"TIC FILE COWD L

NPS52-89-040

NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A214 181

PLANNING MINIMUM-ENERGY PATHS
IN AN OFF-ROAD ENVIRONMENT
WITH ANISOTROPIC TRAVERSAL COSTS

AND MOTION CONSTRAINTS
by
Ron S. Ross
June 1989 i
Dissertation Supervisor. Robert B. McGhee

Approved for public release; distribution is unlimited.

Prepared for:
Naval Postgraduate School
Monterey, CA, 93943-5000

89 11 06 160

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. C. Austin Harrison Schull

Superintendent Provost
This thesis is prepared in conjunction with research sponsored in part by contract from the

United States Army TEXCOM Experimentation Center (USATEC) under MIPR ATEC 88-86.

Reproduction of all or part of this report is authorized.

This thesis is issued as a technical report with the concurrence of:

(L L3 et

ROBERT B. MCGHEE
Professor and Chairman
of Computer Science

Reviewed by: Released by:

Lo b s M dIN
ROBERT B. MCGHEE KNEALE T.T\Rﬂs@%
Professor and Chairman Dean of Information an

Department of Computer Science Policy Sciences

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION b RESTRICTIVE MARKINGS
Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION / AVAILABILITY OF REPORT
Approved for public release;
2b. DECLASSIFICATION DOWNGRADING SCHEDULE ’
Distribution is unlimited
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
NPS52-89-040
6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
if applicable
Naval Postgraduate School Co:le ;p;_) U.S. Army TEXCOM Experimentation Center
6¢. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Monterey, CA 93943-5000 Fort Ord, CA 93941
8a. NAME OF FUNDING / SPONSORING 8b OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANizaTiION U. S. Army (If applicable)
TEXCOM Experimentation Center MIPR ATEC 88-86
8¢. ADDRESS (City, State, and 2IP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
Fort Ord, CA 93941 ELEMENT NO. | nO. NO ACCESSION NO

11 FiTLE (Include Security Classification)
PLANNING MINIMUM-ENERGY PATHS IN AN OFF-ROAD ENVIRONMENT WITH ANISOTROPIC TRAVERSAL COSTS
AND MOTION CONSTRAINTS

12. PERSONAL AUTHOR(S)
Ross, Ron S.

13a TYPE OF REPORY “3p TIME COVERED 14 DATE OF REPORT (Year, Month, Day) |15 PAGE COUNT
Ph.D. Dissertation FROM 10 1989 June 278

16 SUPPLEMENTARY NCTATION
The views expressed in this dissertation are those of the author and do not reflect the

official policy or position of the Department of Defense or the U.S. Government.

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROU® SUB-GROUP Path planning, Obstacle avoidance, Search, Mobile robots,

' Knowledge representation, Spatial reasoning, Route planning

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

For a vehicle operating across arbitrarily-contoured terrain, finding the most fuel-efficient route between two points can be viewed
as a high-level global path-planning problem with traversal costs and stability dependent on the direction of travel (anisotropic). The
problem assumes a two-dimensional polygonal map of homogeneous cost regions for terrain representation constructed from eleva-
tion information. The anisotropic energy cost of vehicle motion has a non-braking component dependent on horizontal distance, a
braking component dependent on vertical distance, and a constant path-independent component. The behavior of minimum-energy
paths is then proved w be restricted to a small, but optimal set of traversal types. An optimal-path-planning algorithm, using a
heuristic search technique, reduces the infinite number of paths between the start and goal points to a finite number by generating
sequences of "goal-feasible”™ window lists from analyzing the polygonal map and applying pruning criteria. The pruning criteria
consist of visibility analysis. heading analysis, and region-boundary constraints. Each goal-feasible window list specifies an associ-
ated convex optimization problem, and the best of all locally-optimal paths through the goal-feasible window lists is the globally-
optimal path. These ideas have been implemented in a computer program, thh results showmg considerably better performance
than the exponential average-case behavior predicted.

20 DSTRB.TON AVAILAB [!TY OF ABSTRAC™ 2 ABSTRACT SECURITY CLASSIFICATION
XX ncoassiEd onov Ted [0 sav: aS ReT [Jomic users | Unclassified
228 NANE OF RESPONS BLE INDIV DAL 22b TELEPHONE (Include Area Code) | c2¢ OFFICE SYNMRBC
Robert B. McGhee (408 646-2449 Code 52M:
DD FORM 1473'5(, (VR 85 LPh ec 1 o may be usec unti exhaustec SECUR ™Y CLASS E'CATION OF "w § PAGE

A' otre’r eg tions are obsolete 0 U.S Government Printn; C'tiie 1906 —608. 247

i o -

Approved for public release, distribution unlimited
PLANNING MINIMUM-ENERGY PATHS IN AN OFF-ROAD ENVIRONMENT
WITH ANISOTROPIC TRAVERSAL COSTS AND MOTION CONSTRAINTS
by
Ron S. Ross
Major, United States Army
B.S., United States Military Academy, 1973
M.S., Naval Postgraduate School, 1982

Submitted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL

June 1989
Q
Author: @ﬂl S
Ron S. Ross
Approved by: e ‘/\L‘ \g:\’ f &_
A L] — A
C. Thomas Wu Harold M. Fredricksen
Assoaate Professor of j"ﬂnputer Science Professor of Mathematics
. R
i [el D e C. T pmt
A
Edward B. Rockower Neil C. Rowe
Associate Professor of Operations Reggarch stocxate Professor of Computer Science
M % ! L»t ,-\A d/ "~ oy
MichaeN_Zyda Roben B. McGhee
Associate Professor of Computer Sciencc Professor of Computcr Science
o . ., Dissertation Supervisor
" Q““* b o \" }Ll

Approved by:

<

Robert B. McGhee, Chai

Approved by: X\~ . M

ABSTRACT

_ For a vehicle operating across arbitrarily-contoured terrain, finding the most fuel-efficient route
'between two points can be viewed as a high-level global path-planning problem with traversal costs and
stability dependent on the direction of travel (anisotropic). The problem assumes a two-dimensional
polygonal map of homogeneous cost regions for temain representation constructed from elevation
informadon. The anisotropic energy cost of vehicle motion has a non-braking component dependent on
horizontal distance, a braking component dependent on vertical distance, and a constant path-independent
component. The behavior of minimum-energy paths is then proved to be restricted to a small, but optimal
set of traversal types. An optimal-path-planning algorithm, using a heuristic search technique, reduces the
infinite number of paths between the start and goal points to a finite number by generating sequences of
"goal-feasible” window lists from analyzing the polygonal map and applying pruning criteria. The pruning
criteria consist of visibility analysis, heading analysis, and region-boundary constraints. Each goal-feasible
window list specifies an associated convex optimization problem, and the best of all locally-optimal paths
through the goal-feasible window lists is the globally-optimal path. These ideas have been implemented in

a computer program, with results showing considerably better performance than the exponential average-

case behavior predicted.
Accession For
TNTIS CGRA&I eg ‘
DTIC TA3 7

Unannourzad o
Justificotion e

By
Distribut ipn/_“
—_Availability Codes
Avail and/or
Dist Special

i |
‘\%i’__ J

1.

Iv.

TABLE OF CONTENTS

INTRODUCTIONcocosivimmrvnarencenrersmsmessssastsisssnasssssssssssssesssssesssssstasssassssssssssasesssssssososssnss
A. GENERAL BACKGROUNDccccocvusinrmmencccsnesisirmmrsssssssassssssssssssassssssssersansassessssrssnes
B. ORGANIZATION
SURVEY OF LITERATUREcoooreriscssnsensenssssssssntsrssesesssssessronsesssssessssssssarssessssssssssasns
A. TERRAIN REPRESENTATION .. .
1. Low-Level Terrain REPresentationscocovveeeievevrcerseresesssssssessessesssssssssesesssssans

2. Alwemative Terrain Representations
B. MOBILITY MODELScccoonietsiriseciseecncnsssssneseisessssnssesesessssssnssssssesssssesssessssssnsesnsoss
L. SIOPE MOELSoceerecreereresinericaeseerennstereetess st srnssesirsesssesassessosessassorsssosasesssresnens
2. INtegrated MOMEIScuccecconniririeenmnncsesssssesesessssnsssssesssrsssssssssnensassessssssassssssans
C. SPATIAL REASONING METHODScouniinmmmrreierercmrerescansssssssrsssssassssssssasassssssesns
1. Obstacle-avoidance ProbIEMScoccvvrvnmiieierseeinineesssssssssnsssssesssesssssssssssssssnssns
2. Discrete Geodesic PrODIEMScccoovuiirereecninieisusesnisssseassnsssssssessasassassssnsssnssesens
3. Weighted-region PrODIEMSccocevmnirenenmniiesssesmirnneesessssersesstssssensassesesesesesssesens
4. Some Approaches 1o the Optimal-path-planning Problemccceeereveervernrurennne.
D, SUMMARY o cccrrttissess st et s seosesesassesssnssens s st asasenssesessnesssssssosssatarsrarassses
MATHEMATICAL MODEL OF VEHICLE-TERRAIN INTERACTIONcccocovvnrirnrnnnnn.
A. INTRODUCTIONooirieeciiririreseeeeneneeesescncnssrsssssssasssssessssessatssssssssssssssssssesssssssesosssnees
B. SIMPLE PLANE MOTIONcoocreiinrenrininsnensnennsensssssssssassssssssssssersssassssessessossses
1. Forces and EQUAtions Of MOLIOM «....ccorveverivenirinnisiiiesnresisensecesssnsesseseasesenssnssesesennns
2. WOIK AN ENEIZY ..ccc.. oci ceereveererereneiecneseresesss e seses e sts s ssasssnans sassssssssssnasessase s
3. MOUON RESISLANCEccecnarnuemarerssesesemirisssssssstssesassrssesssossssessssesasasssssesasasossassenas
A, RESISUVE FOTCES ..ottt seere o snseressssessesessesessssssssnsenssassesssasns
b, Energy EffiCIENCYooociiiiiintincccrecnnncen s seenesnssessesesresssesanssessasessens
€. Vehicle BraKingc..ccciieniiiieicrinrnennesrisnisecsescsscesssssnssassosessssssnnssans
4. ENETEY COSL cuiorriiiereccrieiinrerase st sseesssesssesssenssessssassssasesnas sessesesessnssnsnsntasasassaseseneoes
8. LoCal ENEIZY COSLcvcviceereereririnirerieeinnseerees et et steresesnssesssrssssesessosseseene s
b, Global ENergy COSlc.ccceeeeverenreriesinnisesesiessesesssesessenssssssssssnstesasssesnssensons
C. MOTION IN THREE DIMENSIONScoororrrrrrinenrnnnsnssnresssssense e esessssetossesessassenes
1. Restricted Three-dimensional MOUONc.eevveirieriincneireseresessssenssesssssssnssesssnenes
2. Unrestricted Three-dimensional MOUONcveciereenriiieire s eesessse e evevesenenes
D. VEHICLE FAILURE MODESccosetmvnntneeninesrstasisnsssssstesssesssssasssssssasasssesssssasens
1. Motion Constraints for Maximum SIOPEccovivvnernienecrenenimencnecsse e sesses
2. Motion Constraints for Sabililycceeeeveverreresrieiereenreneitsenres e et sni e eeerens
E. SYMBOLIC TERRAINcoiiimiivnrrerenneeineeucmrne s saresasasessssesesasesessessussnasssssssssssesesassssnss
1. Taxonomy of Symbolic Terrain SUrfacesccoevevemrcrmnincnneiinenrcsirerreesc s
2. ANISOUOPIC ODSIACIEScvevriirereereeerecanraesessssassese s et seressessssssss s st st sesssesesssenes
3. Homogeneous Mobility REZIONScceuvieereeimeremmreeeriincesieinssssssesssssssssasscsecass
F. SUMMARY ettt sttt ee b e sttt se et oo
OPTIMAL-PATH-PLANNING ALGORITHMoiiiiinre ettt see e senee e
A, INTRODUCTIONocociitrieriieeneeseserseseasessansar e e se s esbesseesscnsan s s smssessesesssesesesnenens
B. PROBLEM REPRESENTATION ... et s
1. Windows and REGIONS ...t e

