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and a prototype implementation, of how abstraction and composition interact in 
unexpected ways with each other and with a distributed environment. 

HPC ties processes together with heterogenous interprocess communication 
mechanisms, such as TCP/IP and remote procedure call. Explicit structure deter- 
mines the logical connectivity between processes, masking differences in com- 
munication mechanisms. HPC supports one-to-one, parallel channel, and many-to- 
many (multicasting) connectivity. Efficient computation of end-to-end connec- 
tivity from the communication structure is a challenging problem, and a third- 
party connection facility is needed to implement dynamic reconfiguration when 
the logical connectivity changes. 

Explicit structure also supports grouping and nesting of processes. HPC 
uses this process structure to define meaningful protection domains. Access con- 
trol is structured (and the basic HPC facilities may be extended) using the same 
powerful tools used to define commur.icatio. patterns. HPC provides escapes from 
the strict hierarchy for direct communication between any two programs, enabling 
transparent access to global services. These escapes are carefully controlled to 
prevent interference and to preserve the appearance of a strict hierarchy. 

This vorl  is also a rare case study in consistency control for non-trivial, 
highly-available services in a distributed environment. Since HPC abstraction 
and composition operations must be abailable during network partitions, basic 
structural constraints can be violated when separate partitions are merged. By 
exhaustive case analysis, all possible merge inconsistencies that could arise in 
HPC have been identified and it is shown how each inconsistency can be either 
avoided, automatically reconciled by the system, or reported to the user for 
application-specific reconciliation. 
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Abstract 

This dissertation is a study in d?pth of a method, called Hierarchical Process Composition (HPC), for 

organizing, developing, and maintaining large distributed programs. HPC extends the process abstraction to nested 

collections of processes, allowing a multiprocess program in place of any single process, and provides a rich set of 

structuring mechanisms for building distributed applications. The emphasis in HPC is on structural and 

architectural issues in distributed software systems, especially interactions involving dynamic reconfiguration, 

protection, and distribution. The major contributions of this work come from the detailc • c\;:.:.^*r: ., based on 

case studies, formal analysis, and a prototype implementation, of how abstraction and composition interact ir- 

unexpected ways with each other and with a distributed environment 

HPC ties processes together with heterogenous interprocess communication mechanisms, such as TCP/IP and 

remote procedure call. Explicit structure determines the logical connectivity between processes, masking 

differences in communication mechanisms. HPC supports one-to-one, parallel channel, and many-to-many 

(multicasting) connectivity. Efficient computation of cnd-io-end connectivity from the communication structure is a 

challenging problem, and a third-party connection facility is needed to implement dynamic reconngu-ation when the 

logical connectivity changes 

Explicit structure also supports grouping and nesting of processes. K!*C uses this process structure to define 

meaningful protection domains. Access control is structured (and the basi~ HPC facilities may be extended) using 

the same powerful tools used to define communication patterns. HPC provides escapes from the strict hierarchy for 

direct communication between any two programs, enabling transparent access to global services. These escapes are 

carefully controlled to prevent interference and to preserve the appearance of a strict hierarchy. 

This work is also a rare case study in consistency control for non-trivial, highly-available services in a 

distributed environment. Since HPC abstraction and composition operations must be available during network 

partitions, basic structural constraints can be violated when separate partitions are merged. By exhaustive case 

analysis, all possible merge inconsistencies that could arise in HPC have been identified and it is shown how each 

inconsistency can be either avoided, automatically reconciled by the system, or reported to the user for application- 

specific reconciliation 
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1. Introduction 

A thesis wit", a long tiüe such as Hierarchical Process Composition and the Dynamic Maintenance of 

Structure in the Distributed Environment is either very wi£? ranging or narrowly focused Alis thesis is a study in 

depth, rather Lhan breadth, of one method fo: organizing lar|;e, distributed programs. The emphasis is on structural 

or architectural issues in distributed software, especially interactions involving change, protection, and dissribution. 

The major contribution or novelty of this work is found not ir. the organisation method, but in the detailed 

consideration of how its feature? interact with each other and with the environment 

This irtro3ucDon addresses the questions "what", "how", and "what's different". Section 1.1 discusses the 

kind of programs under consideration, the environment in which they run, and what we warn to do with them. 

Section 1.2 describes the basic features of the organizational method (HPC), and Secticn 1.3 describes how this 

methou differs from a variety oi relied systems. 

1.1. The Problem Area 

This thesis studies the structural implications of one method for structuring large, distributed programs. As 

neither the method nor the problem it addresses are relevant for all programs, here we describe the computational 

environment, the typical program, and the type of operations on programs we are addressing. 

1.1.1. The Structure of Target Applications 

The number of large, distributed applications is gradually increasing while the set of tools for structuring and 

managing them is not. Here are selected, real applications and some of their relevant structural properties. 

Complex producuon automation software is becoming common in industrial plants [Dou84], [Ran83], 

[FHH87]. It is characterized by a hierarchical structure with well defined communication patterns between nodes, 

great heterogeneity of computer-controlled processing and handling stations, and a significant degree of dynamic 

reprogramming of stations on the fly. There is also less frequent reconfiguration to add and remove stations and to 

modify their groupings; during a reconfiguraaor. most of the plant is in continuous operation. The upper levels of 

the producuon automation hierarchy interact with independently maintained and administered suites of management 

and engineering software. 

Many of these characteristics are present, but less pronounced, in process control software for industrial 

applications and scientific instrumentation. For example, GPIB instruments are remotely programmed for each 

experiment or test within an experiment (IEE75). [LoA78], rMuJ78J. while space probes may ts reprogrammod in 

flight once or twice in a year [LMW86]. A scientific experiment might be crginued into a small hierarchy with 

several instruments controlled by laboratory' minicomputers at the bottom, and the lab minis, a database machine, a 

numeric proc *.>sor and a display workstation at the next level. 

Collaborative network services arc another class of attributed application. What a elicit perceives as t 

unified logical service may be implemented as a dynamically varying collection of peer severs. Tue DARPA 

Internet domain name service is a well developed example of a collaborative service [Moc87b], [Moc87a]. 1>e 

actual servers are independenüy administered, and none of them provides complete service. Instead they provide 

service only for pieces of the domain name space and referrals u> ether servers with adjacent parts of the name 

space   The domain name service can be dynamically reconfigured to change the partition of the n?.me spar»« amen;; 



servers, and to change the degree of replication of given servers, without affecting the service provided, AS each 

server is managed autonomously, configuration is a cooperative and vacrementai process. The Xero* Clearinghouse 

and Grapevine services are ether, earlier, examples of this kind of collaboration [S3N83]. 

A significant class of distributed application emphasizes robustness and ihc ability to survive failures by 

recognizing failures and taking corrective action. Such actions often change the operations of &' ap~lication. This 

is a more general approach than conventional fault-tolerance in which failures ^*e masked and ide <y have fio effect 

on the application. A classic robust application is distributed network routing as implemerted he ARPANET 

[MFR78], [MRR80]. The individual packet switching nodes collaborate to recompute the best rout om one node 

to another as nodes and links fail and recover, and as links become more or less congested, vriere we are 

considering the internal routing algorism as the application, rather than the service provided by the ARPANET.) 

This extmole differs from the domain name service by being centrally adr mistered, but shares the property of 

having long-lived and clearly defined communication patterns between cooperating peers. 

Work in distributed problem solving has stimulated a wide rm^c of relevant program structures1. Contract 

net systems are a good example, having been used for distributed tracking of vehicles within a geographic area 

[Smi78], solving heuristic search problems [Smi801, and factory automation fShW88]. A contract net system is a 

dynamically self-organizing program for allocating work to a set of processing nodes. A node break*, a complex 

task into several subtasks that can be processed concurrently, and requests (usually all) other nodes to bid for a 

contract on a subtask The requesting node evalu^s the bids received and awards one or more contracts. A 

contract net is the graph of contracts that specify how the responsibility for completing a top-level task has been 

broken up and distributed among nodes. Contract net systems smootMy adapt to varying kfeds, automatically 

migrating nev processing to the nodes with idle capacity. They organize cooperative activity among autonomous 

nodes. Robustness is provided by periodically reissuing requests for lids if a task is uncompleted for whatever 

reason. 

There are also obvious military applications under the broad heading of command and control systems. A 

combination of satellites, airborne platforms, microwave links, and ground mobile packet radio networks, operating 

under conditions Jiat encourage frequent loss and reconfiguration, provide the data communication layer for 

military command and control activities. Applications, as well as the underlying communication networks, must 

support reconfiguration and continuous operation. 

To summarize, the ty'ical application under consideration has most or all of the following characteristics: 

• It displays a hierarchical structure where a functional unit at one level is implemented as a collection of 

cooperating units at the next level down. 

• It has long-lived, well-defined communication patterns defining the interactions between the siblings at a 

given level. 

»       !is components are loosely coupled, able to do L .tificant work without an immediate response from a 

neighbor. They are often organized as functiond peers, rather than master/slave or client/server. 

7i excellent introductory survey u [Dec871 



• Us components represent active computational elements, like processes or tasks, rather than passive objects, 

like code modules or data files. 

• Pans of it are managed autonomously so that both computation and administration are distributed. 

• It is robust and adaptive to the changing conditions of a distributed environment. 

1.1.2. Dynamic Maintenance of Structure 

Distributed applications emphasize change. Adaptive programs are expected to change not only their 

behavior, but their internal structure, in response to new demands and environmental conditions. A long-lived 

application may be expected to run continuously for longer than any given host machine or software version will 

survive. Failure, migration, reconfiguration, and changing requirements all may force changes within an 

application. 

The interactions between applications are subject to change as well. Stable distributed services usually have 

dynamically changing clients. In a complete distributed processing system, complex multiprocess programs are 

manipulated even at the highest level, where entire applications (i.e., jobs) are introduced and removed over the 

lifeume of the system 

This «imphasis on change is a i^arture from the conventional environment, where the pieces of an 

application a.'d their relationships are specified statically and relatively easily. Controlling and constraining change 

is a majo: technical challenge that confronts distributed programming. A static (or compiled) description of an 

application's structure, its distribution across host machines, and its interactions with other applications is 

insufficient A framework for structuring large, distributed programs must also provide operations that modify 

application structure during execution. 

• In general, maintenance encompasses functions such as replacement of failed components, compensation for 

partitioning, upgrading components to more recent software, and reconfiguring an application to handle more 

or fewer tasks. 

• The combination of autonomously administered components and dynamic change requires runtime access 

control to ensure that only authorized pieces of an application are examined or modified. The same 

restrictions are necessary to ensure that different applications do not interfere with one another. 

• Performance and engineering issues dictate consideration of migration or relocation of an application's pieces 

to accomplish load balancing, exploit locality, compensate for loss or gain of physical resources, and so forth. 

• Every complex application will require some form of sirucuiral debugging to supplement conventional 

debugging of individual components. Debugging rmy take the form of examining the application's current 

structure, monitoring the communication between components, and making temporary alterations. When 

bugs are found, the maintenance procedures allow the necessary repairs. 

1.13. The Distributed Environmtüt 

There is a conunuum between the extremes of centralized and distributed computing and no dear boundary 

can be drawn between the two. Indeed, much work has been invested in supporting the centralized behavior lo 

which programmers (and paying customers) are accustomed using ever more widely distributed hardware. Remote 

procedure calls, netverk file systems, atomic actions, and even network-wide shared memory are (not always) 



successful attempts to mask the distribution of the system, or provide network transparency. 

However, we are interested in the distributed exnrerne of the continuum for several reasons. 

• Extremely distributed systems have several clear, intrinsic chb acteristics. Primarily, their processors (sites, 

hosts) are asynchronous, and subject to independent failure, T.iese properties have significant impact on the 

software that must run on them. 

• Distributed systems are often (but not intrinsically) divided into autonomous regions for administrative 

reasons, and composed of heterogenous elements. Many systems can be temporarily partitioned into 

subsystems able to communicate internally but isolated from one another by failures. 

• Beyond a certain physical size, it is no longer reasonable, even if possible, to mask distribution Instead, 

distribution should be made explicit in order to exploit locality, both physically and functionally. 

• There are definite physical and engineering limits to masking distribution. For example, the speed of light is 

already a significant factor in the latency of satellite assisted communication. The availability of services that 

depend on simultaneous access to all copies of heavily replicated data decreases rapidly with increase in 

replication. Software that accounts for distri^jv on explicitly may scale, while systems that depend on a 

centralized environment will not. 

• Extremely distributed systems can not make the closed world assumption common to centralized systems, 

where all the interacting pieces (programs, modules, applications, client, servers) can be described all at once 

and in one place. Instead, they must assume an open system, allowing new pieces to be added to the existing 

framework. 

• Distributed systems must admit dynamic structure, so that pieces can be added to and removed from the 

system at different times and places. 

The ARPANET and SATNET [JBH78] wide-area networks and their attached hosts exemplify distributed 

environments, while packet radio networks [JuT87], [KGB78] and the NASA Deep Space Network [Yue83] 

represent some extreme cases. However, the characteristics at the end of the continuum describe distribution 

independently of hardware issues like relative speed, geography, end cost. The blackboard and contract net 

program structures used in some artificial intelligence work yield extremely distributed software by our criteria, 

even when implemented on centralized hardware. Therefore, we will treat the distributed environment as a 

programming environment, no matter where it is found, rather than a physical environment. 

1.1.4. Goals 

This thesis has three general goals: 

• Develop a structural representation for target applications. 

The representation must be adequate to describe any snapshot of a targe* application. It must allow for the 

application features described in Section 1.1.1. This will make the transition from structured design to implemented 

application direct, and therefore fast and easy. 

• Provide operations to manipulate structural representations during execution. 

These operations must provide sufficient mechanism to implement the dynamic maintenance features of Section 

1.1.2. It must not be possible to create illegal representations from legal ones (soundness), and it should be possible 



to create any legal representation (completeness). There must also be a practical method for implementing the 

operauons and making mem available to application designers and managers. 

•       Identify specific environmental influences on application structure and management. 

Independent failure, asynchrony, and autonomy have pervasive effects on the organization of an application. These 

effects will be reflected in many extremely distributed applications, whether they use our particular representation or 

not, and we seek to identify them. In the context of our representation, the environment oftens limit our ability to 

express or guarantee desirable properties. In other cases, it suggests a unification and simplification of several 

features. 

Many interesting topics in distributed systems have been deliberately omitted from discussion. This thesis 

does not do many things. It does not formally define processes or active computation. It does not develop a formal 

model of concurrency. It does not provide a new design methodology. It does not promote new programming 

language concepts. It does not provide a performance model. It does not schedule processes. It does not develop 

new communication protocols or network architectures. It does not manage resources. It does not mask failures. It 

does not serialize application operations. Most of these issues are independent of any form of program structuring 

and represent services that can be provided by host facilities beneath the system to be described or by utility 

applications above it. 

1.1.5. Thesis Outline 

The remainder of this Introduction sketches the HPC approach to structuring applications, based of process 

abstraction and explicit composition, and compares it to related work. Chapter 2 introduces three of the four 

exploratory themes of this thesis: protection and control structure, communication structure, and non-hierarchical 

structure, and illustrates the HPC operations for run-ome reconfiguration. The interactions among these features 

and between Uiem and the environment are noted throughout the following four Chapters. 

The HPC protection system defines what an agent is permitted to examine or change. Chapter 3 shows how 

we exploit rich and explicit process structure to define meaningful domains of protection, and how control is 

configured using the same powerful tools as communication. Some major benefits from this unique protection 

system are direct association of protection and management« arbitrary user-denied access control policies, and a 

simple mechanism for extending or modifying the built-in HPC system facilities. 

In Chapter 4. we focus on interprocess communication (IPC) Starting with simple one-to-one 

communicator» patterns. HPC incorporates multiple parallel channels and arbitrary many-to-many patterns. These 

complex interactions are all expressed structurally, instead of using addressing or other properties of specific IPC 

mechanisms. HPC supports heterogeneous IPC mechanisms with differing behaviors, while presenting a single 

mechanism for the configuration of communicating processes. This prompts a division of communication functions 

into logical configuration, transport implementation, and actual communication. 

A purely functional approach to composition involving strict trees and explicit composition is unpractical. In 

particular, access to global services is clumry and potentially dangerous. Chapter 5 demonstrates the dash between 

tnnsparent abstractions and purely functional compositions. HPC resolves the clash by allowing direct non-local 

communication between any two points in the hierarchy, while preserving the appearance of a stria tree. 



The target environment is subject to partition, and HPC permits highly available applications that continue to 

run with reduced resources whik partitioned. Because process structure may be freely modified during partition, 

inconsistencies can be discovered upon merge. The fourth exploratory theme is the reimegration of applications that 

have been modified inconsistent}' during partiuon. Chapter 6 identifies all possible HPC merge inconsistencies, and 

shows how they are either avoided, automatically reconciled while preserving the pre-merge behavior, or reported 

to the user with tools for application-specific reconciliation. The techniques we use for avoiding inconsistencies are 

not specific to HPC, and provide useful lessons for building other, highly available, reconfigurable systems. 

Chapter 7 reports the prototype HPC implementation and early experiences with it. 

Following our conclusions in Chapter 8, we present a formal description of HPC structure and the operations 

on it in Appendix A. Soundness and completeness results are related to HPC structure considered as a formal 

system. Based on our experiences, we suggest investigation of new laws of distribution and composition for strictly 

hierarchical formal systems such as CSP and CCS, in part to provide sharing that those systems do not support. 

1.2. Hierarchical Process Composition 

The process abstraction has been used successfully as a tool to structure complex systems since the late 

1960*s. The THE [Dij68j and RC4000 [Bri69, Bri73] operating systems with their layers of cooperating processes 

are important early examples of such process structuring [HoR73]. When considering how to organize a target 

application, consisting of loosely-coupled, active peer elements with well-defined communication patterns, process 

structuring should come to mind immediately as an appropriate choice 

Brian Randell has emphasized the additional structuring principles of abstraction and composition in his work 

on reliable software. 

Thus the sons of structuring that we hive discussed so far can be described as structuring within a single level of 

abstraction, or honionial structuring. ... In choosing to identify a set of levels of abstraction ... and to define their in- 

terrelationships one is once again imposing a structure on a system, but this is a rather different form of structure 

which we will refer lo as vertical structuring. Thus vertical structurings describe how components are constructed, 

whereas horizontal structurings describe how components interact. [Ran79] 

He also described the degree to which the logical structure of an application intended by the designer is supported 

and enforced by the underlying system as the degTee of actual as opposed to conceptual structure. 

We are motivated by distribution rather than reliability, but the concepts of process structuring, abstraction, 

and composition are the basis for Hierarchical Process Composition (HPC). In Randell 's terminology, we will put 

actual structure into distributed programs, with explicit vertical and horizontal structuring. 

Our focus is on process structuring and how complex applications can be built from smaller ones, and not on 

the internal behaviors of individual processes. For this reason, the definition of process is not critical to HPC. Any 

favorite definition (finite state automata, infinite sequences of primitive events, or state vectors plus threads of 

control) may be used. The only things we need to know about any particular process are its name and the interfaces 

where it may interact with other processes. These external properties define the process abstraction. 

Horizontal structure defines a graph of processes and the interactions between them. We often call the pattern 

of communicauon in this graph the composition of processes, because it defines the behavior of the overall structure 

as a funcuon of die behaviors of its components. Vertical structure groups related processes together. By extending 



the process abstraction 10 groups of processes, vcrucal structure provides ihe hierarchical structure typical of a 

target application. P.v making the representation of horizontal and vertical structure explicit, maintaining it during 

execution, and forcing applications to reflect their representations, actual structure can be enforced using the 

mechanisms provided for dynamic maintenance. 

1.2.1. Explicit Communication Patterns 

To gain the greatest actual honzontaJ structure, we must make interfaces and the bindings between them as 

explicit and visible as the associated processes. We will consider only communication between explicitly identified 

partners. Each pan of partners interacts via a communication medium, whose characteristics do not concern us here. 

(Examples are TCP/IP connections, semaphores, shared files, remote procedure call bindings, wires, and UNIX2 

pipes.) 

A process has a fixed set of communication interfaces, one for each potential partner, that may be thought of 

as endpoints or sockets for communication media. A process's interfaces are distinguished according to the role 

played by the partner: kernel port, logging, auditing, standard input, standard output, mailbox server.3 A connection 

is an instance of a communication medium joining two interfaces. We identify connections by the interfaces at their 

ends. 

We will now consider two small examples. Take a typical UNIX pipeline of processes Ä, Bt and C. Every 

UNIX process has a conventional abstraction: three interfaces (file descriptors) for standard input, standard output, 

and standard error. In a pipeline, the output interface of one process shares a UNIX pipe with the input interface of 

the next process in line. One process views the pipe as a sink, while the other views it as a source. The remaining 

interfaces are connected to the termmal device by default. In Figure 1.1 this pipeline (without the terminal device) 

is shown in the notation that will be used throughout. Processes are drawn as shaded rectangles; interfaces as small 

tabs on processes; and connections as heavy lines. 

Figure 1.1. Simple P. peline 

The example illustrated in Figure 1.2 u«c; remote procedure call (RFC) bindings rather than UNIX pipes as 

the basic communication media. Processes FileServtr and NameSenxr each has an RPC interface, corresponding 

to its external entries, to provide its service. Process Client has two interfaces, corresponding to us stubs, one to 

obtain file sen-ice and the other to obtain name service. Connections between interfaces indicate RPC bindings. It 

is important that Client's, interfaces are disunguished so that an appropriate server can be bound to each set of $wus. 
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Figure 1.2. Simple Client and Server 

We are not so cavalier about the semantics of communication media as might appear from this introduction. 

Later Chapters explore the integration of multiplexing, multicasting, and bundling paths into this initially one-to-one 

model of communication, the implications of requiring explicit partners, the distinction between physical and logical 

media, and the degree to which several common interprocess communication mechanisms fit the HPC model. 

1.2.2. Nested Groups of Processes 

When two multiprocess programs are connected, the boundary between them is lost in the composition. Tc 

retain the abstract grouping of related processes, we must incorporate vertical structure. An HPC object is a named, 

active entity with distinct interfaces, just like a process. However, an object is implemented by an explicit 

composition of processes thai can be described and manipulated in the HPC system, while processes are 

implemented by some primitive behavior that can not. The boundary between the external abstraction and the 

internal composition of an object is a shell. 

Objects obviously capture nesting or vertical structure at one level, and it is natural to extend the process 

abstraction by allowing an object anywhere a process could be used This leads immediately to a hierarchy or tree 

of object ithcr than a single level of clustering or grouping. The leaves of the tree are real processes running on 

some machine. Ail the nodes of the tree can be treated like real processes, but the internal nodes are collections of 

abstract pnvcesses, icme of which may be real processes and some of which may themselves be collections. Near 

the top of the ties we und abstractions dealing with activities of broad scope and complexity. Near the bottom »re 

abstractions with simple behavior and limited complexity. 

A UNIX pipeline car itself be used as a component in a larger pipeline. The command IAIBI I e I DJ 

defines a pipeline of two components, each of which is a pipeline üf two components However, in UNIX this 

logical nesting is completely lost by the time the command is implemented. In HPC we represent the nesting 

explicitly as shown in Figure 1.3. A shell is tirawr\ as a rectangle surrounding the contents of the corresponding 

object. 
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Figure 1.3. Pipeline of Pipelines 

By encapsulating our complex clieni and server programs as objects we can readily separate their internal 

process structures from the interactions between diem. Figure 1.4 shows how the Client and NameScrver of Figure 

1.2 can be expanded internally to mote complex structures without affecting the interactions between them 

Figure 1.4. Multiprocess Client and Server 

Hierarchical organixauon is c natur; k -urn of applying the principle of abstraction generously. It is a 

good method for implementing complex t* ve. be tusc it closely apyruÄjmaies the structure designers actually 

use in creating their appUcauons (Sec* m *), > e there other, perhaps better, ways to organize complex 

applications than to force everything into hie..      es? Our response is "probably not" To quote from Simon 

The fed, ihes. thai mifty oompte* %yi :rr.tj h i • re-uiy decomposcbic, hkrtrdue «aruciure u • major fadliuunt f*c 

ior enabling w lo underiund. to 6m:nbt, *?* *m IB »e* »ids iywem» as*d the« p«u Or ptrhapi ihe proponuof. 

ihould be put the other wty round If UV** t important systems m ihr work! which «c compkt vithout bec-if. 

rucrerctuc, ihey mty to • corsnd /«bk e*un «fctpe our obwr**i.on «iid ou undemmdinr, Analysts of the* 

beh*v>o? would involve such de. iled knowledge and takulatKm of Ihr micneräs of the element*? p*m tfm it 

would be beyond out cantctttei » memory or computation |Ssre*2i 
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However, sir»ji hierarchies can not realistically express the kind of sharing and access to global resources 

needed in a real system. Unless the mathematical elegance of strict functional composition is the sole criterion, this 

limitation must be overcome. This issue is explored in detail in subsequent Chapters. 

1.2J. Active versus Passive Hierarchies 

Even after a decision to use hierarchical grouping as a method for organizing complex software, there remains 

a choice between active and passive hierarchies. In an active hierarchy the internal nodes in the tree are processes. 

All interactions with a subtree are actually interactions with the process at its root, In a passive hierarchy the 

internal nodes of the tree are abstractions. All processes are at the leaves oi the tree. In both cases we assume that, 

to obtain the benefits of the hierarchical discipline, a node can be connxted only to its parent, it«? children and its 

immediate siblings 

To some, active hierarchies may seem like the natural choice. No unfamiliar abstract objects are introduced, 

it is clear where control of a process group resides, and the process hierarchies supported by most existing operating 

systems (e.g.. UNIX) are of this type. However, they are an inadequate solution to the problems wc are trying to 

s )lvc. Let us examine the obstacles active hierarchies would present. 

First of all, an active hierarchy is insufficiently abstract. We really do want to introduce those unfamiliar 

abstract objects. It is very important to distinguish a complex application from the processes ihat happen to be 

implemenung it at the moment. There must be a name or placeholder for a subtree independent of its root process, 

or else the root process can not be transparently replaced by another. 

Second, active hierarchies do not extend the process abstraction well. A subtree can not cleanly replace an 

arbitrary process. Replacing a leaf with k subtree, or vice versa, is clean, but replacing an internal node (subtree 

root) with a non-trivial subtree always destroys the relation its children had with the internal node, and generally 

destroys the sibling relation among them as well. Permissible connections depend on the sibling relation, so this is t 

serious problem. 

Third, a single process at the root of a subtree represents an unacceptable potential for single-point control 

failure. Reduidam control is critical for some distributed applications. There must be a way 10 spread control 

responsibilities for a subtree among several processes, or at least ensure an automatic promotion to the root for 

alternate processes in the event of the failure of the current root 

These obstacles can be overcome by the introduction of something akin to our abstract object, so that active 

hierarchies are now trees of objects, which might have a single process or an active hierarchy within them. But now 

the active hierarchy has become a passive hierarchy! Provision for redundant control requires even further 

extensions. 

1.2.4. Dynamic Process Structure 

A static snapshot of an application is intrinsically simpler than a specification that describes how the 

application is to adapt and evolve over time, in an open system, future components (and the future policies 

governing further changes) may not even exist when a snapshot is taken, so a fully general specification must be 

open-ended in some sense; it can not encompass all future configurations of the application. For this reason, we use 

a procedural, rather than declarative, description ot change, and define the mechanisms by which an appli.*<ion may 
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be modified, rather than the policies governing the appropriate modifications. In fact, we will have no completely 

staue representations. All application structure is described dynamically; even a nominally static structure must be 

built incrementally from an empty structure using the transformation operations. 

There arc six basic operations on process structure in HPC. These are create and destroy process, create and 

destroy connection, and create and destroy shell. There are no general tree editing operations such as move subtree, 

only operations which create new structure, have generally local effects, and their inverses. Creating and destroying 

processes ire basic operauons in most operating systems, but the other operations are usually limited or unavailable. 

There is also an operation to examine the process structure at any moment This gives an immediate 

advantage over exisung systems for inspecting and manipulating multiprocess programs. Most operating systems 

can provide a list of the currently active processes, but not a list of which processes are interacting with which 

others. By examining the process structure, we can tell exactly how processes are interacting and what the logical 

significance of each interaction is. 

A (distributed) service maintains a database of the current dynamic process structure, and translates the basic 

HPC operauons into the necessary low-level host operauons on processes and so forth. This HPC service runs as a 

user program on top of conventional host operation systems, and provides an abstract .nterface for application 

managers. Most operations on HPC process structure require only local database manipulations, and involve no 

physical resources from the underlying hosts. 

1.3. Related work 

In some ways, HPC represents the last of a long period of loosely-coupled distributed systems work at the 

University of Rochester The well-known Rochester Intelligent Gateway [BFL761 distributed operaung system and 

FLITS [Fel79] distributed programming language established a strong departmental interest in an asynchronous, 

message-passing model of interaction. Two subsequent projects. Activities (EFH82) and Super (Ary81) are 

specially relate to HPC. 

The Activities work is the primary starling p~.ini for HPC. The activity model provides a tool to describe the 

relationships between objects involved in the execution of a shared, distributed task. A single object may participate 

in many different activities and a single activity may be made up of numerous subactivities. At the language level, 

lags are used to identify the activity affiliation of data and messages [Hel84). HPC began as an attempt to define, in 

detail, operaung system support for the activity mcdeL It quickly diverged, although previous work on activities 

had importam influence throughout. 

Super is an exploration of communication via broadcast source-addreased messages, and of how language 

support of programs using such a medium could be provided, that parallels HPC in several ways. The Super 

programming language provided nested groups of p *sses, together with distinguished processes to control and 

manage such groups Both of these constructs are prin ve in HPC structural representations. Super also requires 

the concept of • secretary process (communication fillet); Such filters are frequently convenient in HPC. but arc 

neither critical nor built in 10 the system. We indicate these parallels as evidence for the universal nature of the 

structures, at least in a loosely coupled environment, as Super had no direct influence on HPC. 
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1.3.1. CONIC 

Beyond a doubl, the related work most closely related to HPC is the CONIC toolkit, developed independently 

of, and earlier than.. HPC at University College London [KMS87], [KrM85]. Like HPC, CONIC provides for 

explicit communication interfaces and bindings, a process absfacuon generalized to nested groups of processes, and 

fully dynamic structure. The CONIC system implementation is far more developed than the HPC system prototype 

and has been applied to several industrial applications. 

The major original contnbuüons of HPC are easiest to evaluate by comparison to CONIC. First, CONIC as 

currently implemented provides a single native communication mechanism, while HPC was designed to use a 

variety of (heterogeneous) mechanisms. As a result, HPC has facilities to "type-check" communication paths to 

ensure each logical path can be implemented. More significantly, HPC provides tor explicit expression of 

muluplexmc. mulucasung, and bundling of multiple communication paths as part of the horizontal structure to 

capture the rrhness of communication media. 

CONIC has no provision for protection or domains of autonomous management. Most systems that use a 

general protection system such as access control lists or capabilities, do so because they have no obvious structure to 

exploit. HPC uses nch vertical structure in the definition of protection domains that provide common management 

for related objects. In addition, the "controls" relation, which is as important as the "communicates with" relation, is 

manifest in HPC. Control behavior is subject to the same principles of abstraction and composition as other process 

interactions. 

While both systems concentrate on hierarchies of processes. HPC also allows exceptions to a strict tree. This 

permits more natural access to global services than is possible in a tree. The more general graph structures resulung 

from excepuons have to carefully disciplined to preserve the behavior of a strict hierarchy, while still allowing 

access between arbitrary points in the tree; it would not be practical in HPC without exploiting the protection 

system 

CONIC and HPC had somewhat different motivations that account for some less well defined differences. 

HPC has an emphasis on extremely distributed systems. This led to features, e.g. continued operation during 

partition and reporting end-to-end connectivity without violating abstraction boundaries, that are not as well 

developed in CONIC. As the HPC svstem was not intended as a stand-alone system nor as a complete one, its 

relation to application processes and to host operating systems is more precisely defined than in CONIC. In 

particular, manipulations of rich, abstract application structure arc completely distinguished from the primitive 

operations on sparse, native processes and communication media. This precise abstract structure, in turn, has 

suggested specific research into additional distributive bws for formal systems such Hoare's CSP [Hoa85] 

132. Task Forces 

Since the late 1970s, several lines of operating system research have explored an explicit form of structuring 

for multiple processes often known as task forces A task force usually consists of a variable number of processes 

performing the same or similar funcoons 

One prominent hne of research stresses the independence of address space and thread of control, and the 

resulting efficiencies due to shared memory communicauon and faster context switches between processes using the 

same iddrtss space   The rlated Thoth (Che82]. Verex iLoc79]. and V kernel (CheiUj systems, and the unrelated 
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Mach [YTR87], [ABB86] system are examples of this development While the grouping of processes into task 

forces (Thoih. tasks into teams, Mach: threads into tasks) is very well defined in these systems, there is little or no 

support for further stracitTriKg of processes in the same task force, or of multiple task forces. Communication is 

based on promiscuous broadcast within a group or other mechanisms (ports, links, addresses) that can not be treated 

as explicit, visible :;noings. 

A second line of development emphasizes a object-invocation model of interaction, where multiple active 

processes may service concurrent invocations of a given object. Three well-known examples are Argus [LiS83] 

Eden [ABL85], and Clouds [LeW85]. Communication interfaces in these systems are defined and controlled very 

clearly on the receiving side of an invocation, but the binding between calling and called objects is left implicit in 

ihe pattern of invocations during runtime. Most analyses (e.g., for deadlock freedom, or for debugging) of 

applications ran on such systems require the "calls" or "depends" rsL"üun between objects, which again suggests 

that the horizontal siruciure should be manifest in the structure, as in HPC, and not inferred from the dynamic 

behavior. 

Vertical process structure is limited to the single level of process clustering within objects. However, both 

Argus and Clouds provide additional structuring in the form of transactions that define apparently atomic activities 

that may involve processes within several objects. Even ignoring the aspect of atomicity, UPC has no comparable 

facility Tor denning activities that involve several applications, perhaps overlapping with other such activities, only 

for grouping applications into a larger one.4 

Two important systems based on capability-controlled access and message passing were implemented as part 

of the CM* multiprocessor project ([SFS77], [SBL77]). These are StarOS [JCD79], and Mcdura [OusSl], and bom 

systems allow the creation of distributed task forces of cooperating processes. StarOS focuses on case of use and a 

general capability mechanism, while Medusa stresses the effect of distributed hardware on system software (Section 

8.2.1 [OusSl]). Medusa, more than any of the other task force system, addresses the structural issues central to 

HPC. 

Each Medusa process has a private capability list, the processes in a task force share a list, and every process 

has access to a list of global utility capabilities. Horizontal structure in Medusa is explicitly controlled by these lists, 

which are distinct from the processes that may access them. Each slot in a list can be treated as an abstract 

interface, where the capability in the slot specifies the implemention. This definition of explicit interfaces is so 

clean and comprehensive that the complete state of a process, including its memory pages and access to secondary 

storage, is accessible through its capability lists. One pleasant result is that one process can take over completely for 

another in the same task force either temporarily ("buddy" exception handling) or permanently. Dynamic load 

balancing and system reconfiguration is possible by replacing the capabilities for overloaded or failed processes on 

the fly. HPC can only approximate this clean replacement, because process stale is a primitive feature outside the 

HPC structural system. 

In Medusa, unlike StarOS, the vertical structuring of processes into task forces is maintained during 

execution, available for debugging and monitoring. However, Medusa is a one level system. There is no facility for 

* Thii. detpiie HPC'i direct roou in Rodtener Activities 
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grouping task Aorces into larger applications, and utility task forces are treated somewhat specially by the system. 

The same directness applies to communication; \v.jtle capabilities can be replaced, they can not be chained, 

indirecled, or sent in messages. One result is that a task force must explicitly provide for each of i\s users, there is 

no way to export or otherwise transmit access to a task force. HPC provides much more powerful organizing tools 

in this area. 

133. Software Design Tools 

Software design tools emphasize methodical development, clean abstraction, and reuseable modules. This 

emphasis often encourages (or enforces) software architectures that have a great deal in common with loosely 

coupled, distributed applications. In particular, they invariably provide nested abstractions with explicit interfaces 

and intermodule bindings. When a design tool provides active entities as a basic component, the possible structures 

are much like static HPC structures. 

