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2ui. ABSTRACT

A review of some estimation basics is followed by illustrative applications of
Kalman filters for stationary and maneuvering targets. The variable dimension of
Kalman filter is used for the maneuvering target. The performance of the nearest
neighbor standard filter is compared to that of the probabilistic data association filter
for tracking a target in clutter. Multi-target tracking, using sonar sensors to estimate
an autonomous robot's distance from walls, is applied to the navigation problem.
The Kalman filter equations can be completely decentralized and distributed among
the nodes of a multi-sensor system. Each sensing node implements its own local
Kalman filter, arrives at a partial decision, and broadcasts it to every other node.
Each node then assimilates this received information to arrive at its own local but
optimal estimate of the system state. An appendix contains brief implementatiolidi
notes.

Accegsien For

DTIC TA5

Ju.ansun &d atia

DIS t r i u t ic :

Availabi t-y Cudes

'Avall and/or
D1~st spuotal



ABSTRACT

A review of some estimation basics is follo, wed by illustrative applications of Kalmar,

filt"rs f,,r stationarv and maneuvering targets. The variable dimension Kalman filter i-

used for the ni.iTu,-ring tarr.,t. The performance of the nearest neighbor standard filter

is compared tr, that of the probabilistic data association filter for tracking a target in

clutter. NI ulti-taret tracking, using sonar sensors to estimate an autonomous robot's

distance from wallt, is applied to the navigation problem. The Kalman filter equations

can be comtpletelv decentralized and distributed among the nodes of a multi-sensor system.

Each senqing node implements its own local Kalman filter, arrives at a partial decision, and

broadcasts it to evNrv other node. Each node then assimilates this received information

to arrive at its own local but optimal estimate of the system state. An appendix contains
brief implementatioral notes.

1 INTRODUCTION AND BACKGROUND

'I hiq report inrlide work that sprang directly. out of a reading group organi7ed by lush

Ilurranl-WhYt, during the Michaelmao term o 198F. A number of project4 arose. varying

fron ex-rcies to long-term research projects. Much of the work described-here is still in
progress, and will be the subject of theses and papers.

There are sore ongoing activities at the Robotics Research Group of the University of
Oxford relating to optimal estimation that are independent of the reading group and which
are described elswherp.

1. Alan Nclvor has worked on characterizing the properties of the extended Kalman
filter wkhen u ,d to track edges in a dynamic environment [21].

2. Ron I)anil and his students are implementing very fast (800 liz.) Kalman filters
in his work on robot control.

3. (;iv qrcott and Nick Walker are actively investigating wave-propagation, especially

th,, Schroedinger wave model, as an underlying mechanisy mplement tracking

and correspondence [26]. This work is described in a SKID'"

The work that grew out of the reading group is presented below in the following order.
Bobby Rao and John Leonard made a brief survey of estimation techniques. Barry Steer

and Chris Brown implemented various examples of Kalman filters: Steer applied the filter
to estimating the position of a feature, Brown implemented various tracking algorithms

for single targets with and without clutter from [31, the text of the reading group. Brown
;mnlemented matrix and kalman filtering utilities used by himself and Leonard. John

Leonard is working -n a project to develop and implement an active sensor control strategy

• • • ,,, m m m



for on, o, the ta's mobile robots. The strategy is based on a hierarchical controller

wi: h different level- of Attention, Looking, and Recognition (20]. using multiple sensors

ncludi.e vision and sonar. His contribution to this report is on multi-target tracking

for localization. Bobb' Rao has completed a project to define completely decentralized

Kalman fihers. Previous work has relied on a hierarchy of distributed sensors, but no work

to date has had a completely decentralized flavor. The algorithm has been implemented

on a di.tributed computer network, and the scope of the project is growing.

Ilug!E Durrant-Whyte is actively using Kalman filtering techniqes to do navigation and

tracking in a soIar application. lie is producing a paper on "Navigation by correlatinc

grnmptric sensor data", and the authors and editor of this document owe much to his

leadcr. tip and insigit.

2 ESTIMATION AND KALMAN FILTERING

2.1 Estimation

2.1.1 Non-Bayesian Estimation

Non-Bayesian Estimation is used when the value being estimated is not a random variable

but is constnnt. The estimate should c-nverge to this value as the number of readings

As-uming the prior Probability Density Function (PDF) of x is unknown, its posterior
PDF is unavailable, leading to the use of a likelihood function:

Ak(z) = p(z jz)

and hence the Maximum Likelihood (ML) method

i(k) = argmaxzp(zklz).

The likelihoods arise from empirical or analytic models of the sensor.

2.1.2 Bayesian Estimation

Bayesian Estimat.on is used when the parameter to be found is a random variable (RV)

with a PDF p(.r). A value of z is assumed to have occurred via this PDF and remained

constant during As measurement sequence. The measurement sequence should converge
to the actual value of x that we are measuring.

Given the prior PDF for x, its posterior PDF follows from Bayes' Rule

= p(zklx)p(z)
p(x17k) - p(z)



IL~~~~ X' I- I~ I' lax;I I :% l'ot-ri'nri ( MI.AP1) nmet hod:

i4k a7rO1 ?(7)?r-( I -k argyn a pz&jx ))(x j

InIlin M I an MAI .\P m i od s v jeW mode s of a probabili ty d is tribuit ion (Ihr nq likol v

2.1.3 Least Squares Estimation

Tho l§ motlihod ic for non-randoml par~ameters and for measurements

Z(J) =h(j.2-) + wU'W.

k

Org) arc mm1 Zf(j) - h(j.x)]2.
2=1

II c-'p- )s"nor Modopl. Thei lea~st squares techniques yields the mean, not the monde.

of t ho p rn :0 I i:*v d is!ribu tion function.-

2.1.4 Minimum Mean-Square Error Estimation

'The- NINISL method is for random parameters and yields

i(k) =arorn 'n5 .[~ T)2IZk]

2.1.5 Linear Estimation

The estimator is a linear function of the measurement data.

i + Z)

F,. E[(x - -;)x- t)'J,

Sis the expected measurement, and (z - ) is the innovation produced by the true mea-

suremenit.

2.1.6 Equivalences Of Methods

All the abo%-e can produce the same results under certain conditions:

3



MI =- MAP

This occur when the prior PDF for x is non-informative. ip ivwhn p(-- and
-- 0 or when the PDF is a Gaussian with cm -

• I.S =- M ,

This occurs if the noises w(j) in z(j) = h(j,x) + w(j) are independent identically

distributed (LID) zero mean Gaussian RVs. This also applies ifx is a vector property.

SMNISE =_ MAP

These coincide if the posterior PDF of a is Gaussian with arbitrary mean.

* Linear Estimation

Wh,, -is 7 Gaussiian RV the linear estimator of the MMSE form is equivalent to tln
best linrar estimator for arbitrarily distributed R\'c .vith the same first and seond

moments. However if the RVs are not Gaussian the MMSE can be a better estimator
than the linear estimator (i. Gaussian RVs give the worst case results of an NIMSE
est inla I r r

2.2 The Kalinan Filter

2.2.1 Linear Kalman Filter Equations

Kalman filtering is a form of optimal estimation characterized by recursive (i.e. incr,-
mental) evaluation, an internal model of the dynamics of the system being estimated.
and a dynamic weighting of incoming evidence with ongoing expectation that produces
estimatrs of the state of the observed system. The basic Kalman filter loop appears in
Fig. I (taken from [3]). Its input is the system measurements, its apriori information is the
system dynamics and noise properties of system and measurement, and its useful outputs
are the itmot'nlion.(the difference between the predicted and observed measurement, by
which the filter's performance may be quantified), and the estimated system state.

Consider a system with state vector x, moving under a control u, affected by Gaussian
noise N':

x(k + 1) = F(k)x(k) + G(k)u(k) + v(k). (1)

The system makes observations z with Gaussian noise w:

z(k) = H(k)x(k) + w(k). (2)

where v(k) and w(k) are zero mean, white random sequences with covariances Q(k) and

R(k). respectively.

