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Abstract

"-'Animate vision systems, biological or robotic, employ gaze control systems to ac-
quire, fixate, and stabilize images. Gaze control and other sensorimotor skills are
complicated by two main problems: time delay and the interaction of control subsys-
tern.s. One solution is open-loop control. The other, explored here, is control with
prediction. The goal is to build robust gaze control behavior from cooperating lower-
level "'visual reflexes'. Solutions are explored through simulation incorporating ten
primitive control cababilities, more or less comparable to subsystems in primate gaze
and head control. Versions of several of the subsystems have been implemented on a
binocular robot. Signal synthesis adaptive control with Smith prediction is the basic
paradigm, implemented with kinematic simulation of the agent and optimal filtering
to predict world state. The task of rapid gaze shift illustrates several issues. Predic-
tive methods appear useful for artificial gaze control systems and often produce results
consistent with physiological data, .&, .-, . . -
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1 Gaze Control in Animate Vision

1.1 Gaze Control

One of the goals of artifirial animate vision [4,5] is to design a systems architecture in
which multiple objectives (such -s moving and observing) can proceed in p-trallel. One
common premise is tlia- cugnitiv 1,roces3es at high abstraction levels can rely on a hier-
archv of lower-level "skills", "reflexes", and active vision capabilities that autonomously
keep the robot out of trouble and perform generally useful vision computations [10]. An-
other premise is that if an agent interacts with the world and has active control over and
perception of its own state (proprioception), many problems in perception, planning, and
acting become easier. A gaze control system manages several basic, interacting head, eye,
and even body motion capabilities, with the aim of supporting purposeful (or default)
activity. For example, the ability to acquire an object visually is basic. Acquisition can
be reflexive, in response to a stimulus deemed interesting, or under control of a higher
level engaged in planning or acting. Another basic visual ability is to pursue or track an
object moving relative to the observer: Stabilization of the image on the sensor is neces-
sary for high resolution imaging. and the resulting proprioception (i.e. motor commands
that effected the tracking) provides information about object motion. Another example
is automatic vergence of a binocular eye system, which provides a clue to object range
and is helpful for obtaining stereo correspondence. Many gaze-control issues become even
sharper if the imaging system has both foveal and peripheral vision, as do primates or
robots equipped with wide-angle and telephoto cameras. A gaze control system has two
main technical problems: the interaction of component subcontrols and delay. These prob-
lems are common to much fast sensorimotor skilled behavior in biological and current
robotic systems (locomotion, manipulation, navigation); techniques for solving them can
find wide application.

Gaze control mechanisms have long been studied in biological systems (there are ex-
tensive references in [21,8,33]). Much of the work concentrates on how biological systems
solve the two basic technical problems mentioned above. This paper investigates predictive
mechanisms as a solution for the problems primarily in a robotic context, but occasionally
relates the results to some findings and theories from primate gaze control. This work is in
the spirit of the science of the artificial, not the science of the natural - physiologists and
engineers, for different reasons, may find such comparisons unhelpful. The hope, however,
is that data from successful (biological) systems performing gcze-control tasks can provide
the (artificial) animate vision system designer with ideas and benchmarks, despite clear
and significant differences in underlying implementation.

As robotic technology approaches biological performance [2,4] the potential for sharing
descriptive and computational models between the two fields increases. Of course, some
robotic physical capabilities and tasks allow or require sensorimotor capabilities that have
little in common with biological systems. The gaze control task mainly considered here is
general and simple: rapid gaze shift using head and eye motions.



1.2 Delays and Interactions

It is well known that delays in exerting control or acqu-ring data can severely degrade
or destabilize the performance of feedback control systems, as can unmodelled effects
that change the system, such as another control system acting on the same plant. Gaze
control systems have several controls operating at once, and biological and robotic systems
have delays for the same reasons: computation and transmission. Robotic delays depend
critically on the software and hardware, and ran have vwry unpleasant properties (such
as unpredictable magnitudes) without special engineering attention. Biological delays are
more predictable but are long with respect to the behavior of the system. Human saccadic
and pursuit systems have computation delays of about 120ms and 50 ms respectively, and
both have peripheral (transmission) delays of about 80 ms. Saccades last only 50-100
ms, and the pursuit system brings the eyes up to speed in about 120ms. It is easy
to demonstrate that these delays are incompatible with pure negative-feedback control
schemes.

.There are two main solutions: avoid feedback or model delays and disturbances. The
former method is advocated in [35], and has been implemented in a robotic controller 1151.
The idea is to use positive feedback to cancel negative feedback, thus producing an open
loop system. The main disadvantage is the loss of robustness under disturbances and plant
variations. Parameter-adaptive control can be added to adjust system parameters over a
longer timescale to reduce systematic errors.

The other approach, more common in engineering applications, is to use predictive and
modeling techniques to anticipate the state of the plant, its input, and indeed the world
[24]. Smith 's principle (37,38] is the basic tenet that the desired output from a controlled
system with delay T is the same as that desired from the delay-free system, only delayed by
T. The principle leads to several techniques for controlling delayed systems (see Section
4). Smith's principle may be coupled with signal synthesis adaptive control [3], which
predicts object motion to allow more accurate responses. Kinematic and dynamic models
for plant prediction can be known apriori or derived from leaorning and used to replace
feedback [23].

The solution described here uses Smith prediction to integrate multiple controls with
delays. It uses signal synthesis adaptive control with flexible and general techniques of
kinematic simulation to predict the state of the plant and variance-minimizing optimal
filtering to prc'!kct the state of the world. At least in simulation, the resulting predictions
have three effects. Delays are overcome, interactions are overcome, and performance is
improved. Predictive techniques seem to form a sound basis for the design of integrated,
high performance sensorimotor systems.

2 The Animate System

The control algorithms are based on a general model that has been implemented in sim-
ulation, and both model and simulation are meant to capture the relevant aspects of a
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* * * Figure 1 about here

• Figure 1: The robot head and its supporting arm.

* * * Figure 2 about here * * *

Figure 2: The laborutory computer organization. The 24 node But .erfly will replace the host Sun,
and faster interfaces to the Puma and MarVideo are being installed.

robotic system which, to fix ideas, is described first.

2.1 The Rochester Robot

Research in artificial animate vision has been made possible by recent technical advances
in real-time computer vision and control. The area still includes a wide spectrum of prob-
lems from hardware design through software for parallel systems support and applications,
to the integration of heterogeneous computers, sensors, and effectors into behaving sys-
tems. Many laboratories are developing similar systems to investigate these issues and to
take advantage of the new technologies, and it seems that complex visuo-motor systems
will be the rule in the robotics laboratory of the near future. The usual current setup has
controllable sensors (often bi- or trinocular TV cameras, perhaps sonar) and powerful par-
allel computation, including frame-rate image analysis hardware. Sometimes the sensors
are mounted on a roving cart.

