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Collection of articles is dedicated to memory of prominent Soviet
scientist, Lenin prize winner, Dr. of physico-mathematical sciences
G. S. Narimanov. Are included four thematic sections: space
research, libraticni motion of space vehicles (KA) with liquid during
small and sizable oscillations of its free surface, rotational motion
of KA with the liquid. 1In the collection the contemporary analytical
and numerical methods of the solution of the problems of the dynamics
of the complex systems are reflected, including the methods of machine

graphics, and also experimental.

For scientific workers, who carry out questions of rocket-space

‘ and aviation equipment, body being deformed, and also calculating

methods of mathematical physics.
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GEORGIY STEPANOVICH NARIMANOV.

In service record of Georgiy Stepanovich is counted teaching in
department of applied mechanics of Moscow University, where our joint

operation occurred, together with many other forms of activity.

Georgiy Stepanovich in many respects contributed to development
of research, useful for practice, and gained love and respect of both
-associates on department and graduate students and students. His
personal scientific results on the theory of the joint oscillations of
solid bodies and liquids filling them proved to be the valuable
contribution to mechanics of the systems being deformed and rocket

engineering.

I had the occasion repeatedly to encounter and frequently to work
together with Georgiy Stepanovich in now already distant times of
first steps of cosmonautics. Occurred the difficult days of failures.
And then especially were manifested the personal delay of Georgiy
Stepancvich, the skill to be dismantled/selected at the reasons, which
determine the undesirable course of events, and to plan the ways of

their elimination.

Georgiy Stepanovich Narimanov was keen expert of mechanics. Yes

even not only mechanics, but also space technology as a whole. One




“
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. cannot fail <o say about his devotion to the grea:t ideal.s of our
society, understanding of human relat.ons and values of culture,

ersonal modesty, kindness, 1in a word - high culture.
y

I am grateful to fate for acquaintance with this remarkable

person,

Academician A. Yu. Ishlinskiy.
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Thematic collection "Dynamics of space vehicles and space

research: it is dedicated to memory of well-known Soviet scientist,
who made noticeable contribution to development of cosmonautics, Len:in
prize winner, Doctor of Physics and Mathematics, professor Georagiy

Stepanovich Narimanov (1922-1983).

Colliection is opened by introductory article, which contains
short suryey/coverage of multifaceted activity of G. S. Narimanov,
and consists of four parts, which correspond to main scientific
directions in his creativity, which continue to develop his students ‘

and followers.

Each part, except the first, begins from determining its
thematics basic work of G. §S. Narimanov, published earlier, and
includes articles of other authors, connected with this thematics.
These works - the result of research of the Moscow, Kiev and Tomsk
scientists, who rightfully can be related to the scientific school of

G. S. Narimanov.

First part contains works of general character, which relate to
space research with the help of space vehicles, and also to some

mechanical and physical aspects of structure and evolution of solar .
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‘ system - one of subjects of this research.

Second part is dedicated to linear problems of dynamics of flight
vehicles, which have sections, partially filled with incompressible
fluid. In the specific frequency band the adequate model of these
objects is solid, absolutely rigid body with the cavity, which
contains liquid with the free surface. It 1s assumed that the field
of the mass forces of the undisturpbed motion can, in the first
approximation, be considered potential (although unsteady), and ligquid
- id=zal (its motinn, as a result, irrotational). As the disturbed
mction the low oscillations of body and liquid are exanined (low
deflections from the undisturbed state).

‘ Specifically. in this setting this problem was in its time was

formulated and solved by G. S. Narimanov.
Page 7.

Articles, included in second part, contain series of original
results, which expand limi*s of the applicability of initial
mathematical model of G. S. Narimanov (in particular, along line of
phenomenological account of eddies of low-viscosity liquid and
elasticity of walls of tank and housing of space vehicle during
longitudinal vibrations), and which also relate to methods of
calculation of parameters of corresponding mathematical models. The
results, obtained during the numerical application of these methods

. and during the experimental research are given.
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Third part is dedicated to nonlinear problems of dynamics of the
same cobjects; basic nonlinearity is caused by the fact that
deflections of free surface of liquid from undisturbed state are
"sizable" It 1s here represented as the new conclusion/output of the
nonlinear equations of G. S. Narimanov from the variation principle,
which makes 1t possiblie to construct the structural/design algorithm
of the calculation of their coefficients for the cavities of the

rotation of arbitrary configuration, and also the theoretical and

experimental perturbation analyses of body and liquid.

Last, one fourth of collection is dedicated to rotational motions
of axisymmetric flight vehicles with sections, which contain liquid.
For the undisturbed motion is accepted the "rapid" quasi-stationary
rotation of flight vehicle or solid body simulating it relative to

longitudinal axis.

In G. S. Narimanov's article, which opens/discloses this part,
concept of theory of long waves (fine/small liquid) is used and it is
assumed that cavity is cylindrical. In the subsequent articles,
together with this case, is examined opposite -~ cavity, wholly filled

with liquid.

Are given some results of theoretical and experimental analyses
of stability of rapidly revolving body with liquid filling, which can

be considered as model of space vehicle, stabilized by rotation.
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Thus, collection is essentially "problematically oriented" to
those problems of space research and dynamics of space vehicles, into
solution of which G. S. Narimanov introduced considerable personal

creative contribution.

Editorial board and entire collective of writers hope that this
collection will contribute to further development of actual
directions, connected with scientific heritage of G. S. Narimanov,
and to solution of new applied problems, which lie on forward edge of
space technology.

Responsible editor is Hero of Socialist Labor, doctor of technical

. sciences, professor.

G. A. Tyulin.
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BRIEF OUTLINE OF SCIENTIFIC ACTIVITY OF G. S. NARIMANOV.

G. A. Tyulin.

Is given short survey/coverage of scientific activity of
prominent Soviet scientific G. S. Narimanov in region'of theory of
flight and dynamics of carrier rockets (RN) and space vehicles (KA).
Are in rﬂé;e detail examined the basic work of G. S. Narimanov in the ‘
dynamics of solid body, which contains the sections, partially filled
with the ideal incompressible fluid, that is model of RN and KA with

ZhRD [XPO - liquid propellant rocket engine].

Activity of Lenin prize winner, Doctor of Physics and Mathematics
Georgiy Stepanovich Narimanov can be represented in the form of
following directions: first, these are scientific research in region
of mechanics of flight of carrier rockets (RN) and space vehicles
(KA), dynamics of systems, which contain being deformed in process of
motion elements (liquid, elastic), general problems of space research;

in the second place, scientific organizational work in field of
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. cosmonautics; in the third, pedagcgical activity.

Speaking about first direction, should be stressed special role
of development of adegquate mathematical models of RN and KA, which
consider mobility of liquid in tanks and elasticity of housing, in
scientific research of G. S. Narimanov. Research of the dynamics of
solid bodies with the liquid filling, simulating RN and KA with ZhRD
in the powered flight, carried pioneer character and had high value in
the solution of the practical problems of stability and automatic
stabilization of RN and KA. Hundreds of works, dedicated to such
research !, are published during the recent three decades.

FOOTNOTE-'. The approximate representation about this can be composed

‘ on the bibliography, given in work [S]. ENDFOOTNOTE.

Author did not place to himself to entirely compare results,
obtained by G. S. Narimanov and other authors (many authors,
especially foreign, worked in parallel and independently). Will here
deal the discussion only with the work of G. §S. Narimanov himself,

moreover in essence about those, which carry priority character.

First research of G. S. Narimanov in field of dynamics of bodies
with liquid filling was carried out in 1950-1951 and connected with
solution of problems of developing of rocket-space technology.
Reflecting about the unsuccessful attempts to agree on some special

. features of the dynamic behavior of objects, which were being observed
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during the flight tests, with the mathematical description of the
disturbed motion of these objects as absolute solids of variable mass,
Narimanov arrived at the conclusion that the reason for these failures
lies in the inadequacy of the utilized for the analysis mathematical

model of RN as solid body.
Page S.

Specifically, then he posed the problem about the review of the
conceptual basis of research of rocket dynamics in the powered
flights. 1In 1951 he successfully solved it, after proposing the first
internally matched mathematical model of flight vehicles with ZhRD, in
which was_considered within the framework of the concept of flat/plane
free surface the mobility of liquid ("floating mass-free rigid

cover/cap").

This model made it possible not only to match results of
mathematical simulation with flight test data, but also to obtain
sufficiently good coincidence of a priori and a posteriori dynamic

characteristics.

In 1951 G. §S. Narimanov obtained more complete mathematical
model of three-dimensional/space distuv bance of motion of solid body
with cavity, partially filled with ideal incompressible fluid, in
potential variable field of mass forces with low deviations of all
generalized coordinates and speeds from appropriate quiescent values

under precise (linearized) boundary free-surface conditions of liquid.
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In this work, published in 1956 [3], G. S. Narimanov, after
introducing certain hypothetical solid body with liquid, formulated
basic assumptions, which ensue from character of undisturbed and
disturbed motions in powered flight and special features of layout and
construction/design of stabilized flight vehicles with ZhRD, which
remained virtually constant to this day. This determined the wide
application of a mathematical model, proposed by G. §S. Narimanov,
during the solution of the applied problems of rocket-space

technology.

Let us enumerate most important results, published by G. S.
Narimanov in work [3] and having fundamental character: obtaining
common mathematical model of three-dimensional/space disturbed motion
of system body - liquid (linear approximation/approach) in the form of
system of ordinary differentiai equations of infinitely high order;
proof of existence and uniqueness of solution of this system of
equations; proof of applicability of method of its reduction to system
of finite order; obtaining by method of separation of variables of
structural/design algorithm of calculation of hydrodynamic
coefficients in the case of cylindrical cavities; demonstration of
efficiency of application of methods of operational calculus for
solving wide circle of problems of dynamics of bodies with liquid
filling in the case of stationary field of mass forces of undisturbed
motion; solution of two important model problems, which relate to

plane-parallel motion of body with one (progressive/forward or rotary)
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degree of freedom.

Following cycle of work of G. S. Narimanov on this thematics was
dedicated to problem of nonlinear vibrations of liquid in mobile
cylindrical sections, i.e., to generalization of mathematical model

[3] to case of "sizable" oscillaticns of free surface of liquid.
Page 10.

For author it was possible to work out efficient method of
synthesis of mathematical model of systems body - liquid on basis of
reducing of nonlinear boundary-value problem to sequence of linear
boundary-value problems. This idea was in detail developed in work
[4], which pertains to the year 1957, in which were given the complete
system of equations of the three-dimensional/space disturbed motion
and the algorithm of the calculation of its coefficieants, and also the
numerical values of éoefficients for the cavity in the form of

straight/direct circular cylinder.

In the same year left work G. S. Narimanov [5], in which author,
using equations, obtained in work [4], explained whole series of
substantially nonlinear effects, which were being observed during
flat/plane harmonic oscilliations of body in vicinity of major
resonance, which are accompanied by "sizable" oscillations of free
surface of liquid: 1limitedness of amplitude in region of major
resonance, bias/displacement of resonance frequency of fundamental

unsymmetric harmonic to side of lower frequencies, i.e., "soft
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‘ nonlinearity"”, asymmetry of protuberance and indentation in maximum

wave in the presence of resonance (height of protuberance 1.5 and even

2 times more than depth), bias/displanement of nodal curve from
center-line plane to side of protuberance. The same work gives the
evaluations of the limits of the applicability of linear theory
according to the frequency of the induced harmonic oscillations of

body with the liquid.

In 1958 leaves first and only in its kind monograph of G. S.
Narimanov [7], dedicated to the problems of the dynamics of bodies
with the liquid filling (model of RN or KA with the rigid housing) and
which includes also chapter about the equations of the flat/plane
disturbed motion of the elastic crux of variable/alternating cross

‘ section with the free ends/leads (model of elastic housing of RN with
the hardened liquid during the motion in one.of the stabilization
planes). 1In the book were included the basic results on the problem
in question, obtained by that time by the author and which retain
validity in their majority on the present time. Into it the expanded
and substantially supplemented materials of works entered [3...5].
The main things from these additions are: the solution of
boundary-value problems and the calculation of all hydrodynamic
coefficients for the cylindrical cavities with the cross sections in
the form of circle, rectangle, circular sector; the solution of the
model problem about the plane-parallel motion of body with the liquid

with two degrees of freedom in the presence of the servo force (model

‘ of thrust of 7hRD) - demonstration of emergence with some values of
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the parameters of the dynamic instability of system, which is
impossible in the case of the hardened liquid; qualitative
description, on the basis of nonlinear equations, the new
experimentally observed effect - rotation of the free surface of
liguid during resonance oscillations with the excess of a certain

critical amplitude of oscillations.

In 1957 appeared besides {5] one additicnal uriginal wcrk of G.
S. Narimanov [6], dedicated to class of problems of dynamics of solid
bodies with cavities, which contain liquid, namely - to disturbed
motion of rapidly revolving body with liquid.

Page 11.

The author considered in this work the task about the symmetrical
gyroscope with the partially filled with liquid cavity in the form of
the circular cylinder, whose axis coincides with the axis of
gyroscope. Using with the large art the hypothesis of the theory of
long waves (i.e. "shallow water"), the author obtained the closed
system of equations of the disturbed motion of gyroscope with the

liquid, close in structure to the system of equations, given in work

(3].

Infinite system of ordinary differential equations obtained in
work [6] also allows/assumes application of method of reduction, which
makes 1t extremely attractive for solving applied problems. In

particular, the role of avyroscope with the liquid can play the
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‘ stabilized by rotation space vehicle, furnished control motors, whose

r h!

dynamics is completely described by the equations, given in work [¢!
By this work G. S. Narimanov knew how to move the bridge betweer :tna
tasks, connected with the "libration" motions of objects with the

liquid aboard and the "rotational” motions.

Work of G. S. Narimanov in region of special sections of
mechanics of systems (in connection with tasks of cosmonautics! be:ing
deformed caused to life vast cycle of research both general

Lheoretical 2] an?2 zprlied character.

As a result, by works of many authors, among whom there were
numerous -students and followers of G. §S. Narimanov, was worked ou:z
. completed theory, which made it possible not only to explain dynamic
special features of behavior of objects with liquid filling, that are
exhibited in flight, but also create reliable theoretical basis for
design of stabilization systems of these objects, on the basis of
assigned requirements for factors of stability of systems housing -

liquid - automatic machine of stabilization.

Theory relating to "sizable" oscillations of liquid in tanks,
proved to be especially fruitful during solution of problems of
dynamics of KA in sections of motion with low thrust, stage
separation, correction of orbit, landing on planets and series/row of
other complex problems. The tasks, counected with the rotational

. motion of KA, gained special vurgency in recent years in connection
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with the wide acceptance of the apparatuses, stabilized by rotation, ‘
with the periodic correction of rotational axis in the direction in
the sun (for guaranteeing the normal mode of the work of solar

batteries).

In 1877 new monograph {9], written by G. S. Narimanov together
with L. V. Dokuchayev and I. A. Lukovskiy, left. 1In it the early
work of Narimanov found further development, and the long-term
investigations of all three authors, which were tle continuation of

these works, were also reflected.

Work [9] in detail examines not only axisymmetric cylindrical
cavities, but also axisymmetric cavities with arbitrary
piecewise-smooth contour of diametric cross section. Thus, it was for ‘
the first time taken into consideration in the nonlinear equations of

the disturbed motion of system body - liguid "geometric nonlinearity".
Page 12.

Is further presented variational method of solving the linear
boundary-value problems, to sequence of which is feduced as in work
(4], initial nonlinear boundary-value problem for the axisymmetric
cavity of arbitrary configuration. Are given the results of solving
the boundary-value problems, in particular the numerical values of
coefficients for the cylindrical, conical, spherical, ellipsoidal,

parabolic cavities of rotation.
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In book are in detail examined problems of stability of steady
states of "sizable" oscillations of free surface of liquid during
induced harmonic progressive/forward and angular oscillations of body
with cavity, partially filled with liguid. The stability regions and
instability of plane and circular waves with respec: to frequency and
amplitude of forced oscillations of the free surface of liquid are for
the first time strictly obtained, i.e., the program, planned in work

[7], is completely realized.

Carried out comparison with similar results, obtained with the
help of mechanical analog in the form of spherical pendulum, and is
given evaluation of damping effect on amplitude-frequency system

characteristics in region of major resonance.

Scientific interests of G. S. Narimanov contalined many problems
of space research and mechanics of space flight: -external ballistics,
including experimental (determination of trajectory of KA and law of
its motion on basis of results of measurements, consumption/production
of requirements for composition and accuracv of measurements); theory
of automatic control of RN and KA; nonclassical problems of stability
of motion (stability of essentially unsteady undisturbed motion,
stability when exte.nal disturbances/perturbations of complex spectral

composition, etc. are present).

G. S. Narimanov succeeded in, in particular, working out

original method of integrating linear ordinary differential equations




DOC = 89056401 PAGE 20

with variable coefficients, which was efficiently used for solving

series of problems of dynamics of RN and KA.

Although many works of G. S. Narimanov, unfortunately, remained
unpublished, certain representation about range of problems, which
were many years in his field of view, give this fundamental labor,

which left under its editorship (together with M. K. Tikhonravov) as

[11].

In popular outline [8] G. S. Narimanov gives review of
achievements and prospects for development of cosmonautics (1981).

On latter/last work of G. S. Narimanov, connected with space
research with the help of automatically controlled KA, they give
representation of work of collectives of authors with his

participation [1, 12].

G. S. Narimanov paid considerable attention tc teaching
activity, result of which was creation of scientific school, whose

many representatives grew into serious independent scientists.

Page 13.

The large order of Soviet engineers and scientists, who work in the
area of rocket-space technology, learned on the works of G. S.
Narimanov; they all also rightfully can be related to the

representatives of this school. Some of them are the authors of the
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’ articles, included in present collectiorn.

Speaking about special features of scientific style of G. S.
Narimanov, it s necessary to stress clear understanding and broad
coverage of problem, skill to reduce complex engineering problem to
strictly formalized problem of mechanics, f{reshness of ideas and free
possession of entire contemporary apparatus of analytical and
numerical mathematical methods. Its works are characterized by the
combination of the high strictness of the solution and presentat.on
with the practical directivity and the applied character of research
itself, in which is ulways outlined connection with the specific
problems 9f the theory of flight and .ynamics of RN and KA. This
connection is reflected both in the initial axiomatics and in the form

. of the representation of final results, in necessary obtaining of
reliable numerical evaluations and in the selection of sufficiently

representative model problems.

One of parts, which characterize scientific honesty of G. S.
Narimanov, was his constant tendency to subject obtained results to
comprehensive checking both for internal coordination (conformity to
laws of conservation, symmet:y or antisymmetry of matrices, etc.) ard
external (coincidence with exact solutions when latter/last is known,
coniormity to data of experiments on physically similar models, and
also to results of full-scale, including flight, tests). These
features of nhis style of scientific work G. §. Narimanov knew how to

. inculcate both in his direct students and representatives of his
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scientific school.

In conclusion one should say that G. S. Narimanov indisputably
inscribed by his research bright page in history of Soviet mechanics
and, 1in particular, mechanics of space flight.

Works of G. §&. Narimanov, placed in present collection, give
sufficient representation about their author as about talented
scientist, who placed bases of new important directions of applied

research in cosmonautics and theories of flight RNIKA.
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‘ Page 15.

SPACE RESEARCH.

G. S. NARIMANOV AND HIS CONTRIBUTION TO THE DEVELOPMENT OF

COSMONAUTICS.

B. A. Pokrovskiy.

Brief biographical information about G. S. Narimanov is given.
Are examined the shaping directions of activity of G. §S. Narimanov in
the field of cosmonautics: the solution of the series of the complex
scientific-technical problems, cofhnected with navigational-ballistic
support. and the flight control of space vehicles, the creation of the
series of rocket-space systems and control-measuring complex; work in
the boards for the launching of space vehicles, including according to
the programs of international collaboration, and also the propaganda

of achievements and prospects for cosmonautics.

In 1983 died prominent Soviet scientist - Lenin prize winner,
Doct&r of Physics and Mathematics, professor Georgiy Stepanovich
Narimanov. His name, scientific and organizational activity is well
known in the wide circles of Soviet and foreign scientists and
specialists in the region of rocket-space technology and space

research. He is awarded many government rewards.

G. S. Narimanov was born on 13 February, 1922, in Tbilisi city.
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Soon family moved to Moscow. In 1939 Narimanov finished the Moscow
secondary school No 110, successfully put entrance examinations and he
was accepted to the physics department of the Moscow State University
im. M. V., Lomonosov. But war broke studies in 1941; G. S. Narimanov
refused to be evacuated with the university into the rear, he went by
volunteer to the construction of defensive reinforcements first on the

distant, and then on the near approaches to Moscow.

After crushing defeat of Fascist-German troops in the environs of
Moscow its many defenders from number of student youth were directed
to schools of higher education. Among them proved to be G. S.
Narimanov. In 1948 he finished the military engineering air academy
of the name of prof. N. Ye. Zhukovskiy and was directed toward the
vork to one of the scientific research institutes, created after war.
This was the time of the rapid development of rocket engineering.
Questions of the dynamics of the motion of carrier rockets and space
vehicles, navigational trajectory consideration of their flight and
experimental ballistics were investigated in one of the leading
divisions of this institute, to which was directed young specialist G.

S. Narimanov.

He successfully combined work in division with studies in
mechanicomathematical department of Moscow State University, which
finished "with difference" in 1950. The intimate knowledge of
mathematics, mcchanics and physics, natural abilities and diligence,

skill freely to be oriented in complicated scientific and technical




DOC = 89056402 DAGE ;27 -

. questions helped G. §S. Narimanov rapidly to enter into the number of
chief/leading colleagues of institute. In incomplete 27 years he was

alresady the manager of laboratory.
Page 16.

In 1952 he successfully defended the candidate dissertation, which was
characterized by the depth of the conducted investigations and played
large role in development of one of the new directions of applied
mechanics. Already this work characterized G. §S. Narimanov as the
completely forme. independent scientist and highly skilled specialist.
In 1953 he was appointed as the leader of division, and then - the
assistant of the director of institute. In these years, leading the
number of comprehensive scientific research, Georgiy Stepanovich

. entirely considered the possibilities of calculating mathematics and
electronic computing technology and much he did for the practical
realization of these possibilities in the solution of the scientific

and applied problems of rocket-space technology.

In period of direct preparation/training for launching of the
first in the world Soviet artificial Earth satellites institute dealt
with whole series of theoretical problems and practical problems in
dynamics of flight of RN and KA and control of their flight. 1In the
solution of many of them G. §S. Narimanov participated. Together with
the doctor of technical sciences P. Ye. El'yasberg he dealt with the
development of the ballistic proof of the arrangement/pos.tion of

. measuring means in the territory of the Soviet Union, with
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determination and forecasting the parameters of orbits of space .
vehicles from the results of trajectory measurements; he participated
in the creation of control-measuring complex (KIK) for control of

their flight.

Points/items of tracking of set of measuring means,
connection/communication and single time, that entered into KIK, were
placed in territory of USSR in such a way as by its zones of radio
visib.ility to maximum degree "to overlap"” space, in which were planned
flights of first artificial Earth satellites. One should stress that
the arrangement/position of measuring points/items proved to be so
deeply substantiated that they thus already almost three decades
efficiently work in their initial locations. .

Worked out under management and with direct participation of G.
S. Narimanov programs and methods of navigational-ballistic support
successfully were used long years during flight control of artificial
Earth satellites, manned ships and automatic interplanetary space
stations; they were constantly improved by his students and followers

and successfully are used now in space research.

Sizable contribution to development of cosmonautics was
introduced by G. S. Narimanov, also, after he occupied post of deputy
chairman of one of branch scientific and technical councils, where he
fruitfully worked in 1965-1971. Georgiy Stepanovich was closely

related to the scientific research and experimental design works of a .
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. whole series of NII [HMM - Scientific Research Institute] and KB in
the field of the creation of new promising space and control-measuring
systems. Putting into operation these systems made it possible to do
a new considerable step on the path of further study and

mastery/adoption of outer space.
Page 17.

Should be especially noted the delivery/procurement to the earth of
lunar soil during September 1970 by station "Luna-16", worked out
under guidance of well-known Soviet designer of space automatic
machines G. N. Babakin; many-month work on the surface of the Moon of
the cont{plled from the Earth self-propelled apparatus - "Lunokhod-1";
prolonged test flight in the automatic and manned modes of the first
‘ in the history of cosmonautics permanent orbiting scientific space
station "Salyut". 1Into the realization of all these programs G. S.

Narimanov introduced a weighty contribution.

In period from 1971 through 1983 Soviet cosmonautics achieved new
borders in further expansion and deepening of study of universe and
mastery/adoption of near-earth space in peaceful purposes. The
multifunctional space vehicles of scientific and applied
designation/purpose were created; was created the series/row of the
space systems, such as the state system of communications and
television of the USSR, meteorological system; was realized assembly
in orbits of two, and then of three manned and automatic apparatuses

. of large scientific research space complexes. The same time is
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characterized by further broadening and deepening of the international
collaboration of the USSR with the fraternal socialist countries, and

also with other states in study and mastery/adoption of space.

G. S. Narimanov's activity was multifaceted: guidance of
scientific research work, participation in boards for launching of
space vehicles, scientific-organizational work within the framework of
programs of international collaboration, pedagogical activity and
propaganda of achievements and prospects for Soviet cosmonautics.
However, everything was subordinated to single target ~ further
development of cosmonautics.

Being assistant of director of Institute of Space Research AS
USSR for scientific work Georgiy Stepanovich headed series of major
scientific research projects, many of which had not only important
theoretical, but also high applied value for development of

cosmonautics.

In the same years G. S. Narimanov directly participated in work
of boards for launching of space vehicles of scientific
designation/purpose (he was chairman of many boards). As is known, in
preparation/training, launching, the flight control of space vehicles
and in information processing, obtained with KA, participate the
numerous collectives of scientists, testers and other specialists of
spaceports, Mission Control Center, information-computing,

control-measuring and search and rescue complexes, and also many
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. scientific research ané eoxperimental-design organizations. The
coordination of the work of all these organizations realizes boards
for launching KA. To the success of the work of boards and,
consequently, also very space experiments in the sizable degree
contributed the organizational abilities of G. S. Narimanov, his
intimate and comprehensive knowledge in many fields of cosmonautics

and large experience of guidance of important collectives.
Page 18.

Under guidance of boards with G. S. Narimanov's participation
were realized successful launches of artificial Earth satellites of
series "Kosmos", high-apogean - "Prognoz", automatic universal orbital
stations, research rockets "Vertikal'" - in all more than sixty of

‘ these and other KA.

High scientific and applied value of space physics determines the
important place, which it occupies 1n space research, and in
particular, according to programs of international collaboration.
Professor Narimanov took direct part in their development and
realization. He also took active part in the work of council
"Interkosmos"” for the Academy of Sciences of the USSR from the first
days of the creation of this international organization for study and

mastery/adoption of outer space in the peaceful purposes.

In 1967-1980 Georgiy Stepanovich headed Soviet part of working

‘ group in space physics in this international organization and actively
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worked in boards for starting/launching of space vehicles within the

framework of prcgram cf "Interkosmos".

By scientists and by specialists of socialist countries is
carried out wide circle of research and experiments in interests of
science and national economy, including in course of flights of
representatives of nine fraternal countries with Soviet cosmonauts on
orbital complex of "Salyut-é6" - "Soyuz ", on board which was
established/installed equipment, worked out by scientists of these
states. G. S. Narimanov introduced large contribution to the
organization of the first joint flights according to the program of
"Interkosgos" of Soviet cosmonauts and cosmonauts from Czechoslovakia,

GDR, Bulgaria, Hungary.

G. S. Narimanov returned numerous energy, experience and
knowledge to noble/precious matter of international collaboration in

study and use of outer space in peaceful purposes.

He participated in development and realization of series/row of
international scientific programs. In 1966-1970 he headed the Soviet
part of the Franco-Soviet joint working group on the space research.
He participated in the work of boards for the launching of the series
of Indian and French satellites by Soviet carrier rockets. He took
part in the realization in 1975 of the joint flight of the Soviet
"Soyuz" spacecraft and American "Apollo". In 1980 he worked in the

research group of international astronautical federation (MAF) in
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. France on the problems of the use of geostaticnary orbits for the
output on them of ISZ [UC3 - artificial earth satellite] of different
designation/purpose. In the composition of Soviet delegations he
participated in the XXIX and XXX congrasses of MAF in 1978 in

Yugoslavia and in 1979 - in the FRG.

Teaching activity occupied large place in 5. S. Narimanov's
tife. The distinct knowledge of object/subject, depth, clarity and
sequence of presentation and active creative contact with the audience
- here are those characteristic features of G. S. Narimanov as
teacher, which remember his former students and graduate students.

Page 19.°

. I+ is Aifficult to overestimate the role, which played his lectures,
written to them the articles and the books in training of the whole
generation of research engineers, who work in the most varied areas of

rocket-space technology.

Propaganda of achievements and prospects for development ci
cosmonautics is closely related to teaching. Besides scientific works
personally G. S. Narimanov and in the co-authorship with other
specialists wrote the series/row of the popular science books and
brochures, addressed to the wide circle of readers. Among them let us
note the small by the volume, but very informative brochure
"Achievements and the prospects for cosmonautics™, which in the

. beginning of the 80's was essential help to lecturers and to the
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propagandists of society "Knowledge" [3].

Many articles of G. S. Narimanov were published in newspapers
and journals. The series of his original articles was published in
Bulgaria, GDR, Poland, Czechoslovakia. For all his works are
characteristic the wide spectrum of the included questions, the
sk:illful introduction of reader to the circle of the most complex
scientific-technical problems, figurative and intelligible language.
These qualities differed his appearances by the radio and the

trelevision.

Much time Georgiy Stepanovich gave to scientific editing. Long
years he was the member of the editorial board of the journal "Earth
and the #niverse” and the chairman of the section of cosronautics of
the Editorial and Publishing Council of publishing house
"Mashinostroyeniye". The scientific editing of literature on
cosmonautics was the object/subject of his special attention. 1In this
work especially distinctly was exhibited the inherent in G. S.
Narimanov intimate knowledge of the essence of the question both in
the retrospective and in long-range plans, cautious and deferential
attitude to the thoughts and the literary stvle of the author, that
was being combined with the lack of compromise in fundamental
scientific and technical questions. Let us refer only to three books,
very dissimilar in the form and the content, in the work on which
especially vividly were showed his best qualities as scientific

editor. 1In the book "Pages of Soviet cosmonautics" [4], which
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’ rightfully can be named the peculiar pcpular history of cosmonautics,
are lively figuratively reflected not only the years of the space age,
but also its prehistory, or forseeable prospects for further
development. The book "Reliability of complex systems" was original
pioneer labor in this region [5)]. It was the result of the many-year
scale and in-depth research, carried out by its authors in different
stages of design and manufacture of the units of new technology, its
tests, and also storage and operation in different climatic zones of
the country. And finally the third book - "From the spacecraft to the
orbital stations" [6], for editing of which professor G. S. Narimanov
was awarded the diploma of society "Knowledge" by the USSR for the
sums of All-Union competition to the best products of popuiar science

literature (1872).

Finishing this outline, one cannot fail to speak several words

about Georgiy Stepanovich Narimanov as about man.

First of all should be stressed his formation and multiplicity of
interests. He knew well classical and contemporary literature both
Soviet, and foreign, he was interested in painting and theater, thinly

he felt and loved classical music, he was interesting collocutor.

Georgly Stepancvich's life far from always stored/added up easily
and simply. There were in it the difficult periods, which he
transferved with large courage. Georgiy Stepanovich was characterized

. by enormous composure and delay, he was very entire person and solidly
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adhered to the specific vital principles. All, who knew G. S.

Narimanov, beginring from his close friends and ending with the .
urfamiliar people, always noted his benevolence, obligation,

correctness tc word, readiness to aid in the difficult situation,
regardless of the fact, in which state there were his inherent

matters.

In a word, Georgiy Stepanovich was man from capital letter, and

he will forever remain similar in our memory.
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RESONANCE PHENOMENA IN ROTATIONS OF ARTIFICIAL AND NATURAL CELESTIAL

BODIES.

V. V. Beletskiy.

Are examined resonance rotations of artificial and natural
celestial bodies, in particular Moon, Mercury, Venus, taking into

account gravitational, tidal and magnetic interactions.

Are discussed "generalized laws of Cassini" for resonance

rotations” and extremum properties of resonance motions.

Resonance rotations of Moon, Mercury, Venus and other natural and
artificial celestial bodies are examined. Gravitational, magnetic and
tidal interactions are taken into consideration. Are considered the
"generalized laws of Cassini" for the resonance rotations and the

extremum properties of resonance motions ‘.

FOOTNOTE '. As the basis of this work was used the review of the
author at the XVI international congress of theoretical and applied
mechanics (Copenhagen, August of 1984), and also at the session of the
national committee of the USSR on theoretical and applied mechanics

(Moscow, on 16 March, 1984). ENDFOOTNOTE.
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Page 21.

Introduction. Let the motion being investigated contain a

certain set of frequencies ,. Let us name motion resonance, if

zniw‘-xo, (1)

!

where 71, - the integers, small by hypothesis. Let «(t) - phase
deflection of motion from the resonance, so that =0 with precise
satisfaction of condition (1). If motion «x=«,, k=0 is stable, then

they indicate the presence of the phase stability of resonance motion.

Special and nonrandom role of resonance motions now, apparently,
is universally recognized (1, 11, 13, 26, 34]. Such motions not only
freguently are encountered in nature (Fig. la - orbital resonance in
the celestial mechanics), but also by a speciai form are used in the
technology, including - in the space. Examples of this use: the
phenomenon of the self-synchronization of the rotors of different
machines and technical devices/equipment [26] (Fig. 1b); the system of
the passive stabilization of artificial celestial bodies [27] (Figq.
1c). Resonancé can be controlled motions. 1In particular, the process

of walking of man [16] is resonance (Fig. 14d).
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Fig. 1. Resonances in nature and technology: a) orbital resonance;

-

b) self-synchronization of rotors; c) passive stabilization of

artificial satellites; d) walking of man.
Page 22.

There is even hypothesis (A. M. Molchancv, [47]) about complete
resonance of solar system as corollary of its evolutionary maturity.
wWithout considering this hypothesis, let us note the unconditional
abundance of resonance motions in the solar system, including with the

' phase stability. The presence of phase stapility testifies in favor
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of the fact that this resonance is actually caused by physical causes
- "resonance interaction”. On the other hand, the absence (or
nonobservation) of phase stability completely does not testify about

+he chance of this resonance.

Confident examples of orbital resonances with phase stability are
motions of following celestial bodies [1, 34]:

1. Triple resonance wr—3®EH'+2wG==0 between the frequencies of
revclution of the satellites of Jupiter lo, Europa, Ganymede.

I1. Resonances in the system of the satellites of Saturn:

l. 20p—weg—w.:==0 between the frequencies of revolution of Dione
and Enceladus (into resonance relationship/ratio enter angular
frequency wse of pericenter of Enceladus);

2. 4yr—20yy—wor—waov=0 Dbetween the frequencies of revolution
of Tethys and Mimas (into resonance relationship/ratio enter angular
frequencies wgr, WoM of the units of the orbits of these satellites);

3. 4og—3wr1—w-.g=0 Dbetween the frequencies of revolution of
Titan and Hyperion (into rusonance relationship/ratio enters angular
frequency w,;; of the pericenter of the orbit of Hyperion).

III. Resonances of the asteroids of the group of Trojans at the
points of the libration of system Sun-Jupiter (resonance 1:1).

IV. Resonances of the asteroids of the group Hilda with the
average period of orbit 'TH==2TJK3KTJ - the period of the orbit of
Jupiter).

V. The resonance of system Neptune-Pluto: the phase detuning

v — 3hp — 2hy — B.p— 180°
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. oscillates within the close limits (although low |Ax|<{76°). Here
»p, .n, O2p respectively the longitude/length of Pluto, Neptune and

pericenter of the orbit of Pluto.

It is possible to name other examples. The system of the
satellites of Uranus Miranda-Ariel-Umbriel is found ih the resonance
of the type Io-Europa-Ganymede, but with the slowly growing phase;
famous resonance 5:2 between the periods of the orbit of Saturn and
Jupiter, apparently, does not possess phase stability, although the

effect of this resonance in orbits of planets is undoubted.

Combining different sets of celestial bodies, it is possible to
fit several ten quasi-commensurabilities in orbital motions and even
‘ to show that probability of random appearance of these
guasi-commensurabilities is much less than observed [34, 47]. éut far

from always after this stands clearly discovered physical interaction.

Especially many stable resonances are encountered in rotary

planetary motions.

Page 23.

In this case after all resonances of rotations the precise physical

picture of interactions stands.

This survey is dedicated to dynamics of resonance rotations in

‘ connection with natural and artificial celestial bodies.
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1. Resonances in rotary planetary motions. The necessary
conditions of the realizability of resonance motion are:

a) the existence of conservative factor in the system, creating
resonance "traps" - stability region in the near~resonance region:

b) the existence of the dispersive factor, which creates

conditions for capturing the motion by resonance "trap".

In solar system gravitational interaction is basic conservative

factor, basic dispersive factor - tidal braking.

In dynamics of artificial celestial bodies is observed great

variety of conservative and dispersive factors.

Realizability of resonance motion depends on character of

conservative and dispersive forces in many respects.

Research and construction of realizability conditions of
resonance rotations in many respects determines contemporary theory of

passive stabilization of artificial celestial bodies [9, 33, 35].

Let us name some types of resonances in rotations (£ - angular

velocity of axial rotation of body, w - orbital angular velocity):

l. Q-w=0; resonance of type of Moon (1:1). The angular

velocities of axial and rotations are equal to each other. This
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n‘ion is called still "relative equilibrium": body rests in the
revolving orbital coordinate system and because of this always is
converted by one side to the center of attraction as the Moon to the
Earth. This type of resonance is the basis of the gravitational

systems of passive stabilization.

n-“,32; resonance of type of Mercury (3:2). Mercury makes

N

exactly three revolutions around its axis exactly during two orbital
periods.

3. Q-w=0; resonance of magnetic aging (2:1). The magnetized
satellite, tracking the line- of force of the magnetic field of the
Earth, makes two revolutions in the rotary movement for one orbital

period.

Phenomenal resonance in rotation of Venus will be considered

later.

Resonance 1:1 has that unique special feature, which lies/rests,
so to speak, "on surface" of theory of rotations. There is a
corresponding explicit, fina., particular solution of sufficiently,
strictly assigned mission. This fact was known still to classics of
celestial mechanics (Lagrange, Laplace), who studied the stability of

this motion in lax linear setting [50].
Page 24.

‘ Strict, sufficiently general/common, nonlinear research of
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problem of relative equilibrium was carried out in connection with .
launches of artificial Earth satellites. The main resuits of this
analysis can be formulated so [6, 9, 12]:
in free solid body in the noncentral Newtonian field of forces
there is a motion with the circular orbit of the center of mass of
body and the arrangement of main central inertia axes along the
orbital (revolving) axes. For the stability of this motion (in a
strict sense according to Lyapunov) it is sufficient so that the
greatest axis of the ellipsoid of inertia of body would be directed
along the radius-vector of orbit, and smallest - along the normal to
tne plane of orbit (Fig. 2).
Numerous artificial satellites with gravitational-gradient ‘
orientation system and many of natural satellites satisfy this
criterion. Of 33 natural satellites of the solar system in 10
rotation is not resonance, in 10 more - what is unknown, but in
remaining 13 - resonance (in resonance 1l:1). These are Earth
satellite (Moon); four satellites of Jupiter (lo, Europa, Ganymede,
Callisto); five satellites of Saturn (Enceladus, lapetus, Rhea,
Tethys, Dione); the satellite of Neptune (Triton); both Martian

satellites (Phoebus and Deimos).

2. On laws of Cassini motion of Moon. The situation of
resonance 1:1, however, is not described by the completely presented

above situation of "stable relative equilibrium".
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. Actually, disturbances/perturbations of other celestial bodies
lead to more complicated dynamic effects. Thus, in the case of the
Moon the "third body" - the Sun - introduces strong

disturbances/perturbations into the orbit of the Moon.
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Fig.. 2. Fig. 3.

Fig. 2. -Arrangement of axes of ellipsoid of inertia in stable
relative equilibrium /‘resonance 1:1).

Fig. 3. Diagram of laws of Cassini rotation of Moon.

Key: (1). Equator. (2). Moon. (3). Ecliptic. (4). C »it.
Page 25.

The plane of the orbit of the Moon precesses with period T 5 =186
years. This, in turn, are caused disturbances/perturbations in

rotation of the Moon.

Real laws of rotation of Moon empirically established D. D.

Cassini in 1693 in the following form.

1. Moon revolves evenly around ax1s, Moon remaining fixed in
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. body; period of rotation of Moon coincides with period of its orbit in

orbit around Earth.

2. Equatorial plane of Moon retains constant inclination/slope

toward ecliptic (equal to 1°32').

3. Ascending node of equator of Moon on ecliptic always

coincides with descending unit of orbit of Moon on ecliptic.

Fig. 3 gives appropriate diagram. Since the orbit of the Mocn is
inclined to angle of i=5°9' toward the ecliptic, then from the second
and third laws of Cassini it follows that the vector of the axial
angular velocity of the Moon w is normal to the nodal line and

. composes angle p~~6°4l" with normal n to the plane of lunar orbit.

Let us stress that nodal line (Fig. 3) - is mobile in space; it

precesses with above-indicated period T, = |86 vyears.

Laws of Cassini - empirical. They are not the final solution of
precise equations of motion. The classical libration theory of Moon
[50] and its subsequent development were based on the linearization of
equations of motion about the close to the motion, described by the
empirical laws of Cassini. Therefore almost 300 years stood a
question about a stricter theoretical proof of Cassini's laws as the

real laws of nature.

‘ Solution of this question became possible orly in our time in
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connection with general/common progress of theory and development of .

space research.

On rotation of Mercury. Schiaparelli in 1889 interpreted a
series of his observations of Nercury in such form, that Mercury
revolves around its axis with the period T=88 days, equal to orbital
period. However, it was established by the radar methods (1965) that
the period of the rotation of Mercury was close to 2/3 orkital periods
(58, 65 days). It was discovered after this, that the optical
observations of Schiaparelli allow/assume ambiguous interpretation,
and period about 59 days is placed well in these observations.
Resonance 3:2 in the rotation ol mercury now is acknowledged by all.

Flat/plene rotation of celestial body, center of mass of which .
moves along elliptic orbit with eccentricity e, is described by
equation {6]

A—Csin8=4e sinvy; §=26. (2)

23 . ay
(1-{—ecosv)iz>———265mv +3
av? dv

Here v - true anomaly; 6 ~ angle between inertia axis of body and
radius-vector of its orbit; A, B, C - main central moments of inertia

of body.
Page 26.

Even before discovery/opening of resonance 3:2 in rotation of

Mercury in work [39] it was shown that equatinn [2] contains resonance '
|
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. solutions, including of type of Mercury (3:2). The zone of the phase
stability of this resonance has sizes/dimensions of ~e. Since the
orbit ol Mercury has not low eccentricity (»=x0,206), then this raises

the probability of the existence of resonance of the type 3:2.

Research of precise resonance (3:2) solutions of equation (2) 1is
carried out in work [18]. In Fig. 4 in the plane of parameters
n?=3(A—C)/B, are shaded the stability regions of such solutions.

However, in actuality Mercury mo- ez along disturbed, not inertial
orbit; "flat/plane" model (2) - only step/stage for research of
general case.

Thus, ripened need for creation of generalizing theory of
resonance rotations of celestial bodies taking into account systematic

disturbances/perturbations of their orbits.

Achievements of mathematics of XX century - theory of periodic
solutions of Poincare, asymptotic methods of nonlinear vibrations -
made it possible to construct this theory. To new development stage
of the theory of rotary planetary motions the launching of artificial
space vehicles and the demands of the practice of space flights were

jerk/impulse.

4. Generalized laws of Cassini. The result of research was the

. theory of the so-called "generalized laws of Cassini", which describes
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laws governing the resonance rotations of celestial bodies [10, 43]. .
The ~onsecutive (sometimes parallel) stages of research, which led to
setting of these laws, are contained in works (6], (5, 78, 30, 31, 36,

40, 45, 49). The description of these works exists, for example, in

works [S, 11, 12, 131].
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Fig. 4. Stability regions of resonance solutions (resonance 3:2).
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Cassini's laws are determined by superposition of stabilizing
effect of gravitational field in resonance situation (see Section 1,
3) and laws of evolution of vector K of moment of momentum of rotation

of body relative to processing orbit [5], [9].

Fig. 5a, b depicts.trajectories of terminus of vector for two
versions of simplified nonresonant situation [5, 7, 9]. 1Is considered
the average/mean action of the moment of gravitational forces and the
evolution of orbit. The construction of the theory of resonance
motions requires the substantially more complicated equations, which
do not possess the integral curves, shown in Fig. 5. Are retained (in

the generalized form) only stationary points 1, 2, 3, 4 (Fig. 5),
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which, however, pass from two-dimensional phase space to

six-dimensional.

Generalized laws of Cassini follow from stationary points of some
nonlinear autonomous equations [10, 12, 43], obtained from
general/common equations of motion by procedure of asymptotic methods

for resonance situation.

Hamiltonian of these equations takes form

H=L2 [(5”‘?’*‘ _L°°s;? ) sin? ‘o+c°s(";9 ]_<9 LE)L—[V]—

2 A
- [ ko (cosi cos p~+ sin i sin p sin V)}. (3)
_ a—
Here [V]=[(9, ¢, x, p, Z) - specific in resonance situation force

function of gravitational moments, which‘function on body; canonical
variables are ¥, 9, Z, and corresponding canonical pulses -

L. Lcos® Lcosp,x - phase deflection from resonance rotation; o, § -
Eulerian angles of spin and nutation (in system, connected with vector
of moment of momentum); L - modulus/module of vector of moment of
momentum; p and I - its angular coordinates relative to plane of orbit
of body; §§ - resonance value of angular rate of rotation of body,

ko, ka - respectively speeds of processions of pericenter and unit of

orbit of body; i - orbit inclination.
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a)

Fig. 5. Trajectories of terminus of vector of moment of momentum.

Page 28.-
Concrete/specific form [V] is given in works [10, 12, 43].

Extreme points of function H(L, ¥, ¢, «, p, Z) answer stationary
points of equations of motion, which present generalized laws of

Cassini.
These laws take following formal form.

1. Body revolves evenly around its principal central inertia

axis with angular velocity
Q,=Q -}k, -+ ke cos (i T pp), 4)

close to one of resonance values: Q= (Moon), Q=1.5w (Mercury) and so

. forth.
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Here w - orbital angular velocity.

2. Axis of angular rotation of body, normal to orbital plane and

axis of precession of orbit lie/rest at one plane.

3. Axis of angular rotation of body and normal to orbital plane

compose constant angle p,, determined by equation

cos p* T sin p* ctg pg+p €os pe=0, (5)
where parameters p*, y caambiguously are computzd through orbital
parameters, moments of inertia of solid body @, (4).

2 or 4 solutions have equation (5). Respectively when

COSZ’IBP*+Sin2"3p*>x:j3 and COS’/Jp*+Sin:/3p*<X2/J"(Fig. 6).

4. Phase coincidence of :otary and orbital motions with passage
of pericenter: angle between radius-vector and nodal line coincides

with angle between inertia axis of body and nodal line.

From second law it follows that axis of angular rotation of body

precesses in space with the same period, as orbit.
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Fig. 6. Graphical solution of equations (5.3) (are indicated values

of parameter «=y/2).
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Thus, the generalized laws of Cassini (the first and the second)

include two resonances,

Basic from stability conditions of generalized laws of Cassini is
described in Section 1 arrangement of inertia axes (case of Moon); in
the case of Mercury for this arrangement of axes it has to be with

passage of pericenter of orbit.

. Described theory in work [30, 31] is supplemented by account of
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tidal effects and by picture of asymptotic stability of Cassini's ‘
laws.

It follows from characteristic equation of low osciilations about
motions, described by generalized laws of Cassini [10, 12, 43], that

these oscillations occur with frequencies of
3 A-C
lew-VT-(l—{—COS po)l/—A—" ;

92=wB—AA L/ B"g(l—}—G oS py— 15 cos? pg) (546 cos py+ 21 cos Zpg);

3(B—A) . N ‘
Q=0 (164 ]/_ " [« cos (p — i) — 2 (4 — 32)+ 23 cos p;

Slnpo
—_—— 3 =" AS>B>C,
- = e A—B) s 4A-B>

which corresponds (in the case of Moon) to periods T,=2.88 yr.;
T,= 7590 yr.; T3;=2468 yr. [3, 4]; periods T, and T, are observed

in real motion of Moon.

Finally, it is shown [3] that "generalized laws of Cassini" are
motions (in Poincare's sense) for precise periodic solutions of

precise initial equations.

Thus, is closed question about conformity of observed motions to
any exact solutions of precise equations of motion. Such - periodic -
solutions can be constructed with Poincare's method, and the initial
high-precision approximation/approach of these solutions is precisely

the "generalized laws of Cassini”. ‘
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. 5. Cosmogonic theory of Eneyev-Kozlov and evolution of rotations
and inclinations of celestial bodies. One of the factors, which

affect the evolution of rotary planetary motions, is tidal effects.

As is known (34], planets in their contemporary state are
extremely little subjected to action of tidal evolution of rotations.
The effect of tidal moments is more substantial for the earth-type
planets and is negligible for giant planets. However, position was
not always similar. It is possible to assume that at the specific
stage of the cosmogonic process of the formation of planets from the
proto-planet cloud the quantitative picture of tidal evolution

impressively differed from contemporary.

. Page 30.

And actually, according to new cosmogonic theory of Eneyev-Kozlov

{23, 42, 46] several giant globular clusters, which were moving along
planetary orbits, were result of evolution of proto-planet cloud.

Each accumulation - this is the future planet (it can be, with its
satellites), whiclh possesses the appropriate mass, but which differs
from contemporary planet in terms of low density and enormous
sizes/dimensions (order of the sizes/dimensions of Hill's sphere).
Thus, the diameter of "Proto-Venus" was ~0,6-10° km, and
"Proto-Jupiter"” —0,5-10® km. The moment of tidal forces is
proportional to the fifth degree (-R®) of radius of planet [34], the
moment of inertia is proportional to R?, therefore, the speed of the

‘ evolution of rotation is proportional to R’. This means that the
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proto-planets under the action of solar inflows evolved in their
rotations many orders more rapidly than in the contemporary epoch

{17¢...10° times more rapid) and, therefore, the role of the tidal

evolutionr of rotations of planets was very great.

This idea was expressed in 1977 by T. M. Eneyev, who based it,
in particular, on results of work [12]. Analysis [14, 44] carried out
subsequently showed that, apparently, basic part of the evolution
occurred in the first 10*...10° years after the formation of

proto-planets - time very low on the cosmogonic scales.

Essential factor of evolution was also process of unavoidable
compression of proto-planets from initial giant sizes/dimensions on
contemporary final. The effect of compression in the absence of other
effects leads tc =. increase in the angular velocity of planet during
its constant/invariable inclination. The combination of the effect of
compression with the tidal evolution can lead (and actually led) to

the most diverse final results, ohserved in the contemporary epoch.

Referring after parts of analysis to works {11, 14, 44], let us

describe its main results.

With contemporary meanings of tidal factor Q (Q=~10.. 100 for
earth-type planets and Q=~10°..10%® for giant planets) characteristic
time of evolution of rotation for proto-Earth r=10°* years, for

proto-Jupiter r=10’ years; if in proto-planets value Q would be less
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. at least by an order, then characteristic time of -volution would be

'Y

reduced up to 10*...10° years.

Fig. 7 depicts picture of tidal evolution in plane of parame:zers
p, . Here p - angle between vectors of mcment of momentum and norma!
to the orbital plane; @ - the standardized value of this vector. To

straight/direct rotation answers p=0, reverse/inverse p=m.
Mgst interesting effects of tidal evolution are such:

1. Tendency of all motions toward the straight/direct rotation,
in particular, roll/revolution of initially reverse/inverse rotations
into the_straight lines. This process is passed in different ways

' under the different initial conditions.
Page 31

Extreme versions:

a) the strong evolution of inclination during the almost
constant/invariable rotation (Uranus);

b) the evolution of rotation during the almost

constant/invariable inclination (Venus).

2. Essential evolution of inclinations and in the case of
initially straight/direct rotations: 1initially low inclinations can
achieve high values, and then again decrease. For some planets

. (Earth, Mars) the process of a slow increase in the inclination
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continues even NOW.

3. Possible decrease of angular velocity to value, smaller than
orbital angular velocity (and even to values, close to zero, but also

by subsequent restoration/reduction up to orbital).

4. Tendency of all motions toward maximum straight/direct
rotation with zero inclination and with specific angular velocity,
which depends on orbit eccentricity. In orbits, close to the
circular, maximum angular velocity is close to the orbital (Moon,
Martian satellites, series of the satellites of Saturn, Jupiter); with
the orbit eccentricity e~0.2 maximum angular velocity is close to 3/2

orbital (Mercury).

In connection with these results T. M. Eneyev expressed
following considerations [29]. The contemporary position of the axis
of Uranus almost in the plane of its orbit can be explained by the
fact that in the cosmogonic process of the formation of planets
Proto-Ura..us gained rapid reverse/inverse rotation around the axis,
almost normal to the plane of orbit. Because of the powerful/thick
tidal protuberances the axis of its rotation was strongly
evolutionized (in accordance with that presented above) and "was
inverted" to the orbital plane. Analysis [14, 44] confirmed this

consideration.
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Fig. 7. Picture of tidal‘:evolution in plane of parameters . p (are
indicated-values of integration constant C).

Key: (1). Earth. (2). Uranus. (3). Venus.
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As far as Venus 1is concerned, its reverse/inverse rotation in
contemporarv epoch around axis, virtually normal to plane of orbirt,
can be explained by cosmogonic origin of reverse/inverse rotation and
by fact that evolution of Venus occurs according to type, sharply
different from evolution of Uranus. Venus within the time of
evolution did not have time "to be inverted". The detailed theory of
the rotation of Venus (taking into account the observed resonance

effects) is described in [19, 23, 24, 2%].

Establishment of possibility of reverse/inverse rotation of Venus
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and Uranus up tco moment of formation of planets from proto-planet .
cloud is one of most important results of cosmogonic theory of

Eneyev-Kozlov [29, 42, 46].

It follows also, perhaps, to note that in contemporary epoch Moon
stronger (to two crders), than sun, affects tidal evolution of
rotation of Earth. But the evolution of the ancient proto-earth under
the action of tidal moment from the sun proceeded 10°-10* times more

rapidly taking into account this facg:.

Process of compression of proto-planet, apparently, most strongly
affected evolution of inclination of Jupiter: compensation for tidal
decrease of argular velocity by its increase due to compression of

proto~Jupiter led tc freezing of evolution of inclination. .

Should be noted also significant role in evolution of rotation of
conservative gravitational moments: precisely they construct "traps",
which ensure under the effect of tidal moment capture/grip of number
of celestiai bodies in resonance rotations (Moon, Martian satellites,
some satellites of Saturn, Jupiter; Mercury; Venus). The diagram of
this capture/grip in the resonance rotation with the phase stability

is depicted in Fig. 8.
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Fig. 8. Diagram of tidal capture/grip in stable resonance motion in
phase space «, L: 1, 2 - stationary points,
Fig. 9. Probability P of capture/grip into resonance

T depending on eccentricity e of orbit.
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Fig. 9 gives the dependences of the probability of capture/grip to the

resonance

_E_m‘ on accentricity e of orbit [38]‘.
2

‘ FOOTNOTE *. Deep results according to the general theory of




DOC = 89056403 PAGE , ;) 28~
7

capture/grip in the resonance and the passages through the resonance
are contained in dissertation of A. I. Neyshtedt "About some
resonance problems in nonlinear systems", MGU, 1975. The presentation

of some of them is in [2]. ENDFOOTNOTE.

LLet us conduct basic sums. According to the cosmogonic theory of
Eneyev-Kozlov [29, 42, 46] the proto-planets, which initially
possessed very large sizes/dimensions, were the result of the
evolution of proto-planet cloud In view of this large role played
the tidal evolution of rotations of planets, which occurred several
orders more rapidly than in the contemporary epoch. Determined -
sometimes prevailing - role played the process of the compression of
proto-planets to the contemporary sizes/dimensions. "Gravitational
traps" contributed to "sticking" of some planets and satellites in the
resonance rotations. The combination of these factors led to the
contemporary diversity of inclinations and rutations of celestial

bodies.

About rotations of Venus. In 1262 with the help of means of
rader 1t was established that Venﬁs has reverse/inverse rotation, and
was determined period of rotation. According to contemporary data,
this period 7.=2430+0,03 days, which is close to the resonance
value of 245.16 days. Venus during period t=0583,92 days of
~onnections with the Earth will do exactly 5 revolutions around its
axis relative to direction Sun-Venus and exactly 4 revolutions

relagtive to direction Sun-Earth. In each connection (1 and 2) Venus
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. is converted to the Earth by one and the same side (Fig. 10). The
angular velocity & of the axial rctation of Venus is connected with
the orbital angular velocities of Venus . and Earth g with the

relationship/ratio

Q—=4wy — SwE. (6)

Calculation of this phenomenal resonance within the framework of
flat/plane model of motion was carried out by Goldreyn and Pinl [34].
However, three-dimensional effects are most interesting in this

problem.

In series of publications [15, 23, 24, 25] theory of
‘ three—dirr;ensional/space resonance rotation of Venus was constructed.
This theory considers gravitational interaction of the Sun and Venus,
Earth end Venus, evolution of the orbit of Venus, tidal effects (under

the effect of the Sun) in rotation of Venus.

Resonance zone in phase space is created on the average by
gravitational field of Earth. Gravitational moment from the Sun on

the average does not affect the creation of resonance zone.

Tidal instability of rotation and fact of reverse/inverse
rotation of Venus are, at first glance, in contradiction. This gave
rise to hypothesis about the existence (in the past) of the
reverse/inverse satellite of Venus, which stabilized Venus in

. reverse/inverse rotation [37].
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Conclusion of new theory is more naturel, that reverse/inverse

@)ﬂ/

rotation of Venus has cosmogonic origin [29, 42, 46].

Theory of rotation of Venus shows that in this case for time of
tidal evolution (less than 10° years) Venus did not have time "to be
inverted". The process of "tilting/reversal" proceeds several orders
slower than the process of capture/grip in the resonance rotation.
Fig. 11 schematically depicts the process of the tidal evolution of
Venus in the three-dimensional phase space of coordinates «, L, p.

Steédy resonance rotation of Venus is described by laws of type
of generalized laws of Cassini. The Hamiltonian of problem takes form ‘

(3), only with considerably more complicated expression for [V].

Let us note, however, very low probability of capturing Venus
into resonance in comparison with probability of capturing of Moon or

Mercury into their resonances.