00O N NN B -

O

12
13
13
15
15
17
21
22
22
23
23
25
29
29
32
35
40
40
42
47
47
59
62
62
63
71
72
76
77
79
81
81
R1
81

2. Geometric ViSibility ANAIYSIScccoeeccrrmrorrmreesmesnsnsnresrerssencssesssesssssssesssesssssenns
3. Vehicle Heading ANAlYSIScocrvusisercrcrecacsesessacnsaresesssrenssssssssssessasssssssssassssasens
C. PROPERTIES OF OPTIMAL PATHS ...t cresesesssssssesnsanssssssssssssssnsssmsons
1. Tum Criteriaccccoerivererrnnscrsencsensessissssessannns erereeesesenensereaessatssaseattanarstans
2. Traversal Types Feeesethstesb b st s e et s ssbsbstsrasa s in
D. REGION-BOUNDARY CONSTRAINTS
1. I-IRB Constraints
2. I-IIRB CONSUAINLSccorerrreressesmresnsomnerscsomnsarnse
3. I-IV RB Constraints
4, TI-TIRB CONSIMAINLScoeeeeecrorcrmseresnrermressnsaneseaesesesssessssasnesesensassesasssssasssssasases
5. II-IV RB Constraints eeresereseeteressre e et n e srans b e et antrateseasarat e ataeeseastassesaant
6. IV-IV RB Constraints . eeerressesanrssensaneress
7. RB Constraints for Vertex Wmdows
E. CONTROL STRATEGYocuuoeveiecreereeressesssesssesssnssessrsssesssssssansasssensnssessosssensssssssssassans
1. INUAlIZAUONooceeereeieriecesrere st seesesesteseesassassserasensanesessssnnssresesaassnassnsssassssassanesns
2. Generation of Feasible Window LiSIScccc.cocvieimerimiceereresneresesieeresesseseseessnenees
3. Decomposition of Feasible Window LiStSc...ccceervrerierrererrecarsaressarsssessosersseseeas
4. Generation of Optimal Pathsccocereiivniiinniinniniiienrsreesssesnssesrensssssnsosssssens
F. SUMMARY ...ttt sesresestses s sssssessasesessosasesssssnssssssrass seseseassesaesassssassssass
V. DEMONSTRATIONoooiiiieiierieresensesresessessstesestasassssessssssssessassssestesessesessansasaseesensossnsnsensns
A. INTRODUCTIONcoooiiccirvienisteeseessseesessessstssessesessmsssssssssessssessassssssssassssssssssessssssassssssses
B. IMPLEMENTATIONoooviviviereniiesrmsessemssesssssssesssnessarssssassessesssssssensasssessensssssassssssasans
1 Constructing the Terrain Mapcccviiiniiiininiiiie e stsr s ssssssnons
2. Constructing the Vehicle CONCEPLc.ccervverrinreneseeseimrenensresaressssssesserssosesensesssesnas
3. Spatial Reasoning FUNCUOMScccccourvmimmeeriiereseorssssssenirnesasssrssssssssassosssescesmsenens
4 SEATCH FUNCHONS ...t ceerenisereresrenesnescsssessnssassesnessarssssssssssrsnssnsssessassenees
5. Command-and-Control FUNCUONSc.cccevirurrmrserrerrrmersessensrsaessesssssessesassseesnessesnes
C. TEST DATABASES ..o eesrtetre e se e st sesrnrs s ssasesssssasssatrss srasssssnsssanesasssessses
D, RESULTS ettt ere e st esesnesenesesssesrssessasssesssasnssesasesesbonasass stessusns aissonis
E. SUMMARY ettt terecne sttt e b b sh e b ese st s s s en st enee ea s snenene s
VI. SUMMARY AND CONCLUSIONSccoitnireemnrecesnensseeniesesessasesssorserssssssassesessssosssansssssasens
A. RESEARCH CONTRIBUTIONS ..ottt eretete evsstenavesesae s s et sessesessasnssens
B. RESEARCH EXTENSIONScoovierertrereriennnriinraseinssssnsssstssssesesssssssssssassessesssesnsnenss
LISTOF REFERENCES ... oneeseneseresee e e seenssresesnessssessessasenansenansestens sessesroasens
APPENDIX A - LISP SOURCE CODE FOR PROGRAMcccvrivimnnnnnneeeorenensesessssssssssmsessone
APPENDIX B - SYNTHETIC TERRAIN STRUCTURES ..ottt seeeeeenene
APPENDIX C - VEHICLE STRUCTURESccooecnrrinieenteinriiernsaenisnssessessseesessessssassassssnerasessenas
INITIAL DISTRIBUTION LIST ..o iveierereesressreseeeeeseisasestessneseseassssessssosessassassnsssssssesssinnses

Table 4.1
Table 4.2

LIST OF TABLES

OPTIMAL PATH BEHAVIOR ...

REGION-BOUNDARY CONSTRAINTS

vi

..

..

Figure 1.1
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11
Figure 3.12
Figure 3.13
Figure 3.14
Figure 3.15
Figure 3.16
Figure 3.17
Figure 3.18
Figure 4.1
Figurc 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figurc 4.8
Figurc 4.9
Figure 4.10
Figure 4.11
Figure 4.12
Figurc 4.13
Figure 4.14
Figure 4.15
Figure 4.16
Figure 5.1
Figurc 5.2
Figure 5.3
Figurc 5.4
Figure 5.5
Figure 5.6
Figurc 5.7

LIST OF FIGURES

Path-possibility Pruningcecceeeeene

Free-body Diagramcomnnnnsniinnssssnccn:

Single Path Segment and Projection

..................................

...

Components of Energy Costcccevnsevunsacserernenes

...

Multiple Path Segments

Restricted Cylindrical Terrainccocevvuisnmincnrensennns

.................................

...

Path Segment Classification

Heading Inclination Angleccccosuieincnrserivcsesensanens

...

Cosine Effect on Non-gradient Paths

Unrestricted Three-dimensional Temrain
Two-dimensional Stability Modelooecvvvinniinnns
Three-dimensional Stability Modelccevncucaeee
Critical Stability Headingsc.covinerinininiccscnccnee.
Critical Braking Headingsc.coeeevivinvcinnnnecnnanas
Critical Braking and Stability Headingsc...c..
Terrain Classification Hierarchycccoevcvivnivennenee

Two-dimensional Representation of Region Classes

AniSOtropic ObSIACIEScoveueveerrrerririniiesicsssennenes
Homogeneous Mobility Regionscccccenievianncnen,
Search Windows and Search Regioftscccoeunee...
Optimal Path SEZMENLSccoccmvecunrerirceneensnisnsnsassions
Single-turn Path Behaviorccoovvieinnnniccnecnnen
Non-braking Switchbacksccececcrvninninnrinnnenen
Multiple-turn Path Behaviorcoovivvieicnncrionnne
Path Heading Spacecccccecnrvrininiincinniisinnens
Type I-1 Region-boundary Constraintceeuuee

Path Tums Involving Type-I and Type-1I Traversals

Type I-11 Region-boundary Constraintcceeuenenee
Path Behavior for Braking Episodescooceunnnce.
Type I1-11 Region-boundary Constraintc.ce...
Type IV-1V Region-boundary Constraint
Goal-feasible Window Listccocoevviviinneinnercnen.
Optimal-path-planning Algorithmcccceermecncneeee
Feasible Window List Subproblemscccccconeueeeee.
Optimization COMAOrccvvveriireeeneenereesereeens
LISP Structures for Map Represenuation

LISP Structure for the Vehicle Conceptcceevveennnnne.

Computer Simulation: Path 1cccconniervnnvcnrecenes
Computer Simulation: Path 2ocoevvvevenivinienninnnns
Computer Simulation: Path 3 ..o,

Computer Simulation: Path4cccoooveveivnnnnnene.
Computer Simulation: Path 5ccoeviiiirici e

vii

..

...

...

...

...

...

...

...

...

103
105
108
109
112
112
116
117
118
119
120

ACKNOWLEDGEMENTS

1 would like to express my sincere appreciation and thanks to the many persons who helped make
this dissertation possible. I am especially grateful to my advisor, Professor Robert B. McGhee for his
constant motivation, support, and encouragement throughout the work and to Professor Neil C. Rowe for
his valuable insights on path-planning issues. I would also like to thank all of the members of my PhD.

committee for their careful review of the manuscript and helpful comments.

And finally, to my wife Conni and our two children Kip and Katie, a special note of thanks for all of
your love, understanding and support. You made it all worthwhile.

viii

I. INTRODUCTION

A. GENERAL BACKGROUND

Recent technological advances in robotics and robotic vehicles have generated renewed interest
within the anificial intelligence and operations research communities in developing new solutions 10
traditional path-planning and obstacle-avoidance problems. Operating a mobile robot, in an off-road
environment across arbitrarily-contoured terrain presents a path-planning problem that is inherently
difficult 1o solve. The degree of difficulty is dependent on the quantity and quality of kmowledge available
to the problem solver. In the context of the terrain navigation problem, it is assumed here that a mobile
robot has access to a database of a priori knowledge about the environment in the form of a terrain map.

The path-planning problem considered in this dissertation only considers high-level, global planning tasks.

The navigational tasks that must be accomplished by a mobile robot are clarified by examining the
human analog. Cartographic maps allow human oeings to (1) establish a current position on the map and
(2) plan and execute routes hetween two locations. The specific skills required to accomplish these tasks
derive from the complex process of spatial reasoning, that is, reasoning about the physical properties of
objects on the map, including shape, position, and motion [Ref. 1]. Spatial reasoning for paths means not
violating any physical constraints, avoiding obstacles, and bypassing areas that present a clear stability

danger to the vehicle

Finding the "best” path implics an optimization of the cost of movement along the path according o a
specified criterion. The cost can include distance, time, or any other relevant factor. In this dissertation,
the traversa) cost for a mobile robot is expressed in terms of energy. Energy expenditure is direcUy related

to fuel consumpticn, and minimum-energy paths are the most fuel-efficient, not necessarily the shortest.

