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20, ABSTRACT

A review of some estimation basics is followed by illustrative applications of
Kalman filters for stationary and maneuvering targets. The variable dimension of
Kalman filter is used for the maneuvering target. The performance of the nearest
neighbor standard filter is compared to that of the probabilistic data association filter
for tracking a target in clutter. Multi-target tracking, using sonar sensors to estimate
an autonomous robot's distance from walls, is applied to the navigation problem.
The Kalman filter equations can be completely decentralized and distributed among
the nodes of a multi-sensor system. Each sensing node implements its own local
Kalman filter, arrives at a partial decision, and broadcasts it to every other node.
Each node then assimilates this received information to arrive at its own local but
optimal estimate of the system state. An appendix contains brief implementationai
notes.
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ABSTRACT

A review of some estimation basics is followed by illustrative applications of Kalmar
filters for stationary and maneuvering targets. The variable dimension Kalman filter je
used for the manenvering target. The performance of the nearest neighber standard filter
is compared to that ~f the probabilistic data association filter for tracking a target in
clutter. Multi-target tracking, using sonar sensors to estimate an autonomous robot’s
distance from walls, is applied to the navigation problem. The Kalman filter equations
can be completely decentralized and distributed among the nodes of a multi-sensor system.
Each sensing node implements its own local Kalman filter, arrives at a partial decision, and
broadcasts it to every ather node. Fach node then assimilates this received information
to arrive at its own local but optimal estimate of the system state. An appendix contains
brief implementational notes.

1 INTRODUCTION AND BACKGROUND

This report inclndes work that sprang directly out of a reading group organized by Hugh
Durrant-Whyte during the Michaelmas term ol 1988. A number of projectt arose. varying
from exercises to long-term research projects. Much of the work described  here is still in
progress, and will be the subject of theses and papers. e

There are some ongoing activities at the Robotics Research Group of the University of
Oxford relating to optimal estimation that are independent of the reading group aad which
are described elsrwhere,

1. Alan Mclvor has worked on characterizing the properties of the extended Kalman
filter when used to track edges in a dynamic environment (21].

2. Ron Daniels and his students are implementing very fast (800 Hz.) Kalman filters
in his work on robot control.

3. Guv Srott and Nick Walker are actively investigating wave-propagation. especially
the Schroedinger wave mode], as an underlying mechanisy ‘.. mplement tracking
and correspondence [26]. This work is described in a SKIDy - &

The work that grew out of the reading group is presented below in the following order.
Bobby Rao and John Leonard made a brief survey of estimation techniques. Barry Steer
and Chris Brown implemented various examples of Kalman filters: Steer applied the filter
to estimating the position of a feature, Brown implemented various tracking algorithms
for single targets with and without clutter from {3], the text of the reading group. Brown
imnlemented matrix and kalman filtering utilities used by himself and Lecnard. John
Leonard 1s working on a project to develop and implement an active sensor control strategy
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for one of the lah’s mobile robots. The strategy is based on a hierarchical controller
with different levels of Attention. Looking, and Recognition (20]. using multiple sensors
including vicion and sonar. His contribution to this report is on multi-tarzet trackirg
for localization. Bobby Rao has completed a project to define completely decentralized
Kalman filters. Previous work has relied on a hierarchy of distributed sensors, but no work
to date has had a completelv decentralized flavor. The algorithm has been implemented
on a distributed computer network, and the scope of the project is growing.

Hugl Durrant-Whyte is actively using Kalman filtering techniqes to do navigation and

e

tracking in a sonar application. He is producing a paper on "Navigation by correlating
geometric sensor data”, and the authors and editor of this document owe much to his
leadership and insight.

2 ESTIMATION AND KALMAN FILTERING

2.1 Estimation
2.1.1 Non-Bayesian Estimation

Non-Bavesian Estimation is used when the value being estimated is not a random variable
but is constant. The estimate should converge to this value as the number of readings

— OC.

Assuming the prior Probability Density Function (PDF) of = is unknown, its posterior
PDF is unavailable, leading to the use of a likelihood function:

Ael(z) = plz¥z)
and hence the Maximum Likelihood (ML) method

#(k) = argmaz.p(zF|2).

The likelihoods arise from empirical or anaiytic models of the sensor.

2.1.2 Bayesian Estimation

Bayesian Estimation is used when the parameter to be found is a random variable (RV)
with a PDF p(z). A value of r is assumed to have occurred via this PDF and remained
constant during .ts measurement sequence. The measurement sequence should converge
to the actual value of z that we are measuring.

Given the prior PDF for z, its posterior PDF follows from Bayes’ Rule

by _ p(25l2)p(2)
plz]z") = TN

[
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Thic leads 1o the Maxitaum A Posteriori (MAP) method:

F(ky = argmarp(z]z*) = argmaz,[p(zklr)p(r)].

Bath the MI and MAD methods vield modes of a probability distribution {the most likely

vajued,

2.1.3 Least Squares Estimation

The 1. method ic for non-random parameters and for measurements
z(j) = h(j.2) + w(j).

which vielde
k

#k) = argming »_[2(7) = k(5. 7).
=1
Here bt v i the sensor model. The least squares techniques vields the mean. not the mode.

of thr prahahiiity distribution function.

2.1.4 Minimum Mean-Square Error Estimation

The MMSE method is for random parameters and yields

#(k) = argmin;E[(3 — 7)?|2%).

2.1.5 Linear Estimation

The estimator is a linear function of the measurement data.
t=7F+4 P, PNz~ 2)

“‘h"!*‘

Per = E|(z - Z)(z - 2)'],

7 is the expected measurement, and (z — 2) is the innovation produced by the true mea-
surement.

2.1.6 Equivalences Of Methods

All the above can produce the same results under certain conditions:




e ML = MAPD

This oceurs when the prior PDF for r is non-informative. je when p(r) = ¢ and
¢ —— 0 or when the PDT is a Gaussian with o — x
o 1S = ML

This occurs if the noises w(j) in 2(j) = h(j,z) 4 w(j) are independent identically
distributed (IID) zero mean Gaussian RV's. This also applies if r is a vector property.

o MMSE = MAP

These coincide if the posterior PDF of 7 is Gaussian with arbitrary mean.

o Linear Estimation

Whea ris 2 Gancsian RV the linear estimator of the MMSE form is equivalent to the
best lincar estimator for arbitrarily distributed RVe with the same first and second
moments. However if the RV's are not Gaussian the MMSE can be a better estimator
than the linear estimator (ie. Gaussian RVs give the worst case results of an MMSE
estimatnr).

2.2 The Kalman Filter
2.2.1 Linear Kalman Filter Equations

Kalman filtering is a form of optimal estimation characterized by recursive (i.e. incre-
mental) evaluation. an internal model of the dynamics of the system being estimated.
and a dvnamic weighting ef incoming evidence with ongoing expectation that produces
estimates of the state of the observed svstem. The basic Kalman filter loop appears in
Fig. 1 (taken from [3]). Its input is the system measurements, its apriori information is the
svstem dyvnamics and noise properties of system and measurement, and its useful outputs
are the innovation-(the difference between the predicted and observed measurement, by
which the filter’'s performance mayv be quantified), and the estimated system state.

Consider a system with state vector x, moving under a control u, affected by Gaussian
noise v:

x(k + 1) = F(k)x(k) + G(k)u(k) + v(k). (1)

The system makes observations z with Gaussian noise w:

z(k) = H(k)x(k) + w(k). (2)

where v(k) and w(k) are zero mear{, white random sequences with covariances Q(k) and
R(k). respectively.
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Figure 1: The {Linzar) Kalman Filter {one cycle).

