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INTRODUCTION

1.1 BACKGROUND

The ability to discriminate between targets (e.g., re-entry

vehicles) and decoys is of great importance to our nation's strategic

defense. One approach for accomplishing such discrimination is to

obtain a fine-resolution image. Conventional approaches for fine-

resolution optical (UV to near IR) imaging of objects at great

distances require large-diameter receiver optics with near-diffraction-

limited imaging performance. A very stable receiver support structure

and/or adaptive correction of optical misalignment to within a fraction

of a wavelength is also required to maintain this near-diffraction-

limited performance. Further, if the receiver must operate over a

large field-of-regard, prohibitively complex hardware is required. In

our research program we have investigated a meaningful and realizable

alternative solution to meet the challenge of fine-resolution imaging.

For coherently illuminated objects, a class of alternative,

unconventional approaches to fine-resolution imaging uses a large array

of small diameter receivers to make Fourier intensity measurements in

the receiver aperture. From these measurements and additional low-

resolution imagery and/or a priori information about the object, it is

possible to compute a fine-resolution image using a phase retrieval

algorithm. The intensity measurements can be made for objects over a

large field-of-regard. In compJ,-ison to conventional approaches, this

method greatly reduces the receiver hardware requirements in exchange

for increasing the data processing necessary to compute the image. In

addition, certain object parameters, such as rotation rate, can be

determined from the Fourier intensity measurements without forming an

image.
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1.2 OVERVIEW OF ACCOMPLISHMENTS

This report describes the results of an 18 month program for

development of unconventional approaches to image reconstruction and

parameter estimation. In this section the principal results of the

research program will be briefly summarized. They are reported in

detail in the sections that follow. Sections 2 and 3 give research

results in the area of parameter estimation and Sections 4 and 5

describe image reconstruction research. Section 6 reports on the

investigation cf system requirements.

The research conducted in the area of parameter estimation concerns

two types of object parameters. The first, which is described in

Section 2 is object rotation rate and the second, object separation, is

the subject of Section 3. In the area of rotation measurement we have

developed a simple model that allows us to compute the space-time

correlation function of the speckle patterns from objects of arbitrary

shape and surface material. This computational model was confirmed

experimentally on cylinders with a variety of surface materials. We

also demonstrated, both in theory and through experiments, rotation

rate measurements of multiple objects illuminated simultaneously.

Other topics covered include the robustness of rotation measurement at

low light levels and a comparison of the speckle methods for rotation

measurement with heterodyne methods. Measurement of object separation

rate from the Fourier transform of speckle pattern data is described in

Section 3. Both a theoretical treatment of separation measurement from

speckle intensity and experimental results that demonstrate the method

are given.

Ordinarily it is very difficult to reconstruct an image of a

complex-valued object from the modulus of its Fourier transform (i.e.,

retrieve the Fourier phase.) except for some special cases. In Section

2
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4, a two-step approach is described for reconstructing high-resolution

images of a general object from Fourier intensity data using

additionally a low-resolution intensity image. First, the Fourier

phase over the small aperture is retrieved using the Gerchberg-Saxton

algorithm. Then that phase is used, in conjunction with the Fourier

modulus data over a large aperture together with a support constraint

on the object, to reconstruct a fine-resolution image (retrieve the

phase over the large aperture) by the iterative Fourier transform

algorithm. A series of simulations that demonstrate image

reconstruction and test the sensitivity of the Gerchberg-Saxton

algorithm to photon noise are described. ExpPriments were also

conducted to demonstrate image reconstruction from Fourier intensity

data obtained in laboratory experiments. The details of the

experimental setup, system calibration, and successful reconstruction

results for a simple two part object are given in Section 5. Finally,

Section 6 of this report summarizes work done to specify the laser,

detector, and data processor requirements of a deployed system for

image reconstruction and parameter estimation.

1.3 SUMMARY REMARKS AND RECOMMENDATION

In summary, we have succeeded in developing important new image

reconstruction techniques and speckle-based target parameter

,neasarement techniques. These techniques have a strong potential for

use in the SDI midcourse discrimination application. Further, it is

important to note that these techniques do not require the use of large

diffraction-limited optics or heterodyne detection and should therefore

lead to more reliable, lower cost, and lighter weight system designs.

We recommend additional research to further develop and apply these

techniques.

3
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2
MEASUREMENT OF OBJECT ROTATION USING LASER SPECKLE

2.1 INIROUUCTION

Consider the speckle pattern produced by a fully illuminated, 3-D

object as shown in Fig. 2-1. It is assumed that the surface of the

object is sufficiently rough to produce a fully developed speckle

pattern in the observation plane. When the object rotates about a fixed

axis, the dominant effect observed is that the speckle pattern

translates perpendicular to the object's axis of rotation and that the

distance of speckle translation is proportional to the amount of object

rotation. Finer observation reveals that, along with the translation,

the speckle pattern decorrelates or 'boils.' The degree of boiling is

primarily dependent on the amount of object rotation and factors such as

the locations of the source and observation plane as well as the

underlying shape of the object.

In this section we analyze a simple computational model useful for

calculating space-time correlation functions for speckle from rough

rotation objects. These theoretically calculated correlation functions

can be used to assess the abilit, .o make remote measurements of an

object's rotation rate and shape from speckle intensity correlation.

Speckle from rotating objects in free-propagation arrangements has

been investigated hy several authors. George [2.1] has provided a

detailed analysis of the space-time correlation properties of speckle in

the far field of the object. He considered point-source illumination of

the entire object and calculated the space-time correlation function.

An analysis of the Doppler spectrum obtained by interfering the

scattered light with a local oscillator was also given.

5
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Coherent Rotating
Illumination Object

Observation
Plane

Figure 2-1. Example of an optical system used to observe dynamic
speckle from rough, rotating objects.
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Erdmann and Gellert [2.2] and later Takai et al. [2.3] analyzed

speckle from rotating objects illuminated by - laser spot. Erdmann and

Gellert developed an expression for the space-time intensity correlation

function in the far field. Takai and co-workers considered a single

detector in the near field and derived an expression for the temporal

intensity correlation function. Both groups presented experimental

measurements to verify the theoretical results.

Leader [2.4] has investigated temporal properties of the speckle by

analyzing the frequency spectrum of the detected light. Smith [2.5]

developed rriteria to indicate when Doppler frequency shifts of the

scattered light dominate the speckle effects.

Hayashi and Kitagawa [2.5] reported a technique to measure the

rotation angle of a cylinder using near-field speckle. They derived a

relationship in which the speckle translation is equal to the object

rotation multiplied by a constant and confirmed their results with

experiments.

From the investigations mentioned above it becomes apparent that

calculations of the space-time correlation function of the optical field

can be difficult, particularly when the object has a complicated

underlying shape. In this section we present a relatively simple ray-

trace method for computing space-time correlation functions of dynamic

speckle. Here we consider only rotation about a fixed axis. However,

the method can be applied to more complicated motions. The theoretical

basis for the ray-trace method is presented in Section 2.2. In Section

2.3 the method is used to compute the space-time correlation function

for a series of 2-D disk objects; these calculations allow one to

develop an intuitive understanding of the amounts of speckle boiling and

translation to expect for general objects. In Section 2.4 experimental

calculations of the correlation function for speckle from a rotating

cylinder are presented and compared to theory. In Section 2.5 we

7
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consider multiple objects rotating at different rates and Section 2.6

contains comments on the application of this model to objects with

complicated underlying shape. Section 2.7 contains analysis of the SNR

for rotation measurement at low light level and in Section 2.8 the

intensity detection methods presented in this paper are compared to

heterodyne methods particularly at low light level.

2.2 ANALYSIS OF SPACE-TIME CORRELATION

A single polarization component of the optical field scattered by a

rough object can always be written as a sum of contributions from

discrete scattering cells on the surface. The optical field at an

observation point p is thus

U(p) k IAki exp[ik] (2-1)
k

where 1AkI and Ok are the amplitude and phase of the contribution from

the kth scattering cell respectively. The value of 1AkI is determined

by the scattering cross-section (or inclination factor) of the

particular cell and the strength and uniformity of the illuminating

field. The phase, Ok' is given by the optical path length of the light

as it travels from the source to the scattering cell to the detection

point. In this treatment we ignore phase shifts caused by reflection

from the surface and if the object depolarizes the incident light it is

assumed that a polarization analyzer is placed in front of the detector.

To analyze the dynamics of the speckle pattern produced by target

rotation we will use a quasi-static analysis of the optical field and

thus concentrate on classical effects caused by position changes of the

scattering cells. It is important to note that speckle dynamics

predicted by this quasi-static analysis can equivalently be interpreted

as self-doppler or autodyne effects [2.7,2.8].

8



ERIM

From Eq. (2-1) we see that changes in the optical field caused by

object rotation result from the following three effects;

a) The particular scattering cells that enter the summation in Eq.

(2-1) change as scatterers move into and out of the illuminated

region of the object. The severity of this effect is dependent both

on the extent of the illuminated region and shadowing caused by the

underlying shape of the object. Shadowing caused by the surface

roughness must also be considered at large bistatic angles.

b) The amplitude of a scatterer IAki can change because of angular

dependence of the cross-section. Consider, for example, a faceted

surface. The cross-section is very large when a facet normal

directs incident rays from the source to the detection point and can

drop off greatly as the facet normal rotates.

c) The phases of the contributions change because of motion of the

scattering cells caused by object rotation.

Our analysis, in both theory and experiment, has shown that, for

most objects, speckle boiling and translation can be accounted for by

the phase changes described in item c) alone. This conclusion is also

supported by Leader [2.4]. The other effects can be significant if the

underlying shape of the object Is very complicated, the illuminated

region of the object is small, or the cross section of the scattering

cells has significant angular dependence. However, for the remainder of

this analysis we concentrate on speckle dynamics that result from phase

changes and proceed with the assumption that the other effects are

negligible. The validity of this assumption is tested by the

experiments presented in Section 2.4.

9



To quantify the dynamics of the speckle pattern the space-time

correlation function of the optical field is used. Following the

discussion above, our expression for the correlation function is

dependent on object rotation only through the phase of the scattering

cells. The space-time correlation function of the optical field is then

<UI U2> = 1 Z <JA I IAmI exp[i( kI - m2)]> (2-2)
k m

where the subscripts I and 2 denote space time coordinates (pl,tl) and

(P2 ,t2) respectively. The phase term Ok1 represents the phase of the

light from propagation from the source to the kth scattering cell to the

detection point p1 at time t1 before object rotation. The phase Om2 is

defined analogously.

To proceed with this calculation we follow Goodman [2.9] and place

the following requirements on the field contributions:

i) The amplitude and phase of the kth scatterer are statistically

independent of each other and of the amplitudes and phases of all

other scatterers.

ii) The phases are uniformly distributed over the fundamental interval

[-r,jr].

With these requirements satisfied we adopt the delta correlation model,

<AkI IAmI exp[i(Okl - Om2)]> = 6km <IAki 2> exp[i(Okl - Ok2) ] 
1  (2-3)

where 6km is the Kronecker delta function. The space-time correlation

function of the optical field then reduces to

10
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<UI U2 > = 1 <iAkI 2 > exp[ia~k] , (2-4)
k

where we have substituted = Okl - Ok2"

To calculate the correlation function we will modify the sum in Eq.

(2-4); instead of summing over the scattering cells indexed by k, we

will sample the expected cross-section, <IAkI 2>, and phase change, AOk,

over a discrete grid of points and sum over these samples. This new sum

is equivalent to tracing a series of rays that coarsely sample the

object and adding up the corresponding magnitudes and phases; for this

reason we refer to the technique as a ray-trace method. Using modified

notation, the correlation function as calculated using the ray-trace

method is

<UI U2> : <IA(xk) 2> exp[iA(xk)] (2-5)
k

where xk denotes the ray coordinates. There art several subtle issues

associated with choosing the proper ray coordinates for sampling a given

object. For this investigation we have used a sampling grid with

equally spaced ray coordinates; the corresponding grid for a 2-D object

is shown in Fig. 2-2 (the extension to 3-D objects is straightforward

and will not be discussed here). The line of the sampling grid passes

through the axis of rotation of the object and is perpendicular to the

vector connecting the axis of rotation and detection point pl. The

sampling rays are traced from the source to points on the surface with x

axis positions given by

xk = Xo + k Ax (2-6)

11
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p x

P2 xk,Yk

x
0

Figure 2-2. Sampling grid of equally spaced ray coordinates used to
compute the speckle correlation function. The
relationship of this grid to the object and detection
points is shown.

12



where x0 designates the beginning of the object as shown in Fig. 2-2 and

Ax is the sample spacing. The axis of rotation is located at x = 0. A

computer program used to calculate the correlation function would first

determine the coordinate Yk on the surface that corresponds to the

coordinate x k as shown in Fig. 2-2. The program would then determine

the cross-section, <IA(xk) 12> of the object at (xk,yk) and compute the

value of Wk1' the phase corresponding to the optical path of a ray that

travels from the source to (xk,yk) and to the detection point pl.

Rotation of the object is then accounted for by rotating the coordinates

of (xkyk) as follows

xk = xk cos A0 + Yk sin AO (2-7)

y= = -xk sin A0 + Yk cos A , (2-8)

where the object rotates about the point x = y = 0 and AO is the amount

of object rotation given by A6 = Q(t2 - tl) with a being the angular

rotation rate. More complicated object motions can be handled by

modifying the transformation in Eqs. (2-7) and (2-8). The value of

AO(xk) is found by computing the difference (Okl - Ok2 ) where #k2 is the

phase of the optical path between the source, the scatterer at (x , y )

and the detection point P2.