The SARA system is one such tool that has been used to design, model, and simulate both sequential and 

concurrent software [EFR86]. SARA distinguishes vertical and horizontal structure to the extent that different 

languages are used to describe them [PeB79], but goes beyond structuring (syntax) to include a third language to 

describe the behavior (semantics) of an application. Intentionally, there is no comparable feature in HPC. 

There are many other software design tools with some relevance to HPC, but we will mention in passing only 

SADT [Ros85], and DREAM [Rid81]. The relationship of HPC to SARA, along with these other tools, «s more 

complementary than competitive. While HPC has no semantic component, and the design tools do not ailow for 

dynamic structure (failure, reconfiguration, etc), the methodology and design-time support provided by the tools can 

be usefully matched by the run-time support provided by HPT 

This match has been realized by the STILE/GEM combination [SBW87]. STILE is a software design system 

of the type discussed here, while GEM is a real timt operating system for robotic applications. The GEM 

multiprocessors are physically close together, the software environment is qaite loosely coupled, and STILE/GEM 

allows for direct run-time support of design abstractions, explicit distribution and (limited) dynamic reconfiguration. 

Because GEM was intended for specific applications and hardware environments, it does not address issues like 

protection, partition, and dynamic process creation ihat are addressed by HPC. Like CONIC, GEM provides a 

complete, native, run-time system, while HPC does not. 

13.4. Programming Languages 

Several programming languages support nested processes, ii< either passive or active hierarchies. A .lumber 

of tnese languages are related to Hoare's CSP [Hoa85], either directly or by parallel development; ECSPIBRT84], 

Occam fTaW82] Planei [CrE84], and Platon (StS75) ac four examples. Because these languages express structure 

directly in program syntax, they have very limited "bully to express either dynamic or persistent structure. ECSP, 

for example, allows for dynamic reconfiguration, but all potential module bindings must be manifest in the original 

program. Process lifetimes are limited to a strict fork-join discipline, so processes can not be detached to run on 

their own, nor can new ones be added to a group once it has been created. These limitations are intrinsic to any 

system that treats each application (program) as a closed system. HPC manage applications as an open collection 

of persistent data structures. 
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While interfaces and bindings between siblings are fairly well defined in CSP-like languages, the bindings 

between processes at greater distances in me titc are extended by scoping and visibility rules of the language. 

These rules limif the possible patterns of communication but do not make the specific patterns explicit. (In ECSP, 

the specific patterns are not even decidablr in general.) A more serious problem is that each process must name its 

communication partners) directly to create a binding. This limits rhe use of abstraction, because ft pr cer: must 

have information about arbitrarily distant structure. All HPC connections are strictly locel, which allows iw>rous 

information hiding, and bindings are computed incrementally on the basis of possibly many connections. 

The PRONET [LeM82] programming language is more attractive for extremely distributed software tfian ihe 

CSP-like languages. It uses a separate sub anguage (NKVSLA) for explicit module interconnection that avoids the 

objections raised in the previous paragraph. Modules and intermodule bindings can be created and destroyed at any 

time, anJ the contents of each abstract object are managed and controlled by precisely the NETSLA code that 

created the abstract object. Rich communication structure, for example explicit multiplexing, multicasting, and 

bundling of interfaces, can be expressed in the module definition sublanguage (ALSTEN). 

However, PRONET still suffers from a closed world assumption, because there is no way to introduce new 

types of moduies into a running system nor any way to name or communicate with an independent program (e.g., 

contact a global service). While asynchronous creation and destruction of modules are adaVessed by PRONET, 

more general issues cf decentralized control (partition and multiple agents) are noi In fact, the control and 

management portions of a PRONET program are implieiüy single threaded and centralized, even if the primitive 

processes run concurrently. 

There are of course very many other programming languages that allow multiple processes. The ones 

discussed he e are most relevant to HPC and the structures it can express, and spnee prohibits even a simple listing 

of such languages. For example, DPL-82 [Eri82j is a language very different from PRONET ano the CSP-like 

languages that also provides nested groups of processes with explicit interfaces and bindings, but the similarity adds 

nothing significant 
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2. Hierarchical Process Conposition 

Black boxes are good physical abstractions. They are distinguished by the sockets on their exterior panels 

and their behavior at those sockets. Their internal structure and state are not accessible. All we know about a black 

box is its name, its sockets for cables, and the signals it produces at those sockets. 

Interesting ensembles of several black boxes are created by connecting pairs of sockets with cables. In such 

an ensemble, any cable may be replaced by an equivalent one, but generally no box or socket can be substituted for 

any other. Therefore, we must distinguish boxes and sockets, but need not distinguish cables. 

We often wish to enclose an interconnected collection of boxes in a chassis or cabinet for convenience (or 

perhaps, to introduce a level of abstraction). This will hide all the internal wiring that is irrelevant to user of the 

overall collection. To accomplish this, we must have some sockets that pass entirely through the cabinet On the 

exterior, the cabinet appears to be a black box and the sockets are used as we have already described. On the 

interior, the sockets must be connected to the "free" sockets of the connected black boxes. 

Objects, interfaces, connections, and shells are the HPC analogues to black boxes, sockets, cables and 

cabinets. The hierarchical organization of modern electronic equipment is clear: gates composed into integrated 

circuits, integrated circuits and discrete components composed into circui» boards, boards composed into shared bus 

modules, modules composed into computers, computers composed into networks ... At each level there is an 

explicit composition of black boxes, which are abstractions of the next lower level. This is the way HPC uses the 

principles of abstraction and composition to organize complex, multiprocess programs. 

However, a realistic system must be fleshed out with protection against unauthorized access or interference 

between applications, escapes from the strict object hierarchy when appropriate, and provision for a rich set of 

interprocess communication patterns. The interactions of these additional structural features are the subject of much 

of this dissertation. They are introduced in Section 2.1, and examined in detail in the subsequent three Chapters. 

HPC, unlike black boxes, supports dynamic reconfiguration of both abstractions and compositions under 

program control. The system provides operations that incrementally modify process structure during execution. 

Sccuon 2.2 presents the entire set of fourteen HPC operations, organized by the structural features they affect. 

The first significant interaction between multiprocess abstractions and the distributed environment is a 

requirement for an asynchronous system interface. Section 2.3 notes the dash between synchronous operations on 

process structure and the asynchrony among agents and between agents and sources of failure. By stressing 

dynamic structure, we are led to adopt an unconventional system interface when compared to most distributed 

software systems. 

2.1. Structural Features 

2.1.1. Dual Representation 

Nested HPC shells define a rooted tree of objects. A tree is often the most intuitive representation for 

complex applications, but a more general representation is sometimes needed. The HPC dual graph captures the 

desired escapes from a strict hierarchy and simplifies the presentation of the protection and communication 

structures. 
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The hierarchy emphasizes vertical structure, where objects are nodes and the parent-child relation defines the 

edges. The dual graph5 emphasizes the horizontal structure of a system, where compositions arc nodes and the 

abstract interfaces define the edges. Both interpretations of a small object are shown in Figure 2.1. (Hierarchies arc 

always drawn as nested rectangles, while duaJ graphs are always drawn using circles.) Shells above and edges 

below correspond directly, while nodes in the dual graph represent spaces between shells in the hierarchy. Figure 

2.1 successively highlights each dual node and its hierarchical equivalent 

V//////////////////////A >; 

W//yy///^/,y777/777777, 

A 
B C 

Figure 2.1. Two Representations of a Small Object 

The parent and child shells in the hierarchy are the edges incident on a space in the dual graph. A space has 

one set of interfaces from each of these edges. In a simple space, these interfaces are accessed directly by a process, 

and in a complex space, they arc composed by a set of HPC connections. An active hierarchy would have simple 

spaces throughout, while the passive HPC hierarchy has simple spaces only at the leaves. 

The dual graph has a distinguished root space and the subtrees rooted there form a forest of hierarchical 

objects. These top-level objects are the most independent activities in the system, generally corresponding to user 

terminal sessions and to long-lived system services. 

Every HPC hierarchy has a dual graph, but Figure 2.2 demonstrates a dual graph thai can not be expressed as 

a hierarchy. The dual graph ignores the hierarchical orientation, which simplifies several technical definitions and 

allows a uniform treatment of composition in strictly tree-like and cyclic process structures. 

1 Acuutly. t Imc graph for vhoie fuuy about graph Hheomic termmotafy 



20 

Figure 2.2. A Non-Hierarchical Structure 

2.1.2. Protection and Control Structure 

The basic concepts of the standard protection model are domain and agent (or principal) [Jon79]. A domain 

is a set of entities and specific operations on them. An ag*^t is an active entity authorized to apply a domain's 

operations on its entities. In general, the mappings between agents and domains, and between domains and 

contents, may be many-to-many. That is, domains may have several agents, an operation may be in several 

domains, and so forth The protection relation is the mapping among agents, domains, and domain contents. In 

conventional protection systems, the protection relation is associated either with the domains (access control lists), 

or with the agents (capability lists). In both cases, it is difficult to determine the inverse mapping. 

HPC exploits the coherence and locality of the rich, explicit process structure to define protection domains, 

instead of using a conventional protection system that makes few, if any, assumptions about the structure of 

domains. Domains are disjoint, connected subtrees in the dual structure graph. Every space belongs to exactly one 

domain. In the hierarchical view, this defines a coarse hierarchy of domains on top of the hierarchy of objects. 

Some, but not all, shells delineate domains while all shells delineate objects. Figure 2.3 illustrates three domains. 

(Domain boundaries are drawn as double lines.) 

Figure 2.3. Three Adjacent Domains 

All features of a space and all operations on them are in its domain, but operations requiring operands in 

multiple domains are not included in any domain. This omission is the fundamental protection feature, and 

effectively confines the effects of an operation to a single domain. An agent cither has complete control over a 

domain or none it all The protection mechanism provides no form of limited access such as "read only* but we 

will sec this docs not impede arbitrarily complex access policies. 
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Operations on HPC structure arc provided through a built-in controller object in each domain. A controller 

accepts control messages from connected objects and invokes the corresponding operations on structure. It refuses 

to carry out operations outside its domain. (The controller docs not have any physical existence, it is simply an 

explicit placeholder for the HPC system, and therefore can be made robust, available everywhere and whenever the 

HPC system is workings 

Objects connected to a controller, and thus able to exert their control over a domain, arc, de facto, agents. 

Multiprocess agent objects immediately allow redundant control of robust or decentralized applications. However, 

partition or site failure can lead to situations where no agent is physically able to exert its control over a domain. 

The HPC system provides positive control to ensure every domain is under control of some agent at all times. 

A small domain is shown in Figure 2.4. Domain £> is a short pipeline implemented by two worker objects, A, 

and B. Object M manages the domain, monitoring and instructing A, and sending HPC commands to the controller 

C as needed. (Controller objects are drawn in dark grey.) 

Figure 2.4. Domain with Agent 

Chapter 3 discusses protectio   and control structure in more detail, especially positive control and the user 

dennition of arbitrary access policies. 

2.13. Communication Structure 

Composition is fundamental to the behavior of any system, while abstraction is merely an unavoidable 

convenience. That is, raw, primitive, individual components can be composed into a useful system without the 

benefits of further abstraction, while complex abstractions remain isolated and collectively useless without a way of 

specifying interactions between them and within them. Therefore, it is not surprising that communication structure, 

defining the possible compositions of objects, is the most complex pan of HPC. 

HPC supports hetcrogenous communication mechanisms and manipulations of multiple related 

communication paths in a single operation. It also extends the one-to-one communication patterns shown so far 

with a general many-to-many multicasting facility. These features are introduced here, with considerably more 

detail in Chapter 4. 

Both sides of an interface can be manipulated separately. The independent parts, called views, are basic 

building blocks that can be combined in two ways. Pain of views can be connected to form links in a 

communicauon path, and views can be assembled into tree structures to form more complex interfaces 
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Simple views control individual communication media such as a UNIX pipe, a TCP/IP connection, or a 

remote procedure call binding. When a view is created, the appropriate mechanism is specified together with any 

constraints such *s orientation. For example, pipes and RPC bindings are always oriented (out/in and client/server, 

respectively) while TCP/IP connections are generally not. Some simple view structures are: 

[ structure:  sirple 'JNZX-strear ir ' 

| structure:  sirple TCr/'I? ir-cci  } 

i structure: sirple Courier client ] 

We say views are compatible when their specified mechanisms are the same (and their constraints arc 

complementary). HPC requires that both views of an interface, and both views of a connection, be compatible to 

ensure a transport medium can be implemented for each logical communication path. 

Often it is desuable to connect two objects with a single abstract medium, while allowing an implementation 

using more than one physical communication channel. A physical example is a cable with multiple conductors, the 

programming analogy is the record data structure, and distributed program examples are paired half-duplex 

channels, and out-of-band channels. To support this kind of grouping we use bundle views. A bundle has a fixed, 

ordered set of possibly heterogeneous component structures. The bundle corresponding to the conventional ITNIX 

standard 10 interface is:6 

[ rcie: "'JN3: stcuc", 
structure: burcue 
[ role: "stair.", 

structure: tuple UNIX-stream, in 
] 
! rcie: "stcou-", 

structure: sirp.e 'J.'IX-strea.- out 
] 
( role: "stderr", 

structure: sirple 'JNDC-strear out 

Another common requirement is for dynamically changing numbers of homogeneous media. A physical 

example is the trunk line7, the programming analogy is the set data structure, and a distributed program example is a 

multiplexed service. This motivates the multiplex view. A multiplex view has a single, fixed component structure, 

but varying numbers of component views with that structure can be freely created and destroyed during execution. 

Each view represents a distinct communication channel. 

* The I«» keyword u muoduoed here to clarify the example   lu fnil nfntftrencr «nil be cipUiwwl Ute* 

7 Contidennf virtu«! circuits »i the medu. mttcad of the »ores 
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r 

Figure 2.5. Multiplexed Server 

The X Window sysiem is a typical multiplexed service. Clients of the X Window system each have a view 

with this simple structure 

[ rcie:  "X Window cl:e.~:", 
structure: siqple TCP/2 n-ar. 

1 

while the network interface of the X Window system server has this multiplex structure 

[ role: MX Window ser.^er". 
structure: ruli:=>> 
[ role: MX K«-xrv service", 

structure: sircle T3/2 in-cui 
) 

} 

The different kinds of complex views can be combined hierarchically. Here, for example, is a multiplex view 

with i bundle component, the bundle having two simple components: 

( role: "two-f-nciicr ser^:-', 
structure: rruitip.e* 
{ role: "pftduge binding". 

structure: bundle 
[ role: "func-L er.try*', 

structure:  ainple Coirier ser«r 

! role: "?JTC-2 er.ry". 
structure:  s^nr.e Copier server 

One-io-many and many-io-many communicauon patterns are a third important class of relationships. 

Physical examples are the bus and triple modular redundancy systems, a programming example is the FORTRAN 

common block, and a distributed program example is the contract bidding algorithm. HPC must demonstrate that 

these relationships can be expressed in abstract structure, rather thin physical addressing. 

The multicast view is the building block for all a .-to-many and many-to-many communication patterns. 

Like multiplex views, multicast views are denned with a single, fixed component structure, and component views 

can be created dynamically. However, each component of a multiplex view represents a distinct medium passing 

through the view, while all components of a multicast view represent a single medium. Messages arriving at any 

multicast component on one side of an interface depart from ail components on the other side. In Figure 2.6. a 

message sent by Muin will be delivered to both Uru-J and Unt-2. 
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Mu ti L 

JUni-1 try -T*"|     JUni-2 

Figure 2.6. Multicasiing 

2.1.4. Non-Hierarchical Structure 

So far, our structural representation allows only trees. Every space defines a purely functional composition of 

the adjacent subtrees. From the viewpoint of a functional programming purist, this purity of composition is very 

nice. From the viewpoint of a practical system designer, it can be more trouble than it is worth. 

To use a module (object) in a purely functional fashion, its user must provide explicitly all needed external 

resources. Uninteresting plumbing accumulates higher in the object hierarchy for the sole purpose of connecting 

global services to modules at lower levels. The housekeeping and clutter hide the structure relevant to the object's 

behavior. 

External 
Resource CM 

MM 

KKMM 

KM XHtWD—J 

External 
Resource 

External 
Resource 

Figure 2.7. Gutter in a Strict Tree 

The problem is worse in an open system. To make use of a newly installed service in a purely functional 

system, the shells between the service and its client must be ripped out and recreated with an additional interface to 

pass the new service. This is clearly inadequate and motivates violations of the strict hierarchy. 

To provide the necessary escape, we let any two complex spaces be joined by a splice. For communication, a 

splice behaves just like a shell, providing a set of interfaces that communicate between the spaces. However, bod. 

ends of a splice appear to be domain boundaries pointing "down". This preserves the appearance of a strict uirected 

tree even when a splice joins two spaces in the same domain (even one space to itself). Chapter 5 discusses non 

hierarchical structure further 
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2.2. Structural Operations 

2.2.1.  Examination 

An apeni must knou the currcni process structure before it can make sensible decisions about how to manage 

it. The inquire operation provides the necessary access to the HPC system's structural database. It taxes a 

structural element, such as a shell or an interface, and returns information about its properties and its neighborhood 

in the process structure. The process structure is unmodified by examination. 

There are specialized inquiries for: 

• The parent and children of a shell 

• The interfaces of a shell 

• The parent and chilcrcn o> - view 

• The shell of an view 

• The view (if any) connected to a view 

• The root shell and Controller of a domain 

• The kind of structural element represented by an arbitrary name 

The data returned from these inquiries is sufficient to write simple tree-search algorithms to traverse a domain 

exhaustively. Different database access mechanisms could have been provided. For example, a snapshot of the 

entire domain could be provided for off-line consideration, but such snapshots may be arbitrarily large and become 

out-of-dai^ with the slightest change to the domain. 

Because inquire is an operation on structure, the protection system makes domain boundaries opaque. Only 

agents of a domain can examine that domain's internal structure. 

2.2.2. Connections 

Communication paths between processes arc incrementally created and destroyed by creating connections 

beiwetn objects The connect operation takes two views as arguments and creates a connection between them. The 

views must belong to the same space, be distinct, compatible, and have no existing connections. Disconnect is the 

inverse operations. It takes two views that must be joined by a connection, and removes the connection. 

w w 
Connect (I. J) 

Disconnect (I, J) 

Figure 2.8  Connect and Disconnect 

2.23. Media 

When a v-hes of connect opcrauons has created a complete logical path between two process*, the HPC 

systi n creates a communication mediLm. The processes then communicate using the opcrauons appropriate to the 

me4 am. Typical operations are send and r«ceiv« tor messages and datagrams, write and read for fiics, pines, and 
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streams, and call, accept and reply for remote procedure calls. 

The HPC sysicm makes these operations available for each communication mechanism it supports, but docs 

not define their semantics or die behavior of the communication medium. Operations on media have no effect on 

HPC process structure. 

2.2.4. Processes 

To create a new process, the animate operation takes a empty object, a host identifier, a host-dependent 

image identifier, and a list of strings. The host is contacted, the image is started on the host, and the new process is 

placed in the empty object. The process receives the strings as initial arguments in a host-dependent way. There are 

two versions of the inverse operation. A process uses die to terminate itself. The kill operation terminates another 

process. Both operations take a simple domain as argument and destroy its internal process, leaving an empty 

object. (Processes are shown in light grey, empty spaces with a doL) 

Animate (S, host, image, parameters) 

-SH  • 

Kill (S)/Die (S) 
-*-© 

Figure 2.9. Animate, Die, and Kill 

These operations also apply to complex objects. A process decides to become a simple or complex object 

during its animation in a negotiation with the HPC system. This decision is not visible to the agent invoking 

•nimate. To animate a complex domain, two new empty objects are created inside the previously empty leal, a 

controller and the new process are placed inside the new objects, and a connection is created to join them. 

Complex Animate 

<DZ 
Kilt/Die 

Figure 2.10. Complex Animation 

As a convenience, kill and die can be applied to arbitrary subtrees. The eniirc subtree is removed, no matter 

how complex or how many subordinate domains are affected. 

2X5. Shells 

A shell is created explicitly by calling the enclose operation with a space, a partition of its incident interfaces, 

and a list of interface descriptions. There must be no connections between interfaces in different paruuons. The 

space is divided into two spaces, both in the same domain, and one group of interfaces is moved to each space The 

spaces are joined by a new shell with the desired interfaces. To destroy a shell using disclose, its interfaces must 
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have no connections, and the spaces it joins must be in the same domain. Those spaces and ihcir incident edges are 

merged together into a single space, and the shell is destroyed. 

r 

A 
Enclose (descr's. {P}. {A,B})       p            c 

A    \^J 

B    () 
Disclose (C) 

Figure 2.11. Enclose and Disclose 

The names of these operations are taken from their effects in the hierarchical view. Creating a shell has the 

effect of surrounding the lower partition of shells, while destroying a shell releases the internal structure. And, 

because both a space and a biparution are implicitly defined by a set of sibling objects in the hierarchy, the actual 

arguments for enclose are just a list of shells and a list of interface descriptions. Spaces are never explicitly 

manipulated in HPC. only shells. 

2.2.6. Interfaces 

Most interfaces are automatically created and destroyed when their parent or a/tached sheil is manipulated, 

but multicast and multiplex interfaces have a dynamically varying number of component views. Each such 

component is created by the new operation on its parent view. A component view is destroyed by the delete 

operation. It must be a component of a multicast or multiplex view, and must not be connected. 

New(P) 
p    1  >- 

i   p  i 

I^J 
Delete (C) 

Figure 2.12. New and Delete 

2.2.7. Domains 

The domain creaüon operation, invest, lakes a shell and an empty object as arguments. The object and the 

existing controller must be on opposite sides of the shell. The existing domain is reduced to the subtree on the 

controllers side of the shell, and the rest of the tree becomes a new domain. The controller for the new domain is 

placed in the empty object 

The abdicate operation ukes as its argument an adjacent domain boundary to remove. The executing 

control la is removed, and the domain is merged % ith the adjacent domain The depose is simiur, but takes control 

from the adjacent domain instead of yielding contrO to it. Figure 2.13 illustrates these operations. The arguments 
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for domain operations must be in the domain of the agent, just as for any other operations. An edgt with an ellipsis 

(...) represents a sequence of one or more shells that must belong to a single domain. 

Invest 

"\ •"O 
Depose /Abdicate 

Figure 2.13. Invest, Abdicate, and Depose 

2.2.8. Splices 

Splices are created between existing empty objects using a two-step operation. Suppose objects A and 5 are 

to be spliced. 

Figure 2.14. Splice (Before) 

The agent for A invokes the splice operation with two empty shells. The existing shell A and space are 

replaced by the splice C. one end of which is hidden in a space accessible only to the HPC system. There is no 
immediate effect on B. 

Figure 2.15. Splice (During) 
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When ihc agent for B decides 10 complete the splice, it invokes splice with the arguments reversed. The 

existing shell B and space arc replaced by the previously hidden end of the splice C. 

Figure 2.16. Splice (After) 

23. Discussion 

We begin to find interactions between multiprocess abstractions and the distributed environment already. 

Failures, concurrency, and dynamic structure lead to a model of interaction between application managers and the 

operating system quite different from most distributed systems. 

A domain may have several agents (or a multiprocess agent) and the agent processes may choose to operate 

on a common piece of process structure. Executing on separate sites, their decisions are intrinsically asynchronous 

with respect to one another. In the absence of failures, cooperative action could be left to an explicit distributed 

consensus among agents, or provided in some form through communication between agents and the HPC system. 

However, failures of processes and hosts will occur at arbitrary times even if decision making among agents is 

synchronized. The environment is an additional agent with whom we can not debate or negotiate. As a result, an 

agent's view of process structure can become out-of-date at any time, even while trying to decide what to do about 

the previous state. 

Transaction facilities are one conventional response to this possibility. They prevent the appearance of 

outside interference during a sequence of operations, but they do so by delaying or undoing operations in order to 

obtain the desired serialization. A transaction that is affected by a failure will be aborted, and the system reset to its 

original state. This is inappropriate for applications that must always make forward progress, are fundamentally 

asynchronous and therefore non-serial, must meet certain minimum performance requirements, or, most 

significantly, must adapt explicitly to failures and changing conditions. Obviously failures and other changes must 

not be hidden from applications in the latter class. 

This raises a classic question: Should an agent moni»or the process stnioure by polling, or should it receive 

san asynchronous notification of a change? Polling is obviously the wrong answer. An agent could easily spend all 

its time futilely looking for something that clianged since the last time it was examined. Therefore, any system 

designed for adaptation to failure under user control must, a: a minimum, provide asynchronous notification of the 

failure of processes and communication lirks (partition). 

Any agent is a potentially distributed object, capable of carrying out several plans of action concurrently. If 

an agent blocked or was otherwise prevented from invoking an operation until some previous operation completed, 

this desireable concurrency would be eliminated. HPC obtains a mor powerful system interface by allowing 

structural opcrauons to proceed asynchronously with respect to the invoking agent and using the ?synchronous 

notification system to report the results of agent-requested operations as well as process and network failures. 
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The HPC system gives operations an at-most-once semantics within each partition, internally synchronizing 

when necessary to preserve the internal consistency of the process structure. An agent will see a serialization of 

operations, but it may be a different sequence for each agent due to asynchrony. 

The disadvantage of this more flexible interface is that agents must be prepared for asynchronous 

interruptions of their plans and arbitrary delays while waiting for an operation to complete (or fail). Most 

distributed systems present a synchronous interface to their clients, usually in terms of local system calls on a host 

operating system, or remote procedure calls between application processes, or object-oriented operations on a 

distributed data structure. Asynchronous notification of changes in the environment (e.g., signals, upcalls, or 

callbacks) are usually restricted to special cases and circumstances. For example, under UNIX a process can 

receive notification that more data is available in a file, but not that the file has been deleted, renamed, or opened by 

other processes. This simplifies programming of the processes that are not involved in configuration and on-line 

management, but makes it difficult or impossible to write a manager process. 
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3. Protection and Control Structure 

The potential for change raises the questions of who may change a thing and what things they may change. 

Answers are usually given in terms of a standard protection model [Jon79], in which there is a collection of distinct 

objects, with operations that may access them in various ways. The rights to perform specific accesses on specific 

objects are collected into sets called domains. Privileges are distributed among active entities, known as principals, 

by associating a principal with a set of domains. A principal may carry out an access if one of its domains contains 

a corresponding right. 

HPC does not require the full generality of the standard model. An object in the standard model is an HPC 

structural feature, such as a process, shell, or interface. HPC does not distinguish types of access, focusing on rights 

to specific operations, such as connect(viewl, view2). Domains are sets of rights, as in the standard model, and 

HPC agents are principals. 

Policy and mechanism are clearly distinct in protection issues. A protection system provides a mechanism to 

enforce access control or information control policies established outside the system. These control policies are not 

arbitrary; they are based on the management of objects. Managers set policy and the implementation of policy 

requires action and change. Agents carrying out policy must be empowered to make the necessary changes. 

Conversely, an agent should not possess rights it does not need in order to implement policy. 

Conventional protection systems (access control lists, capability lists) must allow for arbitrary collections of 

rights (and by implication objects) because there is no other mechanism capable of expressing the relationships 

among the objects in the system. This is unnecessarily general, because random collections of objects never have a 

common manager, while related objects often do. A contribution of HPC is the exploitation of the rich and explicit 

vertical process structure in the definition of protection domains. To date, protection mechanisms associated with 

hierarchically organized software have all been based on (static) scope rules for identifier visibility. 

We believe that "controls", as a relationship, as important as "communicates with". It should be possible to 

build sophisticated control behavior out of less complex components, with the same compositional properties, and 

benefits, as communication bafaavior. HPC's second contribution in protection structure is the application of a 

powerful mechanism for identifying, composing, debugging, and controlling control behavior. These functions are 

rarely, if ever, available in conventional protection systems. 

Section 3.1 motivates these contributions, building on the static domain, agent, and controller definitions 

presented in Chapter 2. We observe several interactions between the protection system, the hierarchy, and the 

reouirements of distributed applications that can lead to internal contradictions and slow how they have been 

avoidea in HPC. 

Section 3.2 continues the investigation of these interactions with the preservation of structural invariants by 

operations on structure. Creation and destruction of most structural features interact nicely with the protection 

system, but direct domain manipulation and process creation require special attention to avoid violating structural 

constraints and to limit the structural damage a malicious or erroneous agent can inflict. 

User agent control of a domain may be tost, and some form of clean-up or recovery action must take place. 

Section 3.3 introduces the policies that the HPC system can be asked to apply automaucaliy when user agents are 

unavailable, and shows how losses of control can occur either temporarily and permanently. 
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The basic HPC protection mechanism does not distinguish among types of access, or provide for arbitrary 

collections of rights. Because control is explicitly composed, user-defined objects can implement finer or more 

complex access policies, and transparently extend the system primitives, without additional support from the HPC 

system. (Section 3.4. i 

The concluding Section looks briefly at some classic issues in protection, such as amplification and revocation 

of rights in the context of HPC. 

3.1. Static Structure 

The possible agents and rights of any HPC protection mechanism can be easily defined Processes are the 

primitive active components in HPC, do all the work, and thus make all the control policy. By abstraction, an 

arbitrary object should be able to do anything a process can do, making objects the obvious candidates for agents. 

Applications are described in terms of shells, interfaces, connections, and processes. The protection mechanism is 

to control the rights to operate on these structural features. 

A protection system also incorporates two relations, one between domains and rights, and the other between 

agents and domains. The invariant properties of these relations are the interesting features of a system. HPC tightly 

restricts the rights relation to follow vertical structure. Some necessary properties of the agents relation can be 

deduced from the principles of abstraction and composition, and from the need for redundancy and robustness. 

3.1.1. Rights Relation 

Arbitrarily contructed domains can and should be avoided. The grouping defined by vertical structure gives a 

strong guideline for the construction of domains. Grouping within a shell shows a coherent collective activity. If 

two activities don't interact directly, shells should be used to make their boundaries, and independence, manifest. 

When an application is structured properly, the contents of a space define a tight composition of cooperating objects 

that should be managed as a unit. Therefore, HPC defines domains at the granularity of spaces. The views incident 

on a space and the connections between them belong to the same domain. 

Vertical structure also guides the clustering of spaces into domains. We do not expect common development 

and management of arbitrarily chosen pieces of an application. However, several levels of related abstractions that 

interact closely are often managed as a unit. For example, a program module may include many functions with 

independent interfaces, but the functions in a module am all related. 

HPC exploits this locality in constraining domains to be disjoint, contiguous subtrees of the dual graph. 

Because domain contents are localized, domains are readily identified and traversed on the basis of local 

information. Every space knows which of its neighbors are in the same domain, and there is no need for an explicit 

list of a domain's spaces. Restricting a space to exactly one domain induces a coarse domain graph on top of the 

dual structure graph. This is an elegant relation that allows acceptably simple operations on domains and is 

sufficient for our target applications. 

Other choices of domains are worth further study. For example, a nested relation on domains provides a 

protection model analogous to conventional programming language scope rules: inner agents (code) can affect 

enclosing structure (variables) while outer agents are more restricted Operations on nested domains probably 

would be much more complex in order to preserve the more complicated structural invariants. This objection would 
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not apply to the most general protection model with arbitrary domain overlaps, because there would be no 

constraints to preserve. 

3.1.2. Agents Relation 

The rights relauon has remained stable throughout the HPC project, but an acceptable relation between agents 

and domains was more difficult to achieve. Two signiöcanüy different versions have been developed since the HPC 

protection system's introduction in [LeF85] and [LeF85]. 

There are several criteria to consider: 

• Preserve abstraction 

A complex domain should be opaque, indistinguishable from a process. 

• Redundant control 

Robust applications must have redundant agents to provide robust control, even if they have no other redundant 

components. 

• Positive control 

Loss of control should be prevented. Every domain should have at least one agent. 

• Control structure 

Control is a behavior as fundamental as communication, sad should be subject to the same principles of manifest 

expression, abstraction, and composition. 

• Control over control 

Agents, domains, and the relation between them are not static. Changes to the protection relation, as well as process 

structure, must be protected. 

• Simplicity 

"Everything should be as simple as possible, but no simpler." - A. Einstein. (Ironically, restrictions designed to 

simplify the protection system were at the root of many early problems.) 

Primitive processes are opaque in HPC. In effect, every simple space (containing a process) comprises a 

domain, acting as its own agent This interpretation is necessary if processes and (opaque) arbitrary objects are to 

be treated equivalent!)'. 

Because an agent may be a complex object, it is natural to obtain redundant control by propagating privileges 

to more than one of its components (via control composition). There may be several processes distributed across 

several sites, able to implement the agent's policy. As long as a single process remains, the domain is under 

positive control. 

It !5 tempting to permit exactly one agent for each domain, using complex objects to obtain multiple agent 

processes. That restriction leads to a distinction between an agent object and the component processes that are 

authorized on its behalf. Propagation of this authority was a principal problem with one version of the provxtion 

system. Another reason to allow multiple agents for a domain is dynamic replacement of one agent with another. 

To maintain positive control, a new agent must be established before the old one is removed, requiring two agents at 

least momentarily 
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We can also show that an agcni musi be allowed to control multiple domains to preserve the abstraction of 

robust applications. Consider an autonomous, complex object as an agent and assume that agents may control only 

one domain. (This assumption was the major problem with the other earlier version of the protection system.) Call 

the object, 0, the domain it controls, ZT, and the domain of its internal structure, /. 

Figure 3.1. Robust, Opaque Agent 

By assumption, the subobjects of 0 controlling £ may not also control /. There must be a separate object to act as 

agent for /. Invoking the abstraction principle, autonomous agents should be allowed for /, since an individual 

process obviously must be allowed. If 0 is robust, its internal agent must be robust, therefore redundant, and thus 

an autonomous, complex object. This leads to infinite regress. If abstraction is to be applied uniformly, and robust 

control is to be possible, some agent must be allowed control of more than one domain. Specifically, it must be 

allowed control of itself, as well as an external domain. The interpretation of processes as their own agents leads to 

a similai a/gument: Some of the leaf processes of a complex agent must be agents for the domain it controls, as 

well as their own domains, because only processes can actually do work. 

We investigated several rules for propagating the privileges of an agent object to its components, and 

concluded that a complex agent's control behavior should be defined using the same tools as a complex object's 

communication behavior. Propagation rules similar to programming language scope rules do not allow empowering 

only selected components. The hierarchical direction of propagation leads to unnecessary technical complexity and 

restrictions, ard fails to preserve abstraction by distinguishing non-hierarchical structures from opaque subtrees. 

Positive control could be tested only by examining an entire subtree for live processes. Similarly, the full protection 

relation would not be manifes» from looking at local structures. 

3.U. Controllers 

Composition of communication in HPC provides a clean implementation of a complex agent's behavior by 

selected components, manifest relationships, dynamically and incrementally defij<eri paths, no hierarchical 

restriction, and the ability to debug at several levels of abstraction. The problems with hierarchical control 

propagation strongly suggest using the same tools to compose controL Agent processes are at one end of control 

paths and controllers were introduced to provide a explicit destination for such paths. 

There is no way to disconnect and reconnect an interface atomically. For an agent to replace itself with 

another, the new agent must be connected lo the controller before the old one is disconnected This requires either a 

multiplex interface on the controller, or a multicast interface somewhere along the path, preferably on the controller 

so that direct connections can be replaced. 
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A special rPC mechanism named control is used as the structure of simple controller views, and controller 

objects present an interface with the following partial specification. 

I rc.e: "HPC serv:ce", 
type: "rruiticast serv.ee", 
external: enc£c_-i, 
structure: nulticast 
[ role: "rPC cor.trciier", 

type: "rPC Ir.vccatior.s", 
external: exter.s: — , 
structure: centre. 

Control streams from the agents are merged into a single stream into the controller, and notifications from the 

controller are replicated for all the agents. Checking for positive control uses the mechanism for detection of end- 

to-end communication paths. 

Agent privileges propagate across domain boundaries along control paths. There is no limit on the number of 

agents that may be connected to a controller, either directly or as multicast components inside a directly connected 

agent Likewise, an object can have any number of control interfaces and can be agent to several domains. Activity 

on behalf of different domains is explicitly distinguished by using a separate interface for each stream of control 

messages. 

