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* Page 4.

Collection of articles is dedicated to memory of prominent Soviet

scientist, Lenin prize winner, Dr. of physico-mathematical sciences

G. S. Narimanov. Are included four thematic sections: space

research, libration motion of space vehicles (KA) with liquid during

small and sizable oscillations of its free surface, rotational motion

of KA with the liquid. In the collection the contemporary analytical

and numerical methods of the solution of the problems of the dynamics

of the complex systems are reflected, including the methods of machine

graphics, and also experimental.

For scientific workers, who carry out questions of rocket-space

and aviation equipment, body being deformed, and also calculating

methods of mathematical physics.
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Page 5.

GEORGIY STEPANOVICH NARIMANOV.

In service record of Georgiy Stepanovich is counted teaching in

department of applied mechanics of Moscow University, where our joint

operation occurred, together with many other forms of activity.

Georgiy Stepanovich in many respects contributed to development

of research, useful for practice, and gained love and respect of both

-associates on department and graduate students and students. His

personal scientific results on the theory of the joint oscillations of

solid bodies and liquids filling them proved to be the valuable

contribution to mechanics of the systems being deformed and rocket

engineering.

I had the occasion repeatedly to encounter and frequently to work

together with Georgiy Stepanovich in now already distant times of

first steps of cosmonautics. Occurred the difficult days of failures.

And then especially were manifested the personal delay of Georgiy

Stepanovich, the skill to be dismantled/selected at the reasons, which

determine the undesirable course of events, and to plan the ways of

their elimination.

Georgiy Stepanovich Narimanov was keen expert of mechanics. Yes

even not only mechanics, but also space technology as a whole. One
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Scannot fail to say about his devotion to the great ideals of our

society, understanding of human relations and values of cuiture,

personal modesty, kindness, in a word - high culture.

i am grateful to fate for acquaintance with this remarkable

person.

Academician A. Yu. Ishlinskiy.

0
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Page 6. I

PREFACS.

Thematic collection "Dynamics of space vehicles and space

research: it is dedicated to memory of well-known Soviet scientist,

who made noticeable contribution to development of cosmonautics, eri

prize winner, Doctor of Physics and Mathematics, professor Georaiy

Stepanovich Narimanov (1922-1983).

Coliection is opened by introductory article, which contains

short survey/coverage of multifaceted activity of G. S. Narimanov,

and consists of four parts, which correspond to main scientific

directions in his creativity, which continue to develop his students

and followers.

Each part, except the first, begins from determining its

thematics basic work of G. S. Narimanov, published earlier, and

includes articles of other authors, connected with this thematics.

These works - the result of research of the Moscow, Kiev and Tomsk

scientists, who rightfully can be related to the scientific school of

G. S. Narimanov.

First part contains works of general character, which relate to

space research with the help of space vehicles, and also to some

mechanical and physical aspects of structure and evolution of solar
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* system - one of subjects of this research.

Second part is dedicated to linear problems of dynamics of flight

vehicles, which have sections, partially filled with incompressible

fluid. In the specific frequency band the adequate model of these

objects is solid, absolutely rigid body with the cavity, which

contains liquid with the free surface. It is assumed that the field

of the mass forces of the undisturned motion can, in the first

approximation, be considered potential (although unsteady), and liquid

ideal (its motion, as a result, irrotational). As the disturbed

motion the low oscillations of body and liquid are exam.ined (low

deflections from the undisturbed state).

0 Specifically. in this setting this problem was in its time was

formulated and solved by G. S. Narimanov.

Page 7.

Articles, included in second part, contain series of original

results, which expand limits of the applicability of initial

mathematical model of G. S. Narimanov (in particular, along line of

phenomenological account of eddies of low-viscosity liquid and

elasticity of walls of tank and housing of space vehicle during

longitudinal vibrations), and which also relate to methods of

calculation of parameters of corresponding mathematical models. The

results, obtained during the numerical application of these methods

* and during the experimental research are given.
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Third part is dedicated to nonlinear problems of dynamics of the

same objects; basic nonlinearity is caused by the fact that

deflections of free surface of liquid from undisturbed state are

"sizable". It is here represented as the new conclusion/output of the

nonlinear equations of G. S. Narimanov from the variation principle,

which makes it possible to construct the structural/design algorithm

of the calculation of their coefficients for the cavities of the

rotation of arbitrary configuration, and also the theoretical and

experimental perturbation analyses of body and liquid.

Last, one fourth of collection is dedicated to rotational motions

of axisymmetric flight vehicles with sections, which contain liquid.

For the undisturbed motion is accepted the "rapid" quasi-stationary

rotation of flight vehicle or solid body simulating it relative to

longitudinal axis.

In G. S. Narimanov's article, which opens/discloses this part,

concept of theory of long waves (fine/small liquid) is used and it is

assumed that cavity is cylindrical. In the subsequent articles,

together with this case, is examined opposite - cavity, wholly filled

with liquid.

Are given some results of theoretical and experimental analyses

of stability of rapidly revolving body with liquid filling, which can

be considered as model of space vehicle, stabilized by rotation.
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Thus, collection is essentially "problematically oriented" to

those problems of space research and dynamics of space vehicles, into

solution of which G. S. Narimanov introduced considerable personal

creative contribution.

Editorial board and entire collective of writers hope that this

collection will contribute to further development of actual

directions, connected with scientific heritage of G. S. Narimanov,

and to solution of new applied problems, which lie on forward edge of

space technology.

Responsible editor is Hero of Socialist Labor, doctor of technical

O sciences, professor.

G. A. Tyulin.

0
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Page 8.

BRIEF OUTLINE OF SCIENTIFIC ACTIVITY OF G. S. NARIMANOV.

G. A. Tyulin.

Is given short survey/coverage of scientific activity of

prominent Soviet scientific G. S. Narimanov in region of theory of

flight and dynamics of carrier rockets (RN) and space vehicles (KA).

Are in more detail examined the basic work of G. S. Narimanov in the

dynamics of solid body, which contains the sections, partially filled

with the ideal incompressible fluid, that is model of RN and KA with

ZhRD [XP j - liquid propellant rocket engine].

Activity of Lenin prize winner, Doctor of Physics and Mathematics

Georgiy Stepanovich Narimanov can be represented in the form of

following directions: first, these are scientific research in region

of mechanics of flight of carrier rockets (RN) and space vehicles

(KA), dynamics of systems, which contain being deformed in process of

motion elements (liquid, elastic), general problems of space research;

in the second place, scientific organizational work in field of
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* cosmonautics; in the third, pedagogical activity.

Speaking about first direction, should be stressed special role

of development of adequate mathematical models of RN and KA, which

consider mobility of liquid in tanks and elasticity of housing, in

scientific research of G. S. Narimanov. Research of the dynamics of

solid bodies with the liquid filling, simulating RN and KA with ZhRD

in the powered flight, carried pioneer character and had high value irn

the solution of the practical problems of stability and automatic

stabilization of RN and KA. Hundreds of works, dedicated to such

research ', are published during the recent three decades.

FOOTNOTE-'. The approximate representation about this can be composed

* on the bibliography, given in work [9]. ENDFOOTNOTE.

Author did not place to himself to entirely compare results,

obtained by G. S. Narimanov and other authors (many authors,

especially foreign, worked in parallel and independently). Will here

deal the discussion only with the work of G. S. Narimanov himself,

moreover in essence about those, which carry priority character.

First research of G. S. Narimanov in field of dynamics of bodies

with liquid filling was carried out in 1950-1951 and connected with

solution of problems of developing of rocket-space technology.

Reflecting about the unsuccessful attempts to agree on some special

* features of the dynamic behavior of objects, which were being observed
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during the flight tests, with the mathematical description of the O

disturbed motion of these objects as absolute solids of variable mass,

Narimanov arrived at the conclusion that the reason for these failures

lies in the inadequacy of the utilized for the analysis mathematical

model of RN as solid body.

Page 9.

Specifically, then he posed the problem about the review of the

conceptual basis of research of rocket dynamics in the powered

flights. In 1951 he successfully solved it, after proposing the first

internally matched mathematical model of flight vehicles with ZhRD, in

which wasconsidered within the framework of the concept of flat/plane

free surface the mobility of liquid ("floating mass-free rigid

cover/cap").

This model made it possible not only to match results of

mathematical simulation with flight test data, but also to obtain

sufficiently good coincidence of a priori and a posteriori dynamic

characteristics.

In 1951 G. S. Narimanov obtained more complete mathematical

model of three-dimensional/space distv Lance of motion of solid body

with cavity, partially filled with ideal incompressible fluid, in

potential variable field of mass forces with low deviations of all

generalized coordinates and speeds from appropriate quiescent values

under precise (linearized) boundary free-surface conditions of liquid.
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In this work, published in 1956 [33, G. S. Narimanov, after

introducing certain hypothetical solid body with liquid, formulated

basic assumptions, which ensue from character of undisturbed and

disturbed motions in powered flight and special features of layout and

construction/design of stabilized flight vehicles with ZhRD, which

remained virtually constant to this day. This determined the wide

application of a mathematical model, proposed by G. S. Narimanov,

during the solution of the applied problems of rocket-space

technology.

Let us enumerate most important results, published by G. S.

Narimanov in work [31 and having fundamental character: obtaining

O common mathematical model of three-dimensional/space disturbed motion

of system body - liquid (linear approximation/approach) in the form of

system of ordinary differential equations of infinitely high order;

proof of existence and uniqueness of solution of this system of

equations; proof of applicability of method of its reduction to system

of finite order; obtaining by method of separation of variables of

structural/design algorithm of calculation of hydrodynamic

coefficients in the case of cylindrical cavities; demonstration of

efficiency of application of methods of operational calculus for

solving wide circle of problems of dynamics of bodies with liquid

filling in the case of stationary field of mass forces of undisturbed

motion; solution of two important model problems, which relate to

plane-parallel motion of body with one (progressive/forward or rotary)
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degree of freedom.

Following cycle of work of G. S. Narimanov on this thematics was

dedicated to problem of nonlinear vibrations of liquid in mobile

cylindrical sections, i.e., to generalization of mathematical model

[3) to case of "sizable" oscillations of free surface of liauid.

Page 10.

For author it was possible to work out efficient method of

synthesis of mathematical model of systems body - liquid on basis of

reducing of nonlinear boundary-value problem to sequence of linear

boundary-value problems. This idea was in detail developed in work

[4), which pertains to the year 1957, in which were given the complete

system of equations of the three-dimensional/space disturbed motion

and the algorithm of the calculation of its coefficients, and also the

numerical values of coefficients for the cavity in the form of

straight/direct circular cylinder.

In the same year left work G. S. Narimanov [5), in which author,

using equations, obtained in work [4), explained whole series of

substantially nonlinear effects, which were being observed during

flat/plane harmonic oscillations of body in vicinity of major

resonance, which are accompanied by "sizable" oscillations of free

surface of liquid: limitedness of amplitude in region of major

resonance, bias/displacement of resonance frequency of fundamental

unsymmetric harmonic to side of lower frequencies, i.e., "soft
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* nonlinearity", asymmetry of protuberance and indentation in maximum

wave in the presence of resonance (height of protuberance 1.5 and even

2 times more than depth), bias/displa-ement of nodal curve from

center-line plane to side of protuberance. The same work gives the

evaluations of the limits of the applicability of linear theory

according to the frequency of the induced harmonic oscillations of

body with the liquid.

In 1958 leaves first and only in its kind monograph of G. S.

Narimanov [7], dedicated to the problems of the dynamics of bodies

with the liquid filling (model of RN or KA with the rigid housing) and

which includes also chapter about the equations of the flat/plane

disturbed motion of the elastic crux of variable/alternating cross

* section with the free ends/leads (model of elastic housing of RN with

the hardened liquid during the motion in one of the stabilization

planes). In the book were included the basic results on the problem

in question, obtained by that time by the author and which retain

validity in their majority on the present time. Into it the expanded

and substantially supplemented materials of works entered [3...5].

The main things from these additions are: the solution of

boundary-value problems and the calculation of all hydrodynamic

coefficients for the cylindrical cavities with the cross sections in

the form of circle, rectangle, circular sector; the solution of the

model problem about the plane-parallel motion of body with the liquid

with two degrees of freedom in the presence of the servo force (model

* of thrust of ThRD) - demonstration of emergence with some values of
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the parameters of the dynamic instability of system, which is

impossible in the case of the hardened liquid; qualitative

description, on the basis of nonlinear equations, the new

experimentally observed effect - rotation of the free surface of

liquid during resonance oscillations with the excess of a certain

critical amplitude of oscillations.

In 1957 appeared besides '5] one additional oiiginal wcrk of G.

S. Narimanov (6], dedicated to class of problems of dynamics of solid

bodies with cavities, which contain liquid, namely - to disturbed

motion of rapidly revolving body with liquid.

Page 11.

The author considered in this work the task about the symmetrical

gyroscope with the partially filled with liquid cavity in the form of

the circular cylinder, whose axis coincides with the axis of

gyroscope. Using with the large art the hypothesis of the theory of

long waves (i.e. "shallow water"), the author obtained the closed

system of equations of the disturbed motion of gyroscope with the

liquid, close in structure to the system of equations, given in work

(3].

Infinite system of ordinary differential equations obtained in

work (6) also allows/assumes application of method of reduction, which

makes it extremely attractive for solving applied problems. In

particular, the role of avroscope with the liquid can play the
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Sstabilized by rotation space vehicle, furnished control motors, whose

dynamics is completely described by the equations, given in work

By this work G. S. Narimanov knew how to move the bridge between :he

tasks, connected with the "libration" motions of objects with the

liquid aboard and the "rotational" motions.

Work of G. S. Narimanov in region of special sections of

mechanics of systems (in connection with tasks of cosmonautics Deiriq

deformed caused to life vast cycle of research both general

Lheoretioal 12] a4 applied character.

As a result, by works of many authors, among whom there were

numerous -students and followers of G. S. Narimanov, was worked out

* completed theory, which made it possible not only to explain dynamic

special features of behavior of objects with liquid filling, that are

exhibited in flight, but also create reliable theoretical basis for

design of stabilization systems of these objects, on the basis of

assigned requirements for factors of stability of systems housing -

liquid - automatic machine of stabilization.

Theory relating to "sizable" oscillations of liquid in tanks,

proved to be especially fruitful during solution of problems of

dynamics of KA in sections of motion with low thrust, stage

separation, correction of orbit, landing on planets and series/row of

other complex problems. The tasks, connected with the rotational

* motion of KA, gained special urgency in recent years in connection
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with the wide acceptance of the apparatuses, stabilized by rotation,

with the periodic correction of rotational axis in the direction in

the sun (for guaranteeing the normal mode of the work of solar

batteries).

In 1977 new monograph [9), written by G. S. Narimanov together

with L. V. Dokuchayev and I. A. Lukovskiy, left. In it the early

work of Narimanov found further development, and the long-term

investigations of all three authors, which were thE continuation of

these works, were also reflected.

Work [9] in detail examines not only axisymmetric cylindrical

cavities, but also axisymmetric cavities with arbitrary

piecewise-smooth contour of diametric cross section. Thus, it was for

the first time taken into consideration in the nonlinear equations of

the disturbed motion of system body - liquid "geometric nonlinearity"°

Page 12.

Is further presented variational method of solving the linear

boundary-value problems, to sequence of which is reduced as in work

[4), initial nonlinear boundary-value problem for the axisymmetric

cavity of arbitrary configuration. Are given the results of solving

the boundary-value problems, in particular the numerical values of

coefficients for the cylindrical, conical, spherical, ellipsoidal,

parabolic cavities of rotation.

0
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In book are in detail examined problems of stability of steady

states of "sizable" oscillations of free surface of liquid during

induced harmonic progressive/forward and angular oscillations of body

with cavity, partially filled with liquid. The stability regions and

instability of plane and circular waves with respect to frequency and

amplitude of forced oscillations of the free surface of Liquid are for

the first time strictly obtained, i.e., the program, planned in work

[7], is completely realizes.

Carried out comparison with similar results, obtained with the

help of mechanical analog in the form of spherical pendulum, and is

given evaluation of damping effect on amplitude-frequency system

characteristics in region of major resonance.

Scientific interests of G. S. Narimanov contained many problems

of space research and mechanics of space flight: external ballistics,

including experimental (determinacion of trajectory of KA and law of

its motion on basis of results of measurements, consumption/production

of requirements for composition and accuracy of measurements); theory

of automatic control of RN and KA; nonclassical problems of stability

of motion (stability of essentially unsteady undisturbed motion,

stability when exte,-nal disturbances/perturbations of complex spectral

composition, etc. are present).

G. S. Narimanov succeeded in, in particular, working out

* original method of integrating linear ordinary differential equations
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with variable coefficients, which was efficiently used for solving

series of problems of dynamics of RN and KA.

Although many works of G. S. Narimanov, unfortunately, remained

unpublished, certain representation about range of problems, which

were many years in his field of view, give this fundamental labor,

which left under its editorship (together with M. K. Tikhonravov) as

In popular outline [8] G. S. Narimanov gives review of

achievements and prospects for development of cosmonautics (1981).

On latter/last work of G. S. Narimanov, connected with space

research with the help of automatically controlled KA, they give

representation of work of collectives of authors with his

participation [1, 12).

G. S. Narimanov paid considerable attention tc teaching

activity, result of which was creation of scientific school, whose

many representatives grew into serious independent scientists.

Page 13.

The large order of Soviet engineers and scientists, who work in the

area of rocket-space technology, learned on the works of G. S.

Narimanov; they all also rightfully can be related to the

representatives of this school. Some of them are the authors of the 0
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* articles, included in Present collection.

Speaking about special features of scientific style of G. S.

Narimanov, it is necessary to stress clear understanding and broad

coverage of problem, skill to reduce complex engineering problem to

strictly formalized problem of mechanics, freshness of ideas and free

possession of entire contemporary apparatus of analytical and

numerical mathematical methods. Its works are zharacterized by the

combination of the high strictness of the solution and presentation

with the practical directivity and the applied character of research

itself, in which is ilways outlined connection with the specific

problems of the theory of flight and -ynamics of RN and KA. This

connection is reflected Doth in the initial axiomatics and in the form

O of the representation of final results, in necessary obtaining of

reliable numerical evaluations and in the selection of sufficiently

representative model problems.

One of parts, which characterize scientific honesty of G. S.

Narimanov, was his constant tendency to subject obtained results to

comprehensive checking both for internal coordination (conformity to

Laws of conservation, symmet-y or antisymmetry of matrices, etc.) ard

exttrna. (coincidence with exact solutions when latter/last is known,

conformity to data of experiments on physically siiidlar models, and

also to results of full-scale, including flight, tests). These

features of his style of scientific work G. S. Narimanov knew how to

* inculcate both in his direct students and representatives of his
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scientific school. 0
In conclasion one should say that G. S. Narimanov indisputably

inscribed by his research bright page in history of Soviet mechanics

and, in particular, mechanics of space flight.

Works of G. S. Narimanov, placed in present collection, give

sufficient representation about their author as about talented

scientist, who placed bases of new important directions of applied

research in cosmonautics and theories of flight RNIKA.

0

0
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*Page 14.
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SPACE RESEARCH.

G. S. NARIMANOV AND HIS CONTRIBUTION TO THE DEVELOPMENT OF

COSMONAUTICS.

B. A. Pokrovskiy.

Brief biographical information about G. S. Narimanov is given.

Are examined the shaping directions of activity of G. S. Narimanov in

the field of cosmonautics: the solution of the series of the complex

scientific-technical problems, coninected with navigational-ballistic

support- and the flight control of space vehicles, the creation of the

* series of rocket-space systems and control-measuring complex; work in

the boards for the launching of space vehicles, including according to

the programs of international collaboration, and also the propaganda

of achievements and prospects for cosmonautics.

In 1983 died prominent Soviet scientist - Lenin prize winner,

Doctor of Physics and Mathematics, professor Georgiy Stepanovich

Narimanov. His name, scientific and organizational activity is well

known in the wide circles of Soviet and foreign scientists and

specialists in the region of rocket-space technology and space

research. He is awarded many government rewards.

G. S. Narimanov was born on 13 February, 1922, in Tbilisi city.
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Soon family moved to Moscow. In 1939 Narimanov finished the Moscow

secondary school No 110, successfully put entrance examinations and he

was accepted to the physics department of the Moscow State University

im. M. V. Lomonosov. But war broke studies in 1941; G. S. Narimanov

refused to be evacuated with the university into the rear, he went by

volunteer to the construction of defensive reinforcements first on the

distant, and then on the near approaches to Moscow.

After crushing defeat of Fascist-German troops in the environs of

Moscow its many defenders from number of student youth were directed

to schools of higher education. Among them proved to be G. S.

Narimanov. In 1948 he finished the military engineering air academy

of the nLame if prof. N. Ye. Zhukovskiy and was directed toward the

work to one of the scientific research institutes, created after war.

This was the time of the rapid development of rocket engineering.

Questions of the dynamics of the motion of carrier rockets and space

vehicles, navigational trajectory consideration of their flight and

experimental ballistics were investigated in one of the leading

divisions of this institute, to which was directed young specialist G.

S. Narimanov.

He successfully combined work in division with studies in

mechanicomathematical department of Moscow State University, which

finished "with difference" in 1950. The intimate knowledge of

mathematics, m _chanics and physics, natural abilities and diligence,

skill freely to be oriented in complicated scientific and technical
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* questions helped G. S. Narimanov rapidly to enter into the number of

chief/leading colleagues of institute. In incomplete 27 years he was

already the manager of laboratory.

Page 16.

In 1952 he successfully defended the candidate dissertation, which was

characterized by the depth of the conducted investigations and played

large role in development of one of the new directions of applied

mechanics. Already this work characterized G. S. Narimanov as the

completely forme: independent scientist and highly skilled specialist.

In 1953 he was appointed as the leader of division, and then - the

assistant-of the director of institute. In these years, leading the

number of- comprehensive scientific research, Georgiy Stepanovich

* entirely considered the possibilities of calculating mathematics and

electronic computing technology and much he did for the practical

realization of these possibilities in the solution of the scientific

and applied problems of rocket-space technology.

In period of direct preparation/training for launching of the

first in the world Soviet artificial Earth satellites institute dealt

with whole series of theoretical problems and practical problems in

dynamics of flight of RN and KA and control of their flight. In the

solution of many of them G. S. Narimanov participated. Together with

the doctor of technical sciences P. Ye. El'yasberg he dealt with the

development of the ballistic proof of the arrangement/position of

* measuring means in the territory of the Soviet Union, with
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determination and forecasting the parameters of orbits of space

vehicles from the results of trajectory measurements; he participated

in the creation of control-measuring complex (KIK) for control of

their flight.

Points/items of tracking of set of measuring means,

connection/communication and single time, that entered into KIK, were

placed in territory of USSR in such a way as by its zones of radio

visibility to maximum degree "to overlap" space, in which were planned

flights of first artificial Earth satellites. One should stress that

the arrangement/position of measuring points/items proved to be so

deeply substantiated that they thus already almost three decades

efficiently work in their initial locations. 0
Worked out under management and with direct participation of G.

S. Narimanov programs and methods of navigational-ballistic support

successfully were used long years during flight control of artificial

Earth satellites, manned ships and automatic interplanetary space

stations; they were constantly improved by his students and followers

and successfully are used now in space research.

Sizable contribution to development of cosmonautics was

introduced by G. S. Narinanov, also, after he occupied post of deputy

chairman of one of branch scientific and technical councils, where he

fruitfully worked in 1965-1971. Georgiy Stepanovich was closely

related to the scientific research and experimental design works of a
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* whole series of NII [HM - Scientific Research Institute] and KB in

the field of the creation of new promising space and control-measuring

systems. Putting into operation these systems made it possible to do

a new considerable step on the path of further study and

mastery/adoption of outer space.

Page 17.

Should be especially noted the delivery/procurement to the earth of

lunar soil during September 1970 by station "Luna-16", worked out

under guidance of well-known Soviet designer of space automatic

machines G. N. Babakin; many-month work on the surface of the Moon of

the controlled from the Earth self-propelled apparatus - "Lunokhod-l";

prolonged test flight in the automatic and manned modes of the first

O in the history of cosmonautics permanent orbiting scientific space

station "Salyut". Into the realization of all these programs G. S.

Narimanov introduced a weighty contribution.

In period from 1971 through 1983 Soviet cosmonautics achieved new

borders in further expansion and deepening of study of universe and

mastery/adoption of near-earth space in peaceful purposes. The

multifunctional space vehicles of scientific and applied

designation/purpose were created; was created the series/row of the

space systems, such as the state system of communications and

television of the USSR, meteorological system; was realized assembly

in orbits of two, and then of three manned and automatic apparatuses

* of large scientific research space complexes. The same time is
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characterized by further broadening and deepening of the international

collaboration of the USSR with the fraternal socialist countries, and

also with other states in study and mastery/adoption of space.

G. S. Narimanov's activity was multifaceted: guidance of

scientific research work, participation in boards for launching of

space vehicles, scientific-organizational work within the framework of

programs of international collaboration, pedagogical activity and

propaganda of achievements and prospects for Soviet cosmonautics.

However, everything was subordinated to single target - further

development of cosmonautics.

Being assistant of director of Institute of Space Research AS

USSR for scientific work Georgiy Stepanovich headed series of major

scientific research projects, many of which had not only important

theoretical, but also high applied value for development of

cosmonautics.

In Lhe same years G. S. Narimanov directly participated in work

of boards for launching of space vehicles of scientific

designation/purpose (he was chairman of many boards). As is known, in

preparation/training, launching, the flight control of space vehicles

and in information processing, obtained with KA, participate the

numerous collectives of scientists, testers and other specialists of

spaceports, Mission Control Center, information-computing,

control-measuring and search and rescue complexes, and also many
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* scientific research and experimental-design organizations. The

coordination of the work of all these organizations realizes boards

for launching KA. To the success of the work of boards and,

consequently, also very space experiments in the sizable degree

contributed the organizational abilities of G. S. Narimanov, his

intimate and comprehensive knowledge in many fields of cosmonautics

and large experience of guidance of important collectives.

Page 18.

Under guidance of boards with G. S. Narimanov's participation

were realized successful launches of artificial Earth satellites of

series "Kosmos", high-apogean - "Prognoz", automatic universal orbital

stationsr research rockets "Vertikal'" - in all more than sixty of

. these and other KA.

High scientific and applied value of space physics determines the

important place, which it occupies in space research, and in

particular, according to programs of international collaborato"-.

Professor Narimanov took direct part in their development and

realization. He also took active part in the work of council

"Interkosmos" for the Academy of Sciences of the USSR from the first

days of the creation of this international organization for study and

mastery/adoption of outer space in the peaceful purposes.

In 1967-1980 Georgiy Stepanovich headed Soviet part of working

. group in space physics in this international organization and actively
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worked in boards for starting/launching of space vehicles within the
framework of prcgram cf "Interkosmos"

By scientists and by specialists of socialist countries is

carried out wide circle of research and experiments in interests of

science and national economy, including in course of flights of

representatives of nine fraternal countries with Soviet cosmonauts on

orbital complex of "Salyut-6" - "Soyuz ", on board which was

established/installed equipment, worked out by scientists of these

states. G. S. Narimanov introduced large contribution to the

organization of the first joint flights according to the program of

"Interkosmos" of Soviet cosmonauts and cosmonauts from Czechoslovakia,

GDR, Bulgaria, Hungary.

G. S. Narimanov returned numerous energy, experience and

knowledge to noble/precious matter of international collaboration in

study and use of outer space in peaceful purposes.

He participated in development and realization of series/row of

international scientific programs. In 1966-1970 he headed the Soviet

part of the Franco-Soviet joint working group on the space research.

He participated in the work of boards for the launching of the series

of Indian and French satellites by Soviet carrier rockets. He took

part in the realization in 197R of the joint flight of the Soviet

"Soyuz" spacecraft and American "Apollo". In 1980 he worked in the

research group of international astronautical federation (MAF) in
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SFrance on the problems of the use of geostaticnary orbits for the

output on them of ISZ [MC3 - artificial earth satellite) of different

designation/purpose. In the composition of Soviet delegations he

participated in the XXIX and XXX congresses of MAF in 1978 in

Yugoslavia and in 1979 - in the FRG.

Teaching activity occupied large place in S. S. Narimanov's

life. The distinct knowledge of object/subject, depth, clarity and

sequence of presentation and active creative contact with the audience

- here are those characteristic features of G. S. Narimanov as

teacher, which remember his former students and graduate students.

Page 19.-

I' is Hifficult to overestimate the role, which played his lectures,

written to them the articles and the books in training of the whole

generation of research engineers, who work in the most varied areas of

rocket-space technology.

Propagandd of achievements and prospects for development of

cosmonautics is closely related to teaching. Besides scientific works

personally G. S. Narimanov and in the co-authorship with other

specialists wrote the series/row of the popular science books and

brochures, addressed to the wide circle of readers. Among them let us

note the satall by the volume, but very informative brochure

"Achievements and the prospectz for cosmonautics", which in the

* beginning of the 80's was essential help to lecturers and to the
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propagandists of society "Knowledge" [3].

Many articles of G. S. Narimanov were published in newspapers

and journals. The series of his original articles was published in

Bulgaria, GDR, Poland, Czechoslovakia. For all his works are

characteristic the wide spectrum of the included questions, the

skillful introduction of reader to the circle of the most complex

scientific-technical problems, figurative and intelligible language.

These qualities differed his appearances by the radio and the

television.

Much time Georgiy Stepanovich gave to scientific editing. Long

years he was the member of the editorial board of the journal "Earth

and the Universe" and the chairman of the section of cosronautics of

the Editorial and Publishing Council of publishing house

"Mashinostroyeniye". The scientific editing of literature on

cosmonautics was the object/subject of his special attention. In this

work especially distinctly was exhibited the inherent in G. S.

Narimanov intimate knowledge of the essence of the question both in

the retrospective and in long-range plans, cautious and deferential

attitude to the thoughts and the literary style of the author, that

was being combined with the lack of compromise in fundamental

scientific and techxnical questions. Let us refer only to three books,

very dissimilar in the form and the content, in the work on which

especially vividly were showed his best qualities as scientific

editor. In the book "Pages of Soviet cosmonautics" [4), which
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rightfully can be named the peculiar pcpular history of cosmonautics,

are lively figuratively reflected not only the years of the space age,

but also its prehistory, or forseeable prospects for further

development. The book "Reliability of complex systems" was original

pioneer labor in this region [53. It was the result of the many-year

scale and in-depth research, carried out by its authors in different

stages of design and manufacture of the units of new technology, its

tests, and also storage and operation in different climatic zones of

the country. And finally the third book - "From the spacecraft to the

orbital stations" [6], for editing of which professor G. S. Narimanov

was awarded the diploma of society "Knowledge" by the USSR for the

sums of All-Union competition to the best products of popular science

literature (1972).

Finishing this outline, one cannot fail to speak several words

about Georgiy Stepanovich Narimanov as about man.

FirsL of all should be stressed his formation and multiplicity of

interests. He knew well classical and contemporary literature both

Soviet, and foreign, he was interested in painting and theater, thinly

he felt and loved classical music, he was interesting collocutor.

Georgiy Stepanovich's Life far from always stored/added up easily

and simply. There were in it the difficult periods, which he

transferred with large courage. Georgiy Stepanovich was characterized

* by enormous composure and delay, he was very entire person and solidly
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adhered to the specific vital principles. All, who knew G. S.

Narimanov, beginning from his close friends and ending with the

unfamiliar people, always noted his benevolence, obligation,

correctness to word, readiness to aid in the difficult situation,

regardless of the fact, in whicb state there were his inherent

ma tterso

in a word, Georgiy Stepanovich was man from capital letter, and

he will forever remain similar in our memory.

HEFEPENCES.

G. S. Narimanov. "Interkosmos": Steps in the future. Soviet

panorama, 1979, No 56 (1972), pp. 1-4.

;. G. S. Narimanov. Complex iin orbit. Soviet Russia, 1978, 13 Jan.

,. G. S. Narimanov. Achievements and prospects for cosmonauticso

M.: "Knowledge", 1981, 48 pp.

4. Pages of Soviet cosmonautics. V. P. Denisov, 1. V. Alimov, A. A.

Zhurenko, V. A. Misharich. M.: Mashinostroyeniye, 1975, 346 pp.

5. A. A. Chervonyy, V. I. Luk'yashchenko, L. V. Kotin.

Reliability of complex systems. M.: Mashinostroyeniye, 1972, 304 pp,

6. From spacecraft - to orbital stations. Edited by G. S.

Narimanov. M.: Mashinostroyeniye, 1969, 80 pp.

0



DOC = 89056403 PAGE q

* Page 20.

RESONANCE PHENOMENA IN ROTATIONS OF ARTIFICIAL AND NATURAL CELESTIAL

BODIES.

V. V. Beletskiy.

Are examined resonance rotations of artificial and natural

celestial bodies, in particular Moon, Mercury, Venus, taking into

account gravitational, tidal and magnetic interactions.

Are discussed "generalized laws of Cassini" for resonance

rotations-and extremum properties of resonance motions.

0

Resonance rotations of Moon, Mercury, Venus and other natural and

artificial celestial bodies are examined. Gravitational, magnetic and

tidal interactions are taken into consideration. Are considered the

"generalized laws of Cassini" for the resonance rotations and the

extremum properties of resonance motions 1.

FOOTNOTE 1. As the basis of this work was used the review of the

author at the XVI international congress of theoretical and applied

mechanics (Copenhagen, August of 1984), and also at the session of the

national committee of the USSR on theoretical and applied mechanics

(Moscow, on 16 March, 1984). ENDFOOTNOTE.0



DOC = 89056403 PAGE 2'

Page 21.

Introduction. Let the motion being investigated contain a

certain set of frequencies ,), Let us name motion resonance, if

n i , 0,(1

where n, - the integers, small by hypothesis. Let K(t) - phase

deflection of motion from the resonance, so that K=0 with precise

satisfaction of condition (1). If motion K=x., ;=0 is stable, then

they indicate the presence of the phase stability of resonance motion.

Special and nonrandom role of resonance motions now, apparently,

is universally recognized [l, 11, 13, 26, 34). Such motions not only

frequently are encountered in nature (Fig. la - orbital resonance in

the celestial mechanics), but also by a speciai form are used in the

technology, including - in the space. Examples of this use: the

phenomenon of the self-synchronization of the rotors of different

machines and technical devices/equipment [26] (Fig. lb); the system of

the passive stabilization of artificial celestial bodies [27) (Fig.

1c). Resonance can be controlled motions. In particular, the process

of walking of man (161 is resonance (Fig. id).

0
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Fig. 1. Resonances in nature and technology: a) orbital resonance;

b) self-synchronization of rotors; c) passive stabilization of

artificial satellites; d) walking of man.

Page 22.

There is even hypothesis (A. M. Molchanov, [47]) about complete

resonance of solar system as corollary of its evolutionary maturity.

Without considering this hypothesis, let us note the unconditional

abundance of resonance motions in the solar system, including with the

* phase stability. The presence of phase stanility testifies in favor
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of the fact that this resonance is actually caused by physical causes

- "resonance interaction". On the other hand, the absence (or

nonobservation) of phase stability completely does not testify about

+he chance of this resonance.

Confident examples of orbital resonances with phase stability are

motions of following celestial bodies [1, 34]:

I. Triple resonance wI- 36)EH +2(io--O between the frequencies of

revolution of the satellites of Jupiter lo, Europa, Ganymede.

II. Resonances in the system of the satellites of Saturn:

1. 2 0)D-WE-WOE-0 between the frequencies of revolution of Dione

and Enceladus (into resonance relationship/ratio enter angular

frequency W±)E of pericenter of Enceladus);

2. 4-T- 2 wi--uu,--a = 0 between the frequencies of revolution

of Tethys and Mimas (into resonance relationship/ratio enter angular

frequencies wuT, w)t of the units of the orbits of these satellites);

3 4WH--3 oTI-(OH= 0 between the frequencies of revolution of

Titan and Hyperion (into resonance relationship/ratio enters angular

frequency (j, of the pericenter of the orbit of Hyperion).

III. Resonances of the asteroids of the group of Trojans at the

points of the libration of system Sun-Jupiter (resonance 1:1).

IV. Resonances of the asteroids of the group Hilda with the

average period of orbit TH=2Tj/3 (Tj - the period of the orbit of

Jupiter).

V. The resonance of system Neptune-Pluto: the phase detuning

X-3P-2AN - 180 °
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oscillates within the close limits (although low j xi 76°). Here

.p, ,., 6 ,p respectively the longitude/length of Pluto, Neptune and

pericenter of the orbit of Pluto.

It is possible to name other examples. The system of the

satellites of Uranus Miranda-Ariel-Umbriel is found in the resonance

of the type Io-Europa-Ganymede, but with the slowly growing phase;

famous resonance 5:2 between the periods of the orbit of Saturn and

Jupiter, apparently, does not possess phase stability, although the

effect of this resonance in orbits of planets is undoubted.

Combining different sets of celestial bodies, it is possible to

fit seve-ral ten quasi-commensurabilities in orbital motions and even

* to show that probability of random appearance of these

quasi-commensurabilities is much less than observed [34, 47). But far

from always after this stands clearly discovered physical interaction.

Especially many stable resonances are encountered in rotary

planetary motions.

Page 23.

In this case after all resonances of rotations the precise physical

picture of interactions stands.

This survey is dedicated to dynamics of resonance rotations in

* connection with natural and artificial celestial bodies.
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1. Resonances in rotary planetary motions. The necessary

conditions of the realizability of resonance motion are:

a) the existence of conservative factor in the system, creating

resonance 'traps" - stability region in the near-resonance region:

b) the existence of the dispersive factor, which creates

conditions for capturing the motion by resonance "trap".

In solar system gravitational interaction is basic conservative

factor, basic dispersive factor - tidal braking.

In dynamics of artificial celestial bodies is observed great

variety of conservative and dispersive factors.

0
Realizability of resonance motion depends on character of

conservative and dispersive forces in many respects.

Research and construction of realizability conditions of

resonance rotations in many respects determines contemporary theory of

passive stabilization of artificial celestial bodies [9, 33, 35).

Let us name some types of resonances in rotations (0 - angular

velocity of axial rotation of body, w - orbital angular velocity):

2. 0-&,-0; resonance of type of Moon (1:1). The angular

velocities of axial and rotations are equal to each other. This 0
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m ion is called still "relative equilibrium": body rests in the

revolving orbital coordinate system and because of this always is

converted by one side to the center of attraction as the Moon to the

Earth. This type of resonance is the basis of the gravitational

systems of passive stabilization.

-. -- ; resonance of type of Mercury (3:2). Mercury makes

exactly three revolutions around its axis exactly during two orbital

periods.

3. f-w-0; resonance of magnetic aging (2:1). The magnetized

satellite, tracking the line-of force of the magnetic field of the

Earth, makes two revolutions in the rotary movement for one orbital

period.

Phenomenal resonance in rotation of Venus will be considered

later.

Resonance 1:1 has that unique special feature, which lies/rests,

so to speak, "on surface" of theory of rotations. There is a

corresponding explicit, fina-, particular solution of sufficiently,

strictly assigned mission. This fact was known still to classics of

celestial mechanics (Lagrange, Laplace), who studied the stability of

this motion in lax linear setting [50].

Page 24.

Strict, sufficiently general/common, nonlinear research of
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problem of relative equilibrium was carried nut in connection with

launches of artificial Earth satellites. The main resuits of this

analysis can be formulated so [6, 9, 12]:

in free solid body in the noncentral Newtonian field of forces

there is a motion with the circular orbit of the center of mass of

body and the arrangement of main central inertia axes along the

orbital (revolving) axes. For the stability of this motion (in a

strict sense according to Lyapunov) it is sufficient so that the

greatest axis of the ellipsoid of inertia of body would be directed

along the radius-vector of orbit, and smallest - along the normal to

t'ie plane of orbit (Fig. 2).

Numerous artificial satellites with gravitational-gradient

orientation system and many of natural satellites satisfy this

criterion. Of 33 natural satellites of the solar system in 10

rotation is not resonance, in 10 more - what is unknown, but in

remaining 13 - resonance (in resonance 1:1). These are Earth

satellite (Moon); four satellites of Jupiter (Io, Europa, Ganymede,

Cal!isto); five satellites of Saturn (Enceladus, Iapetus, Rhea,

Tethys, Dione); the satellite of Neptune (Triton); both Martian

satellites (Phoebus and Deimos).

2. On laws of Cassini motion of Moon. The situation of

resonance 1:1, however, is not described by the completely presented

above situation of "stable relative equilibrium".
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* Actually, disturbances/perturbations of other celestial bodies

lead to more complicated dynamic effects. Thus, in the case of the

Moon the "third body" - the Sun - introduces strong

disturbances/perturbations into the orbit of the Moon.

0

0
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Fig. 2.-Arrangement of axes of ellipsoid of inertia in stable

relative equilibrium (resonance 1:2). 0
Fig. 3. Diagram of laws of Cassini rotation of Moon.

Key: (1). Equator. (2). Moon. (3). Ecliptic. (4). C it.

Page 25.

The plane of the orbit of the Moon precesses with period T,, =18,6

years. This, in turn, are caused disturbances/perturbations in

rotation of the Moon.

Real laws of rotation of Moon empirically established D. D.

Cassini in 1693 in the following form.

1. Moon revolves evenly around axis, Moon remaining fixed in
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* body; period of rotation of Moon coincides with period of its orbit in

orbit around Earth.

2. Equatorial plane of Moon retains constant inclination/slope

toward ecliptic (equal to 1'32').

3. Ascending node of equator of Moon on ecliptic always

coincides with descending unit of orbit of Moon on ecliptic.

Fig. 3 gives appropriate diagram. Since the orbit of the Mocn is

inclined to angle of i-5'9' toward the ecliptic, then from the second

and third laws of Cassini it follows that the vector of the axial

angular velocity of the Moon w is normal to the nodal line and

composes angle p.6041' with normal n to the plane of lunar orbit.

Let us stress that nodal line (Fig. 3) - is mobile in space; it

precesses with above-indicated period T. 18,6 years.

Laws of Cassini - empirical. They are not the final solution of

precise equations of motion. The classical libration theory of Moon

[50] and its subsequent development were based on the linearization of

equations of motion about the close to the motion, described by the

empirical laws of Cassini. Therefore almost 300 years stood a

question about a stricter theoretical proof of Cassini's laws as the

real laws of nature.

0Solution of this question became possible only in our time in
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connection with general/common progress of theory and development, of

space research.

On rotation of Mercury. Schiaparelli in 1889 interpreted a

series of his observations of Nercury in such form, that Mercury

revolves around its axis with the period T=88 days, equal to orbital

period. However, it was established by the radar methods (1965) that

the period of the rotation of Mercury was close to 2/3 orbital periods

(58, 65 days). It was discovered after this, that the optical

observations of Schiaparelli allow/assume ambiguous interpretation,

and period about 59 days is placed well in these observations.

Resonance 3:2 in the rotation oi mercury now is acknowledged by all.

Flat/plrie rotation of celestial body, center of mass of which

moves along elliptic orbit with eccentricity e, is described by

equation [6)
25 3 A -C

(+ ecosv) 4  -2esinv + 3 sin 6=4 sinv; 8=20. (2)
dv2 dv B

Here v - true anomaly; 0 - angle between inertia axis of body and

radius-vector of its orbit; A, B, C - main central moments of inertia

of body.

Page 26.

Even before discovery/opening of resonance 3:2 in rotation of

Mercury in work [39) it was shown that equation [2] contains resonance
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* solutions, including of type of Mercury (3:2). The zone of the phase

stability of this resonance has sizes/dimensions of -e. Since the

orbit of Mercury has not low eccentricity (,-0,206), then this raises

the probability of the existence of resonanre of the type 3:2.

Research of precise resonance (3:2) solutions of equation (2) is

carried out in work [181. in Fig, 4 in the plane of parameters

n2--3(A-C)/B, are shaded the stability regions of such solutiorns.

However, in actuality Mercury mot: along disturbed, not inertiai

orbit; "flat/plane" model (2) - only step/stage for research of

general case.

Thus, ripened need for creation of generalizing theory of

resonance rotations of celestial bodies taking into account systematic

disturbances/perturbations of their orbits.

Achievements of mathematics of XX century - theory of periodic

solutions of Poincare, asymptotic methods of nonlinear vibrations -

made it possible to construct this theory. To new development stage

of the theory of rotary planetary motions the launching of artificial

space vehicles and the demands of the practice of space flights were

jerk/impulse.

4. Generalized laws of Cassini. The result of research wds the

* theory of the so-called "qeneralized laws of Cassini", which describes
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laws governing the resonance rotations of celestial bodies [10, 43].

The consecutive (sometimes parallel) stages of research, which led to

setting of these laws, are contained in works [6], [5, 78, 30, 32, 36,

4%, 45, 49]. The description of these worKs exists, for example, in

works [9, 11, 12, 131o
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Fig. 4. Stability regions of resonance solutions (resonance 3:2).
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Cassini's laws are determined by superposition of stabilizing

effect of gravitational field in resonance situation (see Section 1,

3) and laws of evolution of vector K of moment of momentum of rotation

of body relative to processing orbit [5], [9].

Fig. 5a, b depicts trajectories of terminus of vector for two

ve:sions of simplified nonresonant situation [5, 7, 9). Is considered

the average/mean action of the moment of gravitational forces and the

evolution of orbit. The construction of the theory of resonance

motions requires the substantially more complicated equations, which

do not possess the integral curves, shown in Fig. 5. Are retained (in

* the generalized form) only stationary points 1, 2, 3, 4 (Fig. 5),
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which, however, pass from two-dimensional phase space to

six-dimensional.

Generalized laws of Cassini follow from stationary points of some

nonlinear autonomous equations [10, 12, 43), obtained from

general/common equations of motion by procedure of asymptotic methods

for resonance situation.

Hamiltonian of these equations takes form

z_L2 [(sin 2 +cs 2 ) 2cos 2 % (k)L-IV

-k 2 (COS i cos p-- +sin i sin p sin X')j. (3)

Here [V]--f(o, , , , - specific in resonance situation force

function of gravitational moments, which function on body; canonical

variables are K, p, Z, and corresponding canonical pulses -

L, Lcos fLcosp;x - phase deflection from resonance rotation; c, f -

Eulerian angles of spin and nutation (in system, connected with vector

of moment of momentum); L - modulus/module of vector of moment of

momentum; p and I - its angular coordinates relative to plane of orbit

of body; 9 - resonance value of angular rate of rotation of body,

k , ko - respectively speeds of processions of pericenter and unit of

orbit of body; i - orbit inclination.
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Fig. 5. Trajectories of terminus of vector of moment of momentum.
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Concrete/specific form [VI is given in works [10, 12, 43].

Extreme points of function H(L, 0, Q, K, p, Z) answer stationary

points of equations of motion, which present generalized laws of

Cassini.

These laws take following formal form.

1. Body revolves evenly around its principal central inertia

axis with angular velocity

20=2+k.+k2 cos(i ± po), (4)

close to one of resonance values: n=w (Moon), 2=1.5w (Mercury) and so

.forth.
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Here w - orbital angular velocity.

2. Axis of angular rotation of body, normal to orbital plane and

axis of precession of orbit lie/rest at one plane.

3. Axis of angular rotation of body and normal to orbital plane

compose constant angle p0 , determined by equation

cos P* T sin p*ctgpo Pcos po-O, (5)

where parameters p*, .ambiguously are computed through orbital

parameters, moments of inertia of solid body 0. (4).

2 or 4 solutions have equation (5). Respectively when

cos3p * +sin:3'3p*>X 3 and COS/3p*+sin3p*<X213 '(Fig. 6).

4. Phase coincidence of 7otary and orbital motions with passage

of pericenter: angle between radius-vector and nodal line coincides

with angle between inertia axis of body and nodal line.

From second law it follows that axis of angular rotation of body

precesses in space with the same period, as orbit.
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F ig. 6. Graphical solution of equations (5.3) (are indicated values

of parameter K= /2).
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Thus, the generalized laws of Cassini (the first and the second)

include two resonances.

Basic from stability conditions of generalized laws of Cassini is

described in Section 1 arrangement of inertia axes (case of Moon); in

the case of Mercury for this arrangement of axes it has to be with

passage of pericenter of orbit.

O Described theory in work [30, 312 is supplemented by account of

"mnmcgs
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tidal effects and by picture of asymptotic stability of Cassini's

laws.

It follows from characteristic equation of low oscillations about

motions, described by generalized laws of Cassini [10, 12, 43], that

these oscillations occur with frequencies of

Q1 =W _3 (1+Cos PO)/A-C
2 1/ A

B-- A B- (1-l-6 cos Po- 15 cos' po) (5+ 6 cos po -- 2 1 cOs 2po);
8A A-B

3(B-A) / sin i
23=w 16A - x [ Cos 0 0 j2(4-36)+26 cos p

16k 2A A-CX=_ : 6-- ; A >B >C,
- 3(A - B) A-B

which corresponds (in the case of Moon) to periods T,=2.88 yr.;

T2 - 75,20 yr.; T3 -24,68 yr. [3, 4]; periods T, and T2 are observed

in real motion of Moon.

Finally, it is shown [3) that "generalized laws of Cassini" are

motions (in Poincare's sense) for precise periodic solutions of

precise initial equations.

Thus, is closed question about conformity of observed motions to

any exact solutions of precise equations of motion. Such - periodic -

solutions can be constructed with Poincare's method, and the initial

high-precision approximation/approach of these solutions is precisely

the "generalized laws of Cassini".
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5. Cosmogonic theory of Eneyev-Kozlov and evolution of rotations

and inclinations of celestial bodies. One of the factors, which

affect the evolution of rotary planetary motions, is tidal effects.

As is known £34), planets in their contemporary state are

extremely little subjected to action of tidal evolution of rotations.

The effect of tidal moments is more substantial for the earth-type

planets and is negligible for giant planets. However, position was

not always similar. It is possible to assume that at the specific

stage of the cosmogonic process of the formation of planets from the

proto-planet cloud the quantitative picture of tidal evolution

impressively differed from contemporary.

*Page 30.

And actually, according to new cosmogonic theory of Eneyev-Kozlov

£29) 42, 46) several giant globular clusters, which were moving along

planetary orbits, were result of evolution of proto-planet cloud.

Each accumulation - this is the future planet (it can be, with its

satellites), which possesses the appropriate mass, but which differs

from contemporary planet in terms of low density and enormous

sizes/dimensions (order of the sizes/dimensions of Hill's sphere).

Thus, the diameter of "Proto-Venus" was 0,6.106 km, and

"Proto-Jupiter" -0,5.1 0 km. The moment of tidal forces is

proportional to the fifth degree (-R') of radius of planet [34), the

moment of inertia is proportional to R1, therefore, the speed of the

* evolution of rotation is proportional to R3. This means that the
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proto-planets under the action of solar inflows evolved in their

rotations many orders more rapidly than in the contemporary epoch

_ . .. 0' times more rapid) and, therefore, the role of the tidal

evolution of rotations of planets was very great.

This idea was expressed in 1977 by T. M. Eneyev, who based it,

in particular, on results of work [12]. Analysis [14, 44] carried out

subsequently showed that, apparently, basic part of the evolution

occurred in the first 104...i0' years after the formation of

proto-planets - time very low on the cosmogonic scales.

Essential factor of evolution was also process of unavoidable

compression of proto-planets from initial giant sizes/dimensions on

contemporary final. The effect of compression in the absence of other

effects leads tc -, increase in the angular velocity of planet during

its constant/invariable inclination. The combination of the effect of

compression with the tidal evolution can lead (and actually led) to

the most diverse final results, observed in the contemporary epoch.

Referring after parts of analysis to works [11, 14, 44], let us

describe its main results.

With contemporary meanings of tidal factor Q (Q-100... 100 for

earth-type planets and Q-10 5 ...106 for giant planets) characteristic

time of evolution of rotation for proto-Earth 7-10' years, for

proto-Jupiter 7-10' years; if in proto-planets value Q would be less
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a t least by an order, then characteristic time of volution wou:d be

reduced up to 104.. .10 years.

Fig. 7 depicts picture of tidal evolution in plane of paramezers

p, 2. Here p - angle between vectors of moment of momentum and norma!

to the orbital plane; S2 - the standardized value of this vector. To

straight/direct rotation answers p=0, reverse/inverse p=r.

Mol-t itreting effects of tidal evolution are such:

1. Tendency of all motions toward the straight/direct rotation,

in particular, roll/revolution of initially reverse/inverse rotations

into the-straight lines. This process is passed in different ways

. under the different initial conditions.

Page 31-

Extreme versions:

a) the strong evolution of inclination during the almost

constant/invariable rotation (Uranus);

b) the evolution of rotation during the almost

constant/invariable inclination (Venus).

2. Essential evolution of inclinations and in the case of

initially straight/direct rotations: initially low inclinations can

achieve high values, and then again decrease. For some planets

* (Earth, Mars) the process of a slow increase in the inclination
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continues even now.

3. Possible decrease of angular velocity to value, smaller than

orbital angular velocity (and even to values, close to zero, but also

by subsequent restoration/reduction up to orbital).

4. Tendency of all motions toward maximum straight/direct

rotation with zero inclination and with specific angular velocity,

which depends on orbit eccentricity. In orbits, close to the

circular, maximum angular velocity is close to the orbital (Moon,

Martian satellites, series of the satellites of Saturn, Jupiter); with

the orbit eccentricity e-0.2 maximum angular velocity is close to 3/2

orbital (Mercury).

In connection with these results T. M. Eneyev expressed

following considerations [29]. The contemporary position of the axis

of Uranus almost in the plane of its orbit can be explained by the

fact that in the cosmogonic process of the formation of planets

Proto-Ura.us gained rapid reverse/inverse rotation around the axis,

almost normal to the plane of orbit. Because of the powerful/thick

tidal protuberances the axis of its rotation was strongly

evolutionized (in accordance with that presented above) and "was

inverted" to the orbital plane. Analysis [14, 44) confirmed this

consideration.



DOC = 89056403 PAGE6  Z5'

0

\2 ' - 0,00 0=-0,00

0 ,r2j~/

Fig. 7. Picture of tidal "evolution in plane of parameters . p (are

indicated-values of integration constant C).
K ey: (1). Earth. (2). Uranus. (3). Venus.
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As far as Venus is concerned, its reverse/inverse rotation in

contemporary epoch around axis, virtually normal to plane of orbit,

can be explained by cosmogonic origin of reverse/inverse rotation and

by fact that evolution of Venus occurs according to type, sharply

different from evolution of Uranus. Venus within the time of

evolution did not have time "to be inverted". The detailed theory of

the rotation of Venus (taking into account the observed resonance

effects) is described in [19, 23, 24, 252.

Establishment of possibility of reverse/inverse rotation of Venus
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and Uranus up to moment of formation of planets from proto-planet

cloud is one of most important results of cosmogonic theory of

Eneyev-Koziov [29, 42, 46).

It follows also, perhaps, to note that in contemporary epoch Moor)

stronger (to two orders), than sun, affects tidal evolution of

rotation of Earth. But the evolution of the ancient proto-earth under

the action of tidal moment from the sun proceeded 101-104 times more

raoidly taking into account this fact.

Process of compression of proto-planet, apparently, most strongly

affected evolution of inclination of Jupiter: compensation for tidal

decreaseof arnular velocity by its increase due to compression of

proto-Jupiter led tc freezing of evolution of inclination.

Should be noted also significant role in evolution of rotation of

conservative gravitational moments: precisely they construct "traps",

which ensure under the effect of tidal moment capture/grip of number

of ceiestid! bodies in resonance rotations (Moon, Martian satellites,

some satellites of Saturn, Jupiter; Mercury; Venus). The diagram of

this capture/grip in the resonance rotation with the phase stability

is depicted in Fig. 8.

0
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Fig. 8- Fig. 9.

O Fig. 8. Diagram of tidal capture/grip in stable resonance motion in

phase space K, L: 1, 2 - stationary points.

I.g. 9. Probability P of capture/grip into resonance

k
-, depending on eccentricity e of orbit.2
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Fig. 9 gives the dependences of the probability of capture/grip to the

resonance

kL, on eccentricity e of orbit (38] .