Forsuchasvstem the conventional Kalman Filter equations for state prediction x(k+1 | k).
variance prediction P(k + 1 | k). state update x(k + 1 | k 4+ 1) and variance update
P(k + 11k + 1), where the variance is defined as

Pk | k) = E{[x(k) = x(k | k)][x(k) = x(k | ©)]T | Z*}

may be found in (Bar-Shalom [3]) and have the following form:

Prediction: The state at the time of the next measurement may be predicted:

x(k + 11k) = F(k)X(k[K) + G(k)u(k). (3)

The state prediction covariance P(k + 1|k} is

P(k + 1|k) = F(k)P(k|k)FT (k) + Q(k). (4)

The next measurement is predicted using characteristics of the measurement process and
the predicted state:
z(k + 1)k) = H(k + Dx(k + 1]k). (5)

Update: The innovation v is defined as the difference between the predicted and actual
next measurement:

vik+1) = 2(k + 1) — #(k 4 1}k) (6)




The innovation covariance S(h 4+ 1) is:

Sik+1)= Hk+ Pk + 1Jk)H (k4 1) 4 Rk + 1). (7

S can he used to compute the filter gain, W(k 4 1):

Wik + 1) =Pk + 1J)HT(K+ DS™Hk +1). (%)

The innovation weighted by the filter gain. plus the predicted state, form the updated

state estimate:

Sk + 1k + 1) = %(k + k) + W(k + D(k + 1). (o)

The updated state covariance P{k + 1}k + 1) is:

Pik+1k+ 1) = Pk 4+ 1}k) = W(k+ 1)S(tk + YWT(k+ 1) (10}

2.2.2 Extended Kalman Filter Equations

The (first order) extended Kalman filter (ERKF) is a version of the Kalman filter that deals
with nonlinear dynamics or nonlinear measurement equations, or both. [t linearizes the
problem around the predicted state (a second-order EKF makes a second-order approx-
imation). The basic control loop of Fig. 1 still applies, but measurements are predicted
using the nonlinear measurement equation h(.). The measurement model hk.x(k)] is
linearized about the current predicted state vector, X(k + 1| k) using the Jacobian of the
nonlinear measurement function h(-). The calculations for filter gain, state update. and
covariance update use the Jacobian hyx(k). Likewise state prediction is accomplished us.
ing the nonlinear state equation f(-). The plant model fik.x(k)] is linearized about the
current esfimated state vector, X{k | k). The state prediction covariance is computed using
the plant Jacobian £ (k).

With these definitions of fx(k). hx(k + 1) the extended Kalman filter equations are the
following.

Prediction:
(k41| k) = flk,x(k | k)) (11)
P(k+ 1| k) = fx(k)P(k | k)T (k) (12)
Update:
Stk+1)=hx(k+ 1)P(k+ 1] k)hT(k+1)+R(k+1) (13)
K(k+1)=Plk+ 1] k)he(k+ 1)S7 (k4 1) (14)
6




Rike 101k D=xik+ 1] k) + K4 1) [zik+ D= hlk ks 11k (195)

Pilb21tks N=DPik+1 ik)—\\‘(k¢1)S!L~+1)\\'7.l;+‘ 11 {16

In the formulation above and in the examplec of the next section. one procese receives
all measurements and makes the ectimation. There has been a considerable amount of
recent interest in the development of algorithms to process information obtained {rom
a distributed <ensor svetem. This interest arises from a need to use parallel processite
architec tures efficiently. Parallel computation is needed if multi-csensor systems are to he
able to process their data in real-time. A decentralized filter is presented bhelow.

3 CENTRALIZED FILTERS

3.1 Angle-only Tracking of a Point Target

As an introdiuction to Kalman filtering. we present an extended Kalman filter (FKE) for
a svetem that takes angle-only measurements of a point target in motion. An example of
a meazurement of this kind is passive underwater sonar. This scenario arises in rohatjes
when nsing infra-red range sensors, which are characterized by poor depth accuracy bnt
which can have excellent angular resolution {11].

We consider a simplified two-dimensional svstem with state vector x(k) = (ri. ) ref
erenced to a global stationary reference frame. The target moves forward in time with
known heading angle ¢ and speed T subject to additive zero-mean gaussian noise sources

vy and vy
Thsy Ty Tcosé] [1-,] _
= - 17
[31k41] [yk]+[fsin¢ + vy, (17)

This is the plant equalion. which we can write as:

x(hk + 1) = x(kY+ ulk)y+ v(k). v(k)~ N(0.Q(k)). (1])

At time t;. a sensor located at the origin takes an angular measurement z(k) which is the
target’'s angular position fx corrupted by zero-mean gaussian noise w(k) with standard
deviation uws. To relate the angle 6, to the state vector x(k) we define the non-linear
measurement function h[x(k)]:

6 = h{k,x(k)] = tan~? ¥£. (19)
Tk

We can now write the measurement equation for this system:

z(k) = h{k,x(k)] + w(k), w(k)~ (0,wg). (20)
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Figire 20 ‘Tracking a point target with angle-only measurements. The target moved from Iefr tn

rnight with heading angle ¢ = —45 degrees and speed T = 05 meters per second. Real (diamnandi
and ectimated {rrosel target positionz and a priert confidence ellipses are displayed every 2 sernnds
The standard deviations for plant noise sources v, and v, are 8 cm. The measurement noeise

standard deviation ue 1s 1.2 degress The coordinate axes are marked ofl in 1 meter intervals

The ahove plant and meacurement models were implemented using the Kalman filtering
fazilities developed here at Oxford. Figure 2 shows a typical run, displaving the actnal
target position x(ki, the a priori estimate x(k [ k}, and an error ellipse determined by
P(k | &), our confidence in this estimate. The initial error ellipse is a large circle, reflecting
little ronfidence in the initializatinn. Each new angle-onlv measurement provides only
partial information. squeezing the error ellipse in the direction perpendicular to 6 while
the error ellipse grows in the parallel direction due to plant noise.

3.2 DManeuvering Targets

When targets manrurer, i.e. depart from the basic, steadyv-state, "normal”™ dvnamic be.
haviour. a tracking filter must respond. To the filter, maneuvering is signaled by a rapid
increase in the normalized innovation. Recommended methods for dealing with this situ-
ation include the following.




1. Inrpease the process notee, or certain eomponente of it attribnted to the target,

Use eoveral filters with different assumptions in paraliel. and combine their agrputs

r

[‘,rr.}\nhihﬂ'{('al‘)'.

3 Create new filtere as needed, parsning a hvpothesis tree of paralle] hvpotheses abint
target <tare. Tlhic tree must be pruned rapidly lest its maintenance overwhelm the

compntational resonrees,

1. Model manenvers as colared (correlated) noise: in particular model target aceelera-
tine: a< a zero mean. first-order Markov process (one with exponential antororrela-
o

5. Perform teput estrmation, in which measurements baced on the nonmaneuvering
madel are used to detect and estimate the control input applied to the plant dvnam-
jr<.and that contral inpnt in turn is used to correct the state estimate.

6. Veo varmahle dimension filtering. in which the maneuver is considered part of the
plrnt dvnamics, not neice. Manenver detection causes the substitution of a different.
beeterorder dynan s mnde] for the lower-order, "quiescent™ model.

Jur Shslom U campares the performance on maneuvering targets of three filtere: two
tevel white naise, variable dimension (VD) filtering. and input estimation (IF). He notes
that t1e computational effort ratine between the three are 1:2:8. His study reveals that
the tw o level white noise filter does surprisingly well. being slightly worse than the VD

filter but definitely better than the IE flter.