A. A. Khentov focused attention on following fact. Between the
orbital frequencies of Venus v, Barth weg, Jupiter (), there is a
sufficiently accurately made resonance relationship/ratio
Gon—10we+30;=0. Therefore resonance frequency Q. of the axial
rotation of Venus is subordinated not only to relationship/ratio (§),

but also t~ relationship/ratio 2Qv=2wyv—3w;. This fact again attests .
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. to the fact that the formally registered resonance
relationships/ratios are poorly informative; such formulas are
ambiguous. Single-valued selection can be done via the analysis of
the mechanics of phenomenon. 1Is interaction sufficiently strong, in
order to create resonance zone and to ensure the stability of
resonance? Is sufficiently "wide" resonance zone and is sufficiently

great the probability of capture/grip?
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Fig. 10. _ Fig. 11.

Fig. 10. _ Resonance rotation of Venus.

Key: (1). . Earth. (2). Venus.

Fig. 11. Diagram of process of tidal evolution of Venus in

three-dimensional phase space of coordinates «, L, p.
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Only responses/answers to such (and similar) questions give
information - is resonance physical or formal. 1In the specific case
of Venus preference, apparently, must be given to interaction with the
Earth, but not with Jupiter. This question, however, still is subject
to research. If two (or several) resonances will prove to be
uniformly strong during the testing for physicalness, a question about

their superposition (interaction) difficult for the research arises.
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7. Extremum properties of resonance motions. On set of possible
motions resonance motions are special. It is possible to assume
therefore that the characteristics of fields of force reach outer

limits on the resonances.

There is series of theoretical and empirical principles, which
confirm this thesis. In the development of ideas and methods of
Poincare in book [26] the extreme principle established/installed in
1960 is presented and used for the specific problems. Thus one of its

formulations.

Let us consider generating motion (in Poincare's sense: with
zero value of low parameter), described by frequencies w,. And let us
introduce number g,=sign(dws/dhs). Here h, - energy, which
corresponds to frequency ¢, If g,=1, then it is said that object, is

rigidly anisochronic, if gs==—1, then the object is softly

anisochronic. Let us consider the value A average/mean during the
ger rating motion is Lagrangian L. Let us assume that all objects of

system possess one type anisochronism (g;==0). Then the functional

D= —sA=min, (7)

i.e. has a minimum in the stable resonance states of motion.

For orbital problems o0<0. It is possible under some conditions
to disregard in A the terms, caused by kinetic energy, and then

condition (7) is converted in (V,)-min. Here <V,> - average/mean

. during the generating motions value of the force function of
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gravitational forces. This formulation in some sense is equivalent to
the known heuristic principle of "smallest interaction" [48]). For the
case, for example, of -otary planetary motions o>0 and from (7) we

will obtain opposite principle Vo)-niax in the stable resonance

modes.

Principle (7) is formulated for generating motions and makes it
possible to determine values of phases of motions in stable

operations.

In work [21] was proposed extreme principle in the following
form:
- t

V(% ko);ltimtL V (x(Xq, Xo, 1), £)df=max (8)

>

during stable resonance motions. Here the discussion deals already
with the average/mean value of force function V during the true (but
not on "generating”) motions. In (7) is laid not the ideology of the

low parameter, but, rather, the ideology of the Lyapunov functions.
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Principle (7) makes it possible to find initial conditions x,,

X,, which correspond to stable resonance mode.

Numerical experiment on checking of this principle was conducted
in essence with equation (2) (but not only with it). Fig. 12...17
gives some results. Instead of the averane/mean force function V was

computed the average/mean dimensionless potential energy ﬁ=—x§, k>0.

The minimums of function U correspond to the maximums of function V.

Fig. 12 shows standard case of circular orbit (e=0, n*=0.1), when
equation (2) is converted into autonomous. Resonance 1l:1 is answered
‘ by relative equilibrium in the orbital system, i.e., the solution §=0,
equations (2). Analytically it is}possible to show that this solution
is stable, and functional (8) actually has a maximum during this
solution {functional U has a minimum). Actually, it proves to be that
Z=1—‘%’e:%(k2<1); E:k?(l—%)(k?>l);

k?==6§/n24-sin?6@ (9)

Here K and E - complete elliptic integrals; 6, 8', - initial data for

equation (2).
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Function u(k?) with low k* behaves as U~k*/2, and when k2500 7—1/2,
These properties of function T(k*) are visible in Fig. 12, which,

however, is obtained by numerical method.

Fig. 13 similar pattern gives for e=0.1; n?*=0.1; are visible
minimums for resonances 1:1; 3:2; 2:1. Fig. 14 shows the picture of
the sharpened/turned representations during the orbital period on the

phase plane 6'(6). This picture convinces us in the stability of the
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. resonances, discovered in the previous figure.

In Fig. 15, 16 - similar pattern for other values of parameters

e=0.2; n*=0.2.
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. Similar pattern occurs for problem about rotation of magnetized
satellite in polar circular orbit [22]. This rotation is described by

equation [20]:
/ . 2
(1 1€ cosv)8” —2esin \,6'_;_-%_ sin 26——;1(3cos(6—u)——
— cos (84 u)]=2e sinv.

Here » - true anomaly (independent variable); u=v+w - argument ot the
latitude, where w=—=const - argument of the perigee of orbit; e -
orbit eccentricity; n*=3(A—C)/B - parameter, which corresponds to
the moment of gravitational forces (A, B, C - the main central moments
of the inertia of satellite); a==Ipg/Bp - parameter, which
correspongs to the moment of magnetic forces; constant magnetic moment
I is directed along the axis of satellite, which rorresponds to the

‘ moment of inertia C; this axis forms angle 6 with the current radius;
the magnetic field of the Earth has magnetic moment pg;, B -

gravitational constant. With a=0 we obtain equation (2).

Let us consider circular orbit (e=0). In the case of the absence
of the gravitational moment (n?=0) are discovered (Fig. 17a) two
stable resonance rotations: 2:1 - stabilization relative to the local
line of force of magnetic field; 0:1 - stabilization relative to fixed
direction. If in this problem is taken into account even
gravitational moment (n?#0), then appears, as one would expect, one

additional stable resonance 1:1 (Fig. 17b).

‘ Resonances of type 0:1 serve as basis for construction of

anaiytical theory of slow rotations of celestial bodies [15].
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Table 1 gives information about some extreme principles of
resonance motions. In works [17, 28, 41],. etc. the extremum
properties of resonance motions were investigated at the level of
precise theorems. Extreme principles can be formulated, also, for the
motions, the more complicated, than resonance (principle of Percival

for conditional-periodic motions [32]).

Final observations. Observed in nature resonances in the rotary

pianetary motions - low order (1:1; 3:2). 1In work [38] it is shown .
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‘ that this is deeply connected with the essence of the matter in the
system of two gravitating bodies. The resonances of higher order can
be caused by interaction more than of two bodies (Venus) or by

presence of additional fields of force (magnetic resonance).

Nature arranged traps on paths of motion of celestial bodies.
But trap - this yet not beast in the trap. In order to catch beast

are necessary another patience and transportation.
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.7. Minimums of functional in problem of rotating magnetized

12
(19
[ E9]

sateliite (,=0 n=U., a=005 w= —n/2): a) functions only moment of
magnetic forces; b) function moments of magnetic and gravitational

3
[orces.
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(2)
() dxcrpe- (3) (4) is)
Rl MaTbHAN . ) ] YeToityn- AdoKasa-
AsTop Tpack- SKCTPOMAAbHBIA NPHHUHII BOCTb TeAbHOCTL
TOpHS
76) (?/ {5)
. , - Q
[Tvanka- [[Topox- H=H(p) + }_Hka(P» q) + Metoa  wma-
pe, dapowas Joro  nmapa-
1892 r. 1 < MeTpa
——~—-j]f11dt== extr
T
0
4] -
B.iexvan, 1 h
1960 r.
A= TS(T+U)“=O dt
0
D= —aA, o=signdw/dh
D = min
bo) R
[MpubankeHHo:
- (1) opbutaabuoe 1BHKeHHe <0
T
- l .
. — U, _¢dt = min;
0 ®
(';)BpamaTeanoe ABHKeHHe g>0 + Merton  Mma-
< Joro  mnapa-
1 MeTpa
T
0
(13) (rv/ (157
Osenaen, |HetHudoe H=T-U,—-Uy -+ Mozeabkble
1973 . |aBHKenHie p Ve=fix {pacuern
]
lim —— S‘U”dt-—— min
I
O N
I
(77 e, )
Beaeukuit, Heruunoe | ! -+ Uerenuni
O7R/ ¢ e . SROe -
1675 r ARHACHE L ___\ Ldt - max K 'n PH
tem L. MeT
0
|
. Key: 1l Autnor (2).

Extreme traijectory. (i

Extreme

e
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Poincare, ‘

Small parameter method. (9).

principle. (4). Stability. (5). Conclusiveness. (6).

1892. (7). Generating. (8).
Blekhman, 1960. (10).

k-

Approximately. (11). ocrbital motion e<9.

(12). rotation ¢>0. (13). Ovenden, 1973. (14).

Proper motion.
(15). Model calculations. (16).

Beletskiy, 1976. (17). Numerica!l

experiment.
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Page 43. .
INTEGRALS OF EQUATIONS OF MOTICN IN A LIMITED CIRCULAR THREE-BODY

PROBLEM.

I. M. Sidorov.

Analytical expressions for integral of conservative system with
periodic excitation and analytical expressions for family of integrals
of autonomous conscrvative system are constructed. Integrals are
represented by the sum of the analytical expressions, arranged/located
according to the degrees of the low parameter. A qualitative
difference in the behavior of the solutions in the vicinity of
equilibrium in the resonance and nonresonant cases follows from the
analysis of integrals. 1Integrels for &he system of equations, which
corresponds to the disturbed motion near one of the points of
libration for the limited circular three-body problem, are
constructed. The obtained results will be coordinated with the known

solutions of this problem.

Results given in work can be used both in celestial mechanics and

dynamics of nonlinear multiple degree—of—freedom systems.

Further development and improvement of objects of rocket and
space technology requires solution of whole series of problems of
mechanics of space flight and dynamics of space vehicle taking into

account such design features as mobility of liquid in fuel tanks and ‘
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. elastic vibrations of housing. G. S. Narimanov [3], [5] introduced

the large contribution to the solution of these problems.

Forces, which function orn K&, can be classed as follows. Firsz,
these are conservative forces with the symmetrical matrix of
coefficients with the general:ized coordinates, in the second place,
circulation forces wit' “‘he skew-symmetric matrix with the generalizac
coordinates, namely, th~ thrust of engines and controlling effec:s.

Thirdly, dispersive and gyroscop.c forces are considered.

Conservative forces are determining for describing structure of
corresponding systems of equat:ions. As rar as circulation, dispersive
and gyroscopic forces are concerned, for them is completely admissible

. assumption about the fact that the corresponding coefficients enter

into equations with the low parameter.

In classical mechanics, including in celestial mechanics, are

examined only conservative systems, but dispersive fo.zes either in no
way are considered or are considered as disappearing low. Hence it
follows that the development of the methods of the analysis of
conservative systems remains urgent problem, also, for the dynamics of

KA.

Recently they will achieve considerable progress in development
of calculating methods of analysis of conservative systems. Together

. with the development of calculating methods the methods of analysis,
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based on the research of general soliuticns, retain the specific value.
For the conservative systems is known only one nontrivial integral -
integral of kinetic energies. Such integrals in the general case were

not obtained for the cooperative systems.

1. Integral for autonomous systems with periodic effect. Let us

corsider the system of the disturbed harmonic oscillators

Kb 0Rx =T, (Xpreens Xy P (E)); (1)

e - lcw parameter; p(t) - periodic function with the period
27/ W, .

Jt is assumed that there is function V such, that

s A% .
Vg (Xyyerer Xy P(E) == ; (Kiveees Xny P(D). (2)

AR

Let us consider first single aegree-of-freedom system relative to
variable x. Are chosen sufficiently small integers p,, p. such, that
Do PO O Let us designate wy=w/py, wio=weP1; Av=w0;—wio. Value Aw
also is considered as the low parameter. Let us fulfill the

replacement of variables according to asymptotic methods [1]:

x==a c0s (o, +¢); x= —aw;sin (v;f + ). (3)

On variables a3, o are placed conditions:

a cos (0y0f + @) — Qpa sin (w;f +9)=0. 4)
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System of equations 1s reduced to the form
y

@ =40 (0, +wy0) @ sin (Qugef +2)/Zwys— 1y (@ COS ()£ -+ 9) p(E)) X
osin (@4f + )0, (3)
9 ==A4w (0 +w9) €052 (0;¢f + 9) /19— Dy (@ €OS (Wt + %) p (1)) X
X cos(wyof + ¢)/awy,.

Equations (5) can be represented thus:

: de 0 . deg af
] G O Lo 0 0
) aods aoe ada aoa

(6)

Function c¢,(a, o) does not explicitly contain t, while fuﬁction
f(a, 9, t) - periodic on variable t with period 27/w,. The integral
of system of equations (5) is obtained in the form of the sum of some
analytical expressions, relat..e to functions c,, f, arrangzd/locz2ted
according to the degrees of the low parameter. Integral can be
obtained with any of values e; however, with the low ¢ i1t suffices to

be bounded to first terms in the integral. Let us multiply first and

second equations {(5) respectively on

¢y den
Ej-'“d¢ and let us sum. Integrating both parts of the equality, we

will obtain
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C( Gz O dcy, 0 ) dcy Of*  deg OfF*
Cozj(___f____"_(l. _f.)df_—;A”_;_Jz, Ay = 9 —_

(N
\ada 0% ady da ada Oy ady Oda
Jp= (= (22 - 2 (2l il slan
J \0a \ada Jdy ady ca d¢ ‘goa dy ady Oa )

'n expressions (7), (8) and in subsequent formulas sign * means

2.~ I1s integral of function

If L
_:T on variable t with fixed values of a, ¢. A similar procedure
-

makes it possible to isolate from integral (7) fluctuating component

of order ¢*., Remeinder J, is integral of the sum of the products of

<hree furictions. 1In (8) instead of a, ¢ we substitute their

expressions according to (6)

V4

J :Y[i( dey 0f* _ Oey af") 0cg O [Ocog Of* ey Of*\ dey
2 J19a \ada Jd¢ ady oOa /ade op \aoa Oy ady 0a)ada]

k’dt+§(i(dcn I dey df*) 0]‘___0_(600 Of* e of*\ 9fY
d0a \ada 0% ady Oa /ade O¢ \ada Oy ade da Jaoda

(9)

Page 45.

First term in (9) is integral of periodic fur.:.ion on t, and for

it ,t 1s possible to repeatedly use procedure of integration, after

isolating pericdic component of order e¢°
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. J (06\_ Jf** den O f* ) e _‘__()—— __d.g‘_“ g f _ den D f** ) dcq
8= T2 \aoa 9 ady oda Jade ' o7 \aja dy ajy da aca
(10)

Integrand of second integral in (9) let us represent as in (6),

in the form of two terms, after isolating components, not depending

clearly on t

0f* af df* R/ \ d;‘* f A\ .

Jd¢ da —_( 09 oOa ) ( dy Ja )f an
0rt 05\ _w (" Of of

( de OJa ) Coa \ _5;_ da at. (12)

Second term in (11) - periodic function. Integral (12) is added
to the fixed values of a, o. Consequently, and from the second
‘ integral in (S) it is possible to isolate periodic component of order

€.

A ___[_Q_’dcq of*  deg df*> df__d_(dco af*  dey df*) af ]‘
= da (ada d¢  ady OJa /ady J¢ ‘ada 0Jv  ade Oa jada )
(13)
We convert noncyclic component in (). In accordance with
definition (11) we have
(df*’df) —0- (df* of L of df*) —0-
9o o9ty '\ oy da ' dp Oa '
P
(df ._d_l) =0, (14)
da oJa
' Using (12), and also second equality (14) during other
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combinations of indices, we will obtain that under integral in (9)

remains

=~ _ %0 0 (0f* Of J_"_Cg_(ﬁ_fiéi . 15
/= (da o9y )0‘ ady \ da OJe¢ )o (1)

Further in view of equations (6) we have

-djzz———‘z-(df*a_f_)od 2 (oL a_f_)o s _a_(o_f:a_f.) of

da \ada Jde¢ d¢ ‘ada 09 0a \ada 09 /gadp
_{__9_(2{*_ ory 9 (16)
dp \ada dp aja

Thus is selected noncyclic component 4,, of order e and periodic

component™ A4, , of order e?

- *af af#
01+ 9 (213 0y 0 ) U )
? —!—)o; b= —E—(ada dp Joadep = O¢ (aaa Op /gada

‘°“’(aaa O

Page 46.

Consequently, integral c, in (7) is represented as follows:

Co=A10+A11+A21+A22+A23‘+_‘j3- (18)

Here term c, is of the crder €:; terms

Aio, Aj1—¢€%; Agy, Ago, N3 —e®; J3 - integral of sum of products of four

factors. From integral J,, using conversions, analogous to (9), (11),

(16), it is possible to isolate noncyclic components A,, of order e°.

During the following cycle of conversions from the remaining integral
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. are selected the terms of order e¢* and so forth. It is necessary to
show for the unlimited continuation of the process of obtaining the
integral that on each m cycle of conversions under the integral proves
to be total differential from noncyclic component \,, of order gm+:
The carried out analysis shows that this affirmation is made also for
the component A,,, but general formula for A,, thus far could not be
obtained. Nevertheless the structure of the corresponding recursion
formulas shows that, in all likelihood, the process of the
isolations/liberations from the integral of components, the order of
smallness of which grows by each cycle of conversions, can be
continued unlimitedly.

Expression for integral is obtained analogously for system with n

. degrees of freedom. The replacement of variables in (1) is produced
aécording to asymptotic method [4]. Small whole numbers are chosen so
that ¢ :wpp:... 1 @Wno=pPo:P1...1Pn. Let us designate
W= PO wro=Prwo, R=1,...,n. Values Agp,=wr—wro are assumed to be
small. The replacement of variables a,, ¢r is determined by n
relationships/ratios, analogous to (3), and on the variables is placed

n conditions of the type (4). System of equations is reduced to the

form

1 ( dco +_0f); (Pk_;___l__(g.‘l_}-gf;). (19
" wpgap \ Oz O% o \0ar O

Simplest analytical expression for integral is obtained, if we

‘ represent system (19) in the form
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. = de . de

1 de, 1 ( jt . 2 . )
a, = cos jw sin jwyt ) ;

wre@e  Op T wr(Br E Ox Jwd T (" S0 o ) 3

/= (20)
. =q OJc. de
1 deg 1 j1 . 2 ..

Pp= — — ( COoS Jj wyt Sin jogf | .

Weede O0ap We,ar 2 oag J ok F oap, / 0t>

j=1

Integral of system (20) with an accuracy down to the terms of

order e¢? is following:

dcjl acj2 oc,, O¢ )

n oo
| /2 Al
SRS P L
0k (Pk)_f—z 2 japwp oap Ogg oap Ogp

B=1 j=1

B NA S [ sin juyt ( e P aey Fn )+
S

" jakmko aﬂpk Oak dak a?k

_{_ cos jw:,t k deq ocj'z . dcy dc}_z )} . (21)
Jarwpy \ Opp Oay  Oay O%

Page 47.

Let us consider several examples of construction of integral for
simple nonlinear systems with periodic excitation. It is illustrated
based on these examples, that with different relationships/ratios of
the frequency of excitation and frequency of system are possible
various forms of the analytical expressions for the integral, which
are characteristic for the more general systems, in particular, for
the system of equations of the disturbed motion near one of the points

of libration in the limited circular three-body problem.
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Example 1.

X+ (148) x=ax?cos 2¢. (22)

After replacement of variables (3) system is reduced to form

d::—i‘g—[sin(t—;)—sm (¢ + 39) — sin (3 - ) — sin (5¢ + 3¢)] +
+—3§“— sin (2¢ 4-29); (23)
c,%:—-—%———gg—[3cos(t—-9)+cos(t—}—3cp)—|—3cos(3t-{—<p)—{—
-+ cos (8 4+ 39)] + % cos (2¢ -+ 2¢).
. Using representation of right sides of equations in the form

(20), it is not difficult to write analytical expression for integral

in the form (21) taking into account terms of order a?

: 4 22
e 0% —%——cos4cp)—aa
4 64 \ o 16

+ B2 {5 sin 214200 + 25 X
A Cos(3l+'p)+%cos (t—}—&p)—}—g—fg- cos(5t+3<?)——% cos(t—cp)] =C.

\(24)

1f frequencies of system (22) relate as 1:2, then B=0 and in
integral there remains only second term. With B=0 it is possible to
write out following terms of order a® according to (18), since in this

case is nonzero only expression for 4,,. I.teyral will be following:

]
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al (—2—--'-(:05 4';) <a—4a—ff—)—4a3a sin 439.‘)_/:_—_0 (23)
b) 0% da

For checking the numerical integration of system (23) was carried
out witi different values of parameter a. The results of integration

show that obtained thus solution satisfies (25) with the accurazy a?.
Page 48.

When the relation of the frequencies of the system is not equal to
1:2, with the sufficiently low value of variable a the system retains
stability, since in integral (24) determining is the first term, i.e.,
quadratic form. With B-0 the stability region is reduced, and if g=0,
then the behavior of the solution is determined by the second term in
(24). In this case is possible the unlimited increase of the variable
a. Thus, the solutions of system in the presence of a precise
resonance qualitatively differ from the nonresonant case. This occurs
because the first term in integral (24) is negatively determined, and

the second term can reverse the sign in vicinity a=0.

Example 2. System with the parametric resonance. In contrast to
the integral of the system, examined in example 1, here the first term

of the corresponding integral can change sign in vicinity of zero

X+ (143) x=axcos 2¢. (26)

After replacement of variables (3) system is reduced to the form
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o dz_ﬂf_sin 2»;-“T“sm (4t+2;)—{—-‘a-g—sin (2t +27);
- .8 a a =7
?:::E—————-COSQ?-—-Z—COS(4t{—2?)———§-COS(Qf{—g?)

Integral of system (27), according to (21), takes following form:

232 )
~ (aa? cos 29 — 3a?) - 'Zl' [(.32&2-{— % — a?a® cos 2'9)] -+

22 2q? . 2
4—35 cos(2t%—2¢)—-351-5h12tsu12?-3%;—0052t{—
2
+ 222 cos 4:-“"’33 cos (4¢ 4 20)=C. (28)

If a2f, then first term in integral (28) can change sign, i.e.,

.

is possible unlimited increase of variable a. If a<@f, then motion in

. vicini;‘.; a=0 is stable. The following terms in (28) do not vary

qualitatively the behavior of the solution, but only make more precise

stability limits.

Example 3. Let us consider the system, whose corresponding

integral has the fixed-sign terms of the first and second order of the

smallness .
X+ x=ax?cos 4¢. (29)

It suffices to consider system (29) for case of precise
resonance, with =0, since by analogy with example 1 with B#0 first

term in appropriate integral for system (29) is fixed-sign and is

. equal to -Ba?/4.
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In the variables a, ¢ system (29) is converted as follows:

= _‘-’%i[sin (5¢ - 3) — sin (3t — 9) — sin (¢ — 39) +sin (74 -+ 39);
30)

i

o— —.3“—‘;‘—[cos (5¢4-9) 4 cos (3f..;)+-;— Cos (f — 3) -

+ - cos (7t 4 39)]

Integral (30) taking into account terms of second order a?
aqt

3 1
128 (1+I‘ “5‘“7):0»

i.e. retains constant sign in vicinity a=0.

Examination of examples 1, 2, 3 shows that with different
relationships/ratios of frequency of system and frequency of
excitation and depending on form of nonlinear function v,(x)
substantially are changed analytical expressions of integral. For
this very reason during the analysis of system by the methods of
perturbation theory appear the difficulties, connected with the

problem of small denominators.

Method of construction of integral further s applied to

autonomous system.

2. Analytical expression of inteqral of conservative autonomous
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. system.
\

Nonlinear autonomous system

. )
xk“}—ngk:evk(xlv'-yxn)v (31)

is examined, where ¢ - small parameter: function V satisfies

conditions
A%
dxk

Q)
(Xpreees Xp) =TV (Xy,0e0s Xn)- (32)

Let us begin analysis from examination of simple nonlinear system

- X L owlx —=axd, (33)

' With replacement of variables (3) under condition (4) we reduce

equations to the form

a=—22 cos?(ot+9) sin (of +9); g= —=— cos* (o +-¢). (34)
w

w

With an accuracy to the terms of order a? the integral has the

following expression:

C,=a*—

3
w?

[3 cos (th+2?),+—3— cos (4ot - 43) — %] . (35)

Let us multiply first equation (34) by a and, after integrating
it taking into account (4), we will obtain integral of kinetic

energies

J,=a*— aa? cost (wf + 2). (36)

. 2w
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Examination of (35), (36) shows that integrals C, and J, coincide

with an 2ccuracy to the terms of order a®.
Page 50.

Let us show that if we consider system (31) with two degrees of
freedom, then the corresponding integral C,,, determined according to
(21), will not be equivalent to the integral of kinetic energies J,,
i.e., this is new integral for the system. Further examination let us
lead based on the sufficiently simple example of the system, which

satisfies condition (32):

- £,+x1=2ax1x2; 22—}-(24—5)? x2=axf. (37)

Relation of frequencies in (37) is close to 1:2 (p,=1; p,=2).

The replacement of the variables
X, =@y COS (£ + 911); Xo=0ay3 COS (26 + 19 (38)

reduces system to following form (e1=¢ (4+¢)):

aa2y1812

d11= — [sin (#4294 9190+ sin 2o, — 919)];

ad;o

Py= — [cos (4 4 29, 4 919) 4 cos (29, — 9,9) + 2 cos (2¢ 4 9;5)];

a

(39)

2

a aa s c . ¢ : ¢
Q= — —8—‘-‘— [sin (4 429, -+ 919) — sin (29, — 212) + 2 sin (21 4-¢.9)] +

+ S sin (4 4 2719);
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I 2
aa 4 +
- L [cos {4c 42,y +2,) + €0 (29, — 912) -+ 2 cos (21 + 7,0) +
12 L

én:='—

+ (1 +cos (4¢ + 2'.9,»]

with satisfaction of the conditions

@15 COS (Dot + 212) — P1aip SIN (Pt + 2 =0 (k=1. D). (40)

System of equations (39) satisfies conditions, necessary for
construction of integral (21), which with an accuracy to a? takes

following form:

- Cy=— Ela%g — aa?lalz COS (29 — 719) + atatialy sin (2 + 912) X
. , . ) a?atl 5) [y ' t
. > sin(2g,, — ) + 3 [cos (2¢ + 23%,,) + cos (4 + 49, /4 —9/8] +

2
ﬁlan

a2? a? ‘ 17,
+-—;-1—12-[cos (4 4 2%,5) —-;—] + [cos (4f +29;5) — —5—]7‘

2
Tudndin [0S (2f 4+ 9,9) — cOs (2 -+ 32,,)/4 + cos (4f + 2, + 912),2]-
(41)

Page 51.

Interval of kinetic energies in variables q,, ¢, for system (37)

?
a 2 . ‘
Jo=— (—3[ 2a?2) + aatiay cos? (£ 4-94),co8 (26 +919) +

2

- sy, i D
+ 2 Cos (2f - @p). (42)

¢
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integrals J,, C,, are not equivalent. Actually, it follows from ‘
formula (42) for J, that under the low initial conditions the behavior

of the solution is determined by the first term in (42), i.e., values

a,,, a,. remain limited and from [41] it follows that is possible the
unlimited increase of a,,. Integral C,, is constructed on the basis

of the regulation frequency w,=1 of first equation (37). Analogously

is constructed integral C,, on the basis of the frequency w,=2+¢ of
the second equation. The replacement of the variables

Xy ==Qy COS (D0 /Py 91)s Xo==Q2COS (vof -+ 19) (43)

reduces (37) to the system of equations relative to new variables

2%, $2x. The obtained system is analogous to (39), but instead of two

latter/last terms with the coefficient e, in the equations for a,,,

©,, in the new system appear corresponding terms in the equations for ‘
ézx: ©,, with the coefficient
€ R . .
9= —¢{l+—]. To the variables the conditions
1
Qg COS (Ppgt ! Dy 1 Pap) — Paplop SIN (Progt /Py + 23) =0 (44)
are superimposed.

Trigonometric relationships/ratios
@12 COS (Ppf + P1a) = Aoy COS (Prgt ) Py - 99); (45)

Qyp SUT (Pt - 70p) == Qp0o/ Py COS (PRot | Dy + D2p)

follow from (38), (40), (44), (43).

With given values of parameters
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2 2 i 1 & . .
’ aI1=a§1+a<l+T)sm2[(1—:~—é—>t—{—pm],

ah=ak+:(d-Le)sin?[(2 +¢) ¢4 9l

Like integral (41), integral C,, has two terms of order o, e

(46)

Iy 2 [y ~ s
szz—-2uﬁ1—-2aaﬂamcos(2?n——qn)+—0(a,;y 47

Following terms in (47) of order y? can be obtained as in
integral (41). Comparison of (41) and (47) shows that in the absence
of a precise resonance e¢#0, integrals C,, and C,, are not -equivalent.
However, if we join the integral of kinetic energies J,, then only

every two are independent of these three integrals.

Page 52. ]

Thus, the reference system of equations is reduced to 6 analytical
expressions (41), (47), (45) and to two first-order equations (40).
Let us note that on the basis of integrais C,,, C,, by the appropriate
selection of the coefficients of their linear combination it is
possible to form the integral, whose dominant term is the positively
determined quadratic form. With the resonance relationships/ratios of
frequencies the behavior of the solution gualitatively is changed. 1If
€e#0, *hen determining for the behavior of the solution near

a1=a;2=0 is the first term in C,,. All subsequent terms of order a?
and above have higher degree relative to the variables a,,, a,, in

comparison with the second term in C,,.

‘ For system (1) with n degrees of freedom, if relation of
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frequencies of this system is not equal to relzt.cn of integers, can ‘
be constructed n integrals C, ;(j=1,..., n). The dominant term of each
integral is the linear combination of n-1 terms a2, (k=1,...,n, k+];.

3. Construction of integrals of equations of disturbed motion
near one of points of libration for limited circular three-body
problem. System of equations and corresponding designations are given

in [2) and take the following form:

. . 3 oH
A —_——n—Akn=—
{—2N——-m—An 5t
9 oH
Lor L — k= ; (48)
dl 3 n S o

3 7 3
- H = —— kB4 =i+
H 4 ( 9 4 "

—

Lk 3 9

—m? —_7]3); = """ (1 —2u).

M ; °
Structure of system of equations does not coincide with

appropriate structure of system of equations (31), nevertheless, using

more general approach to construction of asymptotic method [4], it is

possible to reduce equations (348) to form required for of integral.

Let us assume w,, w, - roots of characteristic equation of linear
part of system
w2+—i- k- 20
=0: (49)
bk —2iw (02—}——2—

p., p. - small integers, selected so that w,:w;=p;: Pps. .
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Integrals cf sys.em (48) are constructed in the same way as this
was shown based on example of system (3})}. Is chcsen regulation
frequency w,, the linear part of the system with the help of the
identity transformation is changed so that the relation of changed
frequencies (y,;: w2y would prove to be accurately equal to

P F2; Wio=P1wo; wao = Peio-
Page 53.

For this let us supplement into the second ctgquation the term - €,7,
and let us replace function H by H,=H-—gn?/2. The parameter e, is

selected so that the characteristic equation

T 'w2+-—3—- k+ 2iw
- =0 (50)

£ — 2w m2-+———§—-{—s

has roots w,,, wio. It follows from (50) that

(w%o+—j—) (w%o+~j—)=3—k2. (51)

Replacement of variables in converted thus system is following:

t=ka, cos (v, + ¢,) + ka, cos (wyf + pg) —
— 2a,0, sin (w4 9,) — 2aw, sin (wyf + F4);

3
n= —‘(‘”% + ‘4—) @y COS (wf + ;) — (“’3 + “j—) @,Co8 (wyf +g). (92

Coefficients in (52) correspond to coordinates of eigenvectors of
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linear part of system. To variables g;, ¢; the conditions

2
2 [a;(k cos (wjt—{-cp,) —ij sin (vt +¢;)) —
i=1

—¢;a;(ksin (wjt—f-cy,)—{-Qw/ cos (0t +¢,))] =0.

. 3 . .
Z [a, (w?—i——z-) cos (wf +9,) —a;?p, (w? —f——i’—) sin (w;t 4-9;)]=0. (33)

j=1

JIJ

are superimposed.

After substitution (52), (53) into (48) we obtain two additional

equations

2
—2 [aj0;(k sin (w,-t—{—q:,-)-{—?w, Cos (wit + ;) +¢ja,0; (k cos (vt 4+ ¢;) —

J=1
—2u; sin (u)jt—}-cpj))]:-é—fﬁ; (54)

- 5
2
:2 3\, . . oH
N (m?—f—-z-) [aw; sin (w,t—f—cpj)-{—q:jw,a, cos (w,t 4 9,)} = -3:!—- .

J=1

Page 54.

From (53), (54) we determine equations for g;, @L which after

series of conversions with use of (50) and (51) are reduced to

following form:
0H

wjAja; \ 08 Oy; oy 09y wjAja; 9y,
;91—_ 1 (0['{1 da _aHl d‘q)=_ 1 dHl .
wjAja; \ 08 da on Oda; wjAja; da;

A1=(w§—w¥) ((DI‘*-'%'). A2=(m?—wg (m%{——i—-)
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Consequently, system (48) is reduced to the form, for which is
possible construction of integral. According toc (20) let us represent

right sides of (55) in the form

oM d :
._1_—_@_+E(—gf’icos loyt + %’—"’— sin !wot> ;
P/

09; 0%j )

OH{  dey | &, deny iy .

—_—= —— cos [w sinlwgt) . 5
daj daj +2( daj T oa; wo) (56)

Integral C,, of system is determined by formulas (21). 1If the
relationship/ratio of initial system w,:w, is not equal to p,:P,,
i.e., €#06, then dominant term in the integral, which is determining
for the behavior of the solution in the vicinity of the point of

libration, is &,a,%/2.

Further is censtructed second integral for system (55) relative
to regulation frequency w,. To the right and the left sides of the
first equation of system is supplemented the term -~ e¢,§(, moreover e,
is selected so that the roots of the characteristic equation

2 3 ) .
(0} +—4—'+$2 k+210)
=0 (97)
bk —2iw uﬂ-—{—-—i—

have relatinship w,: w9 =p;: Ps.

Second integral C,,, which is defined just as C,,, has dominant




—
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term e2d2%/2. From integrals C,,, C,, with the help of the linear
combination it is possible to form the integral, whose dominant term
is the positively determined quadratic form, and all the remaining

terms have the higher order of smallness. Obtained thus integral

proves stability of motion near the point of libration with the

nonresonant relationships/ratios of frequencies.

When relationship/ratio of frequencies of reference system is
accurately equal to resonance @;:wy=p,: p;, then C, =Cyp=C and
guadratic term is absent. In integral C determining is the following

term:

l(dH OH) I(OH 0H)
0 0

=C, 8
“’1‘41 adal 0‘?1 adag 0?'2 (5 )

wody

Page 55.

For determining integral according to formulas (21) should be
represented right sides of equations in the form of sum of
trigonometric functions, whose arguments are following:
:f:n,(mlt+q>1)$”2(0)2f+q>z) (n1, ng=0, 1, 2). In different relations of
frequencies there can be three different types of the resonance
relationships/ratios, which, in princip;e, correspond to examined

above examples 1, 2, 3 for the single degree-of-freedom systems.

If wi:we=1:2, then in right sides of equations (55) are

contained terms, which explicitly do not depend on t. 1t is not
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. difficult to show that when @;:we=1:2 into integral enters as

dominant term the component

C0=afa2 cos (29, — 9,).

This case corresponds to example 2. Consequently, C, can change sign,
i.e., the analysis of intecral C does not contradict known result of
(2], then the motion near the point of libration is unstable when
0 :wg=1:2.When @;:wy=1:3 into expressions for the right sides of
the equations enter two sinusoids with arguments oif+ @t o,/—2¢, + 2.
The instability is possible by analogy with example 1 in this case in
the system. Case @,:we=1:1 must be examined especially, since it is
assumed in (52) that «,#w,. With all remaining integral
relationships/ratios of frequencies w,:w, into the right sides of the
’ equatiohg enter the harmonics, whose frequencies are not equal to
zero, and these frequencies do not coincide with each other, which
corresponds to example 3. In this case dominant term (58) of integral
does not depend on ¢; and it 1s biquadratic form relative to
variables g;. It is necessary to show for the proof of stability of
motion near the point of libration that this form is positively

determined.

Summing up sums, let us formulate basic results and although let
us briefly plan enumeration of unresolved problems. The procedure of
obtaining analytical expression for the integral of conservative
system with the periodic excitation and the family of the integrals of
autonomous conservative systems is constructed. Integrals are the

. analytical expressions, arranged/located according to the degrees of
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small parameter. General formulas for the terms of this resolution
are given. The examination of a whole series of examples shows that
the basic special features of the behavior of the solution are
determined by two first terms of expansion. Only at the worst, with
some values of the parameters of system, the analysis also of the
third term of expansion is necessary. However, for the affirmation
about stability of motion it is necessary to show that the process of
the formation of integral taking into account terms of ever higher
order of shallness can be continued unlimitedly. On the basis of the
obtained results this affirmation is valid, but for its complete proof
it is necessary to obtain recursion formulas so that it would be
possible to use the method of induction. .

It is shown that with precise resonance relationships/ratios of
frequencies character of solution qualitatively is changed, since in
integrals dominant terms, which determine behavior of solution,
vanish. In this case the behavior of the solution is determined by
the terms of integral following in the order, whose analytical
expression is substantially different. 1In contrast to the methods of
perturbation theory, the method presented in the work does not
encounter the difficulties, connected with the problem of low

denominators.

Important problem is propagation of method of determining
integral to more general conservative systems than examined in work

canonical system of harmonic oscillators. In the specific case of the
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. limited circular three-body problem the method of determining the

integral presented succeeds in using despite the fact that the
structure of matching systems is not canonical. On the basis of the
integrals proposed is possible the creation of calculating algorithms
not only for the conservative systems, but also for the systems of
more general view. Very fact of the presence of the analytical
expression of integrals offers new possibilities for the analysis of
systems, but at the given moment the total number of questions, which
appear in this case, substantially exceeds the number of

responses/answers to them.
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Page 56.

WAVE STRUCTURE, QUANTIZATION AND MEGA-SPECTROSCOPY OF THE SOLAR

SYSTEM.

A. M. Chechel'nitskiy.

Are presented short survey/coverage of some methods, 1ideas,
results of mega-quantum wave astrodynamics and concept of wave
universe, in particular, in application to observed dynamic structure

of solar system.

It I's shown that wide volume of new experimental and
observational information about its structure can be correctly
interpreted within the framework of representations of wave
cosmogeonomy. guantization (in large) of solar system and wave
resonance. Is discussed the possibility of the representation of the
observed in nature wide spectrum of periodicities (in particular,
orbital and rotary planetary motions) as the sets of the rhythms,
whose genesis is connected with the wave structure of the solar system
and the existence of mega-waves. It is shown that this spectrum
belongs to the theoretically computed frequency spectrum of the solar

system - its mega-spectroscopy.

In middle of 1980 publishing house "Mashinostroyeniye" let out to
light/world work [18], which was opened by Georgiy Stepanovich

Narimanov's preface. 1In this preface, in particular, the following
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‘ speaks:

"The volume of experimental data rapidly grows. Already
considerable scientific information is assembled. The study of this
material will make it possible to answer many questions about the
structure of the solar system and outer space surrounding us. The
theoretical comprehension of many laws and phenomena in the solar
system becomes ever more actual. In connection with the
development/detection of some special features in the motion of
planets and their satellites the necessity of theoretical examination

and proof of some questions of astrodynamics appeared.

Page 57.

The resonance properties of motion, the defined sequence of the values

‘ of planetary distances and other special features, observed in the
structure of the solar system and in the motion of planets, cannot be
considered as the random phenomena - they must find their explanation
as the manifestation of a specific natural law. Therefore it is very
tempting to investigate the possibility of the proof of some problems
of astrodynamics, on the basis of other concepts, which use, for

example, representation of wave dynamics".

Which is fate of ideas and propositions, about which is mentioned

above?

In 1982 suddenly in foreign periodics arose unusual interest in

.theme, which usually did not stand in center of attention of science
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about planetary motion and structure of astronomical systems - to
theme of quantization (in large) and wave structure of universe
mega-systems. It is possible to state/establish this phenomenon as
the virtually simultaneous entrance of two in principle similar works
from different countries on one and the same theme and in one and the
same journal "The Moon and the Planets" [44, 35]. The theme of these
works can be described as the mega-quantum wave structure of
astronomical systems. It is not difficult to note that it is new not
only for the journal, but (judging by the previous publications) for

authors themselves.

Then_appears whole series of works of Louise [36, 37] on
considered theme, including in journal "Astrophysics and Space
Science" [38]. One cannot fail to note the intensity of the flow of
the publications, for which are characteristic generality from [18]
approach to the problem, fundamental ideas, line of reasoning, proofs.
Now and then are observed straight/direct coincidences with [18] (it
suffices to compare, for example, Fig. 1 of work [44] with Fig. 17 of

monograph [18]).

Oldershaw with latitude of scope/coverage of material inherent in
it and with sincere gladness greets appearance of new evidence (new
evidences) in favor of phenomenological unity of structure of physical
systems of universe [40, 39]. But the well-known American scientist
Greenberger in one of the most authoritative (judging to the

composition of editorial board) physical journals "Foundation of
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. Physics" in his 49-page articl- witn the enthusiasm calls
astrophysicists to focus attention on the prospect of research of the
fact that he calls "Quantiza*i>n in the Large" (i.e. mega-guantum
effects or quantization in the large) during the analysis of

astronomical systems [33].

Let us let again word =Zo . S. Narimanov and will return tribute
to his insight. In tnhe preface -0 work [18] there are these words:
"Without depending on the poss.z.e controversy of the series of the
parts of the wave concept of :the author one cannot fail to note
attractiveness and the enormous heuristic charge, which these

representations carry.

. Page 58 .-

But such concepts of mega-quantum wave astrodynamics as wave dynamic

systems, astro-dynamic spectroscopy or new view on the wave genesis of
the effects of resonance and commensurability in the solar system,

have a right for the serious discussion.

Propositions of author can be considered as completely
concrete/specific and structural/design attempt at resolution of those
urgent problems, which stand before contemporary astrodynamics and
cosmonautics. Should be greeted the same structural/design efforts
and other authors, who defend others, including alternative, the point
of view in the hope for the fact that the inflow of new ideas and

. fruitful discussions finally will lead to the resolution of the urgent
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fundamental problems".

G. S. Narimanov possessed ability to listen to and to
understand, to look and to see. And, besides the fact that is not
less important, he knew how to function. To the light memory of
Georgiy Stepanovich Narimanov is devoted all that represented beiow,

to what is judged to maintain/withstand the testing by time.
Wave universe and mega-guantum wave astrodyramics.

Within the framework of concept of wave universe [18] large
“astr nomicai systems can be considered as wave dynamic systems (WDS
wave dynamic systems), that are in a sense analogs of system of atom
(137, PFrom this point of view the solar system - is the wave dynamic
system, components of which appear as celestial bodies themselves
(Sun, planet, satellites, small bodies), and also its interplanetary,
continuous filling - material medium (interplanetary plasma,
electromagnetic fields, etc.), i.e., substance and field, described in
the single dynamic context. The corresponding instrument, which gives
the phenomenological and dynamic description of similar systems, is

natural to call mega-quantum wave astrodynamics [18].

Fundamental w>ve equations and quantizat.on of parameters of
mega-objects. Central idea is here the fact that the mega-objects in
question, beling wave dynamic systems as everything WDS of the

universe, are described by universal and single equations -
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. fundamental wave equations (latter in general form are given in work

(18]). A special case of these equations is the wave equation

20

Gy 2 (£ —U] =0, ()

?:l.o

to which snould be joined the boundary condition
u =TT
Y #F oo ApH r=y x?4y?+z— co. (£)

Key: (1Y, with.

Here ¢y - certain function of space coordinates, limited at infinity;
& =E°m - specific (standardized/normalized to mass m) enerqy E°;
Usve/m - specific (standardized/normalized to mass m) potential energy

‘ v®; V - the operator of Hamilton;

d . .
dz:?;; - fundamental constant of areal velocity, i.e., the constant
of specific (standardized/normalized to mass m) action, or moment of

momentum.

With particular value d=d, = fi/m.=116 cm?*/s and U=K/r, where
K=e?/m,, m, - mass of electron; h - Planck's constant, e - nuclear
charge of hydrogen atom; r —.radial coordinate of electron, equation
(1) - not that different as Schroedinger equation for atom of hydrogen

(13].

With other value 4~ 10" cm*/s and U=K~/r, where K= K~ -

‘ gravitational parameter of sun, equation (1) gives wave descrlptlon of

—
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mega-systems of type of solar. From the fundamental wave equations
(of type of that given above) follow the laws of the quantization of

universe mega-systems, in particular: 1) the linear law of the

quantization of areal velocity | —[ .., N, where | --p,r - areal
velocity, r - hellocentric radius, v, - transversal speed; [._, -
level of gquantization; \ =\:% = quantum number of areal velocity

(N=1, 2, ...); 2) the quadratic law of quantization (distances) of
elites [18] - the physically chosen planetary (satellite) orbits -

analog Bohr's law in microcosm [13].

If we postulate that solar system 1is wave dynamic system and,
thus, is valid micromega~analogy (MM-analogy) [181, then from dynamic
isomorphism of atomic structure and solar system it is possible to
obtain seriles/row of corollaries, by using, in particular, diverse
variants of guantization - according to Bohr, according to
Sommerfield, according to de Broglie, Schroedinger, etc. Should be
specially stressed the possibility of quantization in the mega-systems
of nonoperation and moment of momentum (of type K,,=mu.r), as in
quantum mechanics of microcosm, and specific (standardized/normalized
to the mass) action (moment of momentum), i.e., areal velocity [18]:

L=K, /m=uv,r=[Ka(l—e)]'? (3)
L =(Ka)'*? (’n/pu ex0,

Key: (1). with.

where a, e - semimajor axis and orbit eccentricity.
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Specifically, this fundamental conclusion gives possibility to
obtain picture of quantization in mega-world located in satisfactory
agreement with observations, in particular, quantum numbers of elite
orbits (semimajor axes of orbits of planets, satellites, asteroids and
comets; eccentricities and inclinations), rings of Saturn, spin of
celestial bodies. One of the corollaries is the genesis of the law of
Titius-Bode and the possibility of the existence of intra-mercurial

(problem of Vulcan) and transpluton planets.
Page 60.

Mega-waves in solar system and trans-sphere. Important corollary
(1), whigh carries fundamental character, is existence in any
mega-system of the universe and, in particular, in the solar system,
the meéa—waves, which realize proximity effect on the scales,
commensurate with tﬁe scales of system (MG-waves [18, 19, 20] - the
analog of de Broglie's waves for the giant astronomical systems). The
parameters of mega-waves are connected with following
relationships/ratios (18, 19, 20], by the analogous

relationships/ratios of Bohr and Plancl-Einstein [13]:
v=A4%; &=49, (4)

where X, Q, & - wave number, angular frequency and specific
(standardized/normalized to the mass) energy of MG-waves; v - speed of
Keplerian motion; ¢ - fundamental constant of the specific action
(areal velocity) of the solar system. Specific energy &

allows/assumes in the case in question representation (K=K@)




DOC = 89056406 PAG?LJMQ‘Q’

1
—_— V= —— = (5)
m 2 2a 2r
Let us introduce value (Cyg=const, which has dimensionality of

speed

which we will identify with velocity of propagation of wave
disturbances (mega-waves) [19, 20]. 1In view of (4)...(6) we will

obtain

Qa=K[2¢=0 yg=const; Qa=Qr. (7)

Corresponding frequency 6, period &, wavelength A and wave

number ¥ are connected with known relationships/ratios

o’ 8 B A

In order to apply equation (1) to concrete/specific system, it is
necessary to assign besides gravitational parameter K—- K=& one
additional fundamental constant, for example & or (Cy. Latter/last
value (velocity of propagation of mega-waves) is more preferable,

since it allows/assumes more distinct physical interpretation.

Most natural is assumption that value (Cyg lies/rests at area 155
km/s, which corresponds to velocity of propagation cf solar wind and

magnetosonic waves in interplanetary plasma [1, 5, 28, 30].
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Possibility of agreement of calculated quantized values of
parameters of solar system, obtained from equation (1), is criterion
of correctness of this assumption with appropriate materials of

observations. This question is examined below.
Page 61.

In further analysis are used connected (self-consistent)
numerical values of fundamental constants of quantization of solar
system 4 and CyG, which correspond *o integer value r.ﬂ?g\::S’ where
r* - radius of trans-sphere (see below). 1In this case (see [19...22])

X 112 K 172 .
C,‘»\0=< © ) =( @ ) = 154,386 K)M,’C. (9)
I - 8R

7z

Xey: (1). km/s.

Phase speed of mega-waves 1is such. To it corresponds computed
value of the fundamental constant of the action (areal velocity) of

the solar system

a

I

—;— Ly=K o/2Cno=0,42980- 10° e/, (10)
Key: (1). km?/s.

where K}3==1,3272-Hﬁ1 km®/s? - gravitational parameter of the sun.

At characteristic speed C=Cyg, Commensurate with speeds of
rotation of celestial bodies in solar system, is completely probable
presence in certain vicinity of sun with r=r.=4a. physically chosen

surface, for which speed of Keplerian of orbital motion v=vx is equal
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to velocity of propagation of mega-waves (yg:

CMO'—'—"U*:(K@/"*)I’IQ- (1hH

We will call this surface (certain analog of surface of transonic
flow in aerohydromechanics), which divides regions y>Cwmg and
v<Cyg trans-sphere of solar system (assuming it spherical without
depending on real form of this surface). Above value of the velocity
of propagation of MG-waves accepted corresponds to the position of
trans-sphere at the heliocentric distance of r=r*, accurately equal to

8 radii of the sun:

r*=K®/vf=K@/C§AO=5567928 kM=0,037219 a. e.=8R®. (12)

Here r, =g, - radius of trans-sphere; =696000 kv - radius of the
. =169

sun.
Mega-spectroscopy of the solar system.

Astronomical system (in particular, solar system), considered as
wave dynamic system, described by equation (1) with boundary condition
(2), can be described by épectrum of natural frequencies. These
frequencies can be calculated according to the eigenvalues of
boundary-value problem (1), (2). On the other hand, to eigenvalues
corresponds the set of stationary elite orbits -~ the analogs of the

steady-state orbits of Bohr in atom f13].
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Key: (1). Series of Pluto. (2). Series of Neptune. (3). Series ’
of Uranus. (4). Series of Saturn. (5). Series of Jupiter. (6).

Series of asteroids (Ceres). (7). Series of Mars. (8). Series of

Earth. (9). Series of Venus. (10). Series of Mercury.
Page 64.

In view of MM-analogy should be together with other mega-quantum
effects [18...25] expected the presence of the spectrum of
characteristic for the solar system wave frequencies, including
intercombinatory - analog of the frequency spectrum (spectroscopy) of
atom [13]. This mega-spectroscopy of the solar system, in which wave
periaods are characterized already, it goes without saying, not by
fractions of a second as in atom system, but by days and for years, it

- can be the fﬁndamental wave spectrum of solar system [19, 20]. ‘

Wave frequency 6 depending on linear orbit characteristics
(semimajor axis a or its radius r=a in the case of main
approximation/approach - circular orbit) can be by virtue of (5)...(7)

represented form

K
1=2~2, p=—2 (13)

a r 4nd

To eigenvalues of boundary-value problem (1), (2) correspond
fundamental wave frequencies (therms of wave frequencies and some
chosen (elite) planetary orbits with semimajor axes a:.(=r:) and

frequencies §,=D/a;(i=1, 2,...). Together with the fundamental wave '




-
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‘ frequencies (therms) @; let us introduce into the examination

different intercombinations §;; (beating) between them -

intercombinatory wave frequencies, in the general case - difference

. - _
and summation GEJ)==6i+'6P

Main intercombinations of wave frequencies we will call
intercombinations between therms of adjacent elite orbits
ﬂfl1==6,;:m+1.The set of the therms of wave frequencies and their
intercombinacions for the elite states (orbits) of the solar system we
will call the fundamental spectrum of the wave frequencies of solar
system [19, 20].

Table 1 depicts fundamental spectrum of wave periods J of solar

‘ system (more precise, its fragment), which corresponds to elite

astro-dynamic levels (orbits of planets) of solar system.

Schematic of astro-dynamic levels is specially represented in the
form, which reminds schematic of spectroscopic levels of hydrogen-like
atom (diagram of Bohr-Grotrian) [13]. By analogy with kncwn radiation
series - therms and intercombinations in the atom - Lyman, Balmer,
Paschen, etc., in the diagram are represented series of the wave
periods of the sd>lar system - therms and their intercombinations
between the astro-dynamic elite levels, which correspond to the
planets of the solar system; a series of asteroids (Ceres) is given

conditionally (periods 7 are indicated in days (d) and years (a).
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In contrast to wave period 7 (8) periods of orbital planetary
motion T in two-body problem (Keplerian periods) are proportional to

semimajor axes a of orbits to degree of 3/2:

T =22 gy v=L (14

Page 65.

Here K as in (5), (7), gravitational parameter of central body, »
- frequency of orbital (Keplerian) motion, a - semimajor axis of
planetary orbit [26, 2, 3].

Mega-spectroscopy, which corresponds to fundamental wave
frequency spectrum of solar system, can serve as guiding filament for
research of interaction of factors of endogenous (in particular,
geophysical) and exogenous (cosmogenic, in particular, astro-dynamic)
nature, offering possibility of more goal-directed research of
boundary problems of astrodynamics, geophysics and physics of planets.
The concept of wave resonance [18...20] is here the leading idea, it
assumes tendency toward the commensurability of the wave periods,
represented in the fundamental wave spectrum of the solar system, with
the rhythms existing in it, in particular, with the observed Keplerian
periods of orbital and rotary planetary motions, and also with the
known rhythms of astrophysics. This concept is confirmed by many

results of the direct observations, which are examined below.
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Analysis of some observational data.

Localization .f trans-sphere. The presence of special surface -
special transition/transfer (jump of the physical parameters) in area
r=r.=8R- (associated with the position of trans-sphere) directly
is discovered by the characteristic fracture on the graph (Fig. 1) of
experimental data (obtained with the use of KA "Helios-1, 2" and
"Pioneer-6, 10, 11"), that describe the dependence of the parameters

of interplanetary plasma on heliocentric distance [45].

Special surface, on which observed in space experiments speed u
of solar—yind [45] proves to be equal to Keplerian speed of orbital
motion<,u==(KC>/rY“,is placed also in area r=~8Rq (Fig. 2),
identified above with surface of trans-sphere. On this surface the
velocity of the motion of the local disturbances/perturbations of
interplanetary plasma (solar wind) gradually increasing in the corona

of the sun crosses the critical value of v+, equal to Cuma.

Localization of velocity Cys. Proton temperatures T, of
interplanetary plasma, according to the empirical dependence,
discovered by Burlaga and Ogilvie [5, 28, 30] according to the results
of experiments on the space vehicles (for example, "Explorer-34"), are
proportional to the observed velocities u of the motion of

interplanetary plasma (solar wind) (Fig. 3).
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‘ Fig. 1. Dispersion g, (Doppler scintillations) of interplanetary
plasma [45] and localization of trans-sphere in corona of sun.

Evidence of experiment - characteristic fracture ¢gp 1in the area of

trans-sphere r.—"'—8-R®- The Doppler scintillations: g - "Pioneer-11",
X - "Pioneer-10"; A - "Helios-1", + - "Helios-1, 2" and "Pioneer-6".
RKey: (1). BHz.

Page 67.

At smallest possible proton temperature Tp::O observed velocity
of motions of interplanetary plasma is equal to u=151 km/s, which

follows also from propositions in [5, 28, 30] empirical dependence

- (10-3T5)"=0,036 u—5,44. (15)

Here T, - temperature, K; u - velocity, km/s.

Wwith Tp=0 uy=151,11 km/s. This experimental value is close to

the velocity of propagation of mega-waves (Cyg introduced above.

Mega~quantum effects. Let Ei=%h/a- - standardized/normalized to
the value of radius of trans-sphere g,=r,=0,037219 AU semimajor axes
of planetary orbits (ephemeris DE19 JPL). Then
standardized/normalized interplanetary distances g;;,;=a;;;—a; are
equal for the earth-type planets to - 9.033, 7.433, 14.071; for the
planets of Jupiter group - 116.069, 259.033, 292.999, 249.996, i.e.,
are (almost) integral, and interplanetary distance Venus-Earth -

. (almost) half-integral [21].
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Fig. 2. - Profile of solar wind (experimental data "Helios-1" [45] and

localization of trans-sphere {7;7=8-R,) in corona of sun.

The singular

solution (vaCrxs=15438 km/s, rzrn=8‘RG)). obtained from the

experiment - point of intersection of observed speed u of solar wind

[45] (solid line) and the Keplerian orbital speed

K 1,2
szz(_gl) (dotted line).
r

Key: (1). km/s.

Fig. 3. Proton temperatures of interplanetary plasma on measurements

on KA "Explorer-34" [5, 28].

Line 1, drawn through the experimental
points, reflects the empirical dependence, proposed by Burlaga and

Ogilvie [30]. For comparison the results of calculations according to

the isothermal model of Parker (2) are shown.

When T,~(0 we have

u,=151 km/s, close to fundamental velocity Cuys= 15438 km/s.
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’ Key: (1). km/s.

Let us consider now values of gquantum numbers N;, computed from

formula [18, 22],
N, =@ %‘Z(zn . )1/2, (=12, (16)

* a,

LIZLN=1N1§ L~=~1———L*/(23)1”2

with substitution into it of experimental values of semimajor axes
a; of planetary orbits of terrestrial group. As a result we will
obtain N;=79111; 11,050; 12,991; 15,969 respectively for the orbits of
Mercury, Venus, Earth, Mars. As is evident, they all are very close
to integral eigenvalues of equation (1) with boundary condition (2)

[22].

Existence of these mega-quantum effects is ore of arguments in
favor of wave structure of solar system and the fact that r=r,=4a.

objectively plays role of certain of its significant dimension.

160" oscillations of sun. Wave astrodynamics offers the
possibility of interpretation of such phenomenon as |6()m oscillations
of sun [42]. Let us consider wave iunteraction (beatings) of two
physically chosen spherical surfaces: the surface of sun r==R<3 and
trans-sphere r=:f*:=8/?g. To them correspond the frequencies of the
orbital Keplerian motions (d - days): VRC)::8ﬁ275 (d-') and

. v, =0,38128 (d°"). Hence we will obtain the following values of the
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intercombinations of frequencies \,<:>_—_qu =g and periods '

corresponding to them: summation v“ﬁ::vgc>ﬁ—v* =9,0088 (d7'), period
q m - m
T — l~:Gd,11100= 159,84 (= 160™)

N

and difference w—)::w?a-—v*::ngﬂiz(d'ix period

T(-): (1-) 20,412137

AY

174,m62 (= 175™)

Thus, wave examination makes it possible to predict the existence of
the conjugated/combined from 7T =160 characteristic period Ta~175™.
Oscillations with this period actually are observed [34]. Hence it

follows that the zone of the corona of the sun, which stretches from

its surface ;=R

.

to trans-sphere r,=8R5, is if not generator,

h (0

then, at least, efficient resonator for 160 the oscillations of the

sun - apparently, one of the prevailing modes of mega-waves.