Rochester's binocular robot head is mounted on a six degree of freedom arm (Fig.
1). The two cameras are on a common tilt platform, and have independent pan axes.
The hardware is capable of motions comparable to primate performance (about 1 m/sec
head velocity with less than 1 mm. positioning accuracy, and 300 degrees/sec camera
rotations with .14 degree positioning accuracy). The camera controllers are capable of
supporting full-speed gaze-shifts to random directions at a rate of 5/s. The camera and
robot controllers support several types of motion, but the frequency responses of system
components under various forms of control have not been measured. The aperture, focal
length, and focus of the cameras are not yet controllable. The video output is processed
by a Datacube MaxVideo pipeline-parallel image processing system that can do many low
and intermediate-level vision operations at 301tz (video frame rate). The host computer
for the system is currently a Sun/3 computer but will soon be a 24-node Butterfly Parallel
Processor (BPP). Each node of the BPP is an M68020 processor with M68881 floating
point coprocessor and 4MB of memory. There is fast switch allowing the processors to
share memory. The plan is to implement the control algorithms in the BPP, using multiple
nodes as necessary for speed, with the Datacube furnishing real-time input. A real-time
package for the Psyche operating system will support the applications. LISP planning
programs can communicate with robot applications code over the ethernet. Fig. 2 shows
the current hardware organization.

In the absence of proprioceptive devices like shaft encoders to measure robot state
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directly, the current state of the physical robot and cameras is taken to be the current
values reported by their controllers. For various reasons this method is less reliable for
roving carts. The frame-rate inmage processor can produce fairly sophisticated current
states of the image such as depth maps or the centroids of multiple blobs. The major
uncertainty in predicting future states arises not from mechanical imprecision but from
the unpredictability in timing of the control commands caused by software delays.

Recent work with the Rochester Robot (RR) produced several implementations of po-
terntial basic components of a real-time gaze-control system (4,12,6,321. These components
included basic capabilities of object tracking, rapid gaze shifts, counteracting head motions
with compensating eye motions, verging the cameras, binocular stcreo, and kinetic depth.
For instance, pursuit is accomplished with a special-purpose board that correlates the
image with an 8 x 8 template of the pattern to be tracked, and a board that converts
over-threshold correlation peaks to image (x, y) coordinates, which are then converted to
camera pan and tilt commands. Vergence signals arise from a cepstral filter (similar to
phase correlation) implemented with the integer fast fourier transform on a digital sig-
nal processing chip, producing a disparity measure that is then converted into a camera
pan command. Thcse several capabilities should cooperate to accomplish tasks. Some
couplings between capabilities are obvious: for binocular vision, vergence can be closely
(perhaps even mechanically) coupled with focus, and indeed it is known that there is inti-
mate bidirectionla! coupling between primate vergence and accommodation [28]. What is
needed is a way to integrate the several capabilities (and others) smoothly for a range of
tasks useful for perception, navigation, manipulation, and in general "survival".

2.2 The Simulator

The gaze control design described here uses a simulator to demonstrate results, and more
fundamentally as a basic part of the predictive control system. The simulator should
apply to a large class of kinematic, imaging, and control systems including the RR. It
incorporates head geometry and models angular velocity controls acting with delays cor-
responding to delays caused by transmission and computation. In the work reported here
delay arises from the controllers, not the sensors, as is the case with many of the simpler
algorithms implemented on modern vision hardware. In general there is sensor delay as
well, and dealing with it requires straightforward extensions of the techniques discussed
below. In [il] there were five controls, in the current work there are ten, (depending on
how variants are counted). Some controls are reminiscent of primate capabilities, some
are not, but they span a range of capabilities of varying sophistication and seem to be
reasonable building blocks for more complex gaze control skills.

The simulated robot has a HEAD (a coordinate system) that can be translated and
rotated under velocity control. The modeled cameras are at the ends of kinematic chains
attached to the IHEAD origin, with their individual pan and common tilt velocities con-
trollable. The object of visual interest is modeled as a single point in three dimensions,
and its image as a retinal point. This idealized percept ignores many of the phenomena
that cause problems for low-level computer vision but also provide information to both
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artificial and biological systems (e.g. motion blur, optic flow (retinal slip), and moving
edges). The robot state also includes the position of the object's image (under perspective
projection) in both cameras, its incremental motion since the last simulated instant (its
instantaneous optic flow), and three-dimensional object position information (-say from
kinetic depth, binocular stereo, a sonar sensor, or even memory).

The geometric configuration, speeds, delays, and time constants of the simulation
can be altered to conform with a variety of rob',,ic or biological specifications. The
simulation of eye movements by pan and tilt (not allowing rotations about the optic
axis) seems reasonable for primate modeling. The kinematic simulation is satisfactory at
a certain level of abstraction. The RR's existing commercial controllers hide the dynarrdcs
from applications software, and dynamics do not seem necessary to model most aspects
of primate eye movements (though may be necessary for a responsible attack on head
movements [33].) The abstraction of the six-link robot arm to the model HEAD coordinate
system is in fact supported by software in the robot controller, which provides commands
that allow motions of the end of the arm (bearing the head) in the HEAD coordinate
system. A single origin of head coordinates does not do justice to the primate head and
neck joints, but is a reasonable approximation and would make dynamics easy to compute.
The discrete-time nature of the simulation is not traditional but allows unlimited freedom
in control law design.

For this paper the simulator was geometrically configured like the RR, and other
parameters were set to illustrate the phenomena of interest. The main task studied in
this paper is quick gaze shifts to static or slowly moving objects, so the graphs showing
system performance in this paper (and several of those in [11]) represent the step response
of the simulated system. Further details on the simulation implementation and some of
the control systems appear in [11] and Section 3.1.

3 The Gaze Controls

3.1 Basic Gaze Controls

This section (and the rest of the paper) deals, unless otherwise explicitly noted, with
simulated capabilities and occasional psychophysical and physiological data. It gives a
brief summary of [11] and relates the goals of this paper to the previous work. Many of
the technical assumptions in the previous and present work are really hypotheses: they are
part of the process of discovering how to build a working system. In 111] there were five
control systems. Four of them resembled capabilities that had already been implemented
on the RR, and are functionally similar enough to primate capabilities that we borrowed
the biological names.

1. Saccadic: a closed-loop eye control to produce rapid gaze shifts, "sampled" at a
relatively coarse interval with respect to the discrete simulation "tick", and driven
from positional retinal error (distance from retinal origin). At each activation it



produced a sequence of maximum-speed pan and tilt velocity commands that was
calculated from approximate kinematics to center the image in the retina.

2. Smooth pursuit: a proportional, integral, derivative (PID) eye control driven by
the retinal positional error of the object's image, to follow objects in motion relative
to the eyes. This and the following controls are "continuous" in that they act at
every simulation tick - we use the quoted "continuous" and "sampled" in the sequel
to make this distinction in a discrete (sampled-data) implementation.

3. Vergence: a PID eye control to reduce disparity between left and right images.

4. Vestibulo-ocular reflex (VOR): an open-loop proportional-gain eye control to
oppose head motion with contrary eye rotation. Head rotation is easily cancelled,
and this capability also includes a version of "otolith-ocular reflex" that compensates
for translational head motions using information about object range [9,141. Its input
is not sensory, but an "efferent copy" of the head translation and rotation command:
this avoids its interference with smooth pursuit when head compensation is active
[40).