3.2. Preserving Invariants 

There are three ways protection relations can change. Agents associated with a domain can change, domain 

rights can change, and domains can be created and destroyed. Agents are defined by communication paths to 

controllers, and operauons on connections or processes may affect the agent relation as side effects, but special 

attention is required only when the last agent for a domain is removed (to ensure positive control) 

The direct effects of most HPC operations on the protection relations are minimal. Every view or other 

structural feature is always associated with one domain. When a feature is created or destroyed, rights to operate on 

it are added or removed from its domain. However, not all rights belong to a domain. Some types of access may 

require simultaneous access to multiple features, for example disclose requires access to both sides of a shell. A 

domain contains the right for a mulbple access only when all the features accessed are in the domain. 

Domain creation and destruction have more powerful effects. Only these operations affect the partitioning of 

features into domains. A feature is created in a well-defined domain, and it remains there until the domain is 

destroyed or a new domain is created around it Rights can be added to a domain only by creating new features or 

by destroying another domain   However, the effects of abstract process creation and destruction have the greatest 

erTcct on all forms of structure, including domains. 

There are three structural invariants thai may be violated by kj U/die and depose/abdicate. Firs, every 

process must be directly encapsulated within a domain boundary. Merging a simple domain with the neighboring 

domain above it violates this invariant by exposing a *raw" process. We cannot preclude mis situation by restricting 

depose to complex domains, because this would violate abstraction. However, by interpreting a process as its own 

controller, it will be removed automatically when its domain is destroyed. Destruction of the superior domain is 

prohibited by an asymmetric constraint introduced below. 
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Second, every domain must have one controller. When kill is extended to arbitrary subtrees for convenience, 

it is possible to remove a controller, without removing its entire domain. This could be avoided by doing without 

the convenient extension Alternatively, the operation could be restricted by an additional precondition. HPC 

preserves the invariant by destroying a domain as a side-effect of removing its controller. Any remaining contents 

are abdicated to a neighboring domain. 

The HPC system disunguishes the root space and acts as agent for a domain consisting of just that space. If a 

top-level domain merges with the root, HPC kills the subtree and removes its shell to restore the desired root 

structure. 

The naive definiuon of kill and die replaces the subtree on one side of a shell with a single empty space. The 

subtree that includes the root space also include all the top-level applications. Clearly, it should not be possible to 

destroy these from arbitrary places in the hierarchy. Similar considerations apply to depose. Repeated depositions 

would give an agent control over all process structure. 

Hierarchical organization makes strong assumptions about the control privileges of superior and inferior 

levels. Components are usually considered implementing modules chosen by, and subordinate to, their parent A 

superior level is expected to have the privileges to create and destroy inferiors, while inferiors are expected to have 

no control over superiors. 

A single asymmetric constraint based on the hierarchy avoids interference between top-level applications and 

disruption of a supenor domain by an inferior. An agent may depose or kin only inferior domains, and may 

abdicate or die only to the (unique) superior domain. Given this restriction, a single operation suffices for each of 

the depose/abdicate and kill/die pairs. These unified operations could be applied by agents on either side of a 

domain boundary to remove the inferior domain or subtree. (The HPC implementation uses such operations 

internally, but the pairs of distinct operations are retained in the application interface to increase the chances of 

detecting errors.) 

3.3. Terminal Policy 

An agent controls a domain when it has a logically complete and physically implemented communication path 

to the domain's controller. There are four ways to lose control of a dcniain. 

• An agent causes the domain to be destroyed 

The domain's agents are forcibly taken out of control by the (possibly distant) side-effects of another agent. 

• All paths from the controller terminate within the domain. 

Only a connected agent can make a new connection inside the domain, and an agent can be added only by making 

one. Accordingly, if all the paths to the controller are broken inside the domain, control has been permanently lost 

• None of the paths from the controller into other domains is complex. 

If some paths pass into other domains, but none are compile (there are no processes at their ends), control has been 

temporarily lost Agents for other domains might complete a path and restore control. 

• None of the complete paths from the controller are physically viable. 

When no logically connected agent process is physically reachable due to a partition, control has been temporarily 

lost  When the partition ends, control may be restored. 
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The HPC system normally will do nothing without an agent. This is a (trivial) null policy. It is convenient to 

specify a more complex terminal policy to be applied directly by the HPC system during temporary or permanent 

losses of control. Such policies sumild be very simple. 

Domain structure controls visibility as well as other access. Autonomous applications are opaque; their 

internal structure is completely hidden and complex applications can not be distinquished from single processes. 

This opacity is preserved by die and kill, because the internal structure is always removed before the domain is 

merged into its superior. However, depose removes control from the application and reveals its internal structure. 

Some applications may wish to hide their implementation under all circumstances. By specifying die as the 

terminal policy for permanent losses of control, an agent can ensure the privacy of its internal structure. 

Policies stronger than null, but less drastic than die, must be applied to avoid subversion of access control, 

consistency control, and similar user policies during a temporary loss of control. For example, orphaned 

transactions should not be allowed unsupervised interactions with other processes. The suspend policy stops all 

communication passing through the domain. Even communication between processes unaffected by the physical 

partition is halted by forcing all interfaces across the domain boundary to the suspended siate. (See Chapter 4.) 

Suspension lets component objects continue internal processing, but prevents any interactions between them. 

Giving control to another user agent is also a suitable response. The system could animate a new agent 

object and connect it to the controller, or abdicate, merging the domain with its parent in the hierarchy. Trying to 

create a new agent introduces complexity. When this policy is selected, the HPC system must record the desired 

agent parameters and a fallback policy, as it may be impossible to create the necessary agent processes, 

A complete terminal policy is a sequence of the basic policies null, suspend, abdicate, die, and animate 

(with parameters). The policy sequences for temporary and permanent losses of control are independently specüVd 

by a domain's agent. When a loss of control occurs, the HPC system applies each basic policy in turn until one 

succeeds. (The first four policies cannot fail.) A default policy is applied if the sequence is exhausted. The defaults 

are abdicate for permanent losses of control, and suspend for temporary losses 

The HPC system will not accept permanent responsibility for any domain, so null or suspend are not 

permitted in the terminal policies for permanent losses of control. However, any basic policy is permitted for 

temporary losses. 

3.4. Policy Filters 

Every control message requesting a legal operabon that arrives at a controller is acted on. The HPC 

protection mechanism does not distinguish among agents, or among the legal operations, and therefore provides 

nothing like "read only" or "restricted" access to a domain. However, arbitrarily complex and sophisticaicd access 

control policies can be implemented without extending the basic mechanism 

Because command invocations are explicitly modelled as messages in a stream, they can be monitored and 

filtered. A trusted policy fitter agent can be interposed between the controller and i restricted agent with limited 

privileges. (Figure 3.2.) It forwards authorized control messages from the partially trusted agent to the controller, 

and rejects unauthorized invocations. Notifications from the controller arc forwarded in the opposite direction 
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Figure 3.2. Policy Filler 

A policy filter presents the same abstract control interface as a controller, although it does not have the same 

intrinsic robustness and availability properties. Controllers are placeholders for the KPC system and can be handled 

specially, while policy filters are ordinary objects and can fail independently of the HPC system. A reliable filter 

must be a complex object with internal replication, multiplexed delivery of incoming messages, and coordinaQon 

between components to avoid multiple deliveries of the same operation to the controller. 

Read-only access is easily provided by authorizing only inquire operations More general forms of access 

control require checking the arguments of an invocation against a list of accessible structure. For example, it might 

be desirable to restrict an agent to managing the connections among a specific group of interfaces. The policy filter 

to enforce this restriction would forward those invocations whose arguments are on the specific list, and reject any 

others. The controller will reject illegal operations, so the policy filter doesn't need to make other explicit checks. 

Only notifications concerning the specified interfaces would be passed back to the restricted agent. 

Policy filters need not tell the truth. For example, inquire can provide information about the parent and 

children of an interface, some of which might be inaccessible. A stricter version of the fil'er discussed above would 

tell the restricted agent only what it needs tc know by modifying notification to delete references to inaccessible 
interfaces 

A policy filter w>. case all references 10 itself from nouficaüons, report all connections to itself as 

connections directly to the controller, and translate all operations involving me. Controller into operations on itself. 

This technique pro v6c, a transparent iUus on of unaltered control, and permr; user-level extensions to the HPC 

system. Most generally, a (hidden) polky filter can translate abstractions of new structures and operations into 

concrete HPC futures the same way the HPC system translates abstract hierarchies into concrete host recesses and 

media The new abstractions need not have any strong relation to HPC at all 

A journal of invocation and their sources is one useful extension that require, no change to the HPC 

interface A pur*a! would allow transparent debugging and enforcement of audit trails An extension that involves 

only a small change in the system interface would augment the host idenuners given to animate {>his host and 

specific host X) w,th Medusa-style location specifiers like same host as process f ^ far from process />, and mar 

process F but dfereni has: (OusSl j. TV hidden policy filler would evaluate the arguments of extended «oim.te 

calls, perhaps with the help of a resource management utiUty. and then invoke the basic HPC animate operation 

with specific hosts  All other control messages would be forwarded without char.-? 
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Hidder policy fillers are the natural interface between the HPC system and important administrative functions 

and access control features outside the system, such as native protection systems, charging, resource quotas, and 

classes of service. While the HPC system has no concept of authentication or user identity, and will simply report 

process creation failed", an extended system could add additional properties such as (identity), new operations such 

as (login as user X), and extended repon-ng ("failed due to insufficient funds/privileges/resources"). 

The flexibility and power of policy filters is available only when the basic interface to system facilities can be 

intercepted and transparently replaced. Most system do not make this possible. The Accent operating system is one 

exception. An Accent kernel port is a system interface similar to the HPC controller, but interception must take 

place when the partially trusted process is created, or depend on that process to cooperate when reconfiguring. 

3.5. Classical Protection Issues 

Security policies are usually divided into access control policies and information control policies, and there 

are classical questions concerning the ability of a protection model to express and enforce them. 

Because process state and the content of interprocess communication are outside the HPC system, HPC can 

not address the basic information control issues, which are modification and spoofing (how change to data is 

controlled), and retention and confinement (how propagation of data is controlled). 

The primary' access control issues are propagation and conservation (how privileges sre transferred), 

revocation (how privileges are removed), and mutual suspicion and amplification (how two agents can grant each 

other only selective access). These problems have been examined most closely in protection systems that allow 

transfer of rights between domains (e.g., capability systems). The KPC domain system has quite differem 

properties, because the rights in a domain are fixed, but access can be propagated and filtered without affecting the 

domains. The rights relation is modified in capability systems, while the agent relation is modified in FTC. 

Amplification of rights is an important issue in capability systems where the owner of an object instance may 

not operate on it, while the manager for the object type does not have any rights for the instance. vvhen the owner 

passes the object to its manager as a parameter, the manager is temporarily granted full rights to the object 

Amplification has no analog in HPC because objects are never passed as parameters, rights are r ever transferred 

between domains, and there are no user-defined types. 

HPC privileges at any moment are determined by the composition of agents and controllers. Connections and 

policy filters provide explicit propagation, mutual suspicion through filtering, and immediate revocation of access by 

disconnecting an agent. However, there is no way to restrict a partially trusted agent from propagating its current 

access further. This is consistent with the basic structuring principles, A strong conservation facility would violate 

absaraction by preventing a complex agent from implementing its control services any way it chooses. 
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4. Communication Structure 

Connections and interfaces are the HFC structural features that tie processes and objects together into useful 

applications. Explicit communication is the only form of direct infraction between processes in HPC. Interfaces 

provide abstract destinations so that a process does not need to know the location or identity of its partners in 

communication, and the actual destinations are determined by chains of connections joined end-io-end at interfaces. 

Because the possible patterns of interaction are expressed and limited by the available communication 

structures, H?C extends the intuitive one-to-one channels (simple interfaces) to multiple parallel channels (bundle 

and multiplex interfaces), aid to many-to-many communication patterns (multicast interfaces). To illustrate the rich 

patterns that HPC can describe, we begin this Chapter an HPC specification for a replicated remote procedure call 

system taken from the literature. 

Section 4.2 rigorously defines the significant communication paths, replacing the intuition of sequences of 

connections and incorporating the effects of complex interfaces. Section 4.3 presents the view properties intended 

for use by agents to manage structure in their domains. 

There are several notable interactions between apparently independent features of communication structure, 

abstraction, and IPC implementations. For example, the information hiding provided by shell abstractions can be 

partially defeated by interface properties, and the hierarchical interpretation of nested objects is poor for labelling 

the direction of communication fiou. Multicasting offers yet another set of problems. These issues are discussed in 

Section 4.4. 

Section 4.5 concludes with a disection of communication into three functions that are quite distinct in HPC, 

and a comparison with the ISO reference model. 

4.1. Example: Circus Replicated RPC 

The Circus system extends the Courier RPC mechanism to groups of replicated processes [Coo84]. Circus 

will serve as a good demonstration of the expressive power of communication structure and hierarchical process 

composition in HPC. 

In Circus terminology, a replicated group of processes is called a troupe. All members of a troupe are 

functionally equivalent. They may run at differuif speeds, and have different internal states, but must execute the 

same sequence of RPC operations. An RPC call from any member of a client troupe is replicated to every member 

of the server troupe. Similarly, a reply is replicated to all of the callers. Code in the Circus RPC library counts the 

number of requests or replies and applies various redundancy policies, like majority voting or quorum consensus, to 

decide :r a valid replicated call has taken place. A special troupe, called the ringmaster, monitors the number of 

members in each troupe, which may vary dynamically, and makes this information available to the RPC library so it 

can check for the required degree of redundancy. 

The Circus communication patron can be expressed using a combination of multiplex and multicast 

interfaces, and troupes can be composed using a single connection. Consider Figure 4.1, which show* a single 

client connected to a multiplex server. Partial specificaüons far üV client and server interfaces are: 
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rcle:  "rurctior s:.jr", 
s.rjcjrc:  si~yle Copier cl:er 

struct-re: nu.ti?;ev 
■  rcle: "furrier r:.r/", 

Figure 4.1. Simple Client and Server 

Circus irouper, are modeled as HPC objects, theii member processes are simple objects within the troupe. The 

replication of RPC calls requires one minor change to the specification of individual troupe members. The RPC 

library expects sequences of calls rather than single calls, so we will use the type «plicaned-cwrier rather than 

courier. The relevant specification of client troupe member interfaces is thus: 

( role: "functkn stub". 
itrjeture: siirple replicatec-Courier client 

i 

For server troupe members it is. 

[ structure: nulciplex 
[ role: "function entry", 

structure: siitpie rep^catea-Ccurier server 
] 

] 

Each troupe replicates communication for each of its members, so the interfaces for each troupe should be 

multicast. The interface for the overall client troupe is specified as: 

{ role: "trtcpe stub", 
structure: multicast 
( rcie: "function stub", 

structure: sirple »plicated-Courier client. 
) 

1 

Each server component must be compatible with this client structure, and the server must multiplex its service to 

many clients, so the specification for Ute enure serve« troup interface is a multiplexed, multicast RPC interface. 

I structure: wultiplex 
I role: "troupe entry", 

structure: Multicast 
[ role: "function »try", 

structure: sirpie rephcated-Courie.' server 

When a new client is added to the server, components are created on both sides of the saver's main multiplex 

interface   (These components arc mulucast views.) The manager responsible for the internal structure of the serwex 



44 

troupe creates one component of the internal multicast view for each individual server process. (These components 

are replicated RPC views.) It then lakes each of the individual server processes in lurr, and creates a new replicated 

RPC component for its main multiplex interface. Connections arc then created between the cx'cmal RPC views of 

the server processes and the internal RPC views of the troupe. 

A server troupe with two members and a client troupe with three members arc illustrated in Figure 4.2. The 

troupes in this Figure have the same relationship as the individual objects in Figure 4.1. In both cases, a multiplexed 

server with components for three clients is shown servicing one. The only difference is that the client troupe 

interface is a multicast RPC interface, instead of a simple RPC interface, and the server is, of course, compatible. 

The individual cliem and server processes have the same interfaces as before, except for the expected replication of 

calls. 

Client Troupe 

Client 

Client \ 

Client i/f 

Server Troupe 

H 

i 

XA 
1 Server 

rw 

1       \ 
(Server 

Figure 4.2. Circus Replicated Client and Server 

Using HPC multiplex and multicast views, Circus troupes can be created using almost unmodified 

conventional clients and servers. Any degree of replication within a troupe is supported, and grea'er flexibility is 

possible than in the original Circus structure, because server troupes can chose to assign differing sets of server 

processes to service different clients, by controlling the server processes connected to a given internal multicast 
view. 

Since the ringmaster is just a trcupe, albeit a special one, the same communication structures could be used to 

communicate between troupe members and the ringmaster. A typical cUent/server relationship (especially for 

global services like the ringmaster) would be implemented using ttese multiplex and multicast interfaces on splices 

across the hierarchy, rather than through connections between clients and the server. 

4.2. Significant Communication Paths 

Earlier presentation of communication paths leaned heavily on intuition to simplify discussion. At the 

expense of some additional terminology, we present heic the remaining details. The most important detail is the 

recursive definition of end-to-end chains, which are the only communication paths where action at one end can be 

reflected at the other. The concepts of cndpomt/exiension and of corresponding components arc needed for this 
crucial definition. 
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4.2.1, Endpoints and Extensions 

The views at the ends'* of a communication path, and those 'in the middle" are distinct. The send operation 

can be sensibly applied to the former, while connect makes sense for the latter. We call them endpoint and 

extension views, respectively. Every' view is created as one or the other, and it retains tha: property throughout its 

lifetime. The fixed distinction between endpoints and extensions improves abstraction, simplifies the system 

implementation, and eliminates a class of inconsis* ncies due to network partition. 

Extensions are related to endpoints somewhat the same way opaque abstract data types are related to their 

concrete representations Primitive behaviors are implemented at endpoints in terms of message contents, but the 

behaviors are composed and combined at extensions without access to the internal contents of the communication. 

Specifically, operations like send and receive, and the HPC primitives new and delete, can be invoked only on 

endpoints, while connect and dtsconaect can be invoked only on extensions. 

Additionally, while both endpoints and extensions may be complex (with component structures), component 

views are elaborated only at endpoints. The hidden component structure of an endpoint is said to be masked. 

Consider the Circus server interface given earlier in more detail. (Figure 4.2.) 

[ internal: endxir.t, 
external: endpemt, 
structure: rruitiplex 
[ internal: endpeirt, 

exterral: exter.s;cr, 
structure: nulticas- 
[ internal: extensior., 

external: rraskec, 
structure: surple repiicated-Courier serwr 

i 
J 

] 

There are three levels to this interface tree structure. At the top level, the multiplex views on both sides of the shell 

are endpoints, and their components are visible. Each of these components is a multicast view, but the external 

views are extensions while the internal ones are endpoints. On the outside, this is the lowest accessible level of the 

view hierarchy because the third level structure is masked, while inside, the third layer is available as simple 

extensions of the multicast views. 

Besides the abstraction benefits, allowing messages or procedure calls only at views with certain fixed 

properties eliminates the need to implement media for all communication paths. Oily a subset of paths terminate in 

two simple endpoints, and only this subset requires the manipulation of physical media. In fact, we go further and 

implement media only for paths where both endpoints are internal views of real processes, and when both processes 

have expressed an interest in actually using their endpoints. This allows the HI'C system tn prepare the transport 

media used by a given process at convenient times. 

It also means that a complex object can no* send a message directly, enforcing passive hierarchies. (An agent 

could perfectly well send on any interface in its domain without this restriction.) All communication is performed 

by simple processes and the connections inside a complex object determine which subobjects, tnd ultimately 

processes, communicate on its behalf. 

A chain would implicitly multicast to all points along it without the restriction of deuverv to endpoints. Hie 

situation for ^ending is analogous. Since most paths are one to-one. the distinction between endpoints and 

extensions avoids unwanted generality  (and implementation complexity), requiring explicit introduction of 
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multicasting when n is desired. 

Finally, a class of possible inconsistency due to network partition is eliminated, and the reconciliation rules 

are simplified accordingly. Because the endpoini/extension property is fixed for a given view, there will never be a 

conflict between us use with abstract connections (extension) or with transport media (endpoints). All 

inconsistencies in paths can be reduced to a single type of illegal structure: multiple connections to a single view. 

4.2.2. Implicit New and Corresponding Components 

Paths involving complex interfaces represent several component paths, and it is important to keep track of 

which component views at one end are associated with which component views on the other. Bundles have a fixed 

number of components, and they are associated in the obvious way. Multicast interfaces have dynamically created 

components, but they all represent the same communication channel. However, each multiplex component 

represents a distinct channel and it is necessary to identify the other end of the channel. 

It would be pointless for the new primitive to create a unique, one-ended channel. There would never be any 

way to communicate. Instead, under certain circumstances new creates views for both ends of the new channel. 

When two multiplex endpoints are joined by a complete path, a new component is created for both endpoints. 

(Because of multicasting, components may be created for more than one remote multiplex endpoint.) This is one of 

the two cases where an HPC primitive can have a significant non-local effect. (The other is splicing to a 

promiscuous sen ice.) The delete primitive affects only its argument. 

We can now define the useful notion of corresponding components. Correspondence for bundle views is 

determined by the fixed order of the component structures; the nth component of one bundle corresponds to the nth 

component of another. Given two compatible multicast views, all components of one correspond to all components 

of the other. Correspondence for multiplex views depends on the order in which the component views were created; 

a multicast component corresponds to just those components that were created by the same invocation of new. 

4.2 J. Peers and Chains 

Vi«*ws that have been bound together as a link in a communication path are called peers. There are links 

through connections and links through shell boundaries. Views bound by a connection are called public peers, since 

the binding is manifest whenever the views are visible. Views bound through shell boundaries arc called private 

peers, because the binding is not always known, even to the owners of the views, due to protection and visibility 

boundaries. A communication path, or chain, is a sequence of alternating private and public peers. 

End-to-end chains, which terminate at endpoints. are the most important When their structure is simple, they 

must be implemented with transport media. When their structure is multiplex, they allow implicit creation of 

components We often call the terminal pair of endpoints end-to-end peers. In Figure 4.3 A and D are endpoints, 

and B and C are connected extensions. <A, B> and <C. D> arc private peers, while <B, C> are public peers. The 

only end-io-cnd peers arc <A, D> . which arc neither private nor public peers. 
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A Bh— C DJ 

Figure 4.3. Simple Chain 

Public peers are defined only by direct connections, but private peers are defined by a recurrence involving 

interfaces, chains, and corresponding components. In the base case, the two halves of an interface or complete 

splice are private peers. In the recursion step, corresponding components of end-to-end peers are private peers. 

This is another significant feature of end-to-end chains: private peers can cross an arbitrary number of shell 

boundaries. Figure 4.4 illustrates how these rules interact. Interfaces <A,B> , <C,D> , <£, F> , and <G, H> have 

relevant structure 

[ internal: enccoini, 
external: extension 
structure: foe 

} 

•Interfaces <Af, A;> , and «3, P> have structure 

( internal: extension, 
external: crxfroint, 
structure: bundle 
{ internal: iTeskec. 

external: extension, 
structure: foe 

[ internal: rraskec. 
3Xte*.T~l: extension, 
structure: fco 

3 
i 

By the base case, each interface defines a set of private peers. The public (conntcted) peers are <B, /> , <D, K> , 

<J, E> ,<L,G> , and <A*. 0> . By definition, <M, N, Ot P> is an end-to-end chain, and therefore </, /> and <K, l> 

are private peers. From this, we obtain <A, B, /, J, E, F> and <C, 0% K, L, G, H> as additional end-to^end chains. If 

foo is t simple structure, the last two chains are the only ones that might require implementation. 

|A B E F] 

M N   0 P 

|c D1 G H 

Figure 4.4. Complex Chain 



4S 

4.2.4. Multiple End-to-End Peers and Chains 

The semantics of one-to-one communication patterns arc straightforward. An operation like send, for simple 

views, or new. for complex ones, invoked at an endpoint of an end-to-end chain has the appropriate effcet at the 

other end However. HPC multicasting allows both multiple end-to-end peers (Figure 4.5) and multiple cnd-?.G-cnd 

chains between a single pair of peers (Figure 4.6). 

Figure 4.5. Multiple End-to-End Peers 

Figure 4.6. Multiple End-to-End Chains 

Tliis raises a very important question. Is communication associated with peers or chains? In HPC, chains 

define connectivity, not implementation, so one copy of a message should be delivered to each end-io-end peer, 

regardless of the number of paths to a peer (and subject to the semantics of the communication medium). Similarly 

for multiplex end-to-end chains, only one new component is created for each remote peer no matter how redundant 

the paths are. 

The semantics of multiple peers and chains can be summarized as: 

(1) Redundant chains between end-to-end peers arc equivalent to a single chain 

(2) An operation at an endpoint is reflected, in a mechanism-dependent way, at each of its end-to-end peers. 

(3) Operations at multiple end-to-end peers are reflected as multiple operations from a single peer. 

43. Management Properties 

Views have some addiuona! properties that are maintained by the HPC system for the use of agents. These 

arc staue role and type labels, useful for identification, and a dynamic indication of reachability, useful for 

triggering application-level flow control and authentication. In general, however, an independent property service 

should make these properties available to clients, not the HPC system. 
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4.3.1. Role and Type 

In addiuon to its structure (simple, bundle, etc), each view has a fixed role and type. Roles and types are 

arbitrary, uninterpreted strings of characters. Type describes the data representation or application-level protocol 

expected at an interface. Typical types would be bytestream, r--c-jwja:e, and self-descricirc-ca^aarar. For complex 

interfaces, type generally describes the constraints or interactions between the component streams. 

Role defines the abstract behavior presented or expected at an interface. The UNIX conventions of stdir., 

stocut, and siaerr are well-known roles. The Accent kernel, pert is another standard role for a communication 

interface. 

An increasingly common configuration is: 

I  rc.e: "xjtsrir&l erulater", 
t>pe:  "X wjYr>w c.:er.t", 
structure: simple TCF/IP in-cut 

The complete description of the conventional UNIX interface to a process is: 

; ro>: "'Jtry. stcLc", 
type: "stdic bytestreamr", 
internal: encpcir.t, 
external: enqpoir.t, 
structure: bundle 
! role: "stdir", 

type: "byttstrea""", 
internal: erepcr.:, 
external: extension, 
structure: simple UKIX-stream in 

) 
' role: "stdxr:", 
type: "Dytestrear", 
internal: enopcir.t, 
external •■ extension. 
itruccure: simple UNIX-stream out 

| role: "staerr" 
type: "bytestrear", 
internal: enepe ..-.t, 
external: extern:or., 
structur*: simple UKIX-stream out 

] 

) ' 

Role and type properties provide a general mechanism for user <Jefined semantic interpretation of interfaces. 

Each agen' is free to interpret labels as it sees fit and is nGt required to understand any particular label. Simple 

agents will check labels for conventional compatibility (e.g., role stdin connected to stdout). Sophisticated agents 

might interpose protocol or representation translation objects between views that are not immediately compatible 

(e.g., type VAX-float-«.r**r connected through a conversion process to mz-tio*t-«re*m). 

A software development system that supports strong typing and separate compilation could generate distinct 

roles for each interface and use only agents that validate roles against a database before establishing connections 

bet wee l objects Another good use for roles and separate interfaces would be to distinguish between the various 

entry points of an object accepting remote procedure calls or Ada-style rendezvous. A good development system 

can exploit the type information ro make available at runtime a detailed description of the language and runtime 

dependent message types, remote procedure call arguments and return types, and so forth. This can be used by 
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agenLs to help ensure the sensible interconnection of objects. Because interface type labels specify the proper 

interpretation of data transmitted through an interface, they are valuable in monitoring and debugging. Type 

information can make the difference between low-level packet traces and raw dumps and symbolic debugging of 

communicated data in a format relevant to the application. 

4.3.2. Liveness 

Usually an agent can not control or even trace a complete communication path, but even the most rudimentary 

control techniques require some indication that two processes are in contact with one another and remain so. A 

dynamic view property called liveness provides this indication based on viable endpoints, which are simple 

endpoints backed up by transport media and complex endpoints in complex domains. 

While a views structure is fixed, its liveness changes to reflect the communication paths that pass through the 

view. A viable endpoint is reachable through any alive view. When a viable endpoim is alive, a useful end-to-end 

chain exists. Flow control and (re)authentication procedures can be triggered by changes in liveness. 

Liveness is computed by examining the chains that start with a view and continue with its private peers. The 

view is alive if at least one of these chains terminates in a viable endpoint, it is dead if none of these chains 

terminates in a viable endpoint, and it is suspended if neither of these two liveness values can be confirmed due to a 

nerwork partition. 

43.3. General Properties 

There is no reason arbitrary properties couldn't be associated with interfaces, letting convention determine the 

significance of role and type. For example, the X window system incorporates a general facility for associating 

properties with windows. However, many things can have properties, not just HPC views or X windows. Property 

registration is a problem that should be solved once, not repeatedly, and that suggests a general context or property 

service, independent of the HPC agent or other services. 

Role, type, and more general properties can be registered by clients without involving the HPC system. This 

applies to all static and many dynamic properties, most of which are uninterpreted by the HPC system. However, 

liveness is an example of a property with a non-trivial definition, interpreted by HPC, and with abstraction and 

protection boundaries that deny any single client access to all the data needed to compute it Such properties should 

be computed by the HPC system, but made available to clients through the property service. 

Expedient compromises develop in the absence of a property service. On one hand, a system that depends on 

a nonexistent service is not very useful, therefore the X developers provided the service themselves. On the other 

hand, a general property service is peripheral to the issues this dissertation is intended to address. Only some 

properties are needed to tell otherwise anonymous views apart So, just two specific properties were built into HPC. 

Properties arc useful for objects as well as views. Consider UNIX filter processes, all with the same 

conventional interfaces and radically different behaviors. Rote or a similar property would identify tte function of a 

given filler. For simple objects (processes), several properties would be useful, including the physical location of 

the process, she image file from which it was animated, and its initial arguments. 

The lack of object properties is especially acute during maintenance, as opposed to construction. As it stands. 

all processes arc indisünguishablc after animation. A post mortem examination of a failed process shows only an 
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empty object. There is no record of the image that ran in the object, or what its parameters were, making it difficult 

to know how to repajr the fajlure. We made no provision for recording properties of objects. This is arguably a 

significant oversight, but the correct soluuon is an independent property service not specific to HPC. 

4.4. Discussion 

Composiuon in HPC is expressed by its communication structures. The features of connections and interfaces 

have some unexpected interactions with each other, with the abstraction expressed by nested objects, with the 

protection system, with partitioning due 10 distribution, and with the semantics of real EPC implementations. We 

highlight the most important such interactions here. 

4.4.1. Orientation 

Until now, we have not been careful about specifying the orientation of simple structures. Surprisingly, there 

is no consistent way to label an object's interfaces such that both the description of flow relative to the hierarchical 

object, and the description of flow relative to the views, are intuitive and independent of context. This is a subtle 

issue that may lead to complex or error-prone programming. There are three related issues to clarify: the effect of 

the hierarchy on orientations, the flow direction specified by an orientation, and the side of an interface affected by 

an orientation. 

!f an orientation label is applied relaive to an object, the labelling of Figure 4.7 results. These labels are 

appropnate in the hierarchical interpretation of process structure, and initially appear to be the right ones to u*e. 

However, Figure 4.7 shows that in is sometimes compatible with in and other times with out. Views can not be 

checked for complementary orientations without considering their relative positions in the hierarchy in addition to 

their labels. Worse, there is no local indication of the direction of communication flow. (Communicaiion between 

an in and an out may flow in either direction, depending upon context.) 

Sender Receiver 

out out out out in in out out in in 

Figure 4.7. Orientation Relative to Objects 

Automatic reconciliation of inconsistencies in the hierarchy due to network partitions sometimes requires 

taking a shell's parent and making it a sibling. This operation (Section 6.2.3) would be unnecessarily complicated 

by the need to reorient its interfaces to preserve complementary pairs of views. 

If we apply onenuüon labels based only on the flow of communication and independent of the hierarchy, we 

have two more labellings as shown in Figures 4.8 and 4.9. The first labelling is appropriate for describing the flow 

rclauvc to the external views of an object, while the second is appropriate for describing the flow from the internal 



pomi of view. It is clear thai neither labelling intuitively describes the flow with respect to the other point of view. 

(In all three labellmgs, the actual flow of commumcauon is the same.) 

1 
1 

r "i 
Sender 

[ 
Receive' 

—i 

I 

in out in out in out in out in out 

Figure 4.8. Orientation Relative to External Views 

Sender 
f** 

Receiver 

out in out in out in out in out in 

Figure 4.9. Orientation Relative to Internal Views 

We select the labelling of Figure 4.8 because it provides the expected labels for the (external) abstractions 

presented by objects. The views of an interface (indeed, any pair of peers) have complementary orientations, 

therefore only the orientation of the external side of an interface must be given explicitly in an interface structure. 

Confusion over the orientations of internal views is possible, but there is a consistent rule governing communication 

flow. Messages flow out ofol a view where receives are performed, and into views where sends are performed. For 

RPC mechanisms where the orientations are client and server, a client process makes calls on a «rver view, while 

the server process accepts and replies on a die* view. 

4.4.2. Endpoint/Extension Promotion 

The endpoint/extension distinction has several attractive features, but it partially negates the information 

hiding provided by domain boundaries. We want to treat single processes and opaque complex objects 

indistinguishably. However, we aiso don't want to send on simple endpoints anywhere except inside a process, and 

we don't want to support connections and interfaces inside a process, at least not any further than its boundary to the 

outside world. 

These are conflicting desires If a complex object is animated inside a shell with a simple endpomi. it can't 

use that interface. If a simple object (process) is animated inside a shell with an extension of any structure, it can't 

use that interface. Conversely in either case, if the interface is used, the simplicity or complexity of the object can 
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be determined from outside. The creator of an object should not know the complcxi;» L>; U- implcmentauon or how 

il manages ILS imcmal communications, cither before or after the object is created 

Our solution is to allow an object to promote its internal views to either cndpoinb: or extensions, as desired. 

Promotion aetualU replaces the enure interface; when the object dies or is killed, the interna1 \ ,ews do not revert to 

the original structure The internal components of a complex view arc created or destroyed (not masked) as 

necessary to match the change in structure. 

To eliminate some inconsistencies that could arise during network partition.,, the domain boundary shell and 

all ILS interfaces must be replaced whenever an interface is promoted. This preserves the in variance of a shell's 

interfaces, which is an important assumption of the conflict '•«solution procedures To reduce the possible conflicts 

further, promotion is only allowed dunng the animation and investure operations This is a simplifying feature, 

rather than a cnucal one 

4.4.3. Taps 

Corresponding components are easily defined, but the tap problem illustrates a limitation with multiplex 

components. A valuable feature of dynamic communication structure is the ability to insert a monitoring process, or 

tap, at any point along a communication path to debug or filter the contents of the communication. Figure 4.10 

illustrates the insertion and removal of a tap in the middle of a connection. 

Insert 
 >- \—E)—[ i 

Remove 

Figure 4,10. Tap on a Path 

Ignoring changes in liveness. it is possible to insert and remove a up transparently at any lime on any 

structure except a multiplex interface. For multiplex structures, the up must be inserted before a component path to 

be monitored is created and must remain in place uniil the list path has been destroyed. 

For simple structures, ups forward communication from one side to the other. More generally, taps intercept 

the results of endpotni operations from one side and reinvoke the operations on the other. Of the complex 

structures, only new on a multiplex endpoint has an effect at its end-to-end peer. A multiplex up detects the 

automatic creation of a new component on one side, and invoke* m» on the other side. This in turn creates a 

component at the ultimate end of the intercepted path The sap remembers which components on each side match 

up as pans of an intercepted component path, so that communication on the components can be properly forwarded 
through the up 

The problem comes in removing the up The obvious approach of disconnecting the up and recsublishing 

the intercepted connection won't work because of the multiplex component correspondence rule. New views 

created while the up is in place only have corresponding components in the tap's interface. When the up is 

removed those views are permanently dead   Similarly, component paths esublisncd before the up can not be 
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monitored (except at the or.ginal corresponding components.) 

