about structural compativility and erd-tc-
connections apply. A controller's multicast interface ensures that all agents connected to a controller receive its
notifications and that the controller receives messages from all agents.

As currently implemented, an agent process always invokes HPC operations, on any domain for which it has
privileges, through ‘ne procedures provided in the application interface library. The agent does not send messages
to connected controllers. However, it must have conrections to the appropriate controllers. An agent's connectiqns
determine its privileges, just as if control messages were being sent. If an end-10-end connection tc the appropriate
controller exists, the kemel carries out the operation.

The interface library sends messages directly to the HPC kemel using the invocation protocol, so control
messages can not be intercepted, filtered or debugged as described in Chapter 3. Also, agents can not separate
control activities for separate domains onto separate local interfaces. Sending invocations along connections
primarily associaied with an agent, rather than a domain, also led o a distortion inside the HPC kemel, that will be
discussed later.

In this centralized implementation, there will never be merge inconsistencies. Since no domain will have
shells to multiple parents, the arguments to abdicate and die are implicit.

The kernel administers both temporary and permanent policies, but the interface only allows a request for a
new permanent policy consisting of a single basic policy (die or abdicate). Clients can not request alternatives o
the default temporary policy.

Endpoint/extension promotion is the final omission. Worker clients are allowed to translate either endpoints
or extensions of simple structure into IPC terminals, so promotion is implicitly allowed for simple domains.
However, there is no provision for promotion in complex domains. The details of managing a multi-agent
interaction that must take place immediately afier a new domain is created, before any other operations are invoked,
and affect every view at most once, were never worked out.

72. 1¥C Router

To transiate abstract connectivity into real transpon connections, the HPC system must provide clients access
to host IPC resources, and dynamically reconfigure the transport connections between clients. Unfortunately, most
host systems and standard protoenl suites Iack third-parry coanect, a simple facility that wouid make reconfiguration
¢ trivia! maiicr,

Lacking third-pany connect, dynamic reconfiguration is complex and expensive enough 10 justify isolating
host-specific [PC functions in a separate IPC router process. The router supports creation and destruction of client
terminals, creation and destruction of end-io-end connections, and additional disgnostic functons. A TCP/IP

91

connection is used with an asyn-hronous, highly multiplexed, application protocol for command functions between

the keme! and the router.

7.2.1. Third Farty Connect

Ideally, the HPC kemel could look up the IPC terminals for the endpoints of an end-to-enc! chain, and instruct
the host operating sysiem 10 set up or tear down a transpornt connection between the werminals. The kemel would
control reconfiguration, connecting and disconnecting arbitrary pairs of processes (and terminals), without the
participation, or even cooperation, of the affected clients. This scenario preserves the Gic.'action bétween
communication (workers' responsibility), configuration (agents’ responsibility), and implemestation (kemel's
responsibility).

Real operating systems and protocol suites place unfortunate and, we argue, unnecessary constraints on the
creator of the transport connection and the connecied processes, leading to intrusive, unsafe, or inefficient (or all
three) emulations of the desired third-party connect property.

For example, a UNIX pipe must be created before the processes it connects, by a process that creates the
connected processes. This does not allow reconfiguration of existing processes, and is totally inadequate 1o support
HPC.

Most operating systems with more sophisticated IPC objects (Charlotte links, Accent/Mach ports, 4.3BSD
pipes, etc.) permit passing a link end along an existing link. Hcwever, clients must activel; participate in
reconfiguration, by continually monitoring a link to the HPC kernel for messages containing new links, discarding
old eminals for 2 given endpoint, and installing new links as terminals. There is no way 1o enforce, or even
inspect, that clients act comecly. They could retain old links (in systems where the kemnei can 20 retain dest oy
rights), ignore new links, or send links to other clients, bypassing agents and the kernel entirely.

Standard network protocnl enites such as IP provide even less support for transparent reconfiguration because
the kernel must give a client process full details about the addrass and identity of its peer before a connection can be
created.

Tnird-panty connect is intrinsically :nexpensive. For example, TCP/IP uses a well-defined sub-protocol for
connection set up and lear down, with clesn interactions with the main protocol governing reliable delivery and flow
control. If a third process could initiate this sub-protocol across the network, instead of the 'wo communicating
processes from the host int»rface, we would have third party connect.

A p-incipal reason thit link systems and network protocols restrict configuration as they do seems 0 be
suthenucation of suthorized configuning agents. altematively, equation of protection with holding a link or
connection (capabilices). However, even the absence of a trusied global authentication sysiem does not stand in the
way of a practical third-party connect mechaniem. To cortinue the TCP/IP discussion, each client could specify the
host and port from which auihorized configuration messages are allowed. This provides third-party connect with the
exactiy samne degree of security as e 2! unmodified TCP/IP. We discuss this issue further in [Fri87).

'1.2.2. Forwarding

In the absence of third-party connect, and a notable (two and 2 hall year) delay from our workstation vendoc
in providing suficient sources 1 Suild in the desired support. we chose 10 provide an vaintrusive, secare, but

92

inefricient emulation for the UDP and TCP protocols. When a client IPC terminal is created, a fixed connection is
made to a similar terminal owned by the IPC router process. Reconfiguration is performed entirely inside the IPC
router. Chents are never recuested to modify their terminals in any way, nor are they given any information abou:
thatr peers.

During the client-kernel protocol that translates an endpoint into a terminal, a similar router-kemel protocol is
executed 0 create a router terminal and connect it to the client. The primary difference is that the router-kemel
setup sub-protocol may be multiplexed among concurrent exchanges between the router and kemnel.

After terminal creation, the router keeps track of which host terminals correspond to which endpoints. When
end-to-end connections are created and destroyed, the kemel instructs the router o start and stop forwarding
messages berween the endpoints. Therefore, connected workers do not send data directly 10 one another, but first to
the router process, then on to the destination.

Besides the obvious inefficiencies of sending every message twice, the router is a bottleneck. Even in this
prototype, HPC system and client processes can be freely distributed. Messages that might be processed in true
concurrency are serialized in the router. Executing router functions in a separate process, and not inside the kemnel
process, adds unwanted latency to handling both agent invocations and worker communications. Providing one
router for each physical processor (HPC does not assume a single router) might avoid the communication
bottleneck, but further problems arise: finding the router for an endpoint, potential router-to-router forwarding
inefficiencies, etc.

The IPC router setup does have some advantages, of course. Besides client simplicitv and security, it offers
an obvious experimental implementation fcr multicasting media such as TCP, which don’t have native multicast
semantics. For each terminal, the router keeps a list of all the other terminals w receive outgoing copies of
incoming messages. For a normal connection, this list has just one ter:ninal. (This prototype docs not atiempt to
handle pathological interactions of limited buffering and reliable retransmission.)

723. Implementation

Because IPC is the fundamental issue in real interactions between objects, the router and the router-kemel
protocol were the first components of the HPC system to be implemented. They were fully, and easily, debugged
with extensive scaffolding processes standing in for clients and the kemel. The success of this approach prompied
similar unit-and-interface test pracedures for the other components. Full details of the implementation are given in
(FrP86).

The router is a very highly multiplexed server, and care was taken that it wor'ld never block under any
curcunstances. For each output termunal, it must first wait for available operating sysiem buffer space, then wai: fo
input on the corresponding input terminal, read the input withowt blocking, wrile the output without blocking,
internally buffer any excess that could not be writien, and deal with opersting sysiem erors of resousrce Lmizauons
at any poinl. Of course, many terminals are bidirsctional so, this is done in both directions, and multicasting further
complicates things.

Ai the same time, the router is engaging in overlapoed. non-trivial protocols with the kemel 0 handle
command functions. [t must be ready 10 receive a new message from the keme! at any tme, deiermine which in-
progress operation it applies 10, and advance the operation the corresponding siep. Lnuque tags are used in the

91

router-kernel protocol, as in the client-kernel protocol w simplify demuluplexing.

The router 15 based on a table dnven state mischine. Each terminal has an entry 1n the @able o store the state
of its submachine. An incoming event on a terminal recovers the previous state frem the terminal, then calls a
function to do the next sicp. This was an adegiate technigue, but we would never use it again. The lighiweight
tasking package (developed after the router was finished) would eliminate explicit submachine management, and

give a much clearer picture of "what happens next” on a given conneclion.

13. Process Marager

The process manager handles host-specific process creation and destruction for the HPC kernel. There is a
separate manager for each physica! host. As with the [PC router, the manager-kemel interface consists of a TCP/IP
connection and an asynchronous command protoce, but the process manager is 2 much simpler piece of software.

The kerne! passes the arguments from an animate w the process manager for the specified host Inside the
manager, a lighiweight task 1s created to fork and exec a process with the specified arguments, then rewrn the host
piocess identifier w0 the kemel. The process manager also monitors the processes it has created and reports
termination 1o the kemel. which translates process death into implicit die operations.

By design, resources like files and devices are manipulated outside the HPC system. However, many
operating systems protect such resources by using access control lists and associating some user identity with each
process. The HPC process manager creates processes with an user identity without any special privileges, and the
UNIX set-user-id mechanism can be used to associate additional privileges with a specific execuable program.
Tlus interface 1o the host protection system is not strong or fiexible enough to protect independent HPC applications
from one another, but a beder soiution is 2 mauer for ¢c-design rather than implementation.

7.4. HPC Kernel

The kemel process is intzmally organized into several packages of software with sets of relsted lightweight
tsks. Altogether, there are nine distingt packages built on tens of supporting libranes not specific to the kemei.
The major packapes can he moughly divided inw those thar handle inzractons with the world outside the kemne)
process, and those that handle strictly intemnal functions.

The client package handics four classes of chient-kemel interactions: registration, terminal sebup invocation of
primiuves, and asynchronous notifications. There is a permanent task 0 wait for new client connections, & transient
task 10 handle the body of the registration protocol, and a task 1o handie synchronous client ineractions.

The router and process manager packages resemble each other, with one parmanent task waiting 10
grmaludlex incoming messages, a small database of tasks waiting for messages with specific tags, and a permanent
task waiting for unisolcited aermsnal or process death aotifications. As RPC-stub module conceals the details of the
prowcots from other kemel tasks. The router package aiso contrins stub-like routines for terminal seqsp that run the
cliest-kemel and router-kemcel subprotocols concurrenuy 1 minimize lstercy. (Such routines are obviously unable
1o use the RPCAlike biocking inierface provided for other client or router functions.)

At the hean of the kermel is a structurat database with complex lavered routines 0 acoess the database, and a
sk for cach pending nvocaton. Client tasks spewn thesc operagon tasks in response 16 explicit agen. invocations,
and the erminal and procesr death tetks spewn them in response 10 {ailures o uUACOOpErsdive terminations.

94

This gives central responsibility to the client task, since most invocations are staried there. This distorts the
kemel's natural structure, because all HPC primitives are fundamentally applied by domain, rather than by agent

chient

The final package is an intenal convroller service. There is a permanent task that waits for creation of new
complex domains, and creates controlier tasks to handle each one separately. Controller tasks monitor domains for
permanent and temporary losses of cenurol, and apply the appropriate policies. Jn a beuer implementation, each
coniroller task would have an IPC werminal for receipt of control messages, and the controller tasks would spawn
operation Lasks insteac of the client tasks.

Figure 7.1 shows the overall structure. Circles denote tasks, reclangles represent modules shared between
tasks, and tnangles show queues on which internal tasks may block. Solid lines show regular calling patterns and
dashed lines show task spawning. Despile appearances, there aie ao circular dependencies between layers.

7.4.1. Database Operations

Each operaiion task ralls a single entry in the network layer of the structura! databasc software, which is
responsible for translauon between external protocol and internal data representations. A network function reads
and decodes the body of a protocol message into convenient internal data structures, verifies that all purported HPC
identfiers are legiumate, and passes on to the next layer. The network layer reports errors of all kinds back to the
invoking agent.

The high-level seinantics layer completes trznslation of arguments, does argument validation, and requests
any necessary serialization. The function for a given HPC primitive first converts HPC unique identifiers into
pointers 1o t.e appropiiate database structures, then collects any structures affected by the operation that zre not
explicitly named tn the argurnent list. The function then checks the domain of the request, the types and domains oi
the arguments, and the structural relations among the arguments against the preconditions of the operation.

The high-level layer brackets calls to the low-level semantics layer with calls on the synchronization laye: 10
ensure conflicting operations do not overlap. An operation will be blockes until no possibly conflicting vpertions
arc active. When resumed, it must check its arpument list for changes caused by such conflicis, possibly collecting
a new 3¢t of implicit arguments. This synchronization is obviously needed in 8 decentralized or truly concurrent
kemel, but it is alsa nceded even in this logically centralized, non-preemptive tasking design. The intafaces to hoet
IPC and process managers allow an operation wask 0 block, yielding the kemel to another task while 2 remote
opr.ration completes

After checking and serializing, low-level semantic routines are called to do the significant ‘asnipuiation of
absgact suuctures. This level encodes HPC structural semantics, calling on a botom-most database Layer 10 record
sbstract structure, 3nd the [PC and process manager packages to realive abstract chenges in physical resources. The
tack handling the client registraton protocol directly invokes some utility functioas in this layer 10 create new shells
and controliers. The low-level semantic layer also issues all swuctural change notfications and responses 0
inquires.

The HPC database docs not drrectly impiement all the relations like atjscare in the formal specification of
HPC suructure. What is elegant, of 8¢ least simple, in 3 formal setting may be absurd in a computational seqting. For
examplc, when incrementafly modifying structure. it is much more efficient 10 infer adjacency from explicit spaces

| |

sanun Pon Sync Pon Asynz Pon
). \ |
g B\ l
0 ".f;,‘\\ i

atnuint - -:—’\mn/ - - |- - ->{client} - - > oper noufy

e

rout proc
Q 0 10
B B

/

Routcr Pont M:.*.:;:ct font
Figure 7.1. Kernel Software Smucwure

1n the database than infer the spaces {rom sn adjacency relation.

The mox compiex dsta soructures and algorithms in the kemel aze ia the low-level sermanix laycer (o handle
puh maineaance These routines wall be discussed i deiadd faes

96

The final databasc layer is the collection of basic data structures and their access routines. It provides a name
registny for use by the network layer to translate external HPC identifiers into intemnal pointers. There are basic
internal dawa types for spaces, views, shells, domains, and processes, though only shells, views, and domains can be

named by clients.

Each type has opcrations for initializing its module, and for creating, validating, and frecing structures. Each
1ype representation carries a unique password value 1 its first location, and the database and the Jow-level semantic
layer routines rigorously check each argument for pointer an.. password validity. Besides these generic operations,
each type has specialized operations to set and clear fields, the most imponant being pointers linking t.,0 structurcs
to each other. These operations ensure that both links are made and broken at the same time, that links to structures
are never lost by accidently overwriting them, and enforce a useful discipline in the low-level semantic routines.
Figure 7.2 shows the most significant links between the internal data structures.