With knowledge of <IA(xk)1 2> and AO(xk) at many points on the object

we can compute the correlation function of the optical field using Eq.

(2-5). However, it is often more convenient to use the normalized form

of the correlation function which is given by [2.9]

<UI U2> (2-9)

13



Values of 312 fall in the range 0 A121 I 1 with IA121 1

corresponding to pure speckle translation and 1#121 < 1 indicating

boiling. After substituting Eq. (2-5), 112 is given by

Z <IA(x k )I 2> exp[iAo(xk)]

e12 = k 7 Ak2 >  
(2-10)

From Eq. (2-10) it is apparent that pure speckle translation results

when AO(xk) is a constant for all xk and that the amount of speckle

decorrelation is dependent on the deviation of AO(xk) from being a

constant. There is strong similarity between Ao(xk) and wavefront

aberration of imaging systems. In fact 122 is analogous to the

normalized intensity from the diffraction theory of aberrations [2.10].

The normalized intensity is used to quantify the aberration content of

an imaging system.

In summary, we have developed a model in which speckle dynamics can

be accounted for by phase changes of the scattered light caused by

object rotation. Speckle translation results when the phase changes

imparted by object rotation are cancelled by the phase change caused by

translation of the detection point. Speckle boiling results when the

phase cancellation is not complete; the residual phase encountered with

speckle boiling has the same effect on the correlation function as phase

aberration has on the impulse response function of an imaging system.

2.3 CALCULATIONS OF NORMALIZED CORRELATION

In this section we apply the theory developed above to investigate

speckle from rotating objects. For simplicity we consider the 2-D

circular disk object shown in Fig. 2-3. Uniform plane wave illumination

is used with the direction of propagation parallel to the vector

14
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p x

Plane Wave r=10mm
P2 Illumination

P1 _ ___

Z=100 mm

Figure 2-3. Optical system used in the simulation to investigate
speckle from rotating disk objects.
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connecting the object's axis of rotation with the detection point pl.

The detection point p, is definea to be located at the p = 0 position on

the p-axis. As the object rotates, the speckle pattern in the detection

plane translates from p1 toward P2. For the calculations presented here

we took the object radius to be r 10 mm and the range z = 100 mm.

The first step in computing the speckle correlation function is to

characterize the scattering properties of the object by specifying the

spatial dependence of the expected scattering cross-section <IA(x)f 2>.

Here we consider three surface types; the first is an object for which

the scattering cross-section is uniform for all x. This would result if

the object is covered with perfect retroreflective paint; in this case

<IA(x) 12 >U = 1 , (2-11)

where the subscript U stands for uniform. Because the measured

correlation is normalized, Eq. (2-11) can have any constant value; unity

was chosen for simplicity.

The second type of surface to be considered is Lambertian f.r which

the scattering cross-section varies as the cosine of the angle between

the underlying surface normal and the direction of observation. For the

coordinate system shown in Fig. 2-3 with z >> r we have approximately

<IA(x)1 2> LZ [1 - (ArJ 2 1 2  1 (2-12)

where the subscript L stands for Lambertian and r is the object radius.
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The final object type to be considered has a Gaussian cross-section

function given by

<IA(x)I >G = exp- W(2-13)

where the subscript G stands for Gaussian. For the simulations reported

here with a 10 mm radius object we used w = 5 mm which corresponds to an

ooject that exhibits largely specular reflection.

The correlation functions computed using Eq. (2-10) for the disk

objects are shown in Figs. 2-4(a-c). For each of the rotations

considered the normalized correlation was computed for several locations

of P2 ; thus Fig. 2-4 shows 111212 as a function of detector separation

for various amounts of object rotation, AO = 0(t2 - tl). The

correlation for each point on the curves was found by tracing 100 rays

equally spaced along the x-axis. The wavelength of the laser

illumination was X = 0.5 #m.

Figure 2-4(a) contains the correlation function for an object with

uniform scattering cross-section given by Eq. (2-11). Each curve shows

only the most significant sidelobes. The first curve, Ae = 0.0,

designates the speckle size; the first zero is located at 2.375 um while

the formula Xz/2r predicts 2.5 um. Notice that for increased rotation

the speckle pattern translates and boils.

A rough estimate for the amount of speckle translation is well known

to be 2zAt. For the middle curve in Fig. 2-4(a), AO = 0.2 mrad and the

expected translation is thus 40.0 #m while the observed value was 38.75

um. For AO = 0.4 mrad the observed translation was 77.5 #m which is

precisely twice the value for AO = 0.2 mrad.
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(a) Uniform

1.0 0.0 mrad

20.2

1 1212
0.4

0 -

-0.02 0 0.02 0.04 0.06 0.08 0.1
Detector Separation (mm)

(b) Lambertian

.01 0.0 mrad

0.2

061 212 0.4

0.2

0 --- -

-0.02 0 0.02 0.04 0.06 008 0.1
Detector Separation (mm)

(c) Gaussian
1.0 0.0 mrad 0.2

0.4
0.8

0.6{

0.4*

0.21 j
-0.02 0 0.02 004 006 008 0 1

Detector Separation (mm)

Figure 2-4. Correlation functions for objects with uniform,

Lambertian, and Gaussian scattering profiles are shown in

(a), (b) and (c) respectively. Each plot shows

correlation as a function of detector separation for the

various amounts of object rotation.
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An interesting feature of Fig. 2-4(a) is the sidelobes. Notice that

their magnitude increases steadily with rotation. From the severity of

the sidelobes one can expect that the phase of the correlation function

given in Eq. (2-10) is significantly aberrated. This aberration is

further studied in the discussion of Fig. 2-5 below.

Figure 2-4(b) contains the correlation function calculated for the

Lambertian object described in Eq. (2-12). The same trends are observed

as for the uniform object, however now the speckle size is slightly

larger and the boiling and sidelobes are less severe.

Figure 2-4(c) shows the correlation function for the object with

Gaussian cross-section given in Eq. (2-13) with parameter w = 5.0 mm.

Notice that the speckle size has increased over the previous two

surfaces and that the amount of boiling and sidelobe magnitude is

decreased.

To gain more insight into the behavior of the curves shown in

Fig. 2-4, we have plotted the phase function A(x) as a function of x in

Fig. 2-5 for various amounts of rotation. For all cases the phase

functions plotted are for the separations of p1 and P2 that correspond

to the correlation peaks in Fig. 2-4(a). We have also subtracted AO(O)

and thus plotted relative phase. Notice that the aberration increases

with the amount of rotation. To understand how these curves affect the

speckle dynamics consider Eq. (2-10). For the object with uniform

cross-section the correlation value is given by the sum over the phases

from the entire aberrated wavefront and thus with increased rotation the

speckle boils markedly and sidelobes appear. For the Lambertian object

the contribution from the highly aberrated edge region in Eq. (2-10) is

reduced and thus the correlation is higher than for the uniform object.

Finally for the Gaussian case only the central portion of the wavefronts

in Fig. 2-5 contribute and thus essentially no boiling is exhibited.
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,-5. The phase function Ao(x) that appears in Eq. (2-5) is

plotted as a function of position on the object for

various amounts of object rotation.
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One important observation to make from this investigation is that

the surface cross-section has the same effect on the correlation

function as an apodizer does on the imoulse response of an imaging

system.

2.4 EXPERIMENTAL MEASUREMENTS OF SPECKLE CORRELATION

In this section results of experimental measurement of the

normalized speckle correlation are given. The optical system used in

the experiments is shown in Fig. 2-6. A uniform, collimated and

polarized beam from an Ar+ laser operating at X = 0.5145 #m is reflected

by a beamsplitter and illuminates the target. The target was a 4.6mm

diameter cylinder with height 4.6mm. Three different surface materials

were used; they are summarized in Table 2.1. These materials were

chosen to demonstrate that the theory applies to a broad range of

materials. A linear polarizer was placed in front of the detector to

insure that a single polarization was recorded even if the target

depolarized the illumination.

The speckle patterns were recorded using a CCD camera with a pixel

size of 18 pm in the direction of speckle translation and 21.3 jsm in the

other direction. The camera was oriented in a monostatic arrangement so

that the central pixel was on the virtual axis of the illuminating beam.

The distance from the target's axis of rotation to the video camera was

750 mm.

The output from the video camera was recorded with an eight bit

digitizer. Correlation functions were computed from the recorded

speckle patterns using an array processor. The relationship between the

intensity measurements recorded by the detector array and the normalized

correlation is given by [2.9]
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Collimated " ,
Laser Beam r

Linear Rotating
Polarizer

Camera -

750 mm

Figure 2-6. Optical system used in the experiments.
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Material A Retro-reflective paint composed of glass

beads in a base material. 3M model 7216.

Material B Typists correction fluid. Produces a

uniform, flat-white surface.

Material C Silver paint.

Table 2.1 Materials used to coat cylindrical objects.
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1U1212 < 112> (2-14)

where 1 and 12 denote the speckle patterns recorded before and after

rotation. To compute the ensemble averages in Eq. (2-14) we used the

statistically stationary nature of the speckle patterns so that instead

of averaging over an ensemble of rough surfaces, the spatial average was

computed. Simulations were conducted to determine that the speckle

pattern was indeed statistically stationary over the area of the

recorded speckle patterns. The speckle pattern was recorded over a 128

x 128 pixel array both before and after object rotation. Each of these

data arrays was imbedded in a 256 x 256 array of zeros and the

correlation in the numerator of Eq. (2-14) was computed using FFT2
techniques. We found that the computed values of 1#121 were least

noisy if the expected values <II> and <I2> in Eq. (2-14) were computed
only over the overlap region corresponding to each correlation offset.

Thus the values of <Ii> and <I2> are actually arrays. This technique

for computing 1012 12 is superior to using constant values for <Ii> and

<12> because it introduces positive correlation between the numerator

and denominator of Eq. (2-14) which enhances the signal-to-noise ratio

[2.11]. Each of the correlation functions was computed from a single

pair of speckle data frames; there was no averaging over multiple

frames.

Before computing the normalized correlation we had to correct the

speckle data for pixel-to-pixel non-uniformities originating at the CCD

camera. The two effects we considered were dark current and
responsivity. To correct the responsivity we recorded a frame of data

with the sensor exposed to uniform light from a distant broadband

incoherent source and divided each frame of speckle data by this

correction frame. We found that non-uniformities in the dark current

were insignificant, however, the dark current was responsible for adding

a uniform bias to the data. To correct this we modified the bias of the
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speckle data so that the speckle contrast (the ratio of the standard

deviation to the mean) was unity. Unity contrast is a property of

fully-developed speckle, so by appropriately biasing the speckle data

the correspondence to fully-developed speckle is increased.

Examples of experimentally measured correlation functions are shown

in Figs. 2-7(a) and (b). For both figures the data was collected using

the setup shown in Fig. 2-6 and the object was coated with material B.

Figure 2-7(a) corresponds to zero object rotation and in Fig. 2-7(b) the

object has rotated 2.0 arcmin. These photographs result from recording

the 128 x 128 frames of speckle data before and after object rotation

and computing the normalized correlation given by Eq. (2-14). The grey

levels were set so that I.112 = 0.0 is darkest and 121 = 1.0 is

brightest and for intermediate values the grey level increases linearly.

If the measured value of 1#121 was below zero the grey level was set to

the darkest value and if it was above unity the grey level was set to

the brightest value.

The central pixel in Figs. 2-7(a) and (b) corresponds to zero

correlation offset; thus for zero rotation (Fig. 2-7(a)) the correlation

peak appears in the center. In Fig. 2-7(b) the object has rotated 2.0

arcmin and the corresponding translation of the speckle pattern gives

the shifted correlation peak.

The extent of the correlation functions is limited by the 128 x 128

pixel size of the speckle data arrays. Notice that the statistical

noise, which has a cloudlike appearance, increases radially from the

center of each photograph. This is because the number of independent

speckles used to compute the normalized correlation decreases with

increased detector offset. As a result, one can expect false

correlation peaks to occur in the corners of the correlation function

where relatively few speckles enter the correlation measurements.
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EXPERIMENTAL CORRELATION MEASUREMENTS

a) 0.0 arcmin rotation b) 2.0 arcmin rotation

I I I I
-2.3 0.0 2.3 -2.3 0.0 2.3

Position (mm) Position (mm)

Figure 2-7. Examples of the speckle correlation functions computed

from experimental data. (a) Object rotation is zero. (b)

Object rotation is 2.0 arc min.
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To theoretically predict the correlation functions for the various

objects we used the ray trace procedure discussed in Section 2.3 of this

paper. Because the height of the objects was small (4.6mm), we found

that the correlation function calculated using many cross-sections of

the object was identical, in the direction of speckle translation, to

the correlation function computed using only the central cross-section

of the object. In fact, we found that the height of the cylinder could

be increased by several times before affecting the correlation function.

All of the theoretical correlation functions given here are thus

calculated from only the central cross-section of the object.

To compute the theoretical correlation function we had to

experimentally measure the expected scattering profile, <IA(x) 12>, for

each target material. To accomplish this we imaged the target onto the

CCD camera by placing a lens between the CCD camera and beamsplitter and

illuminated the target with spatially incoherent light produced by

passing the laser beam through a rotating diffuser. This procedure

worked well for the objects covered with materials B and C, however, for

material A more averaging was needed because of the strong point-like

returns from the glass beads. To achieve more averaging, we rotated the

target while collecting the profile data. The scattering profiles for

target materials A, B and C are shown in Fig. 2-8(a), (b) and (c)

respectively. Notice that the profiles are all different with material

A being the most diffuse and material C the most specular. We found

that the computed correlation functions are dependent on gross features

of the profiles and insensitive to the noise in Figs. 2-8(a-c).