We did not attempt a solution to this problem Definition of corresponding component pairs by agents is a 

possibility worth investigation.  Ideally, a solution to the tap problem would aiso address the cycle-avoiding and 

authentication problems discussed belou. 

4.4.4. Reflectors 

Besides the multiple paths discussed earlier, multicasting can build some non-obvious communication 

patterns. Reflectors are one of these. Reflectors allow a chain to pass through the same view twice, once in each 

direction. (Figure 4.11.) 

Figure 4.11. Reflecting Path 

In order to connect trie components of the multicast endpoint to each other, they (and all their component 

structu/fcs) must have a neutral orientation, such as in-out. This neutrality necessarily applies to the entire chain due 

to the compatibility restriction. Mechanisms lacking the ability to talk to themselves, like RJPC, can not have neutral 

orientations. 

Since reflection is just a specific consequence of multicasting, it has all the usual effects on component 

structures. Suppose an endpoint is one of its own end-to-end peer? due to reflection. If it is a multiplex view, then a 

rww operation on it will create two components. If it is multicast, communication through any of its components will 

be reflected through all of its components. If it is a bundle, the paths through each of its components will be 

individually reflected. 

4,4.5. Cycles 

A trivial cycle is shown in Figure 4.12. It has no endpoints and represents no path between processes. 

However, with multicasting, cycles can be introduced in the middle of end-to-end chains, as shown in Figure 4.13. 

For every such cham, there will be an infinite number of others, each with one more rcpetiuon of the cycle. 



Figure 4.12. Trivul Cycle 

Figure 4.13. Complex Cycle due to Muliicasiing 

These repeiiiions have no pathological effects on the HPC model, because redundant chains have the effect of 

a single chain. However, cycles, reflectors and multiple paths require a subtle algorithm to compute end-to-end 

chains without infinite looping or expensive checks for overlapping cycles and paths. 

The prohibition of cycles might be suggested to simplify the system, because a system without them can 

express all the same useful communication patterns, but there is no obvious benefit to prohibiting cycles. First, it is 

the agent's job, not the system's, to determine which chains arc sensible and which are foolish. From the system's 

perspective, the work required to detect cycles in order to forbid them is not less than the work needed to detect and 

ignore them. From the agent's perspective, liveness provides a rudimentary protection against waiting indefinitely 

for communication from useless channels. It must be admitted, however, that an agent requires more information to 

make a truly informed choice. 

Forbidding cycles actually has some undesirable consequences. A cycle is detected only when the last link is 

created, typically due to a connect. Responsibility for the cycle (and the error) is distributed, but blame is not 

There is no way to decide which agent should best take action, and the error is detected arbitrarily long after 

construct«» of the cycle begins. This is aggravated by network partitioning. During a partition the prohibition 

against cycles can not be guaranteed. When a cycle is detected upon network merger, it must be reported to an 

agent for removal However, there is no obvious "last" link in the cycle and therefore no obvious agent to hold 

responsible Yet removal of ihc cycle must be enforced (else cycles really art allowed). Most inconsistencies of 

this type are forced to a safe state by suspending all their views until an agent resolves the conflict, but that 

technique has no significance for cycles. 

Forbidding cycles also means that operations like connecting two views are sometimes illegal based on 

information thai is not available to the concerned agents The cycle can involve masked structure that is not even 

acerbic ai the views in question This problem could be avoided if agents had access to Connectivity information 

•.hai idcnuficd views at the end of (partial) chain« in addtuon to the anonymous liveness property 
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4.4.6. Authentication 

Man> access control policies are a function of a requester's identity as well as the type 01 access. There are 

two extreme views concerning the authentication of a communicating peer. The trusting view is that every' 

connection has been made correctly. Every interface of z complex objec' is connected to a child that is authorized 

to receive or provide the corresponding service. As a result, processes are always put in contact with authorized 

peers. Authentication is a de facto property of process structure. Many hosts take this view regarding their machine 

console. Anyone at the console has privileges by definition. 

The suspicious view is that ar- end-to-end peer could be anything at all. Through error or malice, every 

connection might be to an unauthorized peer and authentication must be carried out whenever a new peer is 

established. Most hosts take this view regarding their terminals. User ide:»tity must be established for each session. 

Authentication procedures, encryption, and related topics are outside the scope of HPC, but we liave a clear 

obligation to provide a mechanism to inform suspicious objects when a peer is (re)established and must be 

authenticated. Failing to end a session when a user loses telecommunication contact is a common security problem. 

The next user to establish contact with die host gains the privileges of the previous user. 

View liveness is one mechanism for reporting changes in connected peers. For one-to-one chains, HPC 

guarantees that an endpoint will make a transition to the dead state whenever its end-to-end peer changes. liveness 

can be too conservative to preserve abstraction, because a complex objec«. can not change its internal 

implementation without triggering reauthentication. In principle, we should authenticate an abstract object, not the 

collection of leaf processes that happen to implement its services. If the object is misted to provide the appropriate 

service, it should be misted to manage its implementation. 

In other cases, liveness is too weak for safety, because multicast interfaces allow the replacement of an 

authentication peer with an unauthenticated one without signalling a change in liveness, and because the addition of 

(unauthorized) peers after the first live peer is not reported. 

In a trusting environment, the liveness property could be supplemented by notifying objects when their 

immediate external connections change. Neighboring objects could reauthenucate at the appropriate level of 

abstraction. (This mechanism would have to reflect changes in the degree of multicasting, as well.) In a suspicious 

system, one could record the partial chains reachable through each view. By associating an authenticated peer with 

a particular view on a particular chain (thus some specific object), substitution or insertion of an unauthenticated 

object on the near side of the selected view can be detected, while ignoring changes on the far side (inside the 

object). 

Recording chains can be used to avoid cycles and address the lap problem, as well as to trigger authentication. 

Cycles can be detected or avoided by checking connected views for membership in each other's chains. If 

multiplex corresponding components are made explicit, some form of user selection of correspondence to address 

the tap problem becomes possible. Unfortunately, providing so much information about arbitrarily remote process 

structure to facilitate one aspect of security is difficult to reconcile with abstraction, information hiding, and access 

control. An adequate solution to these problems remains to be found 
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4.4.7. Multicasting Semantics 

HPC demonstrates thai essential communication patterns can be expressed structurally. Multicasting is 

critical for many applications, and it has been easily integrated into the HPC model as a structural feature, rather 

than an addressing or special transport mechanism. Unfortunately, even simple uses of multicasting may not be 

compatible with the semantics of the underlying IPC mechanism. 

[ structure: rrultleast 
! structure:  SL"rpic 73?/IF in-ox 

] 

Protocols such as TCP/IP designed for reliable data streams between two processes make very strong assumptions 

about exactly one set of pser processes. The HPC system can prohibit such mechanisms at the leaves of multicast 

trees, or do something more complex »han create a single transport medium to implement the effect of multicasting. 

For TCP/IP, a central redistribution process is introduced to replicate and merge individual TCP streams. This 

provides a useful service, but it certainly doesn't provide the general semantics of reliable multiple delivery. 

It is ofun not obvious how to use an existing IPC mechanism in an HPC multicast context. For example, the 

behavior of one mailbox shar d among all peers is not the same as a separate mailbox shared by each pair of peers. 

In the first case, only one peer removes a copy message, while in the second, all peers get a (separate) copy. 

There is not enough experience with mulrica jiisms to select a general set of principles for extending 

conventional IPC mechanisms to multicasting. The interactions between multiple delivery and communication 

mechanisms with varying amounts of state will probably remain unclear in the foreseeable future. 

4.5. Communication Taxonomy 

Direct interactions between processes in HPC are determined by three factors: logical configuration, transport 

medium implementation, and communication. Each factor is controlled separately by distinct agents. Configuration 

is a dynamic, incremental process of modifying abstract structure and responsibility for one end-to-end chain is 

distributed over many agents The HPC system is responsible for creating and destroying transport media to reflect 

the changing logical configuration. And the conten: of communication is controlled solely by the processes at the. 

ends of the ti anspürt media 

In most systems these distinct functions can net be separated. Usually, configuration is merged with 

communicduon. For example, configuration in a link-based system (DEMOS, Charlotte, Accent/Mach) is 

accomplished by sending a link in a message, while connection setup in TCP/IP is controlled by the two 

communicating processes. A proper taxonomy of computer communication should distinguish these functions. 

While the correspondence is not exact, in terms of the ISO seven-layer model, communication is user 

invocation of the transport layer, composition is user invocation of the session layer, and implementation is carried 

ou; by the session layei. (Table 4.1.) 
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HPC Feature ISO Layer How Related 

role application purpose, intent 

1            type presentation data encoding      j 

|     composition session user invocation 

implementation session layer function 

structure transport user specification 

|       signalling transport user invocation 

Table 4.1. Relation 10 the ISO Model 

Different IPC mechanisms generally hi >e different operations for communication. For example, 

communicating with messages involves deciding when to send and receive messages, and what the contents of 

messages should be. Communicating with a semaphore involves deciding when to wait (P) and signal (V). 

Signalling with RPC involves deciding when to call a procedure, when to return from a call, and what the arguments 

and return values should be. (Table 4.2.) 

Mechanism Configuration Operations 

1     Hpc connect, disconnect 

1     CONIC link, unlink 

|     Hydra connect, disconnect 

i       RPC bind 

j    socket bind, listen, accept, connect, disconnect 

memory link, load, address 

file create, open, close, inherit 

mailbox create, name                                                | 

link create, transfer 

filter set-filter 

Linda set-pattern                                                 j 

Table 4.2. Communication Operations 
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Mechanism Communication Operations                       \ 

1        HPC unspecified                                                        j 

CONIC send, receive, reply 

Hydra send, receive, reply 

|     Rpc call, accept-reply 

1     socket various, usually send, receive 

memory read, write, P, V, fetch-and-phi                     1 

1       flle read, write, seek 

mailbox deposit, withdraw 

link send, receive 

filter send, receive 

Linda insert, remove, retrieve, eval-and-expand 

Table 43. Configuration Operations 

The configuration operations for these three example mechanisms are deciding whom to send a message to 

(whom to receive from), deciding which processes have access to the semaphore, and deciding which client stubs 

are bound to which server entries, respectively. (Table 4.3.) Implementation of conventional IPC mechanisms is 

usually triggered directly by configuration operations and managed by the host operating system. 

Communication, composition, and implementation are not just conceptually diiferent activities. If distributed 

programming is to incorporate more complex abstractions than the well-known client-server model, these activities 

must actually be carried oat by different agents. We argue that configuration must be an activity distributed among 

multiple agents. Further, the configuring agents are generally not the same as the communicating processes. These 

statements are already true in simple ways for systems other than HPC. Designers of future IPC mechanisms should 

provide for their full realization. 

To see thai this functional separation is important to multiprocess, distributed systems, more general than 

HPC, consider a system offering only one service with multiple server process, a file service, say. Every process 

either belongs to, or Is a client of, the file service, and the multiprocess implementation of the file service is 

transparent to the clients. Before a client and a server process communicate, the client must decide to access the file 

service and some agent in the file service must decide which server process, is to handle the client's request. Neither 

the client, nor the file service agent, can decide nnilaterrJiy to bind the client and server processes. The logical path 

between the communicating processes has two segments. (There art two independent contributions to the decision 

to bind that particular pair of processes). 

To rxten| this argument somewhat, assume that a protection system allows a process in one process group to 

access only public features (such as exported names or interfaces) of other groups, and that groups do not export the 

names of their internal processes. This already rules out the common situation (TCP/IP) where a communicating 

process 5 chooses its partner process P. If 5 and P are in different groups, 5 can only specify a public feature of the 
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group G to which P belongs. The choice of P to complete the configuration must be made by some process in group 

G. This process can not be 5 and, symmetrically, P can not directly chose 5. 

Suppose the abstraction presented by a process group could be implemented in terms of other, less complex 

abstractions. This seems like a fundamental objective of any structuring system. One way to do this is allow 

nesting of groups, perhaps to bounded depth. Another way to achieve some of the same effect, even with a flat 

space of groups (no nesting), is to forward communication addressed to one group on to a second group, bypassing 

all the members of the first group. (A null modem has this kind of internal structure.) Access control or visibility 

constraints will prevent a client in one process group from knowing whether it is interacting with a process of a 

server gTOup or some other group. In such cases, configuration can involve groups that do not contain either of the 

communicating processes. Establishing a path through several process groups requires the involvement, and 

implicit cooperation, of a configuring process in each of them. 

Static process structures avoid run-time configuration choices altogether. Configuration is then typically an 

activity of human designers, while implementation is carried out by support software. Communications remains a 

run-time activity. However, static structures make the question of distrbuted and incremental configuration a moot 

issue of design methodology. We suggest that in successful methodologies configuration remains distributed and 

incremental, where distribution refers to separation among specification modules rather than process gr >ups. 
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5. Non-Hierarchical Structure 

Despite the familiarity of a strictly hierarchical structure, there are two reasons non-hierarchical relationship 

between objects must be accomodated. A strict hierarchy with explicit composition has nice formal properties, but 

is impractical for systems with real applications, even when their structure is static. Section 5.1 discusses the need 

for transparent access to shared resources. 

Operations on HPC structure during a partition can easily lead to inconsistent hierarchies. Strict hierarchies 

are insufficient to express the merge of two süici hierarchies. A full discussion of this problem is deferred until the 

next Chapter, but the necessary tools are developed here. 

The first step is separating shells' role in defining communication paths from their role in defining the 

hierarchy. Section 5.2 extends the dual graph of the object hierarchy with splice edges having no effect on the 

hierarchy, but allowing communication between arbitrarily distant objects. Splices are then carefully integrated into 

the protection system to preserve the local appearance of a strict hierarchy, and to prevent unwanted interference 

between distant objects. (Splices differ substantially from the mechanism originally described in [LeF85] and 

[LcF85].) 

Managers of global services use a promiscuous splice facility to accept splices from arbitrary clients. This 

provides effective multiplexing of splices to complement multiplexing of interfaces. (Section 5.4.) 

Section 5.5 concludes with some design interactions between splices and the existing structural features, and 

discussion of the pitfalls and tradeoffs of hidden violations of the hierarchy. 

5.1. Transparency 

The typical UNIX filter program has an input interface and an output interface, and only these interfaces are 

relevant to its composiuon with other programs. In addition, it may interact with resources like the file system. 

However, access to such resources is transparent* to the user of the filter. That is, access to external resources does 

not change how the user sees the filter. The filter provides a public abstraction (interfaces) and transparently makes 

use of additional private interfaces to external sen ices. These implementation details are not part of the public filter 

abstraction. 

A strict hierarchy with explicit composition has nice formal properties, but is impractical for systems with real 

applications. A purely functional methodology requires upper levels of the hierarchy to know, a/id provide, all the 

external resources required by tower levels. There is no way for an object to access a resource unbeknownst to its 

parent unless it complete encloses thai resource. This methodology has some definite problems. 

•       Abstraction is unnecessarily limited 

' There u i regretubte claih m the use of the terms transport*! and opaqm. As ordinary words they are conuwjiciory, but as technical 
icmvi they bach indicate thai «rum detail* are MI vuibk to the user. The operating systems axnmmury uses phrases like "vinati mmaxy u 
transparent*, while the programming lantuaget oomaiwiry wnies dungs like "this type u opaque" The nxxxx interest at 'tbyoa-onmuad »vnons 
ha« brought hoch commuaiuet, and thetr jargon, into intimate contact We wü] oantiftnUy tue "opaque" to indicate domain, and thus vbifcitay, 
boundanet, and "transparent* to indicate that an object's abstraction, and thus tu «ueifaoes. doe« not dehne all of us mteraaion* with external 
resources  U thu muddtes th? water further, we ask to be forgiven 
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A module's public interface should define its abstracuon and hide its implemcniauon. There is no way to separate 

the HPC interfaces used in "public" and "private" interactions. 

• The benefits of explicit compo^uon are lost. 

At hieher levels of the hierarchy there is an accumulation of uninteresting "plumbing" whose sole purpose is 

providing global services to lower levels. The connections relevant to the higher abstractions are obscured. (Figure 

5.1.» 

• The system is not modular. 

Gaining access to a new service, or changing *J»e implementation of an object, requires traumatic changes to the 

object hierarchy. All shells between a service and its client must be destroyed and recreated with a different set of 

interfaces to provide a different set of resources. 

• The system is not open. 

Top-level objects, including independent global services, are only trivially composed. No connections are ever 

made among them, and they can never interact. 

These defects can be remedies by relaxing either strictly explicit composition or strictly nested abstractions. 

HPC provides transparent violations of the object hierarchy. 

5.2. Splices 

Shells normally represent boundaries or separations. There is an inside and an outside; the inside defines an 

object while the outside defines its environment However, the dual giaph emphasizes shells' role in 

communication. Communication between spaces must travel over the edges representing shells. We will now 

isolate this communication function, and unify the previously distinct structural features of shells and interfaces in 

the dual graph. 

Each shell has a fixed number of attached interfaces, each of which is the root of a tree of views. A shell can 

be replaced by a pair of bundle endpoints bound as private peers.  Its interfaces are demoted from roots to the 

External 
Resource P—<P CM 

WM W>Q 
X 

NtKt>Q>--<l 

Nl><tMt)--q 

External 
Resource 

External 
Resource 

Figure 5.1. Unwanted Plumbing 
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immediate children of the new endpoinis. Chapter 4's discussion of communication structure is unaffected. Besides 

the parsimony of features, this eliminaüon of shells makes a nice son of sense. A shell defines the abstract interface 

between two spaces by grouping together several communication interfaces, which is the function of bundles. 

The HPC structure visible to clients retains the notion of shell, and the interfaces, rather than the bundle 

endpoinis, are presented as the roots of view trees. However, internal computations of communication paths 

disregard shells, and use the bundle endpoints instead. The (internal) root of a view hierarchy is always attached to 

a single space, and all its descendant views are in that space. The root is always bound as a private peer to another 

view, and this binding defines a path of communication between spaces. (A related simplification is that there is 

exactly one direct private binding between view for each edge between spaces, rather than one for each interface on 

the shell. The corresponding component rule binds an number of interface subtrees.) 

We can add now add arbitrary edges to the dual graph, even multiple edges between the same two spaces, in 

confidence that non-hierarchical abstraction and composition are well-defined. Each edge from a space represents 

one abstract interface between neighbors, and composition is defined by edges between spaces and connections 

within them An object can present one interface to its immediate parent in the hierarchy, others to its immediate 

children, and still others to unrelated objects through which it transparently accesses global services. 

However, hierarchical organization should not be discarded simply because it can not be used everywhere. 

Violations of the hierarchy should retain the appearance of a directed tree by providing every edge with a direction 

and every space (save the root space) with exactly one parent. The second constraint means only a rooted spanning 

tree can be associated with the object hierarchy. (We continue to call its edges shells.) The remaining edges 

(splices) are fundamentally undirected, affecting communication paths but noi the object hierarchy. 

Splices are presented to clients as opaque subtrees to disguise the non-hierarchical structure. Both ends of a 

splice appear to be inferior domain boundaries, regardless of the real relationship between the endpoints. No 

violations of a strict tree will be apparent through inspection or traversal of a static object hierarchy. 

These boundaries allow splices that join any pair of spaces, between domains, within one domain, or even a 

self-loop on one space. Splices within a domain must be accounted for because merging domains through abdicate 

or depose can easily transform splices between domains into splices within one. Similarly, merging spaces through 

disclose can transform splices between spaces to self-loops. 

The apparent domain boundaries make it easy to provide dynamic behavior consistent with a strict hierarchy. 

The only operations applicable to an inferior domain boundary are kill and depose. The kill operation replaces an 

arbitrary subtree with an empty leaf space, and the HPC system is free to assume the convenient terminal policy die 

for an illusory domain, so depose is treated the same way. (Actually, creating and destroying a splice is a two-step 

process. Each end pom t is manipulated separately, but the entire splice is not destroyed until both endpoints have 

been removed from their incident spaces.) 

Because creauon of a splice must specify the remote end of the edge, it is a ripe opportunity for error and 

malice. A file system client can not be responsible for understanding &e internal management of a global file 

service well enough to know where to put the other end of a spuce. The agent for the file service should decide that 

Nor is any agent allowed to unilaterally change the internal structure of unrelated domains that don't wish to be 

interfered with Therefore. spUcmg is a two step process, requiring the active cooperation of agents controlling both 

affected domains 
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First consider inc. destruction of the splice <A,B> shown in Figure 5.2 by invoking kill or depose on «.he 

(apparent) shell A. 

K> 
Figure 5.2. Complete Splice 

The endpoini A is moved from its space to a hidden space available only to the HPC system, and replaced with the 

shell C and an empty leaf space (Figure 5.3). 

Figure 5.3. Incomplete Splice 

When the other endpoint B is destroyed, it is similarly replaced by the leaf D (Figure 5.4). The splice is 

destroyed when both endpoints have been moved to the hidden space. 

-O^O  0^O 
Figure 5.4. Unspliced Leaves 

Creating a splice inverts these steps. To splice D and C, one agent invokes the splice Operation with D and C 

as arguments (order is significant). D must be an empty leaf. It is replaced by the splice <A% B> with A hidden. 

If C is an empty leaf with structure complementary to D, HPC remembers that D was to be spliced to C. 

When the other agent invokes splice with arguments C and D, HPC finds the hidden end of the splice <A, B> and 

replaces C with n 

If C and D are not compatible, the new splice will be created, but it will not be associated with the remote 

interface. (Cf new on a dead or suspended interface.) This ensures structural compatibility for all private peer 

bindings, while preventing an agent from learning about another domain by blind probing for leaves. 

The spike operation is cooperative, symmetric, and secure. The agents controlling both leaves must 

explicitly invoke splice, and it doesn't matter which invocation comes first. If one agent splices Ü to C, the only 

effect on C is that a subsequent sptict(C, D) will complete the splice. If C is spliced to some other leaf, the 

incomplete splice from D to C is entirely ignored  The agent controlling D gains no information about C unless and 
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unut the agent controlling C chooses to complete the splice. 

The splice and enclose operations arc about equivalent in complexity. Both create a new pair of bound views 

and attach them to spaces. Enclose must partition a space, while splice must look for an incomplete complementary 

splice. 

5.3. Example: Accessing a Global File System 

Accessing a top-level service from arbitrary points in the hierarchy is a primary motivation for splices. Here 

we use a file server application to illustrate how such access can be organized, glossing over the details of splice 

creation. In many hie systems, a client must perform a directory operation, such as open, to obtain some abstraction 

or handle for a file through which file-specific operations, such as read or write, must be invoked. The natural HPC 

representation gives the client a splice to the file system directory, and an additional splice for each open file. The 

different types of operations available from a directory and from a file will be encoded in the interfaces of the 

splices. 

The example client shown in Figure 5.5 will reduce a stream of data by adaptive filtering and issue a 

smoothed version cf its output- Internally, it will use files to log filtering parameter changes, for off-line analysis of 

input characteristics and filter performance, and journal the input data currently within the filtering window, 

allowing the managing agent to recover or migrate the filtering process. Given an initial splice to the file system 

directory, the client can negotiate the cooperative creation of an additional splice by first telling the HPC system 

where its end of the splice is to be located and then invoking the file system open operation with its credentials and 

the name of the desired file. 

Filter 

rt> 

Filter 
Manager 

Filter Process 

Log 
File Splice 

Analysis 
File Splice 

File Sys 
Splice 

M 
Jojrnal 

|File Splice 

Figure 5.5  Hidden Access to Global File Service 

If the file server finds the operation acceptable, it tells the HPC system to complete she splice. The server is 

free to do anything with its end of the splice. It may, for example, use a separate internal process to service each 

splice representing a file, perhaps distributed across hosts to provide the lowest cost communication with the 

respective clients  The resulting structure with separate server processes is shown in Figure 5.6. Note the client 

server symmetry. 
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Figure 5.6. Client-Server Symmetry 

5.4. Promiscuous Splices 

The symmetric sphec operation presupposes that agents can negotiate an agreement on the leaves to splice, 

which itself assumes some existing communication path. The "plumbing" needed for negotiating splices is not 
significantly less than the plumbing needed to access external services in the first place. 

To provide an escape from this circular dependence, the HPC agent reserves a small set of promiscuous shell 

names for special treatment. Let 5 be a promiscuous shell, and A be a compatible leaf. If the agent controlling A 

invokes splice(A, S). the other end of the splice will be immediately installed as a sibling of S. With this special 
treatment, the agent controlling 5 docs not need to take any action to create the splice. 

(This operation, and new, are the only HPC primitives that can have a direct, unilateral effect on remote 

structure. Their ability to interfere with the remote domain is limited to the nuisance level because new structure is 

always created, and no existing structure is modified. Creating a splice or a new component therefore can not 
interfere wiüi any ongoing activities involving other structure.) 

These reserved shell names are the equivalent of well-known service numbers or well-known port numbers. 

In fact, this mechanism is taken more or less directly from the DARPA TCP/IP protocol for establishing a 

connection. A TCP/IP server listens on a socket with a well-known port numbw. Clients iniuate connections 

between a local socket and the server's well-known seeker. The TCP/IP protocol creates a new server socket and 

establishes the actual connection between the client socket and the new server socket, leaving the well-known server 
socket free for initiating other connecuons. 

It is unnecessary, and ultimately painful, for every server to use a well-known name to advertise its services.* 

Here we demonstrate a a global name registry or switchboard service. Any object can create a splice to the 

switchboard using its well-known special shell and then send a message to register a component shell to be used for 
splices, or to request the switchboard to facilitate a splice with another OOJCL 

In Figures 5.7 through 5 10. a client is shown locating a server and creating a splice to it Initially, in Figure 
5.7, Server has spliced SX to the special switchboard shell X (Dashed curves will indicate pairs of shells that have 

been spliced.) After creating the path to the sw.ichboaxd. Sew registered (by suing or any convenient identifier) 
SC as a shell it is willing to sphec to a client 

ftm JJ12Ü!? L"^rPCJTCe' WI*_!hU P"*l°* m ***** " *■ imm ****** l"*"*» -*»»*" «™ *~«\ •** for OK 
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Figure 5.7. S^-ver Registered with Switchboard 

In Figure 5.8, Client has spliced its shell CX to special shell X. Notice that a new sibling of A' is created for 

the splice. Client can detect when the switchboard connects a process to the new she1*, as in Figure 5.9, due to the 

liveness property. At that ume. it will register its shell CS as the shell it wishes to splice to a server. 

Any time thereafter, Client can send another message to the switchboard asking for assistance in negotiating a 

splice to Server, for which Client knows the appropriate identifier. The switchboard response is to send Server the 

name of shell CS through the spliced shell SX, and to send Client the name of shell SC through the spliced shell CX. 

The two objects can then carry out the two step splice operation, as illustrated in Figures 5.2 through 5.4. The final 

structure is shown in Figure 5.10. 

A point should be stressed here. The HPC agent supports promiscuous shell names, and permits the 

switchboard to use one. Other than that, all that has been described here is defined as an application. The. interface 

to the switchboard, the messages to be used, the kinds of strings which can be used to register a shell, and so forth 

[Switchboard 
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Figure 5.8. Client Contacts Switchboard 
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Figure 5.10. Client-Server Splice Established 

have no impac at all on HPC. They arc established by convention, and can be freely extended and changed. 

5.5. Discussion 

5.5.1. Transparency is Not Always a Good Thins 

Transparent abstraction fulfills a pragmatic need at the expense of the aesthetics of pure composition. 

However, even from the purely practical point of view, hido^n violations of the hierarchy can have disadvantages 

Ignore software for a moment and consider apanmeni layout Residents want hot and cold fresh water, sewage 

disposal, heating, and electricity provided without worrying about where these services come from. For its 

occupants, an apartment u a convenient self-contained unit independent of other apartments. However, for 

architects, contractors, and rcpii: persons the bounds of a given apartment arc romewhat artificial They arc much 

more interested in the network of plumbing and wiring that ties a whole building together. 

HPC does not reconcile these two points of view It allows construction of complci objects using cither 

explicit provision of service from above, or hidden direct access u> service*    However, architects and building 
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managers can prevent residents from tapping electrical mm) directly, and ire obliged to provide residents with the 

standard services. In hierarchical process composition, an ^bjeci can not prohibit a subooject from obtaining 

transparent access and a subobpct can not force its parent to provide a needed service. 

Future research should investigate the problem of controlling hidden access paths Residents of an apartment 

complex need to be prevented from tapping services directly for two primary reasons. First, resource utilization 

must be controlled and accounted for. The second issue is safety; Uncoordinated access to a resource can endanger 

all users of the resource. In large-scale software, similar issues arise. An object may need to restrict or account for 

the resources it consumes, and can only do so by controlling the access of its subobjects. Cycles, storage, and 

communication cost real money, and most hosts shared among several u&er groups have some fcrro of accounting, 

billing ard quotas which must be observed. 

As an example of the safety problem, consider the lightweight transaction mechanism proposed by 

Zwaenepoel and Almes, which jould be built easily on top of the HPC agent [ZwA8Sj. In their scheme, each 

worker process parucipating in a distributed computation is given a unique identifier, a set of input files, snd a set of 

output files. A centralized job manager is responsible for assigning resources to workers and collecting their results. 

The manager gives a worker process unique temporary files to use for output, so a worker has no effect on shared 

data prior to a commit. When the manager decides to commit a computation, it (atomically) renames temporary 

output file as shared data files. Since . worker's results are completely written into a temporary file before a 

commit, the actions of a worker process appear atomic, If the manager process is aborted, the rename operation will 

never be executed, hence the workers will have no effect on shared data. If a worker process is partitioned irom the 

manager, a new worker process can be created by the manager with a new identifier. The output fiies of the 

previous worker piocess will never be renamed since only the most recem identifier is allowed to cause a commit. 

Eventually the orphan worker process will complete or abort; In either case its results will be discarded. 

As long as worker processes use only resources obtained from the manager, this form of lightweight 

transaction works nicely. However, if worker processes can transparently bypass the manager and obtain tie access 

directly from the file sysiem. the apparent atomicity of a transaction can not be guaranteed. 

It may be possible to ex-'oit the hierarchy when establishing limits on shells that may be spliced together. 

The following sketch attracts further consideration. An object could limit the subtrees (anywhere in the tree) to 

which its component objects may create splices. That is, a server can usually be identified with an object, and 

therefore & subtree of the structure graph. An objec: might allow its components transparent access to specified 

subtrees (services), or forbid access to certain services. *nd so forth. Existing experience with scope rules for 

programming languages with import and export shouid be quite relevant. 

5.5.2. Peer-to-Peer Symmetry 

Splices avoid the usual asymmetry between clients and servers. Returning to the principle motivation for 

trarcparei.t non-local access and thus the splicing mechanism, a client of a global service can splice a le*f she1! to 

one belonging to the server and then communicate directly with the server. The eben* s spliced shell returns its 

structural position as an implementing component within the client Non-locai access through a splice appears to be 

access to a completely enclosed subcomponent. 
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It is a short siep 10 realize th:u '.he server can ihink of a client as a subcomponent as readily as the other way 

around. This is an extension of the parent-child symmetry made apparent by the dual graph, and it holds even in the 

hierarchical view. Splices provide naturally for peer-peer relationships as well as the more common, but limited, 

master-slave organization. 

The dual graph displays even greater symmetry. An object is simply a subtree and the abstraction it 

implements is the shell at its root The global process structure can be broken into subtrees at any space and the 

composition inside tiie spacj defines the global behavior as a function of the subtree behaviors. Because there is no 

distinction between parent and child in the dual graph, a subtree can treat an incident shell (representing its parent) 

as a logically subordinate object, but the parent can treat the other side of the shell (representing the child) the same 

way. It is all a matter of perspective; the root of the dual graph can be chosen arbitrarily. 

5.53. More und Fewer Restrictions 

The strict tree structure could be retained by simulating the splice operation outside the HPC system. 

Specificaliy, instead of splicing two shells, an agent could animate an appropriate process in an empty shell, passing 

parameters to indicate the shells to oe spliced. Processes of this type would interact outside the HPC system, 

locating processes with complementary arguments, and forwarding communication from one process to the other. 

(Splices between more than two endpoints could be simulated.) 

As with multicasting, we are obligated to demonstrate how important relationships can be directed expressed 

in terms of process structure. Therefore, we integrated splices into the object hierarchy to express transparent, non- 

hierarchical access as directly as is consistent with protection and visibility restrictions, rather than depend on a 

mechanism outside the system. 

Instead of maintaining a canonical spanning tree of shells, with all other edges distinct splices, parts of the 

troe could be left indeterminate until a hierarchical operation xtually affects that structure. This option has not 

been carefully explored, but it Us some attractions. Any system that maintains a canonical tree must break all 

symmetries in die complete graph. Any time fwo spaces share multiple parallel edges, one edge must be identified 

as part of the nee. Delaying this identification until needed permits greater symmetry. It is probable that this would 

reduce the number of merge conflict (Chapter 6) that must actually be reconciled. 

It is possible to give clients an explicitly different representation for splices, instead of disguising them as 

opaque shells. However, this puts a greater burden on agents by adding structural features and operations they must 

unde. .*andv and the overall functionality (this system complexity) remains the same. 

In the direction of accepting still less restricted graphs, some merge inconsistencies could be avoided by 

giving up trees (and even DAGs) and using general directed graphs or even the undirect dual gmph as the basic 

structure. Communication and protection strucure couM -jury over essentially unchanged, but a replacement for 

the asymmetric privileges of superior dontains over inferior ones would have to be found. The basic methodology 

of nested abstractions would be lost, and that scms like too great a cost for too liu> return. 

53.4. Implicit Composition 

Instead of relaxing the strictness of the hierarchy, we coul 1 have relaxed explicit composition. For example, 

programming language open scope rules avoid the clutter associated with explicit configuration of all related 
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components, especially shared access »o globally exported modules. 

These default rules are not appropriate for systems where configurations are to be inspected and inc;ementally 

modified during execution. Sorting through all the implicit compositions for the ones actually used by an object is 

not an efficient technique for determining its actual configuration. Splices (and shells; identify the interfaces 

actually in use by an object, not all the potential interfaces. Promiscuous splices are a convenient analog to global 

exports when they are really desired, while ordinary splices allow greater control over configuration. 

It also seems implici' composition would complicate communication structure substantially, by the 

introduction of default rules for configuration, and by the extension cT chains with an third form of binding between 

views. 



Chapter 6 Partition and Consistency 
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6. Partition and Consistency 

A well-formed HPC structure satisfies a number of constraints. For example, an endpoint may be part of at 

most one connection, a space must belong to exactly one domain, and the directed edges (shells) must comprise a 

strict nee. Under normal circumstances, HPC primitive operations preserve these constraints, transforming well- 

formed structures into well-formed structures. Enforced preconditions on HPC primitives prevent invocations thai 

would result in ill-formed structure. 

In general, a distributed application subject to partition and merge can not offer completely consistent service. 

It may provide service that is consistent over time for each client or service that is consistent over all clients (in a 

partition) at any given time. Stated another way, a distributed service must decide between discontinuous service 

over time or over clients. To give every client the same service, interactions with specific clients will be disrupted 

as previous!) partitioned states are reconciled and service is resumed on the basis of the new state. The service may 

»void these disruptions by retaining the previously partitioned states and serving clients differently according to 

their differing histories. A simplifying compromise is more common. A distributed service usually maintains a 

single canonical state and allows access to clients in at most one partition (chosen by a quorum of resources). No 

matter which choice is made, the specification of a service must define the allowable inconsistencies over time and 

between clients. 

When a partition occurs, each partition inherits the pre^partiuon structure, and subsequent operations can be 

checked for soundness within each partition. Obviously it is not possible to evaluate preconditions on structure that 

may have been created or modified in otiier partitions, and locally-sound operaüc^s .r.ay produce structure that is 

inconsistent between partitions. While a partition lasts, these inconsistencies are of no practical significance 

because (by definition of partition) they cannot be detected. When a merge occurs, however, a well-formed 

structure must be reestablished. 

There are three basic strategies for dealing with inconsistencies due to merge. Avoidance restricts service so 

that inconsistencies at merge time are prohibited. Reconciliation combines several states into a single state 

algonthmically, possihly with a change in service. Reporting presents the inconsistencies to clients explicitly, 

permitting client resolution. All three techniques have an impact on system design. 

Most distributed database consistency control techniques involve avoidance [SLR76], [BeG81], [BcG84]. 