2

* FOOTNOTE '. Deep results according to the general theory of
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capture/grip in the resonance and the passages through the resonance

are contained in dissertation of A. I. Neyshtedt "About some

resonance problems in nonlinear systems", MGU, 1975. The presentation

of some of them is in (2]. ENDFOOTNOTE.

Let us conduct basic sums. According to the cosmogonic theory ot

Eneyev-Kozlov [29, 42, 46] the proto-planets, which initially

possessed very large sizes/dimensions, were the result of the

evolution of proto-planet cloud In view of this large role played

the tidal evolution of rotations of planets, which occurred several

orders more rapidly than in the contemporary epoch. Determined -

sometimes prevailing - role played the process of the compression of

proto-planets to the contemporary sizes/dimensions. "Gravitational

traps" contributed to "sticking" of some planets and satellites in the

resonance rotations. The combination of these factors led to the

contemporary diversity of inclinations and rutations of celestial

bod i es.

About rotations of Venus. In 1362 with the help of means of

radar it was established that Venus has reverse/inverse rotation, and

was determined period of rotation. According to contemporary data,

this period T,--243,0±0,03 days, which is close to the resonance

value of 24S.26 days. Venus during period T=583,92 days of

-onrections with the Earth will do exactly 5 revolutions around its

axis relative to direction Sun-Venus and exactly 4 revolutions

relative to direction Siurj-Earth. In each connection (1 and 2) Venus
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* is converted to the Earth by one and the same side (Fig. 10). The

angular velocity n of the axial rotation of Venus is connected with

the orbital angular velocities of Venus c0% and Earth JE with the

relationship/ratio

Q 4WV- 5 E. (6)

Calculation of this phenomenal resonance within the framework of

flat/plane model of motion was carried out by Goldreyn and Pinl [34).

However, three-dimensional effects are most interesting in this

problem.

In s ries of publications Fi3, 23, 24, 25) theory of

* three-dimensional/space resonance rotation of Venus was constructed.

This theory considers gravitational interaction of the Sun and Venus,

Earth ind Venus, evolution of the orbit of Venus, tidal effects (under

the effect of the Sun) in rotation of Venus.

Resonance zone in phase space is created on the average by

gravitational field of Earth. Gravitational moment from the Sun on

the average does not affect the creation of resonance zone.

Tidal instability of rotation and fact of reverse/inverse

rotation of Venus are, at first glance, in contradiction. This gave

rise to hypothesis about the existence (in the past) of the

reverse/inverse satellite of Venus, which stabilized Venus in

* reverse/inverse rotation [37].
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Conclusion of new theory is more naturpl, that reverse/inverse

rotation of Venus has cosmogonic origin [29, 42, 46).

Theory of rotation of Venus shows that in this case for time of

tidal evolution (less than 10' years) Venus did not have time "to be

inverted". The process of "tilting/reversal" proceeds several orders

slower than the process of capture/grip in the resonance rotation.

Fig. 11 schematically depicts the process of the tidal evolution of

Venus in the three-dimensional phase space of coordinates K, L, p.

Steady resonance rotation of Venus is described by laws of type

of generalized laws of Cassini. The Hamiltonian of problem takes form 0
(3), only with considerably more complicated expression for [V].

Let us note, however, very low probability of capturing Venus

into resonance in comparison with probability of capturing of Moon or

Mercury into their resonances.

A. A. Khentov focused attention on following fact. Between the

orbital frequencies of Venus wv, Earth WE, Jupiter 6) there is a

sufficiently accurately made resonance relationship/ratio

&-lO--f 3 wm=O. Therefore resonance frequency Qv of the axial

rotation of Venus is subordinated not only to relationship/ratio (6),

but also tcJ relationship/ratio 20v-2,wv-3uj. This fact again attests
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* to the fact that the formally registered resonance

relationships/ratios are poorly informative; such formulas are

ambiguous. Single-valued selection can be done via the analysis of

the mechanics of phenomenon. Is interaction sufficiently strong, in

order to create resonance zone and to ensure the stability of

resonance? Is sufficiently "wide" resonance zone and is sufficiently

great the probability of capture/grip?

0

0
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Fig. 10. Fig. 11.

Fig. 10.- Resonance rotation of Venus.

Key: (1). Earth. (2). Venus.

Fig. 11. Diagram of process of tidal evolution of Venus in

three-dimensional phase space of coordinates K, L, p.
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Only responses/answers to such (and similar) questions give

information - is resonance physical or formal. In the specific case

of Venus preference, apparently, must be given to interaction with the

Earth, but not with Jupiter. This question, however, still is subject

to research. If two (or several) resonances will prove to be

uniformly strong during the testing for physicalness, a question about

their superposition (interaction) difficult for the research arises.
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7. Extremum properties of resonance motions. On set of possible

motions resonance motions are special. It is possible to assume

therefore that the characteristics of fields of force reach outer

limits on the resonances.

There is series of theoretical and empirical principles, which

confirm this thesis. In the development of ideas and methods of

Poincare in book [26) the extreme principle established/installed in

1960 is presented and used for the specific problems. Thus one of its

formulations.

Let us consider generating motion (in Poincare's sense: with

zero value of low parameter), described by frequencies o,. And let us

introduce number q=sign(dosdhs). Here hs - energy, which

corresponds to frequency ws. If Os=l, then it is said that object, is

rigidly anisochronic, if js=-I, then the object is softly

anisochronic. Let us consider the value A average/mean during the

ger rating motion is Lagrangian L. Let us assume that all objects of

system possess one type anisochronism (oys--o). Then the functional

D= -A=min, (7)

i.e. has a minimum in the stable resonance states of motion.

For orbital problems a<0. It is possible under some conditions

to disregard in A the terms, caused by kinetic energy, and then

condition (7) is converted in (Vo)-min. Here <V,> - average/mean

* Q during the generating motions value of the force function of
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gravitational forces. This formulation in some sense is equivalent to

the known heuristic principle of "smallest interaction" [48). For the

case, for example, of :otary planetary motions a>O and from (7) we

will obtain opposite principle J,0>-njax in the stable resonance

modes.

Principle (7) is formulated for generating motions and makes it

possible to determine values of phases of motions in stable

operations.

In work [212 was proposed extreme principle in the following

form:

I

0

during stable resonance motions. Here the discussion deals already

with the average/mean value of force function V during the true (but

not on "generating") motions. In (7) is laid not the ideology of the

low parameter, but, rather, the ideology of the Lyapunov functions.



DOC = 89056404 PAGE 7/

* Page 36.

Principle (7) makes it possible to find initial conditions X0 ,

x°, which correspond to stable resonance mode.

Numerical experiment on checking of this principle was conducted

in essence with equation (2) (but not only with it). Fig. 12...17

gives some results. Instead of the averane/mean force function V was

computed the average/mean dimensionless potential energy U=-KV, k>0o.

The minimums of function 5 correspond to the maximums of function V.

Fig. 12 shows standard case of circular orbit (e=0, n1=0.1), when

equation 12) is converted into autonomous. Resonance 1:1 is answered

b y relative equilibrium in the orbital system, i.e., the solution 6=0,

equations (2). Analytically it is possible to show that this solution

is stable, and functional (8) actually has a maximum during this

solution (functional T has a minimum). Actually, it proves to be that

(k2) - _ E(1/0
u=1- Ek2) (k< 1); U = k2 l)K(1k2) ) (k2 > 1);

K (k2) ,( '2

k2 =Oo/n2+ sin 2 0o. (9)

Here K and E - complete elliptic integrals; 00 6'0 - initial data for

equation (2).
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Fig. 12. Minimum of functional on resonance 1:1 (e=0, nz=0.1).
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rig. 13. Minimums of functional on resonances (e=0.1, n2=0.1).
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Function Z(k2) with low k2 behaves as ;G~k2/2, and when k2- +-* 1/2

These properties of function Z(k2) are visible in Fig. 12, which,

however, is obtained by numerical method.

Fig. 13 similar pattern gives for e=0.1; n2=0.1; are visible

minimums for resonances 1:1; 3:2; 2:1. Fig. 14 shows the picture of

the sharpened/turned representations during the orbital period on the

phase plane 8'(e). This picture convinces us in the stability of the
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* resonances, discovered in the previous figure.

In Fig. 15, 16 - similar pattern for other values of parameters

e=0.2; n2=0.2.
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Fig. 15. Moinmm ofpr funcational oe=.1 rsnancs=0.12 n=0.
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Similar pattern occurs for problem about rotation of magnetized

satellite in polar circular orbit [22]. This rotation is described by

equation [20):

e cos v) 0" -2e sin '- sin 20- ct (3 cos (0- u)-
'2 2

- cos(0-+ u)]=2e sin v.

Here v - true anomaly (independent variable); u=v+w - argument ot the

latitude, where o=const - argument of the perigee of orbit; e -

orbit eccentricity; n=3(A-C)/B - parameter, which corresponds to

the moment of gravitational forces (A, B, C - the main central moments

of the inertia of satellite); a-I.E/B t - parameter, which

corresponds to the moment of magnetic forces; constant magnetic moment

I is directed along the axis of satellite, which rorresponds to the

moment of inertia C; this axis forms angle 6 with ,the current radius;

the magnetic field of the Earth has magnetic moment p-E; [1 -

gravitational constant. With c=O we obtain equation (2).

Let us consider circular orbit (e=0). In the case of the absence

of the gravitational moment (n1=0) are discovered (Fig. 17a) two

stable resonance rotations: 2:1 - stabilization relative to the local

line of force of magnetic field; 0:1 - stabilization relative to fixed

direction. If in this problem is taken into account even

gravitational moment (na#0), then appears, as one would expect, one

additional stable resonance 1:1 (Fig. 17b).

Resonances of type 0:1 serve as basis for construction of
analytical theory of slow rotations of celestial bodies [15].
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Fig. 16. Point representatic-s (e=0.2, n2=0.2).
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Table I gives information about some extreme principles of

resonance motions. In works [17, 28, 41],. etc. the extremum

properties of resonance motions were investigated at the level of

precise theorems. Extreme principles can be formulated, also, for the

motions, the more complicated, than resonance (principle of Percival

for conditional-periodic motions [32)).

Final observations. Observed in nature resonances in the rotary

planetary motIorns - low order (I:J; 3:2). in work [38] it is shown
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.that this is deeply connected with the essence of the matter in the

system of two gravitating bodies. The resonances of higher order can

be caused by interaction more than of two bodies (Venus) or by

presence of additional fields of force (magnetic resonance).

Nature arranged traps on paths of motion of celestial bodies.

But trap - this yet not beast in the trap. In order to catch beast

are necessary another patience and transportation.

0

0
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Tpaa-riopm BOCTb Te.IbHcrbTL
TOPHR

fl% a H Ka- flopo -l H =Ho(p) + Yt"Hk (p, q) + .%IeTOl Ma.
pe, 3 HD U3 A ~ ioro nlapa-
1892 r. I %ie~pa

Hjdt ==extr

0

B.iex~vaH,
1960 r. A T+Uod

0

D -:A a =-sign duw/d-h
D -min

El p H6.iii e H Ho:
(i) p6HTa.bHoe aB I KeHie (;<0

f 
-

=U odt == m ir,;
0

~BpawaTe.ibHoe aBli>KeHie (j>0 + 1 e T Oa Ma-
.1oro napa-

-I=d max 
ep

0

(/3) (v
OaeH~aeH, IfcTH~rfoe H =T - U,, - Ufj -4- MXOJe.1blible
1973 r. iB+eHe \tzrfix pac-eTbl

urn ~ 'U1 dt = min

,t2.U t) Mt !'T M

0

* e: . Au ror . (2) Extreme tr:ajectory. Ext -eme
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principle. (4). Stability. (5). Conclusiveness. (6). Poincare,

1892. (7). Generating. (8). Small parameter method. (9).

Blekhman, 1960. (10). Approximately. (11). orbital motion u<O.

(22). rotation a>0. (13). Ovenden, 1973. (14). Proper motion.

(15). Model calculations. (16). Beletskiy, 1976. (17). Numerical

experiment.

0

0
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INTEGRALS OF EQUATIONS OF MOTION IN A LIMITED CIRCULAR THREE-BODY

PROBLEM.

I. M. Sidorcv.

Analytical expressions for integral of conservative system with

periodic excitation and analytical expressions for family of integrals

of autonomous conscrvative system are constructed. Integrals are

represented by the sum of the analytical expressions, arranged/located

according to the degrees of the low parameter. A qualitative

differenc-e in the behavior of the solutions in the vicinity of

equiiibriuum in the resonance and nonresonant cases follows from the

analysis of integrals. Integrals for the system of equations, which

corresponds to the disturbed motion near one of the points of

libration for the limited circular three-body problem, are

constructed. The obtained results will be coordinated with the known

solutions of this problem.

Resuits given in work can be used both in celestial mechanics and

dynamics of nonlinear multiple degree-of-freedom systems.

Further development and improvement of objects of rocket and

space technology requires solution of whole series of problems of

mechanics of space flight and dynamics of space vehicle taking into

account such desiqn features as mobility of liquid in fuel tanks and
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Selastic vibrations of housing. G. S. Narimanov [3], [5] introduced

the large contribution to the solution of these problems.

Forces, which function on KA, can be classed as follows. Firs:,

these are conservative forces with the symmetrical matrix of

coefficients with the generalized coordinates, in the second place-,

circulation forces wit' the skew-symmetric matrix with the generalizec

coordinates, namely, th" thrust of engines and controlling effects.

Thirdly, dispersive and gyroscopoc forces are considered.

Conservative forces are determining for describing structure of

corresponding systems of equations. As iar as circulation, dispersive

and gyroscopic forces are concerned, for them is completely admissible

O assumption about the fact that -he corresponding coefficients enter

into equations with the low parameter.

In classical mechanics, including in celestial mechanics, are

examined only conservative systems, but dispersive fo ces either in no

way are considered or are considered as disappearing low. Hence it

follows that the development of the methods of the analysis of

conservative systems remains urgent problem, also, for the dynamics of

KA.

Recently they will achieve considerable progress in development

of calculating methods of analysis of conservative systems. Together

with the development of calculating methods the methods of analysis,
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based on the research of general solutions, retain the specific value.

For the conservative systems is known only one nontrivial integral -

integral cf kinetic enTergies. Such integrals in the general case were

not obtained for the cooperative systems.

1. Integral for autonomous systems with periodic effect. Let us

cos-ider the system of the disturbed harmonic oscillators

2
X't+ W txk =-:SV k(XI ... X, I, P M);()

E low parameter; p(t) - periodic function with the period

"t is assumed that there is function V such, that

,V' (xi,, , , n p (M))-- (xi',... , xn, p Mt). (2
dxj'

Lbet us consider first single aegree-of-freedon system relative to

variable x. Are chosen sufficiently small integers p0 , p, such, that

PC p, o)0Let us designate o=01/po, o)j0=0op0p; A w(0=-wioo- Value AW

also is considered as the low parameter. Let us fulfill the

replacement of variables according to asymptotic methods [I]:

x=a cos (jo + ); x - awlo sin (wjot + ). (3)

On variables a, o are placed conditions:

a cos (cot0 + (p) - a sin (wji + 1p) =0. (4)



DOC = 89056405 PAGE N

Page 44.

System of equations is reduced to the form

a = ±w (w, + "o) a sin (2w,0/ + 2c)/2wjo - v (a cos (u,/ + ?)p(t)))X

X sin (J + ?p)1 ; (5)

-- ' ( i + ) Cos 2 (W j )/W10o- V1 (a cos (X / +) P ()) :<

X cos(W10t + y)/aw1j.

Equations (5) can be represented thus:

_ = ac + I 'o af (6)
a-- af a a - aOa ada

Function c0 (a, p) does not explicitly contain t, while function

f(a, p, t) - periodic on variable t with period 2r/w0. The integral

of system of equations (5) is obtained in the form of the sum of some

analytical expressions, relat.ve to functions c,, f, arrang-d/located

according to the degrees of the low parameter. Integral can be

obtained with any of values e; however, with the low e it suffices to

be bounded to first terms in the integral. Let us multiply first and

second equations (5) respectively on

oco3  dco

a d? and let us sum. Integrating both parts of the equality, we

will obtain
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-Oa c fdt=i+2 l __ dc0 Of* OCr) OP. (7
aiOa d aO d--" - ; ada d ad? da

( / dcg df* c Of a d f* aco aCr * ]

J 6a \ada 0* ad Oa da da a? ad? da --

Tn expressions (7), (8) and in subsequent formulas sign * means

=at

:s in.egral of function

on variable t with fixed values of a, p. A similar procedure

', akes it possible to isolate from integral (7) fluctuating component

of order e. Remainder j-= is integral of the sum of the products of

three fun-c-ions. In (8) instead of a, we substitute their

expressions according to (6)

C~c f0  * dc0 -1 11(2. If* _ c3 af* c0 1\J2 or a o ( , ac Oooo o,. *~ .,. -Co]
a a \ada 0? a? da ) ad? OI 'ada af adf Oa /'aa J

><d~LC~ a I ac0 3f* aco df"" df a_ a~(cn al"' dco df~ t
" J(da a a? ad? da J ad? 0? kada 0? ad? Oal ada

(9)

Page 45.

First term in (9) is integral of periodic fur..,.ion on t, and for

it ,t is possible to repeatedly use procedure of integration, after

:solating periodic component of order f3
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* - (d~ ~ ~ f~)dc~ 0 (3cr Of*~-ct Of **) oc)

0a da a aod 6a 6- a d¥ a Of a)f da a ,,a

(10)

Integrand of second integral in (9) let us represent as in (6),

in the form of two terms, after isolating components, not depending

clearly on t af* af :(La f " _l:(
d da da 0 6a 1

2 ,. ' -) 
0

(8 * 81) af , a ddt, (12)
d? da o-2, , , df da

0

Second term in (11) periodic function. Integral (12) is added

to the fixed values of a, D. Consequently, and from the second

0 integral in (9) it is possible to isolate periodic component of order

3

a22  '( d f* eOcO 1*) a/ __ 8 ( dc0 Of* 'a 8c -O* ) if
-[a a-a O ad? da a dO I ad a a,,, a O5a ada ]

(13)

We convert noncyclic component in (9). In accorciance with

definition (11) we have
(O/* O (Of Lf 0 Of + f 0

,T y 6"? da oT da o

( . a f) - . ,(14)

oda a

~Using (12), and also second equality (14) during other
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combinations of indices, we will obtain that under integral in (9)

rema ins

dV2 = - o ((f o/ ( ( (3!) (15)
aZ a ? Oa a?~ o a acp dci (3p o

Further in view of equations (6) we have

dJ2dc ) 1(I aa (3y )odf ada (3c di ada op 0aop
+ - (o:, *: f ) (16)
a? aa d? 0 ada

Thus is selected noncyclic component A,. of order e2 and periodic

component-A,3 of order e 3

ID A_ 23_ -- - (l7aadi aaaOa23 a (ada a? \aaa )poaca

Page 46.

Consequently, integral c. in (7) is represented as follows:

Co----qo +Al + A21 + a+ 3 + J3. (18)

Here term c. is of the crder e; terms

A,0, AiI,-p 2 ; A 2 1, A 22 , L23 -0'; 1 3  - integral of sum of products of four
factors. From integral 3., using conversions, analogous to (9), (11),
(16), it is possible to isolate noncyclic components A,. of order el.
During the following cycle of conversions from the remaining integral
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* are selected the terms of order e4 and so forth. It is necessary to

show for the unlimited continuation of the process of obtaining the

integral that on each m cycle of conversions under the integral proves

to be total differential from noncyclic component A,,, of order £' '

The carried out analysis shows that this affirmation is made also for

the component A,,, but general formula for A thus far could not be

obtained. Nevertheless the structure of the corresponding recursion

formulas shows that, in all likelihood, the process of the

isolations/liberations from the integral of components, the order of

smallness of which grows by each cycle of conversions, can be

continued unlimitedly.

Expression for integral is obtained analogously for system with n

O degrees of freedom. The replacement of variables in (1) is produced

according to asymptotic method [4]. Small whole numbers are chosen so

that ow:wo:... wno=P 0 " Po "...Pn. Let us designate

O ,;PO' (kO=Pkwo, k== , ... , n. Values _ k-k0 are assumed to be

small. The replacement of variables ak, Tk is determined by n

relationships/ratios, analogous to (3), and on the variables is placed

n conditions of the type (4). System of equations is reduced to the

form Of') /d(Co±Of)

_ ! 0 +Oa (19)

Simplest analytical expression for integral is obtained, if we

*represent system (19) in the form
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dc + I acj2 )-- --i Cos jt + - sin jwt;

j-Y (20)

Tk= a I ako aca - Cos j Wot +-J2 SiajkC
Wk~ak aa Wk, ak aa aak

1=1

Integral of system (20) with an accuracy down to the terms of

order e2 is following:
_k ( O

- £3C O )

-co (ak, Yk) + n cc _a2 o- c
U- i 2ja.ko, dak ak aak a~k

si Jkt aa ci CO cii) +
- .. 1 .y k aa aa2 a)

COS Jw);t ac0  j~1  ac0 at j2 1(21)
jakko dO dak oak Oca k

Page 47.

Let us consider several examples of construction of integral for

simple nonlinear systems with periodic excitation. It is illustrated

based on these examples, that with different relationships/ratios of

the frequency of excitation and frequency of system are possible

various forms of the analytical expressions for the integral, which

are characteristic for the more qeneral systems, in particular, for

the system of equations of the disturbed motion near one of the points

of libration in the limited circular three-body problem.
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Example 1.

x+(1 + )x-=ax 2 cos 2t. (22)

After reolacement of variables (3) system is reduced to form

ciea2
= a2 --- I-sin (U- - sin (t 3T) - sin (3t-y )- sin (5t+@3?)]--

+ -a sin (2t + 2T); (23)
2

P aa
3- c L3Cos(- )+ cos (t+3y) +3 cos (3t+ )+

+ cos (5t + 3y)] + cos (2t + 2?).

0 using representation of right sides of equations in the form

(20), it is not difficult to write analytical expression for integral

in the form (21) taking into account terms of order a2

a2  cos 4p) - sin (2t 2T) +
---- -15-
4 64 5 S)-16 8~_ _a aa2 ca ~ =C

cos(3 + a)t cos (t + 3,?) + cos (5t -+ 3?) - aa Cos (t _ T) C.

\(24)

If frequencies of system (22) relate as 1:2, then A=0 and in

integral there remains only second term. With 3=0 it is possible to

write out folowing terms of order a3 according to (18), since in this

case is nonzero only expression for A;. i.tegral will be following:0
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a3-2 cs , a- 4~L -f4a~a sin 4y c. (25)
I 5 Ic I)I- aa

For checking the numerical integration of system (23) was carried

out wila different values of parameter a. The results of integration

show that obtained thus solution satisfies (25) with the accuracy a'.

Page 48.

When the relation of the frequencies of the system is not equal to

1:2, with the sufficiently low value of variable a the system retains

stability, since in integral (24) determining is the first term, i.e.,

quadratic form. With A40 the stability region is reduced, and if 6=0,

then the behavior of the solution is determined by the second term in

(24). In this case is possible the unlimited increase of the variable

a. Thus, the solutions of system in the presence of a precise

resonance qualitatively differ from the nonresonant case. This occurs

because the first term in integral (24) is negatively determined, and

the second term can reverse the sign in vicinity a=0o.

Example 2. System with the parametric resonance. In contrast to

the integral of the system, examined in example 1, here the first term

of the corresponding integral can change sign in vicinity of zero

x+(1 + )x=axcs2t. (26)

After replacement of variables (3) system is reduced to the form
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a -- sin 2?- sin (4t + 2?) + La sin (2t

4 4 2
a (27)

cos 2y --- cos(4t+2?)- cos(2t+2?)
'2 4 4 2

Integral of system (27), according to (21), takes following form:

'_a Q/aa2

cos (2t +2?) - sin 2t sin 2? cos 2/-
2 2 2

a12a2  a2a

cos 4t -- - cos (4t + 2D) -- C. (28)
8 8

If cx f, then first term in integral (28) can change sign, i.e.,

is possible unlimited increase of variable a. If a<3, then motion in

* vicinity a=0 is stable. The following terms in (28) do not vary

qualitatively the behavior of the solution, but only make more precise

stability limits.

Example 3. Let us consider the system, whose corresponding

integral has the fixed-sign terms of the first and second order of the

smallness
x + x:= ax 2 cos 41. (29)

It suffices to consider system (29) for case of precise

resonance, with p=0, since by analogy with example 1 with A30 first

term in appropriate integral for system (29) is fixed-sign and is

* equal to -3a2/4.
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In the variables a, r system (29) is converted as follows:

aa2 -) -sin (U 37) + sin (Tt-+37,)j"a --- [sin (5t+y -sin (3t--f)-- -

(30)

33

-+-I cos (7t + 3? )

Integral (30) taking into account terms of second order a'

a2a4

i.e. retains constant sign in vicinity a=0.

Examination of examples 1, 2, 3 shows that with different

relationships/ratios of frequency of system and frequency of

excitation and depending on form of nonlinear function v1 (x)

substantially are changed analytical expressions of integral. For

this very reason during the analysis of system by the methods of

perturbation theory appear the difficulties, connected with the

problem of small denominators.

Method of construction of integral further is applied to

autonomous system.

2. Analytical expression of integral of conservative autonomous
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* system.

Nonlinear autonomous system

2~WXZAX,,x) (31)

is examined, where e - small parameter: function V satisfies

conditions

v (x ,....I, ) = , ).(32)

Let us begin analysis from examination of simple nonlinear system

X + W2X --- aX3 . (33)

With replacement of variables (3) under condition (4) we reduce

equations to the form

1a 3  (ia2  4
-- - Cos 3 (wt + cp) sin (wt +I )); cos (ut + (34)

With an accuracy to the terms of order a2 the integral has the

following expression:
Cci a6  3 3o 2 t+ 7 171

C 2,a-- I 3cos(2wt+29). cos (4t + 4,)-- - . (35)
2w2 14 1 8j

Let us multiply first equation (34) by a and, after integrating

it taking into account (4), we will obtain integral of kinetic

energies

J ==a 2 - -a cos' (wt - ?). (36)

.. . . ..*- 2nnwlm I~~ l l l l 1 1
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Examination of (35), (36) shows that integrals C, and J, coincide

with an :ocuracy to the terms of order a'.

Page 50.

Let us show that if we consider system (31) with two degrees of

freedom, then the corresponding integral C2 , determined according to

(21), will not be equivalent to the integral of kinetic energies J2,

i.e., this is new integral for the system. Further examination let us

lead based on the sufficiently simple example of the system, which

satisfies condition (32):

- x1 +x 1 =2CxIx 2; X2+(2+-c)2X2= x .  (37)

Relation of frequencies in (37) is close to 1:2 (p,=l; p,=2).

The replacement of the variables

x1 =all cos (t + 71; x2=a 12 cos (2t + T12) (38)

reduces system to following form (e1=e ( 4 +E)):

a,,= aa 1a 2  [sin (4t+2?jI TC12) + sin (2y,- ?12)1;

=-- [cos (41 - 2 1- 1 + T2)+ Cos (2,,, - ? 12)+ 2 COS (2t + -1)1;

(39)
2aa,,

a,2j-sin (41 -2 yp1, + y12) - sin (2? Ij -?,~2) +2 sin (2/ +?c12)I +

+_ ,la-" sin (4t -t2"PI2);

- 8i4
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?12- 8a 12 Lc  11 -r 1-  ? )' O ( ? - 12)@ 2 O (/ ?2)

+-- (I Cos(4t+2-?1 2)

with satisfaction of the conditions

a, cos (Pk + ? k) - ".lk(' sin (p t t ?1k) 0 (k 1, 2). (40)

System of equations (39) satisfies conditions, necessary for

construction of integral (21), which with an accuracy to a.2 takes

following form:

'2 G2 2 2.
C21 -a 2 -ctalla 2 Cos (-?11 - ?2)-a+alla, 2 sin (2t +?12) X

4

nersin(2 l - ? 12)cos (2 v 2?osyib-Col s l) s(4/ osys/4-9'8e (7

+ -1[Cos (4t- 2 2) - L ] + 8 COS (+ -?12) -I+

2

Cos (2t + T12) - COS (2t + 3-)2)1/ + Cos (4t + 2y(i +,1,2)

@4

(41)

Page 51.

Interval of kinetic energies in variables ak, (pk for system (37)

-a + 2a~l2) A-(U111017 2 CoS2 ('A- ,):COS ;(2t+?12)+
J2== 2

+ -cos (2t -4 ?912)- (22



DOC = 89056405 PAGE

Integrals 7,, C2 are not equivalent. Actually, it follows from 0
formula (42) for J, that under the low initial conditions the behavior

of the solution is determined by the first term in (42), i.e., values

a1 , a. remain limited and from [41] it follows that is possible the

unlimited increase of a,1 . Integral C2, is constructed on the basis

of the regulation frequency w,=l of first equation (37). Analogously

is constructed integral C 2, on the basis of the frequency w,=2+f of

the second equation. The replacement of the variables
,l-:-~ CO 10?f1 2 ).- - i,- (43)x1 =a 21 cos (Pl~w/p 2 +?20); x,2 a22 cos ( , +t43

reduces (37) to the system of equations relative to new variables

a2k, q2. The obtained system is analogous to (39), but instead of two

latter/last terms with the coefficient e, in the equations for a1 2,

o,2 in the new system appear corresponding terms in the equations for 0
a 21 , o2 with the coefficient

- 1-f-) °To the variables the conditions

a2k cos (pku2t,/p2 + ?2k) - ?2ka2k sin (pk2t /P2 + ?2k) 0 (44)

are superimposed.

Trigonometric relationships/ratios

a,, cos (Pk + ?I ) = a2, cos (Pk'2tJiP2 ±-?2k); (45)

a,, sin (pA1 r4 T2k) = a 2kw"2P 2 COS (POw"t/P 2 +

follow from (38), (40), (44), (43).

With given values of parameters

0
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Sa~i=a~- + ;- 42(46)

2 2.- --_(4+--)sin 2 [(2 1- t +

Like integral (41), integral C,, has two terms of order a,

2 2
-2sa 2l - 21a29' cos (2,21 - T22) + 0 (a, s). (47)

Following terms in (47) of order L2 can be obtained as in

integral (41). Comparison of (42) and (47) shows that in the absence

of a precise resonance eJ0, integrals C21 and C22 are not -equivalent.

However, if we join the integral of kinetic energies J, then only

every two are independent of these three integrals.

Page 52.

O Thus, the reference system of equations is reduced to 6 analytical

expressions (41), (47), (45) and to two first-order equations (40).

Let us note that on the basis of integrals C.,. C,, by the appropriate

selection of the coefficients of their linear combination it is

possible to form the integral, whose dominant term is the positively

determined quadratic form. With the resonance relationships/ratios of

frequencies the behavior of the solution qualitatively is changed. If

eA0, then determining for the behavior of the solution near

aIt = a I2= 0 is the first term in C,. All subsequent terms of order a2

and above have higher degree relative to the variables a,,, a,2 in

comparison with the second term in C2,.

For system (1) with n degrees of freedom, if relation of
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frequencies of this system is not equal to rela ,!' n of integers, can

be constructed n integrals Cnj (i=1,..., n). The dominant term of each

integral is the linear combination of n-i terms (2k (k=1, ..., n; k= =/).

3. Construction of integrals of equations of disturbed motion

near one of points of libration for limited circular three-body

problem. System of equations and corresponding designations are given

in [2] and take the following form:

3 oH, 2-- - 'q ki-l
4

9 OH2'---,-- k, I (48)

4 r

H= 9 t + 4 +-2,q + T n  + = -T 4 4

Structure of system of equations does not coincide with

appropriate structure of system of equations (31), nevertheless, using

more general approach to construction of asymptotic method [4], it is

possible to reduce equations (348) to form required for of integral.

Let us assume w, w2 - roots of characteristic equation of linear

part of system

W24+-L k+2iw4 =0; 
(49)

k - (iio (02+-9
4

p., p, - small integers, selected so that 6)1 w0) 2 Z:p'P2.



DOC = 89056405 PAGE/S < e

0
Integrals cf sjbem (48) are constructed in the same way as this

was shown based on example of system (33). Is chosen regulatio-

frequency w, the linear part of the system with the help of the

identity transformation is changed so that the relation of changed

frequencies ( 10 :o20 would prove to be accurately equal to

P1 'r2; W0oo=P °oO; (U2°=P2(tO°

Page 53.

For this let us supplement into the second :quation the term - e,7,

and let us replace function H by H,==H-ir2/2. The parameter e, is

selectedso that the characteristic equation

i3
2 + 3 k + 2iw

4 -0 (50)

k- 2iw + 9 + F

has roots Cio, W20. It follows from (50) that

W1 )(' 2 (51)

Replacement of variables in converted thus system is following:

ka, cos (w, I + ,p) + ka 2 cos (w2t + y2) -

- 2a1w, si n (wit + ,?) - 2a e 2 sin ("02t + T2),

7= _(W2+ 3)a, cos (w~l +f 1i) -(2 + 3i)a o w/+?) (52)

0 Coefficients in (52) correspond to coordinates of eigenvectors of
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linear part of system. To variables aj, q the conditions