5. Head compensation: a proportional-gain head-control system driven by head-
relative eye position that rotates the head iT, the direction of eye rotation to keep
the eyes centered and away from their mechanical stops. This capability may not
mirror any named biological one, but it does reflect a widespread primate tendency
to move the head, if allowed, during pursuit and eye saccades.

The robot designer need not copy nature: Pursuit may be implemented with either
position or velocity error feedback, maximum angular speeds in saccades and pursuit may
be the same, the VOtR need not use sensors, feedback can use arbitrary control laws, and so
on. The technical choices should be guided by the desired performance of the system being
designed (as they presumably were in nature). If (as may well be the case), commonalities
between the robotic and natural problems a' one useful level of abstraction outweigh the
technical differences at a lower level, then results may perhaps be shared between the fields.
In this work the emphasis is on the general problem of cooperation between capabilities:
the neurosciences are always improving the characterization of natural systems, and the
design details of a robotic system vary with individual systems.

A smooth pursuit control using velocity errorwas written and tested. By most accounts
this is more like the primate smooth pursuit system. Since this version of pursuit is
insensitive to position error, only the eye saccadic system was available to center objects on
the retina. Depending on the low-level vision algorithms, both velocity and position errors
could be available (correlation techniques give displacements, blob-finders give position)
so a velocity-sensitive pursuit reflex should be an option. A wide-field version of it roughly
corresponds to an aspect of the functionality of the "opto-kinetic reflex" in primates (but
see [11)).

Left eye dominance was assumed (hypothesized): pursuit and saccade commands were
only computed for the left eye, and vergence commands for the right. What to do in an
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actual system is a complicated matter. Specific hardware is devoted to implementation
of pursuit and vergence, and needless duplication should be avoided. It may be cheaper
in hardware to do pursuit with both eyes with no vergence control. Vergence, however,
makes eyes less likely to wander off and pursue separate targets.

The control signals for the translational and rotational velocities of the head (six values)
and of the pan, tilt velocities (three values) form a control vector. To simulate delays and
commands (such as saccades) that affect velocities over more than one simulation instant,
the commands inhabit a pipeline indexed by time. Commands with delays will take place
in the future, and so are inserted (or summed, if more than one control affects the same
output) into the pipeline at the time in the future when they will take effect. The "ector
for the current time is retrieved and its velocities applied to the current state.

The system operated in two decoupled modes, saccadic and pursuit. Saccadic mode
overrides pursuit mode: in saccadic mode the eye saccadic and vergence systems operated,
in pursuit mode the pursuit, vergence, head compensation, and VOR operated.

As expected, delays and interactions catastrophically degraded performance of a naive
implementation in which each controller acted independently and outputs were simply
summed at the effectors. Controls with delays cannot be independently-acting "modules*.
A control needs information about the effects of its own actions to cope with delay, and
information about other controls is needed if all delays are not identical. The simulator
used to demonstrate the effects of the gaze controls was extended to maintain the state of
the animate system through time in another pipeline. Control and state pipelines extend
into the future as far as the maximum control delay plus the maximum duration of any
command sequence. The predicted state at the proper delay for each control is used by
the Smith controller (see Section 4).

Along with a more detailed description of the simulation and controls, and the deriva-
tion of the Smith predictor control equations, the earlier paper describes experiments
establishing the effectiveness of the control scheme with multiple interacting controls, un-
der various conditions of sensor noise and stochastic control delay disturbances and of
systematically inaccurate models of head-eye kinematics and object motion. It also has
comparisons with primate systems and with open loop methods of coping with delay.

3.2 Advanced Gaze Controls

The previous work left several issues open, forming the motivation for the work described
here.

1. All controls operated from retinal coordinates. Predictions of object position in head
or laboratory coordinates are needed to predict retinal images. Head rotations, pans,
and tilts all induce camera origin translations due to the geometry of the head, and
non-retinal representations are more robust (as when the object temporarily is lost).
Versions of pursuit, vergence, and eye saccadic capabilities are added that use spatial
information.
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2. There was no capability for estimating the state of objects moving in LAB (relative
motion was produced with a static object and observer motion.) A pipcliie of object
state descriptions is maintained using variance-minimizing filters to predict object
state from observations.

3. The head compensation reflex was the only head control. The system has "head
saccadc" and "head pursuit" controls.

4. The eye saccade control algorithm was -unsophisticated, and there was no signifi-
cant head and eye cooperation for quick gaze shifts. Four fast gaze-shift algorith'ms
involving both head and eyes are investigated.

5. The two modes of operation (pursuit and saccadic) were simplistically assumed to
correspond to inflexible combinations of lower level capabilities. All controls can be
activated and deactivated independently.

Unlike the previous work [11, this paper is noncommittal on whether the eye saccadic
system should control one or both eyes. Binocular eye saccades are easy to implement, but
there are many other ways that the eyes can cooperate during gaze shifts, depending on
technical considerations such as the possibility of visual computation during the shift, how
the vergence control is specified, etc. We likewise shall not address issues of orchestrating
the smooth transition between saccadic and pursuit (or other) tasks. Considerable work
is still needed on the topic of smooth blending of subcontrols, which forms the foundation
of motor skills.

This work shows a mix of predictive techniques controlling a system with interacting,
delayed controls. Technically, the work required the extension of prediction to include the
world state and the extension of the predictions to non-retinal coordinate systems. Opti-
mal filters, such as the Kalman filter, are a natural and powerful technique to implement
prediction of the world state. Prediction is demonstrated to yield better pursuit perfor-
mance. Time-optimal eye-head saccades can be implemented with predictive techniques,
while methods based on feedback do not perform as well.

4 Control with Delays

The Smith predictor incorporating the object state predictions is shown in Fig. 3. Its
derivation appears, for instance, in 111,24). The basic idea is to have a zero-delay feedback
(path C) based on :imulation. The model-delayed simulation data (path B) is compared
with the actually-delayed data from the plant (path A): the difference (at D) is zero for
perfect simulation, so it provides information about the simulation adequacy and (if slowly
varying compared to the control delays) compensates for inaccurate modeling. It presum-
ably can be used to adapt the control or change the model, but the current controller does
not so use it.

The work described here uses the following interacting controls algorithm I111, which
assumes each controller knows its own delay T, and the delays of all the other controllers
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* * *Figure 3 about here * * *

Figure 3: The Smith predictor control. The CONTROL block represents all control systems, and

DELAY their independent delays. KI and I(K are gains to weight the delayed and non-delayed

modeled error signals. The a-#3 filters estimate object and image states, and adaptively synthesize

the signals for the control system.

in the set {S} that share an output with it, Look ahead the mazimum delay M of any

controller in {S) and retrieve the predicted robot and control states for that time. Apply

the control appropriate for these future states at (possibly future) time M-T.

5 Predicting Object State

In cojntrast with the explicit kinematic simulation used to predict the system state, stan-

dard optimal (i.e. variance-minimizing) filtering techniques are used to predict the position

and velocity of the world object. The simulation has been run with extended Ialman fil-

ters, (linear) Kalman filters, and time-invariant filters as predictors. It is standard practice
with optimal filtering to use statistical techniques to see if the current dynamic model fits

the data. and if not to substitute another model [7,13]. This "variable dimension" ap-

proach is the predictive filtering equivalent of the signal synthesis adaptive control scheme

(3], and the block diagrams of the two systems are basically the same.