4



.,,.,-- e ., ',rnIo..o -

I ,r. , . I I°,i -4- 1,te + I 1 i

', I= k) = E Ix " - -k k I

a' - Ilk) =7u 7F=7 + G ,ku ,=. (3)

The nxtmasurmentiured1icthed using ar acmniterc onte yce).rmntpoesn

Frscsytmthe covetonl ama Flereqaios o statepeito ~#1k

ma efudi Ba-hlm['] andha..th fo.. .r.::ll owingform

x(k + Ik) = F(k+ c(k + Ilk). (5)

Thenxt masurmentisredicTed uingearacteristicsltof te myceasrmntpoesn

Update: The innotvation , is defined as the difference between the predicted and actual
next measurement:

(k + 11) =(k+ 1) -5 (k + Ilk)



'Iiniwvatiwi rnva-ianIre S~k + 1 ) is:

S;k - 1) = 1(k + Il)P(k 4 1 1k)11' (k - l)1 R(k 1(.

Scan 1)e ucil to cniomp t the filter gain. W(k +- 1 ):

W(k + 1 = P(k + I k)H T(k + 1)S-1(k + 1).

The innovation weighted by the filter gain. plus th . ;,redjcted state, form the updated

state estinlatr:

The updated state cov.ariance P(k + Ilk + 1) is:

2.2.2 Extended Kalrnan Filter Equations

Thp (first ord-i) extended IKalmnan filter (EE) is a version of the IEalman filter thatdrl
with nonlinear dynamnics or nonlinear measurement equations, or both. It linearize- th,
problemn around the predicted state (a second-order EKE makes a second-order approx-
imationi). The basic control loop of Fig. I still applies, but measurements are predicted
u~ine, the nonlinear measurement equation h(.). The measurement model hlk.x(k)3l is,
linearized about the current p!-cdicted state vector, Sc(k + 1 1k) using the Jacobian of the
nonlinear measurement function h(.). The calculations for filter gain, state update, and
coVariance updat, inse the Jacobian hx(k). Likewise state prediction is accomplished u~-
ing the nonlinear state equation f(.). The plant model fjk. x(k)j is linearized about the-
current cstimoted state vector, i(k k.The state prediction covariance is computed using
the plant Jacobian -&~(k).

With thes.e definitions of &~(k). hx(k + 1) the extended Kalman filter equations are- the,
following.

Prediction:
c(k± + 1k) =f [k, R(k Ik)] (I

P(k + I I k) =f,(k)P(k I k)fT(k) (12)

Update:
S(k±+I)=h,(k±+1)P(k+1I Ik)hx T (k±+1)±+R(k±+1) (13)

K(k + 1) = P{& ± I I k)h,(k + 1)S-'(k ± 1) (14)

6



Xi:-. k 4 1) *-ik 4Ik) -- K(k -41 ) zfA kt + )- h~I.*' 5ck I A-i

P,:- 1 1 P4 k P : I k) W( k- 1S( k 4 1 )NN ,k4 1 (i1

11n the fer)rn1il,11 ;l!'mabov and in t he exarnplp- of th", nex:t section. one, procr-s rrr''

all incaqironurt, and makes the, ectimration. There ha.- been a considerablc amouint of

recent interest in the development of algoithrrms to process information olbt ained fro)m
a distributed <ensor rsystem. This interest arises from a need to usp parallecl prnce,-;,c
architc 'U lres efrlcirentl .. Parallcl1 compuitation is needed if multi-sensor systreic arc to 1,P

able to processz their data in real-time. A decentralized filter is prese-nted belo..

3 CENTRALIZED FILTERS

3. 1 A ngle-only- Trackig of a Poit Target

Ac all ill n rdml cton to 1Kalman f'it ering. we presen t an ext en(d 1< almain fi11 rer (I NA ) for

a. svstcni that tak-s angle-onily measurements of a point target in motion. An example of

a nT11c1 11PI re nt of this kind is passive underwater sonar. This scenario arises in robri jrs

w~hen 111ITg 'nfrA -red range sensors, w.hich are Characterized by poor depth accurac,, bill
wvhich can have, excellent ang-ilar resolution [I I].

We consider a simplified two-dimensional system with state vector x(k) =~ 12kr1; ref-

erf~iened to a global stationary' r-f-rence frame. The target moves forward in ime! wkith
knov.-n heading angle c, and speed 7T subject to additive zero-mean gaussian noisep Forircc
V,- arid 7'-

This is the pl~tqrulfion, which we can write as:

At time 1k, a sensor located at the origin takes an angular measurement z(k) which is the,
target's angular position Gk corrupted by zero-mean gaussian noise w(k) with standard
deviation iva. To relate thle angle Ok to the state vector x(k) we define the non-linear
measuremetnt function h[x(k)]:

O= h[k~x(k)] = tan- I Yk.()
27k

W~e can now Write the measuremenmt equation for this system:

z(k) = h~k, x(k)I + w(k), w(k) -(0, wo). (20)

7



Iigui-, 2 'I rarkrITI 1 poin1t tArge t t ang!l-only measurem-ntq The target moived fr-ni 1-f t
riglht %t III hV-i1!IZ arIVIe c - 47) drgres and spend T = 0 5 mete-rs per second P-a! (diannii

and F-! rnat-d ('rossli tarvet posit 1nw and a priori confidence ellipses are displayed everi 2 s~od

Thn sti anird dfifonsfr plaint nekr' sour~ef I and t. are R cmi. The measuremnit nriq'-
standairi d'xaIla t is 1.2 d&re-, -1h, coordinate axe5 are miarked off in I ni-ter initervals

The, abo'. planTt and ToePA11rpmenrt models were implemen ted using the iKalma n filtering
fa.-ilit ips developed hre at Oxford. Figtiire 2 shows a typical run, displayingz the actual
target position x(0,i the a prinri estimate i(k- I k). and an error ellipse determined by
P(A 10,i our confidence in this estimate. The initial error ellipse is a large circle., reflPcting_
lit tle ron fidencer, in thli init ializat rn . Each new. angle-only* measurement provides Only
partial inormation. squteezing thfe error ellipse in the direction perpendicular to Ok while
the error ellipse grows in the parallel direction due to plant noise.

3.2 Manieuverig Targets

XNhen targets, rnonti ilfr i.e. depart from the basic, steady-state, 11normal- dynamic he-
haviotir. a tracking filter must respond. To the filter, maneuvering is signaled bv a rapid
increase in the normahi7Ped inrnvation. Recommended methods for dealing with this situ-
ation include the following.



ii tt t i r--- i,)j . or ! ;j i I co IIIponetti I, f 'It. at tri bI f(I to t IeIP tat I

2. *s FP% Oevrii ffl'' 'Il 1 dffor" ,I a-suiticIinns in par aI! o. and comb ine thrr ': u 'pI I!

, Ir'la ht i i ta P.\.

2 t- ie.tw I! V fil IT ,. I tw~:d. I)!! Tc!iI11 a I i.\pnt Ito i t ree oIf parallel, hvpctt ljpco a II it
tmu.*t ;'. -i tree muist he pruniel rapidly lest its intenneoevhl 1

cotrijtitatinrnal reotl~nrce5.

4.N de(,lol a -evr ~Clcnrer1 I COor d ) noise: in particular mod el targEet aced era-
tT;. a 701-0 me16an, first-order Mlarkov, process (one wit h exponential an tOcrrl,1-

Pe Kr p cttn ti' in wich rrea-,urpmen ts based on the nonnTI a nT yen neI1

mrilare, used to) d-tect and estimate, the control input applied to the plaint (INtar:-
ri. 2T! I t h.0 cont rol Iit I)it! in turn is used to c or rect thet st at e estimate.

(I va 7t (itH dim, nsion flritq in whic h ithe ma neuver is considered part of te

pi nil dyInamT, ~j(q,1,ticP.n os. M a neuver dePtc tion ca use;s Ithec su bst itt ion of a difl I nitI

1- n!, rrd- d , i~ nin modI for t he lowe r-order, -qu iescentC mocel r.

It~'cony pac~ tl be perforrnia nice on mna neueri rig targtsf thr011ee fi ': tv. wr

to cva ra hle dimeFnsion ( VD ) filt ering. andt( input estima t ion ( IF ). l1e no ei

t i; t on u 1 tat Ional effort rat ios bet ween the threeTP arTe 1 :2:8. 11:S StudyVT revealIs th1a t
1e--i.lee v. ite noise filter d oe surprisin gly well, being slightly w.orse th-an the VD)

filter hut definite oh beter than the IL filter.