2

Y [a(k cos (wjt+j)- 2w, sin (wj+ )-
i-I

-- ?jaj (k sin (wui + yP) + 2wj Cos (v/ - cpy))] -- 0.
2

~~~~ ji j~+± o wt--c~-a~ (W2 + 3 -) sin (wjt + cj)l =0. (53)aj - w + 1 o (j j
j-1

are superimposed.

After substitution (52), (53) into (48) we obtain two additional

equations

2

- jwj (k sin (wt + yj) + 2wj cos (w/- Fj)) + yja 1 j(k cos (wjt -+- ,) -
-i-

OHO
-2wsin((oj~yj)l =aH,(54)

2

Wi +~ - ) ,wj s in (wjt + (Pi) + *wjcos (w~t + ?)i alO
j-1

Page 54.

From (53), (54) we determine equations for d1, q(j, which after

series of conversions with use of (50) and (51) are reduced to

following form:

I [aH_ a _] OH 1 )I _ 1 OH. (55)
aj= I -L-+ - - 55

ujAjaj a, t Oj 01l aq1 / Aja j '
I al O OH, a') 1 OH,

-jAja O 0 aj "- O l A OaAaj2• )2-2
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Consequently, system (48) is reduced to the form, for which is

possible construction of integral. According to (20) let us represent

right sides of (55) in the form

OH . co + O i l t + - sinlt
aTJ Ocpj Oa j

O 1  l Oc- Cos Iwot + aOc2 sin zw~t) . (56)
Oaj Oaj 1-1 a aa

l~.1

Integral C2 of system is determined by formulas (21). If the

relationship/ratio of initial system w,:w, is not equal to p,:P 2,

i.e., e &, then dominant term in the integral, which is determining

O for the behavior of the solution in the vicinity of the point of

libration, is e]a 1
2/2.

Further is constructed second integral for system (55) relative

to regulation frequency w2 . To the right and the left sides of the

first equation of system is supplemented the term - e2 t, moreover e2

is selected so that the roots of the characteristic equation

W2 +-+z 2 k+2io,
4

=0 (57)

k - 2iw (U 4+
4

have relatinship (Oil :(-02 1=Pl :P2.

Second integral C2 2, which is defined just as C,,, has dominant
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term F2a22/2. From integrals C2 ,, C2 with the help of the linear

combination it is possible to form the integral, whose dominant term

is the positively determined quadratic form, and all the remaining

terms have the higher order of smallness. Obtained thus integral

proves stability of motion near the point of libration with the

nonresonant relationships/ratios of frequencies.

When relationship/ratio of frequencies of reference system is

accurately equal to resonance (1: 2= PI: P2, then C 21= C22
= C and

quadratic term is absent. In integral C determining is the following

term:

I H aH I 1dH aH
(&,A, ( ada, -a;f) ± (Aaa ==C. (58)1l1 10l ~ w2A2 aca2 0P2 0

Page 55.

For determining integral according to formulas (21) should be

represented right sides of equations in the form of sum of

trigonometric functions, whose arguments are following:

~n1 (w t+PI)±2(2{+W) (n1 , n2=0, 1, 2). In different relations of

frequencies there can be three different types of the resonance

relationships/ratios, which, in principle, correspond to examined

above examples 1, 2, 3 for the single degree-of-freedom systems.

If w : 2= I :2, then in right sides of equations (55) are

contained terms, which explicitly do not depend on t. It is not
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difficult to show that when (02:IW2= :2 into integral enters as

dominant term the component

Co =aa2 cos (2y, - ?2).

This case corresponds to example 2. Consequently, C, can change sign,

i.e., the analysis of integral C does not contradict known result of

[21, then the motion near the point of libration is unstable when

( 1:2= 1 :2 . When :(2= 1 :3 into expressions for the right sides of

the equations enter two sinusoids with arguments owt+'pt, o-2q1+Tq2.

The instability is possible by analogy with example 1 in this case in

the system. Case Wj:w02==1 1 must be examined especially, since it is

assumed in (52) that . With all remaining integral

relationships/ratios of frequencies w,:w 2 into the right sides of the

equations enter the harmonics, whose frequencies are not equal to

zero, and these frequencies do not coincide with each other, which

corresponds to example 3. In this case dominant term (58) of integral

does not depend on p/ and it is biquadratic form relative to

variables a,. It is necessary to show for the proof of stability of

motion near the point of libration that this form is positively

determined.

Summing up sums, let us formulate basic results and although let

us briefly plan enumeration of unresolved problems. The procedure of

obtaining analytical expression for the integral of conservative

system with the periodic excitation and the family of the integrals of

autonomous conservative systems is constructed. Integrals are the

* analytical expressions, arranged/located according to the degrees of
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small parameter. General formulas for the terms of this resolution

are given. The examination of a whole series of examples shows that

the basic special features of the behavior of the solution are

determined by two first terms of expansion. Only at the worst, with

some values of the parameters of system, the analysis also of the

third term of expansion is necessary. However, for the affirmation

about stability of motion it is necessary to show that the process of

the formation of integral taking into account terms of ever higher

order of smallness can be continued unlimitedly. On the basis of the

obtained results this affirmation is valid, but for its complete proof

it is necessary to obtain recursion formulas so that it would be

possible to use the method of induction.

~0

It is shown that with precise resonance relationships/ratios of

frequencies character of solution qualitatively is changed, since in

integrals dominant terms, which determine behavior of solution,

vanish. In this case the behavior of the solution is determined by

the terms of integral following in the order, whose analytical

expression is substantially different. In contrast to the methods of

perturbation theory, the method presented in the work does not

encounter the difficulties, connected with the problem of low

denominators.

Important problem is propagation of method of determining

integral to more general conservative systems than examined in work

canonical system of harmonic oscillators. In the specific case of the
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*limited circular three-body problem the method of determining the

integral presented succeeds in using despite the fact that the

structure of matching systems is not canonical. On the basis of the

integrals proposed is possible the creation of calculating algorithms

not only for the conservative systems, but also for the systems of

more general view. Very fact of the presence of the analytical

expression of integrals offers new possibilities for the analysis of

systems, but at the given moment the total number of questions, which

appear in this case, substantially exceeds the number of

responses/answers to them.
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Page 56.

WAVE STRUCTURE, QUANTIZATION AND MEGA-SPECTROSCOPY OF THE SOLAR

SYSTEM.

A. M. Chechel'nitskiy.

Are presented short survey/coverage of some methods, ideas,

results of mega-quantum wave astrodynamics and concept of wave

universe, in particular, in application to observed dynamic structure

of solar system.

It i-s shown that wide volume of new experimental and

observational information about its structure can be correctly

interpreted within the framework of representations of wave

cosmogeonomy.. quantization (in large) of solar system and wave

resonance. Is discussed the possibility of the representation of the

observed in nature wide spectrum of periodicities (in particular,

orbital and rotary planetary motions) as the sets of the rhythms,

whose genesis is connected with the wave structure of the solar system

and the existence of mega-waves. It is shown that this spectrum

belongs to the theoretically computed frequency spectrum of the solar

system - its mega-spectroscopy.

In middle of 1980 publishing house "Mashinostroyeniye" let out to

liqht/world work [18), which was opened by Georgiy Stepanovich

Narimanov's preface. in this preface, in particular, the following
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* speaks:

"The volume of experimental data rapidly grows. Already

considerable scientific information is assembled. The study of this

material will make it possible to answer many questions about the

structure of the solar system and outer space surrounding us. The

theoretical comprehension of many laws and phenomena in the solar

system becomes ever more actual. In connection with the

development/detection of some special features in the motion of

planets and their satellites the necessity of theoretical examination

and proof of some questions of astrodynamics appeared.

Page 57.

The resonance properties of motion, the defined sequence of the values

* of planetary distances and other special features, observed in the

structure of the solar system and in the motion of planets, cannot be

considered as the random phenomena - they must find their explanation

as the manifestation of a specific natural law. Therefore it is very

tempting to investigate the possibility of the proof of some problems

of astrodynamics, on the basis of other concepts, which use, for

example, representation of wave dynamics".

Which is fate of ideas and propositions, about which is mentioned

above?

In 1982 suddenly in foreign periodics arose unusual interest in

* theme, which usually did not stand in center of attention of science
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about planetary motion and structure of astronomical systems - to

theme of quantization (in large) and wave structure of universe

mega-systems. It is possible to state/establish this phenomenon as

the virtually simultaneous entrance of two in principle similar works

from different countries on one and the same theme and in one and the

same journal "The Moon and the Planets" [44, 35]. The theme of these

works can be described as the mega-quantum wave structure of

astronomical systems. It is not difficult to note that it is new not

only for the journal, but (judging by the previous publications) for

authors themselves.

Thenappears whole series of works of Louise [36, 37) on

considered theme, including in journal "Astrophysics and Space

Science" [382. One cannot fail to note the intensity of the flow of

the publications, for which are characteristic generality from [18]

approach to the problem, fundamental ideas, line of reasoning, proofs

Now and then are observed straight/direct coincidences with [18) (it

suffices to compare, for example, Fig. 1 of work [44] with Fig. 17 of

monograph [18)).

Oldershaw with latitude of scope/coverage of material inherent in

it and with sincere gladness greets appearance of new evidence (new

evidences) in favor of phenomenological unity of structure of physical

systems of universe [40, 391. But the well-known American scientist

Greenberger in one of the most authoritative (judging to the

composition of editorial board) physical journals "Foundation of
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* Physics" in his 49-page ai: - tne enthusiasm calls

astrophysicists to focus attention on the prospect of research of the

fact that he calls "Quantizati2n in tne Large" (i.e. mega-quantum

effects or quantization in the large) during the analysis of

astronomical systems [3].

Let us let again word to U. S. Narimanov and will return tribute

to his insight. In the preface .o work [183 there are these words:

"Without depending or. the possible controversy of the series of the

parts of the wave concept of the author one cannot fail to note

attractiveness and the enormous heuristic charge, which these

representations carry.

* Page 58.

But such concepts of mega-quantum wave astrodynamics as wave dynamic

systems, astro-dynamic spectroscopy or new view on the wave genesis of

the effects of resonance and commensurability in the solar system,

have a right for the serious discussion.

Propositions of author can be considered as completely

concrete/specific and structural/design attempt at resolution of those

urgent problems, which stand before contemporary astrodynamics and

cosmonautics. Should be greeted the same structural/design efforts

and other authors, who defend others, including alternative, the point

of view in the hope for the fact that the inflow of new ideas and

* fruitful discussions finally will lead to the resolution of the urgent
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fundamental oroblems". 0
G. S. Narimanov possessed ability to listen to and to

understand, to look and to see. And, besides the fact that is not

less important, he knew how to function. To the light memory of

Georgiy Stepanovich Narimanov is devoted all that represented below.

to what is judged to maintain/withstand the testing by time.

Wave universe and mega-quantum wave astrodynamics.

Within the framework of concept of wave universe [18] large

astronomical systems can be considered as wave dynamic systems (WDS

wave dynamic systems), that are in a sense analogs of system of atom

(131. From this point of view the solar system - is the wave dynamic

system, components of which appear as celestial bodies themselves

(Sun, planet, satellites, small bodies), and also its interplanetary,

continuous filling - material medium (interplanetary plasma,

electromagnetic fields, etc.), i.e., substance and field, described in

the single dynamic context. The corresponding instrument, which gives

the phenomenological and dynamic description of similar systems, is

natural to call mega-quantum wave astrodynamics [181.

Fundamental w.ve equations and quantizatlon of parameters of

mega-objects. Central idea is here the fact that the mega-objects in

question, being wave dynamic systems as everything WDS of the

universe, are described by universal and single equations - 0
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* fundamental wave equations (latter in general form are given in work

[18]). A special case of these equations is the wave equation

d2

to which s::ouild be joined the boundary condition
(j)

c- ri pH r-- x2 y- z-- cc. (2)

Key: ()v.i n

Page 59.

Here 4 - certain function of space coordinates, limited at infinity;

=Eirn - specific (standardized/normalized to mass m) energy E°;

U=V°/m - specific (standardized/normalized to mass m) potential energy

* vJ; V - the operator of Hamilton;

d

- fundamental constant of areal velocity, i.e., the constant

of specific (standardized/normalized to mass m) action, or moment of

momentum.

With particular value dctl nz,= 1,16 cm2/s and U=K/r, where

KA'e2/rM, in, - mass of electron; h - Planck's constant, e - nuclear

charge of hydrogen atom; r - radial coordinate of electron, equation

(1) - not that different as Schroedinger equation for atom of hydrogen

[13],

With other value - 101" cm 2 /s and U=K.K/, where K=K- -

S gravitational parameter of sun, equation (1) gives wave description of
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mega-systems of type of solar. From the fundamental wave equations

(of type of that given above) follow the laws of the quantization of

universe mega-systems, in particulai: 1) the linear law of the

quantization of areal velocity L=L\-N A, where L=-,rJ - areal

velocity, r - heliocentric radius, z,,, - transversal speed; L,=-. -

level of quantization; %1'=,%v'K - quantum number of areal velocity

(N=I, 2, ...); 2) the quadratic law of quantization (distances) of

elites [18] - the physically chosen planetary (satellite) orbits -

analog Bohr's law in microcosm [13].

If we postulate that solar system is wave dynamic system and,

thus, is valid micromega-analogy (MM-analogy) [181, then from dynamic

isomorphism of atomic structure and solar system it is possible to

obtain series/row of corollaries, by using, in particular, diverse

variants of quantization - according to Bohr, according to

Sommerfield, according to de Broglie, Schroedinger, etc. Should be

specially stressed the possibility of quantization in the mega-systems

of norioperation and moment of momentum (of type lm =lZLr), as in

quantum mechanics of microcosm, and specific (standardized/normalized

to the mass) action (moment of momentum), i.e., areal velocity [18]:

L -- K./m = vr =[Ka (1 - c2)11 2; (3)
(i)

L z=(Ka)1'2 npti ezz O,

Key, (I). with.

where a, e - semimajor axis and orbit eccentricity.

0
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Specifically, this fundamental conclusion gives possibility to

obtain picture of quantization in mega-world located in satisfactory

agreement with observations, in particular, quantum numbers of elite

orbits (semimajor axes of orbits of planets, satellites, asteroids and

comets; eccentricities and inclinations), rings of Saturn, spin of

celestial bodies. One of the corollaries is the genesis of the law of

Titius-Bode and the possibility of the existence of intra-mercurial

(problem of Vulcan) and transpluton planets.

Page 60.

Mega-waves in solar system and trans-sphere. Important corollary

(1), which carries fundamental character, is existence in any

mega-system of the universe and, in particular, in the solar system,

O the mega-waves, which realize proximity effect on the scales,

commensurate with the scales of system (MG-waves [18, 19, 20) - the

analog of de Broglie's waves for the giant astronomical systems). The

parameters of mega-waves are connected with following

relationships/ratios [18, 19, 20], by the analogous

relationships/ratios of Bohr and Planck-Einstein [133:

v= dX; S=-, , (4)

where y , - wave number, angular frequency and specific

(standardized/normalized to the mass) energy of MG-waves; v - speed of

Keplerian motion; d - fundamental constant of the specific action

(areal velocity) of the solar system. Specific energy

allows/assumes in the case in question representation (K=Ko)
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E V2 K _ K (5)
M 2 2a 2r

Let us introduce value CN1G=onSt, which has dimensionality of

speed

CMQ=v*=K/L*; L,=2, (6)

which we will identify with velocity of propagation of wave

disturbances (mega-waves) [19, 20). In view of (4)...(6) we will

obtain

2a=K/2d=GM g=const; Qa-.Qr. (7)

Corresponding frequency e, period _q, wavelength A and wave

number 3j are connected with known relationships/ratios

1 C 2n
A=-; X - (8)

2n0 A

In order to apply equation (1) to concrete/specific system, it is

necessary to assign besides gravitational parameter K =K? one

additional fundamental constant, for example d or C,.. Latter/last

value (velocity of propagation of mega-waves) is more preferable,

since it allows/assumes more distinct physical interpretation.

Most natural is assumption that value CMG lies/rests at area 155

km/s, which corresponds to velocity of propagation of solar wind and

magnetosonic waves in interplanetary plasma [1, 5, 28, 30). 0
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Possibility of agreement of calculated quantized values of

parameters of solar system, obtained from equation (1), is criterion

of correctness of this assumption with appropriate materials of

observations. This question is examined below.

Page 61.

In further analysis are used connected (self-consistent)

numerical values of fundamental constants of qua:.tization of solar

system a and C~mG, which correspond to integer value r./R,. =8, where

r* - radius of trans-sphere (see below). In this case (see [19...22))1 1/ (01
-- ) 8 154,386 km,lc. (9)

* Key: (1). km/s.

Phase speed of mega-waves is such. To it corresponds computed

value of the fundamental constant of the action (areal velocity) of

the solar system

-1 L. = K®/2CMo 0,4 2 9 80109 M&2/C, (10)
2

Key: (1). km2 /s.

where K0=-1,3272.loll km3/s2 - gravitational parameter of the sun.

At characteristic speed C=CMG, commensurate with speeds of

rotation of celestial bodies in solar system, is completely probable

presence in certain vicinity of sun with r=r*=a* physically chosen

O surface, for which speed of Keplerian of orbital motion v=v* is equal
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to velocity of propagation of mega-waves CIMG:

C mG - v* = (Kc®/r*)'. (11)

We will call this surface (certain analog of surface of transonic

flow in aerohydromechanics), which divides regions V>CMIG and

V<C.IG trans-sphere of solar system (assuming it spherical without

depending on real form of this surface). Above value of the velocity

of propagation of MG-waves accepted corresponds to the position of

trans-sphere at the heliocentric distance of r=r*, accurately equal to

8 radii of the sun:

r,=Ko/v'=K0/C-0 =-5567928 KM=0,03 72 19 a. e.=8R®. (12)

Here r,=a - radius of trans-sphere; R -- 696000 KM - radius of the

sun.

Mega-spectroscopy of the solar system.

Astronomical system (in particular, solar system), considered as

wave dynamic system, described by equation (1) with boundary condition

(2), can be described by spectrum of natural frequencies. These

frequencies can be calculated according to the eigenvalues of

boundary-value problem (1), (2). On the other hand, to eigenvalues

corresponds the set of stationary elite orbits - the analogs of the

steady-state orbits of Bohr in atom [13).

0
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* Page 62-63.
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Key: (2). Series of Pluto. (2). Series of Neptune. (3). Series

of Uranus. (4). Series of Saturn. (5). Series of Jupiter. (6).

Series of asteroids (Ceres). (7). Series of Mars. (8). Series of

Earth. (9). Series of Venus. (10). Series of Mercury.

Page 64.

In view of MM-analogy should be together with other mega-quantum

effects [18...251 expected the presence of the spectrum of

characteristic for the solar system wave frequencies, including

intercombinatory - analog of the frequency spectrum (spectroscopy) of

atom [131. This mega-spectroscopy of the solar system, in which wave

periods are characterized already, it goes without saying, not by

fractions of a second as in atom system, but by days and for years, it

can be the fundamental wave spectrum of solar system (19, 20).

Wave frequency e depending on linear orbit characteristics

(semimajor axis a or its radius r=a in the case of main

approximation/approach - circular orbit) can be by virtue of (5)...(7)

represented form

D _ D D- K T (13)
a r 4ad

To eigenvalues of boundary-value problem (1), (2) correspond

fundamental wave frequencies (therms of wave frequencies and some

chosen (elite) planetary orbits with semimajor axes a,(=r,) and

frequencies OL=D/ai(i= 1, 2,...). Together with the fundamental wave
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*frequencies (therms) Oi let us introduce into the examination

different intercombinations oil (beating) between them -

intercombinatory wave frequencies, in the general case - difference

and summation 6()-- Oi
i,j i "i

Main intercombinations of wave frequencies we will call

intercombinations between therms of adjacent elite orbits

Si+I. The set of the therms of wave frequencies and their

intercombinacions for the elite states (orbits) of the solar system we

will call the fundamental spectrum of the wave frequencies of solar

system [19, 20).

Tabl-e 1 depicts fundamental spectrum of wave periods g- of solar

O system (more precise, its fragment), which corresponds to elite

astro-dynamic levels (orbits of planets) of solar system.

Schematic of astro-dynamic levels is specially represented in the

form, which reminds schematic of spectroscopic levels of hydrogen-like

atom (diagram of Bohr-Grotrian) [13). By analogy with kncwn radiation

series - therms and intercombinations in the atom - Lyman, Balmer,

Paschen, etc., in the diagram are represented series of the wave

periods of the solar system - therms and their intercombinations

between the astro-dynamic elite levels, which correspond to the

planets of the solar system; a series of asteroids (Ceres) is given

conditionally (periods 7j are indicated in days (d) and years (a).

0
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In contrast to wave period T (8) periods of orbital planetary

motion T in two-body problem (Keplerian periods) are proportional to

semimajor axes a of orbits to degree of 3/2:

= 2a (14)
K'' T

Page 65.

Here K as in (5), (7), gravitational parameter of central body,

- frequency of orbital (Keplerian) motion, a - semimajor axis of

planetary orbit [26, 2, 3].

Mega-spectroscopy, which corresponds to fundamental wave

frequency spectrum of solar system, can serve as guiding filament for

research of interaction of factors of endogenous (in particular,

geophysical) and exogenous (cosmogenic, in particular, astro-dynamic)

nature, offering possibility of more goal-directed research of

boundary problems of astrodynamics, geophysics and physics of planets.

The concept of wave resonance [18...20] is here the leading idea, it

assumes tendency toward the commensurability of the wave periods,

represented in the fundamental wave spectrum of the solar system, with

the rhythms existing in it, in particular, with the observed Keplerian

periods of orbital and rotary planetary motions, and also with the

known rhythms of astrophysics. This concept is confirmed by many

results of the direct observations, which are examined below.
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* Analysis of some observational data.

Localization f trans-sphere. The presence of special surface -

special transition/transfer (jump of the physical parameters) in area

r=8r.= 8R (associated with the position of trans-sphere) directly

is discovered by the characteristic fracture on the graph (Fig. 1) of

experimental data (obtained with the use of KA "Helios-l, 2" and

"Pioneer-6, 10, 11"), that describe the dependence of the parameters

of interplanetary plasma on heliocentric distance [45].

Special surface, on which observed in space experiments speed u

of solar wind [451 proves to be equal to Keplerian speed of orbital

mot ion -(K/r)'i, is placed also in area rz8RP,- (Fig. 2),

O identified above with surface of trans-sphere. On this surface the

velocity of the motion of the local disturbances/perturbations of

interplanetary plasma (solar wind) gradually increasing in the corona

of the sun crosses the critical value of v*, equal to CMG

Localization of velocity C 1 . Proton temperatures T, of

interplanetary plasma, according to the empirical dependence,

discovered by Burlaga and Ogilvie [5, 28, 30] according to the results

of experiments on the space vehicles (for example, "Explorer-34"), are

proportional to the observed velocities u of the motion of

interplanetary plasma (solar wind) (Fig. 3).
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* Fig. 1. Dispersion crD (Doppler scintillations) of interplanetary

plasma [45] and localization of trans-sphere in corona of sun.

Evidence of experiment - characteristic fracture a, in the area of

trans-sphere r.=8-R0  The Doppler scintillations: - "Pioneer-ll",

x - "Pioneer-10"; A - "Helios-l", + - "Helios-l, 2" and "Pioneer-6".

Key: (1). Hz.

Page 67.

At smallest possible proton temperature Tp:O observed velocity

of motions of interplanetary plasma is equal to u-151 km/s, which

follows also from propositions in [5, 28, 30] empirical dependence

- (10 - 3 Tp)'2=O,036 u-5,44. (15)

Here Tp - temperature, K; u - velocity, km/s.

With Tp=O u0=151,11 km/s. This experimental value is close to

the velocity of propagation of mega-waves CMG introduced above.

Mega-quantum effects. Let di=a-/a, - standardized/normalized to

the value of radius of trans-sphere a.=r.=0,037219 AU semimajor axes

of planetary orbits (ephemeris DE19 JPL). Then

standardized/normalized interplanetary distances di---ai+l-d, are

equal for the earth-type planets to - 9.033, 7.433, 14.071; for the

planets of Jupiter group - 116.069, 259.033, 292.999, 249.996, i.e.,

are (almost) integral, and interplanetary distance Venus-Earth -

* (almost) half-integral [21].
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Fig. 2.-- Profile of solar wind (experimental data "Helios-l" [45] and

localization of trans-sphere rV-.R0 ) in corona of sun. The singular

solution (v CmG=54,38 km/s, r:r.= 8.Ro.), obtained from the

experiment - point of intersection of observed speed u of solar wind

[45) (solid line) and the Keplerian orbital speed

( (dotted line).

Key: (1). km/s.

Fig. 3. Proton temperatures of interplanetary plasma on measurements

on KA "Explorer-34" [5, 28]. Line 1, drawn through the experimental

points, reflects the empirical dependence, proposed by Burlaga and

Ogilvie [30). For comparison the results of calculations according to

the isothermal model of Parker (2) are shown. When Tpzo we have

u0-15l km/s, close to fundamental velocity C,,3 -= 154,38 km/s.
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Key: (1). km/s.

Page 68.

Let us consider now values of quantum numbers N,' computed from

formula [18, 22],

N -(2x) 12 -L-= (2a .-L)'/2, i- 1,2....; (16)L, \ a*

L 1 =LN=INI; LN-I=L( 2 i), '2

with substitution into it of experimental values of semimajor axes

ai of planetary orbits of terrestrial group. As a result we will

obtain Ni=7,9111; 11,050; 12,991; 15,969 respectively for the orbits of

Mercury, Venus, Earth, Mars. As is evident, they all are very close

to integral eigenvalues of equation (1) with boundary condition (2)

[22].

Existence of these mega-quantum effects is one of arguments in

favor of wave structure of solar system and the fact that r=r,=a .

objectively plays role of certain of its significant dimension.

160 ,- oscillations of sun. Wave astrodynamics offers the

possibility of interpretation of such phenomenon as 160m oscillations

of sun (42]. Let us consider wave ilteraction (beatings) of two

physically chosen spherical surfaces: the surface of sun r=R and

trans-sphere r r.=8R* To them correspond the frequencies of the

orbital Keplerian motions (d - days): 8,6275 (d-) and

S.=(,38128 (d1). Hence we will obtain the following values of the
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intercombinat ions of frequencies '= vR and periods

corresponding to them: summation =9,0088 (d - ) period

7,(.) (I') = d 1,59 m84( :z 160' )

and difference V-) v -,,,8,2462 (d-), period

_ 174,-62 (, 175m).
T(- (-1 7

Thus, wave examination makes it possible to predict the existence of

the conjugated/combined from T=160"' characteristic period T_175-.

Oscillations with this period actually are observed [341. Hence it

follows that the zone of the corona of the sun, which stretches from

its surface r=RD to trans-sphere r,==8R®, is if not generator,

tben, at least, efficient resonator for 160m the oscillations of the

sun - apparently, one of the prevailing modes of mega-waves.

Wave resonance. "I consider these fluctuations the most

mysterious phenomenon, observed in the stellar motion. It is so

difficult for the explanation by the action of any known reasons,

which to us remains nothing, except the assumption that they are

caused by action, until now, of unknown reasons.

Page 69.

Variations in the change in the sea level, continental

displacements/movements, thawing of ice in Arctic and other observed

processes cannot be, in all likelihood, their reason", wrote Newcomb
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* about the fixed/recorded by the astronomical methods (according to the

observations of stars) fluctuations of the angular velocity of Earth

[122. In the spectrum of variations in the speed of rotation of the

Earth are observed, in particular, the periods [29] 27',6; 01,16...01,17

(58,1,4... 62' ); 01,20 (73d); 0,35 (128'1); 011,5 (183,1); ]a; 1P,8 ... 1 ,95; 2a,2;
30,5: 10,1.

Directing attention to Table 1, it is not difficult to discover

that components of variations in speed of rotation of Earth in

question belong to fundamental wave spectrum of solar system (in

accordance with T-=27d,548: 58d,680 (5 9d, 2 01); 7 2 d,891; 9 7 d,033,

12 7d,827: V84d,229; IP; la,837; 20,212; 3a,651; 101,194.

Being in spectrum, represented in-rable 1, period £T=205',013 is

observed in (transposed) near-daily nutation of pole of Earth and

seismicity of Moon, periods -=443,1,317 and .7=24a,548 - in Chandler

oscillations and nutation of pole of Earth [29, 71.

Resonances of observed oscillations with periods, which are

elements of fundamental wave spectrum of solar system (see Table 1),

it is natural to consider, as in the case 160', of oscillations of

sun, as the various concrete/specific forms of manifestation of some

complicated dynamic processes, characteristic for solar system,

connected with wave resonance.
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Let us give still some examples from the same region. The wave

periods of Mercury (see -pbles 1) 9-=27 ,277.31,713 are commensurate

with the differential rotation of the sun; period TF=27d,277 - with

the orbital motion of the Moon; -=58d,68 - with the spin of Mercury;

9-7366d,613 - with the orbital motion of the Earth, etc. The series

of the periods, available in Tfable 1, for example monthly

( 27,277 311,713),semi-annual (T==184,,229), yearly

(T-= 3 6 6d,613), many-year (_-=2a,212; 5a,801; 1 Oa,1 94; 24a,548), are

characteristic for the observed in astrophysics rhythms - from the

oscillations of the geomagnetic and meteorological parameters on the

Earth [7, 16, 17] to variations in the interplanetary magnetic field

(MMP) £6, 8, 111 and solar activity £6, 9, 10, 16]. This relates, for

example,-to the following observed variations of MMP

[8, 6, 11, 16]T=87d; 95d; 127d; 14 7d; 180d; 240d; 3 60d; 4 4 5d; 010d 2775"

and to the neutrino fluxes (tentatively T=25,5-. 1,5 mo.

(2,125±0,125 yr.), T=ll years, etc.).

Examples, given above, testify in favor of mega-quantum wave

structure of solar system and presence of mechanism of synchronization

of periodic processes of different physical nature with natural wave

oscillations taking place in it, which correspond to its fundamental

wave (discrete/digital) spectrum (i.e. in favor of wave resonance).

Development/detection of this mechanism is most important

problem, which lies on joint of wave mechanics and astrophysics.
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*Page 70.

However, central question thus far remains more detailed

identification, phenomenological and dynamic description of quantum

structure of solar system anl systems wit! central body and satellites

analogous to it.

Two systems of mega-waves in the solar system and the corresponding to

them groups of planets and satellites.

Let us consider one additional approach to quantization, with

which is considered existence of two (terrestrial and Jupiter) groups

of planets; orbits are broken down into two groups and are examined

Srespectively two systems of mega-waves [23...25]. The first is

identified (in the sense of velocity of propagation) with the observed

in the interplanetary plasma "rapid" magnetosonic waves (velocity

CI=CMG, examined above), the second - with the "slow"

magnetohydrodynamic waves (velocity C,)[5, 301. The numerical values

of these velocities and their corresponding constants and radii of

trans-spheres rls]=a~s] (s= 1,2) are .such:

C[- 154,39 K' =M/c; C =42,105 KM/c; d['=0,4298.19 KM 2/C;
a[(] - - 1,5759.1 lO 2/c; r[l-a[ 1]----8R =0,037219 a. e.; rt 2]=a[2]-

-107,56R--0,50039 a. e.

Key: (1). km/s. (2). km2/s.

Until now the first of sets of parameters was used during

0 calculations. Now let us act somewhat otherwise. Velocity C11 and
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corresponding to it trans-sphere aEll we will associate with the

earth-type planets; velocity C[2] and its trans-sphere a(2] - with

the planets of the group of Jupiter.

Now quantum numbers of elite orbits can be calculated

independently for each of groups according to formulas (in particular

(16)) of Section 1-3 with use of corresponding constants of

quantization.

Results of these calculations are represented infable 2. As can

be seen from this table, computed values N for the real orbits of each

of the groups of planets are close to each other and to the whole or

half integers. On the other hand, attention is drawn to the fact

that, judging by the explosions in the series/row of integer values N,

not all permissible elite orbits "are filled", i.e., there is a series

of the orbits, in which the planets are absent. Here we, apparently,

encounter new problem - stability problem of elite orbits, which

allows/assumes special examination.

Page 71.

Natural question arises, are some of parameters of quantization

in question, namely velocities Cf and C', fundamental constants

for entire solar system as a whole, including satellite systems, or

these constants carry local character (which, of course, would

substantially decrease heuristic value of considered phenomenological

and dynamic description of solar system as mega-wave system).
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Response/answer to this question gives Table 2, in which are

cited data also for satellite systems of planets (see quantum numbers

N and N 2j).

One should stress that data according to quantum numbers N and

N[2 (see Table 2) for satellite systems are calculated with use of the

same two constants CM and as during calc .lation of data for

planetary system, moreover

P3S=1-K2C ,; al"'[- K/(C) 2 (s-= 1,2); (18)

K - gravitational parameters of central bodies of satellite systems

(planets r.

As can be seen from table, occurs, apparently, nonrandom

proximity of values N for real orbits of satellites to quantum numbers

of planetary orbits.

This result, which has fundamental character, is important

argument in favor of real existence of quantum orbits. On the other

hand, the appearance in a number of cases together with wholes (half

integral) and other numbers shows that, apparently, the true picture

is more complicated than described by the analog of the equation of

Schroedinger (1) with the simplest Hamiltonian, examined above.

In -able 2 is also series of whole (and half integral) values Nil,

N J2 , to which correspond "empty" elite orbits. Asserts itself the
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assumption that the "occupied" orbits are in a sense dominant, i.e.,

at least, more stable than "empty". As the indirect confirmation of

latter/last assumption serves the presence in family of the rings of

Saturn of slot near the internal edge of ring Din and division of

Cassini, close to the elite orbits with quantum numbers 15.5 or 16 and

21.5 respectively.

However, further analysis shows that not all components of

satellite systems can be exhausting described within the framework

only of two systems of quantum numbers, which correspond in planetary

system to two groups of planets - terrestrial and Jupiter.

Shell structure of astronomical systems (WDS). Let us represent

the basic constants of quantization in the form

CM. a.s] = x2ts-1a(.'1 (s= 1,2), (19)

where -x=CAi -3,666 certain dimensionless parameter -

fundamental constant of hierarchy [24].

0
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Pages 72-73.
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Key: (1). Planetary (Solar) system. (2). Satellite systems. (3).

Earth. (4). Mars. (5). Jupiter. (6). Saturn. (7). Uranus.

(8). Neptune. (9). Pluto. (10). Planets. (11). Satellites.

(12). Satellites, part of rings. (13). Rings. (14). External edge

of clouds. (15). Internal edge of ring. (16). French division.

(17). Ceres. (18). Division. (19). Cassini. (20). Encke's

hatch. (21). Pioneer.

Page 74.

Asserts itself thought about possibility of existence of

hierarchical series of velocities C(, constants of quantization of

areal velocity d Is) trans-spheres with radii of rl-[sa~s] and other

parameters from general/common constant hierarchy K at s=2, 3,,.. .(see

in table 2 appropriate quantum numbers N[ 3], N[41, N[51). From a physical

point of view this hypothesis assumes the presence of the sequence of

the regions of interplanetary plasma, limited by shells Gfsl (G['land G121

in the planetary system correspond to terrestrial and Jupiter

planets), with some prevailing properties, which determine the

observed dynamic structure of astronomical systems, in particular the

solar system. Parameters CA and CQA are from this point of view

the elements of the hierarchy of the integral characteristics of the

corresponding physical continua.

As can be seen from Table 2, set of quantum numbers

N"IV (s= 1, 2,.., 5) makes it possible to describe all observed

satellite orbits similarly to how numbers NlI andVN[21 describe orbits of
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two groups of planets of solar system.

More detailed and more objective examination of hypothesis,

formulated above, will be possible in obtaining of new experimental

data about outer space, supplied/delivered, in the first place, with

the help of artificial Earth satellites and planets, and also other

space vehicles.

However, preliminary conclusion, which follows from examination

of-able 2 (besides its obvious prognostic value), consists in the

fact that CfJ d and x=C4I/C21 can claim to role of fundamental

constants for solar system as a whole, turning off/disconnecting

satellite systems, which is important argument in favor of unity of

O its wave structure and presence of general/common for entire solar

system physical factors, critical for this structure.
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SIMULATION OF THE DYNAMICS OF THE CARRIER ROCKETS OF SPACE VEHICLES.

M. M. Bordyukov.

Survey/coverage of methods and means of simulation, used during

study of dynamic properties of contemporary carrier rockets of space

vehicles, is given. The mathematical models of different dynamic

ducts/contours and their couplings are represented in the form of

overall structural diagram. A comparative analysis of means of

computer technology, used during the simulation, is carried out. The

special f-eatures of application for the dynamic investigations of

physical models are shown.

Simulation both mathematical and physical is one of basic methods

of studying dynamics of controlled flight of space carrier rockets.

Mathematical simulation is realized with the help of different means

of computer technology, which are divided into the analog and tae

digital. Physical models can be functional similar to real objects

as, for example, the functioning mock-ups of units and

aggregates/units, or the models, tested in the wind tunnels, or are

the real assemblies and the instruments, tested under the conditions,

close to the operational, for example according to the temperature,

the g-forces, the vibrations, thp character of external information,

on the failures of constituent elements, ecc. In the latter case

modes of the work of instruments and external 0
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. connections/communications are simulated. In this case often the

instruments connect to the computer(s), which simulates the remaining

part of the system, which makes it possible to create the conditions

for the work of the equipment in the complex diagram being

investigated and in accordance with the real program. Thus occurs the

association/unification of physical and mathematical models in the

single experiment.

In all cases simulation experiment is based on mathematical

description of components/links of dynamic system and

connections/communications between them. Each of the elements of the

dynamic system of contemporary carrier rocket (RN) has sufficiently

precise mathematical description, in other words, the mathematical

model, which makes it possible to investigate it by means of

simulation.

Page 77.

Proof and analysis of mathematical models is the important independent

section of dynamics of RN, to which is dedicated the vast literature

[2, 10, etc.]. In this region a number of the basic research was

carried out by G. S. Narimanov [4-8], moreover they were completed,

as a rule, by mathematical simulation for purposes of the solution of

urgent applied problems.

1. General/common structure of mathematical models of carrier

* rockets. In the review paper about the simulation there is no need
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for giving the detailed description of one or the other dynamic

components/links. Common appearance of RN and ZhRD as dynamic system

can be represented by the block diagram (Fig. 1), which contains most

typical elements and connections. Diagram characterizes also

composition and interconnection of the corresponding research models.

Of course they are not used everyone simultaneously. However, this

general/common view can prove to be useful for the system analysis,

the evaluation of separate particular models, determination of

requirements for the means of simulation. The diagram is simplified

for the clarity: it reflects motion only in the pitching plane.

Therefore in it some cross couplings, inherent in spatial motion, are

absent. At the same time the most typical components/links of

different physical nature are shown in the diagram.

0
In spite of specific conformity between real units of rocket and

blocks of diagram on it first of all is reflected not this

structural/design analogy of model and unit, but analogy of

interactions of dynamic elements.

0
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Fig. 1. Block diagram of carrier rocket as dynamic system.

Key: (1). Control of the fuel consumption. (2). Longitudinal

vibrations of liquid. (3). Housing (longitudinal vibrations). (4).

Ballistic object. (5). "Liquid" pendulums. (6). Elastic bracket.

(7). Asymmetry of construction/design. (8). Environment. (9).

"Solid" body. (10). Gyro instruments. (11). Housing-elastic beam.

(12). Controls. (±3). Algorithms of control.
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For example, basic structural element (housing) figures both in the

block, which characterizes the angular motion of solid body and in the

model of transverse, and also longitudinal vibrations. Engine

* installation enters into ballistic model and independent of this it is



DOC = 89056407 PAGE/A -

considered as the independent dynamic component/link, which

participates both in the longitudinal and in transverse vibrations of

RN. The liquid filler of tanks participates in the wave (transverse)

and in the longitudinal vibrations.

Concrete/specific models for research of one or the other dynamic

systems of RN are obtained by "cutting" of corresponding sections of

overall diagram. The model of the disturbed motion around the center

of mass, which describes also the deflections of the very center of

mass from the calculated trajectory, relates to important for

practice. It is at the same time one of complicated even larger in

the dimensionality (number of degrees of freedom).

Another "running" model of dynamics is used for study of

longitudinal vibrations of RN, in which participates housing,

power-supply system and engine installation. In American

scientific-technical literature it is accepted to call pogo which is

explained by external similarity between the motion of housing of RN

during these oscillations and by mo-ion of jumping stilt (pogo stick)

[12). In contrast to the duct/contour of transverse vibrations, which

contains control system and controlled by it, the duct/contour of

longitudinal vibrations "is not guided". To ensure its stability with

structural/design measures is very difficult, and often also it is

impossible. The nonlinear effects of dissipation play the decisive

role in the solution of this problem.
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Practical requirements of design and final adjustment of RN lead

also to other combinations of models, connected, for example, with

control of thrust, and also describing dynamic processes in separate

systems and aggregates/units: navigational instruments, combustion

chambers, etc.

For research of dynamics of carrier rockets are used diverse

means of simulations, whose characteristic is given in subsequent

sections.

2. Digital computers as means of mathematical simulation. The

mathematical models of dynamics of RN consist of differential

equations and final dependences between the variables - algebraic and

matrix. The high order of equations and the large number of

nonlinearity make very labor-consuming the integration of such models

by numerical methods.

Digital computers possess maximum universality with respect to

utilized algorithms. With their aid a question about the mathematical

simulation of dynamics of RN could be solved completely, if not

stringent requirements on the speed. Let us consider both the

requirements and real possibilities in this respect.

Let us designate duration of investigated phase of flight through

T, and duration of its reproduction on model - through wi.

* Page 79.
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0
In the case of the combined models, when to the calculating means,

which realize mathematical model, are connected some real instruments

(drive of actuating elements, function generators, etc.), a question

about the speed is solved unambiguously: the normal mode of work of

the utilized onboard equipment can be provided only during the

simulation at the rate of flight, i.e., scale of time u must be equal

to one.

If model is purely mathematical, then g in principle is

unconfined, although in this case time of simulation is desirable to

make as far as possible less in interests of maximum "productivity" of

research. Most sharply a question about an increase in the speed

stands during the static research, which include the considerable 0
number (N) of the realizations of the phase of flight being simulated.

In this case appear serious difficulties in the guarantee of

acceptable duration of entire experiment T=grN.

Let us consider required high-speed operation of a digital

computer for model of angular motion as one of large. Let the model

describe flat/plane angular motion of RN as solid body, automatic

machine of stabilization, oscillation of liquid propellant in the

tanks and transverse elastic vibrations of construction/design. We

will consider for certainty that RN has 12 tanks, and in each of them

one tone of oscillations is considered, the model of elastic

vibrations considers four tones, and the maximum frequency of
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* processes in the system reaches 15 Hz. Under these conditions the

degree of differential equation, which corresponds to the object of

control, is equal to 36. Taking into account that the system has

nonlinearity and must be locked by the algorithms of control, it is

possible to establish that the simulation of angular motion by this RN

at the rate of flight with the use for integrating Runge-Kutta method

will require the application of TsVM with the speed about 10'

operations per second. Application for this purpose of TsVM with the

contemporary system of the automation of programming, which simplifies

the development of the simulating program, but which simultaneously

decreases the general speed, is possible only during the organization

of the simultaneous work of several machines of class BESM-6 or

YeS-1050- It is obvious that this version is virtually little real.

Example with very rigorous conditions examined shows limitedness

of possibilities of TsVM; however, this does not exclude their

application for targets in question. On the contrary, from the

obtained quantitative estimation it is possible to draw useful

practical conclusions.

First conclusion. Even for the fairly complicated model the

application of contemporary TsVM can be appropriate. True, process it

is necessary "to stretch" (p= 5 ...10), but this is acceptable with

moderate N.

Second conclusion. Computer technology rapidly progresses, and
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it is possible to expect that TsVM with speed on the order of 107

operations per second is spread during the next decade. Further

possibilities in this respect open/disclose multiprocessor computers.

Page 80.

Thus, the application of digital means for the mathematical simulation

of dynamic processes of RN has a good prospect already in the near

future.

Third conclusion. Such bulky models, as the complete model of

angular stabilization,- far from always are investigated. Many of them

much simpler can be reproduced on TsVM not only at the natural rate,

but also -g<l.

Is especially efficient the application of TsVM at early stage of

research and design, when are chosen basic parameters and circuit

solutions, model does not require elaboration, and although versions

are diverse, each of them is examined/scanned "in general terms".

Application of TsVM for dynamic research can give further

advantages during correct organization of programming. During

calculations on the dynamics of RN are used the standard algorithms,

which relate, for example, to the numerical integration, to

transformations of coordinates, to the calculations of the eigenvalues

of matrices and to other problems. This makes it possible to use the

means of the automation of programming, in particular, the packages of
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* applications programs (PPP), specially intended for the solution of

the problems of dynamics. This simplifies simulation on TsVM.

Furthermore, in PPP is widely represented the analytical apparatus of

the stability theory, frequency response methods and other sections of

the theory of automatic regulation, which makes it possible to carry

out control tests or to duplicate/back up separate results, i.e., it

is useful booster agent in the arsenal of simulation.

3. Simulations with the help of analog computers. Together with

TsVM, and historically even earlier than them, for the simulation of

dynamic objects were used and are used the now specialized calculating

means, mainly, continuous (AVM) analog computers. The parameters of

real physical processes are represented in AVM by the electrical

* values, which during the simulation are changed in the time

analogously with their mechanical, thermal, and also electrical

prototypes. Mathematically this means that the integrals of the

differential equations of motion of the real object in question and

equations, which describe the electrical decisive circuit, coincide

with an accuracy to dimensional factor. This law is retained in the

specific range of the parameters, in particular, the frequencies of

the studied vibrations, which depends on frequency characteristics of

AVM. The contemporary means of analog simulation reproduce well on

real time (4i) processes with the frequencies to several ten hertz,

which makes it possible to investigate the majority of the models of

the dynamics of carrier rockets with the necessary accuracy.

* Page 81.
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Analogy between object of research and AVM is exhibited also in 0
their structural similarity, which, by the way, serves as one of

factors of high speed operation of AVM, since its comprising

calculating elements (integrators, adders, functional blocks) work,

similarly to parts of real object, simultaneously, "in parallel".

Respectively a quantity of equipment in this computing system directly

from the volume of the solved problem: the number of variable

magnitudes, the degree of differential equation, complexity-of right

sides.

AVM are spread not less than digital computers. In the recent

three decades by our industry is released more than 40 types of each

machines (1, 91. AVM of different generations, utilized for the

research of dynamics of RN, it is possible to describe by data of

Table 1, from which it is evident that not all their characteristics

progress to the identical degree. Progress concerns accuracy, element

base, and also automation of programming. At the same time the

composition of the decisive blocks varies little. This is explained

by structural flexibility of AVM and, as a result, by possibility to

comparatively simply raise its composition.

In spite of considerable universality AVM are inferior to digital

computers in accomplishing of logical operations, flexibility of

programming and accuracy. Latter/last characteristic is given in

table; however, the errors given in it relate to one operational 0
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*amplifier. Association/unification into the simulating system of many

tens of amplifiers leads to the fact that its accuracy as a whole

proves to be considerably lower.

0
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Table 1.
(.2)

(']THn ABM O3JeKT- MH.17 MH-18 ABK-32 3MY-2,0

( wo bnycKa 1960 1967 1970 1979 179

(v/fopR2 oK auq4qepeH- 55 60 10 20 20
uHalbHb[X ypasHeHiiA

(*o.mOHeCTBO 2Heg- 150 60 50 48 20
HUx onepauHR

(6 KO.,weCTBO flOCTOSH- 975 160 120 160 170
HbIX KO3( 4MiiueHTOB

('KOnJHqeCTBO He.mHHeg- 165 78 23+50 38 83
HUX onepauHR

t?)Ko.1HweCTBO .1orjqe- 30 30 1 28 170
CKHX onepaw-HA

(')MavcHM aJlbHoe Bpe- 1000 1000 1000 1000 -

MR HHTerpHpoaHXA, c
(/o4lorpeuJHOCTb IIaTe- 0,5 0,3 0,3 0,5 0,2

rpHpoBaH 51, 0/0 3a
1O0 c -. 2) Ic) ()) (

")3.eMeHTau 6a3a JaMn .la.In rio.iynpo- IHTerpa.lb- IHTerpa.ib-
3.eKT- 3.ieKT- BOAHHKOBie Hbie MI4KpO- Hue Miixpo-

POHHbie poifwJe AeMeeHTbL CXeMU CXe'I h

Key: (1). Type of AVM. (2). "Elektron". (3'. Year of issue. (4).

Degree of differential equation. (5). Quantity of linear operations.

(6). Quantity of constant coefficients. (7). Quantity of nonlinear

operations. (8). Quantity of logical operations. (9). Maximum time

of integration, s. (10). Error in integration, % for 100 s. (11).

Element base. (12). tubes, electronic. (13). semiconductors.

(14). integrated microcircuits.
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Furthermore, accuracy depends on the duration of the --ocess of

simulation, since in this case errors are accumulated. As a result

errors in the reproduction of dynamic processes can reach several
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O percentages.

4. Analoc-dcital complexes (ATsK). The greatest effect of the

simulation of dynamic systems of RN is achieved by the application of

computer complexes, which join in themselves analog and digital

computers. Such complexes received wide acceptance in the last 20

years. Their advantages are revealed well during the

concrete/specific analysis of Lhe problems of dynamics of RN.

Superiority of AVM is most perceptible during simulation of

systems, in which are inherent oscillations with frequencies of from

ones hertz and above. Such systems include the duct/contour o' the

angular stabilization, the longitudinal vibrations and some others.

At the same time for the simulation of ballistic motion or account of

the effect of environment it is necessary to have TsVM, since here is

required the "digital" accuracy, the memory, the calculation of

nonlinear functions. When any models from these two groups must be

examined together, unavoidably arises the question about the

association/unification of the heterogeneous means of simulation.

As another example, which leads to the same conclusion, can serve

problem of research of "analog" (with continuous processes) object of

control (for example, in the same angular motion) with

discrete/digital regulator, whose work it is natural to simulate with

the help of digital means.

0
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Digital computer in composition of simulating complex makes it

possible to perform statistical processing of obtained dynamic

parameters. ATsK substantially raise possibilities and productivity

of simulation experiment because of the comprehensive automation of

the process of experiments.

During creation of ATsK together with advantages appear

additional difficulties. It is necessary to organize the exchange

between the analog and digital parts, in which the information in

principle is distinguished by the form. It is necessary to guarantee

the high rate of exchange. Must be created single control of complex.

For the solution of these problems is intended the specific type of

equipment - converters analog-digital (ATsP) and digit - analog

(TsAP). Those and others compose the basis of the third large part of

ATsK - devices/equipment of conversion and connection/communication.

Their characteristics for the serial Soviet samples are given in-Table

2.
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Table 2.

T peo6pa3oiaTe.1e Y '- 6 Y b'C

(2o0.iqeCTBo KaHa.oB LAFI 24 32
ALIFI 23 72

bpe\15i peo6paomaa:ii , NIKC I.;\ 6 5
ALtIl 15 20

'L3p~aH)CTb 12 14
xa:ia HanpmAxeHHA, ±. B 50 10

Key: (1). Type of converters. (2). Quantity of channels of TsAP.

(3). Conversion time, gs TsAP. (4). Precision. (5). Scale of

voltages, ±, V.
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5. Role and place of physical models. Diversity and great

possibilities of the computer(s) of different classes permit to

investigate by the methods of mathematical simulation the very broad

class of dynamic systems. However for the possibility of the very

principle of mathematical simulation they are limited in view of the

simplifications connected vth it. When these simplifications concern

separate units, the latter can be included in the stand of simulation

directly. This is most frequently the actuating elements of control

system, sensing elements, onboard computers. Utilized thus real

equipment improves the adequacy of model and raises the accuracy of

results. Creation for the real instruments of working conditions,

close to the flight, is very efficient. Thus, it is possible to

* subject them to vibrations, to create varying loads on the operating
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units, electromagnetic inductions in the electrical circuits, finally,

to artificially create the malfunction of separate elements and units.

With entire temptation of enlistment to simulation of real

instruments it is necessary to distinctly visualize limitedness and

shadow sides of this path.

First of all it is necessary to keep in mind that some important

factors of flight (for example, g-force) is difficult to reproduce

physically on Earth, so that their study is possible only by means of

good mathematical description. Since these factors are essential for

the work of a number of devices, it is necessdry to investigate also

such instruments in the form of mathematical models. Even if there is

a possibility in principle to create in the laboratory these or other 0
physical conditions (vibration, temperature, vacuum), then technical

difficulties connected with this are not always justified by the

further information, which this physical model in comparison with the

mathematical is capable of giving.

Another fact, inswept propagation of physical models, is their

limitedness in variation of parameters. Mathematical model in this

respect possesses indisputable advantages, since it makes it possible

to optimize the circuit solutions and the parameters in the broad

bands, to simulate all possible deflections and malfunctions.

And nevertheless physical simulation is often source of this
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* information, which it is not possible to obtain by any other paths.

As examples can serve the studies of the elastic vibrations of

multiply connected constructions/designs and oscillations of

fuel/propellant in the tanks of the complex form, whose target

consists in obtaining of the substantiated mathematical description of

the phenomena indicated. The simulation of this type exceeds the

scope of this article. It is the independent theme, well reflected in

the literature [3, 11].

S



DOC = 89056407 PAGE --9"

Page 84. 0
REFERENCES.

1. V. I. Grubov, V. S. Kirdan. Electronic computers and

simulators. Handbook. Kiev.: Naukova Dumka, 1969, 184 pp.

2. K. S. Kolesnikov. Rocket dynamics. M.: Mashinostroyeniye, 1980,

376 pp.

3. G. N. Mikishev. Experimental methods in the dynamics of space

vehicles. M.: Mashinostroyeniye, 1978, 248 pp.

4. G. S. Narimanov. Dynamics of deformable solids. Part I. M.:

VAIA im. F. E. Dzerzhinskiy, 1958, 175 pp.

5. G. S. Narimanov. 0 the motion of solid body, whose cavity is

partially filled with liquid. PMM, 1956, Vol. XX, Iss. 1, pp. 21-38;

this coll. pp. 85-106.

6. G. S. Narimanov. On the oscillations of liquid in the mobile

cavities. Izv. of the AS USSR, OTN. Mechanics and machine building.

1957, No 10, pp. 71-74; this coll. pp. 176-182.

7. G. S. Narimanov. On the motion of the vessel, partially filled

with liquid, the account of significance of motion by the latter.

PMM, 1957, Vol. XXI, Iss. 4, pp. 513-524.

8. G. S. Narimanov, L. V. Dokuchayev, I. A. Lukovskiy. Nonlinear

dynamics of flight vehicle with the liquid. M.: Mashinostroyeniye,

1977, 208 pp.

9. Fifth All-Union scientific-technical conference "Further

development of analog and analog-digital calculating technology".

Theses of reports. M.: NTO REiS im. A. S. Popov, 1977, 140 pp. 0



DOC = 89056407 PAGE

10. B. I. Rabinovich. Introduction to the dynamics of the carrier

rockets of space vehicles. M.: Mashinostroyeniye, 1983, 296 pp.

11. Peel E. I., Leonard H. W., Leadbetter S. A. Lateral vibration charakteristic
of the 1/10 Scale Apollo/Saturn V replica model. - NASA TN D-5778, 1970,
Washington D. C., 86 p.

12. Rubin S. Longitudinal Instability of liquid rocket due to propulsion feed-
back (POGO). -Journal of Spacecraft and Rockets, Vol. 3, N. 8, August 1966,
p. 1188-1195.

0



DOC = 89056408 PAGE

Page 85.

DISTURBED MOTION OF NONROTATING FLIGHT VEHICLE WITH LIQUID IN THE

TANKS. THE SLIGHT DISTURBANCES OF FREE SURFACE.

On the motion of solid body, whose cavity is partially filled with

liquid.

G. S. Narimanov.

Carried out in 1951 work of author, dedicated to compilation of

equations of motion of solid body, which has cavities, partially

filled with liquid, is briefly presented, is given proof of existence

and uniqueness of solution of these equations and proof of application

of method of reduction for obtaining solution.

Present article contains abbreviated/reduced presentation of

carried out in 1951 work of author, dedicated to compilation of

equations of motion of solid body, which has cavities, partially

filled with liquid, and to analysis of solutions of these equations.

Analogous equations, derived somewhat by other means, were

independently obtained later by N. N. Moiseyev [1, 2, 3].

In this article besides short conclusion/output of equations of

problem proof of existence and uniqueness of solution of these

equations is conducted, and proof of possibility of applying method of
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* reduction for obtaining solution also is examined.

.. Coordinate system. Initial prerequisites/premises. We will

assume that solid body possesses only the one cavity, filled with the

liquid (generalization of results for the case of the larger number of

cavities does not present any difficulties).

Motion of solid body and liquid we will examine relative to

certain system of coordinates O*xI*x 2*x3*, which is not, generally

speaking, inertial, but possessing the property, that field of

inertial forces and c-avitational forces has in it potential function.

Besides this coordinate system, let us introduce into examination

O another system Oxix 2X 3, rigidly connected with solid body (Fig. 1).

The motion of the system of coordinates OxIx 2x 3, and therefore, solid

body relative to the system of coordinates O*x *x2*X3*x we will

determine with the help of velocity vector V0 of point 0 and of

angular velocity vector of rotation w, passing through point 0.

Page 86.

For future reference let us introduce designations:

R, R* - radius-vectors relative to points 0, 0* respectively,

Ro* - radius-vector of point 0 relative to 0*; n - unit vector of

external normal to the surface of liquid; u, - projection of relative

* speed of liquid on n; S - surface of liquid mass; - hydrophilic
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surface of cavity; Z. - undisturbed free surface of liquid, described

by equation x3=C; I - flat/plane closed curve of intersection of

surfaces E. and ; Z - disturbed free surface of liquid.

Let us represent equation of disturbed free surface of liquid in

the following form:

X3--C= N" ai (t) f 1 (X1, X2), (1

i=1

where functions Ji(XI, x2), with exception of constant value, which

corresponds to X=0, are normalized eigenfunctions of boundary-value

problem:
_ +/02K x/ =0

+ - =o; =0. (2)
1 x2  n

Eigenfunctions of boundary-value problem (2) form complete and

orthogonal set of functions on G region, for which should be taken

part of plane x3=0, limited by projection on it of curve 1.

Let us give basic assumptions, which are accepted subsequently.

1. Liquid, which is located in cavity, is considered inviscid.

2. It is assumed that motion of liquid in system of coordinates

O*xl*x 2*x3* possesses velocity potential. Since in this coordinate

system the field of mass forces has potential function, by virtue of

the Lagrange theorem property of the potentiality of the motion of 0
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*liquid will be preserved in entire time of motion.

3. Only low motions of solid body and liquid are examined. Low

is called such motion, in which values V0, w, R,*, angles between the

similar/analogous axes of the systems of coordinates OXIX2X 3 and

0"I*X2*X3* and also value ai, ai (i--, 2,) are so low that by

products and their squares can be disregarded/neglected in comparison

with the value of any of these values.

4. we will consider that potential function U of mass forces

(inertia and gravity) in system of coordinates O*xI*x2*x3* can be

iepresented as follows:

U=-jR*, (3)0
where j - total G-vector of field of mass forces.

5. Let us assume that vector j in all motions composes small

angle with opposite direction of axis O*x3 and, that means value of

projections j on axis O*xi* and O*X2* are low in sense of concept of

smallness expressed above. Let us designate through $ the velocity

potential of liquid in the system of coordinates :XI*X2*X3 .

0
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Boundary conditions for function -t take form:

['I ==zV)n +[o R In; - Vn + [ )'\ R n + t,. 4
Ln , I~[n 4

In view of assumed about smallness of parameters of motion second

boundary condition can be referred to plane x,=C of undisturbed free

surface of liquid.

Then we register conditions (4) in the form

1o,,c=Vo [R X n] +
On ~3lJ OX3Jxs=C

0@X

4- V a i i( 1I i 2 ). (5
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0 It is obvious that function 4, which satisfies conditions (5),

can be represented as follows:

00

q = VoR* -+o() + V ciAi+const, (6)
i=l1

where Q - harmonic vector function AQ2=0, and Ai (i= 1, 2,...) - harmonic

functions, which satisfy with respect to conditions

1 , ] =RXn 'A ; [A] =f,(x, X 2 ). (7"
an iS on aX3 X,-=C

2. Expression of momentum and angular momentum of liquid mass.

Momentum vector of the liquid mass

K, p grad (dT, (8)

where r - volume, occupied by liquid; p - density of liquid (p=const).

Using expression (6), we will obtain

ac

K =p grad(VoR*)d-+ cgrad(o)a)dT +- a $ gradAdt} (9)
W i g A9

From physical considerations following equalities are obvious:

$ grad (VoR*) d = Va'T; grad (co) d-=r 1o ):RIo I, (10)

where R, - radius-vector of center of inertia of liquid mass.
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Let us further consider expressions, which stand under sign of

sum in (9) :
S grad Aid-r S (grad A/ v) R*dr = (vgrad A, R*d- -

.3 S

Page 88.

Identity is used for these conversions.

a-(avlR*, V= e,4o

k-1

where eA* - unit vectors of the system of coordinates O*x*x 2*x3*" 0

Using conditions (7), we will obtain

( R*A-' dS=Ro Sf i(x,, x 2)dG+

S a

+ Rf j X 2)dG= fSRof i(xiX2dG

where RG indicates radius-vector of point of G region. Let us

designate through

L) = SS L/JdG (12)

the Fourier coefficient of the vector function L. Then, using (22).

it is possible to register
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$ grad Aid vr-- ". (Is)

Using equalities (10) and (13), let us represent momentum vector

of liquid in the form

K._.mlVo±m [toXRc] +r 'aRW , (14)

j-i

where m,=pr - mass of liquid.

Let us designate moment of momentum of liquid relative to point

0, (0, - point in system of coordinates O*xl*x 2*x3*, with which at the

given instant coincides point 0) through G,.

Analogous with vector K, vector G, can be represented in the form

G1-i GI k, (15)
't-I

G=$ p RXV0 d =M [RclXV 0]; G12= $ pjR >grad (wQ) d-t=(J,u),

where J,, as follow from work of N. Ye. Zhukovskiy [4], symmetrical

affine orthogonal tensor of 2nd rank, analogous to tensor, inertias of

solid body, with components

J=) $grad !2k graI 2jdT. (16)

* Page 89.



DJOC = 89056408 PAGE 9'%4

Expression for G1, can be represented in the form

1G-o Va IR xrad Ajd - p a 0,
i ! i-I

Qc L £ (x, X 2, x 3 =C),

[RR dAjdACdrR"'n1Ad
since [R \grad Ai I d[r = R ",n AA.SS

S S

_-A-' Q.dS cf i dG Q.

S6

Finally moment of momentum of liquid relative to point 0, will be

registered as follows:
-0 , G) )

GI =m1n [R,, XVo 1±(JI, 0)) 1 auc (17)S

3., Equations of motion. Let us register the expressions of the

momentum of solid body K. and its moment of momentum G, relative to

point 0, ,
Koz mV _i- 0 [w,~: .R Goz; Qo=mo[Rc ,.'Vol--(Jo), (18)

where m, - mass of solid body; J0 - tensor of its inertia relative to

point 0, and R,0 - radius-vector of the center of inertia of solid

h.,dy relative to point 0. Using expressions (14), (27) and (18), let

us compile the equations of the momentum and moment of momentum, whi.-h

with 3n accuracy to the small first-order quantity will take the
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* following form: 0.

mVoi[o'xL]Ip V a Rg)= VPs; (19)
i=1 I

~0
jL VuI+(J, )- Na1 i =-- V Mj, (20

where tn= mo+m, - general/common mass of system;

f=.0+I-±- tensor of the inertia of system relative to point 0,

and L=:m0RCo+mRCI - static torque of system relative to the same

point; p3  - external forces and the inertial forces, which function

on the system; M - moment of external and inertial forces relative

to point 0. We convert the right side of the second equation.

It is obvious that of all external moments only moment from mass

forces Mg=[LXj] depends on form of free surface of liquid, L -

static moment with respect to point 0 of system solid body + liquid.

Page 90.

Let us designate the difference between L and vector Lo, which is

static moment in the case, when the equation of free surface takes

form x,=C, throuqh AL0 :

L=Lo-ALo, (21)

It is obvious that it is possible to represent with an accuracy

to small first-order quantity AL,, substituting the value of x, on

* (1), in the form:
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AL P S(X 3-C) dG = paR'. (22)

Moment from mass forces Mg can be represented in this form:

Mg= Mgo+p a [R 'X J, (23)
i-1

where Mgo=4LoXjj - moment, which functions on system in the case,

when free surface is plane, whose equation x,=C.

After preserving from value Mg under sign of sum, which stands

in right side of equation (20), only Mgo, let us isolate that part of

moment-of mass forces, which depends on parameters aj, i.e., on form

of free surface. In this case equations (19) and (20) will take the 0
form

mVo+ [' XL01 = ,P pj-p aR; (24)
J i-I

ILoXV 0I+(J, o;)= 7 M1 -p Y (ajoci-a 1 [RU~xj])• (25)

Let us further compile equations, which determine change in

parameters aj. For this purpose we use conditions of pressure

constancy on the fre, surface of liquid, which leads to the following

equal ties:

apzdG=O (i=1,2,.... (26)
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where p. - pressure at the appropriate points of surface Z:.

Using Cauchy integral of Euler equations, is expressed p_ with

an accuracy down to the terms of first-order of smallness as follows:

pz-P f u),

Page 91.

After substituting this expression into (26), after excluding U

and t with the help of (3) and (6) with an accuracy down to the terms

of first-order of smallness, conditions (26) into this case are

converted thus:0
V k'' + a j (j Po

(i-- 1,2,...), (27)

where Ak$c Akcfid i==Ii.
0

Equations (27) together with (24) and (25) ose infinite

system of equations, which describe solution of represented problem in

the case of arbitrary form of cavity. Equations (27) substantially

are simplified for the cavities, which have cylindrical form.

0 ~ It will place system of 2oordinates O,'x. so that its origin,
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point 0, would be located in plane of symmetry of cylindrical column

of liquid (Fig. 2), and axis Ox, would be parallel to generatrix. Let

us consider for this case the boundary-value problem, which determines

functions Ah:

2,4k a2Ak 02 k,4 0 r A
;2 - +0;

0 ripH X3
--k -- (28)ax3 0@ 1

f k(xl, x 2 ) rp x 3PH -,

Key: (a), with.

where a lateral surface of cavity.

Tn this case functions Ak can be represented in the form

ch , X3 + )

AX sh Xk/ f k (xl, x2), (29)

where ?.h - eigenvalues of boundary-value problem (2). Then

AC=Ckfk(xl, x 2 ); C 1 pr-k.

Key: (1). with.
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Equ~ations of motion of body, which has cylindrical cavity,

*partially filled with liquid, take form

,n~a iO)K o1~ P P Na~R a j , ,.

['LOxV 01+{(J, C (30

Initial values ai(t0) and a i(to) are determined from

relationships/ra-ios

a1 (ta) = f;dG = '(i), al(/o) ' f dG =z~
a0d

X3 (XI X2, to) -C (X1, X2); u, (X1, X2, t0)=Z'(X1, X2).
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It is possible to conclude from form of equation (30) that if

Fourier coefficients from RG' and Qc', that correspond to any

function f(l), are simultaneously equal to zero, then level, which

determines change in parameter a,, does not depend on other equations,

i~e., chanae in this parameter does not depend on motion of vessel

and, on the contrary, motion of vessel does not depend on change in

this parameter.

4. Existence and uniqueness of solution of equations (30).

Possibility of application for solving the method of reduction. We

will examine only the plane motion of vessel, which possesses the

arbitrary cavity, partially filled with liquid. The examination of

plane motion simplifies computations, without reducing generality. 0
Let us assume that motion of vessel occurs in plane O*x 2*x * and

that axis Ox3 passes through center of gravity of system in

undisturbed position of free surface, and vector j is parallel to axis

O*x3*. Let us designate through e the angle between axes O*X3* and

Ox'.

Then system (30) can be represented in the form

- a(31)

j i jX
a <a (x/ X < G- -x= , ..c I

J l l l lL 
1

l
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Here Xc= X; Pj,2 =Pj; X4)=X' "

-4 ; L3 = 1; J12-J; J ,1  Alp 2c, Q .Ci

Initial conditions we have in the form

x=x; _; rpit t at=.

Key: (2). with.

Paqe 93.

Let us consider in system (31) equations, which contain finite

number of-unknowns. Let us compile the homogeneous equations

19 corresponding to them:

a(i  -ai==O (i=1,2,...). (32)

Let us designate through y1  and zi linearly independent

solutions of equations (32), which satisfy initial conditions

y 1 -- 1; yi=- O; z i O ; z i -- r~pH t=-t o.

Key: (1). with.

Then, obviously, it is possitle to register following

expressions:
a i (t) i()yi-+-Z(')zj-+ K iYt ) l- ( ~ + j a d , (33)

Ci

Qt

0 I I i
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where K (r)-z,()/(r) -z(r)y,(r).

First of all we should be convinced of the fact that

1yj(t)L Z(t)I, and therefore, and K,(tr)j in any limited segment

t(u r t,) cannot exceed certain positive number M, which can be

assigned independent of index i.

Let us rewrite equations (32) in this form:

W @ t )a 0 (7 - .t h X;-h) (I--1, 2,....) (34)
Cl

and we will assume that function j(t), which characterizes change or

time of fi6ld of mass forces, has continuous second derivative.

Furthermore, let us assume that j(t) :g, where g - certain positive

number. After replacing in the equations the variables

4,
i -id!" a, ('.)=2 ,Ia (t), (35)

to

we convert the, to the following form:

d'a + [ -q -- ; (Y) 1)1 4  
d2 (')14 (36)+ [S -q a* =36

d 2 2

Let us consider solutions of equations (36) with fixed values of

initial conditions

a=m; a==n npH C=O.

Key: (1). with.
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Let us designate function a,*() , which satisfies these initial

conditions, through cl,(2) Following theorem [5], which let us give

without the proof, occurs.

in any limited segment of change in variable (

solutions of equations 216) ai(x) satisfy inequality ai( )i<N, where

N - certain positive constant number (not depending on index i, but

nerefore, on parameter P

Page 94.

Let us designate

y=j/= ;- j),_o; zt: =Oz:

Y'; dt j -I) =0

ripH =O(t=to),

Key: (1). with.

and since j(t);g>0, then all these initial conclitions are limited.

It follows from theorem given above that solutions of equations

(.36) y,*( ) and zi*(') are limited in absolute value by certain number

N B

But then from formula (35) we obtain for to!. t "tl
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max y ()<K A; max1z 1(1)1K M ; max 1K (tr)<2M2 (A =N/gI4 ) ' (37)

where M - number, which does not depend on value of index i, which can

take any values from I to -.

Further, using (33), let us find

• = - I (X i) L~) G: v(-I -/(i)zia,- xa X C - -+ j ,G a+ I 'Yi r J. --

- T K,(tr) (x""x+ 2(' ) ixW ) jd -. (38)

to

Let us substitute expressions a,(t) and h, (t) from (33) and

into first two equations of system (31)

j i-~l i~2
G) (xox

i-~1 i=l t o

L~L=

-7 yC, (39)

0 0 M' S co t-oc

. i 7 ' K't)xgx+gi+ " "

•~~C C I
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We will thus far assume that series/rows under integral signs in

equations (39) evenly descend (this will be proved subsequently).

Then in equations (39) it is possible to take out integrals as the

signs of sufm; we will obtain

a12x + b,2 > - P1 - A i ' 1 (v dr +~
t

to toL' t _0d+id-(0

ax-b: 2 2q-bj fj f 2 (t)+ A22 (T)xdT +
j to

t t

+ B22 (T d B, 0 (tc) ed-r. (41)
to to

Here 0(

xx
a,2=

i= 1 1

Bj5 K(t) - 810)

SK( ; - ,

B 2 j J c2
.0 (i

) Q

b2o= -JP cj ' .

B22-:/ Ki (W ) X(, (t=j I o (,xI)

132o - A,; f 0(), JP N,

a 1
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It is obvious that the system of integral-differential equations (40,

41) can be converted upon consideration of the initial conditions of

moving the vessel (xo, x0 , e,, 0) to a certain final system of

integral equations of Vol'erra's type, which, in turn, can be in

general form represented as follows:

M t
Yk=C ()+YS K, U-0)y,d-v (k 1..MY. (42)

s-l to

Page 96.

Thus, it is shown that solution of infinite system of

differential equations (31) is reduced to solution of homogeneous

linear equations of second order (32) with subsequent solution of

system of integral equations (42). In this case we assumed the

convergence of numerical series/rows and the uniform convergence of

function series in expressions (41). Thus, if this assumption proves

to be justified, then in view of the existence theorem and uniqueness

of the solution of equations (42) (with the limitedness of values

1%(t) and IKl(tT)I) we are convinced of existence and uniqueness of

the solution of the infinite system of differential equations (31),

Let us demonstrate the uniform convergence of series/rows in

expressions (41) in any limited interval of time t.
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Hence w Ill follow both limitedness I (t) K(t) in (42) and

possibility of introduction of sign of surnmation under integral signs

,r equations (39). For this purpose let us formulate the following

theorem.

Theore., :eector functions grad Jf(xi, x2), where h,(xi, x2) are the

eigenfunct oris of boundary-value problem (2), are mutually orthogonal

or G region.

Proof, Using a formula of Green and a boundary condition of

boundary-va>e Dror-em (2), we will obtain

* S grad f grad fmdG~ f' k fAfmdG

But from (2) we have Af. m-4 2f,,. Hence, after taking into

account the orthogonality of eigenfunctions, we obtain the proof

necessary :o us:

g grad f , grad fdG ( .7,\ f! kfdG (k -/ (43)
0O 0

Now let us begin proof of unifo-m convergence in any limited

interval of time t of function ser.ies, which stand in expressions

(31). Let us consider the series/row, which stands in ex'oression A,

VqK, 1r) (44)

n i I I I II I T)I

C -
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It is obvious from equality (37) that in any limited interval of

time for this series/row it is possible to construct majorant

series/row:

Page 97.

Let us consider convergence of series

x() - th22h
v x2 xk'f IG

i-I i " (

0

It is obvious that all terms of series/row are positive. Let us

note also that th kih<l. Using a formula of Green and a boundary

condition for function fi, we convert integral, which is located in

the brackets:

S 'x2~ 0=-~\ xz~f dG grad x grad f jdG.

Using this conversion, it is possible to compose inequality

Aveishw t < "  , ugrad x grad f io t

Above is shown orthogonality o"' functi--s gradfi on G; this
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* makes it possible to compose inequality of Bessel

x-5- " grad x grad f dO (grad x)2- dG = G.

b-i 0

Latter proves limitedness of sum of majorant series/row and,

therefore, uniform convergence of series/row (44).

Let us consider series/row, vhich stands in expression B,2 :

K0 ( ) " (45)
V Ki(UT) XQ 1'C (45)

bi

Proof of uniform convergence of this series/row analogous with

that carried out for series/row (44) is reduced to proof of

convergence of series

I h-( grad x grad f dG) grad 2c grad f dG) (46)

Let us register inequality of Bessel

2

g jC(grad x -- grad 2,) grad f id 01< Sj (grad x+grad QC)2 dG.

Left side of this inequality can be represented in the form
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gr±g(d"radxgradfdGad gradd

1-1 
+ =

-f-2~ 2_ (X2 grad x grad f,)dG)(S' grad 2, grad fdG).

Page 98.

Hence we obtain, that summation of series (46) is less

- . (grad x-+ grau 2,)2 dO,

that also proves uniform convergence of series/row (45).

Uniform convergence of all remaining series/rows, entering

expressions (41), analogously is proven.

Let us pass to proof of possibility of applying method of

reduction for solving infinite system of differential equations (31),

Instead of infinite system of equations (31) we will examine

certain finite system of equations with n unknown parameters ui(t),

that is obtained from (31), if we in it assume aj(t)=0 for i<n.

Let us register this system of equations

!0
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is,- ix= M1 -p Y( ,Q( + ajxg);

j -(47)1~, U)} +g} 'X "1 6)-- - XU ( = 1,.,
a,+ a; C CC0

As initial conditions for unknown functions of system (47) let us

takC a"propriate initial conditions of unknowns of system of equations

(31), considering initial conditions for parameters ai at i<n equal

to zero.

Essence of method of reduction consists in finding of solutior of

infinite system of equations (31) with the help of process of

successive approximations to solution of system (31) by solutions of

* finite systems of equations of type (47) with entire increasing number

n of parameters of free surface ai(t).

Let us demonstrate that in any limited time interval solutions of

systems of equations (47) with n4- evenly conve:7 ro solution of

infinite system of equations (31).

It is completely obvious that with each given in advance number n

solution of system of equations (47) can be reduced to integration of

n linear homogeneous second order equations of type (32) with

subsequent solution of system of integral equations of form
m 9YR]- n(t)- -+ - K S Ur ) y ~n ]dr (k l..m). (48)
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Equations (48) are similar to equations (42).

Page 99.

If we demonstrate that the solutions of system (48) with n-- evenly

converge to the solution of system (42), then hence there will be

analogous affirmation relative to the solutions of systems (47) and

(31).

For this purpose let us consider integral equations

m t (A=1... M V. K'"1r)Yna M). (49)
A" $

Theorem. If in any limited segment they are limited by the

variable t of the series/row of equations (49) in the absolute value,

then the solutions of equations in this interval will be as low as

desired in the absolute value, as soon aq absolute values AAJn]() are

sufficiently low.

Proof of this theorem we lower; it can be easily carried out on

basis of consecutive iteration of solution and compilation of

corresponding evaluations. Further let us designate

In t

~,tn ~ -c~ ()- 5fz](I) n, (Y (/) Y, d.

s-I 10
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In view of proved above uniform convergence of series/rows in

expressions (41) it is possible to claim following.

1. In any limited interval of time t

r IK "1(tz)l-; ASm I 1A(t)I--O n pU n - Co.

Key: (1). with.

2. Independent of value of n there is in limited interval of

time t upper bound for IKV"(/r)L i.e.

IKSn ( ) < M.

Hence it follows that, since with sufficiently high value of

number of value of all can be limited by as conveniently small

number with limitedness of values jK["](tr) I independent of number n,

in view of expressed above theorem yk=1imjn1 with n- in limited

interval of time t, i.e., solutions of equations (49) evenly converge

to solutions of equations (42) which proves possibility of applying

method of reduction for solving equations (30).

5. Case j=-const- Some examples. When j=conlst we have

yi=COSW1U(t -o); Zi=- sin w ( - to).

* Page 100.
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Integral-differential equations (40) have kernels, which depend

only on difference in arguments, since in this case

Kz (tT)==--L- sin wi (t - T),
i

and therefore for their solution successfully can be used transform of

Laplace or Carson with subsequent operation of convolution of

representing functions. Let us consider some examples.

A. L. N. Sretnskiy's problem. Let us assume that the body with

the cavity of cylindrical form can complete only forward motions along

axis OtXz,, being located under the action of elastic forces of some

springs, working according to Hooke's law and arranged/located in the

direction of axis O'x 2*. Analogous problem was solved by L. N.

Sretenskiy for the case of cavity in the form of rectangular prism

[6].

Here we will examine this problem for general case of cylindrical

form of cavity, using diagram of solution of problem presented above.

Equations (42) in this case will take the form

mx-j-cx=-p Yaic
i-i

C,

Using initial conditions of problem, let us lead its solution to 0
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* solution of integrodifferential equations of type (40). In this case

we will obtain only the one equation of the following form:

t- ) (-(i) cos wit 0+ Yji - sin i -

- Ci

XG si wi( - 'r) xdt. (50)

0 i=1

Let us compile representing equation for equation (50). In this

case we will designate

F(p)-!*x(t), ecaH F (p)=p e ,x(t)dt.

Key: (i). if.

Using known relationships/ratios of operational calculus [7], and

also using theorem of convolution, representing equation can be

represented in the following form:

Ip2 m - p F(p)-XO- I xo +cF(P)-

=jp - 7, p 2 C,
161 C1  P+IiC
J-1

X F(p)-Xo-- -xo P2 (51)
P PPa

Page 101.
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From equation (51) we obtain following expression for image of

unknown function:
F1 (p)

F (p) --~ p
F2 (p)

where F, (p)= rnP2 -P .,f-+)'(Xo+ 0)+

+/P --d+X p -+PSX 
)  p 4 ~

2 oil

Function F(p), obviously, is meromorphic. Let us register its

expansion into series in terms of partial fractions:

F (P)-- F, (Pk) P (52)

rp

PF ( 2)P -- P

where p, (k=], 2, ... ) - roots of levelF 2(p)0. We further find the

initial function x(t):

F( (Pk eP,. (53)

k-1

Formula (53) completely solves assigned problem, as soon as will

be determined roots of equation F2 (p)z=O.

0
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Let us consider this euuation, after representing it in the form

Mp2 -C Th' C -- MX ? "G

P.1 j -('j)p- I Aid~" j

(k: ~p2). 4

Key: (I). or.

Equation (54), being analogous to equation, obtained by L. N.

Sretenskiy for case of cavity in the form of rectangular prism, gives

solution of problem for cavities of arbitrary cylindrical form.

We investigate roots of equation (54). For this let us consider

two lines in plane yX determined by the equations

C-MA ____.(55)gl-- ~ ~X2 " 2 ]

Page 102.

Form of these two curves is depicted in Fig. 3. The cbscissas of

the points of inteisection of the curves y,(X) and y,(X), obviously,

will be the roots of equation (54).

Let us show that there exists not one negative root of equation

(54). This means that numbers Pk in expression (53) still are pure

imaginary. Let us consider the left side of the equation. W:th Xf0,

since C>0, we have
C-m). > .n (56)

t III I
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000I it is analoc- . for right side of equation (54) with ?_<0

Let us consider series/row Go

SCL
Ci

Substituting values XAi), C., entering terms of this series/row,

by appropriate expressions and using inequality thXh<Lih, we will

obtain

(01 ' -

Ci ~xf jdG) ),jth Xj < h~ KxfdGt)

After producing conversions, analogous to those, which were

conducted in p. 4, and using Bessel's inequality for orthogonal on

region G of vector functions gradf,, we will obtain

XfdG )) grad x grad f jdG <

(grad x)2 dG==G.
"4r
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Hence ue have

where m,=phG - mass of liquid.
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2_

Fig. 3.

Page 103.

Comparing inequalities (56) and (57), we will obtain y1>y, with

X:0, i.e., equation (54) cannot be satisfied with any negative value

X . 0

B. Problem about pendulum with liquid filling. Let us consider

the plane motion of body with the cylindrical cavity, filled with

liquid, about the fixed point. Let us take fixed point for point 0 of

the origin of body coordinate system. Then the first equation of

system (31) is excluded from the examination.

Let us assinie that center of mass of system in undisturbed state

of free surface of liquid is located below point of suspension 0 at a

distance Ic.

Then, if no other forces, except gravity, act on system, we
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.obtai~n
N'M)-j~nlCSz=j1P (1= rnc).

E7quations (31) will take the form:

2 1.

aj~wai C (2((i=j 1,2....

Lowering computations, analogous to carried out above, we obtain

A~pkF(p) e(8

where F, (p)=[I-pC~ 2)2 P Sp P

~(p) = 1 p2 + ji + 2jC -(~ip~ xi)

In this case Pk (k= 1, 2, ..)-the roots of equation F2 (p) =0

Let us consider character of roots of equation F2 (p)=O. For this

purpose, after assuming pl=-X, let us register this equation in the

Wfollowing form:
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2( i) X-(jXi))-jr - Ax = G_ (59)
X X -(Cj/j)x

Page 104.

Let us consider two curved lines in plane y, X, determined by

equations Q

Y~ I= -1(I Y=Pc '0) (60)
X2 (Ci

Form of these curves is depicted in Fig. 4 and 5.

Let us explain conditions, with which system in question

possesses instability.

Let us show that with sufficiently greater in absolute value

negative X value y, is less than value y,. Actually, with the

sufficiently high negative values X expressions (60) can be replaced

by the following approximation formulas:

I p k -C

i~=I

Let us consider expressions, which stand in numerator and

denominator of terms of series/row with y2 .
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Using harmonic functions Ai, determined by conditions (28), and

also using Green's formula, we convert these expressions as follows.

9i) = 0'2 cf dG ~ 9i 2 -A dS== grad Q grad A~dr;

C=,fAif/dG= f; Ai--,A'dS= (gradAi)2 dr.
a S

Following equalities prove, that vector functions

grad Ai (i--1, 2, ...) are mutually orthogonal in region r:

Sgrad Aj grad A~dx= Aj AkA dS =5Ai/AdG -Ci 'f J kCdG.
- - 4 0 "0

0
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Hence, using Bessel's inequality, we obtain following estimate of

the magnitude y: Y2

~(grad Aj)2 dv 7 Jf~gu

This inequality proves our affirmation, that y2<y, with

sufficiently large negative X.

Let us fcind conditions, with which in certain sufficient low

vicinity X=0 with X~<0 will be fulfilled reverse/inverse inequality:

y 2>Y),

In sufficiently low vicinity of point ?X=0 expressions (60) for y,0
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O and y2 can be represented by following approximation formulas:

A1 Y2 XX2 (I-:=0 1 x2d G
A- X2 K2

where I - moment of inertia of plane figure G region relative to axis,

which is projection of rotational axis of solid body to G region.

From this expression for y2 we can draw conclusion that y2 >y,

with negative X in vicinity X=0, if pI>1.

In this case pendulum with liquid filling will be deliberately

unstable, although 1>0, i.e., although center of mass of system in

undisturbed state of free surface will lie/rest lower than point of

* suspension.

Thus, if for stability of solid pendulum it is necessary to

satisfy only condition 1>0, then for stability of position of

equilibrium of pendulum with liquid filling, which has free surface,

must be carried out more rigorous condition 1>Ip>O, which is in this

case necessary stability condition. Fig. 4 illustrates curves

yI(i.), Y2(X) and arrangement of the roots of equation in the case of

the stable position of pendulum. Fig. 5 presents the case of the

unstable position of pendulum.
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* Page 106.

EQUATIONS OF THE DISTURBED MOTION OF SOLID BODY WITH CAVITIES, WHICH

CONTAIN LOW-VISCOSITY SWIRLED LIQUID.

B. I. Rabinovich.

General equations of disturbed motion of stabilized object with

cavities, partially filled with liquid, are derived taking into

account eddy motion of latter. It is assumed that Reynolds number is

considerably more than one, but Strouhal number does not exceed 10.

In dCscription of motion of object in stabilization planes is

* used model of solid absolutely rigid body with cavities, partially

filled with liquid, which have internal narrow circular or radial

edges/fins. The obtained equations are the generalization of G. S.

Narimanov's equations for the line of the account of the eddy of

liquid and pass into the latter with its irrotational motion.

During motion of object in direction of longitudinal axis as

model axisymmetric elastic body with cavity, formed by thin-walled

shell with internal rigid circular edges/fins, is examined.

In work [l], which belongs to G. S. Narimanov's pen, are for the

first time published obtained by him general equations of dynamics of

solid body, which has cavity of arbitrary configuration, partially

.filled with ideal fluid.
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This work stimulated appearance of vast cycle of research in

dynamics of objects with liquid filling. The literature, dedicated to

these questions, which appeared in the years, which elapsed from the

moment of publication [1], is virtually boundless and count many

hundred designations.

Equations, proposed by G. S. Narimanov [1], were used as basis

of mathematical models of disturbed motion of flight vehicles with

sections, which contain components of liquid propellant, and played

large role in solution of series of problems of dynamics of these

objects. -One of the aspects of this problem is examined in the

present work; which the author would wish to express his respect for

the memory of G. S. Narimanov and admiration by his basic research in 0
the dynamics of bodies with the liquid.

Work, which is further continuation of [5) and [61, is dedicated

to phenomenological description of eddying motion of low-viscosity

liquid in cavities of solid body, stabilized in space, having damping

devices in the form of radial or circular edges/fins, during its

oscillations in stabilization planes and in direction of longitudinal

axis (in the latter case are introduced into examination elastic

thin-walled shells, which form walls of cavity).

On basis of proposed phenomenological mathematical model of eddy

of liquid, which is further development of models, proposed in works
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* [5, 4, 6], are cor '.led equations of disturbed motion of system body -

liquid, being generalization of equations of work [13 to new class of

motions of liquid.

Page 107.

1. Equations of disturbed motion of solid body with cavity,

partially filled vith liquid. Account of the eddy motion of the

latter. Let us consider in the same setting, as in work [1], the

problem about the disturbed motion of body with the cavity, furnished

with dampers in the form of the radial or circular edges/fins, whose

number let us designate K. We will consider liquid low-viscosity.

Let us introduce as the characteristic dimensionless parameters

Strouhal-and Reynolds numbers and the maximum relative width of

edges/fins [41:

2;tv °  2u °  ° bmaxSh= -=-• Re=- " t a (1)

where v0 , u0 - characteristic speed and amplitude of the oscillations

of edge/fin relative to liquid in the direction, perpendicular to its

plane, during the disturbed motion with a characteristic frequency of

wo; I - significant dimension of cavity (for example, in the case of

axisymmetric cavity mean radius r0 ); v - kinematic viscosity

coefficient of liquid; binax - maximum width of edge/fin. We will

examine the motion of liquid with the high values of Reynolds number,

the "intermediate" values of Strouhal number and the low relative

width of tite edges/fins:

* Re > 1; Sh< 1...10;i,«1. (2)
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Let us introduce "absolute" system of coordinates Ox y*z , whose

axis O*x* is antiparallel to gradient j of field of mass forces of

undisturoed motion, and pole 0* is connected with arbitrary point of

body in its undisturbed motion, and "connected" system of coordinates

Oxyz, rigidly fastened with body. The disturbed motion of body - this

is the motion of the system of coordinates Oxyz relative to O*x*y*z*.

The speed of pole 0 and the angular velocity of body in this motion

let us designate v, and w respectively.

With respect to character of undisturbed and disturbed motions

let us take hypotheses, traditional for problems of dynamics of

stabilized LA [4], we will in particular assume small values Iv.1 and

MW.

Volume, occupied with liquid, let us designate Q, moistened

surface of cavity S. The "waveless" free surface of liquid T,

following [1], let us relate to the body coordinate system (concept of

"rigid cover/cap" Z, coinciding with "waveless" surface of liquid).

Let us disregard/neglect, taking into account large Reynolds

numbers, eddy of liquid in wall boundary layer; however, let us take

into consideration eddying of entire mass of liquid, caused by

powerful vortex-forming effect of edges/fins with sharp edges.

Page 108.

S
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* We wil2 use phenomenological description of eddy of liquid in

cavity [4], after isolating eddying, averaged by volume Q:

r M - 2Q rot v* (R, t) dQ=-- + Q, (3)

where v* - absolute velocity of liquid taking into account eddy; F and

0 - average/mean angular rates of rotation of liquid, absolute and

relative respectively; R - radius-vector of point, which belongs to

region Q, which originates in 0.

Let us represent field of velocities v*(R, t) in the form

v* (R, t)=Vo--grad (W, 'F) -- s, grad i+FY<R -grad (F, T);

divv*=--O; rotv*:2 F, (4)

where + and qn - are displacement potentials of pRarticles of liquid

taking into account irrotational and nonseparated flow of edges/fins,

which are solutions of following boundary-value problems:

0(R ,v) I s+ ;(5)

0; di 0; L K:--WPK; (6)

v - unit vector of external normal to the surface

S+ 1; Y= x (n---1. 2,...) - eigenvalues of boundary-value problem (6),

connected with natural vibration frequencies of liquid in fixed cavity

(j,, by relationship/ratio G)n2=jXn; (p-n (n-l, 2, ... ) - eigenfunctions

of boundary-value problem (6) (form of natural oscillations of

liquid).
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We will use following expression [7) for flow forces fv,

functioning on edge/fin perpendicularly to its surface, connected with

vortex formation on edges of edge/fin, which is well coordinated with

experimental data [2, 3] in range of Strouhal numbers in question:

kb b',V , "= (V,7) V

k, --=- 1,Ik ; b -- bl ; ( , ")

,-here t - unit vector of external normal to plane of edge/fin, forming

sharp angle with v; p - mass density of liquid; b - width of edge/fin;

k - empirical constant, determined in the case of axisymmetric

cavities with the help of-Table 1 [3, 4].

Page 109.

Further q(.r')-Q-ae-P- empirical function, introduced into [3J,

a=,.4; A=0.131 for axisymmetric cavities (x' - coordinate, calculated

off free surface in depth of liquid, in reference to width of

edge/fin); V, - relative velocity of liquid at points of center line

of edge/fin L, calculated in the absence of edges/fins (potentials %P

and rn and V, - its form, determined by formulas

V, (R, t)- 1
V d v d(8)

v (R, /)= 'tdv d

It I I d ;rt
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It is possible to show (see [4]) that slurr of two last terms in

(4) and expressions (8) do not depend on selection of pole 0.

We pass to compilation of equations oi disturbed motion of system

body - liquid. We will use the variation principle, analogous to the

principle of Hamilton-Ostrogradskiy

ts~d: o,(9)

in wnich the role of "action" plays "power" Y; t, and t, - arbitrary

moments of time. Without breaking generality, it is possible to

assume t If we as 14,'(P) take change for I from the total energy

* of the system

-- under the assumption of the ideality of liquid (irrotationaldt

motion), then the equations of work [I] are obtained from (9). In the

case in question it is possible therefore to be bounded only to the

calculation of generalized forces M(r) and p,), which correspond to

generalized velocities 0 and S, connected with the eddy of liquid,

and tne compilation of further equation for 2.
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Table I.

I XapaKTep KtO.1eafHill k*
5 Tim, pe6ep s

(3) 'i

0 (4[Ko.,bueBe cecHMMeTpH'iHbie 4,10
1 "Va la.bHbie lHTmceMMeTpnqHbie 4,57
3 IKo.1bteB e4) AIH'rice.MeTp,,qi,,e 2,71

Key: (1). Type of edges/fins. (2). Character of oscillations of

liquid. (3). Circular. (4). Axisymmetric. (5). Radial. (6).

Ant isymmetric.
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After designFting counterpart of W through 1W7(r), let us write out two

equivalent expressions:

'/"(M<r), + P" p ', -(B, 0) Q+

V mSn (10a)

Irn"I

'k 14 v, I(V,,v,) y(x')ds, (00b)

where
* .

{9( )L - - c ) d" -v n(t - S"'n (T:) d-c " ---

-- , (1 )

B - symmetrical tensor of second order; Pon - vertors; [tn and

scalars (n, m=l, 2, .
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03
i~t (12)

P o'Y, dS.
av

Formulas for coefficients P0 ij, Ponj, pn,n are obtained after

substitution of expressions v, and V, (8) into right side of (lob)

and comparison of coefficients when 02 and s in (10a) and (lob):

K
I= - I v j-(RXV),+
A=1 Lk

+ -(RX v)j+ b*(x')ds; (13)

o -" /"v I-, -(RX )j+ 

k-I (R Vj - - f b Vcp(x') ds
% nm n v v

tt"LkI

n-1 Lk

where Lk - duct/contour, formed by center line of k edge/fin.

Potentials qp', in (13), in contrast to (12) as TjPo, correspond

to irrotational motion of liquid in cavity in the absence of

edges/fins.
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As a result of substitution into (9) expressions of "potential"

O part W(P) of power W, determined by field of velocities (4), and
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"vortex/eddy" W,(r) from (10a), and also expression of moment of

hydrostatic forces from [1), we will obtain following complete system

of equations of disturbed motion of system in question:

(m 0+m) vo+ a)>" (L*+L)+ N s- P;

n--

IV( t -±;

r - - :;on' - - I
) b d y d i n t e p(n) d

(n = 1, 2, ..

Here P and Mo -main vector and the main moment (relative to pole 0)

of the system of external forces; Lo and L - vectors of static moments

(relative to pole 0) of solid body and hardened in the presence ofI

"rigid cover/cap" liquid; JO=J(O) - tensors of the inertia of body and

hardened liquid; J.=yJ(O)-J, where J - tensor of N. Ye. Zhukovskiy of

the connected moments of the inertia of liquid in the cavity with the

"rigid cover/cap":
J* J(O)J; J- [J} (15)

Elements of tensors (15) and vectors X, and X., are determined

by following formulas:

O
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j~~= ~)p (Ri)(R'ij)dQ;

dQ, 2 --LdS;

Q S+%

J; j =J~ Jt I I0

n--P R a aT---dS;
adv

o-P IF ndS.

a-d (16)

V - here and throughout - the operator of Hamilton.

Let us consider case of irrotational motion of liquid in absolute

system of coordinates O*x'y*z*, to which corresponds r-o; Q=-w in (14)

and k,*--0 in (13). Equations (14) take the form

(m°+m) vo w X V+ L) +'Y s= P;

(J0J(O (,)+(L0 +L) X(vo-j)- V Ix L 0.s-(In Xi) s,=Mo; (17)

.("sn,+ (os,,)+(X,,,;0)+(Xo,, ;n,, j)=o n,2..)
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System of equations (17) coincides with accuracy to designations

with total system of equations of disturbed motion of solid body with

cavity, partially filled with ideal fluid, obtained for the first time

by G. S. Narimanov [1).
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Let us consider now opposite case, when relative angular velocity

of liquid is identically equal to zero, to which corresponds motion of

entire liquid as solid body. Equations (14) must in this case pass

into the usual equations of the dynamics of solid body. Actually,

after assuming in (14) Q0, Sn -0 (n, 2, ...), we will obtain

(mo°+ m) v + X(L'+-L)= P;

(0 + J0O, ())+(L 0+L) X(Vo-j)=Mo.

As is known, these equations describe motion of system body -

hardened liquid.

One hould stress that if we do not consider eddy of entire mass

of liquid in absolute coordinate system, then passage to the limit

fromappropriate equations to equations of dynamics of solid body,

demonstrated above, is impossible.

Equations (14) correspond to arbitrarily selected pole 0. If we

select as the pole, as is done in [l], the center of mass G, of system

body - hardened (in the presence of "rigid cover/cap") liquid, then

total static moment L0+L will become zero, and equations (14) will

pass into the following:

(rn+ m) V+ X it s =P;
n-1

(J°-- j(,, ()+(j,, )+ N[konS'n__(<j)s1=Mo;ARNO,
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(,~c S~ ) _____n _ d

! - l l I ll I

rnI -00

+ V) +/:: 0"i~o, dKz

(+ = , 2, ...), on

where v - velocity of point G. in the disturbed motion, and all

coefficients of equations (19), which depend on the position of pole

0, are given to the new pole G. as MG,.

Let us consider axisymmetric object with axisymmetric section,

which contains liquid, that moves in plane O*x*z*.

SPage 113.

Equations (19) acquire in this case the following form (if we

drop/omit some unessential now indices):

(,n°"+ "I) V+ x' n~s=pz;
n=1

(JO + J(O)) C + J*"+ (X"0 s. + jXns,)--'1'1o.y;
n-I

(+ * +r d' Sn (T) d 0 ; (20)%n T --

(in + nS) + Xn '+ X + +

+.1n on-_

I l il l Ir t

rn-I -00 -0
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where all generalized velocities v, w, S2 - now scalar quantities as

the coefficients of equations (20), moreover (w=V; J=°J()-fJ (J - here

and throughout no longer tensor, but scalar - connected moment of the

inertia of liquid, calculated according to N. Ye. Zhukovskiy for the

cavity with the "rigid cover/cap"). If we assume in equations k20)

- ; -0; --- ; Pon -0; On i - 0 , 'then equations (20) pass with

accuracy to designations into the appropriate equations of work [1):

(Mo+ M) + (2'0.00

n=1

t~n(S,+wnSn,)+r1C+on P+?~j~~

(n=1, 2 ... ,).

2. Elastic shell in the form of body of revolution.

Axisymmetric motions of liquid. Let us consider the axisymmetric

elastic thin-walled shell, which has within K rigid circular damping

edges/fins, partially filled with low-viscosity liquid. Let us assume

that the shell completes low oscillations in the direction of

longitudinal axis, which is parallel to the field gradient of the mass

forces of the undisturbed motion.

Let us preserve in force all basic hypotheses, which concern

dimensionless parameters of problems (1), introduced above, i.e., we
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* will assume that these parameters satisfy conditions (2).
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Let us connect with cavity with undeformed walls cylindrical

coordinate system Oxr8 with pole at arbitrary point 0, which lies on

longitudinal axis of shell Ox.

Vector of displacements of points of median surface S* during its

axisymmetric oscillations let us designate u (u, w), where u -

tangential, and w - normal (on external normal to SO) components,

which lie at radial plane Oxr.

We will use traditional hypotheses (3] about character of motion

O f shell and liquid. The eddy of liauid in field Q, generated by

circular edges/fins, we will as in Section 1, describe in the integral

sense with the help of averaged throughout entire liquid volume

eddying.

In this case all vortices/eddies should be considered circular

with centers on axis Ox and averaging carried out in radial plane Oxr

through*G region, which is cross section Q with half-plane Oxr. As a

result we will obtain the axisymmetric eddy of liquid with the angular

velocity, identical at all points of G region with any value of

vectorial angle 8, directed along unit vector io of tangent toward

-ircle/circum'erence r=const

0
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- j(rotv*, i,)dS, (22)
0

where v* - absolute velocity of liquid.

Field of velocities v*(R, t) can be represented in the form,

analogous to (4):

V*(R, t)vi"+~ qigrad WVj+~ Is grad c-~p, (i 0x R -grad 11*);
j=I n=I

dlv v*=0; rotv*=2i 0 F. (23)

Here R - radius-vector with beginning 0 at arbitrary point on the

longitudinal axis of cavity; Vo - velocity of polar wandering 0 in

the direction of axis Ox; Wj, qj- - displacement potentials and the

generalized coordinates, which correspond to the natural oscillations

of system elastic shell - liquid with the flat/plane free surface:

p, Sn - displacement potentials and the generalized coordinates,

which correspond to wave motions on the free surface during the

oscillations of liquid in the cavity with the rigid walls; +* -

displacement potential, which ensures equality to zero of normal

component of velocity on surface of S+7 with the eddies of liquid.
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Potentials qf., Tij, Tn are solutions of following boundary-value

problems:

dv S Ov r ri

0 -0; 0 =wtm; 26 i)
v 0~
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where a - three-dimensional operator of Laplace; K=K,, .

eigenvalues. Boundary-value problem (24) is closed by the equations,

which describe the elastic deformations of shell by corresponding

boundary conditions [3].

Vast literature is dedicated to solution of boundary-value

problems of type (24)...(26), and we on them do not stop.

We will use again expression (7) for flow forces, which functions

on edge/fin along the normal to its surface, caused by eddy of limiid.

If we disregard/neglect the tangential displacements of elastic shell

low in comparison with the displacements of liquid, then functions

vV(R, t) and V,(R, t), which are scalar analogs (8), are expressed by

the formulas

V, (R, t)= r (R × V) io -a* '30 q ±4_ s --- (7
Ij-- + ,v +V S"' (2)

j-1 n=1

tdv, dv
v. (R, 1)= -- Y---- .

Right sides of expressions (23) and (27) do not depend on

selection of pole 0, since they have the same structure, as (4) and

(8).
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If we now use variation principle (9), then on basis of

expressions (7), (23) and (27) it is possible to obtain equations of

disturbed motion in direction of longitudinal axis of elastic

axisymmetric shell with liquid taking into account eddies of latter

(also axisymmetric).

Let us register, as above, two equivalent expressions for that

part of power Wr), which corresponds to eddies of liquid:
%jQ+N7S r /Yjo~ V.)IAr *6 -ai 2 I "M

J-1 ~n-=1 - (1=

%i (28a)
-rs) 00 (%O+ n- L

_ n-1 n-1 m=l

pk: K v,  VIv,,*y (x')ds, (286)

k-1 i

where tt

Lh - center line of k edge/fin.

Comparison of expressions (28a) and (28b) after substitution in

(28b) v) and V. from (27) makes it possible to obtain formulas for

coefficients yj, Pnm, 6in etc., which will be given below.

Let us write out now some auxiliary relationships/ratios, which

prove orthogonality of functions V(,n and VIV, to function
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0 ioXR-VWV" in region Q, which are corollary (24)...(26):

' R 1,06 R'P)-(R KyV) 'JigdQ=Sif(RXi,)2-(VW *)2Id4Q=-
Q

av
=f(,,OQ--4 .,11*, dS;

Q s+2

(i x R - v4*) v:;,dQ 0, (K xR v -
d S  V dS

• av
Q S+ s

'1 'd S 0;

S+ S+ (30)

06 ix R -VT*) V'1UdQ=4;(iXR)WjdS-cf W* '.dS=
Q

Is consistent pole 0 with center of mass G. of system shell -

liquid in undisturbed state (statically deformed shell, hardened

liquid).
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Using (23) and (27)...(29), we will obtain with the help of (9)

following mathematical model, which descriDes the eddies of liquid in

Q region and wave motions on its surface together with the elastic

vibrations of shell during its axisymmetric strains:

(m°+ rn) V=P';

F () d qj(r)d-csn (r) d-c O
+ I II+

1=' - fl-I(31)
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q j+:21'(r)dr NI q7' I T d

S (r) d-

00 t t

20 -1F q. (r) tci

, , , m" j +, o ~ t - + tjn 
' - 1

-00

n , 2,

where p - projection on axis Qx of the main vector of the system of

external forces; pj - the generalized force, which corresponds to

generalized coordinate qj; mn" - the mass of shell; in - mass of liquid,

gj and wn (j--1, 2, ...; n--, 2, ... ) - partial natural vibration

frequencies of shell with the liquid when sn-O and wave motions of

liquid when q)--; V - the velocity in the direction of axis Ox of

point G,.

Coefficients of equations (30), connected with eddies of liquid,

are determined by formulas:

a*-=PS(RXio)'dQ - P , (* -' dS;
Q dv

pk K yRY i - -  b (x') ds;
k-I Lk

0
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k K ___ KF 1O b* ?(x') ds; (:32)

k=1 Lk

K

n'dm ,SVli~ ~ ; * (x') ds;
im I ~ -EE )v (9v

V.I Lk ~

ek: \i K T aI. I~ a b *;(x') ds;
)'j N, 1 -1V, v dv

qk K T *