Ideally, pursuit and gaze-shift control can use both retinal and three-dimensional posi-

tion and velocity data. The retinal frame is in general a poor one in which to express the

dynamical properties of exterior objects, since eye movements subject it to complicated

time-varying accelerations. Under some conditions, such as smooth pursuit after transients

have died out, the object's image may obey a simple (say constant-velocity) dynamical
law in retinal coordinates, and application of smoothing or prediction techniques to the

retinal image may be appropriate. A more useful two-dimensional coordinate system for
some purposes gives the direction of the object in head-centered coordinates which tells

where to point the head, and is sufficient for pointing the eyes if the object is distant in

relation to the eye baseline. The object's dynamical behavior reduces to its changes of

direction in these coordinates, but can still be sufficiently well-behaved to be useful.

For current purposes the choice of filter is unimportant: We use time-invariant filtering
appropriate to a LAB-based position sensor, and some control inputs are

the spatial coordinates of objects in LAB. Modern frame-rate vision hardware (or sonar)

can solve certain versions of the ranging or spatial localization problem in real time. If

speed is a problem, the predictive filters can rif course accept data at a lower rate than is

needed for control output. Although the state of an object (three-dimensional position and

velocity) is necessary to do precise pointing of the cameras and head due to perspective

and parallax effects, for practical purposes a sufficiently accurate estimate results from

direction derived from retinal coordinates and a very approximate range.

9



5.1 The o - 0 Filter

Linear dynamical systems with time-invariant coefficients in their state transition and
measurement. equations lead to simpler optimal estimation techniques than are needed for
the time-varying case. The state estimation covariance and filter gain matrices achieve
steady-state values that can often be computed in advance. Two common time-invariant
systems are constant-velocity and constant-acceleration systems.

For this work, we assume a constant velocity model: starting with some initial
value, the object's velocity in LAB evolves through time by process noise of random
accelerations, constant during each sampling interval but independent. The cumulative
result of the accelerations can in fact change the object's velocity arbitrarily much, so
we model a maneuvering object as one with high process noise (Fig. 4). For this work
we assume position measurements only are available, subject to measurement noise of
constant covariance. Clearly the more that is known a priori about the motion the better
the predictions will be. Some sensors or techniques can provide retinal or world velocity
measurements as well.

Assume the object state (its position and velocity) evolves independently in each of
the (X, Y1 Z) dimensions. For instance, in the Y dimension, it evolves according to

y(k + 1)= Fyy(k) + v'(k), (1)

where

for sampling interval At, and y = [I' ,], . The equations for the other two spatial dimen-
sions are similar, and in fact have identical F matrices. Thus for the complete object state
x = [X, k7, I., I*", Z, 2J]T, F is a (6 x 6) block-diagonal matrix whose blocks are identical to
Fy. The error vector v(k) obeys E(v(k)vT(j)) = Q6kj.

The a - 1 filter for state prediction has the form

R(k + ilk + 1) = k(k +Ilk) + /t a [z(k + 1) - i(k + Ilk)], (3)

where *(k + Ilk + 1) is an updated estimate of x given z(k + 1), the measurement at time
k + 1. tHere we assume that z(k + 1) consists of the three state components (X, Y' Z) (but
not (.k, 3", 2)). The state estimate is a weighted sum of a state :k(k + ilk) predicted from
the last estimate to be F•k(kjk) and the innovation, or difference between a predicted
measurement and the actual measurement. The predicted measurement i(k + ilk) is
produced by applying (here a trivial) measurement function to the predicted state.

The a - 0 filter is a special case of the Kalman filter. For our assumptions, the optimal
values of a and 03 can be derived (see [7], for example) and depend only on the ratio of
the process noise standard deviation and the measurement noise standard deviation. This
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* * *Figure 4 about here *

Figure 4: Squares shou' the velocity of a "constant velocity" system as it evolves in random-walk

fashion due to the influence of a white noise process. The continuous line is the velocity estimated

by an o - 3 filter. (a) High maneuvering indcz (A = 20.0) implies filter trusts its measurements.

(b) A = 2.0 (c) A = 0.1. Here the initial state estimate and the reliably known process evolution

influence the statc estimate much more than the measurements.

ratio is called the object's Tfaneuvcring indez A, and with the piecewise constant process
noise we assume,

\2 + 8A - (A + 4)V', _+8 
(4)8

and d A2 + 4A - XV'AT2+ 8(A

4

The state estimation covariances can be found in closed form as well, and are simple
functions of a, /3, and the measurement noise standard deviation. Fig. 4 gives a feel for
object motions and the performance of the a-/3 filter. An important issue with all Kalman
filter variants is that of initialization. Especially if the process noise is assumed small the
initialization must be accurate if the filter is to maintain accurate estimates. The steady
state filter cannot adjust its gain through time as can the Kalman filter, so covariances
must also be time-invariant.

5.2 Estimation and Pursuit Performance

The incorporation of an optimal filter into the control loop was motivated by the necessity
of predicting object state for the Smith predictor. We should expect such a filter to have a
noticeable and beneficial effect on pursuit performance, and indeed it seems that humans
may use stochastic prediction [27,30]. Fig. 5 shows some effects of prediction, In part
(a), light squares show the system's pursuit performance (how closely the optical axis is
pointed at the object) using only the current noisy image data. Dark squares show system
using the output of the a - /3 filter predicting the (X, Y, Z) position of an object evolving
with equivalent noise, and generating the predicted image for use by the pursuit system.
(An alternative pursuit control uses data in LAB - see Sec. 7.1.) Parts (b) and (c) show
"what the system sees" through time: tracking using the filter also "looks" more accurate
in the resulting image. In this and all simulation results in the paper, the time axis is in
arbitrary units chosen to illustrate the relevant behavior.
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* 4 * Figure 5 about here * *

Figure 5: (a) The angtlar pointing error of the left eye while pursuing a moving object (initially

off center in the visual field), measured to the true object position. Light squares: results with

current noisy image data. Dark squares: results with output of the a - 0 filter. (b) The position

of the object's image on the retina (the z and y data for both left and right eyes is superimposed)

when the system is pursuing using current image data as input (the light square case in (a)). (c)

As for (b), but when the system is pursuing using the estimated object position as input (the dark

square case in (a)).

* * * Figure 6 about here * * *

Figure 6: Dark lines give (X,Y',Z) LAB, HEAD, and eye (L and R) coordinate systems. The
retinal (r, y) systems coincide with eye X and Y ares. A "cyclopean" system giving direction in

spherical (0,6) coordinates is indicated for the dominant L eye. Straight dashed lines indicate
rotation ares for HEAD, pan and tilt ares for eyes. Light solid lines are rigid kinematic links.

