September 1989 Technical Report No. 112

.'_.Qn.

ONR Final Report

Tools for Simulation-
Based Training

Douglas M. Towne
Allen Munro

Behavioral Technology Laboratories
University of Southern California

Sponsored by

Office of Naval Research
Cognitive Sciencc Research Program

Navy Personnel Research and Development Center

Air Force Human Resources Laboratory

Under Contract No. N00014-87-C-0489 gm0 f""'
i ,,_ 2, 3 “4.7!&

R

AN IR

SV « }

£& "

APPRCVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED '
Reproduction in whole or in part is permitted for any purpose of the United Statcy Gmcmifmli ‘ O };. 4

89

:

Tools for Simulation-
Based Training

Technical Report No. 113

ONR Final Report:
Contract No. N00014-87-C-0489

Douglas M. Towne
Allen Munro

Behavioral Technology Laboratories
University of Southern California

1845 South Elena Avenue, Fourth Floor
Redondo Beach, CA 90277

The views and conclusions contained in this document are those of the authors and should
not be interpreted as necessarily representing the official policies, either capiess or
implied, of the Office of Naval Research, the Navy Personnel Research and Development
Center, the Air Force Humar Resources Laboratory. or the U. S. Government.
Reproduction in whole or in part is permitted for any purpose of the United States
Government.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

SECURITY .CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DCCUMENTATION PAGE OMB No 0704-0188
Ta REPORT SECURITY CLASSIFICATION 16 RESTRICTIVE MARKINGS
Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT
7b DECLASSIFICATION / DOWNGRADING SCHEDULE Approved for Public Release:
Distrihution Unlimited
4. PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

Technical Report No. 113

6a. NAME OF PERFORMING ORGANIZATION 6b OFFiCE SYMBOL 7a NAME OF MONITORING ORGANIZATION
Behavioral Technology {If aoplicable) Cognitive Science Research Programs
Laboratories - USC Office of Naval Research (Code ll42c§
6c. ADDRESS (City, State. and ZIP Cade) 76 ADDRESS (City, State, and ZIP Code)

1845 S. Elena Ave., 4th Floor 800 N. Quincy Street

Redondo Beach CA 90277 Arlington VA 22217-5000

8a NAME OF FUNDING/SPONSQRING 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATIONS Navy Personne& {If applicable) N00014=-87-C-0489
Research and Development {enter and

8¢c. ADDRESS (City, State, and 2IP Code) Air Tarce 10 SOURCE OF FUNDING NUMBERS

cde F=-30 Human ResourceqnomﬂM PROIECT | TASK WORK UNIT
MENT N N N Al N
San Diego CA 92152 ELEMENT NO 0 o CCESSION NO

Laboratory 4428011

11 TITLE (Include Security Classification)
Tools for Simulation Based Training

12 PERSONAL AUTHOR(S)
Douglas M. Towne and Allen Munro

13a TYPE OF REPORT 136 TIME COVERED 14 DATE OF REPORT (Year, Month, Oay) |15 PAGE COUNT
Final FROM 5—-87 _103-89 89-10-02 52

16 SUPPLEMENTARY NOTATION

—

[A ' s, . .~ .
foag e ~ ~ - N i

| A

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and «dentify by block number)
FIELD GROUP SUB-GROUP .Artificial Intelligence, Graphical Simulation,
05 09 08 Troubleshooting Expertise, Simulation Training.
", Representing Device Behavior, Diagnostics v

19 ABSTRACT (Continue on reverse if necessary and identify by block number) .
The Intelligent Maintenance Training System (IMTS) is a set of software

tools that permits the composition and presentation of interactive granhic§
simulations for computer-based technical training. IMT5 is designed to
support training on the operation and maintenance of complex devices,
Simulations are authored by device experts, who use the IMTS tools to draw
the components of the device to describe their behavior, and to create
simulations made up of the components.

IMTS provides special support for maintenance training. An artificial
expert on troubleshooting strategy, called Profile, generates instruction
and advice for students. RAPIDS is an additional set of tools, built on
the foundation of IMTS, that enables the authorina of a wvide wvariety of
simulation-based training courses. Using RAPIDS, an expert creates lessong
by performing in the simulation the tasks that are to be tauaght to studentd

—

20 DISTRIBUTION/AVAILABILITY OF ABSTRA(CT 21 ABSTRACT SECURITY CLASSIFICATION
LRunciassiFepmunumited] SAME as rpT Oornc users |IUnclassified
23 NAME OF RESPONSIBLE iNDIVIDUAL 22b TELEPHONE (Include Ared Coue) | 22¢ HFFICE SEVIBOIL
Dr. Susan Chlpman (202) €96-4318 ONP-1142cs

DO Farm 1473, JIUN 86 Provious editions are obsolete SECURITY COASSIECATON Ok "Iy vy

siiaiainiaiaiainiillllaiaiaia

Accession For
NTIS GPa&l
DTIC TA:Z
Uninnnonne]]
Justificatisn N
Bv. e __—__J
Diiieitoria/ |
Avoll - ili4r ToAdeg |
FEON N or "
Dist : NEVICRILI ‘
Al | |
© Behavioral Technology Laboratories, USC, 1989 ‘\(t
Lo Q,“

ABSTRACT

The Intelligent Maintenance Training System (IMTS) is a set of
software tools that permits the composition and presentation of
interactive graphical simulations for computer-based technical
training. IMTS is designed to support training on the operation and
maintenance of complex devices. Simulations are authored by device
experts, who use the IMTS tools to draw the components of the
device to describe their behavior, and to create simulations made up
of the components.

IMTS provides special support for maintenance training. An
artificial expert on troubleshooting strategy, called Profile, generates
instruction and advice for students.

RAPIDS is an additional set of tools. *+::" on the foundation of IMTS,
that enables the authoring of a wiu. ariety of simulation-based
training courses. Using RAPIDS, an expert creates lessons by
performing in the simulation the tasks that are to be taught to
students.

ACKNOWLEDGEMENTS

The work described here was supported by the Office of Naval
Research, the Navy Personnz] Research and Development Center,
and the Air Force Human Resources Laboratory, under ONR
Contract No. N00014-87-C-0489. Susan Chipman served as ONR
scientific officer, Vern Malec served as NPRDC scientific officer,
and J. Wesley Regian served as AFHRL scientific officer for this
contract.

Our colleagues Lee D. Coller, Quentin A. Pizzini, David S. Surmon,
and James Wogulis assisted in the design and carried out the
implementations of IMTS and RAPIDS.

The term yoking was suggested by Jeffrey Richardson. Subject-
matter expertise for the Bladefold simulation was provided by
William Johnson, Subject-matter expertise for the WSC-3 Satellite
Communication System was provided by Ronald Renfro.

TABLE OF CONTENTS

Introduction 7

Overview of IMTS 1

The Student Interface 2
Generation of Domain Expertise 3
The Student Model and Problem Selection 4
Deep Simulation 5§
Behavior Modeled at the Element Levei 5
Local Propagation of Effect 6
The Deep Simulation Algorithm 6
A Simple Simulation 7
The Bladefold Simulation 8
Scene Ccmposition 9
Generic Object Authoring 10
Producing Fault Effect Data 17

Development and Applications of Derivative Simulations 712

Surface Simulations 74

Previous Surface Simulation Systems 714
Overview of Surface Simulation Authoring 15
Surface Object Data 15

Modes and Tests 16

The WSC-3 Simulation 17

Creating Profile Data for Surface Simulations 17

Authoring Instruction by Direct Manipulation 79

Instructional Content Authoring 20
Authoring Content Units 27

Student Actions 22

Expositions 22

Automatic Interactions with Students 22
Instructionai Organization 23
Structure of Instructional Plan Units 23

Summary 25

Conclusions 26

Latest Developments 27
Extended Device Applicability 27
Extended Range of Instructional Rescurces and Strategies
Extended Range of Learners 28
Maintaining Cognitive Fidelity 28

v

-

A
</

References 29

Appendix A-71

Tools for Simulation-Based Training

Final Report: ONR Contract N00014-87-C0489

Introduction

The exploitation of interactive graphical simulation for computer-based instruction has
been limited by the time and expense typically associated with the production of
complex simulations. The Intelligent Maintenance Training System (IMTS) provides an
environment for the composition and presentation of such simulations. The authoring
environment permits the construction of simulations based on either of two quite
different approaches. In one, which is component-oriented, model-based simulations
are composed by direct manipulation. In the other, simulations based on the behavior of
an equipment system as a whole are built up by creating tables of data that describe that
behavior. The former approach is called deep simulation; the latter, surface simulation.

The model-based, generative approach (deep simulation) has two advantages over a
table-look-up style of simulation. First, it permits more robust simulations, which
provide nearly complete free-play features. Second, object-oriented models can be
developed relatively rapidly since the developer does not have to describe behaviors of
the total system. To employ the model-based approach, an author must understand the
functions of the objects in the simulated system. An auther who understands a complex
system only in terms of the behaviors of the system in various operating modes would
have difficulty following the component-oriented model-based approach.

Overview of IMTS

IMTS provides editors for composing both deep and surface interactive graphical
simulations for training without using computer programming. It also includes a
generic expert that can generate instruction in the domain of fault diagnosis. The
resulting simulations are presented in an environment that permits students to directly
manipulate graphical controls and to observe the effects of these manipulations on
simulated indicators and test points.

IMTS attacks two productivity problems for the authoring of simulation-based
training: (1) the development of flexible and accurate simulations at reasonable cost.
and (2) the authoring of expertise about the model domain.