Optimal-path-planning techniques employ the problem-solving paradigm of search using a set of
abstract descriptions of possible actions [Ref. 2]. There arc three subproblems. First, there must be an
appropriate mathematical mod™" to describe the physical relationship between the mobile robot and the
natural terrain. Second. there must be appropnate techniques to extract and represent important terrain
properties such as geomctric configuration and surface ¢ wsition. Finally, there must be an efficient

path-plannir.g algorithm or scarch strategy to gencrate the opumal path.

As for the robot-to-terrain mathematical model, most research assumes isotropic terrain and motion
costs independent of the direction of travel. This is not adequate for energy-based path-planning problems
since the motion costs for a vehicle on sloped terrain are related to its heading (azimuth) or are anisotropic.
This can be observed by aoting the change in the inclination angle of the vehicle as it assumes a range of
possible headings from the steepest (gradient) to a level curve (contour). The differences in the inclination
angle directly affect energy costs. Furthermore, certain headings can be inherently unsafe from the
standpoint of vehicle stability, something that must be considered in finding a path. Although terrain cost
data is approximate, the averaging of anisotropic effects into an isotropic model is undesirable since it
cannot account for the "heading-specific” differences in energy costs as well as the ranges of headings that

are impermissible for reasons of stability.

This dissertation does not contribute to the problem of terrain representation, but it is assumed the
terrain surface can be modeled as an irregular polyhedron. In general, polyhedral models are more difficult
to obtain than grid-based models. A polyhedral model is a collection of interconnected convex planar faces
representing the aggregation of grov.ps of contiguous, gridded data points that have the property of consiant
gradient within some designated threshold. It can be advantageous to use a polyhedral representation since
it facilitates reasoning aboui "terrain regions” instead of individual "points” on the map. This type of
representation is more efficient with respect 1o storage space and can be a more effective structure to search
if the number of regions does not become large. Path traversals are not restricted to the nearest neighboring

grid points and therefore, the error introduced through digitization bias is eliminated.

A two-dimensional representation can be derived from the polyhedral model by projecting each
polygonal face onto the cartographic map plane giving a polygonal mesh or irregular tessellation of the
two-dimensional map planc [Ref. 3]. Each polygon within the mesh can be further subdivided into regions
of homogeneous characteristics, such as uniform soil type and vegetation. Such reduction of three-
dimensional terrain information to a two-dimensional map plane is described by Gaw and Meystel (Ref. 4]
as a two-and-one-half-dimensional terrain representation. Although polygonal models seem 1o have
unnatural discontinuities at boundarics and hence, can be accused of being a poor representation of the real
world, this concern is primarily an artifact of the process that constructs the polygonal regions. Higher-
resolution gridded data sets to produce polyhedrons more closely resembling the natural terrain can always

be produced.

The path-planning model described in this dissertation exploits the fact that there are only certain
ways an optimal path can cross the polygonal mesh boundaries. Thus, an infinity of possibie paths between
the start and goal points can be reduced to a finite, but provably optimal, set of path possibilities. This is
accomplished by defining a set of "equivalence classes” or sequences of vertices and edges through which
an optimal path must pass enroute from the start to the goal. Path-possibility "pruning” can occur as a result
of simple geometric visibility analysis as illustrated in Figure 1.1 or as a result of certain stability
constraints that, if violated, would cause the vehicle to overturn. Having reduced the problem to a finite set
of possibilities, a heuristic search algorithm (modified A*) can efficiently evaluate the altematives to find
the minimum-energy path. The search is heuristic in that information "prunes” or eliminates unproductive
paths as early as possible in the planning process [Ref. 5]. The optimal path consists of a set of piecewise-
linear segments across the two-dimensional polygonal mesh.

An alternative search technique known as wavefront propagation, applies omnidirectional, uniform-
cost search (the dynamic programming paradigm) 1o a uniform grid of data points to find optimal paths.
This approach is described in detail by Richbourg [Ref. 6]. In cenain situations the wavefront-propagation

method is clearly inferior to a heuristic method of search using symbolic terrain. The wavefront-

Goal Goal
a) 9N
“4 \\\ “4 "l
A\ ‘ ;
3 AT
1]
]]
]
“’ , Ev .
2 i 2 .
Wl . ~.“r-~.l
Start Start

Figure 1.1 Path-possibility Pruning

propagation technique is less desirable when accuracy of the final solution is of prime importance; the
information content of the terrain is compromised by the imposition of a uniform grid at an arbitrary
resolution, resulting in an inherent error due to digitization bias [Ref. 7. If the number of regions (and
therefore potential boundary crossings) does not become large, the heuristic search across symbolic terrain
can offer a more time-efficient path-planning alternative [Ref. 6]. This assumes that the exponential
worst-case behavior can be improved significantly by the use of various "pruning criteria” that effectively
reduce the search space. The symbolic representation can also prove to be the most space-efficient,
especially for large map areas with gradual changes in terrain.}

In addition to the wavefront propagation method, the calculus of variations offers a fully general
approach to path-planning problems (Ref. 9,10]. However, this technique is not appropriate for the
minimum-energy path-planning problem because of the discontinuities in the path space caused by the
polyhedral boundaries. Also, to avoid convergence to a local minimum, the calculus-of-variations approach
requires a reasonable approximation to the actual optimal path as an input variable. This is impractical
inasmuch as the computational cost of a "good” initial approximation to the true optimal path may

approach the cost of solving the path-planning problem.

A final aspect of the path-planning problem that must be considered is error. There are two potential
sources. The original gridded data sct can contain a significant error factor depending on the procedures
used for collecting. interpreting, and assembling the terrain information. This source of error is not
considered in this dissertation; it is assumed that the polyhedral model is constructed from "perfect data”.
Another source of error results from the actual construction of the irregular polyhedron from the uniform
gridded data. The error in each planar face can occur in both slope and orientation and is considered a

second order effect on the final optimal path solution.

B. ORGANIZATION

Chapter II presents a comprchensive survey of the previous research conducted in the three principal
arcas relevant to this dissertation: vehicle mobility models, terrain representation, and path-planning
techniques. Chapter Il inroduces the mathematical model of the interaction between vehicular systems

and natural terrain surfaces. A symbolic werrain representation is also proposed in Chapter II1. Chapter 1V

3 Wavefront methods can be extended to problems with anisotropic cost functions as demonstrated by
Parodi [Ref. &].

describes the optimal-path-planning model. The ideas of Chapters I and IV form the basis of the
computer program described and evaluated in Chapter V. Chapter VI summarizes the dissertation.

II. SURVEY OF LITERATURE

This literature survey includes a review of previous research conducted in the areas of terrain
representation, vehicle mobility, and path planning. Particular emphasis is placed on vehicle mobility and
path planning as the two principal areas of contribution for this dissertation. Terrain representations are
examined only to gain a frame of reference for the types of symbolic objects used in mobility analysis and
automatic path-planning problems.

A. TERRAIN REPRESENTATION

1. Low-Level Terrain Representations

Arbitrarily-contoured terrain, which is generally continuous in nature, must be discretized in
order to be used by mobility models and path-planning algorithms that are operating on digital computers.
Thus, it is necessary to decide what type of terrain information should be made explicit. There are three
fundamental classes of terrain information important to vehicle mobility and path-planning problems: (1)
surface configuration, (2) surfacc composition, and (3) surface covering. Surface configuration refers to
the geometric structure of the terrain. Surface composition relates to the type of ground materials that
comprise the terrain area. The kinds of objects that are present on top of the terrain such as obstacles and
vegelation are part of the surface covering class. Associated with each of these classes is a set of
individual terrain factors, or attributes, that describes a particular aspect of the terrain [Ref. 11). Although
the complete sct of terrain factors is extensive, only a select few are relevant 1o the minimum-energy path-
planning problem. For example, the terrain factors of interest for the configuration class are slope and
orientation. For surface composition, the key terrain factors are soil strength and soil type. The process of
discretization requires sampling the terrain at various points and quantifying the attributes at those points.
The resulting terrain representation is defined as a low-level representation because it describes the terrain
surface at the individual "data point” level and does not recognize any relationships or connectivity

between points.

The Defense Mapping Agency (DMA) is the primary source of digital cartographic
information. The Digital Landmass System (DLMS) is the standard, muli-use terrain database for digital
mapping, charting and geodetic products [Ref. 12]. There are two standard approaches to representing

terrain data in digital form. The first approach represents the particular terrain attributes as discrete daw

points organized in a uniform grid. The Defense Mapping Agency (DMA) maintains a database of
elevations in digital form according to the gridded data format. The Digital Terrain Elevation Database
-(DTED) provides elevation data at varying degrees of resolution depending on the requirements of the
particular application. Typically, the elevaiion data is produced wt a low resolution of three arc second
intervals, or approximately 100 meters. For sclecwd areas, higher resolution data are also available using

one arc second intervals, or approximately 25 meters [Ref. 13).

The U. S. Army Engineer Waterways Experiment Station (WES) has developed a uniform
gridded data representation focusing on a descriptive entity called the terrain unit. Six terrain factors are
selected as the attributes of interest: (1) slope, (2) vegetation type, (3) stem spacing, (4) stem diameter, (5)
surface material type, and (6) depth of surface. The grid is scanned and a separate terrain unit number is
assigned to each unique combination of factor values. The terrain unit number and the corresponding

elevation value for each grid point is recorded for subsequent analysis [Ref. 11].

An alternative to the grid approach attempts to represent aggregations of data points with
similar attribute values as homogeneous regions. Each region is described geometrically by a convex
polygon consisting of a finite set of vertices and edges and functionally by "attaching” descriptive attributes
to the region. DMA produces a second digital database of terrain feature information using the polygonal
representation. The Digital Feature Analysis Database (DFAD) contains cultural feature data for a variety
of terrain factors to include forest regions, lakes, rivers, road networks, and obstacles. The linear features,

such as roads and rivers, arc represented in the database by a set of connected line segments.

The process of combining similar attribute values can be relatively straightforward or
extremely complex, depending on the type of attributes involved. For attributes such as vegetation or soil
type, a simple region-growing or edge-finding technique as described in [Ref. 14] can be employed to
create groups of contiguous data points. Polygonal boundaries can be fitted to the regions, and, if the region
is concave, a splitting algorithm can be applied to generate a set of unique convex regions [Ref. 15). For
surface configuration attributes, the process is more difficult. Creating a three-dimensional polyhedron
from basic elevation data points requires aggregating data points with similar gradient values, that is, equal
slopes and orientations within >ome designated threshold. The object is to fit a set of data points to a

particular plane with the constraint that the intersecting planes form a polygonal mesh.