We chose 1o implement the VD filter. in the light of its relativelv low computational
cost and relatively high efficacy in the Bar-Shalom study. Our illustrative application
was ta o target movine in two dimensions at constant velocity until some time at whick
it begins constant arceleration in the same direction. The quiescent filter is simply the
constant-velocity target filter, the maneuvering filter is for a constant acceleration target.

Fig. 37a) showe the normalized innovation (i.e. error measure) of the constant-velocity
filier as time pas<es. Performance starts degrading at 7 = &5, when acceleration begins.
Fig. 3th) shows the corresponding estimate of y position, which gradually degrades through
time. The VD filter ha< remarkably better performance, which underlines the impnrtance
of accurate dynamic modeling. Fig. 3(c) shows the normalized innovation of the VD filter
{not~ the scale change). The maneuvering filter was switched in at T = 6. Fig. 3(d) shows
the corresponding estimate of y position.

3.3 Targets in Noise

Tracking an object in the presence of spurious measurements (clutter) can be done in
several wavs. All assume a validation gate outside of which measurements are ignored: its
size is a function of the desired probability of including the true measurement, and can be
derived from a chi-squared calculation applied to the normalized innovatinn.
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Estimated v position for target from VD filter (d) Normalized innovation of VD filter (note scale
change compared to (b)).
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Figure 1:

through time. showing Ioss and rearquisition of track.

Real {diamr1d) and ectimated (cross) target tracks. and elliptical vaiidatinn gatr.

1. The optimal way to track a single target in clutter is the track-splitting approach,
in which a tree of possible tracks is maintained.
expensive method.

This can be a combinatorialiy

2. An obvious alternative to treating all measurements. as it were.in parallel, is to pirk
a single candidate measurement and proceed as if it were the right one. The obvious
candidate is the one closest in measurement space (that one with smallest normalized
innovation). so this technique is called the nearest-neighbor standard filter (NNSF).
The problem is that the true measurement can be missed.

3. A third approach is the probabilistic data association filter, or PDAF. In it the
measurements within the validation gate are probabilistically blended to vield a
combined innovation which is input into the Kalman filtering process. The problem
is that the result does not correspond to that of any actual measurement.

The application illustrated in Figure 4 is tracking a constant-velocity target moving in
two dimensions. The plant and measurement are both noisy, with the measurement noise
being drawn from a contaminated Gaussian, in which with some probability the measure-
ment noise has different parameters (here, higher variance) than the noise expected by
the filter. The filter produces a validation gate, based on the innovation covariance. A
measurement within e validation gate is used, while one outside the gate is ignored. In
the run illustrated, the elliptical validation gate (here a circle) shrinks while good mea-
surements are obtained, and grows when a measurement is missed — this adjustment
makes reacquisition more likely. The figure shows snapshots of the validation gate during
a serious loss and reacquisition of track.
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General aspects of the behaviour of the NNSF and PDAF filters may be predictable
on abstract grounds. For instance we might make the following predictions for uniformly
distribnted chitter and high probability of detection (probability that the target iz detected
at all. either inside or ontside the validation gate.)

1. With both the NNSF and PDAFT filters tracking in clutter, as time goes on it is
increasingly likelv that the filter will “lose track™, e.g. start tracking clutter, or have
an estimate of target state outside some fixed bound.

2. With a “non-manenvering” NNSF filter. low and high clutter levels may be less
immediately harmful than medium levels. since with low clutter the target is likels
to be nearest the predicted state, and with high clutter there is likely to be a clutter
point near the predicted state. It would seem that at intermediate level the clutter
would be more likely to attract the filter away from the target.

3. The NNSF filter would scem more likelv to make serious errors bv tracking clutter
since it does not weigh the evidence. The performance of the PDAF should degrade
more graceflully as conditions get worse,

We implemented the NNSF and PDAV filters. and used them to provide individual out-
put trarks. as in the previous work. Also the programs were embedded in Monte Carlo
simulations to provide data over a number of runs in statistically similar situations. The
results confirm the above expectations but also provide some surprises. Fig. 5 shows indi-
vidual tracking runs for situations with uniformly distributed clutter of increasing density.
The number of clutter points in the validation gate was determined by rounding a nor-
mal variate of indicated mean (the clutter density) and standard deviation to the nearest
integer. and uniformly distributing the resulting number of clutter points throughout the
validation gate volume. In these runs the volume was close to unity. The NNSF figures
should be compared with Fig. 6. which shows PDAF results for similar situations.

Figs. 5 and 6 illustrate indeed that lower clutter levels can result in worse NNSF perfor-
mance than higher levels, and that performance of both filters falls off as time increases.
They perhaps furnish a mild surprise, viz. the ability of the PDAF to reacquire the track.
This happens for lower clutter levels, arnd presumably occurs when the “signal to noise”
ratio is high in the validation gate (e.g. there are few measurements in the validation gate,
and at least one of them is near the actual position of the target and correctly is accorded
high weight). The behavicr of the PDAF in high clutter conditions is not as surprising —
it drifts, taking the average of the random clutter.

Fig. 7 shows statistics gathered over N = "0 runs with the NNSF filter. It should be
compared to Fig. & The plots show the fraction of lost tracks and the average final error
of the filter’s estimate. Both functions vary over the set of tracking times {4. 8. 16, 32 }
timesteps. and both vary over the set of clutter densities { 0.25, 0.5, 1.0, 1.5, 2.0, 3.0 }
Here "lost track™ is defined as the estimated position being more than some fixed distance
(here 2.0) from the actual position of the target. Thus it is possible to imagine the filter
actually tracking clutter for the entire run, going wildly wrong in its estimates, but luckily

12
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Figure 5: In this figure and the next, the filter is a constant-velocity (linear) Kalman filter. The
plant noise 1s an acceleration component (white noise of mean 0.0 and variance ¢ = 0.2.) Clutter
density ¢ = 0.4. (Parallelepidal) validation gate size is such that .99 of target measurements should
fall within it initially. The measurement noise has variance 0.2 for the z, 0.1 for y. (a) Error in X
vs time in NNSF, tracking situation parameters as in text, clutter density 0.5. (b) Error in Y vs
time in NNSF, clutter density 1.0. (¢) Error in X vs time in NNSF, clutter density 2.0.
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Figure 6: (a) Error in X vs time in PDAF, tracking situation parameters as in text. clutter density

05 (b) Ecror in Y vs time in PDAF, clutter density 1.0. {c) Error in X vs time in PDAF. clutter
density 2.0.

(a) (b)

Figure 7: This figure and the next show the fraction of lost tracks (a) and the average final error
(b) of the filter's estimate. Both functions vary over the set of tracking times {4, &, 16, 32 }
timesteps (axis T), and both vary over the set of clutter densities {025 05,10, 15,20, 30 }
(axis D). "Lost track”™ means the estimated position is more than some fixed distance from the

actual position of the target. This figure shows results for the NNSF, with tracking situation as in
previous figures.

14




Figure & Lost tracks (b) and average final error (b) vs track length and clutter density PDAF.

with tracking situation as in last figure.

arriving inside the threshold distance just at the last step, and thus not "losing track™ by
this definition.

The average final error function is meant to quanti{y the filter performance more than
the discrete “lost track™ measure, illustrating a linear loss function corresponding to the
intuition that an estimate closer to the truth at the final timestep is better. Results like
those in Figures 5 and 6. we are probably safe in inferring that a closer final estimate also
betokens a better estimate throughout the run.

The plots are perhaps surprising in that by this definition of lost track, the NNSF outper-
forms the PDAF fairly convincingly over a large range. These results are tvpical of manv
we obtain=d. but it is occasionally possible to engineer situations where the PDAF loses
track less often. At least it seems fair to sav that the situation is more complicated than
it appears from Figure 6.1 of [3], which indicates a marked superiority of PDAF along
axes whose semantics are not clear from the text (perhaps the original paper gives more
details).