. s_domain
S _domain d spaces
’S_upper S_iower ‘ s process
v_shell v_shell "~ space
v_space -
_publi v_private H v_childrenH v_termina
v_parent p_terminal

Figure 7.2. Principal Database Links

The database layer uses generic data structures like hash tables and ordered sets throughout for fast lookup
and arbitrary numbers of similar links.

7.4.2. Root Domain and Controller Service

A special case in the second step of splicing allows promiscuous services. 1f the remote shell has been spliced
10 a well-known identifier, then a sibling of it is created and spliced to the local shell. This single well-known
identifier amounts 0 a service service, because shells spliced to that identifier may then be spliced 10 from clients at
arbitrary places in the hicrarchy without prior negotiation, once their identifiers have been distributed. It was more
convenient (0 provide services this way than implemen: the restricted number of service shells described earlier.

The distinguished root domair: is treated only slighly differently from client domains. The low-fevel
‘semantic layer delivers structural change notifications internally to a permanent “root agent” lightweight task instead
of extemally to another process. The root agent task has two functions. It cleans up top-level Jomains that
abdicate by killing their suburees, and it uses the service service mechanism to implement the iniemal conuroller
service.

97

During start-up, a sliell is created inside the root domain and spliced to the service service. When processing
invest, the kernel splices the controller shell in the new complex domain to this controller service sheil. The root
agent lask creates a separate controller task to monitor each new domain.

The controller service s a fairly typical service, despite its implementation insid. the kemel. A task watches
over the overall state of the service, clients come and go, tasks are created to service them, and (in a proper
implementation) client requests are translated into operations on an intermal database. The only reason it couldn't be
reimplemented outside the kemel (cf Section 3.4) is that liveness on the controller interface is insufficient to
distinguish permanent and temporary losses of control.

7.4.3. Path Maintenance

Both the client interface and the formal specification deal directly with connections, shells, and spiices. These
define local connectivity between views. Global, end-to-end, connectivity between objects is a complex funcuion of
the local connectivity, involving indirect bindings introduced by abstraction (correspondinig components) and by
composition (chains of alternating public and private peers).

Deducing global connectivity from the local connectivity is certainly possible, and the formal specification is
written that way for simplicity. However, obtaining deductive closure directly from axioms of direct binding is
unsuitable for any real system. The efficient, incremental computation of global connectivity and liveness triggered
by op--ations on direct bindirgs is the most interesting algorithm in the kemel, called path maintenance. (The
similanty to truth maintenance systems in implementations of formal logic is deliberate.)

Path maintenance keeps track of direct and indirect birdings between views. The indirect bindings retain
enough global information to compute the effects of a change quickly, regardless of the structural distance between
the cause and the effect.

Each view dawa structure maintains separate lists of private and public peer bindings. Private and public
bindings are distinct, and a pair of views may be bound both ways simultaneously. Only direct pubdlic peers
(connections) are used in path maintenance. However, a view's list of private peers includes views at all odd
distances dewn chains. These cached bindings allow propagation of changes in connectivity and liveness directly to
distant affected views,

Multicasting allows more than one chain between two views, creating a given indirect binding in more than
onc way. Path maintenance retains the proximate justifications for each binding to ensure they are removed at the
correct time. Direct bindings have a primitive justification 2s a connection or a shell/splice. Indirect bindings
between corresponding components are justified by the binding between their parents. Indirect bindings between
peers along a chaia are justified by the aliernating privaie and public bindings in the chain.

Bindings and justifications f'»m a directed graph where the sources are the primitive justifications. At odd
distances from the sources, the entries are bindings; at even distances, justifications.

98

Justification Justification
- .
1/’ \3 :
Binding Binding Binding

Justification Justification
Binding Binding

Figure 7.3. Binding-Justification Graph

Inferring the effects of a local chasge from the direct bindings requires the minimum arount of space, but an
unreasonable amount of time. The ~_rresponding binding/justification graph would be trivial, with juct primitive
justifications and direct bindings, and every view along a chain must be visitd on every related operation.
Recording the complete set of direct bindings that ultimately justify an indirect binding represents the other extreme,
because each effect can be looked up in constant time using a binding/justification graph four layers deep: primitive
justifications, direct bindings, derived justifications, and indirect bindings.

However, disect lookup is expensive in space and has substantial hidden costs in time. The cost of creating or
destroying a single justification grows with the distance between the bound views, because links to a greater number
of justifying bindings must be maintained.

Fath maintenance compromises between lookup and inference to improve performance. It deepens the
binding/justification graph by allowing indirect bindings to justify others, while reducing the fan-in and fan-out of
individual bindings and jusiibcations. Because the graph is 1uo longer bounded in depth, inferring an effect of
changing a direct binding is ro longer a constant time operation. But neither is it necessary to visit nodes that are
unaffected by the change.

Bindings between corresponding components are justified by the binding between their immediate parents.
Bindings along a chain are justified by just three bindings. For a binding between views v1 and vz, one direct
connection between, say, 1 and 2. and the private bindings (direct or indirect) between 1 and c1 and between v2
and 2 are recorded. This justification is not unique, because any connection between vi and vz could be chosen.
The order in which Findings are added 10 a chain determines the specific trio used (o justify a binding.

This compromise Fas several notable points.

. The apparently greater cost of traversing the grapi: (inferring indirect effects) is actually of the same order as
the cost of traversing a complete list of precomputed effects. Both traversals reach the same views and
bindings.

99

There 15 a targe reduction in storage requirements for hinks between bindings and justifications. The same
number of bindings exist, but every justification now has a bounded number of constituent bincings, and
bindings for views closer to the tops of their local hicrarcnies participate in many fewer justificatons. (In
exchange for this global reduction in links, cvcles may inuvoduce a larger number of justification daw
structures.) The reduction in fan-in and fan-out translates into incrcased speed when manipulating

justifications.

The binding/justification graph is not a DAG. Cycles allow paths between peers with and witho: ~omplete
pass around the cycle. A binding thar does not depend on a cycle can justify itself when a cycle is * mpleted
by adding a connection. Figure 7.5 illustrates a cycle in a part of the binding/justification graph resulung from
the cyclic path shown in Figure 7.4. Longer path cycles can create longer <ycles in the binding/justification
graph.

Figure 7.4. Typical Cyclic Path

100

shell/splice connecuion
justification justification
/W
A o - A 4 . \ ,
CD private BC public AB private DF public EF private AE public
bindiag bindina bindina bindina binding bindin
] =4
\i
composite composite
justification justification |
1 |
AD private) BF‘pnyate
bindina binding
composite
justification

Figure 7.5. A Resulting Self-Justifying Binding

The kerne!l translates connect and disconnect into creation and destruction of public bindings. Similarly,
client shell and splice manipulations are translated into creation and destruction of pnivate bindings, in addition w0
manipulaiions on spaces and view hicrarchies. These bindings are given a primitive justification. The new and
delete operations affect structure within a view hierarchy, anc the bindings between corresponding components are
indirectly justified by their immediar+ parents.

Binding and justificauon removal follow a simple rule. A binding is removed when its last justification is
removed, but a justification is removed when tny of its consutuent bindings is removed. This leads to a recursive
algorithm for destroying connections or shells/splices. Addition of bindings and justifications naturaliy obeys the
converse rule, but is more complex because it must compute any addiuonal bindings justified by a new binding,
while the destruction algorithm simply looks them up in the binding/justification graph. Pseudocode for these
algorithms is shown in Figures 7.6 and 7.7.

In Section 4.2 we noled that multiple paths between views should not lead 1o multiple delivery of messages.
Any pair of views has just one (private and public) binding in the database, regardiess of the number of
justifications, so the IPC router is easily instrucied 10 provide single delivery. When a binding is justified a hash
table is searched to determine quickly if it already exists.

A greater potential probiem is the infinite number of chains between views provided by 2er0 or more passes
ground a cycle. An algorithm based on propagation (or inference) along 8 chain must include an explicit check for
cycling. Path maintenance avoids this by adding bindings based on information at a fixed aumber of nodes, and
adding justificavons only when 2 new path is creaied. When a cycle is compleied, 8 single justification accounts for
all numbers of passes through it

101

Ordinanily, cycles in the binding/justificauon graph would never be removed, because the underlying strategy
is reference counting. However, all bindings are removed correctly without expensive checks for cycles. First, path
maintenance prohibits justifications in which a binding directly justifies itself. This prohibition requires checking a
binding against at most three others each ume a new justification is found.

If cirect private bindings could be removed at arbitrary times, this would be insufficient. However, dires
public bindings have only primitive justifications and semantic constraints at higher lcvels ensure a direct privat.
binding will never be destroyed while it is part of a cycle. Shells, and the direst private bindings between the tops of
their interface hierarchies, are destroyed only by disclose and splice. A precondition for disclose is that there are no
connections Lo any view on either side of the shell, and a precond.tion for splice is that there are no connectiors to
any view on the lower side of the shell. Induction can prove that the loops in the binding/justification graph are
removed before it is legal 1o destroy a binding that indirecuy justifies itself,

Because a unique path between two views is justified only once, the non-unique three-binding path
representations are permissible. In direct lookup, mentioned above, each derived justification uniquely represents a
non-cyclic chain. In the three-binding compromise, each jus fcation still represents a single chain, but a chain will
have muluple representations. These multiple representations account for the possible growth in the number of
justificazion data structures. However, different representations are used to justify distinct bindings, never to justify
a single binding redundantly, and never for bindings that don’t complete a cycle. Moreover, it is never necessary to
search for a path, only for birdings.

The number of bindings grows as the square of the length of a chain, because path maintenance records
indirect bindings between every pair of private peers. This is a direct and expected consequence of maintaining an
explicit datahase instead of performing an exponential number of inferences. Creating of a single binding takes
constant time, but recursively creates N additional bindings, where N is the length of the chain just created. For
some applicaticns, this linear cost would be unztractive, but HPC must visit all the views along the new chain to
report changes in liveness.

The primary reason for bindings between all pairs of views along a chain is to allow destruction of bindings in
the middle of the chain without explicitly traversing it It is simple to bind only the ends of a chain together, and
grow chains at the ends, with constant time creation and sub-lincar (even negative) growth of maintenance data
structures. However, destroying a connection requires identifying the ends of all chains the connection justifies,
either directy or indirecily through corresponding components. An altemnate path maintenance algorithm based on
direct bindings and mazimal chains is worth investigation, but proper handling of cycles, refiectors, and mubtiple
paths may reduce its apparcnt advantages. Anyway, graph <z has not been a problem in practice, and HPC
requires visitaton of all nodes for other purposes.

102

pirding create (vi, VI, type, Il
view VI, vZ;

int tyme;

Jastificatiorn ;

i

create b = new binainci{vi, VI
ax j tc b's justifications

if both views are temninals
create 2 transuorl Comecticn

// add any bindings justified by this one .
1f type is PRIVATE

for al. public peers p cf vI // collapse to right
for all private ppers c ol £
adc binding(v2, g, [z, vi-p, Pl)

for 2ll pabiic peers ¢ cf VI // collapse tc lef
for all private peers g of ¢
add binding (g, vi, [g-f, p~vi. bl)

for all children pof vi // cllapse ccrresponding carpane.s
for el children. g cf vZ
if p ax q corresponc
ax bindig(p g (2]}
else

for all private peers p of vi // collapse comecion
for all private peers q of V2
adé birding(z, q, [p-vi, b Vi<)
i
add binding(vl, v2, cons:ituents)
{
fird or create i = justificazion{constituents)

find b = binding (v, v2)

if b must be created // ro existing juntifications
binding create(vl, v2, FRIVATE, 3)
else i1f b i3 not i, constituents // ro direct self-justification

add) to b's Justirications
Figure 7.6. Binding Additon
binding destroy(t, J)
binding b;
Justification 3;
{
reove § fromb's Justifications

for all justifications ¥’ with constituet b
for all bindings b’ justified by ¥
i{f ¥ mus: be destroyed /7 loss of all sifications
birding destroy®’, 3°)
else
rerowe 3 from b’ ‘s jJustificaticns
destroy ¥ // loss of ary constituent birdirg

if both views are teourals
destroy network corvect fon

chestivy b
)

Figure 7.7. Binding Removal

7.5. Tools

While implementing the HPC prototype, we enjoyed, suifcred through, or craved a variety of tools ana
nrogramming techniques. Time spent in building basic tools or "wasted” ir: disciplined program design and testing
will be more than repaid in reduced overall development time and reduced maintenance. Sometimes tools and tool
building make the difference between a success and a compietely unmaintainable write-off. This is as true of

experimental software subject to frequent and rapid ciange, such as HPC, as it is of commercial codes.

\
HPC code quality is high. Most package« are very robust and easily modified. Some of the tools used to keep
them that way, along with some of the failures, are worth reporting.

7.5.1. State Table vs Tasks

As mentioned earlier, two substannally different methods of writing multiplexed programs were used: a table
of state machines and a coliection of non-preemptive, lightweight tasks. A state table can be implemented using the
simplest of tools, and it is an intuitive approach. Those are its only merits, and a small investment in tools offers a

large reward.

The heant of the tasking package is a simple coroutine package, but HPC never uses the coroutines directly.
Above the coroutines are queues, a round-robin scheduler task, aiid routines for tasks to sleep on a queue, wake up a
queue, yield control 1o the scheduler, and terminate. The scheduler task runs a "backstop” task to collect external
events (like host I/O) when all other tasks are sleeping. These tasking functions are convenient and unintrusive to
use.

The tasking package has two big advantages over state tables. The backstop task distributes external events
without knowing what 10 do with them, and regular tasks just wait for the events they want without dealing with the
distribution. This separation makes both distribution and processing of events cleaner, zasier to read, and easier o
extend. This is more imponant that it might seem at first. The HPC kemel redistributes many external events two
or even th'ee umes. For example, the backstop task waits on the host for external events, the process manager input
task waits on the backstop task for messages from the manager, and the process death task waits on the manager
input task for death messages. Tasks cleanly separate the responsibilities and concemns of the three levels.

Second, wasks encode significant fiow of control in one place using a conventional prograinming language. In
the state table approach, flow of contro! is encoded in the data, and distributed over many different funcoons. It is
hard tc distinguish the logically separate computations, and hard 0 mansge interactions between them in » stale
table, but easily managed using queves for synchronization with associsted data structures for commurication.
Development, maintenance, and debugging are all much more difficult for state tables than fasks.

Lack of compiler support is the only notable disadvantage o lightweight tasks. Non-preemption has been an
advaniage, making every block of code an implicit critical section and eliminating the need for nuisance Jocks on
data strucaures, rather than a disadvantage. The underlying coroutine package requires grchitecture- and compiler-
dependent assembly coding, however, the original package was easily poried 10 diverse architectures such as VAX,
MC68000, and ROMP (IBM RT-PC).