IMTS simulations may depict the simulated device or system in a variety of different

The Student Interface

ways, including schematically and in a front-panel format. Large simulations are

divided into multiple graphic simulation scenes, each of which depicts some portion of
the whole device. Students can navigate through the sccaes 1) by bringing up a

hierarchical map of all the scenes and selecting the one they wish to view, or 2) by
selecting special scene icons that act as doorways to other scenes.

The student manipulates some of simulated objects by use of the mouse. When the
object, such as a switch, changes state in response to the student, it correspondingly
changes its appearance, and it usually causes other objects to change their states. In

addition to manipulating controls and observing simulated front panel indicators and
internal actions of objects, students can examine values at object ports using simulated
test equipment. When they work with large simulations, students sometimes discover

behaviors of which even the authors were not aware.

The figure below shows the entire IMTS screen during student use.

Q

End Problem

Reset Simulation Jumpers

Picture Test Equipment

Heip

Metiaae Window

Started problem 4.

Safety Valve Open Light comes on but
Safaty Vaive does not open.

| sat MainPowerSwitch to Closed.
| set SafetyVailveSwitch to Down.
| measured the voitage at K102-81 to be 0
which is abnormal.
! shouid now no longer suspect the follgwing
components:

SafetyValveMotor

SafetyVaive
and | should stil suspect the following
components:

caeo

XK 1028

AccessoryDrive8witch

K 102 ~Cod

| measurad the voitage at
AccessoryOriveS8witch=0 to be 28 which is
normat.

| shouid now no longer suspect the
AccessoryDriveSwitch.

Simutstion windowe T

(Switeh 15 1eft vhen 3 open § lesked.)

(8113)

N

BLADES SPREAD & CONTROL LOCKPINS ADVANCED CIRCUIT
Lover B8lade Lock Listit Switches
185-128 Ba-118 183-108 '82-38
L F L F L F l [F
ae a R a_oHt ool
=Sy -
Lol P Lo L agd
'8lade 5 Blade & Blade 3 Blede 2
. '
C5-12A ca-11a c3-104 c2-3a

Upper 81ade Lock Limit Switches

P111 P118 P189

i

P1as

i

and | should still suspect the ‘ollowing e 2 i g
components: ! \ . !
c880 06-12€ 0411E 03l18€ 02-3¢
:12%5_&“ Control Lock Switches ‘“ 3)
= =4
N) Cont |Lock
i e 2., t 2t

to

The largest window displays any one scene in the simulation. The scene shown depicts a
portion of a helicopter blade-folding system. At this time the IMTS is explaining, in the
left-hand text window, how an expert would have approached a just-completed
problem. Also, the student had made copies of three objects from other scenes, and
placed them in the upper scratch-pad area. These duplicate copies are manipulable and
graphically dynamic, just as are the originals from the other scenes.

Generation of Domain Expertise

In contrast with the use of conventional expert systems methodology, IMTS does not
require the authoring of expertise about troubleshooting a particular device. Instead, a
generic troubleshooting expert, called Profile (Towne, 1984, 1986; Towne & Johnson,
1987), is applied to data generated from the simulation model to produce evaluations of
student actions, recommendations and other advice, and normative or expert
solutions. Profile’s use of simulation-generated data is an example of an approach we
have sought to apply wherever possible in IMTS: to exploit the model data and the
simulation as fully as possible to generate instruction rather than requiring expensive
authoring steps.

During practice problems, the Profile model in IMTS evaluates the student's diagnostic
performance, and it offers assistance in conducting an efficient and rational diagnostic
process. Both of these support functions rely on Profile's ability to compute near-
optimal testing decisions at each stage of a problem. Profile's generic strategy is to find,
at each step, the test that offers the potential for revealing the most new information
about the status of the system relative to the cost of obtaining the information. These are
a function of the symptoms produced by all failures under consideration, the cost and
reliability of each replaceabie unit, and the time to replace each unit.

By maintaining a concurrent and internal evaluation of the symptoms seen by the
student, Profile is able to evaluate each student action and to comment on its usefulness.

You measured the ure at
FoldSelectorValve G which provided
no New information.

Profile can also generate advice tailored to the user's personal progress in working on
this problem. The advice given takes into account what the student could have learned
about the troubleshooting problem from the tests he or she conducted, the reliability of
each element in a device, and the time to perform alternative tests and replacements.

The best test to do now is ane of the
following:

measurs the voltage at K102-81
measura the voltage at
SafetyValveMotor -A -NoJumper

When a student has finished a troubleshooting problem, IMTS can use Profile to present
a step-by-step critique of the student's work. In a sinilar format, it can generate and
explain an expert (Profile) approach to the problem, as shown below.

Started problem 4.

Safety Vaive Open Light comes on but
Safety Valve does not open.

| sat MainPowerSwitch (o Closad.
| set SafatyVaiveSwitch to Down.
| measured the voitage at K102-81 to be 0
which s abnormal.
| should now no longer suspect the following
components:

SafetyVaiveMotor

SafetyValve
and | should stil suspect the tollowing
components:

The Student Model and Problem Selection

IMTS maintains information about the student during the course of a training session.
This information constitutes a simple model of the student. Three types of data about
the student are maintained:

* A unitary measure of co .apetence in the domain

* An estimate of preferred problem step size

* An overlay model of knowledge about the domain

The overlay model of student knowledge is a set of weights on the nodes of a knowledge
tree that represents normative knowledge about the device that constitutes the domain
of instruction. The normative knowledge model is constructed using the IMTS
knowledge editor.

Plsase veit...done.

Node (mormetian.

Shuttiviy Name AccOrvaSafetyvlvCircrs
CbnAccusf YvCntr{ Instructiongiflement @

\
Nastery i
‘:reulén:1c ProblesNuster NIL
\ nestrCyindr Problam0ifficuity MIL
CabinAccumitr

Nar-0pRYfYIv
/;//

J
"

Comsp It ladefoldSysce:

W\ Rtrnesds 1aF 1aHydr (8 1d3142)
\81ade 3
Nalanes

For each node in the knowledge tree, authors enter a number that represents an estimate
of how well the average student understands the concepts it represents when they first
begin working with the simulation. These estimates are called default mastery values
for the knowledge nodes. When a new student begins working with an IMTS
simulation, a copy of these mastery values is generated. This is the individual student
model. These mastery values are altered in response to a student's performance. so a

student's er re set of values represents the IMTS estimate of the student's knowle.1ge
based on performance.

At the end of each problem, a mastery value is computed for the problem node. This
value is based on the correctness of the problem solution, the number of errors made en
route to the solution, and normalized time to solution. It is an estimate of the student's
mastery of the knowledge required to troubleshoot the malfunction.

Mastery values are propagated upward in the tree. The immediate parent node of the
problem node is modified by an amount that is proportional to the number of its
children. This modified mastery value for the component node is, in turn, propagated
to its parent, and so on. The solution of a single problem results in a small change even
to the root node, which rep:esents knowledge about the device as a whole.

To make an utomatic problem selection, IMTS computes the conceptual distance from
the last problem node to each of the available (not yet done) nodes. Conceptual distance
from a node is the sum of the weighted links on the path between the nodes. The weights
used are the inverse of the mastery values on the nodes in the paths. The automatic
problem selector attempts to pick a problem with a conceptual distance that is congruent
with the student's preferred problem step size. In addition, the problem selected should
have a difficulty level that is congruent with the present estimate of the student's
competence in the domain. These two factors — problem step size congruence and
difficulty/competence congruence are heuristically combined to select an appropriate
problem.

Deep Simulation

The deep simulation approach is preferred to the surface approach whenever the author
has a thorough understanding of the behavior of the components of the simulated
device. Deep simulations do not require the detailed authoring of effects at the device
level that are required for the construction of surface simulations.

Behavior Modeled at the Element Level

The objects used in IMTS simulations can be produced by non-programmers, and they
can be saved and used in any number of specific applications. This contrasts with some
other approaches to simulation composition, such as that employed in STEAMER
(Williams, Hollan, & Stevens, 1981; Hollan, 1983; Hollan & Hutchins, 1984) in which
the simulated device is modelled with a specially written computer program.
(STEAMER's graphical indicators — such as gauges and indicator lights — are generic
elements that can be used at different points in a simulation, or in different simulations.)
The IMTS approach has the advantage of permitting faster and easier simulation
development, for the class of systems that can be simulated in this manner. The
STEAMER approach has the advantage that it can simulate virtually any system. but at
considerably higher cost.

One other advantage to constructing the simulation of predefined ubjects is that models
of failed components also can be created and inserted into the simulation. This failure
insertion can be done by the student, to observe and learn about effects; it can be done
by the instructional routines in IMTS, to set up an instructive diagnostic problem; or it
can be done by the simulator if a current mode and/or failure condition causes a new
failure.

Local Propagation of Effect

Every generic object has a set of behavior rules for each of its states. One rule
determines when the object will transition to the state. Other rules, called performance
effects, determine the values of the ports of the object in that state. Ports are points on
an object that are associated with the passing of values to and from other objects. In
terms of the represented world, ports are electrical, hydraulic, or mechanical
connections.

When a student changes the state of a simulated control object, the object's performance
effect rules determine new values for some or all of its output ports. These values are
passed on to the neighboring objects, some of which may change state as a resuit of their
new input values. These objects will, in turn, pass values on to the objects to which they
are connected. In a complex simulation, hundreds of objects may be affected by a single
manipulation, and thousands of port values may be recomputed.

Complex system-level behaviors are derived from simpler component-level behaviars.
This permits accurate free-play simulations without requiring authoring an immense
number of combinatorial effects (as did some earlier simulation training systems
developed by this research group, described in Towne, 1986; Towne & Munro, 1981;
and Towne, Munro, Johnson & Lahey, 1983).