Wave resonance. "I consider these fluctuations the most
mysterious phenomenon, observed in the stellar motion. It is so
difficult for the explanation by the action of any known reasons,
which to us remains nothing, except the assumption that they are

caused by action, until now, of unknown reasons.
Page &9.

Variations in the change in the sea level, continental
displacements/movements, thawing of 1ce in Arctic and other observed

processes cannot be, in all likelihood, their reason", wrote Newcomb ’
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. about the fixed/recorded by the astronomical methods (according to the
observations of stars) fluctuations of the angular velocity of Earth
[12]. In the spectrum of variations in the speed of rotation of the
Earth are observed, in particular, the periods [29] 277.6; 00,16 ...0°.17

(581.4... 629); 020 (737); 0435 (128); 04,5 (183¢); lo; Ja 8. 1295 24.9:
34.5; 102,

Directing attention to Table 1, it is not difficult to discover
that components of variations in speed of rotation of Earth in
gquestion belong to fundamental wave spectrum of solar system (in
accordance with g =274548. 584,680 (594,201); 72¢,891; 974,033
1274,827; 1844 229; 14; 14 .837; 2¢212; 34,651; 102,194,

Being in spectrum, represented in ‘¥able 1, period J =205%013 is
observed in (transposed) near-daily nutation of pole of Earth and
seismicity of Moon, periods 7 =443!317 and 7 =242548 - in Chandler

oscillations and nutation of pole of Earth [29, 7].

Resonances of observed oscillations with periods, which are
elements of fundamental wave spectrum of solar system (see Table 1),
it is natural to consider, as in the case 60" of oscillations of
sun, as the various concrete/specific forms of manifestation of some
complicated dynamic processes, characteristic for solar system,

connected with wave resonance.
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Let us give still some examples from the same region. The wave
periods of Mercury (see ¥ables |) J =274277...314,713 are commensurate
with the differential rotation of the sun; period 7 =27¢277 - with
the orbital motion of the Moon; J =58768 - with the spin of Mercury;
g =3669613 - with the orbital motion of the Earth, etc. The series
of the periods, available in ¥able 1, for example monthly

(T =274277 . . . 314713), semi-annual (J =184229), yearly

(7 =3669,613), many-year (7 =29212; 5¢,801; 102.194; 242548), are
characteristic for the observed in astrophysics rhythms - from the
oscillations of the geomagnetic and meteorological parameters on the
Earth [7, 16, 17] to variations in the interplanetary magnetic field
(MP) [6, 8, 11] and solar activity [6, 9, 10, 16]. This relates, for

example,-to the following observed variations of MMP

(8, 6, 11, 16)T=874; 954, 1274; 1474; 1804; 2409; 360¢; 445¢; 510¢ 2775¢

and to the neutrino fluxes (tentatively T7=255=15 mo.

(2,125+0,125 ¥yr.), T=11 years, etc.).

Examples, given above, testify in favor of mega-quantum wave
structure of solar system and presence of mechanism of synchronization
of periodic processes of different physical nature with natural wave
oscillations taking place in it, which correspond to its fundamental

wave (discrete/digital) spectrum (i.e. in favor of wave resonance).

Development/detection of this mechanism is most important

problem, which lies on joint of wave mechanics and astrophysics.
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‘ Page 70.

However, central question thus far remains more detailed

identification, phenomenclogical and dynamic description of gquantum
structure of solar system an2 systems with centrzl body and satellites

analogous to it.

Two systems of mega-waves in the solar system and the corresponding to

them groups of planets and satellites.

Let us consider one additional approach to quantization, with
which is considered existence of two (terrestrial and Jupiter) groups
of planets; orbits are broken down into two groups and are examined

'l' respecti;ely two systems of mega-waves [23...25]. The first is
identified (in the sense of velocity of propagation{ with the observed
in the interplanetary plasma "rapid” magnetosonic waves (velocity
CYL =Cxg, examined above), the second - with the "slow"
magnetohydrodynamic waves (velocity¢jﬁ$“5‘301 The numerical values
of these velocities and their corresponding constants and radii of

trans-spheres r?’==a“](3=1,2) are .such:

Cl = 154.39 Ywe; CLE—42,105 Dwic; 411=0,4298.10° Rae2/c:
f0=1,5759-10° Ruejc; rlll—al1=8R 5 =0,037219 a. e.; ¥ —al)=
— 107,56R 5 =0,50039 a. .

Key: (). km/s. (2). km?/s.

Until now the first of sets of parameters was used during

. calculations. Now let us act somewhat otherwise. Velocity CE}& and

e
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] we will associate with the

corresponding to it trans-sphere a?
earth-type planets; velocity (j&@ and its trans-sphere a?] - with

the planets of the group of Jupiter.

Now quantum numbers of elite orbits can be calculated
independently for each of groups according teo formulas (in particular
(16)) of Section 1-3 with use of corresponding constants of

guantization.

Results of these calculations are represented in -‘fable 2. As can
be seen from this table, computed values N for the real orbits of each
of the groups of planets are close to each other and to the whole or °
half integers. On the other hand, attention is drawn to the fact
that, judging by the explosions in the series/row of inieger values N,
not all permissible elite orbits "are filled", i.e., there is a series
of the orbits, in which the planets are absent. Here we, apparently,
encounter new problem - stability problem of elite orbits, which

allows/assumes special examination.
Page 71.

Natural question arises, are some of parameters of quantization
in question, namely velocities (Il and Ci{, fundamental constants
for entire solar system as a whole, including satellite systems, or
these constants carry local character (which, of course, would
substantially decrease heuristic value of considered phenomenological

and dynamic description of solar system as mega-wave system).
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Response/answver to this questiorn gives ¥able 2, in which are
cited data also for satellite systems of planets (see quantum numbers

N and N1,

One should stress that data according to quantum numbers Ni!l and
N2 (see Table 2) for satellite systems are calculated with use of the
same two constants (jﬂé and Cﬁ%, as during calculation of data for

planetary system, moreover
at1=K/2CRE; ot =k/(CRd) (s=1,2); (18)

K - gravitational parameters of central bodies of satellite systems
(planets).

As can be seen from table, occurs, apparently, nonrandom
proximity of values N for real orbits of satellites to quantum numbers

of planetary orbits.

This result, which has fundamental character, is important
argument in favor of real existence of quantum orbits. On the other
hand, the appearance in a number of cases together with wholes (half
integral) and other numbers shows that, apparently, the true picture
is more complicated than described by the analog of the equation of

Schroedinger (1) with the simplest Hamiltonian, examined above.

In'fﬁble 2 is also series of whole (and half integral) values NI,

‘ N2l to which correspond "empty"” elite orbits. Asserts itself the
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assumption that the "occupied" orbits are in a sense dominant, i.e., .
at least, more stable than "empty". As the indirect confirmation of

latter/last assumption serves the presence in family of the rings of
Saturn of slot near the internal edge of ring pin and division of
Cassini, close to the elite orbits with quantum numbers 15.5 or 16 and

21.5 respectively.

However, further analysis shows that not all components of
satellite systems can be exhausting described within the framework
only of two systems of quantum numbers, which correspond in planetary
system to two groups of planets - terrestrial and Jupiter.

Shell structure of astronomical systems (WDS). Let us represent

the basic cohstants of quantization in the form ‘
i
Chd= CMI L =il o=l (s=12),  (19)
S_-
*

where x==CR&ﬂT%&==3ﬁ66 - certain dimensionless parameter -

fundamental constant of hierarchy [24].
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Key: (1). Planetary (Solar) system. (2). Satellite systems. (3).
Barth. (4). Mars. (5). Jupiter. (8). Saturn. (7). Uranus.

(8). Neptune. (9). Pluto. (10). Planets. (11). Satellites.
(12). Satellites, part of rings. (13). Rings. (14). External edge
of clouds. (15). 1Internal edge of ring. (16). French division.
(17). Ceres. (18). Division. (19). Cassini. (20). Encke's

hatch. (21). Pioneer.
Page 74.

Asserts itself thought about possibility of existence of
hierarchical series of velocities (jﬁé, constants of quantization of
areal ve19city d s]  trans-spheres with radii of r?’::a{” and other
parameters from general/common constant hierarchy « at s=2, 3,.,.. (see
in table 2 appropriate quantum numbers N[ N[4 N(5]) From a physical
point of view this hypothesis assumes the presence of the sequence of
the regions of interplanetary plasma, limited by shells Gfsl (Gliland G2
in the planetary system correspond to terrestrial and Jupiter
planets), with some prevailing properties, which determine the
observed dynamic structure of astronomical systems, in particular the
solar system. Parameters (ZH& and Cﬁ% are from this point of view
the elements of the hierarchy of the integral characteristics of the

corresponding physical continua.

As can be seen from‘thle 2, set of quantum numbers
Nisl (s=1, 2, ..., 5) makes it possible to describe all observed

satellite orbits similarly to how numbers A/[l} and \i2l describe orbits of
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‘two groups of planets of solar system,

More detailed and more objective examination of hypothesis,
formulated above, will be possible in obtaining of new experimental
data about outer space, supplied/delivered, in the first place, with
the help of artificial Earth satellites and planets, and also other

space vehicles.

However, preliminary conclusion, which follows from examination
of Table 2 (besides its obvious prognostic value), consists in the
fact that Cﬂé and x:zCQé/C&% can claim to role of fundamental
constants for solar system as a whole, turning off/disconnecting
satellite_;ystems, which is important argument in favor of unity of

‘its wave structure and presence of general/common for entire solar

system physical factors, critical for this structure.
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SIMULATION OF THE DYNAMICS OF THE CARRIER ROCKETS OF SPACE VEHICLES.

M. M. Bordyukov.

Survey/coverage of methods and means of simulation, used during
study of dynamic properties of contemporary carrier rockets of space
vehicles, is given. The mathematical models of different dynamic
ducts/contours and their couplings are represented in the form of
overall structural diagram. A comparative analysis of means of
computer technology, used during the simulation, is carried out. The
special features of application for the dynamic investigations of

physical models are shown.

Simulation both mathematical and physical is one of basic methods
of studying dynamics of controlled flight of space carrier rockets.
Mathematical simulation is realized with the help of different means
of computer technology, which are divided into the analog and tae
digital. Physical models can be functional similar to real objects
as, for example, the functioning mock-ups of units and
aggregates/units, or the models, tested in the wind tunnels, or are
the real assemblies and the instruments, tested under the conditions,
clocse to the operational, for example according to the temperature,
the g-forces, the vibrations, the character of external information,
on the fallures of constituent elements, ecc. In the latter case

modes of the work of instruments and externel
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‘ cennections/communications are simulated. In this case often the
instruments connect to the computer({(s), which simulates the remaining
part of the system, which makes it possible to create the conditions
for the work of the equipment in the complex diagram being
investigated and in accordance with the real program. Thus occurs the
association/unification of physical and mathematical models in the

single experiment.

In all cases simulation experiment is based on mathematical
description of components/links of dynamic system and
connections/communications between them. Each of the elements of the
dynamic system of contemporary carrier rocket (RN) has sufficiently
precise matnematical description, in other words, the mathematical
model, which makes it possible to investigate it by means of

simulation.
Page 77.

Proof and analysis of mathematical models is the important independent
section of dynamics of RN, to which is dedicated the vast literature
(2, 10, etc.). 1In this region a number of the basic research was
carried out by G. S. Narimanov [4-8], moreover they were completed,
as a rule, by mathematical simulation for purposes of the solution of

urgent applied problems.

l. General/common structure of mathematical models of carrier

‘ rockets. In the review paper about the simulation there is no need
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for giving the detailed description of one or the other dynamic
components/links. Common appearance of RN and ZhRD as dynamic system ‘
can be represented by the block diagram (Fig. 1), which contains most
typical elements and connections. Diagram characterizes also
composition and interconnection of the corresponding research models.
Of course they are not used everyone simultaneously. However, this
general/common view can prove to be useful for the system analysis,
the evaluation of separate particular models, determination of
requirements for the means of simulation. The diagram is simplified
for the clarity: it reflects motion only in the pitching plane.
Therefore in it some cross couplings, inherent in spatial motion, are
absent. At the same time the most typical components/links of

different physical nature are shown in the diagram.

In spite of specific conformity between real units of rocket and
blocks of diagram on it first of all is reflected not this
structural/design analogy of model and unit, but analogy of

interactions of dynamic elements.
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‘ Fig. 1. Block diagram of carrier rocket as dynamic system.
Key: (1). Control of the fuel consumption. (2). Longitudinal
vibrations of liquid. (3). Housing (longitudinal vibrations). (4).
Ballistic object. (5). "Liquid" pendulums. (6). Elastic bracket.
(7). Asymmetry of construction/design, (8). Environment. (9).
"Solid" body. (10). Gyro instruments. (11). Housing-elastic beam.

(12). Controls. (143). Algorithms of control.

Page 78.

For example, basic structural element (housing) figures both in the
block, which characterizes the angular motion of solid body and in the
model of transverse, and also longitudinal vibrations. Engine

‘ installation enters into ballistic model and independent of this it is
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considered as the independent dynamic component/link, which
participates both in the longitudinal and in transverse vibrations of ‘
RN. The liquid filler of tanks participates in the wave (transverse)

and in the longitudinal vibrations.

Concrete/specific models for research of one or the other dynamic
systems of RN are obtained by "cutting” of corresponding sections of
overall diagram. The model of the disturbed motion around the center
of‘mass, which describes also the deflections of the very center of
mass from the calculated trajectory, relates to important for
practice. It is at the same time one of complicated even larger in
the dimengionality (number of degrees of freedom).

Another "running" model of dynamics is used for study of .
longitudinal vibrations of RN, in which participates housing,
power-supply system and engine installation. In American
scientific~technical literature it is accepted to call pogo which is
explained by external similarity between the motion of housing of RN
during these oscillations and by mc-ion of jumping stilt (pogo stick)
[12]. 1In contrast to the duct/contour of transverse vibrations, which
contains control system and contrclled by it, the duct/contour of
longitudinal vibrations "is not guided". To ensure its stability with
structural/design measures is very difficult, and often also it is
impossible. The nonlinear effects of dissipation play the decisive

role in the solution of this problem.
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Practical requirements of design and final adjustment of RN lead
also to other combinations of models, connected, for example, with
control of thrust, and also describing dynamic processes in separate
systems and aggregates/units: navigational instruments, combustion

chambers, etc.

For research of dynamics of carrier rockets are used diverse
means of simulations, whose characteristic is given in subsequent

sections.

2. Digital computers as means of mathematical simulation. The
mathematical models of dynamics of RN consist of differential
equations and final dependences between the variables - algebraic and
matrix. The high order of equations and the large number of
nonlinearity make very labor-consuming the integration of such models

by numerical methods.

Digital computers possess maximum universality with respect to
utilized algorithms. With their aid a question about the mathematical
simulation of dynamics of RN could be solved completely, if not
stringent requirements on the speed. Let us consider both the

requirements and real possibilities in this respect.

Let us designate duration of investigated phase of flight through

7, and duration of its reproduction on model - through ur.

Page 79.
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In the case of the combined models, when to the calculating means,
which realize mathematical model, are connected some real instruments
(drive of actuating elements, function generators, etc.), a question
about the speed is solved unambiguously: the normal mode of work of
the utilized onboard equipment can be provided only during the
simulation at the rate of flight, i.e., scale of time u must be equal

to one.

If model is purely mathematical, then u in principle is
unconfined, although in this case time of simulation is desirable to
make as far as possible less in interests of maximum "productivity" of
research. Most sharply a question about an increase in the speed
stands during the static research, which include the considerable
number (N) of the realizations of the phase of flight being simulated.
In this case appear serious difficulties in the guarantee of

acceptable duration of entire experiment T=urN.

Let us consider required high-speed operation of a digital
computer for model of angular motion as one of large. Let the model
describe flat/plane angular motion of RN as solid body, automatic
machine of stabilization, oscillation of liquid propellant in the
tanks and transverse elastic vibrations of construction/design. We
will ccnsider for certainty that RN has 12 tanks, and in each of them
one tone of oscillations is considered, the model of elastic

vibrations considers four tones, and the maximum frequency of
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. processes in the system reaches 15 Hz. Under these conditions the

degree of differential equation, which corresponds to the object of
control, is equal to 36. Taking into account that the system has
nonlinearity and must be locked by the algorithms of control, it is
possible to establish that the simulation of angular motion by this RN
at the rate of flight with the use for integrating Runge-Kutta method
will require the application of TsVM with the speed about 107
operations per second. Application for this purpose of TsVM with the
contemporary system of the automation of programming, which simplifies
the development of the simulating program, but which simultaneously
decreases the general speed, is possible only during the organization
of the sigultaneous work of several machines of class BESM-6 or

YeS-1050. It is obvious that this version is virtually little real.

Example with very rigorous conditions examined shows limitedness
of possibilities of TsVM; however, this does not exclude their
application for targets in question. On the contrary, from the
obtained quantitative estimation it is possible to draw useful

practical conclusions.

First conclusion. Even for the fairly complicated model the
application of contemporary TsVM can be appropriate. True, process it

is necessary "to stretch” (u=5...10), but this is acceptable with

moderate N.

Second conclusion. Computer technology rapidly progresses, and
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it is possible to expect that TsVM with speed on the order of 10~
operations per second is spread during the next decade. Further

possibilities in this respect open/disclose multiprocessor computers.
Page 80.

Thus, the application of digital means for the mathematical simulation
of dynamic processes of RN has a good prospect already in the near

future.

Third conclusion. Such bulky models, as the complete model of
angular stabilization, far from always are investigated. Many of them
much simpler can be reproduced on TsVM not only at the natural rate,

but also u<l.

Is especially efficient the application of TsVM at early stage of
research and design, when are chosen basic parameters and circuit
solutions, model does not require elaboration, and although versions

are diverse, each of them is examined/scanned "in general terms".

Application of TsVM for dynamic research can give further
advantages during correct organization of programming. During
calculations on the dynamics of RN are used the standard algorithms,
which relate, for example, to the numerical integration, to
transformations of coordinates, to the calculations of the eigenvalues
of matrices and to other problems. This makes it possible to use the

means of the automation of programming, in particular, the packages of
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. applications programs (PPP), specially intended for the solution of
the problems of dynamics. This simplifies simulation on TsVM.
Furthermore, in PPP is widely represented the analytical apparatus of
the stability theory, frequency response methods and other sections of
the theory of automatic regulation, which makes it possible to carry
out control tests or to duplicate/back up separate results, i.e., it

is useful booster agent in the arsenal of simulation.

3. Simulations with the help of analog computers. Together with
TsVM, and historically even earlier than them, for the simulation of
dynamic objects were used and are used the now specialized calculating
means, mainly, continuous (AVM) analog computers. The parameters of
real physical processes are represented in AVM by the electrical

‘ values, which during the simulation are changed in the time
analogously with their mechanical, thermal, and also electrical
prototypes. Mathematically this means that the integrals of the
differential equations of motion of the real object in question and
equations, which describe the electrical decisive circuit, coincide
with an accuracy to dimensional factor. This law is retained in the
specific range of the parameters, in particular, the frequenciés of
the studied vibrations, which depends on frequency characteristics of
AVM. The contemporary means of analog simulation reproduce well on
real time (u=1) processes with the frequencies to several ten hertz,
which makes it possible to investigate the majority of the models of

the dynamics of carrier rockets with the necessary accuracy.

. Page 81.
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Analogy between object of research and AVM is exhibited also in
their structural similarity, which, by the way, serves as one of
factors of high speed operation of AVM, since its comprising
calculating elements (integrators, adders, functional blocks) work,
similarly to parts of real object, simultaneously, "in parallel",.
Respectively a quantity of equipment in this computing system directly
from the volume of the solved problem: the number of variable
magnitudes, the degree of differential equation, complexity>of right

sides.

AVM are spread not less than digital computers. 1In the recent
three decades by our industry is released more than 40 types of each
machines [1, 9]. AVM of different generations, utilized for the
research of dynamics of RN, it is possible to describe by data of
FYable 1, from which it is evident that not all their characteristics
progress to the identical degree. Progress concerns accuracy, element
base, and also automation of programming. At the same time the
composition of the decisive blocks varies little. This is explained
by structural flexibility of AVM and, as a result, by possibility to

comparatively simply raise its composition.

In spite of considerable universality AVM are inferior to digital
computers in accomplishing of logical operations, flexibility of
programming and accuracy. Latter/last characteristic is given in

table; however, the errors given in it relate to one operational
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‘amplifier. Association/unification into the simulating system of many
tens of amplifiers leads to the fac:t that its accuracy as a whole

proves to be considerably lower.
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} (2)
“run ABM OneXT | MHa7 MH-18 ABK-32 IMY-200
(3)['011 BHOYCKA 1960 1967 1970 1979 1479
mhopﬁJOK anpdepen- 55 60 10 20 20
UHANbHBIX YPaBHEHHH
GXo1nuectBo JlHeil- 150 60 50 48 20
HLIX Onepausf
€’Ko.1HyecTBO  NOCTORH- 975 160 120 160 170
HBlX KO3 HUHEHTOB
KoanuecTBo  He.uHeir- 165 78 23450 33 83
HHX OfNepauH#
®Ko.anuecTBO Joruye- 30 30 ! 28 170
CKHX Onepauui
(WMarcumansHoe spe-|{ 1000 1000 1000 1000 —
MS HHTErpHPOBaHHA, C
¢eTTorpewHoCTb HHTe- 0,5 0,3 0.3 0.5 0.2
TPHPOBaHHA, % 3a
100 C _ (/.z) @ (/3} )
31eventHan 6asa JaMnu | JaMnul foaynpo- | HHTerpa.ib- | HHTerpa.inb-
o | 37exr- 3.1eKT- | BOAHHKOBHE | Hble MUKPO- | Hhie MUKpO-
pOHHLE | POHH™eE | 3/JeMEeHTH cXxeMhl CXeMH

Key: (1). Type of AVM.

Degree of differential equation.

(6).
operations. (8).

of integration, s.
Element base. (12).

(14).
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(10).

tubes,

(2).

Error in integration, %

integrated microcircuits.

"Elektron".

(5).

Quantity of constant coefficients.

electronic.

(3.

(7).

Quantity of logical operations.

[+)

(13).

Year of issue.

(4).

Quantity of linear operations.

Quantity of nonlinear

(9). Maximum time

for 100 s. (11).

semiconductors.

Furthermore, accuracy depends on the duration of the ~rocess of

simulation,

since in this case errors are accumulated.

As a result

errors in the reproduction of dynamic processes can reach several

°
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4. Analog-digital complexes (ATsK). The greatest effect of the
simulation of dynamic systems of RN is achieved by the application of
computer complexes, which join in themselves analog and digital
computers. Such complexes received wide acceptance in the last 20
vears. Their advantages are revealed well during the

concrete/specific analysis of the problems of dynamics of RN,

Superiority of AVM is most perceptible during simulation of

systems, in which are inherent oscillations with frequencies of from

ones hertz and above. Such systems include the duct/contour o° the
angular. stabilization, the longitudinal vibrations and some others.
At the same time for the simulation of ballistic motion or account of
the effect o% environment it is necessary to have TsVM, since here is
required the "digital" accuracy, the memory, the calculation of
nonlinear functions. When any models from these two groups must be
examined together, unavoidably arises the question about the

association/unification of the heterogeneous means of simulation.

As another example, which leads to the same conclusion, can serve
problem of research of "analog" (with continuous processes) object of
control (for example, in the same angular motion) with
discrete/digital regulator, whose work it is natural to simulate with

the help of digital means.
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Digital computer in composition of simulating complex makes it
possible to perform statistical processing of obtained dynamic
parameters. ATsK substantially raise possibilities and productivity
of simulation experiment because of the comprehensive automation of

the process of experiments.

During creation of ATsK together with advantages appear
additional difficulties. It 1s necessary to organize the exchange
between the analog and digital parts, in which the information in
principle is distinguished by the form. It is necessary to guarantee
the high rate of exchange. Must be created single control of complex.
For the solution of these problems is intended the specific type of
equipment - converters analog-digital (ATsP) and digit - analog
(TsAP). Those and others compose the basis of the third large part of
ATsK - devices/equipment of conversion and connection/communication.

Their characteristics for the serial Soviet samples are given in Fable

2.
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.Table 2.

(UTun npeodpasosarteaeil YIT-6 Y1cC

“
oanyectso KaHa.1os LIATI 24 32
(3 Al 23 72
ﬁpexninpcuépuxoanuuﬂ,MKC[lAfW 6 5
AN 15 20

(!,
41?JPHAHOCTb : 12 14
¥lllkaaa Hanpsaxenndl, =, B 50 10

Key: (1). Type of converters. (2). Quantity of channels of TsAP.
(3). Conversion time, us TsAP. (4). Precision. (5). Scale of

voltages, *, V.
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‘ 5. Role and place of physical models. Diversity and great
possibilities of the computer(s) of different classes permit to
investigate by the methods of mathematical simulation the very broad
class of dynamic systems. However for the possibility of the very
principle of mathematical simulation they are limited in view of the
simplifications connected v.th it. When tunese simplifications concern
separate units, the latter can be included in the stand of simulation
directly. This is most frequently the actuating elements of control
system, sensing elements, onboard computers. Utilized thus real
equipment improves the adequacy of model and raises the accuracy of
results. Creation for the real instruments of working conditions,
close to the flight, is very efficient. Thus, it is possible to

. subject them to vibrations, to create varying loads on the operating




DOC = 89056407 PAGE 7
2

units, electromagnetic inductions in the electrical circuits, finally,

to artificially create the malfunction of separate elements and units.

With entire temptation of enlistment to simulation of real
instruments it is necessary to distinctly visualize limitedness and

shadow sides of this path.

First of all it is necessary to keep in mind that some important
factors of flight (for example, g-force) is difficult to reproduce
physically on Earth, so that their study is possible only by means of
good mathematical description. Since these factors are essential for
the work of 2 number of devices, it is necessdry to investigate also
such instruments in the form of mathematical models. Even if there is
a possibility in principle to create in the laboratory these or other
physical conditions (vibration, temperature, vacuum), then technical
difficulties connected with this are not always justified by the

further informs+tion, which this physical model in comparison with the

mathematical is capable of giving.

Another factl inswept propagation of physical models, is their
limitedness in variation of parameters. Mathematical model in this
respect possesses indisputable advantages, since it makes it possible
to optimize the circuit solutions and the parameters in the broad

bands, to simulate all possible deflections and malfunctions.

And nevertheless physical simulation is often source of this




DOC = 88056407 PAGE/QZ}B_’

‘ information, which it is not possible to obtain by any other paths.
As examples can serve the studies of the elastic vibrations of
multiply connected constructions/designs and oscillations of
fuel/propellant in the tanks of the complex form, whose target
consists in obtaining of the substantiated mathematical description of
the phenomena indicated. The simulation of this type exceeds the
scope of this article. It is the independent theme, well reflected in

the literature (3, 11].
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DISTURBED MOTION OF NONROTATING FLIGHT VEHICLE WITH LIQUID IN THE

TANKS. THE SLIGHT DISTURBANCES OF FREE SURFACE.

On the motion of solid body, whose cavity is partially filled with

liquid.

G. S. Narimanov.

Carried out in 1951 work of author, dedicated to compilation of
equations of motion of solid body, which has cavities, partially
filled with liquid, is briefly presented, is given proof of existence
and uniqueness of solution of these equations and proof of application

of method of reduction for, obtaining solution.

Present article contains abbreviated/reduced presentation of
carried out in 1951 work of author, dedicated to compilation of
equations of motion of solid body, which has cavities, partially

filled with liquid, and to analysis of solutions of these equations.

Analogous equations, derived somewhat by other means, were

independently obtained later by N. N. Moiseyev [1, 2, 3].

In this article besides short conclusion/output of equations of
problem proof of existence and uniqueness of solution of these

equations 1s conducted, and proof of possibility of applying method of
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' reduction for obtaining solution also is examined.

1. Coordinate system. Initial prerequisites/premises. We will
assume that solid body possesses only the one cavity, filled with the
liguid (generalization of results for the case of the larger number of

cavities does not present any difficulties).

Motion of solid body and liquid we will examine relative to
certain system of coordinates (Q*x,*x,*x,* which is not, generally
speaking, inertial, but possessing the property, that field of
inertial forces and cravitational forces has in it potential function.

Besides this coordinate system, let us introduce into examination

‘ another system (Ox;X2X3, rigidly connected with solid body (Fig. 1).
The motion of the system of coordinates (x,x,x;, and therefore, solid
body relative to the system of coordinates QO¥*x *x,*x3*, we will
determine with the help of velocity vector Vv, of point O and of

angular velocity vector of rotation w, passing through point O.
Page 86.

For future reference let us introduce designations:

R, Rx - radius-vectors relative to points O, O* respectively,
R,* - radius-vector of point O relative to O*; n ~ unit vector of
external normal to the surface of liquid; u, - projection of relative

. speed of liquid on n; S - surface of liquid mass; §{ - hydrophilic
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surface of cavity; Z, - undisturbed free surface of liquid, described
by equation x,=C; ! - flat/plane closed curve of intersection of

surfaces Z, and §; L - disturbed free surface of liquid.

Let us represent equation of disturbed free surface of ligquid in
the following form:
x;—C=N a;(t) f;(x;, Xp), (1)
]
i=1
where functions f,(x,, X2), with exception of constant value, which

corresponds to A=0, are normalized eigenfunctions of boundary-value

problem:

_ g2 g2 ;
L+ S0 Yo @

dxf x5

Eigenfunctions of boundary-value problem (2) form complete and
orthogonal set of functions on G region, for which should be taken

part of plane x,=0, limited by projection on it of curve /.
Let us give basic assumptions, which are accepted subsequently.
1. Liquid, which is located in cavity, is considered inviscid.
2. 1t 3s assumed that motion of liquid in system of coordinates
O*x\*xy*x3* possesses velocity potential. Since in this coordinste

system the field of mass forces has potential function, by virtue of

the Lagrange theorem property of the potentiality of the motion of
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‘ ligquid will be preserved in entire time of motion.

3. Only low motions of solid body and liquid are examined. Low
is called such motion, in which values V,, ©, Ry*, angles between the
similar/analogous axes of the systems of coordinates (Qx,r,r; and
O*x,*x.*x3*, and also value g, ¢; (i=1,2,..) are so low that by
products and their squares can be disregarded/neglected in comparison

with the value of any of these values.

4. We will consider that potential function U of mass forces
(inertia and gravity) in system of coordinates QO*x;*x,*y;* can be

represented as follows:

. U=—jR*, (3)

where j -~ total G-vector of field of mass forces.

5. Let us assume that vector j in all motions composes small
angle with opposite direction of axis O*x, and, that means value of
projections j on axis (Q*x,* and (Q*x,* are low in sense of concept of
smallness expressed above. Let us designate through ¢ the velocity

potential of liquid in the system of coordinates (#*x *x;*X3*.
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Boundary conditions for function & take form:

[_g‘:;]:zvon 4o ~R]n; [%’L:Vl}nﬂwz\kl nta, (4

In view of assumed about smallness of parameters of motion second
boundary condition can be referred to plane x,=C of undisturbed free

surface of liquid.

Then we register conditions (4) in the form

[ﬂ]czvon—{—m[R ~nj, [o—d?—]xﬁczvon—{—w[R X n] 4

on X3

o

+ N a,fix, xy). (5)

i=1
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. It is obvious that function &, which satisfies conditions (5),

can be represented as follows:

N -
(D_—:VOR*—f—wS!—{—:-aiAi—{—const, (6)
i=1
where @ - harmonic vector function AR=0, and A; (i=1, 2,..) - harmonic

functions, which satisfy with respect to conditions

on n 0x3

[_"_Q_] =|[R xn]; [aAi] =0, [Eﬁi‘] =filxy, X9). (>
) d 4 X.=C

2. Expression of momentum and angular momentum of liquid mass.

Momentum vector of the liquid mass

K, =S pgrad ®dr, (8)

where 7 - volume, occupied by liquid; p - density of liquid (p=const).

Using expression (6), we will obtain

i=1

K,=p {S‘grad(VOR*) dr+§grad (0Q) dt +Eéz fgrad A[dt} . (9
From physical considerations following equalities are obvious:
jgrad (VoR*) dt = Var;j‘ grad (0Q) dv=1 [0 > R,], (10)

where R, - radius-vector of center of inertia of liquid mass.
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Let us further consider expressions, which stand under sign of .

sum in (9):

ygrad A‘-drzj (grad A, v)R*dt :S (vgrad A)R*dt —

-SR*Midr: (ﬁ R* —‘;"— ds.
[ n
S

k4

Page 88.

Identity is used for these conversions.

3
a=(av)R*,(v=E en 0: ) .
dx,

R=1

where e,* - unit vectors of the system of coordinates Q*x *x,*x;*. .

Using conditions (7), we will obtain

g} R*_(‘;'_‘:_‘. dS=R5§;Sf[(x1, xy) dG +

-+ Lj Rf:(x, Xy) d0=§5 Rof i (x1, x9)dG, (1)
d

where R; indicates radius-vector of point of G region. Let us

designate through
Lo= ({Lf,dG (12)
If

the Fourier coefficient of the vector function L. Then, using (11),

it 1s possible to register .
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5 grad A,dt=R§. (13)

A4

Using equalities (10) and (13), let us represent momentum vector

of liquid in the form

K,=mVo+ m; [oXR]+» EdiRm» (14)

i=1

where m,=pr ~ mass of liquid.

Let us designate moment of momentum of liquid relative to point
0, (0, - point in system of coordinates (Q*x,*xy*x3*, with which at the

given instant coincides point O) through G,.

Analogous with vector K, vector G, can be represented in the form
_N 15
GI_E G, ,, (19)
k=1
G, =§ p[RX Voldr=my [RyXVo]; Gpp= S p[R grad (0@)] dv=(/; ),
< A ’

where J,, as follow from work of N. Ye. Zhukovskiy [4], symmetrical
affine orthogonal tensor of 2nd rank, analogous to tensor, inertias of

solid body, with components

Jipy=" Sgrad Q, grad Q,dT. (16)

Page 89.
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Expression for G,, can be represented in the form .

a0 ac
Gy=0 Na, \ [Rgrad A;]dv=p N a,Q4);
'~ . P

=1 1 jeal

QC:Q (x[, Xo, x3:C),

~

since \ [R < grad 4;] dt :W (R -.n] AidS:tU % AdS =
o 04, "o ,-
:LD on 243 z.\d\ Q. f dG =QP.

Finally moment of momentum of liquid relative to point O, will be

registered as follows:

| co‘ . () J
G=m, R X Vo] (/1 ©) 19 :aiQC- (7

=1

-

3. Equations of motion. Let us register the expressions of the

momentum of solid body K, and its moment of momentum G, relative to

point O,:
Kr):mr)v.')“:*‘ fno[(ﬂl;"\fRfOI; GO: molRCO \"/_VO]‘%—(\/O‘(D), (18)

where m, - mass of solid bedy; 5, - tensor of its inertia relative to

point 0, and R,, - radius-vector of the center of inertia of solid
v.,dy relative to point O. Using expressions (14), (17) and (18), 1let

us compile the eqguations of the momentum and moment of momentum, whioh

with an accuracy to the small first-order guantity will take the ‘
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.followmg form:
mVo+[o - L]+¢ ¥ aRY=NP; a9)
i=1 J
. o = o)X
LV +U, wte Va0 =M, (200
i=1 j
where m=my+m, -~ general/common mass of system;

J=Jy+J, — +ensor of the inertia of system relative to point O,
and L=-mR,+mR, - static torque of system relative to the same
point; p - external forces and the inertial forces, which function
on the system; M; - moment of external and inertial forces relative

to point O. We convert the right side of the second equation.
‘ It is obvious that of all external moments cnly moment from mass
forces My=[LXj] depends on form of free surface of liquid, L -

static moment with respect to point O of system solid body + liquid.

Page S0.

Let us designate the difference between L and vector L,, which is
static moment in the case, ~hen the eguation of free surface takes

form x,=C, through AL,:

L=L,-}AL,, 2hH

It is obvious that it is possible to represent with an accuracy
to small first-order quantity AL,, substituting the value of x, on

' (1), in the form:
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AL=0p S'SR(xs-—C)dGzpia‘-RS’. (22)
a

i=1

Moment from mass forces M, can be represented in this form:

. (i) 9
My=Mg+o ¥ a:[Re X ], 23)
i=1
where Aﬂgf=[Lo>(ﬂ - moment, which functions on system in the case,

when free surface is plane, whose equation x,=C.

After preserving from value M under sign of sum, which stands
in right side of equation (20), only M, let us isolate that part of
moment of mass forces, which depends on parameters qg;, i.e., on form

of free surface. In this case equations (138) and (20) will take the

form
mV0+[io><L0]=2 P,—¢ YaRs (24)
] {1
[LOXV0]+(J, (';)"—'—‘; Mj —"Pz (&iQ(CI)—ar [Rg)\l]) . (25)

Let us further compile equations, which determine change in
parameters qg;. For this purpose we use conditions of pressure
constancy on the fre. surface of liquid, which leads to the following

equalities:

SSpnf,dG=O (i=12,..), (26)
ag
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. where p; - pressure at the appropriate points of surface Z.

Using Cauchy integral of Euler equations, is expressed p. with

an accuracy down to the terms of first-order of smallness as follows:

Ps‘—"“‘P('ﬁg‘“‘U)z y

ot

Page 91.

After substituting this expression into (26), after excluding U

and ¢ with the help of (3) and (6) with an accuracy down to the terms
of first-order of smallness, conditions (26) into this case are

converted thus:

N G 4aj=(j—VoRo—0Qf
R=1 )

(i=12,..), (27)
where Agc)'—:j“g AkcfidG J=lll .
g

Equations (27) together with (24) and (25) ~ose infinite
system of equations, which describe solution of represented problem in
the case of arbitrary form of cavity. Equations (27) substantially

are simplified for the cavities, which have cylindrical form.

. It will place system of -oordinates ()y.x,v, SO that its origin,
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point O, would be located in plane of symmetry of cylindrical column .
of liquid (Fig. 2), and axis Ox, would be parallel to generatrix. Let

us consider for this case the boundary-value problem, which determines

functions A,:

02 Ap 024, 024, . T o4, )
0x? + dx2 =0, a ] =0
1 2 GX3 n Je
()
0 flpu x3=——;~ h,
d4
Py (28)
X3 @

L 1
Srixy, xo) mMpu x3= -—5—/1,
Key: (1). with.

where o - lateral surface of cavity.

In this case functions A, can be represented in the form .
1
ch Ay (X3 -+ _'2_ h) 9
’ Ag sh Agh S5
where ;, - eigenvalues of boundary-value problem (2). Then

Re —

e
: \ [. 0 nupu [ £k
A}u—:ckfk(xl‘ x2)1 Ck:_—)\k cth "kh; A()__ c {'I};H lfk
<k I3 A

Key: (1). with.
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Equations of motion of body, which has cylindrical cavity,
‘ partially filled with liquid, take form

(i) : .
va+ (!)\<L0 Zp —‘P R (l—-—l,Q,...),

=-l

[LoxX Vo] +-(/, @)= ¥ M; —p ¥ (2,08 —a, [RE xj}); (30)

i i=1

dlci+aif=(j — vo) RY —0Q® (i= 1,2,..).

Initial values g,(f,) and ézi(to) are determined from

relationships/ra“ios
a;(ty) = S‘S‘Ef‘-dG:E(i), a;(ty) = H 7fidG =y,
v} ‘g

9+
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It is possible to conclude from form of equation (30) that if
Fourier coefficients from R,;! and Q¢!, that correspond to any
function f(7), are simultaneously equal to zero, then level, which
determines change in parameter g, does not depend on other equations,
i.e., change in this parameter does not depend on motion of vessel
and, on the contrary, motion of vessel does not depend on change in

this parameter.

4., Existence and uniqueness of solution of equations (30).
Possibility of application for solving the method of reduction. We
will examine only the plane motion of vessel, which possesses the
arbitrary cavity, partially filled with liquid. The examination of

plane motion simplifies computations, without reducing generality.

Let us assume that motion of vessel occurs in plane Q*y,*y,* and
that axis Ox, passes through center of gravity of system in
undisturbed position of free surface, and vector j is parallel to axis
O*x3*. Let us designate through e the angle between axes (O*x;* and

0x,.

Then system (30) can be represented in the form

. . — - (.
mx—ls=2pj—92aixﬁ~
} i=1

L -

s = NM. —0 N (a,Q8 +a,jx5); (31
: NM—s N
j i=1
g, tuia = = (xPx 0 e b jxg) (=120
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Here xXp=ux; Pp=P; fo}.___x((?;

CL:w'f; Ly=l; Ju=J; My=M; 28=90.

i
Initial conditions we have in the form
(i
Rey: (1). with.

Page 93.

. . oy . 0
v S == %p; «’C:«’Cui LI[:;({); a, =y ﬂpH t:fg.

Nl

Let us consider in system (31) equations, which contain finite

nuniber of-unknowns. Let us compile the homogeneous equations

corresponding to them:

di ‘+‘ml2al:O (i:1,2,...)- (32)

Let us designate through y; and z; linearly independent

solutions of equations (32), which satisfy initial conditions

y=1; §,=0; z,=0; z,=1 Ypu t=¢,

Key: (1). with.

Then, obviously, it is possikle to register following

expressions:
t

; . 1 0 o T
a (=10, + 302, + [ K(re) — (x§x 40 s 4 /) ar.

to

(33)
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where }(;(fr)::z;(f)yf(r)——z-(r)yi(tx

H

First of all we should be convinced of the fact that
lyﬂf)h

1({,<t<!)) cannot exceed certain positive number M, which can be

z,(t)]. and therefore, and ‘KIUT)\ in any limited segment
assigned independent of index 1.

Let us rewrite equations (32) in this form:

G (7, =0 ( — L th ‘».fh) (i=1,2,..) (34
¢y

and we will assume that function j(t), which characterizes change on

time of fiéld of mass forces, has continuous second derivative.

Furthermore, let us assume that j(t)2g, where g - certain positive
number. After replacing in the equations the variables

!
v n ~ LI 4/"'.
=\ 1 Jdts a; )=V ja, ), (33)

£y
we convert them to the following form:

E 3
da,

d;?

>

d?
d;?

~ D

()*. (36)

+ 13

R 3 1 \14
—q (‘)} a;=0; ¢q(%) :(T)

Let us consider solutions of equations (36) with fixed values of
initial conditions

. (4
a;=m; a;=n nupu {=0.

Key: (1). with.
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. Let us designate function g,*(I)., which satisfies these initial

conditions, through  (I). Following theorem [5], which let us give

without the proof, occurs.

In anv limited segment of change in variable -(0<<{<Cy))
solutions of equations (36) a;(L) satisfy inequality [@i(§)|<<N, where
N - certain positive constant number (not depending on index i, but

tnerefore, on parameter §;).
Page 94.

Let us designate

. S pe——— 4,
gy Q=v jy, &)y, ziQ=V jz; ()
‘s 1

_ . 4 - e 1/4 - 1/4
. yi=v jil; ,l/ ——( j) d ( )t-to; '——0 Zt——(—j—)/

w

1mHC=OU=%L

Key: (1). with,.

and since j(f{)=g>0. then all these initial conditions are limited.

1t follows from theorem given above that solutions of equations

(36) y.*(5) and 2;*(I) are limited in absolute value by certain number

N3

lyil< N: J2]l< N o<y,

But then from formula (35) we obtain for ( <lft<{
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max |y, ()] < M; max|z, (O] < M; max |K, (¢D}<2M> (M= Ng", (37)

where M - number, which does not depend on value of index i, which can

take any values from 1 to «,

Further, using (33), let us find

(1)

ay=— = (G 0 - jxb's 4 20y 1 J102) —

i
{

Kty (x4 20 + jxg':) jdr. (38)

Q/«‘,‘

R
C

e

0

Let us substitute expressions g,(f) and a;(f) from (33) and /st

to first two equations of system (31)

)
D
-t

(i

2 "y s f‘ QW05 N
mx —le= P xp S L e/ S
j+ C 'T_ r) C. meJe C .

(=1

w

i (i) ot 1 t

. G L. e b { (e
+JPET(;(’)y1+L(')Z()+/PE SK () (xg'x +

(=1

+eds+jx6'e) av, (39)

= _x(l)gz(l) Qli
Jinlx= 2M,+xo‘@ +pyx ¢

1-=1
b S

m’ (Qg) (O t {
+ Jjp L SK,(tr) (xG'x + 20 L jxg) dr.

i=1

~ [ 9 (i) ~
+ Jp L ( C — Xag )(E(()yi—{'_:{.(‘)zi) +
{

=1

(l)gz(l)

-‘
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Wwe will thus far assume that series/rows under integral signs in

equations (39) evenly descend (this will be proved subseqguently).

Then in equations (39) it is poss:ible to take out integrals as the

1N

Oa
e,
t
o

signs of sum; we will
t

. . |

+ 5 Aty xdt+-

ta

a0 F S s = NP 10

it
J

4 i
*rj B, (tT)edt + S By, (1) ed; (40)
to A
: .
QX - bye - byz = E 1,+/a (f)"*‘jA‘zz(tT)XdT‘f‘
J o
- t . !
»_ + | Ba(tv)zdr | B () sd. 1)
o ,0 :
Here o (o o ()
Aypg=m—9p Qi y  An=—— 1—{’02& =0
12 g i - C. ’ 22 b o Ci
b2 N AN K S By
n=J =9 C ’ 12=7]¢ _A i ‘7 ' 10 120

b — —— y
20 /P C. 1
=\ i —
* S i ’ ® (i)
~\ o [ o) o)) - NY Y6 -
Byy=] ()~ | —=——xd |5 Fi)y=jp Y —— COYi+xD2)
2= Jp 2 Koo ( o X , >1 .

. m“ L)
A oy Tl =)y z).
~, S~ ) oy,
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It is obvious that the system of integral-differential equations (40,
41) can be converted upon consideration of the initial conditions of
moving the vessel (X,, X,, €,, €,) to a certain final system of

integral equations of Vol'erra's type, which, in turn, can be in

general form represented as follows:

m t
be=2: )+ > [Ktnyyde (k=1,.., m). (42)

s=1 to

Page 96.

Thus, it is shown that solution of infinite system of
differential equations (31) is reduced to solution of homogeneous
linear equations of second order (32) with subsequent solution of
system of integral equations (42). In this case we assumed the
convergence of numerical series/rows and the uniform convergence of
function series in expressions (41). Thus, if this assumption proves
to be justified, then in view of the existence theorem and uniqueness
of the solution of equations (42) (with the limitedness of values
|¢x(t)] and [K(tr)|) we are convinced of existence and uniqueness of
the solution of the infinite system of differential equitions (31).
Let us demonstrate the uniform convergence of series/rows in

expressions (41) in any limited interval of time t.
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Hence w.1l follow both limitedness |qn(f)||K,(fr)| in (42) and
possibility of introduction of sign of summation under integral signs
:n equations (39). For this purpose let us formulate the following

theorem.

Theorem. ‘“ector functions gradfi(xh Xy), where f (x| X;) are the

c

eigenfunct:ions of boundary-value problem (2), are mutually orthogonal

or G region.

Proof. Us:ing a formula of Green and a boundary condition of
boundary-va.ue pror.em (2), we will obtain
\ ggrad frgrad f,dG=—{[ f,Af,.dG.
tG‘ .,0.'
But from (2) we have Af,= —An% .. Hence, after taking into

account the or<thogonality of eigenfunctions, we obtainr the proof

necessary to us:

| grad fagrad £ ,dG=hn ( { fofndG (& F 10 (43)

G g

Now let us begin proof of uniform convergence in any limited

interval of time t of function series, which stand in expressions

(31). Let us consider the series/row, which stands in ex>ression A, ,:
20 -r(G[)i
g lK“ (t1) - . 44
ol ¢
i =
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It is obvious from equality (37) that in any limited interval of
time for this series/row it is possible to construct majorant

series/row:
()

omr— \NY 22,
d C:

{

=1

Page 97.

Let us consider convergence of series

a

oD (") [ -] . P4

\V % Y th2ah .

et ——— ,Y)\f (lG .

- C? a A? (w Y )
‘ { H i td_

(=1 {=1

It is obvious that all terms of series/row are positive. Let us
note also that thAA<<l. Using a formula of Green and a boundary
condition for function fh we convert integral, which is located in
the brackets:

gxkff[dGz—-Hfo,dG-: fggradxgradfid(?.
W W

J

g

Using this conversion, it is possible to compose inequality

o0 v(]). o» 2
v_£_<\ __1__(5 rad x radde) .

2 == 2 g g i
ded C0 g b ég

(-]

Above is shown orthogonality cf functi~rs gradf, on G; this




R
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. makes it possible to compose inequality of Bessel

o0 9

E (\q\ﬁgradxoradf a’G) j‘\ (grad x)*dG=0.

i=1 G

Latter proves limitedness of sum of majorant series/row and,

therefore, uniform convergence of series/row (44).

Let us consider series/row, which stands in expression B,,:

(Ohu)

V K (tt) =96 (45)

‘ Proof of uniform convergence of this series/row analogous with

that carried out for series/row (44) is reduced to proof of

convergence of series

s

E -%2— (SS grad x grad f,-a’G) (S \n grad 2. grad f,-dG) . (46)
. i G-

il

Let us register inequality of Bessel

2
2—%—[S8‘(grad x +grad Q,) grad f‘-dG] <K 5‘5 (grad x+grad 2,)2dG.
l G

- P LY

Left side of this inequality can be represented in the form
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o 2 00 2
E-—é— (jygrad x grad f‘-dG) -+ 2; —il?— (L\;j‘grad Q. grad fla'G) +

[E) ag
+2 2 -—%— (” grad x grad f,dG) (Sdggrad Q, grad f,dG) .
1=1 ‘d

Page 98.

Hence we obtain, that summation of series (46) is less

«;— SS‘ (grad x+graa 2,)2d0,
d

that also proves uniform convergence of series/row (45).
Uniform convergence of all remaining series/rows, entering

expressions (41), analogously is proven.

Let us pass to proof of possibility of applying method of

reduction for solving infinite system of differential equations (31).
Instead of infinite system of equations (31) we will examine
certain finite svstem of equations with n unknown parameters u;(f),

that is obtained from (31), if we in it assume @;{{)=0 for i<n.

Let us register this system of equations
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n
.. - N (D)
— g = — 1:Xa’;
mx—le EPI Pza‘ 4]
] =1
4 ) (1
.o . v .. . .
Je—zx_—_-EM,—p}_;(wch +a,jxd);
j i=
(47)
. - N .
a:+w?-a,~=“‘cl—(X?:’x+9<‘:"e+JXo’e) (i=1,.., n).
1
As initial conditions for unknown functions of system (47) let us
tak€ appropriate initial conditions of unknowns of system of equations

(31), considering initial conditions for parameters @; at i<n equal

to zero.

Essence of method of reduction consists in finding of solutior of
infinite_gystem of equations (31) with the help of process of
successive approximations to solution of system (31) by solutions of
finite systems of equations of type (47) with entire increasing number

n of parameters of free surface a;(¢).

Let us demonstrate that in any limited time interval solutions of
systems of equations (47) with n-e svenly conver~e -0 solution of

infinite system of equations (31).

It is completely obvious that with each given in advance number n
solution of system of equations (47) can be reduced to integration of
n linear homogeneous second order equations of type (32) with
subsequent solution of system of integral equations of form

m .
yit=ol"+ ¥ j KMenyMar e=1...m. 48

s=1 1,
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Equations (48) are similar to equations (42).

Page 98.

If we demonstrate that the solutions of system (48) with n-= evenly
converge to the solution of system (42), then hence there will be
analogous affirmation relative to the solutions of systems (47) and

(31).

For this purpose let us consider integral equations

m t
sy =au e+ Y (KM e ayitar (k=1,...,m).  (49)

- s=1 ¥,

Theorem. If in any limited segment they are limited by the
variable t of the series/row of equations (49) in the absolute value,
then the solutions of equations in this interval will be as low as
desired in the absolute value, as soon as absolute values A¢Eﬂ(ﬁ) are

sufficiently low.

Proof of this theorem we lower; it can be easily carried out on
basis of consecutive iteration of solution and compilation of

corresponding evaluations. Further let us designate

Akl =y, — gk Ak (o =K, (v — K\ o,

m ¢
s =5, — ek O+ N [k Ty d

5-1 t"o
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In view of proved above uniform convergence of series/rows in

expressions (41) it is possible to claim following.

1. In any limited interval of time t

tim | K3 ol =0; tim A4 (6] =0 Hpn n— co.

RKey: (1). with.

2. Independent of value of n there is in limited interval of

time t upper bound for lKE"-!(tI‘)!, i.e.

KU (o) < M.

. Hence it follows that, since with sufficiently high value of
number of value of all IA‘PEH]\ can be limited by as conveniently small
number with limitedness of values \KE"] (tv)| independent of number n,
in view of expressed above theorem yk=limy£"] with n+» in limited
interval of time t, i.e., solutions of equations (49) evenly converge
to solutions of equations (42) which proves possibility of applying

method of reduction for solving equations (30).

5. Case j=const. Some examples. When j=const we have

w;

‘ Page 100.
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Integral-differential equations (40) have kernels, which depend .

only on difference in arguments, since in this case

Ki(['t)_—_:——-l—- sinw; (f — 1),
wf

and therefore for their solution successfully can be used transform of
Laplace or Carson with subsequent operation of convolution of

representing functions. Let us consider some examples.

A. L. N. Sretnskiy's problem. Let us assume that the body with
the cavity of cylindrical form can complete only forward motions along
axis (*y,*, being located under the action of elastic forces of some
springs, working according to Hooke's law and arranged/located in the
direction of axis (Q*x,*. Analogous problem was solved by L. N.
Sretenskiy for the case of cavity in the form of rectangular prism ‘

(61.

Here we will examine this problem for general case of cylindrical

form of cavity, using diagram of solution of problem presented above.

Equations (42) in this case will take the form

mx4-cx=—p Ziiixg);
f=1
- 2 1 oy
a{_*_u)(.a‘.z—z‘—xox (l:I,Q,..,).
{

Using initial conditions of problem, let us lead its solution to
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. solution of integrodifferential equations of type (40). 1In this case

we will obtain only the one equation of the following form:

/ g O\ .. °f.‘ o) O
G . G = (i) Sy 2 £l —
—_ X+ cx== —— [ coswit 47 Sinw
Lm PE. Ci ) i JPH C; ( ‘ wq I
i=1 i=1 :
Xo Wy .. -
— pj‘ ; ' G sin “; (¢ —-T)de. (OO)
ad C;
0 ‘i=1
Let us compile representing equation for equation (50). In this

case we will designate

o0

Fpy=>xt), % F(p=p{e #xirat.
)

‘ Key: (1). if.

Using known relationships/ratios of operational calculus [7], and
also using theorem of convolution, representing equation can be

represented in the following form:

L] (l)’
7 (m—-—p Z ~a )[F(p)——xo——- xo]+€F<p)~
C, P

i=1

XD =N wixl
e D e 3
Jp 2 P2+°’1 dln C(

i-

1 27 p
— —r . (5
s [F (P)=%= xo] P2+ o

. Page 101.
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From equation (51) we obtain following expression for image of

unknown function:
Fi(p)
Fy(pP)

= (x) ' 1 -
where F, (p)——(n' ~——pz c P +m )(xo+—;x0)+

=1

F(p)=

= (0)
. Y fa o (i) P .
+js 3 = (' p+7 )p.2+w?
=1
x(i)’

ph
Fopy=mp*4C—p CG

p?-f—w?

Function F(p), obviously, is meromorphic. Let us register its

expansion into series in terms of partial fractions:

Fo=Y) S, &

PrFo(pr) P — Pr

where pr (k=1, 2, ...) - roots of level F,(p)=0. We further find the

iniitial fuanc+tion x(t):

v _Fi(pe) Lot
f \ efx, (53)
*(6)= A-J Psz(Pk)

Formula (53) completely solves assigned problem, as soon as will

be determined roots of equation F,(p)=0.
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. Let us consider this eguation, after representing it in the form
hod (1) ~ N = t‘“)’
AR (4 C — mk 5 N g
T_P_____;_Fi_\ —_— H.IH — = -7
pi J H (' J) P+ h- J ‘d"l 1—"‘.“’1
(h=— p). (54)

Key: (1). or.

Equation (54), being analogous to equation, obtained by L. N.
Sretenskiy for case of cavity in the form of rectangular prism, gives

solution of problem for cavities of arbitrary cylindrical form.

We investigate roots of equation (54). For this let us consider

two lines in plane yA determined by the equations
_C—m 2\ (55)
"' ~ NETa J ‘-Ji'*R“

=1

Page 102.

Form of these two curves is depicted in Fig. 3. The abscissas of
the points of inte.section of the curves y,(Ax) and y,(X), obviously,

will be the roots of eqguation (54).

Let us show that there exists not one negative root of equation
(54). This means that numbers p, in expression (53) still are pure

imaginary. Let us consider the left side of the equation. W:i:th AZ0,

since C>0, we have
C—m\ m
® T

(56)




DOC = 89056408 PAGE ;i1 37
jo

/

It is analoc- s for right side of equation (54) with A0
s POk e £t
P *a
p=t Yt 2:
J H 1-(C‘/j))\ . C{
(=1 {=
_et us consider series/row ® ()
Y XG
Ci

i=1

Suostx*uplng values x, C; entering terms of this series/row,

by appropriate expressions and using inequality thjh<hih, we will

obtain .
' 0 :E ({\’xfdoj ), thxh<h\1 (fodG\)
i=t \G y :

=

After producing conversions, analogous to those, which were
conducted in p. 4, and using Bessel's inequality for orthogonal on

region G of vector functions gradf, we will obtain

3y [0 ~Fyp (ffmsses 0] <

(=1 G : im=]

< ( \ (grad x)2dG =G.
‘g




DOC = 89056408 pAGE/Wa(
. Hence we have
_ PG 00m M (57)
Y, X . < 0

where m,=phG - mass of liquid.
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Comparing inequalities (56) anc (57), we will obtain y,>y, with

<0, 1.e., equation (54) cannot be satisfied with any negative value

. o

B. Problem about pendulum with liquid filling. Let us consider
the plane motion of body with the cylindrical cavity, filled with
liquid, about the fixed point. Let us take fixed point for point O of
the origin of body coordinate system. Then the first equation of

system (31) is excluded from the examination.
Let us assume that center of mass of system in undisturbed state
of free surface of liquid is located below point of suspension O at a

distance (.

Then, if no other forces, except gravity, act on system, we ‘
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EM}.::——j/nle:——jlﬁ (lzmlc).
]

Equations (31) will take the form:

Jid jle=—~p N (2,284 a,;x8);

i=1

a,+oa, =‘—-»——-(Q(‘) +jx§e) (=12,..).