Generally, the database can be written in at most one partition, ensuring the existence of exactly one authoritative 

"most recent" version. Avoidance is appropriate when the system does not understand the structural constraints that 

must be preserved (the application semantics of entries in a database), and when clients cannot tolerate 

asynchronous structural change (as in transaction systems). Avoidance by denying service is inappropriate for 

systems offering high availability, for applications that wish to apply their own consistency control policies, and for 

environments with a high expected frequency of partition. 

The Locus file system allows updates to petitioned files in all partitions (FWC81), (WPE83). Two forms of 

resolution are applied to inconsistent files. A history of updates and partitions (called a version vector) is used to 

replace inconsistent copies of arbitrary files with a dominating update, if any exists. Remaining inconsistencies in 

specialized files, such as niail boxes, are resolved by merging the panitioneJ contents of a file. Network clock 

synchronizauon protocols that maintain a distributed monotone value, with fixed upper and lower bounds on its rate 

of change, are good examples of complex resolution algorithms [Lam?8). [Mar84}, *Ray87], rWeL88). Resolution 
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is appropriate when the system understands the constraints that must be preserved (e.g., an update dominates a 

previous update on the same file, the behavior of a clock), and clients can tolerate asynchronous changes. 

Resolution is not always possible, however. For example, in Locus there is not always a dominating update to 

a file. For arbitrary files. Locus cannot resolve such inconsistencies in a principled way, and reports them to the file 

owner. The inconsistent copies and their version vectors are made available so the owner car» apply an arbitrary 

resolution policy. Locus suspends normal access to the file until the owner installs the definitive, resolved copy. 

Reporting moves much of the burden of dealing with inconsistency from the system to its clients. All possible 

system states, both ill-formed and well-formed, must be defined, the behavior of its operations must be defined on 

ill-formed states, and clients must have tools that can move ill-formed states closer to well-formed ones. 

HPC client applications chose their own responses to partition and failure. Applications that aggressively 

adapt to such events can radically restructure themselves to restore lost resources and recover the desired degree of 

redundancy, but almost all applications will modify some aspect of process structure during a lengthy partition. 

HPC uses all thitt basic strategies to deal with the various types of inconsistent process structure that can arise 

during merge. The use of unique identifiers, globally kno^n functions, and immutable properties avoids 

inconsistency in many HPC features. Section 6.1 shows how HPC uses these techniques, which are not specific to 

HPC and can be used to advantage in many disüibuted applications. 

Applying avoidance techniques leaves a small number of structural features for reconciliation and reporting 

(Section 6.2). HPC reconcilation is guided by a preservation principle: anything that works or may be even 

passively of interest to an agent in any partition should be preserved in a merger involving that partition. The 

inathematiral operation of meet on a lattice can often be U5cd to merge partitioned structures while preserving their 

individual behaviors, and HPC uses several special cases of meet for reconciliation. However, some divergent 

structures are simply incompatible and can not be merged naturally. HPC ensures that such conflicting structures do 

not interfere wiih consistent parts of the process structure, reports the conflicts to the relevant agents, and gives 

agents the tools needed to reduce an inconsistent state into a consistent one. 

6.1. Avoioaoce 

Change, sharing, and partition are the major ingredients in the recipe for inconsistency. Any feature of the 

system thai is immutable may be known uniformly throughout the system without the need for observation. In the 

absence of partition, all observations may be made consistent by globally simulating a single site using well known 

techniques, such as serialization. In the absence of sli&ring« ail observations are trivially consistent because only one 

observer may look at a given piece of the system. Partition can't always be «voided (it is, after all, a failure mode), 

but the degree of change and sharing can be reduced as pan of an avoidance strategy. 

There are conflicts about privilege and authority that HPC cant merge while preserving the pre-merge 

behavior and can't trust clients to reconcile for themselves. Because HPC can «seither reconcile nor report these 

problems, they must be avoided. By careful design, additional üKotts&encies in HPC process structure can be 

avoided, simplifying both the (static) HPC interface to clients and the run-orne merge procedures, while retaining 

complete availability of H?C operations during partition. These simplifications are sought for their c >n >*kc. 

Despite the emphasis on dynamic change of structure, it was possible to design HPC so that most properties 

and structural relations are immuiabie. completely avoiding the possibility of inconsistent updates. (Appendix A 
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gives HPC structure a formal description in terms of sets, relations, and predicates on those mathematical objects. 

We will refer to some of them in this Chapter.) The role, type, and structure of views, the interfaces of an 

abstraction, and trie controller for a domain are prominent fixed properties. Less obvious examples are the pair of 

views that compnse a shell, and the parent of a component view. (A view's known children nay change, but not its 

parent.) 

Inconsistent changes can also be eliminated by leaving properties unconstrained, or explicitly defining sets of 

states to be equivalent. HPC uses at least four variations of this technique. First of all, HPC is history-less. Legal 

operations on a structure depend solely on its current state, and the sequence of operations that created it is both 

unknown and irrelevant Second, the hierarchical relation is the only dynamic ordering in HPC. All other dynamic 

sets (e.g., multiplex or multicast views, shells adjacent to a space) are unordered, and all other orderings (e.g., 

bundle components, terminal policies) are immutable. Third, there are few upper bounds on numbers of 

dynamiw Jly created structures. Partitions that individually satisfy an upper bound can easily violate the bound 

when merged, while this cannot happen with lower bounds. Fourth, connections and spaces are unnamed, and 

defined by the views they relate. Making them first-class entities would increase redundancy, and the opportunities 

for inconsistency, without adding to the possible structures. 

HPC uses three techniques to reduce sharing. Physical resources are literally tangible; they have real physical 

locations, and can be examined and modified only if they are in the current partition. Instead of attempting to share 

physical resources between partitions, HPC reports partitioning of processes and interprocess communication media 

via suspended iiveness of affected communication paths. Suspension avoids inconsistencies by making the status 

of partitioned resources explicitly indeterminate, and therefore consistent with any state. The suspended terminal 

policy allows agents to generalize this behavior to multi-process abstractions that do not have any specific physical 

location. Third, globally unique names are created for each new piece of structure, so that similar operations in 

different partitions will create different structure, rather than have conflicting effects on the same structure. These 

unique names include the name of the generating host, so name creation does not need to be synchronized. 

The visibility constraints imposed by the protection domain system also reduce sharing. First, disjoint 

domains drastically limit the visible effects of an operation. Only the new operation and promiscuous splices have 

direct effects in two domains; the Iiveness property also propagates across domain boundaries Second, the HPC 

system is free to hide information from its clients, especially non-hierarchical structure. If the exact relations 

between domains were visiole to clients, the facade of a strict hierarchy could not be maintained. 

6.1.1. Domain Contents 

The contents of domains are formally described by the relation t«rt*r<v, d>, where structural element v is a 

member of domain <t (Because shells have been equaled to pair» of views, and both spaces and connections can be 

formally defined in terms of views, we can treat views as the only kind of sfciictund element) It is a critical 

property of the protection system thai any view is a member of at most one domain. There is no way to express 

membership in multiple domains, there is no way to designate an intelligent, neutral party to arbitrate conflicts 

between agents of different domains, and the cooperation of agents cannot be assumed in matters as crucial as 

protection, control, and authorization. For these reasons, membership in multiple domains must be avoided. 

During a paruuon. one agent for a domain old that existed before the paruüon started could invest a new 

domain r* * in a subtree containing view v. Suppose that v is movrd from cid to r*w. No matter what agents in other 
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partitions do, when trie partitions are merged together, v will belong to new and at least one other domain. If they do 

nothing to v, it will beiong to els. If they create a different new domain through another invocation of invest, v will 

belong to the new domain. (There is no way agents m different partitions can independently create the same new 

domain.) 

These violations of the constraint are avoided by making the domain of a view an immutable property fixed 

when the view is created. When domain creation and destruction transfer structure between domains, a distinct 

copy is created in the new domain, isomorphic to the affected structure, then the original structure is deleted. 

Another interpretation is that the affected structure is renamed, because the HPC system's internal representations 

of abstract structure can be modified in place. 

An object seidom will be an agent for bo'h the old and the new domains. When on'y the old or the new is 

visible, the exact isomorphism between them is not critical. However, there will be occasions when the 

correspondence is useful o. necessary. It can be easily preserved by structuring the name space. An HPC unique 

identifier consists of a (unique) domain field and a (unique) element field. When a view is renamed, only the 

domain field is altered. This also reduces the consumption of unique name space, as only one new name is required 

to rename arbiträr, subtrees. 

6.1.2. Characteristics and Immutable Relations 

Renaming is a basic technique for treating a fixed set of things with dynamic properties as a dynamic set of 

things with fixed properties. It avoids fatal inconsistencies (such as conflicts about privileges) by introducing less 

dangerous ones. For example, a view may exist in some partitions but not in others. However, creating and 

destroying views produces exactly the same effect, so renaming does not introduce a new problem. HPCs 

preservation principle resolves presence/absence conflicts during merge by retaining views present in any merged 

partition. Specifically, that means that a view that was deleted (or renamed) in one partition may be resurrected in a 

later merge 

Creation, destruction, and renaming of views and related structure within the current pamuon are dynamic 

operations, but HPC formal consistency is simplified by treating the set of views and the relationships among them 

as immutable. The technique of characteristics and immutable relations used in this formal treatment is not specific 

to HPC and can be applied to many data structures that are dynamically created and destroyed but otherwise have 

fixed properties throughout their lifetimes. 

The HPC process structure in the current partition is a subset of the structure in entire environment. The local 

structure is known exactly, but the non-local structure, by definition, can't be known, so we can assume anything 

about the global structure that is consistent with the local structure as a subset Specifically, we assume the global 

structure is immutable, and define the structure within a partition as the intersection of the fixed global structure 

with a dynamic local characteristic function (or set) that defines the views and other features known in the partition. 

As views are created and destroyed, they are added to and removed from the local characteristic, but «he global 

structure remains unchanged. 

When this definition can be applied, an especially simple merge procedure is possible. Partitions can be 

merged by taking the set union of the 'ocal characteristics and the local structures. This preserves the defined 

relationship among the resulting characteristic, local structure, and global structure. A proof of die consistency of 
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this merge procedure, and other advantages of the technique, are given in Section A.l. 

HPC structural features that have fixed properties throughout their lifetimes can be defined this way. The 

role, type, and structure of 3 view are such fixed properties, as is domain membership. Let the characteristic 

o-.-:e-(v define the views known in the current partition, and let c-manjertv, d) define the domains they belong to. As 

each vievs is created, it is added to the local c-v:ew, and its permanent domain is added 10 the local e-neroer. When a 

view is destroyed, 11 is removed from e-vjw and o-rerter. The global narbertv, cu is a similar, immutable relation 

defined for all views, all time, and all partitions. By defining oimrtxz as the intersection of o-view and neroer, we are 

assured that taking the union of several partitions' c-view's and c-»aiLcr's is consistent with the definition. Writing 

down r^rcer iv, c would require full knowledge about the future, but we don't actually have to compute it. Instead, 

a can be 'virtual ; The identifier or domain of a view is never needed until it is created or made available through 

merge. Destroying a vieu simply removes it fron, the known local structure. If it has not been removed from all 

partitions, it may become known again after a merge, consistent with HPC's preservation principle. Other fixed 

view properties are treated the same way. 

View hierarchies are a more interesting example, because the components of a view may change dynamically. 

The characteristic is again c-view, while the relation cenponex (c, p) holds when c is a component view of its parent p. 

Here, a technical constraint on the arguments of the global relations is very important. When we create a view we 

certainly know its ancestors, but certainly not all its (as-yet uncreated) descendants. Therefore, we will insist that 

the second argument of a local relation is characteristic whenever the first argument is characteristic.10 For example, 

the apparently equivalent puvttp, o can not be used as a local relation, because we can not know all future 

descendants of any currently known view. 

Use of the characteristic technique interacts with other HPC design options, eg, if delete ing a view caused its 

components to be inherited by its parent rather than destroyed, the global corpora* relation could not be immutable. 

The Done relation that defines direct private peer bindings (from shells and splices) is constrained similarly. When 

one view of a shell is renamed, both views must be renamed to keep hand immutable and single-valued. That means 

that opaque domain boundaries may spontaneously" rename even when the domain on the visible side is 

unchanged This in turn implies thai the domain field of a structured HPC identifier does not suffice when renaming 

domain boundaries. 

6.1.3. Splices 

As described previously, the splice operation is a cooperative, two-step operation. In a centralized 

environment this offers no difficulty, but there are many opportunities for confusion in • parti tionablc environment 

The partial ordering of distributed events in separate partitions can make "first* and "second" steps undc&nable. 

Inconsistent steps can be taken in different partitions, which are exposed at a later merge Different numbers of 

consistent steps can be taken in different partitions, causing inconsistent merges. Because the other HPC operations 

are one-step and effectively atomic within a single domain, the technique used to avoid inconsistencies with spike 

merits a detailed examination. 

' Reltuon» with ihu property «rt lomeisiwt calkd serial 
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Both first and second splice steps lake an empty shell and create a new domain boundary. Call the local and 

remote shells in the first step olo-L and oio-R, respectively. To keep track of associated first and second steps, there is 

dr> implicit relation between the old and new views. Let presciioedtcio-L. old-*« neu-R] relate the arguments of 

sp'tce(old-L, old-Ri with the hidden view created to replace old-?.. An invocation of splice will execute the first 

step if there is no tuple with its arguments reversed in the prespiiaad relation, and complete the splice using the 

hidden rew-F otherwise. To be well-behaved, prespiica: must identify a unique new view for a given pair of old 

views, and identify no view if the old views have not been prespliced. 

Without restrictions, partition will violate these constraints. A first step earned out in two partitions could 

create both prespiiawtcie-L. cia-R, x> and prespUoBdiolö-t* oiö-f, Y). After ? merge, will splice(oid-R,old-L) 

complete a splice using >:, Y, or both? A first step carried out in only one partition could lead, after a merge, to 

pres::iaec(c:o-_, cic-r, ic at the same time that old-L is in the partition. Will splice(old-R, old-L) complete a splice 

usin: x or take the first step in splicing to oio-L? The likelihood that agents for both ends carried out their splice 

while partitioned complicates this scenario, making the operations first steps in opposite directions, rather than a first 

and a second step. Do two opposing first steps complete a splice? 

Fiat removes some of the ambiguity. In HPC a prespliced shell takes precedence over an unspliced shell in a 

second step, by definition. However, multiple first steps in one direction, ajic opposing first steps, remain a 

problem. 

A partitioned second step following a first step that establishes pr*spiiaec(o:a-L, old-*, xi is less awkward. We 

can determine the identifiers for the complete splice bandtnaw-L, new-w during either the first or second steps, with 

differing results. The first step can establish x as new-:., and fix the binding between new-»- and new-* even though it is 

not used until the second step, which would always replace oid-a with new-n. Identically named structure is identical, 

so this produces one splice, even when the second step is executed in multiple partitions. The alternative is 10 

determine new-p dunng the second step. The first step would replace old-L with x, which would be bound to some 

hidden view, and the second step would replace x with new-L at the same time that O1O~R is replaced with new-*. 

Executing the second step in mulüple partitions would produce distinct splices because each partition would select 

unique valuer for ntw-i and TW*HL The effect is as if both steps had been executed while partiüoncd. 

There arc three general ways to avoid the remaining inconsistencies in the pnaspiiood relation: enforce a 

centralized decision, enforce a consistent distributed decision, and accept lower standards of consistency. Four 

specific mechanisms were considered for the HPC design. 

• Synchronous splice 

If the two steps in splicing were splice(old-L, old-R); splice(old-RT oew-L), the operation would be synchronous, 

delaying the second step until the results of the first step are available. The agent taking the second step explicitly 

resolves any ambiguity. Besides introducing asymmetry to the agents negotiating the splice. U*a mechanism adds 

another step to the negotiation, because the first agent must communicate new*, to the second. 

• Issue a ticket 

Another way to enforce a centralized decision would be to ask the HPC agent to precompute rww-t and «HI and 

issue a ticket that associates all four affected views. Splice would then take a ticket and the local view as arguments 

rather than two views This would require another basic operation for ticket creauon. bin has some attractions. 

While the ticket buyer must know both views to be spliced, the ticket user need only know the v«ew in its domain. 
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This adds a little modularity. The implicit relation of ticket 4-tuples is obviously an immutable (virtual) relation. 

li is tempting to use tickets for splices that are not tied to specific target views. Tickets could be created 

independently of the views to be spliced, and passed f"vn agent to agent. However, like other capability schemes, 

there would be a insoluble use-once problem in a parti tionable, rully-available environment 

• Accept multiple private bindings 

The acceptable structures could be extended to allow a second step to splice a view to more than one other view at a 

time. There is nothing fatal about allowing a view to be baurri to more than one view, although we chose not to do 

so. The r.ffeci of multiple private peers on communication patterns is well-defined: multicasting. Multiple binding 

might also sc >e as a way to accept the effects of multiple ticket uses. However, these multiple bindings would be 

completely hidden, unlike the multicasting introduced by complex views. Tins seems undesirable, especially if 

some media may not be mulucast. 

• Known function on structured names 

Distributed agents will reach consistent conclusions if they apply the same deterministic algorithm to the same data. 

A pairing function globally and consistently can compute unique identifiers inew-i, nev-Ri as a function of 

(oiö-L, old-?:. Appending the old names or interleaving their bits are typical pairing functions. However, a pairing 

function requires some structure in the name space to avoid generating "fresh identifiers that might be given to a 

completely new structure. Also, a paired number has all the bits of its inputs, so the name space must be big enough 

to contain the largest result. These conditions are met in HPC. A (pre)spliced shell can not be spliced again since it 

is not an empty shell, so a pairing function will be applied only to fresh names. (When the splice is removed, a 

completely fresh name is assigned to the empty shell.) 

Despite the sparse use of name space, HPC uses this technique because it is fundamentally distributed and 

preserves the desired symmetry and asynchrony of the splice operation. It also has the side-effect of creating one 

splice, even when the affected views are spliced in multiple domains, or when the both ends are spliced in srpsrcic 

partitions. The ticket mechanism also has these nice effects if a single ticket is used, and avoids wasting any «aine 

space. 

6.2. Reconciliation and Reporting 

Through careful design, most dynamic aspects of HPC process structure can be treated as partial local 

knowledge about immutable global structure, using the technique of characteristics. These structural features can be 

reconciled upon merge simply by taking the set union of the data in each partition. Set union is one specific 

function in the general class of met is over latticts of values (vid.. Chapter 6 of (Sto77)). The meet operation has 

some highly desirable properties for reconciliation. It is stable, idempoteni. and convergent; merging any number of 

partitions any number of tunes in any order produces the same ultimate result. The preservation principle we 

adopted to gui:1e reconciliation can be obtained by careful choice of lattice. Max and mm arc other examples of 

meets over appropriate lattices 

There arc only three relations in the formal description of HPC structure that can not be handled by 

characteristics Merges of these features are handled by specialized meets for reconciliauon. with explicit reporting 

of cases where a Structure -preserving meet couid not be chosen. toiicyid. type. p». defines the temporary and 

permanent terminal policies for a domain  Connections are defined by the symmetric relation ama*n*i. *?>. and 
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spaces are defined by the equivalence classes of the relation a~}aaen: w., v2), which identifies pairs of views incident 

on a common space. 

6.2.1. Terminal Polio 

There can be only one terminal policy of each type for a domain. Within a partition, the most recently 

specified policy is used, but different policies can be specified in different partitions. (Once again, partial ordering 

of events in different partitions means that the "last" modification is not defined during a merge.) Inconsistencies in 

policy cannot be reported to the client, becau~~ the policy specifies what to do when there is no cl>nt "> —oort to. A 

merger may continue a temporary loss of control or reveal a permanent loss of control, so a well defined policy 

must be available immediately. 

Reconciliation uses a non-trivial example of meet over a lattice. Because 1IPC understands what terminal 

policies mean, it can resolve inconsistencies according to a sensible set of priorities. For example, suspend prevents 

unauthorized interactions, while null does not, and die hides structure from the outside domain, while abdicate does 

not Our priorities in descending order are to conceal structure, exert control, and keep running. Accordingly, the 

basic policies are partially ordered: 

suspend/animate < null < die < abdicate, 

where suspend is incomparable with animate, and animates with different parameters are incomparable with each 

other. Policy sequences are partially ordered lexicographically, taking the default basic policy as the first element 

(the reverse of the order in which basic policies are applied.) For example: 

die < die suspend 

abdicate suspend < abdicate die 

... animate(x) is incomparable with ... antmate(y) 

... animate(z) < ... null 

The meet on this lattice is the greatest element less than or equal to its inputs. For example, the meet of: 

die suspend animate(x) 

die suspend animate^) 

die abdicate 

is die suspend   The effect is to lake the longest common prefix of incomparable sequences, and keep the best. 

according to our priorities, of the sequences that remain. Since HPC applies one basic policy at a time until it gets 

to one that works, the interpretation of incomparable policies is that the conflicting portions don't work. 

There are other reconciuauon strategies worth consideration. The basic policies can be ordered differently, 

according to different priorities, and lexicographic ordering is not the only way to compare sequences. For 

example, r.onc of the basic policies in a sequence up to the last (first applied) non-animate will ever be tried 

(because a non-animate policy never fails), so this prefix could be discarded as irrelevant 

4X2. Connections 

The oorratod relation can not be modelled as the intersection of a characteristic with an immutable relation, 

because connections are created and destroyed without creating and destroying the views they join. A view may 

have at most one connection, and this constraint can obviously be violated upon merge HPC cannot resolve the 

inconsistency without making an arbisnry choice of connection(s) to remove and this would violate the basic 
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principle of retaining all structure from all partitions, so ihc mcct/laiücc technique was noi used. 

Instead, ihc HPC system reports this inconsistency 10 the agents of the domain to winch a multiply connected 

view belongs.   Undefined behavior is avoided by suspending the view, and all communication paths passing 

through it. until a legal number of connections is restored. Agents can use the disconnect primitive to remove extra 

connections as easih a< legal ones, so the tools needed for user reconciliation already exist. 

There arc two implications for system design First, the format of public peer notifications must allow 

arbitrary numbers of peers even though at most one is normally permitted. Second, the connect and disconnect 

primitives cannot be exact inverses, because the preconditions for disconnect must be more general than the 

postconditions that connect can establish. This asymmetry could be removed by allowing connect to create more 

than one connection to a view, automatically suspending it. 

6.2.3. Space Hierarchy 

The pnper nesting of objects is the most difficult structural invariant to restore during a merge, and the dual 

graph representauon is essential when expressing the possible inconsistencies and their reconciliations. Since 

enclose and disclose modify the dual graph without creating and destroying all the views of the affected spaces, a 

representation for spaces is a fundamentally mutable relation. Two formal relations define the dual graph: 

bound tvi, v2), which describes the immutable edges (shells and splices), and a mutable relation, «extant ivi, v2j, 

which indirectly describes spaces by their incident views. The pairs of views incident on a common space satisfy 

ac3aoer.*., so the complete set of views incident on a space is an equivalence class of the relation. This indirect 

description  is technically  more convenient than the obvious relation between views and explicit spaces 

L-iciaerr. (v,  9!. 

Merge can transform a set of strict trees into an arbitrary directed graph. This is the primary difficulty in 

reconciling the object hierarchy. Figure 6.1 shows the merger of a partition with three nested shells. A, B, and C, 

and a partition in which B has been disclosed. (The arrows shown on directed edges point away from the TOOL) 

Figure 6 1   Loop in the Dual Graph 

Figure 6.2 shows two paniüons in which enclosed*) has been executed on a common initial structure of nested 

shells. A and B. and their merger. 
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C + =* 

Figure 6.2. Parallel Edges in the Dual Graph 

More complicated examples with larger loops and incomparable branches can easily be constructed. 

The violations of the strict hierarchy can be removed by converting some of the directed, non-tree edges into 

undirected splices. For example, the simple loop of Figure 6.1 can be convened as shown in Figure 6.3. 

eve.   (B) 

Figure 6.3. Breaking Loops through Eversion 

Tne hierarchical view of the prc-merge and post-conversion structures (Figure 6.4) shows that shell B is effectively 

turned inside out, with one end of the opaque splice (£7) representing the exterior of B. and the other end (B2) 

representing its interior. Because of this effect, we call the conversion technique evtrsion. 

Figure 6.4. Hierarchical View of Eversion 

We can now describe the rtconciluuon of the hierarchy within i single dornen under the assumption that the 

domain has a unique root  The procedure is as follows 

(1)     Find (transparent, directed) shells that have beer, convened into (opaque, undirected\ splice f'wmat in some 

paniuon. and even them i.i the merger 
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(2 >     Take the transitive closure of the union of the local adjacent reladons. In general this will merge spaces and 

give spaces multiple parents. 

f3)     Compute immediate dominators and back-edges in a single pass over the dual graph. Break all loops by 

everting back-edge shells. 

(4)     If a space has more than one incoming shell, even them all, and merge the space with its immediate 

dominator. 

Spaces with incident edges vi and v2 are merged by adding (vi, v2) and (v2, vi) to adjaaent and taking the 

transitive closure of the relation. This closure step may be performed once, after all spaces have been processed. 

Any number of partitions can be merged in any ordei, and the eversions and space merges during a partition 

merge can be performed in any order and still yield a unique result This procedure hides all no.viiierarchical 

structure behind splices. Equally important, it preserves all compositions, and therefore all behavior. It does so by 

modifying the hierarchy in ways that clients can not, so this automatic reconciliation is not transparent. Unlike 

renaming, eversion can not be disguised as asynchronous behavior by another client agent 

The root domain, which consists of one space with incident edges for the top-level objects, requires slightly 

different treatment. Because there is no root shell, and because the top-level objects in different partitions might be 

disjoint, the root space may be represented by several equivalence classes of adjacent instead of one. The problem is 

avoided simply by distinguishing the root space. 

The L'rst step given above, evening shells that have already been everted in a previous merge, could be 

omitted and still result in a consistent object hierarchy. However, the reconciliation procedure would no longer give 

the same result for merges of partitions in different orders. As with splicing, eversion offers a choice of creating 

new splices every rime any shell must be converted, or & single splice for a given shell, no matter how many times 

the shell was converted in previous merges. We chose to create a single splice to reduce the amount of structure 

created during merge, and use a pairing function to unambiguously relate a shell and its post-eversion splice. 

Earlier reports described a mechanism for reporting and user reconciliation of inconsistencies in the object 

hierarchy (detach) [LeF85], [LeF85], but the full implications on HPC system design were not understood at that 

time. Both system and agent complexity are reduced by automatic reconciliation of the directed tre \ 

6.2.4. Domain Hierarchy 

Now consider domains with multiple superior domains. There may be no unique root within the domain to 

base mtra-domain reconciliation on, and operations like abdicate/depose and die/kill are no longer well-defined, 

because there is no unique superior domain boundary or well-defined subtree to remove. Panition and merge can 

easily produce such situations. Starting with two pre-panition domains «bos« and bei», during a partition an agent 

for «fao* can invest control of the subtree containing below to a new domain, middle. In one partition, baWs superior 

domain is At***, in the other it is midoi«. More complex sequences of domain and space operations can lead to 

structures as shown in Figure 6.5. (Domain boundaries are shown with double lines.) 
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Figure 6.5. Multiple Superior Domains 

Each domain is prepared for intra-domain reconciliation by merging all the spaces with an incident superior 

domain boundary before reconciling the domain LtemaUy. This ensures a unique root space within the domain, 

makes all the superior domain boundaries incident to the same space, and brings each of the part tioned domain 

roots up to the root of the merged domain. Figure 6.6 shows this ttep applied to the structure of Figure 6.5. 

Figure 6.6. Superiors Isolated it the Root 

The remaining inconsistency of multiple superiors to a domain ts treated similarly as multiple connections to a 

view. The.« is no function-preserving transformation that can be automatically applied, so the multiple superior 

boundary views are reported to the agent of the inferior domain, and forced suspended. Because only the superior 

domain boundaries arc suspended, the domain agent processes) are able to coordinate and execute a response (but 

see below) 

To allow clients tc reconcile this kind of inconsistency, the definitions of abdicate/depose and die/kill are 

emended to excess superior domain boundaries. Inside the domain, an excess domain boundary is simply removed. 

Outside the domain, the domain is replaced by an empty ie*if. When only one superior domain boundary remains, it 
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is unsuspendcd and the domain operations will have their usual effects. This is externally consistent with the 

behavior of depose on a domain suspended because its agents are temporarily partitioned. An implication is that 

kill on a given shell only destroys the structure it dominates. For DAGs rather than trees, this may be strictly less 

than the structure it precedes in the hierarchy. 

Terminal policies of abdicate and die are extended to excess superior domain boundaries simply by applying 

them to all superior boundaries rather than the usual unique boundary that is implicit in the policy. All boundaries 

will be treated as excess and the domain will be effectively killed. 

While this strategy leads to DAGs, rather than trees of domains, the graph of domains still behaves like a tree. 

Domains can interact through communication or domain operations only when the subgraph relating them is a tree. 

As a simplification of the HPC interface to processes, simple domains are treated specially to ensure a single 

superior domain. Because processes are physical resources, they belong to a single, well-defined partition (unlike 

abstract complex objects). If a merge gives a process multiple superior domains, the boundary known in the 

partition of the physical process is retained, and the boundaries known in other partitions are replaced with empty 

leaves. During the partition, these other boundaries will be suspended, representing uncertainty about the process's 

continued activity, so this treatment, like renaming, is masked as asynchronous behavior of other agents. 

Because structure is reported to clients strictly in the hierarchical view, the format for reporting a shell's 

parent must allow arbitrary numbers of parents even though only immediate children of the superior domain 

boundaries will have multiple parents. Similarly to the case of multiple connections, inverse domain operations are 

not exact inverses, but the asymmetry can not be as easily removed in this case because there is no operation to 

create a directed domain boundary between arbitrary domains. 

There is a further, subtle, interaction with protection structure and the system interface. It is possible, if 

unlikely, for all paths to the domain's controller to pass through one or more of the superior domain boundaries, 

leading to a temporary loss of control when the paths are suspended. In this situation, an external agent can not 

restore control directly, it can only give up control by destroying one of the surplus domain boundaries. When all 

but one of boundaries have been destroyed, control may be restored via paths through the remaining boundary. 

Because the (possibly many) external agents have no way to coordinate their actions, restoration of control is 

unlikely. Even "generous" agents willing to yield control can get into trouble because of the ».synchrony in the 

system interface. An agent could destroy the final boundary before learning the suspension had been lifted. 

We declined the aggressive investigation of more general structures that this interaction suggests. We could 

accept multiple superior domain boundaries as well-formed structure, but would prefer an explicit operation to 

create such boundaries instead of making it an exclusive side-effect of uncontrollable partition and merge. 

Alternatively. the hierarchical relation between domains crM be done away with, so that all domain boundaries are 

undirected splices, but the problem of destroying ancther domain, and any auxiliary domains it created, remains. 

Authorization to destroy a domain, without knowing or controlling its internal structure, must be expressed 

somehow, if not hierarchically. 
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7. Prototype Implementation 

At a distance, the HPC system is a three layer cake. At the bottom is a collection of host operating systems, at 

the top is a collection of client processes, and in between is HPC software. The middle layer consists of three types 

of processes, kernel, host IPC router, and host process manager. The kernel maintains the database of abstract 

structure, and determines the resources needed to implement an abstract operation. 

The client-HPC interface provides agent processes access to abstract structure like shells and interfaces, and 

worker processes the hosi IPC resources needed for end-to-end communication. Clients interact with the HPC 

kernel using a complex application protocol on top of standard network connections (TCP/IP). (Section 7.1.) 

The host-HPC interface deals with physical resources like IPC media and processes. The router and manager 

processes isolate host dependencies of resource creation, destruction, and status monitoring from the rest of the 

software. They are the only system components to communicate directly with hosts. Sections 7.2 and 7.3 discuss 

their internal structures and interactions with the kernel. 

The kernel process is the heart of the system. Section 7.4 descuues the basic software packages that handle 

interactions with the ou'side world and maintain the internal database of abstract structure. Incremental updating of 

global connectivity as a result of local abstract operations is an important function of the database. 

The final Section presents some experiences with essential, desirable, or inadequate tools and programming 

support. 

7.1. Client Interface 

The client-kernel interface has three functions: integrate new clients into the HPC system, implement the 

interactions between agent clients and the HPC kernel, and provide worker clients with the real IPC capabilities 

represented by abstract endpoints. These functions are summarized here. For a full description of the C 

language/UNIX operating system interface binding and the underlying network application protocol, see fFri86). 

7.1.1. Registration 

Client processes art integrated into the HPC system by two TCP/IP connections. Clients connect to a well- 

known kernel port to register with the kernel. The first step of the registration protocol creates the second 

connection. 

The client sends its host and process numbers to the kernel, which determines if the client has been «nimated 

If not, the kernel creates a new shell with no interfaces &s an immediate child of the HPC root This is how new 

independent applications enter the system. After locating or creating the appropriate shell, the kernel sends its 

interface descriptions to the client 

If the client is implementing a complex domain, it describes the interfaces it wants on the new shell to be 

created, and specifies the interface to be connected to the new controller. The kernel acknowledges. For both 

simple and complex domains, the client sends an explicit end to the registration protocol 

7.1.2. Agents 

Intentions between agents &nd HPC use both client-kernel connections. One connection is used in a 

synchronous, bidirectional protocol. For every invocation of an HPC primitive, the diem sends a rigidly formatted 
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message. The HPC kernel responds immediately with a messi.ee containing a globally unique "request" number 

that will be used later to refer to the invocation. 

The kernel uses the second connection asynchronously and unidirectionally to send the client three types of 

information messages: invocation error reports, notifications of structural change, and responses to the inquire 

operation. Every message follows a rigid format, and begins with the request number for the invocation that 

ultimately prompted it. For messages triggered by events outside the HPC system (e.g., failures) the request rumber 

is a distinguished value. 

Every' time a structural element is created, destroyed, or modified, a notification is sent to all agents for the 

affected domain. This is the response to successful invocations of HPC primitives. One invocation may generate 

many notifications carrying the same tag. Thesf notifications are copious and brief to eliminate the need for polling 

by agents. 

• An enclose operation generates a creation message for the new shell, creation messages for every one of its 

interface views, change messages for its children, and a change message for its parent. A disclose operation 

generates a deletion message for the shell, deletion messages for every one of its interface views, change 

messages for its children, and a change message for its parent 

• When a new interface component is created a creation message for the new view, and a change message for 

its parent are created. If the new view is complex (e.g., a bundle) creation messages are generated for all its 

components. 

• When livencss or connectivity changes on a view, a change message is generated. 

• When a shell becomes a domain boundary, deletion messages for all the previously visible structure are 

gen. -died. When a domain boundary is dissolved, creation messages for all the previously invisible structure 

are generated. In both cases, a change message for the shell is generated. 

7.1 J. IPC Terminals 

Real communication between worker processes requires translation of abstract simple endpoints inside simple 

domains into host-specific I/O facilities accessible from the worker processes. Worker processes then use host I/O 

operations to communicate with one another. 

An IPC terminal is a host I/O handle (e.g., UNIX file descriptor) together with any additional resources 

needed for the HPC system to connect and disconnect workers. Before a dient can use an endpoint, it must be 

translated into a terminal. Clients must explicitly begin translation to avoid unnecessary consumption of per-host 

and per-process resources. Clients can reclaim terminal resources by destroying the terminal. 

Creation and destruction of a terminal has no effect on the abstract endpoint except that liveness reflects 

connectivity to real terminals. Roughly, terminal' are tc endpotnts as physical pages are to virtual paces, except that 

clients must do their own resource management 

To associate the I/O handle with the endpoint, and to create any other needed resources, the client and kerne! 

use a synchronous protocol over the first connection. In this implementation, terminal creation requires an eKctumgf 

of five messages This is only part of the protocols needed for terminal manipuls^om The kernel is engaging in a 

similar, but more complex, protocol with the IPC router process at the same time. 
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The clieni interface library hides the terminal protocols, just as it hides the invocation protocol, and so 

prevents client programming errors. 