The real problem is stack management. A task’s maximum stack depth is fixed when the task is creawed.
Stack overflow was a continuing problem during development. Overflow can not be automatically detected withou:
compiler support. so U Lask package was exiended with 2 mechanism 10 measure the deepest point reached on a

104

stack. The main function for each kind of task is coded to measure stack depth explicitly after each iteration
through its body and, unfortunately, after any damage has been done. Packages are recompiled to increase the stack
size associated with tasks that come too close to their limits. Many tasks have bounded stack usage, but operation

tasks call rerursive routines, so any limit may be insufficient.

7.5.2. Message Library

The synchkronous, masier-slave, paradigm offered by RPC is inadequate implementing for the generally
asynchronous, highly multiplexed, peer relationships between the compenent processes of the HPC system.
Therefore we built RPC-stubs that block tasks instead of processes and allow the flexibie distribution of incoming
messages 10 existing tasks needed inside the HPC kernel. Compiler and stub generator support would have been
welcome, but not with the additional baggage carried by available RPC implementations. In particular, network
transport, message encoding and decoding, and flow of contrs! had to be managed separately in the HPC kemel,
while these are all unified in RPC.

The ideal transport medium was reliable (perhaps unordered) delivery of messages with distinct boundaries.
Unreliable delivery of messages (UDP) and reliable delivery of byte streams without internal boundaries (TCP)
were available when implementation started. We chose to build ngidly formatied messages on top of TCP, pray for
detection of malformed or unsynchronized messages, and resynchronize after errors by dropping the TCP
connection. This was considesed a bener investment than implementing our own reliabie transmission protocol.

There is no quesdon that the HPC implementation would have died a miserable and lingering death if
application messages were assembled and encoded "manually”. To centralize byte packing and conversions
between intemal and external representations, a message library was written that would take a message buffer and a
human-readable format string and scatter or gather the arguments specified by the format Format strings use
abstract data types relevant to HPC (shel1) rather than the underlying concrete types (lorg).

The self-documenting format feature was a grea! success, explicit management of message buffers was
tolerable when packaged comrecuy, but the extermal data representation was a senicus mistake. The extemal
represeatation used one, two, and four byte quantities aligned on quantity boundaries frem the beginning of the
message, under the impression that this would avoid problemns caused by host data alignment requirements. What
actually happened was that entire messages had 10 be aligned to be read properly, and that alignment had to be
maintained even after the first part of a message had been discarded.

Eventually a solution to this alignment problem was neatly, even elegantly, packaged up, but fixed size data
quantitics would have been a better solution. A still better solution would have been 10 use an existing de facto
standard encoding like XDR or Courier, preserving the message library to translate between HPC abstract types and
the concrete types directly supported by the encoding.

7.53. Protocol Grammar

The mess>4+ library deals with individual messages, but does not simplify programming exchanges of
multiple message: - of demultiplexing interleaved exchanges. These are problems botk: for tae kemel, and for =5y
realistically complex agent, which must manage several concurrent but independent strategies for different portions
of its domain. The client interface provided by HPC must be augmented with a wide range of programming suppor
tools before the overall systemn is practcal.

105

The user interface dialogue grammars under development by Yap [ScY88) look like auractuve tools for
managing many of these protocol problems when building an agent. We have not yet applied them in the HPC

system.

7.5.4. Test Scaffolding

No exact records were kept, but it is probable that the disposable test scaffolding used for HPC development
1s larger than the HPC rode itself. At least one, and usually two, test processes were created o take the place of
chients, kernels, and routers. Each application protocol between processes with its corresponding interface libraries
was tested independenty of the application code, and IPC terminal setup was tested with nearly every combination
of dummy clients, routers, and kernels during various stages of development The earlier test processes were run
interacuvely 1o step through each protocol and set up stress cases. Later scaffolding generally ran automatic test
sequences to veniy thet further development had not introduced new bugs.

As 2 result of protocol testing, the kemel packages that hardle interactions with external processes were
debugged indepzndenty of the central database operations. The layers of database routines 'ent themselves 1o easy
testing from the structural database up. As functions were added to each layer, corresponding test functions were
added 0 a 25t suite and run after every significant change. The timz spent running the test suite paid for itself in
development time through early detection and good isolation of errors.

In many cases, fullv exercising a laver in isolation violates global strucmural coastraints. As mentioned earlier,
the path maintenance code may nct remeve direct private bindings at arbitrary times. Isolated test exercises had ©
be gradually removed from the test suite as the dependencies between layers and checks for additional HPC
consTaints were added. The final kernel test suite contains over 650 calls on the low-level semantic and database
layers, and over 950 checks on the results in the structural database. This 1s larger than any package exczpt ihe
low-level semantc layer, and none of it is used in the kermnel.

7.5.5. Log Files

Log files arc an invaluable, if unexciting, diagnostic ool. HPC keeps logs with adjustable levels of reporting
for the kernel, [PC router and process manager. The giotaily unique number generation system a'so uses a per-host
specisl log to prevent reuse of numbers.

A sundard log messags heading with the date, time, and logging process identifier was especially helpful i
sorung out the vanety of messiges in the kernel and router logs. Al various times during development, the log have
crestions, dumps of vald incoming messages, dumps of protoco! violations, resource consumption reports, hash
table staustics, rates of unique number generation, host fatal errors, and violated internal assertions. Mundane, but
essential, material.

15.6. Graphic Interface

Compilicated dynamic acuvites can be very difficult 10 understand. Used wisely, graphic displays and user
interfaces can make sn empossible task practical, especially for a systern ke HPC with a natural graphic
represrutauon. An interazuve graphic interface foc domain agents would be a temendous experimental tool.
Unlonunsicly. good graphic wnterfaces are a major investment in development time and resources, and chient

106

support 1ocls were nol a important issue in this thesis.

Still, a simple, non-interactive graphic display was integrated into the tasking package (¢ display thc interial
status of the kemnel conveniently. Each task has a separatc marker with descriptive labels. The display places the
markers for different types of tasks (client, operation, controller, etc.) in diflerert columns. This has been a
valuable tool. The degree of multiplexing and the number of clients is manifest. Premature task terminaton,
failures to terminate, and unreclaimed resources are instant!y and obviously visible on the display. Log files provide
the same raw data 1n a format that is much harder o use.

7.5.7. Interface Preprocessor

Interface structure descriptions (medium, orientadon, component structures, eic.; are complex pieces of
information that must be maripulated efficiently by software, transmitted via network connections, and
communicated 10 and from human beings. There are three corresponding representations: linked graph data
structures, linear encoded byte sequences, and ASCII strings.

For many purposes, a structure dzscriptions is converted from one representation to another at runtime.
However, this is inconvenien: for programming clients. A programmer would like o write in ASCII descripuon
inline in a program, and have it converied to a useful form during compilation. A simple source code preprocessor
takee inline HPC descriptions and converts them into C language arrays initialized to the linear encodirg fcr the
description. This form can be passed direcdy to the client-kemel interface library, which is the most common use of
inline descriptions.

7.58. Code Assertions

The low-level semantics and structural databasc packages must maintain many invaniant properucs ©
preserve HPC properties and avoid corruption of data structures. Assertions about these invariants are a significant
fiscton of the executable code in these layers. Seven percent of the low-level seinanucs layer, and 12 percem of
the database layer is devoted to checks that are usually unnecessary and often redundant.

However, the cost of invariant checkung is incignificant compared 10 the development and maintenance time it
saves, not to mention the increased confidence i inspires in complicaicd database manipulations. On dozens of
occasions, an apparently innocuous code additic™ ~ change violated an assertion. Usuzlly, the violations were the
result of incorrect coding that was acceptable ¢« au kt of the modu’e bei.z addid, but incorrect in the larger
context of the enure dauabase. Assertod invs .. were . most aever 100 restrictive; the exceptions were due ©
either a lack of forethought in specifying ¢ - i at ¢ a radical change in implementation requirisg global
changes throughout the database.

Chapter 8 ' Conclusions

107

108

8. Conclusions

We began with three general goals: devzlop a structural representation for target applications, provide
operations (¢ manipulate the representation during execution, and identify specific influences of the distributed
environmen: on applicauon structure and management. As in any rescarch, the successful pursuit of initial goals
leads 10 unexpected conclusions and suggests goals of future research. Here we present some general conciusions
on system design. We also suggest several research areas ripe for additional work.

8.1. Generai Cbservations

D iring this research, we came 1o some conclusions on system design that apply widely.

8.1.1. Dynamic Structure
. Use semantics, not syniax, 1o describe dynamic structure.

The typical language-hased approach to distributed programming handles static process structures well, while
handling open systems and run-ume reconfiguration poorly, if at all. Dynamically changing structure should be
represented as an abstract data structure with a set of manipulating operations, r:ot as a syntactic form in & program.

The HPC design successfully dzmonstrates the data structure approach, encoding a broader set of process
structurcs thar any programming language we know. HFC also tackles dynamic changes and merge ﬂ
inconsistencies, which can not even be expressed syntacucally. Future distributed programming languages should
not atiempt 1o encode process structure syntactically, unless the process structure is 1o be entirely fixed.

8.1.2. Process Structure
. Passive hierarchies are an appropriate modei for overall application structure.
Many distributed applications can be naturally described as 2 nested hieroxchy of abstractions. We find passive

hierarchies supericr 1o actuve ones on the basis of clean abstraction and fault tolerance through redundancy.
However, passive hiesarchies do not encompass all useful application structures. Most notably:

° A comprehens: ve mode] of process structure requires non-hierarchical features.

A mtnct hiersrchy with explicit composition is 100 clultered, 100 concrete, and 00 britle 0 support complex
applications in an open environment. While programmers and managas may be presented with the appearance of a
stri-t hierarchy, practical systems require contolled violations of this paradigm 1o provide transparency. Also, trees
are intrinsically incapable of expressing the mersge inconsistencies that they can generate. It is far betier © use
arbitrary grapas as v basic stuctural model, and impose a hicrarchy as a surface feature, than to usc trees as a
fundamesmi vodel. Thi. conclusion was not expected, but owr hierarchically motivates uesign was not complele
and G>sistent until we adopied graphs as the underlying mo.).

8.13. Management Structure

o The relation A manages B is as imporuant as A communicates with B.

Powerful tools are needed 1o describe and dynamically manipulate this relationship betwoen agents and domains. In 1
the context of HPC, this observation suggested the reuse of existing compositional tools. By adding abstract
placeholders for cach domain, the complete protection relation can be described in the same explicit detail as the

| I

199

communication relation.

Before reusing composition, we investigated a number of inheritance and defauil rules for propagating
privilege from an abstract. multiprocess object 10 (some of} its real processes at the leaves. All rules led w conflicts
with tk basic principles of absiracuon and composiuon. In contrast, the division of uie hierarchy into domains that
follow object boundaries was an obvious, and satisfactory. design accision.

This observation applies widely. A great many tools, ranging from network protocols. through operating
systems and programming ianguages, give close control overbinding two or more communicating entities together.
In contrasi, the tools for specifying protection and management relatonships are crude and Limited m most
environments. In designing any new software system with dynamically changing structure, the same degree of care
should be given to a powerful set of ools for relating agents with domains as to the rest of the system design.

8.1.4. Communication Structure

Communicaton functions can be classified as logical configurauon, physical impiem.~ntauor. and end-to-end

communicauon.
° Each class of communication function should be provided independently.

Workers communicate, managers configure, and the HPC kemel implements. This separation is not provided by
current IPC mechanisms and operating systems. One specific consequence of this classification is that:

. Efficient separation of implemer.tation from communication requires a third-pariy connect.

We can not actively manage a distributed computation without making changes 1o it, and existing network protocols
do rot allow an HPC kernel, for example, 10 set up or tear down connecvons between workers in an efficient way.
Third-party connect is an important session layer feature that should be incorporated in future protocel suitss.

. Complex communicatio. pattemns can be expressed structurally.

In contrast o0 unplementation. (third-party comnect), it is nor necessary 1o suppont configuration in the
communication protocol. The paradigm of point-to-point connections between interfaces does not limit a system 1o
one-10-one communication patterns. It is not necessary to rely on details of addrzssing or routing 1o menipulate
heterogenzous parallel channels, homogeneous multiplexing. or multcasting.
¢ On-iine computation of connectivity 1s practical, but non-trivial,
The most interestinig algorithm in the HPC implementation is the incremental computation of communicating peers,
in which the HPC kernel converts configuration information into implemer:tation decisions. Our best algarithen is a
centralized onc that computes the effects of connect and disconnect in time proporuional to the lengrh of all the
affecicd paths. We unsuccessfully sought an aigorithm with cost proportioaal 10 the aumber of affecied paths
(efTectively constant ime). We would also prefer an decentralized algorithm that could be distnhuted.

The HPC path maintenance algorithm i similar 10 on-line algorithms for transitive clogure, a formal property
with many prygucal applicasions. Therefore, we expect path mainienance 10 find use outside he context of HPC.
Path mainienance also has many potential applications in dissributed netwark routing algorithns.

110

8.1.5. Distribution
. Distribution mandates an asynchronous system interface.

This point is controversial, but our experience is that synchronous interfaces are appropriate only for systems with
centralized behavior. To capture the essence of distribution, one must allow for the intrinsic asynchrony of
multiprocess programs, and of failures. Transactions (and atomic non-primitive actions) are not consistent with
highly-available access to a distributed data structure, because multiple agents may be inspecting and modifying a
shared data structure concurrently. Asynchronous notifications of change are needed to avoid expensive polling,
just as interrupts are needed to support efficient operating systems. Support for multithreaded agents also requires
an asynchronous interface, to allow overlapping operations issued by several threads of a single agent.

Building synchronous interfaces for programmer convenience on top of the basic, asynchronous, system
interface is compatible with a distributed environment. For evample, a prograniming environment might use several
lightweight processes to wait, synchronously, for each of several overlapning operations to compiete. 8ut such
programming environments are successful by virtue of what they hide. Eve. mally someone will need access to the
ugly asynchronous reality, even if only to build a better environment.

. Partitions do not require reduced availability.

Put another way, if you know what you're doing, you can do it more often. Most databases understand nothing
about the semantics of the data they contain, and therefore cannot resolve merge inconsistencies in a sensible way.
As a resw.!, database designers strictly avoid consistency problems by limiting availability. The more that is known
about the application, the more restrictive this strategy becomes.

The Locus distributed file system is a specialized database that knows the semantics of much of its data, and
exploits that knowledge to reconcile automatically many inconsistencies at merge time. HPC maintains a richer,
even more specialized, database, and understands almost everything about its data (at the expense of containing only
specialized data). Merging is based solely on current partition state, using a history-less algorithm, and most
structural features can be reconciled automatically.