The theoretically calculated correlation functions along with the

experimental measurements are shown for materials A, B and C in Figs. 2-

9(a), (b) and (c) respectively. The correlation functions for the

different materials are shown in separate illustrations with 1112 12

plotted vs. detector separation. The solid lines are theory and the

circles are experimental measurements. The experimental results are
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cuts in the directi', of speckle translation through the correlation

peak of the 2-D correlation function computed by the array processor as

shown in Figs. 2-7(a) and (b). In each figure, the correlation

functions are shown for increasing amounts of object rotation from 0 to

3 arcmin. Notice that for zero object rotation theory and experiment

are in excellent agreement for materials A and B while the agreement for

material C is not as close. For material C the experimental correlation

function is considerably narrower than theory. We believe that this

discrepancy results because the measured scattering profile shown in

Fig. 2-8(c) is broader than the true profile should be. This indicates

that the size of the simulated incoherent source (illuminated region of

rotating diffuser) was too large. In future experiments, especially for

objects with strong specular returns, the size of the incoherent source

should be better controlled.

With increasing object rotation the speckle translates which causes

the correlation peaks to shift. Theory and experiment remain in good

agreement in Figs. 2-9(a-c) except for the largest rotation for which

the agreement is less marked. For the larger rotatio,,s, the speckle has

translated a considerable fraction of the width of data array which

gives a lower signal-to-noise ratio that is evident in the disagreement

between theory and experiment regarding the peak value of the

correlation function. For the larger rotations also notice the slight

disagreement between theory and experiment regarding the position of the

correlation peak. At this point we do not know where the disagreement

originates. It seems plausible that it originates in measuring the

target distance and rotation or the detector pixel spacing, but we were

extremely careful in measuring these parameters. One other possible

source is the theory; the model used to theoretically compute the

correlation functions is based on several simplifying approximations

which may combine to cause the slight discrepancy.
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(a) Material A
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Figure 2-8. Scattering profiles for materials A, B and C of Table 1
are shown in (a), (b) and (c) respectively.
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Figure 2-9. Theoretical and experimental correlation functions are

compared for materials A, B and C in (a), (b) and (c)

respectively. The correlation functions are plotted

versus detector separation for the various amounts of

object rotation. Solid lines are theory and circles are

experimental measurements.
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2.5 MULTIPLE OBJECTS ROTATING AT DIFFERENT RATES

Consider the dynamics of the speckle pattern produced when multiple

rotating targets are illuminated simultaneously. Laboratory observation

of such a speckle pattern reveals that each rotation rate imparts a

component of translation to the speckle pattern, however, there is

considerable boiling because the patterns from each target add

coherently.

To further analyze the speckle dynamics consider the two target

case. Eq. (2-10) gives

Z <1A(xk)I 2> exp[iAO(xk)] + Z <IA' (xk)l 2> exp[iA '(xk) ]
12 k 2 k 2(2-15)

12 =  Z KIa(xk) i2> + Z <IA'(xk) 12 >

k k

where the primed and unprimed values of A and A0 denote contributions

from the two targets. In Section 2.2 it was noted that for a single

object pure speckle translation results when Ao(xk) is constant for all

Xk, and the amount of decorrelation is dependent on the deviation of

AO(Xk) from being constant. Based on this observation we can make the

following conclusions for the two target case:

a) if AO(xk) is constant for both targets the value of u12 is unity.

This situation would result, for example, if two identical targets

were at the same distance with the same rotation rate. It could

also result if the two targets were at different distances with

proportionately different rotation rates.

b) If AO(xk) is constant for one object and deviates markedly for the

other the correlation value would be
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<1A (Xk) 2>

~ KI~x~)i2>(2-16)
#12 > <IA(x) 12> + F <IA'(xk 1

2 >

k k

For such targets we can conclude that a separate correlation peak

will exist for each and the corresponding peak value is given by the

fraction of the total return that is due to the particular object as

dictated by Eq. (2-16). Thus for two targets of equal intensity the

peak values are a12 = 0.5.

c) If the values of Ao(xk) are neither constant nor vary substantially,

Eq. (2-15) indicates that the contributions to 112 from the two

objects will add coherently.

The above conclusions also extend to more than two objects. With

several objects we could thus expect a peak for each distinct rotation

rate with the value at each peak given by the fraction of the total

return from the specific target.

Experiments were performed to test the above conclusions. The

experiments were identical to those of Section 2.4 except that two

targets were used, one statiO'ary and one rotating. The individual

targets were identical to those used in the experiments reported in

Section 2.4 with cylinder diameter and height equal to 4.6 mm. Both

were coated with material B. The rotating object was placed on the

optical axis of the system. The stationary object was placed above the

other with the axes of symmetry coaligned. As in Section 2.4 we found

that the theoretical predictions based on a single cross section from

each object were equivalent to the predictions from multiple cross

sections and therefore single cross-sections were used to form the

theoretical predictions.
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Theory and experiment are compared in Figs. 2-10(a-d). In each

figure ;#12 I  is plotted as a function of detector separation for

rotation values of 0 arcmin to 1.5 arcmin in increments of 0.5 arcmin.

The solid lines are theory and the connected circles are experimental

measurements. For zero rotation, shown in Fia. 2-10(a), theory and

experiment are in excellent agreement. For 0.5 arcmin of rotation in

Fig. 2-10(b) there is excellent agreement regarding the position of the

correlation peaks, however, there is substantial disagreement regarding

the peak values. In the experiments we did adjust the illumination so

that the peak values were equal, however, the peak values were both

roughly 11122 = 0.40 in Fig. 2-10(b) while the theoretical prediction

is slightly greater than 0.25 (for larger rotations the peak values

approach a minimum of 0.25 as discussed above).

For larger rotations the trends continue; excellent agreement

regarding peak location with experimental peak values significantly

larger than theory. Also notice that a sidelobe not predicted by theory

appears in Fig. 2-10(c). In Fig. 2-10(d) the correlation peaks are

completely separated.

At this point we believe that the experimental values are

consistently higher than theory because of distortions to the statistics

of the speckle patterns imparted by the CCD camera and digitizer

electronics. In the experiments the contrast of the speckle patterns

was set to unity which increases the correspondence to fully developed

speckle, however, we believe that the probability density functions of

the data deviated from being negative exponential. In future research

we will modify the instrumentation in hopes of improving the agreement

between theory and experiment.
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,bject is stationary and the other object rotates

increasing amounts in (a), (b), (c) and (d) as shown.

Aid lines are theory and connected circles are

-:perimental measurements.
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2.6 COMPLICATED ROTATING OBJECTS

Experiments were also conducted using objects with complicated

underlying shape. The experimental setup shown in Fig. 2-6 was used and

the object was a metallic scale model of a military jeep. The surfaces

of the object were rough and the underlying shape had several concave

features. The dimensions of the model in the directions transverse to

the illumination were roughly 15 mm by 8 mm so the speckle size was

considerably smaller than for the cylinders used in Section 2-4. The

results of the experiments exhibited the same trends as for the

cylindrical objects; the speckle translation is proportional to object

rotation with negligible boiling. The only detectable difference w!s

the speckle size which resulted in correlation peaks that were

considerably narrower. From these results one can conclude that

rotation measurements can be accomplished equally well for objects with

simple or reasonably complicated underlying shapes.

2.7 ROTATION MEASUREMENT AT LOW LIGHT LEVEL

In this section we analyze the ability to perform rotation

measurement at low-light level. The SNR for performing low-light level

speckle correlation has been considered extensively in the literature.

Analysis applicable to this application is contained in Ref. 2.12. Let

us adapt the results of Ref. 2.12 to consider the case using a 2-D

detector array to measure rotation. Let us assume that the speckle

pattern does not move in the tire between sequential recordings of the

2-D speckle pattern. As shown in previous sections, we are thus

concerned with measuring a correlation function that has a peak value of

1#I = 1.0 at the origin and gradually goes to zero value in a region

equal to the speckle size of XR/D. The SNR for such correlation

measurements is [2.12]
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SNR : [ +M11/2 (2-17)

120 + 12/N<n> + 2IN<n> 2 2-7

where M is the number of independent speckles encompassed by the

detector array, K is the number of independent frame pairs used to

measure the correlation, N is the number of detection channels per

speckle and <n> is the mean number of photons per detection channel.

With the number of photons per speckle large (N<n> >> 1), it follows

that the first term in the denominator dominates. This first term is

thus associated with statistical noise imparted by the speckle. As the

number of photons per speckle decreases, the last two terms in the

denominator of Eq. (2-17) dominate. To minimize noise at these low

light levels, it follows by inspection of the last terms that with N<n>

being constant, the number of detectors per speckle N, should be as

small as possible.

We conducted some low-light level simulations to test the validity

of the SNR formula in Eq. (2-17). In the laboratory we recorded a high-

light level speckle pattern produced by back-illuminating a small

diffuse square aperture with laser light. The pattern was recorded

using a 2-D detector array. A re-ion of size 128 x 128 pixels was used

in the simulation. The detector pixel spacing and illuminating aperture

size were such that there were 9 and 11 pixels per speckle in the

vertical and horizontal directions respectively. These dimensions were

extracted by correlating the high light level speckle pattern. In this

simulation we thus had M = 164 and N = 99.

To simulate speckle recorded at low light level, a Poisson random

number generator was applied to the recorded speckle pattern. For the

Poisson generator we used, the expected number of photons per pixel,

<n>, is equal to the grey value per pixel averaged over the recorded

pattern. Thus to achieve specific values of <n> the recorded pattern

was multiplied by a scaling constant and then passed through the Poisson

random number generator.

36



-. RIM

One goal of these simulations is to determine the lowest light level

at which the rotation measurements can be made. In the limit of low

light level, the expression for the SNR reduces to

SNR = L2MN <n>2 , (2-18)

where we have taken K = 1. By setting the SNR to unity and

substituting M = 164 and N = 99, we find that the lower limit of

acceptable light level is <n> = 5.54 x 10-2 photons per pixel, or 0.55

photons per speckle. Note that if the experiment conducted with 1

pixel per speckle (N = 1), the lowest light level would be 0.055

photons per speckle. Thus the lowest acceptable light level is

decreased by an order of magnitude by not oversampling this speckle.

Oversampling should therefore be avoided in experimental design.

The results of this simulation are shown in Figs. 2-11, 2-12 a

2-13. Figure 2-11 shows the original speckle pattern and the pattern

at levels of 10, 103, 10 2 , 10, 5, 3 and I photons per speckle. Notice

that the appearance of the speckle pattern gradually degrades as the

light level decreases.

To simulate the correlation measurements at low light level we

generated two independent realizations of the speckle noise for both

from the same digitized speckle pattern. These were then correlated

using the same Fourier transform procedure as in the experiments

reported in Section 2.4. The simulation thus corresponds to situations

in which the object has not rotated between the recordings of the

speckle pattern.
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lure 2-li. Exampl es of speck]le patterns ir- rhn~vn for- UvJ

light levels.
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Figure 2-12. Correlation functions genr, V ,
levels.
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-mo t, faken horizoiital ly through the
fltfSshown in Fig. 2-12.
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The correlation functions obtained for the various light levels are

shown in Fig. 2-12. Along with the high light level correlation

function the figure shows the correlation function at light levels of

10 , 103, 102, 10, 5, 3 and 1. Note that the correlation peak is

recognizable at 3 photons per speckle and that it is not recognizable

at 1 photon per speckle.

To better characterize the correlation performance, horizontal

cross-sections through the correlation peak are shown for the various

light levels in Figs. 2-13(a)-(g). Even at 100 photons per speckle in

Fig. 2-13(c), the correlation function is barely degraded. The

degradation increases, however, until it is not distinguishable in Fig.

2-13(g) at 1 photon per speckle.

For these simulations we have found that the lowest acceptable

light level is roughly 1 photon per speckle. This result is in general

agreement with the result of 0.5 photons per speckle predicted by Eq.

(2-18). It must be stressed that this lower limit on the light level

is for specific values of M and N and for other configurations the

lower limit on the light level can vary substantially.

2.8 COMPARISON TO CONVENTIONAL DOPPLER RADAR

The basic difference between rotation rate measurement using

speckle intensity and conventional Doppler radar is that the former

uses autodyne detection while the later uses heterodyne detection.

With autodyne detection the signal results from the interference of

light scattered from different regions of the object and the phenomenon

of Doppler beating corresponds to speckles passing over the detector.

For heterodyne detection the signal corresponds to the interference of

light from the entire object with a local oscillator and the Doppler

signal is caused primarily by relative motion between the transmit/

receive platform and the object. The heterodyne Doppler signal is also

41



TRIM

modulated by the speckles passing over the detector. In fact, this

speckle modulation, which gives rise to the Doppler spread, is the

signal component that gives the rotation rate information.

In a comparison conducted in Ref. 2.8, it was found that autodyning

and heterodyning are equally sensitive at measuring Doppler spread and

thus rotation rate. It was also shown that autodyning is far less

sensitive to the optical quality of the receiver and laser frequency

stability. For SDI applications laser frequency stability over the

long propagation distances is a fundamental problem for heterodyne

systems.

One other issue is the SNR for autodyne detection vs. that for

heterodyne detection. Let us assume that the return signal is shot

noise limited; this assumption is applicable to the SDI scenario.

Noise sources such as background noise and dark current are thus taken

to be small compared to the signal level. It follows that in this

limit the SNR's for the two detection schemes are equivalent; both are

capable of single photon detection [2.13]. If the return signal is not

shot noise limited, heterodyne detection does allow one to achieve the

shot noise limit [2.13].