A major advantage of generating system behaviors from the detailed functional model
is that the author is not concerned with where or when abnormal symptoms will appear
in the simulated system; the effects are computed according to both connectivity and
object behavior. Thus, symptoms produced by a failed part might not show up until the
signal reaches a particularly sensitive indicator. It might then appear normal for a
number of tests (which perhaps cannot discriminate the abnormality), followed by
further abnormal symptoms.

The Deep Simulation Algorithm

The simulation update is triggered when the state of an object. such as a switch, is
changed. One possible effect of a state change is that an output value changes. For
example, a variable voltage source would produce different values at its output port
depending on the setting of the object. In this case, the port, with its new value, is put on
a "source” stack. Another possible effect of a state change is that the path through the

object may be altered. For example, a valve could be changed from Straight to Crossed.
In this case, each port on an altered path is put on the source stack.

The simulation driver coutinues running as long as there is anything on the source
stack. It works by removing one item (port) from the stack and starting the propagation
of that port's value through the system. Each port record stores the port’s value and its
connection to another cuject's port. The value of the first port is passed to the second
port. The object containing the second port then computes what to do, given that new
input value.

When a new value reaches an object, one of three things can happen:

(1) The object may serve as a dead end; the new value doesn't

affect the state of the object, and there is no path through the ¢
object that includes the input port. This terminates a segment of

the simulation. For example, when the valve shown at the right is

in the state depicted, its port A is a dead end for values B
propagated to it.

>

(2) The value can be passed to an output port of the objcct. Possibly the value will be
changed when it passes through the object, as in a pressure reducer; usually the value is
unchanged, as in a valve, a pipe, or a wire. When the value is passed through the object,
it is handed to the port of the connected object.

(3) The value can cause an object to change state. However, the state is not changed
immediately. Instead, when it is determined that an object should change state, it 1s put
on a "change state” stack. This stack is necessitated by the fact that an object's state may
depend upon two (or more) port values; when the first value arrives (is computed), it
and the old second value may dictate that the object change, but when the new second
value arrives, a different result may be called for. Perhaps the object shouldn't change
at all, or perhaps it should change to a different state from what was initially indicated.
Consequently, no states are changed until the source stack is empty and there is no
further propagation of values. At that point, an object is taken from the change state
stack. If the initial instruction to change has been countermanded, then no state change
1s produced. If an object does change state, that will often retrigger a simulation update,
since the change will usually result in one or more ports being put on the source stack.

The simulation update finally ends when there is nothing on the source stack. there is
nothing on the change state stack, and no values are being propagated.

A Simple Simulation

A simulation is composed of instances of generic objects. Below is a simple simulation
of a Rube Goldberg machine that uses electrical, hydraulic, and mechanical components
to turn a light on and off. Power Supply A provides power through a switch to an
electrically operated control valve, while Power Supply B provides power to the
Output Light if the Actuator is extended.

~3

When the user moves the Main Power Switch to the right, the valve is put in its crossed
position, as shown below. This directs hydraulic pressure to the mechanical Actuator
(at the right in the diagram), causing it to extend. The actuator pushes a contact closed,
and electrical power turns on the Output Light.

Valve
(——] —> -

—| ‘_
0
r Actuator
3000
=4]

"Pwr 'Sa
Supply
8
5 < Qutput
Main Poyeer Switch Light

/

PwrSupply A

If a user moves the switch to the left, the valve goes into its straight state, as shown
below, and the actuator is retracted. The contact below opens, and the Output Light
goes out. All these responses are produced in accord with the behavior rules stored with
each generic object.

-
—
L o
[
0
(Actuator
pooo, =
Pump gt %

Pwr
Supply
8

Qutput
Main Poyer Switch Light

PwrSupply A

The Bladefold Simulation

The largest deep simulation constructed thus far with IMTS is the Bladefold simulation.
This is a thirteen-scene simulation with hundreds of specific objects. It simulates the
blade fold/spread/brake mechanism of a military helicopter. The figure below displays
one of the thirteen Bladefold scenes. :

HYDRAULIC SYSTEM, BLADES 1 & 2 (3)

Blade Locked
Sequence Yalves
= b-782

Hydraulic
Ranifold

C-8a2

]

8lade Soread
Sequence Vailve

L]
. %’

1

The Bladefold system uses a complex combination of electrical, mechanical, and
hydraulic parts, and it is not functionally modular. A change in one component may
have an effect on many other active components distributed throughout the system. In
the deep simulation, therefore, a student's manipulation of a switch may result in the
activations of hundreds of other objects. Despite this complexity, performance of the
simulation is quite acceptable. A worst-case time to completely simulate a response to a
student action is approximately 14 seconds, which is about half as long as the real-world
device response. Many graphical effects are displayed during this process, so the
student is actively engaged. For a more thorough description of the Bladefold
Simulation, see Appendix D and F of IMTS User's Manual (1989).

Scene Composition

IMTS simulations are composed from libraries of generic objects. As the object
instances are positioned in the diagram, any input/output ports close to ports on adjacent
objects are automatically noted as being connected, and can therefore exchange values.

When an individual scene of the functional model is completed the author may interact
with it to verify its behaviors. The scene editor provides tools for setting input values
manualily, so that a scene can function independently. When all the individual scenes
have been verified, the author connects them by identifying the port connections that
cross scene boundaries.

Generic Object Authoring

New simulations may require soiiic objeci types no. avaiiable in any library of generic
objects. In these cases, authors can add new generic objects to their libraries. There are
two major steps to building a new generic object. First, each of the different ways that
the object can appear is drawn on the screen. Second, the behaviors for the generic
object are specified in terms of the conditions under which each state exists and the
resulting effects produced by the object under each condition. The effects are expressed
as values at output ports of the object as a function of values at input ports of the object.
Thus each object is specified entirely in terms of its local environment.

| 2

l -

l Timer nght Ground
Generic | -F ilter

Object
Library l °_I

2-Position Ganged Switch
o]

Name : S5-Filter State 1 Result: B <~ A

State 1: On Failure: None
A—D—B Condition: A>5S

State 2: Off A 5 Failure: Stuck On
—-’— Condition: None

Graphic Construction State 2 Result: B <~ 0
Failure: None
(The input/output lables A and B Condition: A <= S

appear only in authoring mode.)
Failure: Stuck Otf
Condition: None

Rule Definition

A simple example is shown above. The object being added to the library. called a 5-
filter, goes into an ON state (state 1) if its input at Port A is greater than 5 or if the part

{0

has failed in a stuck-ON condition. In this state the output at port B will be the same
value that is input at port A. If the input is less than or equal to 5, or if the part has failed
Stuck-OFF, then the object is in the OFF state (state 2), and it outputs zero. With these
behavior rules, both normal and malfunctioning situations are simulated.

Producing Fault-effect Data

Like a human troubleshooter, Profile must consider the possible effects of a vast array
of failures. While the IMTS simulation reflects the effects of the current failure(s),
Profile requires access to failure-effect information for all the possible failures. To
minimize the compute time to generate the fault effect data, the author identifies the
failures that could cause each of the complaints that will be used to start problems. A
complaint is a verbal statement that states some abnormality that has been observed by
an operator, such as "The signal to noise ratio is low in FSK Transmit mode.” The
author then executes a special batch program that automatically inserts each possible
failure into the simulated device in each mode of interest, it executes the simulation to
determine the effects of the fault, and it records the fault's effects. This process is
illustrated below.

Meode Definitiors
1 Si-closed; S52-closed
2 Si-closed; S2-open Fault Effect Data
3 Sl-open; S2-closed
tode 1:
Failure $ynptons
L K101 Coil Dpen Output light off KI01-¢
. . S1 Open Gutpat light off X101-R
Failura (ntertion & 2 Opea Qutpst light off K101-Co
Effects Analysis Routins lighs durned out Output light off
T thae 2:
Fallure synptons
St : St Opex K101-B 0 Yolts K6t-¢
K1 0!
? thde 3:
@ Q SZ Failure Synptons
S2 Opea £101-Co1l-A 0 Volts

Detailed Purctional Model

The resulting table of fault effect data allows Profiie to rapidly search for powerful
next tests, to evaluate the power of the student's test selections, and to determine and
explain the significance of test result obtained by the student, as he or she interacts with
the IMTS simulation. Profile conducts its analysis by maintaining a set of suspicion
levels for possible malfunctions. Initial suspicion levels are determined from the
inherent reliabilities of the parts of the device. These could be modified over time to
reflect field experience with a particular device. As students perform tests in IMTS,
Profile modifies the current suspicion levels to reflect the inferences that could be
drawn from the results.

11

Development and Applications of
Derivative Simulations

For many devices a complete IMTS simulation will be too complicated to be used by
introductory students. IMTS provides a mechanism for creating simplified simulations
derived from the detailed functional model. These simplified simulations operate
correctly, even though some or many of their critical parts are not shown, because the
parts that are shown obtain their behaviors from their counterparts in the complete
functional model. This allows the simplified models to appear to operate correctly,
even though they could not really operate in the real-world without the missing parts.

The IMTS authoring feature that supports these derivative simulations is called yoking.
One object can be yoked to another, meaning that the behavior of the yoked object will
be determined, not by the behavior rules of its own generic type, but rather by the
behavior of the specific object to which it is yoked.

Yoking can also be used to rapidly create physical representations of systems. These
representations may be appropriate for training device operation as well as fault
diagnosis using front panel indicators. In the figure on the next page, a detailed
functional model has been developed from the IMTS Generic Object Library. Then a
three-element scene was produced by yoking S1, S2, and the indicator light to their
schematic counterparts in the Detailed Functional Model (the detailed IMTS simulation
model). If a student sets S1 on the front panel view, the indicator light on the front panel
view will come on because S1 was automatically set in the functional model, and the
indicator light there was determined to be in the ON state.