Lowering computations, analogous to carried out above, we obtaln

_ N\ Fi(0) st
e (f)= 2 Filpe) oot 58
P Prf o (Pr) (99)

= (i) o = x.
where F,(p)=|/— \‘1 e 1——0—-——‘;— e
1 (P [ P‘ plL g (ap+op)+

Ci (P2 + )

i=1
Q(l)
+Jp \ ( - )( 0p - L“’)-;:——;
i= 1
( (l)p‘ +jx(‘) )

Folpy=Jp*+ jl+ -+ 2‘ o

{

[=1

- the roots of equation F,(p)=0.

In this case pxr (k=1,2, ..)

Let us consider character of roots of equation f,(p)=0. For this

purpose, after assuming p?=-A, let us register this equation in the

. fcllowing form:




DOC = 89056408 PAGE 7

J—In 5 N1 =) (59)
TR 2,4 L—(CUNr '
i =

Page 104.

Let us consider two curved lines in plane y, A, determined by

eguations

oc

=N e (2 —r-17xD)?
W= BT 2 L—(CuDr ©0

=1

Form of these curves is depicted in Fig. 4 and 5.

Let us explain conditions, with which system in question

possesses instability.

Let us show that with sufficiently greater in absolute value
negative A value y, is less than value y,. Actually, with the
sufficiently high negative values A expressions (60) can be replaced

by the following approximation formulas:

T N\

(=1

Let us consider expressions, which stand in numerator and

denominator of terms of series/row with y:?. .
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Using harmonic functions 4, determined by conditions (28), and

also using Green's formula, we convert these expressions as follows.

e}

SHY -—”ucf dU = (f e — M’ aS= SgrangradAdt
G

Ci:j‘ AifidGz i} Ai% dS=S(gradAi)9dr.

¢ $ <

Following equalities prove, that vector functions

grad A; (i=1,2,..) are mutually orthogonal in region r:

Sg:adAigradAkdr—- (ﬁ A, 0‘4" dS = g A f,dG=C; sz.fde.

a
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Hence, using Bessel's inequality, we obtain follewing estimate of

Y= .

the magnitude y,:

| grad @ grad 4,dv)?
e U'gr g 1 )< = (rad9)2dr~—il- -4
5"72 S xjp & =7 X

(=1 T

(grad 4;)2dvu

f
<
This inequality proves our affirmation, that y,<y, with

sufficiently large negative A.

Let us find conditions, with which in certain sufficient low

vicinity A=0 with X<0 will be fulfilled reverse/inverse inequality:

Ya2¥.-

In sufficiently low vicinity of point A=0 expressions (60) for vy, .
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. and y, can be represented by following approximation formulas:

o0

A =L N =L (VG =Lor [1=({x4G
yx—m,yz——“.osz K,‘,p“xdG 0 ( 5;

i1 ¢}

where I - moment of inertia of plane figure G region relative to axis,
g

which is projection of rotational axis of solid body to G region.

From this expression for y, we can draw conclusion that y,>y,

with negative A in vicinity A=0, 1if pI>/.

In this case pendulum with liquid filling will be deliberately
unstable, although (>0, i.e., although center of mass of system in
undisturbed state of free surface will lie/rest lower than point of

‘ suspension.

Thus, if for stability of solid pendulum it is necessary to
satisfy only condition (>0, then for stability of position of
equilibrium of pendulum with liquid filling, which has free surface,
must be carried out more rigorous condition />Ip>0, which is in this
case necessary stability condition. Fig. 4 illustrates curves
y1(%), y2(A) and arrangement of the roots of equation in the case of
the stable position of pendulum. Fig. 5 presents the case of the

unstable position of pendulum.
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EQUATIONS OF THE DISTIIRBED MOTION OF SOLID BODY WITH CAVITIES, WHICH

CONTAIN LOW-VISCOSITY SWIRLED LIQUID.

B. I. Rabinovich.

General equations of disturbed motion of stabilized object with
cavities, partially filled with liquid, are derived taking into
account eddy motion of latter. It is assumed that Reynolds number is

considerably more than one, but Strouhal number does not exceed 10.

In description of motion of object in stabilization planes is
. used model of solid absolutely rigid body with cavities, partially
filled with liquid, which have internal narrow circular or radial
edges/fins. The obtained equations are the generalization of G. 8.
Narimanov's equations for the line of the account of the eddy of

liquid and pass into the latter with its irrotational motion.

During motion of object in direction of longitudinal axis as
model axisymmetric elastic body with cavity, formed by thin-walled

shell with internal rigid circular edges/fins, is examined.

In work [1], which belongs to G. §S. Narimanov's pen, are for the
first time published obtained by him general equations of dynamics of
solid body, which has cavity of arbitrary configuration, partially

. filled with i1deal fluid.
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This work stimulated appearance of vast cycle of research in
dynamics of objects with liquid filling. The literature, dedicated to
tnese guestions, which appeared in the years, which elapsed from the
moment of publication [1], is virtually boundless and count many

hunéred designations.

Equations, proposed by G. S. Narimanov [1], were used as basis
of mathematical models of disturbed motion of flight vehicles with
sections, which contain components of liquid propellant, and played
large role in solution of ser?es of problems of dynamics of these
objects. “One of the aspects of this problem is examined in the
present-;ork; which the author would wish to express his respect for
the memory of G. S. Narimanov and admiration by his basic research in .

the dynamics of bodies with the liquid.

Work, which is further continuation of [5] and [6], is dedicated
to phenomenclogical description of eddying motion of low-viscosity
ilquid in cavities of solid body, stabilized in space, having damping
devices in the form of radial or circular edges/fins, during its
oscillations in stabilization planes and in direction of longitudinal
axis (in the latter case are introduced into examination elastic

thin-walled shells, which form walls of cavity).

On basis of proposed phenomenological mathematical model of eddy

of liguid, which is further development of models, proposed in works .
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. [5, 4, 6], are cor "led equations of disturbed motion of gystem body -

liquid, bkeing generalization of equations of work [1l] to new class of

motions of liquid.
Page 1(7.

1. Equations of disturbed motion of solid body with cavity,
partially filled with liquid. Account of the =ddy motion of the
latter. Let us consider in the same setting, as in work [1], the
problem about the disturbed motion of body with the cavity, furnished
with dampers in the form of the radial or circular edges/fins, whose
number let us designate K. We will consider liquid low-viscosity.
Let us introduce as the characteristic dimensionless parameters
Strouhal- and Reynolds numbers and the maximum relative width of

edges/fins [4]:

[ ° °r2 - b
Sh=20" 2 Re— 0 pu Imax (N
w®l i v i
where v°, u® - characteristic speed and amplitude of the oscillations

of edge/fin relative to liquid in the direction, perpendicular to its
plane, during the disturbed motion with a characteristic frequency of
w°; | - significant dimension of cavity (for example, in the case of
axisymmetric cavity mean radius r,); v - kinematic viscosity
coefficient of liquid; bpax ~ maximum width of edge/fin. We will
examine the motion of liquid with the high values of Reynolds number,
the "intermediate” values of Strouhal number and the low relative

width of tlie edges/fins:

. Re»1; Sh1...10; 0K 1. (2)
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Let us introduce "absolute" system of coordinates (Q*x*y*z*, whose
axis Oxxx is antiparallel to gradient j of field of mass forces of
undisturped motion, and pole Ox is connected with arbitrary point of
body irn its undisturbed motion, and "connected" system of coordinates
Oxyz, rigidly fastened with body. The disturbed motion of body -~ this
is the motion of the system of coordinates Oxyz relative to Qsx*y*z*.
The speed of pole O and the angular velocity of body in this motion

let us designate v, and w respectively.

With respect to character of undisturbed and disturbed motions
let us take hypotheses, traditional for problems of dynamics of

stabilized LA [4], we will in particular assume small values |v,| and

tat .

Volume, occupied with liquid, let us designate Q, moistened
surface of cavity S. The "waveless" free surface of liquid Z,
following (1], let us relate to the body coordinate system (concept of

"rigid cover/cap" Z, coinciding with "waveless" surface of liquid).

Let us disregard/neglect, taking into account large Reynolds
numbers, eddy of liquid in wall boundary layer; however, let us take
into consideration eddying of entire mass of liquid, caused by

powerful vortex-forming effect of edges/fins with sharp edges.

Page 108.
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' We will use phenomenological description of eddy of liguid in

cavity [4], after isolating eddying, averaged by volume Q:

1 ]
P(t):—za—j rotv* R, £HdQ =012, 3)
Q
where v* - absolute velocity of liquid taking into account eddy; T and
Q - average/mean angular rates of rotation of liquid, absolute and
relative respectively; R - radius-vector of point, which belongs :o

region Q, which originates in O,

Let us represent field of velocities vx(R, t) in the form

v*R, $y=vy4grad (o, ‘P‘)—}—_\: sngrad ¢, +~T'«R —grad(T, ¥);
n=1
. ) divv*=0; rotv*=2T, (4
where ¥ and ¢, - are displacement potentials of particles of liquid

taking into account irrotational and nonseparated flow of edges/fins,
which are solutions of following boundary-value problems:

v

AW =0; =R <) | s413 (2)
ov | S+¢&
n — [} _._dc? ' ::O ———0? i == %\ 3 (6)
Ap=0; 5Vls v i ? s

v - unit vector of external normal to the surface

S+3; =%, (n—=1,2,..) - eigenvalues of boundary-value problem (6),
connected with natural vibration frequencies of liquid in fixed cavity
wn by relationship/ratio @n?==j%n; ¢=¢n (n=1, 2, ...) - eigenfunctions

of boundary-value problem (6) (form of natural oscillations of

. liquid).
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We will use following expression [7] for flow forces f,,
functioning on edge/fin perpendicularly to its surface, connected with
vortex formation on edges of edge/fin, which is well coordinated with

experimental data [2, 3] in range of Strouhal numbers in gquestion:

v
f, = ’Jk:b*f" (.’C,) l/L—L—I— V,,;
ped

k;z——l,lk;; br = b7 v =(V, V)V,

where 1 - unit vector of external normal to plane of edge/fin, forming
sharp angle with v; p - mass density of liquid; b - width of edge/f1in;
k>, - empirical constant, determined in the case of axisymmetric

cavities with the help of fable 1 [3, 4].

Further ¢(x')=0ue ® - empirical function, introduced in+o [3],

a=(.4; B=0.131 for axisymmetric cavities (x' - coordinate, calculated
of¢ free surface in depth of liquid, in reference to width of

edge/fin); ¥y -~ relative velocity of liquid at points of center line
of edge/fin L, calculated in the absence of edges/fins (potentials ¥°

and ¢’n)., and V., - its form, determined by formulas

a0

I we N - 0%,
V.(R, #)=1Q, Y ——— n :
( ) <R' ’ ot )+-:EJ:; av Y

n=1

(8)
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It is possible to show (see [4]) that s of two last terms in

(4) and exprescsions (8) do not depend on selection of pole O.

We pass to compilation of equations oI disturbed motion of system
body - liquid. We will use the variation principle, analcgous to the
principle of Hamilton-Ostrogradskiy
t,

[awar=o, 9)
t, i

in which the role of "action" plays "power” w; t, and t, - arhitrary
moments of time. Without breaking generality, it is possible to
assume t,=-=. If we as W® take change for 1 from the total energy
of the system

dW . : . . : .

—;7 under the assumption of the ideality of liquid (irrotational
motion), then the equations of work [1] are obtained from (9). 1In the
case in question it is possible therefore to be bounded only to the
calculation of generalized forces M and P,7, which correspond to
generalized wvelocities  and §, connected with the eddy of liquigd,

and tne compilation of further eguation for Q.
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(1 (i) 6 L
N XapakTep KoteGanun
s Tun peGep SKUARKOC T kg

i

3) (9]
0 (s Koasuesne ‘gceCHm&eprmue

1 “rPaaunaastvie [AHTHCEMMETPHUHBIE
3 Konbueaue€>égnncemmerpnqnue

N
~n—
——o

PAGE % .4

Key: (1). Type of edges/fins. (2). Character of oscillations of

liquid. (3). Circular. (4). Axisymmetric. (5). Radial. (6).

Antisymmetric.
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After designating counterpart of W through W(? 1let us write out two

equivalent expressions:

u'ym—_:(M(’), Q)"{—Zpg)s.ﬂ: -—-(B, 8)Q+

R=1
+> [(ﬂon,e)'s,, + ConWSn— X ¥rnSnSm } ;
n=1 m=l
kb* -n t
W= — p S (V v,) ¢ (x")ds,
where
f Q ) t e
() = MIE . s (= [ =Edr .
) e Sal= | S
B - symmetrical tensor of second order; f,, - vectors; Un

scalars (n, m=1, 2, ...):

(10a)

(10b)

(11

and Bam
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Formulas for coefficients
substitution of expressions v,

and comparison of coefficients

. PR
{

=

when & and s,

B°i;, Bonj, Bnm are obtained after

and V, (8)

into right side of (10b)

in (10a) and (10b):

}KJ 5 VT—\T,_I{—-(RXV)rF

R=1 Lk

ov;
- av

=1 L,
. K
3 Pk,
?'nmz:smnz =

where [, - duct/contour, formed

Potentials ¢°» in (13), in
to irrotational motion of liquid

edges/fins.
Page 1l1l1.

As a result of substitution

v
] [—(RX»),--F-(;;L}b*?(x')dS?

(13)

T ov; | 99, N e
__(R><v),-+-5—v-i] =2 0% (x) ds;

a [ ]
Z¥m_pro(x)ds,
ov

by center line of k edge/fin.

contrast to (12) as W, correspond

in cavity in the absence of

into (9) expressions of "potential"

‘ part W of power (:J, determined by field of velocities (4), and




e
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"vortex/eddy" W from (1l0a), and also expression of moment of ‘
hydrostatic forces from [1], we will obtain following complete system

of equations of disturbed motion of system in question:

(m 4 m) Yo+ 0 5 (L°4-L) 4 ¥ AaS,=P;
nwl
(1° -+ JO,0) + (L* L) < (Vo — )+ (J%,9) - Ep.o,, Sn— (g~ j)s, =M
n=1
t

5, D+, &>+(B,§“ 0""“) \“ o | 2B =0 g

ye B, Vi—z

-— = — o

b (Sy+o02s,) (0, v0)+().0n, ©) — (A, )+
t

t .
" Sm(v)dT | Q(vyde | _
] +vnz{3nm Vi Kﬁom Vi g )—0

(n=1, 2, ...)

Here P and My - main vector and the main moment (relative to pole O)
of the system of external forces; L° and L - vectors of static moments
(relative to pole O) of solid body and hardened in the presence of
"rigid cover/cap" liquid; J°=J© - tensors of the inertia of body and
hardened liquid; J*=J©—) where J - tensor of N. Ye. Zhukovskiy of
the connected moments of the inertia of liquid in the cavity with the
"rigid cover/cap":

=745 J0={{}}; I=(J,]. (15)

Elements of tensors (15) and vectors A, and },, are determined

by following formulas:
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o SO =0 =¢ | Rxi) RX) dQ;
Q
. ow; .
jl.j=Jﬂ—_-_-pSV\Fiv\IdeQ=PCﬁ ¥, ==L dS;
Q S+t

J;,-=J;'1=-/x('3)“‘]ij;
_ 0%n S:
lr_pSRjg—d ;
b

0%n
=p\ ¥ —248S.
Aon P& ov

I

(16)

V - here and throughout - the operator of Hamilton.

Let us consider case of irrotational motion of liquid in absolute
system of coordinates (Q*x*y*z*, to which corresponds I'=0; Q=-w in (14)
. and k=0 in (13). Equations (14) take the form
(m°+m) Voo X (L4 L)+ N Aus,=P;

n=1l

o0

(1439, )+ L +L) X Vo= + X [Fonsa = Ga X Dsal =Moi (1D

nel

b (8 F02s,) + (g Vo) (hgpy @) —(hpy D=0 (2=1, 2,...).

Page 112.

System of equations (17) coincides with accuracy to designations
with total system of equations of disturbed motion of solid body with
cavity, partially filled with ideal fluid, obtained for the first time

by G. S. Narimanov [1].
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Let us consider now opposite case, when relative angular velocity
of liquid is identically equal to zero, to which corresponds motion of
entire liquid as solid body. Equations (14) must in this case pass
into the usual equations of the dynamics of solid body. Actually,

after assuming in (14){2550,5n550 (n=1,2,..), we will obtain

(m°-tmyv+o x (L°4+-Ly=P; 18)
J° IO, @)+ (L°4-L) X (vo—j)=Mo.

As is known, these equations describe motion of system body -

hardened liquid.

One Should stress that if we do not consider eddy of entire mass
of liquié in absolute coordinate system, then passage to the limit
from ‘appropriate equations to equations of dynamics of solid body,

demonstrated above, is impossible.

Equations (14) correspond to arbitrarily selected pole O. If we
select as the pole, as is done in [1], the center of mass G, of system
body - hardened (in the presence of "rigid cover/cap") liquid, then
total static moment L°+L will become zero, and equations (14) will
pass into the following:

(m°+m) v+ N, s, =P;

n=1

A7 IO, &)+ (I, Q4 N [honSs— (e <)) Sa] =Ma,;

=1
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J*, Gyl (-))—1—(13 j Q(‘)‘”) V B, \‘ ST . (19)

y ¢ yt—rt

—oo — 00

Y (S.-I‘l-*—w‘rztsn) + ()"n.? \.l) + (}vons (')) - ()vn’ j) "1"'
0 ¢ t .
‘H"n L Y S‘ s,,,(t)—dt (ﬁom S‘ Q/(t)dr):_o

Ve yt—=

m=]l —o —

(n=1,2, ..),
where v - velocity of point G, in the disturbed motior, and all
coefficients of equations (19), which depend on the position of pole

O, are given to the new pole G, as Mg,

Let us consider axisymmetric object with axisymmetric section,

which contains liquid, that moves in plane Oxxxzx,

. Page 113.

Equations (19) acquire in this case the following form (if we
drop/omit some unessential now indices):

(m°—+ m)z}-}—: X,,§,,=P,_:

n=1

o+ TN @ T*Q L N (s, 4 JhaSn) = Moy

n=1

t .
A A —}‘ °".“"“ =0  Q0)

d

o (Sp - 055,) A0+ xonw + NS
£ . 4 .
+u, E f Sm(DdT g § 204 g

| A + J Vit—=x

. m=1 —o0 — 50
,
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where all generalized velocities v, w, £ - now scalar quantities as

the coefficients of equations (20), moreover w=1y; J'=/"—/ (J - here
and throughout no longer tensor, but scalar - connected moment of the
inertia of liquid, calculated according to N. Ye. Zhukovskiy for the
cavity with the "rigid cover/cap"). If we assume in equations .20)
O=—w; v=C p=0; Bon=0; Bnm==0, "then equations (20) pass with

accuracy to designations into the appfopriate equations of work [1]:

(m°—l- m) i"l":: )‘ngn:Pz;

n=1
i S Dt N Cont a8 = Moy =D
n=1
(5 055 Al Ron § 2,79 =0 o

2. Elastic shell in the form of body of revolution.
Axisymmetric motions of liquid. Let us consider the axisymmetric
elastic thin-walled shell, which has within K rigid circular damping
edges/fins, partially filled with low-viscosity liquid. Let us assume
that the shell completes low oscillations in the direction of

longitudinal axis, which is parallel to the field gradient of the mass

forces of the undisturbed motion.

Let us preserve in force all basic hypotheses, which concern

dimensionless parameters of problems (1), introduced above, i.e., we ‘
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. will assume that these parameters satisfy conditions (2).

Fage 114.

Let us connect with cavity with undeformed walls cylindrical
coordinate system Oxrf with pole at arbitrary point O, which lies on

longitudinal axis of shell Ox.

Vector of displacements of points of median surface S° during its
axisymmetric oscillations let us designate u (u, w), where u -
tangential, and v - normal (on external normal to S°) components,
which lie at radial plane Oxr.

We will use traditional hypotheses [3] about character of motion
of shell and liguid. The eddy of liquid in field Q, generated by
circular edges/fins, we will as in Section 1, describe in the integral
sense with the help of averaged throughout entire liquid volume

eddying.

In this case all vortices/eddies should be considered circular
with centérs on axis Ox and averaging carried out in radial plane Oxr
through G region, which is cross section Q with half-plane Oxr. As a
result we will obtain the axisymmetric eddy of liquid with the angular
velocity, identical at all points of G region with any value of
vectorial angle 6, directed along unit vector j; of tangent toward

~ircle/circum”erence r—const
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I .
I‘:E—y(rotv*, i dS, (22)
(7]

where v* - absolute velocity of liquid.

Field of velocities vx(R, t) can be represented in the form,
analogous to (4):
- o
v* (R, f)=’00ix+2 (jjgrad lIf}.-{—Z S, grad p,+T (i; xR —grad ¥*);
j=1 n=1
divv*=0; rotv*=2i,I. (23)
Here Rr— radius-vector with beginning O at arbitrary point on the
longitudinal axis of cavity; Uo - velocity of polar wandering O in
the direction of axis Ox; Wi, qgj- - displacement potentials and the
generaliiéd coordinates, which correspond to the natural oscillations
of systé; elastic shell - liquid with the flat/plane free surface:
®n, Sn - displacement potentials and the generalized coordinates,
which correspond to wave motions on the free surface during the
oscillations of liquid in the cavity with the rigid walls; %x -
displacement potential, which ensures equality to zero of normal

component of velocity on surface of S+I with the eddies of liquid.

Page 115.

Potentials WY+ Y, @, are solutions of following boundary-value

problems: B .
L . ¢
awr =0 S|, =Rl G| =0 0
AV =0; %‘,{_ s=w(R): -%\j—f v=———§—\&‘d$: %‘i- r (:—0. (£3)
S
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where A - three-dimensional operator of Laplace; «=«,, X,, +.. -

eigenvalues. Boundary-value problem (24) is closed by the equations,
which describe the elastic deformations of shell by corresponding

boundary conditions [3].

Vast literature is dedicated to solution of boundary-value

problems of type (24)...(26), and we on them do not stop.

We will use again expression (7) for flow forces, which functions
on edge/fin along the normal to its surface, caused by eddy of limuid.
If we disregard/neglect the tangential displacements of elastic shell
low in comparison with the displacements of liquid, then functions

vv(R, t) and Vy(R, f), which are scalar analogs (8), are expressed by

the formulas

d
0,R, H=T[®x0i,~ 5‘2‘f]+2q W’+}_‘ ‘3“’"; @7

J=1

¢

d
V. R, ”zj :J y?{t“;

Right sides of expressions (23) and (27) do not depend on

selection of pole O, since they have the same structure, as {(4) and

(8).
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If we now use variation principle (9), then on basis of
expressions (7), (23) and (27) it is possible to obtain equations of
disturbed motion in direction of longitudinal axis of elastic
axisymmetric shell with liquid taking into account eddies of latter

(also axisymmetric).

Let us register, as above, two equivalent expressions for that

part of power W), which corresponds to eddies of liquid:

Vo= _(3"‘60+E ViQs+ X S o )P“E (Y"’B‘J*E ViQi

j=1 n=1 - j=1 l"‘-

+2 airzSn) q'i —}: (gnoeo+z Banj_}'P'nE uanmsm) én: (286)
i

~ A=l n=1 =1 m=1
2 S
W= - ifi 23 V10, TV, 0,6 (x) ds, (286)
T
where ¢ k~tL{. ¢
60—_—.5 L(mde Q,— 4@dr o [ sa(@ds 29)
Jo V=g J Vi=z ' " 3 yi—z

L, - center line of k edge/fin.

Comparison of expressions (28a) and (28b) after substitution in
(28b) v, and VY, from (27) makes it possible to obtain formulas for

coefficients «vjj, Bam, Ojn etc., which will be given below.

et us write out now some auxiliary relationships/ratios, which

prove orthogonality of functions Vn and VY, to function
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‘ isX R—VW* in region Q, which are corollary (24)...(26):

“R (i <Ry—(R {v) &%) iga’Q:j‘[(R Xie)Z’_(v\y*)?] 4Q=
Q

Q
— J1)2 — k3 oy .
—S(R {i2dQ d: v 4,
Q S+2
: ‘% TR 2 e 092 .
y(la?\’R —v4*) v5,dQ= q‘: (i, <R)v9,dS — rt * -deS_
S+ 3 S+3I

— & ¥, a5 Cb i "‘P" 4S =0
Joov
S+T S+£ (30)
y(laxR—v‘IJ*) v¥ dQ——(ﬁ(nexR) VS — CE \If*——ds-.

S+3 S+3

» o
——¢ V" p4S— @w* L 4S=0.

S+£ S+1I

Is consistent pole O with center of mass G, of system shell -
liquid in undisturbed state (statically deformed shell, hardened

liquid).
Page 117.

Using (23) and (27)...(29), we will obtain with the help of (9)
following mathematical model, which describes the eddies of liquid in
Q region and wave motions on its surface together witn the elastic

vibrations of shell during its axisymmetric streins:
(m°+m)v=Px;

! (t) dv

- I‘(t)du 4 ( Sa(mde_ .
a*F—}—\J* +v\}d S }'/’t__t s 0 ‘\ }/"t_.:?; O

— 00 ne=1 — o0

o | - (31)
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%0 14 %0 4

.. 2 _1 .. F(T)dt \ \1 q (T)dt

G435+ N Masat v [Ny, (IS
ie t-’ . -
n-l — o0 ] ¢ =1 —.-'oo ‘ g t
t
—~ s () dt
_% 1> ju j’ _-£'::/)ﬁ

-— 00

t
. g.(t)dc
'J-,I(S —*_w“‘ﬂ)—l— S Jn‘]j ~dno y -—S Lt +2 jn —“S"—

}¢

% t
St \W 4 S Sm Sm(v)dt —0
et

y/t-t
(/, n=1, 2,..)),
where p . - projection on axis (, of the main vector of the system of
external forces; P; - the generalized force, which corresponds to

generalized coordinate g;; m° - the mass of shell; m - mass of liquid:
o; and w, (j=1, 2, .y n=1, 2, ..) - partial natural vibration
frequencies of shell with the liquid when s,=0 and wave motions of
liguid when g,=0,v - the velocity in the direction of axis Ox of

point G,

Coefficients of equaticns (30), connected with eddies of liquid,

are determined by formulas:

—p§<R><.e)2dQ—p <§> v 22 gs;

S+2
k' o*
p*z% E S vV T, [(va)ia—i‘%—]’ b*e (x) ds;
14

k=1 Lk




DOC

830564089

oo’

PA;E} 21

0%,
ov

b e(x'yds;  (32)

—2 b*o (x') ds;

aqj
= b*e(x')ds;

*o(x')ds;

k
= K °
. Pk / O
\jnmzfmn: ]':-t 25 ¥ l v, l v
k=1 Lk
. K .
k i L]
Y= P/i :‘ ST | v, | [(R)/\V)le— ow
V1 oed dv
k=1 Lk
. K °
pk, v,
Y}l“"vlf + ‘/;\2 2 l S‘/ I v, 9v
R=1 Lk
« K o
pks ¥ ] d(?n
— v, | —= ——b*o(x)ds.
3 VRMV‘M; L b ()
- Raml Lk

. Page 118:

For the remaining coefficients we will obtain following expressions

(31]:

Here S°

a;=p \ (v¥)2dQ 4%} 2yS=pf ¥, —1
y ng )dQ+-p g]lu,l ds ,@u, ——dS+

+3
+p°a°gﬁlu,1'd5;
S
hn=p | (79, 52, dQ 9oy, .
. j» % —Pj =P as; (33)
Q b
—_ 2 — 0%n
B —Pj (Va2 dQ= pjp,, as.
9

- middle surface of shell;

(o]

r
-

- mass density of material




DOC = 89056409 PAGj;lXZ/Z/

of walls; §° - their average/mean thickness; vector u, corresponds to '

j form of natural oscillations of shell when g,=0.

when y;o=0, v;i=0; Bno=0; Brm=0; 6;a=0;, I'=0, v=: (31) passes

into usual system of equations of axisymmetric oscillations of shell

with liquid with irrotational motion of latter [3]:
(m°+m)5=Px;

2y 4+ > Masa=Py; (34)

n=1

Pn(§n+misn)+2 }\j,,-(-]j=0 (fl, j"-—_l, 2,...).
i=1

3.,7 -Equations of disturbed motion of stabilized axially .
symmetrical body in stabilization planes and in direction of
longitudinal axis. Let us consider the stabilized in the space object
with the N cavities, which possesses the mass and geometric axial
symmetry (cavities have shape of bodies of revolution with the common
longitudinal axis, which coincides with the longitudinal axis of
object). We will be bounded, as is done in the majority of applied
research, to the account only of the one form of wave motions of
liquid in each of the cavities. We will schematize the
considered/examined object during the motion in the stabilization
planes by solid, absolutely rigid body with liquid filling, and during
the disturbed motion in the direction of longitudinal axis - by body,
which includes N elastic thin-welled shells. 1In this case let us take

into consideration M first forms of the longitudinal vibrations of .




“
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’body, which are accompanied by the axisymmetric deformations of

shells, which form the walls of cavities.

Page 11865.

Thus, index n will now correspond to number of cavity, calculated
off tail section and head, and j - to number of form of natural
elastic axisymmetric oscillations of entire body with liquid (G, -
center of mass of entire system in its undisturbed motion with

hardened liquid).

All the remaining hypotheses, formulated above, remain valid.
‘After taking for the basis mathematical models (19), (31), obtained
with these hypotheses, it is possible to obtain the equations of the

. disturbed motion of system in the stabilization planes (from (20) - in

the yaw plane) and in the direction of longitudinal axis. 1In the
latter case it makes sense to examine two different models: a) not
considering the elastic deformations of body (in the range of the
"low-freguency" oscillations, connected with wave motions on the free
surface of ligquid); b) not considering wave motions of liquid (in the
range of the "high-frequency” oscillations, connected with the

longitudinal elastic vibrations of system housing - liquid).

Meunenue 8 naockoctu poickanus O*x*z*

N
(in°+m) L+ Z ASp =P,
nel

N
(J°+JO) &"‘I— }: (./,',sn+7~0,,S,,—l,—j)kns,,)=MG°y;

o =
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t

. 3,,(r)dn , S sn(t) du _0:
jn&n'i’-’" ? ] F— Bon - '
r .. t § (%) d
Lod e se - Q 1 c
B (Sﬂ+?’ﬂ %+wisn)+)‘nc+)‘on ‘P"i’/"n(‘?—t’onS "‘],'1/—;-—::-;:
(39)
(n=1, 2,...,N).
(’)Bpazueuue sokpyz npodoastol ocu Ox (Kpen)
N
(LA TN+ Tayn=Ma,s; (36)
n=1
t
n/n+ln'?+30 S Zﬂ—(tf)—?——o (n=1, 2,....N).
_ VE—

Key: (1). Motion in the yaw plane Oxx*zx. (2). Rotation around

longitudinal axis Ox (bank).

In equations (35), (36) are introduced not requiring commentaries

simplified designations for elements of tensors B, J°, J©,

év \-p’ 6"

Jx, or for

generalized velocities: (rudder channel) and @, Xn (channel

of bank).
Page 120,

) : v
Heunenue 8 nanpasrenuu npodoasuoli ocu Ox
(¢a) abconoTHO KecTkoe Te10 (¢;=0)

(m°+m)t=P,;

t t
. * Yn (¥) d K sn(r)du . -
anvn+l3n Vt——‘t -+ “no Vt—-t _0! (3/)

-— —_—
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o oy (5,4 02s,) 43, [ =047 g
Viei—q

(n=1, 2,...,N);
(b} OTCYTCTBHE BO.JHOBBIX ABHAKEHHH (S,=0)
(m°+m)i=P,;

I} PREEY
N L x Y'l (t) dt ~ (ll) q} (t) ac

Any,—+ 3 + 0
nYa o } t—-t ‘ j‘ )/f—-ﬁ 0

t

¢ .

. . AN ,' ydT

ay(q;+ g ;) +v5 | Yyﬁrm V \ LET
& - [

p z—l
(n=1, 2,..., N; j=1, 2,...,M).

Key: (1). Motion in the direction of longitudinal axis Ox. (la).

absolutely Tigid body .... (1lb). the absence of wave motions

‘ In comparison with (30) is here introduced new designation

yn=In, remaining designations do not require commentaries.

Mathematical models (35)...(38) can be assumed as basis of
analysis of disturbed motion of axisymmetric objects with cavities,

which contain liquid, taking into account eddies of latter.
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RESEARCH OF THE DYNAMICS OF SOLID BODY WITH CAVITIES, WHICH CONTAIN

LIQUID, TAKING INTO ACCOUNT ITS EDDYING.

V. G. Lebedev, A, I. Mytarev.

Is examined mathematical model of solid body with cavities, which
contain liquid taking into account its potential and eddy, analogous
to mathematical model of unsteady skin effect in magnetic circuit of
controlled electromagnet. This model takes the form of the system of
nonlinear integrodifferential equations with the singular kernels.

The numerical and analytical algorithms of the study of dynamics and
‘ stabiliij: of the objects, described by such mathematical models, are
developed. The efficiency of the proposed algorithms is shown based
on the example of the analysis of the disturbed motion of solid body
(rotation around the longitudinal axis)} and are revealed some dynamic
effects, which are absent in the models, which do not consider kinetic

energy of the eddies of liquid.

In work [4] it is shown that such different, at first glance,
phenomena, as eddy currents in magnetic circuit of éontrolled
electromagnet and eddies of liquid in cavities of mobile solid body,
which have internal edges/fins, can be described with large Reynolds
numbers and small Strouhal numbers within the framework of one and the
same mathematical model. Some aspects of the use of this model for

. the perturbation analysis of objects with the liquid will be examined
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Mathematical model, which considers irrotational motion of

ligoid, pari.elly filline cevitiee of mohile solid body, were obtaired
by 6. S§. Narimanov [2]. Mathematical model [3...5], which is the
system of nonlinear integrodifferential equations, is its further
development in the part of the account of the effect of the eddy of
liquid in the presence in cavities of internal edges/fins. 1In the
work of G. S. Narimanov [2] it was shown that the system of the
differential equations of infinite dimensionality, which describe the
disturbed motion of system body - liquid, can be reduced to finite
system o{ﬂintegrodifferential equations. These equations were used by
him for. the proof of existence and uniqueness of solution and proof of
the possibility of the reduction of the reference system of ‘
differential equation'to the system of final order. The same
equations can be used directly for the construction of different
calculating algorithms. 1In this sense the results, obtained below,

possess the specific succession with [2].

1. Equations bf disturbed motion of solid body with cavities,
partially filled with liquid, upon consideration of its eddy. Let us
give the equations of the disturbed motion of stabilized solid body in
the stabilization planes upon consideration of the potential and eddy

of liquid, which are borrowed from the article of this collection [5].

Page 122.
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N
(”lg’lev) C"i‘ 2 knsn:Pz;

n=1

4 N . .
S S st hass) = Mow:
A=l
S ( yd t .. ( yd
P P ° 8 T -c s T .u . )
Jndy+J o+ 3a ’i%;:j;"‘aon ‘é%?ffi-——O, (hH

-— OO —0

3“t)dt

t
(s,,—}—w,,s,,—{—?,, Sn(t)d“)’*")‘nt—}')‘onq)""/)‘ 'p‘—-?'on S Vt"" =0

Vi
(n=1, 2,....N),

o

Key: (1). Motion in the yaw plane.

where § = coordinate of the lateral displacement of solid body; v -
‘ yaw angle; s, - the generalized coordinate of the fundamental tone of
the skew-symmetric oscillations of liquid in the n section; N - number
of sections; ¢, - further coordinate, which characterizes the
dynanics of liquid in its eddy, which is absent from the traditional
equations upon consideration only of irrotational motion; m° - mass of
body without the liquid; m -~ mass of the hardened liquid; J° - moment
of the inertia of body without the liquid; J' -~ moment of the inertia
of the hardened liquid; J,* - connected moment of the inertia of
liquid, which corresponds to its eddy, p, - the apparent additional
mass of liquid in the n section with its irrotational motion; P, and
Mg,y - respectively external force and moment, applied to the body,
including controlling and perturbing components; j - modulus/module of

‘ the field gradient of mass forces; , - partial frequency of the wave
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vibrations of liquid in the n section; j,, 2.n - coefficients of .
inertial couplings; B°, Bon, Pn - coefficients, which characterize the

effect of edges/fins, and which are the nonlinear functions of tuc

relative velocity of the motion of liquid [3}:

J— o p—— .
n-13 V/ | 3 30n-gon'l PSal 2,23,V |Sal. )

In pitching plane equations are written/recorded analogously.

UBpauenue soxpye npodo.asroil ocu (Kpew)

h'
1) 54N gy =,

n=]

X

¢

- Inin+ Ino+ %5 [ 22828 —0 @)
J

yt—t

—_

(n=1, 2,...,N). .

RKey: (1). Rotation around the longitudinal axis (bank).

Here ¢ - roll attitude; Y¥n - generalized coordinate, which
corresponds to eddies of liquid. The coefficient, which characterizes

the effect of edges/fins, is expressed as follows:

t’n*—’ Vl/nl )

Page 123.

Remaining designations are analogous in sense to designation,

accepted in system of equations (1). 1In contrast to the yaw planes
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. and pitch in the rolling plane wave motions of liquid are absent.

Upon simplified consideration of eddy of liquid (with neglect of

appropriate kinetic energy), as this was done usually [3, 6],

\

. . IR P |
UUALIUND Va4 Qo (3)

paos into fallnwina:

(m°—1—m)C+Vl =P,;

n

,.4

N t
<J°+J>¢:s+2(xo,,‘s',,+3m {s"(‘"’"+ xs) sj“‘“"—

n=1

-
n(§n+w38n+3n S %’%‘%_%)-{—lnt'-{-xongp_}-ﬂn(p_{_
\ .

o t (5)
o L3 y %l‘il_o (n=1, 2,..., N).
| ¢ @4
° o230 | fl¥)av ) 6
+ni+p | L, (6)

In these equations J, I - connected moments of inertia of liquid,
B, B° - coefficients, which characterize effect of edges/fins. They

are expressed as follows:

(7

O
I
E
a&O

J = J(O)_..VJ l_./“’)——V/m? 2

n—l n==-1 n=1

3
]
—

Thus, disturbed motion of solid body with cavities, partially

. filled with liquid, upon consideration of its eddy is described by
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system oI nonlinear integrodifferential equations. By analogous

@guations is described, in particular, the dynamics of the controlled
electromagnet upon consideration of unsteady skin effect in the

conducting material of magnetic circuit [4].

At present are absent detailed methods of study of dynamics ana
stability of systems of similar class, studies of objects analogous to
methods, described by ordinary differential eguations. In connection
with this equations (5) and (6) are substituted by ordinary

differential equations. This replacement is conducted as follows.

Letu us register Laplace's image under the zero initial counditions fer

ane of the integrel terms [1]), by assuming/setting temporarily f==const: .

4
§ s ,
BS LR 3V o), %

where p - Laplace's variable,

Let us assume that process being investigated is close to
single-frequency with frequency of w,. As w, during thé research of
wave motions of liquid it is possible to take partial frequency on,
and during the research of dynamics at the characteristic frequencies
of solid body the frequency, formed/shaped with the automatic machine

of stabilization.
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‘ Assuming/setting in (8) p=iw,, we will obtain
4 ‘:‘; )d
3 (L8 _ jr§4-39, (%)
B L=/

where  J'=3 l/-éi-, 9’:31/ ﬂ;’o . (10)
g

Usually in (9) they retain only dissipative term /.5'\1/',
disregarding inertia J'{o-. However, with the stronglyv developed
internal edges/fins the further moment of inertia J' becomes
commensurate (J°+J), and in this case arises the question about the
account-of the eddies of liquid within the framework of mathematical

. models (1) and (3) during the study of dynamics and stability of the

objects of the class in question, to which is dedicated this work.

integrodifferential equations (5) and (6) are frequently
substituted for perturbation analysis, close in each of stabilization
planes to single-frequency process, on basis of conversions (8), (39),
by systems of ordinary differential equations, which we will

subsequently call traditional:

N
(m®+m T+ N hs, =Py

n=l
. . , (1D
(j°+j) “p-'}_: ()\onsn’f'.jonsn'f"j)‘nsi)“{'"\j (‘P:A'{Goy;
n-=1
B (Sn -%—?'f;sn ’%'wisn) + )‘n:.;{— )‘on'é-‘l"j"“n'\b_tL\Bon'P.:O (n== 1’.2"""\');
@ (I 1o -39 = Mo, (1)
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Frequencies w, and w° in formulas (13) are chosen depending on
form of motion being investigated, and coefficients themselves, which
characterize effect of edges/fins, are nonlinear functions of

corresponding generalized velocities:

QI:SV@TL/ ?‘;ofl : Jon:.onl Isnl V Ty,
BrFa/ 1o »=B Vi) 2

2. Methods of study of dynamics and stability of objects,

(14)

described by nonlinear integrodifferential equations with kernel of
form ({—t)~". Let us consider the object, described by

integrodifferential equaticns with the kernel of form (f—t)~'"t, which
corresponds either to analysis of stability "in smail" of the system
of electromagnetic levitation upon consideration of skin effect aor to

determination of the parameters of the limiting cycles, caused by the

noniinearity of oscillation damping of liguid in the sections of solid .
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.body [4].

Let us introduce variable of form g=yD. Relative to this
variable, as can be seen from (8), the characteristic equation of
closed system the object of control (for example, eguation (1) or (3)
when B==const) + the automatic machine of stabilization in the
description of the latter by ordinary differential equations contains
only whole degrees. The solution in plane g can be registered as
expansion into partial fractions of form g¢/(¢—¢G:), where §s - root of

characteristic equation.

For transition/transter from image to original we will use

following inversion formula [1]:

» qgt
N

9 eqit 1 — 2_ \ e~4'du |=e [1——Gbgn)k'q::qslff.

(12)

Integral @,(n) 1is not expressed as elemesntary functions.
However, for the conclusion/output of stability condition it is

pcssible to use its asymptotic representation with t-= [1]:

e L. 3
Sy~ 1+ [l =t o -
N “npu Reg, >0, 1=¢,V't; 161
(Ds(—qsl t): | —3 1 1.3 (
|2~ 1= [ b — ]
s N 22 (29
@npn Reg, >0, 1==—g; Ve
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Key: (1). with, : .
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Combined analysis of expressions (15) and (16) makes it possible
to obtain stability condition in plane q, which is written/recorded as

follows:

{- < Arg(qy) <7—;‘- : (17)

Obtained criterion (17) makes it possible to establish fact of
stability or instability of system and it can be used for construction
of stability regions in planes of parameters of controlled system and
regulator, and also for determination of limiting cycles. However,
the knowledge of a continuous change in the generalized coordinates in .
time is required for the complete analysis of the dynamic properties
of the controlled system. This leads to the need for the direct
numerical solution of the system of nonlinear integrodifferential
equations (1) or (3), which is the only adequate method of the
analysis of dynamics and stability of system when the expressed effect
of ronlinear factors is present, and under the influence of the

disturbances/perturbations of arbitrary composition.

Let us consider, without breaking yenerality, algorithm of
solution of nonlinear integrodifferential equations with kernel of
form (t—t)~"* based on example of channel of bank for object, which

" has one cut off, partially filled with liquid, and developed .
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‘ intra-tank devices/equipment, when automatic machine of angular
stabilization is prezent. The equations of closed system object -
regulator take the form:

U 1D+ 1%y =agd;

¢
2]

. “ o " d
Mt et | LEZ=o
yét—=
Téﬁ—a:a},'\%}—a,‘; @ (18)
=21}l
Here & - angle of deflection of control devices; a¢s - gradient

of controlling moment; T - time conrtant of drive, which determines

. its inertness; g, as; - coefficients of algorithm of stabilization.

After introducing designation x(r)-=o'(1) and considering B° and o
temporarily known functions of time, let us represent second equation
of system (18) in the form of nonhomogeneous integral equation of

Volterra with singular kernel:

S ————

$
o ( sMdr e (19)
ik Vt—m ?

Page 127.

Let us consider one of possible algorithms of solution of

. integral equation (19), based on application of quadrature formulas of




T

DOC = 89056410 pAGE#&M
7

calculation of definite integral and determination of functions B° and
; in resolving system of equations (18) together with (18). Since the
mathematical model in question cannot describe the initial process of
forming the vortices/eddies, we will assume that in the system to

moment of time t=0 there is no prehistory, i.e., any eddies of liquid,

which makes it possible to take integral in (19) from 0 to t.

Let us compute values of integrand o(r) at particular moments of
time Q, h, 2h, ..., ih, .., nh, where h coincides with step/pitch of
integration of system (18), and nh=t. Within intervals
0...h, h .2~ .., (i—D)Ah...ih, .., (n—1)h...nh we will consider function
ofr) linegr. The representation of integrand in the form of the
product of piecewise-linear function to kernel /{—1)~"2 permits, first
of all, to reduce the singularity of kernel, and in the second place,
to do a method of calcuiating the integral for more precise than, let
us say, the method of trapezoids, since to the method of trapezoids
corresponds piecewise-linear interpolation of function g(r)u_.ryﬂg

which does not remove the singularity of kernel.

Taking into account that stated above and after making simple,

but cumbersome calculations, we will obtain

4 !
e (t)dt s(t)dv __ _rv . 4 20
j ———Vt—v ———S———-——Vt_ - )//1 {G,, T3 s(nh)}, (<0)

where

Gy=0,=0; Gy=—-am[2(V2-1)];
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n—1

4 ;- - ] . 4 \ .
Gn=—3—3(h)[nv\n—1 fl—-l(fl-l—‘;)—r—u{’((‘*l)/’)

=2

~ []'F/z——i(fl —i)—) n—(— 1)(?1 ——-2[—;——1”—%—

+3(ih) [fn‘:“u—:sm_(i_1))__1 m(n__:)z_s)]] .

2

+_§_a((n—1)h) (n>2). @n

= After designating (G,=G(t), and o(n4)=oc(t), which is correct at
particular moments of time, multiple to step of integration, we will
obtain, after substituting expression (20) into (18), system of
equations, which can be integrated by one of standard numerical

‘ methods (Runge-Kutta, Adarﬁs-Stoermer, etc.):
(/219 (£) - *a (1) = a4y (£);
[1*__}_ .;_30 ;/}}} s()=—[/*92 () + PV hG ()];
X (=3t (22)
TS (1) +3 (O =a () +a, ¢ (1)

=PV 1

Page 128.

In equations (22) at each step/pitch of integration G(t) is

computed from formulas (2i).
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Analogous computing circuit can be written for integrating

equations of disturbed motion in yaw planes and pitch, and also for

any integrodifferential equations with kernel of form ({—g)-",

3. Systematic example. Let us consider as a systematic example
the dynamics of axisymmetric solid body, stabilized relative to
longitudinal axis. Based on this example it is possible to
demonstrate efficiency of the proposed algorithms and to reveal some
new qualitative special features, which are not exhibited within the

framework of traditional mathematical models (11) and (12).

We will invesfigate and compare two versions of mathematical
description of object of control: 1) traditional model (12) with
factors of nonlinear damping, computed from formula (14); 2) ‘
mathematical model, which considers kinetic energy of eddy of liquid

(18).

Let us pose problem of determining parameters of possible
limiting cycles, caused by nonlinearity of oscillation damping of
liquid. Let in the system with some relationships/ratios of the
parameters be established/installed the stable auto-oscillations with
a frequency of w° and amplitudes of ¢., x., 8. (in model (12)
parameter y, - is absent). Let us lead on the hasis of the method of
harmonic balance the linearization of the nonlinear damping factor.

Following [6], the damping factor is expressed as follows:
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Jor model

—~
[
no

oer 7. Pyt /T— Mw®
§OC%F=Aw] 901//,? . (23)

P =23 %o, (24)

For model (1Pf)

On boundary of oscillatory stability characteristic equation of

closed system has two complex conjugate roots

fre=c(l i) (a>0), (25)

and remaining roots lie/rest within stability region, determined by

criterion (17).
Page 128,

To roots (25), as shows analysis of expressions (15) and (16),
correspond in steady-state mode sustained oscillations with frequency

of

o =gl a=2a2, (26)

For mathematical models (12) and (18) were constructed stability
regions in plane of time constant of drive T and coefficient B, by

which for model (12) is understood coefficient B°' 23), while for

. model (18) coefficient B°. The construction of stability regions for
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characteristic equation of closed system and determination of boundary

DOC = 89056410

model (18) was carried out by calculating the roots of the

value of the parameters in accordance with criterion (17) and for the

comparison by direct numerical integration. These regions are

presented in Fig. 1. Double shading is converted inside the stability
region, The numbering of curves corresponds to the frequency of
limiting cycle, obtained on the basis of the calculation of the roots
of characteristic equation for formula (26). 1In the sections, where

different curves virtually coincide (with an accuracy to three

significant places), general/common numbering is given.

Analysis of represented stability regions makes it possible to

make following conclusions.

1. ccount of further degree of freedom, which corresponds to
eddies of liquid, within the framework of most complete mathematical
model (18) substantially narrows stability regions of closed system in

comparison with regions, which correspond to traditional mathematical

model (12).
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Fig. 1. Stability limits: A =~ calculation according to traditional
model; O - calculation on basis of characteristic equation of linear

equivalent of system () (B=const for each point); @ - numerical
solution of linear equivalent of system (g: % - numerical integration

of system (18) with ﬁ°=B7Vm

Key: (1). s. (2). kgem?.s-¥2,
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2. Good coincidence of stability regions, calculated on roots of

‘ characteristic equation with application of criterion (17) and method
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of a:rect numerical integration of linear equivalent of system (18)

testifies about high accuracy of developed method of numerical
solution of integrodifferential equations with singular kernel of form
(t—1)~": and at the same time about possibility of successful use of

comparatively simple criterion (17).

3. Stability regions, obtained by integration of nonlinear
system of integrodifferential equations (complete model (18))
virtually coincide with regions, calculated on roots of characteristic
equation of equivalent linear system, to values f°=6000...7000. In this
range B° with a sufficient degree of accuracy it is possible to
calculate the parameters of limiting cycles, without resorting to the

direct solution of the system of nonlinear integrodifferential

equations.
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Fig. 2. Laws of motion of body around longitudinal axis:
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® - angle

of rotation of body; & - angle of deflection of control device; ~ - -

- - - model (12) (stable auto-oscillations); =——— - model (18)

(instability "in large").

Key: (1).

. Page 131.

degree.

(2).

s'
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With tne more expressed nonlinear effects (larger values 8°) e

straight/direct numerical integration is, evidently, the only adeguate
instrument of the analysis of the stability of the systems of the

class in gquestion.

4. There are two critical values of time constant of drive:
T,~0.415 and T,=0.6 (see Fig. 1). With T<T, the system is stable "in
the small" and "in the large". When T,<T<T, the system is
unstable "in the small", but it leaves to the stable limiting cycle,
i.e., it 1s stable "in the large". With T>T, the system is unstable
both "in the small", and "in the large”.

It. should be noted that within the framework of traditional
mathematical model (12) cannot be ravealed very dangerous from .
technical point of view mode of instability of system "in large" -
system with any values B° leaves to stable limiting cycle. Thus, a
stricter mathematical description makes it possible to determine not

only quantitative, but alsc very essential new qualitative effects.

Fig. 2 gives results of numerical integration with T=0.8 ¢>T, of
equations (18) and (12), from which it is evident that depending on
utilized mathematical model either appears stable limiting cycle with
completely acceptable parameters (model (12)), or are developed

dangerous sustained oscillations (model (18)).

In conclusion let us consider results of mathematical simulation ‘
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. of turn of considered/examined solid body around longitudinal ax:is for

preset angle for the same two versions of mathematical model. The

oy

time constant of drive was selected as being equal to 0.2 s, which 1is
less than T, , i.,e., was investigated the dynamics of the system,
stable "in the small"”. The corresponding transient processes are
represented in Fig. 3. As can be seen from figure, the transien:
processes, obtained for two versions of the mathematical model of the
system in guestion, substantially are distinguished both by the vaclue
of overregulation and hy the duration; model (18) corresponds in this
case to heavie~ situation than (12), i.e., use of (12) does not give
calculation "in the reserve".

Example examined sufficiently convincingly proves need for

‘ account of kinetic energy of eddy of liguid during analysis of

dynamics of systems of class in question, which is reached, in

particular, as a result of using refined mathematical model [3-5].
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Fig. 3. Turn of body around longitudinal axis to preset angle: ¢ -
argle of rotation of body; & ~ angle of deflection of control device:
~ -~ - - - - mnodel (12); =—=————— - model (18).

Key: [1). degree. (2). s.
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SOLUTION OF THE PROBLEM ABOUT THE NATURAL OSCILLATIONS OF LIQUID IN 2

RIGID AXISYMMETRIC TANK BY ANALYTICAL CONTINUATION.

M. S. Galkin, N. I. Rudkovskiy.

Examples of solution of problem about natural oscillations of
liguid in rigid axisymmetric tanks are examined by method of
analytical continuation. The obtained results and their comparison
with the appropriate solutions, obtained by other methods, confirm an
accuracy of method sufficient for practical purposes.

Solution of problem about natural oscillations of ligquid in rig:d
tanks is important intermediate stage in solution of problem about

motion of body, whose cavity is partially filled with liquid [1].

For solution of prcblem about natural oscillations of liguid in
rigid axisymmetric tanks method of natural forms (method, which uses
natural modes of vibration in close problem) is used, variation and
other methods. The method of natural forms makes it possible to solve
problem for the very low and very larce depths. With variational
method it 1s necessary for each level of filling to solve problem at

eigenvalues.
Page 132.

Ir work 1s used method of analytical continuation for solution of .
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. problem about natural oscillations in entire region, when solution for
part of region is known. Taking as the initial the solution, for
example, for the spherical tank on the low levels of filling, it is

possible to construct the solution for the arbitrary axisymmetric

region, which has the spherical bottom. As the coordinate functions
it is possible to take polynomials, and the generatrix of region to

assign in the form of plecewise-smooth function.

1. Solution 2f problem by analytical continuation. In work [2]
are obtained the following differential equations for frequencies and
forms of the natural oscillations of liquid in the arbitrary region

for parameter h (Fig. 1):

a(2)=0u—(2)" (1

‘ ‘ dh \ a \ a

df N
a d’: :2 bklfl (k= 1,2...-),
l=0

aQle .
Tp — %] k ¢l’
where by =
a
Y Iy k=1
sz=5~fzf1tgadso+j‘fkfztgaxdsl; (2)
So Sy
Gu:S v/ 20 f1dF "‘""f" Lo (3)
F

where w,= wi2@/g - dimer onless frequency of the k tone (subsequently

. simply natura! frequency’; fx - displacement potential of the k tone.
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Equations (1) have simple treatment. Let us assume that for the

assigned region is known the solution of the corresponding
boundary-value problem with some values of the parameters of region h,
a, a,. Then for the region, which corresponds to the level of the
£illing with liguid h+Ah, the value xx(h+Ah), fa(h+Ah) it is possible
to obtain on the basis of equations (1), without solving

boundary-value problem.
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Fig. 1. Geometric characteristics of tank.

Page 134.

Using the dimensionless parameter h=h/a, equations (1) can be

‘ represented in the following form:

d 5 2,
—— ':._—..a"G — Ry
it * (4)
d . 2 :
— = R b .
ah klfl
1=0

2. Numerical realization of algorithm.

a) axisymmetric oscillations of liquid in axisymmetric vessel.
Using cylindrical coordinates, solution system on the free surface can

be presented in the following form (see Fig. 1):
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1 2n—2
= }/n——*a? Z Ckn (_;—) (k=2,3,...);

n=1

(5)

1 (¢ ay
= , ‘Tae b=-2L .
/1 Y ra? (1 — 62) A a

)
ifkflszotf:IpH k-f‘l;

3
ifkfder-—-l Tou k=1,

Key: (1). where. (2). with.

After substituting (5) into (4), we obtain differential equations

for coefficients (C,, and expressions (2), (3) will take the form

o

r, —=-—
®

g a

E Cenlim (tga+-tg alb"”"*?’i—%; (6)

n=l m=1

i 4 NBS (m—1((—-1) o p2ntom—4
G EZCC O (=),

For integrating system let us use Euler's method. The finite
number of coordinate functions and the finite series for f, in (5) is
taken during the numerical realization of algorithm. As corollary,
during the calculations is broken orthonormalization of functions (5).
Therefore at each step of integration is done orthonormalization of

functions (5).
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Fig. 2.. Dependence of dimensionless natural frequencies of
’ axisymmetric oscillations of liquid in spherical tank on relative
level of filling.

Key: (1). ... tone.
Page .35.

Spherical tank. The initial solution was undertaken from work
[3] on the level of filling h=0.1. The dependence of dimensionless
natural frequencies « for the first four tones on the level of filling
is shown in Fig. 2. Table 1 gives the comparison of the obtained
results with the results of calculations employing other procedures
for the hemisphere. During the integration of equations (4) for
obtaining the solution with h=1 (hemisphere) the step of integration

. was equal to 0.001. Calculation on computer(s) BESM-6 of entire

“'——"—__—J
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sphere occupied 60 min.

Cylinder with spherical bottom. Results for this region make it
possible to consider the convergence of algorithm, since with h21 the
solution asymptotically approaches the solution for the cylinder. The
dependence of the frequencies of the first four tones on the level of
filling is given in Fig. 3. Table 2 gives the values of the

frequencies of the first four tones with h=1.
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() (3) (s)
() 3y 4/ M
}:%\}4(29 KOH‘:'IggFO\ peo1§g';QT/§T ( SKCHQDHMEHT aHa.’lMTel:‘?eACKOFO
3. 1€MEHTA NpoloXKeHHa
1 3,960 3.771 3,679 3,779
2 8,567 7,193 6,964 6,988
3 15,20 10,86 10,28 10,15
Key: (1). Number of tone. (2). Methcd ~f finite element.

Result ONERA.

continuation.

(4).

mxperiment.

(5).

P moi"
) T
72 / 4
. ZYmav®
A ) |
¢ / | 7 mow®
/‘,/, s L
P f/ ’7// /mae@
T
L// ~ -
Y 45 Vi
Fig. 3.

axisymmetric oscillations of liquid in cylindrical tank with combined

bottom on relative level of filling.

Key: (1).
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tone.

Method of analytical

Dependence of dimensionless natural frequencies of

. For the cyiinder witn the spherical bottom and coaxial inset within
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the geometry of external and internal generatrix it was assigned as ‘
follows:

’22_5—_1 0,1 <F<02;

I _2413(6—090.2<h <03, @
0 h >0,3;
0 0,1<7<02;
tga— ! -5,27(;2 —0,2) 02<h <048,
5,27 (A —0,76) 0,48 < % <0,76;
| © 7 >0,76.

With h>1 solution for this region also asymptotically approaches
solution for coaxial cylinders. The dependence of the frequencies of
the first three tones on the level of filling is given in Fig. 4. ‘

Table 3 gives frequencies for the coaxial cysinders in the region with

h=1 in question.