We chose- to impleme-nt the VD filter, in the light of its relatively' low coinpt ational
cost and relativelyv hirgh efficacy in the Bar-Shalom study' . Our illustrative appbcratnn
wa;t t(,i targen, mvinveI in, two) dimensions at constant velocity until some timei atwhc
it hegin con:1t ait accelepration in the samne direction. The qtiiescent filter is simply' the
cnstant-veloinry. target filter, th- maneuvering filter is for a constant acceleration targe.

T 1g. T~ a s lows t lie normaliZed iinnovation (i.e. error measure) of the conistant-velocit *v
fllker as time ases Performance starts degrading at 7'T 5, when acceleration begins.
I-itz 3(1 h) shows% the corresponding estimate of V position, which gradually degrades throtigh
time. Thei VD) filter ha remarkably' better performance, which underlines the imIportance1
of ar-1rate dyn ramic modeling. Fig. 3(c ) shows- the normalized innovation of the V'D filter
(not- the scale change). The maneuvering filter was switched in at T =6. Fig. 3(d) shows
the, corre-sponding estimate of y position.

3.3 Targets i Noise

Tracking an ob jet in th-e presence of spurious measurements (clutter) can be done in
SW'veral ways. All assurme a valid-ition gate outside of which measurements are ignored: its
Size IS a function of the desired probability of including the true measurement, and can he
derived fromt a rhii-s(1uarod calculation applied to the normalized innovatinn.
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FigIiro 3: 1'rrfnrmanrp of tho Variahle Dimension filter. (a) Estimated y position for targot that

strt rl- mnu ) 'rifg at 1=5, (b) Normalized innovation of quiescent filter applied to targf-t (c)

Estimated y position for target from VD filter (d) Normalized innovation of VD filter (note scale

change compared to (b)).
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Fi:1i( : - l(dan~,1 a d P lna d co,)tr-t ,, aks. ad e llp ia _ala in ar

t r,-igfi 1 irn,. sh- wiz l1,ss an,] rea-quisition of track,

1. The optimal way to track a sinvle target in clutter is the track,-splittIng appro~arh,
in w, hich a tr ,e of possible tracks is ma~ntained. This can be a cornbinatoriali.y
expenivie method.

2. An obv-ious alternativ-e to treating all measurements. as it were,. in Parallel. is to pirk
a single candidate measurement and proceed as if it were the right on-'. The obvious
candidate is th,- one closest in measurement space (that one with smallost normalizr'd
innovatinn ). so this technique is called the ncarest-neighbor standard filtcr .NINSF).
The problemn is that the true measurement can be missed.

3. A third approach is the probabilistic data associationl filtcrr, or PDAF. In it, the"
~measurements within the validation gate are probabilist ically blended to yield a

cominedp~ innovation which is input into the Kalman filtering proces';. The problem
is that the result does not correspond to that of any actual measurement.

The appl-ication illustrated in Figure 4 is tracking a constant -velocity target moving in
two dimensions. The plant and measurement are both noisy, with the measurement noise
being drawn from a contaminated Gaussian, in which with some probabil-ity the measure-
ment noise has different parameters (here, higher variance) than the noise expected by
the filter. The filter produces a validation gate, based on the innovation covariance. A
measurement within tl.e validation gate is used, while one outside the gate is ignored. In
the run illustrated, the elliptical validation gate (here a circle) shrinks while good mea-
suremenits are obtained, and grows when a measurement is missed - this adjustment
makes reacquisition more likely. The figure shows snapshots of the validation gate during
a serious loss and reacquisition of track.

a'.ti A.~ I i



General aspert , of the blhaviour of the NNSF al,d PDAF filters may b predictabl-
on abstract groids. Ior instainc e onig l? make the following predictions for uniformly
di tri iO ed cl teT aT rd high )ro Ohailitu of dc tction (probability that t he target is dotered
at all. eiwthr insid , or outsido the validation gate.)

1. \With both the NNS- and PDAF filters tracking in clutter, as time goes on it is
increasinely likely that the filter will "lose track", e.g. start tracking clutter, or havr-
an estimate of target state outside some fixed bound.

2. With a "'non-manouvring'" NNSF filter, low and high clutter levels may be ls
iimediately harmnful than medium levels, since with low clutter the target is likrl.,
to be noarest the prdicted state, and with high clutter there is Likely to be a clutter

point near the predicted state. It would seem that at intermediate level the clutter
wouldi be more likely to attract the filter away from the target.

3. The NNSF filter would seem more likely to make serious errors by tracking clutter
since "k does not weigh the evidence. The performance of the PDAF should degrade
more gracefully as conditions get worse.

We impl,-m, ned the N.NSF and PDAF filters, and used them to provide individual out-
put traks, as in the previous work. Also the programs were embedded in Monte Carlo
simulations to provide data over a number of rune in statistically similar situations. Th,.
results confirm the above expectations but also provide some surprises. Fig. 5 shows indi-
vidual tracking runs for situations with uniformly distributed clutter of increasing density.
The number of clutter points in the validation gate was determined by rounding a nor-
mal variate of indicated mean (the clutter density) and standard deviation to the nearest
integ,r, and uniforrnlv distributing the resulting number of clutter points throughout th,
validation gate volume. In these runs the volume was close to unity. The NNSF figures
should be compared with Fig. 6, which shows PDAF results for similar situations.

Figs. 5 and 6 illusirate indeed that lower clutter levels can result in worse NNSF perfor-
mance than higher levels, and that performance of both filters falls off as time increases.
They perhaps furnish a mild surprise, tyiz. the ability of the PDAF to reacquire the track.
This happens for lower clutter levels, and presumably occurs when the "signal to noise"
ratio is high in the validation gate (e.g. there are few measurements in the validation gate,
and at least one of them is near the actual position of the target and correctly is accorded
high writ. The behavicr of the PDAF in high clutter conditions is not a surprising -
it drifts, taking the average of the random clutter.

Fig. 7 shows statistics gathered over N = 70 runs with the NNSF filter. It should be
compared to Fig. 8. The plots show the fraction of lost tracks and the averagr final error
of the filter's estimate. Both functions vary over the set of tracking times {4, 8, 16, 32 }
timesteps, and both vary over the set of clutter densities { 0.25, 0.5, 1.0, 1.5, 2.0, 3.0 }.

Here "lost track" is defined as the estimated position being more than some fixed distance
(here 2.0) from the actual position of the target. Thus it is possible to imagine the filter
actually tracking clutter for the entire run, going wildly wrong in its estimates, but luckily

12
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Figire5: n hisfigre ndthenex, te iltr i a ontan-veociy linar)Kalanfiler.Th

plat oie s n ccleatoncomonnt(wit nis o man0.0an vrinc q= .2) lute

Figurme ~:in thSF tgrcknd sthetinxtrthe lters a cntat loite (eninear5) arman finr Yhs

time in NNSF, clutter density 1.0. (c) Error in X vs time in NNSF, clutter density 2.0.
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Figure 6: (a) Error in X vq time in PDAF, tracking situation parameters as in text. clutter densitiy
05. (b) Error in Y vs timne in PDAF, clutter density 1.0. (c) Error in X vs time in PDAF, clutte'r
density 2 22

//

Figure 7: This figure and the next show the fraction of ion taracks (a) and the averagr final error

(b) of the filter's estimate. Both functions vary over the set of tracking times {4, 8, 16, :32}timesteps (axis T), and both vary over the set of clutter densities y.0.25, 0.5, 1.0, 1.im, 2.0, c.0r

(axis D). "Lost track" means the estimated position is more than some fixed distance from the
actual position ofr the target. This figure shows results for the NNSF, with tracking situation as in
previous figures.

]4
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T VT

i Figure g:Lost '.rack- (h) and average final error (b) vs track length and clutter density PDAF,

with tracking situation as in last figure.

arriving inside, tho threshold distance just at tile last step. and thus not "losing track" by
this definitioni.