The problem of producing the individual planar faces of a polyhedron, or set of convex

polygons arranged in a geometric mesh has been explored by Rowe and Yec [Ref. 16]. Scveral approaches

are used to generate the planar patches. The first algorithm employs a top-down, quadtree-subdivision
method followed by a bottom-ub merging of similar subregions. Altemnatively, a strict bottom-up approach
with and without data smoothing, relies on conventional region growing techniques to develop the planar
paiches.

The process of generating polygonal terrain can be viewed in a hierarchic manner. At the
lowest level, every pair of data points can be connected which, essentially, triangulates the terrain surface.
The high-resolution terrain mode! proposed by Zyda [Ref. 17] employs this representational method.
Although conceptually simple, the triangulation method produces the maximum number of convex
polygons tiling the polyhedral structure. The next level of the hierarchy proposes combining the triangles
with equal gradients within a designated threshold or tolerance. In essence, the triangle primitives combine
to form larger convex polygonal regions with similar characteristics. The object is to generate the
minimum number of convex polygonal regions covering the polyhedron so each region maintains the
constant gradient property within the designated threshold, and the boundaries form a geometrically
consistent polygonal mesh.

2. Alternative Terrain Representations

Low-level terrain representations are limited in descriptive power due to the fact that there is
lide, if any, information on functional or spatial relationships between terrain features. Functional
relationships are defined by Kwan [Ref. 18] as a hierarchy of terrain objects and classes of objects. With
this representation, a terrain area can be described by a tree structure with each successive level of the tree
defining a terrain object in greater detail. For example, the first level of the tree may contain the functional
terrain class of vegetation. The next level of the tree partitions the vegetation entry into its valid subclasses,
e.g., a forest, scrub, or swamp. Subsequent levels in the hierarchy expand the description of the subclass
entries. The forest entry may contain information on the type of forest, stem spacing, stem diameter, and
any other information relevant o the application. The hierarchy is analogous to the representations found
in many artificial intelligence systems where information can be inherited through links in the tree using

the is-a and a-kind-of relationships [Ref. 1].

Spatial relationships describc the connectivity propertics of terrain features. A mixed
representation of free space, defined by Kwan, Zamiska, and Brooks [Ref. 19) divides the tcrrain into two
basic shape primitives: (1) convex polygons and (2) generalized cones. A connectivity graph is then

developed to describe the topological relationships between obstacles. The connectivity graph facilitates

the development of corridors between obstacle regions. These corridors or "channels" are constructed
using the generalized cone shape primitive. All remaining free space is described by convex polygons
designated as "passage regions”. The objective of the mixed free space approach is to provide a symbolic,
higher-level map representation for spatial reasoning tasks such as path planning.

A spatial database management system proposed by Antony and Emmerman [Ref. 20] builds a
terrain representation based on the region-quadtree approach of Samet [Ref. 21] and the frame structure of
Minsky [Ref. 22). The region quadtree performs a recursive decomposition of the Euclidean space into
equal size quadrants until the minimum resolution is reached. Each node in the quadtree maintains a
"frame" containing all relevant terrain attribute information for the region represented by that node. Thus,
the frame-based quadtree provides a hierarchically-organized, spatial representation of terrain features.
This approach also promotes efficient access to terrain feature information through a spatial-indexing

technique made possible by the quadtree data structure.

The high-level symbolic representations facilitate reasoning about terrain information other
than the basic gridded data points. The terrain knowledge, explicit in the representation, can be of great

importance in solving path-planning problems, and predicting off-road vehicle performance.

B. MOBILITY MODELS

The formal study of mobility problems originated during the Second World War in response to a
growing number of military vehicles that failed to negotiate various types of soft soil and mud in both the
European and Pacific theaters of operation. Research continued at a low level until similar failures occurred
during the Korean Conflict in the early 1950’s. At that time, efforts intensificd to analyze the relationship
between both tracked and wheeled vehicles and the terrain on which the vehicles traveled. A coordinated
program involving both the military and civilian sectors has provided a wealth of mobility information
during the last four decades in the specific area of off-road (cross-country) vehicle performance. A detailed
and comprehensive study, commissioned by the U. S. Army in 1969, examined the current state of the an
for ground mobility models. The final report, published in 1971, entitied An Analysis of Ground Mobility
Models (ANAMOB), provides an excellent synopsis of off-road vehicle performance-evaluation
techniques [Ref, 23].

In general, off-road performance for mobile robots involves the intcraction of two key components:
the vehicle and the terrain. Since the number of parameters associated with each of these components is

large, it is difficult to model the complex relationships that exist among them. Therefore, the models that

have evolved focus on the interactions of single terrain features with the vehicle. As stated previously, a
terrain feature refers to characteristics of the terrain such as soil type, slope, vegetation covering, and
obstacles. The models, described in [Ref. 23] as single-feature models, measure cross-country vehicle
performance in many critical areas, and can be divided into two fundamental categories: (1) soil-vehicle
models, and (2) obstacle-vehicle models. Selected models from the obstacle-vehicle class, i.c., models
specifically concemed with soil-slope relationships, are examined in detail. Evidently, these models have
the most relevance to the minimum-energy path-planning problem.

To fully understand the models, several terms relating to soil properties need to be defined. The
fundamental measure of soil strength, developed by the U.S. Army Engineer Waterways Experiment
Station (WES), is defined in [Ref. 24] as the cone index CI. The "cone index" can be derived empirically
by measuring the penetration depth of a cone-shaped instrument into various types of soil. The index
predicts soil trafficability independent of vehicle speed and results in "go” or "no-go" assessment. To
measure the effects of soil strength degradation due to multi-pass vehicular traffic, the soil is compacted
within a cylinder and hammered to compress or remold it. The cone index is measured for the remolded
soil and the ratio of the original cone index to the remolded cone index is defined by Bekker [Ref. 25] as
the remolding index RI. The overall soil strength is defined as the rating cone index RCI expressed

quantitatively as
RCI =CI x RI. 2.n

The rating cone index can be described in terms of the number cf passes a vehicles makes across a
designated patch of soil. This index is defined in [Ref. 23] as the vehicle cone index VCI. A subscript
auached to the vehicle cone index indicates the specific number of vehicle traversals. Thus, VC/, indicates
the soil strength required for k passes of a particular vehicle across a certain soil type. The values for the
rating and vehicle cone indices arc important in the analysis of the integrated mobility models discussed in

Section I1.B.2.

The nature of the off-road environment is such that slopes of varying degrees may be encountered in
routine path traversals. The magnitude of the slope can have a significant impact on vehicle performance.
At the extreme end of the spectrum, an unfavorable soil-slope combination can literally impede vehicle
motion altogether. In addition o tractive failure, there is also the possibility of catastrophic overturn if the
vehicle attempts to negotiate paths other than directly up or down the slope. The slope problem is, perhaps,

the most significant arca in determining off-road vehicle performance next 1o the soft-soil

10

problem [Ref. 23]. Despite this importance, there have been relatively few slope models developed 10
predict vehicle behavior. The slope models involve the effects of gravitational forces on the vehicle as it
negotiates a particular terrain surface.
1. lope Model

There are three principal slope models available for modelling vehicle motion on inclined
terrain surfaces [Ref. 23]. The first model uses the concept of available tractive force or drawbar pull
DBP to predict the slope-climbing capability of the vehicle. Drawbar pull is defined formally by
Bekker [Ref. 25] as the difference between the gross tractive force and the motion resistance created from
the soil and slope properties. The problem considers the vehicle on a slope as a static friction problem and
defines a tractive coefficient equivalent to the ratio of the drawbar pull DBP, measured on a level surface,
to the vehicle weight W. The tractive coefficient can be interpreted as a coefficient of static friction.
Generalizing the concept of drawbar pull on a level terrain surface, a sloped version is defined. The
available tractive force on a sloped terrain surface DBPg is expressed quantitatively in the ANAMOB
Study [Ref. 23] as

BP,

D.
DBP; = [Wcos6 — Wsin®, (22)

where 6 represents the slope of the terrair surface. The maximum negotiable slope is obtained when DBP

is equal to zero. Thus, solving for 8, Eq. (2.2) can be rewritien as

DBP,

6 =tan
"W

2.3)

The U. S. Army Waterways Experiment Station (WES) attempted to validate the slope model described
above using both wheeled and tracked vehicles. The tests occurred on sloped terrain surfaces up to twenty
percent compnsed principally of fine-grained soil. The results in comparing actual drawbar pull

measurements with the predicted results of the model were accurate within one percent [Ref. 26).

The second model, proposed by the Land Locomotion Division (LLD), U. S. Army Tank and
Automotive Command, addresses the problem of weight transfer in the vehicle as it negotiates a sloped
terrain surface and the resulting impact on the nct tractive force available. The basic premise of the modcl
is that the front-to-rear shift in weight that occurs in a vehicle as it traverses an uphill slope increases the
ground pressure at a certain point where the wheels or tracks meet the terrain. The increased pressure can

be a source of tractive failure and, thercfore, should be accounted for in predicting soil-slopc trafficability.

11

The contact pressure is computed at both the front and rear of the vehicle taking into consideration both the
slope of the termain surface and the vehicle center of gravity. The contact pressure values are subsequently
used to compute the front and rear sinkage and, thus, the resistance due to soil compaction and slope. The
weight-transfer model has not been tested widely and, therefore, its use in cross-country vehicle
performance evaluation has been limited.

The third model of interest focuses on the slope problem from the standpoint of vehicle
stability. It attempts to predict vehicle performance when traversing a "contour” path, or a path that is
perpendicular to the gradient, or maximum slope line. The model is simple in that vehicle stability is
computed as a function of the height of the vehicle center of gravity and the distance between tires or
tracks. The vehicle path traversals in the side-slope model are restricted to 90 degrees with the maximum
slope line and, therefore, do not permit performance evaluation on any other permissible vehicle headings
between the gradient and contour lines. Performance specifications for military vehicles routinely provide
maximum side-slope information as part of an overall mobility assessment.

2. Integrated Models

There are two widely-used analytical mobility models that are designed to evaluate vehicle
performance: (1) the Defense Mapping Agency/Engineering Topographic Laboratory (DMA/ETL) Cross-
Country Mobility Model and (2) the U. S. Army Mobility Model (AMM). The Army Mobility Model is
recognized as the de facto standard vehicle mobility prediction model [Ref. 11). The primary consideration
in the Army Mobility Model is the average speed a vehicle can sustain in traversing a path from a start
point to a goal point on natural terrain. The average speed is computed as a function of the total area under
evaluation that is permissible for travel. For examplc, a mobility prediction from the model may indicate
that a particular type of vehicle can sustain a speed of n miles per hour within a given homogeneous region
if it avoids the most difficult x percent of the terrain surface. Evidently, the average speed increases as the

percentage of difficult areas it must avoid decreases.

Other mobility models incorporate "safety” factors in predicting the best routes of travel. Rowe
and Lewis [Ref. 27] use the notion of detectability from hostile observers as a cost parameter in a three-
dimensional search problem. Kanayama [Ref. 28] presents a mathcmatical theory of safe path planning
that finds a locally minimum-cost path within a given equivalence class of paths. A safety index is used o
select an appropriate cost function with consideration given to path safety and path length. As path safety is

increased, longer paths are gencrated, and as path safety is decreased, shorter paths are obtained.