7.1.4. Discrepancies 

The client-kernel interface was frozen early in the development of HPC, leading to some discrepancies 

between design and implementation. The most glaring discrepancy involves control messiges between agents and 

controllers. As designed, an agent process wishing to invoke some operation sends a unas»^. :. :K: jntroller of 

domain to be affected, using a control interface. The usual rules about structural compatibility and eid-to 

connections apply. A controller's multicast interface ensures that all agents connected to a controller receive its 

notifications and that the controller receives messages from all agents. 

As currently implemented, an agent process always invokes HPC operations, on any domain for which it has 

privileges, through jic procedures provided in the application interface library. The agent does not send messages 

to connected controllers. However, it must have connections to the appropriate controllers. An agent's connections 

determine its privileges, just as if control messages were being sent. If an end-to-end connection to the appropriate 

controller exists, the kernel carries out the operation. 

The interface library sends messages directly to the HPC kernel using the invocation protocol, so control 

messages can not be intercepted, filtered or debugged as described in Chapter 3. Also, agents can not separate 

control activities for separate domains onto separate local interfaces. Sending invocations along connections 

primarily associated with an agent, rather than a domain, also led to a distortion inside the HPC kernel, that will be 

discussed later. 

In this centralized implementation, there will never be merge inconsistencies. Since no domain will have 

shells to multiple parents, the arguments to abdicate and die are implicit. 

The kernel administers both temporary and permanent policies, but the interface only allows a request for a 

new permanent policy consisting of a single basic policy (die or abdicate). Clients can not request alternatives to 

the default temporary policy. 

Endpoint/extension promotion is the final omission. Worker clients are allowed to translate either endpoints 

or extensions of simple structure into IPC terminals, so promotion is implicitly allowed for simple domains. 

However, there is no provision for promotion in complex domains. The details of managing a multi-agent 

interaction that must take place immediately after a new domain is created, be/ore any other operations are invoked, 

and affect every view at most once, were never worked out 

IX IPC Router 

To translate abstract connectivity into real transport corrections, the HPC system must provide client* access 

to host IPC resources, and dynamically reconfigure the transport connections between clients. Unfortunately, most 

host systems and standard protocol suites lack third-party connect, a simple facility that would make reconfiguration 

a trivial earner. 

Lacking third-party connect, dynamic reconfiguration is complex and expensive enough to justify isolating 

host-specific IPC functions in a separate IPC router process. The router supports creation and destruction of cheat 

terminals, creation and destruction of end-to-end connections, and additional diagnostic functions, A TCP/IP 
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connection is used with an asynchronous, highly multiplexed, application protocol for command functions between 

lite kernel and the rouicr. 

7.2.1. Third Party Connect 

Ideally, the HPC kernel could look up the IPC terminals for the endpoints of an end-to-end chain, and instruct 

the host operating system to set up or tear down a transport connection between the terminals. The kernel would 

control reconfiguration, connecting and disconnecting arbitrary pairs of processes (and terminals), without the 

panicipaDon, or even cooperation, of the affected clients. This scenario preserves the du> nction between 

communication (workers' responsibility), configuration (agents' responsibility), and implementation (kernel's 

responsibility). 

Real operating systems and protocol suites place unfortunate and, we argue, unnecessary constraints on the 

creator of the transport connection and the connected processes, leading to intrusive, unsafe, or inefficient (or all 

three) emulations of the desired third-party connect property. 

For example, a UNIX pipe must be created before the processes it connects, by a process that creates the 

connected processes. This does not allow reconfiguration of existing processes, and is totally in^ie^uate to support 

HPC. 

Most operating systems with more sophisticated IPC objects (Charlotte links. Accent/Mach ports, 4.3BSD 

pipes, etc.) permit passing a link end along an existing link. However, client'; must actively participate in 

reconfiguration, by continually monitoring a link to the HPC kernel for messages containing new links, discarding 

old terminals for a given endpoint. and installing new links as terminals. There is no way to cnfn.ee, or even 

inspect, that clients act correctly. They could retain old links (in systems where the kerne» can no: retain desr oy 

rights), ignore new links, or send links to other clients, bypassing agents and the kernel entirely. 

Standard network protocol suites such as IP provide even less support for transparent reconfiguration because 

the kernel must give a client process full details about the address and identity of its peer before a connection can be 

created. 

Tturd-party connect is intrinsically inexpensive. For example. TCP/IP uses a well-defined sub-protocol for 

connection set up and tear down, with clean interactions with the main protocol governing reliable delivery and flow 

control. If a third process could initiate this sub-protocol across the network, instead of the »wo cümmurücating 

processes from the host interface, we would have third party connect. 

A pinctpal reason that link systems tod network protocols restrict configuratjon as they do seems to be 

authentication of authorized configuring agents, alternatively, equation of protection with holding a link or 

connection (capabilities). However, even the absence of a ousted global authentication system does not stand in the 

way of a practical third-party connect mechanism To continue die TCP/IP discussion, each diem could specify the 

host and port from which authorized configuration messages are allowed. This provides third-party connect with the 

eaactty same degree of security us gy s: unmodified TCP/tP. We ditcuss this issue further ?n{Fri87]. 

7.2.2. Forwarding 

In the absence of third-parry connect, and a notable (two and a half year) delay from our workstation vendor 

in provtdtnf sufficient sources to beiSd in the desired support, we chose to provide an wuntrusive. sec**, but 
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inefricieni emulation for the UDP and TCP protocols. When a client IPC terminal is created, a fixed connection is 

made to a similar terminal o*ned by the IPC router process. Reconfiguration is performed entirely inside the IPC 

router. Clients are never rccuested to modify their terminals in any way, nor are they given any information abou: 

their peers. 

Dunng the client-kernel protocol that translates an endpoim into a terminal, a similar router-kernel protocol is 

executed to create a router terminal and connect it to the client. The primary difference is thai the router-kernel 

setup sub-protocol may be multiplexed among concurrent exchanges between the router and kernel. 

After terminal creation, the router keeps track of which host terminals correspond to which endpoints. When 

end-to-end connections are created and destroyed, the kernel instructs the router 10 start and stop forwarding 

messages between the endpoints. Therefore, connected workers do not send data directly to one another, but first to 

the router process, then on to the destination. 

Besides the obvious inefficiencies of sending every message twice, the router is a bottleneck. Even in this 

prototype, HPC system and client processes can be freely distributed. Messages that might be processed in true 

concurrency are serialized in the router. Executing router functions in a separate process, and not inside the kernel 

process, adds unwanted latency to handling both agent invocations and worker communications. Providing one 

router for each physical processor (HPC does not assume a single router) might avoid the communication 

bottleneck, but further problems arise: finding the router for an endpoint, potential router-to router forwarding 

inefficiencies, etc. 

The IPC router setup does have some advantages, of course. Besides client simplicity and security, it offers 

an obvious experimental implementation for multicasting media such as TCP, which don't have native multicast 

semantics. For each terminal, the router keeps a list of all the other terminal« to receive outgoing copies of 

incoming messages. For a normal connection, this list has just one terminal. (This prototype does not attempt to 

handle pathological interactions of limited buffering and reliable retransmission.) 

123. Implementation 

Because IPC is the fundamental issue in real interactions between objects, the router and the router-kernel 

protocol were the first components of the HPC system to be implemented. They were fully, and easily, debugged 

with extensive scaffolding processes standing in for clients and the kernel. The success of this approach prompted 

similar unit-and-interface test procedures for the other components. Full details of the implementation are given tn 

[FrP86]. 

The router is a very highly multiplexed server, and care was taken that it wou'd never block under any 

circumstances. For each output terminal, it must first wait for available operating system buffer space* then wai: for 

input on the corresponding input terminal, read the input without blocking, write the output without Nocking, 

internally buffer any excess that could not be written, and deal with operating system errors or resource Lmiattons 

at any point. Of course, many terminals are bidirectional so, this is done in both directions, and multicasting further 

complicates things. 

Ai the same time, the router is engaging in overlapped non-trivia! protocols with the kernel to handle 

command functions It must be ready to receive a new message from the kerne! at any ume. determine which in- 

progress operation it applies to, and advance the operation the corresponding step. Unique tags are used in the 
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router-kcmcl protocol as in ihe clicnt-kcmcl protocol to simplify demultiplexing. 

The router is based on a table driven state machine. Each terminal has an entry in the table to store the state 

of its submachine An incoming event on a terminal recovers the previous state from the terminal, then calls a 

function to do the next sup. This was an adeq-iate technique, but we would never use it again. 7"he lightweight 

tasking package (developed after the router was finished) would eliminate explicit submachine management, and 

give a much clearer picture of "what happens next' on a given connection. 

7.3. Process Manager 

The process manager handles host-specific process creation and destruction for the HPC kernel. There is a 

separate manager for each physical host. As with the EPC router, the manager-kernel interface consists of a TCP/IP 

connection and an asynchronous command protocol, but the process manager is a much simpler piece of software. 

The kernel passes the arguments from an animate to the process manager for the specified host. Inside the 

manager, a lightweight task is created to fork and exec a process with the specified arguments, then return the host 

process identifier to the kernel. The process manager also monitors the processes it has created and reports 

termination to the kernel, which translates process death into implicit die operations. 

By design, resources like files and devices are manipulated outside the HPC system. However, many 

operating systems protect such resources by using access control lists and associating some user identity with each 

process. The HPC process manager creates processes with an user identity without any special privileges, and the 

UNIX set-user-id mechanism can be used to associate additional privileges with a specific executable program. 

This interface to the host protection system is not strong or flexible enough to protect independent HPC applications 

from one another, but a better solution is a matter for *c-design rather than implementation. 

7.4. HPC Kernel 

The kernel process is internally organized into several packages of software with sets of related lightweight 

tasks. Altogether, there are nine distinct packages built on tens of supporting libraries not specific to the kernel. 

The major packages can be roughly divided into those, (hat h&t&e interactions with the world outside the kernel 

process, and those that handle strictly internal functions. 

The client package handles four classes of clkm-kerael interactions: registration, terminal setup invocation of 

primitives, and asynchronous notifications. There is a permanent task to wait for new client connections, a transient 

task lo handle the body of the registration protocol, and a task to handle synchronous client imersctwns. 

The router and process manager packages resemble each other, with one pumanem task waiting to 

ffcrfM«?ti?:cx incoming messages, a small database of tasks waiting for messages with specific tags, and a permanent 

task waiing tor unsolicited acrtmnal or process death nccincmnom An RPC -stub module conccab the details of the 

protocols from other kernel tasks. The router package also contains stub-Uke routines for terminal setup mat run the 

client-kernel and router-kernel subprotccob concuncnuy to minimi» latency. (Such routines are obviously unabie 

to use the RPCriike blocking insrf ace provided for other diem at router functions.) 

At the heart of the kernel is a struaura* database with complex layered routines to access the database, and a 

tass for each pending invocation CUent tasks spawn thesi operation tasks m response » explicit agent »vocations, 

and the terminal and procesr death tasks spawn mem in response to failures or uncooperative terminations 
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This gives central responsibility to the client task, since most invocations are started there. This distorts the 

kernel's natural structure, because all HPC primitives are fundamentally applied by domain, rather than by agent 

client 

The final package is an internal controller service. There is a permanent task that waits for creation of lie* 

comp'cx domains, and creates controller tasks to handle each one separately. Controller tasks monitor domains for 

permanent and temporary losses of control, and apply the appropriate policies. Jn a better implementation, each 

controller task would have an IPC terminal for receipt of control messages, and the controller tasks would spawn 

operauon tasks instead of the client tasks. 

Figure 7.1 shows the overall structure. Circles denote tasks, rectangles represent modules shared between 

tasks, and mangles show queues on which internal tasks may block. Solid lines show regular calling patterns and 

dashed Lines show task spawning. Despite appearances, there sue no circular dependencies between layers. 

7.4.1. Database Operations 

Each operauon Lask rails a single entry in the network layer of the structural database software, which is 

responsible for translation between external protocol and internal data representations. A network function reads 

and decodes the body of a protocol message into convenient internal data structures, verifies that all purported HPC 

identifiers are legitimate, and passes on to the next layer The network layer reports errors of all kinds back to the 

invoking agent. 

The high-level semantics layer completes translation of arguments, does argument validation, and requests 

any necessary serialization. The function for a given HPC primitive first converts HPC unique identifiers into 

pointers to the appreciate database structures, then collects any structures affected by the operation that are not 

explicitly named in the argument list. The function then checks the domain of the request, the types and domains oi 

the arguments, and the structural relations among the arguments against the preconditions of the operation. 

IV high-level layer brackets calls to the low-level semantics layer with calls on the synchronization layer to 

ensure conflicting operations do not overlap. An operation will be blocket* until no possibly conflicting operations 

arc active. When resumed, it must check its argument list for changes caused by such conflict, possibly collating 

a new set of implicit arguments. This synchronization is obviously needed in a decentralized or truly concurrent 

kernel, but it is *lso needed even in this logically centralized, run-preemptive tasking design. The tntataces to host 

IPC and process managers allow an operation task to block, yielding the kernel to another task while a remote 

opriition completes 

After checking and serializing, low-level semantic routines are called to do *e significant aanipuiat*/0 of 

abstract structures This level encodes HPC structural semantics, calling on a bottom-most database layer to record 

abstract structure, and the rPC and process inaiu^er packages to reali» ahstraa changes n The 

ta«k handung the client registration protocol directly invokes some utility functions in this layer to crt*e new shells 

and controllers. The low-level semantic layer also issues all structural change nortfications and responses to 

inquires. 

TV HPC database does not dtaectiy implement ail the relations like «T>MW« in the formal specification of 

HPC structure. What is elegant, or at least simple, in a formal setting may be absurd in a computauonal setting For 

example, when mcrementaUy modifying structure, it is much more efficient to infer adjacency from explicit spaces 
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The final database layer is the collection of basic data structures and iheir access routines. It provides a name 

registry for use by the network layer to translate external HPC identifiers into internal pointers. There arc basic 

internal data types for spaces, views, shells, domains, and processes, though only shells, views, and domains can be 

named by clients. 

Each type has operations for initializing its module, and for creating, validating, and freeing structures. Each 

type representation carries a unique password value i its first location, and the database and the low-level semantic 

layer routines rigorously check each argument for pointer an»! password validity. Besides these generic operations, 

each type has specialized operations to set and clear fields, the most important being pointers linking t./o structures 

to each other. These opcrauons ensure that both links are made and broken at the same time, that links to structures 

are never lost by accidently overwriting them, and enforce a useful discipline in the low-level semantic routines. 

Figure 7.2 shows the most significant links between the internal data structures. 

s domain 
S oomam ^—.^cT spaces^ 

-JdomainW- 

s_process 
space 

v_childrerv 
v parent 

v_termina! 
p terminal 

Figure 7.2. Principal Database Links 

The database layer uses generic data stmctures like hash tables and ordered sets throughout for fast lookup 

and arbitrary numbers of similar links. 

7.42. Root Domain and Controller Service 

A special case in the second step of splicing allows promiscuous services. If the remote shell has beer, spliced 

to a well-known identifier, then a sibling of it is created and spliced to the local shell. This single well-known 

identifier amounts to a service service, because shells spliced to that identifier may then be spliced to from clients at 

arbitrary place* in the hierarchy without prior negotiation, once their identifiers have been distributed. It was more 

convenient to provide services this way than implement the restricted number of service shells described earlier. 

The distinguished root domain is treated only slightly differently from client domains. The low-!evcl 

semantic layer delivers structural change notifications internally to a permanent "root agent" lightweight task instead 

of externally to another process. The root agent task has two functions. It cleans up top-level domains that 

abdicate by killing their subtrees, and it ures the service service mechanism to implement the internal controller 

service. 
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During start-up, a shell is created inside the root domain and spliced to the service service. When processing 

invest, the kernel splices the controller shell in the new complex domain to this controller service shell. The root 

agent task creates a separate controller task to monitor each new domain. 

The controller service is a fairly typical service, despite its implementation inside the kernel. A task watches 

over the overall state of the service, clients come and go, tasks are created to service them, and (in a proper 

implementation) client requests are translated into operations on an internal database. The only reason it couldn't be 

reimpiemented outside the kernel (cf Section 3.4) is that liveness on the controller interface is insufficient to 

distinguish permanent and temporary losses of control. 

7.43. Path Maintenance 

Both the client interface and the formal specification deal directly with connections, shells, and spiices. These 

define local connectivity between views. Global, end-to-end, connectivity between objects is a complex function of 

the local connectivity, involving indirect bindings introduced by abstraction (corresponding components) and by 

composition (chains of alternating public and private peers). 

Deducing global connectivity from the local connectivity is certainly possible, and the formal specification is 

written that way for simplicity. However, obtaining deductive closure directly from axioms of direct binding is 

unsuitable for any real system. The efficient, incremental computation of global connectivity and liveness triggered 

by or> ations on direct bindings is the most interesting algorithm in the kernel, called path maintenance. (The 

similarity to truth maintenance systems in implementations of formal logic is deliberate.) 

Path maintenance keeps track of direct and indirect birJings between views. The indirect bindings retain 

enough global information to compute the effects of a change quickly, regardless of the structural distance between 

the cause and the effect. 

Each view data structure maintains separate lists of private and public peer bindings. Private and public 

bindings are distinct, and a pair of views may be bound both ways simultaneously. Only direct public peers 

(connections) are used in path maintenance. However, a view's list of private peers includes views at all odd 

distances dewn chains. These cached bindings allow propagation of changes in connectivity and liveness directly to 

distant affected views. 

Multicasting allows more than one chain between two views, creating a given indirect binding in more than 

one way. Path maintenance retains the proximate justifications for each binding to ensure they are removed at the 

correct time. Direct bindings have a primitive justification as a connection or a shell/splice. Indirect bindings 

between corresponding components are justified by the binding between their parents. Indirect bindings between 

peers along a chahi are justified by the alternating private and public bindings in the chain. 

Bindings *nd justifications farm a directed graph where the sources are the primitive justifications. At odd 

distances from the sources, the entries are bindings; at even distances, justifications. 
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Figure 7.3. Binding-Justification Graph 

Inferring the effects of a local change from the direct bindings requires the minimum amount of space, but an 

unreasonable amount of time. The '^responding binding/jusufication graph would be trivial, with juri primitive 

justifications and direct bindings, and every view along a chain must be visited on every related operation. 

Recording the complete set of direct bindings that ultimately justify an indirect binding represents the other extreme, 

because each effect can be looked up in constant time using a binding/justification graph four layers deep: primitive 

justifications, direct bindings, derived justifications, and indirect bindings. 

However, direct lookup is expensive in space and has substantial hidden costs in time. The cost of creating or 

destroying a single justification grows with the distance between the bound views, because Links to a greater number 

of justifying bindings must be maintained. 

Path maintenance compromises between lookup and inference to improve performance. It deepens the 

binding/justification graph by allowing indirect bindings to justify others, while reducing the fan-in and fan-out of 

individual bindings and justifications. Because the graph is no longer bounded in depth, inferring an effect of 

changing a direct binding is no longer a constant time operation. But neither is it necessary to visit nodes that are 

unaffected by the change. 

Bindings between corresponding components ere justified by the binding between their immediate parents. 

Bindings along a chain are justified by just three bindings. For a binding between views vi and vz. one direct 

connection between, say. a and a. and the private bindings (direct or indirect) between vi and ci and between V2 

and a are recorded. This justification is not unique, because any connection between vj and v2 could be chosen. 

The order in which hindings are added to a chain determines the specific trio used to justify a binding. 

This compromise has several notable points. 

• The apparently greater cost of traversing the graph (inferring indirect effects) is actually of the same order as 

the cost of traversing a complete list of precomputed effects Both traversals reach the same views and 

bindings. 
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There ii a large reduction in storage requirements for links between bindings and justifications. The same 

number of bindings exist, but every justification now has a bounded number of constituent bincings, and 

bindings for views closer to the tops of their local hierarchies participate in many fewer justifications. (In 

exchange for this global reduction in links, cycles may introduce a larger number of justification data 

structures.) The reduction in fan-In and fan-out translates into increased speed when mar>;pulating 

justifications 

The binding/justification graph is not a DAG. Cycles allow paths between peers with and withou complete 

pass around the cycle. A binding thai docs not depend on a cycle can justify itself when a cycle is N npletcd 

by adding a connection. Figure 7.5 illustrates a cycle in a pan of the binding/justification graph resulting from 

the cyclic path shown in Figure 7.4. Longer path cycles can create longer cycles in the binding/justification 

graph 

■■A U" 

t fcl J 
Figure 7.4. Typical Cyclic Path 
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Figure 7.5. A Resulting Self-Justifying Binding 

The kernel translates connect and disconnect into creation and destruction of public bindings. Similarly, 

client shell and splice manipulations are translated into creation and destruction of private bindings, in addition to 

manipulations on spaces and view hierarchies. These bindings are given a primitive justification. The new and 

delete operations affect structure within a view hierarchy, and the bindings between corresponding components are 

indirectly justified by their immediate parents. 

Bindmg and justification removal follow a simple rule. A binding is removed when its last justification is 

removed, but a justification is removed when «jy of its consutuent bindings is removed. This leads to a recursive 

algorithm for destroying connections or shells/splices. Addition of bindings and justifications naturally obeys the 

converse rule, but is more complex because it must compute any additional bindings justified by a new binding, 

while the destruction algorithm simply looks them up in the binding/justification graph. Pseudocode for these 

algorithms is shown in Figures 7.6 and 7.7. 

In Section 4.2 we noted that multiple paths between views should not lead to multiple delivery of messages. 

Any pair of views has just one (private and public) binding in the database* regardless of the number of 

justifications, so the IPC router is easily instructed to provide single delivery. When a binding is justified a hash 

table is searched to determine quickly if it already exists. 

A greater potential problem is the infinite number of chains between views provided by zero or more passes 

around a cycle. An algorithm based on propagation (or inference) along a chain must include an explicit check for 

cycling. Path maintenance avoids this by adding bindings based on information at a fixed number of nodes, and 

adding justifications only when a new path is created When a cycle is completed, a single justification accounts for 

all numbers of passes through it 
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Ordinarily, cycles in the binding/justification graph would never be removed, because the underlying strategy 

is reference counting. However, all bindings are removed correctly without expensive checks for cycles. First, path 

maintenance prohibits justifications in which a binding directly justifies itself. This prohibition requires checking a 

binding against at most three others each ume a new justification is found. 

If direct private bindings could be removed at arbitrary times, this would be insufficient. However, dire«.« 

public bindings have only primitive justifications and semantic constraints at higher levels ensure a direct private 

binding will never be destroyed while it is pan of a cycle. Shells, and the direct private bindings between the tops of 

their interface hierarchies, are destroyed only by disclose and splice. A precondition for disclose is that there are no 

connections to any view on either side of the shell, and a precondition for splice is that there are no connections to 

any view on the lower side of the shell. Induction can prove that the loops in the binding/justification graph are 

removed before it is legal to destroy a binding that indirectly justifies itself. 

Because a unique path between two views is justified only once, the non-unique three-binding path 

representauons are permissible. In direct lookup, mentioned above, each derived justification uniquely represents a 

non-cyclic chain. In the three-binding compromise, each jus ideation still represents a single chain, but a chain will 

have multiple representations. These multiple representations account for the possible growth in the number of 

justification data structures. However, different representations are used to justify distinct bindings, never to justify 

a single binding redundantly, and never for bindings that don't complete a cycle. Moreover, it is never necessary to 

search for a path, only for bindings. 

The number of bindings grows as the square of the length of a chain, because path maintenance records 

indirect bindings between every pair of private peers. This is a direct and expected consequence of maintaining an 

explicit database instead of performing an exponential number of inferences. Creating of a single binding takes 

constant time, but recursively creates N additional bindings, where N is the length of the chain just created. For 

some applications, this linear cost would be unattractive, but HPC must visit all the views along the new chain to 

report changes in ljvcness. 

The primary reason for bindings between all pain of views along a chain is to allow destruction of bindings in 

the middle of the chain without explicitly traversing iL It is simple to bind only the ends of a chain together, and 

grow chains at the ends, with constant time creation and sub-linear (even negative) growth of maintenance data 

structures. However, destroying a connection requires identifying the ends of all chains the connection justifies, 

either directly or indirecUy through corresponding components. An alternate path maintenance algorithm based on 

direct bindings and maximal chains is worth investigation, but proper handling of cycles, reflectors, and multiple 

paths may reduce its apparent advantages. Anyway, graph «;>e has not been a problem in practice, and HPC 

requires visitation of all nodes for other purposes. 
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bircirc_create(vl, v2, type,  *) 
view vl,  v2; 
ire type; 
justification 3; 

create b ■ new binding (vl,  v2i 

aac jtob's justifications 

if both views are terminals 
create a transport connecticr. 

// add any bindings Justified by thi* cne 
if type is PRIVATE 

for all public peers p cf vl // collapse to riojrc 
for all pnvaue peers c of p 

acb_binding(v2, q,   fc,  vl-p, p-q]  ) 

for all public peers p cf v2 // collapse to left 
for all private peers q cf p 

add_binding (q, vl,   [q-p. p"v-» c"  ) 

for ail children, p of vl // collapse corresponding crnponents 
for all children q cf v2 

if p arc q oorresponc 
acc_binding (p   q,   [b*  ) 

else 

for all private peers p of vl // collapse connect ion 
for all private peers q of v2 

addjsinding {p, q,   [p-vl, b, v2-q!  ) 
} 

add binding(vl, v2, constituents) 
{ 

fird or create j - justification(constituents) 

find b - binding (vl. v2) 

if b nust be created // no existing justifications 
bmding_create(vl, v2, PRIVATE,  j) 

else if b is not it, constituents // no direct self-justificatior. 
add 1 tob'» justifications 

I 

Figure 7.6. Binding Addition 

bincur^destroyCb, j) 
binding b; 
justification y, 
\ 

remove j frarb's justifications 

for «11 justification» j' with constituent b 
for all bindings b' justified by j' 

if b* nust be destroyed // less of all justifications 
birding_destroy(b', j'} 

else 
y fror, b' 's justifications 

destroy y II loss of any constituent binding 

if both v:sws are teocunals 
destroy network conraotion 

dastioy b 
I 

Figure 7.7. Binding Removal 
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7.5. TooLs 

While implementing the H?C prototype, we enjoyed, suffered through, or craved a variety of tools ana 

programming techniques. Time spent in building basic tools or "wasted" in disciplined program design and testing 

will be more than repaid in reduced overall development time and reduced maintenance. Sometimes tools and tool 

building make the difference between a success and a completely unmaintainable write-off.  This is as true of 

experimental software subject to frequent and rapid change, such as HPC, as it is of commercial codes. 
t 

HPC code quality is high. Most package* are very robust and easily modified. Some of the tools used to keep 

them that way, along with some of the failures, are worth reporting. 

7.5.1. State Table vs Tasks 

As mentioned earlier, two substantially different methods of writing multiplexed programs were used: a table 

of state machines and a collection of non-preemptive, lightweight tasks. A state table can be implemented using the 

simplest of tools, and it is an intuitive approach. Those are its only merits, and a small investment in tools offers a 

large reward. 

The hean of the tasking package is a simple coroutine package, but HPC never uses the coroutines directly. 

Above the coroutines are queues, a round-robin scheduler task, ai.d routines for tasks to sleep on a queue, wake up a 

queue, yield control to the scheduler, and terminate. The scheduler task runs a "backstop" task to collect external 

events (like host I/O) when all other tasks are sleeping. These tasking functions are convenient and unintrusive to 

use. 

The tasking package has two big advantages over state tables. The backstop task distributes external events 

without knowing what to do with them, and regular tasks just wait for the events they want without dealing with the 

distribution. This separation makes both distribution and processing of events cleaner, easier to read, and easier to 

extend. This is more important that it might seem at first. The HPC kernel redistributes many external events iwo 

or even Uvee times. For example, the backstop task waits on Ü» host for external events, the process manager input 

task waits on the backstop task for messages from the manager, and the process death task waits on the manager 

input task for death messages. Tasks cleanly separate the responsibilities and concerns of the three levels. 

Second, tasks encode significant flow of control in one place using a conventional programming language. In 

the state table approach, flow of control is encoded in the data, and distributed over many different functions. It is 

hard tc distinguish the logically separate computations, and hard to manage interactions between them in a state 

table, but easily managed using queues for synchronization with associated data structures for commurjcation. 

Development, maintenance, and debugging are all much more difficult for state tables than tasks. 

Lack of compiler support is the only notable disadvantage to lightweight tasks. Non-preemption has been an 

advantage, making every block of code an implicit critical section and eliminating the need for nuisance locks on 

data strucaires. rather than a disadvantage. The underlying coroutine package requires architecture- and compiler- 

dependent assembly coding, however, the original package was easily ported to diverse architectures such as VAX. 

MC68000, and ROMP (IBM RT-PC). 

The real problem is stack management. A task's maximum stack depth is fixed when the task is created 

Stack overflow was a continuing problem during development Overflow can not be automatically detected without 

compiler support, so the task package was extended with a mechanism to measure the deepest point reached on a 
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slack. The main function for each kind of task is coded to measure stack depth explicitly after each iteration 

through its body and, unfortunately, after any damage has been done. Packages are recompiled to increase the stack 

size associated with tasks that come too close to their limits. Many tasks have bounded stack usage, but operauon 

tasks call recursive routines, so any limit may be insufficient. 

7.5.2. Message Libran 

The synchronous, master-slave, paradigm offered by RPC is inadequate implementing for the generally 

asynchronous, highly multiplexed, peer relationships between the component processes of the HPC system. 

Therefore wc buiit RPC-stubs that block tasks instead of processes and allow the flexible distribution of incoming 

messages to existing tasks needed inside the HPC kernel. Compiler and stub generator support would have been 

welcome, but not with the additional baggage carried by available RPC implementations. In particular, network 

transport, message encoding and decoding, and flow of control had to be managed separately in the HPC kernel, 

while these are all unified in RPC. 

The ideal transport medium was reliable (perhaps unordered) delivery of messages with distinct boundaries. 

Unreliable deb very of messages (UDP) and reliable deb very of byte streams without internal boundaries (TCP) 

were available when implementation started. We chose to build rigidly formatted messages on top of TCP, pray for 

detection of malformed or unsynchronized messages, and resynchronize after errors by dropping the TCP 

connection. This was considered a better investment than implementing our own reliable transmission protocol. 

There is no question that the HPC implementation would have died a miserable and lingering death if 

application messages were assembled and encoded "manually". To centralize byte packing and conversions 

between internal and external representations, a message library was written that would take a message buffer and a 

human-readable format string and scatter or gather the arguments specified by the format Format strings use 

abstract data types relevant to HPC (she::) rather than the underlying concrete types (lens). 

The self-documenting formal feature was a great success, explicit management of message buffers was 

tolerable when packaged correctly, but the external data representation was a serious mistake. The external 

representation used one, two, and four byte quantities aligned on quantity boundaries from the beginning of the 

message, under the impression that this would avoid problems caused by host data alignment requirements. What 

actually happened was that entire messages had to be aligned to be read properly, and that alignment had to be 

maintained even after the first pan of a message had been discarded. 

Eventually a solution to this alignment problem was neatly, even elegantly, packaged up, but fixed size dan 

quantities would have been a better solution. A still better solution would have been to use an existing de facto 

standard encoding like XDR or Courier, preserving the message library to translate between HPC abstract types and 

the concrete types directly supported by the encoding 

1S3. Protocol Grammar 

The messte library deals with individual messages, but does not simplify programming exchanges of 

multiple message: «>r of demultiplexing interleaved exchanges. These are problems both for tue kernel, and for sny 

rt^listically complex agent, which must manage several concurrent but independent strategies for different portions 

of its domain. The client interface provided by HPC must be augmented with a wide range of programming support 

tools before the overall system is practical. 
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The user interface dialogue grammars under development by Yap (ScY88j look like aoraciive tools for 

managing mans oi these protocol problems when building an agent.  We have not yet applied them in the HPC 

system. 

7.5.4. Test Scaffolding 

No exact records were kept, but it is probable that the disposable test scaffolding used for HPC development 

is larger than the HPC rode itself. At least one, and usually two, lest processes were created to take the place of 

clients, kernels, and routers. Each application protocol between processes with its corresponding interface libraries 

was tested independently of the application code, and EPC terminal setup was tested with nearly every combination 

of dummy clients, routers, and kernels during various stages of development The earlier test processes were run 

interactively to step through each protocol and set up stress cases. Later scaffolding generally ran automatic test 

sequences to verify üui further development had not introduced new bugs. 

As a result of protocol testing, the kernel packages that handle interactions with external processes were 

debugged independently of the central database operations. The layers of database routines lent themselves to easy 

testing from the structural database up. As functions were added to each layer, corresponding test functions were 

added to a test suite and run after every significant change. The time spent running the test suite paid for itself in 

development time through early detection and good isolation of errors. 

In many cases, fully exercising a layer in isolation violates global structural constraints. As mentioned earlier, 

the path maintenance code may net remove direct private bindings at arbitrary times, isolated test exercises had to 

be gradually removed from the lest suite as the dependencies between layers and checks for additional HPC 

consTajnts were added The final kernel *est suite contains over 650 calls on the low-level semantic and database 

layers, and over 950 checks on the results in the structural database. This is larger than any package except the 

lew-level semantic layer, and none of it is used in the kernel 

73.5. Log Files 

Log files are an invaluable, if unexciting, diagnostic tool. HPC keeps logs with adjustable level» of reporting 

for the kernel. IPC router and process manager. The globally unique number generation system aiio uses a per-host 

special log to prevent reuse of numbers 

A standard log message heading with the date, time, and logging process identifier was especially helpful in 

sorting out the variety of messages in the kernel and raster logs. At various times during development, the log have 

recorded debugging traces, task sack depths, rough timing agrimatr*. client arrivals and departing,, internal oak 

creations, dumps of valid incoming messages, dumps of protocol violations, resource contumpuun reports, hash 

table statistics, rates of unique number generation, host fatal errors, and violated internal assertions Mundane, but 

essential, material. 

?34. Graphic Interface 

Complicated dynamic activities can be very difficult IO understand. Used wisely, graphic displays and user 

interfaces can make an impossible task practical, especially for a system like HPC with a natural graphic 

represrnuuor. An tnteracuve graphic interface for domain agents would be a tremendous experimerta! tool. 

L'nfortunarciy. good graphic interface; are a major investment in development time and resources, and client 
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support tools were noi a important issue in this thesis. 

Still, a simple, non-interactive graphic display was integrated into the tasking package te display the internal 

status of the kernel conveniently. Each task has a separate marker with descriptive labels. The display places the 

markers for different types of tasks (client, operation, controller, etc.) in diflerer.t columns. This has been a 

valuable tool. The degree of multiplexing and the number of clients is manifest. Premature task termination, 

failures to terminate, and unreclaimed resources are instantly and obviously visible on the display. Log files provide 

the same raw data in a format that is much harder to use. 

7.5.7. Interface Preprocessor 

Interface structure descriptions (medium, orientation, component structures, etc.) are complex pieces of 

information that mutt be manipulated efficiently by software, transmitted via network connections, and 

communicated to and from human beings. There are three corresponding representations: linked graph data 

structures, linear encoded byte sequences, and ASCII strings. 

For many purposes, a structure descriptions is convened from one representation to another at runtime. 

However, this is inconvenient for programming clients. A programmer would like to write *n ASCII description 

inline in a program, and have it convened to a useful form during compilation. A simple source code preprocessor 

takes inline HPC descriptions and converts them into C language arrays initialized to the linear encoding fcr the 

description. This form can be passed directly to the client-kernel interface library, which is the most common use of 

inline descriptions 

7.5.8. Code Assertions 

The low-level semantics and structural database packages must maintain many invariant propertied to 

preserve HPC properties and avoid corruption of data structures. Assenions about these invariants are a significant 

fiicuon of the executable code in these layers. Seven percent of the low-level semantics layer, and 12 percem of 

the database layer is devoted to checks thai are usually unnecessary and often redundant 

However, the cost of invariant checking is in<igruficant compared to the development and maintenance time it 

saves, not to mention the increased confidence r «spires in cccipbcatrd database manipulations. On dozens of 

occasions, an apparently innocuous code addiuc *v change violated an assertion. Usually, the violations were the 

result of incorrect coding that was acceptable • v «it it of the modu'e ben.* added, but incorrect in the larger 

context of the enure database. Asserted üra . - were , 'most never loo restrictive: the exceptions were due to 

either a lack of forethought in specifying V • nt c  a radical change in implementation requirüig global 

changes throughout the database. 
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8. Conclusions 

Wc began with three general goals: develop a structural representation for target applications, provide 

operations tc manipulate the representation during execution, and identify specific influences of the distributed 

environment or» application structure and management. As in any research, the successful pursuit of initial goals 

leads to unexpected conclusions and suggests goals of future research. Here we present some general conclusions 

on system design. Wc also suggest several research areas ripe for additional work. 