~~~V I 'iI- b*9 (x') ds
jj=Vj -T dv dv

*~k Pae418

For the remaining coefficients we will obtain following expressions

[3]:

Qj~ soT) Q+p00 U
dS u: p dS;d

S

x/= (V'1 j, V?,) dQ =p T1  d dS; (33)
ov

I',?=Pj (Vn)dQz~ p Yn --- dS.
Q

Here S' middle surface of shell; -mass density of material
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of walls; 60 - their average/mean thickness; vector u corresponds to

j form of natural oscillations of shell when Sn=-0.

When Vjo O, yji=-O; P1o0--O; Pnrn--O; 6,ntO; F_ O, ,'-- (31) passes

into usual system of equations of axisymmetric oscillations of shell

with liquid with irrotational motion of latter [31:

(M' + M) =P';

aj qj + kin's 4-= P (34)
n=1

~14 s,+2 N)1- kjlq = 0 n 01=1 2,...).

3. Equations of disturbed motion of stabilized axially

symmetrical body in stabilization planes and in direction of

longitudinal axis. Let us consider the stabilized in the space object

with the W cavities, which possesses the mass and geometric axial

symmetry (cavities have shape of bodies of revolution with the common

longitudinal axis, which coincides with the longitudinal axis of

object). We will be bounded, as is done in the majority of applied

research, to the account only of the one form of wave motions of

liquid in each of the cavities. We will schematize the

considered/examined object during the motion in the stabilization

planes by solid, absolutely rigid body with liquid filling, and during

the disturbed motion in the direction of longitudinal axis - by body,

which includes N elastic thin-welled shells. In this case let us take

into consideration M first forms of the longitudinal vibrations of
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b ody, which are accompanied by the axisymmetric deformations of

shells, which form the walls of cavities.

Page 119.

Thus, index n will now correspond to number of cavity, calculated

off tail section and head, and j - to number of form of natural

elastic axisymmetric oscillations of entire body with liquid (Go -

center of mass of entire system in its undisturbed motion with

hardened liquid).

All the remaining hypotheses, formulated above, remain valid.

*After taking for the basis mathematical models (19), (31), obtained

with these hypotheses, it is possible to obtain the equations of the

O disturbed motion of system in the stabilization planes (from (20) - in

the yaw plane) and in the direction of longitudinal axis. In the

latter case it makes sense to examine two different models: a) not

considering the elastic deformations of body (in the range of the

"low-frequency" oscillations, connected with wave motions on the free

surface of liquid); b) not considering wave motions of liquid (in the

range of the "high-frequency" oscillations, connected with the

longitudinal elastic vibrations of system housing - liquid).

('1)7ouxenue 6 n.ocCOCTU pbiCKatiun O*x*z"

N
(in'+ m) X n Sit= P';

n-I

(jo + nj(o) -+ -' (Jn + ). oSn + Ans.) -M~oY;

n-I
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t t

n~ ~~o jZ()dcs r v 0j on n i o I'tF- t Y t - -

(n-dl, 2,...,N).

eWBpaunetue 6oK:py npo) o lio+ ocu Ox (Kpek)

N

. S ,(t) a =_ (n=1, 2,...,N).
,' t -

Key: (I). Motion in the yaw plane O*x*z*. (2). Rotation around
longitudinal axis Ox (bank).

In equations (35), (36) are introduced not requiring commentaries

simplified designations for elements of tensors B, j 0 , j(), j*, or for

generalized velocities: ,,n (rudder channel) and IT, Xn (channel

of bank) .

Page 120.

,)Zueiue 8 t-anpatenuu npOdo.1bH0o1 OCU Ox

(.a) a6co.nJOTHO )K CTKoe Te.io (q.---O)

(an+-m),P ;

a y Ja ;, a =0,,o s,(:a ; (37)

Vt- t- 0
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(rz =1, 2,..., N);

(ij OTCyTCTBHe BO.IHOBb[X naiiMKeHlfi (s =O)

(m 0+m) '=p ;

o~ y .(n-r) d + ~ )  -0;

j=1 -a (qj q j)+ y:i ,5 0 Vji t- i -

(n=1, 2,..., N; j--, 2,...,M).

Key: (1). Motion in the direction of longitudinal axis Ox. (la).

absolutely rigid body .... (ib). the absence of wave motions ....

In comparison with (30) is here introduced new designation

yn--Fn; remaining designations do not require commentaries.

Mathematical models (35)...(38) can be assumed as basis of

analysis of disturbed motion of axisymmetric objects with cavities,

which contain liquid, taking into account eddies of latter.
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* Page 121.

RESEARCH OF THE DYNAMICS OF SOLID BODY WITH CAVITIES, WHICH CONTAIN

LIQUID, TAKING INTO ACCOUNT ITS EDDYING.

V. G. Lebedev, A. I. Mytarev.

Is examined mathematical model of solid body with cavities, which

contain liquid taking into account its potential and eddy, analogous

to mathematical model of unsteady skin effect in magnetic circuit of

controlled electromagnet. This model takes the form of the system of

nonlinear integrodifferential equations with the singular kernels.

The numerical and analytical algorithms of the study of dynamics and

s tability of the objects, described by such mathematical models, are

developed. The efficiency of the proposed algorithms is shown based

on the example of the analysis of the disturbed motion of solid body

(rotation around the longitudinal axis) and are revealed some dynamic

effects, which are absent in the models, which do not consider kinetic

energy of the eddies of liquid.

In work [4] it is shown that such different, at first glance,

phenomena, as eddy currents in magnetic circuit of controlled

electromagnet and eddies of liquid in cavities of mobile solid body,

which have internal edges/fins, can be described with large Reynolds

numbers and small Strouhal numbers within the framework of one and the

same mathematical model. Some aspects of the use of this model for

* the perturbation analysis of objects with the liquid will be examined
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below.

Mathematical model, which considers irrotational motion of

lqi parL.!2.y fil_ cpitiec of moblp solid body, were obtai-eH

by G. S. Narimanov [2]. Mathematical model [3.. .5, which is the

system of nonlinear integrodifferential equations, is its further

development in the part of the account of the effect of the eddy of

liquid in the presence in cavities of internal edges/fins. In the

work of G. S. Narimanov [2] it was shown that the system of the

differential equations of infinite dimensionality, which describe the

disturbed motion of system body - liquid, can be reduced to finite

system of integrodifferential equations. These'equations were used by

him for the proof of existence and uniqueness of solution and proof of

the possibility of the reduction of the reference system of

differential equation to the system of final order. The same

equations can be used directly for the construction of different

calculating algorithms. In this sense the results, obtained below,

possess the specific succession with [2].

1. Equations of disturbed motion of solid body with cavities,

partially filled with liquid, upon consideration of its eddy. Let us

give the equations of the disturbed motion of stabilized solid body in

the stabilization planes upon consideration of the potential and eddy

of liquid, which are borrowed from the article of this collection [5].

Page 122.

0
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(')/kuxce.ue a tlAJOCKOCTU pbIcKaHU3

N

(rn°m+) '+ V xns,=PZ;
~n-I

N
, -"; J ow n-  + ko,  + X'n MG(oY;

fl-I
tt

•S n (0 dv -,s, (") d 0;

~(n=l1, 2,..., N),

Key: (1). Motion in the yaw plane.

where -- coordinate of the lateral displacement of solid body; v -

yaw angle; sn - the generalized coordinate of the fundamental tone of

the skew-symmetric oscillations of liquid in the n section; N - number

of sections; 15, - further coordinate, which characterizes the

dynamics of liquid in its eddy, which is absent from the traditional

equations upon consideration only of irrotational motion; m' - mass of

body without the liquid; m - mass of the hardened liquid; J0 - moment

of the inertia of body without the liquid; ji0) - moment of the inertia

of the hardened liquid; J.- - connected moment of the inertia of

liquid, which corresponds to its eddy, A,, - the apparent additional

mass of liquid in the n section with its irrotational motion; P, and

MGw - respectively external force and moment, applied to the body,

including controlling and perturbing components; j - modulus/module of

the field gradient of mass forces; n - partial frequency of the wave



DOC = 89056410 PAGE

vibrations of liquid in the n section; ., - coefficients of

inertial couplings; P0n, Pon, Pn - coefficients, which characterize the

effect of edges/fins, and which are the nonlinear functions of tilc

relative velocity of the motion of liquid [3]:

Q-'I- /', I ----s I . (2)3,]= :,n I I; -, -o, I Sri I' ° --

In pitching plane equations are written/recorded analogously.

('iBpau.eHue 8oKpye npooa.bHOt OCU (KpeH)
N(10+ 1(o)) + V /*=-~ o
n-I

t

Inzn~ (-c d. r ._ - (3)

(n=1, 2,..., N).

Key: (1). Rotation around the longitudinal axis (bank).

Here p - roll attitude; Xn - generalized coordinate, which

corresponds to eddies of liquid. The coefficient, which characterizes

the effect of edges/fins, is expressed as follows:

I . (4)
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Remaining designations are analogous in sense to designation,

accepted in system of equations (1). In contrast to the yaw planes
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* and pitch in the rolling plane wave motions of liquid are absent.

Upon simplified consideration of eddy of liquid (with neglect of

appropriate kinetic energy), as this was done usually [3, 6],

N

n-1

N

t- .. V

(" 2 i n (-c) d-c

Pn(n+o)nSn+ 3 n + xn + +X XonP +An1 +

*0 f~Q (~~- (n =1, 2,..., N).

( 0 +--- +)+ = Mo . (6)

In these equations J, I - connected moments of inertia of liquid,

/3, fC - coefficients, which characterize effect of edges/fins. They

are expressed as follows:

N N N N'N' 0 II V PIr(7)

n-1 n-1 n-1 n- t

Thus, disturbed motion of solid body with cavities, partially

* filled with liquid, upon consideration of its eddy is described by
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system of nonlinear integrodifferential equations. By analogous

equations is described, in particular, the dynamics of the controlled

electromagnet upon consideration of unsteady skin effect in the

conducting material of magnetic circuit [4].

At present are absent detailed methods of study of dynamics and

stability of systems of similar class, studies of objects analogous to

methods, described by ordinary differential equations. In connection

with this equations (5) and (6) are substituted by ordinary

differential equations. This replacement is conducted as follows.

Page 124.

Le, -s register Laplace's image under the zero initial z~nditions for

nne of the integral terms [1), by assuming/setting temporarily --Const: *

J jft -)

where p - Laplace's variable.

Let us assume that process being investigated is close to

single-frequency with frequency of w.. As w. during the research of

wave motions of liquid it is possible to take partial frequency (n,

and during the research of dynamics at the characteristic frequencies

of solid body the frequency, formed/shaped with the automatic machine

of stabilization.



DOC = 89056410 PAGE ,l

* Assuming/setting in (8) p=iw 0 , we will obtain

t

where J -- _A3o (10)

Usually in (9) they retain only dissipative term '',

disregarding inertia J',. However, with the strongly developed

internal edges/fins the further moment of inertia J' becomes

commensurate (jO+J), and in this case arises the question about the

account-Gf the eddies of liquid within the framework of mathematical

* models (1) and (3) during the study of dynamics and stability of the

objects of the class in question, to whirh is dedicated this work.

integrodiffertntial equations (5) and (6) are frequently

substituted for perturbation analysis, close in each of stabilization

planes to single-frequency process, on basis of conversions (8), (9),

by systems of ordinary differential equations, which we will

subsequently call traditional:

-INN

n-n-

S2 40 ( 1, 2 ....V);0(Ii !) ,- +,,o,'_,p=,-o.r, (Ii)-

11n i- ir I n
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Frequencies w0 and w° in formulas (13) are chosen depending on

form of motion being investigated, and coefficients themselves, ,,hicb

characterize effect of edges/fins, are nonlinear functions of

corresponding generalized velocities:

S 22 (14)

2. Methods of study of dynamics and stability of objects,

described by nonlinear integrodifferential equations with kernel of

form (t-r)' /. Let us consider the object, described by

integrodifferential equations with the kernel of form (t--)-l /, which

corresponds either to analysis of stability "in smajl" of the system

of electromagnetic levitation upon consideration of skin effect nr to

determination of the parameters of the limiting cycles, caused by the

non'inearity of oscillation damping of liquid in the sections of solid
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* body [4].

Let us introduce variable of form q=v,. Relative to this

variable, as can be seen from (8), the characteristic equation of

closed system the object of control (for example, equation (1) or (3)

when P CunSt) + the automatic machine of stabilization in the

description of the latter by ordinary differential equations contains

only whole degrees. The solution in plane q can be registered as

expansion into partial fractions of form q.(q-q), where qs - root of

characteristic equation.

For transition/transter from image to original we will use

following inversion formula [1i:

q qt y - 2 e-'dc - =
q -qs 6 15

integral c(Pir) is not expressed as elementary functions.

However, for the conclusion/output of stability condition it is

possible to use its asymptotic representation with t-- [13:
@ ,( ) . 1 ,- 7 1,3

+ + I 2,,2 (2,,2)2

pReqO, 11 qVT; =q_ ;Os ( qs 17)= I [I,'_ 13 (6

>n pi Re qs O l=-q, IF
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Key: (1). with.
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Combined analysis of expressions (15) and (16) makes it possible

to obtain stability condition in plane q, which is written/recorded as

follows:

<A rg (q. < . (17)
4 4

Obtained criterion (17) makes it possible to establish fact of

stability or instability of system and it can be used for construction

of stability regions in planes of parameters of controlled system and

regulato-r, and also for determination of limiting cycles. However,

the knowledge of a continuous changje in the generalized coordinates .in

time is required for the complete analysis of the dynamic properties

of the controlled system. This leads to the need for the direct

numerical solution of the system of nonlinear integrodifferential

equations (1) or (3), which is the only adequate method of the

analysis of dynamics and stability of system when the expressed effect

of nonlinear factors is present, and under the influence of the

disturbances/perturbations of arbitrary composition.

Let us consider, without breaking yenerality, algorithm of

solution of nonlinear integrodifferential equations with kernel of

form (t--r)/2 based on example of channel of bank for object, which

has one cut off, partially fiJled with liquid, and developed
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* intra-tank devices/equipment, when automatic machine of angular

stabilization is preszent. The equations of closed system object -

regulator take the form:

(o+ 1* ;

) =0;
-i

T a ,ay a ;(18)

30=-30 1/' Y

Here 6 - angle of deflection of control devices; a,6 - gradient

of controlling moment: T - time conrtant of drive, which determines

its inertness; a(, - coefficients of algorithm of stabilization.

After introducing designation X(x) =c(t) and considering /3 and

temporarily known functions of time, let us represent second equation

of system (18) in the form of nonhomogeneous integral equation of

Volterra with singular kernel:

Page 127.

Let us consider one of possible algorithms of solution of

* integral equation (19), based on application of quadrature formulas of
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calculation of definite integral and determination of functions A' and

o in resolving system of equations (18) together with (19). Since the

mathematical model in question cannot describe the initial process of

forming the vortices/eddies, we will assume that in the system to

moment of time t=0 there is no prehistory, i.e., any eddies of liquid,

which makes it possible to take integral in (19) from 0 to t.

Let us compute values of integrand a(r) at particular moments of

time 0, h, 2h, ..., ih ...,. nh, where h coincides with step/pitch of

integration of system (18), and nh=t. Within intervals

0.. ..i, h. ..2h, .. , (i-1)h...ih, ..., (n- l)h.-.nh we will consider function

4(() linear. The representation of integrand in the form of the

product.af piecewise-linear function to kernel (/--r)-', permits, first

of all, to reduce the singularity of kernel, and in the second place,

to do a method of calculating the integral for more precise than, let

us say, the method of trapezoids, since to the method of trapezoids

corresponds piecewise-linear interpolation of function I(T) (t-r)-'2,

which does not remove the singularity of kernel.

Taking into account that stated above and after making simple,

but cumbersome calculations, we will obtain

a (c - t )d, t 0

_G, + -L (20)
0 0

where G0o=0 1=:-0; G 2=-- -- (h) [2 (v - 1)]3
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-- -- (h3n n- I n-- +v- (i- ) ):

=2

X ti-(n 2 - )1
@(ih) I/-(-1(-(-1)- -tn 2

2
--3 ((n -- 1)h) (n > 2).

After designating G,-G(t), and o(nh)= (t), which is correct at

particular moments of time, multiple to step of integration, we will

obtain, after substituting expression (20) into (18), system of

equations, which can be integrated by one of standard numerical

* methods (Runge-Kutta, Adams-Stoermer, etc.):

(10 + 1(0)) + () F 1 (t) = ao ();

: (t -- (t);(22)

T (t)+ 8(t)---a,,?(t) + a; (

Page 128.

In equations (22) at each step/pitch of integration G(t) is

computed from formulas (21).
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Analogous computing circuit can be written for integrating

equations of disturbed motion in yaw planes and pitch, and also for

any integrodifferential equations with kernel of form (t-T)-"2

3. Systematic example. Let us consider as a systematic example

the dynamics of axisymmetric solid body, stabilized relative to

longitudinal axis. Based on this example it is possible to

demonstrate efficiency of the proposed algorithms and to reveal some

new qualitative special features, which are not exhibited within the

framework of traditional mathematical models (11) and (12).

We will investigate and compare two versions of mathematical

description of object of control: 1) traditional model (12) with

factors of nonlinear damping, computed from formula (14); 2)

mathematical model, which considers kinetic energy of eddy of liquid

(18).

Let us pose problem of determining parameters of possible

limiting cycles, caused by nonlinearity of oscillation damping of

liquid. Let in the system with some relationships/ratios of the

parameters be established/installed the stable auto-oscillations with

a frequency of wO and amplitudes of (p, ;,, 6, (in model (12)

parameter - is absent). Let us lead on the basis of the method of

harmonic balance the linearization of the nonlinear damping factor.

Following (6], the damping factor is expressed as follows:

0
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* ' ,odeF (127.

2 (23)

For model (1P)

30) = o, (24)

where 8.08

On boundary of oscillatory stability characteristic equation of

closed system has two complex conjugate roots

ql,2= a (1 ± )(a > 0), (25)

O and remaining roots lie/rest within stability region, determined by

criterion (17).

Page 129.

To roots (25), as shows analysis of expressions (15) and (16),

correspond in steady-state mode sustained oscillations with frequency

of

0 q2- 2c . (26)

For mathematical models (12) and (18) were constructed stability

regions in plane of time constant of drive T and coefficient A, by

which for model (12) is understood coefficient A0 23), while for

O model (18) coefficient j30. The construction of stability regions for
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model (18) was carried out by calculating the roots of the

characteristic equation of closed system and determination of boundary

value of the parameters in accordance with criterion (17) and for the

comparison by direct numerical integration. These regions are

presented in Fig. 1. Double shading is converted inside the stability

region. The numbering of curves corresponds to the frequency of

limiting cycle, obtained on the basis of the calculation of the roots

of characteristic equation for formula (26). In the sections, where

different curves virtually coincide (with an accuracy to three

significant places), general/common numbering is given.

Analysis of represented stability regions makes it possible to

make following conclusions.

1. Account of further degree of freedom, which corresponds to

eddies of liquid, within the framework of most complete mathematical

model (18) substantially narrows stability regions of closed system in

comparison with regions, which correspond to traditional mathematical

model (12).
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J1,

2,4t7

464

.0 -Ml Ira A !--l

Fig. 1. Stability limits: A - calculation according to traditional

model; 0 - calculation on basis of characteristic equation of linear

equivalent of system (18)3 =const for each point); * - numerical

solution of linear equivalent of system (i8): * - numerical integration

of system (18) with 0=F I'--

Key: (1). s. (2). kg.m2.s 4
y2.
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2. Good coincidence of stability regions, calculated on roots of

characteristic equation with application of criterion (17) and method
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of carect numerical integration of linear equivalent of system (18)

testifies about high accuracy of developed method of numerical

solution of integrodifferential equations with singular kernel of form

(t--xh'2 and at thp same time about possibility of successful use of

comparatively simple criterion (17).

3. Stability regions, obtained by integration of nonlinear

system of integrodifferential equations (complete model (18))

virtually coincide with regions, calculated on roots of characteristic

equation of equivalent linear system, to values P0 6000... 7000, In this

range ,3* with a sufficient degree of accuracy it is possible to

calculate the parameters of limiting cycles, without resorting to the

direct solution of the system of nonlinear integrodifferential

equations.

0
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a)

2 - V/ /6 8 4 /2

b)

Fig. 2. Laws of motion of body around longitudinal axis: Q anigle

of rotation of body; 6 - angle of deflection of control device; --

- - - model (12) (stable auto-oscillations); ~--mod~el (18)

(instability "in large").

Key: (1). degree. (2). s.

*Page 131.
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With :he more expressed nonlinear effects (larger values A0 )

straight/direct numerical integration is, evidently, the only adequate

instument of the analysis of the stability of the systems of the

class in question.

4. There are two critical values of time constant of drive:

Ti-0,415 and T,-0.6 (see Fig. .). With T<T, the system is stable "in

the small" and "in the large". When T<T<T2  the system is

unstable "in the small", but it leaves to the stable limiting cycle,

i.e., it is stable "in the large". With T>T 2 the system is unstable

both "in the small", and "in the large".

It-should be noted that within the framework of traditional

mathenratical model (12) cannot be revealed very dangerous from

technical point of view mode of instability of system "in large" -

system with any values A0 leaves to stable limiting cycle. Thus, a

stricter mathematical description makes it possible to determine not

only quantitative, but also very essential new qualitative effects.

Fig. 2 gives results of numerical integration with T=0.8 C>T2 of

equations (18) and (12), from which it is evident that depending on

utilized mathematical model either appears stable limiting cycle with

completely acceptable parameters (model (12)), or are developed

dangerous sustained oscillations (model (18)).

In conclusion let us consider results of mathematical simulation
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* of turn of considered/examined solid body around longitudinal axis for

preset angle for the same two versions of mathematical model. The

time constant of drive was selected as being equal to 0.2 s, which is

less than Tn,, i.e.. was investigated the dynamics of the system,

stable "in the small". The corresponding transient processes are

represented in Fig. 3. As can be seen from figure, the transien:

processes, obtained for two versions of the mathematical model of the

system in question, substantially are distinguished both by the va1ue

of overregulation and by the duration; model (18) corresponds in this

case to heavie- situation than (12), i.e., use of (12) does not give

calculation "in the reserve".

Example examined sufficiently convincingly proves need for

* account of kinetic energy of eddy of liquid during analysis of

dynamics of systems of class in question, which is reached, in

particular, as a result of using refined mathematical model [3-51.

0
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10

d, zpadyc ______________

22

Fig. 3. Turn of body around longitudinal axis to preset angle: Q -

!"ole of rntation of body; 6 - angle of deflection of control device;

- - - - - - model (12); -- model (18).

Key: i). degree. (2). s.
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SOLUTION OF THE PROBLEM ABOUT THE NATURAL OSCILLATIONS OF LIQUID IN A

RIGID AXISYMMETRIC TANK BY ANALYTICAL CONTINUATION.

M. S. Galkin, N. I. Rudkovskiy.

Examples of solution of problem about natural oscillations of

liquid in rigid axisymmetric tanks are examined by method of

analytical continuation. The obtained results and their comparison

with the appropriate solutions, obtained by other methods, confirm an

accuracy of method sufficient for practical purposes.

Solution of problem about natural oscillations of liquid in rigid

tanks is important intermediate stage in solution of problem about 0
motion of body, whose cavity is partially filled with liquid [1].

For solution of problem about natural oscillations of liquid in

rigid axisymmetric tanks method of natural forms (method, which uses

natural modes of vibration in close problem) is used, variation and

other methods. The method of natural forms makes 4t possible to solve

problem for the very low and very larce depths. With variational

method it is necessary for each level of filling to solve problem at

eigenva Iues.

Paqe 133.

r work is used method of analytical continuation for solution of
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Sproblem about natural oscillations in entire region, when solution for

part of region is known. Taking as the initial the solution, for

example, for the spherical tank on the low levels of filling, it is

possible to construct the solution for the arbitrary axisymmetric

region, which has the spherical bottom. As the coordinate functions

it is possible to take polynomials, and the generatrix of region to

assign in the form of piecewise-smooth function.

1. Solution Df problem by analytical continuation. In work [2)

are obtained the following differential equations for frequencies and

forms of the natural oscillations :f liquid in the arbitrary region

for parameter h (Fig. 1):

d ( X\ C %~2Ik- _O -- (1)

a f - bklfI (k 1,2....),
dhI

1-0
a2Gk1 k -1 ;

w h e r e b j- --

-- kk k--1:
2

rk,-- - J1., tg adSo + J kfI tg ads,; (2)
SOI

G Vf Of jdF (3)*

J a
F

where ^,,<---.)h2a/g - dimej onless frequency of the K tone (subsequeitly

simp.y natural frequency,; L- displacement potential of the k tone.

IIIII ds Iacmn poeia Of
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Equations (1) have simple treatment. Let us assume that for the

assigned region is known the solution of the corresponding

boundary-value problem with some values of the parameters of region h,

a, a,. Then for the region, which corresponds to the level of the

filling with liquid h+Ah, the value ×h(h+Ah), fk(h+Ah) it is possible

to obtain on the basis of equations (1), without solving

boundary-value problem.

0
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Fig. 1. Geometric characteristics of tank.

Page 134.

Using the dimensionless parameter h=h/a, equations (1) can be

O represented in the following form:

dk (4)

d-0

2. Numerical realization of algorithm.

a) axisymmetric oscillations of liquid in axisymmetric vessel.

Using cylindrical coordinates, solution system on the free surface can

be presented in the following form (see Fig. 1):

0
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fk- I---- Ck,, r)2- (k 2,..;
=1 a(5)

I (IJ a,
fA = 1 '-1= (1 - 0 , rAe b-- a

f kfdF=O ripH k t I;

fkf kdF Ini1k1

Key: (1). where. (2). with.

After substituting (5) into (4), we obtain differential equations

for coefficients Chi, and expressions (2), (3) will take the form

F -- 2 t  + 2 - 3 ) ;  (6)

n=1 m=1
- Gk= Y, CknCI. (-Ia+)(n al-16

n-m n-200 00
O i=2 m+ 2

For integrating system let us use Euler's method. The finite

number of coordinate functions and the finite series for f, in (5) is

taken during the numerical realization of algorithm. As corollary,

during the calculations is broken orthonormalization of functions (5).

Therefore at each step of integration is done orthonormalization of

functions (5).

0
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x f- I m

i /

Fig. 2. Dependence of dimensionless natural frequencies of

*axisymmetric oscillations of liquid in spherical tank on relative

level of filling.

Key: (1) ... tone.

Page .35.

Spherical tank. The initial solution was undertaken from work

(3) on the level of filling h=0.1. The dependence of dimensionless

natural frequencies K for the first four tones on the level of filling

is shown in Fig. 2. Table I gives the comparison of the obtained

results with the results of calculations employing other procedures

for the hemisphere. During the integration of equations (4) for

obtaining the solution with h=l (hemisphere) the step of integration

was equal to 0.001. Calculation on computer(s) BESM-6 of entire
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sphere occupied 60 min.

Cylinder with spherical bottom. Results for this region make it

possible to consider the convergence of algorithm, since with hal the

solution asymptotically approaches the solution for the cylinder. The

dependence of the frequencies of the first four tones on the level of

filling is given in Fig. 3. Table 2 gives the values of the

frequencies of the first four tones with h=l.
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.Table 1.

(
1
Homep ""Mero, Pe IV.bTaT (P () MeTol

Wia KOHe4Horo. ONERA 3KcneptiMeHT a Ia.iHTH4ecxoro

3.1eMeHTa npoa o (eHHA

1 3,960 3,771 3,679 3,779
2 8,567 7,193 6,964 6,988
3 15,20 10,86 10,28 10,15

Key: (1). Number of tone. (2). Methcd -f firite element. (3).

Result ONERA. (4). Experiment. (5). Method of analytical

continuation.

12-'-

-I

1K V/I / I- -l- '

o /~ 004

Fig. 3. Dependence of dimensionless natural frequencies of

axisymmetric oscillations of liquid in cylindrical tank with combined

bottom on relative level of filling.

Key: (1) . .. tone.

Page l36,

* For the cylinder wittn the spherical bottom and coaxial inset within
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the geometry of external and internal generatrix it was assigned as

follows:
:2

- 24,$136-- 0,3 ) 0,2 0,3; (7)

I 0
-5,27(h-0,2) 0,2 < z< 0,48;

g j 5,27 (-0,76) 0,48 < <0,76;

S0 h >0,76.

With h>l solution for this region also asymptotically approaches

solution-for coaxial cylinders. The dependence of the frequencies of

the first three tones on the level of filling is given in Fig. 4.