C. SPATIAL REASONING METHODS

Spatial reasoning is a broad research area that has many constituent subfields. A subfield of
"particular interest is that of path planning. There are a myriad of techniques available for finding optimal
paths for both two-dimensional and three-dimensional problems. In general, path-planning problems can be
divided into three fundamental categories: (1) obstacle-avoidance problems, (2) discrete geodesic
problems, and (3) weighted-region problems. Since the minimum-energy path-planning problem addressed
in this dissertation is a hybrid between the two-dimensional and three-dimensional problems, each of the
above areas is reviewed for completeness.

There are several issues of importance in the obstacle-avoidance, discrete geodesic, and weighted-
region path-planning problems. The first issue of concem is the representation of the terrain, As mentioned
previously, the standard approaches rely on either a uniform grid of data points or the representation of
homogeneous regions by convex polygons. The second issue involves the selection and implementation of
an appropriate search strategy for the path-planning problem. Generally, the search techniques can be
described as either exhaustive or heuristic, depending on the knowledge used 1o "direct” the search to the
goal. The final issue of relevance to the path-planning problem is the selection of the optimality criterion
and the corresponding development of an appropriate cost function. The cost function serves as an integral
part of the search algorithm and can vary in the degree of complexity. A review of a particular path-
planning approach will consist of an analysis of (1) the terrain representation selected, (2) the search
strategy employed, and (3) the associated cost function used.

1. Obstacle-avoidance Problems

Obstacle-avoidance problems assume a binary partitioning of the carographic map plane into
entitics traversable by the vehicle and entitics considered obstacles. Several terrain represcntations are
possible. The two-dimensional map planc can be represented by a uniform grid of data points, that is, a
regular tessellation of the plane. The data points can also be represented in a hierarchical manner using the
quadtree approach of Samet [Ref. 21]. The quadtree is a data compression technique that employs a
recursive decomposition of the Euclidean space into equal size quadrants until a minimum resolution is
obwined. An alternative terrair- -cpresentation consists of a set of convex polygons superimposed on a
background region, such that cach polygonal region represents an obstacle region or a region that is

impossible for the vehicle o traverse. The obstacle regions are usually disjoint.

In the grid-based approach, each data point is classified as either "go" or "no-go", typically by
spatial averaging, and the obstacle-avoidance problem is relatively straightforward. The graph of gridded
points can be searched using an uninformed technique, such as the Dijkstra algorithm [Ref. 29] (also
known as the wavefront-propagation-search method), or an informed technique, along the lines of the A"
heuristic search algorithm [Ref. 5]. In both cases, the search of the obstacle space generates minimum-
distance paths between pre-defined start and goal points. Regardless of which search technique is used to
solve the problem, the inherent problems associated with the basic grid structure cannot be ignored.

For obstacles represented as convex polygons, the optimal path between a start point and a goal
point is either a straight line between the two points (if the line does not intersect any obstacles) or a set of
straight-line segments, each of which is constrained to pass through a vertex belonging to some obstacle
region. In this case, the basic approach to solving the binary-case path-planning problem involves
constructing a visibility graph (VGRAPH) of the obstacle space [Ref. 30]. The nodes of the visibility
graph are the obstacle vertices and the links represent path segments conneciing pairs of vertices such that
each individual segment docs not intersect any obstacle region. The visibility graph can be searched using
any appropriate search technique (informed or uninformed) using distance as the criteria for optimization.

The dominant cost in the VGRAPH approach is constructing the obstacle map.

An aliernative method for finding, the shortest path partitions the two-dimensional plane into
regions. Each region is the locus of all goal points whose shortest path from the start point traverses the
same sequence of nodes (in this case obstacle vertices). The search becomes relatively simple. It requires
locating the goal point and then traversing the links in reverse order back to the start point to obtain the

optimal path.

The potential fields approach 1o the shortest path problem described in [Ref. 31] models the
goal as an attractive force and the obstacles as repulsive forces. The forces arc strictly a function of
distance from visibie obstacles, i.c., clearance. Viewing the vehicle as a point, a repulsive function is
computed at each data point in the grid, based on the known distance to visible obstacles. The optimal path
is determined by finding a sequence of grid points from start to goal, minimizing a cost function that is a
weighted sum of distance and repulsion. This method appears to be well-svited for local obstacle
avoidance but can experience difficulties in long-range route planning. The path may lead to dead ends
necessitating the use of backtracking operations. Thus, the potential fields approach seems to work best in

conjunction with a global path-planning approach.

14

2. Discrete Geodesic Problems

The two-dimensional, obstacle-avoidance problem can be generalized to three dimensions by
finding the shortest path for a vehicle constrained to move along a nonplanar surface. This problem is
described by Mitchell [Ref. 32] as the discrete geodesic problem. As in the obstacle-avoidance problem,
the terrain can be discretized and represented in various ways. The most common approach is a polyhedral
representation with a surface of planar faces, edges, and vertices. Another is a grid-based representation
where each cell in the grid is an elevation data point as mentioned in Section II.A.

The shortest path on a surface using the gridded representation can be found with any standard
search algorithm, either informed or uniformed. Two common strategies employ the A” algorithm or the
uniform cost (Dijkstra) algorithm with costs computed as the three-dimensional Euclidean distance
between either the four or eight nearest neighbors. The polyhedral representation is somewhat more
complicated and finding the shortest path has been determined to be an NP-hard problem [Ref. 33].
Conceptually, the solution to the problem is accomplished by “unfolding” the polyhedron and flattening the
surface so the start and goal can be connected by a straight line that remains within the flattened surface.
The optimal path will never pass through the same region more than once as is evident in the above
approach. There are, however, an exponential number of possible ways 1o unfold the polyhedron in order to
produce the shoriest path [Ref. 34).

3. Weighted-region Problems

The two-dimensional, binary-casc, obstacle-avoidance problem can be gencralized to allow
different costs within regions. The cost per unit distance of travel defines a "weight” for the region and can
range from onc to +eo. Finding the shortest path through a set of variable cost regions is described by
Mitchell and Papadimitriou [Ref. 35] as the weighied-region problem. 1t is evident that the binary-case
obstacle-avoidance problem is a special case of the weighted-region problem where the weights are
constrained 1o be either onc or +ee, the former representing areas of free space for path traversals and the
latter denoting obstacle regions. The weighted-region problem more closely represents the complex nature
of the real world with the various types of soil, vegetation, lakes, rivers, and road networks, each having a
different traversal cost associated with movement across it. As in the binary casc problem, there are two
possiblc represcntations that can be employed to describe the terrain: (1) a uniform grid of "weighted” data

points or (2) a polygonal subdivision of "wcighted” regions.

15

For the grid-based approach, the weight of a particular data point can be assigned by the
properties associated with the point. A feature vector describing the relevant properties can be used to
accomplish this task. Movement on the grid is based on the nearest neighbor connectivity assumption with
costs assigned according to a pre-determined formula. The cost can be computed as the average of the two
grid-point costs or weighted differently using some other heuristic. Any of the previously discussed search
techniques is appropriate for finding the least-cost path between a start point and goal point on the
weighted grid. A" and uniform cost search are two of the most common strategies. The advantage of a
more precise representation of region costs can be offset by the disadvantage of digitization bias as
discussed previously. In addition, for maps with very few features or large, homogeneous areas, the entire
array of weighted data points must be included and must participate in the search process. This results in
the needless expansion of many data points. Richbourg [Ref. 6] has examined the grid-based weighted-
region approach using the dynamic programming paradigm for searching the graph (also termed the

wavefront-propagation method) and confirmed the above observations.

An alternative approach exploiting Fermat's Principle of optics has been explored
independently by Miichell and Papadimitriou [Ref. 35], Richbourg [Ref. 6], and Rowe [Ref. 36]. This
approach relies on a homogeneous regions model that partitions the terrain into polygonal regions of
uniform traversability cost. The local path behavior at region boundaries can be determined by applying
Sncll's Law of Refraction at each crossing point. The path behavior models that of a light ray at it travels
through various types of media. Given this representation guideline for path behavior, the problem is to

find the shortest path (using the weighted Euclidean metric) from a start point to a goal point.

The weighted-region problem is solved by Miichell and Papadimitriou [Ref. 35] by
tniangulating cach homogencous cost region and then employing a dynamic programming search paradigm
(Continuous Dijkstra Algorithm). The algorithm uses Snell’s Law to generate non-overlapping "intervals of
optimality” on the boundaries of the triangles designated as "wedges”. The wedges represent the least-cost
(in the weighted sense) path from the start point to that boundary. Within a given wedge, the minimum-
cost path is computed using Sncll's Law and then substituted for the known cost (moving from node
nodc) required for the cost function in the scarch algorithm. Thus, the Sncll's Law cos is used primarily 1o
idenufy minimum-cost wedges from the start point to the most recent boundary reached in the intenal of
optimality. The algorithm continues until every least-cost wedge for each interval of optimality for each

boundary in the triangulated map ha< been created and stored. Thus, given the start and goal points within

16

the set of homogeneous cost regions, the least-cost path can be found by selecting the appropriate wedge

and then solving Snell’s Law iteratively.

A more informed strategy, attributed to Richbourg [Ref. 6], uses A" search together with a set
of heuristics and pruning criteria to improve the average case performance of the Snell's-Law-directed
solution to the weighted-region problem. The search does not require triangulated terrain. Given an initial
start point and goal point, the algorithm begins by partitioning the map into two initial "wedges", one of
which contains the goal. A feasible path to the goal is obtained by ignoring cost regions and considering
only obstacle regions. The feasible path to the goal is an upper bound on the optimal path solution and can
be used to construct a “limiting” ellipse to reduce the size of the search space. Using a lower-bound
evaluation, a refinement operator creates "sub-wedges” based on the Snell's Law path to the closest
unsolved search point within the wedge: that is, a branching factor of three (the path plus two adjacent new
wedges from the split). A comprehensive methodology is developed to evaluate upper and lower cost
bounds on start-to-goal paths through "wedges". The wedge having the best lower-bound cost is the first to
be refined at every step. This implics an ordering of the wedges according to the likelihood of containing
the optimal path. The new search state consists of a wedge, the least-cost path from start found thus far in
the search, and a lower-bound evaluation for the wedge to the goal. The search terminates when the cost of
the best path found is less than the lower-bound evaluation for every state in the search space. The search

can also terminate if the lowest lower-bound wedge cost exceeds the upper-bound feasible cost.