The plots are perhaps not surprising in that they accord with the prediction of graceful
degradation of the PDAF in terms of the average error metric, using which it convincingly
outperforms the NNSF. The higher sensitivity of NNSF to intermediate clutter levels is
again demonstrated.

3.4 Navigation by Multi-target Tracking

We are using a Kalman-filter-based, multi-target tracking approach to mobile robot navi-
gation. The goal is to get optimal performance with a single sensor through a strategy of
Active Sensor Control. Ultimately, we shall use a hierarchical control strategy with three
layers (attention, looking, recognition). In the limited navigational task we undertake first
(maneuvering in a known laboratory with unknown obstacles), the recognition aspect is
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subsumed into the looking aspect.

The navigation problem can be divided into the two distinct tasks of localization. (deter-
mining the abeolute position of the robot). and obstacle avoidance. In the multi-targe!
tracking framework. localizatinn is a process of looking for erpected events: the sencore are
directed to instantiate the locations of beacons, which are reliable, easy-to-sense, natural
features of the robot’s environment, such as the walls of the room. Precise localization of
position can then be ohtained by using a target-based [3] approach to track these beacons
as the robot moves. The task of obstacle avoidance is achieved by a measurement-based
[25] tracking techniqne whose attention is captured by unexplained events in the path
of the robot  We show the localization component of this navigation technique using a
single sonar sensor mounted on a simple mobile robot with point dvnamics. Although the
scheme har been run on the robot hardware, the illustrations come froin a simulator we
are developing that will incorporate detailed sensor and environment models for sonar.

Ultimately this work will incorporate both the "top-down™ and "bottom-up™ control stvles
that can be found in perception (see the Discussion section). In the full implementation.
the recoynition laver is complex. involving path-planning. obstacle avoidance. and modenl
learning and maintenance — slow processes of a global nature. The attention laver provides
a high-speed interface to the real world.

3.4.1 The System Nodel

The svstem dynamics for one of Oxford’s mobile vehicles are illustrated in Fig. 9(a). The
state of the vehicle at time t; is described by the state vector x{k) = (rx.yx. 0. Tx). T&
and y, are the x and v coordinates of the center of the vehicle referenced to a global frame.
or is the orientation of the vehicle referenced to a global frame. Ty is the speel of the
vehicle at time t;. which represents the linear distance the vehicle will travel during the
time interval from fx to fx1y. The motion of vehicle is such that during each timestep it
travels first in a straight line forward from position (z4, yx) to position (T4y1.yks1). then
rotates to its final orientation ox41.

Tes1 = ZTrp+ Tpcosdy
Vks1 = Yk + Tisindi

The rohot motion is controlled by specifving a control input u(k) = (0.0, Ads. AT)7.
Ad¢y controls the final rotation applied after the linear movement forward for the current
time-step. This rotation is subject to a random disturbance vy, modeled as zero-mean
Gaussian with variance g4:

Gkt1 = Gk + Ddr + vg, te ~ N(0,q4)

ATy controls the distance traveled forward for the nert time-step, which is subject to a
random disturbance vr, modeled as zero-mean Gaussian with variance g7:

Tk-H =lATk +vr, vp~ N(O,qf)
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Figure 0: (a) System dynamics for robot vehicle. (b) Taking a range measurement from a wall
(rx. vr.ck) 1e the position of the robot vehicle in global coordinates. (R;.6,) represents a line in
global coordinates. z; 1s a noisy measurement of the perpendicular distance from the vehicle to

wall p,.

The overall plant equation of the system is

That Zp + Ty cos &y 0 0

V41 Ye + Ty sin oy 0 0

. = + + 21
k41 Ok Ady vs (21)
Ty 0 ATy vy

which may be written as:
x(k+ 1) = flk.x(k)) + u(k) + v(k). v(k)~ N(0,Q(k)) (22)

where f{k.x(k)] is a non-linear function of the system state.

3.4.2 The Measurement Model

The measurement model is for a stationary robot vehicle taking range measurements to a
number of walls using a sonar sensor. For now, we assume perfect measurements of ¢, the
orientation of the vehicle. (Our system has a 9-bit resolution digital compass that gives
us this information. We also have developed reliable algorithms to extract orientation
information directly from the sonar data). The model of the environment is a list of n line
segments that represent walls and large planar objects in the room. A line segment p; is
represented by R, its perpendicular distance from the origin, and 6,, its orientation with
respect to the origin. In terms of these parameters, the equation of the line is:

;i —~rcosh, —ysinh, =0 (23)
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The sensor returns the minimum distance of anv nhiect detected in its 30 degrer beam
width. Thus if it is pointed in a direction approximately perpendicular to the wail. the
range value obtained ic the perpendicular distance from the vehicle to the wall. The active
sensor control framework uses an a priori estimate of position X(k | k — 1) to direct the
sencor to look nearly perpendicular to a given wall p, = (R;,6,) to obtain a merasurement
2, of the perpendicular distance to the wall (Fig. 9(b)).

Let r, denote the true perpendicular distance from a given vehicle location (7. yx) to the
wall. Then
r, =R, — 24 cos b, - yxsinf,]. (24)

The absolute value arises since the vehicle could be on either side of the wall. The mea-
surement z, is the true perpendicular distance r; corrupted by zero-mean Gaussian noise
w with variance u'.:

=ri+w, w~ NOu,)

Suppose that at time ¢; the robot is predicted to be in the location x(k |k - 1). The
predicted location js used to sugeest n walls to obtain range readings from. The sensor
is directed to look for each of these walls, and the returned values are checked with an
appropriate validation gate to yield validated range readings z, for m of the n visible wall<.
We combine the validated range measurements to form a composite measurement vector
z(k) = {r1.....7])7. To relate this measurement vector z(k) to the vehicle position x(F).
we define the non-linear function h

[Ry — 24 cos by ~ yi sin By ]

h{k.x(k)} = (25)
L|Rm — 74 cos ém — Yk sinOmIJ
Finally. a composite noise vector w(k) completes the measurement model:
z(k) = hlk,x(k)] + w(k), w(k)~ N(0,R(k)) (26)

The function h{k.x(k)] incorporates the prior information concerning the walls p, for
which validated range readings have been obtained at this time interval. So far we have
ignored the data association problem, assuming that each range measurement comes from
the appropriate wall. The viability of this assumption depends on how accurately the
system model predicts the vehicle's movement; experimentally it has been justified so far.

3.4.3 Extended Kalman Filter Equations

The extended Kalman filter equations for the plant and measurement models described
above in equations 22 and 26 use linearized plant and measurement models. The plant
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model ik xik)] is linearized about the current esfimated state vector, x(k | k). We ar-
complish this by definine the plant Jacobian. fi(h):

I 0 —=Tisindr cosdy
- 0 1 Ticoso sing
Y — T¢1. T _ k k k -
fx(‘\)— {fo (A‘x)]X:)'((H")- 0 0 1 0 (21)
0 0 0 0

x=%(k|k)

The measurement model h{k, x(k)] is linearized about the current predicted state vector,
x(k + 1] k). We define the measurement Jacobian hy(k + 1) to be:

+cos#, +sinf; 0 0
hylk + 1) = [Cxh? (ko) _gppaapy = : : . (29)

tcosf,, +sinf., 0 O

The % signs arice because h{k.x(k)] contains the absolute value function for reasons given
ahove. In calculating fx(k). the appropriate sign for each wall is chosen based on the
dead-recknning estimate of the robot’s position. The absolute value functions would make
the Jacobian of h[k.x(k)] unstable at sensing locations very close to the wall. This ic
not a problem in practice because the sensor is located at the center of the vehicle. The
definitions of fx(k) and hx(k 4 1) are used in the extended Kalman filter equations (11)
- (16} in a multi-target control structure.