6 Eye and Head Saccade Geometry

6.1 Coordinate Systems

There are four main coordinate systems of interest in this work: LAB, HEAD, and (left
and right) eye and retinal. The LAB, HEAD, and eye systems are three-dimensional, right-
handed and orthogonal. The retinal system is two-dimensional and orthogonal. LAB is
rigidly attached to the environment in which the animate system and objects move. HEAD
is rigidly attached to the head. The eye systems are rigidly attached to the cameras, and
the retinal systems represent image coordinates resulting from perspective projection of
the visible world through the eyes. The camera principal points do not lie on any head
rotation, pan, or tilt axis, resulting in parallax effects in imaging and changes in camera
position induced by rotations, pans, and tilts (Fig. 6).

The retinal x coordinate is horizontal in the image, increasing rightwards. The vertical
y coordinate increases downwards. The eye z and y coordinates parallel the retinal x and
y, with eye z pointing out along the camera optical axis, or line of sight. When the eyes
are at zero pan and tilt, HEAD x,y,z parallel the eye z,y,z. Let kH and kE be the unit
vectors along HEAD and eye z axes.

6.2 Control Parameters for Saccades

The primary goal of the fst gaze-shift system is to center the image of the object as
quickly as possible. Minimizing time means that all necessary degrees of freedom should
be adjusted simultaneously.

Errors in x are reduced by panning, in y by tilting. The x and y vectors are not
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proportional to angle error, since the imaging model is point projection onto a planar,
not a spherical. retina. For small angles the error is negligible (for a 28 degree field of
view the largest error is about 2%, and for a 57 degree field the largest error is about
10%). If retinal errors are used for pursuit and vergence control the nonlinearity is quickly
overcome by feedback. If retinal coordinates are used to generate eye saccades to the
periphery, then the above errors can be removed by passing the error signals through
an arctan(x/f) function, where f is the camera's focal length. Retinal data provide
information (at least) on object direction, and an (X,Y,Z) position in HEAD or LAB
can be constructed consistent with the object's perceived direction and some likely range.
According to our assumptions, gaze-shift and pursuit control have available such HEAD
or LAB information from sensors or calculations, and hence know or can calculate O,
the object direction unit vector in HEAD, and OE, the object's unit direction vector from
either eye. If both are available, retinal data can be combined with other sensor data 117).
The assumption of object representations in non-retinal coordinates is significant.

o At close range. spatial information is needed to solve the inverse kinematics necessary
to point accurately at the object.

@ Range information can speed the necessary reactions. One example is camera focus,
and it is interesting that the "near triad" reflex in primates is a coordinated adjust-
ment of vergence, accommodation (focus), and gaze shift when the new object of
interest is known to be at a different depth from the old. The near triad speeds eye
accommodation: knowing what direction to change avoids "hunting", and the rate
of change of focus seems higher as well [281.

e Retinal representations are not robust against eye movements, objects out of view,
obscurations, failed image processing, or unexpected plant disturbances. The ability
to keep pursuing or to shift gaze correctly despite these surprises is important (Fig.
10(c) in Section 7.3 shows how impressively robust performance in primates can be).

* There is a larger related question of how to represent the visual world. One recent
proposal is that objects are represented as object-centered coordinate frames derived
from gaze parameters, and linked to each other in a network [4].

6.3 Eye Saccades

Eye saccades are performed by the independent pans and a common tilt. The assumption
is that tilt affects the pan axis but not vice-versa. We desire the pan and tilt angles that
will point kE in the direction OE = (a', y, z)T in eye coordinates. The pan and tilt may
be approximated by zero if the head is pointing at the object, or may be calculated from
the image or even from a remembered object position and the plant state.

True pans and tilts are derived from an inverse kinematic calculation based on head
geometry. For objects distant with respect to the link lengths, approximate eye tilt angle
is

E= - arctan(y/z). (6)
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The eye pan angle is
0 Er = arcsin(x/R), (7)

where I? = (x 2 + y2 + z2 )1/2.

If the maximum angular velocity attainable by the eye motors is 0 EGX, then this ve-
locity may be simultaneously commanded to pan and tilt for the two required times, or the
equivalent number of discrete angular steps commanded. Alternatively the velocities may
be scaled so that the pan and tilt are completed at the same time, with the smaller motion
performed more slowly. The latter method is used in the simulations. The independence
of the tilt axis from the pan motion is all that is needed to allow both motions to proceed
simultaneously or in either order with no interference: the situation is different for head
saccades.

6.4 Head Saccades

The semantics of H EAD is that of a coordinate system. Even if its axes initially correspond
to actual rotation axes, as they can if the origin of HEAD is taken to be the center of a
robotic wrist, the situation is not the same as with eye saccades. The control commands for
HEAD orientation are to rotate HEAD about one of its axes: such rotation changes both
other axes. Since 3-D rotations in general do not commute, the simultaneous rotations
we desire will interact with one another. Thus pan and tilt angles computed as for eye
saccades will thus only work correctly if the movements are carried out sequentially in the
correct order.

Since simultaneous rotations are needed for speed, we must compute the continuous
rotation velocities about HEAD Y and Y' axes needed to accomplish a head saccade, and
the time interval to activate them. For discrete simulation or implementation as a set
of individual commands, we need to approximate the motion by a number N of small
rotations. Depending on the accuracy needed, a number of these small rotations may be
composed to correspond to what happens in one simulation instant. Luckily, small rota-"
tions are the key to the non-commutativity problem, and the error in the approximation
can be made to fall off as N-.

Consider a smooth rotation taking kH to OH = (x, y, z)T directly (along a great circle
route on the HEAD-centered Gaussian sphere) and at a constant speed. The angular
distance to be covered is

- = arccos(kH. Of ') = arccos(z). (8)
Projecting the Gaussian sphere onto the (X,)') plane projects the great circle along which
O11 moves onto a straight line from the origin to (x,y). Thus the instantaneous direction
of the head motion is constant, and at any time the ratio of distance rotated around T
and y axes is x/(-y). If the total angular distance to be covered is divided into N steps,
each step consists of small head rotations 0ORx and Ozl,, where OR.. = (Xf(-Y))Oj•y. A
Euclidean approximation yielding the desired distance 6tot is that

Oll,= (x(O,°/•/N))lr (9)
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* * *Figure 7 about here * *

Figure 7: Hollow squares show the I/N angular cumulatire error (radians) of a sequence of

[pan, lilt] motions approximating a particular smooth motion with simultaneous pan and tilt. Dark

squares show th. 1/N 2 error for a sequence of [pan, tilt] [tilt, pan] motions. The abscissa is the

number of [pan. tilt] or [tilt,pan] component motions in the sequence.

and
ell = -(y(to,,flN))lr, (10)

where r = (x2+ y 2 )1/2 . The error increases as the spherical triangle differs from the planar.