Table 3 gives frequencies for the coaxial cyiinders in the region with

h=l in question.

b) skew-symmetric oscillations of liquid in spherical tank. The

form of oscillations of free surface is assigned as follows:

f_ Cos T r\ (L 2 n- 1 . 8
Jk - = Ckfl _2(8

Fig. 5. depicts dependences of first three frequencies of

skew-symmetric natural oscillations of liquid on level of filling.

0
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Examples of solution of problem examined about natural

oscillations of liquid i: axisymmetric cavities by method of

analytical continuation make it possible to positively consider

possibilities of method for solution of such problems.

S
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Table 2.

Xk
,' ka) (3)

HoMep UHaqntiapxte- U'u1HXrp"
TO.3 ? CKHkA 6aK 'ieCKHR 6aK

C LIAOCK1IM Co c( epHqe-
,HtIue M CKHM .HHL NIM

1 3,83 3,820
II 7,01 7,015

10,17 10,17
IV 13,32 14,33

Key: (1). Number of tone k. (2). Cylindrical tank with flat/plane

bottom. (3). Cylindrical tank with spherical bottom.

Table 3.

-lHomep (a) KCxaJb. KoaKceaL-
Tola k -bie tUH.1IH3,- Hbe o6etiaflKH| p,-s c nilec- CAWKoaal

KHM AHHUleM 0opMbI

I 5,32 5,33
II 10,42 10,43
!I 16,12 15,35

Key: (1). Number of tone k. (2). Coaxial cylinders with flat/plane

bottom. (3). Coaxial cowlings of complex form.
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4

0 0,,

Fig. 4. -Dependence of dimensionless natural frequencies of

*axisymmetric oscil.2atiuns of liquid in tank with cc'm-bined bottom and

coaxial inset on relative level of filling.

Key: (I). ... tone.

Fig. 5. Comparison of results of calculating frequencies of natural

skew-symmetric oscillations of liquid in spherical tank with

O experiment
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RAPIDLY-CONVERGING VARIATION ALGORITHM IN A PROBLEM ABOUT THE NATURAL

OSCILLATIONS OF LIQUID IN THE VESSEL.

I. A. Lukovskiy, G. A. Shvets.

Variational method is used to solution of problem about free

oscillations of liquid. Besides the harmonic polynomials, which

traditionally are used during the solution of this problem, in the

number of coordinate functions are included the functions with the

properties, which reflect the surface character of gravity waves in

* the liquid. For their determination special boundary-value problem at

eigenvalues is formulated. The efficiency of algorithm is illustrated

on the solution about the oscillations of liquid in the cylindr.cal

reservoir with horizontal genera~rix and the conical vessel in the

form of the inverted round cone. Is carried out the comparison of

obtained data with the results of calculation only according to the

harmonic polynomials.

To problem about natural oscillations of ideal incompressible

fluid in vessel dre devoted many research both in Soviet and in

foreign literature. Large number of works is devoted to the methods

of the construction of the actual solutions of the corresponding

* boundary-value problems, among which the widest acceptance obtained
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variational method. It proved to be very efricient Lo: the sclution

of the problems about the oscillations of liquid in the vessels of

axi symetric form. However, because of the need for the solution of

the problems about wave motions of liquid in the

capacities/capacitances of complex geometric form it requires further

Improvement.

Page 13S.

Tnis question is extremely urgent also in connection with the

development or the methods of the study of the problems of nonlinear

treory, for wnich the solutions of I'near problems are chosen as the

base. .n the oresent work variational method is used in its

.rao:tionl form. In the development of the basis of the ideas of

WorK [!I system of coordinate functions in the metho. Ritz it is

provided by the series/row of further properties (of type of the

property of boundary layer), which leads to an improvement in the

corvergence of process and, in the final analysis, to the decrease of

the d~rr1nsiu-nal.,y of algebraic systems.

Ritz's method. Selection of the sysccrdinate

.inctions. Research of the free oscillations of the ideal

incompressole fluid in the vessel, as is known, is reduced to the

so>c/o' of a cerpan problem at eigenvalues with the parameter under

- F g yelocity pot rntial of >IquI d in the form
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¢( x, ( , , Z' )0 = (x, , Iz) Cos ,( )

from fundamental equations of linear wave theory we will obtain

mentioned spectral problem in the following form:

0 B -- x? Ha 1 0; 2 O Ha S, (2)
-v 6V

Key: (1). in. (2). on.

where Q - region, occupied with liquid; Zo - undisturbed free surface

of liquid; S - hydrophilic surface of cavity; K=a 2 /g; g - free-fall

acceleration on the Earth.

Basic properties of solutions of problem (2) are well studied.

There is- infinite consecutively/serially positive eigenvalues of this

* problem, and to each eigenvalue x, corresponds the finite number,

generally speaking, the generalized solutions of problem Wn.

Form of Iisturbed free surface is determined after determination

of velocity potential in the form

f (y Z0 1 (0, y.z, t) (3)

g dt

In conformity to problem at eigenvalues of (2) is formulated

equ>valent variational problem for functional

K) 
(4)K (?)- f2dS
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under further condition

f ?dS 0.

Minimum of functional (4) exists on class of continuous together

with first-order derivatives of functions, and for its finding Ritz's

method is used.

Page 139.

The efficiency of the application of the latter depends on the

successful selection of the adequate/approaching system of coordinate

functions. The widest acceptance in this case received solid

spherical harmonics and harmonic polynomials, for which were

established/installed recursion formulas [3] important in the

practical sense. This set of functions during its use in Ritz's

method we is widened by the functions, which possess some analytical

properties of the exact solution of problem rI]. In this plan/layout

us, first of all, they will interest functions with the properties of

the type of boundary layer, which reflect the clearly expressed

surface character of the oscillations of liquid in the vessel.

Together with harmonic polynomials W(x, y, Z) let us consider

soliu.tions of equations of Laplace of type [1]

I?,I (X, Y, Z) e k, f (y, Z), 5

where fx, q) - complete on 0 set of functions, which is solution of

Doindary-valie problen
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i f+ k2 f= 0 Ha ,; (6)

+- +kp(s)f =O H(On a 1. (7)
an

Key: (1). on.

Here p(s) - certain weight function; I - intersection Z, and S; n

- unit vector of external normal to 1.

Boundary condition (7) follows from condition

-0 on S. The solutions of the type (5) not only qualitatively0v

reflect the surface character of the oscillations of liquid, but in a

number-o! cases they bring also to good quantitative results of [2].

Solution o(x, y, z) let us represent now in the form

it q
?(x, y, Z)=N atW;, (x , y, z) - Cn, p(X, g, Z), ()

k=l =1

where ah and c, - unknown constants, to be rmined from system of

Ritz

N b1 (ci -x , 1)o (1= 1,2,..., N). (9)

By components of vector b in system (9) will be ordered in a

specific manner constants ah and Cn; cIi and i) are determined by

. expressions
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a11= 1 v,)dQ; 0
(10)

ij -j ti'jdS,

.o

where xi - sequence of functions, which consists of harmonic

polynomials 'i and functions (Fn (5).

Page 140.

2. Numerical application of method of Ritz in some specific

cases. Let us consider the case of the free oscillations of liquid in

the cylindrical cavity with horizontal generatrix. The undisturbed

free surface of liquid is rectangle and, therefore, boundary-value

problem -(6), (7) can be solved by the method of separation of

variables. Por example, for the forms of oscillations, skew-symmetric

relative to y and symmetrical relative to z, we will obThti.

a n l '2 rin
fni(Y, z)=cos -z sin kni----y, !1

a I/ a

moreover eigenvalues kni they are defined as the roots of the

transcendental equation

k,1 -S k " 0--nnCos 0, (12)
r0  V

where h1=h-R 0 ; r0=/R0-hi; R0 - radius of cylinder; h - depth of

fiLing of cavity.

Three-dimensioral harmoric polynomials, obtained from system of
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solid spherical harmonics C'n=bnmRnp'(cOS6)coSm-q and

S, b>rn <(O snim take following form:--"" " " X (cos 0) sin m il,

C=X; Cliy; SI Z; C2 X2-i(y2IZ2;

C2=xy; C'=y2-z2; S=xz; S2=2yz; Co-=x -- xy2---xz2;2 , 22 -22
C1-- 2y --- y(y2 _z2) " Sa -X 2Z I z(y2_z?); C"==X (y-z2); (13)

34 343
S2 C' = (3y2  -- z.)

S =2xyz; C=- (y2 -3z); S (3y 2 -Z 2).

Recursion relations, which make it possible to register functions

and their derivatives for as much as desired large m and n [33, are

obtainedfor them.

0 Table 1 shows convergence the first two values nj (1, 2) of

frequency parameter K depending on number of harmonic polynomials (13)

in expansion (8) at fixed value of q=3, radius of cylinder R,=l, depth

of filling h=l and length of cylinder 2a=2.

0
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Table 1.

n %nj zn2 nI Xn2

3 1,3892 3,3795 1,5028 11,6237
4 1,3562 3,3795 1,3746 11,5993
5 1,3561 3,3795 1,3743 5,3202
6 1,3561 3,3665 1,3568 5,2927
7 1,3559 3,3665 1,3568 4,7702

Page 141.

Two latter/last columns of this table 0 nj relate to the case of

calculating the parameter k, when potential p is represented as

expansion only in terms of the harmonic polynomials. Analogous

results are represented in tables 2 and 3 for the values of parameters

h=1,5Ro,2a=7,18Ro and j=l, 2, 3. In this case table 2 presents the

results of calculation according to the algorithm, given in the

present work (q=3), and in table 3 - the results of calculation with

the use only of harmonic polynomials (q=0).

For case of cavities of axisymmetric form of solution of

boundary-value problem (6), (7) in polar coordinate system they take

form

finn (r, T") m (kmnr)ccs ! '14)

moreover eigenvaluez kmn are defined as roots of transcendental

equatio.i

d, , 0- I I I I5)
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where t=kr 0 ; r0 - radius of free surface.

System of harmonic polynomials, registered in cylindrical

coordinate system, is biparametric set of functions

Wn(x, r) sin m-; Wn(x, r) cosM9, for which are also

established/installed simple recurrent correlations (3]. For case of

m=l, ior example, we have

W'= r; W= W3 = x~r r I,W~; .~r W-xr r3; W - ir+Z 'r......(16)
4 4x~ 4

Table 4 gives results of calculating first eigenvalues of

boundary-value problem (2) for inverted cone with half-angle of 60=100

with value of r0=l, Yr=tgS0 , q=3. Analogous data are cited in ble 5

with q=2.

Results given above show that inclusion in number of coordinate

of decision function of type (5), which reflect basic special features

of behavior of liquid in vicinity of free surface, makes it possible

to significantly influence convergence of Ritz's process not only

during calculation of lowest, but also, in particular, highest

frequencies and forms of oscillations of liquid. This relates first

of all to the case of the substantially spatial problems, for which

even partial separation of variables cannot be led. In this case also

it is possible to substantial reduce the order of Ritz's system which

I -i il III
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implies the retention/maintaining the stability of calculating process

and increasing the accuracy of calculations.

Table 2.

3 2,0003 2,2187 2,7800
4 1,9077 2,2186 2,7800
5 1,9076 2,2186 2,7800
6 1,9076 2,1693 2,7791
7 1,9028 2,1693 ?,7791

Table 3.

0 0 0
/nl f12 xn3

3 2,8421 7,6975 437,0681
4 2,1584 7,6966 436,9401
5 2,1583 3,4926 59,5738
6 1,9599 3,4921 18,1121
7 1,9599 3,4140 18,0717

0
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* Table 4.

X I n1 In2 *n3

1 1,6772 5,2470 8,4622
2 1,6748 5.2382 8,4546
3 1,6747 5,2322 8,4471
4 1,6746 5,2299 8,4419
5 1,6744 5,2297 8,4393

Table 5.

6 1,6743 5,2296 37,8766
7 1,6743 5,2294 20,4115
8 1,6743 5,2293 18,9783
9 1,6743 5,2293 16,6370
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* Page 142.

VARIATION PR:NC-PLE OF M. A. LAVRENTYEV AND RT-ALGORITH4 OF CONFORMAL

MAPP:NG iN HYDRODYNAMICS AND DYNAMICS OF SOLID BODY WITH THE LIQUZ:D

B. . Rabinovich, Yu. V. Tzrin.

-s descried new numerical RT-algorihnm of conformal mapping o

arbi~tary sing -' connected and double-bond regions with

piecewise-smooth duct/contour on the average and annulus respec:.eiv,

A R'-aigorithm ->cludes two recurrent procedures: internal

(R-procedure) and external (T-procedure), at each step/pitch of w>

is used the variation principle of M. A. Lavrentyev. A RT-alaorithm
* is realized in the form of program in the language FORTRAN-4.

Examples of solution of external and internal hydrodynamic

problems are given, including problems, which are encountered in

dynamic-s of solid body, which contains cavities with liquid.

Series of flat/plane boundary-value problems of mathematical

physics with harmonic and biharmonic operators comparatively easily .s

solved, if initial region conformally can be mapped on the average

(simply connected region) or annulus (doubly connected region).

This relates both to external and to internal problems of

hydrodynamics of incompressible fluid, in particular, to problems of

* dynamics of liquid in mobile cylindrical cavities, which do not



DOC = 89056412 PAGE V/24-Sf

oossess axial symmetry. Similar problems acquire ever larger rgency

ine dynamics of different controlled objects, which have the

sections of the complex configuration, which contain liquid.

Daoe 143.

However, analytical formulas for mapping functions can be

or-ained only for regions of simple configuration (ellipse, elliptica:

ri-o, circular sector, etc.).

There is series/row of numerical methods of conformal mapping,

whose bases are laid in work [3] see, for example, [10] and [K-7 3))

However, realization into the computer(s) of the corresponding

alQorichms, which reduce the problem to the problem of linear alcebra,

rins in the case of the regions of complex configuration, which

req;Xre che assignment of the large number of points on the

.....t contour, for the definite difficulties.

New possibilities in sense of creation of structural/design

nimerical algorithms of conformal mapping, which allow/assume

efficient realization on computer(s), open/disclose variation

principle of M. A. Lavrentyev (4, 5].

in work problems about conformal mapping of arbitrery quaver

region on the average are examined in classical -,tting [3] and

arbitrary doubly connected region with piecewlse-smooth duct/contour

to a.nul.us. The corresponding exterior problems are led to those
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indicated with the help of the linear-fract.onal conversion.

Is presented multistage alqorithm of conformal mapping

(RT-algorithm), worked out by authors [8, 9], which includes two

recurrent procedures: internal (R-procedu-e) and external

(T-procedure). At each step/pitch is used m. A. Lavei'nt'yev's

principle, to whom is dc'wry the form, conveniernt for the numerical

realization on the computer(s).

RT-algorithm is realized in the form of program in language

FORTR.N-4 and is checked on wide spectrum of flat/plane boundary-value

problems.

As illustration of possibilities of RT-algorithm examples of

solution of some external and internal hydrodynamic problems and

problems of dynamics of liquid in tanks of flight vehicles are

examined [1, 6-8].

1. Algorithm of precise conformal mapping of region, close to

circle, on the average and inverse representation (R-procedure). Let

in the plane complex variable z be assigned closed curve C, close to

the unit circle F. To it correspc-id simply connected region D2 (C)

close to the circle and exterior D1 (C). Proximity C to F is

determined by the inequalities

' r (()
0 ~rizr(s)----1--)(?); r(';)Iirc:(O0<' ')
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where r(Q) - radius-vector of the point of duct/contour C; o -

vectorial angle; e - small positive number; variation 6(q ) 0 is

considered positive during the variation of duct/contour r in the

direction of internal standard/normal.

Let w=f(z, C) - function, which reflects region D2 of plane z to

unit circle of plane w, moreover

w--f (z, C)o=00; f' (z, C)I'0>0. (2)

Page 144.

Using integral of Schwarz and law of mean [4], it is possible to give

the variation principle of M. A. Lavrentyev [3, 4] to the following

form:

Under the conditions (1) and (2) function.

w-f (z, C)-=zI +J ();
()= u ( +) Z (3)
2,%i Z C

r

where =eilv; u( )--5[p( )] and duct/contour is bypassed so that the

domain of definition z remains to the left, differs from the function,

which realizes conformal mapping of region D2 (C) onto the unit circle

ani D,(C) to its exterior, to the low, not lower than the second order

relative to e.

Let us introduce into examination function c(i)
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n=1 (4)

C. a. --ib,,; C e =; v (0) = v (c ) 0 ,

where ea0, ean and Ebn (n=1, 2, ... ) - coefficients of expansion of

function 6(o), which is assumed to be single-valued, continuous and

2r-periodic, in Fourier series in segment 0:p:2n, and

conjugated/combined with it c( ).

Using Cauchy formul, 't is posih t reprczent funct-ion- J(z

(3) in another form:

0 0 n

tr n=I

(a and b here and subsequently correspond to representation of

interior onto unit circle or external to its exterior). The analytic

function J(z) is continuous on the duct/contour r.

Using formulas (5a) and (5b), it is possible to give to mapping

function w, entering (3), following form:

" I+Sao+ n zn(6a)

w= f(z, C)= [a

" I+ a0Y .- n(66)I____
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These expressions convenient for numerical realization, since

they reduce entire problem to expansion of continuous 2r-periodic

function to Fourier series.
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Function (6) differs from precise function, which translates

duct/contour C of plane z into unit circle of plane w, to smalls of

order not below e2 .

Function (w), which is in the first approximation, of

reverse/inverse for (6), is determined in accordance with M. A.

Lavrentyev's principle by following formulas:

n-]
w 1--s ao± cnwa); ('a,

This function also differs from precise function, reverse/inverse

for f(z, C), to members of order not below el.

However, there is possibility to construct on base of A. M.

Lavrentyev's principle algorithm of representation of region, close to

circle, on the average and inverse representation with any given

accuracy.
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Let us substitute into right side of (7a) as w values, which

correspond to points of unit circle F. Inverse representation (7a) is

translated r into duct/contour Co), which differs from the initial

duct/contour C by the smalls of order e2 or above.

Representation F on d") is precise. Problem now consists in

constructing of the precise representation Jon F. We will use

expression (6a), which let us represent in the formn-11
((8)

z 1 ==fi(z, C())--Z ~~ a± Pn

where a and ,(1) -() -l - Fourier coefficients the function 6P)

(Q), whi~h corresponds to duct/contour d).

0
Function (8) realizes representation of duct/contour d) on 2

that differs from F by smalls of order is not below e2 . After

repeating the same operation m of times, we will obtain at the m

step/pitch

SCnZm-1

where coefficients ear) and eC~m) relate to 1_iction 6m(q), which

corresponds to duct/contour C(m). Let us take for the distance from

duct/contour C(m) to the unit circle r standard deviation A\Rm, where

in view of the equality nf Parseval

0
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2 it2 ~m +~~1 C4~ 12l
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Relying on variation principle of M. A. Lavrentyev, it is F_

possible to demonstrate that with any given small positive number

with certain value of m=M will be fulfilled inequality FRm zp.

sequence of mapping functions (9) descends according to norm Am.

Analogously is constructed sequence of functions

Zm - fm(z , (M a- , (11)

corresponding to representation of exterior (expression (6b)). The

set of functions f, (9) or (11) (m=l, 2, ...) gives the precise in the

sense indicated straight/direct representation w=F(z, CcO) closed

domains (internal or external with respect to C'-1), and functions

z=(D(w) (7) - precise inverse representations. We will subsequently

call the appropriate recurrent procedure, described above, a

R-procedure.

2. Recurrent algorithm of conformal mapping of arbitrary simply

connected region on the average (T-procedure). Let in plane z be

assigned arbitrary simply connected region D2 , limited by the

piecewise-smooth duct/contour L2 . Is required to carry out conformal

mapping u, region onto unit circle Dw of plane w with duct/contour

1< so that the given point OD 2 region would pass to the center of
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* this circle, and corresponding inverse representation.

Analogously is formed/shaped exterior problem (representation of

region D, of plane z, external with respect to duct/contour L1 , onto

exterior of unit circle of plane w and inverse representatioi). In

this case the representation is determined with an accuracy to the

arbitrary angle of rotation of duct/contour L, or L, around the axis,

passing through point 0, it is perpendicular to plane z.

Let us assume additionally that ducts/contours Li are star with

respect to point 0 (this assumption it is not fundamental and

connected only with simplest version of construction of variation in

majorant- ducts/contours, described below).

Let us begin from exterior problem. Let us introduce auxiliary

duct/contour in the form of the circle/circumference r10 of a radius

p,0 with the center in the beginning of coordinates 0, inserted in

duct/contour Li (in this case it is not excluded the presence in the

circle/circumference r10 of common points with L,).

We standardize variable z so as to obtain p1 0 =l (Fig. la) let us

designate 6,o(Q) variation in radius-vector of points of duct/contour

L,, which now we will consider positive, when it is directed in

direction of external standard/normal, and let us determine as

follows:
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jo 0+< 
2  :, J 2)

where rjo(()l - radius-vector of arbiti-ary point of duct/contour L

with beginning in wheelbarrow 0; e0 - arbitrarily selective low

parameter.
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The restrictions placed on duct/contour L,, ensure uniqueness and

continuity of function 6(p), to which corresponds duct/contour C,0,

close to the circle/circumference r1 (Fig. la). For the satisfaction

to conditions (1) function 6,,(Q) can be subjected to further

smoothing. Subsequently we will assume that this operation is carried

out, and for all variations in condition (1) in question carried out.

We will use R-procedure, which let us register in new

designation3 thus:

z=Do(z); z,=Fo (C0)) , (13)

by that based on expression (11), in which it is necessary to change

sign before c to opposite in accordance with (12). As a result we

will obtain precise conformal mapping of duct/contour C(l) close to

C,,, onto the unit circle of plane w and precise inverse

representation (subscript it corresponds to the number of

duct/contour). Duct/contour L, will pass by force (2.2) into the new

duct/contour L 1 1 with equation zl=Fl0(zl 0 , )0 where z=zo(?)

equation of duct/contour L,.

0
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is put in L, new auxiliary duct/contour F, with center at point
h

0., which is form 0 (Fig. i ), which has perhaps common points with

L,, and we standardize variable z, so as to obtain unit radius in

circle/circumference r 1.

Let us form variation 6 (Q) radius-vector of points r1 , which

satisfies conditions (1), analogous (12). to it will correspond

duct/contour Ci, close to r,1.

Repeated application of R-procedure (13) makes it possible to

construct precise representation of duct/contour C'W', close to C ,

onto exterior of unit circle of plane z2 and corresponding inverse

representation:

Z2 _ f1 1 (Zi, C11); z1 = (Iz 2); Z2 =F11 (Z1, C4111 (14)
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Fig. 1. Method of construction of variation for simply connected

regions: a) exterior, b) interior.
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Set of enumerated operations forms the firs-s of s-epip'tch of

recurrent process

Zk-- Ik IZ -ICl,k-1);

Zk-_ = FI,k- (z4);

zk= FI (Zk-1, C 1 ); (1.5)
(,)

k=1, 2,...; z =z; z --= npip k=-K1 ,

Key: (1). with.

which leads to the sequence of the functions, w7ica ma-or:ze

duct/contour L,. it is possible to show that with any given small

positive number ET with the certain value of k=K, will be fulfilled

inequality !\T'- T, root-mean-square distance from duct/contour C1

to the unit circle, i.e., occurs convergence according to norm AT.

We will call described new recurrent procedure T-procedure.

Analogously is constructed T-procedure during solution internal

of problem, i.e., representation D2 region, internal with respect to

boundary of L2, onto unit circle. For its realizatio. we will use

circle/circumference r 20 with the center at point 0, which contains

duct/contour L2 , so that P20 and L2 can have common points, and we

standardize z so that the radius r,. would become unit o,,=l (see Fiq

lb). Let us designate 6,0 (o) the variation in the radius-vector of

the points of duct/contour r2 , positive during the %ariation in the

* c rection of the internal standard/normal:
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Y 2 0 + 1 3 ( 1 6 )
, 1 - [r (?)Im n, 0 ?- <21,

where t2.({) - the radius-vector of the arbitrary point of

duct/contour L2 with the beginning in center 0 of circle/circumference

F,

Let us ascribe to function 520(o) the same properties (1) thaT

also ) then to it will correspond duct/contour C 2., close to

F,0. Using a R-procedure (9), it is possible to construct a

T-procedure for the internal problem according to the same diagram, as

z =/2, -I ( k--11 C2,k-1); zk_1 = P2,k-1 (zk); (17)

zh--F;, _ (zk_1 , C2-k-1);
(I)

k=1, 2,...; ~D-z; z,--w npi ki K2 .

Key: (I). with.

Duct/contour L2 at first step/pitch of this process will pass

into duct/contour with equation z 2 -F 2o (z.o, C(21) , where z=--z 2o0 () -

equation of duct/contour L2 .

It is possible to show that corresponding majorant sequence

possesses the same property of convergence according to norm, that

also generated by process of (15), i.e., with certain k=K 2 is

fuIf i Lled inequality h

0
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By such form of func~.ion w(z) and z(w), generated by a T-procedure,

realizing straight/direct and inverse transformations in both problems

- internal and external, are obtained in the form of the recurrent

sequences of Taylor series or Loran with the known coefficients.

3. Recurrent algorithm of conformal mapping of arbitrary doubly

connected region onto annulus. Let us consider doubly connected

region D(C,, C,), limited by the closed curves, close to the

concentric circles/circumferences F, and F 2 in the sense that are

satisfied the conditions

* 1(?)=r 1 (?)_p0; %( p): 1 -r 2 (,) (0 2(18)

S r ---- o< 1; r 2 (p) 2 r- =-- 0- 1; h -1-p 1 o,

whpre Q - vectorial angle; r, - radius-vectors of the points of lines

C,, C,, carried out from the overall center of circle F, F: e -

arbitrary small positive number.

Let w=f(z, C,, C2 ) - function, which reflects region D of plane z

to annulus of plane w with unit external radius, moreover

f(z, CI , C2) - 0=O; f'(z, C1, C2) Z (->)

Variation 6,(p) we will, in contrast to (7), consider positive

during variation F, in direction of external standard/normal; and

* 6
2 (o) - during variation P, in direction of internal standard/normal.
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To variation principle of M. A. Lavrentyev it is possible in this

case to give following form, analogous (3).

Under the conditions (18) function

W= f (z, C, C) =z- J (z)+ J 2 (z)

-z d, (20)2 (Z Uj (,
r I

where =e1 ¢; uj( ) r6j[qc()]; j=l, 2 and duct/contour (F, F2 ) is

bypassed so that domain of definition z remains to the left, differs

to the left, differs from function, that realizes conformal mapping of

region D(C,, C2 ) by annulus Dw., to smalls of second order relative to

Mapping function w (8) can be represented by analogy with (6a, b)

in the form

' VC

V ff(Z, C, C"):z {-- (a o+ c 1 z-+ (a2o-+)

(21)

where c~j --=ajn-ibj,; -afn, £ajn, ebn - coefficients of expansion of

functions 6j(q)) in Fourier series in segment 0,21r.

Page 150.

Let now in plane z be assigned region in the form of ring D,

Simited by two locked nonintersecting piecewise-smooth lines L, and
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* L2. It is necessary co carry out conformal mapping D region onto the

annulus of plane w so that the line L, would pass into unit circle

1 .2, line L, - into circle/circumference ]Fwl of a smaller radius, and

the given point 0 of plane z - to the center of these

circles/circumferences, and inverse representation. The corresponding

representations are determined as in p. 2, with an accuracy to the

arbitrary angle of rotation D region relative to point 0. This

problem is reduced to the problem of the previous section, if we use

function (6) and R- and T-procedures.

Let us place within duct/contour L, circle/circumference r1 0 of

radius p1 0 and will standardize variable z so as to obtain p10=l (Fig.

2a). Let us assume in (3), (6) 62()-O, a2O=O, C 211 0 and let us do the

* first step/pitch of external recurrent process exactly as in the case

of simply connected region, according to diagram (13), beginning from

the construction 6,(Q) (see Fig. 2a). Difference will be only in the

fact that upon transfer from plane z into plane z, will be changed not

onlv line L,, which will become L1, with equation zio= (oi, C10)

(where z=-zlo( ) - equation of line L,), but also line L2. We will

assume that the parameter e0 is selected sufficiently to low in

comparison with the minimum width of ring D so that the line L, upon

transfer in L,, in accordance with equation zi =Fl0 (z 0 , C() (where

Z=Z2*(?) - equation of duct/contour L2 ) would be changed to the

values of the higher order of smallness relative to e,0 , than L, upon

transfer in L1,. For the realization of the second step/pitch let us

lead around line L2, the circle/circumference r 2, of a radius p 2 , with
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the center at point 0, (form 0 in plane z,) and will standardize the

variable z, so as to obtain p,,=l (Fig. 2b). Let us assume into (3)

6 =(=O and respectively in (6) 010 =0; in,0, and it is realized the

procedure, analogous (16), beginning from the construction of

variation 62 1 (o) (see Fig. 2b).
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Fig. 2. Method of construction of variations for doubly connected

regions: a) internal boundary; b) outer edge.
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It is assumed that line L,, upon transfer in L,2 with equation

72=F 21(zit, C'?) varies in view of selection e.; small of higher order

relative to e2 0 , than line L2 upon transfer in L22 with equation

Z2=F 21 ( 2, C 2P). Further steps/pitches are constructed according to

the same diagram. Here, thus, are realized two sequences of the

functions, which majorize from two sides ring D, one of which is

represented by Taylor series, and another with Laurent series. A

question about its convergence is not trivial; the latter depends on

the possibility to select the sufficiently low value e,, which does

not lead to the loss of calculating stability due to a large required

quantity of steps/pitches K for the completion of external recurrent

0 process with the assigned accuracy, determined by parameter "
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k) d)

-. ' ! - I . _.

Fig. 3. Circulation "round wing" near earth/ground; stages of

conformal mapping with the help of RT-algorithm of region cnto

annulus: a) grid of polar coordinates in annulus, which is form of

external with respect to profile/airfoil region; b) region before

latter/last conversion of N. Ye. Zhukovskiy; c) region before

reverse/inverse linear-fractional conversion; d) flow line and

equipotential lines (grid, conformal-equivalent grid Fig. a).
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4. Some external and internal problems of hydrodynamics. The

described recurrent algorithm was realized in the form of program in

the language FORTRAN-4 for the cases of singly connected and doubly

connected regions. In this case it was possible with the value of a

certain complication of formula for the construction of a variation in

the duct/contour of inscribed and circumscribed circles to remove/take

the requirement of stellar regions.

For resolution in Fourier series was used program of raoid

Fourier transform with use of 512 points of duct/contour and maximum

number of members of series/row 129 (N=64). Parameters Es. ET, FO were

* accepted during calculations by the following: ER= ET = 2. 0-5; E 0,2.

In this case the number of steps/pitches of internal cycle

(R-procedure) did not exceed M=3, but external (T-procedure) K=50.

Examples of solution with the help of RT-algorithm of

hydrodynamic problems, which are reduced to conformal mapping of

fairly complicated regions on the average or annulus are given below.

0
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Fig. 4. Circulation "round wing" with slat (designation the same as

in Fig. 3).
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Fig. 3, 4 present mapping onto annulus of regions, external with
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*respect to wing near Earth and wing with slat, that gives one of

possible flow patterns of corresponding profiles/airfoils of ideal

fLiuid. Transition/transfer from the infinite region to the final was

realized with the help of the linear-fractional conversion.

Additionally, before beginning the work of a RT-algorithm, were used

after conducting of the corresponding sections/cuts inverse

transformations of N. Ye. Zhukovskiy, "straightening" flattened

ducts/contours.

Fig. 3d and 4d shows final conformal-equivalent grids, elements

of which are flow lines and equipotential lines during circulation

flow around corresponding profiles/airfoils of flow of ideal

incompressible fluid.
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Fig. 5. Circulation flow around circular cylinder with edges/fins:

a, b) the same as in Fig. 3a and 4a; c) flow line and equipotential

lines in the case of external edges/fins; d) the same in the case of

internal edges/fins.

Page 154.
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Fig. 5c d shows patterns of lines of current and equipotential

lines during circulation flow around cylinder with external and

internal radial edges/fins.

Fig. 6 depicts flow lines and equipotential lines, which

correspond to motion of atmosphere of Jupiter in vicinity of "red

spot" in presence of two point vortices/edcies [14].

5. Problem about motion of liquid in cylindrical cavities. Let

us consider as an example doubly connected cylindrical cavity. In the

case, when the free surface of liquid is perpendicular to the

longitdu'nal axis of cylinder, the initial three-dimensional

boundary-value problems, connected with the motion of liquid, are

reduced by the method of separation of variables to the

two-dimensional problems for S region, which is the cross section of

the column of liquid [5]. The latter are solved by the method of the

expansion of the unknown function in the Laurent series (heterogeneous

problem) or by the method of Bubnov-Galerkin (uniform problem), if it

is possible to conformally map doubly connected region S of the plane

of complex variable z=x+iy to the annulus in plane w=u+iv.

S
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Fig. 6. Idealized diagram of flows in the atmosphere of Jupiter in

vicinity of "red spot" (larger from closed domains), constructed on

basis of photographs KA "Voyager" [143: a) the same as in Fig. 3a and

4a; b) the same as in Fig. 3c and 4c; c) pattern of lines of current

and equipotential lines (grid b, conformal-equivalent to grid Fig. a).
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inerzta of layer of liquid of unit thickness relative to longitudinal

axis of jacket; c) square of dimensionless frequency of first tone of

unsy:7metric oscillations of infinitely deep liquid in plane, passing

t :n~ch minor axis of ellipse; d) the same in plane, passing through

transverse; - - calculation on basis of use of RT-algorithm by

B'bnov-Galerkin method with four coordinate functions; - - - - the

same with one function; O.* - data from works [1] and [6].

Pace l

n tne case of uniform problem is realized further representation

o: ': s annulus onto rectangle S'(O , o0; OtE Tj ) in plane

we:, +±i with the help of exponential function w=e.

All parts of solution are described in works [1, 5, 6], and we On

them do not stop.

Let us consider for example S region in the form of eccentric

elliptcal ring (Fig. 7c). As the dimensionless parameters let us

introduce the following:

c a, . d •
a a al -

from which first three are independent variables (eccentricity e, the

relationship/ratio of semimajor axes 6, the relative shift of the

centers of internal and external ellipses f). With c=O, S region

passes into the elliptical ring, limited by the confocal ellipses:

when e=O - into the eccentric annulus, with e=O, e=O is degenerated

into the annulus.
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Fig. 8. Motion of liquid in section, formed by eccentric elliptical

cylinders; stages of conformal mapping with the help of RT-algorithm

of eccentric elliptical ring onto annulus (designation the same as in

Fig. 3 and 4).

Page 157.0
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Fig. 7b depicts values of dimensionless attachment/connection cf

moment of inertia of T layer of liquid of unit thickness relative to

axis, passing through center of external ellipse. In Fig. 7c d - the

value of the squares of the dimensionless frequencies of the first

tone of the unsymmetric oscillations of infinitely deep liquid in the

plane of the symmetry of section (C-,p) and in perpendicular plane (WIs).

Following coordinate functions were used for calculation:

Vkp =C + cos ( - 1) 7 cos V-n;

Yks= COs (- 1) ,sin (2,o- 1)T -(, v- 1, 2, 3 ... ), (23>

where C---- - 1) t cosijdtdl',
S"

S ZI(C) 2 - -dd; (24>

s, e o

moreover to each combination of indices P, corresponds one value k.
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0

Fig. 9. Relief of jacobian of conversion Iz'( )I2 of initial region to

rectangle of plane above plane : a) confocal elliptical ring; b)

eccentric elliptical ring; c) eccentric annulus.

Page 158.

As significant dimension is accepted value 1= (ab)'!; parameter 6

in all cases it is identical: 6=0.6; maximum number of steps/pitches

of T-procedure comprised k=10.

Together wiLh values, obtained by method; described into [5],
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with use of R-T-algorithm of conformal mapping, Fig. 7 gives

appropriate values for confocal elliptical ring and eccentric annulus

from works [6] and [1].

With critical value of e=0.6 internal ellipse is degenerated in

line segment. In this case precise value wlp, which corresponds to

K=O, must not depend on the parameter K. Actual difference wip with-2-

'40 from wl with K=0 (Fig. 7d), which increases with an increase .,

indicates the need for use during the calculation of the larger number

of coordinate functions.

Fig. 8 depicts some stages of conformal mapping with the heip of

RT-algorithm of eccentric elliptical ring onto annulus, on Fig. 9 -

relief of jacobian JZ'( )l2 of conversion z=z( ) above rectangle S' of

plane S= =in, to which is mapped initial doubly connected region S of

plane z=x+iy.

Given examples give sufficient representation about great

possibilities, which open/disclose RT-algorithm of conformal mapping

for solving two-dimensional boundary-value problems, including

problems of dynamics of liquid, partially filling cavity of solid

body.
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OSCILLATIONS OF CYLINDRICAL CONTAINER WITH THE LIQUID AND THE ELASTIC

RADIAL BAFFLES.

I. M. Melonikova, G. N. Mikishev.

Effect of elastic radial baffles on oscillations of cylindrical

container, partially filled with liquid, is investigated. The

approximate linearized equations, which describe the joint

oscillations of vessel, the liquids also of the baffles, which are

solved-n-umerically by method of successive approximations, are given.

It is shown that, beginning from a certain value, the relations of the

partial frequencies of the system, the effect of the elasticity of

baffles virtually are reduced to an increase in damping the

oscillations of liquid. The dependence of equivalent attenuation

factors on the relation of partial frequencies and air-gap clearance

between the wall of vessel and the baffles is obtained.

Calculated results will agree well with results of carried out

experiment.

Work [1) examines problem about oscillations of liquid in

cylindrical container, which contains elastic radial baffles. The

initial equations, which describe the joint oscillations of liquid and
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* baffles, are obtained approximately with the use of a perturbation

method [3, 4].

Here in the same setting is examined more general problem: about

oscillations of cylindrical container with liquid and elastic radial

baffles. Are given also some results of experimental research.

1. Let in field of mass forces, whose acceleration j, is located

rigid vessel in the form of straight/direct circular cylinder with

flat/plane bottom of radius r0 , partially filled with liquid of

density p to level h and containing N of radial baffles in the form of

flexible longitudinal bands of small width, stretched near wall at

4quidistance from each other. Mass of vessel with liquid M, the

length of baffles 1, width b (b<), thickness r, the linear mass m,

the tensile stress of each band T. Baffles are completely immersed in

liquid (ih).

Vessel completes low progressive/forward oQ:.llations under

action of transverse force P=Psinwt. Let us compile the linearized

equations of the joint oscillations of vessel, liquid and baffles.

Most simply this to do by addition to the known equations for the

vesseli without the baffles (see (3]) equations of transverse

vibrations of flexible bands and introduction to the right sides of

the generalized forces, caused by baffles. During the compilation of

equations we will be bounded to the account only of the fundamental

tones of the oscillations of liquid and baffles. The appropriate

* generalized coordinates let us designate through s(t) and q(t). Let
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us connect moving coordinate system with the center of the bottom of

vessel, after directing axis Ox opposite to vector j.

It is not difficult to obtain equations of transverse vibrations

of flexible bands, identifying band with stretched string.
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Let us determine generalized forces approximately, after using the

harmonically linearized dependence for the flow forces, which

functions per unit of the length of rigid baffle [4):

• El =  m l -  -3 2V ° I/2

F, = mv+ Hpb/2w 'o vi. (1)

Here

m = -pb 2 - linear apparent additional mass of baffle; Vi- normal
2

to baffle component of velocity of liquid; i - number of baffle;

I=- 19,1 (1 + O,4eO,138x'/t), x'=x-h. (2)

For normal to baffle component of velocity let us take

vt=s -- qfj, (3)
Ov.

where c - eigenfunction of uniform boundary-value problem about

oscillations of liquid in cylinder without baffles;
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_La, _= sin i, a- ch( 1 x/ro)ov. I1 sh ( hh, ro)

01 -angle between plane of vibration and i baffle;

fj =f sin 0, f=sin (Tx/) -- natural mode of vibration of band.

Lowering intermediate unpackings/facings, let us register unknown

linearized system of equations in the following form:

N

u usS+Y ~iiP sin wt;
1=1

N Ni+ S + W .S+a,+ qq

sqii % sqi ; (4)
1 - = 1 i = I

- Sq' I + wq ,+ a ,,,' qa Sss iss (i--- 1, 2,..., N ).

Coefficients of equations are determined by following

expressions:

-s ' ; - m0 + m ;as=- ; as,,- + ,

2m"l 2m'I M y(fd i i

auqi si!2. ; aqfl26 ; a2iq r.,afdxsin2Oi;
a i "' -+

0

aqi5  m'~$ft s5 e-.--+ -- , N sin 0i ! /2, iia2At2dx; (o)

K( !l 27'/2 1/2; K ](i <
i ' f oidx I sin sq I /cf +/0,

s ,

- -dxII sin 0l I
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K S, n'% -m' . f!,,d [ in

M 0
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Here 0so, Sso, ., t - hydrodyndmic coefficients, which correspond to

cylinder without baffles;

K__' pb 1' Nm r h(tlr + I

m'=iz (m° -m); / 0 =(a2sg+f2q2i - 2afs0 q0 j cos Yqi)1/2

-s,i - phase difference between generalized coordinates s and qj.

2. System of equations (4) was solved numerically by method of

successive approximations with use by computer(s). In this case the

effect on the natural frequency of the baffles of the further chain

forces, which appear during the oscillations, was taken into

consideration.

Fig. 1 gives results of calculation of amplitude frequency

characteristic of system according to coordinate u, in reference to

P0. obtained with different values of parameter X=),/Ws

Calculation is carried out with following initial data: M=56.6 kg;

Po= 0,313 N; r0=175 mm; 1=365; b=58 and r=0.2 mm; p=10 3 kg/ms; h=1.

Case k=100 virtually coincides with case of absolutely rigid

baffles. The value of resonance peak with K=100 is equal to 0.835

mm/N. Witb the decrease K resonance peak is reduced. The frequencies
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*of minimum and maximum of amplitude characteristic are changed weakly.

With -=1.34 becomes noticeable the second resonance peak, caused by

the oscillations of baffles.

0

0
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0

q4

q2

u/P 0 Ai__ ___

J 9 10 11 12 13" • ' 0,-

Fig. 1. Amplitude frequency system characteristics on coordinate u,

in reference to P., with different values of parameter K: --

calculation; &CO - experiment.

Key: (1). mm/N. (2). rad.S-.
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However, its value up to the value K=1. 2 considerably less than the

first (basic) peak. As calculations showed, with an increase in the

amplitude of external force the second peak virtually vanishes.

Thus, with values K21. 2 considered mechanical system behaves as

system with two degrees of freedom (vessel - liquid). The decrease of

the value of basic resonance peak is equivalent to an increase in 0
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*damping the oscillations of liquid.

About this special feature of system testifies also phase

response, which here is not given.

Major resonance continues to be reduced with further

approximation/approach of parameter K to 1, and amplitude

characteristic is distorted by proximity of second resonance, which

with K=l begins to prevail over the first.

When effect of elastic baffles in practice is reduced to decrease

of resonance peak, amplitude characteristics can be used for

determining equivalent damping coefficient of liquid from following

. formula:

2 ~2* - 0

where w,, w* - frequencies of minimum and maximum of amplitude

characteristic; U0*-- value of resonance peak. This formula is

obtained from the expression for the amplitude characteristics of

linear system with two degrees of freedom when o=, (oJsw,) [3].

Fig. 2 gives dependence of dimensionless equivalent attenuation

factor 6,=Ws*/W0 on relative amplitude of oscillations .),)=s0/ro.

In the case of elastic baffles equivalent attenuation factor is

* considerably higher than in the case of rigid baffies (=00); so,
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with K=2. 2 and F,=0.05, almost 3 times. This effect is caused by the

fact that the elastic baffles, during the specific selection of their

parameters, are peculiar dynamic damper [1, 2].

3. In order to be convinced of correctness of those obtained it

is above results, and to also explain gap effect between wall of

vessel and baffles, it was carried out experimental research.

While conducting of experimental research was used rigid

cylindrical container with six radial baffles, prepared from aluminum

alloy AMg6.

0

0
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f =;27J q~ F

Fig. 2. Dependence of equivalent attenuation factor on amplitude of

oscillations of liquid with different values of parameter K.
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A radius- of vessel and sizes/dimensions of baffles correspond to the

. calculated (see Section 2). Tension of each band was monitored in the

process of experiment.

Frequency characteristics were determined on installation, which

consists of rigid platform, air supports, electrodynamic vibration

exciter and measuring system, which includes displacement pickup and

low-frequency analyzer of oscillations. The masses of platform and

vessel are equal to the masses, accepted in the calculations.

Experimental values of amplitude frequency characteristic,

obtained with P0= 0,313 N and K=1.89; 1.34 and 1.2, they are shown in

Fig. 1. It is evident that they will agree well with calculation

* data, in spite of a comparatively large width of baffles. The
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experimental values of phase response also well will agree with the

calculated.

Consequently, reference system of equations (4) with sufficient

accuracy describes oscillations of body with cavity, partially filled

with liquid and that containing elastic baffles.

Until now was examined case, when clearance between wall of

vessel arid baffles is absent. It is known that in the case of the

rigid baffles, established/installed with a certain clearance, damping

the oscillations of liquid can be substantially increased [3]. in

particular, the radial baffles with a width of r,/3,

established/installed with the optimum clearance, attenuate of

oscillations approximately 2 times more than without the clearance, 0

Research of gap effect on damping of oscillations in the case of

elastic baffles was conducted with their different tension. The

greatest increase in the equivalent attenuation factor 6* was obtained

with tension T=12.3 N, which in the absence of clearance corresponds

to value K=1.34. Fig. 3 for this case gives experimental dependence

6. on the value of the relative clearance A=A/b.

Attenuation factor 6 attains maximum with A=0.034. It is

important that with an increase in the amplitude of oscillations 6* it

grows. With amplitudes so=0,03...0,056. it is approximiately 6 times

higher than for the rigid baffles without the clearance and 3 Limes
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*higher than for the rigid baffles with the clearance. Thus, during

the optimum combination of tension of baffles and clearance it is

possible to increase substantially damping the oscillations of vessel

with the liquid.

Together with progressive/forward oscillations of vessel angular

oscillations were examined. And in this case the special features of

system, caused by the elasticity of baffles, are retained.
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o qj= 4i

Fig. 3. Dependence of equivalent attenuation factor on air-gap

clearance with different values of amplitude of oscillations of

liquid.

REFERENCES.

1. V. R. Aminov, I. M. Melinikova. Oscillation damping of liquid in

the cylindrical cavity by elastic radial baffles. In the book: The

oscillations of elastic constructions/designs with the liquid: the

coll. of the scientific report of III symposium, M.: TsNTI "Wave",

1976, pp. 6-12.

2. I. M. Mel'nikova, G. N. Mikishev. On some special features of

the oscillations of liquid in the cavities with the elastic damping

baffles. PM, 1972, 8, Iss. 3, pp. 106-112.

3. G. N. Mikishev. Experimental methods in the dynamics of space

vehicles. M.: Mashinostroyeniye, 1978, 247 pp.



DOC = 89056414 PAGE>-/ .-4-

* 4. G. N. Mikishev, B. I. Rabinovich. Dynamics of thin-walled

constructions/designs with the sections, which contain liquid. M.:

Mashinostroyeniye, 1971, 563 pp.



DOC = 89056414 PAG 2-<

Page 164.

EFFECT OF SURFACE TENSION AND ANGLE OF WETTING ON THE OSCILLATIONS OF

LIQUID IN THE VESSELS.

G.N. Mikishev, G. A. Churilov.

Results of experimental study of effect of surface tension and

angle of wetting on oscillations of liquid in vessels, obtained for

case of large numbers of Reynolds and Bond, are presented. The

characteristics of the oscillations of liquid in the circular cylinder

are in detail analyzed. The forces, which appear during the

oscillatlons of liquid in the zone of meniscus, are determined. The

simple methodology of the determination of attenuation factors, based

on the use of empirical dependence for the dispersive forces, which

function in the zone of meniscus, and the solutions of the

corresponding problem about the oscillations of ideal fluid in the

vessel is assumed. As examples are determined the attenuation factors

for the fundamental tone of the oscillations of liquid in the circular

cylinder with the flat/plane bottom and in the vessel, which has the

form of rectangular prism.

To oscillations of liquid in vessels affect different factors,

including surface tension and angle of wetting. With the large

numbers of Reynolds and Bond the effect of these factors affects,

mainly, damping of the oscillations of liquid. Attenuation factors

can considerably differ from the coefficients, obtained within the
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* framework of boundary-layer theory.

Theoretical determination of attenuation factors is associated

with greaz difficulties. The experimental data about the coefficients

are contained in works [6, 7, 10, 11, 12]. However, majority of them

relates to a special case - a good wetting of walls. Furthermore, by

the reliability of some data is caused doubt, since the angles of

wetting were not determined.

Recently interest [2) again is exhibited to this question. This

fact and dissatisfaction impelled the authors to conducting of

experimental research for the purpose of the study of the effect of

surface tension and angle of wetting on the characteristics of the

oscillations of liquid in the vessels-to the experimental data,

available in the literature. The results of these research for the

case of the large numbers of Reynolds and Bond are presented below.

1. Formulation of,,problem. The free linear oscillations of

heavy low-viscosity liquid in the vessel by smooth walls with a

sufficient accuracy are described by the following system of

differential equations [7, 9]

i h==1, 2...). (1)
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Here S.- generalized coordinate, deflection of free surface of

0 liquid at point of standardization; on, - natural frequency and
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attenuation factor; n - number of tone of oscillations. Natural

frequencies and attenuation factors are determined from the formulas

w-- jxn; -- V7 2 2 dS. (2)

Here p, v - density and kinematic viscosity of liquid; j -

acceleration of field of mass forces; xn, qn- eigenvalues and

eigenfunctions of problem about oscillations of ideal fluid in vessel

,-p S'Fd/x"- generalized mass;

-form of oscillations of free surface; S - moistened

surface of vessel; Z - undisturbed surface of liquid.

With assigned form of vessel of formula (2) it is possible to

represent in the form

Wn= 1171/fn(hll; .=(Ongn(h/1/VRen, (3)

where i - significant dimension of vessel; h - depth of liquid;

Re =(0"12/v. Functions f, and gn completely are determined, if the

solution of the problem about the oscillations of ideal fluid in the

vessel is known.

Dimensionless parameter Re, is ratio of inertial forces to

viscous forces. They frequently call it Reynolds number. Assumption

about the low viscosity of liquid is equivalent to condition e > .

Vith satisfaction of this condition damping the oscillations of liquid
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is weak ( n<wn) and it is determined by the dissipation of

vibrat:onal energy in the thin wall boundary layer of vessel.

Objective parameters of oscillations of liquid, as show

experiments [6, 11, 12], can differ significantly from

characteristics, calculated by formulas (2), especially attenuation

factors. A difference in the experimental characteristics from the

calculated is caused by the action of the disregarded forces, which

appear in the zone of meniscus during the oscillations of liquid.

In general case of forces, which function in zone of meniscus,

they are nonlinear and depend on surface tension and wetting of walls

of vessel. We will consider it their low in comparison with the

inertial and gravitational forces. Then the nonlinear vibrations of

liquid can be described in the first approximation, by equivalent

linear system of equations, analogous system (1), with the only

difference that the the coefficients of equations (n and Pn will be

the functions of the amplitude of oscillations son.
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Supplementing to that determining of parameter, which

characterize oscillations of heavy low-viscosity liquid in vessel,

surface tension a and static angle of wetting (contact) a and using

dimensionality method, let us represent equivalent natural frequencies

and attenuation factors in the form of following generalized

* dependences:
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0
w = I/If (B, a, h/I, so.1/),

/- g,(Re., B, a, h/l, so./),

where B =pj 2/C- Bond number. With the assumption B>>l done above.

Thus, problem about effect of surface tension and angle of

wetting on oscillations of liquid in vessel is reduced to experimental

determination of dependences (4).

2. Vessel in the form of circular cylinder. Let us establish

for in with having been experimentally dependences (4) the fundamental

tone of the oscillations of liquid the circular cylinder the

flat/plane bottom, bounded in this case to the case of a deep liquid.

For the characteristic linear dimension let us take a radius cylinder

and r0 , while for the dimensionless attenuation factor - logarithmic

decrement of oscillations 61 =2:ip/z. Subsequently index n=l for

simplicity we will lower.

Description of experiments. Experiments were conducted with the

use of six cylindrical containers by a radius of 38, 50, 100, 175, 375

and 1000 mm, prepared from the aluminum alloy AMg6. Vessels were

filled with water or turpentine to level h=2r 0 . Those realized in the

experiments of the value of parameters Re, B and a lie/rest at ranges

2,2"10 4 Re 3,6"10; 194-Bl1,33"10 and Oa,108. The range of a

change in the relative amplitude of oscillations was selected

0 0-SO 0,I. For amplitude s. is accepted the maximum deflection of the
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* free surface of liquid on the wall.

Viscosity of water and turpentine was measured in process of

tests by capillary tube viscometer, and values of density and surface

tension were taken from handbooks according to physical properties of

liquids. The static angles of wetting were determined by the method

of the inclination/slope of plate by the adhered drop and by adhered

bunble [4]. The zero angles of the wetting (more precise, close to

zero) were obtained: for the turpentine - because of the complete

wetting of the walls of vessels, prepared from alloy AMg6, for the

water - by creation on the walls of microroughnesses [8, 101.

Virtually it was considered that the angle of wetting was equal to

zero, if-during the oscillations of the free surface of the wall of

* vessels they were covered with stable fluid film. Angle of a=108 0 is

obtained with the plotting on the walls of a thin layer of h.drophobic

lubricant and the filling of vessels with water. For the water this

angle is maximum [4]. Intermediate angles are obtained just as zero

anace for the water.

Natural frequencies and attenuation factors were determined by

method of free oscillations on installations, which make it possible

to measure total flow forces, which functions on vessel during

ostiliations of liquid.

Pace i67,

* F-- - wansition/transfer from the flow .. s to the generalized
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coordinate was used relationship/ratio P=Xi, where 1.=tpr 3 i'. / =1,841-*

- first nonzero root of equation Jl'(')=0 [7].

Case of complete wetting (a=0). At the zero angles of wetting,

as experiments showed, natural frequency and logarithmic decrement do

not depend on the amplitude of oscillations, i.e., the oscillations of

liquid are linear.

Natural frequency does not depend also on Bond number. Virtually

it coincides with the frequency for the heavy ideal fluid

c j/r 0. (5)

Of this it is possible to be convinced from comparison of natural

frequencies given in Fig. 1. To the case on the graph in question

corresponds the calculated straight line f=V' and the experimental

points, obtained for the smallest cylinder (r0=38 mm) with the filling

with its turpentine (B=460).

Logarithmic decrement of oscillations is function of

dimensionless parameters Re and B. The analysis of experimental data

showed the possibility of the representation of logarithmic decrement

in the form of the sum of two components, one of which depends only on

parameter Re and, etc. - from B:

S1 (Re) +L 82 (B). (6)
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Also data, obtained in work [12] for vessel eform of

rectangular prism, indicate this possibility.

Let us take for 6, dependence

S 4,08)'1" e

obtained within the framework of boundary-laye-r : r- case of

deep liquid, and let us determine component 6..
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Fig. 1. Dependence of natural frequency on amplitude of oscillations

with different values of number of Bond and angle of wetting:

C - r,=3 mm B 460; C- - riO 10m m. B =1330, a =85*; A, - r = 38 mm, B - 194, a = I 0

Fig. 2. Dependence of ctmponent of decrement 6, on Bond number with

a=0- experimental points.
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Res,.;L:-s of determining component 6, are shown in Fig. 2.

Straight line is obtained by working/treatment of these points

according 'Lo the method of least squares. The dependence

8= 2,24I/ B3 (8)

unknown logarithmic decrement takes following form:
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6= 4 ,0S' Re+2,24,'j B1. (9)

First term into (9) is caused by dissipation of vibrational

energy of liquid in wall boundary layer of cylinder, the second - by

dissipation of energy in zone of meniscus. The results of

'alculations according to formula (9) showed that maximum disagreement

with the experimental data are approximately 4%.