TIhe av'eratzc final error function is meant to quantify thre filter Performance more than
the discrete "'lost track- measure, illustrating a linear loss function corresponding to theo
intuition that an estimate closer to the truth at the final timestep is better. Results like
those in Figures .5 and 6, we are probably safe in inferring that a closer final estimate also
betokens a better estimate throughout the run.

i The plots are perhaps surprising in that by this definition of lost track, the NNSF outper-
!forms the PDAF fair]l' convincing] 'y over a large range. These results are typical of man%

we obtained, but it is occasionally possible to engineer situations where the PDAF loses
track less often. At least it seems fair to say that the situation is more complicated than
it appears from Figure 6.1 of [3], which indicates a marked superiority of PDAF along
axes whose semantic:s are not clear from tile text (perhaps the original paper gives more
details).

The plots ate perhap not surprising in that they accord with the prediction Of graceful
degradation of the PDAF in terms of the average error metric, using which it convincingl 'y
outperforms the NNSF. The higher sensitivity of NNSF to intermediate clutter levels is
again demonstrated.

3.4 Navigation by Multi-target Tracking

We are using a Kalman -fil ter-based. multi-target tracking approach to mobile robot navi-
gation. The goal is to get optimal performance with a single sensor through a strategy of
Active Sensor Control. Ultimately, we shall use a hierarchical control strategy with three
layers (attention. looking, recognition). In the limited navigational task we undertake first
(maneuvering in a known laboratory with unknown obstacles), the recognition as pect is

1.5
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l :n nmd into th, 1oolkinl a~poct.

Ilie navi ,i ,n problemn can 1,e divided into t ho two distinct tasks of localization (dOtpr-
ni ti V tho ab Vl to pozition of the robot), and ohstacle avoidance. In the multi target

trackinv framowork. h0cah1zati'D in a process of looking for crp(clcd events: the sensnrs are

diroctod to in Mantiato tho locations of beacons, which are reliable, easy-to-sense, natural

features of the robot's environment, such as the walls of the room. Precise localization of
position can then be obtained by using a target-based [3] approach to track these beacons
as the robot moves. The task of obstacle avoidance is achieved by a measurement-basd
[25, tracking technique whso attention is captured by unexplained events in the path
of tho, robo We show the localization component of this navigation technique using a
single sonar sensor mounted on a simple mobile robot with point dynamics. Although the

schme har been run on the robot hardware, the illustrations come from a simulator we
are developing that will incorporate detailed sensor and environment models for sonar.

Ultimately this work will incorporate both the "top-down" and "bottom-up" control sty,,s
that can be found in perception (see the Discussion section). In the full implementation.
th r-coltn/?,u layer is complox. involving path-planning. obstacle avoidance, and mondel
learnin:z and maintenance-- slnw processes of a global nature. The attention layer provides
a high-sperd interface to the real world.

3.4.1 The System Model

The system dynamics for one of Oxford's mobile vehicles are illustrated in Fig. 9(a). The
state of the vehicle at time tk is described by the state vector x(k) = (xkykk. T&). xk

and yk are the x and y coordinates of the center of the vehicle referenced to a global frame.
6 is tho orientation of the vehicle referenced to a global frame. Tk is the spee of the
vehicle at time tk. which represents the linear distance the vehicle will travel during the

time int rval from tf to tf,. The motion of vehicle is such that during each timestep it
traveic first in a straight line forward from position (Xk', yk) to position ('Tk+l. yk 4 ). then
rotates to its final orientation 0k+i.

27k+1 = Xk + Tk cosO;k

Y+1 --z Yk -Tksin k

The robot motion is controlled by specifying a control input u(k) = (O,O,A¢&,AT)T.
A,,k controls the final rotation applied after the linear movement forward for the current
tim,-step. This rotation is subject to a random disturbance v,, modeled as zero-mean
Gaussian with variance q¢:

+ =d6k + A¢ + V,, vd, - IVN(O,q )

AT controls the distance traveled forward for the next time-step, which is subject to a
random disturbance VT, modeled as zero-mean Gaussian with variance qT:

Tk+i =ATk + VT, VT (O,qT)
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Vigilrre 0: (a) Syst-m dynamics for robot -vehicle. (b) Taking a range measurement from a wall

(rk . ?k-Ck 1 i thei position of the robot vehicle in global coordinates (Ri. 0,) represents a line in
global roord~rnates. zi is a noisy measurement of the perpendicular distance from the v ehicle to
wall 1),

The overall plant equation of the system isE l1 .k±+Tk COS 4k [0 [0][k~ 1k+kSin (21)k+ I 611

- I- 0 J J -

which maY he written as:

x( 9+ 1) = f [k. x(k)]+u(k)+v(k), v(k)n(aQ(k)) (22)

where fk.x(k)J is a non-linear function of the system state.

3.4.2 The Measurement Model

The measurement model is for a, stationary robot vehicle taking range measurements to a
number of walls using a sonar sensor. For now, we assume perfect measurements Of Ok the
orientation of the vehicle. (Our system has a 9-bit resolution digital compass that gives
us this information. We also have developed reliable algorithms to extract orientation
information directly from the sonar data). The model of the environment is a list of n ne

segments that represent walls and large planar objects in the room. A lie segment pt is
represented by R,, its perpendicular distance from the origin, and Oi, its orientation with
respect to the origin. In terms of these parameters, the equation of the line is:

Ri - cosO, - ysinOi = 0 (23)
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The sensor returns the minimum distance of any ,!Jjct detected in its 30 drrr, beam
width. Thus if it is pointed in a direction approximately perpendicular to the wall. the
range value obtained is the perpendicular distance from the vehicle to the wall. The acti'e

sensor control framework us an a priori estimate of position R(k I k - 1) to dir rt tl
sensor to look ne'rlv perpendicular to a given wall p, = (R,,0,) to obtain a macurernenI
z, of the perpendicular distance to the wall (Fig. 9(b)).

Let r, denote the true perpendicular distance from a given vehicle location (2-k. Yk ) to the
wall. Then

r,= - X cos 0, - Yk sin 0,I. (24)

The absolute value arises since the vehicle could be on either side of the wall. The mea-
surement z, is the true perpendicular distance ri corrupted by zero-mean Gaussian noise
it with variance u--:

z, = ri + w, u, - N(0, u,)

Supporp that at time tk the robot is predicted to be in the location S*(k k - I). Ihe
predicted location is used to suR..,st ni walls to obtain range readings from. The sn'r
is directed to look for each of these walls, and the returned values are checked with an
appropriate validation gate to yield validated range readings zi for rn of the r visible wallk.
We comine th validated range, measurements to form a composite measurement vector
z(k) = (. ..... XmT. To relate this measurement vector z(k) to the vehicle position x(k).
we dofin,, th,, non-linear function h

JR1 - xkcosO1 - Yk sin 01

h[k. x(k)]= (25)
L - kcos 0 - Yk sin0mi

Finally. a composite noise vector w(k) completes the measurement model:

z(k) = h[k,x(k)] + w(k), w(k) - A'(0, R(k)) (26)

The function h[k.x(k) incorporates the prior information concerning the walls P, for
which validated range readings have been obtained at this time interval. So far we have
ignored the data association problem, assuming that each range measurement comes from
the appropriate wall. The viability of this assumption depends on how accurately the
system model predicts the vehicle's movement; experimentally it has been justified so far.

3.4.3 Extended Kalman Filter Equations

The extended Kalman filter equations for the plant and measurement models described
above in equations 22 and 26 use linearized plant and measurement models. The plant

18



model fUk. x1 k )I is linearized about the current rstimated state vector, k( k k We ac-

comphdli this by defininF. the plant Jacobian. fx(k):

1 0 - Tk Sin dhk COSqk

0.( :k[kj1 0 X 1 0 (27)

0 0 0 0 x=*(klk)

The measurement model hfkx(k)] is linearized about the current predicted state vector,
Sc(k + 1 k k). We define the measurement Jacob*-an hx(k + 1) to be:

cos 01  +sin0 1  0 0

hx(k 4- 1) [VxhT(k, x)]X=R(k4-1Ik) = (2,)

-cos, sinP,, 0 0

The ± sian- arise because h~k.x(k)] contains the absolute value function for reasons givn
ahove. In calculating f,(k), the appropriate sign for each wall is chosen based on tl~c
dead-rockoning estimate of thp robot's position. The absolute value functions would mak,
the Jacobian of h[k.x(k) unstable at sensing locations very close to the wall. This i
not a problem in practice because the sensor is located at the center of the vehicle. The
definitions of f&(k) and hx(k + 1) are used in the extended Kalman filter equations (11)
- (16) in a multi-target control structure.