Our experience suggests that application complexity is not a basic obstacle to availability during partitioned
operation. In fact, we offer this heuristic to generalize the comments just made:

e The greater the number of internal constraints a specification has, the fewer the external constraints an
implementation will have to add to operate in a failure-prone, partitionable environment.

82. Suggestions for Future Research
Our experiences with HPC suggest several areas for investigation, including specific improvements to HPC,
general network services, and semantic models for concurrent programs.

8.2.1. Design Extensions

It is usually hazardous to allow more features to creep into a satisfactory system. However, there are at least
two areas of the HPC design where additional features deserve investigation.

. Allow user-specified correspondence of views.

111

HPC’s fixed definition of corresponding views leads to the tap problem, the user inability to detect cycles, and
related problems. It may be possible to find onc mechanism that provides solutions to this whole set of problems.
For example, users could assign endpoints tags or markers that wculd propagaie along paths and define
corresponding and reachable views. Integrating such a scheme into the design of complex communication paths
(e.g., multicasting), and the implementation of path maintenance is the technical challenge.

. Place limits on splice targets.

As previously noted, hidden communication paths are an improvement over strict hierarchies, but they are not
always a good thing. It is easy to express limits on the targets of splices, for example: "must be within subtree T".
But it is not obvious how to check such constraints quickly, nor how to integrate them into the existing protection
system. In the current HPC design, no domain can limit what another domain does intemnaliy. One domain can
impose its will on an adjacent, inferior, domain only by taking full convol over the inferior domain.

8.2.2. Related High-Level Services

HPC provides a structuring service. Alone, it is not sufficient to build complex, distributed applications.
Many of the other necessary services (transport protocols, file service, name service, remote execution) already exist
1n most environments, but we found the need for some network services not yet available.

. Dynamic propenty (arbitrary string) servicc

HPC currently maintains two uninterpreted properties: role and type names. This was pragmatically the right thing
to do, but wrong in principle. Users should be able to attach arbitrary properties to structural items, as long as
proper operation of HPC does not depend on them, and the HPC keme!l need not be extended to support them.
Instead, properties should be stored in a name service allowing dynamic registration of arbitrary data. The DARPA
domain name server demonstrates the technology needed to support name lookup for a restricted class of properties
changing fairly slowly. The proposed X.500 directory service has optional support for unrestricted properties, but
vigorous development is needed in this area, especially to allow users to quickly and automatically establish naming
sub-domains.

. Network-wide credentials and authentication

HPC uses only TCP sequence numbers and IP source addresses to authenticate cotr 1unication between components
of the system. This is very weak protection against a spoofing attack on the HPC implementation. Additionally,
HPC has nc notion of user identity, and cannot provide its host sites with information needed for access control and
resource accounting purposes. This brings access 0 resources down to the lowest level: anonymous guest
Tradiuonal resource sharing on the Intemnet is accomplished by creating local user accounts within an
administrative boundary (¢.g.. MIT Multics), and using local authentication (login during telnet).!! Using password
challenges when programs, rather than people, must be authenticated is a bad idea, because programs can be
examined for password strings. At 2 minimum, a network-wide credential and authentication scheme is needed
before any significant sutomated resource sharing can be done across administrative boundaries. The Kerberos

"' The original Arpanet visions of distributed resource sharing have never really been fulfilied. With few exceptions, the networking com-
muniues have siopped shornt at elecranic mail, file tranter, and remote login.

112

authentication system used in Project Athena is a good starting point for further work.
° Session layer support for configuration

The third-party connect facility we found so important is a basic configuration feature that belongs to the scssion
layer. We expect dynamic reconfiguration of distributed applications to require a range of session layer features
beyond third-party connect, just as the current ISO proposals for session layer synchronization extend far beyond
the original concept of data quarantine. Current work into automatic network management should be broadened to
consider the necessary protocol support for automatic applicauon management.

e Software development tools

HPC provides a raw, low-level environment, as expected of a set of basic mechanisms. Tools vhat incorporate some
policies and allow programming at a higher level are needed, even at the expense of generality. The most glaring
example is the lack of a standard interactive utility for HPC analogous to the many shell programs for the Unix
operating system. The development of automated agents, perhaps customized for particular applications, is a more
challenging research area that brings theoretical studies of distributed algorithms together with systzms engineering
and implementations. Another interesting problem area is the integration of HPC mechanisms with conventional
fault tolerance mechanisms (transactions, redundancy, recovery).

8.2.3. Semantics and Formal Directions

HPC’s need 10 manage a strict hierarchy with an undirected graph model suggests some extensions to formal
semantic models, as well as the pragmatic tools discussed above.

) Remove the parent-child asymmetry in formal studies of semantics.

Many formal studies of the semantics of concurrency are based on passive process hierarchies as in CCS and CSP.
The axioms of composition in such systems describe the behavior of a complex node as a function of the behavior
of its children. However, the parent-child relationship is partiy a matter of perspective. Any node can be chosen as
the root of a CCS or CSP tree without affecting its behavior. The tree has exactly the same leaves composed in
precisely equivalent ways, no matter which node is selected as the root, and therefore must have the same behavior.
The sets of equations describing the various orderings of a tree ofien appear quite different. The laws of distribution
for a formal system must be sufficient to prove that all such sets are exactly equivalent.

° Investigate semantics of nonhierarchical structures.

CSP and CCS systems cannot express sharing or transpareat abstraction. There is only onc path of interaction
between two processes and all interactions between them are visible all along the path. There seem to be two
technical obstacles to providing passive graphs witk: 2 formal semantics. The first is infinite families of equations, or
of solutions to equations, due to cycles in the graph. The second is the loss of strictly local composition.

Our experience with HPC shows that families of forma! solutions can be detected and reduced to a single
representative, or discarded if no concrete solution exists. We conjecture that this experience can be extended from
equations of connectivity to equations of behavior. The loss of local composition is more apparent than real. Every
direct interaction between two nodes is explicitly represented by an edge. Soiving the equations for cycles
automatically handles any indirect interactions.

8.2.4. Distribution and Decentralization

A production quality HPC system would require significant improvements on the prototype implementation
we constructed. Most of the work must go into application managers, and the HPC kemel also needs some revision.
However, major improvements are beyond our current understanding of decentralized control, and we propose some

research needed 10 support the development of distributed agents.
° Decentralize the HPC kemel.

The HPC interface to distributed applications and managers is satisfactory at this point, but the HPC implementation
is too centralized. The implementation is built from several distributed processes, but the current HPC kernel can be
neither replicated nor decentralized.

A preliminary investigation of a decentralized kernel indicated that many kemnel functions could be readily
distributed. The obvious way to divide the physical database is along logical domain boundaries, replicating copies
of a domain only on hosts with a physical agent for the domain. The key problem area is decentralization of the
aigorithms, rather than data. In particular, it is not obvious how to distribute the path maintenance algorithm

without communicating the entire path maintenance graph.
° Investigate decentralized control.

This thesis explores a set of mechanisms, without presenting policies for their use. We have assumed polices are
determined by agents’ behavior, outside the scope of our study. Behind this assumption is a challenging research
area.

Any robust application must have multiple, distributed managers. Those managers must collectively agree on
policy, and must further agree which particular manager is responsible for executing policy. Various special aspects
of decentralized control have been studied in different fields: distributed agreement in the areas of theoretical
distributed computing and reliable sysiems engineering, distributed control in the fields of industna. : ug'neeting and
applied mathematics, distributing an invanant in theoretical distributed com=1ting, flow and congesuc :: s¢nuol in
protoco} development and system modelling, and so on.

These fields of intense, specialized research can all contribute to the study of the stability, efficiency, and
correctness of decentralized manipulations of complex discrete structures. As a specific example, we propose the
deceniralized tree editing problem for study. The well-known conventional tree (or string) editing problem is 0
take two trees (strings) and a collection of editing primitives, and determine an optimal sequence of primitives 10
transform one tree into the second. This abstract probiem has practical applications in network management, failure
recovery, and software development

The deceniralized tree editing problem must be solved by multiple, communicating agents. Changes to both
gees may occur asynchronously, and different agents leam of changes at different times, perhaps in diffezent
relative orders. They may not share a centralized database, and a locking facility on the trees is swrongly
discouraged. Agents may not exchange the entire problem, only the minimum needed (o coordinate their actions.
Ideally, a single agent anempts each necessary operation, and non-conflicting operations are done concurrently by
different agents. The solution should permit dynamic addition and removal of agents, as well as tree elements.
Further, the solution must be stable, resolving conflicts between agents quickly. These aspects of the docentralized
problem must be added 10 the existing correctness and optimality issues of the conventional problem.

114

. Explore application-specific impacts on control.

Some applications can do useful work while partitioned or survive the replacement of components without special
attention, while others must be explicitly resynchronized when reconfigured, and still others cannot tolerate any

visiblz failures or changes at all.

HPC'’s mechanisms are sufficient to control the first group. For the lauter groups, HPC must be supplemented
by mechanisms for manipulating application state, for example, atomic transactions. An agent for an HPC domain
must use these other mechanisms correctly. It may bc cqnstrained by certain HPC operations, because the
application under Its control, or the supplementary mechanisms, cannot tolerate the results.

Atomic transactions accommodate the most fragile applications, while real-time applications usually
accomodate the harshest environments. However, an application and its environment can make partial allowances
for each other, and the resulting systems may prove more efficient than either extreme.

8.3. Reprise

A typical distributed application has a hierarchical structure with well-defined communication patterns
between loosely coupled, active computation elements. The distributed environment is an open system composed of
autonomous, heterogeneous, asynchronously running sites, subject to independent failure and network partition.

HPC is a study of the use of nested process abstractions and explicit composition to represent such
applications. Maintenance, migration, debugging, and adaptation to changing environmental conditions are
supported by HPC operations that modify process structure during executicn.

The HPC design emphasizes the structural or architectural issues in distributed sofiware, especially
interactions involving dynamic reconfiguration, protection, and partition. The contributions of this work come from
the detailed consideration of how the seemingly well-known features of abstraction and composition interact with
cach other and a distributed environment.

This thesis is also a rare case study in consisiency control for non-wrivial, highly-available services.
Operations modifying structure are (ully available during network partitions. The inconsisiencies that may be
encountered during merge have all been identified. Each problem is either avoided, automatically reconciled by the
system, or reported to users for application-specific recovery.

Appendix A Formal Description

118

116

A. Formal Description

We begin this Appendix with a proof of the characteristic theorem used to express a collection of dynamically
changing relations as subsets of a fixed relation. This theorem is critical for our success in treating most dynamic

structure as formally immutable and thereby eliminating many sources of inconsistency.

The remaining dynamic effects are modelled by treating each structure as a formal sentence and the
operations that transform structures as formal axioms. Section A.2 gives the simplified, abstract form of structure
used throughout this Appendix.

The predicates that define legal HPC structures provide this formal system with extensions in a simple model.
A legal structure is a true sentence. The constraints that, for example, force strict nesting of objects are all encoded
in Section A.3.

Section A.4 defines some core operations (simpler than the primitives provided i ciients) and then reduces
the client primitives to core operations. Depending upon its arguments, each client primitive may translate into an
arbitrary number of core operations (e.g., destruction of a complex subtree).

Every derivation of a sound formal system from a true sentence results in a true entence. A formal system is
complete in a strong sense if it can derive every true sentence. Space does not permit full proofs of HPC's formal
soundness and completeness, but Section A.5 outlines such proofs.

A.l. Characteristic Theorem

HPC increases the number of formally immutable properties by distinguishing local knowledge, which may
change, from global truths. Many dynamic features of process structure can be limited to creation and destruction
of otherwise static elements. We pretend these elements have fixed properties throughout an infinite lifetime, and
that we only become aware of them when they are created, and lose awareness of them when they are destroyed.
The set of elements known at any time and place is a characteristic.

When it is possible to use them, dynamic local characteristics offer a major advantage over dynamic global
relations. If the structure visible in a partition is described by a local, completely known relation, and this local
relation is formally defined as the intersection of a global (and incompletely known) relation with local, known
characteristics, then partitions can be merged simply by taking the set unions of the local relations and the local
characteristics.

This property has important conseqeunces. The global sets and relations are aever needed, only the local
ones. This permits complete distribuied management of structure. The merge procedure for local relations is
extremely trivial, yet guaranteed to preserve the formal definition (and consistency) of the local relations. Finally,
there is only a weak constraint governing relations and characteristics. A relation's conient is almost irrelevant, so
many different structural relationships can be managed this way.

Given

ReXxY

Let R be a binary relation over sets X and Y. These describe the global, immutable (and never completely
known) "truth” about structure.

L“.-L—.—u o

117

X, e X, Y, €Y
In each partition i, there are local, dynamic characteristic sets, describing the structural elements known at
this time and place.

¢-R, = Rn(c-X, xc-Y,)
A local, dynamic structural relation is formally defined as the intersection of a global relation with the
corresponding local characteristics.

c-X;x ARxy = c-Y,y
There is one constraint governing local characteristics and the global relatiors. The image of a characteristic

by the relation must also be characteristic.!® This is a formal way of saying that we must understand the

answers to any questions we can pose.

Theorem

¢-R;Uc-R; = RN((c-X,ue-X;)x(c-Y;uc-Y;))
The formal statement of the theorem for binary relations and two partitions. Merging two local relations is
identically the fresh intersection of the global relation with the merged local characteristics.

Proof

To simplify the prcof we introduce some abbreviations, and freely mix relational, set and predicate notations.
No confusion should result. The extensions to n -place relations, and arbitrary numbers of partitions are completely

straightforward.
A =Rxy B = c-X;x C=cY,y D = c-Xx E =c-Y;y
First direction: (¢c-R;uc-R;jxy = (Rn((c-X;uc-X;)x(c-Y;ue-Y;))x y
1) (c-RjucR)xy assume
2) [AABAC)VIAAD AE)} 1, definition
3) AABVD)A(CVE)A[BVEYA(C VD)) 2, deMorgan
4) AABVD)A(C VE) 3,AE
5) A a(e-X;uce-X)x a(e-Y,ucY,)y 4, definition
6) (RN((c-X,uc-X;)x(c-Y;uc-Y;)))xy S, definition
Other direction: (RN ((¢-X;uc-X;)x(c-Y;uc-Y;))xy = (c-R;uc-R;)x y
7 AAB VD)A(C VE) assume, def
8) (AAB)V(AAD) 7. A-E, deM
9) AAB=C given
100 CvD 8,9, MP, deM, A-E
11) AADE given
12) BVvE 8.11, MP, deM, A-E
13) AABVD)A(CVE)AIB VE)A(C vD)] 7,10, 12, A-]
14) (c-Rjuc-R)xy deM, def
QED

' This connraint is asymmetnc. Only one damain of the relaticn has 10 taie the ole of X. For A place relations with & > 2, this
damain can constraun the othen ether duecly, or transitrvely (C-X, 2 A Ry r = ¢-Y;y: ¢-Y,y ~ Rxyz = ¢-Z;2)

118

A.2. Formal Structure

HPC formal structure can be divided intu core and derivative relations, and into immutable and dynamic
rclations. The core relations are the ones directly manipulated by HPC primitive operations, while the denivative
relations describe the morc complex consequences of simpie operations. In this Section we use PROLOG to define

the derivative relations in terms of the core.