If ýH, is the maximum rotational velocity of the head motors, the continuous time to

complete the entire head saccade is

t = (max(-,y)(Ogot))/(?Om,:), (11)

with the velocities in the ratio x/y, so assigned that the pans and tilts complete at the same

time and the greater velocity is 6 ,ai-. The approximation of the continuous motion by

a sequence of small pans and tilts works because infinitesimal rotations about coordinate

axes, as the generators of the Lie group of rotations, commute [1]. The resulting cumulative

angular error decreases reliably as 1/N, independent of z or z/y (except that the error

is zero if either of x or y is zero). If the desired direction is (T, y, z)T, the result for the

worst case, N = 1, is obtained by applying the tilt and pan given by eqs. (9) (10) to the

vector (0,0, 1)T. The resulting vector is

6 = [cos(OHy) sin(OH.), sin(Oll.), cos(6yy) cos(OH.)]T. (12)

The difference between the desired vector and the result ( 116 - OHIJ or arccos(6 . Oq))

may be scaled by I/N to predict the corresponding error in the cumulative motion. If

the simulation or discrete command sequence uses alternating [pan, tilt] and [tilt, pan]

actions in the sequence of small motions, the error decreases as 1/N 2. Fig. 7 shows the

comparison for a large head saccade "back over the right shoulder".

7 Eye-Head Saccades

There are two main reasons for head motions during gaze shifts. First, they can keep

tile eyes centered in the head, maximizing the range of eye rotation before encountering

mechanical stops. Second, they can increase the velocity of eye rotation in LAB, leading
to a more rapid visual acquisition of the desired object.

Saccadic eye and head motion in primates was for a long time believed to proceed
without visual or proprioceptive feedback, and there are recent models of head saccades

using three-burst bang-bang control [39]. However, there is also strong evidence that the

eye's saccadic system can correct its commanded motions after the retinal stimulus is

removed, but berore the motion has begun, to deal with certain disturbances applied to
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* * * Figure 8 about here *

Figure 8: Linear summation. Robot gaze (butterflies), eye (light squares), and head (dark squares)

angles showing linear summation effect arising from reflex interaction. Here the eye saccade control

is active together with with head-compensation and VOR reflexes. The combination of eye saccades

with head compensation and VOR forces the gaze velocity to be the velocity of the eye saccade acting

by itself. Time units are arbitrary and chosen to illustrate the behavior.

the eyes (e.g. 125]). This evidence is consistent with the "local feedback" hypothesis (341

that the eye saccadic system is guided by an internal representation of its effects in LAB or

HEAD coordinates rather than by retinal error. The basic idea of relating eye commands

to the world rather than to the retina of course extends beyond saccadic commands (for

pursuit, see [42]). The idea is entirely consistent with the modern control theory ideas

of state feedback using state observers (e.g. [19]), and with predictive techniques in gaze

conirol (e.g. (11]).

This section describes four versions of cooperating eye-head motions. In each, the goal

of the head saccadic system is taken to be position matching: When the head saccade fin-

ishes the head is pointing at the (instantaneous) current object position and head rotation

velocity commands are zero. The goal of the eye saccadic system is taken to be position

and velocity matching. It would be just as easy to produce position and velocity matching

in both systems, to move the'head by only the minimum amount that allows acquisition,

or other variations.

The goal is by no means to reproduce the complex findings on primate systems and

their interaction [33,21), but to establish that a usable range of capabilities is possible.

Although certain primate capabilities (such as coping with disturbances) have inspired

features of some of the versions, the goal has simply been to produce fast, stable, and

robust eye-head gaze shifts. The first two schemes have the virtue of simplicity, but are

handicapped by control interactions and use no prediction. The third scheme has no

feedback and optimal speed, but no robustness. The last and most successful scheme uses

explicit predictive simulation to generate gaze shifts, and the loop is closed by re-triggering

the calculation when a disturbance is sensed.

A first example of an eye-head saccade is provided by simply running the "sampled"

eye saccades as defined in Section 3.1) simultaneously with the "continuous" VOR. and

head-compensation reflexes ([11], Section 3.1). Fig. 8 shows the result, which is similar

to that which once was claimed (under the "linear summation hypothesis") to hold in

primates, viz. that their eye rotational velocity measured in LAB is kept constant (eye

saccadic velocity is decreased by head saccadic velocity) [29].

In primates, the linear summation hypothesis has been contradicted by findings indi-

cating eye-head gaze shifts outperform eye saccades alone [36] (see Fig. 9(a)). Certainly

in a robotic context a speed improvement is attainable, and the following three versions

are intended to outperform the first one. The Gaze Feedback version is inspired by local

feedback theories, and is based on "continuous" head and eye position-feedback controls.
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A head saccade is then simply implemented as a pursuit operation, and cooperating eye-

head gaze-shifts are simultaneous head and eye pursuit. The Sampled Optimal version is

a closed-form "sampled" solution for full-speed eye and head movements. The Simulatcd

Optimal version uses the familiar pipeline of predicted future states to maintain optimal

speed and add the "continuous" ability to deal with varying velocities and disturbances.

7.1 Gaze Feedback

This version of eye-head saccades is just the simultaneous action of pursuit feedback loops

in both eye and head. Thus in this section the "sampled", maximum speed eye control is

replaced by a "continuous" pursuit control and the head is treated similarly. The same

controls may thus be used for saccades as for pursuit. This literal and straightforward

interpretation of "local feedback" affords some illuminating comparisons.

In one obvious local feedback scheme the eye pursues its desired position with re-

spect to the head. This means that its final position in HEAD is entirely determined
by the range of the object and head geometry. Given that the system knows the range
R of the object and the horizontal and vertical offsets (h and v) of the eyes from the

head origin, the eye position when kil (the head) is pointed at the object is (pan, tilt) =

(arctan(h/R), - arcta.n(v/R)). Being at this position only centers the object when the
head is correctly pointed, and. so using this target for pursuit limits the eye-head sac-
cade to the speed of the head saccade alone, even if the eye achieves its final position
instantaneously.

An equally obvious alternative is to have eye and head both pursue the object position
(in LAB or retinal coordinates). This scheme would seem capable of faster performance,
but in practice is disappointing. Feedback lowers gains, and PID control does not cope
with maximum velocities (saturation) gracefully. Second, control interactions change the
system to fourth-order, with a performance penalty.

Fig. 9 shows two comparable simulated eye-head "saccades" implemented with position
error feedback, along with human data from [36]. Incidentally, this instance demonstrates
the LAB-based pursuit system: Its error signal is the angular difference (in pan and
tilt directions) between the camera axis and the direction of the object. No significant
differences arise when the eyes pursue the retinal image if the object is distant. In the
human (Fig. 9(a)), gaze converges quickly to the object, and head motion speeds gaze
shift completion by a factor of two. In Fig. 9(b), VOR is active. Its effect is to slow the
eye rotation by the amount of head rotation, and thus the behavior of the gaze angle is
the same as if the eye "saccade" (now pursuit) system were acting alone. Just as in the
linear summation gaze shift above, the VOR again defeats the goal of moving the gaze to
the object quicker than the eye saccade acting alone.