3.4.4 Results

We avoid some of the filter initialization difficulties by starting the vehicle from an exactly-
known initial location and setting the initial state covariance matrix P(0 10) to zero.
Because the motion of the robot vehicle has a significant unpredictable component, the
state covariance matrix P(k I k) grows considerably with time if no updates of position
from the sensor are provided.

Four ruins of the simulated system are shown in Fig. 10. The error ellipse is defined by
the first four elements of P(k I k), and represents the uncertainty in the prediction of the
vehicle position (.Tk,Yk). In Fig. 10(a), the speed noise VT causes the uncertainty ellipse
to grow with time in the direction of motion of the vehicle. The heading angle noise
v4 causes the uncertainty ellipse to grow in the direction perpendicular to the vehicle's
motion. Our task for the measurement process is to decrease the size of this ellipse, and
hence increase the confidence in the state estimate i(k I k). Fig. 10(b) and (c) show the
effects of measurements from one and two walls, respectively. Fig. 10(d) shows a run in a
complex environment with many walls. The sensor is directed to take measurements from
all visible walls.
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(c) Cd)

Figure 10: (a) A run with no validated measurements. The triangle represents the actual vehicle
position and orientation (-'. y,. d,), the rectangle represents the estimated vehicle position and
orientation, and the ellipse represents the uncertainty in the estimates of zk and yk. (b) A run
taking range measurements from a single wall. The error ellipse shrinks perpendicular to the wall
as a posteriori confidence in the estimate of zk and yk increases with measurements. The wall
comes into view and disappears from view during the run, causing large effects in the error ellipse.
(c) Measurements from two walls. Information from two directions reduces error. (d) A run in a
complex environment using measurements from all walls visible from a given location.
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Figure 11: Choosing thf, b,-st Sensing target for (a) simplified two-wall environnwn and (t,)
multiple-wall environment All visible sensing targets are evaluated to choosp the tarat that
provides tHhe most useful information based on the a prior: estimate of 1 k and Vk. Th- sens,-,r th-n

look. for this "best" wall to update the vehicle position.

3.4.5 Choosing the Best Sensing Target

Since range measurements from a singl,, wall provide only partial information,, a wal]-bacd
sonar locali7ation algorithm needs to take measurements from several different dirctionZ.
as illustrated in the examples above. However, it is undesirable in many cases to mak,,
the vehicle stop to take observations of several different walls from the same location. Io
give the vehicle a dynamic. "on-the-flv'" localization capability we advocate a strategy of
contilling the sensor to track different walls successively as the vehicle mov,.

Our task is to keep the state estimate covariance P(k I k) as small as possible. This
corresponds to keeping the error ellipse determined by P(k I k) from growing too large
in an' one direction. Using this criterion, the best sensing target is the wall most nearly
perpendicular to the largest eigenvector of P(k I k). Fig. 11 shows runs in two-wall
and multiple-wall environments that follow this control policy of choosing the best wall.
This strategy provides a means of localizing position "on-the-fly" with a single sensor by
focusing attention on different walls that come in and out of view as the robot moves.
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3.4.6 Future Work

In thi ito plmon it in, uing, a sin gl, Kalman filter to derive the position of the robot is

efertive hrall,,

1. "Ihm environment has been known exactly a priori

2. The environment has no moving objects and no clutter.

In a practical sit oation, an ultrasonic navigation system may need to deal with an unknown

environrnnt that contains unmodeled walls, unknown moving objects, and clutter. For
this reason, in addition to the central Kalman filter for vehicle position, a multi-targrt
framework that initializes and maintains tracks for individual targets in the environment
is nces-sary. We plan to imple-ment the three-layer strategy of Active Sensor Control as a
mechanism for managing the multi-target tracking approach to navigation. In the sensor
control framewnrk, we shall develop a set of local attention processes. each trackina a
particular tare,! or sear,-hing for new targ ts, and carrying out some fast. local pror,ssi T

to facilitate this local contr,'. The looking layer will perform the multi-targe: tracking
pr- se. a-ci ininc 1[,cal tracking r,,nurce, to follow individual pre-identified targets and
responding i) now targets and unexplained events.

4 A DECENTRALIZED FILTER

4.1 Fully Decentralized Decision Making

Pr-vini, attempts at dec ptralized Kalman filtering have either assumed a complet,ly
cpntralized architectire (Vir. 1) in which all the sensors' observations are passed -)ak to
a central prr,rcssing facility tiat fuses the data, [3], [], [7], or assumed some level of local
embedded processing capability in each sensing node, but still however relying on a cen-
tral procs~in facility to pe1rforM the global data fusion (ie. hierarchical decentralization)
[1c,]. [17. Since both of th,, methods require a single central facility to perform overall
data fusinn thy suffer from th, asnciatd problems: potential computational bottleneck
and the" rqicptibility to total Ystmn failure if the central facility should fail. Ilarris and
White [15 ] give descriptions of algorithms for decentralized system architectures using
blackboards for communication between nodes, but the' suffer from the well-known prob-
lems associated with blackboard systems (such as keeping the blackboard current and free
of redundant information).

Fully decentralized decision making [13] is advantageous to hierarchically decentralized
and other forms -f distributed system architectures because:

1. It allows complete parallelization of any algorithm. Therefore the system would
b, ideal for implementation on a parallel processing network (such as a trans-

puter array).
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Figure 12: Algorithm for individual nodes.

2. It lads to a speed increase over other architectures by removing potential
computational bottlenecks.

T3. P civ ' a system that is very resilient to loss of one or more of its nodes (ie. a
l~ic}!V ,snriiahh( svstcnfl<.

l)istriulit,, ,ncTi:o and a!oorIhms for sensor fusion that can be distributed amongst
1,-, ,l n fe have iiiter,,Fti P applications in robotics. process plant and C I

fica I aclthrilm we pren t here is fullY decentralized, requiring no central prOrePrin:
f;,.ii' .o 1-11f-rI da' a fion 2 1]. 1 he information communicated betkeCn tiodes i

simple and th-i, o is for a.ssimilation of other nodes' data are no more compl,.: thai.
thos, for a conentional Kalman Filter. Our filter reaches the same global optimum as
a non ,,r~al Kalman Filr. but since this filter may be run simultaneously at the rn
sen~i~no ocd r,of an n node zvstem it performs faster.

4.1.1 The Decentralizing Algorithm

Fie. 12 ,. 1 the oporatinn performed by each one of the nod,,; in the svs em. Each
ntio ' in iti; li 7 ld with stimate- of th- state of the system together with an associated
varianTc, of that Tiiiat,. These initial values for state estimates and variances may be
ol,ta i Td in s,veral wkays and the methods used by the implementations given in this paper
ar, outlined in later sections. After initialization, the main loop begins with each node
taking- a readinrg from it- sensor of the stat, of the system. With this reading (and its
aFF ,,( ,t var a nr) thte node is able to compute conventional Kalman Filter equation,
to reacih its mn, new estimate of the state. Each node then broadcasts this estimate to
th" othr nodep and receives information being broadcast to it. Last, each node computes
assimilation equations to take into account the data it has just received; in fact, each node
thus locally computes a global estimate.

This paper inrlud,s details of a linear version of the algorithm in which each node shares
th, same ro(,rdint,, frame and has the same representation of the state of the system as
other nodes. In the nonlinear case, each node, although measuring the same state, is in
itq own coordinat,- frame and uses its own representation of the state which may or may
not coincide with the representation used by other nodes. This case is treated in full in
[21] and iF not dlrivod here. although experimental results are given.
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4.1.2 The Linear Algorithm

Consider a svstcni with state vector x. taking observations z with Gausian noise sourcn-

V." aTd v ro,, i :

x(k 4- 1) F(k)x(k) + G(k)w(k) (29)

z(k) =Hk)x(k) + v(k) (30)

where

r{ ( ) (,,.(j). v 7 (j) ) CT (k) R(k) ) .1)

Ofl(in it i5 trae that C (the covariance between plant and measurement noise) i z'ro.