In series/row of works (6, 7, 10) for agreement with experiment

theoretical dependences (3) formal correction, which increases

attenuation factor 1.41 times, was introduced. The introduction of

this cor-rection, as it is not difficult to be convinced from formula

* (9), far from always can lead to the acceptable results. Comparison

with the experimental data, examined above, showed that only for half

of all cases the results are satisfactory (disagreement of less than

1%).

Case of partial wetting (a=40...108'). In the case of oscillation

in question the liquids are nonlinear. The dependence of natural

frequency and logarithmic decrement on the amplitude of oscillations

Lestifies about this.

Natural frequency depends substantially on amplitude of

oscillations only for small cylinders and large angles of wetting (see

* Fig. 1). Figure gives the experimental data, obtained for the
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cylinders with a radius of 100 and 38 nm.

Following empirical formula was obtained on the basis of

experimental data for natural frequeicy:

f -+(5,3/B -2,4,: e] ; CL (10)

where so:d; a=/ro, a 1 MM. With 7,<i the frequency on the amplitude

of oscillations does not depend aind in the value coincides with the

appropriate maximum value. The results of calculation according to

formula (10) are shown in Fig. 1 by solid lines.

Maximum values of frequency at c=90' will agree well with

calculation data of work [3], in which is examined problem about

oscillations of ideal fluid in cylinder in the presence on its surfact

of elastic membrane/diaphragm, evenly stretched along duct/contour.

For example, for number B=1330 disagreement in the frequencies

composes only 0.6%.
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Known theoretical formula

f t1 1 +: 2 /Bl P2,

obtained for case, when on cisplacement of line of contact of

limitations it is not placed and a=90 (for example, see (21), gives

values of f, which differ little from ,/T.

Dependence of natural frequency on amplitude of oscillations is 0
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* caused by interaction of line of contact with walls of cylinder. With

the amplitudes s0 <. mmn the line of contact is completely engaged with

the walls, natural fiequency is maximum. With s,>l mm the line of

contact begins to slip relative to walls, which leads to the decrease

of natural freauency (in essence due to the decrease of the

generalized "hardness" of system).

Let us consider now logarithmic decrement of oscillations. In

contrast to the natural frequency logarithmic decrement strongly

depends on the amplitude of oscillations, number of Bond and angle of

wetting. As in the preceding case, let us represent it in the form of

the sum of two components, one of which is caused by the dissipation

of vibrational energy in the wall boundary layer of cylinder, and

* another - by dissipation of energy in the zone of the meniscus:

ci0,(B)r-2(B, a, so). (11)

Fig. 3 shows component of decrement 62, obtained for cylinders

with different radii with different values of B and a depending on

relative amplitude of oscillations.

With low amplitudes component 62 is close to zero.-In this case

logarithmic decrement it is determined by component 6,. With an

increase in the amplitudes, when line of contact begins to slip

relative to wails, 6, sharply it grows, it reaches maximum values and

then smoothly it is reduced. Maximum values 6, exceed the appropriate

* values 6, several times (for the cylinder with a radius of 175 mm - 7
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times).

Dissipation of vibrational energy in zone of meniscus occurs as a

result of complicated interaction of line of contact with walls of

cylinder.

At angles a=40...60' on walls of cylinder appears fluid film,

which flows follcwing stepping back liquid. The velocity of its

runoff is lower than the velocity of liquid. Therefore line of

contact lags behind the bulk of liquid.
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Fig. 3. Dependence of component of decrement 8, on amplitude of

oscillatibns with different values of number

Bond and angle of wetting:

A - = 75 M m . B 4160. a = I U ;
-ro - 375 MM, B-1870. a- iw:

17- r0 - 1000 MM, B=4160, a=75°

Page 170.

Abrupt change in the contact angle and formation of capillary waves on

the free surface occurs upon the rendezvous of contact line with the

heaving liquid. Liquid carries along after itself line of contact,

surmounting in this case resisting force to its motion on the dry

wall. With the increase of angle a the velocity of the runoff of film

increases. The dibsipAtlon of vibrational energy grows.0
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At a=108' fluid film becomes unstable and it is displaced into

drops, which are combined between themselves and jets they flow from

walls, causing set of capillary waves on free surface. This mechanism

of the dissipation of energy is characteristic for the large cylinders

and the well developed amplitudes of the oscillations of liquid.

In contrast to previous case, to establish dependence 62 (B, a,

s0) on the basis of obtained experimental data about decrements of

osciliations did not succeed. For the establishment of the unknown

dependence it is necessary to know the forces, which function in the

zone of meniscus.

3.- Determination of forces, which function in zone of meniscus.

The flow forces, which function in the zone of meniscus, were 0
determined for the rectangular plates, partially immersed in the

liquid and accomplishing bouncing in their plane. Plates are prepared

from alloy AMg6. The sizes/dimensions of the plates: length - 314

mm, height/altitude - 80 mm, thickness - is 0.65 mm. Submersion depth

into the liquid - 40 mm. During Lae tests were used the same liquids

and methods of changing the angles of wetting, as during the tests of

cylinders.

To experienced/tested plate were assigned harmonic displacements.

The unknown flow forces was determined from the relationship/ratio

F -F -- F2 -F 3,

where F, - the composite force, which functions on the plate; F,, F, 0
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* d F3 - inertial, dispersive and archimedian force. F0 was measured

directly by the sensor of force, to which was fastened the plate.

Remaining forces were located by calculation with the use of the

following dependences:

F,-- moUop sin pt +F 2 tgpt;

F 2 - -pL V2v (ho +uo sin pt)uop cos pt;

F3 = pjlduo sin pt,

where 1, d - length and thickness of plate; L=2(1+d)- length of

line of contact; h0 - submersion depth; m, - mass of plate and

elements of its attachment; u0 , p - amplitude and the frequency.

Dependences for F, and F2 are obtained on the basis of solution

*problem about oscillations of flat surface in viscous fluid [5].

Experiments with the completeness by the immersed plate showed that

the values of inertial and dispersive forces will agree well with

appropriate computed values.

Fig. 4 shows dependence of F on displacement of plate

u=usinpt, obtained at angle of ct=108*.

Page 171.

With the low amplitudes of oscillations (u°<l mm) this dependence is

linear. In this case the line of contact is engaged with the plate.

With the amplitudes u0>l mm F(U) it is the hysteresis loops, whose

area is equal to the dissipation of vibrational energy during the

Qeriod. Judging by the form of hysteresis loops, dispersive force
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component F of the type of dry friction makes a basic contribution to

the dissipation of vibrational energy. This indicate also the

experimental data about the resisting forces to the motion of line of

contact with the constant velocity (for example, see [82).

With decrease of angle a hysteresis loops are deformed. Their

area is reduced. In the limit (with a=0) they become elliptical. In

this case force F is degenerated in linear dispersive view of the type

of viscous friction. However, directly it does not depend on the

viscosity of liquid. Transition/transfer from the nonlinear frequency

independent dispersive force to the linear force, proportional to

velocity, occurs at angles of a<400.

Let us determine dispersive force, per unit of length of line of 0
contact at angle a=0. In the case in question, as already mentioned,

dispersive force was proportional to the velocity

T= bu. (12)

Coefficient b is function p, a and j. Since the number of

independent units measurement is equal to three, then with an accuracy

to constant factor it is possible to determine it on the basis of

dimensional analysis

4Cctpy'b c C-P / C/. (13)

Constant factor was determined experimentally by force |
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* measurement during oscillations of plate in turpentine. As a result

was obtained value c=0.182.

Thus, unknown expression of dispersive force will be

0, 182 " U. (14)

In general case dispersive force is nonlinear. Let us determine

the equivalent linear dispersive force, per unit of the length of line

of contact.

0

0
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Fig.- 4. Dependence of force F on displacement of plate u=uosinpt: 0-

experimental points.

Key: Ui). N.
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In contrast to the previous case the unknown force does not depend on

the frequency, at least for angles a=40..-108',

F' b/)U. (15)

Coefficient b is connected with dissipation of vibrational

energy during period with relationship/ratio

b, =--A E/ U3, (16)

where AE=AE/Lo

Fig. 5 gives values AE in dependence on amplitude of oscillations
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o f :.7- different angles a, obtained by de:ermining area of

hysteresis loops. Experimental points are approximated well by the

dezendence of the form

A = A (u,- a)2 + B (1 - cos z) (u,, - a), (17)

w'here a - value of the amplitude of oscillations, with excess of which

begins the slipping of line of contact relative to plate. For the

angles of wetting in question with A Curves 1, 2 and 3, given

on the graph, are obtained with A=2.96 N/m2 , B=0.124 N/m.

Values A and B can depend only on p, a and j.

UsiFg dimensionality method, it is possible to express them in

* the following form:

A = 0, 111 T//pj, B -- 1,693. (18)

Taking into account (18)

E---0, 111 / (uO -a)2 + 1,695 (1l-cos cc) (u) -a). (19)

Obtained expression is correct for amplitudes of oscillations

u0>a=l mm. With amplitudes u°<a AE it follows to assume it equal to

zero.

Substituting (19) into (16), we will obtain

.-- 0,03,52 1 ' p=j (I -a/to)2- -O,,5391 (1 -cos a) (I --au1)11,411. (20)
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Dependence (15) and expression (20) completely determine

equivalent dispersive force at angles a=40...108'.

During determination of forces, which function in zone of

meniscus, it was assumed that they were directed perpendicularly to

line of contact. Further experiments were conducted for checking the

correctness of this assumption, the oscillations of plates along the

line of contact in particular were investigated. As a result it was

established that any forces, which function along the line of contact,

it does not appear.

0

0
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Fig. 5. Dependence of energy of dissipation in zone of meniscus on

amplitude of oscillations of plate: OV, 0 - experimental points.

Key: (il. N.
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4. Semi-empiricai dependences for attenuation factors. As in

Section 2, let us represent logarithmic decrement in the form of the

sum of two components

= 1 (Re, h)+a 2 (B, a,h, so). (21)

Let us assume that solution of problem about oscillations of

ideal fluid in vessel is known. Then the determination of the

component of decrement 6, is teduced to the simple integration (see

Section 1), and component 5, can be approximately found on the basis

of experimental data for the dispersive forces, obtained in the

* previous section.
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We >i1 use relationship/ratio 0
~= E'2E, (22)

connecti:ng logarithmic decrement with dissipation of vibrational

energy during period and total energy of system. By defining AE as

the work of the dispersive forces, which function in the zone of the

meniscus

aE== . / Y2dL,
L

and accepting as E maximum kinetic energy of system 0,5gmj 2So2, we will

obtain

82 fS E2dL. (23)
L

This expression is correct for vessels, whose walls in area of

duct/contour of free surface are vertical or close to vertical.

As examples let us determine logarithmic decrements for vessels

in the form of circular cylinder with flat/plane bottom and

rectangular prism.

Circular cylinder with flat/plane bottom. Component 6, takes

following form [7]:

VT(2R -1 sh-h)J (24)l= -7 - __
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For determining component 5, from formula (23) it is necessary to

know not only coefficient of b, but also natural frequency w, form of

oscillations 4s and generalized mass g. From the solution of the

problem about the oscillations of ideal fluid in cylinder [73 we have

1 . pr6.- (:2 - I)

t th ; I L =, 4-
r- 2:3 th '-(

With a=0 coefficient-b is determined by expression (13).

Substituting (13) and (25) into (23), and also assuming/setting

dL=rodO and integrating, we find

B2-2,2 I/th B3. (26)

Page 174.

For case of deep liquid obtained dependence virtually coincides

with dependence (8). Disagreement in the coefficients composes only

I .8%.

When az=40...108' component of decrement 62 is located thus. In

this case of b=b /c, where bt is determined by expression (20), in

which one should assume u0=sSiiln. After integration we will obtain

-IB --  50 - 2 -+ S (I - Cos o (2 -. (27)

0 where s0 - amplitude of oscillations at the point %-i "

2
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Results of calculations according to formula (27) are shown in

Fiq. 3 by solid lines. They satisfactorily will agree with the

experimental data for all three cylinders.

Vessel in the form of rectangular prism. The component of

decIemernt 6, is obtained into [12]

1'r e Lsh -ThJ

Here Re=wU/v; U [)=l/2; h=h/1; 21, 211-length and the width of vessel.

component 6, it is not difficult to define analogously how this

was done for cylinder. Using the solution of the problem about the

oscillations of ideal fluid in rectangular vessel [7, 12], we find

2= 1,46(1 -.j 112'7) 1't (rti/2)/}¢B '4j c=O(91,6 l 1/7)vr.-jiW2/ -- npH cc-0 (29)

Key: (1). with.

d 0,22 2a a2  +
a 3d 82 = [121)- (1 -1/SO)

+ _ -' 1)--(I - o ) rip a= 40... 108', (30)
Bso + SO-Co

Key: (1). with.
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Here B=pj12/,'; so-so/l; so>-a(l+l1 )/(/t+/).

In work [12] for case a =0 and 71 4.61, h=0.424 is obtained

empirical dependence

8,= 36,8/B. (31)

However, it much more badly will be coordinated with the experiment

than semi-empirical dependence (29). The comparison of the results of

calculations according to formula (31) with most reliable experimental

data, obtained into [12] for the glass vessels with the filling with

their water, showed that the disagreement is from 8.1 to 44%, whereas

according to formula (29) - from 4.4 to 13%.
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DISTURBED MOTION OF THE NONROTATING FLIGHT VEHICLE WITH THE LIQUID IN

THE TANKS. SIZABLE DISTURBANCES OF FREE SURFACE.

ON THE OSCILLATIONS OF LIQUID IN THE MOBILE CAVITIES.

G. S. Narimanov.

Work examines nonlinear slosh equations, which partially fills

cavity in the form of straight/direct circular cylinder. It is

assumed that the cavit, completes the steady harmonic oscillations in

the plane, perpendicular to the longitudinal axis of cylinder.

Investigated resonance excitation of the sizable oscillations of

liquid with the assigned oscillatory motion of cavity.

On basis of theoretical analysis series/row of nonlinear effects

is revealed (decrease of freq.-ncy of major resonance, difference in

profile/airfoil of wave from that described by linear theory, etc.).

Obtained results are in complete agreement and by G. I.

Mikishev's experiments.

Examination of problem about motion of liquid, which partially

fills cavity of solid body, with assigned oscillatory motion of latter

is indicated possibility of emergence of resonance oscillations of
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* liquid. Naturally, in this case the theory, based on the

prerequisite/premise about the smallness of oscillations, which

reduces the problem of the study of motion to the solution of linear

equations, cannot explain some special features of real motions.

G. N. Mikishev politely let results of his experimental works,

dedicated to determination of possibility of applying linear equations

for describing motion in region of resonance excitation of

oscillations of liquid, to author. They discovered a change of the

frequency of resonance oscillations into the dependence on relative

value of the amplitude of the forcing oscillations, change in the

profile/airfoil of resonance wave, limitedness- of the amplitude of

resonance oscillations.

By target of present article is theoretical analysis of phenomena

on the basis of use indicated derived earlier than [1] general/common

equations of motion of solid body, partially filled with liquid, that

consider significance of motion of liquid.

1 General/common equations for case of cavity in the form of

circular cylinder. We assume/set the motion of body by flat/plane,

examining it in plane O*x*y*. Axis O*y* is vertical. The axis of the

symmetry of cavity Oy is parallel O*x*y*, point 0 coincides with the

center of gravity of system in the undisturbed state of the free

surface of liquid.

* Page 177.
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Liquid we assume/set by inviscid, and motion by its potential.

The equation of the disturbed free surface can be represented in the

form

z y--c= [a,[a (t) s + bos tiC o,+ b2s(t ) ?2,; 1

S-1

*Is J, 'i -)Sin a;

(s-1, 2,...; k=O,2)

%,~ ~~ ~~ "i -k Jk., o k
ro -kvS k (ks) r) coska.

Ji, Ak- function of Bessel of first order of corresponding order;

r, a - polar coordinates in plane of normal axis of cavity (angle a it

is counted off from normal to axis Ox); r0 - radius of a circle;

js, tk,- roots of equations

J1, (o) = 0, Jk' m = 0.

All parameters of motion of solid body and liquid, with exception

only of parameter a,, we assume/set by such low that values of their

products, squares and higher degrees can be disregarded/neglected.

Relatively parameter a, we assume that the square of its value has the

same order of smallness as the value of the remaining parameters.

Being based on this, in equations of motion we retain terms,
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* whose values are of the order not less than third degree of value of

order a,.

We designate: x - bias/displacement of point 0 along axis O*x*,

e - angle between axes Oy and O*y*, p - density of liquid, m - total

mass of system, J - moment of inertia of system in fixed position

relative to body of undisturbed free surface of liquid, P - sum of

external forces, which function on body, M - sum of external

moments/torques.

Under assumptions of equation of motion of solid body indicated,

which contains liquid, considering significance of motions by latter,

can be-represented by following infinite system of ordinary

* differential equations:

P; (2)

a-i' ~~M + a 2 (2)~Q5  1
6 sO~~

(aQ (s) + a.,gX(2s)) lO,

S-I k-0,2 s-I

NEE d
+ Od (alai=M (3)

,,A, + ga, + X +('n) + 2gXP + - , (abkBs+
-,

4W

+alb Bl)+B() daL .,+Ca")alai +a, 6 D =O
k=.O,2 s-I

(nl( 1,22,..2... (4)Q~ k Bks,+ A 4- B I s)d_-a (a a + F ,,s,-0 (k =o0, 2, s- ,,...,
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Equations (2)...(5) can be solved by reduction on the basis of

consecutive integration of final systems of equations, which are

obtained by their (2)...(5) with finite and ever increasing values of

n and s. In the first approximation, let us consider final system of

equations with n=s=l. It is possible to expect that this

approximation/approach will not require further refinement in the

investigated problem. Actually, on the basis of linear theory for

known [2], [3] that the study of the oscillations of liquid during the

assigned harmonic oscillation of body with the frequency, close to the

natural frequency of parameter a,, can be carried out, disregarding

the values of all parameters an (n>l).

2. Resonance excitation of oscillations of liquid with assigned

oscillatory motion of vessel. LeL us consider the case of forced

oscillations of liquid with the assigned oscillatory motion of the

walls of cavity with the frequency, close to the frequency of the

first form of the natural oscillations of liquid. Analogous problem,

as it was mentioned above, she was solved by experimentally G. N.

Mikishev.

We will assume that vessel with cylindrical cavity, partially

filled with liquid, completes progressive/forward harmonic
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oscillations in direction of normal to axis of cylinder with frequency

w and amplitude of A.

Equations, which describe change in form of free surface of

liquid, on the basis (4) and (5) with done above further

simplifications will take following form:

a, al+ [ d (a•. (Ik)l +ab D(1)

k=0,2

±B(') d (aa) C'ala, Aw2X2(') sin wt;
dt

"h,,Bkj + gb,, + B[hl - (da,) + F(RIca= 0 (k =0,2y. (6)
dt

We convert equations (6), after leading to dimensionless

quantities entering in them parameters. Let us introduce

dimensionless time r=w,. We will designate differentiation on r by

primes. Further, we use the following designations of the

dimensionless quantities of the parameters, entering equations (6):

a = -L ; * % ' ,'
r ToA A1

0 g B(l) r.2

I 2 m - ; Ilk- A,
r( o D2 (l).