4. Some Approaches to the Optimal-path-planning Problem

Most path-planning and obstacle-avoidance problems assume an isotropic medium for the
scarch spacc. Gaw and Meystel [Ref. 4], in the minimum-time navigation problem, propose a 2-1/2
dimensional terrain representation using “isolines” or contour lines indicating uniform elevations. In
contrast to the uniform discretization of the grid-based approach, the isolines are discretized at an arbitrary
resolution forming contour lines consisting of a finite set of line segments. This process polygonalizes the
isolines. The advantage to this representation is that it avoids the wasteful approach of uniform
discretization and provides for a more flexible map structure. A significant disadvantage is the loss of key
terrain information that occurs with any contour-line representation. Specifically, the tops of hills and the
bottoms of valleys can be distoried. There is also error introduced in the polygonalization of the isolines,
although not directly considered in the model. The vertices of the polygonalized isolines are the scarch

points on the map. and navigation is accomplished by moving from vertex to vertex. Obstacles are

17

represented directly by polygons that are superimposed over the discretized isolines. The search algorithm
used is A* with the standard cost function f = g + h, such that g is the cost from the start point to the
current location, and & is the heuristic evaluation of the estimated cost from the current location to the goal.
The evaluation function employed is computed for a swaight line from the current node to the goal,
accounting for differences in elevations. The cost function is more complex and relies on the physical
properties of the vehicle and its behavior on a sloped surface. In the 2-1/2 model, the acceleration and
braking of the vehicle are considered in developing the anisotropic cost function replacing the standard
Euclidean distance as the estimate of the time required to traverse a particular path segment The physical
model assumes maximum power output by a vehicle and employs energy equations of motion in computing
traversal time. A three-valued cost function is proposed for traversing across the isolines. The "time-cost”
function for any path segment can be computed using the value for the slope of the segment; that is, there is
a unique formula for "uphill", "downhill" and "level" path segments. Cost penalties are imposed
heuristically for path segments with endpoints on the same isolines based on how close the segment comes
to an adjacent isoline. The resulting paths produced by the search algorithm avoid straight-line trajectorics

if those trajectories would necessitate traveling up and down slopes.

Another anisotropic approach to route planning was proposed by Parodi [Ref. 8]. The route
planning system for an autonomous vehicle employs a two-level global map representation: a grid level
and a symbolic level, as in the Defense Mapping Agency databases discussed in Section ILLA. The
symbolic level is a compressed data representation describing terrain features by a set of polygons. The
gnd, or "pixel” level is used for the assignment of cost factors and conducting the actua! search. The path-
planning model depends on the vehicle properties, and a separatc model is used to describe vehicle
behavior with respect to the terrain. The model addresses vehicle stability (roll over conditions), encrgy
consumption, detectability, usage (mean time before failure), and maximum speed. These factors arc
dependent on the configuration of the terrain. Energy consumption is represented by a bivariate polynomial
taking into account both the speed of the vehicle and the slope of the terrain. A global state description is
employed that records (x,y) position, average speed, average heading, and average stability (roll and pitch).
The anisotropic cost 1o go from once grid point to onc of its cight ncarest neighbors is a lincar combination
of weighted elementary costs for each of the criteria to be optimized. The graph search involves a
combination of dynamic programmimg (as in wavefront propagation) and relaxation that facilitates
backward searching: that is, retracing a previous route, turning around, and moving forward again. The

algorithm is able to develop optimal paths that avoid obstacles, take advantage of high-speed cormidors such

18

as roads, and move off-road into traversable forest areas when probability of detection is high. The paths
can move away from the goal at times in order to satisfy the cost-minimization criteria or to avoid

‘obstacles.

Long-range, strategic path-planning through variable temrain data was explored by Mitchell and
Kiersey [Ref. 37]. The BITPATH long-range planner for an autonomous vehicle operates on a grid of data
points from a Defense Mapping Agency database. The 64-bit array of data points contains elevation and
cultural (feature) data at 12.5 meter resolution. The planner uses the data to develop a composite cost of
movement between adjacent grid points, that is, the eight nearest neighbors. The cost function accounts for
differences in elevations of data points and has independent components for movement costs on roads and
across natural terrain. The movement costs are the reciprocal of the maximum speed either on or off road.
The movement cost between any two adjacent grid points forms an arc cost between neighbors. The
minimum-cost path between a given start point and goal point is found by using the Dijkstra algorithm, or
the dynamic programming search technique. The algorithm is uninformed and appears to expand nodes
without a sense of direction; there is no heuristic evaluation that assists in guiding the search toward the
goal. The problem of digitization bias also exists in every grid-based terrain representation. An altemative
version of BITPATH employs an informed search algorithm (A *) with th-ce heuristic evaluation functions
from which to choose as well as a "heuristic level”. The heuristic level scrves as a "weighting factor” for
the three functions. The first heuristic evaluation function uses the Euclidean distance to the goal. The
second function truncates the floating point value computed in the first function, and the last estimate o the
goal is a function of the sum of the (absolute value) differences in the x and y distances to the goal. By
varying the weighting factor, paths can be obtained that are less than optimal but that run significantly

faster.

The path-planning system developed by Linden, Marsh, and Dove (Ref. 38], for the
Autonomous Land Vehicle (ALV) uses a uniform grid of data points for the terrain representation such that
each data point indicales the traversability factor for a vehicle at that point. A cost matrix is developed to
estimate the probable costs of traversal between adjacent grid neighbors using any available information.
Routes are generated using the s.arch strategy of dynamic programming. The best path to the goal is found
by optimizing some figure-of-merit (FOM) which represents the total cost to reach a particular grid point
from the start point. The algorithm begins by assigning an initial FOM of infinity to all grid points except

the goal, which has a FOM of zero. The algorithm iterates over the entire grid. and at each point replaces

19

the current FOM with the sum of the FOM at the neighboring point plus the cost to traverse the link
between the two points (FOMygw = FOMop + COST 4c), if the cost is lower. Otherwise, the previous
FOM is retained. The iteration continues until a "steady state” is reached and it is no longer possible to
improve the FOM at any point on the grid. The control strategy for the iteration allows the expansions to
"sweep” out across the grid in a left-to-right or top-to-bottom manner checking only grid points that have
been examined during the current sweep. The least cost path can be determined from the computed FOM
grid by following the maximum gradient of the FOM’s in decreasing order until the goal is reached.

An approach to partitioning the terrain for path-planning problems is described by Kwan,
Zamiska and Brooks [Ref. 191 and involves a mixed representation of free space. Concave obstacles are
divided into connecting convex obstacles and the remaining free space is split into "channels” and "passage
regions”. Channels are the narrow free space between obstacle regions and are represented by generalized
cones. Passage regions are larger areas of free space that are represented by convex polygons. Spatial
relationships are maintained between the obstacle regions that help identify the critical channel and passage
regions. A search graph of collision-free path segments is created using critical points from the channel and
passage regions. An A” search algorithm finds the shortest path from the given start and goal points. The

cost function employed for the minimization is simply the Euclidean distance.

Path relaxation is a combined search technique that uses elements from the grid-based methods
and the potential-fields methods [Ref. 7]. The global grid-based search finds an approximate path to goal
and then the path is modified locally through a relaxation process to reduce the overall traversal cost. After
an initial grid size is selected, the costs are assigned to paths on the grid and then a graph search finds the
best path from the start to the goal. The best path must satisfy conflicting requirements: shorter path length,
greater distance away from obstacles, and less distance in unknown areas. Afier the cost is computed for
each node in the grid, links connecting the eight nearest neighbors are established. An A" search finds the
least-cost path from the start point to the goal point. The search algorithm uses a Euclidean distance metric
in its evaluation function and therefore, finds the minimum-cost path to the goal. Grid optimality may not
be a good measure of the true path ontimality because of digitization bias and other anomalies that occur
duc 10 the cost function. A path-relaxation phase optimizes the position of the grid point on the path w0
minimize the total cost. This is accomplished by perturbing the grid points in turn and adjusting the costs
based only on local information. The object is to minimize the cost of the path sections on either side of the

grid point being moved.

20

’

D. SUMMARY
A review of three significant areas relevant to the minimum-energy path-planning problem has been

presented. Terrain representations, mobility models, and search techniques all play an important part in the
path-planning solution developed in this dissertation. In addition to the fundamental terrain representations
and mobility models, 8 wide cross section of search techniques is presented, both for two-dimensional and
three-dimensional path planning. Perhaps the most important consideration is the cost function associated
with the search strategy. This area has particular importance for the mathematical model of vehicle-terrain
interaction presented in the next chapter and is a critical element of the optimal-path-planning algorithm
that generates the minimum-energy path within a specified set of stability and motion constraints.

21

. MATHEMATICAL MODEL OF VEHICLE-TERRAIN INTERACTION

A. INTRODUCTION

A key component to solving the minimum-energy path-planning problem is a sound mathematical
model that adequately reflects the characteristics of vehicle performance in an off-road environment. It is
necessary to develop a model that facilitates the abstraction of essential information for the objectives of
path planning while ignoring other, less relevant information. With that goal in mind, the many
complexities of vehicle-terrain interaction can be simplified by considering vehicle motion from an
external rather than an internal perspective. The towed vehicle model posits vehicle motion resulting from
a towing force applied 10 a hypothetical cable attached to the front of the chassis. The tension force pulling
on the cable must be sufficient to overcome all resistive forces and keep the vehicle moving at low,
constant speed. The alternative approach considers motion resulting from the propulsive forces generated

by the intemal combustion engine of the vehicle.

The primary focus of the towed vehicle model is on the forces of resistance resulting from the
operation of the internal mechanical systems of the vehicle and motion of the vehicle over a wide range of
natural terrain surface configurations and surface compositions. Thus, the model coniains components that
are striclly vehicle dependent, components that are strictly terrain dependent, and components representing
a hybrid of vehicle-terrain dependencies. There are many ways in which the motion of a vehicle can be
described. The towed vehicle model considers vehicle motion at three, increasingly-complex levels of
abstraction: (1) simple plane motion, (2) cylindrical surface motion, and (3) generalized three-dimensional
motion. In all cases, the model relics on a direct application of Newton's First Law of Motion and the
general principles of work and energy. Throughout the development of the mathematical model, certain
fundamental assumptions are made that are central to the solution of the global, off-road path-planning
problem.

Assumption 3.1: The vehicle is treated as a particle or point mass.

The first assumption is a simplification permitted because the model ignores rotational kinetic energy. A
vehicle can still have massless extensions, but has negligible moment of incriia about its center of gravity.
Assumption 3.2: The vehicle moves between any two specified points in a straight line at low, constant

speed.

The second assumption is justified due to the nature of off-road travel over arbitrarily-sioped terrain.
Vehicles must necéssarily move at speeds that insure safety over negotiable terrain. As a result, the average
speed of the vehicle is considerably lower than for on-road travel.

B. SIMPLE PLANE MOTION

The towed vehicle model is first described in terms of simple plane motion. If a vehicle is confined
to moving along a specified path, its motion is const. From Assumption 3.2, the vehicle is
constrained to move along a fixed, straight-line path, and therefore, has one degree of freedom in its
motion. This type of motion is described in [Ref. 39] as rectilinear motion. A two-dimensional, Cartesian
coordinate system is established with the x-axis representing the axis tangential to motion and the y-axis
representing the axis normal to motion.