For such a system the conventional Kalman Filter equations for state prediction x(k+ 1 ki.

variance prediction P(k -4- 1 I k), state update x(k + 1 I k + 1) and variance update

P(A, + I 1 4- 1). where the variance is defined as

P(k k) = E{(x(k) - k(k Ik)ffx(k) - ,R(k f k)JT ( Zk}

may b, found in (lar-Shalom [3]) and have the following form:

Prediction:

i(k + 1 A-) f'5(k I k) + GCR-lz(k) (32)

P(k 4 1 k) =P(k I k)FT + GQGT (33)

Update:

il(k 4- 1 k + 1) = [I - WH]k(k + I I k) + Wz(k + 1) (31)

P-'(k+ 1lk + 1) = P-(k+ 1 k)+ HTR-IH (35)

whforc

V = P(k + I Ik + I)HTR -  (36)
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Y= F - GCR-111 37)

1o d'cntrali 7 them w,, muSt make the followk ing As:utuption (from lI khiIipour [I I]1:
Assume we ran partit*I t e o t) o lr vat -n ector into T77 subvector- of dine, ion in,. A -
sUme alo that w" can portion thlie t matrix conformatl'v. (This nian- a ndc, cannot
make a fll-rank obsorvation of the system state.) We can therefore say that

and thiat
E{v(k)vT(k)} = bloc,"diag{R,(k) ..., R,,(k)}

H(k) ={tzT(k)...,ITz (k)}
z(k-) = zT(k )-...Zr(k!

From this assumption we can also partition the F and G matrices and also ti stato
('silfa, and variances,. R and P. This allows each node to implement it,; own local
Kalla! Lilt er for its ovn local estimate of the state.

Each node. i hac a syVstem model and takes obsrvations that are ind ivid uali7ed vrsions
of eq. (29) - (.37). 1Ihat is, simply subccript the following variables in those equalions
with z: x. z, F. F" . G, 11, Q, C, R, P. XV.

4.1.3 Derivation of Assimilation Equations

We now derive thp equations each node computes to assimilate the information supplied
by other node. leferences to equations (29) - (37) mean their local versions. From the
Assumption above.

H'R-'(k)H 1 .[H,(R, '(k)H,] (3,S)

ano also

m

W(k)z(k)= P(k k)Y[HTR '(k)z(k)]. (39)

From (35) we can say

HTR-'1H, = P7'(k + 1[k + 1)- P'(k + 1 ik). (40)

Hence from (35), (38) and (40) we can write

P-I(k + 1 I k + 1) P-'(k + 1 I k)+ E[P 1 (k + I I k + 1) - P7'(k + I k)],
)=1
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a,.\ lv placing[ this asimilation equation at each node (decpntralizing) we arrive at

Pk' - 4- 1)= P'(A- + I I k) + k P;-'(k- I k + 1) - P'(k +
3=1

Jhe surnm;Oirnn over 2 does not include the term when j = i since this has already bhn
account ed for in (15).

Now premultiplving (40) by P,(k + I I k + 1) and rearranging gAc.

I - WV,1, = P,(k, + I I k +4 1)Pt-1(k + I I k). (41)

Premultiplying (31) by P-1(k + 1 ik + 1), using (41) and rearranging gives

HR7z,(k+ I) P-'(k + 1 1k4- 1)x,(k + II k+ 1)- P-'(k + 1I k)x(k + 1 k). (12)

Using (31). (41) and (42) and decentralizing gives

xfk 1 k 1) P,(k + I k + 1)[P (k+ I k):kj(k + 1 k)

+Z{P2'(k + IIk + 1)i,(k.+ 11k+ 1- Pj'(k+ 11 k),k,(k-- 1 k)) ].
2=1

From (32) ve can write

G,C,R-z,(k) = xi(k+ I k) - f'ix,(k I k) (43)

and rioti n. that fron, the Assumption we can write

GCR-'z = -[G ,CjR1-'z,]
I=1

we car! derive

i~k-~ Ik)F,(k)* 2,(k I k) ± Z(:k1 (k + 1I1k) - fFjk):k1 (k + 1 k + 1}

4.1.4 Assimilation Equations

To reiterate: each node takes readings from its sensor, computes its local version of equa-
tions 3.3 - 34. communicates to all other nodes (see below) and then computes the equations
given b'o v.

Prediction:

,,(k 4 1 1 k) = f,(k),,(k I k) + Zf{*,(k I I k)- fFj(k)kj(k - lk + 1)} (44)
j=2
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P,!b J- k) = (k)P,(k + I I k + 1) F' (k) + G,(k)Q, (k)G7(")(

Update:

:R,(k-+ I k- 1)= P,(k+ 1 k+ 1)[P-'(k + 1 k)*(k + I k)

state error info

-'( 1J 41-4 1 P (k.+IIk) +Z{P'(k+lIk+l)-P-'(k + k)} (47)

variance error info

uiirin:( I ) = *e and P(O -1) = P 0 for initialization of each node.

(I h cITiunaticus above are over every node j froi j = 1 to j = m except for when

I ho trMs stf Crrnr info and tarin'ce error info are the values tranrmittd by eaKh

nod, Io earh otlir node duri,. the communication step of Fig. 12. The information to

br- communicated 1, no complex (one vector and one matrix per iteration). and the data
fusion equatioTIQ ar,- no more complex than the local estimate update equations.

4.2 Inplementation

The alnrithms have been implemented on a SUN 3.0 computer simulating several nodes
running simultaneously. The application is a pursuer-evader game in which there are a
number of independent pursuers attempting to surround and trap a moving evader. The
pursuers and evadet move on a two dimensional surface: the evader only moves horizontally
and with a constant velocity. Each pursuer is an independent mobile sensing node taking
noisy observations of the single moving evader. Each pursuer has its own model of the
system (ie. the evader's motion pattern) and they all communicate between themselves
to arrive at a global decision of the location of the evader so that they can then decide
where best to move to surround it (see Fig. 13).

4.2.1 Linear Case

In this case each pursuer takes full-state z = (x, y, i)T observations of the evader, corrupted
by noise (the noisiness of a node's readings being proportional to the distance between
that pursuer and the evader) and each has a correct model of the evader's dynamics. The
evader is travelling in the horizontal direction at constant velocity. After taking readings
the pursuers evaluate local versions of equations 33 - 34 and then calculate the data they

must transmit all the other pursuers. Each communicates this data to each other pursuer
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Figure 13: (a) A ty~pical starting configuration of pursuers and the evader. (b) Tlhe pursuers ha',,,

surrounded the evader.

and collect others' varianice error info and state error info to arrive at a global estimate

for the (.,y) position of the evader and also its velocity in the x direction. The Kalman
filter is initialized by setting the observed velocity of the evader to zero for the first five
iterations to allow the filter to settle before the noisy observations of the velocity are taken
into account.

4.2.2 Results

Fig . 14 and 15 arp graphs of the global estimates from two pursuers (only two are shown
for clarity) and the evader's actual parameters plotted against number of iterations. These
results show:

1. Each node arrives at the same (albeit initially inaccurate) global estimate from
tl very first iteration. Therefore, by communication the evaders have reached
a common group consensus of the position of the evader.

2. The global estimates for the (x,y) positions soon converge to very close to
the actual values and continue to track it well. The filter converges faster
than a conventional Kalman Filter since it is able to process rn lots of sensors'
information simultaneously.