k it-- ; d k 0

A1  A,

4 4 2 l)r2
0 B (l)r " - C() ro B11 0
I A, A, Bkt

F(kI)r2 A4x(1)
f - r6a -

~~~BAt"4;,0
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In these designations equations (6) are converted to form

d'v
k-0,2

+ (ala 2) + Ca'2 a,=--m~asin mT; (7)

2 a) + f ' ( , 8

As rs known, steady forced oscillation of nonlinear system can be

in the first approximation, (with an accuracy down to the terms, which

possess frequency of change, equal to impressed frequency) it is

represented in the form a--ysin(mr+%v).

It is easy to see that for system, described by equations (7),

(8), in which there is no damping, phase displacement v will be equal

to zero or r, i.e., it is considered by sign of value 7. Therefore

the solution of these equations, which characterizes in the first

approximation, steady forced oscillations, we will seek, on the basis

of the expression

a =V sin mrT, (9)

Substituting expression (9) into equation (8), let us lead latter
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* to following form:

+ _m-- y 2m2-- 2m 2 (110I/k cos2mr. (10)

Steady-state oscillations of values 01 will be described by

expressions

- kv2m 2  (21k +k) y 2m2 cos 2mr. (11)
2m 2  2 (m2 - 4m2)k

It follows from examination of formulas (7), (8) and (11) that

accepted for construction of theory of nonlinear vibrations

prerequisite/premise about comparability of order of magnitudes a,'

and Ph- ceases to be accurate with sufficiently low values m, close to

* values 1/2mnk, 1/4 mi, 1/6Mh....

Page 180.

However, with these values of m generally there is no need in

refinement of linear theory of low oscillations, according to which

parameters bit are not excited with onset of oscillations of vessel or

parameters aj. The carried out refinement of the slosh equations due

to the account of significance of the value of parameter a, or a, is

substantial for describing the phenomena of oscillation only in the

region of the resonance excitation, the parameter indicated, i.e., in

region m=l. Keeping in mind the fact indicated, we will further

conduct constructions under the condition

l/2mk<0,8-m,
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taking into account that at m>0.8 parameters bhs can be accepted equal

to zero, as it foilows from the linear theory of the low oscillations

of liquid.

For determining value 7 let us substitute values Pk, expressed

according to (11), into equation (7), in which a, is substituted by

formula (9). After leading bringing similar terms, which contain

factor sin mr and after equating to zero given coefficient with this

factor, we will obtain the equation, which describes the dependence of

the amplitude of steady forced oscillations of the parameter a, on

value m and values a (relative value of the amplitude of the

oscillations .f vessel) in the first approximation,

V3+pV+q=O, (12) 0
4 (1 - m2 ) 4a

Sm2 S
where S___ I 2 2 1Ifjt ( 21t+fh)(lt- 2 k, + 2 dk)1

wher 4M2 - M23t.

Fig. 1 depicts curves 7/a, constructed on the basis of solution

of equation (12) with three values of value a. The same figure

depicts curve Wi/a, which corresponds to the linear theory of the

excitation of oscillations.

0
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Fig. 1. -Fig. 2.
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If the value of the latter/last value, obtained on the basis of linear

theory, does not depend on relative value of the amplitude of the

excitinig oscillat.1ions, then the account of nonlinear terms in the

equations of motion stipulates the essential dependence of 7y/a on

value a. In this case 7y/a, remaining the everywhere limited value, in

proportion to the decrease of value a approaches curve I. 1/a, which

corresponds to an increase in the field of the validity of the

description of the phenomena of real oscillations with the help of the

apparatus of linear theory.

At the same time derived equations, which consider nonlineRar
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terms, are free from deficiencies in linear equations in direct

vicinity m=l, in which Va/ suffers explosion.

As can be seen from graph, isobeen delirious in Fig. 1, account

of nonlinearity in equations of motion, which stipulated dependence of

frequency characteristics on value a, explains also another special

feature of real oscillations, experimentally discovered by G. N.

Mikishev, which consists in decrease of value of resonance frequency

of excitation of oscillations of liquid in cylindrical tank with

increase in a. The latter fact is illustrated by graph in Fig. 2.

Calculations of form of free surface of liquid during resonan-e

excitation of oscillations, carried out on the basis of nonlinear

equations given above, also showed very satisfactory description of

real form of resonance wave.

On the basis of formulas (9) and (11), after determining value 7

0. 12) with resonance value of m=m*, calculated express."in

a, r0?, + Q0r20 1 + '2rO' 21, (13)ro

where a1 , f0, 2 was taken with T=:/ 2 rl*, and (p, 0I, 1 21  - with

a=_r/2, which corresponds to cross section of wave by plane, passing

through axis of cylinder. The results of calculations are given in

Fig. 3 and 4.

epenqd;r, o r i nsi, of resonance phenomena, which, in turn,
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* depends on value of amplitude a, is observed difference in

profile/airfoil of wave (unbroken curves) from form, described by

linear theory (dotted curves).

With a=0.025 ratio of height/altitude of protuberance of wave to

depth of indentation is equal to 1.5, while with a=0.l it already

increases to 2.

Thus, nonlinear equations used make it possible to describe basic

special features of real phenomena during resonance excitation of

oscillations of liquid in mobile cavities.

0

0
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Fig. 3. Fig. 4.
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Application of variation principle to the conclusion of the nonlinear

equations of the disturbed motion of body - liquid system.

I. A. Lukovskiy.

Results of systematic application of variation principle of

Ostrogradskiy to conclusion of nonlinear three-dimensional equations

of motion of solid body with cavity, which contains liquid, are

presented. Lagrange's function is selected in the form of two

components, the first of which is the kinetic potential of solid body,

* and the second - integral of the pressure by the volume, occupied with

liquid. A question about the selection of the form of the velocity

potential of liquid and about the structural/design representation of

its components is discussed. With some assumptions about the value of

the parameters, which characterize the deflection of the free surface

of liquid, is obtained the system of nonlinear equations of motion in

the case of the cavities, formed by coaxial cylinders.

Basic work of G. S. Narimanov (9) marked b_. .aiing of

development of nonlinear theory of motion of solid body with cavities,

partially filled with ideal fluid. Under some assumptions relative to

the parameters, which characterize the motion of mechanical system,

* they obtained nonlinear equations of motion, and is also proposed the
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method of calculation of their hydrodynamic coefficients in the case

of the cavities of cylindrical form. Further development this method

was obtained in works [3], [10], [13], and also in the number of

research of the foreign authors. At the present time in nonlinear

dynamics of bodies with the cavities, which contain liquid, wide

acceptance were obtained also the methods, based on the application of

variation principles of mechanics [2, 4-7, 11]. Below in general

terms will be presented the conclusion/output of the nonlinear

equations of the disturbed motion of bodies with the liquid filling

with variational method. For the certainty the case of the cavity,

which has cylindrical form is examined in the vicinity of free

surface.

1. Basic assumptions. Let us connect with solid body the system

of coordinates Oxyz, which moves together with the body relative to

the absolute system of coordinates OXYZ, in which the field of mass

forces has the potential function U. Subsequently this coordinate

system is considered as inertial system.

Page 183.

The axes of the absolute coordinate system are motionlessly connected

with the Earth, moreover axis OY is considered directed directly

opposite to gravitational force, while axes O,X and OY are located in

horizontal plane so that the coordinate system would be right. They

coincide at the initial moment of the time of point O, and 0, and axis

Ox coincides in the direction with axis OY. Axis Oz it is directed
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* so that it at the initial moment would be parallel to axis OZ. Axis

Oy will be directed in this case along axis 01X to the opposite side.

The directions of axes Ox, Oy, Oz relative to the absolute coordinate

system are uniquely determined by three angles: pitch angle b (angle

between axis OX and plane OxZ), by yaw angle ip (anqle between axis Ox

and plane OXY) and by attitude of roll 7 (angle between a:,is Oy and

intersection of planes Oyz and OXY). The cosines of the angles

between the axes of absolute and body coordinate systems are given in

Table 1.

Motion of solid body we will characterize by vector of forward

velocity v0 of point 0 by vector of instantaneous angular velocity W

relative to point 0. The kinematic equations, which establish/install

O connection/communication between the projections of angular velocity

on the axis of body-fixed system with the angular parameters, which

characterize the positions of body relative to the absolute coordinate

system, take the following form:

w%=y-a sin ;

2 = coso+cas p sin y;

w---- sin -Y+cos Cos Y.

Liquid, wh-ch fills cavity of body, is considered ideal and

incompressible. if its initial motion is potential, then the same it

will remain also at the subsequent moments of time. Let us represent

the equation of the disturbed free surface in the form
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(x, Y, Z, t)=X-xo-h--f (y, Z, t)=O, (1)

where h - depth of liquid in the cavity; x0 - coordinate of the bottom

of cavity.
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Table

0, OXY OZo

Ox ois 0 cos* sin e cos V -sin

j fs sin" sinfl- sin 0 sin V sin y + cos siny

- s in cos y cos 0 cos y
0: ,s it sin COS o + sin s'nV cosy- cos ' cos'

si in y -cos x sin y

Page 184.

Velocity potential P(x, y, z, t), that describes absolute motion

of liquid in moving coordinate system, is determined by solution of

following nonlinear boundary-value problem [10]:

A 0 - 0- "B Q; (2)

av == tVO +j ((o (r X v )) H a S;(3
dv

0---9-¢ (vv') +J ((o (r X v)) + u, 0 a ;(4)
Ha 4

dv

+- -D+ I (()2(V((v 0 A+wXr))+U-o Ha Ha

Key: .). v-. (2). on.

a-n&

where Q - region, occupied with liquid; SVl - moistened surface

of walls of cavity and disturbed f-ee surface of liquid respectively;

r - radius-vector of points of mechanical system relative to point

0; u - relative particle speed of free surface of liquid, determined

by equation0
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u , ft - Nft ft=v'l-(v/) 2  (6)

Potential fu: ction U, as is known, is determined by

relationship/ratio

U --(gr) - -(g ( + r')), (7)

where g - G-vector of gravity; rf- radius-vector of point 0 relative

to 0,; r' - radius-vector of any point of system relative to 0,. For

determining the pressure p in the liquid it is necessary to use

Lagrange-Cauchy integral, which takes in fixed coordinate system Oxyz

the form

+ -- (V)2 -(VD, (v,+o X r)) + U- + -0, (8)

2 p2

where p - mass density of liquid.

Most general formulation of problem of dynamics of solid body

with cavity, which contains liquid, assumes from known external forces

applied to body definition of both motion of body itself and motion of

liquid within its cavity, and also forces of interaction between body

and liquid. The conclusion of the equations of motion of the

mechanical system in question and the development of the methods of

determining their hydrodynamic coefficients present the sufficiently

complicated mathematical problem, whose solution in general form is

difficult. However, during some limitations it is possible to obtain

a comparatively complete system of nonlinear differential equations,

which adequately describe the discovered experimentally complicated
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ohvs u:a" phenomena, which appear during the resonance interactions of

soiid cody and liquid.

Subsequently we will consider that standard deviation oF

disturbed free surface is of the order of smallness e.

Pace 10

Durjno :he calculations we will disregard -he alues of order

,e_ we w;il retain values f, f2 and f-. Let us assumc further thtat

vaiue s of the order of smallness e . Consequently, during the

calcuations must be taken into consideration besides values of the

type also products wf, cf', fw'. The obtained below mathematica-

mode s suitable for such states of motion of solid body, during

which the free surface of liquid is not destroyed, and the amplitudes

of oscillations appearing in this case do not exceed maximum.

2. Overall diagram of obtaining nonlinear equations of motion

fro- ;ariation principle of Ostrogradskiy. When solid body completes

the assigned motion in the space, i.e., vectors v, and w are

considered as the known functions of time, nonlinear boundary-value

problem (2)...(5) follows from variation principle of [5]

tj

W=P f Ldt=O, (9)

where

f[, Iot ~(v2..).--((1 (v.il( r)).-bdQ. (10)
S L -PdQ- t' 2

Q Q
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Variation principle of Hamilton-Ostrogradskiy in the form of (9),

(10) differs from others in terms of fact that all flow equations

follow from it, including kinematic nonlinear free-surface conditions

of (4). :n the general case of moving the mechanical system it is

impossible to find the analogous variation principle, for which it

would be possible to formulate tne appropriate problem of the calculus

of variations.

More common point of view assumes use in the case of presence of

poentiai forces and nonholonomic systems of variation principle of

Ostrogradskiy in the form

t 2 0
O (LI + U + r-'A) dr:O,11

t ,

where L,=T- - kinematic potential of solid body; 'A - elementary

work of ionpotential forces, applied to solid body; L - Lagrange's

function, determined by expression (10).

Let us reDresent now velocity potential of liquid in the form

(Vo, V) + (0 ) , (12)

where in accordance with kinematic boundary conditions harmonic vector

functions V and 9 and harmonic function Q satisfy following boundary

cond it ions,

0
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I r1 rX v; '3)
Sv ,=; 27 f

dv Idv1 +T f f

Page 186.

Potential o is in this case solution of nonl:near :conem about

wave motions of liquid in quiescent vessel. Vector f V with c-_

accuracy to the arbitrary function of time is deied

V-r. .4

Let us assign form of disturbed free surface of c i':qud and

potential o in the form [4]0
f (y, z, M)= = 31(t)f 1 (y, z); 1.1)

?(x, y, z, t)= R (L) ?.(x, y, z), (16)

where fh(y, z) -complete orthogonal 'Up-. ; ,rlsion in it of constant)

set of functions, assigned on und~s' .-bed free surface v ; (t) -

generalized Fourier coefficients, which play role of generalized

coordinates and characterizing position free surfaces of liquid at the

given instant; f,(XY, z) - system of harmonic functions, which are

solutions of problem about low wave motions of liquid in vessel;

A,(t) - unknown previously parameters, which characterize change of

potential o in time.

S
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For ootentials Q, it is possible also to introduce into

exafrmination of resolution of type (16) or to determine by their

variationa7 method, after formulating variational problems for

functionals (i=l, 2, 3)

S(2,) (v2,) 2 dQ-2 2" (r), dS. (17)
Sr"

.s a result potentials Qi are defined as functions

three-dimensional/space varables x, y, z parameters (),

chara:terizing position of free surface of liquid.

Thus, during selected division of velocity potential (12) and

represer. ions (15), (16) together with quasi-speeds v0 (t) and w(t)

to determination are subject also unknown functions of time ,(t) and

Ra(t). For obtaining the equations of motion of system we will use

variatio:i principle of (11).

Page 187.

After simple, but sufficient bulky conversions we will obtain the

infinite system of the nonlinear ordinary differential equations of

the following form:

M [v0+ o)X vo- g j- o) + o)X(o):X r)] +

Sm1rc, + 2m,(" r,) = F; ('s,

(J )--(J 1, (o) - o -, (J, (o))+ J'rc . (Vo ),'vo -g)-
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(19)

A, -YA,,Rk-=O, (n=1,2,...); (20)
k

n n k
___1(' (A, RR±( ( )7

a___ _____ (a II)

- = 0 (i--12,.) (21)
2 6 i

where ?dQ; Aflkz-Akfl, (v?0~VdQ;
Q Q

I Qp SdQ; I.t-p I=p \rdQ; JI=j (W2., 7j) dQ;

Q Q Q
(22)

mi - mass of liquid; M - mass of entire system; r,, - radius-vector of

* the center of mass of system; r,, - radius-vector of the center of

mass of liquid; F - main vector of all effective forces, applied to

solid body; M ° - main moment of these forces relative to point 0; J -

tensor of the inertia of mechanical system, which consists of the

tensor of the inertia of solid body J° and certain tensor of second

order J', called the tensor of the inertia of liquid. In equations

(19)... (21) asterisks designated the vectors, whose projections on the

axis of system Oxyz are equal to derivatives of the projections on

them of the corresponding vectors. The right sides of the equations

of forces (18) and moments/torques (19) are determined by the

character of the decided problem. For example, among the forces,

which function on the flight vehicle, are distinguished the engine

* thrust, the aerodynamic forces, control forces, Coriolis forces,

r 

I
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connected with the relative particle motion within the revolving

housing of apparatus, and forces, caused by the displacements of the

center of mass of system relative to housing.

Nonlinear equations (20) and (21) reflect mobility of liquid in

cavity of body, moreover system of equations (20) is result of

satisfaction of kinematic free-surface conditions of liquid. As a

result of its linearity relative to parameters RPh(/) it can be

permitted relative to these parameters, after which from equations

(21) is obtained the infinite system of the nonlinear ordinary

differential equations of the second order only relative to

generalized coordinates )

For practical purposes only finite-dimensional analogs of system

of equations can be used (18)...(21).

Page 188.

One of the efficient versions of this system is obtained during the

introduced higher limitations by the amplitudes of the oscillations of

the free surface of liquid and the angular velocity of the motion of

body in the case of the cavity, formed by straight/direct circular

cylinders [6].

Assuming that basic nonlinear phenomena in controlled system

occur into vicinity of major resonance of free surface of liquid [9],

form of free surface f(t, n, t) and velocity potential Q(x, H, , t)
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* in cylindrical systerr. Oxtn let us structurally assign in the form

/ ( t, r, /)--po(t)fo ( ) - r (t) sin ri+p, (t) cos v]/ , ( )

+ [r2 (t) sin 21 +p 2 (t) cos 2-r f2l (); (23)

c (x, , , t)=Po () % (x, ') + [RI (t) sin T-9+-P, (t) cos TJPH (x, ) -
-j-[R 2 (t) sin 2-q + P 2 (t) cos2' 1 i(x; -), (24)

where

_. mm (km-) - IV. (k(n " -- , (m
fin, (;,,km),) k( ,) - nkm. (mn) (,)

Gina ?v~ Gna)- i~ (mn) Mr (:M n)

,, ch kmn (x- x") Ym (kmn); (26)
chkmnh

Im(kmnnt) and Nm(kinn) - function of Bessel and Neumann of m order;

mn-kmfniRl - roots of transcendental equation

Sr) N,' (V)- N,' (6c) J()-0; (27)

6-Ro/R; Ro and R , - radii of internal and jackets respectively.

Retaining in equations (18)...(21) the small third-order quantity

relative to parameters r,(t) and p,(t), which characterize the

skew-symmetric oscillations of the free surface of liquid, and

counting parameters pO(t) r 2 (t) and p,(t) by the values of order r -

and P2 1, let us write out the scalar analog of system of equations

(18)... (21).

Page 189.

Equations of forces in projections on axis of body coordinate

system with center of inertia G of system body - liquid with hardened

in undisturbed state liquid are represented in the following form:
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,Vtw; -±1. (r1r, +pp)" +A 12 (wy-r 1 -op, 1) +

+ r, (W., + A~~ -P (11Z - F.,;1 = 28

MXw1 + X (p - 2u.,- r, (wo - ww) - p, (0 ,,u)1 +
+ , x[(,z (r2+ + z,(ri 2*+ ) +p2)] =Fy; (29)

Mwz + X , + 2o,,p + P, (W. + ,,w) -y (4 + w,) -

-X,., x1 .(r -_I _ + -- (r +pi) - , "3

where through ,zy, W are designated projections of apparent

acceleration w-==vG+)XvG-g on axis oz body coordinate system.

Momental equations relative to the principal axes of inertia solid

bodies at point G will take the form

A(; (31)

(-I2+ G%) £.+ (j?- -G) - J 0My ±22+ A, (32)

2 22 )y 1~ 33 22

(J303 +G 2) •z - (JoI -122 -022) Ww =M, +Mz+m (33)

where moments/torques M' M , M' , which appear

as a result of the mobility of liquid, are determined by the

express ions

V4 . =Xo (, 1 + w r, + w).yrl -- Wp)- .(plwz - rwy) -

- [ (r + p) +wo p (r+p 3(r)j

y =Xor -Cl (CIr rrpi)" -C 2 (rpai -p )'-C 3 ('qPo) -

- c 4 (pr 2 - - c, (r po)" - c6 (pr 2 - ,-P )'

0 to[2, +p + - ) -12 poo. '-

-- G 2(pYu + r 2,,,)" 2 2 (rfwo _ -G 2 (pI/ - + rpplz)" + G
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* ~~ (r~~p 1 - rjp) u.)z - rjW,+ 9- 1., (r~ ~ v;(4

MZ+7N -'CPi A-cC 1 p+ rP~ 1  - 2 (~ 1 -Ipr)C 3 (i)

+ ~ ~ ~ P c(!p2rr)+c(P'kO)'+ C6 (P~I'P2 + r,:r2);

m kWX [2*rl(o A- r, (W'x - wywz) + Pi (()x- WM- --I'jw)

222

- (r, p' - r,p) -y A- XpIwx - 9 Ajx(ri + pi Wi,.

Page 190.

System of equations relative to generalized coordinates rJIt) and

pt)ta-kes the following form:

'i (P, A luwxpi) 'L 2 (r1, pj) +-L") (r,, p,, w) A- A wY+ 2 =0
h, $Po + ~jW rpo)A-L3 (re, i) + L'3(r 1, pi, (j) =0; (35)

N2(r 2A- X21Wxr 2)A-L 4 (r1, Pi) A-L'(r1 , pi, w) =0:

'2 (P2+ 2 xwP 2) A-L5(r1 , Pi) A-L'(rL, p, w)=C

where

L1 (ri, p1)==djrj (r1?1A+,Pp*ki)*d 2 (i's r-12pr?* -rpp, -2r, 2)-

- d3 (P2r - r2p1Y A- d4 (rp 2 - Pir;) A-dq(por~ A-d 6rp 0 ;

A-3r, moA- 3p,*Plw) A- +C3(PCy) - C4 (P2woyreA-r-~Yc 5(D'oA-

A-C6 (wIyJ62 A- W.r2) A- N (pj'x A- 2wxk -rwp -

A- 2G1)y (wZP 1 -Il wr) - G22 (()pi A w(,)rl) w)z
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L,2(r-i, pj)=dj I A (rr 1 -{- *+ d2 (4 'p -L r~~1 -2r~rlp -2p 1 --

+ d3 (p2k1 + r~ri)* - d4 (pj -2 + r)r) 2j+ d5 (p6AX -F- d6plpo*.

LOD(ri, Pi, wo) -el (p'1foz -rpl! -rlwzrz- lwl)+C ,+

i-p,+3rrw+ 3p~rlc,) - C3(POW,)' -C 4 (P2(')z rw~y) +j- c5pnwu -

- C6 (r2LO, - P2")Z) - j (rpw. +4- 2rpi'r -W- >1 -4- 2~G2 (r~w Yw -

L 3 ~ 2 (wwr + dsj)

L(r 1, pi) d 6 (rr+ 1 )}8 p ~ ~

L3 (r1, -, ) C ()p,-w, 1  - rjw,,wz) -4- c7w, (r~p, r~p,) +j-

+C5 (WP-4~ ) -, G2) (36)

L4 (r i pl)=d 4 (rIp + Prj) 2 d 7rP,

L5 (ri, pil )==- 4 ((Pyw Ipp)d(-

n2)

Page 2.91.

Hydrodynamic coefficients of equations of motion by (28)...(33),

(35) are determined by some quadratures from cylindrical functions.

Their expressions are given in work [6], and numerical values - into0



DOC = 89056416 PAGE

* [7].

System of equations (28)...(33), (35) is most complete of known

systems, which consider interaction of various forms of oscillations

of liquid in vicinity of major resonance. The solution on their basis

of some particular problems of dynamics and stability of motion of

mechanical systems of the type in question showed that the basic

physical phenomena are described with the high degree of accuracy both

with the quantitative and from qualitative side [11).

Equations given above are generalization of G. S. Narimanov's

equations, given in works '9], [10]. They serve as basis for

obtaining the equations of the disturbed motion of system body -

* liquid, suitable for the analysis of stability of its motion when

hypothesis about the smallness of all parameters of motion is not

applicable. This relates, in particular, to that case, when in the

process of motion occurs the resonance excitation of any of the forms

of the oscillations of liquid, that leads to the complicated

three-dimensional/space free surface motions with the finite amplitude

even with the low linear or angular displacements of solid body.

3. Simplification in general/common nonlinear equations of

disturbed motion. In conclusion we will obtain the system of the

nonlinear equations of the disturbed motion, being based on the systen

of the hypotheses, utilized usually in the dynamics of flight

* vehicles. We convert the given above nonlinear system of equations
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(28)... (33), (35), after selecting as the undisturbed motion of system 0
its programmed motion, which is determined by the simplitied equations

of motion of the material point, which coincides with the center of

mass of system [1], 112). The free surface of liquid in the

undisturbed motion is close to the plane, perpendicular to the

longitudinal axis, and parameters rL, pi are considered equal to zero.

In programmed motion yaw angles and bank are usually equal

to zero. We will also consider that in the undisturbed motion

--0, V-O. (37)

During conclusion/output of differential equations of disturbed

motion of system let us agree to consider as low: a)

disturbance/perturbation of basic parameters, which characterize

motion of solid body; b) disturbance/perturbation of mass Am and

moments of inertia of solid body; c) disturbances/perturbations,

connected with work of engine; d) time derivative of pitch angles,

yaws also of bank, and also angle of attack and its time derivative.

In view of latter/last assumption low values will be also

projections of speed VG on axis Gy and Gz and derivatives of them on

time. We will consider the parameters, which characterize the motion

of liquid, finite quantities. Let us designate the disturbed values

of the basic parameters of motion by prime.

0
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* Page 192.

Then the disturbance/perturbation of the basic parameters can be

defined as a difference in their disturbed and quiescent values;

(6 M M' (t 0 -- U(); q (1)= ' Mt -qo()- , (t);

0, (t)' (t) - y ) ,' (); vG (t) = vA (t) - v ° ); (3)

Basic connections/communications between true and undisturbed

values are established/inztalied taking into account fact that body

coordinate system at moment of time t in accordance with programmed

ahd proper motion they occupy different position Gxyz and G'x'y'z'

respectively. Transition/transfer from the system of axes in the

* proper motion 'o the system of the axes of the undisturbed motion is

realized by a matrix of transition/transfer [11

M -. (39)

With an accuracy to small second-order quantities occur followince

relationships/ratios:

o, ,= ,, o~,= : ,.= Io+ ; (40)

0 0 0
V(J VO+ V,; , + V +V; VGZ, =vo ' + VC, ,

(41)

* .Zx' =g yj v; gY,= -g 0+g u; ,=gA -guy 'g z. (42)
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Converting system of nonlinear equations (28) ... (33), (35) taking

into account limitations introduced above, we will obtain equations of

disturbed~ motion of object in the following form:

A1.r' Aa XG' - mg)CT+ X1., (r~r, +plPiY* + X (2r1', - 5p,;9 + r) -p,5

-p 60,DP1) a 8.r + AF;(43)

AMyG' byG, +- I) - (P -j-, /v)4{ + X (p, - 2yr1  r1y) = c -j- AFY;

Afza, + bzo1, +,oA + (P + dVG~ PA mg.y + X(r, A- 2yp1 + py

= CZ- + AFZ.

J~i + .~x' X0 p~ -r&f'± r~)-1i (r1p1 -r1 Pl) A-XPl (vl 7 Q - A-X

+ CJ3 +" 6AA' L

-2x0 *-91) - 1 zC-}2i M5

9.V I I z (44)

L, (r, pi) 20;

/Ly r, L2pi) p220; 0

!. r/~ -r IP2) -*( r!~- 1 - Pr, C6 p, ( -~~~~'P -'~ )

L, (r1. p1) 0.
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Page 193

Here X(;., Y(;, Zc, are designated coordinates of center of inertia

of object in disturbed motion in system of coordinates Gxyz. ,n the

right sides of equations (43) and (44) they cost the projection of thIe

disturbed forces and moments/torques in the direction of the axes of

the system of coordinates Gxyz. The parameters of motion

X(J, yc i., Z c, t0, q,, y, r, and p,. if is known the position of body axes

in the undisturbed motion, completely define the configuration of

system at the moment of time t and they can be considered as its

* generalized coordinates.

When deriving the equations of disturbed motion of forces of (43)

and momental equations (44) we have used known analogous equations of

disturbed motion of object without taking into account liquid filling

1i]. The possibilities of further simplification in the system of

equations of the disturbed motion given above can be revealed during

the more careful analysis of the kinematic and dynamic properties of

concrete/specific mechanical systems.
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RESEARCH OF TRANSIENT PROCESSES DURING THE LARGE

DISTURBANCES/PERTURBATIONS OF THE FREE SURFACE OF LIQUID IN THE LOCKEP

SECTION.

I. B. Bogoryad, I. A. Druzhinin, S. V. Chakhlov.

Application of point-by-point method to calculation of large

three-dimensional/space displacements of ideal incompressible fluid

with free surface in rigid section is examined. The a posteriori

evaluations of the accuracy of the obtained results are proposed. The

effect of the method of the application of method on its stability is

analyzed. Are given the results of the calculations of the

displacements of liquid in the mobile sections of various forms,

including under the conditions of weightlessness and in the presence

of fluid flow rate from the section.

In nonlinear dynamics of solid body, which contains liquid masses

with free surface, great mathematical difficulties appear during

solution of corresponding hydrodynamic problems. The conformity of

dynamic diagram to real process is determined, as a rule, by the

accuracy of the description of the motion of liquid and solution of

these problems.

0
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G. S. Narimanov [5J for the first time constructed nonlinear

dynamic flow chart of solid body with liquid, which has free surface,

and was proposed asymptotic method of solving boundary-value problems

of hydrodynamics. In this case as the low parameter the maximum

deflection of free surface from the surface of liquid is chosen. G.

S. Narimanov's method for the almost thirty years receives further

development and continuation in the work of many authors [3, 6, 8,

etc.] and it is actually the basic "working" method,

Page 195.

At the same time G. S. Na:imanov's method as any other,

constructed during asymptotic approximation/approach, sets limitations

by an order of values of unknown functions and their derivatives. The

* propagation of G. S. Narimanov's method in the case of capillary

liquid and sections of complex geometric form is connected with the

great mathematical difficulties.

Attempts at solution of nonlinear boundary-value problems of

hydrodynamics by variational methods [4, 7, etc.] did not widen in

comparison with G. S. Narimanov's method boundary of application of

nonlinear theory. This is explained in the basic fact that in these

works the exceptionally/exclusively Eulerian approach to the

description of the motion of liquid is used.

In connection with this point-by-point method of solution of

nonlinear problems of dynamics of liquid with free surface in locked



DOC = 89056417 PAGE 1 , _

section [1, 2, 9], which combines Eulerian and lagrangian approaches

and using sampling process was proposed and realized. In this artic2e

point-by-point method applies to the case of mobile cavities and

spatial motions of liquid taking into account its outflow from the

cavity.

1. Point-by-point method. The boundary-value problem about the

irrotational motion of the ideal incompressible capillary fluid in the

section, which accomplishes the assigned motion, takes the form

S(z , t)=O Q,

Ga (2)a- +(Vp +,, );' -(v, - r,)) r'+ [us H'S (2)
Ov

dp a - z,,: dz 60 v I 00p; (3)

dt ,OP O1p z

I_ Ha Z; (1)
dt 2 FJ I Fr

---=const a L; 
(5)

(z , 0, ) -- ¢ ; Z (0 ) X . (6 )

Key: (1). in. (2). on.

It is assumed that section has shape of surface of rotation,

generatrix to which is assigned by equations

p --r (1), z -- , (1), f7)

where I - arc length of generatrix.

Page 196.
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Here (D - potential of absolute velocity of liquid in system of

coordinates (z, p, /3 connected with section - cylindrical or x, y, z -

Cartesian); Q - volume of liquid, limited by free Z and moistened S by

surfaces; v - unit vector of external normal to

S+ :, V(t)--{z, v, }, o(t) =-- {oz, cop, o) } - known vectors of linear and

angular velocities of section; g-{gx, gy, gz} - G-vector of potential

field of mass forces; H - mean curvature %', us - normal component of

fluid emission rate from section through intake opening; L, e - line

and angle of wetting. Problem is registered in dimensionless

variables, Fr, We - numbers of Froude and Veber.

is introduced replacement of continuous time teKi0, T] by

discrete/digital so that O<t=== T T; n=O, 1,..., T/T.

In terms of values jn-=-{z, p, p, t"}, (z, p, P)CH" with the help of

difference analogues of boundary conditions (3), (4) and condition (5)

known for certain moment of time t' are determined form of free

surface .v,-1 and potential on it (j),-1 at moment of time trL.

For determination of potential ,bl:j in volume of liquid, limited

when ti- l by surfaces ,a-1 and S,1-1 is solved boundary-value

problem

AF+1==0 R Q;

dF"+l n-1 - 1  n , ]-
_____il (V P i( -Mn aV - r u

Fn + 1 H1 S) (8)Z



DOC = 89056417 PAGE'6 ,5

Key: (1). in. (2). on.

Solution of problem (8), which let us name base, makes it

possible to find v, -2 and 1?2[ (z, -. Further the cycle of

calculations is repeated.

2. Numerical realization of point-by-point method. In contrast

to [11, where variational method of Ritz is used, here the solllton of

boundary-value problem (8) is carried out by the methods of least

squares and collocation. In the latter case to S, E and the lines of

the three-phase contact L are introduced respectively the set of the

control points

Sj- ( 1,), r(1j), "j), j: 1,2.
i (z 1, p , "i ), i = ,/ 9

L k (-1 Uk), r (I ), k), k 1,2,..., K

and bounding surface is approximated by linear triangular elements

with the apexes/vertexes at the control points.

During axisymmetric flows of liquid instead of (9) control points

are introduced only on forming free surface

,--(p, z,), i--- 2, .. , 1-; Z2--(r(11), Ii')) and most generatrix is

approximated by interpolation parametric cubic spline with

parametrization along total chord length, which combine control

points. In this case accurately is satisfied condition (5) and is

computed mean curvature H of surface Z.

Page 197.
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Solution (8) is sought/found in the form

F +1- =_I CM" (z + + (10)

where ,, - harmonic polynomials, and function ij,.' harmonic in Q

satisfies condition

d v - I l S  l i d l S 
n -

Key: (1). on.

Coefficients C"' are determined from condition of minimum of

functional, constructed according to method of least squares

I 'dv

T-v M M vi v

sn+ ()

or according to method of collocation

n -l , 2,-

P I + (Sp)" - , (Slo 0  ( P)

d d v ois s J ; ( 1 2 )

n= + I , V',% m ) 1_ (13)

Here - - numerical parameter, - Sp - units of collocation on
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v-i and Sn-1 respectively.

Parameter I into (7) is calculated from difference equation

,I aD 0d ,r 6(D -r ~o (-14
dt ap 0

according to diagram predictor - corrector. Difference analogues of

equations (3), (4) are calculated according to the same diagram.

3. Control/check of accuracy and organization of calculations.

An error in the solution of problem by point-by-point method is

determined by an error in the solution of base problem (8) at each

step/pitch and by errors in the integration for the time of boundary

conditions (3), (4). In turn, an error in solution (8) depends on

errors linear algebraic equations initial data in the system

relatively errors in the solution of this system of equations,

M number and approximating properties of functions f,,. Complete

error analysis is very complex. Therefore we will be bounded to the

examination of the quantitative criteria of the accuracy of solution

(8) and role of the parameter 7 utilized in the calculations of (11),

(12) in control of the value of the resulting error.

Page 198.

As the criteria indicated are selected the a posteriori evaluations of

discrepancies in satisfaction of boundary conditions to Z and S, which

were calculated by the formulas

iT
- , .... . (15 )P P
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where 5,, 8, they are determined from formulas (13), in which S. and

- points, evenly distributed on S and E. In the case of applying

the functional (12) these points should not be placed in the units of

collocation.

Criteria e, and e, i ,ake sense of measure of absolute errors in

satisfaction of boundary conditions on S and E.

Fig. 1 gives characteristic graph/diagrams of dependences e,(7),
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Fig. 1. Fig. 2.

F iy . 1 . De pe.e.,.ice of absolute errors in satisfaction of boundary

conditions on S and E on numerical parameter 7.

Fig. 2. Change in time of total energy of motion of liquid depending

on diagram of integration for time: 1 - diagram predictor - corrector

(r=0.02); 2, 3 - Euler's diagram with r=0.02 and 0.01.

t 
Z t = 2 4 0 O,0 d2 t= aO

0

07

t=O

Fig. 3. Fig. 4.

Fig. 3. Motion of liquid in section of ellipsoidal form.

Fig. 4. Displacement of liquid, exhausted from spherical section

without waves on free surface.
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It is evident that there is an optimum value 7, to which correspoc

the smallest errors in the solution in the assigned level of the

accuracy of intermediate calculations (integration, the solut.<o-

linear system of equations, etc.). The presence of optimum is

explained by dependence on 7 the contribution to the matrix elere-. -

of the system of linear equations, which introduce integrals (su-s,

E and S and by change in this case the numbers of conditionality of'

matrix.

At each step/pitch on time calculation e, and e2 is used for

* assignment of value 7 at following time step, i.e., criteria (15) make

it possible not only to consider accuracy of obtained solution, but

also it is correct to organize numerical process.

Accuracy in the integration for time of difference analogues of

equations (3), (4) and (14) a posteriori is evaluated according to

accuracy of accomplishing of law of conservation of total energy of

liquid. By calculation it is established, just as into [10), where it

is examined the motion of liquid in the cylinder, that the deflection

of the instantaneous value of total energy from the initial is

extremely sensitive to errors in the method of integrating the

boundary rnnHitions. This is important for organizing the

calculations fact, since due to errors in the

discretization/digitization, generally speaking, it is not possible to
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expect the constancy of total energy, and therefore it is expedient to

track the sufficiently lasting tendencies in its changes.

As illustration of results of control of numerical process Fig. 2

gives change in time of total energy of axisymmetric motion of liquid,

which is developed in spherical section from initial state

(°---0 (j', Z=--0,59+ 0,24( 2 ):f 0 . It is evident that the first diagram

is numerically stable (value of total energy it remains constant in

margins of error in the solution of base problem), the second - it is

unstable (value of total energy rapidly it grows).

It is interesting that instability of calculation (in evaluations

according to energy) is developed against the background of

constant/invariable within limits of working accuracy of volume of

liquid mass. Computed value of volume is completely determined by the

accuracy of the solution of base problem; therefore it can serve as

the criterion of this accuracy. Calculating experiment shows that if

the base problem for the certain step/pitch n is solved insufficiently

accurately, then at the following steps/pitches the value of volume

rapidly "is swung".

4. Numerical results. Let us consider examples of the

calculation of the motions of liquid within the sections of various

forms. We will assume that at the initial moment of time the liquid

is found in state of rest relative to the moistened surface, and then

either section is set in motion or instantly varies the field of mass
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. forces.

Motion of liquid, which half fills it cut off ellipsoidal form,

when g/Fr= (0, 0, --1). Wc =o it is represented in Fig. 3. it is

evident that nonlinear interaction of different tones of oscillations

leads to the appearance of fine/small waves on the free surface of

liquid near the wall of section.

0
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z

0" 05

Fig. 6.

Fig ~.Formation of 'funnel/hopper in presence of waves on free

S r f ae.

Fig ~.Formation of funnel/hopper under conditions of weightlessness

Z L 4 4S r z t=14%& 1f7, 26

F~g. 7.Fig. 8.

Fig. 7. Formation of funnel/hopper under conditions of weightlessnes

19 = 120')

Fig. 8. Change in form of free surface of liquid, which instantly

loses weight (Uo-9(Y)
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Fig. 9. C~ange in form of free surface of liquid, which instantly

loses weight 3

Fig. 10. Motion of liquid in cylindrical section with horizontal

generatrix.

Page 201.

Further is shown formation of axisymmetric funnel/hopper on free

surface of liquid, exhausted from spherical section in the absence of

waves on free surface (Fig. 4) and in their presence (Fig. 5). It

turned out that when g Fr[ 70, 0, -1), W= " i',---0,5 the oscillations

of liquid on the first axisymmetric tone contribute to the more rapid

formation of funnel/hopper.

0Numerical experiment established that with suction of liquid from
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spherical section under conditions of weightlessness volume of liquid,

which remains in section at moment of entry of gas into intake

opening, depends substantially on angle of wetting. The results of

calculations with the filling of section to level

(F_ V = 10. O,5) are given in Fig. 6, 7. There is

an optimum angle of the wetting, for which in the given ones

expenditure/consumption and other determining parameters the

remainder/residue of liquid is minimum.

Behavior of liquid, which fills spherical section to 0.156 of

entire volume and that instantly losing weight shown in Fig. 8 for

---~, -- 101 , 0-=902 and 9 for hr occ, \\'e= 102, 0 30= . It is

evident that t-he motion of liquid, shown in Fig. 8, is accompanied by

complicated interaction of fine/small waves and qualitatively it

differs from smooth and regular capillary waves by Fig. 9.

Fig. 10 shows change of form of liquid volume in straight/direct

circular cylinder, filled at depth, equal to radius after direction of

acceleration of field of mass forces instantly was changed on 900,

i.e., section proved to be lying/horizontal "on side". With an

instantaneous change in the direction of the acceleration of the field

of mass forces on 31.3' in plane zy and during the rotation of section

with (,),I ( ),,--I).0 around the axis, passing through the center of

free surface, the form of liquid volume is shown in Fig. 11. It is

well noticeable that during the rotation of section the free surface

of liquid longer retains flat/plane form,
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S/

Let in spherical section of unit radius be located volume of

liquid in the form of spherical segment by height/altitude 0.1. At

first liquid segment is deflected from direction g at angle of 450.

Fig. 12 shows the evolution of the form of this segment in the course

of time under the action of gravitational force.

If at initial moment of time it cut off with liquid it begins to

quickly move to the right with acceleration of

dn
.'9z (this equivalent to instantaneous change in direction of

eft

accelera-ion of field of mass forces at angle of 31.30), then form of-

liquid volumes within sections in the form of cone and straight/direct

circular cylinder with hemispherical cover/cap will be such as it is

depicted in Fig. 13 and 14 respectively.

Fig. 15 shows form of liquid volume, which is located in

cylindrical section with hemispherical cover/cap, under the same

external influences, as in Fig. 11. The comparison of Fig. 11 and 15

shows that the motion of the center section of the free surface during

the rotation of section weakly depends on its form.

Point-by-point method makes it possible to calculate transient

processes in liquid and during other, more complicated motions of

section.

S
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Fig. 11. Fig. 12.

Fig. 11. Characteristic forms of volume of liquid in cylindrical

section, which accomplishes progressive/forward and rotations.

Fig. 12. Characteristic forms of volume of liquid of low depth in

spherical section.

=40=o

Fig. 13. Form of liquid volume in quickly moving/driving conical

section.

0
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/

Fig. 14. Fig. 15.

Fig. 14. Form of volume of liquid in quickly moving/driving

cylindrical section with spherical cover/cap.

Fig. 15. Displacement of liquid in cylindrical section with spherical

cover/cap, which accomplishes progressive/forward and rotations.S

S
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About the motion of solid body with the liquid, whose free surface is

closed with the nonlinearly deformed shell.

V. A. Trotsenko.

Are derived equations of disturbed motion of solid body with

cavity, wholly filled with liquid, part of surface of which is

axisymmetrically deformed by hydrostatic pressure dome-shaped shell of

highly elastic material. Investigated methods of solving the

corresponding boundary-value problems, connected with the

determination of the hydroelastic coefficients of the obtained

equations. Are given some results of the calculations of the free

oscillations of mechanical system liquid - shell.

As one of means of limitation of mobility of liquid in

axisymmetric vessels structurally/design can be used preliminarily

deformed soft shell of rotation, coaxially attached on walls of vessel

and closing free surface of liquid.

In the present work setting and solution of nonlinear problem

about determination of state of equilibrium of shell, prepared from

highly elastic material and which is located under hydrostatic

pressure is given. According to G. S. Narimanov's method in the

linear setting are derived the equations of the disturbed motion of

mechanical system body - liquid - shell and is proposed the
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* approximation method of determining the hydroelastic coefficients of

those obtained equation. The results of the calculations of the

frequency characteristics of the oscillations in coupled circuit of

liquid and deformed shell are given.

1. It is known that under conditions of weightlessness

reorientati-n of liquid in capacity/capacitance in comparison with its

usual position under conditions of gravitation is possible.

Furthermore, under these conditions under the influence of weak

disturbances/perturbations the presence of free surface unavoidably

leads to the disturbance of the continuity of liquid, and the latter

is converted into the blistered mass, it falls into the series/row of

the large and small drops, distributed throughout entire volume of

* vessel. In connection with this in the engineering practice are used

different kind the pressurization diaphragms, whose basic purpose -

the stationary isolation/evolution of gas from the liquid taking into

account the possibility of drain or servicing with the latter. The

devices/equipment, prepared on the basis of the synthetic rubbers,

which possess the high coefficients of elongation/aspect ratio and

ultirn-tA tensile strengths, PrP most prnmising of such type of

devices/equipment. The principle of the work of pressurization

diaphragms from the elastomers can be clarified based on the following

example. Let the initially flat/plane free surface of liquid, which

is located in the axisymmetric vessel, be closed with the circular

membrane/diaphragm from the material in question rigidly attached on

* the walls of vessel. Then a change of the volume of liquid in the
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vessel will be accompanied by the ultimate strains of the

membrane/diaphragm, which forms in this case a certain axisymmetric

surface. In the more general case the diaphragm can be prepared in

the form of arbitrary shell of the rotation of variable/alternating

thickness closed in the pole.

Analysis of behavior of liquid in cavities with pressurization

devices/equipment from elastomers and account of its effect on

dynamics of body it is connected with solution of whole complex of

problems. The task of the definition of the elastic deformation of

diaphragm, which during the defined limitations to fluid emission rate

from the cavity can be considered as the task about the ultimate

strains-of the highly elastic shells of revolution under the effect of

hydrostatic load, is one of them. This task relates to the number

physically and of the geometrically nonlinear tasks of the theory of

soft shells.

Let diaphragm in unloaded state be thin shell of constant

thickness h., whose median surface is obtained by rotation of plane

curve to angle 2v relative to axis Ox0 , which lies at its plane. Let

us assume that the shell is attached on the parallel of radius R0 on

the walls of the cavity of rotation and the form of its meridian is

assigned in the form

x , (xs); r,-= r,(s),(l

where s - arc length of meridian, calculated off the pole of shell.

0
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We will examine shells, for which in vicinity s=0 function r0 (s)

is represented in the form

r, (S) S -

This class of shells includes, in particular, shells, which have

form of spherical canopy, paraboloid, ellipsoid and hyperboloid of

rotation.

For describing geometry of deformed shell let us introduce

cylindrical coordinate system Oxnr with beginning in center of

attached duct/contour of shell and axis Ox, directed opposite to

gradient g of field of mass forces. Since the axisymmetric load is

applied to the shell, the main directions of deformation at point P(x,

77, r) will coincide with the meridians, the parallels and the

standards/normals of deformed median surface of shell. The main

degrees of elongations/aspect ratios in these directions let us

designate through X,, X, and X, respectively. Assuming that the shell

is prepared from the incompressible isotropic material, we will obta-in

/ I -d x\ d 2 /' dr 2 ," 1(3)

Eorces of median surface of deformed shell in its biaxial

stressed state are determined from formulas [l]
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Tj- ' 2k"".i (X2 -- X, (i-  -- (i-. 2). (4.)

Here W - elastic pitential, which is function of invariant of

deformation I, and I2

2-. ,

Conditions of equilibrium infinitesimal element of deformed

surface of shell make it possible to obtain equations

dTr I dr (T,- T,) -O;
dr ds ()

_Tj.__ T__ _ 2 Q (xv),
R1  R,

where Q- )=CDx- C=--P 0- D==--!,g- , - density of liquid; y -

load factor; P* - constant component of fluid pressure, P0 - pressure

from side of gas to shell; R, R, - main radii of curvature of shell in

final state. The constant C depends on the volume of liquid.

Thus, equations of equilibrium (6) taking into account cf given

relationships/ratios and conditions of attachment of shell are

boundary-value problem for system of two nonlinear differential second

order equations relative to functions x(s) and r(s).

Page 206.

For solution of formulated problem we will use variationai

method, it is sufficient to efficient during solution of similar tasks

(8). On the basis of the principle of the stability of potential
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* energy of shell, the solution of initial problem can be reduced to

finding of the ex,.remum of the functional

2 - j)VIio\Vr, (s) Q (x) r 2 dXj (S (7)

on the class of the functions, which satisfy The conditions

dx- (S)) -=r (0): 0; r (s,,) . (8)

ds s "3

Following Ritz's method, solutions for functions x(s) and r(s)

let us represent in the form

p

x (s)- xo (s) -- V' xt/k (s);

S- (9)I OI
r (s) r,) (s) - CX+pVk (S).

Coordinate sets of functions {z,,(S)} and {7'k(S)} let us select as

follows

11k (S) 1 s -  i,) s~k  2 e (S) = sit (S). ( O

-raking into account stability condition of functionai (7),

constants Xk, that form by itself 2 p-component vector x, ,,,e find from

solution of nonlinear algebraic system

(x) 0.l
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In this case components of vector function f take form

so _ AU 1 dx dU V dr

A,+ 2t/,.U&Au, -- .. Lr Q(XU( 2 .- 111 ) rd;Si t d ds ds
0

I dr. dv. V.

Qv rfds; (12)
ds

X -- (X2X ot) (i1,p

For solving system of nonlinear algebraic equations (11) is

sufficient quantity of iterative methods.

Page 207. 0

Converging of them is most rapidly Newton's method, according to whom

the approximations/approaches are computed according to the diagram

x(k X) - l-  (XR)) f  (X(k)), (13)

where H(x) - Jacobi matrix set of functions f1, /.,... V; relative to

variables V,

During construction of initial approximation/approach in

iterative process of (13) is used method of continuing solutions by

parameter of load Q, and in the case of presence of singular solutions

of e;,dtions (11) - method of replacing parameters of continuation.

SSubsequently in calculation formulas was used most widespread
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* elastic potential W(I1 , I2) in the form of Mooney

\V (/C, I C (/1 --3)- / - ) U14

Here C, and C2 - physical constants.

Carried out numerous calculations show that method of solution of

initial problem proposed above proves to be sufficiently efficient

from point of view of accuracy of calculations and expenditures of

machine time.

As example let us give results of calculating strained and

stressed state of shell, which has in initial state form of circular

* membrane/diaphragm with following geometric and physical

characteristics:

R_, 1 M; /I -= 2. 10 3 ; C1 - 93,19,51 -  M,

C,-=-17,168. 10 4H M . (''

Key: (1). N/m 2 .

Fig. 1 depicts profiles/airfoils and force of median surface of

deformed shell with different values of dimensionless parameter of

load C (transition/transfer to dimensionless quantities is realized

according to formulas [8]). As can be seen from figure, with the low

values of C the large part of the shell is in stressed state close to

the uniform. In proportion to its increase, which is accompanied by

an increase of the efforts/forces in median surface of shell, this

O region is reduced.
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2. Let us consider solid body, which has cavity of rotation with

liquid. Let us assume that region Q, occupied with liquid, is limited

by the rigid walls of cavity S and by the axisymmetrically deformed

shell Z.
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44 014 i 1

Fig. 1. -Internal efforts/forces and profiles/airfoils of deformed

shell wi-th different values of parameter of load C.
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Let us introduce the system of coordinates O*x*y-z- with axis O*x*,

which coincides with the axis of the symmetry of cavity. Let us take

the assigned motion of the system of coordinates O**y*z* for that not

disturbed. In the description of the disturbed motion we will use the

hypothesis of the smallness of the parameters of motion. Let us

introduce the system of coordinates Oxyz connected with the body and

it will place it so that during the undisturbed motion of solid body

this coordinate system would coincide with system O*x*y*z*. The unit

vectors of axes Ox, Oy and Oz we will designate through i1, i, and i3.

The disturbed motion of body we will characterize by the vector of low

* displacement uo of point 0 relative to 0* and by the vector of the low
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rotation & of the system of coordinates Oxyz relatively O*x*y*Z*. For

describing the motion of liquid in the cavity used the displacement

potential x, for which in the case in question must be satisfied the

conditions

0\<U. .v, R ,,/ z u.(U.. v ) -o R 'J) w, (16)ov s ov I

Key: (1). in.

where R - radius-vector of the arbitrary point of surface E+S relative

to point 0; v - unit vector of external normal to Q region; w -

sagging/deflection of shell in the direction of external normal to the

surface Z.

0
It is analogous with [5], [6], [7], displacement potential is

represented in the form

7:= (u,, (D) ( , ) '.( 7

Then functions P, + and o must be harmonic functions in Q region

and satisfy following boundary conditions

ov
) ) (18)

0 =:0; ov W
Ov s

Furthermore, to function w must be superimposed further

limitation
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escaping/ensuing from condition of retaining/maintaining volume of

liquid.

Vector function 4 with an accuracy to arbitrary constant is

determined by formulas (1W)=X; (D.2=y; (Dj= Z, vector function tP

subsequently we will assume known.

Displacements of shell we will characterize by vector u with

components u, v and w respectively in directions of meridian, parallel

and normal of median surface of shell.

O Page 209.

Then the disturbed motion of shell will be described by the following

system of partial differential equations:

L21 (u) + L2 (v) L 23 (w)- rkj Q 2; (20)

L3, (u)+ L3 2 (v) + L 33 (w)--rX, I8Q3 + P1.

In this case functions u(s, n, t), v(s, n, t) and w(s, n, t) must

satisfy boundary conditions of rigid attachment on duct/contour I

u I -=v I 1 =-w I =-O (21)

and limitedness of deformations in pole of shell.0
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Here L. - well-known differential operators those preliminarily

deformed by hydrostatic load of dome-shaped different shells of

rotation [9]. Under 6Q(i-=1, 3) are understood the loads, caused by

the inertia of material of the shell

o0 - 2v a2w (22)
6Q1 - -poh 0 8Q2= ' at2

where p0 and h - material density and the variable/alternating

thickness of the deformed shell.

Pressure from side of liquid

a2x

will function besides these loads on shell during its disturbed motion,

First two terms in formula (23) determine additional hydrostatic

pressures on shell, caused by rotation of system of coordinates Oxyz

relatively O*x*y*z* to angle 0 and by deformation of surface Z. In

this case with an accuracy down to the terms first-order of the

smallness

8x5=--2Z-O3Y; ax =w cos a-u sin a, (24)

where a - angle between the standard/normal of surface Z and axis Ox.

Latter/last term into (23) registered on the basis of

Lagrange-Cauchy integral determines with an accuracy to arbitrary

function of time dynamic pressure of liquid on shell.

0Let us introduce into examination operator of Neumann H, who to



DOC = 89056417 PAGE '34

* values of function f, assigned on surface Z, places in conformity

function p, determined in region Q and being solution of

boundary-value problem

(1 1? 1 O . (25)

Key: (1). in.

Let us register this conformity in the form

=Hf. (26)

Operator H is integral operator, kernel of which is Green's

function for task (25).
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Then disturbed motion of shell will be described by operational

equation:
02Lu-- -r,/hPo -r- x. (27)

Here L - matrix operator, generated by differential equations (20) and

determined on the set of functions, which satisfies conditions (19)

and (21).
[L, L12 L13]

L = L21  L22 L23~
[LLi L32 L3 J

moreover L*3 and L,3- changed differential expressions L3, and L,,

* due to second term in formula (23). Vector X is determined in this
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case as follows:

X {0, 0, rX1 [ 9 g(0 2z 0Y) -~y p (0T (6*w ) PH22.wi (28)

Prime in curly brace indicates operation of transposition.

Let us consider task at eigenvalues, which describes free

oscillations of mechanical system liquid - shell in fixed vessel

Luj-wBuj=O; B--diag[rkjhpo, rkhpo, rkXhpo, rkX(hPo+pH)j. (29)

Boundary-value problem (29) has discrete spectrum, and all its

eigenvalues are positive. The set of eigenfunctions in a sense

possesses completeness and satisfies the conditions of the

orthogonality

(L uj,uj)dsd-=0; .' (B uj,u)dsd-=0, (i : j). (30)

Let us represent displacements of median surface of shell u(s, r,

*t) during its disturbed motion in the form of generalized series along

system of vector functions Uj(s, rj) of task (29)

u(s' 71 t)--N sj(t)uj(s, v). (31)

I-I

Equations of disturbed motion of mechanical system body - liquid

- shell, that establish/install differential linkage between vectors
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u0 e and generalized coefficients Sj(t), it is possible to obtain,

after registering equations of motion of body, taking into account in

this case power and moment effects from side of liquid to body. Let

us find the third equation after the substitution of expression (31)

in equation (27) and the subsequent application of Bubnov-Galerkin

procedure.
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Assuming that the axes of the introduced coordinate system are the

principal and central axes of system body - hardened liquid, we

convert the equations of the disturbed motion to the form

0 n-I
00

(10-71)0+ s"l+g sV S[Nl×i I =M'; (32)

n=l n-I

- ( n -+-s) 4-(un, .) + (o,lo ) + g ( 362- n26)=o, (n= 1, 2,...),

where

-- w d ; / , ' T ds; : , n2 n3

m,, I, - mass and tensor of the inertia of solid body; m - mass of

liquid; I - tensor of the inertia of liquid with nonzero components

Iii; P' and M' - main vector and main moment with respect to point 0 of

other external forces, which function on the body during its disturbed
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motion.

3. Further perturbation analysis of mechanical system in

question is possible only after determination of hydrodynamic

coei.L~t.ients or e4Llatioits (32), which is uoi jugaLe' / .
1 iti

determination of solutions of corresponding boundary-value problems.

For determining of function 4s, liquid in the cavity describing motion,

during the low rotations of body to the angle & it is possible to use

the methods, presented, for example, in work [4). As far as finding

the free oscillations of liquid and shell in the quiescent cavity is

concerned, solution of the corresponding problem of hydroelasticity

after its reducing to the system of integrodifferential equations (29)

can be replaced with the solution of variational problem for the

functional

J-- (L u, u)dsdr/! f(B u, u)dsdq. (33)

In this case minimum value of functional (33) and function, on

which it is realized, coincides in accordance with eigenvalues and

eigenfunctions of task (29).

For finding minimum of functional (33) we will use Ritz's method.
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Examining the skew-symmetric oscillations of liquid and shell in plane

Oxy, let us represent the components of vector u in the form of the

ILo
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* expansions

q q

U--COS TI Y'kYti (s); V= SinI TI V Yk+qVk (S);
-'I (34)

W =COS TI 1 y+2w k (s).

A-I

After isolation of angular coordinate end-point s=O is regular

singular point for operator L. Therefore, taking into account the

established/installed earlier asymptotic behavior of the unknown

solutions with the approach to the pole of shell, coordinate sets oi

functions fuk(S)', (v,(s)} and {Wj,(S)k let us select in the followinc

form 9]-:

u,(s) = (s2 _-S2) S2 (-1); Vk (s) = ut (s); w4 (s) = (S2 - s2)s - , (35>

after assuming in this case in expansions (34) Yq+1-Y

As a result let us reduce task of determining (3q-l)-component

vector y--{YI, Y2, .-., Yq, q+2, .. , y3q} to solution of generalized

algebraic problem at eigenvalues

(A -w, 2 B) Y = 0. (36)

For determining matrix elements B knowledge of functions

S ' w k, which are solutions of heterogeneous boundary-value

problems in region G of meridian cut of cavity

S
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Or r (37)
O0I =0, (k--, q),

0v I LQ ,

where L0 and L, - parts of boundary of the region G, which lie

r~ctiv l- on surface of shell E and bydrophilic surface of cavity S

respectively, is necessary.

Formulated problems (37) are solved on basis of variational

method, worked out for solution of analogous problems in work [4], if

we select for function 01)h in the form of sequence of linear

combinations of coordinate functions

Sets of functions {m(X, r)}, which ensure conveirence of sequen-P

(38), are constructed in accordance with recommendations, prc sed in

works [31, [4].
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Let us give some results of dynamic response computation of free

oscillations of liquid and preliminarily deformed shell for cavity in

the form of straight/direct circular cylinder. It was assumed that

shell in the unstressed state it is the circular membrane/diaphragm

with characteristics (15), attached at a distance H/Ro-- 0,5 from the

bottom of vessel. Table 1 gives the convergence of the first three

values of dimensionless frequency parameter xn.-R 0
2pW 2 ,/(2C,) 0
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* depending on :he number of approximations/approaches q in expansions

(34) with the fixed/recorded number of functions into (38) (m=10).

T e dirensionless physical parameters of the mechanical system in

question relied by the equal to

C= 1, 4; D- - 2,631579; F= C2 -0,184210;P - 1; -- 500.
C p0  ho

(39)

Inertia of material of shell in tangential direction in this case

was not considered. On the other hand, the effect of the number of

approximations/approaches m in expansions (38) into the determination

cf frequency parameter Yn is represented in Table 2. Analogous

convergence is observed also during the determination of the forms of

* oscillations. The obtained results testify about a sufficient

efficiency of the proposed approach to the solution of the problem

during th2 determination of its lowest eiqenvalues and eigenfunctions

in question corresponding to them.

Fig. 2 gives graphic dependence of first two values of

dimensionless parameter VR./.I from value of increase in volume of

liquid in vessel -- -- V/('- R03 ) when 6=--Ro/ho-200;500. Dotted lines

plotted the first four dimensionless natural vibration frequencies of

liquid in the cylindrical container with the free surface of liquid.
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Table 1.

12 3 4 5

X 0,038495 0,036532 0,035860 0.035814 0,035843 0,035843
- 0,27951 0,23283 0,23097 0,23096 0,2386

× - 1,09715 0,74836 0,72226 0,72189

Table 2.

n4 6 8 10 12

0,036024 0,035851 0,035847 0,035843 0,035843
0,42981 0,23944 0,23097 0,23096 0,23091

3 - 0,31385 0,72226 0,72180
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With LV, that vanishes, the natural frequencies of mechanical system

shell - liquid approach the appropriate natural vibration frequencies

of liquid in the vessel with free surface of [2]. An increase in the

parameter AV, which is accompanied by an increase in the stressed

state of the shell (see Fig. 1), leads to a considerable increase in

the natural frequencies of the hydroelastic system in comparison with

the natural vibration frequencies of liquid in the equivalent vessel

with the free surface L. Consequently, the structural equipment in

question can be also used for the capacities/capacitances, which are

located in the strong gravitational fields as the means of a
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* substantial change frequently of the natural oscillations of liquid in

the direction of their increase.
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J2.... 5 )=00

Fig. 2. Dependences of natural frequencies on value of increase in

volume of liquid in vessel with different relative thicknesses of

shell.
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SELF-EXCITATION OF THE LOW-FREQUENCY OSCILLATIONS OF LIQUID DURING THE

HIGH-FREQUENCY OSCILLATIONS OF VESSEL.

B. L. Venediktov, R. A. Shibanov.

Are presented and analyzed results of experimental analyses of

special features of behavior of liquid during excitation of

high-frequency (to 50-70 Hz) oscillations of tank, leading to fountain

effect drops from free surface of liquid and onset of oscillations of

liquid and tank with frequency of 5-20 times lower than frequency of

vibrations of forcing force. Is determined the dependence of these

phenomena on frequency and amplitude of tne oscillations of the

longitudinal exciting force and transverse vibrations of tank, and

also on some parameters of tank. Are revealed some special features,

which make it possible to make more precise nature of the phenomenon

b-ing investigated and its effect on the oscillations of tank itself

and elastic constructions/designs, component part of which it is.

Nonlinear effects, which appear during oscillations of liquid in

tanks of flight vehicles, can substantially affect their dynamic

characteristics and must be considered with stabilization and

controllability of flight, work of fuel-supplying systems, dynamic

structural strength of flight vehicles with liquid propellant [3, 4],
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Nonlinear effects during oscillations of liquid in tanks can be

described within the framework of following three classes of

phenomena:

1. The effects, which appear, mainly, as a result of the special

features of tank geometry (due to the edges/fins, the grids,

perforated/punched diaphragms, etc.), which are exhibited even with

the sufficiently low amplitudes of the oscillations of exciting forces

and biases/displacements of tank.

2. Effects, caused, in essence, with large amplitudes of

oscillations of exciting forces and biases/displacements of tank. The

nonlinear effects of this class (limitedness of resonance amplitudes,

* the asymmetry of the profile/airfoil of wave, etc.), observed in the

region of major resonance, appear with the amplitudes of the

oscillations of liquid, which exceed 0.25 of radius of tank [2].

3. Etfects, connected with implication of other substantially

(in comparison with linear oscillations) forms of behavior of liquid,

that appear with instability of oscillations of liquid during

interaction with oscillations of shell of tank. With this type

phenomena are connected:

the excitation of the subharmonic oscillations of liquid, whose

frequency is 2 times lower than the frequency of perturbing force,

during the longitudinal (normal to the free surface of liquid)

oscillations of tank due to the instability, which appear in this case
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the parametric variations of liquid. Linear theories do not make it

possible to determine the amplitude of the oscillations of liquid,

which appear during the longitudinal excitation of tank;

the rotation of the free surface of liquid during transverse

vibrations of tank with the large amplitude with the frequency, close

to the first tone of the oscillations of liquid;

the fountain effect of drops from the free surface of liquid, the

introduction of the bubbles of air into the liquid during the

sufficiently intense high-frequency oscillations of tank;

the onset of low-frequency oscillations of liquid during the

high-frequency oscillations of tank, whose frequencies differ into

dozens of times.
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The known results of experimental research of this phenomenon will be

coordinated with the assumption, independently advanced by M. S.

Galkin in 1960 and Yarimovich [4) t)-at the main factor, which supports

the low-frequency oscillations of liquid, are the impacts/shocks of

the drops, which fall to the free surface of the liquids, formation

and flight time o' which is synchronized with the low-frequency

oscillations of the surface of liquid.

Excitation of lowest tones of natural oscillations of free

surface of liquid during high-frequency oscillations of tank was

discovered during experimental studies of longitudinal vibrations of

rigid vessels Yarimovich and by Kahn [4] it is independent during
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* transverse high- frequency oscillations of vessels - by B. L.

Venediktov in 1960 and during longitudinal vibrations of free tank

with elastic bottom - R. A. Shibanov in 1965. However, the

satisfactory theory of the emergence of this phenomenon is absent, and

it needs further research.

In this work results of experimental studies of phenomenon of

radio-frequency drive of low-frequency oscillations of liquid and

process of spray formation connected with it are presented and are

analyzed.

1. Description of experiment. The bouncing of the tank with the

water, suspended/hung from the shock cords, with the help of the

* directed eccentric radiator and the spring energizer is excited. The

natural frequency of oscillation of tank on the suspension is located

in the range of frequencies from 1 to 4.5 Hz. Tank can be moved only

in the vertical direction.

Tank is cylinder with flat elastic bottom, whose inner diameter

is equal to 300 mm. Cylindrical part is done from organic glass a

thickness of 3 mm, bottom - from the steel plate with a thickness of

0.2 mm.

Are varied: frequency of vibrations of exciting force w from 1

to 50 Hz; depth of filling of tank with water H (H/R--O,02...1,73,

where R - inside radius of tank); ampliLude of oscillations of
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exciting force, created by radiator, is equal to po0/0wo2 , where

oo- 33,33 Hz, and P0 vary within the range of 15 to 175 N.

Bias/displacement and acceleration of the end/face of the cylindrical

part of the tank are measured.

2. Characteristic types of behavior of liquid. Characteristic

forms of oscillations and type of the behavior of the free surface of

liquid, discovered during these tests, they are shown on a series of

the photographs Fig. 1.

During excitation of oscillations of tank in the range of

frequencies from 4.44 to 20 Hz well visually observed oscillations of

free surface of liquid appear.

0
In the range of frequencies from 5 to 10 Hz harmonic axisymmetric

oscillations of surface (see Fig. 1B) usually are excited.

With increase in frequency and amplitude of oscillations of tank

axisymmetric oscillations are destroyed, appears zone of unstable

oscillations of liquid, where whimsical forms of oscillations with

large amplitude (see Fig. lc) frequently appear.
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The frequency of the vibrations, during which appears the instability,

grows with the reduction of the amplitude of the oscillations of tank.

With H/P=0,67 and 85 P0  175 N the instability begins in the range 0



DOC = 89056418 PAGE

* of frequencies from 7 to 10 Hz, while under force of P.=49 of N at the

frequency of 15-1-6 Hz, with P0 =15 N at the frequency of 36-37 Hz.

Steady subharmonic oscillations of free surface of liquid with

frequency of from 2.23 to 4.1 Hz are observed, frequency of vibrations

o' exciting force in this case is 2-2.1 times higher.
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Fig. 1. Characteristic cases of oscillations of free surface of
liquid during longitudinal vibrations of tank with different frequency

and amplitude. 0
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The frequencies of the vibrations of free surface to 1-9% are lower

than appropriate theoretical values of the natural frequencies of

oscillation of the liquid

2i/-- 9 ii th H , I

where g - gravitational acceleration; ij - roots of derivative of ;

Bessel function of the i first-order order J'i (j) -- 0.

Observing low-frequency tones correspond to roots

02, ;o4, S, S22, 23, 51 and have natural frequencies, close ones to

* natural frequency of oscillation of tank during suspension or are 2

times lower th:n it. The smalle:t frequency, at which is observed the

manifestation of the instability of the surface of liquid (7 Hz), two

times exceeded the frequency of the vibrations of tank during the

suspension.

Lowest axisymmetric tone (natural frequency 2.5 Hz) in this case

is not excited. This tone (2.5 Hz) is recorded (see Fig. 1a) during

the free oscillations of tank with a frequency of 5 Hz (logarithmic

decrement of oscillations 0.02), which appear after the excitation of

tone during spray formation in the process of the high-frequency

oscillations of tank and subsequent removal/tak: g of exciting force.

Excitation of subharmonic oscillations and emergence of
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instability of oscillations of free surface of liquid can be explained

with the help of theory of parametric variations, described during

longitudinal harmonic excitation by equations of Mathieu [1, 5]. Let

us note that the dynamic characteristics of tank substantially are

reflected in the sizes/dimensions of the zone of the instability of

the subharmonic oscillations of the liquid: both due to the increase

in the amplitude of the harmonic oscillations of tank at the resonance

frequency of excitation and due to reduction in the amplitude of the

oscillations of tank, necessary for the parametric excitation of the

subharmonic oscillations of liquid in the case of the proximity of

subharmonic to the natural frequency of oscillation of tank.
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0

Fig. 2. Fig. 3.

Fig. 2. Dependence of minimum frequency of vibrations of longitudinal

forcing I-orce, during which occurs fountain effect of liquid, from its

amplitude P0, with increase (0) and decrease (x) of frequency (03

Oself-excitation of low-frequency oscillations; H,/R=O,67)

Key : ( 1). Hz.

Fig. 3. Dependence of ratio of amplitude of oscillations of

longitudinal acceleration of tank with fountain effect of liquid ('x+)

to appropriate amplitude without fountain effect (k-) on depth of

filling of tank with liquid (excitation it corresponds to boundary of

drop-forming P,=126 N).
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with increase in frequency of rotation of rotor of radiator

instability, where oscillations of liquid depend subst~intially on

random factors (first of all, initial disturbances), vanishes, and

O on free surfacp of liquid appear steady subharmonic oscillations with

• ,mmmum m m n mn Jmmn |m2
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- -C:-'enCV of W/ 2 with large number of waves in radial and tangential

d.ections (see Fig. id). The corresponding to them natural

freauencies and the forms of the oscillations of liquid weakly depend

on the geometry of cavity and are determined in by the fundamental

principles of capillary and gravitational forces.

Number of waves on surface grows with increase in frequency of

vibrations of tank. Evaluations showed that the mean radius of the

crater of one wave approximately can be considered with the help of

the equality

r pgr2

of the corresponding to expression for the frequency first

axisymmetric tone of the natural oscillations of liquid in a deep

vessel of radius r taking into account surface tension a [5]. Here S?

- frequency of the vibrations of liquid; p - density of liquid;

Z o :3,83.

3. Diup- iting. An increase in the frequency of the rotation

of the rotor of radiator in higher than the certain limit leads to the

destruction of the crests/peaks of capillary-gravitational waves; to

the formation it is high (in comparison with the amplitude of wave

oscillations) of the gushing columns of water and to the breakaway of

the drops of liquid from the crests/peaks (see Fig. le). The greater

the amplitude P0 of the oscillations of the force, created by

radiator, the lower the minimum frequency of the vibrations of tank, O
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* during which occurs the formation of drops (Fig. 2). If we reduce -h

frequency of the rotation of radiator after the emergence of the

process of drop-forming, ther drop-forming is retained to the lower

frequencies and the amplitudes of the oscillations of exciting force.

The greater amplitude of oscillations of exciting force, the

greater quantity of drops is formed and the higher trajectory of :he:r

flight. The greater the frequency of the vibrations of tank, the less

the diameter of drops. The maximum/overall diameter of the gushing