3.4.4 Results

We avoid some of the filter initialization difficulties by starting the vehicle from an exactlv-
known initial location and setting the initial state covariance matrix P(0 | 0) to zero.
Because the motian of the robot vehicle has a significant unpredictable component, the
state covariance matrix P(k | k) grows considerably with time if no updates of position
from the sensor are provided.

Four runs of the simulated system are shown in Fig. 10. The error ellipse is defined by
the first four elements of P(k | k), and represents the uncertainty in the prediction of the
vehicle position (rk,yx). In Fig. 10(a), the speed noise v causes the uncertainty ellipse
to grow with time in the direction of motion of the vehicle. The heading angle noise
vy causes the uncertainty ellipse to grow in the direction perpendicular to the vehicle's
motion. Our task for the measurement process is to decrease the size of this ellipse, and
hence increase the confidence in the state estimate X(k | k). Fig. 10(b) and (c) show the
effects of measurements from one and two walls, respectively. Fig. 10(d) shows a run in a
complex environment with many walls. The sensor is directed to take measurements from
all visible walls.
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Figure 10: (a) A run with no validated measurements. The triangle represents the actual vehicle
position and orientation (r4.yi.d;), the rectangle represents the estimated vehicle position and
orientation, and the ellipse represents the uncertainty in the estimates of z; and y;. (b) A run
taking range measurements from a single wall. The error ellipse shrinks perpendicular to the wall
as a posteriort confidence in the estimate of z; and y: increases with measurements. The wall
comes into view and disappears from view during the run, causing large eflects in the error ellipse.
(¢) Measurements from two walls. Information from two directions reduces error. (d) A run in a
complex environment using measurements from all walls visible from a given location.
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Figure 11: Choosing the best Sensing target for (a) simplified two-wall environment and (1)
multiple-wall environment. All visible sensing targets are evaluated to choose the target that
provides the most useful information based on the a priori estimate of ry and y;. The sensar then

looks for this “best”™ wall to update the vehicle position.

3.4.5 Choosing the Best Sensing Target

Since range measurements from a single wall provide only partial informatinn. a wall-based
sonar localization algorithm needs te take measurements from several different directions,
as illustrated in the examples above. However, it is undesirable in manv cases to make
the vehicle stop to take observations of several different walls from the same location. To
give the vehicle a dynamic. “on-the-flv™ localization capability we advocate a strategy of
controlling the sensor to track different walls successively as the vehicle moves.

Our task is to keep the state estimate covariance P(k | k) as small as possible. This
corresponds to keeping the error ellipse determined by P(k | k) from growing too large
in any one direction. Using this criterion. the best sensing target is the wall most nearly
perpendicular to the largest eigenvector of P(k [ k). Fig. 11 shows runs in two-wall
and multiple-wall environments that follow this control policy of choosing the best wall.
This strategy provides a means of localizing position “on-the-fly” with a single sensor by
focusing attention on different walls that come in and out of view as the robot moves.
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3.4.6 Future Work

In thic implementation, using a single Kalman filter to derive the position of the robot is

eflective becanse

1. The environment has been known exactly a priort

2. The environment has no moving objects and no clutter.

In a practical sitnatinn. an ultrasonic navigation svstem may need to deal with an unknown
environment that contains unmodeled walls, unknown moving objects, and clutter. For
this reason. in addition to the central Kalman filter for vehicle position, a multi-target
framework that initializes and maintains tracks for individual targets in the environment
is necessary. We plan te implement the three-laver strategy of Active Sensor Control as a
mechanism for managing the multi-target tracking approach to navigation. In the sensor
control framework, we shall develop a set of local attention processes, each tracking a
particular tareet or searching for new targets, and carrving out some fast. local processing
to facilitate this local control. The looking laver will perform the multi-target tracking
prr ose. acsigning lacal tracking resources to follow individual pre-identified targets and
responding to new targets and unexplained events.

4 A DECENTRALIZED FILTER

4.1 Fully Decentralized Decision Making

Previnue attempts at decentralized Kalman filtering have either assumed a completely
centralized architecturs (Fig. 1) in which all the sensors’ observations are passed Hark ta
a central processing facility that fuses the data, [3]. [8], [7]. or assumed some level of lncal
embedded processing capability in each sensing node, but still however relving on a cen-
tral procescing farility to perform the global data fusion (ie. hierarchical decentralization)
(16]. [17]. Since both of these methods require a single central facility to perform overall
data fusion they suffer from the associated problems: potential computational bottlenecks
and the susceptibility to total system failure if the central facility should fail. Harris and
White [15] give descriptions of algorithms for decentralized system architectures using
blackboards for communication between nodes, but they suffer from the well-known prob-
lems associated with blackboard systems (such as keeping the blackboard current and free
of redundant information).

Fully decentralized decicion making [13] is advantageous to hierarchicallv decentralized
and other forms ~f distributed svstem architectures because:

1. It allows complete parallelization of any algorithm. Therefore the system would

be jdeal for implementation on a parallel processing network (such as a trans-
puter array).
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[t leads to a speed increase over other architectures by removing potential
compitational bottlenecks.

3. It cives a svstem that is veryv resilient to loss of one or more of its nodes (ie. a
hiehly curvirahle svstem).

Distributed erncing and algorithms for sensor fusion that can be distributed amongst
covery woreing nodes have interesting applications in robotics. process plants and 7]
fiel.1< The aleorithm we precont here is fully decentralized. requiring no central proressinz
farilivs to perform data fusion (24, The information communicated bhetween nodes is
simple and the equations for assimilation of other nodes’ data are nc more complex thar
those for a conventional Kalman Filter. Our filter reaches the same global optimum as
a conventional Kalman Filter, but since this filter may be run simultaneously at the m
sensing nodes of an m node system it performs faster.

4.1.1 The Decentralizing Algorithm

Fig. 12 shnwe the operations performed by each one of the nodes in the svs em. FEach
node i< initialized with estimates of the state of the svstem together with an associated
variance of that ectimate. These initial values for state estimates and variances mav he
obtained in several ways and the methods used by the implementations given in this paper
are ontlined in later sections. After initialization, the main loop begins with each node
taking a reading from it< sensor of the state of the system. With this reading (and its
assoriated variance) the node is able to compute conventional Kalman Filter equations
to reach it< own, new estimate of the state. Each node then broadcasts this estimate to
the other node< and receives information being broadcast to it. Last, each node computes
assimilation equations to take into account the data it has just received; in fact, each node
thus locaily computes a global estimate.

This paper includes details of a linear version of the algorithm in which each node shares
the same roordinate frame and has the same representation of the state of the system as
other nndes. In the nonlinear case, each node, although measuring the same state, is in
ite own coordinate frame and uses its own representation of the state which mav or may
not coincide with the representation used by other nodes. This case is treated in full in
[24) and i< not derived here, although experimental results are given.
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4.1.2 The Linear Algorithm

Consider a svstem with state vector x. taking observations z with Gaussian noise sourres

w and v tespectively:

x(hk + 1) = F(k)x(k) 4+ G(k)yw(k) (27

z(k)y = Hik)x(k) + v(k) (30)

where

LY ey Ty ) b= [ QR CrR

Often it is true that C (the covariance between plant and measurement noise) is zero.