L) skew-symmetric oscillations of liquid in spherical tank. The

form of oscillations of free surface is assigned as follows:

2n—1
Sr= ?::2 Eckn( ) . (8)

Fig. 5. depicts dependences of first three frequencies of

skew-symmetric natural oscillations of liquid on level of filling.
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7

. Examples of solution of problem examined about natural
oscillations of liquid i:. axisymmetric cavities by method of

analytical continuation make it possible to positively consider

possibilities of method for solution of such problems.
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Table 2.
- ®
ot &) (3)
Howmep LUnaunapsuue- LRaduaph-
TOR3 = CKHA Gax yeCckHit Gax
C IAOCKHM co chepuue-
AHHUWEM CKHM AHHWEM
I 3,83 3,820
11 7,01 7,015
1 10,17 10,17
IV 13,32 14,33
Key: (1). Number of tone k. (2). Cylindrical tank with flat/plane
bottom. (3). Cylindrical tank with spherical bottom.
Table 3.
xy
()
Howmep (1) KoakcHanan- (‘?)Koaxcua:xb- .
TOHA R Hbie UHIHHI- Hbie 0Gevyafiky
pul ¢ nace- cA0XKHOR
KHM JHHweM dopmbl
[ 5,32 5,33
1l 10,42 10,43
T 16,12 15,35
Key: (1). Number of tone k. (2). Coaxial cylinders with flat/plane
bottom. (3) Coaxial cowlings of complex form.
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Fig. 4. Dependence of dimensionless natural frequencies of

’ axisymmetric oscillations of liquid in tank with combined bottom and

coaxial inset on relative level of filling.

Key: (1). ... tone.
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Fig. 5. Comparison of results of calculating frequencies of natural

skew-symmetric oscillations of liquic€ in spherical tank with

' experiment - -
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RAPIDLY-CONVERGING VARIATION ALGORITHM IN A PROBLEM ABOUT THE NATURAL

OSCILLATIONS OF LIQUID IN THE VESSEL.

I. A. Lukovskiy, G. A. Shvets.

Variational method is used to solution of problem about free
oscillations of liquid. Besides the harmonic polynomials, whicn
traditionally are used during the solution of this problem, in the
number of coordinate functions are included the functions with the
properties, which reflect the surface character of gravity waves in
the liquid. For their determination special boundary-value problem at
eigenvalues is formulated. The efficiency of algorithm is illustrated
on the solution about the oscillations of ligquid in the cylindr.cal
reservoir with horizontal generacrix and the conical vessel in the
form of the inverted round cone. 1Is carried out the comparison of
obtain=d data with the results of calculation only according to the

harmonic polyaomiails.

To problem about natural oscillations of ideal incompressible
fluid in vessel are devoted many research both in Soviet and in
foreign literature. large umber of works is devoted to the methods
of the construction of the actual solutions of the corresponding

boundary-value problems, among which the widest acceptance obtained
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variationa! method. It proved to be very efricient [or the sclution

LR 2

of the problems about the oscillations of liquid in the vessels of .
axisymme+tric form. However, because of the need for the solution of

the problems about wave motions of liquid in the

'
ct
[N
[{]

apaci

N

§e;

s/capacitances of complex geometric form it requires further

This guestion is extremely urgent also in connection with the

development of the methods of the study of the problems of nonlinear
theory, for which the solutions of 1:near problems are chosen as the

n tne present work variational method is used in its

traditional form. In the development of the rasis of the ideas of

work {1] system of coordinate functions in the meths® Ritz it 1is .
provided by the series/row of further properties (of type of the

property of boundary layer), which leads to an improvement in the
convergence of process and, in the final analysis, to the decrease of

the duimensionality of algebraic systems.

1. Ritz's method. Selection of the system of ccordinate
functions. FResearch of the free oscillations of the ideal
incompress:o.e fluid in the vessel, as is known, 1s reduced to the
solution of 3 certain problem at eigenvalues with the parameter under

the hourdary conditlon.

firer renrecercing velocity potential of ligu:id in the form
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1
(D(:() yv 2, t):’?('xv y9 Z)COSJt, ( )

from fundamental equations of linear wave thecory we will obtain

mentioned spectral problem in the following form:

W ds (aj O &
o= : =2 Ha 2, ——=0mHa S, (2)
Ae=0 8 Q; w ? % 5
Key: (1). in. (2). on.
where Q - region, occupied with liquid; £, - undisturbed free surface

of liguid; S - nhydrophilic surface of cavity; x=02/g; g - free-fall

acceleration on the Earth.

Basic properties of solutions of problem (2) are well studied.
There is infinite consecutively/serially positive eigenvalues of this
problem, and to each eigenvalue %, corresponds the finite number,

generally speaking, the generalized solutions of problem @¢n.

Form of _isturbed free surface is determined after determination

velocity potential in the form

L 2

0

L 00(0. y.2.0) (3)

/9 2 t):_—? dt

In conformity to problem a* eigenvalues of (2) is formulated

equivalent variational problem for functional
i(w)? dQ ,
= \4)

K (p)= \:’Jg‘“
Te
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under further condition .

Minimum of functional (4) exists on class of continuous together
with first-order derivatives of functions, and for its finding Ritz's

method is used.
Page 139.

The efficiency of the application of the latter depends on the
successful selection of the adequate/approaching system of coordinate
functioq§. The widest acceptance in this case received solid
spherical harmonics and harmonic polynomials, for which were
established/installed recursion formulas [3] important in the
practical sense. This set of functions during its use in Ritz's
method we is widenea by the functions, which possess some analytical
properties of the exact solution of problem l1]. 1In this plan/layout
us, first of ail, they will interest functions with the properties of
the type of houndary layer, which reflect the clearly expressed

surface character of the oscillations of liquid in the vessel.

Together with harmonic polynomials Wi(x, y, 2) let us consider

solutions of equations of Laplace of type [1]
R .
?‘ (xa yi Z):e ‘xf"(yv Z)\ ("'))

where [, (x, y) - complete on ., set of functions, which is solution of

boundary-value problen l
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Af 4+ k2f=0 Ha Zg
Of L pos) f =0 a L. (7)
on

Key: (1). on.

Here p(s) - certain weight function; ¢ - intersection Z, and S; n

- unit vector of external normal to /.
Boundary condition (7) follows from condition

0

ji%:=0 on S. The solutions of the type (5) not only qualitatively
reflect the surface character of the oscillations of liquid, but in a
number .of cases they bring also to good gquantitative results of [2].

Solution o(x, y, z) let us represent now in the form

n q
Rl
{?(xv y) Z):Z aka(xs ya Z)"%—ECH'PR(X, ya Z), (8)
k=1 1=1
where ap and ¢, - unknown constants, to be .rmined from system of
Ritz
N
\‘ b (a; — %3, )-:.O (_/: 1,2,..., N) (9)
Pl j lj llj
j=1

By components of vector b in system (9) will be ordered in a

specific manner constants gax and Cn, ®ij and B:; are determined by

. eXpress1ions




_‘
DOC = 89056412 pAGifﬁl/

Q= Y(V'x')p vY)) dq; .
(10)

$;dS,

viJ

;‘1(_,._} o

where ¥; - sequence of functions, which consists of harmonic

polynomials ', and functions @n (5).

Page 140.

2. Numerical application of method of Ritz in some specific
cases. Let us consider the case of the free oscillations of liguid in
the cylindrical cavity with horizontal generatrix. The undisturbed
free surface of liquid is rectangle and, therefore, boundary-value
problem (6), (7) can be solved by the method of separation of
variables. ¥*or example, for the forms of oscillations, skew-symmetric .

relative to y and symmetrical relative to z, we will ohtain

S aily, 2)=cos I zsin ki,-—--ff-y, (1)
a a

moreover eigenvalues k,; they are defined as the roots of the

transcendental eguation

k, ——sm»—-l/knz———COS. (12)

D 2 . .
where h1“~=h—'Ro§ ronRg—-fu; Ro - radius of cylinder; h - depth of

filling of cavity.

Three-dimensional harmonic polynomials, obtained from system of .
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‘ solid spherical harmonics C’::-_bnmR"P':(Cos 6)cos mv and

Sh=br,RnpT S (Cos B) sin m, take following form:

I
CA=1; 8}=0; Cl=x; Cl=y; Si=2; Cg=x2—-2—(92—'r22);

2 0 3 3 0.
Ci=xy; Ci=y2—2% Si=xz; Si=2yz; Ca==x®—— X — - X2

C§=x?y“”,i‘y(y2+z2); Sé:x?z"‘i‘z(y2+z7); Cl=x (2 —2%; (13)

Si=2xyz; Ci=y(y?—32%); Si=z(@y2—2Y.

Recursion relations, which make it possible to register functions
and their derivatives for as much as desired large m and n [3], are
obtained _for them.

Table 1 shows convergence the first two values xnj(j==1,2) of
frequency parameter « depending on number of harmonic polynomials (13)
in expansion (8) at fixed value of g=3, radius of cylinder R,=1, depth

of filling h=1 and length of cylinder 2a=2.
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Table 1.
Q 10
n a1 *nQ *nt n2
S ares 6237
33795 | 15028 | 11,
3 i%?,g% 33795 | 1.3746 | 115993
5| 13561 | 33795 | 1,3743 5,32g2
6! 13561 | 3.3665 | 1.3568 5,29.97
7 | 1’3550 | 3.3665 | 1.3568 | 4,7702
Page 141

Two latter/last columns of this table x°;

Sy e

PAG;/ o &

relate to the case of

calculating the parameter «, when potential ¢ is represented as

expansion only in terms of the harmonic polynomials.

Analogous

results are represented in tables 2 and 3 for the values of parameters '

h=15R0,9a=17,18Ro and j=1, 2, 3.

In this case table 2 presents the

results of calculation according to the algorithm, given in the

present work (g=3),

the use only of harmonic polynomials (g=0).

and in table 3 ~ the results of calculation with

For case of cavities of axisymmetric form of solution of

boundary-value problem (6),

form

moreover eigenvalues

equation

fmrl(’

T)”"‘“m( ‘mn )

sln my
cce mn

(14)

(7) in polar coordinate system they take

kRmn are defined as roots of transcendental

dlm (§)

dasz

—pJ , (3)=0,

(19
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where ¢=kr,; r, - radius of free surface.

System of harmonic polynomials, registered in cylindrical
coordinate system, is biparametric set of functions
W (x, r)ysin mn; Wi (x, r)cos 1*, for which are also
established/installed simple recurrent correlations [3)]. For case of

m=1, for example, we have

\

1 L gyl w3r 15 6
Wi=r; Wy=xr; W/s=x2r—-:-r3, Wa=x3r+ 2 Mo 0GB

' Table 4 gives results of calculating first eigenvalues of
boundary-value problem (2) for inverted cone with half-angle of 6,=10°

with value of r,=1, j3=t96°, g=3. Analogous data are cited in Fable 5

with g=2.

Results given above show that inclusion in number of coordinate
of decision function of type (5), which reflect basic special features
of behavior of liquid in vicinity of free surface, makes it possible
to significantly influence convergence of Ritz's process not only
during calculation cf lowest, but also, in particular, highest
frequencies and forms of oscillations of liquid. This relates first
of all to the case of the substantially spatial problems, for which
even partial separation of variables cannot be led. 1In this case also

' it is possitle to substantial reduce the order of Ritz's system which

‘“
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implies the retention/maintaining the stability of calculating process ‘

and increasing the accuracy of calculations.

Table 2.
n a1 *n2 *n3
3 2,0003 22187 2,7800
4 1,9077 22186 2,7800
5 1,9076 22186 2,7800
6 1,9076 2,1693 2,7791
7 1,9028 2,1693 ‘ 92,7791

Tahle 3%
0 0 0 ‘l’
n *n1 *n2 *n3
3 28421 7.6975 |437,0681
4 2,1584 7.6966 14369401
5 2,1583 3,4926 59,5738
6 1,9599 3,492i 18,1121
7 1,9599 3,4140 18,0717
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. Table 4.

n 1 *n2 *n3
1 1,6772 5.2470 8,4622
2 1,6748 5,2382 8,4546
3 1,6747 5,2322 8,4471
4 1,6746 5,2299 8,4419
5 1,6744 52297 8,4393
Table 5.
n Xn1 2 a3

- 1,6743 52296 | 37,8766
1,6743 5.2294 | 20,4115
1,6743 52293 | 18,9783
1,6743 5,2293 | 16,6370

[To)e N N}
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VARIATION PRINCIPLE OF M. A, LAVRENTYEV AND RT-ALGORITHM OF CCNFORMAL

MAPPING IN HYDRCDYNAMICS AND DYNAMICS OF SOLID BCDY WITH THE LIQUII

B. I. Rabinovich, Yu. V. Q&rin.

is descrizsd new numerical RT-algerithm of conformal mapping o
arbitrary singiy connected and double-kond regions with
piecew:ise-smooth duct/centour on the average and annulus respec:-i.elv.
A RT-algorithm I-cludes two recurrent procedures: 1internal
(R-procedure) and external (T-procedure), at each step/pitch of which
is used the variation principle of M. A, Lavrentyev. A RT-algoritnm

is realized in the form of program in the language FORTRAN-4.

Examples of solution of external and internal hydrodynamic
problems are given, iacliuding problems, which are encountered in

dynamics of solid body, which contains cavities with liguid.

Series of flat/plane boundary-value p:roblems of mathematical
physics with harmonic and biharmonic operators comparatively easily s
solved, 1if initial region conformally can be mapped on the average

(simply connected region) or annulus (doubly connected region).

This relates both to external and to internal problems of
hydrodynamics of incompressible fluid, in particular, to problems of

dynami<s of liquid in mobile cylindrical cavities, which do not
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oossess axial symmetry. Similar problems acquire ever larger rgency ‘

i the dynamics of different controlled objects, which have the

seczlions of the complex configuration, which contain liquid.

However, analytical formulas for mapping functions can be
[P 3 £ : 3 , : : T e b e
obrained only for regions of simple configuration (ellipse, elliptical

ring, circular sector, etc.).

There 1s series/row of numerical methods of conformal mappin
whose bpases are laid in work [3] see, for example, [10] and [21-13])).

I L
nowever

, realization into the computer(s) of the corresponding

algorithms, which reduce the problem to the problem of linear asluebra.
runs in the case of the regions of complex configuration, which .
regquire ctnhe assignment of the large number of points on *he

duct/zontovr, for the definite difficulties.

New possibilities in sense of creation of structural/design
numerical algorithms of conformal mapping, which allow/assume
efilicient realization on computer(s), open/disclose variation

principle of M. A. Lavrentyev (4, 5].

In work problems about conformal mapping of arbitrery quaver
region on the average are examined in classical .=tting [3] and
arbitrary doubly connected region with piecew.ise-smooth duct/contour

to annulus. The corresponding exterior problems are led to those .
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‘ indicated with the help of the linear-fractional conversion,

Is presented multistage algorithm of cornformal mapping

{RT-algorithm), worked out by authors [8, ¢

[e—

, which includes two
recurrent procedures: internal (R-procedure) and external
(T-procedure). At each step/pitch is usec M. 4. Lavernt'yev's
principle, to whom is dowry the fcrm, convenient for the numerical

realization on the computer(s).

RT-algorithm is realized in the form ¢I program in language
FORTRAN-4 and 1s checked on wide spectrum of flat/plane boundary-value
problems.

. As 1illustration of possibilities of RT-algorithm examples of

solution of some external and internal hydrodynamic problems and

problems of dynamics of liquid in tanks of flight vehicles are

examined [1, 6-81].

1. Algorithm of precise conformal mapping of region, close to
circle, on the average and inverse representation (R-procedure). Lezt
in the plane complex variable z be assigne2d closed curve C, close to
the unit circle ' To it correspcnd simply connected region D,(C)
close to the circle and exterior D,(C). Proximity C to T is

determined by the inequalities

Bl e Bipl<le BT
® Fer(n=1=5 re=10 2D,

(h
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where r(¢) - radius-vector of the point of duct/contour C; o - .
vectorial angle; ¢ - small positive number; variation &(¢)=0 is
considered positive during the variation of duct/contour I in the

direction of internal standard/normal.

Let w=f(z, C) - function, which reflects region D, of plane z to

unit circle of plane w, moreover
w=f (2, O):=0=0; f'(z, C);=0>0. (2)

Page 144.

Using integral of Schwarz and law of mean [4], it is possible to give

the vafiétion principle of M. A. Lavrentyev [3, 4] to the following .
form:

Under the conditions (1) and (2) function.

w=f (2, C)=2[1+J(Z)];

. 1 I4+2 d (3)
J(z)--§;7($3u(ﬁ) ,

t—2z L

‘where =€ u(f)=6[p(f)] and duct/contour is bypassed so that the

domain of definition z remains to the left, differs from the function,
which realizes conformal mapping of region D,(C) onto the unit circle
ana D,{(C) to its exterior, to the low, not lower than the second order

relative to €.

Let us introduce into examination function w(g¢) .
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w(2)=u(f.)+i'v(:)=s(ao+ V' ¢, "):
n=1 (4)
C,=a,—iby (=e" v0)=1v(0)=0,

where eag, ea, and ¢p, (n=1, 2, ...) - coefficients of expansion of
function 6(¢), which is assumed to be single-valued, continuous and

2n-periodic, in Fourier series in segment 0<¢<27%, and

conjugated/combined with it w(§).

Using Cauchy formula, it is pecsible tn reprccent function J(z)

(3) in another form:

- Lo - (%-&—2 cnz"); (5a)

20 C—T
- T n=1
J(2)=
L g e@ =s(ab+zg;z-n) 56)
20 L—2z
{ T \ n=1 .

(a and b here and subsequently correspond to representation of
interior onto unit circle or external to its exterior). The analytic

function J{(z) is continuous on the duct/contour T.

Using formulas (5a) and (5b), it is possible to give to mapping

function w, entering (3), following form:

2 [1—}—5 (ao'l'i L‘,,Z”)ﬂ ; (63)

’l-l =

w=f(z, O)=

z —1+e (ao-{-i Z',,z-"'\ ] (6b)

" n=1
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5

These expressions convenient for numerical realization, since

they reduce entire problem to expansion of continuous 27-periodic

function to Fourier seriss.
Page 145.

Function (6) differs from precise function, which translates

duct/contour C of plane z into unit circle of plane w, to smalls of

order not below €?.

Function ¢(w), which is in the first approximation. of
reverse/inverse for (6), is determined in accordance with M. A.

Lavrentyev's principle by following formulas:

wll—¢ 00+Ecnwn) ’ (Tay

‘
z:(b(w)=\ I: "

w|1l—: (ao—}.“\: cw" ] : 8y
L .

n=1

This function also differs from precise function, reverse/inverse

for f(z, C), to members of order not below ¢?.

However, there is possibility to construct on base of A. M.
Lavrentyev's principle algorithm of representation of region, close to

circle, on the average and inverse representation with any given

accuracy.
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Let us substitute into right side of (7a) as w values, which
correspond to points of unit circle I'i. Inverse representation (7a) is
translated I' into duct/contour C%, which differs from the initial

duct/contour C by the smalls of order e* or above.

Representation I' on ) is precise. Problem now consists in
constructing of the precise representation (®Jon I'. We will use

expression {6a), which let us represent in the form

A\

: (1) c“)zn (8)
)y = 14| ao *‘25 n ’
z2=11(z, Cthy==2 [ + n=1
1 : . : :
where gay’ and _._ . O _;pt" - Fourier coefficients the function &¥
€Cn =clp n .

(¢), whicCh corresponds to duct/contour ¥,

Function (8) realizes representation of duct/contour ¥ on C&/
that differs from I' by smalls of order is not below e¢*. After
repeating the same operation m of times, we will obtain at the m
step/pitch

“ {m) wy m_n
zmzfm(zm-—l’ C(m))zzm-—l 1+° ao + N CnZm—1 ) (9)
n=l

where coefficients an” and ecﬂm relate to 1.action 8™(@), which
corresponds to duct/contour C™). Let us take for the distance from
duct/contour () to the unit circle I' standard deviation Agrm, where

in view of the equality ~f Parseval
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Page 146.

Relying on variation principle of M. A. Lavrentyev, it is g

R

possible to demonstrate that with any given small positive number
with certain value of m=M will be fulfilled inequality E&rRm<SEr.

sequence of mapping functions (9) descends according to norm Agm.

Analogously is constructed sequence of functions

2= [ (Zp1, C"")):zm_l[ ( ‘”"+2 Mzt 1)} (11)

corresponding to representation of exterior (expression (6b)). The .

set of functions f, (9) or (11) (m=1, 2, ...) gives the precise in the
sense indicated straight/direct representation w=F(z, C¥) closed
domains (internal or external with respect to (), and functions
z=M(w) (7) - precise inverse representations. We will subsequently
call the appropriate recurrent procedure, described above, a

R-procedure.

2. Recurrent algorithm of conformal mapping of arbitrary simply
connected region on the average (T-procedure). Let in plane z be
assigned arbitrary simply connected region D,, limited by the
piecewise-smooth duct/contour L,. Is required to carry out conformal
mapping U, regicn onto unit circle Du of plane w with duct/contour

'/ so that the given point 0,D, region would pass to the center of ‘
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this circle, and corresponding inverse representation.

Analogously is formed/shaped exterior problem (representation of
region D, of plane z, external with respect to duct/contour L,, onto
exterior of unit circle of plane w and inverse representation). In
this rase the representation is determined with an accuracy to the
arbitrary angle of rotation of duct/contour L, or L, around the axis,

passing through point O, it is perpendicular to plane z.

Let us assume additionally that ducts/contours [; are star with
respect to point O (this assumption it is not fundamental and
connected only with simplest version of construction of variation in

majorant ducts/contours, described below).

Let us begin from exterior problem. let us introduce auxiliary
duct/contour in the form of the circle/circumference I',, of a radius
p., With the center in the beginning of cocordinates O, inserted in
duct/contour L, (in this case it is not excluded the presence in the

circle/circumference I',, of common points with L,).

We standardize variable z so as to obtain p,,=1 (Fig. la) let us
designate §,,(¢) variation in radius-vector of points of duct/contour
L,, which now we will consider positive, when it is directed in
direction of external standard/normal, and let us determine as

follows:
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Yio + & 12y ‘
Yio=1715(?)nay — 1 0.9 <2,
where rio(p)=1 - radius-vector of arbitrary point of duct/contour L
with beginning in wheelbarrow O; e, - arbitrarily selective low

parameter.
Pace 147.

The restrictions placed on duct/contour L,, ensure unigueness and
continuity of function §,,(9), to which corresponds duct/contour C,,,
close to the circle/circumference I'y, (Fig. la). For the satisfaction
to conditions (1) function §,,(¢) can be subjected to further
smoothing. Subsequently we will assume that this operation is carried
out, and for all variations in condition (1) in question carried out.
o
We will use R-procedure, which let us register in new

designations thus:

z2=®y(z,); z,=F;(Ci?), (13)

by that based on expression (11), in which it is necessary to change
sign before € to opposite in accordance with (12). As a result we
will obtain precise conformal mapping of duct/contour (jy. close to
C,,, onto the unit circle of plane w and precise inverse
representation (subscript it corresponds to the number of
duct/contour). Duct/contour L, will pass by force (2.2) into the new
duct/contour L,, with equation z,=F,,(zl, C'), where z=2z5(2) -

equation of duct/contour L,.
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Is put in L,, new auxiliary duct/contour I,, with center at point
b
0,, which is form O (Fig. l?), which has perhaps common points with
L,,, and we standardize variable z, so as tc obtain unit radius in

circle/circumference I',,.

Let us form variation §,,(¢) radius-vector of points I'),, which

satisfies conditions (1), analogous (12). to i

rt

will correspond

duct/contour C,,, close to I',,.

Repeated application of R-procedure (13) makes it possible to
construct precise representation of duct/contour C{J’, close to C,,,
onto exterior of unit circle of plane z, and corresponding inverse

representation:

zy=f1, (2, Cp); 2y="0y(29); 2,=F, (’Zlv C(lll)) (14
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Set of enumerated operations forms the f{irs:ss of step/pitch of
recurrent process
2p=f1pe1 (Zp_y, Cpp—1);
Zp— =Dy 1 (20);
(1) . =
Zy=F 4, (Zk_p Cir—1); (19)
) -
k=1, 2,...; zy=2; z,=w IpH k=K,

Key: (1). with.

which leads to the sequence of the functions, which maiorize

duct/contour L,. it 1is possible to show that with any given small

positive number €T with the certain value of k=K, will be fulfilled

inequality ATh<ZET: root-mean-square distance from duct/contour C

i
.

to the unit circle, i.e., occurs convergence according to norm \tx.

We will call described new recurrent procedure T-procedure.

Analogously is constructed T-procedure during solution internal

of problem, i.e., representation D, region, internal with respect to

boundary of L,, onto unit circle,.

For its realization we will use
circle/circumference I',, with the center at poin:t O, which contains
duct/contour L,,

so that I',, and L, and we

can have commonrn points,
standardize z so that the radius I',, would become unit p,,=1 (see Fig
lo). Let us designate §,,(¢) the variation in the radius-vector of

the points of duct/contour I',,, positive during the variation in the

¢ rection of the internal standard/normal:

N
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20 ) (16)
YJ‘.v:l"[r'ZO("?)Imln: O\<?<2’t’
where ra(¢) - the radius-vector of the arbitrary point of

duct/contour L, with the beginning in center O of circle/circumierence

C,.-

Let us ascribe to function §,,(¢) the same properties (1) thsat
also 6,,{0); then to it will correspond duct/contour C,,, close to
l,,. Using a8 R-procedure (9), it is possible to construct a

T-procedure for the internal problem according to the same diagram, as

(16): -
2= p—1(Zp—1, Cop—1)s Zp1 =Dy 51 (2); A7)
Zp= Fz.k—1 (Zp-1 C'z,k—x)§
)
kzhngZﬁEﬁZﬁ:w%m{thT
Key: (1). with.

Duct/contour L, at first step/pitch of this process will pass
. . . ¢ 1 s
into duct/contour with equation zg==Fm3(2m, C%o), where 2=2y (¢) -

equation of duct/contour L,.

It is possible to show that corresponding majorant seguence
possesses the same property of convergence according to norin, that
also generated by process of (15), i.e., with certain k=K, is

fulfiiled inequality Aqr,<ET
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By such form of funcrion w(z) and z(w), generated by a T-procedure,
realizing straight/direct and inverse transformations in both problems
- internal and external, are obtained in the form of the recurrent

sequences of Taylor series or Loran with the known coefficients.

3. Recurrent algorithm of conformal mapping of arbitrary doubly
connected region onto annulus. Let us consider doubly connected
region D(C,, C,), limited by the closed curves, close to the
corcentric circles/circumferences ', and ', in the sense that are

satizfied the conditions

| 18,0 | <shs [3j ()| <ehs |35 (9) | <ok
. 81(?)=f1(?)"‘9x01 82(?):1—@(';) (O\<9<23); (18)

fd@ln=%w<hrﬂ®lm=hf=hh=1~mm

wher

M

¢ - vectorial angle; r; - radius-vectors of the points of lines
C,, C,, carried out from the overall center of circle I',, T,: € -

arbitrary small positive number.

Let w=f(z, C,, C,) - function, which reflects region D of plane 2

to annulus of plane w with uni! external radius, moreover

f(z, C, Cy | 2=0=0; f'(z, C, C) | 2=0>0. (19)

Variation é,(¢) we will, in contrast to (7), consider positive
during variation I', in direction of external standard/normal; and

’ b,(o) - during variation I', in direction of internal standard/normal.
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Tc variation principle of M. A, Lavrentyev it is possible in this

case to give following form, analogous (3).

Under the conditions (18) function

w=j(z, C, Cy=z[l—=J (2)+/4(2)];
i < - id (20)
-/}'(2):‘ - .uj(:-)“ "'_‘—"
27 7 {—2z ¢
Ty

where §=;ew;lq(§)=;6;[¢(§)];j==1,2 and duct/contour (I',, I',) is
bypassed so that domain of definition z remains to the left, differs
to the left, differs from function, that realizes conformal mapping of

region D(C., C,) by annulus [., to smalls of second order relative to

€,

Mapping function w (8) can be represented by analogy with (6a, bj

in the form

w=f(z, C, Cy=2 [1 —¢ (a 0+_\: Clnz—">‘“:‘5 (023‘:‘ }:C:,,:")j ,
n=1 n=1

where (¢, —a;,—ibjn; €a,n, ea;n, e¢bjn - coefficients of expansion of

functions §;(g) in Fourier series in segment 0O<e<2m.

Page 150,

Let now in plane z be assigned region in the form of ring D,

Jimited by two locked nonintersecting piecewise-smooth lines L, and ‘
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L,. It 1s necessary to carry out conformal mapping D region onto the
annulus of plane w so that the line L, would pass into unit circle

['ye, line L, - into circle/circumference vy of a smaller radius, and
the given point O of plane z - to the center of these
circles/circumferences, and inverse representation. The corresponding
representations are determined as in p. 2, with an accuracy to the
arbitrary angle of rotation D region relative to point O. This
problem is reduced to the problem of the previous section, if we use

function (6) and R- and T-procedures.

Let us place within duct/contour L, circle/circumference I',, of
radius P, and will standardize variable z so as to obtain p,,=1 (Fig.
2a). Let us assume in (3), (6) 82(qp)=0, ax=0, c22=0 and let us do the
first step/pitch of external recurrent process exactly as in the case
of simply connected region, according to diagram (13), beginning from
the construction §,,(0) (see Fig. 2a). Difference will be only in the
fact that upon transfer from plane z into plane z, will be changed not
onlv line L,, which will become L,, with equation zl=fﬁo(2Ln Cﬁ”
(where z::zb(;) - equation of line L,), but also line L,. We will
assume ﬁhat the parameter e, is selected sufficiently to low in
comparison with the minimum width of ring D so that the line L, upon
transfer in L,, in accordance with equation 21==FH)(Z%,(XQ)(where
z::Z;M?) - equation of duct/contour L,) would be changed to the
values of the higher order of smallness relative to ¢,,, than L, upon

transfer in L,,. For the realization of the second step/pitch let us

lead around line L,, the circle/circumference I',, of a radius p,, with

——e—
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the center at point O, (form O in plane z,) and will standardize the .
variable z, so as to obtain p,,=1 (Fig. 2b). Let us assume into (3)

8,(¢) =0 and respectively in (6) a0=0; 71,=0, and it is realized the
procedure, analogous (16), beginning from the construction of

variation &,,(¢o) (see Fig. 2b).
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Fig. 2. Method of construction of variations for doubly connected

regions: a) internal boundary; b) outer edge.

Page 151.

It is assumed that line L,, upon transfer in L,, with equation
zBZZF}Az;h C%ﬂ varies in view of selection e,; small of higher order
relative to e,,, than line L,, upon transfer in L,, with equation
2;=Fy (22, C3'). Further steps/pitches are constructed according to
the same diagram. Here, thus, are realized two sequences of the
functions, which majorize from two sides ring D, on2 of which is
represented by Taylor series, and another with Laurent series. A
question about its convergence is not trivial; the latter depends on
the possibility to select the sufficiently low value e,, which does
not lead to the loss of calculating stability due to a large required
quantity of steps/pitches K for the completion of external recurrent

process with the assigned accuracy, determined by parameter E.

——————
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Fig. 3. Circulation "round wing" near earth/ground; stages of
conformal mapping with the help of RT-algorithm of region cnto
annulus: a) grid of polar coordinates in annulus, which is form of
external with respect to profile/airfoil region; b) region before
latter/last conversion of N. Ye. Zhukovskiy; c) region before
reverse/inverse linear-fractional conversion; d) flow line and

equipotential lines (grid, conformal-equivalent grid Fig. a).
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4. Some external and internal problems of hydrodynamics. The
described recurrent algorithm was realized in the form of program in
the language FORTRAN-4 for the cases of singly connected and doubly
connected regions. In this case it was possible with the value of a
certain complication of formula for the construction of a variation in
the duct/contour of inscribed and circumscribed circles to remove/take

the requirement of stellar regions.

For resolution in Fourier series was used program of rapid
Fourier transform with use of 512 points of duct/contour and maximum
number of members of series/row 129 (N=64). Parameters ¢gg. €T, €0 were
’ acceptéé during calculations by the following: er=¢er=2-10-5; £80=0,2,
In this case the number of steps/pitches of internal cycle

(R-procedure) did not exceed M=3, but external (T-procedure) K=50.

Examples of solution with the help of RT-algorithm of
hydrodynamic problems, which are reduced to conformal mapping of

fairly complicated regions on the average or annulus are given below.
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Fig. 3, 4 present mapping onto annulus of regions, external with
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respect to wing near Earth and wing with slat, that gives one of
possible flow patterns of corresponding profiles/airfoils of ideal
fluid. Transition/transfer from the infinite region to the final was
realized with the help of the linear-fractional conversion.
Additionally, before beginning the work of a RT-algorithm, were used
after conducting of the corresponding sections/cuts inverse
transformations of N. Ye. Zhukovskiy, "straightening” flattened

ducts/contours.

Fig. 34 and 4d shows final conformal-equivalent grids, elements
of which are flow lines and equipotential lines during circulation
flow around corresponding profiles/airfoils of flow of ideal

incompressible fluid.
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Fig. 5. Circulation flow around circular cylinder with edges/fins:
a, b) the same as in Fig. 3a and 4a; c) flow line and equipotential
lines in the case of external edges/fins; d) the same in the case of

internal edges/fins.

Page 154.
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. Fig. 5c d shows patterns of lines of current and equipotential
lines during circulation flow around cylinder with external and

internal radial edges/fins.

Fig. 6 depicts flow lines and equipotential lines, which
correspond to motion of atmosphere of Jupiter in vicinity of "red

spot" in presence of two point vortices/eddies [14],

5. Problem about motion of ligquid in cylindrical cavities. Let
us consider as an example doubly connected cylindrical cavity. In the
case, when the free surface of liquid is perpendicular to the
longitudinal axis of cylinder, the initial three-dimensional
boundary-value problems, connected with the motion of 1liquid, are

. reduced by the method of separation of variables to the
two-dimensional problems for S region, which is the cross section of
the column of liquid [5]. The latter are solved by the method of the
expansion of the unknown function in the Laurent series (heterogeneous
problem) or by the method of Bubnov-Galerkin (uniform problem), if it
is possible to conformally map doubly connected region S of the plane

of complex variable z=x+iy to the annulus in plane w=u+iv.
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Fig. 6. Idealized diagram of flows in the atmosphere of Jupiter in
vicinity of "red spot" (larger from closed domains), constructed on
basis of photographs KA "Voyager" [14]: a) the same as in Fig. 3a and
4a; b) the same as in Fig. 3c and 4c; c) pattern of lines of current

and equipotential lines (grid b, conformal-equivalent to grid Fig. a).
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1“ v .n : T .-.g‘e»;

Fig. 7. Dimensionless parameters, which correspond to motion of
liquid in section, formed by eccentric elliptical cylinders: a) cross

‘ section of column of liquid; b) dimensionless connected moment of
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inerzia of layer of liguid of unit thickness relative to longitudinal .
axis of jacket:; c) square of dimensionless frequency of first tone of
unsymmetric oscillations of infinitely deep liquid in plane, passing

threogn minor axis of ellipse; d) the same in plane, passing through

transverse; —— - calculation on basis of use of RT-algorithm by
Bupnov-Galerkin method with four coordinate functions; - - - - the
same with one function; ©O.% - data from works (1] and [6].

Page .%5¢

:n the case of uniform problem 1s realized further representation
of :r.s annulus onto rectangle S'(0<E<T &o; 0<<n<<21) in plane

w=e-, c=35+in with the help of exponential function w=e:,

All parts of solution are described in works [1, 5, 6], and we on .

them do no: stop.

Let us consider for example S region in the form of eccentric
elliptical ring (Fig. 7c). As the dimensionless parameters let us

introduce the following:

d . 99
e=.—‘3—;8=3—1;8=——; * = ’ (<)
a a a [—3

from which first three are independent variables (eccentricity e, the
relationship/ratio of semimajor axes &, the relative shift of the
centers of internal and external ellipses e). With ¢=0, S region
passes into the elliptical ring, limited by the confocal ellipses:
when e=0 - into the eccentric annulus, with e=0, e=0 is degenerated

into the annulus.
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Fig. 8. Motion of liquid in section, formed by eccentric elliptical
cylinders; stages of conformal mapping with the help of RT-algorithm
of eccentric elliptical ring onto annulus (designation the same as in

Fig. 3 and 4).

Page 157.
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Fig. 7b depicts values of dimensionless attachment/connection cf

) @
moment of inertia of I layer of liquid of unit thickness relative to
axis, passing through center of external ellipse. 1In Fig. 7c d - the
value of the squares of the dimensionless frequencies of the first

tone of the unsymmetric oscillations of infinitely deep liquid in the

plane of the symmetry of section (5&) and in perpendicular plane (wi)-

Following coordinate functions were used for calculation:

Ykp=C;+COS (# — 1) & cos vn;
Yes=Cos (3 — 1) T sin (v — ) (e, v= 1,£2, 3,...), (23)

° 1 -
where Cr= ——E-S | 2 (Q) | 2cos (p— 1) % cosvndtdm;
, g,

(24) ®

|

.
b

S=S|z'(ﬁ)l2d5dn;§

£
¢ §o

moreover to each combination of indices u, v corresponds one value k.
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Fig. 9. Relief of jacobian of conversion |z/(f)|? of initial region to
rectangle of plane § above plane §: a) confocal elliptical ring; b)

eccentric elliptical ring; ¢} eccentriz annulus.
Page 158.

As significant dimension is accepted value [= (ab)”; parameter §
in all cases it is identical: ©6=0.6; maximum number of steps/pitches

of T-procedure comprised k=10.

‘ Together with values, obtained by method. described into [S],
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with use of RT=algorithm of conformal mapping, Fig. 7 gives .
appropriate values for confocal elliptical ring and eccentric annulus

from works [6] and [1].

With critical value of e=0.6 internal ellipse is degenerated 1in
line segment. In this case precise value ;ﬁp. which corresponds to
«=0, must not depend on the parameter «. Actual difference .;ia with
«¥0 from &ﬁp with «=0 (Fig. 7d), which increases with an increase «,
indicates the need for use during the calculation of the larger number

of coordinate functions.

Fig. 8 depicts some stages of conformal mapping with the heip of
RT-algorithm of eccentric elliptical ring onto annulus, on Fig. 9 - ’
relief of jacobian |2/({)|? of conversion z=z({) above rectangle S' of
plane ¢=f=in, to which is mapped initial doubly connected region S of

plane z=x+iy.

Given examples give sufficient representation about great
possibilities, which open/disclose RT-algorithm of conformal mapping
for solving two-dimensional boundary-value problems, including
problems of dynamics of liquid, partially filling cavity of solid

body .
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OSCILLATIONS OF CYLINDRICAL CONTAINER WITH THE LIQUID AND THE ELASTIC

RADIAL BAFFLES.

I. M. Mel’nikova, G. N. Mikishev.

Effect of elastic radial baffles on oscillations of cylindrical
container, partially filled with liquid, is investigated. The
approximate linearized equations, which describe the joint
oscillations of vessel, the liquids also of the baffles, which are
solved -numerically by method of successive approximations, are given,
It is shown that, beginning from a certain value, the relations of the ‘
partial frequencies of the system, the effect of the elasticity of
baffles virtually are reduced to an increase in damping the
oscillations of liquid. The dependence of equivalent attenuation
factors on the relation of partial frequencies and air-gap clearance

between the wall of vessel and the baffles is obtained.

Calculated results will agree well with results of carried out

experiment.,

Work [1] examines problem about oscillations of liquid in
cylindrical container, which contains elastic radial baffles. The

initial equations, which describe the joint oscillations of liquid and ‘
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. baffles, are obtained approximately with the use of a perturbation

method [3, ¢].

Here in the same setting is examined more general problem: about
oscillations of cylindrical container with liquid and elastic radial
baffles. Are given also some results of experimental research.

1. Let in field of mass forces, whose acceleration j, is located
rigid vessel in thé form of straight/direct circular cylinder with
flat/plane bottom of radius r,, partially filled with liquid of
density p to level h and containing N of radial baffles in the form of
flexible longitudinal bands of small width, stretched near wall at
equidistance from each other. Mass of vessel with liquid M, the
length of baffles ¢, width (b<<1)‘ thickness 7, the linear mass m°,

. the tensile stress of each band T. Baffles are completely immersed in

liquid (:<h).

Vessel completes low progressive/forward occillations under
action of transverse force P=P,sinwf. Let us compile the linearized
equations of the joint oscillations of vessel, liquid and baffles.
Most simply this to do by addition to the known equations for the
vessel without the baffles (see [3]) equations of transverse
vibrations of flexible bands and introduction to the right sides of
the generalized forces, caused by baffles. During the compilation of
equations we will be bounded to the account only of the fundamental
tones of the oscillations of liquid and baffles. The appropriate

‘ generalized coordinates let us designate through s(t) and gq(t). Let
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us connect moving coordinate system with the center of the bottom of .

vessel, after directing axis Ox opposite to vector j.

It is not difficult to obtain equations of transverse vibrations

of flexible bands, identifying band with stretched string.

Page 160.

Let us determine generalized forces approximately, after using the
harmonically linearized dependence for the flow forces, which

functions per unit of the length of rigid baffle [4]:
' F ;= mwv,+ Mpb* !/ 2050, (1)

Here .

n1==—g-9b2 — linear apparent additional mass of baffle; ;. __ normal

to baffle component of velocity of liquid; i - number of baffle;

I=19,1(140,4e0.138x"0)  x'— x__p. (2)

For normal to baffle component of velocity let us take

de

V=S§ o_vi"'—q,'fn (3)

where ¢ - eigenfunction of uniform boundary-value problem about

oscillations of liquid in cylinder without baffles;
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9% _ g sin 8, q=-&ix/r)

ov, gy sh (§1h/rp)
8; — angle between plane of vibration and i baffle;

fi=[sin#;, f=sin(nx/l) — natural mode of vibration of band.

Lowering intermediate unpackings/facings, let us register unknown

linearized system of equations in the following form:

.. se N .. —
u+dasS+Zauq,~q‘-=P0 sin of;
=1

. N N
C . . N -
s+sss+wss+asuu+2 asqi?i‘f‘zesqiqi:(}; 4)
=l

{=1

) ql-l-—sqiql—}—wgq,-—}-(qu.l.t-}—aq{;?—}-sq,-sé=0 (i: 11 23"" N)'

Coefficients of equations are determined by following

expressions:

° w / T a l a x N
W, =—=w W = _— = — = :
y * y+y"q m°+4-m TS M su T ST

l

2m°l . 2m°l m .
== sin2b,; qayiy=——; A g;= — Safdxsm?ﬁ-'
uqi aM v “qiu m' sqt P-‘i‘l*‘-’o Iy
1 K N !
m . ° . 12, .. -
ays=—\afux; ;=g —— E | sin 6§, | 572 Ylla?)(o{qu, )]
m el 1 ;
‘-

1 l
K 172 . e,
=X § 2 | sin B, 1% o= —— [ a7

m
0

o4

Kdx | sin 8, | %%
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ar = ——— | Mafyi’dx | sing, |12
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Here ®s° S5°, A, t — hydrodynamic coefficients, which correspond to

cylinder without baffles;

232 20y Nm [ ro

— rwh—1i2 w!— . _
K—(m} b=l rrveEr & S/z(Qﬂl/rO)—{—l],

!

l ° 2 2
m =3 (m”=-m); '/.0i=(0250+f240i —2a f5q,; Cos \'sqi)m;

Ys; — phase difference between generalized coordinates s and ¢..

2. -System of equations (4) was solved numerically by method of
success{ve approximations with use by computer(s). 1In this case the ’
effect on the natural frequency of the baffles of the further chain

forces, which appear during the oscillations, was taken into

consideration.

Fig. 1 gives results of calculation of amplitude frequency
characteristic of system according to coordinate u, in reference to
P,. obtained with different values of parameter x=q,/vs.
Calculation is carried out with following initial data: M=56.6 kg;

Py=0,313 N; r,=175 mm; [=365; b=58 and r=0.2 mm; p=10% kg/m*®; h=I/.

Case «=100 virtually coincides with case of absolutely rigid
baffles. The value of resonance peak with «=100 is equal to 0.835

mm/N. With the decrease « resonance peak is reduced. The frequencies ‘
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. of minimum and maximum of amplitude characteristic are changed weakly.
With #=1.34 becomes noticeable the second resonance peak, caused by

the oscillations of baffles.
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Fig. 1. Amplitude frequency system characteristics on coordinate u,
in reference to P,, with different values of parameter x: == -
calculation; 40O - experiment.

Key: (1). mm/N. (2). rad-s-.
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However, its value up to the value «x=1.2 considerably less than the
first (basic) peak. As calculations showed, with an increase in the

amplitude of external force the second peak virtually vanishes.

Thus, with values «21.2 considered mechanical system behaves as
system with two degrees of freedom (vessel - liquid). The decrease of

the value of basic resonance peak is equivalent to an increase 1in .
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‘ damping the oscillations of liquid.

About this special feature of system testifies also phase

response, which here is not given,

Major resonance continues to be reduced with further
approximation/approach of parameter « to 1, and amplitude
characteristic is distorted by proximity of second resonance, which

with «=1 begins to prevail over the first.

When effect of elastic baffles in practice is reduced to decrease
of resonance peak, amplitude characteristics can be used for

determining equivalent damping coefficient of liguid from following

. formula:

2 2
. m' — wg 6)
ES . P (
2 2 2
w* [(uow.M[PO) — 1] /
where w,, w* - frequencies of minimum and maximum of amplitude

characteristic; *-- value of resonance peak. This formula is
obtained from the expression for the amplitude characteristics of

linear system with two degrees of freedom when =@, (w;=wy) [3}

Fig. 2 gives dependence of dimensionless equivalent attenuation

factor §,=nes"/wg on relative amplitude of oscillations §,=So/ro.

In the case of elastic baffles equivalent attenuztion factor is

. considerably higher than in the case of rigid baffies (+=100); so,
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with «=1.2 and 5,=0.05, almost 3 times. This effect is caused by the
fact that the elastic baffles, during the specific selection of their
parameters, are peculiar dynamic damper [1, 2].

3. In order to be convinced of correctness of those obtained it
s above results, and to also explain gap effect between wall of

vessel and baffles, it was carried out experimental research.

While conducting of experimental research was used rigid
cylindrical container with six radial baffles, prepared from aluminum

alloy AMgé6.
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Fig. 2. Dependence of equivalent attenuation factor on amplitude of

oscillations of liquid with different values of parameter «.
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A radius of vessel and sizes/dimensions of baffles correspond to the
‘ calculated (see Section 2). Tension of each band was monitored in the

process of experiment.

Frequency characteristics were determined on installation, which
consists of rigid platform, air supports, electrodynamic vibration
exciter and measuring system, which includes displacement pickup and
low-frequency analyzer of oscillations. The masses of platform and

vessel are equal to the masses, accepted in the calculations.

Experimental values of amplitude frequency characteristic,
obtained with P;=0313 N and «=1.89; 1.34 and 1.2, they are shown in
Fig. 1. It is evident that they will agree well with calculation

. data, in spite of a comparatively large width of baffles. The
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experimental values of phase response also well will agree with the .
calculated.

Consequently, reference system of equations (4) with sufficient
accuracy describes oscillations of body with cavity, partially filled

with liguid and that containing elastic baffles.

Until now was examined case, when clearance between wall of
vessel and baffles is absent. It is known that in the case of the
rigid baffles, established/installed with a certain clearance, damping
the oscillations of liquid can be substantially increased [3]. 1In
particular, the radial baffles with a width of r,/3,
established/installed with the optimum clearance, attenuate of

oscillations approximately 2 times more than without the clearance. .

Research of gap effect on damping of oscillations in the case of
elastic baffles was conducted with their different tension. The
greatest increase in the equivalent attenuation factor 6* was obtained
with tension T=12.3 N, which in the absence of clearance corresponds
to value «=1.34. Fig. 3 for this case gives experimental dependence
6, on the value of the relative clearance A=A/b.

Attenuation factor 6, attains maximum with A=0.034. It is
important that with an increase in the amplitude of oscillations &x it
grows. With amplitudes 50=0,03..0,058, it is approximately 6 times

thigher than for the rigid baffles without the clearance and 3 iimes ‘
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. higher than for the rigid baffles with the clearance. Thus, during
the optimum combination of tension of baffles and clearance it is
possible to increase substantially damping the oscillations of vessel

with the liquid.

Together with progressive/forward oscillations of vessel angular
oscillations were examined. And in this case the special features of

system, caused by the elasticity of baffles, are retained.
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Fig. 3. TDependence of equivalent attenuation factor on air-gap
clearance with different values of amplitude of oscillations of ‘

liquid.
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EFFECT OF SURFACE TENSION AND ANGLE OF WETTING ON THE OSCILLATIONS OF

LIQUID IN THE VESSELS.

G. N. Mikishev, G. A. Churilov.

Results of experimental study of effect of surface tension and
angle of wetting on oscillations of liquid in vessels, obtained for
case of large numbers of Reynolds and Bond, are presented. The
characteristics of the oscillations of liquid in the circular cylinder
are in detail analyzed. The forces, wﬁich appear during the
oscillations of liquid in the zone of meniscus, are determined. The
simple iﬁethodology of the determination of attenuation factors, based .
on the use of empirical dependence for the dispersive forces, which
function in the zone of meniscus, and the solutions of the
corresponding problem about the oscillations of ideal fluid in the
vessel is assumed. As examples are determined the attenuation factors
for the fundamental tone of the oscillations of liquid in the circular
cylinder with the flat/plane bottom and in the vessel, which has the

form of rectangular prism.

To oscillations of liquid in vessels affect different factors,
including surface tension and angle of wetting. With the large
numbers of Reynolds and Bond the effect of these factors affects,
mainly, damping of the oscillations of liquid. Attenuation factors

can considerably differ from the coefficients, obtained within the .
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framework of boundary-layer theory.

Theoretical determination of attenuation factors is associated
with great difficulties. The experimental data about the coefficients
are contained in works [6, 7, 10, 11, 12]. However, majority of them
relates to a special case - a good wetting of walls. Furthermore, by
the reliability of some data is caused doubt, since the angles of

wetting were not determined.

Recently interest [1] again is exhibited to this question. This
fact and dissatisfaction impelled the authors to conducting of
experimental research for the purpose of the study of the effect of
surface tension and angle of wétting on the characteristics of the
oscillations of liquid in the vessels-to the experimental data,
available in the literature. The results of these research for the
case of the large numbers of Reynolds and Bond are presented below.

1. Formulation of problem. The free linear oscillations of
heavy low-viscosity liquid in the vessel by smooth walls with a
sufficient accuracy are described by the following system of

differential equations [7, 9]
. . 9 ;
Sat 23S, Fwas, =0 (n=1, 2...). (1

Page 165.

Here g, — generalized coordinate, deflection of free surface of

liquid at point of standardization; ®a, frn— natural frequency and
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attenuation factor; n - number of tone of oscillations. Natural .

frequencies and attenuation factors are determined from the formulas

on=1 Jom; 3a=(p1 50,2} Zu,) {(v9.24S. (2)
s
Here p, v - density and kinematic viscosity of liguid; j -

acceleration of field of mass forces; xn, ¢n — eigenvalues and

eigenfunctions of problem about oscillations of ideal fluid in vessel

w =0 \ ¥24S/x, — generalized mass;
3

T O%n
ox =
surface of vessel; T - undisturbed surface of liquid.

— form of oscillations of free surface:; S - moistened

With assigned form of vessel of formula (2) it is possible to

represent in the form
wa=V TS n (BIl); 35=0,84(AID]V Rey, 3

where [ -~ significant dimension of vessel; h - depth of liquid;
Ren==mnﬂ/v. Functions fn and gn completely are determined, if the
solution of the problem about the oscillations of ideal fluid in the

vessel is known.

Dimensionless parameter Re, is ratio of inertial forces to
viscous forces. They frequently call it Reynolds number. Assumption
about the low viscosity of liquid is equivalent to condition Re,>1.

With satisfaction of this condition damping the oscillations of liquid

R ——
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is weak (Bn<Kwn) and it is determined by the dissipation of

vibrat:onal energy in the thin wall boundary layer of vessel.

Objective parameters of oscillations of liquid, as show
experiments [6, 11, 12], can differ significantly from
characteristics, calculated by formulas (2), especially attenuation
factors. A difference in the experimental characteristics from the
calculated is caused by the action of the disregarded forces, which

appear in the zone of meniscus during the oscillations of liquid.

In general case of forces, which function in zone of meniscus,
they are nonlinear and depend on surface tension and wetting of walls
of vessel. We will consider it their low in comparison with the
inertial and gravitational forces. Then the nonlinear vibrations of
liquid can be described in the.first approximation, by equivalent
linear system of equations, analogous system (1), with the only
difference that the the coefficients of equations ®, and fn will be

the functions of the amplitude of oscillations Son.

Page 166.

Supplementing to that determining of parameter, which
characterize oscillations of heavy low-viscosity liquid in vessel,
surface tension o and static angle of wetting (contact) a and using
dimensionality method, let us represent equivalent natural frequencies
and attenuation factors in the form of following generalized

dependences:
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mnzy/ﬁ[fn(B, aa }l/l) sOn/l)v
xenz‘”ngn (Rem B’ a, }l/l) SOn/[),

(4

where B=pjl?/0— Bond number. With the assumption B>>1 done above.

Thus, problem about effect of surface tension and angle of
wetting on oscillations of liquid in vessel is reduced to experimental

determination of dependences (4).

2. Vessel in the form of circular cylinder. Let us establish
for in with having been experimentally dependences (4) the fundamental
tone of the oscillations of liquid the circular cylinder the
flat/plane bottom, bounded in this case to the case of a deep liquid.
For the characteristic linear dimension let us take a radius cylinder ‘
and r,, while for the dimensionless attenuation factor - logarithmic

decrement of oscillations §; =2nf;/®;. Subsequently index n=1 for

simplicity we will lower,

Description of experiments. Experiments were conducted with the
use of six cylindrical containers by a radius of 38, 50, 100, 175, 375
and 1000 mm, prepared from the aluminum alloy AMg6. Vessels were
filled with water or turpentine to level h=2r,. Those realized in the
experiments of the value of parameters Re, B and a lie/rest at ranges
2,2-10°<<Re<C3,6- 10" 194<<B<1,33-105 ang 0<<a<C108°. The range of a
change in the relative amplitude of oscillations was selected

0<s9o<0,]. For amplitude s, is accepted the maximum deflection of the .
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free surface of liquid on the wall.

Viscosity of water and turpentine was measured in process of
tests by capillary tube viscometer, and values of density and surface
tension were taken from handbooks according to physical properties of
liguids. The static angles of wetting were determined by the method
of tnhe inclination/slope of plate by the achered drop and by adhered
bubbie [4]. The zero angles of the wetting (more precise, close to
zero) were obtained: for the turpentine - because of the complete
wetting of the walls of vessels, prepared from alloy AMgé6, for the
water - by creation on the walls of microroughnesses [8, 10].
Virtuallxﬂit was considered that the angle of wetting was equal to
zero, 1f_during the oscillations of the free surface of the wall of
vessels they were covered with stable fluid fiim. Angle of «=108° is
obtained with the plotting on the walls of & thin layer of L drophobic
lubricant and the filling of vessels with water. For the water this
angle is maximum [4]. Intermediate angles are obtained just as zero

ang.e for the water.

Natural frequencies and attenuation factors were determined by
method of free oscillations on installations, which make it possible
to measure total flow forces, which functions on vessel during

ostiliations of liquid.

Page 167.

Ty
-
~

1

“ransition/transfer from the flow “cr-es to the generalized
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coordinate was used relationship/ratio P=A¥, where r.=mnpro’/g. $=1841— ‘

- first nonzero root of equation J,/(§)=0 [7].

Case of complete wetting (a=0). At the zero angles of wetting,
as experiments showed, natural frequency and logarithmic decrement do
not depend on the amplitude of oscillations, i.e., the oscillations of

ligquid are linear.

Natural freqguency does not depend also on Bond number. Virtually

it coincides with the frequency for the heavy ideal fluid

w=1"%//ro ()

Of ~this it is possible to be convinced from comparison of natural .
frequencies given in Fig. 1. To the case 5n the graph in question
corresponds the calculated straight line f=/f and the experimental
points, obtained for the smallest cylinder (r,=38 mm) with the filling

with its turpentine (B=460).

Logarithmic decrement of oscillations is function of
dimensionless parameters Re and B. The analysis of experimental data
showed the possibility of the representation of logarithmic decrement
in the form of the sum of two components, one of which depends only on

parameter Re and, etc. - from B:

8 =23, (Re)-}3, (B). (6)
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rectangular prism, indicate this possibility.

Let us take for §, dependence

b, =4.08/' Re, -

obtained within the framework of boundary-layer -heor~ Imr case of

deep liquid, and let us determine component §..
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Fig. 1. Dependence of natural frequency on amplitude of oscillations

with different values of number of Bond and angle of wetting:

C —r2=3 wmm, B=460; T —r,=100 mm, B=1330, a=85" A& —ry=38 MM, B=194, a=10%

Fig. 2. Dependence of cumponent of decrement §, on Bond number with

a=C: Z — experimental points.

Resul-s of determining component &, are shown in Fig. 2.
Straight line is obtained by working/treatment of these points

according to the method of least squares. The dependence

3,=2,24/y B (8)

"rous, unknown logarithmic decrement takes following form:
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2=4,08; Re--2.24,, B (9)

First term into (9) is caused by dissipation of vibrational
energy of liguid in wall boundary layer of cylinder, the second - by
dissipation of energy in zone of meniscus. The results of
~alculations according to formula (9) showed that maximum disagreement

with the experimental data are approximately 4%.

In series/row of works [6, 7, 10] for agreement with experiment
theoretical dependences (3) formal correction, which increases
attenuat{on factor 1.41 times, was introduced. The introduction of
this correction, as it is not difficult to be convinced from formula

' (8), far from always can lead to the acceptable results. Comparisen
with the experimental data, examined above, showed that only for half
of all cases the results are satisfactory (disagreement of less than

11%).

Case of partial wetting (a=40..108°). In the case of oscillation
in guestion the liquids are nonlinear. The dependence of natural
frequency and logarithmic decrement on the amplitude of oscillations

testifies about this.

Natural frequency depends substantially on amplitude of
oscillations only for small cylinders and large angles of wetting (see

‘ Fig. 1). Figure gives the experimental data, obtained for the
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cylinders with a radius of 100 and 38 mm.

Following empirical formula was obtained on the basis of
experimental data for natural freguency:

Bl

f=1"[14(5,3B1-24,) B)e-®C-asinal'” (10)

where S0=24a; a=a/ry, a=1 MM. With §,<3 the freguency on the amplitude

of

oscillations does not depend and in the value coincides with the
appropriate maximum value. The results of calculation according to

formula (10) are shown in Fig. 1 by solid lines.

Maximum values or frequency at a=90° will agree well with
calcuiation data of work (3], in which is examined proolem about
oscillations of ideal fluid in cylinder in the presence on its surface
of elastic membrane/diaphragm, evenly stretched along dﬁct/contour. ‘

For example, for number B=1330 disagreement in the Ifrequencies

composes only 0.6%.
Page 169,

Known theoretical formula
f=vE[1+2B]",

obtained for case, when on displacement of line of contact of
limitations it is not placed and a=90° (for example, see [21]), gives

values of f, which differ little from vE.