The 'mmutable relations describe fixed properties for which inconsistencies can never arise. Normally, only
implementation-specific constants would be core and immutable, but this subjects too much structure 10 merge
inconsistencies (f.hapter 6). When the characteristic theorem is exploited, only three core dynamic relations are
formaily manipula::d by HPC operations or require non-trival reconciliation after network merges.

A.2.1. Core Immutable Relations

Primitive Structural Elements

view(\}

damair ()

Shells, splices, interfaces, connections, controllers, and protection boundaries are all formally reduced to relavons
on views and domains. These relations are oniy known partially, through the use of local characteristic sets of

views and domains. There is a reserved domain rocz.

system(D))
Processes, controllers, and the roor domain form a distinguished subset of all domains.

Primitive IPC Properties
IPC properties are known globaiiy and immutably.

mecium 09

/* M is a sumporied T rechanist v/
orientation(C)

/* M is a supported IPC direczion */

The supported mechanisms and directions are implementation dependent, but must include the reserved mechanism

amntrol.

reverse (01, Q2)
/* Ol and Q2 are conplererzary orientations */

This relation must be symmetric and pseudo-transitive (0dd length sequences must be closed under the relation).
This ensures that end-10-end chains that are locally complementary on every link have complementary endpoints.

structure ({7, P, (M O]))
strozure((T, P, (S, S, ...
/° T is "sirple”, "brdie”, "uliiplex”, or multicam®
* P is "erdpoim”, "exiension”, o “masked™
* madium (0, onientatian(0), stnucture(s)
*/

A simple view structure specifies an IPC mechanism and orientation, while a complex suucture specifies a sequence
of structures. We omit the detailed constraints on the global and immutable stne=zure relation (¢.g.. child structures
of a masked complex strucwure must be also masked) except where the constraints are relevant 0 later discussion.

119

Primitive Policy Elements

loss (L)
/% L s "temporany’’ cor "perranenit C
pe..v (@
/* F is "anc.zate”, "sosoons' or “ae" Y/
The policy sequences discussed in the text complicate formal proofs without adding much content, so we will limit
formal discussion to single basic policies, rather than sequences. Policy elements are known globally and

immutably.

View Hierarchies

Viaw hierarchies arc only known locally, based on the characteristic view.

cumponent (C, P
/* C is a corponent \view cf F Y/

Every view has exacUy onc parent throughout its lifetime, except the roots of view hierarchies that never have a
parent. Roots of view hierarchies are the bundle endpoints comerising shells, and their immediate children are the

interfaces presented to clients.

Protection and Privilege

rarber (V, D)
/® view V .s a meroe: cf aora:n T */

A view belongs 10 exaclly one domain throughout its lifetime. It is replaced with a different view (renamed)
whenever it would intuitively move between domains. Domain membership is only known locally, based on both
charactenistic sets.

anzroller O
/* V is wep-level view insioe aoniroller space */

This is the ancestor of the views where agent invocations are received, and HPC system responses are sent

Primitive Private Peers

bard Vi, V2)
/* Vi ard V2 corprise a shell or a splioe */

The root of a view hicrarchy has exactly one private peer throughout its lifetime. Thesc pairs are the formal shells
and splices. A root view is replaced with a different view (renamed) whencver its peer would be changed {z.g., by
transfer between domains o1 by endpoini/extension promotion).

pores_up (Vi
/° V i3 loms marbe: 0! a shel)] */

The hicrarchy is defined by directed shells. The views that lead woward the root are distinguished.
(This 1s an immutable property because eversion replaces a directed shell with a splice. Eversion could safely

preserve view identifiers by making poies v a dynamic property provided changes o the relation are zionatonic.
Eversion sausfies this condition: false is never changed to true.)

120

Additional 1PC properties

Some IPC properties arc known only locally, through the view charactenistic.

veiro i, f

/* view Voras strasiie £

viatle \V
/® view V 15 2 arp.ex enxC il NCT LN a Process space,
* OI & SUT.C exICloL 1N a prooess space

Viable views are those that can be used for communication. This is the only (indirect) reflection of real processes in
this formal model.

irdex (V, I
/* fixec nuroer 10 oelesmine corresponding oarpanents */

A small integer based on view structure, or & unique number based on invocations of new.

A.2.2. Derivative Immutable Relations

sELe i- veizuct (Y, (sitrle, e _h.
boncie (V) - vsrem (Y, fordie,).

icast V) :- verucs (V, [multicass, , D).
multiplexV) :- vtroct (v, [multipiex, ,)}

eces:on(V; - vserust (V, [, exensian,]
engirs Vi 1= vstroct (V, [, endpoint,).
masked (V) i= veerucr (V, [, masked,).

These predicates simply provide easier access to the vs:nx= relation.

correspord g VL, V2 i index (T, 1), inaex(VZ,).

Correspondence follows directly from the fixed index.

sutic_corponer? (I, Pl - coponex (C, Pl, havrile®), endoin).
satic_corponen (T, Pl - arponerz €, 0, satic_orponez X P).

Creating a bundle endpoint requires automatic creation of its immediate children. These arc static. as opposed o
dynamic, component views.

corplererary((siple, , (M Cl1), (sirple, o hoan -
reverse 0], @.

arpleentary(C, , S, iC, _, K} -

arpleencary(Sl, 52).
complerereary ([S1% | S1z), [S2n | Sx)) :-

plaventary(Sih, S2), corplemerzarvisic, Sx;.
Peer views must have complemeutary soucture. For simple views the medium must be the same, and the
oncnuations must be complementary. For comglex views, the component structure(s) must be complementary.
Multicast and multiplex views have a single structure, while bundle views have 8 list of structures each of which
must be complementary.

splioe 00, V2) :- bord(Vl, V2, nex (olres wp(Vl) @ poims wpiv2)) .
shell(Vi, V2) :- bapd(V], V2, oirts WwVl) , poirms WOG)) .

One side of a shel points leads loward the root. This is the only formal distinction between shells id splices.

drsorrda (D, N - comporert (D, A,
Jescwndart (T, N - arporern (O, B, duowdax B, A .

rxeve. (V- nct{corponert Y,).

These preaicaies just provide casier access 10 the carpanen: relation.
A.2.3. Core Dynamic Relations

Spaces

adjacen: (V.. V7
/° Vi axd V2 are currently 2233 <t view hierarchy roots */

It is scchnicaliy more convenient to maintain the adjacency of view hierarchy roots, rather than all views. Spaces
are defined as the equivalence classe:, of a relation over all views, sarespace, derived from this core relation. All the
views in a class ar2 incide: on the same space. Two spaces are merged by :naking their view hierarchies all

adjacent to one ancther.

Merge inconsistencies can violate the equivalence constraint. These vioiations are reconciled automatically.

Public Peers

cavwcued (V., V2)
/* Vi a~3 V2 are aucrent.) private peers °/

This is always a symmetric and anu-reflexive relaton. Ideally, it relates distinct pairs of views, but merge
inconsistencies can violate that constraint. Clients must resolve these violations.

Terminal Prlicies

loss jolicy®, 7, P)
/* P is the policy for loss of commrol L over domain D */

In the zomplete HPC system, p is a non-empty list of basic pulicies or animations with parameters. The temporary
list is terminated with suspend, The permanent list may not contain suspend and is lerminated with abdicate. In
this formal appendix, » must be a single basic policy.

Merge inconsistencies are resolved awtomatically. This formal mode! does not capture the sequential
application of terminal policies.

A2.4. Derivative Dynamic Relations

Spaces

sermspace (V2, W2) i~ ecdlacerz OV, V2}.
ssvespace (V., 2} :- corponerz OV, P), samespece (P, V2).
ssvmspare (VI, \2) :- crpowert V2, P), serespace(Vi, P).

cleas Vi, V2I :- shellVl, V2), meter (V, O}, vmtms V2, DI,

cpege V1, 2] :- basd(\V, V2), serbes(V1, D1), setmr(V2, B2, D ‘= 2.
opmye Vi, V2) :» spliae DT, V&1,

rwal b dary (v, O - meremr (V, D), band(V, Vi), e eeter (VL. D).

baraa. V, D i- mrems (Y, Ui, opaqe(V,).

below (., \T) - aciacert T, .}, poimts ue(VL),
ciear (\, V), adiazen: (Vi, W),
be.ownT, VI - pels<(L, V), below(V, \2).

LS onnt(oelow(V,)}, oondary(V, D).
Y, D - oax(oeloei, V), bonmdary(y, Dr.

View Suspension

suspeaed (1~ covected (V, Vi), connected (V, V2), V1 le VG,
suspenaec (V) :- spericr (V, D), swperios(Vi, D), VI != V.,
sasponged (V) :- tocdary (V, D', policy©, terporary, suspend;,

ter corerol loss{D).
saspenckc (V) :- caoponen: (V, P}, supergecd (P) .
Susperded describes forced suspensions due (0 violatians of constraints discussed in the next Section, or to temporary
loss of control. Four conditions force the suspension cf a view. It may kave multiple connections, be the root view
of a surplus superior domain boundary, be a domain boundary for a suspended domain, or be a child of a suspended
view. Forcibly suspending one view may indirectly affect the Liveness of other views through other relations.
temp canircl_loss(C' i~ contrel view(C, D), liveness(C, suspended!.

tevp_cm:m._lcss(: i= exitel_view(l, D), livenmss(C, dead),
real boydary (3, [, cuin({private, C], {mblic, B,).

antrol view(™, T :-

marbes (T, D), corisolles(C), corponesz (P, C), carponent (., P).
A dumain is suspended when 2 temporary loss of coutrol is detecied and the current temporary terminal policy is
suspended. A controller shell is a pair of bundles with onc multicast endpoint component. Inside the shell, the
HPC system creates one contro! endjoint component of the multicast view (two levels down from the shell). If this
intemnal control view is suspended, or dead with at least one chain reaching the domain boundary, control has been
lost at least temporarily.

—— A

.y R T P —

Private Peers and Chains

crivate(Vo, VT - bexe VD, VO
/v V. ax \T arc aireclly b private peers */ private(\l, VU -
cgrone~. (0, TL, covonerl 07 0, eorrespondune VT, VU,
crair (o |private, TL,, mrivate)./ NTand T ame

ccrresponaine caponents ©f pr Ll eers T,

crawn((private, \T,, (crivate, W2, (l]) :- private(\T, \2).
carlinesiiz, VL, (mslie, V2., (1)) :- comexzed(V., V2).
/* V. ax \7 are poud 1 one ster, privately or publically */

chawn((private, Vi), 7, [[lpBlie, V2] | R))) :-
private(vl, \2), cawntipsiie, V2, T, R
/® A private one siez bincding from Vi to \2
T excercs chalns sLarming with a public binding of V2
A
crentlpeziic, ., I, tlprivete, V2, | R}D) :-
connecec (V., V2!, chain((erivaze, V2,, 7, R).
/* A pazlic one ster crxiine fro- \. to \T
* excerds chalns staTiing wiln a private binding of \T

Private peers and chains are defined recursively in terms of corresponding components and direct private and public
bindings. The defininon of private peers given here is the looser one used in the path maintenance algonithm,

(A serious PROLOG implementation would require a check for cycles in the last two clauses of chain/3.}

124

Liveness
liveness(V, suspedec! :- suspengded(V), !.

lLiveness(\V, al:ive) -
private (V, V2i, viatle(\T), net(suspenoec(Vel),
AR
Vo2
*/

liveness (V, alive® i-
chain(iprivaze, V], [pwliz, V3], ([public, V21]),
liveness(V3, alive}, !.
/* {)={]]
VR VE
*/

liveness(V, suspended) :-

private{V, VZ), viable(\Z), suspended(\2), '.
liveness (V, suspended) :-

chain((private, V], |public, V3], [[pdblic, V21)]),

¥

liveress V3, suspendeci, !.
liveness (\, dead).
A view can be forced to suspended liveness. Otherwise, we look down chains starting with a private binding, first
for alive views, then for suspsnded ones. If no one step private bindings lead to viable endpoints, then liveness is
inherited from the next step down the chain. if no viable peers are found, either alive or suspended, the view is
dead. (Cycles must be avoided in the third and fifth clauses given here.)

AJ. Legal Structures

The core relations provide a structural framework without any definition of legal structure. The permissible
HPC structures form a very small part of the possible ones. Treated as a formal model, the core relations give an
alphabet of symbols, with no axioms constraining their interpretations. We formally define the legal HPC structures
as those interpretations satisfying the axioms givzn in this section. These axioms are applied to the structure known
in the current partition, that is, the loca! characteristic relations. The renaming technique violates many axioms
wher the formally complete (over all time and partitions) global structure is considered.

It will be our goal in the next few sections to show that legal structures are closed under the HPC primitive
operations (soundness), and that any legal structure (up to isomorphism) can be created by the primitives
(completeness). However, legal structures are not closed under merge inconsistencies. Afier the HPC sysiem
spplies its automatic reconcilation of merge inconsistencies, two axioms conceming mutable relations can remain
violated. In these cases, legal structure must be restored by application managers. We will make no atempt to
capture fremally the broader sense of conmsistent behavior enforced over a merge inconsistency by suspended
liveness.

AJ3.1. Notational Conventions

As in the proof of the characteristic theorem, it is convenient 10 treat relations as predicates, as sets, and as
functions. To use 2 relation as a predicate, we supply a single value for each domain of the relation in parenthesis.

crponant (v, p) // troe 38 v is a coponent of p

[
(3]
N

When treating relations as sets of tuples, we use conventional brace (ts1, s2}) and angle bracket (<z:, t2)
notation. Modification of structure is expressed using C-like notation for set addition and set subtraction. E. ..,

conected += { <vl, vZ>, <vZ, vI> }
viable ~= {vl}

To treat relations as (partial) functions, we want to provide a value for some domain(s) of the relaticn, and get
back the values of the other domains. For example, we would like to know what views are children of the given

view v. By providing a set of input values, we obtain the image of the set under the relation, We introduce a quoted
number convention to indicate which domain(s) of the relaticn is (are) to cast the image.

carponent’ 2’ {v} // sex of children of v
carponent ' 1/ (v} // set of parents of v

loss policy’l,2' (<4, 1>) // policies that apply to darain d under loss 1
We systematically confuse a singleton sct wi't its member.
Vertical bars denote the cardinality of a set.