When IMTS simulations are used to support training in equipment operation, this more
physical form is usually desired, although the underlying schematic form may be a
powerful explanatory tool.

Simplified or Physical Models

St S2

00 P
Detailed Functiprt&l Model /

T A

: /%@f
I
"/,

V4
| /L
Light Ground
[R WO
2 Panel Light Poser
Source
- -3
—v S, §
N — —
2-Position Switch Relay Contact Set Relay Coil

Surface Simulations

Surface simulations are developed by explicitly specifying behaviors of objects in
relation to other objects in the particular device. Authors use the surface simulation
methodology for devices that are too complex to describe in terms of the independent
behaviors of their components.

Previous Surface Simulation Systems

The surface simulation methodology in IMTS is closely akin to that used in some earlier
training systems developed at Behavioral Technology Laboratories. The technique
provides a w~y to specify complex system behaviors in terms of specific conditions
rather than by enumerating the countless combinations of switch settings and failure
states. The conditions express the settings of switches and the existence or absence of
failures.

While the surface simulation approach is considerably less robust than the deep
simulation approach, it does provide a way to simulate systems whose inner workings
are either not fully understood by the simulation developer or are too complicated to
handle. Thus, a technician having extensive field experience with a system could
produce a fully accurate surface simulation by working out all the various effects of
front panel configurations and malfunctions on indicators and test poizts, even though
that individual might not fully understand the functions of the individual units.

The past limitaticns of surface simulation have been significantly overcome in IMTS.
The most clumsy aspect of the Generalized Maintenance Training System (GMTS) and
EEMT, its commercially produced version, was the medium employed to simulate the
device. For GMTS this medium was randomly retrievable color microfiche images, for
EEMT the medium was videodisc. While the videodisc version retrieved and displayed
images quickly and reliably, it suffered from the same limitation as the microfiche
version, namely that fixed photographic images were required of every system state in
the simulation.

Because the number of combinations of switch settings and indicator readings was
astronomical, the only recourse in these earlier systems was to minimize the contents of
each scene. Thus a typical scene might contain four to six switches and a few indicators,
and would require between sixty to two hundred different photographs to reflect all the
different combinations of object states. Not only was the time and cost to produce these
images substantial, but the limited scene size worked in direct opposition to the desired
goal of realistically simulating the real device.

[n IMTS, the graphic representation of each object is produccd independently, thus
scenes can be as large as the display screen can accommodate, and the viewer of a
simulation cannot detect whether it was produced using surface or deep techniques.

The second limitation to earlier surface simulations was that they embraced no
instructional or diagnostic expertise. The instructional and diagnostic functions in
IMTS operate for surface simulations as well as deep simulations. The difference here
is that the fault-effect information for surface simulations must be supplied by a human
expert, whareas it is generated automatically for deep simulations.

Overview of Surface Simulation Authoring

A surface simulation author constructs scenes of graphical objects that are yoked to the
surface objects. These graphical objects get their appearances from libraries of generic
objects, just as do the objects of deep simulations. Their behaviors, however, are not
based on the behavior definitions in a library. Instead, their behaviors — that is, their
changes in appearance — are driven by current state data associated with surface object
data records to which they are yoked.

Generic Editor Surface Object
(Graphics) Editor

" Test
Editor tor

| Surface Simulation .

Four editors are used to define surface simulation behaviors. The Surface Object Editor
creates specific objects that have certain data associated with them, such as their names
and types. These specific objects need not be associated with any graphical cbjects. The
Mode Editor is used to define equipment modes of interest in terms of the states of
specific objects. The Test Editor defines tests, which are indicators and/or test points
viewed in particular modes. The Surface Matrix Editor is used to declare what values a
test should exhibit in various failure conditions.

Surface Object Data

For every switch, indicator, jumper, or other replaceable object in a device, the author
enters a data record describing that object. These data records are called surface objects
in IMTS. The behavior of a surface simulation is determined by these data records and
by others that describe the important modes of the device and tests that can be

15

performed in those modes. Surface objects, per se, do not have appearances; they are
only bundles of data, including the following attributes:

» Name
» Hidden status (the default is False)
+ Initial state (set at run time for test points & indicators)

« MTBF, cost, (for Profile diagnostic guidance)
replacement time
 Description (used for discussing with the student)
» Video scene (the name of the video scene on which the object appears)
* Default Value

The surface object editor , shown below, is used to enter such data for a simulation.

item Menu Fault Modes State Descriptions
Name: Sound-weter Add Delete Add Delcte

Hidden? False F auit Modes | State Deacriptions

In1t1al State 3et at run tise ® Pinned-Left : LessZeroc : Less than Zero
MTBF: 2508

& pinned-Right : Zoro : Zero
* Alvays-Zero s EightyFive : Eighty-Five
: SeventyF ive : Seventy-Five
e Ten : Ten
: SresterThige ; Sreater than one hundred

Cost: 1399
s 120

Modes and Tests

Authors define the modes of a surface simulation. A mode is a combination of object
states of interest. For example, the power switch being set to on is a simple mode of
interest. A more complex mode is power on and standby off and number 1 engine
switch set to szart. Mode information is edited with the mode editor.

Mode name: MeasureCh
(Power-Switch Power-0n} MeasureChi

(Channel1-Switch Channel-2) MeasureCh2
MeasureMixed
Power(gff
Power(On

A surface matrix editor is used to specify how indicators and test points behave based on
the defined modes in a number of malfunction states. For each mode that is relevant for
an indicator, the value or state of the indicator is specified for each malfunction.

16

Tests PowerLig Leve elect sta velMixe
aus |MO" Normal Value
LessZero
Power.Lig ' Zero
o N ightyfFive NL
Burned-Ouj SeventyFive
Power-Swi Grea;ree;?h‘loo
o NIL
Failed-Ope
Normal on SeventyFfive Ten EightyFive

This fault-effect matrix is identical to that used for deep simulation. The only
difference is that in surface simulations the symptom data must be supplied by a human
expert.

During a simulation, when the student changes a switch, all the modes that refer to that
switch check to see whether their truth has changed. Certain modes may become true as
a result of the switch manipulation. For each mode that changes, all of the indicators
that refer to that mode are updated. If an indicator's state changes, then the graphic
object that represents that indicator is redisplayed in the new state.

The WSC-3 Simulation

The largest surface simulation constructed thus far with IMTS is the AN/WSC-3
Simulation. The AN/WSC-3 is a satellite communication system used for voice and data
communication. The WSC simulation, comprised of twenty-eight scenes, demonstrates
the surface simulation capabilities of IMTS. The figure below shows the top-level scene
of the system. ‘

17

= = [FX] {"
= ®
O O = et
MEET Ol Q
o [o
- ———
0 —
O Rempte Mmit Switoh
Arterma Poupr Unit
33 —
* &
® Top View 0]
@ Rear View
@ Bottom View

0
] d] 270 S 90
180
-

A WSC-3 Simulation Scene

Most of the graphic objects in the top-level scene are icons that lead 0 more detailed
views. When the student clicks on the Front Panel unit, for example, IMTS displays a
close-up view, showing the current switch settings.

While videodisc is not a convenient medium with which to represent panels of
equipments in each of the possible modes, it is quite attractive as a means to display test
equipment readings. When the student performs an oscilloscope reading on the WSC-3,
he or she sees the waveform as a photographic image retrieved from the videodisc.

Creating Profile Data for Surface Simulations

After defining the normal behavior of a surface simulation using the test editor, the
author prescribes how the device behaves in various malfunction states. The surface
matrix editor is used to describe the behavior of the simulated device under a given
complaint. A complaint is a statement of abnormal behavior that applies to a number of
related failures. The matrix below specifies the behavior of the WSC-3 system for the
malfunctions that prevent normal transmission.

Comptaint Matrix Ettiting
Add Falure Add Test Delete Faiure Delete Test Eait Complaint
Edit Explanation Initial Tests Chanqe Fonts Done

Camplaint !

WILL NOT TRANSHLT
NIL
Distinguishing Tests
Tosts
coL.on [BF-Meter |BE Meter> | gyre.10 | BiTES | BITE4 | BiTES | iTES | BnE | BTEN
™
1A1A1
on L 2]] N0 — ———— —— —— ~NO
.E F.q
S 1A1A8
2 ow ~O o O ~o ———— —— NO — G
8 (R
8
S 1A1A8
on ~o ~o o PR No — —— —— ~o
g r
';‘" 1A1AS
E F.1
1A1A10
on "0 L 2 o — —— O ~O —— NQ
F.1
1A242
on L 1] 0 ~O NO N-O
F.1
Normal on ~ o 100 L%] ~ae N8B ~a ~e ~40 ~8 1

In surface simulations this table of data supports the simulation as well as supplying
Profile with the necessary symptom information.

Authoring Instruction by Direct Manipulation

Until recently the instructional applications of IMTS have been limited to intelligent
support of practice in fault diagnosis. Because IMTS generates all instructive
interactions, it cannot offer explicit instruction in such topics as theory of operation,
front panel configurations, symptom identification, or test interpretation (although
[MTS practice involves these skill components).

RAPIDS (Rapid Prototype ITS Development System) was deve.)ped to provide
additional features for authoring and delivering instructional interactions, based on
IMTS simulations. Using the RAPIDS tools, authors can create instructional units on
almost any device-related topic, largely by performing the procedures that they want
their students to learn on the simulation. RAPIDS is extensively described in Towne &
Munro (1989) and in Munro & Towne (1989).