Dependence of natural frequency on amplitude of cscillations is
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caused by interaction c¢f line of contact with walls of cylinder. With

ot

the amplitudes s,“l mm the line of contact is completely engaged with
the walls, natural freguency is maximum. With s,>1 mm the line of
contact begins to slip relative to walls, which leads to the decrease

of natural frequency (in essence due to the decrease of the

generalized "hardness" of system).

Let us consider now logarithmic decrement of oscillations. 1In
contrast to the natural frequency logarithmic decrement strongly
depends on the amplitude of oscillations, number of Bond and angle of
wetting. As in the preceding case, let us represent it in the form of
the sum Pf two components, one of which is caused by the dissipation
of vibrational energy in the wall boundary layer of cylinder, and

another - by dissipation of energy in the zone of the meniscus:
3=38,(B)+5,(B, a, sp). (11)

Fig. 3 shows component of decrement §,, obtained for cylinders
with different radii with different values of B and a depending on

relative amplitude of oscillations.

With low amplitudes component &, is close to zero.In this case
logarithmic decrement it is determined by component §,. With an
increase in the amplitudes, when line of contact begins to slip
relative to waitls, 6, sharply it grows, it reaches maximum values and
then smoothly it is reduced. Maximum values §, exceed the appropriate

values &, several times (for the cylinder with a radius of 175 mm - 7
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times). .

Dissipation of vibrational energy in zone of meniscus occurs as a
result of complicated interaction of line of contact with walls of

cylinder.

At angles a@=40...60° on walls of cylinder appears fluid film,
which flows follcwing stepping back liquid. The velocity of its
runoff is lower than the velocity of liquid. Therefore line of

contact lags behind the bulk of liquid.
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Fig. 3. Dependence of component of decrement &, on amplitude of
oscillations with different values of number

Bond and angle of wetting:

A —10=175 MM, B=4160, q=108°-
O — ry=375 MM, B=1870, a=mg§:'
V — rg=1000 MM, B=4160, a=75°
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Abrupt change in the contact angle and formation of capillary waves on
the free surface occurs upon the rendezvous of contact line with the
heaving liquid. Liquid carries along after itself line of contact,
surmounting in this case resisting force to its motion on the dry
wall. With the increase of angle a the velocity of the runoff of film

increases. The dissipation of vibrational energy grows.
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At @=108° fluid film becomes unstable and it is displaced into .

drops, which are combined between themselves and jets they flow from
walls, causing set of capillary waves on free surface. This mechanism
of the dissipation of energy is characteristic for the large cylinders

and the well developed amplitudes of the oscillations of liquid.

In contrast to previous case, to establish dependence §,(B, a,
S,) on the basis of obtained experimental data about decrements of
oscillations did not succeed. For the establishment of the unknown
dependence it is necessary to know the forces, which function in the

zone of meniscus.

3.- Determination of forces, which function in zone of meniscus.
The flow forces, which function in the zone of meniscus, were .
determined for the rectangular plates, partially immersed in the
liquid and accomplishing bouncing in their plane. Plates are prepared
from alloy AMgé6é. The sizes/dimensions of the plates: length - 314
mm, height/altitude - 80 mm, thickness - is 0.65 mm. Submersion depth
into the liquid - 40 mm. During iue tests were used the same liquids
and methods of changing the angles of wetting, as during the tests of

cylinders.

To experienced/tested plate were assigned harmonic displacements.

The unknown flow forces was determined from the relationship/ratio
F=Fy—F —F,—F,,

where F, - the composite force, which functions on the plate; F,, F, ‘
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.\d F, - inertial, dispersive and archimedian force. F, was measured
directly by the sensor of force, to which was fastened the plate.
Remaining forces were located by calculation with the use of the

following dependences:
Fi= —muu,p? sin pt -+ F,tg pt;
Fo= —opoL V 2vp (ho-+ug sin ptyuyp cos pt;
Fi=pjldu,sin pt,

where !, d - length and thickness of plate; L=2(/+d) — length of

line of contact; h, - submersion depth; m, - mass vf plate and

elements of its attachment; u,, p - amplitude and the frequency.

Dependences for F, and F, are obtained on the basis of solution
‘f problerﬁ ‘about oscillations of flat surface in viscous fluid [5].
Experiments with the completeness by the immersed plate showed that
the values of inertial and dispersive forces will agreé well with

appropriate computed values.

Fig. 4 shows dependence of F on displacement of plate

u=uqsin pt, obtained at angle of «=108°.
Page 171.

With the low amplitudes of oscillations (u,<l1 mm) this dependence is
linear. 1In this case the line of contact is engaged with the plate.
With the amplitudes u,>1 mm F(,, it is the hysteresis loops, whose
area is equal to the dissipation of vibrational energy during the

’eriod. Judging by the form of hysteresis loops, dispersive force
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component F of the type of dry friction makes a basic contribution to ‘
the dissipation of vibrational energy. This indicate also the
experimental data about the resisting forces to the motion of line of

contact with the constant velocity (for example, see [8]).

With decrease of angle o hysteresis loops are deformed. Their
area is reduced. In the limit (with a=0) they become elliptical. 1In
this case force F is degenerated in linear dispersive view of the type
of viscous friction. However, directly it does not depend on the
viscosity of liquid. Transition/transfer from the nonlinear frequency
independent dispersive force to the linear force, proportional to
velocity, occurs at angles of «<40°.

Let us determine dispersive force, pér unit of length of line of .
contact at angle o=0. In the case in question, as already mentioned,

dispersive force was proportional to the velocity

F=bu. (12)

Coefficient b is function p, o and j. Since the number of
independent units measurement is equal to three, then with an accuracy
to constant factor it is possible to determine it on the basis of

dimensional analysis

4 .
szVP°3/j. (13)

Constant factor was determined experimentally by force .
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. measurement during oscillations of plate in turpentine. As a result

was obtained value c=0.182.

Thus, unknown expression of dispersive force will be

F=0, 182V4fpas/jiz. (14)

In general case dispersive force is nonlinear. Let us determine
the equivalent linear dispersive force, per unit of the length of line

of contact.
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Fig. 4. Dependence of force F on displacement of plate u=tosinpt O -
experimental points.

Key: {%). N.

Page 172,

In contrast to the previous case the unknown force does not depend on

the frequency, at least for angles a=40...108°,

—

F=(bup)u. (15)

Coefficient‘B*_is connected with dissipation of vibrational

energy during period with relationship/ratio

b, =AE/aus, (16)
where AE=AE/L.

Fig. 5 gives values AE in dependence on amplitude of oscillations .
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‘ 0f —.ate o different angles a, obtained by dezermining area of
hysteresis loops. Experimental points are approximated well by the

cependence of the form

AE:A(uO—a):’—}—B(I—-Cos a)(u,—a), (17)

where a - value of the amplitude of oscillations, with excess of which

begins the slipping of line of contact relative to plate. For the
a=1 MM

angles of wetting in question with A Curves 1, 2 and 3, given

on the graph, are obtained with A=2.96 N/m?, B=0.124 N/m,
values A and B can depend only on p, ¢ and j.

Using dimensionality method, it is possible to express them in

. the foilqowing form:

A=0,111ypaj; B=1,69s. (18)
Taking into account (18)
AE=0,111 1/p—c7(uo—a)2+ 1,693 (1 —cos a) (u;— a). (19)

Obtained expression is correct for amplitudes of oscillations

U,z>a=1 mm. With amplitudes u,<a AE it follows to assume it equal to

zero.,

Substituting (19) into {16), we will obtain

'(';* =0,0352 v o3/ (1 —ajuy)? 40,5397 (1 —cos a) (1 —a/uy)/u.. (20)




‘

DOC = 89056414 PAGE

34 o

Dependence (15) and expression (20) completely determine

equivalent dispersive force at angles a=40...108°

During determination of forces, which function in zone of

meniscus, it was assumed that they were directed perpendicularly to

line of contact. Further experiments were conducted for checking the
correctness of this assumption, the oscillations of plates along the
line of contact in particular were inveétigated. As a result it was
established that any forces, which function along the line of contact,

it does not appear.
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Fig. 5. Dependence of energy of dissipation in zone of meniscus on
amplitude of oscillations of plate: ©O,V,0— experimental points.

Key: (17. N,
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4, Semi-empiricai. dependences for attenuation factors. As in
Section 2, let us represent logarithmic decrement in the form of the

sum of two components

=3, (Re, h)+8,(B, a, &, s,). (21)

Let us assume that solution of problem about oscillations of
ideal fluid in vessel is known. Then the determination of the
component of decrement §, is reduced to the simple integration (see
Section 1), and component §., can be approximately found on the basis
of experimental data for the dispersive fcrces, obtained in the

previous section.




DOC = 29050414 PAGE 37

757
°

W= will use relationship/ratio

3=AE/2E, (22)

connec-ing logarithmic decrement with dissipation of vibrational
energy during period and total energy of system. By defining AE as
the work of the dispersive forces, which function in the zone of the

meniscus

AF = .‘stg g YL,
L

and accepting as E maximum kinetic energy of system 0,5 pw?se?, we will

obtain
- 3 T A2
2 == bV L. (23)
wis
L @ ﬂ
This expression is correct for vessels, whose walls in area of

duct/contour of free surface are vertical or close to vertical.

As examples let us determine logarithmic decrements for vessels
in the form of circular cylinder with flat/plane bottom and

rectangular prism.

Circular cylinder with flat/plane bottom. Component &, takes

following form [7]:

RANTEY: [e?—1+ sh<257z)]‘ )




_
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For determining component §, from formula (23) it is necessary %0

—

know not only coefficient of b, but also natural frequency w, form of

oscillations ¥ and generalized mass u. From the solution of the

problem about the oscillations of ideal fluid in cylinder [7] we have
-_— pro1t (2 —1)

E] b_, \T* —_— M . W —
w= | =L thip; ¥ |, ,=sinh p=—rrr
r 2:3thzh

(23)

With a=0 coefficient b is determined by expression (13).
Substituting (13) and (25) into (23), and also assuming/setting

dL=ryd9 and integrating, we find

Tp—
® : 3,=2,2V thth/y/ B (26)

Puage 174.

For case of deep liquid obtained dependence virtually coincides

with deperdence (8). Disagreement in the coefficients composes only

when a=40...108° component of decrement &, is located thus. In

this case of béﬁ*/w, where_B*.is determined by expression (20), in

which one should assume wup=s,sinf0. After integration we will obtain

o]

0,1 a 2
82_~._i_- (_’[-__ 8_.-|L2:[ L)_L 3,06 | — D12 :
} Sp Sé I B E() ( cos a) (2 & Siy ) ' (27)

. where s, - amplitude of oscillations at the point le_

2
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Results of calculations according to formula (27) are shown in
Fig. 3 by solid lines. They satisfactorily will agree with the

experimental data for all three cylinders.

Vessel in the form of rectangular prism. The component of

decrement §, is obtained into ([12]

[(1 N 111)*—————“(;111 )] (28)

V/_——
Here Re=gy/2v: I, =0L/l; h=h/l; 2l, 2l — length and the width of vessel.

component &6, it is not difficult to define analogously how this
was done for cylinder. Using the solution of the problem about the

oscillations of ideal fluid in rectangular vessel [7, 12], we find
- ’f"':"""—:—_' 4 — (1) . 29
3, = 1,46 (1 4+ 1/20,) V th (nh/2) /vy B® npu a=0 (=

Key: (1). with.

and By = OVQ_Q [<1+1 21)-———-—(1—}-2/nll)—}————(1+1/11)}
4 23 [(1+2/n/])—3—(1+1/71)]<1—cos a) ‘it a=40... 108", (30)
BSQ ) So
Key: (1)

with. ‘
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Here  B=pji%s; sy=so/l; 59> a(14+-1))2/a+1).

In work [12] for case a =0 and 7,=4.61, h=0.424 is obtained

empirical dependence
8, =36,8/B. (3

However, 1t much more badly will be coordinated with the experiment
than semi-empirical dependence (29). The comparison of the results of
calculations according to formula (31) with most reliable experimental
data, obtained into [12] for the glass vessels with the filling with
their water, showed that the disagreement is from 8.1 to 44%, whereas

according to formula (29) - from 4.4 to 13%.
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DISTURBED MOTION OF THE NONROTATING FLIGHT VEHICLE WITH THE LIQUID IN

THE TANKS. SIZABLE DISTURBANCES OF FREE SURFACE.
ON THE OSCILLATIONS OF LIQUID IN THE MOBILE CAVITIES.

G. S. Narimanov.

Work examines nonlinear slosh equations, which partially fills
cavity in the form of straight/direct circular cylinder. It is
assumed that the cavit' completes the steady harmonic oscillations in
the plane, perpendicular to the longitudinal axis of cylinder.
Investigated resonance excitation of the sizable oscillations of .

liquid with the assigned oscillatory motion of cavity.

On basis of theoretical analysis series/row of nonlinear effects
is revealed (decrease of frequ-ncy of major resonance, difference in

profile/airfoil of wave from that described by linear theory, etc.).

Obtained results are in complete agreement and by G. I.

Mikishev's experiments.

Examination of problem about motion of liquid, which partially
fills cavity of solid body, with assigned oscillatory motion of latter

is indicated possibility of emergence of resonance oscillations of .
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ligquid. Naturally, in this case the theory, based on the
prerequisite/premise about the smallness of oscillations, which
reduces the problem of the study of motion to the solution of linear

equations, cannot explain some special features of real motions.

G. N. Mikishev politely let results of his experimental works,
dedicated to determination of possibility of applying linear equations
for describing motion in region of resonance excitation of
oscillations of liquid, to author. They discovered a change of the
frequency of resonance oscillations into the dependence on relative
value of the amplitude of the forcing oscillations, change in the
profile/airfoil of resonance wave, limitedness of the amplitude of

resonance oscillations.

By target of present article is theoretical analysis of phenomena
on the basis of use indicated derived earlier than [1] general/common
equations of motion of solid body, partially filled with liquid, that

consider significance of motion of liquid.

1  General/common equations for case of cavity in the form of
circular cylinder. We assume/set the motion of body by flat/plane,
examining it in plane Oxx*y*, Axis Oxy* is vertical. The axis of the
symmetry of cavity Oy is parallel O*xxy*, point O coincides with the
center of gravity of system in the undisturbed state of the free

surface of liquid.

Page 177.




ﬁ

DOC = 89056415

PAGE %Z/z

Ligquid we assume/set by inviscid, and motion by its potential.

The equation of the disturbed free surface can be represented in the

form
Z=Yy—C “ [a (t)"?s—*‘bOs(t)-“POS_f_b?s(t)‘P?si; (l)
ol
~V 13 11(515—) sin a;
a roVeu 1y (815) o
(s=1, 2,...; £=0,2)
‘ T Eks » r
ks=V— J (;k —) cos ka.
T ’ol/fégs- k2] (§rs) * 1
Ji,Ja— function of Bessel of first order of corresponding order;: .

r, a - polar coordinates in plane of normal axis of cavity (angle o it

is counted off from normal to axis 0x); r, - radius of a circle:

€15, §rs — roots of equations

Ji®)=0, Jr(t)=0

All parameters of motion of solid body and liquid, with exception

only of paramet2r a,, we assume/set by such low that values of their

products, squares and higher degrees can be disregarded/neglected.

Relatively parameter a, we assume tuat the square of its value has the

same order of smallness as the value of the remaining parameters.

Being based on this, in eguations of motion we retain terms,
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. whose values are of the order not less than third degree of value of

order a,.

We designate: x - bias/displacement of point O along axis Oxx=x,
€ - angle between axes Oy and Oxy*, p - density of liquid, m - total
mass of system, J - moment of inertia of system in fixed position
relative to body of undisturbed free surface of liguid, P - sum of
external forces, which function on body, M - sum of external

moments/torques.

Under assumptions of equation of motion of solid body indicated,
which contains liquid, considering significance of motions by latter,
can be represented by following infinite system of ordinary

. differential equations:

m}'C—{—pzé,X(g‘):P; (2)

=1
Je +e E (asQ(S) +ang$j’) +p 7;%' E Z (dlbkseks+ai b.}zse(ks)) +
s=1 £=0,2 s=1
e d -
+pe—&;— (alal)zM; (3)

B, Ant+ga,+xXP QM feg Xy 4 ft—‘z 2 (a,b,,B%
=0,2 $=]

+ a,6,,83)) 4 B

d . . . \ .
“(a,a}) + Cala, 44, E E by, DY =

k=02 5=1

(n=1, 2,...; (4)
3 I} s d ¢ .
o bﬁSBksTé’bhﬂLBik)j“—(axdx)JrF“”’af:O (k=0, 2, s=1, 2,...). (5)
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Equations (2)...(5) can be solved by reduction on the basis of

consecutive integration of final systems of equations, which are

obtained by their (2)...(5) with finite and ever increasing values of

n and s. In the first approximation, let us consider final system of
equations with n=s=1. It 1is possible to expect that this
approximation/approach will not require further refinement in the
investigated problem. Actually, on the basis of linear theory for

known (2], [3] that the study of the oscillations of liquid during the
assigned harmonic oscillation of body with the frequency, close to the
natural frequency of parameter a,, can be carried out, disregarding .

the values of all parameters an (n>1).

2. Resonance excitation of oscillations of liquid with assigned
oscillatory motion of vessel. Le. us consider the case of forced
oscillations of liquid with the assigned oscillatory motion of the
walls of cavity with the frequency, close to the freqﬁency of the
first form of the natural oscillations of liquid. Analogous problem,
as it was mentioned above, she was solved by experimentally G. N.

Mikishev.

We will assume that vessel with cylindrical cavity, partially

filled with liquid, completes progressive/forward harmonic
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. oscillations in direction of normal to axis of cylinder with frequency

< and amplitude of A.

Equations, which describe change in form of free surface of
liquid, on the basis (4) and (5) with done above further

simplifications will take following form:

. d . . . .
a,Aga +2 [“&T (axbka&)l +albk18211)1) +a1bk1[)gl) +

k=0,2

d > 2 ;
+ B0 ——(a,a}) + CVaia; = — Aw?XY sin ut;

% @) d ;- .
OBy + &by -+ B T (a:a,) + F®ug} =0 (k=0,2). (6)
‘ We convert eguations (6), after leading to dimensionless

quantities entering in them parameters. Let us introduce
dimensionless time 7=w,. We will designate differentiation on 7 by
primes. Further, we use the following designations of the

dimensionless quantities of the parameters, entering equations (6):

2 2
ro 0 ! .
(1)
w Bia'o
? g — -l =
mp= 7Y m=-—: 1% A N
M 2 m,2
] Byiiro d Dyito |
Rl — Al ? k /41 '
g ch A B*V/?
l._'—_ C: R '
Al ’ A1 ' Bkl
2 (1)
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In these designations equations (6) are converted to form

ai+a,+ 2 [ (@t tadiin) +a;a;dk]+
k=02
—}—lcl—‘i—(aia?)—{—Cai?al:-—m?asin mrt; (7)
T

8- m§3,+1,,;‘:— (aja,) 4+ fral=0 (£=0,2). )

As Ts known, steady forced oscillation of nonlinear system can be
in the first approximation, (with an accuracy down to the terms, which .
possess frequency of change, equal to impressed frequency) it is

represented in the form ar=ysin(mt+v).

It is easy to see that for system, described by equations (7),
(8), in which there is no damping, phase displacement v will be equal
to zero or 7, i.e., it is considered by sign of value y. Therefore
the solution of these equations, which characterizes in the first
approximation, steady forced oscillations, we will seek, on the basis

of the expression

g, =Y sin mr. (9)

Substituting expression (9) into equation (8), let us lead latter .
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to following form:
. 1 1
B+ mf;ak= __é_fkvgm?—-y?m? (1k+7f,,) cos 2mr. (10)
Steady-state oscillations of values fi will be described by

expressions

3, — fry2m? (2l + f2) V2m?
= — —

2m? 2 (m? — 4m2) cos 2mr. (b

1t follows from examination of formulas (7), (8) and (11) that
accepted for construction of theory of nonlinear vibrations
prerequisite/premise about comparability of order of magnitudes a,?
and Pr. ceases to be accurate with sufficiently low values m, close to

values I/th, I/4mh,1/6mk....
Page 180.

However, with these values of m generally there is no need in
refinement of linear theory of low oscillations, according to which
parameters bas are not excited with onset of oscillations of vessel or
parameters @;. The carried out refinement of the slosh equations due
to the account of significance of the value of parameter a, or a, is
substantial for describing the phenomena of oscillation only in the
region of the resonance excitation, the parameter indicated, i.e., in
region m=1. Keeping in mind the fact indicated, we will further

conduct constructions under the condition
1/2m,<0,8<<m,
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taking into account that at m>0.8 parameters bps can be accepted equal
to zero, as it follows from the linear theory of the low oscillations

of liquid.

For determining value y let us substitute values fi, expressed
according to (11), into equation (7), in which a, is substituted by
formula (9). After leading bringing similar terms, which contain
factor sin mr and after equating to zero given coefficient with this
factor, we will obtain the equation, which describes the dependence of
the amplitude of steady forced oscillations of the parameter a, on
value m and values a (relative value of the amplitude of the

oscillations »f vessel) in the first approximation,

Yoy +9=0, (12)
pmAl=m) . da
Sm2 ' T s
where S=m? X[ nfe _ Ch+ fa)le— Uy +2dk)]_31
=0,

m; 4m? — m?

Fig. 1 depicts curves vy/a, constructed on the basis of solution
nf equation (12) with three values of value a. The same figure
depicts curve Ya/@, which corresponds to the linear theory of the

excitation of oscillations.
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If the value of the latter/last wvalue, obtained on the basis of linear
theory, does not depend on relative value of the amplitude of the
exciting osciliations, then the account of nonlinear terms in the
equations of motion stipulates the essential dependence of y/a on
value a. In this case vy/a, remaining the everywhere limited value, in
proportion to the decrease of value a approaches curve ¥Ya/a, which
corresponds to an increase in the field of the validity of the
description of the phenomena of real oscillations with the help of the

apparatus of linear theory.

‘ At the same time derived equations, which consider nonlinear
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terms, are free from deficiencies in linear equations in direct

vicinity m=1, in which Ya/a@ suffers explosion. .

As can be seen from graph, isobeen delirious in Fig. 1, account
of nonlinearity in equations of motion, which stipulated Jependence of
frequency characteristics on value a, explains also another special
feature of real oscillations, experimentally discovered by G. N.
Mikishev, which consists in decrease of value of resonance frequency
of excitation of oscillations of ligquid in cylindrical tank with

increase in a. The latter fact is illustrated by graph in Fig. 2.

Calculations of form of free surface of liquid during resonance
excitation of oscillations, carried out on the basis of nonlinear
equations given above, also showed very satisfactory descripticn of .

real form of resonance wave,

On the basis of formulas (9) and (1l1), after determining value ¥y

of {12) with resonance value of m=mx, calculated express.un

Fa
_’_o— = ;7% -+ 3o obor + 2o obar, (13)

where a,, fB,, B, was taken with T=n/2m* and o,, ¥.,, ¥,, - with
a=trn/2, which corresponds to cross section of wave by plane, passing
through axis of cylinder. The results of calculations are given in

Fig. 3 and 4.

Lepend.ng on 1ntensity of resonance phenomena, which, 1n turn,
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depends on value of amplitude a, is observed difference in
profile/airfoil of wave (unbroken curves) from form, described by

linear theory (dotted curves).

With a=0.025 ratio of height/altitude of protuberance of wave to

depth of indentation is equal to 1.5, while with a=0.1 it already

Thus, nonlinear equations used make it possible to describe basic
special features of real phenomena during resonance excitation of

oscillations of liquid in mobile cavities.
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Fig. 3. Fig. 4.

REFERENCEES. .
1. G. §S. Narimanov. On the motion of éhe vessel, partially filled

with liquid; the account of significance of motion by the latter.

PMM, Vol. XXI, No 4, 1957,

2. G. S. Narimanov. On the motion of solid body, whose cavity is
partially filled with liguid. PMM, Vol. XX, No 1, 1956.

3. D. Ye. Okhotsimskiy. To the theory of the motion of body with

the cavities, partially filled with liquid. PMM, Vol. XX, No 1, 1956.




DOC = 89056416 PAGE /ﬁ x

Page 182.

Application of variation principle tc the conclusion of the nonlinear

equations of the disturbed motion of body - liguid system.

I. A, Lukovskiy.

Results of systematic application of variation principle of
Ostrogradskiy to conclusion of nonlinear three-dimensional equations
of motion of solid body with cavity, which contains liquid, are
presented. Lagrange's function is selected in the form of two
components, the first of which is the kinetic potential of solid body,
and the second - integral of the pressure by the volume, occupied with
liquid. A question about the selection of the form of the velocity
potential of liquid and about the structural/design representation of
its components is discussed. With some assumptions about the value of
the parameters, which characterize the deflection of the free surface
of liquid, is obtained the system of nonlinear equations of motion in

the case of the cavities, formed by coaxial cylinders.

Basic work of G. S. Narimanov (9] marked L.y. .ning of
development of nonlinear theory of motion of solid body with cavities,
partially filled with ideal fluid. Under some assumptions relative to
the parameters, which characterize the motion of mechanical system,

they obtained nonlinear equations of motion, and is also proposed the
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method of calculation of their hydrodynamic coefficients in the case
of the cavities of cylindrical form. Further development this method
was obtained in works [3], [10], [13], and also in the number of
research of the foreign authors. At the present time in nonlinear
dynamics of bodies with the cavities, which contain liquid, wide
acceptance were obtained also the methods, based on the application of
variation principles of mechanics [2, 4-7, 11]. Below in general
terms will be presented the conclusion/output of the nonlinear
equations of the disturbed motion of bodies with the liquid filling
with variational method. For the certainty the case of the cavity,
which has cylindrical form is examined in the vicinity of free

surface.

1. Basic assumptions. Let us connect with solid body the system ‘
of coordinates Oxyz, which moves together with the body rélative to
the absolute system of coordinates 0,XYZ, in which the field of mass
forces has the potential function U. Subsequently this coordinate

system is considered as inertial system.

Page 183.

The axes of the absolute coordinate system are motionlessly connected
with the Earth, moreover axis 0,Y is considered directed directly
opposite to gravitational force, while axes 0,X and 0,Y are located in
horizontal plane so that the coordinate system would be right. They
coincide at the initial moment of the time of point O, and O, and axis

Ox coincides in the direction with axis O,Y. Axis Oz it is directed
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so that it at the initial moment would be parallel to axis 0,Z. &Axis

7/ 3

Oy will be directed in this case along axis 0,X to the opposite side.
The directions of axes Ox, Oy, Oz relative to the absolute coordinate
system are uniqguely determined by three angles: pitch angle 9 (angle
between axis 0,X and plane 0OxZ), by yaw angle y (angle between axis Ox
and plane OXY) and by attitude of roll y (angle between aris Oy and
intersection of planes Oyz and OXY). The cosines of the angles
between the axes of absolute and body coordinate systems are given in

Table 1.

Motion of sclid body we will characterize by vector of forward
velocity v, of point O by vector of instantaneous angular velocity w
relative to point 0. The kinematic equations, which establish/install
connection/communication between the projections of angular velocity
on the axis of body-fixed system with the angular parameters, which
characterize the positions of body relative to the absolute coordinate

system, take the following form:

wlz'y—é sin ¢;
0y =1 cos y4-§ cos ¥ sin y;
w;=—1¢ sin y 4+ & cos § cos y.

Liquid, which fills cavity of body, is considered ideal and
incompressible. If its initial motion is potential, then the same it
will remain also at the subsequent moments of time. Let us represent

the equation of the disturbed free surface in the form
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L(x, ¥, 2, f)EX—XO—-}Z——f(y, z, £)=0, (1 .

where h - depth of liquid in the cavity; x, - coordinate of the bottom

of cavity.




PAGEW;X
‘ Table I.

;
l 0X, 0,Y, 0,2,
Ox i cos Wt cos ¢ _ sin  cos ¢ ~s‘m'\b .
Oy | cossinyg siny — sin ¢ siny siny + cos § siny
o —sin® cosy ~ +cos ¥ cosy - ‘
Oz 1 s usinyg cos @+ sin @ siny cosy — COS Y COS Y
| +sin® siny —cos ¥ siny
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veloclity potential @(x, v, 2z, t), that describes absolute motion

of ligu:id in moving coordinate system,

is determined by solution of

following nonlinear boundary-value problem [10]:

AD=0"8 Q; (2)
2)
2 — o X v)'Ha S 3)
v
@
_gf(l_—_(vov)—}—(m (r Xv))+u, Ha 2 (4)
v
. @ _
o %(V‘D)Q—(V(D (vyloxm+U=0¥a I, (5)
ot
Key: ‘1. im. (2). on.
and
nd

where Q - region, occupied with liquid; SLZ - moistened surface

of walls of cavity and disturbed [ree surface of liquid respectively;

r - radius-vector of points of mechanical system relative to point

O, uy - relative particle speed of free surface of liquid, determined

by equation

i----ll--IIIIIIIIIIllllllIlllIlllIIllIIIIIIIIlIlIlIIllllIIJIIIIIIIIIIIIIIIIIIIII
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fi __fe . N=|vi=y 1+ 2 (6)
l‘,z —_— - T - V‘I—V } (Vf) .
yi+r+rn N ®

Potential furnction U, as is known, is determined by

relationship/ratio

U=—(gr)=—(g (ro+r)), (7

where g - G-vector of gravity; r./ - radius-vector of point O relative
to O0,; r' - radius-vector of any point of system relative to O,. For
determining the pressure p in the liquid it is necessary to use

Lagrange-Cauchy integral, which takes in fixed coordinate system Oxyz

the form - .
) %%‘F“;—‘Vq’)i’—(v@’ (vo—}—mxr))—[—U—f-—?p—zo, (8)
where p - mass density of liquid. .

Most general formulation of problem of dynamics of solid body
with cavity, which contains liquid, assumes from known external forces
applied to body definition of both motion of body itself and motion of
ligquid within its cavity, and also forces of interaction between body
and liquid. The conclusion of the equations of motion of the
mechanical system in question and the development of the methods of
determining their hydrodynamic coefficients present the sufficiently
complicated mathematical problem, whose solution in general form is
difficult. However, during some limitations it is possible to obtain
a comparatively complete system of nonlinear differential equations,

which adequately describe the discovered experimentally complicated .
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. phys.cal phenomena, which appear during the resonance interactions of

solid vodv and liquid.

Subseguently we will consider that standard deviation of

0]

disturhed free surface is of the order of smaliness €.

Pace 1385

During =he calculations we will disregard -he values of order e*?,
i.e., we will retain values £, f? and f°. L=+ us assume further that
va.ue w' is of the order of smallness e?. Corszsguently, during the

calculations must be taken into consideration bpesides values of the
© type «°, also products wf, wf?, fw?. The obtained below mathematical
mode. s suitable for such states of motiocn of solid body, during

. whicn the free surface of liquid is not destroyed, and the amplitudes

of oscillations appearing in this case do not =xceed maximum.

2. Overall diagram of obtaining nonlinear equations of motion
from variation principle of Ostrogradskiy. Wwhen solid body completes
the a3signed motion in the space, i.e., vectors v, and w are
considered as the known functions of time, nonlinear boundary-value

problem (2)...(5) follows from variation principle of [5]

t

sW =3 | Ldt =0, )
where "
; [y (v, (Voo rni—U}dQ- (10)
. L:-.\ pdQ == —- \[ T3 (v)2-— (TP, (V.= ‘

9 Q
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Variation principle of Hamilton-Ostrogradskiy in the form of (9),
(10) differs from others in terms of fact that all flow equations
follow from it, including kinematic nonlinear free-surface conditions
of (4). In the general case of moving the mechanical system it is
impossible to find the analogous variation principle, for which it
wotld be possible to formulate tne appropriate problem of the calculus

of variations.

More common point of view assumes use in the case of presence of
potential forces and nonholonomic systems of variation principle of

Ostrogradskiy in the form

®
(3L, 8L L3 A) dt =0, (11)

t,
where L =T-I - Kinematic potential of solid body; 6'A - elementary
work ot nonpotential forces, applied to solid body; L - Lagrange's

function, determined by expression (10).

Let us represent now velccity potential of liquid in the form

‘ o 2
® = (v, V)+ (0, D+7, (12)
where in accordance with kinematic boundary conditions harmonic vector
functions V and € and harmonic function ¢ satisfy following boundary

conditions:




2 -
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0 - b
_0_V_ =v; — =r XV, (13)
ov |s+t OV IS+3
o9 de | __ S .
— =Y LT T T2, 2
av\s v s ]/1+fy+fz
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Potential ¢ 1s 1in this case solution of nonlinear :roblem about
wave motions of liquid in quiescent vessel. Vector fu-c:tion ¥V with an

accuracy to the arbitrary function of time is defined

14y

V=r. (i

Let us assign form of disturbed free surface of liguid and

potential o in the form [4]

f(y,z,t)=:223iuyfxy,zx (19
[
9%, Uy 2, = QR ()2, (%, ¥, 2), (16)
n
where f;(y, 2) - complete orthogonal {upcn inclusion in it of constant)

set of functions, assigned on und‘s‘ .bed free surface T, B.({) -
generalized Fourier coefficients, which play role of generalized
coordinates and characterizing position free surfaces of liquid at the
given instant; ,(x, Y, 2) - system of harmonic functions, which are
solutions of problem about low wave motions of liquid in vessel;

R,(t) - unknown previously parameters, which characterize change of

potential ¢ in time.
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For potentials € it is possible also to introduce into

examination of resolution of type (16) or to determine by their .

3

variational method, after formulating variational problems for
functionals (i=1, 2, 3)

Q,(r<v), dS. (17)

v
-

J(Q)=[(v@)*aQ—-2 |
Q s%

As a result potentials Q: are defined as functions
three-dimensional/space var.ables x, y, z parameters 510),

characterizing position of free surface of liquid.

Thus, during selected division of velocity potential (12) and
represer, ions (15), (16) together with quasi-speeds v,(t) and w(t)
to determination are subject also unknown functions of time f,(f) and .
Rn(t). For obtaining the equations of motion of system we will use

variation principle of (11).
pPage 187.

After simpie, but sufficient bulky conversions we will obtain the
infinite system of the nonlinear ordinary differential equations of

the following form:
» .
MV, 4+ o)X vy—g+oXr, 4 o)X (oxr)]+
[ 2] 1q
+myre, +2my (o r. ) =F; (')

J, o)+, 0)+o -, m)+Mrc,-\l30+0>?Kivg—g) -
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Z4

»
N\,

+ox Il 41, =1, —oxl, =M (19)
A,'I—EAnkRk:O’ (/l=1, 21---); (20)
)

i

(o[ (52 ] (o texvo—n <) -

03i

04, 1 XY WY 904m e [ Ole _ dlet yy
DL %4 R (o (=)
n

n

(5 ©)=0 =12 @
where ‘4,1:? S"‘?ndQ; Ank:Akn:p \“(V?nv V?k)dQv

Q Q
r 0Q i ¢
& e Q :
(22)
m, - mass of liquid; M - mass of entire system; r, - radius-vector of
the center of mass of system; r. - radius-vector of the center of

mass of liquid; F - main vector of all effective forces, applied to
solid body; M° - main moment of these forces relative to point 0; J -
tensor of the inert.a of mechanical system, which consists of the
tensor of the inertia of solid body J° and certain tensor of second
crder J', called the tensor of the inertia of liquid. In equations
(19)...(21) asterisks designated the vectors, whose projections on the
axis of system Oxyz are equal to derivatives of the projections on
them of the corresponding vectors. The right sides of the equations
of forces (18) and moments/torques (19) are determined by the
character of the decided problem. For example, among the forces,
which function on the flight vehicle, are distinguished the engine

thrust, the aerodynamic forces, control forces, Coriolis forces,
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connected with the relative particle motion within the revolving .
housing of apparatus, and forces, caused by the displacements of the

center of mass of system relative to housing.

Nonlinear equations (20) and (21) reflect mobility of liquid in
cavity of body, moreover system of equations (20) is result of
satisfaction of kinematic free-surface conditions of liquid. As a
result of its linearity relative to parameters R,(f{) it can be
permitted relative to these parameters, after which from equations
(21) is obtained the infinite system of the nonlinear ordinary
differential equations of the second order only relative to

generalized coordinates P.(!).

For practical purposes only finite-dimensional analogs of system ‘

of equations can be used (18)...(21).
Page 188,

One of the efficient versions of this system is obtained during the
introduced higher limitations by the amplitudes of the oscillations of
the free surface of ligquid and the angular velocity of the motion of
body in the case of the cavity, formed by straight/direct circular

cylinders [6].

Assuming that basic nonlinear phenomena in controlled system
occur into vicinity of major resonance of free surface of liquid [9],

form of free surface f(f, n, t) and velocity potential o(x, ¢, n, t)
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. in cylindrical system Oxén let us structurally assign in the form

S G =py(t) o G)--[ry (¢) sin m 4 p; (¢) cos VGRS

=+ [ra(£) sin 204 py(¢) cos 2] fy ) (23)
?(x, & M D=Po(t) by (x, 54 [R; () sin n+ Py (¢) cos 7] b, (x, 3) -+
+-[Ra(¢) sin Zn 4 P, (t) cos 20] gy (X, 3), (24)
where
. jm (kmné)N;, (Cmn)"“vm kmns f,’n mn -
fmn ()= Ym (kmn;): 7 ( )/ ( ) -5 (2)
Im (“:mn)’N;n (Cmn) — me (Smn) '/m Gmn)
p — ch k,,,,,(x—xq) 5. ge
?mn chth Yo (Bn3); (-0)
Im(kmnt) and Nm(BmnE) - function of Bessel and Neumann of m order;
{mn=RmrRI - roots of transcendental equation
® | C TnGU N Q) = N (60 S () =0; (27)

8=Ro/Ri; Ro and R, - radii of internal and jackets respectively.
Retaining in equations (18)...(21) the small third-order quantity
relative to parameters r,(t) and p,(t), which characterize the
skew-symmetric oscillations of the free surface of liquid, and
counting parameters p,(t) r,(t) and p,(t) by the values of order r-

and PQh let us write out the scalar analog of system of equations

(18)...(21).

Page 189.

Equations of forces in projections on axis of body coordinate
system with center of inertia G of system body - ligquid with hardened

. in undisturbed state liquid are represented in the following form:
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roy . /O HE N ) ",___wb)l
Mw A (rir T 21P) T+ M2 ry PO T

. ) . 5
+r1 (“’y +wx")z) — D (u)z—w.rwy)]:F.t’ (28)
Muw, -+ A [p—-— me'rl —r (fux —w,0,) — Py (w3 +(u;)] 4
- R . 1 - 2 2 . . 2
L, o, (R P o, (P =Fi (29)
M’wz—%—)‘ [;1+2L°.rp.1 +p1 (m..t'{"mywz) —7I (w: “‘T“@] -
(3

2\ Lo« 7249 21__
—)\l-t[to."’(r?—%‘pi) _‘r'_()_u)y(rl-{—pl)l—sz

where through w. w, W are designated projections of apparent
acceleration wy=Vs+®XVs—g on axis or body coordinate system.
Momental equations relative to the principal axes of inertia solid

bodies at point G will take the form

N j?l(;)"i-(‘]g"’—‘lo?’?) mymzzﬂf.r'*—Mxm"l‘M;m; 31y
(jg‘Z“r‘ng) wy+(.](1)1-—jga—-0g2) m"'wZ:My"{"My'K—{—M?x; (32)
(Voo G) i, — (I — S = G w0, = M, - Mot M 33)

where moments/torques M,,.. Mvex, My .0 M, M, MZx, which appear
as a result of the mobility of liquid, are determined by the
expressions
M o= 1 (1P — 1)
Mix=X, ((;)ypl -{-anrl +o0,r —ow0,p)— AMpw,—nw,)—
—uy o, (4 pD) o, (0] 5
M, w=ri —c; (rriFripp) —c (r,ppy —p1) — €3 (M Do) —
—Cy (pry—rip) —Cs (r1P0) ‘-Cs(Px.r2—"1l.72)'§

Myw=4, {2“)be + py {0t o0,) 1y (07 —0p)] — G (pow,)” —

. 4 [ 2 .
— G, (P~ rom,)’ —Ga (ff‘”y - "xp1‘”z) —GU (pl"’y —f—r]plu)z) -+
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. . N 1 2 ) 2 .
+P'1 (rlpl —rlp)mz —"rlwx+_2' >‘1.r (rl _T'pl) W, (34)

M, x= —;"‘;BPA + 01(}71Pf+ rlplr.l)‘ —C (271’? "'rlplf.1).+ C3 (p.xpo)' +
¢4 (,D‘1p2+’.'1"2). ~+Cs (pl/.UO‘). +Cs (pipat rra);
Moo [, £ 7y (@ —0,0,) 4 py (05 —wi)] =G (pro) +
+G% (pgv, —T99,) — G (Png - "1101%)‘ — G (f?mz—%- flplwy)' -

: . IR 2 2Y o
—p (11 —hpy) w, + AP, — 5 M (ri4p1)w,.

Page 190.

System of equations relative to generalized coordinates r;(1) and

pi(t) takes the following form:

wy (rFxg@,n) Ly (i p -+ LSy, b o)+, —lot.ny==0;

by (P2 P+ Lo (7 P+ L3 piy 0)F ), 4+ Mo, =0;

v Do+ %@ po) + La(riy P+ L5y by, ©)=0; (35)
po(rot %@ )+ Ly (ryy p)+L3(ry piy ©)=0:

to (Dot 20w, Py + Ls(riy p)+L3(r, p, w)y=C

where

Li(ry, py=d\r, (fx;'1 +pp) +4d; (pery +2p1’.'P.1 — oy —erﬁ) -
— dy(pary —rapy) +di(rpy— pira) + ds (pory) + deri Do

LY (ry, pyy w)=2¢, ("%‘."y ""1;015% "‘rxp;‘”z —plblwy) —C2 (P?‘;’y "I‘rxpx‘;’z*}‘
+ 3r1b1‘“z + 3P1b1“’y) + €5 (Pgo,) — €4 (pyoy +ryw,) — Cs‘l’g:ao +
+ ¢ (“)yp.'Z + “’zf.z) +u, (pl(;’x + QWxAbx - f1“’3) + hgw 0, -
+032‘1’y (0, Py —w,ry) — G2 (0,0 Fw,r)o,;
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Lqfr;, p=d\n (;1';1‘{“101;01)'%‘ d; (f%bl -—np{h +‘2r1r'“(.) ‘-Qpl;'ri)) +
+dy (szx‘Ffaf.x)' —dy (bez‘{"'l;z) +d; (Pe,éx).'}"dspl;bo'» :

L3(r oo 0=y (P, —ripgo, —rofy = pio,Fi) +- 62 (rivs £

+r1P1“;y o+ 3ryry, +- 3191"'1%). — Cy(Pgu;) — Ca (P, —T0,) C5Pw; —
—Cs (r.zu)y — Do) — (r®, 2r ®, WePy) 4 A @, - G (rw,w, —
—ulp) — Gl (og0,r 4-0ipy)

Ly(rs, Pi)=da(f1}1+,01[5)+ds(‘f?+ pi) ;

L3(ry, pi, ©)=2¢C3 (wz.bx "“”yf; — B0y — T0,0,) +cov, (ru’.’x —’;1P1)+

1A g2
o5 (w,ry —w, Py -y G (wy—}-wz) ; (36)

,L;(’f» poy= —d4(;'.1p1 ’1“1’""1) “Qdf‘ll}x ;
Li(r;, pi, w)= "‘04(%:51 ““’zr.x) e (wypy —w ry)’ +Cq (“’xr% '*“.‘)xp%)j,— .
ey (1 — 2P G (6, Py + 20,.00) ~ Gy, (0, P+ 0,7) —
—Gggtuy(uzzo;
Ly(ri, py=ds(r7; — pipy) +d; (72— 1
L3(ri, pi, ©)==C4 (}1°’y+b1“’z) — g (w0 p) 2cq0 F oy T
L Cpp e (P Py — Gy (0 7y 20, 7y) + Qo (0,5 = 0, P) T
1L Gy ).

Page 191.

Hydrodynamic coefficients of equations of motion by (28)...(33),
(35) are determined by some quadratures from cylindrical functions.

Their expressions are given in work [6], and numerical values =~ into ’
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(71.

System of eguations (28)...(33), (35) is most complete of known
systems, which consider interaction of various forms of oscillations
of liquid in vicinity of major resonance. The solution on their basis
of some particular prroblems of dynamics and stakility of motion of
mechanical systems of the type in question showed that the basic
physical phenomena are described with the high degree of acruracy both

with the quantitative and from qualitative side [11].

Equations given above are generalization of G. S. Narimanov's
equations, given in works (9], [10]. They serve as basis for
obtaining the equations of the disturbed motion of system body -
liquid, suitable for the analysis of stability of its motion when
hypothesis about the smallness of all parameters of motion is not
applicable. This relates, in particular, to that case, when in the
process of motion occurs the recsonance excitation of any of the forms
of the oscillations of liquid, that leads to the complicated
three-dimensional/space free surface motions with the finite amplitude

even with the low linear or angular displacements of solid body.

3. Simplification in general/common nonlinear equations of
disturbed motion. In conclusion we will obtain the system of the
nonlinear equations of the disturbed motion, being based on the system
of the hypotheses, utilized usually in the dynamics of flight

vehicles. We convert the given above nonlinear system of equations
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(28)...(33), (35), after selecting as the undisturbed motion of system
its programmed motion, which is determined by the simplitied equations
of motion of the material point, which coincides with the center of
mass of system [1], [12]. The free surface of liquid in the
undisturbed motion is close to the plane, perpendicular to the

longitudinal axis, and parameters r;, p;i are considered equal to zero.
In programmed motion yaw angles and bank are usuvally equal

to zero. We will also consider that in the undisturbed motion

=0, y=0. (37)

thing conclusion/output of differential equations of disturbed
motion of system let us agree to consider as low: a)
disturbance/perturbation of basic parameters, which characterize
motion of solid body; b) disturbance/perturbation of mass 4m and
moments of inertia of solid body; c) disturbances/perturbations,
connected with work of engine; d) time derivative of pitch angles,

yaws also of bank, and also angle of attack and its time derivative.

In view of latter/last assumption low values will be also
projections of speed V; on axis Gy and Gz and derivatives of them on
time. We will consider the parameters, which characterize the motion
of liquid, finite quantities. Let us designate the disturbed values

of the basic parameters of motion by prime.
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Then the disturbance/perturbation of the basic parameters can be

defined as a difference in their disturbed and quiescent values;

d)=3 () = @); V=V O)~P B =y @)
VO=Y () =V O =Y () Vo B)=Va(t)—Va (®); (33)
PO =ri) =ity =rity pi=pi () —pi ()= pi (D).

Basic connections/communications between true and undisturbed
values are established/installed taking into account fact that body
coordinate system at moment of time t in accordance with programmed
and proper motion they occupy different position Gxyz and (G'x'y’z’
respectively. Transition/transfer from the system of axes in the

proper motion :o the system of the axes of the undisturbed motion is

realized by a matrix of transition/transfer [1]

Id —y
M=!_% 1 «+]. (39)
P —Y 1

With an accuracy to small second-order quantities occur followinc

relationships/ratios:

o=y wp=d o= 104 (40)

’ 0 0
, 0 ’ 0 0 . — W4 +ro;
Vg, =va 3+ T Vo, =—70a, "+, +U; Vo, va,?+ o, o
(41)

. ()
‘ -gf’:g.rJf_:gy'(’; gy’:_g,t&-{'_gy: gz':g.x'P—gy\'.!f_gz’ (4"‘)




DOC = 89056416

Converting system of nonlinear eqguations (28)...(33), (35) taking ’
into account limitations introduced above, we will obtain equations of

disturbed motion of object in the following form:

Mxg +axg —me-Lh, (rir+p o) +2Crid—bp 4 rih—pd —

— 50’51 - ér‘)pl):cxan—'r;\Fx; (43)
Mygr+byg 9,5 — (P4 bvg ) § + 4 (py — 27, — 1Y) =C3ds - AF;
Mzg,+bze, v, b+ (P +dvg )y + mg,y + A (r + 2vp + V) =

=c, 3+ AF,.

I0Y + ¥ =X (prh 41,80+ ri8) —p (g — rip) 2y (e, — e, $
+ 20— g4+ g,V —8) =+ (Va, —Va Y+ Yo +Pva,+g. D —g,)+
+ oy AM ’

N:

(- GR) 3wd = xpbze —pbTa = 2P+ V) =1V~ - ®
xge— g Y) = My =0l FAM

(/0= D) f}~-x,:bja —xpbvg Y —+ L2y “"'1\)““’/’ (Yo, —
g X — &) — M- cails 1 N, (44)

o 2 ¢ “. o, y c' L , —_— ' _L‘” S
w, (ry = sir) = (g -2y p) — kb -k (vg, — g ) b 2zo A
’T’“’u\ L (f(, [))———O

l

(ﬁlﬁ’ 2 )“Px(fﬂ‘%‘zfﬂj‘%}w”“h(bcj S
S ryge+ Ly(ri p)=0;
o p i) begp (30 4-9) — ety (b, —dp —dp) 4+ (4)
A L(ri py =10
", (f> 73’:) —C (1’/71 - {.}"h ".8"'1) == Cy ('E*‘pl _{',0,-1 “{)rx)._%’
= Ly(rie p)=0;
o (/'}z - 7f/’):) oy (r11‘ - /’15""":‘ ,;71 ;.') — g (';'rl - mpl - ;;/)1).‘11' .
. = Lryo py =0,
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Page 193.
Here X;.. Yi.. <¢. are designated coordinates of center of inertis
of object in disturbed motion in system of coordinates Gxvz. In the

right sides of equations (43) and (44) they cost the projection of the
disturbed forces and moments/torques in the direction of the axes of
the system of coordinates Gxyz. The parameters of motion

XG., Yo, &g, O, ¢, vy, r, and p.. if is known the position of body axes
in the undisturbed motion, completely define the configuration of
system dt the moment of time t and they can be considered as its

generalized coordinates.

When deriving the equations of disturbed motion of forces of (43)
and momental equations (44) we have used known analogous equations of
disturbed motion of object without taking into account liquid filling
[1]. The possibilities of further simplification in the system of
equations of the disturbed motion given above can be revealed during

the more careful analysis of the kinematic and dynamic propeorties o

rh

concrete/specific mechanical systems.
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RESEARCH OF TRANSIENT PRCCESSES DURING THE LARGE
DISTURBANCES/PERTURBATIONS OF THE FREE SURFACE OF LIQUID IN THE LOCKED

SECTION.

I. B. Bogoryad, I. A. Druzhinin, S. V. Chakhlov.

Application of point-by-point method to calculation of large
three-dimensional/space displacements of ideal incompressible fluid
with free surface in rigid section is examined. The a posteriori
evaluations of the accuracy of the obtained results are proposed. The
effect of the method of the application of method on its stability is ‘
analyzed. Are given the results of the calculations of the
displacements of liquid in the mobile sections of various forms,

including under the conditions of weightlessness and in the presence

of fluid flow rate from the section.

In nonlinear dynamics of solid body, which contains liquid masses
with free surface, great mathematical difficulties appear during
solution of corresponding hydrodynamic problems. The conformity of
dynamic diagram to real process is determined, as a rule, by the
accuracy of the description of the motion of liquid and solution of

these problems.
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G. S. Narimanov [5) for the first time constructed nonlinear
dynamic flow chart of solid body with liquid, which has free surface,
and was proposed asymptotic method of solving boundary-value problems
of hydrodynamics. 1In this case as the low parameter the maximum
deflection of free surface from the surface of liguid is chosen. G.
S. Narimanov's method for the almost thirty years receives further
development and continuation in the work of many authors [3, 6, 8,

etc.] and it is actually the basic "working" method.
Page 195.

At the same time G. S. Na.simanov's method as any other,
construq}ed during asymptotic approximation/approach, sets limitations
by an order of values of unknown functions and their derivatives. The
propagation of G. S. Narimanov's method in the case of capillary
liquid and sections of complex geometric form is connected with the

great mathematical difficulties.

Attempts at solution of nonlinear boundary-value problems of
hydrodynamics by variational methods [4, 7, etc.] did not widen in
comparison with G. S. Narimanov's method boundary of application of
nonlinear theory. This is explained in the basic fact that in these
works the exceptionally/exclusively Eulerian approach to the

description of the motion of liquid is used.

In connection with this point-by-point method of solution of

nonlinear problems of dynamics of liquid with free surface in locked
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section [1, 2, 9], which combines Eulerian and lagrangian approaches .

and using sampling process was proposed and realized. In this article
point-by-point method applies to the case of mobile cavities and

spatial motions of liquid taking into account its outflow from the

cavity.

1. Point-by-point method. The boundary-value problem about the

irrotational motion of the ideal incompressible capillary fluid in the

section, which accomplishes the assigned motion, takes the form

. “ 0.
AD (2, 0, 3, H)=0 '8 Q.

(&)
—d—(?—:(l’9+t(l)p) o —(’l)z"rk')@)r"““lls Ha S, (2)
v

_LI—P-:_(_):_D— .__/z)P—-—Zu)a: ‘ii:_g?; —fvl—{-—P(up; (3)

dt dap dt oz .
odt P 8
2H

r \ v v -..l___—- ; 4

40 L (p0p b (g cos B g SN R ) Ty IS

§ = const %a L; (2)

(2, 5, % 0O)=>0 T 0)y=2Z° (6)

Key: (1). in. (2). on.

It is assumed that section has shape of surface of rotation,

generatrix to which is assigned by equations

=r (), 2=CL(), ‘7
where | - arc length of generatrix.
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Here & - potential of absolute velocity of liquid in system of
coordinates (z, p, B connected with section ~ cylindrical or x, y, z -
Cartesian); Q - volume of liquid, limited by free L and moistened S by
surfaces; v - unit vector of external normal to

S+T, v(t) ={vz, vy, s}, ®({) = {0z, wp, s} - known vectors of linear and
angular velocities of section; g=={gx.gy,g}} ~ G-vector of potential
field of mass forces; H - mean curvature Y. us - normal component of
fluid emission rate from section through intake opening; L, 8 - line
and angle of wetting. Problem is registered in dimensionless

variables, Fr, We - numbers of Froude and Veber.

Is introduced replacement of continuous time tei{y, T] by

discrete/digital so that Qf=("=n1<<T,n=01 ., 7T/t

In terms of values Or=M{z, p, B, {"}, (2. p, ) EX" with the help of
difference analogues of boundary conditions (3), (4) and condition (5)

known for certain moment of time ¢/* are determined form of free

surface Fn«-! and potential on it (pn-! at moment of time (n-'.

For determination of potential Hn ! in volume of liquid, limited
when f{=¢n-! by surfaces Yu:t and §S»-! is solved boundary-value
problem

AFr+1 =0 (é} Qi
gFn+!

. n+1 n+ly » nil =1 ; ('U
=(v T LRl ) Y = (v = rol Y g Ha ST (R)

@

Fnrn+l —pn=1 H3 -1

v "3

~1-----I-II-IIIIIIIIlIlIIIII-lIIIllIlIllIIIIIIIIIIIIIIIIIIIIIIIJ
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Key: (1). in. (2). on. .
Solution of problem (8), which let us name base, makes it
possible to find va-2 and (D"“z[(z.p.B)EES”'QL Further the cycle of

calculations is repeated.

2. Numerical realization of point-by-point method. 1In contrast
to [1], where variational method of Ritz is used, here the solution of
boundary-value problem (8) is carried out by the methods of least
squares and collocation. In the latter case to S, Z and the lines of
the three-phase contact L are introduced respectively the set of the
control points

B S;=GUp, rip, 3. j=12..J,
) Si=(zp 05 2. =120, [ (:

Lk:(:(/k)’ f(lk), :j;z)‘ k:l,Q‘_,_,K

)
y
,

~
~
S

and bounding surface is approximated by linear triangular elements

with the apexes/vertexes at the control points.

During axisymmetric flows of liquid instead of (9) control points
are introduced only on forming free surface
o= (py, 2.), i=1,2, .., [—1; T;=(r(l;)), 2({1)) and most generatrix is
approximated by interpolation parametric cubic spline with
parametrization along total chord length, which combine control

points. In this case accurately is satisfied condition (5) and is

computed mean curvature H of surface Z.

Page 197. .
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Solution (8) is sought/found in the form

m=0

qf "

where @» =~ harmonic polynomials, and function

satisfies condition

()\L'ﬂ =

(4
=g Ha S§"-1,
ov

(1). on.

Key:

Coefficients C}'!

functional,

T M gen =1 nl
. nel |\ N Cri! O%m 1 g L
j1 ‘-—\ m d\‘ | d\' dv
tgrx+1 m==0
+v | (\* Cn's ,,,+w"+‘_<p"+‘) ds,
nn'i"l

0

or according to method of collocation

M
Fret=3 Cr Yoz, 5, 9+ W1z, 5, 9,

are determined from condition of

PAGE

e

(10)

-1 harmonic in Q

minimuem of

constructed according to method of least squares

)~ JS -+

(11

jg:‘l:&l'%‘\‘az,
Syt -1 ~<n~.\ e
\1 a0 (S 0 S 9 G
Cn av ' av ' v

p-1 m=0

: 1 21 : 13
By= ‘\_[\‘ Crtlen(2,) -+ Wi (E ) — PP ) (13)

p=1{m=0

A S])

—

Here vy - numerical parameter,

- units of collocation on
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vu-1and Sn-! respectively. .

Parameter [/ into (7) is calculated from difference equation

d . (1.:
_fﬁ_._—__ _a_(_I-).—._’UP—:(Ua r */‘O"ql’—l':+r(ﬁp>~ (14)
dt dl \ oz dl

according to diagram predictor - corrector. Difference analogues of

equations (3), (4) are calculated according to the same diagram.

3. Control/check of accuracy and organization of calculations.
An error in the solution of problem by point-by-point method is
determined by an error in the solution of base problem (8) at each
step/pitch and by errors in the integration for the time of boundary
conditions (3), (4). 1In turn, an error in solution (8) depends on
errors linear algebraic equations initial data in the system .
relatively ﬁf‘, errors in the solution of this system of equations,
M number and approximating properties of functions (.. Complete
error analysis is very complex. Therefore we will be bounded to the
examination of the quantitative criteria of the accuracy of solution
(8) and role of the parameter 4 utilized in the calculations of (11),

(12) in control of the value of the resulting error.
Page 198.

As the criteria indicated are selected the a posteriori evaluations of
discrepancies in satisfaction of boundary conditions to Z and S, which

were calculated by the formulas

-
3 3 -
SN 1 TR AT (15) ®
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where &,, &, they are determined from formulas (13), in which Sy and
Iy - points, evenly distributed on S and Z. In the case of applying

the functional (12) these points should not be placed in the units of

collocation.

Criteria e, and e, wake sense of measure of absolute errors in

satisfaction of boundary conditions on S and L.