()1 =¢C

P levl, v2>) | =1
When used as predicates, an empty set denotes falsehood.
Iteration over the members of a set uses this notation.

for s in (sl, s2, s3}
/! body of iteraticn

Bundle structures specify a sequence of child structures. We will need to extract this sequence from the
tundle and refer to its individual elements. Given a structure s, we use this notation:

s.orpanenss // ssquence part of structure
| s.camponents| // nxoer of elements
s.caponerzs|il // i-th element of sequence

A3.2. New Element

Structure modification formally invo'ves structure that always existed and simply wasn't known in the cuurent
partition. By changing characteristic sets we change the known structure. Actually, we rename and gencerate new
structure on the fly. We use the assertion new(e) 10 indicate a view or domain that has never been known, and avoid
axioms that describe structure before its generation. The rigor required to formalize this meta-axiom is
unrewarding.

A3.J3. Immutable Relations

domain) // charactaristic
view(v) // chamacteristic

The local characteristic relations all rely on these characteristic sets, which i.ave no internal constraints.

entrolies(v) = view(V)
controlles v => wiablie(v)
contreller(v) => points up(v)
cLLrolier v, aciacent’/ v == (v

roniroL.er(vi =>
coniros. oivi =

syszem(rereer’ 1\
loondle, endpoing,

cmexzed 1 (Gescancant’2'v) = {)

126

// character:siit

// liveness

// root of space

// ieaf spaze

/! ey scax
// proteciec

// s.ructure

[mciticast, endpoint,
|simple, int, [oontrel, wnlill)
imp

A controlier view must be the inside boundary of an empty shell with a specific soructure. They are protected from

application domains.

capenent (v, p)
canonent (v, p) =>
oponent (v, p)
compenent (v, p)
canonent (v, p) o=
caporenz iv, p)
hadle ip)
multicas: (!
maltivlex(p)
ocapunent (v, p)
camponent (v, F)

view(V)
iew (o)
arp:exip)
endzoint (o)
viazie (g)

dorain’l’v = domein’l'p
corpenent’ L'y = (g)

// characteristic
// characteristic
// parent strucure
// parent siructure
// parent liveness
// camon struciure

vstrucr’'1'v = vsiruct’ 1l p.component s [ingex’ 2° v
vsiruct’ U'v = vstruct’/)’ p.components (1]
vsirocs' 1'v == vstret’ 1’ p.camporants (1]

// cormon doradrn
// uwnigue map

The parant of a component view must be a viable complex endpoint. The structure of the component must be one of

the structures specified by the parent.
raber (v, ¢) > view(v}
meroer v, d) => domadn (vi

| mavber'l'v | =1

Every view belongs to exactly one domain.

// characteristic
// characteristic
// wmigoe, cumplete map

bard(vi, v2) = view(vi) /! characteristiic
boad(vl, v2) = view{vZ; // characteristic
boxdivi, v2) => complememtary(vstrucz’/l’v], vstnxez’l’v2)
bard/vi. vz} = hxndle(vi) /! view sructure
bardivl, v2) => endpoint{vi) // view structure
bawd(vl, v2) => bordg(v2, vi) /] symmevz:
basdd(vi, v2) = vi s V2 /! ati-reflexive
boxd(vi, v2) = boug’l'vi == (v} // unigue maz
bamd(vi, v2) «> toplevel (vl) // anly vh roots

Shells and splices must be distinct topleve! tundles with complementary structures. HPC also requires a unique
private binding, although this constraint could be relaxed.

=> view(v)
= toplcwel (v)

poires_up(v)
roires up(v)

[/ characteristic
/! @y vh roots

Only toplevel views are pan of the hicrarchical ralation.

vstruct (v, 8} = view(v)
vxruct (v, s} = stnucture(s)
vt (v, 8} ~> ‘masked(v)

| vizruae’Y'v | »v 1

Every view has exactly one stucture.

viable (v)
viable (v)

=> view(v)
=> toplevel (v)

/] carsceristic
// arsiteristic
// r masked views
// wmige, cawplete map

// charscteristic
// anly vh roots

Only wplevei views are part of the viability relation.

inoex i, W => DITEER(L) // characteristi~
ingex{:, V) => view(v) // characterist:
| roex'2'v | = _ // wnigue, cor le map

Every view has exactly onc indea.

A 3.4, Mutable Relations

adjacent (v1, v2) => view(vl) // characteristic
aglacent (Vi, vI1 = view(v?d) // characteristic
agjazent (vi, v2) => adiacent(vi, Vi) // symeiric

adjace~s (vi, vZ) <= adjacent(vi, v3) & acdjacent(v3, v2)// transitive
adjacent (v1, v2) => domain’l’vi == damain’l’v2 // comon damain
adjacenz (v, ! <= toolevel(v) // all vh roots
adjacent (vi, vz: => toplevel (Vi) // anly vh roots

Only toplevel views are part of the adjacency relation, an equivalence relation. Each equivalence class defines a

space and must belong to a common domain.

connected (v, v2) => view(vl) // characteristic
canneczec (vi, Vi => view(v2) // characteristic
connecec (v, VZ, => samespace(vl, Vi) // sare smace
convected (v1, v2) => excension(vl) // structure
connected (vi, v2) => excension(v2) // swnucture
carnected (v, Vi) => corplementary(vstruct’l'vl, vstruez’l'w2)
arrected (vi, v2) => connected(v?, vi) // refiexave
annected (v, v2) => vl != V2 // anti-reflexive

connected (vi, v2) => connected’l’vi = {v2} #* wnique map

Connected views must be distinct complementary extensions in the same space. HPC allows at most one connection
per view, but merge inconsistencies can lead to multiple connections.

loss policy(c, I, p! => domain(d // characteristic
loss policy(s. 1, Fi => loss(l) // chatacteristic
loss polacy(d, 1, pi => policy(p) // characeristic
lass policy(d, permanent, p) => p != suspend // must recover axitrol
damain(d) 66 !sysiemic) => // unique, cavplete map

| less_poliey?l,2°¢6, 1> | = 1
Each non-system domain must have exactly one policy for each type of loss of control. HPC refuses permanent
responsibility for a domain. In this presentation, only basic policies are allowed.

AJ.S. Hierarchical Constraints

The axioms which enforce the appearance of a hierarchy are definitely the most complex as well as the
hardest o handle when showing soundness.

d e rece &> | ayperiorf2’'d | = ¢ // root
d != root w» | superior’2'd | ==] ¢ unique sperior

The overall root space has no upper pointing views, while all other legal spaces have exaculy one view hierarchy
that points toward the root. However, merge in~nsistencies can produce multiple superior interfaces at the overall
root at the root of a non-system domain,

below(vl, v2) => !below(v2, vi) /! arxi-gymmetnic
belaw(vl, v2} = 'savespace(vl, v2) /! ai-raflexive
belaw(vl, v2) &6 below(vl, v3) // hierarchy

=> sarespace (v2, v3) || below(v3, v2) |! below(v2, v}

mrteri10y] = mertert 1fv2 // cotiguous
> sarwapace (vi, V2)] belowtvi, v2) || belowi{v2, V1)

All spaces of a domain must be contiguous, and they must be organized into a tree.

128

infezicr(v, root)
= vsinxt' i’ (acacent' v = [oundle, endooint, D]

sysie~ () &6 ¢ != roct => | infenicr'2’¢ | = ¢
lsystemi{s =
{ ¢ ¢ c i opazoe’l’ (inferior2'c) &6 cenireller(e) | = ©

inferior domains of the root domain are opaque top level applications with no interfaces. Process and controller
domains have no inferior domains. Non-system domains must have a unique, immediately adjacent, controller

domain.

A3.6. Constraints on View Structure

structure(s) 66 s = [multicas:, .., seqg! => {seq| = i
stiucture(s) &6 s = [rultipiex, .., seq) => |seg| =1

Exactly one structure must be specified for dynamically created views.

A.4. Operations on Structure

If the core relations define a domain of structural models, the constraints on legal structures are axioms, and a
specific structure is a formal sentence, then operations on structure are formal rules of inference on sentences.

We present HPC operations in three stages. First, we define some auxiliary operations that are not sound
when used by themselves. Using these definitions, we present the core structural operations, which are sound when
invoked with the appropriate preconditions. Finally, we reduce the operations available to HPC clients into core

operations.

129

A.4.1. Auxiliaries

View Hierarchies

v_createin, ., € F, 5 Vi

e
preconditions:
effects:
damain /! rc charoe
sysler // o cnano
ontrolier // e craos
view = { Vv
carpanent = if (lerpryini) then { <y, B>)
meroer -y, &
baxc // o caoe
poinis // e canos
vstrues -lcy, o
viatle += if coplex(v) 6 endpeini(v) then { v)
iroex —= 1f multipiex(c) Then (<, W) else { <, v)
adjacen: // rc crao
connec: ec // e caxe:
loss_ poiicy // o wanoe
if bardle (v) &6 endpoint (V)
forci in { I, .., |s.capmers!)

new (<)
w_create(n, ci, ¢, v, s.carponesis (ci), ¢

vh destroy(i, €, p, s, Vi

let:
P = poinis tpiv)
Vi == viapie (V)

preconditions:

eflects:
fer ov in copore 'Y
let i = voex'l'c
lew 3i = vsiruoc'l'cy
vh destroy(ci, ¢ v, s, o

domain // no charce
system // o chaoe
carzreiles 1/ 0 caxxe

view - v

cavporere. - if ('erpy(pl) then { o, p>)
rurber —-{<v, &}
bard // ro change
points v // o charge

[3, =3 - (Cv, » |
viahle v er v
Ardex -, L}

ad Jacers 1/ o dax

arrecied 1/ 0 daroe
lies pclicy // ro aage

vr_renave (do, &, VS, T}

iev:

pe = cgponent’l've
pn = camponent’ 1w

s == structure’l’vs
i == index’l’vc

cv = conected’ 1've

preconditions:

!
r

effects:
damay:
system
antroller
bourd
points_up
viable

adiacent
loss_policy

view

oaTpanent
merber
vstruct
index
connected

for o in <
new (cn)

view
carpanert
manber
st
index

cannected

// ro change
// nc charoe
// no chage
// o charge
/! o chaoe
/i no chanoe

/! re change
/f o chame

= (v}

+= if (lempty(pn)) then { <wn, po> }
+= { <, & }

+= { <, s>}

e €4y, 1D

= {cv X {wni})

vh-rename (o, o8, o, &)

{ v}

if (lerpty(pe)) then { <wo, po>)
{ ©=, do>)}

{ <, o}

<wve, 1>

I

i

{ov X (vl

130

sm. reraTe(cz, cor, anl, o, L,

len:

vil = viarle il
Vi = \iatleloc
po. == pinls UTitc

-

p2? pownts um i

al == acljaderi’l'ic
aZ = adjacent’'l'zc
preconciiions:

baund (zo, be)
effects:

dgrain //
syster /]t
controller (0

arpanent g9 &
vsTIUcT 4 &
irgex 74 &

rc
nc
c

view /7 o cirect crance
o
RS
c

g, & fen?

loss policy // nc dirum cane

baenc -=
points \= -
points \p = 1§ @l then bo
viable —
viable —

adjacert el
adjacent -= i lerpey(al)

vh_rerare (dol, &, tc, o
Vi_rengme (s, &l . oze

baund -
points Rl 34
poinis ' e if puf othen br
viable -~ T
viable - if

adiaon-: w28 epeyial)
adjemnt v L lepryiall

do e o, a:, o, bk, to, !
len:
proarditions:

pffecxsy:
let &b == mertar l'c

L <7, ber, e, o>

6ovil then {20}

382 wen (e}

(aZ A {bc}) < {{ec}

I Lhen o

@ X i e ({wn)
tag X ipem:} ¢ find

sh renarm i, db. to, oo, tn, brd

i1 clear(te, bo:

for ax in adwoEnt’ithe - iboi

v %)

v {2}

it ok - bon’ i'uon
&_twure (i, &, ox, o,

AAd.2 Core Operations

R, b}

131

1 feryy(al) {(al X izol) - ({to} X al) + {<o, tod}

X a2) ¢ (Do, b}

X all » {an, vl
X a2j + (&, b}

{onnections

c create(\I, Vi

lev:
sreconditicrs:

effects:
darain
sysie
controlier
view
carpanent
meroe:r
bae
peints_ e
A 1948 e
viable
index

adjacent
connectec
less pelicy

//

c_destroy(vi, vi,

lex:

preconditions:

loss policy

//

- | Qvl, vZr, <v, vi>)

338388 ¢ 8333

3

v, v, i, vi> g

nc

333883338383

o

Taos
canors
cao
caoe
chang-
charoe
caon
caos
change
change
cage
chanoe

caoe

cange

// o chaoe

132

"

< Cuiea” (v

lev:

vs = gescencants’l’ (aztademttl

precondlticoo

efiecs:
aFra.n
syster
onireller
viea

camponent
meroe:

/7

n caor
" can-
nc c2o
T oA
o
nc chaoe
nc canos
e cavo-
n Ao
T T
nc Ao

nc charme
(vs X v3°
T Ao

s\

Shells

s stiit(d, we, So, vs., V., s., vsli

iel:

preconcllions:
ashazeni’ i'vs. == vsL - vel
odjacent’ 1'vs. = vso - vs

rew (7))

effects:
vh create(n, C, d, { }, sl, Vi)
vh create(n, C, ¢, « :, so, W
darein /l e caxoe
syste // e canx
controlier // e caoe
view // v cirect change
capanent /! nc cirect chanoe
meroer // nc cirect change
boxc i, VI, VD, WO)
points \y ~{wv. i
vsTnac // ¢ direc chance
viable = (v, VL)
1naex // nc cirect change
adjacen:

adjacent
coected g Pl 3
loss pclicy // nc caxge

s mecge(d, w, so. vs, vi, sl, vsl)

{vse X vsl)

+ {vsl Xvsu)

134

= (vse X (w)) + ({wo) X vs) + { o, W)
adjacent ~ (vsl X {vl)) = ({v1} X vsl) » { «vl, VD)
/

let:
precorditions:
eflecs:
dgrai- /. e cao:
e /w2 caoe
controlier /! e ozange
view // re direst Jdaxe
carponen. // ro direct change
rerte: // re direc. chaispe
bourd - { <v:, v, <vl, v}
points ¢ -5 { v)
vsiruce // ro cirect change
viablie -= (v, v.l}
Lradex /! no ‘Lrect chaxge
adjacant =~ tvsu X {w]) ¢ ({(w) Xva) +» { o, W }
adjacen. ~= (vsl X {vl}} ¢ H{v]) X val) ¢ { ov], VD)
adjacmn? = (vs X v3l) ¢ (sl X ovw)

cannect ed // o cany
loss policy // ro cwge

vh destroy(C, d, | | 2., w)
v destroy{l, d, ¢), s, vi}

v crealeis., r, f.. L., S.

lev:

effecis:
v_create(r, ., c., £., s.. <.