8.1. General Observations 

D inng this research, we came to some conclusions on system design that apply widely. 

8.1.1. Dynamic Structure 

• Use semantics, not syntax, to describe dynamic structure. 

The typical language-based approach to distribute*! programming handles static process structures well, while 

handling open systems and run-ume reconfiguration poorly, if at all. Dynamically changing structure should be 

represented as an abstract data structure with a set of manipulating operations, not as a syntactic form in a program. 

The UPC design successfully demonstrates the data structure approach, encoding a broader set of process 

structures than any programming language we know. HFC also tackles dynamic changes and merge 

inconsistencies, which can not even be expressed syntactically. Future distributed programming languages should 

not attempt to encode process structure syntactically, unless the process structure is to be entirely fixed. 

8.1.2. Process Structure 

• Passive hierarchies are an appropriate model for overall application structure. 

Many distributed applications can be naturally described as a nested hierarchy of abstractions. We find passive 

hierarchies superior to acuve ones on the basis of clean abstraction and fault tolerance through redundancy. 

However, passive hiexarchics do not encompass all useful application structures. Most notably: 

• A comprehensive model of process structure requires non-hierarchical features. 

A stnet hierarchy with explicit composition is too cluaercd, too concrete, and too brittle to support complex 

applications in an open environment. While Programmen and marugos may be presented with the appearance of a 

ttrsa hierarchy, practical systems require controlled violations of this paradigm to provide transparency. Also, trees 

are mtnnsically incapable of expressing the merge inconsistencies chat they can generate. It is ar bettor to tue 

arbitrary graph* as i basic structural model, and impose a hierarchy as a surface feature, than to use trees as a 

fundamci'tai rodei TV, conclusion was not expected, but our hierarchically motivated design was not complete 

and cruistent until we adopted graphs as the underlying moJ *\. 

8.1 J. Management Structure 

• Tt< nixaoo A mnares B a isimpaniniMs A communicates with B. 

Powerful tools are needed to describe and dynamically manipulate mis relationship between agents and domains. In 

the context of KPC. this observation suggested the reuse of exutintf compositional tools By adding abstract 

placeholders for each domain, the complete protection relation can be described in the same explicit detail as the 
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communication relation. 

Before reusing composition, we investigated a number of inheritance and default rules for propagating 

privilege from an abstract, multiprocess object 10 (some of) its real processes at the leaves. All rules led to conflicts 

with ih : basic principles of abstracuon and composiuon. in contrast, the division o! uie hierarchy into domains that 

follow object boundaries was an obvious, and satisfactory, design aecision. 

This observation applies widely. A great many tools, ranging from network protocols, through operating 

systems and programming ianguages, give close control over*binding two or more communicating enuues together. 

In contrast, the tools for specifying protection and management relationships ire crude and limited in most 

environments. In designing any new software system with dynamically changing structure, the same degree of care 

should be given to a powerful set of tools for relating agents with domains as to the rest of the system design. 

8.1.4. Communication Structure 

Communication funcuons can be classified as logical configuration, physical implerr.~ntauon. and end-to-end 

communication. 

• Each class of communication function should be provided independently. 

Workers communicate, managers configure, and the HPC kernel implements. This separation is not provided by 

current 1PC mechanisms and operating systems. One specific consequence of this classification is that: 

• Efficient separation of implementation from communication requires a third-par^ connect. 

We can not actively manage a distributed computation without making changes to it. and existing network protocols 

do not allow an HPC kernel, for example, to set up or tear down connecoons between workers in an efficient way. 

Third-parry connect is an important session layer feature that should be incorporated in future protocol suites. 

• Complex communication patterns can be expressed structurally. 

In contrast to implementation (third-party connect), it is not necessary to support configuration in the 

commumcauon protocol. The paradigm of point-to-potm connections between interfaces docs not limit a system r> 

one-to-one communication patterns. It is not necessary to rely on details of addressing or routing to manipulate 

heterogeneous parallel channels, homogeneous multiplexing, or multicasting. 

• On-iinc computation of connectivity u practical, but non-trivial. 

The most interesting algorithm in the HPC implementation is the incremental computation of communicaung peers. 

in which the HPC kernel converts configuration information into implementation decisions. Or best algorithm is a 

centralized one that computes the effects of connect and disconnect in time proportional to the length of all the 

affected paths. We unsuccessfully sought an nlgohmm with cost proportional 10 the number of affected paths 

(effectively constant time). We would also prefer an decentralized algorithm mat couM be dtstnbuied. 

The HPC path maintenance algorithm i* »milar 10 on-line algorithms for transitive closure, a formal property 

with many prajcucml applications. Therefore, we expect path matntmanrr ID find use outside the context of HPC. 

Path maintenance also has many potential applications in distributed network routing algorithms. 
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8.1.5. Distribution 

• Distribution mandates an asynchronous system interface. 

This point is controversial, but our experience is that synchronous interfaces are appropriate only for systems with 

centralized behavior. To capture the essence of distribution, one must allow for the intrinsic asynchrony of 

multiprocess programs, and of failures. Transactions (and atomic non-primitive actions) are not consistent with 

highly-available access to a distributed data structure, because multiple agents may be inspecting and modifying a 

shared data structure concurrently. Asynchronous notifications of change are needed to avoid expensive polling, 

just as interrupts are needed to support efficient operating systems. Support for multithreaded agents also requires 

an asynchronous interface, to allow overlapping operations issued by several threads of a single agent. 

Building synchronous interfaces for programmer convenience on top of the basic, asynchronous, system 

interface is compatible with a distributed environment. For cample, a programming environment might use several 

lightweight processes to wail, synchronously, for each of several overlapping operations to complete. But such 

programming environments are successful by virtue of what »hey hide. Eventually someone will need access to the 

ugly asynchronous reality, even if only to build a better environment. 

• Partitions do not require reduced availability. 

Put another way, if you know what you're doing, you can do it more often. Most databases understand nothing 

about the semantics of the data they contain, and therefore cannot resolve merge inconsistencies in a sensible way. 

As a result, database designers strictly avoid consistency problems by limiting availability. The more that is known 

about the application, the more restrictive this strategy becomes. 

The Locus distributed file system is a specialized database that knows the semantics of much of its data, and 

exploits that knowledge to reconcile automatically many inconsistencies at merge time. IIPC maintains a richer, 

even more specialized, database, and understands almost everything about its data (at the expense of containing only 

specialized data). Merging is based solely on current partition state, using a history-less algorithm, and most 

structural features can be reconciled automatically. 

Our experience suggests that application complexity is not a basic obstacle to availabibty during partitioned 

operation. In fact, we offer this heuristic to generalize the comments just made: 

• The greater the number of internal constraints a specification has, the fewer the external constraints an 

implementation will have to add to operate in a failure-prone, partitionable environment. 

8.2. Suggestions for Future Research 

Our experiences with HPC suggest several areas for investigation, including specific improvements to HPC. 

general network services, and semantic models for concurrent programs. 

8.2.1. Design Extensions 

It is usually hazardous to allow more features to creep into a satisfactory system. However, there are at least 

two areas of the HPC design where additional features deserve investigation. 

• Allow user-specified correspondence of views. 
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HPC's fixed definition of corresponding views leads to the tap problem, the user inability to detect cycles, and 

related problems. It may be possible to find one mechanism that provides solutions to this whole set of problems. 

For example, users could assign endpoints tags or markers that would propagate along paths and define 

corresponding and reachable views. Integrating such a scheme into the design of complex communication paths 

(e.g., multicasting), and the implementation of path maintenance is the technical challenge. 

• Place limits on splice targets. 

As previously noted, hidden communication paths are an improvement over strict hierarchies, but they are not 

always a good thing. It is easy to express limits on the targets of splices, for example: "must be within subtree T". 

But it is not obvious how to check such constraints quickly, nor how to integrate them into the existing protection 

system. In the current HPC design, no domain can limit what another domain does internally. One domain can 

impose its will on an adjacent, inferior, domain only by taking full control over the inferior domain. 

8.2.2. Related High-Level Services 

HPC provides a structuring service. Alone, it is not sufficient to build complex, distributed applications. 

Many of the other necessary services (transport protocols, file service, name service, remote execution) already exist 

in most environments, but we found the need for some network services not yet available. 

• Dynamic property (arbitrary string) service 

HPC currently maintains two uninterpreted properties: role and type names. This was pragmatically the right thing 

to do, but wrong in principle. Users should be able to attach arbitrary properties to structural items, as long as 

proper operation of HPC does not depend on them, and the HPC kernel need not be extended to support them. 

Instead, properties should be stored in a name service allowing dynamic registration of arbitrary data. The DARPA 

domain name server demonstrates the technology needed to support name lookup for a restricted class of properties 

changing fairly slowly. The proposed X.500 directory service has optional support for unrestricted properties, but 

vigorous development is needed in this area, especially to allow users to quickly and automatically establish naming 

sub-domains. 

• Network-wide credentials and authentication 

HPC uses only TCP sequence numbers and IP source addresses to authenticate corr lunication between components 

of the system. This is very weak protection against a spoofing attack on the HPC implementation. Additionally, 

HPC has nc notion of user identity, and cannot provide its host sites with information needed for access control and 

resource accounting purposes. This brings access lo resources down to the lowest level: anonymous guest 

Traditional resource sharing on the Inlernet is accomplished by creating local user accounts within an 

administrative boundary (e.g.. MIT Multics). and using local authentication (login during telnet).11 Using password 

challenges when programs, rather than people, must be authenticated is a bad idem, because programs can be 

examined for password strings. At a minimum, a network-wide credential and authentication scheme is needed 

before any significant automated resource sharing can be done across administrative boundaries. The Kerberos 

11 The orif inal Arptnet visions of distributed resource sharing have never really been fulfilled  With few exceptions, the networking com- 
muruues have stopped short ti electronic mail, ftk transfer, and remote login. 
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authentication system used in Project Athena is a good starting point for further work. 

• Session layer support for configuration 

The third-pany connect facility we found so important is a basic configuration feature that belongs to the session 

layer. We expect dynamic reconfiguration of distributed applications to require a range of session layer futures 

beyond third-party connect, just as the current ISO proposals for session layer synchronization extend far beyond 

the original concept of data quarantine. Current work into automatic network management should be broadened to 

consider the necessary protocol support for automatic application management. 

• Software development tools 

HPC provides a raw, low-level environment, as expected of a set of basic mechanisms. Tools that incorporate some 

policies and allow programming at a higher level are needed, even at the expense of generality. The most glaring 

example is the lack of a standard interactive utility for HPC analogous to the many shell programs for the Unix 

operating system. The development of automated agents, perhaps customized for particular applications, is a more 

challenging research area that brings theoretical studies of distributed algorithms together with systems engineering 

and implementations. Another interesting problem area is the integration of HPC mechanisms with conventional 

fault tolerance mechanisms (transactions, redundancy, recovery). 

8.23. Semantics and Formal Directions 

HPC's need to manage a strict hierarchy with an undirected graph model suggests some extensions to formal 

semantic models, as well as the pragmatic tools discussed above. 

• Remove the parent-child asymmetry in formal studies of semantics. 

Many formal studies of the semantics of concurrency are based on passive process hierarchies as in CCS and CSP. 

The axioms of composition in such systems describe the behavior of a complex node as a function of the behavior 

of its children. However, the parent-child relationship is partly a matter of perspective. Any node can be chosen as 

the root of a CCS or CSP tree without affecting its behavior. The tree has exactly the same leaves composed in 

precisely equivalent ways, no matter which node is selected as the root, and therefore must have the same behavior. 

The sets of equations describing the various orderings of a tree often appear quite different The laws of distribution 

for a formal system must be sufficient to prove that all such sets are exactly equivalent 

• Investigate semantics of nonhierarchical structures. 

CSP and CCS systems cannot express sharing or transparent abstraction. There is only one path of interaction 

between two processes and all interactions between them are visible all along the pith. There seem to be two 

technical obstacles to providing passive graphs with a formal semantics. The first is infinite families of equations, or 

of solutions to equations, due to cycles in the graph. The second is the loss of strictly local composition. 

Our experience with HPC shows that families of formal solutions can be delected and reduced to a single 

representative, or discarded if no concrete solution exists. We conjecture that this experience can be extended from 

equations of connectivity to equations of behavior. The loss of local composition is more apparent than real. Every 

direct interaction between two nodes is explicitly represented by an edge. Solving the equations for cycles 

automatically handles any indirect interactions. 
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8.2.4. Distribution and Decentralization 

A production quality HPC system would require significant improvements on the prototype implementation 

wc constructed. Most of the work must go into application managers, and the HPC kernel also needs some revision. 

However, major improvements are beyond our current understanding of decentralized control, and we propose some 

research needed to support the development of distributed agents. 

• Decentralize the HPC kernel. 

The HPC interface to distributed applications and managers is satisfactory at this point, but the HPC implementation 

is too centralized. The implementation is built from several distributed processes, but the current HPC kernel can be 

neither replicated nor decentralized. 

A preliminary investigation of a decentralized kernel indicated that many kernel functions could be readily 

distributed. The obvious way to divide the physical database is along logical domain boundaries, replicating copies 

of a domain only on hosts with a physical agent for the domain. The key problem area is decentralization of the 

algorithms, rather than data. In particular, it is not obvious how to distribute the path maintenance algorithm 

without communicating the entire path maintenance graph. 

• Investigate decentralized control. 

This thesis explores a set of mechanisms, without presenting policies for their use. We have assumed polices are 

determined by agents' behavior, outside the scope of our study. Behind this assumption is a challenging research 

area. 

Any robust application must have multiple, distributed managers. Those managers must collectively agree on 

policy, and must further agree which particular manager is responsible for executing policy. Various specal aspects 

of decentralized control have been studied in different fields: distributed agreement in the areas of theoretical 

distributed computing and reliable systems engineering, distributed control in the fields of indusm*.»ag necnng and 

applied mathematics, distributing an invaiiam in theoretical distributed convening, flow and congest» i control in 

protocol development and system modelling, and so on. 

These fields of intense, specialized research can all contribute to the study of the stability, efficiency, and 

correctness of decentralized manipulations of complex discrete structures. As a specific example, we propose the 

decentralized tree editing problem for study. The well-known conventional tree (or string) editing problem is to 

lake two trees (strings) and a collection of editing primitives, and determine an optimal sequence of primitives to 

transform one tree into the second. This abstract problem has practical applications in network management, failure 

recovery, and software development 

The decentralized tree editing problem must be solved by multiple, communicating agents. Changes to both 

trees may occur asynchronously, and different agents learn of changes at different times, perhaps in different 

relative orders. They may not share a centralized database, and a locking facility on the trees is strongly 

discouraged. Agents may not exchange the entire problem, only the minimum needed to coordinate their actions. 

Ideally, a single agent attempts each necessary operation, and non-conflicting operations are done concurrently by 

different agents. The solution should permit dynamic addition and removal of agents, as well as tree elements. 

Further, the solution must be stable, resolving conflicts between agents quickly. These aspects of the decentralized 

problem must be added to the existing correctness and optimaliiy issues of the conventional problem. 
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•       Explore application-specific impacts on control. 

Some applications can do useful work while partitioned or survive the replacement of components without special 

attention, while others must be explicitly resynchronized when reconfigured, and still others cannot tolerate any 

visible failures or changes at all. 

HPC's mechanisms are sufficient to control the first group. For the latter groups, HPC must be supplemented 

by mechanisms for manipulating application state, for example, atomic transactions. An agent for an HPC domain 

must use these other mechanisms correctly. It may be constrained by certain HPC operations, because the 

application under Its control, or the supplementary mechanisms, cannot tolerate the results. 

Atomic transactions accommodate the most fragile applications, while real-time applications usually 

accomodate the harshest environments. However, an application and its environment can make partial allowances 

for each other, and the resulting systems may prove more efficient than either extreme. 

83. Reprise 

A typical distributed application has a hierarchical structure with well-defined communication patterns 

between loosely coupled, active computation elements. The distributed environment is an open system composed of 

autonomous, heterogeneous, asynchronously running sites, subject to independent failure and network partition. 

HPC is a study of the use of nested process abstractions and explicit composition to represent such 

applications. Maintenance, migration, debugging, and adaptation to changing environmental conditions are 

supported by HPC operations that modify process structure during execution. 

The HPC design emphasizes the structural or architectural issues in distributed software, especially 

interactions involving dynamic reconfiguration, protection, and partition. The contributions of this work come from 

the detailed consideration of how the seemingly well-known features of abstraction and composition interact with 

each other and a distributed environment. 

This thesis is also a rare case study in consistency control for non-trivial, highly-available services. 

Operations modifying structure are fully available during network partitions. The inconsistencies that may be 

encountered during merge have all been identified. Each problem is either avoided, automatically reconciled by the 

system, or reported to users for application-specific recovery. 
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A. Formal Description 

We begin this Appendix with a proof of the characteristic theorem used to express a collection of dynamically 

changing relations as subsets of a fixed relation. This theorem is critical for our success in treating most dynamic 

structure as formally immutable and thereby eliminating many sources of inconsistency. 

The remaining dynamic effects are modelled by treating each structure as a formal sentence and the 

operations that transform structures as formal axioms. Section A.2 gives the simplified, abstract form of structure 

used throughout this Appendix. 

The predicates that define legal HPC structures provide this forma] system with extensions in a simple model. 

A legal structure is a true sentence. The constraints that, for example, force strict nesting of objects are all encoded 

in Section A.3. 

Section A.4 defines some core operations (simpler than the primitives provided to clients) and then reduces 

the client primitives to core operations. Depending upon its arguments, each client primitive may translate into an 

arbitrary number of core operations (e.g., destruction of a complex subtree). 

Every derivation of a sound formal system from a true sentence results in a true sentence. A formal system is 

complete in a strong sense if it can derive every true sentence. Space does not permit full proofs of HPC's formal 

soundness and completeness, but Section A.5 outlines such proofs. 

A.l. Characteristic Theorem 

HPC increases the number of formally immutable properties by distinguishing local knowledge, which may 

change, from global truths. Many dynamic features of process structure can be limited to creation and destruction 

of otherwise static elements. We pretend these elements have fixed properties throughout an infinite lifetime, and 

that we only become aware of them when they are created, and lose awareness of them when they are destroyed. 

The set of elements known at any time and place is a characteristic. 

When it is possible to use them, dynamic local characteristics offer a major advantage over dynamic global 

relations. If the structure visible in a partition is described by a local, completely known relation, and this local 

relation is formally defined as the intersection of a global (and incompletely known) relation with local, known 

characteristics, then partitions can be merged simply by taking the set unions of the local relations and the local 

characteristics. 

This property has important coftseqeunces. The global sets and relations are never needed, only the local 

ones. This permits complete distributed management of structure. The merge procedure for local relations is 

extremely trivial, yet guaranteed to preserve the formal definition (and consistency) of the local relations. Finally, 

there is only a weak constraint governing relations and characteristics. A relation's content is almost irrelevant, so 

many different structural relationships can be managed this way. 

Given 

Re XxY 

Let R be a binary relation over sets X and Y. These describe the global, immutable (and never completely 

known) "truth" about structure. 
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c-X, c X, c-Y, c Y 

In each partition i, there are local, dynamic characteristic sets, describing the structural elements known at 

this time and place. 

c-R4 = Rn(c-X, xc-Y.) 

A local, dynamic structural relation is formally defined as the intersection of a global relation with the 

corresponding local characteristics. 

C-X;X A Rx> => c-Y,y 

There is one constraint governing local characteristics and the global relations. The image of a characteristic 

by the relation must also be characteristic.12 This is a formal way of saying that we must understand the 

answers to any questions we can pose. 

Theorem 

c-R,uc-R, s RnUc-X.uc-X^xCc-Y.uc-Y,)) 

The formal statement of the theorem for binary relations and two partitions. Merging two local relations is 

identically the fresh intersection of the global relation with the merged local characteristics. 

Proof 

To simplify the proof we introduce some abbreviations, and freely mix relational, set and predicate notations. 

No confusion should result. The extensions to n -place relations, and arbitrary numbers of partitions are completely 

straightforward. 

A = Rx y B± c-X,x C = c-Y,y D * c-X,x E ± c-Y,y 

First direction: (c-R,u c-R,) x y -  (Rn((c-X,uc-Xy)x(c-Y,uc-Yy)))x y 
1) (c-R.oc-R^xy assume 
2) [UBAC]V[AADA£] 1,definition 
3) A A(B VD)A(C V£)A[(B V£)A(CVD)] 2,deMorgan 
4) A A(B V£>)A(C V£) 3,A-E 
5) AA(C-XJUC-X/)IA(C.Y,UC-Y/)> 4,dennition 
6) (Rnac-X.uc.X^xCc-Y.uc-Y^xy 5,definition 

Other direction: (Rnftc-X.uc-X^xfc-Y.uc-YyWxy ^(c-R^uc-R^xy 
7) A A(B VD)A(C V£) assume,def 
8) (AAB)V(AAD) 7,A-E,deM 
9) AAB=*C given 

10) CvD 8.9.MP.deKA-E 
11) A AD =>£ given 
12) Bv£ 8,ll.MP,deM.A-E 
13) A A(B VD)A(C V£)A((B V£)A(C VD)J 7.10.12.A-1 
14) (c-R,uc-R,)xy deM,def 

QEO 

u Tfcu ccoiutint u ccymmetnc   Only one domain of *e mktk» has to t*i? the jok of X   For n -pUoe icbuoju *tth n > 2. *** 
dorn*« CMoonstntn the athen citherdueaJy. or imuatvcJy (C-X,X A R* y t =» C-Y,>; C-Y,y A Rx>2 =3 C-Z.I) 
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A.2. Formal Structure 

HPC formal structure can be divided into core and derivative relations, and into immutable and dynamic 

relations. The core relations are the ones directly manipulated by HPC primitive operations, while the derivative 

relations describe the more complex consequences of simple operations. In this Section we u<e PROLOG to define 

the derivative relations in terms of the core. 

Tht ;mmutable relauons describe fixed properties for which inconsistencies can never arise. Normally, only 

implementition--pecific constants would be core and immutable, but this subjects too much structure to merge 

inconsistencies Chapter 6). When the characteristic theorem is exploited, only three core dynamic relations are 

formally manipulated by HPC operations or require non-trival reconciliation after network merges. 

A.2.1. Core Immutable Relations 

Primitive Structural Elements 

view(V) 
dcrradiiCD) 

Shells, splices, interfaces, connections, controllers, and protection boundaries are all formally reduced to relauons 

on views and domains. These relations are oniy known partially, through the use of local characteristic sets of 

views and domains. There is a reserved domain root. 

system (D) 

Processes, controllers, and the root domain form a distinguished subset of all domains. 

Primitive IPC Properties 

IPC properties are known globally and immutably. 

mrdiunW) 
/• M is a supported "-*: flechar.is: •/ 

orientation (C! 
/• K is a supported 2PC d_rwctior. •/ 

The supported mechanisms and directions are implementation dependent, but must include the reserved mechanism 

control. 

(01. 02) 
/• 01 and 02 AT« oanplenertary orientations •/ 

This relation must be symmetric and pseudo-transitive (odd length sequences must be closed under the relation). 

This ensures that end-to-end chains that are locally complementary on every link have complementary endpoints. 

structure UT. P,   |H, 0]]) 
stwatur»(l?. P.  is. s. ...])) 

/• T Is •simple", "fcurdie".  >ultipiex", or "fcult least* 
• P is •endpoint-.  "tor-emian", or **»sked" 
' iwdiumM, orientation(0).  structure^) 
V 

A simple view structure specifies an IPC mechanism and orientation, while a complex structure specifies a sequence 

of structures. We omit the detailed constraints on the global and immutable structure relation (e.g.. child structures 

of a masked complex structure must be also masked) except where the constraints are relevant to later discussion. 
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Primitive Policy Elements 

less::* 
/• L :s '".eqccri.-." z: "perra-^-.:" V 

pel.cyF, 
/■ ?  :s "aocca-.e",   "suspend" or "a:e" •/ 

The policy sequences discussed in the text complicate formal proofs without adding much content, so we will limit 

formal discussion to single basic policies, rather than sequence.*. Policy elements are known globally and 

immutably. 

View Hierarchies 

View hierarchies arc only known locally, based on the characteristic view. 

carpcntrz {C, P. 
/• C is * carpcner.: view cf ? •/ 

Every view has exactly one parent throughout its lifetime, except the roots of view hierarchies that never have a 

parent. Roots of view hierarchies are the bundle endpoints comprising shells, and their immediate children are the 

interfaces presented to clients. 

Protection and Privilege 

•r(V. D) 
/• view V is * imve: et acr*ir. 2 •/ 

A view belongs to exactly one domain throughout its lifetime. It is replaced with a different view (renamed) 

whenever it would intuitively move between domains. Domain membership is only known locally, based on both 

characteristic sets 

ccntroUerf«'} 
/• V is tcp-ievel v:eu ir-sxae controller spsoe •/ 

This is the ancestor of the views where agent invocations are received, and HPC system responses are sent 

Primitive Private Peers 

bwrdrVl. V2) 
/• VI end V2 coppr.se « shell or * splice •/ 

The root of a view hierarchy has exactly one private peer throughout its lifetime. Thest pairs are the formal shells 

and splices. A root view is replaced with a different view (renamed) whenever its peer would be changed (e.g.. by 

transfer between domains oi by endpoint/extension promotion). 

poU«.SjjpfV5 
/• V~is la*r Miter o! s stiel! •/ 

The hierarchy is defined by directed shells. The views that lead toward the root are distinguished 

(This is an immutable property because evasion replaces a directed shell with a splice. Eversion could safely 

preserve view identifiers by making poi.-**_** a dynamic property provided changes to the relation are s lonotonk. 

Eversion sausfies this condition: false is never changed to true.) 
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Additional IPC properties 

Some IPC properties are known only locally, through the view characteristic, 

vr.r-r.tv, r 

/• vie*- V:sj aonp.ex cxtxir.i net in * process space, 
• or A sirpie enrt:;-.  ir a proaess space 
•/ 

Viable views are those that can be used for communication. This is the only (indirect) reflection of real processes in 

this formal mode!. 

index {V.  :5 

/" fixed rxrtjer ic oc".err~-* corresponding oorponer.ls •/ 

A small integer based on view structure, or a unique number based on invocations of new 

A.2.2. Derivative Immutable Relations 

»irp.ef/: :• vr.rucr. (Y, isirrle, _, _]}. 
burcefV". :- vnrustft'. faxxLe. _. _]). 
nulticsst (V) :- vstruct (V, inuit.ic»st, _. _)). 
«ultiplex (V) :- vK.ructft', Ifniltip-i«*, _, _]). 

«»CWAiorfVl :- vr.ruc*. (V. !_. ejcensiar., _). 
•nepem*. ft* :-> vr.ruc-. (V. £. endpcir.:., J- 
iMiMdW        :- vg&xuccft'.   f. naaiwd.       J. 

These predicates simply provide easier access to the vs-.net. relation. 

correspond^r.'.. V?]   :- inotutf.",  I), irmxftE,  I). 

Correspondence follows directly from the fixed index. 

mtlccwpcmm iz. ?)  i- aanpawc CC, P), bundle{P}, «rsfcomtCPj. 
s^4iic cowpcnen-.{r. P;   :- ocrponerc tC. X3, m^ticjxrpumre. (X. P). 

Creating a bundle endpotm requires automatic creation of its immediate children. These are static, as opposed to 

dynamic, component views. 

cmpl«w*Ary((sirp:e. ..  IK &)).  Isupie. _, IK 02JJ1 :- 
revwT«01. 02}. 

acp»pA«wiury(|C, _, Si;.  IC, _, S3]i  :- 
awpl«r*ArytSl7 S3). 

avplsnnCAryUSlh I Sit),   |s2r. | SZ.])  :- 
oanplenwnLArytSlh. S2h). aorpi«!rrt>:ytS;'..  Äi. 

Peer views must have complementary structure For simple views the medium must be the same, and the 

orientations must be complementary. For complex views, the component structure^) must be complementary. 

Multicast and multiplex views have a single structure, while bundle views have a list of structures each of which 

must be complementary. 

*»lk»r*~, V?)  i- hard ft/1. V7). not (pelrtsjupftTu ; points vp ft 2)). 
*eiicv:. V2)    :- taBKil, v?>.       (po4nuja>(Vl) . poinu*\*>(V2}). 

One side of a shell potnu leads toward (he root This is the only formal distinction between tf*ür> *,td splices 

d»t*^o*.-i C. A.   :- (oyir.c C B . dLsaendtnt (B. A). 
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Hicsc prcQica;cs just pro*, idc easier access lo the aa-pener.: relation. 

A..2.3. Core Dynamic Relations 

Spaces 

•d}*ac.T. (V..  VT 
/• VI and V2 are currently *dyi**i: view hienrt-hy roots •/ 

It is technically more convenient to maintain the adjacency of view hierarchy roots, rather than all views. Spaces 

are defined as the equivalence classe. of a relation over all views, »armspace. derived from this core relation. All the 

views in a class axe mcidem on the same space. Two spaces are merged by making their view hierarchies all 

adjacent to one another. 

Merge inconsistencies can violate the equivalence constraint. These violations are reconciled automatically. 

Public Peers 

oarmcrjudf**:. \S) 
/• V± and V2 are current.> private peers •/ 

This ii always a symmetric and anti-reflexive relation. Ideally, it relates distinct pairs of views, but merge 

inconsistencies can violate that constraint Clients must resolve these violations. 

Terminal Policies 

lOMJJOilCVG,  7,   ?> 
/• ? is the policy for loas of control L o>«r domain D •/ 

In the complete HPC system, p is a non-empty list of basic policies or animations with parameters. The temporary 

list is terminated with suspend, The permanent list may not contain suspend and is terminated with abdicate. In 

this formal appendix. ? must be a single basic policy. 

Merge inconsistencies are resolved automatically.  This formal model does not capture the sequential 

application of terminal policies. 

A.2.4. Derivative Dynamic Relations 

Spaces 

(VI. V2) :• adjeaexfv;. V2>. 
(VI. V2) :- ULPVUWI!. (V*, nt 

rVl, \G)  :- errponent (V2. P). 

ctoarfv:. V?)    :- ah»; 10--.. V2;. smr(V;. 0}. nbfM, 0). 

M., VJi   :- boundf.-.. V2). evter(Vl. 01). eavterOft. 0?), 01 !• 02. 
(VI. V2)  ;- ^liOtfVl. V5i. 

reel tori'deryrv. Dt  :> awcar(V, Dt. bound CY. VI). not trerfcrr (Vl. On. 

t»trtw     tV.  DJ :- aMK(V,   Dt.  afmfJtW. J. 
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be lau'-.'., V2)   :- ac^aaer- IT*., VL), point i_up{VU, 
clear M, VJ), aanaaenKVI, VJ), 

ce.ou;-.'. V2-   :- below (VI. V,, below (V, V2) . 

sjer:::C,  I    :- r.r. (oelouT.',     )),  bcxidaryiY,  D! 
:r.:'e:.cr!".'.  T    :- r,r. (relcu ; , V)),  bojnciary (V, Dj 

View Suspension 

suspendedC.r   :- connected(V. VI), connected(V, V2), VI !- VJ. 
suspended(V)  :- *jperior(Y. D), superiorfVl, D), VI !» v. 
suspcnaedtV)  :- boundary (V, D*. policy C, twpoxary, suspend», 

terr cortrcl_ioss{D). 
suspendtc{\"   :- carponer.: (V, P),  suspended (?) . 

suspended describes forced suspensions due to violations of constraints discussed in the next Section, or to temporary 

loss of control. Four conditions force the suspension of a view. It may luve multiple connections, be the root view 

of a surplus superior domain boundary, be a domain boundary for a suspended domain, or be a child of a suspended 

view. Forcibly suspending one view may indirectly affect the liveness of other views through other relations. 

ternp_oor.trcl_lossC    :~ centre1 view(C, D),  liweness(C, suspended? . 
terf^cor.tro.^lcssG    :- car.ircl_view(C, Dif  i:^«n«5S(C, aeadj, 

ieiljxtroärj'fi. C), cnair.((pri\*te. Cj,   (public, BJ, J. 

control jn*w(X. Dl   :- 
mrteriZ, D), controller IC), ccrponerc {?, C), «rponent (K, P). 

A domain is suspended when a temporary loss of control is detected and the current temporary terminal policy is 

suspended. A controller shell is a pair of bundles with one multicast endpoint component Inside the shell, the 

HPC system creates one control endroint component of the multicast view (two levels down from the shell). If this 

internal control view is suspended, or dead with at least one chain reaching the domain boundary, control has been 

lost at least temporarily. 
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Private Peers and Chains 

erivat*{Vl, V2J   :- bcrcf.'., V2J. 
/• V. arc V.  art cirtetiy cere private peers ■/ privater.", VI 
coroner*, f.1,  ?1  , arponer.: T-T      *', corresponding (Yl. V2), 
ca:r!{; ipnvatc,  r 11.   i envat« J).    /• T. AX '.' a^ 
ccrresponc-'c ca-poner.ts of pr    /,:  .jeers •, 

craiM [private, VII,   iprivate, '."2;,   [)])   :- private(VI, V2). 
d»:r.( [public.    VI;.   ipublic,    V2.,   []])   :- connected(VI, V2) . 

/• V. arc Vi are bound in one step, privately or publicaliy •/ 

chain( [private.    VI ].  -    [[public,    V2]  | R]])   :- 
privater.".,  V2).      chair. { ipuclic,    V2;. 7, R). 
/• A private one step binding fror VI to V2 

• ecexs CTttirj starting with a public binding of VC 

cJu-n( (public.     V'i, T,   '[private, V2]  i P]!)   :- 
connected (VI. V2:. chair.([private, V2], T. R). 
/• A public one step binding fro- VI tc V2 

• extends cnairj starting witr. a private binding of V2 

Private peers and chains are defined recursively in terms of corresponding components and direct private and public 

bindings. The definition of private peers given here is the looser one used in the path maintenance algorithm. 

(A senous PROLOG implementation would require a check for cycles in the last two clauses of c*»wi.} 
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Liveness 

liveness (V, suspended! :- suspended Cv), !. 

liv-eness (V, alive)    :- 
private (V, V2), viable f.T), net (susperoes (V21), ! ■ 
/" i 1'. 
• V V2 
•/ 

liveness(V, alive' :- 
chain((private, VJ,   (public,    V3],   ((public, V2])). 
liveness(V3, alive),   !. 
I*    111—113 

* V   V2 V3 
•/ 

liveness(V, suspended) :- 
private (V, V2), viable(V2), suspended(V2), :. 

liveness (V, suspended) :- 
chain((private, V), tpublic, \ri),   ((public, V2]]), 
liveness(V2, sospended:, :. 

liveness (V, dead) . 

A view can be forced lo suspended liveness. Otherwise, we look down chains starting with a private binding, first 

for alive views, then for suspended ones. If no one step private bindings lead to viable endpoints, then liveness is 

inherited from the next step down the chain, if no viable peers are found, either alive or suspended, the view is 

dead. (Cycles must be avoided in the third and fifth clauses given here.) 

A/5. Legal Structures 

The core relations provide a structural framework without any definition of legal structure. The permissible 

HPC structures form a very small part of the possible ones. Treated as a formal model, the core relations give an 

alphabet of symbols, with no axioms constraining their interpretations. We formally define the legal HPC structures 

as those interpretations satisfying the axioms giv-n in this section. These axioms are applied to the structure known 

in the current partition, that is, the local characteristic relations. The renaming technique violates many axioms 

when the formally complete (over all time and partitions) global structure is considered. 