Fig. 1 gives characteristic graph/diagrams of dependences e,(7y),

e, (v).
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Fig. 1. Fig. 2.
Fig. 1. Dependeace of absolute errors in satisfaction of boundary
conditions on S and £ on numerical parameter 7.
Fig. 2.— Change in time of total energy of motion of liquid depending '

on diagram of integration for time: 1 - diagram predictor - corrector

(r=0.02); 2, 3 ~ Euler's diagram with 7=0.02 and 0.01.

4

95 _
_ =0 24 40 60 &2 t=140
t=18 AR A

S e s e Ay A

4; ———————— -

q7F -ov/

t=0 )

43 =10 fr
Fig. 3. Fig. 4.

Fig. 3. Motion of liquid in section of ellipsoidal form.
Fig. 4. Displacement of liquid, exhausted from spherical section .

without waves on free surface.
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It 1s evident that there is an optimum value ¥, to which correspor-
the smallest errors in the solution in the assigned level of the
accuracy of intermediate calculations (integration, the soluticr
linear system of equations, etc.). The presence of optimum is
explained by dependence on y the contribution to the matrix eleme-- .
of the system of linear equations, which introduce integrals (surs:
Z and S and by change in this case the numbers of conditionality of

matrix.

At each step/pitch on time calculation e, and e, is used for
assignment of value y at following time step, i.e., criteria (15) make
it possible not only to consider accuracy of obtained solution, but

also it is correct to organize numerical process.

Accuracy in the integration for time of difference analogues of
equations (3), (4) and (14) a posteriori is evaluated according to
accuracy of accomplishing of law of conservation of total energy of
liquid. By calculation it is established, just as into [10], where it
is examined the motion of liquid in the cylinder, that the deflection
of the instantaneous value of total energy from the initial is
extremely sensitive to errors in the method of integrating the
boundary conditions. This is important for organizing the
calculations fact, since due to errors in the

discretization/digitization, generally speaking, it is not possible to
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expect the constancy of total energy, and therefore it is expedient to .

track the sufficiently lasting tendencies in its changes.

As illustration of results of control of numerical process Fig. 2

gives change in time of total energy of axisymmetric motion of liquid,
which is developed in spherical section from initial state

DP°=0 (p, 2= —0,59+024p?) =30 It is evident that the first diagram
is numerically stable (value of total energy it remains constant in
margins of error in the solution of base problem), the second - it is

unstable (value of total energy rapidly it grows).

It is interesting that instability of calculation (in evaluations
according to energy) is developed against the background of
constant/invariable within limits of working accuracy of volume of Q
liquid mass. Computed value of volume is completely determined by the
accuracy of the solution of base problem; therefore it can serve as
the criterion of this accuracy. Calculating experiment shows that 1if
the base problem for the certain step/pitch n is solved insufficiently
accurately, then at the following steps/pitches the value of volume

rapidly "is swung".

4. Numerical results. Let us consider examples of the
calculation of the motions of liquid within the sections of various
forms. We will assume that at the initial moment of time the liquid
is found in state of rest relative to the moistened surface, and then

either section is set in motion or instantly varies the field of mass ‘
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forces.

Motion of ligquid, which half fills it cut off ellipsoidal form,
when g/Fr=(0, 0, —1). We=c0 it is represented in Fig. 3. It is
evident that nonlinear interaction of different tones of oscillations
leads to the appearance of fine/small waves on the free surface of

ligquid near the wall of section.
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Tig. 5. Fig. 6.

Fig. 5. Formation of funnel/hopper in presence of waves on free

n
{

1
(X
s3]
(1}
1))

¢. Formation of funnel/hopper under conditions of weightlessness

{“‘:C\C) .
- .

2\ t=140 170 240

t=65 35 135

Fig. 7. Fig. 8.

Fig. 7. Formation of funnel/hopper under conditions of weightlessness

Fig. 8. Change 1in form of free surface of liquid, which instantly

loses weight (0=90%)
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Fig. 9. Change in form of free surface of liquid, which instantly

loses weignt !t iy

Fig. 10. Motion of liquid in cylindrical section with horizontal

generatrix.
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Further is shown formation of axisymmetric funnel/hopper on free
surface of liquid, exhausted from spherical section in the absence of
waves on free surface (Fig. 4) and in their presence (Fig. 5). It
turned out that when g’Fr::(O.O.——l);\VC::°°3Ns==Of3 the oscillations
of liquid on the first axisymmetric tone contribute to the more rapid

formation of funnel/hopper.

Numerical experiment established that with suction of liquid from
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spherical section under conditions of weightlessness volume of liquid,
which remains in section at moment of entry of gas into intake
opening, depends substantially on angle of wetting. The results of
calculations with the filling of section to level

r=—00 (F1=2.yo=10", 1,=05) are given in Fig. 6, 7. There is

an optimum angle of the wetting, for which in the given ones

expenditure/consumption and other determining parameters the

remainder/residue of liquid is minimum.

Behavior of liquid, which fills spherical section to 0.156 of
entire volume and that instantly losing weight shown in Fig. 8 for
[ =oco, We==10% 8=90° and 9 for Ir=oo, We= [0? (=30". It is’
evident that the motion of liquid, shown in Fig. 8, is accompanied by
complicated interaction of fine/small waves and qualitatively it

differs from smooth and regular capillary waves by Fig. 9.

Fig. 10 shows change of form of liquid volume in straight/direct
circular cylinder, filled at depth, equal to radius after direction of
acceleration of field of mass forces instantly was changed on 90°,
l.e., section proved to be lying/horizontal "on side". With an
instantaneous change in the direction of the acceleration of the field
of mass forces on 31.3° in plane zy and during the rotation of section
with ,, =1, w,=w.=0 around the axis, passing through the center of
free surface, the form of liquid volume is shown in Fig. 11. It is
well noticeable that during the rotation of section the free surface

of liquid longer retains flat/plane form.
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Let in spherical section of unit radius be located volume of
liguid in the form of spherical segment by height/altitude 0.1. At
first liquid segment is deflected from direction g at angle of 45°,
Fig. 12 shows the evolution of the form of this segment in the course

of time under the action of gravitational force.

If at initial moment of time it cut off with liquid it begins to

quickly move to the right with acceleration of

do
y -
1t =0.7¢. (this equivalent to instantaneous change in direction of

acceleration of field of mass forces at angle of 31.3°), then form of *
liquid - volumes within sections in the form of cone and straight/direct
circular cylinder with hemispherical cover/cap will be such as it is

depicted in Fig. 13 and 14 respectively.

Fig. 15 shows form of liquid volume, which is located in
cylindrical section with hemispherical cover/cap, under the same
external influences, as in Fig. 11. The comparison of Fig. 11 and 15
shows that the motion of the center section of the free surface during

the rotation of section weakly depends on its form.

Point-by-point method makes it possible to calculate transient
processes 1in liquid and during other, more complicated motions of

section.
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Fig. 11. Fig. 12.
Fig. 11. Characteristic forms of volume of liquid in cylindrical
section, which accomplishes progressive/forward and rotations.

Fig. 12. Characteristic forms of volume of liquid of low depth in

spherical section.

Fig. 13. Form of liquid volume in quickly moving/driving conical

section.
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Fig. 14. Fig. 15.

Fig. 14. Form of volume of liquid in quickly moving/driving
cylindrical section with spherical cover/cap.

Fig. 15. Displacement of ligquid in cylindrical section with spherical

cover/cap, which accomplishes progressive/forward and rotations.
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About the motion of solid body with the liquid, whose free surface is

closed with the nonlinearly deformed shell.

V. A. Trotsenko.

Are derived equations of disturbed motion of solid body with
cavity, wholly filled with liquid, part of surface of which is
axisymmetrically deformed by hydrostatic pressure dome-shaped shell of
highly elastic material. Investigated methods of solving the
corresponding boundary-value problems, connected with the
determination of the hydroelastic coefficients of the obtained

equations. Are given some results of the calculations of the free ‘

oscillations of mechanical system liquid - shell,

As one of means of limitation of mobility of liquid in
axisymmetric vessels structurally/design can be used preliminarily
deformed soft shell of rotation, coaxially attached on walls of vessel

and closing free surface of liquid.

In the present work setting and solution of nonlinear problem
about determination of state of equilibrium of shell, prepared from
highly elastic material and which is located under hydrostatic
pressure is given. According to G. S. Narimanov's method in the
linear setting are derived the equations of the disturbed motion of

mechanical system body - liquid - shell and is proposed the
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approximation method of determining the hydroelastic coefficients of
those obtained equation. The results of the calculations of the
frequency characteristics of the oscillations in coupled circuit of

liquid and deformed shell are given.

1. It is known that under conditions of weightlessnesé
reorientztisn of liquid in capacity/capacitance in comparison with its
usual position under conditions of gravitation is possible.
Furthermore, under these conditions under the influence of weak
disturbances/perturbations the presence of free surface unavoidably
leads to the disturbance of the continuity of liquid, and the latter
is converted into tlhe blistered mass, it falls into the series/row of
the large and small drops, distributed throughout entire volume of
vessel. In connection with this in the engineering practice are used
different kind the pressurization diaphragms, whose basic purpose -
the stationary i1solation/evolution of gas from the liquid taking into
account the possibility of drain or servicing with the latter. The
devices/equipment, prepared on the basis of the synthetic rubbers,
which possess the high coefficients of elongation/aspect ratio and
ultimate tensile strengths, Aare most promising of such type of
devices/equipment. The principle of the work of pressurization
diaphragms from the elastomers can be clarified based on the following
example. Let the initially flat/plane free surface of liquid, which
is located in the axisymmetric vessel, be closed with the circular
membrane/diarhragm from the material in question rigidly attached on

the walls of vessel. Then a change of the volume of liquid in the
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vessel will be accompanied by the ultimate strains of the ‘
membrane/diaphragm, which forms in this case a certain axisymmetric
surface. In the more general case the diaphragm can be prepared in
the form of arbitrary shell of the rotation of variable/alternating

thickness closed in the pole.

Analysis of behavior of liquid in cavities with pressurization
devices/equipment from elastomers and account of its effect on
dynamics of body it is connected with solution of whole complex of
problems. The task of the definition of the elastic deformation of
diaphragm, which during the defined limitations to fluid emission rate
from the cavity can be considered as the task about the ultimate
strains of the highly elastic shells of revolution under the effect of
hydrostatic load, is one of them. This task relates to the number .
physically and of the geometrically nonlinear tasks of the theory of

soft shells.

Let diaphragm in unloaded state be thin shell of constant
thickness h,, whose median surface is obtained by rotation of plane
curve to angle 27 relative to axis Ox,, which lies at its plane. Let
us assume that the shell is attached on the parallel of radius R, on
the walls of the cavity of rotation and the form of its meridian is
assigned in the form

X, =X,(8): r,-—=r,(s), (N

where s - arc length of meridian, calculated off the pole of shell.
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We will examine shells, for which in vicinity s=0 function r,(s)

is represented in the form

t

(<)
This class of shells includes, in particular, shells, which have
form of spherical canopy, paraboloid, ellipsoid and hyperboloid of

rotation.

For describing geometry of deformed shell let us introduce
cylindrical coordinate system Oxnr with beginning in center of
attached duct/contour of shell and axis Ox, directed opposite to
gradient g of field of mass forces. Since the axisymmetric load is
applied to the shell, the main directions of deformation at point P(x,
n, r) will coincide with the meridians, the parallels and the
standards/normals of deformed median surface of shell. The main
degrees of elongations/aspect ratios in these directions let us
designate through XA,, A, and A, respectively. Assuming that the shel!

is prepared from the incompressible isotropic material, we will obtain

: ds ds ) r Ayho

forces of median surface of deformed shell in its biaxial

stressed state are determined from formulas [1]
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N W 22 gt . .
7= 2ty (l: —123) (——U AR — ) CU=100). (4) .
dll U/_)

Here W - elastic pntential, which is function of invariant of

deformation I, and I,

—

R I R
Conditions of equilibrium infinitesimal element of deformed

surface of shell make it possible to obtain equations

‘[TI “__l_ dr (7-\1__7*_)) 4:0'
ds rods (6)
_zL_v;_Ii-::Q(xL
Rl ‘ R_j
where (Q{x)==67+[)x;(f==P*—~P°;13:=——pvg: 0 - density of liquid; vy -

load factor; P* - constant component of fluid pressure, P° - pressure
from side of gas to shell; R, R, - main radii of curvature of shell in

final state. The constant C depends on the volume of liquid.

Thus, equations of equilibrium (6) taking into account c¢f given
relationships/ratios and conditions of attachment of shell are
boundary-value problem for system of two nonlinear differential second

order equations relative to functions x(s) and r(s).
Page 206.

For solution of formulated problem we will use variational
methed, it is sufficient to efficient during solution of similar tasks

[8]. On the basis of the principle of the stability of potential ‘
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. energy of shell, the solution of initial problem can be reduced to
finding of the extremum of the functional

Se

3 dx (7)
o 9 e oy oo x\r2—\ds
/__H_hou r.(s)--Q(x) ds]
on the class of the functions, which satisfy t“he conditions

dx
as

—=x(s)=r(0)=0; r(s,)=~R.,. (8)

s D

Following Ritz's method, solutions for functions x(s) and r(s)

let us represent in the form

p
1 -
_ x(s):xu(s)%—}_xkuk(s),
n ©)
@ g
r(sy==r,(s)+ ‘\_ XpypPs (5)-

E=1

Coordinate sets of functions {uh(s)} and {ph(g)} let us select as

follows

1, (S) = (52— s}) s 2, Ve (S) = Sit, (S). (10)

Taking into account stability condition of functionei (7),
constants Xx, that form by itself 2 p-component vector x, we find from

solution of nonlinear algebraic system

f (x)=0. (b
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In this case components of vector function f take form .
% . 1 dx dug

Ji= \ lz/ltJU()‘l’ hy) — —

odr ,
—Q(x)Ay— u,-' ryds,
| ds ds ds |

.
0
Sy

" dv. N U
fx+p=\{2/n;,~[Um, SIS 4%;-
5

Ay ds ds ry .
+Q(x) ‘A_,—(!'—t—— vl rods; (12
ds !
. ! ow <42 1 \o , T
A, R)=|A — — —_— AR — — | — =1, :
Ul ) (_‘ xfxg)all '(‘ x;)o@( ?)

- For solving system of nonlinear algebraic equations (11) is

sufficient quantity of iterative methods.

Page 207’. .

Converging of them is most rapidly Newton's method, according to whom

the approximations/approaches are computed acccrding to the diagram

x“*””.x”)—-PP’(X”U,f(X“”~ (13)

where H(x) - Jacobi matrix set of functions |, [.. ... /:# relative to

variables . x. ..., Y.

During construction of initial approximation/approach in
iterative process of (13) is used method of continuing solutions by
parameter of load Q, and in the case of presence of singular solutions
of eguations (11) - method of replacing parametiters of continuation.

Subsequently in calculation formulas was used most widespread
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. elastic potential W(I,, I,) in the form of Mooney

W/, Ip—C (1, —=3)+C, (/;—3). (14)

Here C, and C, - physical constants.

Carried out numerous calculations show that method of solution of
initial problem proposed above proves to be sufficiently efficient
from point of view of accuracy of calculations and expenditures of

machine time.

As example let us give results of calculating strained and
stressed state of shell, which has in initial state form of circular

Q membrane/diaphragm with following geometric and physical

characteristics:

()
R,=1 ™ J,=2-10 3w 61«-9”19')10 * H, Mm%,

C,=17,168.10 * le~ (1)

Key: (1). N/m?,

Fig. 1 depicts profiles/airfoils and force of median surface of
deformed shell with different values of dimensionless parameter of
load C (transition/transfer to dimensionless quantities is realized
according to formulas [8]). As can be seen from figure, with the low
values of C the large part of the shell is in stressed state close to
the uniform. 1In proportion toc its increase, which is accompanied by
an increase of the efforts/forces in median surface of shell, this

. region is reduced.
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2. Let us consider solid body, which has cavity of rotation with
liquid. Let us assume that region Q, occupied with liquid, is limited

by the rigid walls of cavity S and by the axisymmetrically deformed

shell Z.
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Fig. 1. _Internal efforts/forces and profiles/airfoils of deformed

shell with different values of parameter of load C.
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Let us introduce the system of coordinates (9*x*y~z' with axis Oxxx,
which coincides with the axis of the symmetry of cavity. Let us take
the assigned motion of the system of coordinates O*t*y*z* for that not
disturbed. In the description of the disturbed motion we will use the
hypothesis of the smallness of the parameters of motion. Let us
introduce the system of coordinates Oxyz connected with the body and
it will place it so that during the undisturbed motion of solid body
this coordinate system would coincide with system (Q+x*y*z*. The unit
vectors of axes Ox, Oy and 0Oz we will designate through i,, ¢, and i,.
The disturbed motion of body we will characterize by the vector of low

displacement u, of point O relative to O* and by the vector of the low
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rotation 6 of the system of coordinates Oxyz relatively O*x*y*2*. For .
describing the motion of liquid in the cavity used the displacement
potential y, for which in the case in question must be satisfied the

conditions
Ay =0 Q,

dJ; : J
AL sy R )

1| =, v) - R v)y—w, (16)
o |s ov [y |

Key: (1). in.

where R - radius-vector of the arbitrary point of surface Z+S relative
to point O; » - unit vector of external normal to Q region; w -~
sagging/deflection of shell in the direction of external normal to the

surface Z.

It is analogous with [5], [6], [7], displacement potential is

represented in the form

/= (u,, @)=, W)=, (7

Then functions ¢, ¥ and ¢ must be harmonic functions in Q region

and satisfy following boundary conditions

ay

v [s-g dv

5 av

Furthermore, to function w must be superimposed further

limitation
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\ wd N0, (Ih

escaping/ensuing from condition of retaining/maintaining volume of

liquid.

Vector function ¢ with an accuracy to arbitrary constant is
determined by formulas (D;=x; =y, ;=2 vector function ¥

subsequently we will assume known.

Displacements of shell we will characterize by vector u with
components u, v and w respectively in directions of meridian, parallel

and normal of median surface of shell.

’ Page 209.

Then the disturbed motion of shell will be described by the following
system of partial differential equations:

Liy () 4 Ly (0) 4- Ly (@) = rh 3@y

Loy (@) 4 Lgg (0) + Loy (w) =rh3Qq: (20)

Ly (1) 4 Lo (v)+ Las () =rk [3Qs -+ P.

In this case functions u(s, n, t), v(s, n, t) and w(s, n, t) must

satisfy boundary conditions of rigid attachment on duct/contour !
u[,='U|1==’w[',=0 (21)

and limitedness of deformations in pole of shell.
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Here L:j - well-known differential operators those preliminarily ‘

deformed by hydrostatic load of dome-shaped different shells of

rotation [9]. Under 8Q;(i=1, 3) are understood the loads, caused by
the inertia of material of the shell

N o°u o%v | _ 0w
8Q = —Poh—gg-; 8Q2= _poh—d_té’ 3Q3= — poh EV (22)

where p, and h - material density and the variable/alternating

thickness of the deformed shell.

Pressure from side of liquid

0%y
= — pgdx,— p@dXy =P —7~ (23)

will functicn besides these loads on shell during its disturbed motion, .
First two terms in formula (23) determine additional hydrostatic

pressures on shell, caused by rotation of system of coordinates Oxyz

relatively O*x*y*z* to angle 9 and by deformation of surface Z. In

this case with an accuracy down to the terms first-order of the

smallness
M [3
8x, =02 —fyy; dx;=wcosa—usina, (24)

where a - angle between the standard/normal of surface I and axis Ox.
Latter/last term intc (23) registered on the basis of
Lagrange-Cauchy integral determines with an accuracy to arbitrary

function of time dynamic pressure of liquid on shell.

Let us introduce into examination operator of Neumann H, who to
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. values of function f, assigned on surface Z, places in conformity
function ¢, determined in region Q and being solution of

boundary-value problem

A5=0 8 Q; % | =f; =0. (25)

Key: (1). in.

Let us register this conformity in the form
e=Hf. (26)

Operator H is integral operator, kernel of which is Green's

function for task (25).

. Page ZiO—,

Then disturbed motion of shell will be described by operational

equation:
02u

U= —ri
L rA hpy 7

+x. (27)

Here L - matrix operator, generated by differential equations (20) and

determined on the set of functions, which satisfies conditions (19)

and (21).
Ly Ly Ly
L= Lm Ly Lnl,
L31 L32 L;’i
moreover 151 and L;3 - changed differential expressions L,, and L,,

. due to second term in formula (23). Vector X is determined in this
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47

case as follows: .

Xﬁ{o, O, rkl[_ga(62z_6y)_p(u (D . 2w
og D) — o (W) — oy F2®
3 0®) —p (0,W) — oy 7 ]} (28)

Prime in curly brace indicates operation of transposition.

Let us consider task at eigenvalues, which describes free

oscillations of mechanical system liquid - shell in fixed vessel

Lu;—wjBu;=0; B=diag[rhhpy, rhhp, rhho, ri (hoo-+ o). (29)

Boundary-value problem (29) has discrete spectrum, and all its

eigenvalues are positive. The set of eigenfunctions in a sense

possesses completeness and satisfies the conditions of the .
orthogonality

5 (L u;u)dsdn=0; Y (Bu,u))dsdn=0, (i £ j). (30)

g z

Let us represent displacements of median surface of shell u(s, n,
.t) during its disturbed motion in the form of generalized series along

system of vector functions lU(S,n) of task (29)

u(s, n, H= ¥s;(B)u; (s, ). (31
j=1

Equations of disturbed motion of mechanical system body - liquid

- shell, that establish/install differential linkage between vectors .
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u, 6 and generalized coefficients S;(/), it is possible to obtain,
after registering equations of motion of body, taking into account in
this case power and moment effects from side of liquid to body. Let
us find the third equation after the substitution of expression (31)

in equation (27) and the subsequent application of Bubnov-Galerkin

procedure.
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Assuming that the axes of the introduced coordinate system are the
principal and central axes of system body - hardened liquid, we

convert the equations of the disturbed motion to the form

(194 m) g4 N 5,8, =P;

n=1
(/0+/)6+EgnﬁOn"‘}‘g‘\:sn[ﬁnXil]:M'; (32)
n=1 n=1

Pn (§n+wisn) +(u0' ﬁ.n)+(9’ﬁ0n)+g (13/1362—3311263)203 (’l: 1’ 2;---)v

where

na== [ [ (wi 0k @) + o Hw,w,] d S po=s [ dw,ds:

-
-

Jnly nls

. - . ovr - . .
Buose | W d s = [ W SEdsi Bu . P
5 5+3
m,, I, - mass and tensor of the inertia of solid body; m - mass of
liquid; I - tensor of the inertia of liquid with nonzero components
l;;; P and M' - main vector and main moment with respect to point O of

other external forces, which function on the body during its disturbed
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motion.

3. Further perturbation analysis of mechanical system in
question is possible only after determination of hydrodynamic
coeriicients of eguations (22), wnich is coijugaied,/ ombined with
determination of solutions of corresponding boundary-value problems.
For determining of function ¥, liguid in the cavity describing motion,
during the low rotations of body to the angle 6 it is possible to use
the methods, presented, for example, in work [4)]. As far as finding
the free oscillations of liquid and shell 1n the quiescent cavity is
concerned, solution of the corresponding problem of hydroelasticity
after its reducing to the system of integrodifferential equations (29)

can be replaced with the solution of variational problem for the

functional
J=§(L u, u)dsdn / “ (Bu, u)dsdn. (33)
) E

In this case minimum value of functional (33) and function, on
which it is realized, coincides in accordance with eigenvalues and

eigenfunctions of task (29).

For finding minimum of functional (33) we will use Ritz's method.

Page 212.

Examining the skew-symmetric oscillations of liquid and shell in plane

Oxy, let us represent the components of vector u in the form of the
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expansions

q q
1=cos 1 Elyku,,(s); v=sinn 221 YraqUs (5);
R= =

(34)

g
Al
wW=0Cos M ‘\_‘ Yut2qWs (9).
k=1

After isolation of angular coordinate end-point s=0 is regqular
singular point for operator L. Therefore, taking into account the
established/installed earlier asymptotic behavior of the unknown
solutions with the approach to the pole of shell, coordinate sets o1
functions {ur{s)}, {va(s)} and {Wr(S)} 1let us select in the following
form [9]:

1, (5)= (52— 57) S2E=1; v, () =1t (5); W, (s)= (52— s0) 5%, (35)

after assuming in this case in expansions (34) Yori=—y1.
As a result let us reduce task of determining (3g-1)-component

vector y=={y, Y2, ..., Yq. Yq+2, -, Y3q} tO solution of generalized

algebraic problem at eigenvalues

(A—w2B)y=0. (36)

For determining matrix elements B knowledge of functions
vy = H™Mw,. which are solutions of heterogeneous boundary-value

problems in region G of meridian cut of cavity
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) den) \ |, 0 dgy) 1o g, W/D
r 3 T 5 r ar - - YR — 1\ '
dx X (37)

\ =Os (kzl» q)’
L,

1
dgl)

A1)

Wy, 0%
_ k

ov ’

Lo ov

where L, and L, - parts of boundary of the region G, whicn lie
resnectively on surface of shell £ and bydrophilic surface of cavity S

respectively, 1s necessary.

Formulated problems (37) are solved on basis of variational
method, worked out for solution of analogous problems in work [4], if
we select for function @Uh in the form of sequence of linear
combinations of coordinate functions

n .
oM =N 20 (x, ). (38)
a—d

°

Sets of functions {im(x, 1)} which ensure convergence of sequenre
sm ' ’ b
(38), are constructed in accordance with recommendations, prc, »’sed in

works [3], [4].
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Let us give some results of dynamic response computation of free
oscillations of liquid and preliminarily deformed shell for cavity in
the form of straight/direct circular cylinder. It was assumed that
shell in the unstressed state it is the circular membrane/diaphragm
with characteristics (15), attached at a distance H/Ry=0,5 from the
bottom of vessel. Table 1 gives the convergence of the first three

values of dimensionless frequency parameter s, =R, 2p,w?,/(2C)) ‘
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depending cn the number of approximations/approaches g in expansions
(34) with the fixed/recorded number of functions into (38) (m=10).
Tre dimensionless physical parameters of the mechanical system in

gquestion relied by the equal to

—2,631579; r:.-gﬁ-zo,18421o; 21, R 500

o
I
-
>
l

y

1 29 hy
(39)

Inertia of material of shell in tangential direction in this case
was not considered. On the other hanrd, the effect of the number of
approximations/approaches m in expansions (38) into the determination
cf frequency parameter %, 1is represented in Table 2. Analogous
convergence is observed also during the determination of the forms of
oscillations. The obtained results testify about a sufficient
efficiency of the proposed approach to the solution of the problem
during the determination of its lowest eigenvalues and eigenfunctions

in question corresponding to them.

Fig. 2 gives graphic dependence of first two values of
dimensionless parameter wV§:7E from value of increase in volume of
liquid in vessel AV —=AV/(nRo®) when §—R,/h,=200;500 Dotted lines
plotted the first four dimensionless natural vibration frequencies of

ligquid in the cylindrical container with the free surface of liquid.
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Table 1.
—_— 1
g 1 l 2 I 3 4 5 6
/_F -
. 33495 ] 0.036532 | 0.035860 0.035844 0035843 0,035843
9 O'O_ i 027951 | 0.23283 0.23097 0.23096 0.2386
" | - 1,09715 0,74836 0,72226 0,72189
Table 2.
n 4 6 l 8 I 10 12
; 0.03602+4 0,035851 l 0,035847 0,035843 0,035843
o 0,42981 0,23944 0,23097 0,23096 0,2309
S = — ] cosss 0.72226 0,72180
Page 214.

With AV, that vanishes, the natural frequencies of mechanical system
shell - liquid approach the appropriate natural vibration frequencies
of liguid in the vessel with free surface of [2]. An increase in the
parameter AV, which is accompanied by an increase in tﬁe stressed
state of the shell (see Fig. 1), leads to a considerable increase in
the natural frequencies of the hydroelastic system in comparison with
the natural vibration frequencies of liquid in the equivalent vessel
with the free surfece I. Consequently, the structural equipment in
question can be also used for the capacities/capacitances, which are

located in the strong gravitational fields as the means of a
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. substantial change frequently of the natural oscillations of ligquid in

the direction of their increase.
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Fig. 2. Dependences of natural frequencies on value of increase 1in

volume of liquid in vessel with different relative thicknesses of

shell. _ .
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SELF-EXCITATION OF THE LOW-FREQUENCY OSCILLATIONS OF LIQUID DURING THE

HIGH-FREQUENCY OSCILLATIONS OF VESSEL.

B. L. Venediktov, R. A. Shibanov.

Are presented and analyzed results of experimental analyses of
special features of behavior of liquid during excitation of
high-frequency (to 50-70 Hz) oscillations of tank, leading to fountain
effect drops from free surface of liquid and onset of oscillations of
liquid and tank with frequency of 5-20 times lower than frequency of
vibrations of forcing force. 1Is deterrined the dependence of these
phenomena on frequency and amplitude of tne oscillations of the
longitudinal exciting force and transverse vibrations of tank, and
also on some parameters of tank. Are revealed some special features,
which make it possible to make more precise nature of the phenomenon
bzing investigated and its effect on the oscillations of tank itself

and elastic constructions/designs, component part of which it is.

Nonlinear effects, which appear during oscillations of liquid in
tanks of flight vehicles, can substantially affect their dynamic
characteristics and must be considered with stabilization and
controllability of flight, work of fuel-supplying systems, dynamic

structural strength of flight vehicles with liquid propellant (3, 4].
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Nonlinear effects during oscillations of liquid in tanks can be
described within the framework of following three classes of
phenomena:

1. The effects, which appear, mainly, as a result of the special
features of tank geometry (due to the edges/fins, the grids,
perforated/punched diaphragms, etc.), which are exhibited even with
the sufficiently low amplitudes of the oscillations of exciting forces

and biases/displacements of tank.

2. Effects, caused, in essence, with large amplitudes of
oscillatjons of exciting forces and biases/displacements of tank. The
nonlinear effects of this class (limitedness of resonance amplitudes,
the asymmetry of the profile/airfoil of wave, etc.), observed in the
region of major resonance, appear with the amplitudes of the

oscillations of liquid, which exceed 0.25 of radius of tank [2].

3. Etfects, connected with implication of other substantially
(in comparison with linear oscillations) forms of behavior of liquid,
that appear with instability of oscillations of ligquid during
interaction with oscillations of shell of tank. With this type
phenomena are connected:

the excitation of the subharmonic oscillations of liquid, whose
frequency is 2 times lower than the frequency of perturbing force,
during the longitudinal (normal to the free surface of ligquid)

oscillations of tank due to the instability, which éppear in this case
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the parametric variations of liquid. Linear theories do not make it
possible to determine the amplitude of the oscillations of liquid,
which appear during the longitudinal excitation of tank;

the rotation of the free surface of liquid during transverse
vibrations of tank with the large amplitude with the frequency, close
to the first tone of the oscillations of liquid;

the fountain effect of drops from the free surface of liquid, the
introduction of the bubbles of air into the liquid during the
sufficiently intense high-freguency oscillations of tank;

the onset of low-frequency oscillations of liquid during the
high-frequency oscillations of tank, whose frequencies differ into

dozens of times.
Page 216.

The known results of experimental research of this phenomenon will be
coordinated with the assumption, independently advanced by M. S.
Galkin in 1960 and Yarimovich [4] trat the main factor, which supports
the low-frequency oscillations of liquid, are the impacts/shocks of
the drops, which fall to the free surface of the liquids, formation
and flight time ol which is synchronized with the low-frequency

oscillations of the surface of liquid.

Excitation of lowest tones of natural oscillations of free
surface of liquid during high-frequency oscillations of tank was
discovered during experimental studies of longitudinal vibrations of

rigid vessels Yarimovich and by Kahn [4] it is independent during
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. transverse high- frequency oscillations of vessels - by B. L.
Venediktov in 1960 and during longitudinal vibrations of free tank
with elastic bottom - R. A. Shibanov in 1965. However, the
satisfactory theory of the emergence of this phenomenon is absent, and

it needs further research.

In this work results of experimental studies of phenomenon of
radio-frequency drive of low-frequency oscillaticns of liquid and
process of spray formation connected with it are presented and are

analyzed.

1. _pescription of experiment. The bouncing of the tank with the
water, suspended/hung from the shock cords, with the help of the
‘ directed eccentric radiator and the spring energizer is excited. The
natural frequency of oscillation of tank on the suspension is located
in the range of frequencies from 1 to 4.5 Hz. Tank can be moved only

in the vertical direction.

Tank is cylinder with flat elastic bottom, whose inner diameter
is equal to 300 mm. Cylindrical part is done from organic glass a
thickness of 3 mm, bottom - from the steel plate with a thickness of

0.2 mm.

Are varied: frequency of vibrations of exciting force w from 1
to 50 Hz; depth of filling of tank with water H (H/R=0,02...1,73,

. where R - inside radius of tank); amplilude of oscillations of
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exciting force, created by radiator, is equal to Pyw’/we?, where
wo=33,33 Hz, and P, vary within the range of 15 to 175 N.
Bias/displacement and acceleration of the end/face of the cylindrical

part of the tank are measured.

2. Characteristic types of behavior of liquid. Characteristic
forms of oscillations and type of the behavior of the free surface of
liquid, discovered during these tests, they are shown on a series of

the photographs Fig. 1.

During excitation of oscillations of tank in the range of
frequencies from 4.44 to 20 Hz well visually observed oscillations of

free surface of liquid appear.

In the range of frequencies from 5 to 10 Hz harmonic axisymmetric

oscillations of surface (see Fig. 1B) usually are excited.

With increase in frequency and amplitude of oscillations of tank
axisymmetric oscillations are destroyed, appears zone of unstable
oscillations of liquid, where whimsical forms of oscillations with

large amplitude (see Fig. 1lc) frequently appear.
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The frequency of the vibrations, during which appears the instability,
grows with the reduction of the amplitude of the oscillations of tank.

with H/R=067 and 85<<P,<C175 N the instability begins in the range
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of frequencies from 7 to 10 Hz, while under force or r,=49 of N at the

frequency of 15-16 Hz, with P,=15 N at the frequency of 36-37 Hz.

Steady subharmonic oscillations of free surface of liquid with
frequency of from 2.23 to 4.1 Hz are observed, frequency of vibrations

o exciting force in this case is 2-2.1 times higher.
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Fig. 1. Characteristic cases of oscillations of free surface of

liquid during longitudinal vibrations of tank with different frequency

and amplitude. .
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The frequencies of the vibrations of free surface to 1-9% are lower
than aprropriate theoretical values of the natural frequencies of

oscillation of the liquid

,__‘/ E,,thw,R, | ()

where g - gravitational acceleration; §;; - roots of derivative of th«

Bessel function of the i first-order order J/;(&;)=0.

Observing low-frequency tones correspond to roots
E02, S04y E21, S22, S23, E51 and have natural frequencies, close ones to
. nat_urai —frequency of oscillation of tank during suspension or are 2
times lower thon it. The smallest frequency, at which is observed the
manifestation of the instability of the surface of liquid (7 Hz), two
times exceeded the frequency of the vibrations of tank during the

suspension.

Lowest axisymmetric tone (natural frequency <2.5 Hz) in this case
is not excited. This tone (2.5 Hz) is recorded (see Fig. la) during
the free oscillations of tank with a frequency of 5 Hz (logarithmic
decrement of oscillations 0.02), which appear after the excitation of
tone during spray formation in the process of the high-frequency

oscillations of tank and subsequent removal/tak’ g of exciting force.

‘ Excitation of subharmonic oscillations and emergence of
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instability of oscillations of free surface of liquid can be explained
with the help of theory of parametric variations, described during
longitudinal harmonic excitation by eauations of Mathieu [1, 5]. Let
us note that the dynamic characteristics of tank substantially are
reflected in the sizes/dimensions of the zone of the instability of
the subharmonic oscillations of the liquid: both due to the increase
in the amplitude of the harmonic oscillations of tank at the resonance
frequency of excitation and due to reduction in the amplitude of the
oscillations of tank, necessary for the parametric excitation of the
subharmonic oscillations of liquid in the cise of the proximity of

subharmonic to the natural frequency of oscillation of tank.
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Fig. 2. Dependence of minimum frequency of vibrations of longitudinal
forcing force, during which occurs fountain effect of liquid, from its
amplitude P, with increase (Q) and decrease (x) of frequency (O -

. self-excitation of low-frequency oscillations; H/R=0,67)
Key: (1). Hz.
Fig. 3. Dependence of ratio of amplitude of oscillations of
longitudinal acceleration of tank with fountain effect of liquid (xg)
to appropriate amplitude without fountain effect (X.) on depth of

filling of tank with liquid (excitation it corresponds to boundary of

drop-forming P,=126 N).
Page 219.

With increase in frequency of rotation of rotor of radiator
instability, where oscillations of liquid depend subst.intially on
random factors ( first of all, initial disturbances), vanishes, and

. on free surface of liquid appear steady subharmonic oscillations with
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uency of w/2 with large number of waves in radial and tangential .
directions (see Fig. 1d). The corresponding to them natural

frequencies and the forms of the oscillations of liquid weakly depend

on the geometry of cavity and are determined in by the fundamental

principles of capillary and gravitational forces.

Number of waves on surface grows with increase in frequency of
vibrations of tank. Evaluations showed that the mean radius of the
crater of one wave approximately can be considered with the help of

the equality

92==45401(1“F — 3)’
r \ pgre

of the correspondinyg to expression for the frequency first .
axisymmetric tone of the natural oscillations of liquid in a deep
vessel of radius r taking into account surface tension o {5]. Here @

-~ frequency of the vibrations of liquid; p - density of liquid;

S0 =3,83.

3. Diup-lowming. An increase in the freguency of the rotation
of the rotor of radiator in higher than the certain limit leads to the
destruction of the crests/peaks of capillary-gravitational waves; to
the formation it is high (in comparison with the amplitude of wave
oscillations) of the gushing columns of water and to the breakaway of
the drops of liquid from the crests/peaks (see Fig. le). The greater
the amplitude P, of the oscillations of the force, created by

radiator, the lower the minimum frequency of the vibrations of tank, '
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during waich occurs the formation of drops (Fig. 2). 1If we reduce :the
frequency of the rotation of radiator after the emergence of the
process of drop-forming, ther drop-forming is retained to the lower

frequencies and the amplitudes of the oscillations of exciting force.

The greater amplitude of oscillations of exciting force, the
greater quantity of drops is formed and the higher trajectory of the:r
flight. The greater the frequency of the vibrations of tank, the less
the diameter of drops. The maximum/overall diameter of the gushing
drops 1s equal to £...8 mm, which is approximately 20...30% of
wavelength of the corresponding oscillations of surface with a
frequency of 20 Hz. Finer/smaller drops have the high initial
velocity and heave above. In the majority of the cases the
drop-forming occurs only in the center section of the surtace of the
liquid {(see Fig. le). With the decrease of the depth of filling of
tank the surface of liquid, included by drop-forming, increases. The
majority of drops (is especially highly gushing) flies away from the

center of tank to the periphery.

with emergence of drop-forming amplitude of oscillations of tank
sharply grows (Fig. 3). The greater the depth of the filling of tank

with liquid, the more the amplitude increases.
Page 220.

With N/R>1 the amplitude of the oscillations or tank grows due to the

droo-forming 10...20 times.
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Minimally necessary for excitation of process of drop-forming of
amplitude of oscillations of composite force, which functions on
liquid, compose 0.5...10 from weight of liquid (Fig. 4, 5). With an

increase in the depth of the filling of tank with liguid with H/R>0.4

the necessary amplitudes of forces are reduced.

Drop-forming is retained in sufficiently wide frequency band of
forced oscillations (Fig. 6). The greater the amplitude of the

oscillations of exciting force, the wider this range.

PAGE ng/
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Fig. 4. Dependence of amplitude of oscillations of total
longitudinal force of F, which functions on liquid on boundary of
drop~forming, in reference to its weight mg, on amplitude of
oscillations of that forcing P, (H/R=0,67).

Key: (1J. N.

Fig. 5; _Dependence of amplitude of oscillations of total longitudinal

force of F, which functions on liquid on boundary cf drop-forming, in

(P,=126 NJ).

w’ r«&l /

207~

: 70 :
Fig. 6. ;@ 7, s e Fq. 7.

L . ::"-'
Fig. 6. Frequency regions of fluctuations of forcing force and depths

of filling of tank with liquid, with which occurred drop-forming and

self-excitation of low-frequency oscillations (P,=126 N).
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Key: (1). Hz.

Fig. 7. Excited with drop-forming oscillations of free surface of

liquid with frequency of 1lst axisymmetric tone of 2.5 Hz (w=30 Hz).

Page 221.

4. Self-excitation of low-frequency oscillations. During the
excitation of the longitudinal vibrations of tank with the frequency,
equal or several that exceeding the minimum frequency of the
vibrations, which cause the fountain effect of liquid (if the
amplitude of exciting force is sufficiently great), appear the stable
oscillations of the surface of liquid and tank itself with the low
frequency and the large amplitude (Fig. 7, 8). Their frequency is
5...20 times lower than the frequency of the vibrations of exciting

force.

Excitation of low-frequency oscillations of liquid and tank is
observed over a wide range of freguencies of induced high-frequency
vibrations of tank (see Fig. 6). With the low depths in the
investigated frequency region of forced oscillations (to 50 Hz) there
are two frequency bands, at which appear low-frequency oscillations.
The value of minimum frequency for the second range is 1.9-2.2 times
more than for the first. To the harmonic oscillations of tank with
the frequency of exciting force in the 2nd range are placed the
commensurate in the amplitude subharmonic oscillations with the
frequency two times of less. 1In all observed cases the necessary

condition of the onset of low-freguency oscillations during the
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radio-frequency drive is the fountain effect of liquid, which usually

(but not always) it is accompanied by drop-forming.

During excitation of high-frequency longitudinal vibrations of
tank appeared low-frequency oscillations of different forms with
frequency from 1.4 to 5 Hz. Form and their frequency depends on the
hardness of suspensicn and depth of filling of tank, on initial
conditions and amplitude of exciting force, etc. The excitation of
the 1st and 2nd axisymmetric, 1lst and 2nd transverse tones of the
oscillations of liquid in the tank and the oscillations of tank with
the frequency, equal to the natural frequency of oscillation of tank
during the suspension, is discovered.

lst axisymmetric tone of oscillations of liquid (see Fig. 7) most
frequently is excited with frequency, which was varying in accordance
with depth of filling of tank from 1.55 to 2.5 Hz. Frequency
corresponded to formula (1). 1In this case the tank oscillated with

the double frequency.

Greatest amplitudes of oscillations of tank are noted during
oscillations with frequency of from 3 to 4 Hz, coinciding with natural
frequencies of oscillation of tank during suspension (see Fig. 8).

The free surface of liguid in this case oscillates weakly and drops it
is formed (especially with the larger depths of the filling of tank
with liquid) much less than during the excitation of the liquid tones

of oscillations.
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Oscillograms of bias/displacement and acceleration of tank with

emergence of such oscillations, which were conceived in process of
transition/transfer of boundary of drop-forming with slow increase in

frequency of rotation of radiator, are represented in Fig. 9.

Process of fountain effect of drops from surface of liquid is

changed synchronously with excited low-frequency oscillations of

liquid.




DOC = 89056418 PAGE//Z,/LS/

. Page 222.
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Fig. 8. Oscillograms of oscillations of longitudinal displacement (a,

b) and acceleration (c) of tank during emergent in process of
drop-forming steady-state oscillations of tank with frequency of 3 Hz

(w=33 Hz).
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Fig. 9. Oscillograms of oscillations of longitudinal displacement (a)
and acceleration (b) of tank with emergence of drop-forming and

oscillations of tank with frequency of 3 Hz (w=36 Hz).
Page 223.

Drops during the excitation of the low-frequency oscillations of the
surface of liquid are concentrated near the antinodes, although the
center is always characterized by the most intense drop-forming, which
apparently, is caused by the more intense oscillations of the center

section 8f the bottom.

Three stages of low-frequency oscillations of surface of liquid
during radio-frequency drive of longitudinal vibrations of tank are
shown on series of photographs (Fig. 10). When the center section of
the surface is located below, fountain effect does not occur (see Fig.
10a), with its approximation/approach to the upper position (see Fig.
10b) begins fountain effect. Fountain effect reaches maximum at the

maximum altitude of the crest of the wave (see Fig. 10c).

Synchronously with low-frequency oscillations amplitude
modulation of high-frequency oscillations of tank occurs. Strongest
modulation appears durinc +he excitation of the suspension tone (see
Fig. 8, 9). The amplitude of high-frequency oscillations reaches

maximum in the periods of maximum drop-forming. .
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Bottom with drop-forming oscillates with large amplitude. An
increase in the hardness of bottom raises minimally necessary for the
drop-forming and excitations of low-frequency frequency variations and

the amplitude of exciting force.

5. Polyharmonic excitation. Fcr the study of the effect of the
induced high-frequency oscillations of tank with the liquid on 1its
induced low-frequency oscillations the simultaneous excitation of
high-frequency (by eccentric radiator) and low-frequency (by spring
energizer) oscillations is produced. It turned out that the amplitude
of the induced low-frequency oscillations of tank with the fountain
effect of drops considerably (to 2.5 times) grows in comparison with
the oscillations of tank in the absence of drop-forming (Fig. 11, 12).
The maximum increase of the amplitude of the oscillations of tank due
to the drop-forming occurs at the frequencies, close to the natural
frequency of oscillation of tank during the suspension. Specifically,
with this frequency oscillate during the excitation of the

high-frequency longitudinal vibrations of tank by one radiator.

6. Transverse vibrations. Research.showed that the
low-frequency oscillations of liquid can appear, also, during the
transverse high-frequency oscillations of the vessels, moved in the
plane of the free surface of liquid. Research was conducted with the

cylindrical containers from organic glass with a diameter of 60 mm, 80

mm, 100 mm and 300 mm, which were filled with water from }{/kR =046 to
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N/R=3.3. Wall thickness was 4-6 mm. Frequency w and amplitude A of
the induced harmonic oscillations of the vessel, established/installed
on the platform of vibration table in the vertical position, was

varied in the ranges: w=0...70 Hz, A=0...1,25 MM.

During oscillations of vessels with appropriate low frequency and
by low amplitude are excited stable oscillations of free surface of
liquid on first skew-symmetric tone. The frequencies coincide with
theoretical values of (1). With an increase in the amplitude of the
oscillations of vessel at the frequency, close to the frequency of the
lst skew-symmetric tone, the instability appears and the slow rotation

of nodal curve appears [2, 4].
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Fig. 10. Three stages of low-frequency oscillations of liguid and

process of drop-forming, that arose during radio-frequency

longitudinal drive of tank.

N N N P
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2 VW\WMWMW/W/Z\M W A

a) b)

Fig. 11. Oscillograms of longitudinal vibrations of bias/displacement

(1) and acceleration (2) of tank during polyharmonic excitation

(w,=3.4 Hz, ;=255 ...275 Hz) without drop-forming (a) and with
drop-forming (b).
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Fig. 12. Dependence of ratio of amplitude of longitudinal
low-fregquency oscillations of tank during polyharmonic excitation with
drop-forming to their amplitude (fountain effect it is absent), from

frequency of excitable low~frequency harmonic.

Key: >(J:). Hz. .

Page 225.

Further increase in frequency leads with sufficiently large
amplitudes of oscillations to decomposition of free surface of liquid
with formation of sprays (Fig. 13). Sprays are formed in the larger

degree in the walls of tank, perpendicular to plane of vibration.

Oscillations of free surface of liquid with frequency of 1st
skew-symmetric tone appear with specific values of frequency and
amplitude ot oscillations of vessel; moreover positicn of nodal curve
of wave is unstable (Fig. 14). The frequency of the vibrations of
vessel 1n this case exceeded the frequency of the vibrations of the

free surface of liquid 8-20 times. .
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Boundary of emergence of generatable with drop-forming 1lst
skew-symmetric tone of oscillations of liquid in region of those
determining this phenomenon of parameters of external excitation:
amplitude of oscillations of transverse acceleration y of vessel, in
reference to gravitational acceleration, and freguency of vibrations

of vessel it is represented in Fig. 15.
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Fig. 13.

Fig. 14.

Fig. 13. Fountain effect of drops of liquid during transverse

vibrations of vessel.

Fig. 14. Excited with drop-forming oscillations of free surface of

liquid with frequency of 1lst skew-symmetric tone. Transverse

excitation.
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acceleration of vessel y, in reference to gravitational acceleration,
with which in process of drop-forming appeared low-frequency
oscillations of iiguid,; from frequency of induced transverse
vibrations of vessel:

X — HIR=0,5 A — HR=1,0:) — HIR=15:
O — HIR=2,0; 0 — H/R=2,5 @ — H/R=3

Key: (1). Hz.
Page 226.

amplitude of the acceleration of tank necessary for the excitation of
these oscillations of liquid reaches maximum in 50-60 Hz areas and
substantially it is roised with the decrease of the depth of filling

of tank by water with H/R<1.

7. Conclusion. The obtained results will agree with the results
of analogous research in [4, 7] and the works generalized in them.

Let us conduct short sums, accentuating attention in the new results.

Onset of self-excited low-frequency (in the range of frequencies
of lowest tones of natural oscillations of free surface of liquid)
oscillations of tank with liquid occurs during sufficiently intense
nonlinear high-frequency oscillations of surface of liguid, which lead
to decomposition of resultant capillary-gravitational waves with
fountain effect of streams of liquid and drops, which have different

value and initial velocity. The appearing upon the decomposition of
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capillary-gravitational interfarence waves of the surface of liguig, ‘
1

y, can be described as random process. In work [5] it is

“
[y
£
O
=
()]
rt
4
(@]
o
b
'41

y proved that with the sufficiently nigh valuz of the
spectral density of the random vrrtical excitation of vessel the
surface of liquid becomes unstable for the lowest tones of
osciitlations, remaining stable for the high. At the
adequate/approaching external radio-fregquency drive of the
oscillations of tank the emergent low-frequency oscillations can
stably be supported due to the synchronously changing process of :ne
fountain effect of the liquid, when the flight time of drops {(or the
gushiing Jjets) reaches 1/¢...1/2 periods of low-frequency oscillations

of the surface c¢f liquid.

With specific values of amplitude and freguency of induced ql’
longitudinal vibrations of tank with liquid stable cscillations of
tank with large amplitude and low frequency, which compo.=s 1/20...1/%
from frequency of excitation and which coincides with natural
frequercy of structural tone of oscillations of taank (among other
things of that caused by characteristics of entire
construction/cesign, component part of which 1t is tank) can appear or
with frequency, two times of exceeding first axisymmetric tone of

natural osciliations of free surface liquid.

Due to drop-forming amplitude of high-irequency induced
vonginucinal vibrations of tann on sizable (in comparison with rad:us

of toned Level ol foilirg with ligquid can strongly increase withoo! .
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‘ change in amplitude and frequency of vibrations of forcing force. &n
increase in the amplitude to 20 times is recorded. Drop-forming can
substantially increas:z the amplitude of the induced low-frequency
oscillations of tank with the liquid without a change in the level of
the polyharmonic excitation of the low-frequency and causing
drop-forming high-frequency oscillations of tank. An increase .r -he

amplitude cf low-fregquency oscillations to 2.5 times is recorded.
Page 227.

Conducted investigations showed that emergence of process of
drop-forming occurs with satisfaction of following conditions:

amplitude of oscillations of total longitudinal force, which func:zions

=k

on liquid from side of tank, reaches value of 0.5-1.0 from weighti of
. liquid;

radius of craters, which are parametrically excited on surface of

iiguid of capillary-gravitational waves corresponded to condition
Bo=pgr?/c<20 ... 30,

where Bo - Bond number, whi:h characterizes relationship/razio b

1]
ot
£,
D
@
-3

gravitational forces and forces of surface tension o.

rh
@]
"t

w

y these cond:itlions, apparently, are determined necessary

drop-forming amplitude and frequency of vibrations of exziting force,

o Y. 7. Bolotin.  2n the motion of liguid 1 the vibratinag
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DISTURBED MOTION OF THE REVOLVING FLIGHT VEHICLE WITH THE LIQUID IN

THE TANKS.

On the motion of the symmetrical gyroscope, whose cavity is partially

filled with liquid.

G. S, Narimanov.

Equations of disturbed motion of rapidly spinning gyroscope with
cylindrital cavity, partially filled with ideal fluid, are derived.
It is assumed that the longitudinal axis of cavity coincides with *he
axis of the high-spin motion of gyroscope, and the depth of liquid -
is low, so that during the undisturbed stationary rotation of
gyroscope the free surface of liguid and wall cavities are coaxial
cylinders with close radii. This makes it possible to use the concept

of long waves theory.

Are derived equations of slight disturbances «. stationary
rotation of symmetrical gyroscope, whose cylindrical cavity is
partially filled with liquid. The obtained equations can be used for
the analysis of stability of stationary rotation and for the
evaluation of the effect on it of the values of different parameters

of system.
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1. Formulation of problem. We assume that the axis of the .
symmetry of gyroscope is simultaneously the rotational axis of the
cavity, which is straight/direct circular cylinder. During the
stationary rotation the gyroscope and the included n the cavity
liguid revolve as single solid body around the axis of symmetry, which

in this case is placed vertically.

We will assume difference in di<sturbed motion of gyroscope and
liquid from stationary rotation low, which allow/assume possibility of
linearization of equations for values of variations in parameters of
disturbed motion.

It .will place fixed coordinate system Qr*y*z* so that axis Oz»*
would be vertical, and point O coincided with fixed point of ‘
gyroscope. Besides this system let us introduce into the examination
two additional moving coordinate systems, one of which Oxyz (axis Oz
it coincides with the axis of symmetry) it is rigidly connected with

the gyroscope, another Ox,y.,2 1s partially connected.

Transformation of system of coordinates Ox*y*z* into Ox,y.z is
realized with the help of two rotations: one rotation around axis Oy*
clockwise to angle §, and second rotation around axis Ox,
counterciockwise to angle é,. The system of coordinates Ox,y,z 1S
converted into system Oxyz by one rotation clockwise around axis 0Oz to

the angle §,.
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Let 1,, Jo, k and 1, Jj, k - unit vectors of moving coordinate
systems, respectively; r, - radius of cylinder of lateral surface of
cavity; H - height/altitude of cylindrical cavity, « - angular
velocity vector of disturbed motion of gyroscope, w - angular velocity
of stativnary rotation of gyroscope, r, o, z - cylindrical coordinates

in system Cxyz.
Page 229.

In description of motion of liquid we disregard gravitational
field in comparison with centrifugal-force field, which corresponds to
sufficiently high value of value w. We assume/set the equation of

free surface in the form

_rl—-f"—:'t('?, <, t)a (1)

where r, - radius of the free surface, which has cylindrical form

(during stationary rotation A=ry—r)).

Assuming/setting value h sufficient low in comparison with length
circle/circumference and height/altitude of cylindrical surface of
cavity, we will disregard dependence of parameter values of relative
motion of liquid from value r. In further unpackings/facings we will

lower index during designation r, accepting as it always mean radius
r== (f0+r1)/2.

As radial component relative velocity of liquid v let us also

take its average value
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U,= —L_di
2 ot ° (2)

Let us designate through 1 displacement vector of particles of

liquid in relative motion

A
or (3)

Equation of continuity in these designations can be represented

in the form

e bl ol
- —az—_( Z)__—_" (4)

2. Expression of moment of momentum of system. The moment of

momentum of system G is represented in the form
G=Gr+G, (5)
where Or — moment of momentum of the instantly hardened system; G,

the moment of momentum of relative motion of liquid.

Expression Gr with an accuracy down to the terms f..st-order of

smallness can be represented in the form

Gr= Aov,, iy+ Avy, Jo+Co,k — 13,0, 10— 7 9:0,j, (6)

Page 230.
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Here A, C - respectively transverse and pitching moments of
inertia of hardened system during stationary rotation;
= =85 wy,=3); 0, =3 (7

U.)/r°

0 0 4 .
[ezs 1oz — zentritugal moments/torgues of hardened system in system of
coordinatces Oxdnz;(n%,owm ®: — component of velocity w in this

coordinate svstem;

z2, 2=
0
lez=0r? s’ "xz €os (2 +3;) dzdo;
z,0
0 23 2n
/yz_PI‘Q f ; %2 sin (?—f‘—as) dzd.?, (8)
z,0
where p - density of liquid; z, - distance from point O to lower

bottom of cavity; 22=2,+H.

Expression of moment of momentum of relative motion of liquid

takes form

Zy 2=
G, = vhr {‘o [ | [ro, sin (435 — 22, cos (7 3y)| dzds —
2,0

Zy Q:. Zy2n
__jqj'g[rUZCOs(p_;ag~%zw;sin(;~}69]dzd?-—4(s'Yrv?dzd; O
z, 0

2, '

Using formulas (5)...(9), let us compose expression of components

of total quantity of moment of momentum in system of coordinates

OX,Y.2:
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4.

z,2= 2g 2=
Al

Gey= — Ady—orio, | \xzcos(?%—aﬂdZd?-F?ﬁf\ \ [re, sin (373, —
2,0 2.0
— 2v,C08 (9 —2y)| dzd3; (10)
. Zq 2= z,‘lr.
G%zzABy—pr%Q\ ‘xzﬂnz(;%—%)dzd?-—MU'\\[rvzum(?ﬁ—ag+-
z',(') ‘210
Lz, sin (9 -3y dzd3; (1)
z, 2= .
Gz::sz—}erz\\ v.dzd?. (12)
2,0

3. Equations of relative motion of liquid. We assume/.et the
liquid of inviscid. The Euler equation for relative motion of liquid

will take the form

ov , dw

—ét— : 2(!)‘\\"7—‘—; ~\'R—:—(v) ;((') R):——é—gradp, (1'3)

where R - radius-vector relative to point O; p - pressure of liquid.

Taking into account condition (2), let us drop/omit equation,
which determines change in component of (13), after replacing with its

static equatiorn of motion in accordance with basic hypothesis of long

waves theory.
Page 231.

Remaining equations will take the form

ov 9

* . . . . .
;_ﬂ%?r—(%cm?+wwmnwz+w;+mg0@um?~wx&nw=
)
B (14
re U3




ov,
at

. . | , 1 9
+r (‘”,r S e -y Cos ’?)fu)zr((u ¢ COS % a:—my Sin 1’) = ——?— —g'z—' .

Static equation of pressure under assumptions accepted will cz:«-

form
P — Po=tw;r (h-+x). (16)

Differentiating right and left of part of equality (16) on ¢ &~
on z and after replacing « according to (4), we will obtain expres: . -~
of components of pressure gradient through components of displacerz: .

vector of particles of liquid:

: 2 0L,
o —d—p—z——.owih(rdl‘ = ;);

o 0209 092 -
921 (o

0 2/ =L

_ﬁ_: _szh (r 0 z P \ )

0z dz2 og9dz }

Let us show that in the case of absence of component of momen:t ¢*
external forces along axis 0Oz value Q: is equal to zero, and, that
means angular rate of rotation of gyroscope relative to axis Oz will
be in entire time of motion equal to angular velocity of stationary
rotation. For the proof let us register the momental equation of

momentum relative to axis 0z, using (12):

. 2y 2% .
Co,+or2 [ [ vodzas =0, (18)

z, 0
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On the basis (14) and boundary conditions (21), given below, it ‘
1s easy %0 ob%-ain equality
Zy2n

S Y'é., zdy=C.