In summary, speckle intensity methods and heterodyne methods can,

in theory perform equally well in measuring object rotation rate. In

practice, however, the heterodyne methods require optical

instrumentation of much higher quality and lasers with much greater

frequency stability. These requirements are particularly imposing when

a large array of heterodyne receivers is required. Using current

technology, we do not feel that heterodyne detection is feasible for

the SDI scenario, however, it does provide valuable information,

particularly for image reconstruction, and does warrant technology

development.
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3
MEASUREMENT OF OBJECT SEPARATION USING LASER SPECKLE

3.1 INTRODUCTION

Consider a distant object consisting of two separate segments as

shown in Fig. 3-1(a). The ability to resolve the segments using a

conventional imaging system can be characterized by the Rayleigh

criterion and the minimum resolvable angular separation is

AO = 1.22 X/D , (3-1)

where X is the wavelength and D is the diameter of the imaging lens. It

follows that to measure the separation, rather than simply resolve it,

requires a significantly larger aperture [3.1]. The achievable

measurement accuracy is thus limited by the ability to construct large

aperture, diffraction limited optics.

In this section of this report we analyze an alternative method for

separation measurement that is based on laser speckle. This method

requires active laser illumination of the separated object which is

assumed to be diffusely reflective. Rather than using an imaging lens,

the speckle pattern is detected using a 2-D detector array. While this

technique does not relax the size requirement of the detection aperture,

it does eliminate the need for large aperture, diffraction limited

optics by instead using a 2-D detector array.

The basic idea behind this speckle technique is illustrated in Fig.

3-l. An example of a speckle pattern from the separated object shown in

rig. 3-1(a) is shown in (b). Notice the spatial modulation of the

speckle pattern introduced by the object separation. The frequency of

this modulation is proportional to the amount of separation. This

;patial frequency information can be extracted using the Fourier

transform. The squared magnitude of the Fourier transform of the
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Jure 3-1. Separation measurement using laser speckle. (a) Separated

object. (b) Realization of speckle pattern. (c) Fourier

transform of speckle intensity.
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speckle intensity is shown in Fig. 3-1(c); this transform essentially

gives a speckled version of the object's autocorrelation. Measurement

of the object separation is reduced to computing the distance between

the center of this transform and the adjacent lobes. In Section 3.3 we

discuss the use of centroid measurements to extract this information.

In summary, this investigation concerns a technique for measurement

of target separation using laser speckle. While this technique does not

reduce the aperture requirement below that of a conventional imaging

system, it does not require a diffraction limited lens to cover the

aperture, but instead a detector array. The requirement for precision

optics is thus reduced.

In Section 3.2 of this report, statistical properties of the Fourier

transform of a speckle pattern are investigated. The relationship

between the transformed speckle pattern and the autocorrelation of the

incoherent representation of the object is derived. A brief discussion

of the sampling frequency required to record the speckle pattern without

aliasing is also given.

In Section 3.3 the measurement of object separation by computing

centroids of the transformed speckle pattern is examined. The

measurement accuracy is quantified using laboratory data by comparing

the actual and measured separations for several realizations of the

speckle pattern with varying numbers of speckles over the detection

aperture.

3.2 PROPERTIES OF THE FOURIER TRANSFORM OF A SPECKLE PATTERN

Let I(x) be the intensity of a speckle pattern produced by

illuminating a distant, rough object with coherent light. To simplify

notation, this treatment is conducted in one dimension, however, the

analysis is directly extendable to the 2-D case. It is assumed that

I(x) represents the intensity of a fully-developed speckle pattern in

which case I(x) is a negative exponential random variable.
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transform of an ideally recorded version of the speckle
.en as

b/2

1(u) f I(x) exp(-i2r ux) dx , (3-2)

-b/2

where b lenotes the extent of the detection aperture. Inspection of Eq.

(3-2) reveals that for each value of u, with the exception of u near

zero, 7 is essentially a sum of randomly weighted phasors. Excluding u

near zero, it follows from central limit theorem that when the detector

array encompasses many independent speckles, 1 is a circular, complex

Gaussian random variable. The Fourier transform of the speckle

intensity thus obeys the same statistical model as the optical field in

a speckle pattern.

The expected value of T is written as

b/2

C <1(x)> exp(-i2r ux) dx (3-3)

-b/2

where the angular brackets denote an ensemble average. Because the

object is taken to be at a large distance from the detection plane, it

can readily be assumed that the speckle pattern is spatially stationary,

in which case <I(x)> is independent of x. By defining <l(x)> = <I> we

have

b/2

KI(u)> = <I> f exp(-i2r ux) dx

-b/2

= b<l> sinc(bu) , (3-4)
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where sinc(x) = (sin rx)/rx. In the limit of large b it follows that

Lim <T(u)> = <I> 6(u) , (3-5)

where 6 is the Dirac delta function. Thus the transform of the

intensity has zero expected value except near u = 0.

The expected value of the squared magnitude of T, or power spectrum,

is written as

b/2 b/2

<7(u)l 2 > = f f <1(x 1 ) l(x2 )> exp[-i21ru(xl - x2)] dxI dx2  (3-6)

-b/2 -b/2

The expected value that appears on the RHS of Eq. (3-6) can be

factorized as follows [3.2]

<l(x 1 ) l(x2 )> = <I>2 (Ip(x - x2 ) 2 + 1) , (3-7)

where p is the complex normalized correlation of the speckle pattern

which has a value in the range 0 I#I 5 1. As noted in Ref. 3.2, / is

given by the normalized Fourier tran;.'orm of the intensity distribution

of the object. This relationship is analogous to the van Cittert-

Zernike theorem from classical coherence theory [3.3]. In writing Eq.

(3-7) we have used the stationary nature of the speckle pattern and thus

only the difference of spatial coordinates appears.

To further evaluate Eq. (3-6) with Eq. (3-7) substituted, one must

transform the integration to the difference coordinates, r = x1 - x2 ,
which gives
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b
<II(u)I 2> < f> j (b - Ir) (Iu(r) I 2  1 1) exp(-i21 ur) dr (3-8)

-b

Notice that Eq. (3-8) is the Fourier transform of a product. The

important components of this product are first

b

f (b - Irl) exp(-i2v ur) dr = b2 sinc 2 (bu) (3-9)

-b

which by assuming that b is much greater than the speckle size gives

b 0

f lu(r)1 2 exp(-i2r ur) dr = f f(C) f(C - u) dC (3-10)

-b -w

= f(u) * f(u) (3-11)

where f is the Fourier transform of # and * denotes autocorrelation. As

mentioned above it follows from the van Cittert-Zernike theorem that f

is the intensity distribution of the object. Using Eqs. (3-9), (3-10)

and (3-11), Eq. (3-8) is re-written as

<rY(u)I2> = b2 <1>2 sinc 2 (bu) * Lf(u) * f(u)] + b2<> 2 sinc2 (bu) (3-12)

The most important term in Eq. (3-12) is the autocorrelation of the

object's intensity distribution, f * f. As shown in Fig. 3-1, this

autocorrelation gives the distinct lobes from which the separation is

measured.

Added to the autocorrelation is a sinc function which for large b
reduces to a delta function at the origin. The result of the addition

is then convolved with a sinc 2 that also amounts to a delta function for

larbe b.
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One other important feature of the Fourier transform of the speckle

pattern is the size of the speckle in the transform domain. If the

original speckle data is contained in an array of length M, which is

then imbedded in a larger array of zeros of length N, the speckle size

in the transform domain is N/M.

One final consideration is how finely the speckle pattern must be

sampled to avoid aliasing in the transform of the speckle intensity.

Let us define d to be the size of the 1-D object; that is, the object

intensity is zero outside of a region of size d. It follows that the

maximum detector pixel spacing before aliasing occurs in the transform

is

s = XZ/2d (3-13)

where 2 is distance between the object and detector array.

3.3 MEASUREMENT OF OBJECT SEPARATION

In the last section it was shown that the Fourier transform of the

intensity of a speckle pattern is essentially a speckled version of the

autocorrelation of the object's intensity distribution. In this section

we consider the extraction of object separation from the

autocorrelation.

One way to measure object separating from the autocorrelation would

be to measure the distance from the peak of one of the sidelobes to the

center (see Fig. 3-1(c)). Because of the speckle, however, this

procedure is likely to be inaccurate especially for objects with

smoothly peaked autocorrelation sidelobes.

Another method for separation measurement is to compute the centroid

of the sidelobe which is defined by
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= m 1m12  (3-14)
m

6nere M is the sidelobe mass

M : Imt2  . (3-15)
m

The sums in Eqs. (3-14) and (3-15) extend only over the area of the

sidelobe. Because the center of the autocorrelation is at m = 0, the

centroid gives the object separation directly. Two dimensional

separations are computed by defining the sums in Eqs. (3-14) and (3-15)

to extend over the 2-D sidelobe and y is computed analogously to x.

For objects with diameter larger than their separation the

sidelobes are not separated. In this case one can use a threshoiding

procedure whereby the threshold is raised until the sidelobes are

distinct and then the centroid is computed.

Analytic computation of the accuracy for separation measurement

using centroiding is very complicated. For this reason we have

determined the accuracy empirically. Particularly we have investigated

the number of speckles encompassed by the detector array required to

accurately measure the separation. This aperture requirement can then

be compared to the Rayleigh criterion given in Eq. (3-1) and the

analysis of 'ef '.

Experimental separation measurements were conducted using the setup

shown in Fig. 3-2. The diffuse object consisted of two vertically

separated circles both of diameter 3.05 mm with center-to-center spacing

equal to twice the diameter. This object was illuminated with coherent

illumination at X = 0.5145 am and the speckle pattern was recorded at a

distance of 154 cm using a CCD detector array. The center-to-center
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Linear Separated
Polarizer Object

CameraI

K 154 cm

Figure 3-2. Experimental setup used for separation measurements.

53



pixel spacing of the detector array was Sx = 21.3 14m in the horizontal

direction and Sy = 18.0 14m in the vertical direction. These pixel

>icings are well under the upper limits established in Eq. (3-13).

If, for example, the autocorrelation sidelobe has a centroid of y in

the vertical direction, the angular separation of the objects in the

vertical direction is

Oy :(3-16)
Sy Ly

where Ly is the number of detector elements in the vertical direction of

the array including zero padding. For example, if the speckle data

array has 64 x 64 pixels and is imbedded in a 256 x 256 array, the value

of L is 256.
Y

In the experiments, we took sections of the speckle data with sizes

of 128 x 128, 64 x 64, and 32 x 32 pixels and imbedded this data into an

array of zeros with size 256 x 256 pixels. The left column of Fig. 3-3

shows examples of the speckle data for the different data array sizes.

The center and right columns show the autocorrelation estimates for two

independent realizations of the speckle data. Notice that the quality

of the autocorrelations decrease as the size of the speckle data array

decreases.

The autocorrelation centroids were computed for the various speckle

data array sizes and were compared to the expected centroids. The

results of this experiment are shown in Fig. 3-4. From Eq. (3-16) the

expected object separation is y = 35.4 pixels. This is shown as the

horizontal line in the Fig. 3-4. The horizontal axis of Fig. 3-4 gives

the dimension of the speckle data array size. For each of the array

sizes (32, 64 and 128), the centroid was computed for three realizations

of the speckle data. Notice that the accuracy increases with the size
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Figure 3-3. Examples of various sized speckle patterns are shown in

the left column. Two realizations of the autocorrelation

from independent speckle patterns are shown in the center

and right columns.
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Figure 3-4. A comparison of experimentally measured separation to the
true value for various speckle pattern sizes. For each
size 3 independent realizations of the separation
measurement are shown.
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of the data array. For the largest array size, all of the separation

measurements appear within one pixel of the true value. For comparison,

the smallest array size (32) is roughly 4 times the size of the minimum

aperture required to resolve the separation as dictated by the Rayleigh

criterion in Eq. (3-1).
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4
PHASE RETRIEVAL FOR A COMPLEX-VALUED OBJECT

USING A LOW-RESOLUTION IMAGE

4.1 SUMMARY

It is very difficult to reconstruct an image of a complex-valued

object from the modulus of its Fourier transform (i.e., retrieve the

Fourier phase) except for some special cases. Using additionally a

low-resolution intensity image from a telescope with a small aperture,

a fine-resolution image of a general object can be reconstructed by a

two-step approach. First the Fourier phase over the small aperture is

retrieved using the Gerchberg-Saxton algorithm. Then that phase is

used, in conjunction with the Fourier modulus data over a large

aperture together with a support constraint on the object, to

reconstruct a fine-resolution image (retrieve the phase over the large

aperture) by the iterative Fourier transform algorithm.

4.2 BACKGROUND

Phase retrieval from a single intensity distribution for the case

of complex-value objects arises in a number of applications such as

holography, wavefront sensing, and imaging with coherent illumination.

If the support of the object (the set of points over which it is

nonzero) is well known or of a favorable type, then it is often

possible to reconstuct an image of the object from the modulus of its

Fourier transform (the square root of the Fourier intensity) using the

iterative Fourier transform algorithm [4.1]. Favorable support

constraints include polygons with no parallel sides (particularly

triangles), which must be known a priori [4.1,4.2], and supports with

separated parts, which need not be known a priori [4.1,4.3]. If, on

the other hand, the object ha2 a polygonal support that is rot known

very well a priori, or if the object has tapered edges, then both the
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ability to converge to a solution and the quality of the reconstructed

image deteriorate [4.1,4.4-4.6]. This contrasts sharply with the case

of real, nonnegative objects, for which phase retrieval is much easier

[4.7-4.9]. Image reconstruction is also possible if the complex-valued

object has a strong glint or glints (for example, a single glint well-

separated from the object gives rise to a hologram which can be

reconstructed easily [4.10]).