3. The global estimate for the velocity of the evader * converges more slowly to
the actual value but this is to be expected since i is small compared to the
observation noise and also differentiation always amplifies hoist.
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Figure 14: (a) Linear case x-coordinate estimate (actual = solid rising line). (b) Linear case
v-coordinat- Pstimate (actual 17R). (c) Linear case horizontal velocity estimate (actual = 4 0).
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Figure 15: (a) Non-linear case x-coordinate estimate (actual =solid rising line). (b) Non-linear
case y-coordinate estimate (actual = 155).
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4.2.3 Nonlinear Case

In thii, rae each pursue-r has an (r. P. i.,O) state representation of the position of the evader.
which is IMnvinI iTi the horizontal direction with a constant velocitv. lHowevor, in order
to ciniulate a realistic case where each pursuer is a photodiode bpsed device, nygnh only
tnica~ -mn ts (r( tatkcu, No range data is available from the sensors so communication
between the pursuer is essential for pursuers to arrive at a full state vector. Each pursuer
takes itq sensor measurement and constructs its own view of the state of the object.
Each purcuer knows where it is and where all the other pursuers were from the last
communication step so each pursuer is able to transmit appropriately transformed variance
error and state error information to the others. (Also each pursuer transmits its current
positior t,, all tth. otlhcrs). The assinilaticn equations are t~umputed and each prsui"
ends up with a full state representation of the evader. This 'filling in* of the empty states
occurs because if one computes the linear weighted sum of a node's state estimate x, and
another node's transformed estimate ixj the new state vector xi obtained is full rank (ie.
the intersection of the angle estimates of the two nodes has been solved to give range data)

f i if-

X I= (ItEx Xt + r Ix,)(,r + r r.- +

wher,e x, and x. are (r. 0 state vectors with initially no values for r and ,- and )E,-
are the associated information matrices with zeroes in the range information positions
one obtains the correct estimate for r in x,. The filter required five stops to arrive at
reasonably accurate estimates for the r and i" terms for each pursuer. Ihen it was able to
follow the evader, updating its estimates for i and 9 on each iteration.

4.2.4 Results

Results are shown in Fig. 15. which shows the (x, y) position of the evader and the (.. r)
estimal,- of two pursuers. Only two pursuers' estimates are shown for clarity. The (r.0)
state representations of each pursuer have been converted to cartesian form for these plots,
simply so that the estimates of two pursuers may be directly compared. The results show
that:

1. Thp pursuers are able to track the evader despite each pursuer taking onl' a
partial estimate of the state. By communication between themselves they are
able to arrive at a full state vector estimate for the position of the evader.

2. The pursuers are in agreement over the position of the evader. The non-
linearities in the system (ie. using an (r,O) representation for a linear cartesian
motion) cause the slight error between the two pursuers' estimates.

4.3 The Future

The algorithm has successfully been implemented in OCCAM on an array of sensors, each
with a photodiode based angle detector and its own transputer. The algorithm is being
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te l) oI( r, al d ita. in ox ) riient with sinsorv retiirnin g mpasuremr t a I P(1 r i,,j .
Also thol algorithn) maY bp extended to allow tracking of several objeocts sintiltar,,nusly.

The motivation behind this work was to attempt to discover and set down inatlinmaticallv
vhat pieces of informatinn rnu be communicated between a group of sensors in or'er for

them to reach a conclucion. This problem must now be investigated further and bevond
the limits of just a simple linear tracking filter algorithm. It appears that the multi-
sensor network we have analysed here may be thought of as a complex Marker chain with
information propagating through each node. This line of research borders onto the widrl
issue of sensor models and may throw some lig)it on how best to mod-] complex sensors
such as ('CI) cameras in order that the value of the information returned by a sensor in

any arbitrary situation may be asspcned by other sensors. Being able to mode] sensors in
this way would lead to *he possibility of building intelligent sensing nodes that could be
connected togthr as a fully decentralized network.

5 DISCUSSION

5.1 Optirial Estimation and Active Intelligence

Optimal estimation techniques have at least three distinct roles to play in real-time sP-
sorimotor svs rns.

1. Thev can be used a the basic paradigm for estimating the state of systems inicryal
to the observer. Estimating external states is akin to pcrception.

2. They can bp used to estimate the state of systems intcrnal to the observer. Estimat-
ing internal state involves aspects of prop rioccption (using information from internal
sensors). but can also involve sensing the outside world, especially to determine
dynamic observer parameters such as location and velocity.

3. They can be used as low-level utilities in service of several aspects of perception or
action.

5.1.1 Control Styles in Perception

Top-down (expectation-driven, hypothesis-verification) methods cope with the inherent
underdetermined and computationally intensive nature of perception by using apriori
knowledge to constrain the space of interpretations for perceptual data. In a naviga-
tion contpxt, these methods correspond to map-guided route-finding, perhaps landmark
recognition and similar tasks in which an internal model exists and the input is expected.

One important role of perception is to cope with the unexpected. This seeming truism
is often ignored. and has deep implications for computational perceptual models. In par-
ticular it implies that tops-down control strategies are by themselves inadequate. In a
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navigaltional context, obstacle avoidanc illustrates thic role. The complemnt ar control

strategy is bottom-lp, or data-driven: Here the style is often a fixed order of processing of

input data {say by successive levels of feature detection and extraction) leading to) increas-

ingly abstract levels of description of the input. As technology improves it is becoming

possible to achieve the massive data-processing effort in real time, and the practical con-

siderations that have partially motivated the tops-down approach are vanishing (see, e.g.

[6]).

In one sense, the Kalman filter is an example of expectation-driven perception. By defi-

nition it incorporates explicit models of dynamics and noise. The strength of the Kalman

fi!ter for estimation is that it has these models at its disposal, but requiring them limit,

the sorts of perceptual jobs that the Kalman filter can reasonably be expected to perform.

The severe tops-down requirements can be mitigated to some extent, and at some coct,

by such measures as running several different filters embodying different assumptions in

parallel, switching between filters when lack of fit motivates such a switch, allowing th,

filter to estimate control inputs to the plant, etc., as we have seen in earlier sections.

Despito such seemingly sophisticated adaptive capabilities, the extensive literatire on

Kalman filtering applications (e.g. [3.2-5.1,2,12.14,18,22,23,101 reveals that the p(rcrpthal

tasks most ofien attempted are those in which the plant (often target) follows well-known

a ld rather simple (e.g. ballistic) dynamic laws. and in which the target is modeled as a

point in space. The typical perceptual task is tracking the (perhaps maneuvering) target

(perhaps in clutter). Thus the perceptual task (data association, or segrnntatio7n), consists
of the twofold problem of linking measurements together into tracks and ignoring spurious
data. The basic Kalman filter mechanism provides help in the way of quantified measures

of uncertainty. surprise, information, expectation. etc. but provides nothing directly to
cope with the familiar problems of controlling search in interpretation space. The track-

splitting. NNSF. PDAF. etc. approaches all have analogs in the edge-linking problm' in
computer vision, for example.

Dissatisfaction wit.h the paradigm of expectation-driven low-level perception, combined

with skepticism about the efficacy of local bottom-up segmentation, has motivated other

algorithm, for target tracking. Their goal is often to accomplish perceptual grouping using
global, expectation-driven metrics of grouping quality, as well as to cope with input in a

more data-driven way [19]. However, much remains to be done here.

5.1.2 Perception: Estimating External State

It seems that if optimal estimation techniques are to be a paradigm for perception, at least
the following conditions must apply.

1. The dynamics of the objects must obey known, predictable laws.

2. The noise mean and covariance properties of the domain dynamics and of the mea-
surement system must be known apriori.

32



3. '1tho data iay arise from several information sources - the Kalman filtering tech -

niqlil provides a principled way to combine (fuse) them.

4. ihe raw perceptual input must be processed to yield a rneacurem-nt vector con-

taining information about the state of the observed objects. If objoctis ar- more

complicated than single points, this step may call for solving "the vision problem"

in order to do tracking. An extreme example is reliable tracking of a face in a crowd.

using data from a face-recognizer. The point is that even such basic vision tasks

as reg in-finding are not well understood, and should not be lightly suggosted as

preprocessing" for a tracker.

5. eauremernt data must be available over a significant interval, probably tens of
time-steps for reasonably complex domain dynamics.

6. Dealing with complex perceptual events in real time will call for substantial compu-

tational resources.