{or pr ir private’ ol
let ¢r = remer’
let sro= vsiruct iz
if viacie(pr)
rew(cr)
V- _create(~, ., a7, »7, sr.coporents(l], cT)

v _oestioy.3, C, s, E, I

lev:

Processes

pcreate(x, €&, rTo, T., Mo,)
lez:
preconditions:

ellec:s:
ac_renare(c., o, TS.. ., T, o)

damain = {cl

c.rer canae
corec ctanx
f=gily s o
direct change
Qrect crange
crem change

AARAARR -
[l
4
"

Lirciex /o dores enawys

adiacens // e e rec chanae
annecec /e ocorer case
loss policy // o cage

F_O2SLISY\Z., &, T

lev:
prexcnd.ticns:

effects:
Jdu rerare(c.,

agraeL”
syster
carnircller
Vien

bounc
pownts &
vsLroo
viable
inoex

ad;azert
connec.ec
loss pelicy

B\p §%c0 Ep e

change
Sange

= chanoe

crange
crarge
crance

Cance

cranoe
crange

136

137

Domains

¢ sg.itls, i, Ix, o, T, ell, eefd
.

0L

preccna:ilictl:

new (azi
new (&
new (=)
new (oo

eflecs:
axaL" s i, Q@ ¢
sys e s i gz}
oxrirTlle: . X
view // e eirec. chanx
carpone™” /4 oo direr chana
maoer // e direc. crange
bounc // ne cirect cnance
pomnts_un // e direct cange
Vs ouct // ne elrest amange
viatle - axr
1ndex // o cirec. crange
adracens // e eires crave
<roeciec // e direst Trany

loss_policy = i<, terperary, suspendd, <, peomanent, abdicate>:

do rerae (s, 62, O, ax, CR, Cb)
dc_rerae (2, @, rTh, ree, I, o)

d_merge(c, ro, rac, mi, oe, oo, ool

lev:

(34 -4 H
Qo_reraTe (s, ¢, T, X, @, o)
ac_rerate(dn, ¢, UL, rox, &S,)

drasn -~ e, d&
syne- —- fdo
coNtroiler e ok ;

view // o Qirect chane
crponert, // fe direct change
[- // o direcs chare
beowd /! o direc: change
poires wp /1 ro direz. dwge
nx 7/ re dire charspe
viahls - 2

Y - // e cirect change

ot yocmrs t ro dire= ctaxp
arvect & /! o drect change
loms policy = (i Xpl

Structure Hierarchies
3 AR MSS, W Yo F3 Kol

-
so = vsirus

= paund' !
maroer’ vl
vstroztt livD

v
gt
s

==
==

preconditions:
lcontrollier(v.)

eftects:
1€ splice(ve, vV
new (x_!}
new (st
S_desiroy(ve, vi, . no, X, x3)

i€ irferior(vy, &\ &6 system(dl)
p aestroy(d:, di, vo, vi, m, nl)

i€ inferioc(we, &=t &6 !sysiem(dl)
new (xa)
new (x1)
G merge(d, v, Vi, X2, X, € cl)
ke, x, X, ne, nD)

if clear(w, vl)
¢ clear(vl)
for cu in adjacerz’'l’vi - (V1)
let ¢l = boox’'l'ce
let sy = vEiruzil'ce
let scl = vstruc‘lcl
c_clear(cu)
t kill(dl, e, ci, n, nl)
s_rerge(cs, no, scu, acjacent’l'ru - (),
r., sc., adjacenz’'l’'nl - (nl))

v

A.4.3. HPC Primitives

Connections

precondtions:
view(vl) tyoe
view (vZ)
memoer (v., ¢! privilege
maroer (VZ, ¢
samespace (V., V! local composition
extensian(sl) view structure

exens:m{sZ,

-y

capleentany(sl, si)

connectec’ MVl = not connected
cornectec’ Lve = | b

effects:
¢ _create(vi, v2)

disconnect (¢, v, Vi

let:
sl == vszruct'l'vi
82 = ysiroct’livi

pPreconditions:
view(vi) typre
view(vZ)
merroer (v2, &) privilege

meroer (v, d)
connected (vi, VI) mxually comneczec

effects:
c_destroy(vi, v2i

140

Shells
enc.csels, vsl, s., s.i

ict e

views == azrateni’ Tl

vsl = viewr - Vsl
Vs 1€ (points wr'l'vsl) tren Vsl else vsZ
vsl if (p:;:.:sjt;".’vsl) ther. vs2 eise Vs.

hn

preconditions:
for v reroer vsl argarent type
view (V)

structure {s.!
struczure (sl!

for v in wil Friviiege
meroer (v, 3

coplementaryiss, 5l) view structure
leply (vsod parzition of space

for v1 in vsl
for v2 1n vsl
adjacent (Vi, V)

connected’ 1’ (descencart’2'vs:) subset vse cayosition wnaffected
connected’ 1’ (descendent’ 2 vsl) sucset vsi

new {vs)
new (vl)

effocts:
s_split(d, w, = vs, vi, sl, vsl)

disciose(c, v., vi}

lez:
ves == adjacent’l’{va} - {wvi)
vsl == adiacen’l’(vil - (vii
su == vsiruct’l'w
s] == vsiruci'l'v

preconditions:
view(v.) argaent type
view{vl)
marber (W, d) privilege
marrber (v, d)
shell(vy, vi) merger of spaces
comectad’ 1’ (descandant* 2’ (wi)) = {) cawosition unaffected

omnected’)’ (desomndant 2 {v])) == {)

effects:
s merge(d, vi, s, su, vi, sl, wvsl)

Views

res (2, ¢

et

preconciiicns:
view (g argrent Uyre

oo int (o) view structure
mu.tlpiex(p) || maiticas:(z)

reroe: (g, C) priviless

new (r)
rew (c)

effec:s:
v create{c, n, p, s.corporentsil], ¢)

celete(c, c)

les:

== component’l’c
== ysiract'llc
= ingex’2’'c

L7 2 o]

preconditions:
view(c) arqurent type
rultiplex(p) || malticas: (p) view structure
mermber (c, c) privilese
connected’ 1’ (descendant’2'c) = {) unconnectec
effects:

voestroy(s, i, s, F, ¢

142

Process Manipulation

~matelrs, Vi, V., So, S, D)

mx = (sirple, encpeinl, [wontrel, out)]
inl]

¢ -
eonT
mc: = {simple, endpeint, f[ooniyTi, inl

[ordle, erdpoirs, [multizast, endpoin:, meel]
sc. = [bndle, endpeoint, [multicas:t, enupoint, meill

f
I

precondisions:
view{w) type
view(vl)

mesrber (vo, &) privilege
merver (vi, di

adjacenc’i'vi = { v.) empry leaf
comnected’ 1’ (descencant'2'vil = { }

ifsat={} view structure
crplerentary(se, sl)
{ <= |si.orponercs)

new (¢)
new (1)
new (nl)

effects:
if so=(})
p_Create(c:, ci, vu, vi, ng, nl) // create siple domain

if s2!= {)
new (cu) // create leaf for controller
newicl)
s_solitlads, o, s, (vi), cl, sel, (D)
let ce == component’2'ce // create milticas: view
new (am)
v_create(d, 1, mec, oo, aml
new (xJ} // create leaf for manager
new(xl)
s_split(ds, x, so, (vi, @), 2, sl, {)
lez me = { v : coporent (v, x3) && irdex(i, V)) // comacz manager
let ms e= veiruct’l're
¢_create(me, ci
new (cr) // create process in leaf
new (yu)
new(yl)
p_create(ds, o, xu, X, yu, yl)
d_split(d, di, w, yl, m, nl) // cieate a canplex domain

-el:
v, = poxc’l’n
coo== | v i bommerviv, OV, és ooels, €o) 65 comirolier(s))
c. = bourd’l'c
rl == spericrilia
ru == bourg’ 1’ rl
dr = mEoer’ i

preconditions:

view (Vi) tyre
member {vy, dv! priviies
new (re)

new (nl)

effects:
i¢ belowicu, vi) || sameszace (oo, vi)

1€ poligy” 1, 2'<dv, pemmanent> == abxiicate
4 merge (i, o, r., no, AL, oL, o)

1f polic” 1,2/ <oy, memanent> = die
v xill(er, oo, oo, o, ol

i V(pelow(m, Vil]! sareszace (oo, Vi)
il v, vl ong,)
dis(dl, vi;
lez:
VU == bomg’ vl
s] s vetructh/i‘vl
s e meprber’ v

precondizicns:
view(vl; type

sperior(vl, dlj privilece

e ()
new (nl)

effects:
tdlltas, v, vi, ng, ol

144

Domain Manipulation

winves: (¢, recx, oot

let:
rec == bound’l’ret
cwor = bounc' /ol
ccr = (v : baxdary(v, i &6 ood(v, ¢ &6 controller(c) }
cac = bound’l’cet

preconditions:
view rot) argurent. type
view (cnak) .
member (rot, d) privilege
merber (qot, d)
clear(ro:, rot) root white box
clear(cnot, oxk! cnroller white box
points_up(rab)
peints 1 (enac)
! (pelow(cot, rob) || sarespete (i, rod)) d keeps old controller
below(cnae, re:t dn gets rew controller
adjacent’l'aer = { oox ety leal

conected’ 1’ (descendant'2'enae) = {)

vstnct (cob, [brdle, encdooin:, view structure
fmalticas:, encpeinz,
{simrle, expeins, [oanrel, inllli
new (mt)
new (mb)

effects:
d split{d, rot, rok, m:, ok, oL, o)

depose (d, rot)

let:
roo == bamnd’i‘rot
do == member’l’rob
cot = { v : bardary(v, dz) && boxd(v, ¢) &6 emntroller(c) }
cd == bound’l'cot

preconditions:
view(rot) argumert. type

inferior(rot, d) privilege, black box

new(mz)
new (mb)

effects:
if !splice(rot, rabi &6 policy’), 2’ <o, permanert> == abdicata
d merge(d, rot, rab, m:, mb, oo, cab)

if splice(ror, rob) || policy’1,2'<do, permanert> == die
t_kill(d, rot, rob)

145

amucate (s, roo!

lev:
ot boone’ LYo
c3 meonrt L

CV oI Do L, T by DaS{y, ¢ k§ contreller(c) }
bound’ Lz

oot
cx

precond:itions:
view (rob) argrent type

syperior (rot, ¢! privilege, black bex

new{mz:)
neu (mk)
effec.s:
1f !splice(ro, rok} éé px.ioy’l,2'<ac, permanent> == adicate
d merge (cr, rel, roac, i, I, eot, o)

if splice(ro., rap) || pelicy’l, 2 <ac, permanemt> = die
t_kill(dn, re:, roc

140

Spiices

szoroe(s, vul, wur)

el
Vil ome bond’ Ll ovdl
vl = prespliong(vi., Vit
vir == prespliced(var, wvili
inl == integmediate (vol, v
ine = intermediate (var, volb
s0] == struciure’l’ {vil:
sl == szructure’ ' vil’
SOr T= gTructure’ I’ \var:
va == adjacent’l’{v.}

cc == components’ 2’ ool
ci == comporents’c’ vl
preconditions:
view(vil) argrent type
view(vil)
view (var)

merper (S, vol) privilege
meroer(d, Vi)

carplementary(scl, sco, vies sLruccure

adjacent’ 1’ (v1l) == { vil } ey leaf
connected’ 1! (deacendant’ 2 (vil)) = {)
new (ds)
new (xl)
new (xx)
effects:
{f inl in view
5_create(vnl, v, vil, vii, i, o)
14 'inl in view
3_split(ds, xi, sci, (), x, sll, (D)
S_create{ini, inr, voi, vil, xi, xs

notes:
creates miriroots

A.S. Soundness and Completeness

AS.1. Soundness

A full proof of soundness is a simple, but quite laborious task. There are 12 core operations, and about 50
constraints on 14 core relations that must be preserved. Many of the 600-0dd individual proofs are trivial, but 8
large number require non-trivial inference.

The proofs for connect and disconnect are especially simple. They aifect only the curveced relation, and only
by adding or removing 3 symmetric pair of twples. Their preconditions immediately establish seven of the nine
constraints on arrected. Adding a symmetric pair establishes the final two.

Actually, as presented in this Chapter, splice is not sound. The following analysis is typical of the more
interesting (dis)proofs. To be unintrusive, splice of a and b does not rename b Afier splicing, b's peer is in the
domain a was in. A view is a member of one domain during its whole lifetime, and a view hi:s the sune private peer
durning is whole lifeume. Thereflore, b's peer must have been in »'s domain before splicing. All spaces of a domain
are contiguous, but b°s peer was not in the domain before splicing: contradiction. One of the intermediate views is

147

also created with no supenor views, tn a domain other than root. In the HPC implementation these unsourdnesces

are avoided by using a more flexible (and complicated) constraint on domain contiguity.

A.5.2. Completeness

Completeness up w 1somorphism (urivial relabelling) can be shown in a more elegant fashion. First, nbserve
that every structure can be reduced w the null structure by a sequence of core operations. A further. non-trivial
observauon 1s that each such sequence has an inverse (up to isomorphism). Therefore, any true sentence can be
denved from any other.

Esublishing inverses is non-trivial for two reasons. Most core operations do not have exact inverse
sperauorn For examp'e, new may create components of remote views, while delete always destroys exactiy one
view. Fortunately, every core operation has an inverse sequence of operations. A harder problem (s that not every
sequence of core operations can be produced by a sequence of HPC pnmitives, and it is necessary ., demonstrate
that the ¢ffects of any primitive can be undone by a sequence of primitives.

?—_—

Appendix B

Bibliography

148

149

B. Bibliography

References

(ABBS6!

[ABLSS]

[Ary8l1]

[BRTS84]

(BFL76)

. BeG8l]

(BeG84)

{Bla83)

(Bri69]

[Bni73)
(Che82]

[Che8]

{Coo84)

(CrE84}

{Dec87])

[D168}

M. Accetta, R. Baron, W. Boiosky, D. Golub, R. Rashid, A. Tevanian and M. Young, Mach: A New
Kemel Foundation for UNIX Development, Proceedings Summer 1986 USENIX Technical Conference
and Exhibiticr., Pitsburgh, Pennsylvania, June 1956.

G. T. Almes, A. F. Black, E. D. Lazowska and Jj. D. Noe, The Eden System: A Technical Review, JFEE
Transactions on Software SE-11, 1 (January 1985), 43-59.

A. K. Arva, Super: Encapsulated Autonomous Distributed Computations on an Abstract Architecture,
Ph.D. Thesis, University of Rochester, July 1931.

F. Baiardi, L. Ricci, A. Tomasi and M. Vanneschi, Structuring Processes for a Cooperative Approach to
Fault-Tolerant Distributed Computing, Proceedings 4th Symposium or Reliabiliry in Distributed
Software and Database Sxstems, Silver Sonng, Maryland, 12-17 October 1984, 218-231.