In this chapter we show that even the difficult types of complex-

valued objects can be reconstructed if one has a low-resolution

intensity image of the object, taken through a telescope having a small

aperture contiguous with the Fourier intensity measurements, to

supplement the Fourier intensity data. In Section 4.3 an example is

given of an optical system that would produce the desired measurements.

Section 4.4 describes the data processing steps required to reconstruct

a fine-resolution image. A two-step method is used, employing an

accelerated version of the Gerchberg-Saxton algorithm [4.11-4.15] in

the first step and a modified version of the iterative Fourier

transform algorithm [4.1,4.7-4.9,4.13-4.15] in a second step. This new

modification, the expanding weighted modulus algorithm, was necessary

for convergence with a reasonable number of iterations. In Section 4.5

an example of reconstructing an image using this approach is given, and

in Section 4.6 are conclusions.

4.3 OPTICAL SENSOR CONFIGURATION

Suppose that the object being imaged is illuminated by a coherent

laser and is far away so that the relationship between the optical

field at the object, f(x), and that in the aperture plane of the

ooflca] receiver, F(u), is approximately a Fourier transform [4.161.

Here u and x are both two-dimensional coordinates: u in the aperture

plane and x in the object or image plane. (If it is a Fresnel
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transform, then the method described here will work with minor
modifications [4.17].) Figure 4-1 depicts an example of an optical
receiver that gathers the type of data needed for the reconstruction

described here. An array of light-bucket detectors (shown with field

lenses in front of them) samples the intensity of the optical field in

the aperture plane. In order to adequately sample the intensity of the

speckle pattern in the aperture plane, there must be at least two
detectors per speckle width in each dimension (as determined by the

wavelength of the laser, the distance to the object, and the object
diameter). Since only the intensity is detected, these measurements

are independent of any phase errors that may be present due to
atmospheric turbulence in front of the aperture (assuming that

atmospheric scintillation is negligible) or due to misalignment of the

detector array. In addition, imbedded in the array (or contiguous with

the array on the edge of the array) is a small-aperture diffraction-

limited telescope. If located on earth, the small-aperture telescope

could be diffraction-limited by virtue of having an adaptive optics
system that compensates for atmospheric turbulence in real time. Such

an adaptive optics system may not be practical for a telescope with an
aperture the size of the entire large aperture. If in space, then

adaptive optics would not be needed for the small telescope. A

neamsplitter in the small telescope allows for the detection of

intensity simultaneously in two planes: the usual focal plane, where
there exists a diffraction-limited image of the object, and a

cemagnified image of the apertUre plane. The diffraction-limited image

of the object has low resolution since it comes from a small aperture.

It is assumed that the intensity measurements are made over a short

e lugh time that the object and the receiver are essentially fixed in

;>ce relative to one another.
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Fourier Intensity
IF(u)12 [AL (u)-As(u)]

Diffraction-
Limited Image

Jg(X)J 2

Fourier
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F(ul A (o)

Figure 4-1. Optical sensor configuration. Data collected for a
coherently-illuminated object (not shown, located far to
the right) includes aperture-plane (Fourier) intensity and
a low-resolution diffraction-limited intensity image from
a small-aperture telescope.
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In summary, the optical receiver makes the following intensity

measurements. Letting AL (a binary function) denote the entire large

aperture (including the small aperture) and A denote the small2S
aperture, we have IF(u)I 2  [AL(u) - As (u)] from the light-bucket
detectors, IF(u)i 2 As (u) from the reimaged aperture of the small

telescope, and Ig(x)! 2, the intensity of the low-resolution image,

where g(x) = as (x) * f(x), as (x) is the Fourier transform of A (U) and
* denotes convolution.

4.4 DATA PROCESSING STEPS

Figure 4-2 shows a block diagram depicting how these three

intensity measurements (or their square roots, the moduli or

magnitudes) are used to retrieve the phase over the large aperture and

reconstruct a fine-resolution image. A support constraint for the

object is computed (in either of two ways), and the phase over the

small aperture is retrieved. Then the fine-resolution image is

reconstructed using all the available information. In what follows

each of these steps is described in some detail.

a.4.1 Support Estimation

A support constraint for the object can be obtained in one of two

says: from the low-resolution image or using a triple-intersection of

the autocorrelation support [4.3,4.18].

An estimate of the support of the object can be obtained from the

low-resolutirn image, lg(x) l2, by thresholding it at an appropriate

level (i.e., the support function is set equal to unity where Ig(x)1 2

exceeds the toreshold and zero elsewhere). If the threshold level is

,et too h 'n , then the support of the object is underestimated. If the

, s set too low, then the support is overestimated
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intensity over intensity over resolution
large aperture small aperture image intensity
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Estimate object ReconstructsupportI phase over
constraint small aperture

S(x) W (u) As(U)

N NF
Reconstruct
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y(u) AL(U)
A
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Figure 4-2. Data processing steps to reconstruct a fine-resolution
imag, (retrieve the phase in the aperture plane) from the
intensity measurements.
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because of noise and sidelobes due to diffraction. The sidelobes can

be minimized by placing an apodization (weighting) across the small

aperture, but at the expense of optical efficiency and resolution of

the "ow-resolution image.

The method we find useful for selecting the threshold level is as

follows. Several candidate thresholded low-resolution images are

computed using different threshold values. When the threshold value is

too high, small changes in the threshold value tend to cause small

changes in the area of the thresholded image. When the threshold falls

below the value needed to pick up the noise and/or sidelobes, then the

area of the thresholded image grows very rapidly, spreading over the

entire image space, and the thresholded image breaks up very rapidly.

This is illustrated by the example shown in Figure 4-3 for the case of

a telescope with a small circular aperture (a diameter-16 circle

imbedded in a 128 x 128 array). Thus a good choice of threshold value

is one just larger than the values for which the area of the

thresholded image grows rapidly. Figure 4-4 shows the corresponding

results for the case of a weighting function across the small aperture.

The weighting function was chosen to be the autocorrelation of a circle

of half the diameter of the small aperture; that is, the weighting

function falls to zero at the edges of the small aperture. With the

aperture weighting included, the diffraction sidelobes are greatly

reauced and the area of the thresholded image is much less sensitive to

changes in the threshold value, making the aperture weighting

Northwh. e despite the loss of resolution it causes.

For the case of diffusely scattering objects, the Fourier intensity

fs a speckle pattern and the image (the low-resolution image as well as

the fine-resolution image), is speckled [4.19], as can be seen in

iures 4-3 and 4-4. !lulls in the thresholded image due to speckleI

mills in Ig(x,y) l can be eliminated by convolving the thresholded
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a a -F

Figure 4-3. Thresholding the low-resolution intensity image to
estimate a support constraint, with no weighting on the
small aperture. (A) Diffraction-limited low-resolution
image (overexposed in order to show the sidelobes that
extend beyond the support of the object); (B)-(D)
thresholded images, with thresho.d values equal to (B)
0.073, (C) 0.157, and (D) 0.392 of the maximum value of
the image.
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Kiure 4-4. Thresholding the low-resolution intensity image to
estimate a support constraint, with a weighting on the
small aperture. (A) Diffraction-limited low-resolution
image (not overexposed); (B)-(D) thresholded images, with
threshold values equal to (B) 0.078, (C) 0.157, and (D)
0.392 of the maximum value of the image.
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image with a small circle, then rethresholding, as illustrated in

Figure 4-5. The estimate of the support of the object, shown in Figure

4-5(C), is used as a support constraint in the final step of fine-

resolution image reconstruction by the iterative Fourier transform

algorithm. Since this support constraint is only approximate and may

be too small, it is often useful to enlarge the support constraint to

ensure that the object fits within it. We typically enlarge the

support constraint by adding pixels to the edges of the initial support

constraint, as shown by the example in Figure 4-5(D).

A second method of generating a support constraint, which uses the

Fourier intensity over the entire aperture, is the method of triple

intersection of the autocorrelation support [4.3]. First the Fourier

intensities over the small aperture and from the light-bucket detectors

are combinea to arrive at the intensity over the entire aperture. This

intensity is inverse Fourier transformed to obtain a fine-resolution

autocorrelation of the object. The autocorrelation function is

thresholded and the nulls due to speckles are eliminated in a way

similar to that shown in Figure 4-5. Noise and sidelobes outside the

true autocorrelation support are eliminated to the extent possible by a

similar method operating on the complement of the support. The result

is an estimate of the support of the autocorrelation. Then three

appropriate translates of the autocirrelation support are intersected

to arrive at an upper bound on the support of tne object [4.3]. In

this case the support constraint is not an estimate of the support of

the object, but is an upper bound that contains all possible object

supports consistent with the support of the autocorrelation.

The support constraint computed from the autocorrelation function

fs from finer-resolution data and therefore may be more ,ccurate, but

it may also be too large since reconstruction of the support of an

oeJect from the support of its autocorrelation function is ambiguous
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a j

Figure 4-5. Removal of nulls due to speckles in the image. (A)
Thresholded image from Figure 4-4 (C), (B) convolution of
(A) with a circle of diameter 7 pixels (about half the
diameter of a speckle), (C) thresholding of (B) at 0.58 of
its peak, (D) enlarged version of (C) that may be used to
ensure that the object fits within it.
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for wide classes of objects [4.20,4.3]. The thresholded low-resolution

image avoids these ambiguity problems, but, being lower resolution, may

not be as accurate. Further study is required to determine which of

the two methods is better and to devise a way to combine the best

features of each into a composite support estimate.

4.4.2 Small-Aperture Phase Retrieval Using Gerchberg-Saxton

The phase, (u), of the optical field, F(u) As (u), in the plane of

the small aperture is determined from the intensities in the focal

plane and the image of the aperture plane using a variation of the

Gerchbc 7-Saxton algorithm that is accelerated. Figure 4-6 shows a

block diagram for the Gerchberg-Saxton algorithms. Here we will refer

to the original Gerchberg-Saxton algorithm [4.11,4.12] as GS and the

accelerated versions as GS1 and GS2 [4.13-4.15], the latter having the

image-domain operation [4.14, Eqs. (9) and (10)]

+g l (x)( ) - g x 1 k x (4-1)

k-, (x) = g'(x) + Ig(x) k )l - g (x) - Ig(x)I l k(x)
k lgk(x)lI

where P is a constant, Ig(x) l is the modulus of the low-resolution

image, Vk(x) is the input image to the kth iteration and g'k(X) is the

output image from the kth iteration. The rates of convergence for

these three algorithms were compared and P was optimized. The

differences in the convergence rates are affected not only by the

choice of P but also by the choice of the random phase used as the

initial estimate. It was found that GS2 generally converges much

faster than GSI which in turn converges significantly faster than GS.

A better methcd than using any single algorithm is to combine GS2 and

2?: perform several iterations with GS2, which initially converges

quickly, then finish off with several iterations of GS, which is more
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START:
INITIAL ESTIMATE

FFT = IGIexp{i¢}

FOCAL-PLANE USE OBJECT SATISFY FOURIER APERTURE-PLANE
MODULUS Ig- DOMAIN CONSTRAINTS DOMAIN CONSTRAINTS MODULUS AsIFI_ T I

SFFT' = AsIFI exp{ib}

Figure 4-6. Block diagram of the Gerchberg-Saxton algorithms. The
object domain constraint is the square root of the
measured intensity of the low-resolution image and the
Fourier constraint is the square root of the measured
intensity over the small aperture.
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stable and converges to a smaller error. For these algorithms the

object domain error metric (ODEM), a normalized root-meaf-squared (RMS)

error, is given by

7- [Ig X) I - Igx)]2
ODEM2  X (42

2Z Ig(x)i 2  (4-2)

x

which is a measure of how close the output image modulus agrees with

the modulus of the measured low-resolution image and is the criterion

by which we judge whether the algorithm has converged. (A similar

error metric in the Fourier domain can also be used.) Note that in

oruer for Eq. (4-2) to be meaningful it is necessary to normalize

lg(x,y)l so that it has the same energy (sum of squares) as the Fourier

modulus data. The quality measure we use to evaluate the

reconstruction results is the absolute error of the complex-valued

reconstructed image, also a normalized RMS error, which is given by

Z a g'(x - x0) - g(x)1 2

ABSERR2 = x Ig(x) 2 (4-3)

X

where a is the complex factor, and x is the shift, that minimizes

ABSERR. It can be shown that x0  is given by the location of the

maximum magnitude of r g(x), the cross-correlation of g' with g; and a
2 gg

rgg (x 0 )/Eg(x)I . This absolute error can only be computed in

digital simulation experiments for which the true image is known.

Although it measures the error in the complex numbers, which includes

both magnitude and phase errors, ABSERR correlates well with the

standard deviation, o, of the error of the phase retrieved over the

small aperture. As shown in the Appendix, the expected relationship,

ignoring errors in the modulus, is
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ABSERR2 - 1 - exp[-0 2] . (4-4)

Figure 4-' shows examples of algorithm convergence. Twenty

iterations of either GS2 or GS were followed by 20 iterations of GS.

The optimum value of P was found to be about 1.5 to 2. The algorithm

is not very sensitive to small changes in the value of 0. Retrieval of

the phase over the small aperture was found to be relatively fast (only

about 30 iterations are required).

To test the sensitivity of the combined algorithm to noise, low

light levels (quantum-limited measurements) were simulated by

subjecting the intensity measurements in both planes to a Poisson noise

process. We chose to simulate the same number of photons in each of

the two planes. After scaling the intensity data to have a given

expected total number of detected photons, each pixel was replaced with

a sample drawn from a Poisson distribution with mean and variance equal

to the pixel value.