1. Forces and Equations of Motion

One approach to analysis of motion involves the definition of forces acting on the vehicle and
the creation of a free-body diagram. The free-body diagram isolates the vehicle from all contacting or
influencing bodies and substitutes those bodies by the appropriate forces exerted on the vehicle [Ref. 39].
For the towed vehicle model, there are four principal forces of interest: (1) the towing force Frow , (2) the
force of gravity mg, (3) the normal force N, and (4) the force of friction /. The towing force Frow is
defined as the tension force in a towing cable necessary to keep a vehicle moving at constant speed along
its path. The force of friction f represents a resistive force that always acts in the opposite direction to the
applied towing force F; row - The normal force N’ opposes the normal component of the gravitational force.
The velocity vector V" indicates the direction of vehicle motion in the planc and is paralle! to the tangential
motion axis. Once all pertinent forces have been identified, the appropriate energy equations can be

derived. Figure 3.1 illustrates a complete free-body diagram for a vehicle in plane motion.

The first fundamental concept applicable to the development of the towed vehicle model is

Newton's First Law of Motion which is stated in [Ref. 40] as follows:

o If the resultant force acting on a particle is zero, the particle will remain at rest (if originally at rest)
or will move with constant speed in a straight line (if originally in motion).

i
[T
0

Figure 3.1 Free-body Diagram

From Assumption 3.2, it is evident that the model posits a system that is in a state of static equilibrium in

which the equation of motion is expressed as

SP=0. 3.

The resulting scalar components of the equation of motion in the normal and tangential directions become

EFx =0 (3.2a)
and
ZF, =0. (3.2b)

From the free-body diagram, the component forces are expressed as

SF,=Frow—f —mgsing=0 (3.3a)
and
3F,=N-mgcos¢=0 (3.3b)

where mg cos¢ and mg siné represent the normal and tangential components of the gravitational force.

Thus, from Eq. (3.3a), the total force required to keep the vehicle moving at constant speed is
 Frow =f +mgsind. (3.4)

Specifically, Eq. (3.4) represents the tension force necessary to overcome the forces of friction and gravity
and to pull the vehicle at a constant speed across a surface.
2. Work and Energy
The second fundamental concept used in the towed vehicle model is that of work. Work is
defined as the cumulative effect of a force F over a differential displacement d3’ at the point where the
force is applied, and is expressed quantitatively in [Ref. 39] as

dU = Faz (3.5)

The work done by a force is defined as energy. Using the definition of Eq. (3.5), the total energy
expenditure or work done by the towing force i?row during a displacement 4F" from position s, 10 5, is

equivalent to
U, .= [Frowds (3.6)

The magnitude of the dot product of the force and displacement vectors can be expressed as
fTOW dT = F‘row dscos6 (37)

where 6 represents the angle between Froy and d5°. From the free-body diagram, it is evident that the
towing force Frou- acting on the vehicle is in the direction of the displacement and thus, Eq. (3.6) becomes
simply

L]

Uy s, = [Frowds. (3.8)

n

If the towing force Frou is held constant during the displacement ds , Eq. (3.8) can be rewritten as

LE]
Uy, = Frow [ds - (3.9)
£

where s is the distance defined by s, — 5, . With this definition, it follows that

U, _.=Frows. (3.10)

Substituting the equivalent opposing forces, Eq. (3.10) becomes
U, s, = (f +mgsind)s. (3.11)

The resulting expression for the total work done by the towing force Frow over a finite distance s is

defined in the basic energy equation as
U, e, = f$ + mgsings 3.12)

where fs is the work done against the friction forces and mg sings represents the work done against the
gravitational force component. From the above analysis, it is observed that only the tangential components
of the forces acting on the vehicle can do work. Eq. (3.12) can be interpreted as the total energy required to
pull a vehicle at constant speed across an arbitrarily-sloped terrain surface for a specified distance.

The forces in Eq. (3.11) are classified in [Ref. 39] as conservative forces and nonconservative
forces. When work is done against a nonconservative force such as friction, mechanical energy is
dissipated and converted into heat energy. The negative work that results represents a net loss of
mechanical energy. Work done against a conservative force such as gravity, is stored in the form of
potential energy. To analyze the effects of potential energy, a different two-dimensional Cartesian
coordinate system is established, with the x-axis representing an arbitrary, horizontal reference axis or
datum, and the y-axis representing the vertical elevation of the terrain. Potential energy exists in a vehicle
because of its position relative 1o a reference position or datum. The gravitational potential energy V, of
the vehicle is defined in [Ref. 39] as the work done against the conservative force of gravity to elevate the
vehicle a distance A above the datum. If V', at the datum is assumed to be zero, the potential encrgy at an

arbitrary position above the datum is expressed quantitatively as
V, =mgh (3.13)

where h = Ay in the coordinate system defined above. Thus, the wotal change in potential energy when the

vehicle moves from one elevation at h = h, to another elevation at h = A, is

AV, =mg(hy - ho) (3.14)
or equivalently,
AV, =mg Ah. 3.15)

The corresponding work done against the gravitational force by the vehicle is the negative of the potential

energy change in Eq. (3.15). As the vehicle returns 10 its original lower datum plane, the potential energy
mg Ah may be converted into energy of motion, called kinetic energy, or perform mechanical work, e.g.,
work against friction forces. Evidently, by Assumption 3.2, the kinetic energy is invariant during vehicle
motion between any two points and is therefore, neglected during the global path-planning problem. This
approach is supported by the fact that humans ignore kinetic energy in long-distance route planning and
consider it in local planning only.

The computation of energy costs is related to path planning using the mathematical concept of
a vector. A vector is defined, informally, as any entity that is specified by a magnitude and a
direction [Ref. 411. For the towed vehicle model, a vector describes the discrete path followed by a
vehicle. All vectors are assumed to lie in the standard x-y coordinate plane. If point O defined by Cartesian
coordinates (x,, yo) represents the origin of the coordinate system and initial position of the vehicle, and
point P defined by coordinates (x,,y,) represents the final position of the vehicle, then the vector ¥
describes a unique directed line segment OP. If =0P, then the coordinates of P are defined as
components of 3 represented by the 2-tuple (s, s5) and P is the position vector of point P . The components
of vector 3* can be expressed in terms of unit vectors defined for each of the two coordinate axes; i.c.,
I'=(1,0) and j'= (0,1). Thus, ¥ is given by 5= 5,7+ 5,7, The term 5,7 is the vector component of 5 along
the x-axis and s, is the scalar component of ¥ in the I direction. A similar interpretation holds for the term
s;f with the focus on the y-axis.
Definition 3.1: For simple plane motion, a two-dimensional vector 3 = (s, 59 is defined as a path segment
§ where s, and s, represent the components of 3 along the x and y axes, respectively. The length or
magnitude of path segment S, denoted by 151, is designated as the path distance d and is computed as the

two-dimensional Euclidean distance defined as
d=(s2+s5)" (3.16)

With this definition, the basic energy equation, Eq. (3.12), can be rewritten in terms of path segment

distance as

Uy, e, = fd + mgsinod (3.17)

27

Subsequent to defining the vehicle path by its position vector, the configuration of the path segment S can
be described quantitatively by introducing the mathematical concept of slope, which represents the vertical
change in the path elevation over a specified horizontal distance, and is defined as

=4
slope A (3.18)

Using Eq. (3.18), the slope of the path segment S can be written in terms of angular displacement from the
datum, expressed as

¢=m“-‘§-, -90 < ¢ < 90. (3.19)

By geometry, it is evident that the change in elevation Ay over the path segment § is defined as
Ay = dsing. (3.20)

The component of the position vector 3 along the x-axis is significant for path-planning applications, and is
defined by the meth,d of vector projection using the inner or dot product operation.

Definition 3.2: Let 7 = (1,0) be a unit vector along the x-axis, or datum and let 3= (s, 5,) represent an
arbitrary position vector defining a path segment S. The projection of 3 onto the x-axis or the vector
component of 3 in the i direction s,?. is defined as a projected path segment PS . The length or magnitude

of the projected path segment PS is designated as the projected path distance D , expressed quantitatively

as

D =1Plcosdp=7"1 (321)
or equivalently,

D =dcos. (3.22)

Figure 3.2 illustrates a path segment § and its projection PS in the Cartesian coordinate plane. Given the

definition of path segment projection, Eq. (3.17) can be rewritten as

= LD mgh (3.23)

ST 0056

where h = Ay . The two components of Eq. (3.23) represent the energy required to overcome the effects of
fricton and gravity, respectively, and tow a vehicle at constant speed across a path segment of a specified
distance. Having examined the potential-energy component, a more detailed analysis of the resistive

componcent follows.

28

' |

Path 2 Path 2
Segment Distance

s . s e -

Projected Path Segment Projected Path Distance

Figure 3.2 Single Path Segment and Projection

3. Motion Resistance
2. Resistive Forces

With regard to resistive forces, contacting surfaces can be classified as either smooth or
rough. For perfectly smooth surfaces in contact with one another, it is assumed the only force exerted by
one surface on the other is normal to the surface (Ref. 40]. In this situation, there is complete freedom of
movement between the surfaces. In reality, however, a cenain degree of surface roughness exists that
serves to impede this free movement. When two surfaces exhibiting the roughness property are ir contact,
tangential forces can develop when the surfaces are moved against one another [Ref. 40]. The tangential
forces, providing resistance to motion are called fricton forces. It is evident from Eq. (3.23) that the

principal resistive forces affecting vehicle motion are due to friction.

Friction is defined, generally, as the force distribution at a surface of contact between two
objects that prevents or impedes sliding motion between the objects. Friction forces can be divided into two
general categories: (1) fluid friction, and (2) dry or Coulomb friction [Ref. 40). Fluid friction exists when a
fluid or lubricant separates the sliding surfaces of two objects. The force necessary to initiate motion in this
situation is the force required to shear the lubricant [Ref. 42]. In this dissertation, it is assumed that one

source of fluid friction, the drag force on the vehicle due to air resistance, is negligible. This assumption is

29

justified by the fact that vehicles are forced to travel at relatively low speeds in off-road environments due
to the complexity of natural terrain. Coulomb, or dry friction results from the forces of adhesion between
the contact regions of the surfaces which are microscopically irregular. For sliding objects, it can be shown
experimentally that the amount of Coulomb friction is nearly independent of the area of surface contact and
that the friction force is proportional to the load or weight pressing the surfaces together [Ref. 40].

Within a vehicular system, there are many potential sources of Coulomb friction due to
the large number of moving parts. If the parts are not lubricated or only partially lubricated, it can be
assumed that there is direct contact between components (Ref. 40). For example, journal bearings and
thrust bearings are sources of axle friction and disk friction, respectively. This type of friction can be
generally characterized as bearing friction. A significant portion of engine power is consumed overcoming
the effects of bearing friction. The other contributing source of Coulomb friction is due to rolling
resistance. Rolling resistance occurs when a wheel moves freely over a surface. The primary source of
friction in rolling appears 10 be the dissipation of energy due to the deformation of the objects in
contact [Ref. 42]. The existence of rolling resistance can be demonstrated, conceptually, by observing that
a vehicle rolling along a level, frictionless surface will eventually come to a stop even in the absence of
significant bearing friction. In this situation, the resistive force acting against the vehicle is auributed

strictly to rolling resistance.