In the case of Fig. 9(c), the eye-head saccade is made with VOR turned off. The head
is pursuing the object as a second order system, carrying the eye with it. The eye control
is also second order, but is being forced by the head's motions. The effect is that of a
fourth order system, and the case oF a saccade to a motionless target corresponds to a step
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* * * Figure 9 about here

Figure 9: Gaze feedback. (a) Human gaze (G), eye (E), and head (It) movements during 80 degree

gaze shift. A has no head motion, B has 80 degree head movement, and gaze shift is completed

twice as fast. (b) Robot gaze (butterflies), eye (light squares), and head (dark squares) angles for

gaze fecdback saccade. Both head and eyes move to the object position under the influence of a

smooth pursuit PID feedback control law driven by position error. VOR is active, so eye movement

is slowed anrd performance is identical to an eye-only saccade. (c) As for (b), 'but VOR is not

active. Th c resulting fourth-order system has no better performance than in (b).

input. The root locus behavior of fourth order systems makes them prone to instability
as gain increases. Their performance is also at issue. Optimal coefficients for nth-order

systems under the several performance criteria (such as the integral of time multiplied
by absolute error) may be derived, and step responses for the optimal systems of various

orders plotted [16]. Two points emerge.

1. Under three common performance criteria, optimal fourth-order rise times are slower

than optimal second order, and convergence to the desired value is no faster.

2. The cascaded second-order systems give a restricted form of the general fourth or-
der system that does not in general produce the optimal higher-order system, and
certainly does not if the lower order systems are themselves optimal.

These observations are borne out by experimentation with the PID gains for the head and
eye pursuit. Since head-eye rise time will be faster than either system acting alone (unless
they rotate in opposite directions), the resulting system is guaranteed to be sub-optimal
by point 1 above, and even the optimal fourth-order system could perform no better than
either system acting alone.

To summarize: Straightforward implementations of gaze feedback models have per-
formance limitations. If eye pursuit moves to a position in HEAD the gaze shift of a
head-eye saccade cannot be faster than the head saccade by definition. If a VOR-like
compensation is inf effect, a head-eye saccade cannot be faster than the eye saccade by
definition. Last, using control without compensation, the combined gaze motion obeys
a higher-order form of control whose performance may well be theoretically worse than
either eye or head acting alone. The psychophysical data indicate that the primate system
exceeds the speed of either head or eye saccades without oscillations. Thus gaze feedback
seems to have technical problems that make it unsatisfactory for use with PID control
and perhaps unpromising as a model for primate abilities as well. The next versions
incorporate time-optimal ("bang bang") control.

7.2 Sampled Optimal

Time optimality demands that the eye and head both move at maximum velocity to
acquire the (possibly moving) object. For generality we assume arbitrary head and eye
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initial positions HO and E0, along with the initial object position TO. We assume a control

delay AH for head rotations, and a control delay AE for eve rotations. (Maximum) head

velocity is vii, (maximum) eye velocity is yE, object angular velocity in HEAD is VT.

The commands for head and eye saccades are assumed to be computed instantaneously

and issued at time 0. (Thus they begin at times AH and AE). The directions for the

saccades are easily computed in each dimension. The problem is to compute the durations
of the saccades, or equivalently the times the velocity commands should cease, ti and t E.

The algorithm computes the head saccade first, since it affects eve position and not
vice-versa. At tH the object position and the head position are to be equal, so (in one
dimension)

TO + tHVT = Ho + (t,; - AH)VH. (13)

thus
=To - Ho + A11rH (14)

V11 - VT

Computing ir is more complicated. There are six cases, depending on the overlap
between the periods of head and eye motion. The cases can be easily distinguished by
simple tests based on the delays, velocities, and til. For example, the computation for the
case in which the eye departs after the head and also reaches its final position after the
head does,

TO + tEVT = Eo + (tH - AZE)(vH + rE) + (OE -- H)VE (15)

and so
To - Eo - IHVH + AE(VH + yE)(

t- = VT(1)

The expression for tH and the six expressions for t E all have the form

To -X 0 + c
tX = f(TO, vT, XO;c1,c 2 ) = C2 - T -1, (17)"

where X stands for E or 1H, and cl and c2 depend on the case but are simple combina-
tions of the (presumably unchanging) eye and head delays and maximum velocities. The
expressions for t x become linear when the object is stationary (VT = 0).

This version gives optimal performance if the various assumptions are met. Implement-
ing it with simulation and recalculating when necessary yields the next method, which is
more robust.

7.3 Simulated Optimal

This version is basically an implementation of the last method using the predictive sim-
ulation techniques of the main gaze control system. The saccade control simulation uses
the pipeline of future system states. The important quantities are the angular position
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* * * Figure 10 about here * * *

Figure 10: (a) Eye (z,.) position, and (b) eye (dark squares) and head (light squares) X-velocity

for eye-head saccade to moving object. Read saccade starts at k = 3, adding its velocity to eye

saccade. Eye reaches object at k = 9, head at k = 21. (c) Data from primate saccades with eye

velocities disturbed (eyes dragged down to left) prior to saccade but after stimulus has vanished.

(d,e) As in (a,b), showing eye-only saccade with disturbance during 3 < k < 10 adding negative

(x,y) velocity before and during first part of saccade. (f,g) As in (a,b), with eye-head saccade and

disturbance during 3 < k < 7.

and velocity for the object (in HEAD coordinates) head (in LAB), and eye (in HEAD),

indexed by time: O(k), 6(k), H(k), ft(k), E(k), E(k).

The simulation algorithm first computes a head saccade by determining, for the X and

y dimensions, the direction to rotate and then driving at maximum velocity, stopping after

there is a zero-crossing in predicted object position (say at time k). The head position at

time k - 1 may be closer to the object: the closest position is chosen. For more accuracy,
time k could be used and (assuming locally constant object velocity) the head motion for

the last interval slowed to
O(k - 1) (1).m '2to(k - 1) - o(k)"

The sequence of head-saccade commands is inserted into the pipeline and the resulting

changes to head and eye position computed (these values overwrite existing values, as the
saccade is taken to replace previous control). Then the eye saccade is computed exactly
like the head saccade, except eye position is computed by adding the head-relative eye
velocity to the head velocity.

So far, this version of saccade control is "sampled", and in simple cases the solution
obtained is the same as the sampled optimal solution above. However the simulation
solution copes uniformly with head and eye saccade interactions, and handles arbitrary
head or eye velocity profiles (velocity ramp-ups and ramp-downs, for instance) as well
as arbitrary (predictable) object motion. To cope with disturbances, and to implement

successive ("catch up") saccades, the simulation is placed in a loop that runs until the
saccade is successfully completed, checking if at any time a new calculation must be

performed. In the simulation, a disturbance to the velocity or position of the eyes is
taken to signal the need for a recalculation. This gives the robustness of a "continuous"

system only computed on demand. Fig. 10 shows some results from this control scheme.
After reaching the object, the eye continues moving at the object's velocity, (d uie to smooth
pursuit or velocity matching by the eye saccade), and VOR compensates for any continuing

head motion. When macaque monkeys have their eye velocities electrically disturbed after
the target stimulus has vanished, they successfully correct the saccade (Fig. 10(c)). The
recalculation can sometimes be done during the latency period of the original saccade, so
the correction does not delay saccade onset [25]. In the simulated system the control delay

is unavoidable, but correction does occur (Fig. 10(d-g)).
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8 Discussion

Prediction is the key to stability of interacting closed-loop control systems with time de-

lays. Gaze control is one of several central capabilities needed by a behaving sensoriinotor

system to support higher-level activities. Both biological and robotic systems have delays

and interactions making simple feedback schemes inadequate for gaze control. This work

demonstrates kinematic and stochastic models for prediction in a simulated system with

multiple interacting gaze control "reflexes" irhplemented as various hybrids of "conti nu-

ous", "sampled", and predictive control. Currently there are ten reflexes, including the

velocity-error version of smooth pursuit and both retinal and spatial smooth pursuit and

saccadic systems, with four operating simultaneously in pursuit, and between two and four

in versions of saccades. Earlier work [11] demonstrated the viability of Smith prediction

for simple gaze control. This paper extends the prediction to include the behavior of the

object of attention in three dimensions, and extends the gaze-shift capabilities to include

cooperating head and eye saccades that are robust against sensed plant disturbances. As-

pects of primate gaze-control inspired certain techniques, but no effort has been made
to model or duplicate quantitatively any biological capability per se (for more on this

topic see (11]). Similarities sometimes arise, probably through basic agreement as to the

necessities for a practical foundation for visual perception in a behaving agent.