It will be our goal in the next few sections to show that legal structures are closed under the HPC primitive 

operations (soundness), and that any legal structure (up to isomorphism) can be created by the primitives 

(completeness). However, legal structures are not closed under merge inconsistencies. After the HPC system 

applies its automatic reconcUation of merge inconsistencies, two axioms concerning mutable relations can remain 

violated. In these cases, legal structure must be restored by application managers. We will make no attempt to 

capture formally the broader sense of consistent behavior enforced over a merge inconsistency by suspended 

liveness. 

AJ.l. Notation*! Conventions 

As in the proof of the characteristic theorem, it is convenient to treat relations as predicates, as sets, and as 

functions. To use a relation as a predicate, we supply a single value for each domain of the relation in parenthesis. 

caiftrmr.i (v. p) // true iff v is a carpanmi of p 
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When treating relations as sets of tuples, we use conventional brace ({si, s2}) and angle bracket (<t:, t2>) 

notation. Modification of structure is expressed using C-Iike notation for set addition and set subtraction. E.^., 

correct.ec *-= { <vl, v2>,   <v2,   vl>  } 

viable       -= i vl  } 

To treat relations as (partial) functions, we want to provide a value for some domain(s) of the relation, and get 

back the values of the other domains. For example, we would like to know what views are children of the given 

view v. By providing a set of input values, we obtain the image of the set under the relation. We introduce a quoted 

number convention to indicate which domain(s) of the relation is (are) to cast the image. 

ocrrponent'2' {v} // set of children of v 
ccnponent'lMv) // set of parents of v 

loss_policy'l,2' <<ci, 1>) // policies that apply to doram d under loss 1 

We systematically confuse a singleton set wJtV its member. 

Vertical bars denote the cardinality of a set. 

Mil   - c 

|   { <vl, v2> }  I — 1 

When used as predicates, an empty set denotes falsehood. 

Iteration over the members of a set uses this notation. 

for s in (si, s2, s3? 
II body of iteration 

Bundle structures specify a sequence of child structures. We will need to extract this sequence from the 

bundle and refer to its individual elements. Given a structure s, we use this notation: 

s.ccrpcnents // sequence part of structure 
Is.oortponentsl // ruTcer of elements 
s.carpcnentsli] // i-th elenent of sequence 

A3.2. New Dement 

Structure modification formally involves structure that always existed and simply wasn't known in the current 

partition. By changing characteristic sets we change the known structure. Actually, we rename and generate new 

structure on the fly. We use the assertion ne-i«) to indicate a view or domain that has never been known, and avoid 

axioms that describe structure before its generation. The rigor required to formalize this meta-axiom is 

unrewarding. 

A.3.3. Immutable Relations 

dwaintd) // characteristic 
view(v) // characteristic 

The local characteristic relations all rely on these characteristic sets, which i^ve no internal constraints. 
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controller (v) => viev(v) // characteristic- 
controller<v) ■> viable tv) // liveness 
centreller(v) => point.s_up(v) // root of spaae 
ositroliertv;  => adjacent'1'v •* ivj // leaf space 
contrclifcr'v)  «> xmexe:' 1' (aesaa.-ca.nt' 2'v)  «* 1  )        // e-pty sax 
controller(v) => ^ster. (mercer'l'v) // protectec 
control.-riv) -> vstruct (v,   larxHe, erepcint,    //structure 

[n:lticast, endpeint, 
[simple, erripcir.t,   [control,  in]*"/) 

A controller view must be the inside boundary of an empty shell with a specific structure. They are protected from 

application domains. 

OQRfxnent(v. p) «> view(v) // characteristic 
carpcnert(v, p) o view(p) // characteristic 
orrponent (v, p) •=> ocrx^exfp) // parent structure 
campc-ier.t (v, p) -> endpoint (?) // parent structure 
ooiponer.t (v, p] ■=> viable (p) // parent liveness 
enrponcne iv, p) »> // cemton structure 

bundie(p) -> vstruct'l'v — vr>ruc£'rp.ajipuittBits[index'2'v; 
nulticasttp; *> vstruct'l'v «= vstruct'l'p.caiponents[i;. 
nultiplex(p) -> vsr.ruct'l'v — vstrjct'1'p.carponentsii; 

campenert (v, p) *> ccrair.'l'v — dcrain'l'p        // cumin darair. 
caTponcr.t (., p) «> ccqpcnent'l'v — {p) // unique map 

The parent of a component view must be a viable complex endpoint. The structure of the component must be one of 

the structures specified by the parent, 

n*rber(v, d)   ■> view{v| // characteristic 
mercer'v, d)   ■> domain (v; // characteristic 
| member'l'v | — i // unique, complete map 

Fver>' view belongs to exactly one domain. 

bound(vl, v2) «o view(vl) // characteristic 
bourd(vl, v2) -> \ae«iv2; II characteristic 
bound {vl, v2) -> eampler.entary (vstruct' 1' vl, vstxuct'l'v2) 
bound '.vl. v2) -> bundle (vl) // view structure 
bound(vl, v2) -> endpeint (vll // viaw structure 
bound (vl, v2) -> bound (v2, vl) // symmetric 
bccndlvl, v2) ■> vl  !■ v2 // anti-reflexive 
bound (vl, v2) ■> bound' 1'vl — (v2>                   // unique msp 
bound (vl, v2) '«> toplevel(vl) // only vh roots 

Shells and splices must be distinct toplevel bundles with complementary structures. KPC also requires a unique 

private binding, although this constraint could be relaxed. 

point s_up(v)       -> view(v) // eh*r»cfceristic 
points up (v)       •> tflftkmvltv) // «riy vh roots 

Only toplevtl views are pan of the hierarchiuü relation. 

vstruct (v, s)     -> view(v) // characteristic 
votruct (v, s)     •> structure(s) // characteristic 
vstruct (v, ■)     »> Hnaskedtv) // rti Masted views 
| vstruct'l'v | -" 1 // uniqje, ccrpiete m*p 

Every view has exactly one soucure. 

viable(v) •> view(v) // characteristic 
viable (v) -> toplevel (v) // erüy vh roots 

Only toplevei views are pan of the viability relation. 
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iroex;:,  v) ■> IN733ER(i! // characteristi'- 
indaxU.  v! ■> view(v) // character!st: 
I  index'2'v I — 1 // uniqje, conr   .ce map 

Every view has exactly one index. 

A3.4, Mutable Relations 

adjacent (vl, v2) •> view(vl) // characteristic 
adjacent(vl, v2) »> view(v2) // characteristic  s 

adjacent (vl, v2) => adjacent (v2, vl) // syrrnetric 
adjacent (vl, v2) <= achaean:, (vl, v3)  4 adjacent(v3, v2)// transitiv« 
adjacent (vi, v2) *> domain'l'vl »■~ domain'l'v2 // aiwun domain, 
adjacent{v, v) <= topievel(v) // all vh roots 
adjacent{vl, v2; «> toplevel(vl) II only vh roots 

Only toplevel views are pan of the adjacency relation, an equivalence relation. Each equivalence class defines a 

space and must belong to a common domain. 

connected (vl, v2) -> view(vl) // characteristic 
connected (vl, v2' «■> view(v2) // characteristic 
connectecfvl, v2, «> samespace(vl, v2) // same space 
connected(vl, v2) -> extension(vl) // structure 
cennected (vl, v2) ■> extension (v2) // structure 
connected (vl, v2) «> caipienentary(v5truct'l'vl, vstruct'l'v2) 
connected (vl, v2) ■> connected(v2, vl) // reflexive 
connected (vl, v2) -> vl !- v2 // anti-reflexive 
cennected (vl, v2) •> connected'1'vl — (v2> ## uniaue map 

Connected views must be distinct complementary extensions in the same space. HPC allows at most one connection 

per view, but merge inconsistencies can lead to multiple connections. 

lcssjx?licy(c,  1, p)      »> domain (d) // characteristic 
lossjxlicytz.  1, pi      -> ioss(l) // characteristic 
lossjpolicytd,  1, pi     -> policy (p) // characteristic 
lossjpclicytd, permanent, p) -> p !- suspend // must recover control 
domain (d) 44  Isysteric) -> // unique, complete map 

|   lCSSJ»llCN'l,2'<C.l>   I   -   1 

Each non-system domain must have exactly one policy for each type of loss of control. HPC refuses permanent 

responsibility for a domain. In this presentation, only basic policies are allowed. 

A J.5. Hierarchical Constraints 

The axioms which enforce the appearance of a hierarchy are definitely the most complex as well as the 

hardest to handle when showing soundness. 

d — root •> I superior^'d ) — C // root 
d !• root •> | superior* 2'd 1 — 1 ft unique superior 

The overall root space has no upper pointing views, while all other legal spaces have exactly one view hierarchy 

that points toward the root. However, merge inconsistencies can produce multiple superior interfaces at the overall 

root at the root of a non-system domain. 

belcw(vl. v2> -> !below(v2, vl) // antl-symetnc 
below (vl. v2> -> •aamespece(vl. v2) // «nti-rafLexive 
belowivi. v2) 44 below(vl. v3) // hierarchy 

•> sanespeoelv2, v3>   |l below(v3. v2)  |! below(v2, v3) 

«enter l'vl — werter' l'v2 // oontiquous 
•> sanrapacelvl. v2)   || beiow(vl, v2)  || baiow(v2. vl) 

All spaces of a domain must be contiguous, and they must be organized into a tree. 
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inferior(v, root) 
»> vstruct'l' (adjacent*1'v) == [rxndle, endpoir.*.,   []] 

syster.(c) 44 c !» roc: ■> I inferior'2'd I = C 
:syr-«r.(i'  => 

I  < c : c IT opaqje':' (inferior*2'd) 44 ccr.trolier (c)   } I «= 1 

Infenor domains of the root domain are opaque top level applications with no interfaces. Process and controller 

domains have no inferior domains. Non-system domains must have a unique, immediately adjacent, controller 

domain. 

A J.6. Constraints on View Structure 

stnxxurrfs)  u s «  [nuiticast,   .., sea} ■> I sec! «■= 1 
structure is)  44 s —  [rrultipiex,   ... seq] ■> |seql — 1 

Exactly one structure must be specified for dynamically created views. 

A.4. Operations on Structure 

If the core relations define a domain of structural models, the constraints on legal structures are axioms, and a 

specific structure is a formal sentence, then opeiauons on structure are formal rules of inference on sentences. 

We present HPC operations in three stages. First, we define some auxiliary operations that are not sound 

when used by themselves. Using these definitions, we present the core structural operations, which are sound when 

invoked with the appropriate preconditions. Finally, we reduce the operations available to HPC clients into core 

operations. 
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A.4.1. Auxiliaries 

View Hierarchies 

v._create (r.,   ., c, p,   s,  v, 

let: 

precondition: 

effects: 
dorai^. // nc many? 
syster //no cnarge 
controller // nc cranoE 
view ♦« « \' '• 
arpanen: +■ if  (.'erctyip'} eher. { <v, p> ) 
tmrrber *• i <v, d> • 
bound // nc change 
points_up // nc crano«? 
vstruct *- { <v, s> • 
viable +■ if acqpi«x(v]  i( endpcir.t (v)    ther. i v ) 
index — if rui£ipi«x(p) eher. i <*~,  v> ) else { <i, v> } 

•djaoer.t // nc cr.arpt 
connected        // nc ehiroe 
lOMjpsuey      >'<■' nr crA-oe 

if bundle (v) fit •ndpoint(v) 
for ci in { 1.   ..,   |s.arpone*Tts!   ) 

m(e] 
vh_cxeate (-., ci, d.  v,  s.canpcnentslc:.;, c) 

vhdeatroyU. ä p, », v) 

let: 
pu — point sj9(v) 
vi — viable (v) 

precondition»: 

effect*: 
for cv in ca.urr.tT'v 

let c: — mcKx'l'e. 
let »: — vstruct'1'cv 
vh_de*troylci, c, v, s», cvi 

<kn*in // no charge 
•ytUP // no criA.-x>» 
Controller // no cn*ntje 
view - I v ■ 
oaiyomrfc — if  C«nfny(p)) ther» < <v. p> | 
■wfccr — J <v. d> ) 
bound // no oharge 
poinLi_up // no Ohans* 
v*.ruct -• { <v.  %> | 
viable "• if v. ther   [ v  » 
inrie* — ( <v,   i>  | 

adjacent II re ohan* 
connected // nc aharoF 
ILASJX. :.;r,       //no QMCTCjr 
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vr. rena-ne (do,  dr., vc,  \r.) 
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ie:: 
pc = ocrponer.t'I'vc 
pr, -■ ccrponer.t'i'vr. 

structure'1'vc 
index'I've 

cv = connected' 1' vc 

preconditions: 

effects: 
danai:. 
system 
controller 
bound 
points_up 
viable 

adjacent 
loss_poiicy 

view 
cenponerc 
waiter 
vstruct 
index 

// no change 
// re change 
// nc change 
// no change 
// no change 
// no change 

// nc change 
// no change 

*• { vr. ) 
+■ if  (!enpty(pc.)} then. { <vr„ pO 
+« { <vn, dn> } 
+- { <vn, s> } 
+■ < vr.,  i > 

connected •+• (cv X (vni) 

for co in c 
new (en) 
vh-renar7»{cc, dr.,  cc, cr: 

view — { vo } 
coipcneri — xf (!«nnty(po)) then { <vo, po> } 
rwrber — { <vc, do } 
vstruct — i  <vcf &> ) 
index — < vc, i > 

connected — (cv X (vo}) 
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shjrenarneloct, CC-L, ct., are,  ic, cc,  zr, zc. 

ie-.: 
vil = viable;:.: 
v_2 — viable<DC 
pj 1 •■ pc IT. •. s_ur ': c 
pu? -» poir.tj._up (ac; 

a'.    ■* acTaoer.-'I'-.: 
a2   — adjaoent'l'Dc 

prwaoncLtions: 
bound(to, be) 

effects: 

danair. 
syster 
controller 
view 
ccrrponsr.t 
vstruct 
index 

loM_poÜcy 

bound 
pcints^up 
pointsjjp 
viable 
viable 

adjacent 
adjacent 

/' nc CUP?— cnarwe 
// nc cirec. chanoe 
/.' nc direct change 
/.* re eirect change 
// nc c_rect cnange 

. nc erect cnange 
// nc c-rect change 

I! nc direct change 

— •  <t:,  be>.   <£c,   to   i 
-*■ if p..; tner tc 
-* if pul-: then be 
~ if vil then {to} 
— if v_3 than (bei 

— if lerptyUl)   (a". X {to}) - ({to} X al) * {<to, to) 
— if !«rtptyta2)   (a2 X {be))  ♦ Uco> X *2) * <<3x>, bo>) 

vh_r*na»(del, ehl. tc tr.i 
vh^wnas« (sc2, _-!. cc. cr.' 

bound •• i <tn, br;», <ir^ tn> / 
points^up ■*• if pul tner-. tr, 
pointsj-jp *° if p_l tner. fan 
viable *• if vil trjer  {tn- 
'viable ** if vii tne-. tor.) 

adiaoert ** if :«"jx.y{*l)   i**. X (cr;;) * dir.) X al) * {<tn, tn>? 
ad)ac«nt « if J«rt*y{a2l   (*2 X {Dr..)  + {(en? X _2j  * {<bn, bn>) 

cb,mmfeio, <r=, to. tc, tr, bn] 

pnoond-tions: 

•Ctera; 
lot <fc — metvfl'bo 
*_ranawpfcäo, dfe. to, be. tn. fart) 

if cieajcto, be- 
for cot in adjacent' irbc - tbei 

raMtanb) 
l*t cab — bounß'rüc- 
üc lanamttdo. £v. orx, ä2>. TS.. cnb) 

A.4.2. Core Operation;» 
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Connections 

cjcrea:e(vl, v2 

let: 

effects: 
data in // nr cr aroe 
syst.er // nc cr-i.no: 
controller // nc crart>: 
view // nc cr«arge 
oonponent // rt criang: 
marrber // nc chanae 
bounc /.' re cr^-xx 
pcintsjjp // nc crancr 
vstruct // nc cnarge 
viable // nc change 
index // nc mange 

adjacent // nc cnange 
connectec *■ i <vl,  v2>,  o ";,   \1> 
loss_pciicy // nc cranoc 

c_destrcy(vl,  v2i 

let: 

preconditions: 

effects: 
domain // nc change 
■ytun // re change 
Controller // nc change 
view // nc cranqe 
coiponrs. // nc CATC«: 
rancer // nc change 
bond // re change 
pointa_i^ // nc changt 
vstruct // nc cnanop 
viable // nc CATC»- 
m> // re eange 

adjacent // rc cnange 
oam9d.ee — { cvl,   V? 
loMjpolicy // nc cnanoe 
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aescerxM.-.-5'i' la:'33?".' 

pr^ccrxL•. :c~_ : 

efi'ec.s: 
dora^ // re ciro 

syste- // re craro 

eontroller // re cr^.-t> 

vie- // no CTA-V>- 
oarrporc." // ri cra.T?j 

merbe.' // nc d^arop 
band // re ffiancr 

points ^r /./ re cr^-o 

vsr.rj- //' re crarp 

viarlc // re cra.-o 

iroex // 'XZ crvnoe 

edj*oer.: // nc chirpe 

aanneciec — = (V5  X  « 

lOSS  PC-iCV / ' rr crano: 
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Shells 

preconcLi.ori: 
adjacent'l'vsj — vs~ - vs'. 
adjacent'1'vsl «= vs_ - vsl 

effects: 
vh_create(n, C, a,   i   \  si.  v;) 
vh create (r., C, c,   ■   ,-, s-,  vji 

dor» in // IX   CZJtPtX 

syster // rc crargc 
ccnt roller // re charge 
view // j-c cLrect change 
UJ ; ixner.i // rc cLrect change 
nvt'ixz // rc cirect change 
bourc ■»- \ <v>, v.>, <v_, v-> > 
pcmtsjjp •• ■! vw  • 

vstrjct // rc direct change 
viable *• i v_,  vl  i 
iroex // rc erect chance 

adjacent 4m (vs-j X (w)) ♦ ({w| X vsu)  ♦ ( <vu, vu> ) 
adjacent *m (vsl X {vl)) ♦  ({vl} X vsl)  ♦ ! <vl, vL> ) 
adjacent — (vr, Xvil)    ♦  ( vsl X VSJ) 

connect«: // rc cvirgp 
lossjxiicy // rc crange 

sjrerge(c, vu,  «u.  vs_, vl.  si, vsl) 

let: 

preconditions: 

effects: 
CO-Ä>' A rc cran>. 
*VSte~ // t£ crarpp 
controller // rc  range 
view // nc OLirect charts 

no direct change ccrpj «: e 
rwrtxir // nc direct chaicjt 
barvi — { <vj, vl>, <vi, v^> ) 
pointsjj: -* i v-  ) 
vscruct // no direct change 
viable — ( v„.  vl  ) 
inafex // no  iirect crax*- 

adjacent — (vsu X {vu))  ♦  <<vu) X VSU)  ^ t «vu. vu> ) 
adlaoer- — (vsl X (vl)]  •  f<vl) X vsl)  1 { <vl, vl> } 
adjacent •• (vsv X v*l)    ♦  { v»l X VSL) 

connected // no change 
loM_poiicy     //no change 

vh_de*troy{C. d.   M,  s*-. vj) 
vhjtarmytO. d. < *, si. vl) 

Views 
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v_c-eateii.,  r.,   r.,  '., 

let: 

preccnc-t ::-:: 

effects: 
vr. create (r,   '.. c,  c! 

for pr IT. private' l'r'. 
let or — mercer' l'r: 
let sr ■= vstrjr.' .'.'r.- 
if viable (pr) 

new(cr' 
vr. create!'.,  1,  or, j; :,  sr.ccrporent5[:;, cr) 

v_oesti'oy^,   \,  $,  t,   : 

let: 

preoendit lors: 

effects: 
vr. destroy [i,  t   r..   s.  c 

Processes 

p_create(0L, ei- •  r *-,  rc.,  r* -.-,  rr_) 

let: 

preconditions: 

effects: 
oc_ren*Te(c_. ■- r;_.   rt. rr._,  rr.l) 

dmln «. { cC   • 
syrter *■ •   C-    ! 

controller // nc crartje 
view /.' re crer. crurai 
oaiparurr // nc erect crancr 
nwt*." re street Ci-tt 
banc // nc direct cnaroe 
painuji^ // nc crect cna.-ige 
vatruct // nc o.rvr. chance 
viable — 1 rrZ  f 
index // nc d;rer. cr*4r*£; 

ad^oer.t // re erect crunqb 
ccnnocr.ee // nc erect CTAnqe 
lossjjolicy // nc cnartje 
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pjasstrcyi;:.., 

let: 

effects: 
do rerarete. 

syster 
contrclie: 
view 
oonponeTu 
iiHi'ijer 

bare 
poir.ts_ir. 
vstrt>ct 
viable 
inoex 

,    r.c cra.no«? 
//  re direct change 
// re direct d-a-we 
// nc enreet orange 
// re direct cranae 
/,' nc direct d-anae 
/    nc d-rect o-ange 

// nc carect cranae 

»d;,aae-t 
caroectec 
loss Dclicy 

rr direct orange 
nc direct orange 
nc crunce 
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c sz.i' <z.  :-'-,   rot, nc, cc\,  ccc' 

preac-vuMC-j;: 

n«w(dei 
new (er. 

rww(crJ 
r*w(c-r 

efiec*,s: 

OCTAIT •" • a.%  ex 
sw.e- *■ • ac  ! 

aor.trcl>: — •   C3     • 
view 1, 

II 

rt c_rcr. crarot 
uurjJCJ«' rt c !t."". C •!.">-* 

na uer i: nc d.^r. CTA.-«' 

baunc l! nc a^cr. cnjLTor 

pointsup II nc career. aange 

vjirjc*. II nc ervr.. crtvqe 
vr-ATit +* •.   COT    ' 

index II nc cirecr. d"a.ncr 

•dJÄOtr.*. /' nc cirer.  cranae 
car.necioc /   nc cLrec. crarcx 
lossjxjiicy     *« {<cr.,  te-pcr*ry,  saspeno,  <dr.. permner.:., abdicate^ 

do_rBnare(c, oc, cot, cu., cm, erb) 
Qc_rw»-* <ä, er.,  rc:.  rat,  rrr.. rrtel 

Q_rt«r9B{a.  ro-,  roc,  rr~,  mc,  ooi, cofc) 

F   -pclir." 

de — nopoer' 'Cd 

pmanditians: 
newer:; 
neu(<T±' 

effects. 
ao^wrAwJc:, c. er*., cat. cr£, art} 
de rtr*-»(sr.. c.  r.:'-. rot.  r^t, rrb) 

dtroir. — i er, dt. i 

»yÄ«P — ' de I 

con^TOiirr «• » eefc • 
vie- // no a;mr. erwrt^ 

<JLT"VM BT* // nc direct ö-A-i^f 

WPfaM // no direct ctenge 

bcnl /.' nc direct cteng» 

pcojx* qp // PD dixect denp 

VBLTU2. ff nc direct a^mtfe 

vuhk' -   iODt   ' 

mau // re direct ctenqr 

«dVwr- // no diiec: «tentp 

<JBTY VCL4B // no direct cren^ 

lo«u_po.icy —   \\t:  l pj 
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Structure Hierarchies 

tJtilKd;, v-, vl. nj, r.l) 

s„ = vst rjr.'".' v- 
\\  -» borti' 1'VJ 

dl = mercer'2' vl 
si -» vstruct' 1'vl 

precrriditicr.s: 
!controller(vl) 

effects: 
if splice(vj, vl! 

new(xl! 
new ( >c) 
Sjöestroy (VJ, vl, n;, r.l,  xl, XJ! 

if inferior(vu, d;'> U   systerMdl) 
p_aestxoy(dj, dl, vj, vl, nu, nl) 

if inferior(v„, du!  ii   Isystertdi) 
new(xu) 
new(Kl) 
ci_rferge(d»;, vu, vl, XJ, xl, a:, cl) 
t_ki:l(a_, xu, xl, r.„, r.11! 

if clear (vu, vl) 
c_cle&r(vl) 
for cu in adjacent'1'vl - (vl) 

let cl   =■ bcxc'l'cj 
let saj — vstruct'1'CJ 

let scl -■ vstruct'1'cl 
c_clear(cu) 
tJdlKdi.  a:, cl,  a;, nl) 
s_irerge(a;,  n_,  scu, •Cjaaent'l'n: - (nu}, 

r.„,  sc.. adjacent'i'nl - {nl}) 
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A.4.3. HPC Primitives 

Connections 

comers (c, vl, vl< 

ie*, : 
si = vstrjct' i'vl 
s2 — vstrjct' i'vl 

preoorcLtions: 
view (vl) 
view(v2) 

TTETDSriv'.,    G! 

norrcar (v2, ci 

sarespaoetvl, v2: 

extension (si) 
extension (s2j 

ccrpierer.tarytsl,  s2! 

connect«:'I'vl = •'   i 
connecter.'I'v2 ■  < 

effects: 
c create (vl, v2) 

type 

privilege 

local conpositior. 

view structure 

not connect«: 

disconnect(c, vl, v2) 

let: 
si — vstruct'l'vl 
s2 — vstruct'l'v2 

preconditions: 
view(vl) 
view (v2; 

röer(vl, d) 
rrenoer(v2. d! 

connected(vl, v2) 

effects: 
c_destrcy(vl, v2) 

type 

privilege 

rrutually comectec 
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Shells 

enclosed, vsl,  s-,  s".! 

i.e.: 
v iews — az; acr>r_'1' vsl 
vsT — vjev^ - vsl 
VJTJ — ;f  (points up'1'vsl) ther, vsl eis» vs2 
vsl — if   (points up'1'vsl) tt*r. vs2 eise vsl 

argjtent type 

privilege 

view structure 

partition of space 

precorcLitio-^: 
for v renter vsl 

view(v) 

Structure (su! 
structure (si) 

for v in vsl 
nerrbsr(v,  j; 

corplemmtary (su,   si 

!erpty(vsr-' 
for vl ir. vsl 

for v2 ir. vsl 
adjaoer.t (vl, v2) 

connected'1' (descerear.t'2'vsu)  subset vsu        carposition unaffected 
connected' 1' (tescendent'2'vsl)  sucset vsl 

new(vu) 
new-(vl) 

effects: 
s_split(d, vu,  su. vsu, vl,  si, vsl) 

disclose (c, v„, vl; 

let: 
vau — adjacent'lMvj) - (vu) 
vsl — adjacent'1'(vl; - (vi- 
su   — vstruct'l'vu 
si   — vstruct'l'vl 

p record! t ions: 
view(vu) 
view(vl) 

«enter (vu, d) 
matter (vl, d) 

shell (vu,  vl) 

oomecud'l' (descendant'2'4vui)  — (  ) 
«nreÄed'l'(descendant'2'(vl)) — ( ) 

effect?: 
ijmrqeid. vu,  su.  su.  vl, si,  vsl) 

argurnerit type 

privilege 

merger of spaces 

camxjsition unaffected 

Views 
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s » vstrjct' l'p 

preccxi.t icrjs : 

erßpoir.tlpl 
rru.tipiex(p)   || rruiticast (p) 

neroe: (p, c) 

new(n) 
rev»' (c) 

effects: 
v_create(ci.  n,  p,  s.ccrponer,ts[i], c) 

delete(d, c) 

let: 
p « ccrpcnent' 1'c 
s «* vstruct'l'c 
: •=■ index'2'c 

p^eoonditior^: 
view (c) 

rrultipiex(p)   || nulticast (p) 

mHTber(c, d) 

cxxmected'l'(desaendar.t'2'c) - { } 

effects: 
v_aestroy(a,  i, s, p, c 

arcune:--  type 

view structure 

priviiege 

argurent type 

view structure 

privilege 

unconnected 
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Process Manipulation 

anireteldj,  v.), vl,  su,  s,(  :) 

er.: 
nx «=   [sirpie, enapc ;",:.,   [control,  out]] 
rrc: = (sirrpie, endpcir.t,   icontrci,  in]] 

scu = fondle, endpoir.t,   [multicast, endpoint, mco]] 
scl = [bundle, endpoint,   [nulticast, enspoint, mci]] 

preoondit ions: 
view{vu) type 
view{vl) 

msnfaerlvj, c) privilege 
mercer(vi, dj 

adjacent'1'vl — { vl } enpty leaf 
connected' 1' (desoenaar.t'2'vl■ = ■   } 

if su '= { } view structure 
carpierer.tarylsj,  si) 
i <= Isu.corponer.tsl 

nev{dl) 
newfru! 
new(nl) 

effects: 
if su — { } 

p_create(cs, 61, vj, vl, nu, nl)       // create sirple domain 

if VJ !- i ) 
nev(cu) // create leaf for controller 1 
new(cl) J 

»_aplit(d;# cu, scu,   {vl}, cl, scl,  { }) j 
iet oe — component'2'cu // create multicast view \ 
new (cm) 1 

v_create(du,  1, mcc, ce, crrj 1 
new(xu) // create leaf for manager 
new{xl) 
s_split(dj, xu, su, {vl, cu}, xl, si, { )) 
let me — { v : arpener* (v,  xu)  U index (i, v)  ) // correct manager 
let ms — vstruct'Tre 
c_create(re,  c! 
new(qp) // create process in leaf 
new(yu) 
nev(yl) 
p_CTeate(du, dp, xu, xi, yu, yl) 
d_aplit<dL, dl, yu, yl, m, nl) // create a oonplex domain 
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k.llidv,  vj.) 

le*.: 
vl «= Dounc' l'v. 
ex. «=>-  < v : bo;rc6.ry (v. cvi   ii CXJJTC : .■.  CJJ  ii co-.trclier !c)   ) 
c 1 —• baurc' 1' cu 
rl -* sjpe.'icr'/'ci.. 
ru «* baurc' 1' rl 
or «= irurcer'l'r- 

precondi tiers: 
VI<*W(VJ! type 

merttaer (vj, civ': privilege 

new (nu) 
new'r.l) 

effects: 
if belowia:,  vl)   ||  s<ves=«i;s?(cu,  vil 

if policy* l,2'<dv, mmarerx.> — abc.ic.re 
ä_rrerge(är,  ru,  r-, r._,  rl, c>,  e'J 

if policy l,2'<cv, perra-er.t> «■ die 
tjdiHar,  Tw.   rl,  rv,  r.l 

ii  ! (b^Iowtcu, vli   !! wraptae (CJ,  vl>) 
tjdll {<*.', v„, vl, r._, ru! 

cU«{dl# vl; 

IK: 
vu — bound' l'vl 
Sl «■» VÄXUÄ' i'vl 
du — rartter' I' vu 

preconditions: 
vj*w(vlj type 

«perior(vl, dl) privilege 

new(?x;) 
naulnl) 

effects: 
t luUlcL, v„, vl. ru. Rl) 
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Domain Manipulation 

invest (c,  :c:. cnct) 

let: 
roc = bound' 1' rot 
cnor = bound' i'crct 
cct = ( v : baroary (v,  d)  && nandlv, C)   i& controller(C)   } 
cob = bound'1'cct 

preconditions: 
view (rot) argument type 
view(cnob) 

nerberdot, dj privilege 
renter (cnot, d) 

clear (rot, rob) root white box 
clear (cnot, cnob1 controller white box 

points_up (rob) 
points_ip(cnac) 

! £below(cot, rob!   |j sarespace(es*.,  rob)) d keeps old controller 
below(ence,  rob1 dn gets new controller 

adjacent' 1'cnob = • cr.ee  ; erpty i«*- 
connected'1'(descendant'2'cnob!  = i  ) 

vstruct (cnob,   (bundle, endpoint, view structure 
{rrulticast, endpeint, 

[sirple, enepcint,   [control,  in]]]! 
new(rnt) 
new(mb) 

effects: 
d split(d, rot,  rob,  rr.t,  mb,  ens';, cnob) 

depose<d, rot) 

let: 
rob — bound'!'rot 
do *■ marrber'l'rob 
cot - ( v : boundary'(v, do)  (& bound(v, c) tt controller(c)   } 
cot ■■ bound' 1' cot 

preconditions: 
view (rot) argument type 

inferior (rot, d) privilege, black box 

new(mt) 
nsw(mb) 

effects: 
if !splice(rot, rob) U policy* 1.2'<do, penweneno — abdicate 

d_nerge(d, rot, rob, mt,  mb, cot, cob) 

if   splicetrot, rob)  || policy'1.2,<do# pUMranO «— die 
t kilKd, rot., rob) 
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abdicated:, ror 

le:: 
rot = txxjnd' I' :r. 
cr ■■ nerx>.:r' 1':.:: 
co: ■» i v : oarearyu,  .-.   ;:, axnctv, c)  it co.-trclier (c!   } 
coc — bound' 1' cct 

preconditions: 
view (rob! arg-jnent type 

superior(rot, el privilege, black be>* 

new(mt) 
n«u(mb! 

effects: 
if !^plice(r^.,  rrpfc;  i» pc-:cy' 1, 2'<dc, perrarier.t > —• abdicate 

djrerge(dr.,  ret.,  roc,   rr.t,  rrr,  cot,  coc! 

if   splicefrot, rcb)   M pc--cy'l,.?'oc, perTra.nerit> — die 
t kilKcr,, ret,  ror 



140 

Splices 

sp.iopvi,  vu.,  vur) 

lev: 
vll ■■ tojnd'l' ■'.'-- - 
vrl — presplaoociv-l,   v- 
vrz — prespiiaedivur,   v„l: 
inl »• int*nr»diate(v.:l, VJ 
inr «■» interrBdiatetvur,  v_ 
»ol -" structure'l' lv-1 • 
•II ■■ structure' 1' •, v. 1 ' 
»or ■» structure' 1' \VJT • 
va   — adjaoent 'I'iv-li 

CJ   —• ocrponerit.5'2''V--■ 
c.\    ~ canponents' 2' »v_ 

preconditions: 
view (vul) 
view(vll) 
view (vor) 

argjnent type 

rrttoer (c. vul) 
mercer (ci. vll) 

privilege 

carp lener.tarY (sc 1,  sc•:, vie« structure 

adjacent' l'(vll) - ! vi:   ) 
connected'1' (descenciar.:'2' <vll )) — { ) 

empty leaf 

new (as) 
new(xl) 
np» be) 

effects: 
if lnl in view 

5_create(vr-,  vrj,  vu»,  vll. 

if !inl in vie* 
*_apiit(d$, xl, scl,   { ), xr 
S_create{ini,  inr, vul, vll, 

, »11.  1  !) 
xl.  xr) 

note«: 
creates mirireots 

A.5, Soundness and Completeness 

A .5.1. Soundness 

A full proof of soundness is a simple, but quite laborious task. There are 12 core operations, and about 50 

constraints on 14 core relations that must be preserved. Many of the 600-odd individual proofs are trivial, but a 

large number require non-trivial inference. 

The proofs for connect and disconnect are especially simple. They aifect only the o*n«*d relation, and only 

by adding or removing a symmetric pair of tuples. Their precondmoris irnmediately establish seven of the nine 

constraints on oemected. Adding a symmetric pair establishes the final two. 

Actually, as presented in this Chapter, splice is not sotrtd The following analysis is typical of the more 

interesting (dis)proofs. To be unintrusive, splice of a and b does not rename b After splicing, b's peer is in the 

domain a was in. A view is a member of one domain during its whole lifetime, and a view h*> the same private peer 

during iis whole lifetime Therefore, b's peer must have been in •*• domain before splicing. All spaces of a domain 

are contiguous, but b's peer was not in the domain before splicing: contradiction. One of the intermediate views is 
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also created with no superior views, in a domain other than root. In the HPC implementation these unsoundnesces 

arc avoided by using a more flexible (and complicated) constraint on domain contiguity. 

A.5.2. Completeness 

Completeness up to isomorphism (trivial relabelling) can be shown in a more elegant fashion. First, observe 

that every structure can be reduced io the null structure by a sequence of core operations. A further, non-trivial 

observation is that each such sequence has an inverse (up to isomorphism). Therefore, any tme sentence can be 

derived from any other. 

Establishing inverses is non-tnvial for two reasons. Most core operations do not have exact inverse 

■»perauon For examp'e, new may create components of remote views, while delete always desrroys exactly one 

view. Fortunately, every core operation has an inverse sequence of operations. A harder problem is thit not every 

sequence of core operations can be produced by a sequence of HPC primitives, and it is necessary t» demonstrate 

that the effects of any primitive can be undone by a sequence of primitives. 
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