drops is equal to 5...8 mnm, which is approximately 20.. .30% of

wavelength of the corresponding oscillations of surface with a

frequency of 20 Hz. Finer/smaller drops have the high initial

velocity and heave above. In the majority of the cases the

O drop-forming occurs only in the center section of the surface of the

liquid (see Fig. le). With the decrease of the depth of filling of

tank the surface of liquid, included by drop-forming, increases. The

majority of drops (is especially highly gushing) flies away from the

center of tank to the periphery.

With emergence of drop-forming amplitude of oscillations of tank

sharply grows (Fig. 3). The greater the depth of the filling of tank

with liquid, the more the amplitude increases.
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With H/R>l the amplitude of the oscillations or tank grows due to the

* dron-forming 10.. .20 times.
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Minimally necessary for excitation of process of droo-forming of

amplitudE of oscillations of composite force, which functions on

liquid, compose 0o5...10 from weight of liquid (Fig. 4, 5). With an

increase in the depth of the filling of tank with liquid with H/R>0.4

the necessary amplitudes of forces are reduced.

Drop-forming is retained in sufficiently wide frequency band of

forced oscillations (Fig. 6). The greater the amplitude of the

oscillations of exciting force, the wider this range.

0

0
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,0

Fig. 4. Fig. 5.

Fig. 4. Dependence of amplitude of oscillations of total

longitudinal force of F, which functions on liquid on boundary of

drop-forming, in reference to its weight mg, on amplitude of

oscillations of that forcing Po (H/R=0,67),

Key: (l . N.

* Fig. 5. Dependence of amplitude of oscillations of total longitudinal

force of F, which functions on liquid on boundary cf drop-forming, in

referen-0 to its weight mg, on depth of filling of tank with liquid

(P.=126 N).

Fig° 6. 49

Fig. 6. Frequency regions of fluctuations of forcing force and depths

of filling of tank with liquid, with which occurred drop-forming and

* self-excitation of low-frequency oscillations (P0=126 N).
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Key: (1). Hz.

Fig. 7. Excited with drop-forming oscillations of free surface of

liquid with frequency of ist axisymmetric tone of 2.5 Hz (w=30 Hz).
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4. Self-excitation of low-frequency oscillations. During the

excitation of the longitudinal vibrations of tank with the frequency,

equal or several that exceeding the minimum frequency of the

vibrations, which cause the fountain effect of liquid (if the

amplitude of exciting force is sufficiently great), appear the stable

oscillations of the sur'3ce of liquid and tank itself with the low

frequency and the large amplitude (Fig. 7, 8). Their frequency is

5... 20 times lower than the frequency of the vibrations of exciting

force.

Excitation of low-frequency oscillations of liquid and tank is

observed over a wide range of frequencies of induced high-frequency

vibrations of tank (see Fig. 6). With the low depths in the

investigated frequency region of forced oscillations (to 50 Hz) there

are two frequency bands, at which appear low-frequency oscillations.

The value of minimum frequency for the second range is 1.9-2.2 times

more than for the first. To the harmonic oscillations of tank with

the frequency of exciting force in the 2nd range are placed the

commensurate in the amplitude subharmonic oscillations with the

frequency two times of less. In all observed cases the necessary

condition of the onset of low-frequency oscillations during the
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* radio-frequency drive is the fountain effect of liquid, which usually

(but not always) it is accompanied by drop-forming.

During excitation of high-frequency longitudinal vibrations of

tank appeared low-frequency oscillations of different forms with

frequency from 1.4 to 5 Hz. Form and their frequency depends on the

hardness of suspension and depth of filling of tank, on initial

conditions and amplitude of exciting force, etc. The excitation of

the 1st and 2nd axisymmetric, 1st and 2nd transverse tones of the

oscillations of liquid in the tank and the oscillations of tank with

the frequency, equal to the natural frequency of oscillation of tank

during the suspension, is discovered.

0 Ist axisymmetric tone of oscillations of liquid (see Fig. 7) most

frequently is excited with frequency, which was varying in accordance

with depth of filling of tank from 1.55 to 2.5 Hz. Frequency

corresponded to formula (1). In this case the tank oscillated with

the double frequency.

Greatest amplitudes of oscillations of tank are noted during

oscillations with frequency of from 3 to 4 Hz, coinciding with natural

frequencies of oscillation of tank during suspension (see Fig. 8).

The free surface of liquid in this case oscillates weakly and drops it

is formed (especially with the larger depths of the filling of tank

with liquid) much less than during the excitation of the liquid tones

O of oscillations.
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Oscillograms of bias/displacement and acceleration of tank with

emergence of such oscillations, which were conceived in process of

transition/transfer of boundary of drop-forming with slow increase in

frequency of rotation of radiator, are represented in Fig. 9.

Process of fountain effect of drops from surface of liquid is

changed synchronously with excited low-frequency oscillations of

liquid.



DOC = 89056418 PAGE /

Page 222.

Fig. 8. Oscillograms of oscillations of longitudinal displacement (a,

b) and acceleration (c) of tank during emergent in process of

drop-forming steady-state oscillations of tank with frequency of 3 Hz

(c=33 Hz).

i a) l l l
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Fig. 9. Oscillograms of oscillations of longitudinal displacement (a)

and acceleration (b) of tank with emergence of drop-forming and

oscillations of tank with frequency of 3 Hz (w=36 Hz).

Page 223.

Drops during the excitation of the low-frequency oscillations of the

surface of liquid are concentrated near the antinodes, although the

center is always characterized by the most intense drop-forming, which

apparently, is caused by the more intense oscillations of the center

section 6f the bottom.

Three stages of low-frequency oscillations of surface of liquid

during radio-frequency drive of longitudinal vibrations of tank are

shown on series of photographs (Fig. 10). When the center section of

the surface is located below, fountain effect does not occur (see Fig.

10a), with its approximation/approach to the upper position (see Fig.

10b) begins fountain effect. Fountain effect reaches maximum at the

maximum altitude of the crest of the wave (see Fig. 10c).

Synchronously with low-frequency oscillations amplitude

modulation of high-frequency oscillations of tank occurs. Strongest

modulation appears durinC *-he excitation of the suspension tone (see

Fig. 8, 9). The amplitude of high-frequency oscillations reaches

maximum in the periods of maximum drop-forming.
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Bottom with drop-forming oscillates with large amplitude. An

increase in the hardness of bottom raises minimally necessary for the

drop-forming and excitations of low-frequency frequency variations and

the amplitude of exciting force.

5. Polyharmonic excitation. For the qtudy of the effect of the

induced high-frequency oscillations of tank with the liquid on its

induced low-frequency oscillations the simultaneous excitation of

high-frequency (by eccentric radiator) and low-frequency (by spring

energizer) oscillations is produced. It turned out that the amplitude

of the induced low-frequency oscillations of tank with the fountain

* effect of drops considerably (to 2.5 times) grows in comparison with

the oscillations of tank in the absence of drop-forming (Fig. 11, 12).

The maximum increase of the amplitude of the oscillations of tank due

to the drop-forming occurs at the frequencies, close to the natural

frequency of oscillation of tank during the suspension. Specifically,

with this frequency oscillate during the excitation of the

high-frequency longitudinal vibrations of tank by one radiator.

6. Transverse vibrations. Research showed that the

low-frequency oscillations of liquid can appear, also, during the

transverse high-frequency oscillations of the vessels, moved in the

plane of the free surface of liquid. Research was conducted with the

cylindrical containers from organic glass with a diameter of 60 mm, 80

O mm, 100 mm and 20C mm, which were filled with water from /IR -0,46 to
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N/R=3.3. Wall thickness was 4-6 mm. Freruency w and amplitude A of

the induced harmonic oscillations of the vessel, established/installed

on the platform of vibration table in the vertical position, was

varied in the ranges: w=0. ..70 Hz, A-0... 1,25 MM.

During oscillations of vessels with appropriate low frequency and

by low amplitude are excited stable oscillations of free surface of

liquid on first skew-symmetric tone. The frequencies coincide with

theoretical values of (1). With an increase in the amplitude of the

oscillations of vessel at the frequency, close to the frequency of the

Ist skew-symmetric tone, the instability appears and the slow rotation

of nodal curve appears [2, 4].
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Fig. 10. Three stages of low-frequency oscillations of iud and

process of drop-forming, that arose during radio-frequency

longitudinal drive of tank. V'V

10|

a) A)

Fig. 1 . Oscillograms 
of longitudinal 

vibrations of bias/displacement

() and acceleration (2) of tank during polyharmonic 
excitation

(w=3. 4 Hz, =25,5 .. 27,5 Hz) without drop-forming (a) and with

drop-forming 
(b).

logtdnldieo ak
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/0 40 ;0 W #'

Fig. 12. Dependence of ratio of amplitude of longitudinal

low-frequency oscillations of tank during polyharmonic excitation witb

drop-forming to their amplitude (fountain effect it is absent), from

frequency of excitable low-frequency harmonic.

Key: (1). Hz. @
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Further increase in freqjency leads with sufficiently large

amplitudes of oscillations to decomposition of free surface of liquid

with formation of sprays (Fig. 13). Sprays are formed in the larger

degree in the walls of tank, perpendicular to plane of vibration.

Oscillations of free surface of liquid with frequency of 1st

skew-symmetric tone appear with specific values of frequency and

amplitude of oscillations of vessel; moreover position of nodal curve

of wave is unstable (Fig. 14). The frequency of the vibrations of

vessel in this case exceeded the frequency of the vibrations of the

free surface of liquid 8-20 times.
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Boundary of emergence of generatable with drop-forming 1st

skew-symmetric tone of oscillations of liquid in region of those

determining this phenomenon of parameters of external excitation:

amplitude of oscillations of transverse acceleration y of vessel, in

reference to gravitational acceleration, and frequency of vibrations

of vessel it is represented in Fig. 15.
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Fig. 13. Fig. 14.

Fig. 13. Fountain effect of drops of liquid during transverse

vibrations of vessel.

Fig. 14-. Excited with drop-forming oscillations of free surface of0

liquid with frequency of 1st skew-symmetric tone. Transverse

excitation.

417

20 30 40 S.9 69 w,'

~ I 5.Dependence of amplittade o~f osci'Il~tions ot tzansverse
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acceleration of vessel y, in reference to gravitational acceleration,

with which in process of drop-forming appeared low-frequency

oscillations of liquid, from frequency of induced transverse

vibrations of vessel:

X - H/R=0,5; A - H/R=lO;c - HIR=I,5:

0 - HIR=2,0; 0 - HIR=2,5; *- HIR=3

Key: (1). Hz.
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Amplitude of the acceleration of tank necessary for the excitation of

these oscillations of liquid reaches maximum in 50-60 Hz areas and

substantially it is roised with the decrease of the depth of filling

O of tank by water with H/R<l.

7. Conclusion. The obtained results will agree with the results

of analogous research in [4, 7] and the works generalized in them.

Let us conduct short sums, accentuating attention in the new results.

Onset of self-excited low-frequency (in the range of frequencies

of lowest tones of natural oscillations of free surface of liquid)

oscillations of tank with liquid occurs during sufficiently intense

nonlinear high-frequency oscillations of surface of liquid, which lead

to decomposition of resultant capillary-gravitational waves with

fountain effect of streams of liquid and drops, which have different

* value and initial velocity. The appearing upon the decomposition of
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capillary-gravitational interfe-rence waves of the surface of hiauid,

apoarntlv, can be described as random process. In work [6] it is

theoretically proved that with the sufficiently nigh value of the

spectral density of the random v-rtical excitation of vessel the

surface of liquid becomes unstable for the lowest tones of

osciildtions, remaining stable for the high. At the

adequate/approaching external radio-frequency drive of the

oscillaltons of tank the emergent low-frequency oscillations can

stably be supported due to the synchronously changing process of he

fountain effect of the liquid, when the flight time of drops (or the

gushing jets) reaches 1/4.. .1/2 periods of low-frequency oscillations

of the surface of liquid.

With specific values of amplitude and frequency of induced

longitudinal vibrations of tank with liquid stable oscillations of

tank with large amplitude and low frequency, which compo=-s 1/20..11'

from frequency of excitation and which coincides with natural

freaue.cy of structural tone of oscillations of tadk (among other

things of that caused by characteristics of entire

construction/design, component part of which it is tank) can appear ow

with frequency, two times of exceeding first axisymmetric tone of

natural oscillations of free surface liquid.

Due to drop-forming amplitude of high-freqjency induced

L-2ALuarai vratior~s of Lank on sizable (in comparison with rad; m

St -.r:; ) eve o ..... f - ]n. .th [ouid car stronc increase ithc tu
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Chance in amplitude and frequency of vibrations of forcing force. An

increase in the amplitude to 20 times is recorded. Drop-forming can

_,'bstantially increas: the amplitude of the induced low-frequency

oscillations of tank with the liquid without a change in the level of

the polyharmonic excitation of the low-frequency and causing

drop-forming high-frequency oscillations of tank. An increase :r.

amplitude of low-frequency oscillations to 2.5 times is recorded.

Page 227,

Conducted investigdtions showed that emergence of process of

drop-forming occurs with satisfaction of following conditions:

a~mplitude of oscillations of total longitudinal force, which functions

on liquid from side of tank, reaches value of 0.5-1.0 from weighL of

O liquid;

radius of craters, which are parametrically excited on surface of

i-quid of capillary-gravitational waves corresponde6 to condition

Bo = pgr2/Ia < 20 ... 30,

where Bo - Bond number, whi:h characterizes relationship/ra-io between.

gravitational forces and forces of surface tension c.

By; these conditions, apparently, are determined necessary for

droo-forminc amolitude and frequency of vibrations of exciting forc-e

7 . Bo .. n he mot lon o: 1 ]qud iQ' i he vibratiar
* , .. a: { 9.VkY .C % Vo, . 20, No 2, pp, ;'? ;'A.-
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DISTURBED MOTION OF THE REVOLVING FLIGHT VEHICLE WITH THE LIQUID IN

THE TANKS.

On the motion of the symmetrical gyroscope, whose cavity is partially

filled with liquid.

.S. Narimanov.

Equations of disturbed motion of rapidly spinning gyroscope with

cylindrical cavity, partially filled with ideal fluid, are derived.

* It is assumed that the longitudinal axis of cavity coincides with the

axis of the high-spin motion of gyroscope, and the depth of liquid -

is low, so that during the undisturbed stationary rotation of

gyroscope the free surface of liquid and wall cavities are coaxial

cylinders with close radii. This makes it possible to use the concept

of long waves theory.

Are derived equations of slight disturbance. u. stationary

rotation of symmetrical gyroscope, whose cylindrical cavity is

partially filled with liquid. The obtained equations can be used for

the analysis of stability of stationary rotation and for the

evaluation of the effect on it of the values of different parameters

of system.



DC 89056419 PAGE

I. Formulation of problem. We assume that the axis of the

symmetry of gyroscope is simultaneously the rotational axis of the

cavity, which is straight/direct circular cylinder. During the

stationary rotation the gyroscope and the included in the cavity

liquid revolve as single solid body around the axis of symmetry, which

in this case is placed vertically.

We will assume difference in disturbed motion of gyroscope and

liquid from stationary rotation low, which allow/assume possibility of

linearization of equations for values of variations in parameters of

disturbed motion.

It will place fixed coordinate system Ox*y*Z* so that axis Oz*

would be vertical, and point 0 coincided with fixed point of

gyroscope. Besides this system let us introduce into the examination

two additional moving coordinate systems, one of which Oxyz (axis Oz

it coincides with the axis of symmetry) it is rigidly connected with

the gyroscope, another Ox0yoz is partially connected.

Transformation of system of coordinates Ox*y*z* into Oxy~z is

realized with the help of two rotations: one rotation around axis Oy*

clockwise to angle 6, and second rotation around axis Ox0

counterclockwise to angle 6. The system of coordinates Ox0y0z is

converted into system Oxyz by one rotation clockwise around axis Oz to

the angle 63.
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Let i0 , jo, k and i, j, k - unit vectors of moving coordinate

systems, respectively; r0 - radius of cylinder of lateral surface of

cavity; H - height/altitude of cylindrical cavity, w - angular

velocity vector of disturbed motion of gyroscope, w - angular velocity

of stationary rotation of gyroscope, r, o, z - cylindrical coordinates

in system Cxyz.

Page 229.

In description of motion of liquid we disregard gravitational

field in comparison with centrifugal-force field, which corresponds to

sufficiently high value of value c. We assume/set the equation of

free surface in the form

-r-r==x(?, z, ), ()

where r, - radius of the free surface, which has cylindrical form

(during stationary rotation h=r0-r)"

Assuming/setting value h sufficient low in comparison with length

circle/circumference and height/altitude of cylindrical surface of

cavity, we will disregard dependence of parameter values of relative

motion of liquid from value r. In further unpackings/facings we will

lowe: index durii.g designation r, accepting as it always mean radius
r (ro+rl)!2.

As radial component relative velocity of liquid v let us also

take its average value0
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2 at (2)

Let us designate through 1 displacement vector of particlps of

liquid in relative motion

a' =v. (3)at

Equation of continuity in these designations can be represented

in the form

a (hl ) th 4(4)
az r

2. Expression of moment of momentum of system. The moment of

momentum of system G is represented in the form

G--Gr+G, (5)

where GT- moment of momentum of the instantly hardened system; G.

the moment of momentum of relative motion of liquid.

Expression GT with an accuracy down to the terms flst-order of

smallness can be represented in the form

O = Aw io + Awy. jo + Cuz k - Izu , -0 I ,w,.o. (6)

Page 230.
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Here A, C - respectively transverse and pitching moments of

inertia of hardened system during stationary rotation;

0Y 0 3 7
.ro , J0 ' :z - centri:ugal moments/torques of hardened system in system of

coordinates Oxcy ,z; ()x, y y, (z- component of velocity W in this

coordinate system;

Xz ?zpr2, z'xCos + 83) dzdP;
z, 0

Jyz =pr2f f XZ Sif ~III IF 3 dzd?, (8)
Z,0

where p - density of liquid; z, - distance from point 0 to lower

bottom of cavity; Z2 -z±+H.

Expressior of moment of momentum of relative motion of liquid

takes form

.: :/,ir ! t [, sir (v - z, os (s + P,)1 dzdi -
z, 0

z2 2.7t z 27t

S r , C o ( -J-- zv. S i n --- 3 )dzd - k r -dz- 9 ).
Z, z 1

Using formulas (5)...(9), let us compose expression of components

of total quantity of moment of momentum in system of coordinates

Ox yz:
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z' , . z2 2,-:

z 2 z
G~o=--A31 --?rto \ zcos (pz-z- Odzd?- --?hr \ [rv' sin (?+-o)--

ZI 0 z1 0

---z cos (?- -- 3)1 dzd's; (10)

z, 2.

G =Cz+pr2 /z vdzd ? . (12)

3. Equations of relative motion of liquid. We assume/,et the

liquid of inviscid. The Euler equation for relative motion of liquid

will take the form

-- ,- ' R R) gradp, (13)
C)t dt Z

where R - radius-vector relative to point 0; p - pressure of liquid,

Taking into account condition (2), let us drop/omit equation,

which determines change in component of (13), after replacing with its

static equation of motion in accordance with basic hypothesis of long

waves theory.

Page 231.

Remaining equations will take the form

0 -_ __ _ ((£' Cos + -o s in )z 4_1 rr- ,WZOO, COS, ,? W sin cp)=
ot zdt Y

I ( (14)
rp o'.,;
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Static eauation of pressure under assumptions accepted will-

form

P- 'r ,z" • ). (16)

Differentiating right and left of part of equality (16) on (

on z and after replacing K according to (4), we will obtain expr::'i.-

of components of pressure gradient through components of displa e:- .-.

vector of particles of liquid:

2/i (r a21z +_L__
vt dzdo pa e of1

6 2 ( 21Z + 21

6 ( r dZ2 I

Let us show that in the case of absence of component of momen--

external forces along axis Oz value (0: is equal to zero, and, that

means angular rate of rotation of gyroscope relative to axis Oz wi -

be in entire time of motion equal to angular velocity of stationary

rotation. For the proof let us register the momental equation of

momentum relative to axis Oz, using (12):

Z, 2

CW" + .hf V -dzd -0. (18)
Z' 0
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On the basis (14) and boundary conditions (21), given below, it

is easy to obtain equality

z, 2r

z,O ~v~dzd~iz: 0.

Hence follows validity of expressed affirmation. We will further

assume :he moment of external forces relative to axis Oz the equal to

zero.

Eauations (14) and (15) on the basis (17) and upon consideration

(3), (4) and (7) can be finally converted to following form:

d-Ip + w ~ z + 0 h a2l, h a2l 2
O2r 2z -i--o -w -2 - w 2 h z

6t2 OtOz r ry r a?2

+ z 2 sin (T ?+83)- z8- cos (+ 83); (19)

Z-_ _2_r 0 -- h - I-r'1 sin (Y±8 3 )+r8 2 COS(?+ 3 )
8t2 az 2  azay

+ 2wr81 cos (c + 83) - 2wr 2 sin (? + 83). (20)

Page 232.

Let us register boundary conditions

- -= J = 0. (21)
adt atZ 01Z=Z,

4. Compilation of equations of motion of system. Let us

register ttie expression of the components of the moment of
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* grav,:at-ona' force along axes Ox0 and Oy0;

,U~ W,-- -D81; Myo = D 2,j 12o)

where value D depends on the mass of system and distance of the center

of its masses dur:nc the stationary rotation from point 0. Let us

introduce comolex variable

0 O2+ i81 (23)

Momental equation of momentum relative to complex variable 6 on

the basis if expressions (10), (11) and (22) takes following form:

z2 2i%
i• %z ei 1 (f4-,u) dzd'

,A,- iw - D Pdt~I Z, 0

z, 27t )
-hr S (rvz - izv) et(*') dzd? -0. (24)

Components of displacement ,-e, or of particles of liquid can be

in general form represented as follows:

l=r [an ' (I)cos m ? + bnm(t) si m' ] sin - (z-z); (25)

=0 M-O

l.p = r [d., Mt Cos m? + Cm,, Mt sin mT] Cos H z-z

n-0 m-0

Expressions indicated can be substantially simplified, after

excluding from examination those parameters anm. bnrn, Cni, dnrj, whose
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does not deoed on motion of gyroscope, and which, in turn, do

rc- a::ec: motion of latter.

After substituting (25) into equations (24), (39) and (20), we

see- 'at such parameters include those, whose indices satisfy

:opn-ns ml or - even number (n 0).

Keeping in mind not to consider these parameters, let us

QJ'o!,omt index m and we will assume that index n takes only odd
'aies or n=0; 'rmulas (25) in this case are converted to form

r [a,, (t) cos + b, (t) sin ?I sin .- 'n (z - z1 );

H

n-, 3

-- r(d cos c--+-c sin T).

.,et us substitute expressions (4.5) into equations (3.7) and

13,81. Let us multiply the left side of each of these equations

consecutively/serially to the coefficient in parameters a,, br, d,, c, of

(26) and will integrate the obtained products on o in the range from 0

to 27 and on z range from z, to z,.

As a result we will obtain following system of equations:

0
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HTn ') .-tn 6, si ()t 6- 2 COS -t +

2 (,,1 Cos t - 2 to} 2 sin W)

2 ° hr h 4 ..
b - itzu 2 td- ' , 6( cos tot - 62 sin td -

H2 H

- 2w 1 sin ut - 2wo{. cos wt) ; (27)

hh - h h
2~7 ~- d~w -1 =-t n(02 dj - -Tnw-a.

r r I

+ 4H ( cos t-.2 sin wt);T2n2r

h. h h

r r H H

4/' 1sin Wt' 'c to ;

fh h Z _ Z'-1d ,,.-d to - - 6(, sin wt- 8, COS Wot);
r r 2r

h h_
c -- c -w - d (61, S Infltu+L 2 COS WO)I r r 2r

We convert equations (27), after introducing complex quantities

a (a ib, ) e i - t " '1, d i, l1

=(d ic) el-1.

Through the same parameters is expressed variable K, which is

connected with 1z and lq according tc (4), and values i, and V,;,

determined on (3). Let us introduce the following designations:

m=2.rhflp- the mass of the liquid, which is contained in the

cavity; k=h/r - charge/weight ratio of cavity with liquid; } r/l'-

half of reciprocal value of the elongation/aspect ratio of cavity;

C,=mrl - moment of the inertia of liquid mass; -(ZI +Z2)' "2r.
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Lowering intermediate unpackings/facings, let us register finally

joint system of equations, which describes disturbed motion of

gyroscope and liquid containing in its cavity:

n=1,3....

-2iw&c 4- (.-t 2 k 2k _1) w2czn = i.rTnk)w2%3 + .± (*2i)
7t

41 -3. -- (2 + -k) W2-J 3" = .Tn k'.?'W . -- 41 -a (n --1- , 3 ... " (28)

- w (2-4+ k) 3-w23 = ii

Equations (28) are infinite system of ordinary linear

differential equations with constant coefficients.

Thei: solution can be constructed by method of reduction, by

finding solutions of final systems of equations, obtained of (28) witl

limited and consecutively/serially increasing numbers n.
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The stability of rotation in the string of axisymmetric solid bodies

with the cavities, filled with liquid.

A. Yu. Ishlinskiy, M. L. Gorbachuk, M. Ye. Temchenko.

Stability of motion of axially symmetrical body with liquid

filling, suspended/hung from string and which revolves with constant

angular velocity w around stationary position of dynamic equilibrium

is investigated. String is assumed to be inertia-free, nonductile and

nontwisted. The cavity, filled with liquid, has a shape of body of

* revolution, the axis of symmetry of which coincides with the axis of

the symmetry of solid body. It is assumed also that in the steady

motion liquid and solid body form single whole. Are examined two

special cases; cavity in the form of straight/direct circular cylinder

and in the form of ellipsoid of revolution.

Present article to a certain extent is close to scientific

thematics of Georgiy Stepanovich Narimanov. To the authors of article

infinitely it's a pity, that already it does not exist among us.

In work [9] S. L. Sobolev examined task about stability of

motion of gyroscope with axisymmetric cavity, wholly filled with ideal

incompressible fluid. In this case it was assumed that in the steady
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motion the mechanical system solid body - liquid revolves as single

solid body. This task led to the analysis of the structure of the

spectrum of the self-adjoint operator in the space with the indefinite

metric, as a result of which it was possible to isolate the zones of

stability. As it proved to be, these zones depend substantially on

the form of cavity. In work [5] it was shown that the task

considerably is simplified, if the motion of the liquid filling cavity

is related to the coordinate system, rigidly connected with the body

of gyroscope. This allowed in the case of ellipsoidal and cylindrical

cavities to solve it, after using only the method of separation of

variables.

Page 235.

Methodology of conclusion/output of equaticns of motion [51 is

used in this work during solution of more complex problem about

stability of motion of axially symmetrical body suspended/hung from

string, within which there is cavity in the form of body oi revolution

with axis of symmetry, which coincides with axis of symmetry of solid

body. Is assumed that the string is inertia-free, nonductile and

nontwisted, i.e., it is examined only as geometric constraint; in the

steady motion liquid and solid body form seemingly single solid whole,

In this case it is accepted that the string and the axis of the

symmetry of body lie/rest on the vertical straight line. The posea

problem is solved with the help of the theory of the self-adjoint

operators in the space with the indefinite metric, developed in [3].

The method of study is close to the method, used into [9]. However,
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* in contrast to (9], where the indefinite metric has not more than one

negative square, both one and two negative squares here can appear.

Is shown that under specific conditions, assigned on the form of

cavity, depending on the coefficients of system of equations, to the

corresponding task in question, interval (0, -) of a change in the

angular velocity w can be decomposed into two or three intervals:

(0, 00) (0, ()1i)U(6ol, 0 ) or (0, 00) (0, ()t)U(CO1, (02)U(0)2, 0), in which a

quantity of negative squares of the indefinite metric is constantly

equal to 0.1 or 0, 1, 2 respectively. If w (U, (i), then the solution

of system is stable. In all remaining cases of change w the stability

of system depends on the form of cavity.

Cav-ities in the form of straight/direct circular cylinder end

* ellipsoid of revolution are examined as examples. In the first case

in as conveniently distant interval (), (") ('>Wi) there is a

countless set w, with which the system will not be stable.
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In the second case, passing to the ellipsoidal coordinates and using

the connected polynomials of Legendre, with the help of the separation

of variables and graph-analytic reception/procedure from [4, 10] it is

shown that there are two intervals ((01*, (1"**) ((j*>0)i) and

(W2", (L02**) ((02*>O0L"*) the changes w, in which the motion of system is

unstable; with w, that lie out of these intervals, motion is stable.

1. Let us derive differential equations of disturbed motion of

solid body, using equations of Lagrange of II order. Let us introduce,

fixe"! coordinate system o with the center at suspension point of

,S;I c t - f.-' o ' II lg i ') AIi it 1 * LQ dI 
!t
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* upward, axes t. and n0 it will place in the horizontal plane. In the

center of cavity - to point 0 - let us place the reference point of

the progressively/forwardly moving system of coordinates 't[O°° (Fig.

2), whose axes are respectively parallel to axes t., n,, 0. At the

same point let us place the reference point of the system of

coordinates xyz (Fig. 3), rigidly connected with solid body so that z

axis is directed along the axis of the symmetry of body upward, and x

and y axes are located in the plane, perpendicular to the axis of

symmetry. Let us determine the position of string in the space by

angles U and X; g - angle between the straight line, directed along

the string, and by its projection on the plane -°, °, X - angle

between the projection indicated and the axis 0.

Let us determine position of solid body in space by three angles

of Euler-Krylov a, p and Q.

it is assumed that in case on body in question they function

force of gravity m~g and force p* of hydrodynamic pressure of liquid

on wall of cavity. The latter are reduced to the main vector F and

the main moment/torque M, relative to the center of cavity 0.
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Fig. 3.
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Equations of motion of solid body in the case of small angles a,

X3, X, g and angular velocities a, /3, X, g take form [2]

(A,+ m112) a +C 1 +C 1 " + m11 TX =M. cos - My sin + M'+

+12(F, sin +F. cos)- m,1 1ga;

(A, +3 m,1 1) - C, a*? + Mjljl = M, sin y + My COS ?

-1 2 (F, cos- FY sin ?)-. tn1gll; (1)

C1 -0;

m, ( 1- -1,a) = F., sin cp + Fy cos ? + (X - a) F, - mjgX;

mn1 (l I' )=Fu sin ?-F. cos ?p+(p.-)F,-mjgt.L,

where A,, C, - main central moments of inertia of solid body: m, -

its mass; l, - distance from center of mass of body to attachment

point to it of string (see Fig. 1); g - acceleration of gravity ;

Fx, F;, F, and Mx, My, M, - projection on axis of coordinates x, y, z
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* (main vector and main moment of forces of pressure of liquid on solid

body); they are derived/concluded analogously how this is done into

[6).

Projections Fx, Fy, F, and Mx, M , M we determine from know

formulas of hydrodynamics

F ('--cdp r; Fy- ' d T; F=, -d-c-d; (2)

in which integration it is conducted throughout entire volume of

cavity r.

For determining hydrodynamic pressure p*(x, y, z, t) we wil! use

flow equations in moving coordinate system [6)

du5- pl di vp* - w, - 2 ( ,' u). (4)

dt

Here u - vector of relative speed of particle motion of liquid In

cavity of solid body; p - specific density of liquid; P - mass forces;

We- vector of translational acceleration of particles cf liquid,

determined by relationship/ratio

we =-W, o/,r+ (o >(e.r), (5)

dt

where r(x, y, z)-- radius-vector of particle of liquid, w° - vector of

O absolute acceleration of point 0.
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Projections of acceleration w ° on axis of coordinates x, y, z

with an ccuracy to smalls of second order relative to derived ngles

a, /3, ;i and X can be presented in the form

0

=- (1~ 12* ) co s +( + 1,-/a s in;
0'-- (, V1j) sinA ,+.1A -1") cos ; (6)

0

Wz

where 1, - distance from point 0, of suspension of solid body to

string to center of cavity 0 (see Fig. 1),

With the same degree of accuracy it is possible to take taking

into account third equation (1) that projections of angular velocity

vector c on axis x, y, z will be following:

(--acos?-+sin .,)% -- sin?+)cs , Dw= = =const. (7)

Page 238.

Taking into account recently obtained equations (5)-(7), flow

equations (4) in projections on axis x, y, z let us represent in

aux 2,t -- 1 2p2zp ,;dt - 2(), x - z ,

°- + 2mux= --- °-- + 2,,;x;()
ot p dg

dt 0 z

where Is
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,0
PI=P*- -[(l1I- I cos ?--(i + 12 a) sin ?] x+

+p [(1"+I') sin y +t12) co- y} y-(2+y2)w2+

+ pwz (xWX + yWY) - pz (xx, - yeX) - p (xg" + Y g' + zgZ). (9)

According to the condition of incompressibility, function . u, Liz,

the entering system (8), must satisfy the equation

da . ±, -0 (10)-Tax dy az

and the boundary condition

O. (11)

Latter means that projection of relative particle speed of

liquid, which is touched with boundary of cavity, on normal n to it is

equal to zero.

2. Let us turn now to equations (1). Let us introduce the

complex-valued functions of real variable *=+i; z*=--+it. Then

(A1 + mrIl) * -iC <* + mnlgl,* + mlll'z*-=( M + imy) ei 'w-
--il2 ( F + iF N eiw't; (12)

m1l1 c* + mIlz* + mlgz* = - i (F, + iF.) ei'a + F2 (z* -

Let us determine expressions F+iFy; F,, MX+iMY, which stand in

right sides of recently obtained equations.

O Page 239.
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Taking into account relationships/ratios (2), (3), (9), we obtain

F"+iF---iM (12 '*+I*+gc*) e-iwt+ ("--+ i ' ) dv;

F -- m 2g + P- dv; (13)

-- i i(x-,iy--dvi Y) +i pL)d-
" ,. ' z a.k x ay

-- - 2jw***) (C2 - 2) ei.

Let us note that in latter/last equalities through m, is

designated mass of liquid in cavity of bodies, and are also used

relat ionships/rat ios

S pxdr -- pydT- S pzd-r -0;

5 PXYdr$ pxzdv pyzd'r= 0;

5 p (Z2 - y2) dT p (Z2 
-X

2) d-r = A2 - C2,

in which A, and C, - respectively equatorial and axial moments of

inertia of liquid relative to axes x, y, z.

Bearing in mind that =e, and assuming/setting z =lle it, let

us register set of eqiuatons (12) in matrix form
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where A [' [[ (

A = (a 1 al2 ; B (5 11b1 2  C -Ic12 )
\a 1, 2 5..522.122

a,,:=A, + L; L --= M 2l 2l; a12 --IKi; K,= Mij -T'- M22;-A, I C 2 1;

a' 2 =1 2 M'n; m=--m -- m 2 ; bj- - , 1' L; b12=
AC1

522--212M; cII =D-L T1 -L g ; D=C1-Ad-C,-A2'

C12 = -K 1 ; C22  - " -1g; 12'Wo--- x(O COS 2o y) -

-(x + iy) cos nz;
.'TT

P= Pi-+ - -F Yz;
p p 2i 2

S - surface of cavity.

Page 240.

3. As shown into [2), on the assumption that S satisfies

conditions

OJ dy a x

(this it always occurs, for example, for ellipsoid of revolution and

circular cylinder), system (E), (10), (11), (14) can be registered in

canonical form

du (t) --iH U
dt

where u(t) - vector tunction wilh values in certain Hilbert space;

0 H- bounded operator in it. Therefore the Cauchy problem for systen
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(8,, (10), (11), (14) is always solved.

It proves to be that operator H-,-!]1,- self-adjoined (i.e.

J.HWHU,*Iw), in this case gap/interval [0, -) of change w can be

represented as [0, o)o) =[0, (0I)U[(0,1 oc) or j0, 00) =[0, or)U[0, ()2)U[(02, c0),

where o , ., they are such, that operator J positively determined

when 0ei [O, o)) when 00j((w, cc) in first case and (0 (oil, W2) in second

case I,,- indefinite operator with one negative square, when

(E((02, 00) Ju it has two negative squares. This indicates the

stability of the system when *0-[O, (x)0; in question however, as far as

the remaining cases, are concerned, here stability does not always

have the place (they can appear the solutions, which grow on - both

exponent-ially, and exponentially) - this depends on the form of

cavity.

Let us note that division [0, -) to three subintervals and

appearances in connection with this in J, two negative squares

characteristically precisely in presence of string (compare with [9]),

The numbers w, and w, are defined as the roots of the equation

det C= [- ( + K'I) lw' + g (Y' - tnlKI) w'+ K, nzg~j I o4 =: 0 ,

where V-M(D--L). If y+K 2 >O, then det C becomes zero only when

J/V 12g ~if

V+K 2-0't kre,, w), mg/(nl +K). The cases indicated correspond to

division [0, -) to two subintervals. But if y±K1
2 <O, then
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[0, 00 = (0, w)L [WJLU2)Ujti, 00), where

As already mentioned, when ()[0, wo) system (8), (10), (11), (14)

can have those exponentially growing for - solutions. Such solutions

exist when and only when operator H, has insubstantial eigenvalues.

Them there can be not more than four (two complexly

conjugated/combined pairs), since J,) has not more than two negative

squares [3].

4. -Let us show that if cavity of solid body is straight/direct

circular cylinder, then there is countless bet w, for which operator

H, has at least one pair of conjugated/combined with each other

insubstantial eigenvalues.

Page 241.

In fact, task at eigenvalues Hwf-if for operator Hw brings,

as shown into [2), to equation

(A* + C2 -A 2 ) -(C, + 2C 2 2A 2) WX1  K 19 2
m (X'J -g/l)

=h (ki - w) D ( ), (15)
where

128pa 2h3 C1 (42 - 3 (X1 - W2 )] 11 (ka) -- ka (X - )2 Io (ka)
t)- (W +X,)1 (21 + 1)4 [ka (XI - w) J0 (ka) - (X, + w) 1, (ka))

k-0
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A*--A+m 11 1
2 +m 2122, Ji(ka) and J0 (ka) - function of Bessel of first

order, a, h - radius and height/altitude of cylinder.

Let us establish existence of countless set w, for whicb equation

(15) has at least one insubstantial root.

Let us designate ?.---20)g and let us divide both parts (15) to

c2. Then

(A, C2-A2)(2q+ 1) -(Cl +2C2_2A2)(2q 1)- K1
2

I (2q+ 1)4  =D(q), (16)
m (2q + 1)2 - g/o 2

where 2q (2q + 1). 128pa 2h 3 ' kaq2Jo (ka) - (3q 2 - 1) J, (ka)
-3 (q + 1) , (21+1)2 [kaql 0 (ka) - (q + 1) 11 (ka)]

k-0

Let us assume further

N

DN(q)--- 2q (2q + 1). 128pa 2 h 3 .9 kaq210 (ka) - (3q 2 - 1) J1 (ka)
Da' (q + 1) (21 + 1)2 [kaql 0 (ka) - (q + 1) 11 (ka)

k-0

Sequence of analytic functions DNv(q) evenly approaches D(q)

within any region, which does not contain segment [-1, 1) (see [9)).

Therefore the insubstantial roots of equation (16) with sufficiently

large N are close to the insubstantial roots of the equation
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~~(A* +C2-A2) (2q +1)2-(C-+2C2-2A2) (2q + 1) -l

K (2q + 1)4 DN(q). (17)

in (2q + 1)2 - g/ 21

Page 242.

Since

(2q + 1)4 (2q+1) g
(2q + 1)2 - g/lo 2l -(2q + 1)2 w2l

(2q + 1)4 &412 1 - g/(2q + 1)2 w21 '

that left side (17) is represented in the form0
A*+2-A2-11 (2q-} 1)2-(C + 2C2-2A2) (2q_[_ 1)-

2
where Q (q)-- g

m 12W4 [(2q + 1)2 g/w21]

When

>wmax {W , 4 and 4 <

6gQ (q) < • (18)
3mw 412

0
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As shown in [9], DN(q) has countless set of simple poles with

unique accumulation point in zero, moreover for negative q0 - and
<0 (>0

positive q°+ poles deduction ResD(qo) This Speaks, that curve

about the poles takes the form, indicated in Fig. 4. In interval

(-3/4, -1/4) Dy(q) has the finite number of poles.

Let us consider first equation

Hl(q)=(A*+C 2 -A 2 - -L) (2 q+ 1)2- (C+2C2-2A 2) (2q+ 1)-

K 1g+ 1 L -N(q). (19)

For research of insubstantial roots of (19) with given one a/h

let us construct curve Dm(q). Real roots (19) are located in the

points of intersection of parabola 1l(q) with curve DN(q).
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Since in the low section of change q parabola fl(q) is close to the

straight line, the equation (19) has insubstantial roots when parabola

passes between two branches DN(q). Moving parabola fl(q) so that the

position of its axis would remain constant/invariable, it is possible

to find all dangerous gaps/intervals of change w from the value of the

segment, intercepted/detached by parabola to straight line q=-1/2,

equal to (Kg+K 2g/m1)/o 2. With these w the parabola falls between

branches D,(q), which it has countless set. Therefore dangerous

gaps/intervals there will be also infinitely much.

* As a result of the fact that in interval (-3/4, -1/4) Dv(q) has
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finite number of branches, and out of this interval (see inequalities

(18)] with sufficiently large (H(q) +Q(q) it differs little from

f(q), then for equation (17) will also exist infinite set of

gaps/intervals w in which it will have insubstantial roots, moreover

these gaps/intervals, with exception of finite number, differ little

from appropriate gaps/intervals for equation (19).

5. We investigate now stability of motion of body on the

assumption that in question cavity, filled with liquid, has form of

ellipsoid of revolution (Fig. 5).

We will seek solution of system of equations (8) in this case in

the form

p,=p(x, y, z)eX,--w); uX=u(x, y, z)ei() - );(" ' (20)
U Yv -, y, z)e'(1-0- t; Uz= w(x, y, z)eI (x ,- - ) t .

After transformations, analogous to those carried out into [5),

taking into account of equations (10), (11) and designations

"X ° ei .,-Q)t; wy ei (x,-w)t  (21)

for determining function p(x, y, h) we will obtain equation of LaplacE'

C 02 0.1 a2 -

o+ +'= (22)

where

z =zx; x=( 1 - ) [(X1 - w)2 421-12. (23)

0
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For determination of solution of equation (22) let us switch over

to ellipsoidal coordinates p. . 4, which are connected with x, y, z

by relationships/ratios [1, 81

=k(l 2)/2('2- 1)'/'cos , y= k(1- .2)I,0 (r2)- ji 12 sil ,

- k j(24)

in this case ellipsoidal coordinates let us select so that equation of

surface of cavity

X2 +y 2  Z2
+ y - 1 (25)

a2 X2C2

would belong to confocal family. Let, for example, -

Page 244.

Then the arbitrary value k in relationships/ratios (24) and constant

o should be taken by the equal to

k==c-xe; 0=e-1 ; k=a( -1)1/, (26)

where e = (C -a2)1/(cX) -l-  eccentricity of ellipsoid of revolution

with semi-axes a and cK. The solution of equation (22) now can be

represented in the form (l]

Pm Q,) Pm ( ) [A' cos ni + B' sin m] (27)
n-O m-O

where Pnm -  connected polynomials of Legendre; Anm, Bn m - arbitrary

constants.

Values Anm, Bnm let us determine from boundary condition (11),

* which with the help of equalities (8), (20), (21), (23)...(27) is
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converted to form

C2 , 2  1 _ 2e2  d (J 1 P (u.) (A n cos t,fi(Xl--:) = ° ,_ 2 ade,

n=O m=O

X (--A sin m,-+-B r cos m,) -C='{
9-x (4w2 ,

1 )2]

-2i (XI -w) 21 cos + [4w2 yj 2i (X, -w) Q j sin J}P2 (;,)P2 (,.)-

Substituting them into expression (27) and taking into account

first relationship/ratio (20), and also equality (9), let us find

function-p*, which determines pressure of liquid on wall of cavity.

Using further formulas (2), (3), (9), (13) and (21), and then

integrating by the volume of cavity r, after appropriate

unpackings/facings let us arrive at the relationships/ratios

X+ iM 1 1= 4 -tpa2c (C 2 -a 2) [ 2c 2i (j'*+ W*)(XI -W) .'+
15 1 (c2 + a 2) (X, - w) + 2ao

-2i1w]e-'; F + iF- -im 2 (12t - + lz* ± g *) e - " t ; Fz=- m2g.

Let us substitute recently obtained expressions into system of

equations (22) and we will seek its solution on the basis of

relationships/ratios (20) in the form

.*= et, ; * *e ' 0
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Characteristic equation, which corresponds to system in question,

is reduced to the form

fo,, ,,,)=(AO+k.-q.)k5,-,.oC, -(Ao)+k*)j.IjX4[-K-

-(A* + k, )/l + Cio 2, * k*( 2 (1 -- , , + [K-, +Cg/l +

+ (A*+ k,)7jgl],,,2 I 1K ' k,,(1 -- *) -- pton, g/ .wij-sr, l-

0. (28)

In this equation besides the designations, which were being already

mentioned earlier,

I C2 - a2 4A* =- A, + m,11 2 ; 'q,*-- ; ' k,=-- 'pa 2c (c 2  a2);

zc=Kl/m; AOA*-zcK,; K-=gK1 .

It is obvious that criterion of stability of motion in situation

in question is matter of roots of characteristic equation (28). For

their research we will use the graph-analytic reception/procedure,

described in [4, 10]. Let us note, first of all, that according to

the rule of Descartes [7], the number of positive roots of equation

(28) with any values of the parameter wo cannot be more than three, but

negative - it is more than two. It is possible to show that this

equation with w>0 always has two and only two negative roots.

Actually, it is easy to ascertain that

f CC', 0) <0; f, (-/I, W) =(g2/12) (A*--A')(, F11)> 0.

Consequently, in the intervals --o<,<--/Ig and--}'g//<X<O is

Slocated through one negative root.
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determina;:or > 0 character of three remaining roots of equation

(28) is real4z-fd b. means of construction and corresponding study of

plotted function

q () - qi()- 4p(X) r() (29)
2p (X)

in which

p-g,,)-r; S-r, iC , k(l - ,) 0;
= j-( ( I *T2);

q ()-- (. +- A ) 4 -[K (4* + k) g/ 112 -2 Kg/i +

+ 2 (2 __ g/)( -

-r(.)=A i(.o+-q,*) 4-[K +g1(A*- -kT,*)].2- g°Kj.

Analysis of this graph gives possibility for each fixed/recorded

parameter wo to determine, everything roots of equation (28) will be

real, and therefore will be motion of solid body stable or not.

Page 246.

In that range of values X, where the discriminant

A.)-4,p (,) r (X) -_q2 (X)---- f[aX4-(K -+r g/la2) X' + gl1K] X

X [, 1
4 -(K + b2 /l)X 2 +Kg/1,

where a-=A° k-- (6/ - 2 ;blA-+k ) 2  =A

+ k~j - (1' -E- b2 ); bt A-+k - 21 -4 2 A
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0

it is positive, equation (28) will have a pair of the corDex'v

conjugate roots, and therefore the motion of the body be--.-.

investigated will be unstable. For the same values X, where ;

is stable.

For determining sign A(X) let us consider polynomials

F (2)--- aQ" - (K+a 2gP,/) o + KgP/1; (3)

F 2 (2)- b,.2 - (K + b2 'P/I) 2- +KgP/I.

It is not difficult to show that their roots are always real,

signs of these roots depending on signs of coefficients a, and b,. If

b1 >0 and a1>0 (that in the case in question it occurs), then all zeros

of the polynomial (30) are positive. In this case one root of each of

the polynomials is less than g/l, and another - is more than this

value. Fig. 6 depicts plotted function (29). In it through

(jj*, (012*, (oj", &)2*" are designated the critical values of the angular

rate of rotation of the bodies, which, according to [10], are

determined from the relationships/ratios

_____- _ I/ ,. .. __ ;; 
Ai; Wt -- L, (1= 1,2),

where

• s 2)
0
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!A 2 -2 - ::-: oots resoectively of first and second

polynomials (3CW

Analysis of o::tted function (29) shows that with values of

angular velocity - are changed within limits wl<w< ul5 and

w'<W <W2, mo:12: of body being investigated is unstable. The

motion is stable c,- of these limits of a change in the angular

velocity w.

0

0
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Fig. 6.
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Dynamics of the fast-turning flight vehicle with the eccentrically

arranged sections, partially filled with liquid.

L. V. Dokuchaev, V. L. Yezdakov.

Is examined motion of body with cylindrical cavity, which has

radial diaphragms and by partially filled liquid. For the compilation

of equations of motion is used the setting by G. S. Narimanov the

task about the nonlinear irrotational motion of liquid in the field of

mass forces. It is assumed that the external forces and

moments/torques are low in comparison with the centrifugal forces, so

that entire mass of liquid is forced against lateral surface, and free

surface completes oscillations relative to the cylindrical undisturbed

surface. The analytical solutions of boundary-value problems are

given and are determined hydrodynamic coefficients taking into account

three tones. Are analyzed the necessary stability conditions of the

stationary rotation, which upon consideration of the dissipation of

energy are sufficient.

Develop theorying of nonlinear motion of body with liquid, G. S.

Narimanov in his first works [l, 2] considered two cases of steady

state of liquid object. In one case the body is located in the field

* of the mass forces, parallel to vertical axis so thaL the free surface
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of liquid in the undisturbed state is horizontal. Compiling the

nonlinear equations of the wave oscillations of liquid, taking into

account the members of the third order of smallness, G. S. Narimanov

could explain the phenomenon of the "circular" wave observed in the

experiment, when the inclined plane of the free surface of liquid

begins to complete rotation relative to vertical axis, while the

exciting forces are directed perpendicularly to this axis. In other

case the body is located in the radial field of mass forces, as, for

instance, the liquidfilled gyroscope, whose centrifugal forces

considerably exceed gravitational forces. On the flight vehicle,

which accomplishes rotational motion with the engines off, the radial

field of mass forces appears virtually at any velocity of torsion.

Using long wave theory, G. S. Narimanov derives the equations of

rotation of body with a circular thin layer of liquid. Is

investigated below the stability of rotational motion LA with the

cavities, situated on a certain removal/distance symmetrically

relative to the axis of torsion. On the single-connected volume of

liquid functions the radial field of mass forces.

Page 248.

For the compilation of equations of motion is used setting of G. S.

Narimanov's first task.

1. Let us introduce connected with solid housing system of

coordinates OXYZ, moving relative to inertial space with forward

vXlpncity of V0 and angular velocity w. In the undisturbed motion KA
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* it is twisted with an angular velocity of w around axis OX, which

coincides with axis OZ, of the system of coordinates OIXIYIZI,

arranged/located so that axis OX, lies/rests on the intersection of

two planes of the symmetry of the cavity (see Fig. 1). The free

surface of an incompressible fluid Z completes oscillations relative

to cylindrical surface E.. At the initial moment of time the flow of

ideal fluid is assumed to be irrotational, therefore, and subsequently

the flow will be also irrotational, i.e., there is a velocity

potential 4, which satisfies the equation of Laplace and the condition

of nonpassage on the moistened surface of cavity.

ret set of functions fi(Y, Z) be complete on surface Zo. The

coefficients of expansion in the generalized series of Fourier in

these functions of the deflection of free surface from the surface Z,

are designated through Pi(t) (they have a dimensionality of length).

Ttz velocity potential and the hydrodynamic coefficients, determined

below, are decomposed/expanded according to the degrees of the low

parameter, such it is the deflection of the free surface of f,

moreover only terms are retained, which in the equations of motion

will give terms not higher than the 1st order of smallness. It is

assumed that the vector of the apparent acceleration

jdY_±+o>xV 0_ -g (g- free-fall acceleration), the vector ofJ= dt

angular acceleration w, projection of angular velocity on the

transverse axes (), c,, generalized coordinates (t) are the values

* of the 1st order of smallness, and the velocity of torsion w0 -
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zeroth-order quantity of smallness. Velocity potential 4) we will seek

in the following form:

Here harmonic functions Ai, Qo, Qi, QiJ satisfy boundary-value

problems

A~ -- ; A-'-s -~v OA--Iv E.-' ;

A90 0; t- r X v; (2)

A Q 0; L" 0;=:-(rXVfi)+v(fVQ); (3)
aQo-O; "-. Is.%

oo, ' v M."n0 X _ (!t J)] (4)
=- - [v (fjV~i+fiVQj +V (fifiv--) -v XV ] (

Page 249.

Operator V indicates two-dimensional gradient over surface Zo.

The numerical methods of solving the first and second boundary-value

problems, which relate to the linear theory of the wave oscillations

of liquid, are presented in work [4]. Let us consider two special

cases, with which it is possible to obtain analytical expressions for

the coefficients of nonlinear equations of motion.

Let cavity take form of circular cylindrical sector (Fig. 1)
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with planes of symmetry OXZ,, OXY, and aperture angle of sector

2a. External radius of sector R,, internal 5R0 , the height/altitude

of cylinder 2hR 0 . Let us introduce cylindrical coordinate system z,

r, n. Then the solution of boundary-value problem (1) can be sought

by the method of separation of the variables

A1 (z, r, q)=M sk(r) Hs (q) Zk (z), (5)

where

A4~ I (r m (Pr) K(P) Km(Pf) I' (M

m=2 '  -- (k, s=0,1...); H,=cos r(q+a);

Z cos P (z + h), h-- IR. (6)

Functions MsA linear combinations of functions of Bessel and

Neumann, which satisfy conditions

M sk (r)Jr-6--1; M s'k (r)l,r- -O . (7)

Solution of boundary-value problem (2) for projections functions

Q0 (Q01, Q 0
2, Q03), called Zhukovskiy's potentials, for case of circular

sector are obtained in work [4). We will consider during the solution

of boundary-value problems (3) and (4) that are excited only the first

three their own forms of the free surface:

f=-- H1 (V; f2 Z1 (z); f3= HI (q) ZI (z). (8)
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I \Y,
Zo

Fig. 1.-
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Substituting in boundary conditions on Z. in boundary-value

problem (3) of expression for Q0j (jI, 2, 3) from (4) and expressions

(8) we obtain expansion

OQ (iz)- -(r X Vf )j±+ V (fV2°)- X K < HSZt (i, j 1,2,3),

(9)

where h

K___ C C (i, z) HsZkd-dz;-ahb (s) b (i) JJv
b(s)pH sO,

rip s#O.
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Key: (1). with.

Hence taking into account boundary conditions (7) we will obtain

2=6w KsiMskHSZA. (10)
s,k O, I...

Determination of functions Qij is not compulsory, since into

coefficients of equations of motion of system will enter only boundary

values of these functions on free surface Z,. Moreover in view of the

symmetry of cavity zero are only potentials with the diagonal indices

i=j. We will obtain these boundary conditions, after substituting

into the boundary condition formula (7), (8) and (10)

, g! (1 r Z

+ fivfi - a  + (11)

av 2 aV3

Let us compute kinetic energy of body with liquid by analogy with

[31, using obtained resolution of potential P.

S. V + L (Vo X w) +-L.OJO)+VoL+ o)R i
2 2Y

£ I j

(12)

Let us give expressions of hydrodynamic coefficients, entering

(12). Static torque L and tensor of inertia J take the form

0 = L + U j = i + %
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Here LO and J0 - statistical moment/torque and tensor of inertia

of solid body with undisturbed liquid

16pha 2 cos aRS2 16p8/2aP(
4a 2 -.,t2 ' 2

iY, i.- unit vectors of system 0XY1 Z.
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/. .-- +--v X v),(r Xv)f ( X v -+r XV/,, ds; (14)

3 21Jl--OR . 2 -- v -d(r v i 2 d~v2

_[(r X vA +, r Xi ]f i , + ooo ,) +
+ [(rX x v (f ), o s.(5

In tensor (13) nonzero and sizable they are only on two

components, which correspond to 2nd and 3rd tones: J31-J13 and

23 32- In (14) it is necessary to consider only J3, J33, J.

Expressions for coefficient Ri (i--, 2, 3) take the form

= JR 2=Y ~02 +1i2z3S; P3= i' 3O + izk32P2, (16)
where

XIR of ~ds; X02 = pR 40 20f2ds;

'Z R43 2-- .. 33. x 432 76-K .330 ~fa3ds; 23a --2Rop,CCK/ o 3 ,2= p 0 11-,
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In coefficients Lij nonzero are only jii (i=-1, 2, 3)
I 2MphM10 (); p- 2Rgpo(a); -- R0p ahM11 (). (17)
P~u 0Ro/ZhMlo(;); 13"3e-- P'

Let us take into account dissipation of energy in cavity, after

introducing dispersive function 1 P2- )/2.

2. Lgt us consider case of cavity, formed by cylindrical surface

and two planes, perpendicular to rotational axis. From this cavity

with the help of k of radial baffles are formed k of the sectors (see

Fig. 1), with the half-angle a=r/k. Cavities contain identical amount

of liquid in the cavities. Instead of 3k the generalized coordinates,

which describe the motion of liquid in the cavities, let us introduce

9 generalized coordinates, which completely determine the effect of

the mobility of liquid on the motion of the body

T == T 2 = Oftcos 0j; T3 =--- sin ai;
i i i

k, y 2  ~ L J COSu S, si
S I Pi; S2:= 2 2

p-- J=1 P=T j Sin ,.
k k kn-UJ3Ot

l i I

After substituting obtained expressions for coefficients into

(12) and using Euler-Lagrange equations, we will obtain equations of

*forces and moments/torques, and using equations of Lagrange of 2nd
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order - equation for generalized coordinates.

Page 252.

Equations of forces we use in order to get rid of the apparent

accelerations in the remaining equations, after which we w41l obtain

system from 12 equations: 3rd momental equations and 9 equations for

the generalized coordinates. This system of 12 equations is

divided/marked off into three independent systems. The first system

consists of the 2nd equations

(IA2 M )g I °W0 33S }( 23 - 32) ° l -eS - O

_ .r P I" + (X32  23) _ 0S, - P ==0 (18)

The second system also consists of the 2nd equations

0JIIWi+kkzTi =0T, sL+41wI-w 0 J3T0 - TI=0. (19)

The third system consists of by the eighth of the equations

0 + 0s o) Wo(03+ k f.2 S + .. 2 3 Y •
'-- ( - 133) {1 3wS + 43 -W233w3 - oXo0 2S3 +

2 ~3P2 + X02S 2 o, 3S 2 -+ 2 (- 0T - T -O+T3) } 0,

J?3 w3  + (J1o J33) W0o2 + k 13 - 03P& + J 3 (oP2 + X 0 s +

A- J DP3 + k02S3 - J13WOS3 + dX2 (-T'+ T' -2T 2)) - 0,
I2 11 2 , k (k 2)2 m2T2 ',

2 + ( oT;- r " +2 2 ) + (0* + Wo2) = 0, (20)
2M 2

P'tT" u., k (X,2)22
-,o . -w3 + ( 2(- *r'o- T3*+ ,oT) + WA 2 (- + )o3) ==0

2M 2

0



DOC 89056421 PAGE4'- <

0 O2 2 W 0Q-2 - 3- 2 - J35w S2 -3 2X 2P'- 0,
'2 2.1. 1 X3 -3W 22 i2 = 0,

'0 2 +• j2 3 2-

1 -122 3 S + X32o42S2 -123 - - 133oP2 - X230 S2 = 0,

t133P2- L03 2 2z 2 o W2 133W 2 - 23WS2 =0,

23 - 32 3 2 3 - 33 023 0 3 0.

Equations of motion (18), (19), (20) are comprised in system of

coordinates OXYZ, connected with center of gravity of undisturbed

system, and hydrodynamic coefficients of (13)...(17) are determined in

connected with cavity system OIXIYIZI, displaced up to distance of d

along axis ox (see Fig. 1).

* Page 253.

3. We investigate systems (18), (19), k20) to asymptotic

stability. It is possible to show [5] which for the stability is

sufficient so that the absolute term in each characteristic polynomial

of systems (18), (19), (20) would be more than zero. The first system

is stable, if 13322>0 and 133>0, which always occurs. The solution

of system (19) is unstable with respect to the cyclic variable Wi.

The stability of the trivial solution of system (20) is ensured with

accomplishing of following inequalities:

kM(X 2d)2 + P )2 + k ( >032

j + - 2M"-(X2 )2 + 2 122 + 21' A

kM (X 2)2 21k 2I3)0 J+ - + >o.

. . . .: 33 33 •m I
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Let us consider another case, which admits analytical solution.

Let the body contain the cylindrical cavities, situated on the spot of

sectors so that the rotational axis of the i cavity coincides with

axis OX, - by the intersection of the planes of the symmetry of the i

sector cavity, and the rotational axis of the 1st cylindrical cavity

coincides, correspondingly, with the intersection of the planes of the

symmetry of the i sector. Functioning by analogy with the previous

case, we will obtain expression for the kinetic energy of liquid. On

the strength of the fact that the cavity is axisymmetric, some

hydrodynamic coefficients, which correspond to sector cavity, will

become zero. The third tone in connection with this is not excited

and is not proven to be effect on the motion of body. If we make the

assumption that the cavity is located sufficiently far from the

rotational axis OX, then free surface Z0 can be considered flat/plane.

A quantity of hydrodynamic coefficients in this case even more will be

shortened also instead of (21) we will obtain the following stability

condition:

o 0 kM(k 2 J)2 k (I13)211 -133 + 2MJ 3 -A k%)?) + -2122 >0;

111122 + 2MJ Ik( +)22122>0
3-k ( 2 )2 33~>0

Is simple mechanical analog for body, which contains cylindrical

cavities with liquid, this body with simple pendulums attached to it.

The structure of the equalions of motion of body with the liquid will

L m m |
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*be the same as the structure of the equations of certain equivalent

solid body of mass M, with the tensor of inertia JO, to which at the

points, which lie on the rotational axes of cavities, are attached the

pendulums (masses m, lengths 1), which are located in the undisturbed

position at a distance of c from the rotational axis OX, moreover:

MI =_ 0122 0
-- • -- 2_&. --

122 N2 2

Page 254.

In new designations stability condition (22) is converted into

following:

0 0 kind 2  km(r- C)2 > 0;1 -/ 2 2M (r - [c + 1] F) + kml - r-c (23
(23)

J kind 2! km (r -c) 21 > 0,
2M (r- [c + 1) F) + kml r - cG

where

F 33 33 I r- distance from OX to bottom.
422(c + ) 22C

If F and G are equal to one, then complete coincidence of

stability conditions of body with liquid and bodies with pendulums

occurs.

Evidently from (23), as affects disturbed free surface motion of
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liquid stability of stationary rotation of body. An inc ease Jn the

radius of the free surface of liquid, and also distance d from the

center of mass of system to the plane, in which are located the

cavities, worsens/impairs stability.
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EXPERIMENTAL ANALYSIS OF STABILITY OF ROTATION OF BODIES WITH THE

LIQUID FILLING.

V. T. Desyatov.

Method of experimental study and experimental installation are

described, analysis of results of experimental research is carried

out. It is shown that to the stability of rotation of bodies with the

cylindrical form the cavity mainly affects the volume of the poured

liquid, value of the ratios of the length of cavity to its diameter

and axial- moment inertia of body up to the axial moment/torque. The

loss of stability of body sets in with the defined filling of cavity

with liquid and can occur both with the partial and with full-stroke

admission.

In 50's G. S. Narimanov paid considerable attention to research

of dynamics of solid body, whose cavity is partially filled with

liquid [2, 3]. Into the circle of its scientific interests entered

also questions of the study of the stability of rotation of bodies

with the liquid filling. On the initiative of G. S. Narimanov and

under his management in these years by the author of article was

carried out the cycle of experimental works on the analysis of

stability of rotation of the bodies with the liquid filling, whose

some results are presented in the data to article.
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1. For imparting to bodies (models) rotation during experimental

research was used string drive, proposed by S. V. Malashenko, who

permitted implemention of rotation of investigated model around

orincioal axis of inertia with hiqh angular vp1rncity (to 10000 r/min)

[11.

Study of stability of rotation of models was conducted on

installation, which consists of two parts: worker and recording.

Test section (Fig. 1) consists of electric motor 1, to shaft of which

is fastened thin string 3 with diameter of 0.1-0.3 mm. By lower

end/lead the string is combined with the model 4 being investigated.

For the extinguishing of transverse vibrations of string'damper 2 was

used. For the purpose of the preservation of the incidence/drop in

the model with the break of string on recorder is used detector 7. On

the shaft of motor is attached the permanent magnet, which revolves in

the induction coil. The ends/leads of the induction coil are

connected to the frequency meter, the number of revolutions of the

shaft of motor is determined in the frequency of the aimed in the

induction current coil.

0
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S Fig. 1. Fig. 2.

Fig. . Schematic diagram of experimental installation: I electric

motor; 2 - damper; 3 - string; 4 - experimental model; 5 - mirror; 6 -

recorder; 7 - detector.

Fig. 2. Schematic of experimental model: 1 - string; 2 - cylinder; 3

- ring; 4 - nut; 5 - experimental capacity/capacitance; 6 iqui; 7

- mirror.

Page 256.

2. Models (Fig. 2), which were being used during research,

consisted of several parts, which gave possibility to change moments

of inertia of models, their relation with set of different parts,

sizes/dimensions and form of poured cavity over wide limits. A change

in axial. moment inertia of model was achieved by the displacement of

- ring;4 - nut 5 - exeital caaiycpctnc;6-lqi;
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ring 3 over cylinder 2. A change in the axial moment/torque was

produced by the replacement of this ring. By the replacement of

capacity/capacitance 5 or by setting different in the thickness

packing was achieved a change in the sizes/dimensions of the poured

cavity. The attachment of string, as a rule, was realized in the area

of the center of mass of model on nut 4. On the end/face of model was

placed flat/plane mirror with 7 diameter of 8 mm. The construction of

the base of mirror, is such, that there was a possibility of

regulating the angle of the inclination/slope of the plane of mirror

relative to the end/face of model. For conducting the visual

observation of the behavior of liquid capacities/capacitances 5,

prepared from organic glass, were used. A change in the form of the

cavity of body was realized by installation into the cylindrical

cavity of the shaped ogival or conical insets. The pa-rameters of

insets were changed over wide limits. The parameters of models with

the cylindrical form of cavity were varied in the limits of the values

of the ratio of the length of cavity to its diameter L/D-0,5.. .4,0 and

in the limits of the values of the ratios of axial moment inertia to

axial A/C-3... 3,5. The measurement of amount of liquid, poured into

the cavity of models, and the metering of the necessary amount of

liquid were realized with the error not more than. 1%.

3. Recording part made it possible to carry out recordings of

oscillations of revolving model, which correspond to deviations of

axis of body from position of stable equilibrium in the range of

ct=0... 7' Instrument is carried out according to the diagram, shown

in Fig. 3.
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* Fig. 3. Schematic of recorder: 1 - mirror; 2 - electric motor; 3 -

disk-interrupter; 4 - lens; 5 - diaphragm; 6 - gate/shutter; 7 -

photographic paper; 8 - synchronizing unit; 9 - photograph.
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The light beams, emitted by tube and directed by mirror,

consecutively/serially pass through the capacitor/condenser, diaphragm

5 with the opening/aperture 0.06 mm and lens 4. On the path of the

inswept beam of light, which emerges from the objective, flat/plane

mirror 1, fastened/strengthened to the end/face of model, is placed.

The reflected beam of light/world falls on photographic paper 7,

included in the cassette. It is possible to attain by the regulation

of the distances of the optical arms of instrument information of the

* beam of light, reflected from the mirror of model, to the photographic
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paper into the point.

Disk 3, rotated by electric motor 2 with a velocity of 60 r/min,

is placed between diaphragm and lens. The leading drum of cassette

revolves by the step-type electric motor, which is synchronized with

disk 3. Disk has five cutouts in the form of the sectors of the

strictly defined sizes/dimensions. This device/equipment was the

peculiar camera shutter, which makes it possible to obtain the light

dotted line of specific sizes/dimensions of 9 on the photographic

paper through the equal time intervals. Thus, knowing the number of

revolutions of disk, the sizes/dimensions-of cutouts, measuring the

length of dotted line and the diameter of the broken circle, obtained

on the-photographic paper, it is possible to compute angular velocity

align the precessions of model and the rate of the increase of 9
amplitude oscillation.

Work on installation was conducted as follows. The model,

suspended/hung to the shaft of motor, gradually was

Pczelerated/dispersed to the velocity, at which were conducted the

experiments. Oscillations of model appeared in this case were damped.

On reaching/achievement of given speed the damping ceased. If in this

case the axis of model remained in the vertical position, then light

beam was projected on the fixed shield into the image of focus. Least

deviation of the axis of model from the vertical position led to the

bias/displacement of "light spot".
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Oscillations of model relative to center of mass it led to

descriotion with "light spot" of trace on photographic paper in the

form of circle of specific diameter. While conducting of

photographing the motion of "light spot" were switched on the motors,

which revolved disk and leading drum of cassette. The synchronization

of these motors was realized in such a way that the image of the

motion of "light spot" was obtained with the necessary delay through

the equal time intervals.

Experiments showed that negative effect of liquid on stability of

rotation of models is exhibited in the form of noticeable oscillations

of body relative to center of mass, identified by us with rapid gyro

precession. The loss of stability of model is characterized by a

* gradual increase in the amplitude of these oscillations. For small

angles of oscillations their amplitude with the loss of stability of

rotation calculation according to the law, which is expressed by the

known exponential function of time s-Sekw)t. In the conducted research

the dimensionless parameter "k" was considered the measure of the

intensity of the loss of stability of model. The velocity of the

rapid precession of model was determined by the results of the

photorecording, obtained on the instrument with the relative error not

more than 3.. .5%.

Page 258.

4. Preliminary research was conducted on models with cavities of

* cylindrical form, whose characteristics were represented in -able 1.

.. . . ' ' I I II I I I I I MI I
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Water was working fluid. Models were suspended to the string in the

area of the center of mass.

Model No 1, whose cavity is completely filled with liquid, during

rotation proved to be such unstable which with great difficulty was

possib'e to untwist it to 4000 r/min. After the

cessation/discontinuation of damping the model almost instantly lost

the stability of rotation. With the decrease of a quantity of poured

liquid the intensity of loss of stability was reduced also with the

filling of cavity to 60% rotation of model it became stable. The same

model without the liquid filling revolved stably in the wide interval

of number of revolutions (n>2000 r/min) even under the influence on

it sufficient strong external moments/torques.

Models No 2 and 3 in this series of experiments untwisted to

velocities, which correspond to n=5000 r/min. In this case model No 2

lost the stability of rotation with the fillings of the corresponding

to range of charge/weight ratios B-V/V,=0,3 ...0,33. By

charge/weight ratio is understood the ratio of the volume of the

poured liquid to entire volume of cavity. The greatest intensity of

loss of stability was observed with B=0.32, a change in the filling in

all to 1% led to sharp reduction in the intensity of the phenomenon of

instability. And without it the model revolved stably with all other

fillinqs. Model No 3 lost the stability of rotation already in other

range of charge/weight ratios B-0,57..0,62. The character of the

stability of model No 3 is analogous to the character of the loss of
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. stability of models No 1 and 2.

5. For purpose of determination of effect parameter of string

and places of its attachment to model were carried out research on the

same models, but with change in characteristics of string (materia!,

length and diameter of its cross section), place of its attachment

(value of inverted and righting moments) and value of angular

velocity.

Results of research showed that investigated factors do not

change very fact of loss of stability and do not displace center of

range of charge/weight ratios, with which occurs loss of stability.

The factors indicated can have an effect on the intensity of loss of

* stability and on the width range B.
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Table 1.

(. (3 'OceBof t s
Ha C LHa~eTp .oe3KBaTOp1aJbH~h ')Macca

MMOMeH nO1OCTH L", nO.IOCTH D. HHeptHH MOMeHT Hflep4HH MoAeH, r
MM UM C.10-4 Kr-M? A.10-4 KrM 2

30 30 0,95 11,1 290
2 60 30 1,0 15 320
3 70,5 30 1,1 23 370

Key: (1). No of model. (2). Length of cavity L", mm. (3).

Diameter of cavity D, mTL. (4). Axial moment of inertia C.10- 4 kg.m2 ,

(5). Axial moment inertia A-10 4 kg.m 2. (6). Mass of model, g.

Page 259.

For example, an increase in the number of revolutions of model from

n=3000 to n=---0000 r/min leads to an increase in the intensity of

the process of loss of stability. In the process of these experiments

the views of accuracy and convenience in conducting the experiment of

the value of the investigated parameters most acceptable from the

point were selected, The diameter of the cross section of steel

string must be not more than 0.25 mm, distance from the attachment

point of string to the model to the latter/last limiter is not less

than 250 mm, the attachment point of string with the model should be

placed in the area of the center of mass of model, the number of

revolutions of model must be not less than 2500-3000.

Thus, liquid filling exerts a substantial influence on stability

of rotation of bodies. Loss of stability can occur both with

full-stroke admission and with the partial. In this case the width of
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range of charge/weight ratios, in limits of which occurs the loss

of stability, and the coordinate of its center B11 depend ma~niv on

-ne characeristics of the revolving body, its cavity and liauid.

6. Further systematic studies of effect of sizes/dimensions of

cavi-v and moments of inertia of body on arrangement of centers of

unstable regions B1 and width of these regions made it possible to

establish appropriate graphic dependences, represented in Fic. 4.

During the experiments all models untwisted to the angular velocities

rl=5000 r/min. The diameter of the cavities of models was equal to 30

zr• Water served as working fluid. Processing the results of

experiments was conducted in the criterial form.

S
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Fig. 4. -Dependence of charge/weight ratios of cylindrical cavity with

liquid, which correspond to instability, on relation of moments of

inertia of body and relation of significant dimensions of cavity.
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It follows from examination of obtained dependences that with

increase in value of ratio of length of cavity to its diameter L/D in

two groups of chance in values LID:10,1....,2 and L/D--1,3.. 3,3 in

constant/invariable ratio of axial moment inertia of body to axial A/C

center of unstable region is moved in direction of high values up to

i.0, i.e., full-stroke admission. In this case the width of unstable

regions Bi also grows with an increase of value of L/D within the

i umits of each group L/D. With an increase in value of A/C and

L/D=const the center of unstable regions is displaced in the

d~rection of the a iner values, iri this case the width of the range of
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, :nstability also is reduced. The intensity of the phenomenon o

instability, which corresponds to the center of the coefficient domain

of filling, in which is observed the instability with an increase in

value of L/D, grows and is reduced with an increase in value A/C,

..e., "follows" a change in the width of unstable region. The

intensity of the phenomenon of instability, which corresponds to the

first group of values L/D, several times more than for the second

group of value L/D.

Results of experimental studies of arrangement of centers of

coefficient domains of filling, with which occurs loss of stability of

rotation of bodies, depending on change in values of L/D and A/C ran

be approximated for low filling (B<0.5) with following dependence

where a - coefficient, for first group LID a=-0,81, for second group

LID a=0,2 7

For purpose of study of viscosity effect of liquid on stability

of rotation of bodies with liquid filling were used different liquids,

whose characteristics were given in Table 2. The results of research

showed that with numbers Re<10 5 Re==D 2/2v>O5 (W- the angular

velocity of body) the intensity of the phenomenon of instability is

weakened/attenuated with decrease of Re, and the center of unstable

region somewhat is displaced in the direction of the high values B.
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This bias/displacement can be approximated by following

dependence:

AB,= 30/Re' 6

The viscosity effect of liquid with numbers Re-101 on the stability of

rotation of bodies with the liquid filling is not discovered.

Table 2.

I K Hema-

O)HaHmeHoBaHue HeHT IHOCTb
I<H,1KOCTH B513KOCTH P. 103 KrIM/

V- I0- 6

Boaa 1,0 1,0

(Sij
PacTBop raHiiepHHa P 2,7 1,1
soe 12,3 1,15

34 1,18

5eH3HH 0,76 0,75

Key: (1). Designation of liquid. (2). Kinematic modulus of

viscosity v.10 - 6 m/s. (3). Density p.10 3 kg/m'. (4). Water. (5).

Solution/opening of glycer.ri in water. (6). Gasoline.
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