2,0

Hence follows validity of expressed affirmation. We wiil further
assume :he moment of external forces relative to axis Oz the egual to

zZero.

Egquations (14) and (75) on the basis (17) and upon consideration

(3), (4) and (7) can be finally converted to following form:
2 2 o 921 52
dl? +wh 2;{5_+w_h_ ® _wQ_h_ — 2 2 _d.li_ ‘
at2 otoz r Otdy r  0%2 099z
} 28, sin (9 - 85) — 28, cos (94 3y); (19)
52 2 02 . . )
Pl _wthr OBz w2p —2 4 r8, sin (9 +83) 4 78, cos (7 +3;3) +
o2 022 0209
+ 20r8; cos (9 + 8;) — 2urd, sin (¢ -+ 3). (20)

Page 232.

Let us register boundary conditions

ol, — _‘22_] —0. 21)
dt Z=2, l at 2=2Z4

4. Compllation of equations of motion of system. Let us

register the expression of the comporients of the moment of ‘
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/
‘ gravizat:ona. force along axes 0Ox, and Oy,:

M, = —Db; My,=Di,, (22

where value D depends on the mass of system and distance of the center

[o])

15 massas

O
+h
-

ur:ng the stationary rotation from point O. Let us

introduce Complex variable

Momertal equation of momentum relative to complex variable § on

the basis «f expressions (10), (11) and (22) takes following form:

' 24 2=

A% — iCwd — D+ p d—t irlw J ) xz e Grelldzgds —
d

©

2, 2%
__/,rS irv, —izv,) el Fred dzdav}=0. ‘ 24
z, 9 L

Components of displacement e or of particles of liquid can be

1n general form represented as follows:

x)"'

l,=r E E [@nm () cOS me+ b, (£) sin m7] sin—’-;-:—(z— zZ.); (25)

n=0 m=0

lo=r ! [ (£) COS M3 € (1) sin mg] cos lH'f- (2 — 2y).
ne=0 ma=0

Expressions indicated can be substanrially simplified, after

‘ excluding from examination those parameters anm, bnam, Cnm, dnm, whose

]
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does not deps~d on motion of gyroscope, and which, in turn, do

b

~ct ziiect motion of la:tter.

Mfter substituting (25) into equations (24), (19) and (20), we
s2e -hat such parameters include those, whose indices satisfy
cordi-iens m#Fl or n - even number (n#0).

Peze I3,

Keeping in mind not to consider these parameters, let us
drop/omit index m and we will assume that index n takes only odd
al.=2s or n=0; Iormulas (25) in this case are converted to form

_ b Y . . Tn
l,=r 2 {an(t)cos<9+bn(t)§mcp]sm7(z-—zl);
n=13,.
— . an |
[.=r \ [d, (t)cos g +c,(¢) sin o] cos — (2 —2y) (26)
Y prae’ H
n=13
4 r(d cos ¢+ sin 9).

Let us substitute expressions (4.5) into equations (3.7) and

"3.8). Let us multiply the left side of each of these equations

consecutively/serially to the coefficient in parameters Qn, bn, dn, ¢n of

(26)

and will integrate the obtained products on ¢ in the range from 0

to 27 and on z range from z, to z,.

As 8 result we will obtain following system of equations:
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a,+ %t S g, = — anw? == ¢, 4 —— (8 sin wf -8, cos f
' H-: H an

203, CoS wf — 2wy sin wf) ;

s hr h 4 s v
b -—1n2——— b, = anw? — d,+—— (8, Cos of —8&, sin wf —
no 12 n H ni 1 2

an

— 2ud, sin wf — 203, cos wE) ; (27)

i1 i

.. , . A h -
dn+"’9_,:‘ dp+o _:_l" Cp=mnw? —u—bn'— :‘[nw—? At

4H o
(3, cos wt — &, sin wt) ;
n2ner
. h h . h h .
Cptw!—c,—0—d,=—anwl—a,—ano—0b, —
r r H H
4h .e . .
— (3, sin wf 43, cos wt);
alntr
e h h . z +z % 3 ..
d+ g o= =212 (5, sinwf — b cos wt) ;
r r 2r
-t i o k }l P 2 _:“‘Z‘ ;. . >
(ot L p—w Zg =222 (3 sinwf -8;cos wf) .
' r r zr
We convert equations (27), after introducing complex quantities

ap=(a, +iby) e 3, =(d,+ic,) e

3= (d L ic)eiot.

Through the same parameters is expressed variable «, which 1is
connected with [; and lg according tc (4), and values U. and Y«
determined on (3). Let us introduce the following designations:

m=2arhHp — the mass of the liquid, which is contained in the

cavity; k=h/r - charge/weight ratio of cavity with liquid; jA=r/f —
half of reciprocal value of the elongation/aspect ratio of cavity;

C,=mr?* - moment of the inertia of liquid mass; u=(2; +2z.)/2r.
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Lowering intermediate unpackings/facings, let us register finally ‘
joint system of equations, which describes disturbed motion of

gyroscope and liguid containing 1in its cavity:

A3 —iCol — Dy — &1 —‘-(&R—szd,,Jr —‘——S'n)+—‘— Cyui=0;
b13 n ni 2
n=13,...

&, — loa, - (12n202% — 1)wla, zinﬂklw?ﬁn—}——fn— (5 — 2iw3) ;

] 4

w22\

—io24k) 3, — 0, = — ankrea, — s(n=1, 3...3; (28)

n

3 — 024 k)3 — wB=ip3.

Equations (28) are infinite system of ordinary linear
differential equations with constant coefficients.

Their solution can be constructed by method of reduction, by
finding solutions of final systems of equations, obtained of (28) with

limited and consecutively/serially increasing numbers n.
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Page 234.

The stability of rotation in the string of axisymmetric solid bodies

with the cavities, filled with liquid.

A, Yu. Ishlinskiy, M. L. Gorbachuk, M. Ye. Temchenko.

Stability of motion of axially symmetrical body with ligquid
filling. suspended/hung from string and which revolves with constant
angular velocity w around stationary position of dynamic equilibrium
is invesEigated. String is assumed to be inertia-free, nonductile and
nontwisted. The cavity, filled with liquid, has a shape of body of
revolution, the axis of symmetry of which coincides with the axis of
the symmetry of solid body. 1t is assumed also that in the steady
motion liquid and solid body form single whole. Are examined two
special cases; cavity in the form of straight/direct circular cylinder

and in the form of ellipsoid of revolution.

Present article to a certain extent is close to scientific
thematics of Georgiy Stepanovich Narimanov. To the authors of article

infinitely it's a pity, that already it does not exist among us.

In work [9]) S. L. Sobolev examined task about stability of
motion of gyroscope with axisymmetric cavity, wholly filled with ideal

incompressible fluid. 1In this case it was assumed that in the steady
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motion the mechanical system solid body ~ liquid revolves as single
solid body. This task led to the analysis of the structure of the
spectrum of the self-adjoint operator in the space with the indefinite
metric, as a result of which it was possible to isolate the zones of
stability. As it proved to be, these zones depend substantially on
the form of cavity. 1In work [5] it was shown that the task
considerably is simplified, if the motion of the liquid filling cavity
is related to the coordinate system, rigidly connected with the bodv
of gyroscope. This allowed in the case of ellipsoidal and cylindrical
cavities to solve it, after using only the method of separation of
variables.

Page 235.

Methodology of conclusion/output of equaticns of motion (5] is
used in this work during solution of more complex problem about
stability of motion of axially symmetrical body suspended/hung from
string, within which there is cavity in the form of body of revolution
with axis of symmetry, which coincides with axis of symmetry of solid
body. 1Is assumed that the string is inertia-free, nonductile and
nontwisted, i.e., it is examined onlf as geometric constraint; in the
steady motion liquid and solid body form seemingliy single solid whole.
In this case it is accepted that the string ané the axis of the
symmetry of body lie/rest on the vertical straight line. The posea
problem is solved with the help of the theory of the self-adjoint
operators in the space with the indefinite metric, developed in [3].

The method of study is close to the method, used into [9]. However,

-
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in contrast to [9], where the indefinite metric has not more than one
negative square, both one and two negative squares here can appear.
Is shown that under specific conditions, assigned on the form of
cavity, depending on the coefficients of system of equat:ions, to the
corresponding task in question, interval (0, «) of a change in the
angular velocity w can be decomposed into two or three intervals:
(0, o0) = (0, w1)U(wi, ) or (U, o) = (U, o)Ulw), 02)U(w2, ), in which a
quantity of negative squares of the indefinite metric is constantly
equal to 0.1 or 0, 1, 2 respectively. If we (U, @), then the solution
of system is stable. 1In all remaining cases of change w the stability
of system depends on the form of cavity.

Cavities in the form of straight/direct circular cylinder and
ellipsoid of revolution are examined as examples. In the first case
in as conveniently distant interval (o0/, ©” (0'>w1) there is a

countless set w, with which the system will not be stable.
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In the second case, passing to the ellipsoidal coordinates and using
the connected polynomials of Legendre, with the help of the separation
of variables and graph-analytic reception/procedure from [4, 10] it is
shown that there are two intervals (0n',0ﬁ")(0h'3>m1) and

(we*, ®2**) (w2*>w,**) the changes w, in which the motion of system is

unstable; with w, that lie out of these intervals, motion is stable.

1. Let us derive differential equations of disturbed motion of
solid body, using equations of Lagrange of II order. Let us introduce
fize? coordiriats system E,n,%{, with the center at suspension point of

.
Y e

5Lring +n fixed base O, (rFig. 1). Axis b, 1. i3 directed ’erticCully
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upward, axes ¢, and n, it will place in the horizontal plane. In the
center of cavity - to point O - let us place the reference point of
the progressively/forwardly moving system of coordinates £(°n°§, (Fig.
2), whose axes are respectively parallel to axes £,, n., $.,. At the
same point let us place the reference point of the system of
coordinates xyz (Fig. 3), rigidly connected with solid body so that z
axis 1s directed along the axis of the symmetry of body upward, and x
and y axes are located in the plane, perpendicular to the axis of
symmetry. Let us determine the position of string in the space by
angles u and A; g - angle between the straight line, directed along
the string, and by its projection on the plane n,, §{,, A - angle
between the projection indicated and the axis §,.

Let us determine position of solid body in space by three angles

of Euler-Krylov a, B and o.

1t is assumed that in case on body in question they function
force of gravity m,g and force px of hydrodynamic pressure of liquid
on wall of cavity. The latter are reduced to the main vector F and

the main moment/torque M, relative to the center of cavity O.
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Page 237.

Equations of motion of solid body in the case of small angles a,

B, N, u and angular velocities «, B, A, u take form [2]

(A +m, ) a+Cie3+Cife+ mlih=M, cos o — M, sin 3+ M3+
+1y(F . sin o4 F, cos 9) —myl,ga;
(A4 myl?) — Ciae+ myl\lp =M, sin 9+ M, cos o —
—ly(F cos 9 —F, sin 9) — mgli3; (D
Cﬁé==0;
m, (Ik4lLa)=F, sine+F, cos 9+ G —a)F,—mgh
my (1 +13) =F, sinp—F  cos g (2 —3) F, — mygu,

where A,, C, - main central moments of inertia of solid boay: m, -
its mass; !, - distance from center of mass of body to attachment
point to it of string (see Fig. 1); g - acceleration of gravity ;

Fx, Fy, F, and M., My, M;— projection on axis of coordinates x, y, z .
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. (main vector and main moment of forces of pressure of liquid on solid
body); they are derived/concluded analogously how this is done into

(6].

Projections Fx,Fy,FZ and.‘Mx,Adwthh we determine from known

formulas of hydrodynamics

=50p dv; F, j‘ T dt;, F, S 2y

et e e
oy z

<

in which integration it is conducted throughout entire volume of
cavity 7.
For determining hydrodynamic pressure p*(x, y, z, t) we will use

flow equations in moving coordinate system [6]

P———dxvp —w,—2(wxu. 4y
Tt

Here u - vector of relative speed of particle motion of liquid in
cavity of solid body; p - specific density of liquid; P - mass forces;
We — vector of translational acceleration of particles cf liquid,

determined by relationship/ratio

w —WO—L——;—YF+®/\(®/\r), (5)

where r(x, y, 2) — radius-vector of particle of liquid, w° - vector of

‘ absolute acceleration of point O.
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Projections of acceleration w° on axis of coordinates x,

Y. 2
with an sccurecy tc smalls of second order relative to derived angles

a, B, u and N can be presented in the form

wiz—(léi+lé?)cosw(l'iw’-lzii)sin?:

wy=(ip 1) sin g4 (a4 1La) cos #: (6
0
w; =0,

where [, - distance from point O,

of suspension of solid body to
string to center of cavity O (see Fig. 1).

With the same degree of accuracy it is possible to take taking

into account third equation (1) that projections of angular velocity

vector w on axis x, y, z will be following: » '

w,==acos 94 3sing, w,= —asinp+3cos 9, w,==9=w=const.  (7)

Page 238.

Taking into account recently obtained equations (5)-(7)
equations (4)

flow

in projections on axis x, y, 2z let us represent in

@i——-Quu ——-—-l-apl——Qz&w

ot p dx

duy 1 ¢ .

S = ——- -dﬁj +2z0 (8)
M, 1 0P

ot p 0z

where ‘
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pr=p* — o[ (15 2-133) cos ¢ — ([A4-1,a) sin 2] x +
o ({15 +133) sin g+ (4 La) cos o] y — - (2420t +
+pwz (xo, +yo,) —pz (x0, —yo.) —p(xg. + v 8,+28.) (9

According to the condition of incompressibility, function w. uy, U,

the entering system (8), must satisfy the equation

ou
du_v —lr— Y —lr- duz =O (IO)
dx oy dz
and the boundary condition
u,cos nx—+u,cos ny-+u,cosnz=0. (1)
‘ Latter means that projection of relative particle speed of

liquid, which is touched with boundary of cavity, on normal n to it is

equal to zero.

2. Let us turn now to equations (l1). Let us introduce the
complex-valued functions of real variable {[*=a+iB; 2*=A-+ip. Then
2 R . . ' . . .
(Al "l" mlll) C* — lclwt* T mlllg’:.* + mllllz* :—‘(wa + l(My) e“‘" —
T (F iF el (12)
ML+ mylz* - m gzt = — i (F +-iF ) elo + F, (z* — {%).

Let us determine expressions Fy+iFy; F,, M.+iM,, which stand in

right sides of recently obtained equations.

. Page 239.
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Taking into account relationships/ratios (2), (3), (9), we obtain

Fi+iF,=—iM, (lgl*+1z*+gc* e—mt"l‘j dpl ddpx )dt

Fz=-ng+j~——"”‘ dr; (13)

M, +iM, = —i\"( Lip 2 "”1 dr+:§ (”‘ +¢0p1>a’r—-

- (2 = 2i0l*) (Cy — Ay e—iot

Let us note that in latter/last equalities through m, is
designatéd mass of liquid in cavity of bodies, and are also used

relatidn_ships/ratios '
5‘ pxdTt =S pydt———s ozdt=0;
S pxydt = j pxzdt:j pyzdt=0;

Sp(z2—y2)a’r:§p(z?—xz)dtzAg—Cz,

in which A, and C, - respectively equatorial and axial moments of
inertia of liquid relative to axes x, y, 2.
Bearing in mind that "=Ie'!, and assuming/setting 2'=nev, let

us register set 0f equations (12) in matrix form
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. . v o vdS
RO RN CIC I
where n " " - 0
A_:__ (a11a12 : B kbllbloj . C:(cﬂcl?\) :
a1l bpbvg 12022
anp=IK; Ky=ml -+ mly

25 2.
allel +L; L:”lx/[ T m2[2’

aq2:lgm; m———ml T m‘Z; b11 — - 41
+f}g[h4%ﬂ$+Q"A%

—Cl—:“ZL; bl?_:Q[Kl;
Clp= —IK}; 022——19n+—£—1g; v=2z (Cosnx i Cos ny)—

—(x—iy)cos nz;

el

1 ! [ G
[ > =X >
pp— P+ 5 YT 3 Y

P

S - surface of cavity.

Page 240.
on the assumption that S satisfies

3. As shown into [2],

conditions
Sﬁﬂ dv— ji&dr—;gi—‘dr:o
dy x
h

(this it always occurs, for example, for ellipsoid of revolution and
(10), (11), (14) can be registered in

circular cylinder), system (&),

canonical form
du (¢) .

=iH u(t),

dt @ 2

- vector tunction with values in certain Hilbert space;

where u(t)
Therefore the Cauchy problem for systen

. H, — bounded operator in it.

()
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(8, (10), (11), (14) is always solved.
I+ proves to be that operator f,—/,-— self-adjoined (i.e.
JoHo=Hu*Jw), in this case gap/interval [0, =) of change w can te

represented as [0, o) =[0, 0,)U[w,, o) or |0, oo} ={0, o) Ule1, o) Uws, o),
where w,, w, they are such, that operator J, positively determined
when o€[0, ;) when we(wy, o©) in first case and W& (w;, w.) in second
case J,— indefinite operator with one negative square, when

W& (w2, ) J, it has two negative squares. This indicates the
stability of the system when o0, 01); in guestion however, as far as
the remaining cases, are concerned, here stability does not always
have the place (they can appear the solutions, which garow on = both
exponentially, and exponentially) - this depends on the form of

cavity.

Let us note that division [0, «) to three subintervals and
appearances in connection with this in J, two negative squares
characteristically precisely in presence of string (compare with [9]).

The numbers w, and w, are defined as the roots of the equation
detC=[—(y+Ki) o+ g (y —miK) o+ K mg?] [ vt =0,

where Yy=m(D—L). 1f y+K2>0, then det C becomes zero only when

w, = g(y—m1K1)~+—V3; A=g2(v+miK R -4KImg? ¢
: 20 (v + &)

Y+_K'2::0¢k,“uh::}/}ng/vnl+—K]). The cases indicated correspond to

division [0, =) to two subintervals. But if Y*‘K}L<O, then




&

DOC = 89056420 PAGE W%/

. [0, oc) ={0, w1) U{wiw2) Utwi, ), where

o=V {g (v —miKy+3 3]0 (V£ K7),
w=V le(y—miK—y 3] 20 (y+KD).

As already mentioned, when &[0, w;) system (8), (10), (11), (14)
can have those exporentially growing for « solutions. Such solutions
exist when and only when operator H, has insubstantial eigenvalues.
Them there can be not more than four (two compiexly
conjugated/combined pairs), since J, has not more than two negative
squares [3].

4. - Let us show that if cavity of solid body is straight/direct

‘ circular cylinder, then there is countless set w, for which operator
H, has at least one pair of conjugated/combined with each other

insubstantial eigenvalues.
Page 241.

In fact, task at eigenvalues Hof=Mf for operator Hy brings,

as shown into [2], to equation

. Ki_ M
(A*+Cy— AP Ni = (€, +2C, = 24 why — K\ g — — (A2 —1g/t) -

=l1 (kl—w)ﬁ(l‘), (15)

‘ 13 (w4A,) fmd (204 1) [ka (h — w) Iy (ka) — (4 +w) I, (k@)

D (Al) _M-’i 2 [40)2 -3 ()\1 —_— 0)2)] jl (ka) 4- ka (kl - (1))9 f[) (ka)
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A’==fqr+’n1h2+ﬂn2k2,fl(ka)and J,(ka) - function of Bessel of first

order, a, h - radius and height/altitude of cylinder.

Let us establish existence of countless set w, for which equation

(15) has at least one insubstantial root.

Let us designate A—w=2wg and let us divide both parts (15) to

w?. Then

. K
(A*4-Cy— A9 (2q+ 12 —(C, +2C,—2A) 2g-- 1) — —(:—'Zg—_
- 2
_ Kj . (29 + 1 =D (q), (16)
. m (29 + 1)? — g/w .
where hed

__ 2q (29 + 1)-128pa?h’ kaq?ly(ka) — (3q2 — 1) Iy (ka) .
o A3 (g + 1) damd (20-+1)2 (kg1 (0) — (g + 1) J1 (k)]

D(q)

Let us assume further

N
2q (29 + 1)-128pa2h? kaq?l,(ka) — (392 — 1) ]| (ka)
a3 (g +1) damd (21 + 1) [kaqlo (Ra) — (¢ + 1) ], (ka)
b=

Dy(g)y=

Sequence of analytic functions Dy (g) evenly approaches D(q)
within any region, which does not contain segment [-1, 1) (see [9]).
Therefore the insubstantial roots of equation (16) with sufficiently

large N are close to the insubstantial roots of the equation
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® (A 4Cy = A 2q + 17— (€, +2C, — 249 2q + 1) — K& _

K3 29 + 1)4
_ —Dy(q). 17
n Civip—gea N9 (n

Page 242.
Since
(2 + 1)¢ —(2 ) 4
(29 + 132 — g/l Gg+D [1+(2q+ 1)2m21+
+ &2 1
(2 + D40y 1 —g/(29+1)2 w2t] ’

that left side (17) is represented in the form

2

K
(A*+C2—A2—'?l') (29 4+ 172 —(C,4-2C, — 24 29+ 1)~

—(Kig+ 2

ANR
K? g2

where ()=
Vo= Put[(2 + 132 — g/w2l)

When
ra 1
® > max {w,, 4 V—f—} and  —rge<l
16K2g?
Q@) <——03 (18)
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As shown in [9), Dnv(9) nhas countless set of simple poles with
unique accumulation point in zero, moreover for negative g,- and
<0 (>0).
positive g,%* poles deduction Resl)y(qoL\This speaks, that curve
about the poles takes the form, indicated in Fig. 4. In interval

(-3/4, -1/4) Dy(q) has the finite number of poles.

Let us consider first equation

H(@)=(A*+Co— A= 2) Qg+ 12— (€120, — 240 2+ 1)~

Kig

ml

—-(K}g-{— ) —=Dy(q). (19

For research of insubstantial roots of (19) with given one a/h
let us construct curve Dy(g). Real roots (19) are located in the

points of intersection of parabola M(g) with curve Dn(9q).
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Since in the low section of change g parabola MN(g) is close to the
straight line, the equation (19) has insubstantial roots when parabola
passes between two branches Dxy(g). Moving parabola M(g) so that the
position of its axis would remain constant/invariable, it is possible
to find all dangerous gaps/intervals of change w from the value of the
segment, intercepted/detached by parabola to straight line g=-1/2,
equal to (Kig +Ki2g/ml)/0?. wWith these w the parabola falls between
branches D~{(4), which it has countless set. Therefore dangerous

gaps/intervals there will be also infinitely much.

‘ As a result of the fact that in interval (—3/4, —1/4) Dy (g) has
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finite number of branches, and out of this interval (see inequalities
(18)1 with sufficiently large oll(¢)+Q(9) it differs little from
N(g), then for eguation (17) will also exist infinite set of
gaps/intervals w, in which it will have insubstantial roots, moreover
these gaps/intervals, with exception of finite number, differ little

from appropriate gaps/intervals for equation (19).

5. We investigate now stability of motion of body on the
assumption that in guestion cavity, filled with liquid, has form of

ellipsoid of revolution (Fig. 5).

We will seek solution of system of equations (8) in this case in

the form

pi=px, y, 2)e 0=t 4y =y (x, y, z)el F—wt; 0 .
uy=v(x, y, 2)e! M= o= w(x, y, z)el C=)t,

After transformations, analogous to those carried out into [5],

taking into account of equations (10), (11) and designations

(.!.)x:Qx el ()\,—w)f; wy:Qy ei (Ai—w) ¢ (21)

for determining function P(x, y, h) we will obtain equation of Laplace

o2 , 07 92\~
- — =0, 22
(dx2—T 0y2+022)p =)
where
E:Z£1=@r—mﬁh—wy—¢ﬁrm° (23)
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. For determination of solution of eguation (22) let us switch over
to ellipsoidal coordinates W, §« ¥, which are connected with x, vy, z

by relationships/ratios [1, 8]

x=k( ——p?)‘/?(if-— 1) cosy, y=r(l — )iz (Ef—- 1)"? sin ¥,

(24)

kP-E* y

I

4

in this case ellipsoidal coordinates let us select so that equation of

surface of cavity

x2+y2+_ 2 _q 25)

a? %202

would belong to confocal family. Let, for example, E,==E,.
Page 244.
‘ Then tﬁ'é arbitrary value k in relationships/ratios (24) and constant
& should be taken by the equal to
k=cxe; by=e; b=a (8 —1)"", (26)

where e=(c2x2—a?)"1(cx)~'— eccentricity of ellipsoid of revolution
with semi-axes a and cx. The solution of equation (22) now can be

represented in the form [1]

P=2 2 PR (t4) PR (1) [AT cos myp+ BT sin my| , (27)
n=0 m=0
where Pp™— connected polynomials of Legendre; A,™ B,™— arbitrary

constants.

Values Ap™, Br™ let us determine from boundary condition (11),

‘ which with the help of eqgualities (8), (20), (21), {(23)...(27) is




_

DOC = 89056420 PAGW@%/
converted to form .
9 N 1202 g dPT (&)
s Ve o2 gy DG o (AT cos my -
pi (A} — w) 2T — 02 dt,
n=0 m=0 .
2we? - °°1 m,. m
L BT sin md) - mPr () Pr ()
e TR — ZO ‘A}O
n= =

k2
Ox [402 — (A, — ©)2]

—2i (A —w)Q,] cos 4 [40Q, +2i (} —w) Q,] sin O} P2 GP3 (v).

< (— A7 sin my+ B cos mp) = ([402, —

Substituting them into expression (27) and taking into account
first relationship/ratio (20), and also equality (39), let u§ find
function™px, which determines pressure of liquid on wall of cavity.
Using further formulas (2), (3), (9), (13) and (21), and then
integrating by the volume of cavity r, after appropriate
unpackings/facings let us arrive at the relationships/ratios

2¢2i (iE* + mi*) (ll —w) x
: _%.c p—
(c2 +a?) (A — ) + 232

M+ iMy=-:__)—- npale (€2 —a?) [

"”“’i] e~iot; F 4 iF,=—imy(fi* 412+ gt e=it; F,=—mag.

Let us substitute recently obtained expressions into system of
equations (12) and we will seek its solution on the basis of

relationships/ratios (20) in the form

Lr=Trelht; zh=2z%eM.
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Characteristic equation, which corresponds to system in question,
is reduced to the form
Si ©)=(A0+ k) B —o[C) + (A4 k) M, M+ [—K —
—(A* b om) @/ Crotn + ko (1 — )| WP 4 [Kne +Cig /1l +-
4 (A* k) Mgl 0r2 4 K kot (1= my) — Crotn [ hg/ L — Komy g/l =
- =0. (28)

In this equation besides the designations, which were being already

mentioned earlier,

2 —

2
A*=A,+ mll?‘*“ m'zlg; N = "';——-(-1——
C~ +

2

4

4
; k*=7.- apa’c (¢ —ab);
Q

- Ze=K,m; A=A*—2z.K;; K=¢gK,.

It is obvious that criterion of stability of motion in situation
in question is matter of roots of characteristic equation (28). For
their research we will use the graph-analytic reception/procedure,
described in [4, 10]. Let us note, first of all, that according to
the rule of Descartes [7], the number of positive roots of equation
(28) with any values of the parameter w cannot be more than three, but
negative - it is more than two. It is possible to show that this
equation with w>0 always has two and only two negative roots.

Actually, it is easy to ascertain that
fl (—OC'! O)<O) fl (_l/é—/l, m)z(g:’/l?)(A*_AO) ((D“f}* ] é_/[)>0‘

Consequently, in the intervals -—-OO<)\<—}/8—'/7 and——}/;/—l<l<0is

‘ located through one negative root.
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determinazion of character of three remaining roots of eguation
(28) is realized by means of construction and corresponding study of

plotted func:ion

W =uw ()\):: q (A) =3 —q’()\)—-— 4P(A) f().) y (29)
' 2p (k)
in which
pOy=r0t—gilyen’ e=7 |Cny A (1 —=7)] > 05

w=k1 (1 =75 (1 ——“03)2
gy =1, (A -Ehn )M — K+ (A* L kn) g/l]F + Kell+
+ A2 (A2 —g/1) (= — )
- r )=k (A0 k)M — K gL (A 4R 2 80K

Analysis of this graph gives possibility for each fixed/recorded
parameter w to determine, everything roots of equation (28) will be

real, and therefore will be motion of solid body stable or not.

Page 246.

In that range of values A, where the discriminant

AN =4pNr ) —g? Ay =—n.[aM—(K | g/la) 24 g/lK] ¥
X [BM — (K + byg/ D N+ K g/1],

where g, =A"+ky— (e — V) by=AFkn— (Y e-+17%)% a,=A* 4
+hn— (e =105 by = ALk — (e V)
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1t is positive, equation (28) will have a pair of the complex.v
conjugate roots, and therefore the motion of the body be:i:r:
investigated will be unstable. For the same values A, where A(XN'<0 1t

1s stable.

For determining sign A(A) let us consider polynomial!s

F(@)=a,2*— (K+agP/)Q+KgPIL

(30)
Fp(R)=5,2*— (K+b,gP/l)Q+KgP]/l.

It is not difficult to show that their roots are always real,
signs of these roots depending on signs of coefficients a, and b,. If
b,>0 and a,>0 (that in the case in question it occurs), then all zeros
of the polynomial (30) are positive. 1In this case one root of each of
the polynomials is less than &//, and another - is more than this
value. Fig. 6 depicts plotted function (29). 1In it through
w ", w2, w*", we** are designated the critical values of the angular
rate of rotation of the bodies, which, according to [10], are
determined from the relationships/ratios

o Y —Vu . . VetV x .o
W= —————A W = —_— )
T Ve 7, Ve

(i=1,2),

where

=) ok =179 (=1
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polynomials (3C).
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n2 roo:s respectively of first and second

Analysis of plo:tted function (29) shows that with values of

angular velocity,

0w L w2y mo::

(W

. N N : + - . . * b
»:zh are changed within limits ;< w<w; and

- of body being investigated is unstable. The

motion is stable cu: of these limits of a change in the angular

velocity w.
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Dynamics of the fast-turning flight vehicle with the eccentrically
arranged sections, partially filled with liquid.

Y
L. V. Dokuchﬂsv, V. L. Yezdakov.

Is examined motion of body with cylindrical cavity, which has
radial diaphragms and by partially filled liquid. For the compilation
of equations of motion is used the setting by G. S. Narimanov the
task about the nonlinear irrotational motion of liquid in the field of
mass forces. It is assumed that the external forces and
moments/torgues are low in comparison with the centrifugal forces, so
that entire mass cof liquid is forced against lateral surface, and free
surface completes oscillations relative to the cylindrical undisturbed
surface. The analytical solutions of boundary-value problems are
given and are determined hydrodynamic coefficients taking into account
three tones. Are analyzed the necessary stability conditions of the
stationary rotation, which upon consideration of the dissipation of

energy are sufficient.

Develop theorying of nonlinear motion of body with liquid, G. S.
Narimanov in his first works [1, 2] considered two cases of steady
state of liquid object. In one case the body is located in the field

‘ of the mass forces, parallel to vertical axis so that the free surface
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of liquid in the undisturbed state is horizontal. Compiling the ‘
nonlinear equations of the wave oscillations of liquid, taking into
account the members of the third order of smallness, G. S. Narimanov
could explain the phenomenon of the "circular" wave observed in the
experiment, when the inclined plane of the free surface of liquid

begins to complete rotation relative to vertical axis, while the

exciting forces are directed perpendicularly to this axis. In other
case the body is located in the radial field of mass forces, as, for
instance, the liquidfilled gyroscope, whose centrifugal forces
considerably exceed gravitational forces. On the flight vehicle,
which @eccomplishes rotational motion with the engines off, the radial
field of mass forces appears virtually at any velocity of torsion.
Using long wave theory, G. S. Narimanov derives the equations of
rotation of body with a circular thin layer of liquid. Is .
investigated below the stability of rotational motion LA with the
cavities, situated on a certain removal/distance symmetrically
relative to the axis of torsion. On the single-connected volume of

liquid functions the radial field of mass forces.

Page 248.

For the compilation of equations of motion is used setting of G. S.

Narimanov's first task.

1. Let us introduce connected with solid housing system of
coordinates OXYZ, moving relative to inertial space with forward

velacity of V, and angular velocity w. In the undisturbed motion KA .
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. it is twisted with an angular velocity of w, around axis OX, which
coincides with axis 0,Z, of the system of coordinates O,X,Y,Z,
arranged/located so that axis 0,X, lies/rests on the intersection of
two planes of the symmetry of the cavity (see Fig. 1). The free
surface of an incompressible fluid Z completes oscillations relative
to cylindrical szurface Z,. At the initial moment of time the flow of
ideal fluid is assumed to be irrotational, therefore, and subsequently
the flow will be also irrotational, i.e., there is a velocity
potential ¢, which satisfies the equation of Lapiace and the condition

of nonpassage on the mcistened surface of cavity.

l.et_set of functions fiﬁ% 2) be complete on surface Z,. The
coefficients of expansion in the generalized series of Fourier in
these functions of the deflection of free surface from the surface Z,
are designated through B,(f) (they have a dimensionality of length).
Tr- velocity potential and the hydrodynamic coefficients, determined
below, are decomposed/expanded according to the degrees of the low
parameter, such it is the deflection of the free surface of f,
moreover only terms are retained, which in the equations of motion
will give terms not higher than the 1lst order of smallness. It is

assumed that the vector of the apparent acceleration

j==£!14_m><vo-—g (€ — free-fall acceleration), the vector of

dt
angular acceleration w, projection of angular velocity on the
transverse axes w,, w,, generalized coordinates Bi(!) are the values

. of the 1lst order of smallness, and the velocity of torsion w, -

_—-—
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zeroth-order quantity of smallness. Velocity potential ¢ we will seek .

in the following form:

, ~ 5 7 ;
®=Vyr+o (Qo+ E 37 +2‘\_ r’i~’i(')i1'> -+ 2 34
i

Here harmonic functions A;, Qo @i, Qij satisfy boundary-value

problems
AA,=0; "A‘,=o; A —fi (1
! ov |s ov |z,
AQy=0; 9%y =rX¥V, (2)
Ov IS+1,
AQ=0; 22 —0; 2| —_(rxyfp+vUI; O
ov |s ov |3,
- E1o) ETo!
AQ,;=0; ——‘L|=:0; | =
- ov |z, ‘I.
- 90
== [rU Rt Syt (f SR =Ry Sy @
Page 2489.

Operator V indicates two-dimensional gradient over surface Z,.
The numerical methods of solving the first and second boundary-value
problems, which relate to the linear theory of the wave oscillations
of liquid, are presented in work [4]. Let us consider two special
cases, with which it is possible to obtain analytical expressions for

the coefficients of nonlinear equations of motion.

Let cavity take form of circular cylindrical sector (Fig. 1) .

—
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with planes of symmetry 0,X,Z,, 0,X,Y, and aperture angle of sector
2a. External radius of secter R,, internal 8R,, the height/altitude
of cylinder ZERO. Let us introduce cylindrical coordinate system z,
r, n. Then the solution of boundary-value problem {1) can be sought

by the method of separation of the variables

Ai (z) rs ‘n):Msk(r)Hs(T]) Zk(z)a (5)
where . .
1 ImBKL®) = K (3r) I, (B)
M = 7 7 7 T -
o (1) B IR BNK, @) —K @y 1, (3),
ns ., TR _ . — .
m—-—2-a—, 3= % (R, s=0,1..); Hy=cos m(n+a);
Zy=cosB(z+h), h=h R, (6)
Functions Ms— linear combinations of functions of Bessel and

Neumann, which satisfy conditions

M (Dres==1; My (r)p=y=0. (7)

Soluticn of boundary-value problem (2) for projections functions
Qo (!, Q02 Q0%), called Zhukovskiy's potentials, for case of circular
sector are obtained in work [4]. We will consider during the solution
of boundary-value problems (3) and (4) that are excited only the first

three their own forms of the free surface:

f[i=H (), f.=Z,(2); fa=H () Z (2). (8)
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Fig. 1. -
Page " 250.

Substituting in boundary conditions on Z, in boundary-value
problem (3) of expression for Q¢ (j=1, 2, 3) from (4) and expressions

(8) we obtain expansion

02l (v, z)

2 -(rxvf,),+v(f.~v96)=EEKiiH,,Zk G, j=123),
v

s, k=01...

9

where

a K
iy 3 92/ (v, 2) _
KSk—__—_GZb(S)b(i) 5‘ j‘ -——T H,Z,,dndz,

—a —h
()
2 =
1 npu s #£0.
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Hence taking into account boundary conditions (7) we will obtain

o =3 KdMuH,Z,. (10)

s,k=01...

Determination of functions i 1is not compulsory, since into
coefficients of equations of motion of system will enter only boundary
values of these functions on free surface Z,. Moreover in view of the
symmetry of cavity zero are only potentials with the diagonal indices
i=j. We will obtain these boundary conditions, after substituting

into the boundary condition formula (7), (8) and (10)

—591. , 00
.92 (v 2) —— L OXSf) v v~ —+
. ' ov r=3% ov?
2 j
. : n_fi %% [
'T'ftsz _a_v-(vgo) 2 ov3 ( )

Let us compute kinetic energy of body with liquid by analogy with

(3], using obtained resolution of potential &.

. / ’ "‘ 22
{ i J
(12)

Let us give expressions of hydrodynamic coefficients, entering

(12). Static torque L and tensor of inertia J take the form

o L=LLt =04+ 3 (U2, 4750,
{
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Here L° and J° - statistical moment/torque and tensor of inertia

of solid body with undisturbed liquid

160k a2 cos aR332 16p3h2a R}
pha? cos aRyd2 )\32___?___9__; (13)

ne

Li==ihd + A3 Ay=—

b

4@2 — 72

i,, i;— unit vectors of system O XY Z\
Page 251.

/"=9R3S{90,3(%-+(r X ¥),(r ><v)f,-—[(r X V) f—b’—+r><=vf,].90} ds; (14)

Iy
2
3 09y 00, Jio0, |
JH=pRY Hgo_a'v'_*_(rxv)’(_o;_'f‘ 2 ow )
_ J
‘ L 1.9
e Lt e ) (@5 S+ Py
+%—[(rxv(f?)—i—-—vxv(f?)], Qo}dS- (15)

In tensor (13) nonzero and sizable they are only on two
. . 2
components, which correspond to 2nd and 3rd tones: J§1=Jxa and
3 L . 33
J3 =J2. In (14) it is necessary to consider only Ju, IR I

Expressions for coefficient R; (i=1, 2,3) take the form

Rl == iz)‘gl; R2= iyngz + izl%pﬁ» R3= ix)\& + iz)‘§2§2’ (16)
where

151,=PR3S Qb fids; Mo= PR& S' Qo fds;
T, Lo

40 A : ;3 e 133 3. 33
15y == Ry s Q0 fids; h=2RuedhakKq; Na=pRidhaK1y. .
£
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In coefficients WMij nonzero are only ui; (i=1, 2, 3)

g = 2ReAAM o (B); pop=2RopdAaMy (B); paa=RopdahM, ). (17)

Let us take into account dissipation of energy in cavity, after

introducing dispersive function 5(31 S;-F@f”@

2. L2t us consider case of cavity, formed by cylindrical surface
and two planes, perpendicular to rotational axis. From this cavity
with the help of k of radial baffles are formed k of the sectors (see
Fig. 1), with the half-angle a=n/k. Cavities contain identical amount

‘of liquia_in the cavities. Instead of 3k the generalized coordinates,
which describe the motion of liquid in the cavities, let us introduce
9 generalized coordinates, which completely determine the effect of

the mobility of liquid on the motion of the body

1_——_—-2 2 T2=-1— E 8i cos 9;; T3=—l- E‘ 4 sin 8
R k
i
i 1 ol
Si=— 2 i Sy=— E: fcosd; Sy=—- 2:;ésm ¥
———-— E 8% P2=—— 2 5COS 9 Pa———— 2 B sin 9.

After substituting obtained expressions for coefficients into
(12) and using Euler-Lagrange equations, we will obtain equations of

‘ forces and moments/torques, and using equations of Lagrange of 2nd
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order - equation for generalized coordinates.
Page 252.

Equations of forces we use in order to get rid of the apparent
accelerations in the remaining equations, after which we will obtain
system from 12 equations: 3rd momental equations and 9 equations for
the generalized coordinates. This system of 12 equations is
divided/marked off into three independent systems. The first system

consists of the 2nd equations

(5"22 k(;;ﬁ)s —oaJ 518+ (A N33 — \52) 0pP1 —eS1=0,

Py — 0l 5P+ (M3 — M) 0pSi —eP1==0. (18)
_ 3 1

The second system also consists of the 2nd equations
. . .o . ll .
J?1w1+k)~31T1 =0, pyy 141 —o0g/6T —eT1=0. (19)

The third system consists of by the eighth of the equations

Ty (0 — %) wgog +- & (T 500S3 4+ MaP5 — 03Py — 0 laS; -+
+ 00/ 2Py + 15283 + 03/ 1385+ aky (—wTs —T5 +02T,)} = 0
J5503 4 (S = J55) ooy + & [T 00 Sy — WP -+ 3503P 4 Mo, S +-
+ J2500P3 4 32 S5 — S 0583+ dhg (—weTs 4 T — wiT,)| =0,
p T — w87, + i‘-‘i (00T s — T3 - wiT) (w3 - wywy) = 0, (20)

k (12)2

T3 — w3 T3+ (=T, — T3 +“’073)+—"— (— w2+ wgw;) =

@




R
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)LU
\ . 02
L S

ac 9

w3+ APy Ity - 03— S 55068 — gy Py =0,

w

3
2

%%7954'lé

. 2w 22 2 R .

-+ lgswopa —Ji —-29—0)2*/330)053 — AP =0,
. ; . 3 0w 33 2 .

tasP2 — A3 -?3— 42320482 — S —20—0)2 — J3300P — gz S2 =0,

BysPs — M —-2"’— - M0 — S5 <2 0y — S 03P — My S5 =00

Equations of motion (18), (19), (20) are comprised in system of
coordinates OXYZ, connected with center of gravity of undisturbed
system, and hydrodynamic coefficients of (13)...(17) are determined in
connected with cavity system 0,X,Y,Z,, displaced up to distance of &

along axis ox (see Fig. 1).

. Page 255

3. We investigate systems (18), (19), 20) to asymptotic
stability. It is possible to show [5] which for the stability is
sufficient so that the absolute term in each characteristic polynomial
of systems (18), (19), (20) would be more than zero. The first system
is stable, if J33%22>0 and .hg”:>0, which always occurs. The solution
of system (19) is unstable with respect to the cyclic variable w,.

The stability of the trivial solution of system (20) is ensured with

accomplishing of following inequalities:

2 \2 3\2
6 .0 kM (Ayd )2 k(1) R(12) 0:
Jll J33+ QMJ:;;—k(KQ)? + 213 + 2];{;; > ’ (jl
2l)
232 3132
kM (Ayd)? k (/1) k(/3)
./0 —JO ) 0
® n—/at 2MIIL k(1) + 2/%2 + 2% >
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Let us consider another case, which admits analytical solution.
Let the body contain the cylindrical cavities, situated on the spot of
sectors so that the rotational axis of the 1 cavity coincides with
axis 0,X, - by the intersection of the planes of the symmetry of the i
sector cavity, and the rotational axzis of the 1lst cylindrical cavity
coincides, correspondingly, with the intersection of the planes of the
symmetry of the i sector. Functioning by analogy with the previous
case, we will obtain expression for the kinetic energy of liguid. On
the strength of the fact that the cavity is axisymmetric, some
hydrodynamic coefficients, which correspond to sector cavity, will
become zero. The third tone in connection with this is not excited
and is not proven to be effect on the motion of body. 1If we make the
assumption that the cavity is located sufficiently far from the
rotational axis OX, then free surface I, can be considered.flat/plane.
A quantity of hydrodynamic coefficients in this case even more will be
shortened also instead of (21) we will obtain the following stability

condition:

k (12 )2
o kM (hyd)? 13 ,
h—Jst oMIT k()2 + 222 >0
(22)

21\2
RM (Aod)2 k (113)
Sh—J%+ 2 + 3L >0,
MUY — R (k)2 23

Is simple mechanical analog for body, which contains cylindrical
cavities with liquid, this body with simple pendulums attached to it.

The structure of the equations of motion of body with the liquid will

®
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. be the same as the structure of the equations of certain eguivalent

solid body of mass M, with the tensor of inertia J°, to which at the
points, which lie on the rotational axes of cavities, are attached the
pendulums (masses m, lengths !), which are located in the undisturbed
position at a distance of c¢ from the rotational axis OX, moreover:
2
Aot

RZ
m— ; ot

l “22
K2 N2’ Ao

Page 254.

In new designations stability condition (22) is converted into

followiné:

2 k —c)!
-/?1_]'(2)?'.— kmd?!l _ m(r—=¢) ~0;
2M(r—[c +{) F) +kml r—cG
(23)
2 —c)2!
J?l—/ga—- kmd?2l __km(r—c) ~0,
2M(r —[c + 1) F) +kml r—cG
where
/;’21 !lll
F= ———EL——; G=:-2 ; r— distance from OX to bottom.
wp(c + 1) Bo2C

If F and G are equal to one, then complete coincidence of
stability conditions of body with liquid and bodies with pendulums

occurs.

Evidently from (23), as affects disturbed free surface motion of
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liquid stability of stationary rotation of body. An inc.ease in the .
radius of the free surface of ligquid, and also distance d from the
center of mass of system to the plane, in which are located the

cavities, worsens/impairs stability.
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EXPERIMENTAL ANALYSIS OF STABILITY OF ROTATION OF BODIES WITH THE

LIQUID FILLING.

V. T. Desyatov.

Method of experimental study and experimental installation are
described, analysis of results of experimental research is carried
out. It is shown that to the stability of rotation of bodies with the
cylindrical form the cavity mainly affects the volume of the poured
liquid, value of the ratios of the length of cavity to its diameter
and axial moment inertia of body up to the axial moment/torque. The
loss of stability of body sets in with the defined filling of cavity
with liquid and can occur both with the partial and with full-stroke

admission,

In 50's G. S. Narimanov paid considerable attention to research
of dynamics of solid body, whose cavity is partially filled with
liquid [2, 3]. 1Into the circle of its scientific interests entered
also questions of the study of the stability of rotation of bodies
with the liquid filling. On the initiative of G. S. Narimanov and
under his management in these years by the author of article was
carried out the cycle of experimental works on the analysis of
stability of rotation of the bodies with the liquid filling, whose

some results are presented in the data to article.
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1. For imparting to bodies (models) rotation during experimental
research was used string drive, proposed by S. V. Malashenko, who .
permitted implemention of rotation of investigated model around
principal axis of irertia with high angular velncity (to 10200 r/min)

(1].

Study of stability of rotation of models was conducted on

installation, which consists of two parts: worker and recording.

Test section (Fig. 1) consists of electric motor 1, to shaft of which

is fastened thin string 3 with diameter of 0.1-0.3 mm. By lower

end/lead the string is combined with the model 4 being investigated.

For the extinguishing of transverse vibrations of string damper 2 was

used. _Fgr the purpose of the preservation of the incidence/drop in

the model with the break of string on recorder is used detector 7. On .
the shaft of motor is attached the permanent magnet, which revolves in

the induction coil. The ends/leads of the induction coil are

connected to the frequency meter, the number of revolutions of the

shaft of motor is determined in the frequency of the aimed in the

induction current coil.
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Fig. 1. Fig. 2.

Fig. 1. Schematic diagram of experimental installation: 1 - eiectric
motor; 2 - damper; 3 - string; 4 - experimental model; 5 - mirror; 6 -
recorder; 7 - detector.

Fig. 2. Schematic of experimental model: 1 - string; 2 - cylinder; 3
- ring; 4 - nut; 5 - experimental capacity/capacitance; 6 - liquid; 7

- mirror.
Page 256.

2. Models (Fig. 2), which were being used during research,
consisted of several parts, which gave possibility to change moments
of inertia of models, their relation with set of different parts,
sizes/dimensions and form of poured cavity over wide limits. A change

in axial moment inertia of model was achieved by the displacement of
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ring 3 over cylinder 2. A change in the axial moment/torque was
produced by the replacement of this ring. By the replacement of
capacity/capacitance 5 or by setting different in the thickness
packing was achieved a change in the sizes/dimensions of the pcured
cavity. The attachment of string, as a rule, was realized in the ares
of the center of mass of model on nut 4. On the end/face of model was
placed flat/plane mirror with 7 diameter of 8 mm. The construction of
the base of mirror, is such, that there was a possibility of
regulating the angle of the inclination/slope of the plane of mirror
relative to the end/face of model. For conducting the visual
observation of the behavior of liquid capacities/capacitances 5,
prepared from organic glass, were used. A change in the form of the
cavity,qg body was realized by installation into the cylindrical
cavity of the shaped ogival or conical insets. The parameters of
insets were changed over wide limits. The parameters of models with
the cylindrical form of cavity were varied in the limits of the values
of the ratio of the length of cavity to its diameter L/D=0,5...4,0 and
in the limits of the values of the ratios of axial moment inertia to
axial A/C=3...3,5. The measurement of amount of liquid, poured into
the cavity of models, and the metering of the necessary amount of

liquid were realized with the error not more than. 1%.

3. Recording part made it possible to carry out recordings of
oscillations of revolving model, which correspond to deviations of
axis of body from position of stable equilibrium in the range of

a=0...7°. Instrument is carried out according to the diagram, shown

in Fig. 3,




DOC = 89056421 PAGE /w/
iz

AA

l
va
R

Fig. 3. Schematic of recorder: 1 - mirror; 2 - electric motor; 3 -
disk-interrupter; 4 - lens; 5 - diaphragm; 6 - gate/shutter; 7 -

photographic paper; 8 - synchronizing unit; 9 - photograph.

Page 257.

The light beams, emitted by tube and directed by mirror,
consecutively/serially pass through the capacitor/condenser, diaphragm
5 with the opening/aperture 0.06 mm and lens 4. On the path of the
inswept beam of light, which emerges from the objective, flat/plane
mirror 1, fastened/strengthened to the end/face of model, is placed.
The reflected beam of light/world falls on photographic paper 7,
included in the cassette. It is possible to attain by the regulation
of the distances of the optical arms of instrument information of the

beam of light, reflected from the mirror of model, to the photographic
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paper into the point.

Disk 3, rotated by electric motor 2 with a velocity of 60 r/min,
is placed between diaphragm and lens. The leading drum of cassette
revolves by the step-type electric motor, which is synchronized with
disk 3. Disk has five cutouts in the form of the sectors of the
strictly defined sizes/dimensions. This device/equipment was the
peculiar camera shutter, which makes it possible to obtain the light
dotted line of specific sizes/dimensions of 9 on the photographic
paper through the equal time intervals. Thus, knowing the number of
revolutions of disk, the sizes/dimensions-of cutouts, measuring the
length of dotted line and the diameter of the broken circle, obtained
on theué%otographic paper, it is possible to compute angular velocity
align the precessions of model and the rate of the increase of

amplitude oscillation.

Work on installation was conducted as follows. The model,
suspended/hung to the shaft of motor, gradually was
nccelerated/dispersed to the velocity, at which were conducted the
experiments. Oscillations of model appeared in this case were damped.
On reaching/achievement of given speed the damping ceased. 1If in this
case the axis of model remained in the vertical position, then light
beam was projected on the fixed shield into the image of focus. Least
deviation of the axis of model from the vertical position led to the

bias/displacement of "light spot".
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Oscillations of model relative to center of mass it led to
description with "light spot" of trace on photographic paper in the
form of circle of specific diameter. While conducting of
photographing the moticn of "light spot" were switched on the motors,
which revolved disk and leading drum of cassette. The synchronization
of these motors was realized in such a way that the image of the
motion of "light spot" was obtained with the necessary delay through

the equal time intervals.

Experiments showed that negative effect of liquid on stability of
rotation of models is exhibited in the form of noticeable oscillations
of body relative to center of mass, identified by us with rapid gyro
precession. The loss of stability of model is characterized by a
gradﬁal increase in the amplitude of these oscillations. For small
angles of oscillations their amplitude with the loss of stability of
rotation calculation according to the law, which is expressed by the
known exponential function of time s==se*®!. In the conducted research
the dimensionless parameter "k" was considered the measure of the
intensity of the loss of stability of model. The velocity of the
rapid precession of model was determined by the results of the
photorecording, obtained on the instrument with the relative error not

more than 3...5%.
Page 258.

4. Preliminary research was conducted on models with cavities of

cylindrical fcrm, whose characteristics were represented in Table 1.
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Water was working fluid. Models were suspended to the string in the

area of the center of mass. .

Model No 1, whose cavity is completely filled with liquid, during
rotation proved to be such unstable which with great difficulty was
possible to untwist it to 4000 r/min. After the
cessation/discontinuation of damping the model almost instantly lost
the stability of rotation. With the decrease of a quantity of poured
liguicd the intensity of loss of stability was reduced alsc with the
filling of cavity to 60% rotation of model it became stable. The same
model without the ligquid filling revolved stably in the wide interval
of number of revolutions (n>2000 r/min) even under the influence on

it sufficient strong external moments/torques.

Models No 2 and 3 in this series of experiments untwisted to
velocities, which correspond to n=5000 r/min. In this case model No 2
lost the stability of rotation with the filling§ of the corresponding
to range of charge/weight ratios B=V/V,=0,31...0,33. By
charge/weight ratio is understood the ratio of the volume of the
poured liquid to entire volume of cavity. The greatest intensity of
loss of stability was observed with B=0.32, a change in the filling in
all to 1% led to sharp reduction in the intensity of the phenomenon of
instability. And without it the model revolved stably with all other
fillings. Model No 3 lost the stability of rotation already in other
range of charge/weight ratios B=0,57...0,62. The character of the

stability of model No 3 is analogous to the character of the loss of
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. stability of models No 1 and 2.

5. For purpose of determination of effect parameter of string

and places of its attachment to model were carried out research on the

same models, but with change in characteristics of string (material,
length and diameter of its cross section), place of its attachment
(value of inverted and righting moments) and value of angular

velocity.,

Results of research showed that investigated factors do not
change very fact of loss of stability and do not displace center of
range of charge/weight ratios, with which occurs loss of stability.

The factors indicated can have an effect on the intensity of loss of

. stability and on the width range B.
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Table 1. .
L4/ (s/
() (l)ﬂnuua LZ)J_'J.uamerp Socf,i?ﬁ 3KBaTOPHAALH KA (‘)Macca
Ne moneau noaoctH L7, noaocti D, HHePUHH MOMEHT HHEpUMH MOLeH, T
MM MM C-10-4 Kxr-m? A-10-4 xr-M?
1 30 30 0,95 11,1 290
2 60 30 1,0 15 320
3 70,5 30 11 23 370

Key: (1). No of model. (2). Length of cavity L", mm. (3).
Diameter of cavity D, mm. (4). Axial moment of inertia C-10°* kg-em’.

(5). Axial moment inertia A-10"* kg-m?. (6). Mass of model, g.
Page 259.

For example, an increase in the number of revolutions of model from
n=3000 to #=10000 r/min leads to an increase in the intensity of
the process of loss of stability. In the process of these experiments
the views of accuracy and convenience in conducting the experiment of
the value of the investigated parameters most acceptable from the
point were selected, The diameter of the cross section of steel
string must be not more than 0.25 mm, distance from the attachment
point of string to the model to the latter/last limiter is not less
than 250 mm, the attachment point of string with the model should be
placed in the area of the center of mass of model, the number of

revolutions of model must be not less than 2500-3000.

Thus, liquid filling exerts a substantial influence on stability
of rotation cf bodies. Loss of stability can occur both with

full-stroke admission and with the partial. 1In this case the width of .




¢

~ne range of charge/weight ratios, in limits of which occurs the loss
of stability, and the coordinate of its center B, depend mainlvy on

=ne characteristics of the revolving body, its cavity and liguid.

6. Further systematic studies of effect of sizes/dimensions of

(@]

avity and moments of inertia of body on arrangement of centers of
unstable regions B, and width of these regions made it possible :o
establish appropriate graphic dependences, represented in Fig. $.
Juring the experiments all models untwisted to the angular velocities
n=5000 r/min. The diameter of the cavities of models was egual tc 3C
xm. Water served as working fluid. Processing the results of

experiments was conducted in the criterial form.
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Fig. 4. -Dependence of charge/weight ratios of cylindrical cavity with
liquid, which correspond to instability, on relation of moments of .

inertia of body and relation of significant dimensions of cavity.
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It follows from examination of obtained dependences that with
increase in value of ratio of length of cavity to its diameter L/D in
two groups of change in values [/D=0,1...),2 and L/D=13...33 in
constant/invariabie ratio of axial moment inertia of body to axial A/C
center of unstable region is moved in direction of high values up to
1.0, 1.e., full-stroke admission. In this case the width of unstable
regions Bu also grows with an increase of value of L/D within the
limits of each group L/D. With an increase in value of A/C and

L/D=-const the center of unstable regions is displaced in the

direction of the Jaraer values, in this case the width of the range of .

_ y
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instability also is reduced. The intensity of the phenomenon o!

instability, which corresponds to the center of the coefficient domain
of f£illing, in which is observed the instability with an increase in
value of L/D, grows and is reduced with an increase in value A/C,
i.e., "follows" a change in the width of unstable region. The
intensity of the phenomenon of instability, which corresponds to the
first group of values L/D, several times more than for the second

group of value L/D,.

Results of experimental studies of arrangement of centers of
coefficient domains of filling, with which occurs loss of stability of
rotation of bodies, depending on change in values of L/D and A/C ran

be approximated for low filling (B<0.5) with following dependence

e |4 1-4]

where a - coefticient, for first group L/D a=0,81; for second group
L/D a=0,27.

-

For purpose of study of viscosity effect of liquid on stability
of rotation of bodies with liquid filling were used different liquids,
whose characteristics were given in Table 2. The results cf research
showed that with numbers Re<105 Re=wD?/2v>10° (o — the angular
velocity of body) the intensity of the phenomenon of instability is
weakened/attenuated with decrease of Re, and the center of unstable

region somewhat is displaced in the direction of the high values B.
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This bias/displacement can be approximated by following e

dependence:
AB“ == 30/Re0'6¢

The viscosity effect of liquid with numbers Re>10° on the stability of

rotation of bodies with the liquid filling is not discovered.

Table 2.
W KHHeMa‘-"
THUYECKH
€
Ll)l‘{ai:meﬂoaamde K?&%’g’;‘ l;lgéJTTt;
Ruaxocrd BA3KOCTH  |p-10° r/m?
- v-}}()—-e
Me/C
4) .
Boaa 1,0 1,0
(s)
PactBop raxuepuna e 2,7 1,1
BOAE 12,3 1,15
34 1,18
(6]
Benaun 0,76 0,75

Key: (1). Designation of liquid. (2). Kinematic modulus of
viscosity »+10°¢ m?/s. (3). Density p-10° kg/m*. (4). Water. (5).

Solution/opening of glycerin in water. (6). Gasoline.
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