For these experiments, the object is approximately of size 40 x 60

pixels imbedded in a 128 x 128 array. Therefore the intensity of the

Fourier transform of the object (computed using an FFT) is a speckle

pattern with about 3 x 2 samples per speckle. The Fourier data was set

to zero outside a circle of diameter 16 pixels to simulate the effect

of the small aperture (without weighting). Therefore there should be

about i82/6 = 33 speckles in the small aperture.

Figure 4-8 shows the convergence of the algorithm for a variety of

noise levels. Figure 4-9 shows ABSERR, the quality of the output

image, as a function of iteration number for a variety of noise levels.

Figure 4-10 shows ABSERR for the reconstructed image as a function of

the total number of detected photons. Very good results are obtained

for 104 or more photons, which corresponds to 10 4,33 - 300 photons per
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Figure 4-9. PMS error (ABSERR) of the complex-valued reconstructed
low-resolution image as a function of iteration number for
a variety of light levels,
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speckle. From these results we see that the Gerchberg-Saxton

algorithms converge rapidly and are reasonably robust in the presence

of noise.

Comparing Figures 4-8 and 4-9, one sees that ODEM > ABSERR, which

is contrary to what one would ordinarily expect. This can be explained

as follows. In our simulation the Fourier- (aperture-) domain data was

only slightly oversampled whereas the image-domain data was highly

oversampled, that is, there are many pixels per speckle. Therefore,

even though both planes have the same average number of photons per

speckle (the number of speckles being the same in both domains), the
;mage domain received far fewer photons per pixel. This causes the

image-domain data to have a much greater mean-squared error than the

Fourier-domain data. Therefore, the output image, g'(x), which is

consistent with the Fourier modulus data, has an error appropriate to

the lower error of the Fourier modulus data, and it is closer to the

true image (as measured by ABSERR) than it is to the noisy image-plane

modulus data (as measured by ODEM).

Since the image domain was highly oversampled, we performed a

simple noise filtering. The noisy image intensity was Fourier

transformed, the Fourier transform was set to zero outside a circle r#

diameter 32 pixels (since the ideal complex-valued image has a Fourier

transform that is zero outside a circle of diameter 16 pixels), and the

result was inverse Fourier transformed to yield a smoothed image with

-educed noise. Before taking the square root to compute the image

modulus, small negative numbers introduced by the filtering process

were set to zero. Figures 4-11 and 4-12 show the convergence and image

quality for a set of experiments similar to the ones described above,

but using the filtered images. As expected, ODEM was lower for the

nase of noise filtering than without it. However, ABSERR, which is

ultimately of greater importance, was slightly better without

78



- RIM

1.0

0.9

u 0.8

__ 0.7

Number of Photons
- 0.6 = 1.e2
U 1.e3

7 = 1.e4
05 A i,1.e5

- 1e6
o 1 - I.e7
0 0.4 0, -no noise

0.3 N 7

0.1

0.0 ..

0 10 20 30 40
Number of Iterations

Figure 4-11. Convergence of the combined GS2 and GS algorithms, using
a filtered version of the noisy image, for a variety of
light levels.
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-;,ire 4-12. RMS error of the complex-valued reconstructed low-
resolution image as a function of iteration number, when

using the filtered version of the noisy image, for a
variety of light levels.
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ing; consequently it is better not -

:r e. This filtering issue re.::i , -

ote from Figures 4-8 and 4-11 that the initial fconre,r . te ;f

i.gorithm is not monotonically related to tee aiccnront noise

,ae"t. This results from the fact that some o c . an,- panes

>en as the initial estimate are closer to tre t--n n ?: an

ns.

Fine-Resolution Image Reconstruct,.:

,thh all the data in hand including the - ....

entire aperture, the phase over the snina :Ce n .' ; ' -c ncrt

traint -- we perform image reconstruction J

.. transform algorithm, which seeks a solctio -.r . r

_ ata and constraints [4.1, 4.7-4.9, 4.1-. - . f

algorithm, which is a generalizatic.! .

-o'ithm, is shown in Figure 4-13.

then using any phase information in ri e-

-ion of the support constraint in J ..- sen

cc consistent with the given Fourier pnase. j* c <nrnsl
" retrieval with no a priori phase in'o inrticn, 47 ces nt

.) One way to ensure this is to crcss-- . - ccc
,-aint with the low-resolution image and use the I

~ Alue of the cross-correlation to determine the optinali position

of the support constraint.

For the case of a difficult-to-reco,,struct complex-valued object,

initial attempts to use the small-aperture phase with the iterative

Fourier transform algorithm were unsuccessful, whether the phase was

just used in the initial estimate or reinforced during the iterations.
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rigure 4-13. Block diagram of the iterative Fourier transform
algorithm. The object-domain constraint is a support
constraint derived from the measured data, and the
Fourier-domain constraints are the square root of the
measured intensity over the entire large aperture and the
phase retrieved by the Gerchberg-Saxton algorithm over
the small aperture.
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A possible reason for- this failure is the fact that the area of the

small aperture is a small fraction of the area of the entire large

aperture, and so the incorrect phase over the rest of the aperture

overwhelms the influence due to the correct phase over the small

aperture.

The following modifications to the algorithm were found to be

necessary for a reliable reconstruction. First, in order to reduce

impulse-response sidelobes it is advantageous to use a weighting

function on the Fourier modulus. This is important since large

sidelobes extending beyond the edges of the object support will violate

the support constraint and hinder convergence. The Fourier modulus

weighting function was chosen to be the autocorrelation of a circle.

initially the diameter of the circle was chosen to be such that the

Fourier modulus weighting went to zero over an area just slightly

larger than the area over which the small-aperture phase was known.

Then a cycle of 30 hybrid input-output iterations followed by 10 error-

reduction iterations [4.1] was performed, reinforcing the phase over

the small aperture at each iteration. (In practice, reasonably good

results can also be obtained if the phase over the small aperture is

used for the first iteration only, without being reinforced during

later iterations; but better results are obtained by continual

reinforcement of the known phase.) This was sufficient to converge to

a solution for the phikse over the nonzero area of the weighted Fourier

modulus, since the phase was already known over most of that area to

begin with. Then the Fourier modulus was re-weighted with a weighting

function of slightly larger area, and another cycle of iterations was

performed. This process was continued until the weighting function

encompassed the entire area of the measured Fourier modulus data. Thus

the phase retrieval proceeded by a bootstrap approach, with

successively larger areas of phase retrieved, and successively finer-

resolution images reconstructed, during each cycle of iterations. When
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we compute ABSERR by Eq. (4-3), we use for g(x) the diffraction-limited

image for the same weighting of the Fourier transform as is being used

for the Fourier modulus weighting for that cycle of iterations. We

have recently learned that others have also found an expanding weighted

modulus approach to be important for reconstructing complex-valued

images [4.21].

Ordinarily when reconstructions are performed using a poorly-known

support constraint (as is the case here), we have found it best to

start with a smaller support constraint for early iterations and expand

the support constraint for later iterations. However, when using the

expanding weighted modulus algorithm, the images that are reconstructed

during the early iterations are larger than the images reconstructed

during the later iterations, sire for the early iterations the point-

spread function is much larger due to the use of a narrow weighting

function in the Fourier domain. By experimentation with support

constraints that were expanded or shrunk as the iterations progressed,

we found that a good strategy was to use a support constraint

appropriate for the low-resolution image, and keep it fixed during all

the iterations. However, an alternate strategy may be necessary

depending on the ratio of the diameters of the small and large

apertures or on how the support constraint is formed.

For fine-resolution image reconstruction from the Fourier modulus,

for which the only image-domain constraint is a support constraint, the

object-domain error metric is given by, instead of Eq. (4-2),

Z lg x)1 2

ODEM 2 - xiS 2 (4-5)>1 lg(x)1

x

i.e., the energy outside the support constraint S.
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4.5 IMAGE RECONSTRUCTION EXAMPLE

Figure 4-14 shows an example of image reconstruction using the

approach described above. In the upper left is the Fourier modulus

data (noise free) over the entire aperture, a circle of diameter 64

pixels (imbedded in a 128 x 128 array) with the aperture of the small

telescope indicated by a dark circle. In the upper right is the low-

resolution image obtained through the small aperture of diameter 16

pixels, weighted by the autocorrelation of a diameter-S circle. The

support constraint, shown in the lower 'eft, was obtained by

thresholding the low-resolution image as described above, and the

small-aperture phase was estimated using the accelerated Gerchberg-

Saxton algorithm. All that information -- the Fourier modulus over the

large aperture, the support constraint, and the Fourier phase over the

small aperture -- was combined to retrieve the phase over the large

aperture by the iterative Fourier transform algorithm using the

expanding weighted modulus approach. After 25 cycles of iterations

during which the weighting was expanded, plus an additional 6 cycles at

the end, for a total of over one thousand iterations, the image shown

'n the lower center was obtained. It is very close to the true fine-

resolution diffraction-limited image, shown in the lower right. Figure
4-1 shows intermediate results with different eightings on the

Fuui-er modulus. The phasc is ratripved v'll for each weighting of the

Fourier modulus before the weighting iu,,ction is expanded, and so at

each step a diffraction-limited image (for the resolution given by the

weighting function) is reconstructed. Figure 4-15 shows the object-

domain error metric (ODEM) and the absolute error (ABSERR) as a

function of iteration number. Also indicated is the diameter of the

Fourier-weighting function as the iterations progress. It was found

that if substantially fewer iterations per cycle were used or if larger

Jumps in the size of the weighting function were used, then the

convergence of the algorithm was much less relible. Unlike previously

85



SRIM

Four~er inodulus Low resolution
IF(u)IAL(U) image Ig(x) 2

Support Reconstructed Ideal
constraint image image

S(x f(x) f(xJ

Figure 4-14. Image reconstruction example. (Left to right) (A)
FDurier modulus data over a large circular aperture --

the black circle shows the area of the small apert e;
(B) low-resolution image from the small aperture; k,-)
object supuort constraint derived from (B); (D) image
reconstructed by the Gerchberg-Saxton algorithm followed
by the iterative Fourier transform algorithm u.ing (A).
(B) and (C); (E) ideal image for comparison.
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published results, in which ODEM (or ABSERR) starts out large and

decreases with iteration number, here it starts low and stays low since

at any given point we are trying to retrieve only an additional thin

annulus of phase. A sawtooth behavior is seen since the error jumps up

each time the weighting on the Fourier modulus is enlarged.

4.6 CONCLUSION

A complex-valued image of an object with convex support and without

bright glints, whose support is not known a priori, is ordinarily very

difficult to reconstruct from its Fourier modulus. We have

demonstrated that a low-resolution intensity image of the object, taken

through a small-aperture telescope contiguous with intensity

measurements over a large aperture, can be used to help reconstruct a

fine-resolution image. The low-resolution image is used both to

determine the Fourier phase over the small aperture and to form a

support constraint for the object. The retrieval of the phase over the

small aperture, using an accelerated version of the Gerchberg-Saxton

algorithm, was found to be not only fast, but also robust in the

presence of noise. The reconstruction of the fine-resolution image was

also successful, but was found to take a large number of iterations.

The determination of its performance in the presence of noise will

require further research, which is presently being planned.

Portions of this chapter were presented at the O.S.A. Topical

Meeting on Signal Recovery and Synthesis III, N. Falmouth, MA, 14-16

June 1989 [4.221.
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5
IMAGE RECONSTRUCTION LABORATORY EXPERIMENTS

5.1 SUMMARY

A new method for image reconstruction from Fourier intensity and

low-resolutiot, image iotensity measurements was introduced in Chapter 4

and computer simulation experiments to demonstrate this method were

described. An important next step in the development of this method is

the investigation of image reconstruction from experimental drta

collected in the laboratory. Therefore, an experiment was set up,

laboratory data was collected, and image reconstruction procedures were

applied with and without the use of the low-resolution image. An image

was reconstructed using Fourier intensity measurements alone. Further

work to improve data collection procedures is required to reconstruct

an image using the additional low-resolution image.

The remainder of this section gives further details. In Section

5.2, it is shown that accurate Fourier intensity data can be collected

in the Fresnel zone of the illuminated test object. In Section 5.3,

experimental work to verify the linearity and spatial uniformity of the

2-D CCD detector is discussed. The experimental set-up is described in

Section 5.4. Necessary data sampling and pre-processing is discussed

in Section 5.5 and image reconstruction results are given in Section

5.6.

5.2 FRESNEL ZONE DATA COLLECTION

Image reconstruction procedures based on phase retrieval require

measurement of the Fourier intensity of the illuminated object. It is

well-known tat the Fourier intensity can be measured in the Fraunhofer

region with respect to the object [5.1]. However, for imaging of space

objects from space-based sensors, the sensor is more likely to be in

the Fresnel region than the Fraunhofer region with respect to the
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object. For example, for an object of diameter d = I m, illuminated by

a laser of wavelength X = I Am and a sensor at a distance z with

aperture diameter D = I m, the Fraunhofer approximation requires [5.1]

z >> d2 /4X = 1 Mm 5-!)

while the Fresnel approximation requires [5.1]

z3 >> i(d + D) 4 /64X r (100 m)3  (5-2)

A sensor at a likely distance of z = 1 Mm would therefore easily

satisfy the Fresnel, but not quite satisfy the Fraunhofer,

approximation. A similar situation exists in a laboratory experiment

unless a FGLrier transform lens is used between the object and the

detector.