After creating an IMTS simulation, authors can build domain-specific content units,
using a content unit editor. These content units are organized into an instructional plan
using an instructional organization editor. Authoring is direct and largely error-free
because it is built on the foundation of an IMTS simulation.

Simulation

Content
Unit Editor

RAPIDS Course

An Interactive Training Course
Based on an IMTS Simulaticn

Instructional Content Authoring

RAPIDS instruction is created by operating a live IMTS simulation, and by adding text
and graphics to highlight and explain the procedures and effects being demonstrated.
The figure below shows the RAPIDS content editor being used to create instruction for
an aircraft engine starting system (adapted from Kieras, 1988).

Meau Replace

Find Obtject Indicator

‘Test Equipment

New Edit Copy Delete

Introguction to Parts
Oiverter Yalve I[ntsractions
Left Engine Start on Ground
Right Engine 3tart on Ground

Authoring Content Units

A content unit is authored by performing operations on the simulation and by creating
instructive expositions, before and/or after each action, that explain and elaborate on
what the expert is doing and how the device is responding. The action might change the
state of the simulated device, such as setting a Switch or replacing a (simulated)
aefective part. It might reveal something about the state of the simulated device, such as
making a test reading using simulated test equipment. Or, it might be a simple
identification of some object or area in the simulation graphics, or a response on a
multiple-choice list.

The expositions can highlight portions of the simulation display, they can play videodisc
frames, they can display text, and they can control waiting for various events or time
durations. The text in expositions may be presented in a standard text window at the side
of the simulation graphics or it may be positioned on the graphic simulation to relate
closely to particular parts of the device representation. The author has the option of
setting the simulated device into a particular mode of operation prior to the unit.

Typically, the unit is first played for the student in an instruct mode. Each of the
author's actions are automatically performed along with the accompanying text and/or
videodisc expositions. In this mode the student simply studies the simulated actions, the
device responses, and the accompanying explanations, and paces the presentation
according to his or her own learning speed. Then the unit can be presented in drill
mode. As in instruct mode, the learner sees the instructive expositions, but now
attempts to perform all the actions and selections. All errors are automatically
corrected by RAPIDS.

Depending upon the course plan, the same unit presented in instruct and drill mode may
also be presented in test mode. In this mode the learner does not see the instructive
expositions, and attempts to perform the procedures and drills unaided. Throughout the
presentations, RAPIDS automatically monitors and remediates the learner, and 1t
maintains performance scores for each learner on each unit.

Student Actions

The specification of a student action may be any of the following:
« selecting or identifying one or more objects or areas on the simulation
« manipulating one or more switches into specified states
 replacing a simulated object
 performing a specified test using simulated test equipment
+ making one or more selections from a menu of text items

The last of these options provides a mechanism for specifying multiple choice questions
and answers. A simple user interface provides a straightforward implementation that
does not require any special authoring techniques.

Expositions

An exposition may consists of a combination of the following exposition elements types:
 presenting text in the message window or a floating window
« clearing the message window
 playing a videodisc segment
« highlighting an object or region in the simulation window
« unhighlighting an object or region in the simulation window
 changing the scene displayed
+ waiting for a student response
« waiting for a specified amount of time

Automatic Interactions with Students
The built-in functions in RAPIDS automatically generate many standard student

interactions. These include providing informative feedback on errors, giving help on
request, evaluating performance, and repeating content units as required.

In the figure below, a learner was unable to locate the Air Diverter Valve. RAPIDS
attempted to resolve the confusion by informing the learner what he had mistakenly
taken for the Air Diverter Valve. After two errors, RAPIDS showed the learner the
correct answer.

right. Note the names of the elements, and Lett |, Thr b :
trytomdantandunﬂowotmw' Throtiie y T (!
through the system.] |
Find the cross-start relay - ol !
Try again, e Tover) ||
You selected the Alr Diverter Valve, which I
was incorrect. |
1 £y L L
You selected the Right Actustor Motor, L
which was incorrect.
The correct object will now be highightad. i
Click anywhers to continue. ——]
Extarnal
Power
x| ¢
Q _ e O
o - T bor :
24 Vo Engine
e e .
G'On\ ol a 100 Reotrrter 0@100
I !
Loft Rigt i
e, [Mo e |

Instructional Organization

RAPIDS provides an interactive tool for creating and editing instructional plans for
courses. The instructional plan specifies what content units will be presented, in what
mode (instruct, drill, test) they will be presented, and under what conditions they will
be presented to individual stuccnts. The plan also specifies how much time can be
devoted to the various units, how many times a unit may be repeated, and what speed
and accuracy scores are required to complete a unit.

The window below shows a plan for a simple course about an engine starter system.
Plans are organized as tree structures of blocks. The terminal blocks, shown in dashed
lines, are content units that are individually produced using the content unit editor
described above. The blocks shown in solid lines are called organizational units. These

are simply groups of other units. The course editor is used to add, delete, and move
units, and to specify the manner in which the units will be delivered to the learner.

——

Save to f1ie: EMGAINES IARIEN
Bxit Saving. . .done

Save

AddUnit
DejeteUnit

AdoveToParent
MoveToTop
MoveToNode

iUaft Engine Start on Sround

Elomentar Right Engine Start on Ground

Operat jons introduct 10 Right t ngane 3tack on sround
Advancej—===<Start vhen both engines die n air:

“Left Engine 3tart Ori1ll:

d art Or1ll:
Qperatyon Ora1ll EOSS, 00t By IR-To b S

Orranizational Unit
Name: operation 0r111

‘

SetDepth

Comment:

Qrder of presentation: Randos ENTTIAEE

Content:

Unit Weight Moade Candition Maximum Minimum Limit Accuracy Speed
Elessntary Ori 3 /A Def ined 2 1 ¢ n/a n/A
| Advance Or411 7 n/a st daf tned 4 1 18 N/A /A

The instructional plan shown above organizes the course into three major topics.
Students will first learn about the device organization, then be introduced to operations,
and finally be drilled on operations. These three topics are each structured as
organizational units. The unit covering Device Organization consists of two content
units, each of which includes some subject matter to be delivered, whereas the other two
major topics consist of further sub-topics, or organizational units.

The window below the tree window displays data about the currently selected unit. The
data can be edited in this window. In this example, the organizational unit called
‘Operation Drill' has been selected. The parameters shown with each sub-topic specify
the manner in which the unit will be instructed.

Structure of Instructional Plan Units
An organizational unit lists other units to be presented. The member units may be

content units or other organizational units. Associated with each unit in a course plan
are these data fields:

» weight: the importance of the called unit (relative to the others in the
list)

+ mode: whether to execute a called content unit in Instruct, Drill, or
Test mode

« condition: an optional expression that controls whether to present the
unit to a learner

* maximum: the maximum number of times to present the unit
* minimum: the minimum number of times to present the unit

* limit: the time limit for the unit, in minutes

* accuracy: the accuracy score (%) required to complete the content unit
successfully

* speed: the speed score required to complete the content unit

successfully, in minutes

RAPIDS automatically computes a composite accuracy score at all levels of the
instructional plan. The weight parameter listed above is used to compute this figure.
RAPIDS alsc inaintaine specd scorcs fer all units, reflecting the time spent by each
learner at each level.

The condition parameter is an option that specifies the conditions under which a unit
will be presented. The condition can be any expression in terms of the performance of
the learner on any unit, the time spent in variQus units of instruction, and the number of
repetitions of units by the learner.

Thus a single instructional plan can deliver quite different courses to different learners
depending upon the performance of each. The course content, time devoted to topics,
repetitions of topics, and degree and type of remediation are all tailored by RAPIDS to
meet the high-level specifications of the course plan while recognizing the details of
individual student performance.

Summary

The tools in IMTS and RAPIDS provide twelve different modules for constructing
simulation based instruction of one type or another, and three interactive instructional
delivery programs. The author uses the menu shown below to select and execute the
module to be used. The first column contains the two key editors for building graphical
simulations, the Generic (object) Editor, and the Scene Editor. The former of these is
run to add new objects to the Object Library. After creating one or more scenes with
the Scene Editor, the author selects Build Simulation, which compiles the newly
constructed simulation scenes for execution. The simulation may then be started by
selecting Run Simulation from the menu.

RAPIDS Tools }

Simulation Surface Model Diagnaostic Training RAPIDS
Generic Editor Object Editor Deep Matrix Editor Plan Editor
Scene Editor Maode Editor Problem Editor Content Editor
Build Simulation Test Editor Run IMTS Run RAPIDS
Run Simulation Matrix Editor
Video Editor

Alternatively, surface simulations are constructed using the five editors listed in the
second column. These editors accept information about surface objects, equipment
modes, tests, fault effect data, and videodisc frame numbers.

Two editors are used to produce the fault effect data needed to support diagnostic
training for a simulation, as listed in the third column. The Deep Matrix Editor accepts
specifications of modes and failures and then executes the batch program that generates
the fault effect data required by Profile. The Problem Editor accepts problem
specifications (failed objects and failure modes) and associated verbal statements
(complaints) that are presented at the start of each troubleshooting problem. After
doing these two steps a simulation can be run in the IMTS intelligent training mode by
selecting Run IMTS.

After creating a simulation, RAPIDS courses are built using the two editors listed in the
fourth column. The author uses the Plan Editor to construct and modify the
instructional plan, and the Content Editor to perform and explain tasks on the
simulation. Typically, an author would construct a simulation using the editors in either
the first or second column (deep or surface), then use the RAPIDS tools to create a
complete course. The diagnostic training functions would be utilized only if IMTS
(Profile-guided) diagnostic problems are also to be presented.