If a gaze control system like the simulated one is to become reality, significant fur-

ther work on hardware and on systems and application software is needed. Leaving these
large issues aside, there is much work to be done in implementing the controls. A first
step is to parameterize the simulation with time constants, velocities, and variances that
reflect the true robotic situation. High variance in time delays from the current software
may make cooperation between controls impossible: the applications programmed so far
perform successfully, but only with one feedback loop in operation. We anticipate that
more sophisticated hardware and software will soon make delays more predictable. Empir-
ical and theoretical sensitivity analysis of the system leads to parameter-adaptive control
that can compensate for slowly-varying plant parameters or delays (24]. Computation
time is probably not a difficulty: the basic kinematic simulation including the predicted
image requires fourteen 3 x 3 matrix products (six of which involve sparse and uniformly-
structured matrices), six cosine calculations, six square roots, and two vector additions.
The a - P3 filter needs two more matrix products, two matrix additions, and about 15
scalar multiplies for a total of about 350 floating point multiplies and 250 additions. This
expense must be borne for every position in the pipeline, and ignores a certain amount
of other data management. The controls can to some extent run in parallel (although
there is a shared data structure.) The simulation can be speeded up by discretizing at a
larger time interval. Multiple Kalnan filters may be needed instead of the a - 0 filter to
deal with HEAD-based position measurement techniques, multiple objects, and objects of
differing dynamic characteristics. The PID controls must be modified to deal with satu-
ration. Sensor fusion techniques (171 can be used to combine the sensor outputs to obtain
more accurate position information. A cyclopean image frame may be needed in which
to integrate left and right images for disparity calculations and other cooperative image
analysis tasks. The obvious choice is that of the dominant eye, but instead of cartesion
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coordinates, some version of spherical projection may be worth the effort for the invariance
it provides (221. The interaction of gaze control with attentional, reflexive, and planning
processes remains a live issue that becomes even more interesting with both foveal and
peripheral visual capabilities.

The hope was that a gaze control module could be designed that would manage the
cameras, present a simple interface to the higher cognitive levels, and carry out appro-
priate behavior autonomously: gaze control would be one level in a "subsumption"-like
hierarchical architecture [10]. It seems that some approximation to this goal is possible
using a range of control techniques acting together using predictive techniques, but also
that other powerful paradigms, forms of adaptation and learning, are also at work. The
psychophysical data, and the experience with the simulator, suggest that in primates gaze
control could itself be described as a problem-solving, goal-directed activity, in which vari-
ous lower-level capabilities are mixed and matched to achieve a desired effect. Most visual
"I"reflexes" seem to a great degree cognitively mutable, and to display various forms of
"sophisticated adaptive and interactive behavior [21,8].

Control is a good metaphor for management of gaze parameters, and control theory
provides a powerful framework and formalism to describe many phenomena in complex
systems. Most aspects of gaze control can, under reductionist circumstances, be adequately
described as practically implementable control processes. Another metaphor for the gaze
control system may be that of a set of skills deployed for practical (sometimes including
expressive) purposes.

... investigations of skill speak not of responses to stimuli but of "strategies"
and "procedures" - larger organizations which, although less precisely defined,
are closer to describing the units of performance that seem to occur in normal,
everyday life. [41]

Though classical motor skill research does not have much in common with research in basic
sensorimotor systems such as walking or gaze control [18,41], control theory is a central
metaphor or model in both. Motor skills have much in common with the behavior of the
gaze "control" system. Parallels exist at several levels. Both performance in a skill and
the gain of VOR or OKR vary with attention or motivation. Like saccades, some skilled
action commands can be modified during their latency period without slowing onset time
(Fig. 10(c) from [25], for hand motions see [26]). Other similarities occur in the tuning
of individual components and their orchestrated interaction, basically for the purpose of
overcoming delays, maximizing some performance index, and dealing with disturbances
(Recall the "near triad" from Section 6.2, and everyday motor skills).

Viewing gaze control as a set of skills provides a different way to structure its investi-
gation and synthesis. The robot gaze control designer, rather than mimicking a particular
biological system, can consider the intended task domain to identify and specify function-
ally important capabilities. So far the simulations have addressed vergence, stabilization,
compensation, pursuit and rapid gaze shifts, which are of general use and functionally
important in fixating objects in relative motion and redirecting visual resources. However,
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there are many other tasks an animate system will be engaged in that will call for other

visual skills. One is exploration: in this context an appropriate reflex might override the

VOI{ and redirect the eyes in the direction the head is turning, thus anticipating the need

for vision. As it happens, this particular behavior is found in primates in the so-called

"quick phase" eye motions. A basic task is object avoidance, while navigating or passive.

Primates have the "looming" reflex and other skills, perhaps using optic flow input, like

blinking,

In important issue is the use of more sophisticated visual processing as input for more

complex reflexes, and some work is being done on this topic already [31]. Each robotic

system will have its own idiosyncrasies and strengths, suggesting idiosyncratic skills. For

instance, many two-camera robotic heads have a single vergence degree of freedom instead

of two independent pan axes. Clearly the details of saccadic, pursuit, and vergence skills

must account for this difference. A head with independent pan degrees of freedom like

the RR's can be endowed with skills in which the eyes operate more independently, either

with shared or independent goals. In the RR's case the shared tilt platform means that

any such skills must be coordinated to deal with shared resources, but this is a general

problem and indeed is part of the definition of skill.

Control theory is evolving ever more sophisticated methods for incorporating adaptive

techniques leading to synthesis of optimal performance applicable to motor learning in

general and hence gaze control [3,20]. Though certain advanced control techniques are

still impossible to implement quickly enough for robotics, control theory seems increasingly

relevant to what might be called skill acquisition. Gaze control is obviously amenable to

investigation by computer- and neuroscienlists, and there is a wealth of accumulated data

and knowledge. If indeed gaze control skills iie somewhere between purely reflexive (innate)

and skilled (learned or practiced) behavior, then perhaps they are a promising domain

for the investigation of control theory, algorithms and neural mechanisms underlying the

acquisition and performance of general sensorimotor skills.
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Perceived Target Position: Actual Data
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Perceived Target Position: Estimated Data
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