When the Fresnel approximation is satisfied, the relationship

between the optical field Ul(x, y) resulting from illumination of the

object and the field U2 (u, v) at a distance z is [5.11

U2 (u, v) = exp(i2r z/X) exp[i(u2 + v2 U(x, y) exp 
i ( x 2  +  Y2 ]

2ixz ex Xz I~ f firxz

* exp [i2T( x u + yv) dx dy (5-3)

The intensity I(u, v) is

I(u, V) = IU2(u, v)! 2 = (xzY-2  J'f f U1(x, y) exp ir'(< + y2 )

zf-i27(xu + yv)1 dx dy 2 (5-4)
Xz
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If phase retrieval is successfully applied to measurements of the

Fourier intensity data I(u, v), the complex-valued image reconstructed

will be the diffraction-limized image of U1 (x, y) exp[ir(x 2 + y2 )/Xz],

whereas a diffraction-limited image of Ul(x, y) is desired. (The

diffraction limit will be determined by the aperture diameter D over

which Fourier intensity data is collected.)

However, the image obtained of Ul(x, y) exp[iw(x 2 + y 2)/Xz] can be

equally useful to that of Ul(x, y) under the following conditions. If

the object is rough compared to the wavelength of the illumination,

then the quadratic phase is added to the random phase of Ul(x, y). The

intensities of the diffraction-limited images of U1 (x, y) exp[i -(x2 +

y 2)/Xz] and UI(x, y) are then different realizations (speckle patterns)

of the same image of the object. If, in addition, it is not desired to

use the phase information of Ul(x, y), then either image gives the same

information and reconstruction of images from intensity data measured

in th2 Fresnel region of the object is as acceptable as that from data

measured in the Fraunhofer region.

5.3 DETECTOR CALIBRATION

It is known from previous work at ERIM that errors in the Fourier

intensity data lead to errors in reconstructed images and, if the error

is too large, to an inability to reconstruct an image [5.2, 5.3]. Both

the optical propagation path from the object to the detector and the

detector itself can cause data errors. Propagation path errors depend

on the experimental set-up and are discussed in Section 5.4. Possible

errors which can be introduced by a detector include nonlinear response

to input intensity, spatially nonuniform response, and additive noise.

These detector errors are the subject of this section.

A Fairchild CCD300OF camera using the Fairchild CCD222 sensor with

380 by 488 pixels had been used in earlier successful phase retrieval

demonstration experiments [5.4] and was chosen for the current
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experiments as well. The linearity of the response was carefully

measured using a controllable light source and calibrated detector.

Spatial uniformity of response was also measured in hins way for all

pixels. The linearity of the typical CCD pixel was ±2% and the spatial

uniformity (standard deviation computed over all pixels) was 1.5% when

measured at a light level corresponding to the maximum signal

obtainable when still operating in the quasilinear response region.

Software was developed so that the response of each pixel could be

independently corrected for nonlinearity and bias. However, the

correction was found to be so small that it did not affect the results.

The standard deviation of the frame-to-frame noise of the Fairchild CCD

camera was measured and found to be 1%, again measured at the light

level corresponding to the maximum quasilinear response.

5.4 FXPERIMENTAL OPTICAL SET-UP

The experimental optical set-up is shown in Fig. 5-1. An Argon ion

laser operating at a wavelength X = 0.5145 am was used to illuminate a

transmissive object consisting of a binary transmittance mask placed in

contact with a ground glass. The maximum width of the object was about

10 mm. The transmitted light propagated 1.54 m to a lens L1 of focal

length fl = 1.54 m. The lens was about 40 mm thick in the center. As

explained later in this section, this lens is used to cancel the

quadratir phase due to propagation over a distance f1 " Two apertures

A and A2 were located behind the last surface of Lhe lens IaL U Lanccs

of 8 and 22 mm, respectively. For collection of Fourier intensity

data, the CCD detector was placed in plane P1 about 20 mm behind the

second aperture. For collection of image data, the optical field at

plane P1 was Fourier transformed by a lens L2 to a plane P2 to which

the CCD detector was moved. The imaging lens L2 had a focal length f2

= 189 mm and was positioned so that the planes P1 and P2 corresponded

to its front and back focal planes, respectively.
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A, A-

'2 rCI pJJ

Figure 5-1. Optical Setup for Phase Retrieval Laboratory Experiments.
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TK data collected consisted of Fourier intensity data over both a

large and a small aperture and image data corresponding to both the

large and small apertures. The apertures were square and approximately

mm and 1.2b mm in width, respectively. The small aperture (A2)

Fourier intensity data and the low-resolution image data (obtained

using the small aperture) were input to the Gerchberg-Saxton algorithm

described in Chapter 4. For high-resolution image reconstruction, the

large aperture (A1 ) Fourier intensity data can be input to an iterative

Fourier transform algorithm using in addition either (1) an upper bound

on object support estimated by the triple intersection method [5.5] or

(2) an object support estimated by thresholding the low-resolution

image. In the second case, the Fourier phase over the small aperture,

estimated by the Gerchberg-Saxton algorithm, can also be used. The

first method was investigated via computer simulations in earlier work

at ERIM [ .6]. The second method is the new image reconstruction

method described in Ch3pter 4.

Because of its relative simplicity, the optical system was found to

be sufficiently stable that many frames of Fourier or image data could

be averaged to reduce additive detector noise. The optical path from

the object to the detector was enclosed in black velvet to reduce stray

light to a very low level.

The object diameter d was about 10 mm, the distance z from the

object to the detector in plane P1  was about 1.5 m, and the maximum

detector width D was about 5 mm corresponding to the use of the central

256 by 256 pixels of the detector array. Substituting these values

into Fq. (5-2) for the Fresnel approximation gives

z (0.17 m)- , a)
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while the Fraunhofer approximation [Eq. (5-1)] would require

z >> 150 m (5-5b)

The detector is therefore in the Fresnel region of the object and

Fourier intensity data can be collected as described in Section 5.2.

It should be ioted that the small and large apertures are placed in

front of the CCD detector by about 20 and 34 mm, respectively.

However, the plane P where the Fourier data is collected and the plane

P2 where the image data is collected are related by a Fourier

transformation because they arc the front and back focal planes of the

lens L2 .

The lens LI is required to cancel the quadratic phase [the

exponential in front of the integral in Eq. (5-3)] due to propagation

from the object to plane PI so that the Fourier transformation by the

lens L2 of the optical field in plane P1 gives a focused image in the

plane P2. The image formed at plane P2 will include the quadratic

phase described in Section 5.2.

Ideally, the lens L and the two apertures would be located in the

plane P The lens L woulu then not change the Fourier intensity

measurement since the lens and the detector would be in the same plane.
Physically, this is impractical. The phase error in plane PI caused by

the approximately 42 mm distance between the lens L and the plane P1

can be determined as follows. The optical field immediately after the

lens L is given by

exp [-i21(xu + yv)] dx dy (5-6)
Xz
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where, as shown in Fig. 5-1, z fl" The angular specLrum A (fu, fv

of this field is [5.1]

A0 (f u  fv) U1 (Xzfu, Xzf V) expfiXz(fu
2 + fv 2)]

where

fu = x/Xz and fv = y/Xz (5-7)

The angular spectrum A(fu , f v) after propagation an additional distance

Az is

A(fr f ) A (fu f ) exp [12r Az 1 - x 2 _ x2 f 2]11 (5-8)
u v o0 v fx Iu vi

The field after this propagation is therefore

U'(u, v) = Jx~i, J/ UI(x, y) exp iir(x2 + Y2

expli2 ,z - z2 l1 exp - 27(xU + yv) dx dy.

(5-9)

The field at the plane P differs from that after the lens LI by a

phase factor

exp i27 Az I - X2 + Y2112} (5-10)

within the integral in Eq. (5-9). The only effect of this phase factor

is once again to change the realization of the image of the object.

[See the discussion after Eq. (5-4).] Note that aperture effects have

not been included in this initial analysis.
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Experimentally, the 2-D speckle intensities at a plane behind the

lens and at another plane 50 mm behind the first were detected and

found to be very nearly equal. This indicates that the 42 mm

propagation distance between the lens LI and the plane P2 does not

adversely affect the data collected.

5.5 DETECTOR SAMPLING AND DATA PREPROCESSING

For a rectangular diffuse object of width d and d in orthogonalx y
directions, the expected value of the normalized autocorrelation of the

intensity of the speckle pattern at distance z is [5.7]:

R(u, v) = 1 + sincA.-- sinc J (5-11)

where X is the wavelength of illumination and u and v are orthogonal

coordinates. The first zeros of the second term in the autocorrelation

function are located at u = Xz/d x and v = Xz/d . The Nyquist sampling

rates are half these distances, so the detector separations Au, Av must

satisfy

Au < z Av -z (5-12)

For the objects used in these experiments, the maximum width was about

10 mm, so the Nyquist sample spacing was 40 am in each direction. For

the Fairchild CCD detector, the center-to-center detector separations

are 30 #m in the horizontal direction and 18 am in the vertical

direction, so the speckle patterns in the Fourier plane were somewhat

oversampled. The video digitizer samples each horizontal line at a

spacing of 21.3 um.
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For the speckle in the image plane, the required sample spacings

are [5.7]:

AX - , Ay = v  (5-13)2D1  2D

where f2 is the focal length of the lens L2 and Du and Dv are the

aperture dimensions. Since f2 = 189 mm, and, for the small aperture,

D - Dv = 1.25 mm, the required spacing is 39 pm. For the large

aperture, Du = Dv - 5 mm, and the required detector spacing is 10 #m.

Note that this spacing is smaller than the pixel spacing of the

detector array used. Because this high-resolution image is only used

for comparison purposes, sampling it at less than the Nyquist rate has

no effect on the success of the iterative algorithm.

An optical Fourier transformation exists between the optical fields

in planes P1  and P2  of Figure 5-1 while a digital Fourier

transformation (e.g., an FFT) will be used when processing the data

collected in these two planes. The scaling between these two data sets

can be determined as follows [5.1]. The Fourier intensity data is

collected as N by M values, electronically sampled by the video

digitizer at spacings Au = 21.3 #m and Av = 18 pm. When this data is

FFTed to the image domain, the resulting data will be again N by M

samples with spacings, in the image plane P2, of Ax0 = Xf f2/NAu and Ay 0

= Xf2/MAv. The actual low and high resolution image data is, again,

electronically sampled by the video digitizer at spacings Ax = 21.3 am

and Ay = 18 pm, so the data must be rescaled to be sampled at Ax0 and

Ayo. The scaling factors are

Axo  Xf2

Ax N Ax Au
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and

Ay 0 Xf20 _ M Ay AV = 1.17 (5-14)

for N = M = 256.

For phase retrieval, the image to be reconstructed must occupy no

more than N/2 by M/2 samples. The magnification of the image with

respect to the object is f2/f1 for the setup shown in Fig. 5-1. For an

object of extent dx in the x-direction, the image extent is therefore

f2d x/f . Using Eq. (5-12) with equality for Au, we find that (N/2)Ax0

= Xf2/2Au = t2 dx /fI verifying that proper sampling has been achieved.

5.6 EXPERIMENTAL RESULTS

In one series of experiments, images were reconstructed using only

Fourier intensity data. The result of one of these experiments is

shown in Figure 5-2. In part (a), the square root of the detected

Fourier intensity data is shown. This 256 by 256 array of 8 bit data

is the result of averaging 256 frames of digitized CCD data. From this

data, the autocorrelation of the desired complex-valued image was

computed via a Fourier transformation. In part (b), the estimate of

the upper bound on the image support obtained by applying the triple

intersection method to the thresholded autocorrelation is given [5.5].

Part (c) shows the intensity of the image reconstructed from the

Fourier intensity data of part (a) and the support of part (b). For

comparison, an optically formed image is shown in part (d). It can be

seen that additional details such as the dark stripe on the rectangle

and the shape of the triangle have been reconstructed correctly

although at lower than actual contrast. Because this image data was

collected at a different time than the Fourier intensity data, with a

slightly different aperture, nd had to be resampled for display, the

fine details, such as the speckles, are not expected to agree with

tnose in part (c). In a second experiment, images were not
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Figure 5-2. Image reconstruction from experimental data. (a) Fourier

modulus, (b) image support from triple intersection

,iethod, (c) reconstructed image intensity, (d) approximate

conventional image intensity for comparison to (c).
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successfully reconstructed from Fourier intensity data and low-

resolution image data using the method described in Chapter 4. Further

work to improve data collection procedures for this case is required.
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6
SYSTEM ANALYSIS

6.1 INTRODUCTION

A large segment of this research program was devoted to the

specification of the hardware and operational characteristics required

by a deployed system for image reconstruction and target parameter

estimation. In this section of the report, the results of this system

analysis study are summarized. Section 6.2 contains a summary of the

results pertaining to parameter estimation and Section 6.3 summarizes

the results for image reconstruction.

6.2 SYSTEM ANALYSIS FOR PARAMETER ESTIMATION

In this section, several factors that establish limits on the

ability to measure target rotation rates using speckle are considered.

After an introduction, source requirements, object material properties

and receiver requirements are discussed separately.

6.2.1 Principles of Rotation Measurement

Let us consider some of the principles upon which rotation

measurement using speckle is based and make a comparison to

conventional coherent Doppler radar. The premise for this work is that

various components of an SDI target cluster rotate at different rates

and that measurement of the rotation rates within a target cluster will

allow one to identify the objects present. The use of speckle to

measure rotation rate can be regarded as a Doppler technique. Rather

than interfering coherent radiation reflected from the object with a

local oscillator, as in heterodyning and homodyning, the speckle

techniques are autodyne or self-Doppler methods. These methods are

based on the interference of light scattered from different regions of

the object and uo not employ a local oscillator. Researchers have
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shown that even though autodyning avoids the 2:7 . ciated,-i>:

cavIng a iocal oscillator, it has the same sen-: neerodn

--r measuring Doppler spread [6.1].