Conclusions

IMTS was developed to bring together and apply a number of diverse and experimental
techniques in intelligent tutoring. The two most fundamental concepts that influenced
the design were 1) the use of a responsive, object-oriented graphical model that could
be manipulated by a learner, as pioneered in the STEAMER project, and 2) the
generation of tailored instructive interactions from generic models of diagnostic and
instructional expertise.

In addition to the two major applications developed under contract, several dozen small
applications have been created by others in two workshops conducted at BTL. The
participants in these workshops were provided three days of training in producing
IMTS simulations, and then devoted one to two days developing small applications.

These test applications revealed numerous areas where either the authoring facilities or
the user documentation could be improved or corrected. All errors were corrected, and
wherever possible, features that simplified the authoring task were implemented.
Screen images from many of these projects are included in the appendix to this report.

The workshop participants included technical subject matter experts and instructional
researchers, having computer programming skills ranging from none to proficient.
Their performance indicated that developers with a relatively wide range of skills could
become productive IMTS users fairly quickly, and that they could apply the system
effectively. Finally, the range of simulations that were produced provided a good
indication of the generality of the techniques.

Latest Developments

The most recent work on IMTS, as described in this report, was conducted 1) to expand
the applicability of the technique to a considerably wider range of devices; 2) to provide
tools needed by a much broader community of instructional developers; and 3) to
produce instruction for a much broader range of proficiency levels.

Extended Device Applicability

The incorporation of the surface-level simulation technique into IMTS provides
developers a way to utilize the resources of IMTS even when the device to be instructed
cannot be reasonably represented at the object level. While the basic surface level
simulation approach employed in IMTS .is very similar to that used in earlier systems
(GMTS, EEMT, and ESAS), the ease of development is vastly improved in IMTS,
owing to the ability to specify and depict objects individually rather than collectively.
Thus the development of economical high-resolution computer graphics has had
profound impact on the internal representations of devices as well as their external
manifestations.

The simulation of the WSC-3 Satellite Communications System was produced in a very
short time, owing primarily to the previous experience of the two subject matter
experts involved. One of these had extensive experience operating and maintaining the
WSC-3 system; the other had previously produced a GMTS data base for it. While this
application therefore does not provide a representative test of development effort, it
does indicate the speed with which a surface simulation is produced, given that the
subject matter knowledge is extensive.

Extended Range of Instructional Resources and Strategies

The demonstrated instructive potential of IMTS attracted numerous potential
developers who wished to utilize the tools, but who wanted to apply different or more
varied instructional strategies and scenarios than those built in to IMTS. The interactive
authoring facilities developed in RAPIDS allows diagnostic training to go beyond the

four scenarios of initial IMTS (practice problems, expert demonstration, problem
debriefing, and free exploration).

Using RAPIDS, one can develop drills for familiarizing students with terminology and
topology, exercises in associating symptoms with possible causes, and instructional
units presenting theory of operation and troubleshooting. Beyond diagnosis, RAPIDS
can be used to develop courses in device operation, preventative maintenance, or safety
procedures. Moreover, the course developer can control allocation of time and the
criteria for meeting instructional objectives.

Extended Range of Learners

The original IMTS is an effective tool for sharpening the diagnostic skills of
intermediate to expert troubleshooters on a particular device. Having absorbed much of
the theory of operation via conventional lectures, such technical students can gain much
from working practice problems with IMTS support. The entering student, however,
could not realistically attempt even the easier problems in a device as complex as
Bladefold because the IMTS representation of the device was necessarily complete.
While a developer might be able to produce simpler models for the novice student,
doing so would necessarily entail producing many new and artificial objects, whose
behaviors are also simplified, just for the purpose of supporting simpler
representations.

The derived simulation capabilities described in this report allow developers to produce
a series of successively more complex and complete representations of a device. Thus
simple models of complex systems function as they should even though critical parts are
absent from the simplified representation. Now IMTS can be applied in a manner that is
consistent with the instructional philosophy of White and Frederiksen (1987), a
philosophy of successive model elaboration to which we heartily subscribe.

The derived simulation features also allow development of device representations that
are physically realistic, thereby providing an appropriate interface with which to
practice device operation and other procedures, as well as use of front panels for
diagnostic functions.

Maintaining Cognitive Fidelity

While our goals have included allowing the learner to experience simpler worlds
before more complex ones, we have also attempted to maintain those cognitive aspects
of fault diagnosis that lie at the heart of this difficult process, whatever the difficulty of
the problem being presented. Consequently IMTS provides the learner with practice in
performing tests as well as selecting them, in interpreting tests as well as observing
them, and in making inferences about possible causes that require understanding
component behavior as well as cystem structure. With the addition of the RAPIDS
authoring features, part-task drills can be developed that instruct separable cognitive
skills in equipment operation as well as diagnosis.

References

Hollan, J. D. 1983. STEAMER: An Overview with Implications for AI Applications in
Other Domains. Presented at the Joint Services Workshop on Artificial
Intelligence in Maintenance, Institute of Cognitive Science, Boulder, CO: October
4-6, 1983.

Hollan, J. D., Hutchins, E. L., and Weitzman, L. 1984. STEAMER: An Interactive
Inspectable Simulation-based Training System, The Al Magazine, 1984, 2.

Kieras, D.E. What mental model should be taught: Choosing instructional content for
complex engineered systems. In J. Psotka, L.D. Massey & S. Mutter (Eds.)
Intelligent Tutoring Systems: Lessons Learned. 1988, Hillsdale, NJ: Lawrence
Eribaum Associates.

Munro, A. and Towne, D. M. RAPIDS User Manual. Los Angeles: Behavioral
Technology Laboratories, University of Southern California, August 1989.

Norman, D. A. and Draper S. W. (Eds.) User-centered system design: New
perspectives on human-computer interaction.. Hillsdale, NJ: Lawrence Erlbaum
Associates, 1986.

Towne, D. M. A generalized model of fault-isolation performance. Proceedings,
Artificial Inteliigence in Maintenance: Joint Services Workshop, 1984.

Towne, D. M. A generic expert diagnostician. In The Proceedings of the Air Force
Workshop on Artificial Intelligence Applications for [ntegrated Diagnostics, 1986.

Towne, D. M. The generalized maintenance trainer: Evolution and revolution. In W.

B. Rouse (Ed.), Advances in man-machine systems research, Vol 3, JAl Press,
1986.

Towne, D. M. and Munro, A. Generalized maintenance trainer simulator:
Development of hardware and sofrware. (Technical Report No. 81-9) San Diego:
Navy Personnel Research and Development Center, 1981.

Towne, D. M. and Munro, A. Preliminary design of the advanced ESAS system.
(Technical Report No. 105) Los Angeles: Behavioral Technology Laboratores.
University of Southern California, December 1984.

Towne, D. M. and Munro, A. RAPIDS. a simulation-based instructional authoring
system for technical training (Technical Report No. 112). Los Angeles: Behavioral
Technology Laboratories, University of Southern California, September 1989.

Towne, D. M., Munro, A., Johnson, M. C., and Lahey, G. F. Generalized maintenance
trainer simulator: test and evaluation in the laboratory environment. (NPRDC TR
83-28) San Diego: Navy Personnel Research and Development Center, August
1983. :

White, B.Y., and Frederiksen, J.R. Qualitative models and intelligent learning
environments. In R. Lawler & M. Yazdani (Eds.), Al and education. Norwood,
NIJ: Ablex, 1987.

Williams, M. D., Hollan, J. D., and Stevens, A. L. An overview of STEAMER: an
advanced computer-assisted instruction system for propulsion engineering.
Behavior Research Methods and Instrumentation, 1981, 13, 85-90.

Appendix: Simulations Developed Using IMTS

Two quite large simulations have been developed in IMTS, as described in the text of the report.
In addition, a number of simpler simulations have been developed by attendees at IMTS training
seminars. Many of these simulations were developed in one or two days, following one or two
days of lectures and demonstrations.

Simulation Window i

BLADEFOLD HYDRAULIC SYSTEM BLADES 1 & 2 (3)
f-10P,11P, 12P)

Hydraulic
Nanifaold

Blade Locked
Sequence Yalves

B-7B2

I’SSSSQ
Lover
Lock N
t 5} §:£5
Dasper
Positioner r_w
1500 L
LI
Drain
L-2F
H_GFl G"SG
K-2A 2 Flow 3@? e
. | F-26 Control Yajlve ! \7/ 7Za
S (bacclpres:u el 0
-— -I—LH g
o
No. 2 Fold 0
e . Fold b)
Hydr Check Yailve Cylinder Jﬂ

Safety

¢ Valve

lent

J-20 I—]% Blade Spread

~5 $-46 1-4a Sequence Valve

N
N\

File being simylated: BLADEFOLD Behavioral Technology Laborateries

Simulation: SH-3H Helicopter blade folding system
Number of Scenes: 13
Authors: Quentin Pizzini and David Surmon (University of Southern California) with Bill Johnson (Search Technc'cgy)

Appendix — Simulations Developed Using IMTS

Simulation Window

MAIN POWER
ON
o MAIN BLADE FCLD L~ _
CJ | oFF | gLaDES FLIGHT O\ |, J/
SPREAD POS \7
O O FOLD PWR
BLADES é
NO. 1 CONT LOCck FoLb

BLADE POS PINS ADV @
O O SPREAD

BLADES PYLON S e

FOLDED O

: UNLOCKED OPEN

-] L~ #5 #4

File being simulated: BLADEFOLD Behavioral Technology Laboratories

Simulatlon: SH-3H Helicopter blade folding system — 14th scene
Number of Scenes: 1
Authors: Vern Malec and Mike Cowan (Navy Personnel Research and Deveicpment Center).