5.1.3 Proprioception: Estimating Internal State

The ot~ier main use for Kalman filters is for internal state estimation, in aid of complex.
ofion adaptive, control (e.g., [10]). Such proprioception is not divorced from perception: A
vehicle can determine its position from fixed beacons (say landmarks or stars) by tracking

then and interpreting the data with a Kalman filter. In practice, the contrast between the
sophistication of the dynamic models for plants that are to be estimated and controlled
and the modelz of external targets is dramatic (for a plant to be controlled, sometimes

80 state variables, for a target to be tracked, perhaps six). Presumably the observer's
state description equations are relatively stable, and devoting computational and analytic

resources to precise observer description is a good long-term investment that will pay off
in better information about and control over its state. For another thing, the observables
themslvs are under more control. A roving vehicle can observe bar-coded reflectors as

location beacons. or can track static features such as walls or furniture, whose apparent

motion arises more or less predictably from observer motion.

Thus th ,- proprioception problem is inherently more "expectation driven" than the per-

ceptijui problem, and INalman filtering techniques may well be an appropriate paradigm
sine the following conditions apply.

1. The dynamics of the observer obeys known, predictable laws. They may be complex

to model but there is only a single, known system to characterise, and it makes sense
that, the observer is something the observer itself knows best.

2. Proprioception may be provided by on-board sensors such as tachometers, odome-
ters, shaft encoders, etc.

3. The noise mean and covariance properties of the observer dynamics and its mea-

surement system can be experimentally determined "off-line", as can the properties
of the expected visual stimuli.
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4 1 th raA perceptual input must be processed to yield a measirement vecl-r con
taining information about the state of the obcerver, but the observer car chooqo to

interpret a limited set of stimuli by customized methods if internal state estimation

is the only goa .

5. Presumablv mea-urement data is available for a significant interval, on the order of

the "'lifetime" of the observer, rather than of the lifetime of the unexpected visual
phenomena that occur in perception.

6. Computational requirements ma not be as severe since the update rate needed for
proprioception may be lower than that for perception.

5.2 The Future

We plan to use both aspects of estimation in work at Rochester to integrate real-time
vision and motion with high-level planning in a hierarchical parallel system. An eariy step
has been the inclusion of estimation techniques in the robot's gaze control systm 4
This woik is in the simulation stage, but a simulator is needed in any event to implement
the Smith predictor used to cope with software delays in the system. The simulator uses a
suboptimal. time-invariant filter (the o - 43 filter [3] ) on the two-dimensional ima.- data
and the three-dimensional target location data presumed available from binocular stereo,
kinetic depth calculations, or other means.

6 APPENDIX

6.1 The Kaliuaii Filter Utilities

Thp EIKF utilities are supported by a standard suite of matrix routines. The filter, plant
and observer are implemented as structures. There is very little use of global storage:
inotead there is storage attached to structures, and static working storage within routines.
Filters may currently be connected in linked lists, and (should the need arise) the linking
mechanism is easy to extend to support trees and forests of filters. The code is in several
files, some of which should not need to change with the application, some of which must.
They are available in cmb/src/ekf. The PDAF application (the most recent) is in ... /pdaf.
also needed are various header files in cmb/include and the statistical and matrix utilities
in cmb/lib.

6.1.1 Sample Main Loop

The main control loop for the example of the variable dimension filter looks approximately
like the following code fragment.

fquies = creat-filt(QuiesX._Dim, ,QuiesZDim,Qname);
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fmaneu = cr-filter(ManeuXDim,ManeuZDim,Mname);

p = create-plant(ManeuXDim,,Pname);

o = create-obs(Maneu-XDim, ManeuZDim,Oname);

init-filter(fquies,p,o);

current-f = fquies;

current-time = 0.0;

for(i=O;i<steps; i++)
{

current-time -= timestep:

delta-plant(p);
measure(p,o);

ekf(current-f,p,o);
report(current-f,p); /*simulation output*/

if (current-f.norm-innov > thresh)
{
init-f2(fmaneu,current-f,p,o);

current-f = fmaneu;

}}

The basic loop can be embedded in an interactive, window-based environnent or can
simply accept keyboard input and output data to files.

6.1.2 Data Structures

extern struct Filter;

typedef struct Filter

{
int XDIM; /*plant state dimension*/

int ZDIM; /*measurement dimension*/
int name; /*filter ID*/

matrix-t H; /*measurement matrix*/
matrix-t F; /*plant dynamics matrix -- F and H may

not be used in extended filter... need
f and h functions */

matrix-t R; /*measurement noise covariance*/
matrix-t W; /*Kalman gain matrix*/

matrix-t S; /*Innovation covariance*/
matrix-t Q; /*State noise covariance*/

matrix-t P-est; /*predicted state error covariance*/
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ratrix-t xhat..est; /*Predicted state*!

mnatrix-t rho; /*fading memory likelihood function*!

matrix.t norm-staterr; /*norm. state err. for sims'!
matrix-t norrw-innov; /*normnalized innovation'!

double alpha; /*ratio for fading memory*!

matrix-t (*comp~te-P)(); /' funce for ekf matrices*!

matrix-t (*compute.F) ()
matrix.t (*compute-.R)();
struct Filter 'next; /*filter linking information*!

struct Filter 'last;

I *Fi'ltert;

typedef struct plant I' redesigned for each plant*!

int namre; /*plant ID*/
mnt XDIH; /'plant state dimension'!
matrix-t F; /'Plant dynamics*!
matrix-t X; /*Plant state'!
znatrix-t V; /*Plant noise vector*/

matrix-t pure-x; /*noiseless state'!
double sqrtq; !'noise standard deviation'!

I 'plant-t;

typedef struct observer /* redesigned for each observer*/

mnt name;
mnt OBSXDIH;
mnt ZDIM;
matrix-t obs.-x; /'observed x'!
matrix-t obs-x-pure; /'noiseless observed x'!
double sqrtrx;
double sqrtry;

double sqrtrs; /'noise standard devs'!

matrix-t w;
matrix.t z;

matrix-t pure-z; /*noiseless observation*!

I 'observer-t;

6.2 Comiputational Effort

Hlere we as-qess the computational requirements of the current implementation of the
Kalman filter. Let X be the dimensionality of the state vector and Z that of the measure-
menmt .,Prtor.
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lifl;1ziric Q fiIteOr alloca7teP- nieniorv for 3.I mnat rices. varyina in s'71' froim X x A to x I.

At eac-h itoration of the, nonlinear (extended) K alman filter, proceduirfs must~ Ihe run to
evaIuiate, 12(.) ('the, in-a ureinent equation). to predict the incas u rormen t. an(, to connput'
R? (the rn ca i~i renlnnt cova riance ). bot h of whtic h can he fiunc tions of time. In Ili, lip ar
fil t. r tl 1 I an,! R? mat ricer ar- fixed during- initialization.

D~uring One iteration of the IKalman filter, as currently implemented, there are some 2 z
se~parate matrix operationt; (transpose. add, multiply, inverse). The primitive operation
count for the, mat rix operations in the (linear) IKalmnan filter is as followvs.

Af O ultiplcsq 2X' + 2Z-' + 3,Y2 Z + 2XZ' + X' + Z' + 2XZ + Z

Adds =2N + 4 27 Z 3 X 'Z + 3XZ 2 + 3-X + 27' + 2AZ±2

Cornics =X + 3XZ + Z

If the ratio of execuition times for multiplication to addition to copy is 5:1 :n, X = 4, and
7 =2. eaelic filter iteration costs the- equiivalent of 1918 additions. In that timeW ono Can

perTfolrm he1 P(tava Vleti!t Of a '5 X r) Fast Fourier Transform (disregardingr power-s of- tv,o,
siicIf A* =1I. 7 =a. an equivalent of 27,370 additions is require'd. whi1](ch is the effort

for a "13 x 11 Y*V 1'. NiTiet ccII Steps of the larger IEalman filter or 273 steps of thle sil'
can run n t lihe time needod for a 2,56 x 256 FF1.

'I It- implemenr'rtation- a hoVe is the most straight forward (ice. naive) one its author (1 ronT1
coulldI i maci rM. Nirpia!vmore rohust Methods. which can provide fast er perfor-mance
as weIll, inlude a wholeP rane- Of 'squiare root" methods. Gelb ([12]. p. 106ff.) discuise;
then) and also presents comnputer loading and timing analYsis. Ron Daniel of the RPC-
has imnplemented inigenious methods for steady-state IKalman filtering on modern PI-rcslzor

chip I In~0Q ithat caT, ruin at $00 liz.
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