For such a svstem the conventional Kalman Filter equations for state prediction x(k+1 141
variance prediction P(k + 1 | k), state update x(k + 1 | k¥ + 1) and variance update
P(k 4+ 1]k + 1), where the variance is defined as

Pk (k) = E{[x(k) - x(k { k)][x(k} - %(k | K)]T [ Z*}

mav be found in (Bar-Shalom (3]) and have the following form:

Prediction:
%(k + 1| k)= Fx(k|k)+ GCR ™ z(k) (32)
Pk+11k)=FPk|KFT + GQGT (33)
Update:
X(k+11k+1)=[1- WHk(k+1]|k)+ Wz(k+1) (34)
P YWk+1|k+1)=P Y (k+1}k)+ HTR'H (35)
where
W=Pk+1|k+1)HTR™! (36)
24




F=F-GCR 'H (37)

To decentralize them we must make the following Ascumption (from Hachemipour [16]}:
Assume we can partition the obzservation vector into m subvectars of dimen<ion m,. As-
sume aleo that we can partion the H matrix conformably. {This meanc a node cannat
make a full-rank observation of the svstem state.) We can therefore say that

v,(k) = {V,T(k). T

m

(k)7
and that .
E{v(kivT(k)} = bloc diag{R,(k).....R.(k}}
H(k) = {HT(x)....,HI (k)}
z(k) = {27 (k). ....2T (k)}
From this assumption we can also partition the F and G matrices and alsn the state

estimates and variances, X and P. This allows each node to implement its awn lncal
Kalman Filter for its own local estimate of the state.

Fach node. ¢ hac a svetem model and takes ohservations that are individualized versjons
of eq. (29) - (371, That je, simply subscript the fcllowing variables in those equations
withn x.z. F.F.G.H.Q.C.R. P. W.

4.1.3 Derivation of Assimilation Equations

We now derive the equations each node computes to assimilate the information supplied
hy other nodes. References to equations (29) - (37) mean their local versions. From the
Assumption above,

H'R-!(k)H = i{H‘T(Rj‘(k)H,] (3%)
=1
ana also
Wi(k)z(k) = P(k | k)i[H?R;‘(k)z,(k)]. (39)
=1
From (35) we can say
HIRI'H, = Py Y k+ 1k +1) - P7U(k+ 1] k). (40)

Hence from (35), (3%) and (40) we can write

Pl k+11k+1) =P (k+11k)+ D [P (k+1|k+1)= P (k+1]k)

=1
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ar.1 by placing this assimilation equation at each node (decentralizing) we arrive at

Pk fk+ =PI+ 1 k) 4+ D [P k+ 1 k+ 1)~ Pyi(k+ 1] k),

;=1

The summation over 7 does not include the term when j = 7 since this has already been
accounted for in (35).

Now premultinlving (10) by P,(k 4+ 1 | k 4+ 1) and rearranging gives
1- W H, =P(k+1|k+ )P k+1]k). (41)

Premultiplying (34) by P71 (k 4+ 1| k 4 1), using (41) and rearranging gives
HIR "z + D= PIU A+ 1k + Dx(k+ 1 k4 1) = PTNhk+ 1 k)xi(k + 1] k). (42)

Using (31). (1) and (42} and decentralizing gives

k4 1tk Dy =Pk + 1 k+ D[Pk + 1] Bk 4+ 1| k)

+D AP+ 1k + DXk + 1 k+ 1) =PIk + 1 [ R)%,(k+ 1] k)} ]
1=1

From (32) we can write

G,C.R]'z,(k) = xi(k + 1| k) = Fixi(k | k) (43)

and noting that from the Assumption we can write

GCR !z = Z[G,C,‘R’-—]Z.]

=1

we can derive

X0k + 11k = Fy()% (k| k) + D {30k + 11 k) = Fi(k)x,;(k+ 11k +1)).

=1

4.1.4 Assimilation Equations

To reiterate: each node takes readings from its sensor, computes its local version of equa-
tions 33 - 34. communicates to all other nodes (see below) and then computes the equations
given befow.

Prediction:

Sk 4 11 k)= Fuk)k(k [K)+ S {5;(k+ 11 k)= Fi(k)%;(k+ 1k +1)}  (44)
=1
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P41k =F (P (k+1|k+1DF (k) + G(khQ.KGT (1N (17)

Update:
K(k+ 1l k=D =Pk+1k+D)P7HE+1]k)Xi(k+1]k)

+ Y AP+ 1 k4 DXk 41 [k +1) = Pylk+ 11 k)%, (k4 1] 0]

=1

P
ia
(S}

state error info

P k4 ik N =P N k+1]k)+ D> {PTHk+11k+ ) =P k+ 11k} (47)

=1
variance error info
using %0 | —1) = %o and P(0| —1) = Py for initialization of each node.
(The cummations above are over every node j froni j = 1 to j = m except for when

] = 1.)

The terms stafe error info and varia-ice error info are the values transmitted by each
node ta each other node during the communication step of Fig. 12. The information to
be communicated is no* complex (one vector and one matrix per iteration). and the data
fusion equatione are no more complex than the local estimate update equations.

4.2 Implementation

The algarithms have been implemented on a SUN 3.0 computer simulating several nodes
running simultaneously. The application is a pursuer-evader game in which there are a
number of independent pursuers attempting to surround and trap a moving evader. The
pursuers and evadef move on a two dimensional surface: the evader only moves horizontally
and with a constant velocity. Each pursuer is an independent mobile sensing node taking
noisy observations of the single moving evader. Each pursuer has its own model of the
svstem (ie. the evader's motion pattern) and they all communicate between themselves
to arrive at a global decision of the Jocation of the evader so that they can then decide
where best to move to surround it (see Fig. 13).

4.2.1 Linear Case

In this case each pursuer takes full-state z = (z,y, )7 observations of the evader, corrupted
by noise (the noisiness of a node’s readings being proportional to the distance between
that pursuer and the evader) and each has a correct model of the evader’s dynamics. The
evader is travelling in the horizontal direction at constant velocity. After taking readings
the pursuers evaluate local versions of equations 33 - 34 and then calculate the data they
must transmit all the other pursuers. Each communicates this data to each other pursuer
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Figure 13: (a) A typical starting configuration of pursuers and the evader. (b) The pursuers have
surrounded the evader.

and collect others’ variance error info and state error tnfo to arrive at a global estimate
for the (z.y) position of the evader and also its velocity in the z direction. The Kalman
filter is initialized by setting the observed velocity of the evader to zero for the first five
iterations to allow the filter to settle before the noisy observations of the velocity are taken
into account.

4.2.2 Results

Fige. 14 and 15 are graphs of the global estimates from two pursuers (only two are shown
for clarity) and the evader’s actual parameters plotted against number of iterations. These
results show:

1. Each node arrives at the same (albeit initially inaccurate) global estimate from
the very first iteration. Therefore, by communication the evaders have reached
a common group consensus of the position of the evader.

2. The global estimates for the (z,y) positions soon converge to very close to
the actual values and continue to track it well. The filter converges faster
than a conventional Kalman Filter since it is able to process m lots of sensors’
information simultaneously.