{This fourteenth scene was added to the original thirteen to provide an improved ‘front panel’ interface. The
scene was produced by yoking its objects to objects in the original deep simulation.)

Appendix — Simulations Developed Using IMTS

Simuiation Window |

AZIMUTH
POWER ELEVATION ANTENNA SELECT N
IN USE
O wn O
oN NO. 1t NG. 2
AN QVRO OVRD
f RF BLK RF LK
MOOE
OFF e READY___
S % S F
H“ N(\
@ MANUAL AUTO
2A ERROR

ANT
BLOCKED

~

N’

C04X PRESSURE

O

PHONE

Simulation: WSC-3 Satellite communication system
Number of Scenes: 25

Author: Lee Coller (University of Southern California); data provided by Ron Renfro (Mantech Mathetics).

Appendix — Simulations Developed Using IMTS

Display Window

F
"v]
- 1/2—
*] :
EXHAUST S
]
E j

2 STROKE DIESEL ENGINE ANIMATION

Scene: Engine File being edited: (FLOPPYIENGINE.;2 Date Written: 7-Dec-88 16:27:60% Sehavioral Technoloay Laboratories

Simulation: Internal combustion engine
Number of Scenes: 1
Authors: Russ Hunt and William Johnsan (Search Technology)

Display Window

Appendix — Simulations Developed Using IMTS

(s
- =
[1]
——]
(—

Scene: HOIST File being edited: (FLOPPY}HOIST.;1 Date Written: 13-Jan-89 16:43:56

-~
Behavioral Tachnoloay Labaratores

Simulation: Munition Hoist
Number of Scenes: 1
Author: William Murray (FMC)

Simulation Window

Appendix — Simulations Developed Using IMTS

1""] N |sa ~%11 lss o4 29 24 e
68— 12 |56 12 27 23
L. Y | a1a3a4 A1A3AL A2A3A1 10__. 20
h‘ ™ A28 K3 K2
(I 36[{33 26 33|
& | 0130
T |[==]
~ s
56 58 57 38 g _,’
— ~
4 el
azaza7 2 /|\[
53 —
5 Btcoo \'I‘\/...“'
4]
e IR
TEST STATION f TENs 42—l
2)
852 _{’_
:: A2A3A10 =
48| Manual 853
g:?:ct —2aO4 1. Manual
4 SO =0 A 27 ; I o stord 7
! A
28 - . Select age | B
3 ° _‘_’ﬂ"—“" s o) Q_J) 15
8CD N Reg.
2 o o to |25—=CFslir
s .2'541.-{“. T ° A24348
1 o ° 1 2 0! w0
21 2
e © ° 2 1 ol o o T
-i— 8 o o o =

File being simulated: SHERLOCK

Behavioral Technology Laboratories

Simulation: F-15 Manual Avionics Test Station

Number of Scenes:

1

Author: Marilyn Bunzo (Learning Research and Development Center, University of Pittsburgh)

Appendix — Simulations Devcloped Using IMTS

Display Window

Scene: MiS File being edited: (FLOPPYIMIS. ;1 Date Written: 13~Jan-83 15:44:46

Behavtoral Tachnolngu Labar3tories

Simulation: M16 Trigger Assembly
Number of Scenes: 1
Author: Randy Morlen (Air Force Human Resources Laboratory)

Appendix — Simulations Developed Using IMTS

1) Access, Drive Controil Circ,

JEDI - Jet Enzine Diagnostic
LD - RBPM Qil Temp
Fezet |7 R B T
’f we il l a 4 o - 8 , HOT
— o e @ ;e 106 "
" RFM percent "‘ |I‘ \
__Je= lsa o w—! | \ NORMAL
1] i [}
.) Y /
Qil Breathier 4 \ o 1 [.
Tarik V ale n ~ 28 .~ coLp
Gearbox ||) |] = L
I
Qil Ergine
Fump T Start
Tl Pressures on
I Trarsmittzr OFF '
Filter |— Zold Start
Valve Throitle
— I ;::: WAX -
L -
| | 10LE —i |
Oil Air l [OFF b=
_ocler —
(o
L= Far Dunt

Simulation: Jet engine oil cooling system

Number of Scenes: 1

Author: Quentin Pizzini, David Surmon, Douglas M. Towne, and Allen Munro.
Adapted from:

Keskey, L. C. & Sykes, D. J. Expert systems in aircraft maintenance training. In Proceedings of the IEEE Weste;
Conference, Anaheim, CA: 1987.

Display Window

Appendix — Simulations Developed Using IMTS

-3k 23K TEXAS INSTRUMENTS
-6K +BK INCORPORATED
-9K 3K o
Pl 12K 412k 2
e |
N 3 Y N Y N
4 ENG, @ Xg < ENG. @] r ENG. Eg]
1 A T
g E
Tal ¢ o I 4=
ﬁb‘ é.‘l f&‘l én
N “ \ : H N U A Loi “ RON
LON N@@N RON LON (D@ RON LON N(D@N RON N@H
N) e s
Ml M
e e F F J P p— /4
—374 3/4 L .34 ._f
§—o— —— [
—1/2 —1172 ISOL §——e—q1/2 ‘
. * 1/4
o 174 — 1/4 — 174 \:
o * el E
—.T.— E —t E * 7 s E . P ’
2
Scene: TEST-FUEL-SVS-SCENE File being edited: (FLOPPV)ITEST-FUEL-SYS~SCENE.;2 Date Written: 18-Mar-88 1306 e |\ baratanes

Simulation: Fuel System
Number of Scenes: 1
Authors: Mike Gick (Texas Instruments)

Appendix — Simulations Developed Using IMTS

Simulation Window

AILTRIM
19

10
=—" /S"x = |7 ./\E.Zi/\

File being simulated: CCSAILTRIM Behavioral Technology Laboratories

Simulation: CS5 Aileron Trim System
Number of Scenes: 2
Authors: Bob Elm and Tom Holzman (Lcckheed Georgia)

Appendix — Simulations Developed Using IMTS

Display Window

wIIH SYs 1 oFF}M
—| SYS 2 OFF sli-

\ 3

;/ 7 T2 7202

Scene: SPOILER1 File being edited: {FLOPPY)<LOCKHEED>SPOILERL. ;2 Date Written: 17-Jan~-89 17:17:44 Behavioral Technoloay Labaratarias

Simulation: Spoiler
Number of Scenes: 1
Authors: Tom Holzman and Bob Elm (Lockheed Georgia)

1988/07/18

Behavioral Technology Laboratory/Towne

Dr. Robert Ahlers
Code N711
Human Factors Laboratory

Naval! Training Systems Center
Oriando, FL 32813

Dr. Robert M. Aiken

Computer Science Department
038-24

Temple University

Philadelphia, PA (39122

Dr. Patricia Baggett

School of Education

610 E. University, Rm 1302D
University of Michigan

Ann Arbor, MI 481089-1258

Dr. James D. Baker

Director of Automation and Research
Allen Corporation of America

209 Madison Street

Alexandria, VA 22314

Or. Maryl S. Baker
Navy Personnel R&D Center
San Diego, CA 92152-6800

Dr. Arthur S. Blaiwes

Code N712

Naval Training Systems Center
Ortando, FL 32813-7100

Dr. Jaff Bonar

Learning R&D Center
University of Pittsburgh
Pittsburgh, PA 15260

LT COL Hugh Burns
AFHRL/IDI
Brooks AFB, TX 78235

Dr. Joannae Capper, Director
Center for Research into Practice
1718 Connecticut Ave., N.W.
Washington, DC 20009

Dr. Ruth W. Chabay

CDEC, Hamburg Hall
Carnegie Mellon University
Pittsburgh, PA 15213

Dr. Fred Chang
Pacific Bell

2600 Camino Ramon
Room 38-450

San Ramon, CA 94583

Or. Staniey Colliyer

Office of Naval Technology
Code 222 '
800 N. Quincy Street
Ariington, VA 22217-5000

Dr. Jere Confrey
Cornell University
Dept. of Education
Room 490 Roberts
[thaca, NY 14853

Dr. Lynn A. Cooper
Department of Psychology
University of Arizona
Tucson, AZ 85747

Dr. Kenneth B. Cross
Anacapa Sciences, Inc.
P.0. Drawer Q

Santa Barbara, CA 83102

Dr. Cary Czichon

Intelligent Instructional Systems
Texas Instruments Al Lab

P.0. Box 660246

Daltas, TX 75266

Brian Dalliman

Training Technology Branch
3400 TCHTW/TTGXC

Lowry AFB, CO 80230-5000

Margaret Day, Librarian
Applied Science Associates
P.8. Box 1072

Butler, PA 16003

Dr. Sharon Derry

Florida State University
Department of Psychology
Tallahassee, FL 32306

1989/07/19

Behavioral Technology Laboratory/Towne

Defense Technical
Information Center
Cameron Station, Bldg S
Alexandria, VA 22314

Attn: TC
(12 Copies)

Dr. Thomas M. Duffy

Communications Design
Center, 160 BH

Carnegie—Meilon University

Schenley Park

Pittsburgh, PA 15213

Dr. Pierre Duguet

Organization for Economic
Cooperation and Development

2, rue Andre-Pascal

75016 PARIS

FRANCE

ERIC Facility-Acquisitions
4350 East-West Hwy., Suite 1100
Bethesda, MD 20814-447S

Dr. Debra Evans

Applied Science Agssociates, [nc.
P. 0. Box 1072

But!er, PA 16003

Dr. Beatrice J. Farr
Army Research Institute
PERI-IC

S001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Elizabeth Fennema
Curriculum and Instruction
University of Wisconsin
225 North Mills Street
Madison, WI S3706