J. E. Ball. J. A. Feldman, J. R. Low, R. Rashid and P. Rowuer, RI1G, Rochester's Intelligert Gateway:
System Overview, IEEE Transuctions on Sofrware Engineering SE-2, 4 (1976), 321-328.

P. A. Bemnstein and N. Goodman, Concurrency Control in Distnbuted Database Sysiems, Computing
Surveys 13,2 {June 1981), 185-222.

P. A. Bemstens and N. Goodman, An Algonthm for Concurrency Controi and Recovery in Replicated
Distrioutzd Matabases, Transactions on Database Systems 9, 4 (December 1984), §96-615.

A. P. Blach, An Asymmemc Sueam Communicadon System, Proceedings 9th Symposium on
Operainyg Sysiems Principles, Breton Wouods, New Hampshire, 10-13 November 1983, 4-10.

P. Brinch-Hansen, ed., RC40C0 Sofrwarz; Multiprogrumning Sysiem, Regnecentaler, Copenhagen,
Denmark, Aprii 1969.

P. Bnncn-rlansen, Gperating Systems Principler, Prentice-Hall, Engirwood Cliffs, New Jersey, 1973,
D. R. Chenton, The Thoth Sysiem: Multiprocess Structuring and Portabiliry, Elsevier-North Holland,
New York, 19,2,

D. R. Chenton, The V Kemnel: A Software Base for Distibuied Systems, JEEE Software 1, 2 (April
1984), 1942,

E. C. Cooper, Circus: A Replicated Procedure Call Facility, Proceedings 4tk Symposium ox Reliability
in Distributed Sofrware and Database Systems, Silver Spring, Masyland, 15-17 October 1984, 11.23,

D. Crookes and J. W. G. Elder, An Experiment in Language Design for Distributed Sysiems, Sojiware
Practice and Experience 14, 10 (Octnber 1984), $57-971.

K. S. Decker, Distributed Problem-Solving Techmques: A Survey, JEEE Transacaons oa Systems,
Man, and Cybernenics SMC-17, 5 (Seprember/Oxtobes 1987), 729-740.

E. W. Dijksza, The Structure of THE Multuprogramming System, Communirations of the ACM |1, S
(May 1968}, 341.346.

[Dou8<)

{EFH82]

(Eri82]

[EFRE4)

[Fel79]

(FHHS87]

(Fri86]

(FrP86)

(Fri87)

[Hel84)

iHoa85)

[HoR73)

[TEETS)

{JBH78)

{JCD79)

{Jon79)

{JuT87]

130

G. Doungmeingts, Metnodology to Design Computer Integrated Manufacturing and Control of
Manufacturing Units, in Merhods and Tools for Computer Integrated Manufaciuring, U. Remboid and
R. Diliman (ed.), Springer-Vesiag, New Ywork, 1984. Advanced CREST Course on CIM (CIM 83),
Karlsruhc, Federal Republic of Germany, 5-16 September 1983.

C.S.Ellis, J. A. Feldman and J. E Heliotis, Language Coniiructs and Support Systems for Distributed
Computing. Tech. Rep. 102, Denartment of Computer Science, University of Rochester, May 1982.

L W. Ericson, DPL-82: A Language for Distributed Processing, Proceedings 3rd Iniernational
Conference on Distribuwed Computing Systems, Ft. Lauderdale, Florida, 18-22 October 1982, 526-531.
G. Estrin, R. S. Fenchel, R. R. Razouk and M. K. Vermon, SARA (System ARchitects Apprentice):
Modelling, Analysis and Simulation Support fcr Design of Concurrent Systems, IEEE Transactions on
Software Engineering SE-12, 2 (February 1986), 293-311.

J. A. Feldman, High Level Programming for Distributed Computing, Communications of the ACM 22,6
June 1979), 353-368.

R. L. Franks, J. P. Holtman, J. L. C. Hsu, L. G. Raymer and B. E. Snyder, Productivity Improvement
Systems for Manufacwuring, AT&T Technical Journal 66, S (September/October 1987), 61-76.

S. A. Friedberg, User Process - HPC Interface, HPC Project Report 3, University of Rochester, October
1986.

S. A. Friedberg and D. H. Pitcher, HPC IPC Implementaticn, HPC Project Repor: 2, University of
Rochester, June 1986.

S. A. Friedberg, IPC for Modular Software Requires a Third Party Connect, Tech. Rep. 220. University
of Rocheste:, June 1987.

J. Heliotis, Language Constructs for the Management of Distributed Computations, Ph.D. Thesis,
University of Kachesier, 1984,

C. A. R. Hoare, Communicating Sequential Processes, Prentice-Hell Intemational, Englewood Cliffs,
New Jersey, 1285.

J.J. Homing and B. RanGell, Process Structuring, Computing Surveys S, 1 (March 1973), 5-30.

IEEE, Digital Interface for Programmable Instrumentation, April 1975.

I. M. Jacobs, R. Rinder and E. V. Hoversten, Gener] Purpose Packet Satcllitc Networks, Proceedings
of the IEEE 66, 11 (November 1978), 1448-1467.

A. K. Jones, R. J. Chansler, 1. Durham, K. Schwan and S. R. Vegdahl, SwrOS, A Multiprocessor
Operating System for the Suppon of Task Forces. Proceedings 7th Symposium on Operating Systems
Principles, Pacific Grove, California, Dec 1979, 117-127.

A. K. Jones, Protection Mechanisms and dthe Enforcement of Security Policics, in Operating Systems,
An Advanced Cowrse, R. Bayer, R. M. Graham and C. Seegmuelier (ed.), Springer-Verlag, New York.
1979, 22R-251.

J. Jubin and J. D. Tomow, The DARPA Packe! Radio Netvurk Protocols, M'roceedings of the IEEE 75.
1 (January 1987), 21-32.

[KGB7&)

[KrM85)

(KMS87]

[LMW386]

{Lam78)

(1LeM82]

(LeF85]

(LeW8S)

[LeF8S)

[LiSE€3)

{Loc?9)

[LoA78)

(Mar84)

MFR73)

(MRR80)

[Moc37a)

iMoc37b)

151

R. E. Kahn, S. A. Groremeyer, J. Burchfic] and R. C. Kunzelman, Advances in Packet Radio
Technology, Proceedings of the IEEE 66, 11 (November 1978), 1468-1496.

J. Kramer and J. Magee, Dynamic Configuration for Disuibuted Systems, /EEE Transactions on
Software Engineering SE-11,4 (April 1985), 424-436.

J. Kramer, J. Magee and M. Sloman, The CONIC Toolkit for Building Distributed Systems, IEE
Proceedings 134-D, 2 (March 1987), 73-82.

R. P. Laesar, W. i. McLaughlin and D. M. WolY, Engineering Voyager 2's Encounter with Uganus.
Scientific American, September 1986, 36.

L. Lamponrt, Time, Clocks, and the Ordering of Events in a Distributed System, Communications of the
ACM 21,7 (July 1978), 558-564.

R. J. LeBlanc and A. B. Maccabe, The Design of a Programming Language Based on Connectivity
Newworks, Proceedings 3rd International Conference on Distributed Computing Systems, Fu.
Lauderdale, Florida, 18-22 Octob=r 1987, 532-541.

T. J. LeBlanc and S. A. Friedberg, HPC: A Model of Structure and Change in Distributed Systems,
iEEE Transactions on Computers C-34, 12 (December 1985), 1114-1129.

R. J. LeBlanc and C. T. Wilkes, Systems Programming with Objects and Acticns, Proceecings Sth
International Conference on Distributed Computing Systems, Deaver, Coloradn, 13-17 May 1985,
132-139.

T. J. LeBlanc and S. A. Friedberg, Hierarchical Process Composition in Distributed Operating Sysiems.
Proceedings 5th International Conference on Disiributed Computing Systems, Denver, Colorado, 13-17
May 1985, 26-34.

B. Liskov and R. Scheifier, Guardians and Actions: Linguistic Support for Robust, Distributed
Programs, Transactions on Programming Languages and Systems 5, 3 (July 1983), 381404,

T. W. Lockhant, The Design of a Verifiable Operating System Kemel, CS-Tech. Rep. 79-15, University
of British Columbia, November 1979,

D. C. Loughry and M. S. Allen, IEEE Standard 488 and Microprocessor Synergism, Proceedings of the
IEEE 66. 2 (February 1978), 162-172.

K. Marzullo. Loosely-Coupled Distributed Services: A Distributed Time Service, Ph.D. Thesis. 1984.

J. M. McQuillan, G. Falk ard 1. Richer, A Review of the Development and Performance of the
ARPANET Routing Algorithin, JEEE Transactions on Communication COM-26, 12 (December 1978),
1802-1810.

J. M. McQuil'an, 1. Richer and E. C. Rosen, The New Routing Algorithm for the ARPANET, /JEEE
Trunsactions or Communicatior COM-28, S (May 1930), 711-719.

F. Mockapetris, Domain Names - Concepts and Facilites, Request for Comnients 1034, DARPA
Network Working Group, November 1987.

P. Mockapetris, Domaiii Names - Implementation and Specification, Request for Comments 103S,
DARPA Network Working Group, November 1987

(Mul}78]

[Ous81}

(PeB79]

[PWC81)

{Ran79j

[Ran83]

[Ray87]

[Rid81]

[Ros85]

{SBN83]

{SBW87]

{ScY88]

[Shw8s]

(Sim62]

[Smi78)

{Smi80)

T. Mukaihata and R. D. Johnstone, Implementation and Use of Small Automated-Test Systems,
Proceedings of the IEEE 66, 4 {April 1978),403413.

J. K. Ousterhout, Medusa: A Distributed Operating System, UMI Research Press, Ann Arbor,
Michigan, USA, 1981. :
M. H. Penedo and D. M. Berry, The Use of a Module Interconnection Language in the SARA System
Design Methodology, Proceedings 4th International Conference on Sofrware Engineering, Munich,
Federal Republic of Germany, 17-19 September 1979, 294-307.

G. Popek, B. Walker, J. Chow, D. Edwards, C. Kline, G. Rudisin and G. Thiel, LOCUS: A Network
Transparent, High Reliability Distributed System, Proceedings 8th Symposium on Operating Systems
Principles, Pacific Grove, California, 14-16 December 1981, 169-177.

B. Randell, Reliable Computing Systems, in Operating Systems, An Advanced Course, R. Bayer, R. M.
Graham and G. Seegmueller (ed.), Springer-Verlag, New York, 1979, 282-391.

P. Ranky, The Design and Operation of FMS, North-Holland, New York, 1983. (Flexible
Manufacturing Systems).

M. Raynal, A Distributed Algorithm 1o Prevent Mutual Drift Between N Logical Clocks, /nformation
Processing Letters 24, 3 (13 February 1987), 199-202.

W. E. Riddle, An Assessment of DREAM, in Software Engineering Env.ronments, H. Hunke (ed.),
North-Holland, 1981, 191-221.

D. T. Ross, Applications and Extensions of SADT, Computer 18,4 (April 1985), 25-34.

M. D. Schroeder, A. D. Birrell and R. M. Needham, Experience with Grapevine: The Growth of a
Distributed System, Proceedings 9th Symposium on Operating Systems Principles, Bretton Woods,
New Hampshire, November 1983, 16-37.

K. Schwan, T. Bihari, B. W. Weide and G. Taulbee, High-Performance Operating System Primitives
for Robotics and Real-Time Contro! Systems, Transactions on Computer Systems 5, 3 (August 1987).
189-231.

M. L. Scott and S. Yap, A Grammar-Based Approach to the Automatic Generation of User-Interface
Dialogues, Proceedings Computer-Huran Interface '88 Conference, May 1988, 73-78.

M. J. Shaw and A. . Whinston, A Distributed Xnowledge-Based Approach © Fiexible Automation:

The Contract Net Framework, /naternational Journal of Flexible Manufaciuring Systems 1(1988), 85-
104.

H. A. Simon, The Architecture of Complexity, Proceedings American Philosophical Society 106(1962),
476-482. reprinted in The Sciences of the Artificial, MIT Press, Cambridge, Massachussetts, 1969.

R. G. Smith, Applications of the Contract Net Framework: Distributed Sensing, Proceedings DARPA
Distributed Sersor Net Symposium, Pitsburgh, Pennsylvania, December 1978, 12-20.

R. G. Smith, Applications of the Contract Net Framework: Search, Proceedings 3rd Biennial
Conference of the Canadian Society for Compuiational Swudies of Intelligence, Victona, British
Columbia, 14-16 May 1980, 232-239.

[StS75]

[SLR76]

{St077)

[SFS77]

[SBL77]

[TaW82]

[WPEB83]

[Wel.88]

[YTR87)

[Yue83)
[ZwA8S]

J. Staunstrup and S. M. Sorenson, Platon - A High-Level Language for Systems Programming. R-75-
59, RECAU Aarhus University, May 1975.

R. E. Steams, P. M Lewis and D. J. Rosenkrantz, Concurrency Control for Databasc Systems,
Proceedings 16th 1EEE Conference on Foundations of Computer Science, October 1976, 19-32.
CH1133-8C.

J. E. Stoy, Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory,
MIT Piess, Cambridge, Massachusetts, 1977.

R. J. Swan, S. H. Fuller and D. P. Siewiorek, Cm* - A Modular Multi-Microprocessor, Proceedings
1977 AFIPS National Computer Conference 46(1? 1977), 637-644.

R. J. Swan, A. Bechtolsheim, K. Lai and J. K. Ousterhout, The Implementation of the Cm* Multi-
Microprocessor, Proceedings 1977 AFIPS National Computer Conference 46(1? 1977), 645-655.

R. Taylor and P. Wilson, Process-Oriented Language Meets Demands of Distributed Computing,
Electronics 55, 24 (30 November 1982), 89-95.

B. J. Walker, G. J. Popek, R. English, C. Kline and G. Thiel, The LOCUS Distributed Operating
System, Proceedings 9th Symposium or Operating Systems Principles, Bretton Woods, New
Hampshire, 10-13 October 1983, 49-70.

J. L. Welch and N. Lynch, A New Fault-, uierant Algorithm for Clock Synchronization, Information
and Computation 77, 1 (April 1988), 1-36.

M. Young, A. Tevanian, R. Rashid, D. Golub, J. Eppinger, J. Chew, W, Bolosky, D. Black and R.
Baron, The Duality of Memory and Communication in the Impiementation of a Multprocessor
Operating System, Proc. 11th Symp. on Operating System Prin., Austin, Texas, Nov 1987, 63-76.

J.H. Yuen, ed., Deep Space Telecommunications Systems, Plenum Press, New York, 1983.

W. Zwaenepoe! and G. T. Almes, Understanding and Exploiting Distribution, Technical Report 85-12,
Department of Computer Science, Rice University, February 1985.