3. The global estimate for the velocity of the evader x converges more slowly to
the actual value but this is to be expected since z is small compared to the
observation noise and also differentiation always amplifies noise.
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Figure 14: (a) Linear case x-coordinate estimate (actual = solid rising line). (b) Linear case
y-coordinate estimate (actual = 178). {c) Linear case horizontal velocity estimate (actual = 4 0).
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case y-coordinate estimate (actual = 185).
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4.2.3 Nonlinear Case

In thic cace cach pursuer has an (r.8. 7. 6) state representation of the position of the evader,
which is moving in the horizontal direction with a constant velocity. However. in order
to <imilate a realistic case where each pursuer is a photodiode based device, angle only
measurements are taken. No range data is available from the sensors so communication
between the pursuer is essential for pursuers to arrive at a full state vector. Each pursuer
takes its sensor measurement and constructs its own view of the state of the object.
Each pursner knows where it is and where all the other pursuers were from the last
communication step so each pursuer is able to transmit appropriately transformed variance
error and state error information to the others. (Also each pursuer transmits its current
position to all the othiers). The assimilation ejustions are cumputed and ecach pursue-
ends up with a full state representation of the evader. This ‘filling in” of the empty states
occurs becaunse if one computes the linear weighted sum of a node’s state estimmate x, and
another node's transformed estimate ‘x; the new state vector x; obtained is full rank (ie.
the intersection of the angle estimates of the two nodes has been solved to give range data)
fol. 1f

% = (x4 5% (S + 1T

where x, and x, are (r.f} state vectors with initially no values for r and X, and ,X;
are the associated information matrices with zeroes in the range information positions
one obtains the correct estimate for r in x;. The filter required five steps 1o arrive at
reasonahly accurate estimates for the r and 7 terms for each pursuer. Then it was able to
follow the evader, updating its estimates for # and @ on each iteration.

4.2.4 Results

Results are shown in Fig. 15, which shows the (z, y) position of the evader and the (7. y)
estimates of two pursuers. Only two pursuers’ estimates are shown for clarity. The (r.6)
state representations of each pursuer have been converted to cartesian form for these plots.
simply so that the estimates of two pursuers may be directly compared. The results show
that:

1. The pursuers are able to track the evader despite each pursuer taking onlyv a
partial estimate of the state. By communication between themselves they are
able to arrive at a full state vector estimate for the position of the evader.

2. The pursuers are in agreement over the position of the evader. The non-
linearities in the system (ie. using an (r,é) representation for a linear cartesian
motion) cause the slight error between the two pursuers’ estimates.

4.3 The Future

The algorithm has successfully been implemented in OCCAM on an array of sensors. each
with a photodiode based angle detector and its own transputer. The algorithm is being
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tested on real data.in experiments with sensors returning measurement< asvnchrononedy,
Also the algorithm mav be extended to allow tracking of several objects simultaneously.

The motivation behind this work was to attempt to discover and set down mathematically
what pieces of informatinn must be communicated between a group of sensors in order for
them to reach a conclusion. This problem must now be investigated further and beyond
the limits of just a simple linear tracking filter algorithm. It appears that the multi-
sensor network we have analvsed here may be thought of as a complex Markov chain with
information propagating through each node. This line of research borders onto the wider
issue of sensor models and may throw some light on how best to model complex sensors
such as CCD cameras in order that the value of the information returned by a sensor in
any arbitrary situation may be assecsed by other sensors. Being able to model sensors in
this way would lead to the possibility of building intelligent sensing nodes that could be
connected together as a fully decentralized network.

5 DISCUSSION

5.1 Optimal Estimation and Active Intelligence

Optimal estimation techniques have at least three distinct roles to play in real-time sen-
sorimotor svstems.

1. They can be used ac the basic paradigm for estimating the state of systems internal
to the observer. Estimating external states is akin to perception,

2. They can be used to estimate the state of svstems infernal to the observer. Estimat.
ing internal state involves aspects of proprioception (using information from internal
sensors). but can also involve sensing the outside world. especially to determine
dynamic observer parameters such as location and velocity.

3. They can be used as low-level utilities in service of several aspects of perception or
action.

5.1.1 Control Styles in Perception

Top-doun (expectation-driven, hypothesis-verification) methods cope with the inherent
underdetermined and computationally intensive nature of perception by using apriori
knowledgr to constrain the space of interpretations for perceptual data. In a naviga-
tion context, these methods correspond to map-guided route-finding, perhaps landmark
recognition and similar tasks in which an internal model exists and the input is expected.

One important role of perception is to cope with the unexpected. This seeming truism
is often ignored, and has deep implications for computational perceptual models. In par-
ticular it implies that tops-down control strategies are by themselves inadequate. In a

31

—_




navigational context, ohstacle avoidance illustrates this role. The complementary control
strategy is bottom-up, or data-driven: Here the style is often a fixed order of processing of
input data (sayv by successive levels of feature detection and extraction) leading to increas-
ingly abstract levels of description of the input. As technology improves it is becoming
possible to achieve the massive data-processing effort in real time. and the practical con-
siderations that have partially motivated the tops-down approach are vanishing (see, e.g.

).

In one sense, the Kalman filter is an example of expectation-driven perception. By defi-
nition it incorporates explicit models of dynamics and noise. The strength of the Kalman
filter for estimation is that it has these models at its disposal, but requiring them limits
the sorts of perceptual jobs tliat the Kalman filter can reasonably be expected to perform.
The severe tops-down requirements can be mitigated to some extent, and at some cos!,
by such measures as running several different filters embodyving different assumptions in
parallel, switching between filters when lack of fit motivates such a switch, allowing the
filter to estimate control inputs to the plant, etc., as we have seen in earlier sections.

Despite snch seemingly sophisticated adaptive capabilities. the extensive literature on
Kalman filtering applications (e.g. {3.25.1.2.12.14,18.22.23.10] reveals that the perceptual
tacks most often attempted are those in which the plant (often target) follows well-known
and rather simple (e.g. ballistic) dvnamic laws. and in which the target is modeled a< a
point in space. The typical perceptual task is tracking the (perhaps maneuvering) target
(perhaps in clutter}. Thus the perceptual task (data association, or segmentation). consists
of the twofold problem of linking measurements together into tracks and ignoring spurious
data. The basic Kalman filter mechanism provides help in the way of quantified measures
of uncertainty. surprise, information, expectation. etc. but provides nothing directly to
cope with the familiar problems of controlling search in interpretation space. The track-
splitting. NNSF. PDAF . etc. approaches all have analogs in the edge-linking problem in
computer vision. for example.

Dissatisfaction with the paradigm of expectation-driven low-level perception, combined
with skepticism about the efficacy of local bottom-up segmentation, has motivated other
algorithme for target tracking. Their goal is often to accomplish perceptual grouping using
global. expectation-driven metrics of grouping quality, as well as to cope with input in a
more data-driven way {19]. However, much remains to be done here.

5.1.2 Perception: Estimating External State

It seems that if optimal estimation techniques are to be a paradigm for perception, at least
the following conditions must apply.

1. The dvnamics of the objects must obey known, predictable laws.

2. The noise mean and covariance properties of the domain dynamics and of the mea-
surement system must be known apriori.
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3. The data may arise from several information snurces — the Kalman filtering tech-
nigne provides a principled way to combine (fuse) them.

4. The raw perceptual input must be processed to vield a measurement vector con-
tainine information about the state of the observed objects. If ohjects are more
complicated than single points, this step may call for solving "the vision problem”
in order to do tracking. An extreme example is reliable tracking of a face in a crowd.
ucing data {from a face-recognizer. The point is that even such basic vision tasks
as region-finding are not well understood, and should not be lightly suggested as
“preprocessing” for a tracker.

5. Measurement data must be available over a significant interval. probably tens of
time-steps for reasonably complex domain dyvnamics.