Observation of the speckle pattern prodi, ced by illuminating

rough, rotating object with a laser beam reveals not Dr-y. that

:ntensity at a point in the speckle pattern does exhibit Doppler

:,eating when the object rotates, but also that the beating is imparte:::

-y tbodily trar.lation of the speckle pattern. Moreover, tre speck e

translation is prcportional to the object rotation. This :cservaticn

suggests that rather than measuring rotation simply by temporal

processing of the intensity detected at a point as with standard

autodyning, one can combine spatial with temporal processing to extract

the rntation information. For example, if the speckle pattern is

recorded twice by a 2-D detector array with the time interval between

recordings equal to At, the recordinas can be spatially correlated to

extract the speckle translation, Ax, which in turn gives the object

angular rotation rate, 0 (in radians/sec), via

(6-1)2R At

where R is the range.

One other difference between autodyning and heterodyning worth

noting is that heterodyning is intended for measurement of relative

motion between the source and target while autodyning is not sensitive

to their relative motion. Hence, heterodyning is most sensitive to

longitudinal target motion while autodyning concentrates on differences

of motion within a target or target cluster. For this reason the

frequency content of the heterodyne signal from an object is biased

significantly by relative motion which can complicate the extraction of

rotation information.
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Another quantity important to the discussion of system capabilities

is the time that it takes a speckle to translate over a point in the

detection plane. This time is the inverse of the required detector

bandwidth. With the speckle size given by XR/d, where X is the

illumination wavelength, R is the object range and d is the object

diameter, it follows that the bandwidth required of each detector to

ensure Nyquist sampling is given by

B = 40d/X (6-2)

The system used to conduct these rotation measurements could

actually L, -onstructed to operate in a number of possible modes. We

believe that the optimal system would have a laser source that operates

in a long pulse mode and a 2-D detector array for which each element

has bandwidth given by Eq. (6-2). As the object rotates the speckle

pattern is recorded as a function of time. To compute the speckle

translation, speckle data collected at a minimum of two different times

is required. The temporal separation, At, of this data should be set

so that the speckle translation is detectable.

6.2.2 Source Requirements

To accomplish target rotation measurement for the SDI missicn, the

laser source must have sufficient output power and coherence length.

The coherence length must be twice the depth of the object so that, at

a given time, the light scattered from the entire target adds

coherently at the detector. If this condition is met, the speckle

contrast is unity; otherwise, speckle with reduced contrast results and

measurement of speckle translation degrades.

The laser pulse must be long enough so that the speckle translates

detectable amount. The pulse length must also be long enough so that

the light at the detector originates from the entire depth, AR, of the

object. If the pulse is too short, only a slice of the object is
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illuminated at a time. With each slice giving an independent speckle

pattern, the resultant pattern integrated over the entire pulse has

reduced contrast which decreases the ability to measure rotation. Even

when the pulse is sufficiently long to illuminate the entire depth at

once, the leading part of the pulse (of length AR) and the trailing

part (of length AR) are not useful because the entire object is not

illuminated. These regions of the pulse act to reduce the speckle

contrast and reduce measurement accuracy. One can define a pulse

utilization parameter to quantify the fraction of the pulse that is

useful

Pulse Utilization = I - 2AR/cT (6-3)

where c is the speed of light and r is the pulse length. The value

given by Eq. (6-3) should be as close to unity as attainable, that is,

long pulses with r >> 2AR/c should be used.

If the value of Eq. (6-3) is positive, which signifies that for

some fraction of time the entire object is illuminated, but the value

is not close to unity because the pulse is short, one could employ

range gating at the receiver to reject the leading and trailing edges

of the pulse. Such range gating, however, implies having detection

electronics that are more complex, and of higher bandwidth, than those

required for long pulse operation.

In summary, it is expected that system complexity is minimized by

operation with long pulses for which r >> 2AR/c. Furthermore, the

pulse length should be long enough so that the desired speckle

translation is observed within one pulse. Except for very slow

rotation rates, this condition will normally be met by T >> 2AR/c.

(For slow rotation rates, two pulses can be used to collect data at the

required two different times.) For this system The bandwidth for each

detector in the receiver is given by Eq. (6-2).
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6.2.3 Object Material Properties

To perform rotation measurements using speckle it is assumed that

the object is diffusely reflective so that the speckle pattern is fully

developed and has unit contrast. The degree of diffuseness is

characterized by the scattering cross-section as a function of the

angle between the object's local surface normal and the illumination

angle. As the degree of diffuseness decreases, or the angular extent

of the scattering crocs-section becomes narrower, the principle effect

is that the speckle size increases due to the smaller effective object

size. The increase in speckle size reduces the SNR for rotation

measurement because the SNR for rotation measurement is proportional to

the square root of the total number of speckles in the detection

aperture. Although the SNR is reduced, the bandwidth requirement given

by Eq. (6-2) is relaxed because of the increased speckle size.

6.2.4 Receiver Requiremcnts

The receiver described in Section 6.2.1 for making rotation

measurements using speckle is a 2-D detector array. The size of the

array should be large so that it encompasses a large number of

independent speckles since the SNR is given by Eq. (2-17):

SNR = 4MK 2 11/220 + 12/(N<n>) + 2/(N<n> 2 )I-4

where M is the number of independent speckles encompassed by the

detector array, w is the number of independent frame pairs used to

measure the correlation from which rotation rate is determined, N is

the number of detection channels per speckle and <n> is the mean number

of detected photons per detection channel. The number of detected

photons per speckle is equal to N<n>. The detector spacing should be

set according to the finest expected Nyquist sampling frequency to
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avoid aliasing, that is, the spacing si, e ess t than or equa to

\R 2d. It must be noted, however, that ers_,p ;i results i.i.. a -o,er

SNR when operating at low-light levels s'n,7 , 2 . (2- ,3):

SNR = [2M K/N] (-

aid the optimum value of N is the -a e, t..o, allowed bv

Nyquist sampling, when N<n> is held const.- t.

,.3 SYSTEM ANALYSIS FOR IMAGE RECONST 'Z.'

in this !ecLiun the results of , sistem stidy for image

recinstruction are given. Section 6.3.! 4s devoted to discussion of

the source and sensor requirements and >ectln 6.3.2 contains a

,iscussion of simulation experiments for :.V,. za in of image

r _unsLructijti error in the presence of ncse. Section 6.3.3 ct-,tains

a Srief description of the computational requirements for 'mage

reconS truct i o,.

..3.l Source and Sensor Requirements

The basic hardware elements for performing image reconstruction are

a pulsed laser source, a 2-D array of light-bucket type detectors and a

low-resolution imager. As detailed in Section 4, the detector array

provides object Fourier magnitude, or pupil-plane information, while

t e low resolution imager picks off a portion of the Fourier magnitude

data using a beamsplitter and provides a low-resolution diffraction-

limited image. This low-resolution image serves two purposes; first,

application of the Gerchberq-Saxton phase retrieval algorithm yields

the phase of the optical field over the region of the pupil plane

corresponding to the ,, . .. ol,,'o" .... ... S-cond, the low-resoluti on

image serves as a support constraint for reconstruction of the high-

resolution image using the expanding Fourier modulus method described

in Section 4.
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The source and detector requirements are basically the same as

those for parameter estimation discussed in Section 6.2, except that

for good image reconstruction performance (yet to be quantified) it is

required that one have a higher power laser (to increase the SNR of the

data) than is required for parameter estimation. For slowly rotating

objects or non-rotating objects it may be possible to integrate returns

from several pulses.

6.3.2 Simulation Experiments

In this section the results of simulations conducted to

cnaracterize the performance of the image reconstruction algorithm in

the presence of noise are presented. The first simulation is a

comparison of image quality obtained using phase retrieval (under ideal

circumstances) to conventioilal diffraction-limited imaging. The object

used was a simulated PBV-RV complex-valued object. For phase

retrieval, the pupil-plane Fourier magnitude was computed with Poisson

statistics to simulate low light level noise. An image was then

reconstructed using the iterative transform algorithm with the exact

image domain support constraint, and the normalized rms error in the

reconstructed image intensity was computed. For the conventional

diffraction-limited image, Poisson statistics were ipplied to the image

and the resulting image-domain error was computed.

Figure 6-1 compares image quality for phase retrievd! d[16

conventional imaging as a function of the number of photons per

speckle. For high light levels ( 6000 photons per speckle) both

methods produce very high quality images. At the light level of

roughly 1000 photons per specklp the error in the phase retrieval

image begins to increase markedly. It is important to note that, even

at the light level of 600 photons per speckle, the error of 0.30

associated with phase retrieval corresponds to an image that does

contain recognizable features. In practice, the support will not be

known exactly, so imaging performance could be poorer than for these
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Figure 6-1. Normalized rms error in image intensity for image recon-
structed by phase retrieval and for conventional image

versus number of detected photons/speckle.
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experiments. Thus Figure 6-1 should not be used to establish the lower

limit on light level when using phase retrieval. In future work a

thorough characterization of the algorithm at low light levels will be

conducted to establish the lower limit. This study will include

analysis of the sensor configuration, the estimation of the support

constraint, and the specific form of the phase retrieval algorithm to

obtain an accurate estimate for the lowest allowable light level.

Another series of simulations was conducted to determine

reconstructed image quality as a function of noise in the Fourier

magnitude data. The exact image domaln support constraint was used and

Gaussian noise was added to the Fourier intensity. The results of this

simulation are shown in Figure 6-2.

6.3.3 Computational Requirements

The dominant computational burden in iterative phase retrieval

algorithms is the 2-D FFT operation; two 2-D FFT's are required per

iteration. To reconstruct an image it thus follows that the number of

real additions and multiplications required is of the order

20MN 2/log 2N, where M is the number of iterations required and N2 is the

number of pixels in the reconstructed image. For N = 64 and M = 100 it

follows that 50 x 106 real additions and multiplications are required.

To assess the ability of advanced hardware to accommodate phase

retrieval we considered VHSIC technology and in particular, the

Westinghouse Pipelined Arithmetic Unit (PLAU). The PLAU is capable of

performing 40 x 106 operations per second. For the above example ot N

= 64 and M = 100 it follows that a single PLAU is capable of

reconstructing an image in about 125 sec. Future advances in

processor technology including highly parallel computing architectures

can be expected to lower the time required for reconstruction

considerably.
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Figure 6-2. Normalized rms error in image reconstructed by phase
retrieval versus normalized error in Fourier magnitude
data (due to additive Gaussian noise in Fourier
intensity).
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APPENDIX
ERROR VARIANCE RELATIONSHIPS

We relate the variance of the error of an optical field (or the

Fourier transform of a complex-valued image) to the variance of its

phase error for a zero-mean Gaussian-distributed phase error.

Let

G(u) = F(u) exp[i e(u)] (A-1)

be the aberrated optical field, where F is the ideal optical field and

Oe is the phase error. Suppose Oe has point statistics that are

Gaussian zero mean with standard deviation o. First consider the case

without normalizing G. Then the variance of the error (i.e., the mean

square error) of G(u) is

E2 = A-' f IG(u) - F(u)l d 2u

= A-' f IF(u) 12 II - exp[iOe(u)]1 2 d2 u

= A-' f IF(u) 12 4 sin 2[ e(U)/2] d2u (A-2)

where A is the area of integration. Assuming the phase errors are

independent of IF(u)l, and approximating the integral by an ensemble

average yields

E2  4 <IF(u)I 2 sin 2 [0e(u)/12]>

4 <IF(u)1 2> <sin2[ e (u) /2]> (A-3)
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Using the identity

f exp(-px2) sin 2(ax) dx = T[i -exp(-a 2 /p)] , [p > 0] (A-4)

0

the average over the distribution of phases is given by

<sin 2[e (u)/2]> = - sin 2 (e2) 1 exp(_0e/2a2] d#e

= (1/2) [ 1 - exp [-a 2/2)] . (A-5)

Inserting this into Eq. (A-3) yields

e2  2 -- 2[1 - exp (-o /2 . (A-6)<IF(u)l 12

Note that e2 - 2 for a 0 + and

e2 - a 2  for a2 << . (A-7)

Next consider the case of a normalized G, as in Eq. (4-3):

E2  JA-' f Ia G(u) - F(u)12 d 2u (A-8)

where

f G (u') F(u') d2u'

f IG(u")l2 d2 (A-9)
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then

< G * GF_ = <IFI 2> <exp(-io e)>(-O

<IGI2> <IF12>

= <exp(-i~e)> = exp(-a2/2) (A-li)

Thus

E2 A-' f IF(u) I2 Iexp(-a/2) exp[ie(U)] 112 d 2u

SA-1 f ,F(u)i 2 {exp(-a2) + 1 - 2 exp(-a2/2) cos[e(u)]} d2u

: <IF(u)I 2> (exp(-o_) + 1 - 2 exp(-o2/2) ecpS[e(u)]>}

<IF(u)l > [ _) 1 2  I_2 exp(- 2 /2)

2<IF(u)12> [I - exp(-)] (A-12)

ore2 
p- a 2 (A-13)

KIF(u)I 2 > exp-1

Note that for the normalized case, unlike the unnormalized case, e
2

for al and, like the unnormalized case, e2 , a2 for a2 << 1.

By Parseval's theorem it can be shown that the variance of the

error in the image domain is equal to the variance of the error in the

Fourier domain.

Just as image shifts can be taken out before computing errors to

allow for the fact that image shifts are unimportant to image quality,

linear components of the phase error Oe(u) can be taken out before

computing a or e2 .
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