Prof. Donaid Fitzgerald
University of New England
Department of Psychology
Armidale, New South Wales 2351
AUSTRALIA

Or. Michael Flaningam
Code S2

NPROC

San Diego, CA 32152-6800

Dr. J. D. Fletcher

Institute for Defense Analyses
1801 N. Beauregard St.
Alexandria, VA 22311

Dr. Barbara A. Fox
University of Colorado
Department of Linguistics
Boulder, CO 80303

Department of Humanities and
Social Sciences

Harvey Mudd College

Ciaremont, CA 81711

Dr. Alinda Friedman
Department of Psychology
University of Alberta
Edmonton, Alberta
CANADA T6G 2ES

Dr. Philip Gillis

Army Research Institute
PERI-11

5001 Eisenhower Avenue
Alexandria, VA 22333-5600

Mr. Lee Gladwin
305 Davis Avenue
Leesburg, VA 22075

Mr. Harold Goldstein
University of DC

Oepartment Civil Engineering
Bidg. 42, Room 112

4200 Connecticut Avenue, N.W.
Washington, DC 20008

Dr. Sherrie Gott
AFHRL /MOMJ
Brooks AFB, TX 78235-5601

Dr. T. Govindaray
Georgia Institute of
Technology
School of Industrial
and Systems Engineering
Atlanta, GA 30332-0205

1983/07/19

Behavioral Technology Laboratory/Towne

\

Dr. Dik Gregory

Admiralty Research
Establishment/AXB

Queens Road

Teddington

Middlesex, ENGLAND TWI11OLN

Michae! Habon

DORNIER GMBH

P.0. Box 1420

D-7980 Friedrichshafen 1
WEST GERMANY

Br. Henry M. Halff
Halff Resources, Inc.
43918 33rd Road, North
Artington, VA 22207

Mr. H. Hamburger

Department of Computer Science
George Mason University
Fairfax, VA 22030

Or. Chery!l Hame!
NTSC, Code 711
Orlande, FL 32813

Janice Hart
Office of the Chief

of Naval Operations
oP-11142
Department of the Navy
Washington, D.C. 20350-2000

Dr. Wayne Harvey

Center for Learning Technalogy
Education Developmant Center
55 Chape! Street

Newton, MA 02160

Dr. James E. Hoffman
Department of Psychoiogy
University of Delaware
Newark, DE 19711

Ms. Juiia S. Hough
110 W. Harvey Street
Philadelphia, PA 19144

Dr. Steven Hunka
3-104 Educ. N.
University of Alberta
Edmonton, Alberta
CANADA T6G 2G5

Mr. Roland Jones
Mitre Corp., K-203
Burlington Road
Bedford, MA 01730

Dr. Marcel Just
Carnegie-Melion University
Department of Psychology
Schenley Park

Pittsburgh, PA 15213

Dr. Michael Kaplan

Office of Basic Research
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333-5600

Dr. David Kieras

Technical Communication Program
TIDAL Bidg., 2360 Bonisteel Bivd.
University of Michigan

Ann Arbor, MI 48109-2108

Or. Lois-Ann Kuntz
3010 S.W. 23rd Terrace
Apt. No. 105
Gainesville, FL 32608

Or. Doris K. Lidtke

Sof tware Productivity Consortium
{880 Campus Commons Drive, North
Reston, VA 220891

Dr. Robert Lioyd

Dept. of Geography
University of South Carolina
Columb.a, SC 29208

Dr. Jack Lochhead
University of
Massachusetts
Physics Department
Amherst, MA 01003

Vern M. Malec
NPRDC, Code 52
San Diego, CA 92152-5800

1988/07/19

Behavioral Technology Laboratory/Towne

Dr. James McMichael
Technical Director
Navy Personnel R&D Canter
San Dieqgo, CA 92152-6800

Dr. Arthur Meimed

Computer Arts and
Education Laboratory

New York University

719 Broadway, 12th floor

New York, NY {0003

Dr. Vittorio Midore
CNR-Istituto Tecnologie Didattiche
Via All'Qpera Pia 11
GENGVA-ITALIA 16145

Or. Jason Millman
Department of Education
Roberts Hall

Cornail! University
[thaca, NY 14853

Dr. Lynn Misselt
HQM-222

Control Data Corporation
Box O

Minneapolis, MN 554490

Dr. Andrew R. Molnar

Applic. of Advanced Technolagy
Science and Engr. Education
National Science Foundation
Washington, DC 20550

Dr. William Montague
NPRDC Code 13
San Diego, CA 92152-6800

Dr. William R. Murray
FMC Corporation

Central Engineering Labs
1205 Coleman Avenue

Box 580

Santa Clara, CA 95052

Dr. Harold F. O'Neil, Jr.

Schoo!l of Education - WPH 801

Department of Educational
Psychology & Technology

University of Southern California

Los Angeles, CA 3900839-0031

Office of Naval Research,
Code 1142CS

800 N. Quincy Street

Ariington, VA 22217-5000

(6 Copies)

Dr. Judith Orasanu
Basic Research Office
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Naney N. Perry

Naval Education and Training
Program Support Activity
Code-047

Building 2435

Pansacota, FL 32509-5000

Dept. of Administrative Sciences
Code S4

Naval Postgraduate Schoal

Monterey, CA 93943-5026

Dr. Joseph Psotka

ATTN: PERI-IC

Army Research Institute
5001 Eisenhower Ave.
Alexandria, VA 22333-5600

Dr. J. Weslay Regian
AFHRL/1DI
Brooks AFB, TX 78235

Dr. Charies M. Reigeluth
330 Huntington Hall
Syracuse University
Syracuse, NY 13244

Dr. Daniel Reisberg

Reed College

Department of Psychology
Portiand, OR 97202

Mr. William A. Rizzo
Code 71

Naval Training Systems Center
Orlando, FL 32813

1989/07/19

Behavioral Technology Laboratory/Towne

Dr. Linda G. Roberts
Science, Education, and
Transportation Program

Office of Technology Assessment

Congress of the United States
Washington, DC 20510

Dr. Janet W. Schofieid
816 LRDC Building
University of Pittsburgh
3939 0'Hara Street
Pittsburgh, PA 15260

Dr. Judith W. Segal
OERI

555 New Jersey Ave., NW
Washington, DC 20208

Dr. Robert J. Seidel
US Army Research Institute
5001 Eisenhower Ave.
Alexandria, VA 22333

Dr. Randall Shumaker

Naval Research Laboratory
Code 5510

4555 Qverlook Avenue, S.W.
Washington, DC 20375-5000

Dr. Derek Sleeman

Computing Sciance Department
The University

Aberdeen AB9 2FX

Scotland

UNITED KINGOOM

Ms. Gail K. Slemon
LOGICON, Inc.

P.0. Box 85158

San Diego, CA S2138-5158

Or. Alfred F. Smode
Code 7A

Research and Development Dept.

Naval Training Systems Center
Orlando, FL 32813-7100

Or. Elfiot Soloway

Yale University

Computer Science Department
P.0. Box 2158

New Haven, CT 06520

Linda B. Sorisio

IBM-Los Angeles Scientific Center
(1801 Wilshire 8fvd., 4th Floor
Los Angeles, CA 30025

Dr. Marian Stearns
SRI International
333 Ravenswood Ave.
Room B-5124

Menlo Park, CA 94025

Or. Saul Sternberg

University of Pennsylvania
Department of Psychology

3815 Walnut Street
Philadelphia, PA 19104-6136

Or. David E. Stone

Computer Teaching Corporation
1713 South Neil Street
Urbana, IL 61820

Dr. Perry W. Thorndyke

FMC Corporation

Caentral Engineering Labs
1205 Coleman Avenue, Box 580
Santa Clara, CA 3895052

Dr. Douglas Towne

Behavioral Technology Labs
University of Southern California
1845 S. Elena Ave.

Redondo Beach, CA 380277

Dr. Zita E. Tyer
Department of Psychology
George Mason University
4400 University Drive
Fairfax, VA 22030

Dr. Frank L. Vicino
Navy Personnel R&D Center
San Diego, CA. 392152-6800

Dr. Jerry Vogt

Navy Personnel R&D Center
Code Si

San Diego, CA 92152-6800

Dr. Thomas A. Warm
Coast Guard Inst)tute
P. 0. Substation 18

Ok lahoma City, OK 73168

1983/07/183

Behavioral Technology Laboratory/Towne

Dr. Beth Warren

BBN Laboratories, Inc.
10 Moulton Street
Cambridge, MA 02238

Dr. Shih—-sung Wen
Department of Psychology
Jackson State University
1400 J. R. Lynch Street
Jackson, MS 329217

Dr. Douglas Wetzel

Code 51

Navy Parsonnel R&D Center
San Diego, CA 92152-8800

Dr. Barbara White
BBN Laboratories

10 Moulton Street
Cambridge, MA 02238

Dr. Marsha R. Williams

Applic. of Advanced Tachnologies
National Science Foundation
SEE/MDRISE

i800 G Street, N.W., Room 635-A
Washington, DC 20550

Dr. Robert A. Wisher

U.S. Army Institute for the
Behavioral and Secial Sciences

5001 Eisenhower Avenue

Alexandria, VA 22333-5600

Dr. Merlin C., Wittrock
Graduate School of Education
UCLA

Los Angeles, CA 80024

Or. Wallace Wuifack, [II
Navy Personnel R&D Tenter
Code 51

San Diego, CA 92152-6800

Dr. Masoud Yazdani

Dept. of Computer Science
University of Exeter
Prince of Wales Road
Exeter EX44PT

ENGLAND

Dr. Joseph L. Young
National Science Fourdation
Room 320

{800 G Street, N.W.
Washington, DC 20550