6. Dealing with complex perceptual events in real time will call for substantial compu-
tational resources,

5.1.3 Proprioception: Estimating Internal State

The other main use for Kalman filters is for internal state estimation, in aid of complex.
often adaptive, control (e.g.. [10]). Such proprioception is not divorced from perception: A
vehicle can determine its position from fixed beacons (say landmarks or stars) by tracking
them and interpreting the data with a Kalman filter. In practice. the contrast between the
sophistication of the dvnamic models for plants that are to be estimated and controlled
and the models of external targets is dramatic (for a plant to be controlled. sometimes
80 state variables. for a target to be tracked, perhaps six). Presumably the observer's
state description equations are relatively stable. and devoting computational and analyvtic
resources to precise observer description is a good long-term investment that will payv off
in better information about and control over its state. For another thing, the observables
themselves are under more control. A roving vehicle can observe bar-coded reflectors as
location beacons. or can track static features such as walls or furniture, whose apparent
motion arises more or less predictably from observer motion.

Thus the proprioception problem is inherently more “expectation driven™ than the per-
ceptinn problem. and Kalman filtering techniques may well be an appropriate paradigm
since the following conditions apply.

1. The dynamics of the observer obeys known, predictable laws. They may be complex
to model but there is only a single, known system to characterise, and it makes sense
that the observer is something the observer itself knows best.

2. Proprioception may be provided by on-board sensors such as tachometers, odome-
ters, shaft encoders, etc.

3. The noise mean and covariance properties of the observer dvnamics and its mea-
surement system can be experimentally determined "off-line”, as can the properties
of the expected visual stimuli.




4. The raw perceptual input must be processed to vield a measurement vector con
taining information about the state of the obcerver, but the ohserver can choose to
interpret a limited set of stimuli by customized methods if internal state estimation
i< the only goal.

Presumably measurement data is available for a significant interval. on the order of
the “lifetime™ of the observer, rather than of the lifetime of the unexpected visual
phenomena that occur in perception.

U

6. Computational requirements may not be as severe since the update rate needed for
proprioception may be lower than that for perception.

5.2 The Future

We plan to use both aspects of estimation in work at Rochester to integrate real-time
vision and motion with high-level planning in a hierarchical parallel system. An eariy step
has been the inclusion of estimation techniques in the robot’s gaze control system [4.5]
This work is in the simulation stage. but a simulator is needed in any event to implement
the Smith predictor used to cope with software delays in the system. The simulator uses a
suboptimal. time-invariant filter {the a — 7 filter [3] ) on the two-dimensional imac- data
and the three-dimensional target location data presumed available from binocular stereo.
kinetic depth calculations. or other means.

6 APPENDIX

6.1 The Kalinan Filter Utilities

The ERF utilities are supported by a standard suite of matrix routines. The filter, plant
and observer are implemented as structures. There is very little use of global storage:
instead there is storage attached to structures, and static working storage within routines.
Filters mayv currently be connected in linked lists, and (should the need arise) the linking
mechanism is easv to extend to support trees and forests of filters. The code is in several
files, some of which should not need to change with the application, some of which must.
They are available in cmb/src/ekf. The PDAF application (the most recent) is in .../pdaf.
also needed are various header files in cmb/include and the statistical and matrix utilities
in cmb/lib.

8.1.1 Sample Main Loop

The main control loop for the example of the variable dimension filter looks approximately
like the following code fragment.

fquies = creat_filt{Quies_X_Dim,,Quies_Z_Dim,Qname);
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frmaneu = cr_filter(Maneu_X_Dim,Maneu_Z_Dim,Mname);
p = create_plant(Maneu_X_Dim, ,Pname);

o = create_obs(Maneu_X_Dim, Maneu_Z_Dim,Oname);
init_filter(fquies,p,0);

current_f = fquies;

current_time = 0.0;

for(i=0;i<steps; i++)

{
current_time 4= timestep;
delta_plant(p);
measure(p,o0);
ekf(current_£f,p,0);
report(current_f,p); /*simulation output#*/
if (current_f.norm_innov > thresh)
{
init_f2(fmaneu,current_£f,p,0);
current_f = fmaneu;
}
}

The basic loop can be embedded in an interactive, window-based environment or can
simply accept kevboard input and output data to files.

6.1.2 Data Structures

extern struct Filter;

typedef struct Filter

{

int XDIM; /*plant state dimensions/

int ZDIM; /*measurement dimension#*/

int name; /*filter ID*/

matrix_t H; /*measurement matrix#/

matrix_t F; /*plant dynamics matrix -- F and H may

not be used in extended filter...need
f and h functions */

matrix_t R; /*measurement noise covariancex*/
matrix_t W; /*Kalman gain matrix+/

matrix_t S; /*Innovation covariancex/
matrix_t Q; /*State noise covariance*/

matrix_t P_est; /*predicted state error covariance*/
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typedef

typedef

matrix_t xhat_est; /+*predicted statex/

matrix_t rho; /+fading memory likelihood functions/
matrix_t norm_staterr; /*norm. state err. for sims*/
matrix_t norm_innov; /*ncrmalized innovation#/
double alrpha; /*ratio for fading memorys*/

matrix_t (*compute_H)(); /* funcs for ekf matricess/
matrix_t (*compute_F)();

matrix_t (*compute_R)();

struct Filter *next; /*filter linking informations/
struct Filter =*last:

} *Filter_t;

struct plant /* redesigned for each plants/

{

int nare; /*plant ID*/

int XDIM; /*plant state dimension*/
matrix_t F; /*plant dynamics*/

matrix_t x: /*plant state*/

matrix_t V; /*plant noise vector#*/
matrix_t pure_x; /#*noiseless state#*/

double sqrtq; /*noise standard deviations/

} s*plant_t;

struct observer /* redesigned for each observers/
{

int name;

int OBSXDIM;

int ZDIM;

matrix_t obs_x; /*observed x*/

matrix.t obs_x_pure; /*noiseless observed xx*/
double sqrtrx;

double sqrtry;

double sqrtrs; /*noise standard devs*/
matrix_t w;

matrix_t z;

matrix_t pure_z; /*noiseless observation#*/

} *observer_t;

6.2 Computational Effort

Here we ascess the computational requirements of the current implementation of the
Kalman filter. Let X be the dimensionality of the state vector and Z that of the measure-
ment vector.
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Initializing a filter allocates memory for 34 matrices, varving in size from UV » X to 1 » 1.
At each iteration of the nonlinear (extended) Kalman filter. procedures must be run to
evaluate A} (the measurement equation), to predict the measurement, and to compute
F {the measurement covaniance), both of which can be functions of time. In the lincar
filter the I and R matrices are fixed during initialization.

During one iteration of the Kalman filter. as currently implemented, there are come 28
separate matrix operations (transpose. add. multiply, inverse). The primitive operation

count for the matrix operations in the (linear) Kalman filter is as follows.

Multiplics = 2X* 4273 4 3X2Z2 42X 22+ X + 22 42N 72 + 7

Adde = 2X 4 273 4 3X?2Z 43X 22 43X2 42727 42N Z +27 4+ X
Copies = X +3XZ7+ 7

If the ratio of execution times for multiplication to addition to copvis 5:1:0, Y = 4 and
7 = 2. each filter iteration costs the equivalent of 1918 additions. In that time one can
perform the equivalent of a 75 % 57 Fast Fourier Transform (disregarding powers.of twn
sizingy. If ¥ = 10, 7 = 5, an equivalent of 27,370 additions is required. which is the effort
fora "13 x 137 T, Nineteen steps of the larger Kalman filter or 273 steps of the smaller
can run in the time needed for a 256 x 256 FFT.

The implementation above is the most straightforward (i.e. naive) one its author (Brown)
could imagine. Numericallv more robust methods. which can provide faster performance
as well.include a whole range of “square root™ methods. Gelb ([12]. p. 106fT) discusces
them and also presents computer loading and timing analysis. Ron Daniel of the RRG
has implemented ingenious methods for steadyv-state Kalman filtering on modern processar
chips {MGR030) that car run at 800 Hz.
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