For the towed vehicle model, the friction forces can be described by a hierarchy of
resistive forces. The hierarchy attemplts to isolate the various sources of Coulomb friction by progressively
accounting for the resistive forces at three distinct levels. The first level is concemed stricdy with the
friction forces resulting from the intcrnal moving parts of a vehicle; i.e., bearing friction.

Definition 3.3: The resistive force associated with the internal moving parts of a vehicle is defined as
moving element friction MEF, and is equivalent to the bearing friction and all other sources of fniction
resulting from the movement of those parts. The towing force Frow required to overcome friction and keep
a hypothetical vehicle with rigid wheels moving at constant speed across rigid, level terrain is cqual to the

moving element friction force F ygr , expressed as
Fuer = From . (3.24)

The intent of defining moving element friction is 1o isolate the forces of resistance strictly associated with
the internal moving parts of the vehicle from the forces of resistance attributed to wheel or terrain surface

dcformaton. The assumption of rigid wheels and a rigid. level surface implies an absence of either wheel

a0

or terrain surface deformation and thus, eliminates any consideration of rolling resistance. Having
established a baseline resistive force, the next level in the hierarchy can be developed.

‘Definition 3.4: The friction force associated with the deformation properties of the wheels or tracks of a
vehicle in contact with a rigid, level surface is defined as rolling element friction REF. The difference
between the towing force Frow on a rigid surface and the internal moving element friction force Fyer

represents the rolling element friction force Fger , expressed quantitatively as
Fm =FT0W_FMEF- (325)

The assumption of vehicle contact with a hard surface implies the presence of wheel/track deformation and
the absence of terrain surface deformation, thereby isolating the friction due to rolling resistance. Moving
from hard surfaces to arbitrarily soft terrain surfaces, the third level of the resistance hierarchy, isolates the
friction forces attributed to soil deformation.

Definition 3.5: The resistive force related to the deformation characteristics of the terrain surface is defined
as the soil deformation force Fgp and represents the difference between the towing force Frou On a level,
soft terrain surface and the combined resistances due to moving element friction MEF and rolling element

friction REF. The soil deformation force Fgp can be written as
Fsp =Frow = Fmer — Frer (3.26)

Thus, all resistive forces defined for the towed vehicle model are assumed 10 be the result of various types
of Coulomb friction.

Assumption 3.3: The resistive forces due to moving element friction, rolling element friction, and soil
deformation are all proportional to the normal force N and are independent of vehicle velocity and terrain
slope.

This assumption is of fundamental importance to the towed vehicle model and is generally supported by

Coulomb’s Laws and experimental evidence.

b. Energy Efficiency
A topic of paramount importance in the analysis of resistive forces for vehicular systems
is the issue of energy efficiency. Energy efficiency, as related 1o resistive forces, is expressed quantitatively

in [Ref. 43] by the introduction of a dimensionless parameter ¢, called specific resistance, defined as

.U
€= meD (327

where U is the total energy required to travel a distance D on level terrain, and mg is the weight of the
vehicle in motion. To further expand the notion of specific resistance, it is useful to introduce the concept
of power P or the time rate of doing work. The power developed by a force F which does an amount of
work U is

dU
p== 3.28
& (3.28)
or equivalently,
U= jP . (3.29)

Using the definition of differential displacement ds=vd!, Eq. (3.29) becomes

U=|—ds. (3.30)

The resulting expression for the total energy is

v="13 331

v

where § is the distance traveled. For constant speed on level terrain, the ratio of the power required 1o low
the vehicle to the product of the vehicle weight and speed is defined in [Ref. 44) as mechanical specific

resistance €, expressed quantitatively as

P (3.32)
mgv

]
(%)

Using an alternative definition of power P=Fv derived from Egs. (3.5) and (3.28), and assuming F
represents the owing force Fyow , the definition of Eq. (3.32) can be rewritten as

F
g= —2¥ (3.33)
mg
or simply,
FM' =gemg. (3.34)

Eq. (3.34) can be interpreted as the force required to overcome all resistive forces and pull the vehicle
across a level terrain surface at constant speed. Thus, the term &mg represents a composite resistive force
opposing the towing force in the state of static equilibrium. On level terrain, it is assumed that the resistive
forces are the result of various types of friction, eliminating the force of gravity from consideration. The
mechanical specific resistance € is a composite resistance that includes components attributed to internal
moving element fricion MEF, rolling element friction REF, and soil deformation SD. The foliowing
definition formalizes the concept of a composite resistive force for a vehicular system.

Definition 3.6: The total resistive force that must be overcome by the towing force Frow to insure that a
vehicle keeps moving at constant speed is defined as the motion resistance force Fpy. The motion
resistance force consists of an internal resistive force Fyyr and an external resistive force F gy represented

by the expression
Fup =Fper + Fexr. (3.35)

Referring to the hierarchical description of friction developed carlier, the internal and external components
of resistive forces can be defined.

Definition 3.7: The internal resistive force Fjy7 represents the internal losses within the mechanical
systems of a vehicle duc to bearing friction and rolling element deformation friction. The resistive force is

measured on hard, level terrain at constant speed and is defined as

Fint = (Emer + Eper)mg (3.36)

where € represents the component of specific resistance related 1o internai moving element friction and
€ger represents the component of specific resistance associated with rolling element friction.

From Definition 3.7, it is evident that the intemal resistive force Fyay is strictly vehicle dependent and docs
not include additional friction effects resulting from the composition or configuration of the terrain surface.

Having isolated the forces of internal resistance, the external component is described.

KR

Definition 3.8: The external resistance force Fryy represents the external losses due to soil deformation
work. The resistance is measured on level terrain at constant speed without restricting surface hardness,

and is expressed as

Fer =egymg (337
where &g, represents the component of specific resistance associated with soil deformation,
In contrast to the internal resistive force Fyyr the external resistive force Feyy is dependent on both the

vehicle and the terrain. For motion over level surfaces, the external component of specific resistance €gp

differs from zero only on soft soils.

Using the results of Egs. (3.35), (3.36), and (3.37), it is evident that the motion resistance
force Fy;; opposing the towing force Fron is equal to the sum of the component resistive forces Fygr,

Frer, and Fg , expressed quantitatively as

FMR = EMEF mg + emmg + sSD mg (338)
or equivalently,
Fur = (Emer + €rer + Esp)mg. (3.39)

From Definition 3.6 and Eq. (3.39), a unified specific resistance is deveioped that provides a measure of the
total resistance to the towing force for a vehicle moving at constant speed.
Definition 3.9: The total specific resistance € is the sum of the component specific resistances Epgr , €pgr »

and €, and is written as

€=€yrr + Eger + Egp . (340)

Thus far, in the towed vehicle model, wtal specific resistance € has been defined on level
terrain only. As a logical extension, the model considers sloped terrain. By Assumption 3.3, the vehicle

motion resistance farce Fy on sloped terrain can be expressed as
Fyp = €N (341

where N =mgcos¢. Therefore, the towing force Frow required to keep the vehicle moving at constant

speed on sloped terrain surfaces (¢ > 0) is expressed as
Frow = Fyg + mg sing = emg cosd + mg sind (342

where mg sind represents the tangential component of the gravitational force. Thus, on sloped terrain the

3

towing force required to overcome friction is reduced due to a decrease in the normal force. It is evident
that the total specific resistance € is a function of the vehicle characteristics and soil type and is
independent of the terrain slope and velocity. This observation follows from Assumption 3.3.
¢. Vehicle Braking

With respect to the towed vehicle model, a significant factor in the snalysis of resistive
forces is the vehicle braking system. Vehicle braking tends to increase intenal moving element friction
(bearing friction) and results in an increase in energy losses during vehicle motion. Braking action is
achieved by ecither applying the brakes directly or initiating engine braking; i.e., downshifting. It is
important to describe, mathematically, the relative degree of braking in arder to quantify the amount of
energy losses.
Definition 3.10: For a vehicular system, the percentage of braking is defined by the braking coefficient A
and reflects a full range of conditions. At the two extremes, the braking system can be either fully engaged
or disengaged. A braking system engagement that lies between the two limits is defined as partial braking.

The range of braking coefficient values can be expressed quantitatively as
o Non-braking Condition: (A=0},
o Partial Braking Condition: {0<A<1]},

o Full Braking Condition: [A=1}.
The braking coefficient A is used in the towed vehicle model 1o adjust the resistive force due to internal
moving element friction MEF. In a situation where the braking system is fully disengaged, the moving
element friction force Fyer is assumed 10 come entirely from the bearing friction generated by all moving
components within the vehicle except the braking system. As the brakes are engaged, there is a
corresponding increase in the overall intemal moving element friction duc to the contribution of the
bearing friction resulting from contact of the braking surfaces. Although the vehicle brakes can be applied
at any time during travel, it is assumed that the braking system will be engaged only in situations where
vehicle motion is directed downhill, Therefore, the primary purpose of braking in the towed vehicle model
is to maintain a constant speed on downhill slopes; i.e. to avoid acceleration. Assigning an appropriate
braking coefficient A for a particular path segment has the effect of modelling the slope. The greater the
percentage of vehicle braking, the steeper the descent and the greater the total increase in the component of

total specific resistance attributable to internal moving element friction MEF.

‘»
n

Having introduced the concept of vehicle braking and the corresponding braking
coefficient, an extended definition of total specific resistance is developed that incorporates the increased
friction effects resulting from braking system engagements.

Definition 3.11: For a vehicle moving at constant speed on a fixed slope ¢, the total motion resistance is a
function of the braking coefficient A and is defined by the motion resistance coefficient x expressed as

= Frow — mgsing (343)
N

The motion resistance coefficient k represents the total specific resistance € adjusted for any vehicle

braking that may be required to maintain constant speed on downhill slopes.

With the above definitions, it is important that the limits of vehicle motion resistance x be
defined. The lower bound on vehicle motion resistance occurs on terrain with a slope that is gentle enough
that braking is not required.

Definition 3.12: Given a vehicle being towed on an arbitrary terrain surface with braking system
disengaged (A=0) and in high gear, the downhill slope angle at which the tension in the towing cable
begins to decrease, that is, begins to become slack, is defined as the crifical coasting angle ¢ .

Traveling downhill on terrain slopes that exceed the critical coasting angle (¢ > dcc) implies that the
force moving the vehicle is due entirely to gravity. At this point, the towing force Frow is equal to zero.
Conversely, traversing slopes that do not exceed the critical coasting angle (¢ < ¢) assumes the towing
force is positive. Using Eq. (3.3a) and the definition of motion resistance force, the equation of motion at

the instant when rolling begins is

emg cosdcc + mgsindec =0, (3.44)
or

£€mg cosdoc = —mg Sindcc . (3.45)
Rearranging terms, Eq. (3.45) becomes

-tandce =€ (3.46)
and therefore, the critical coasting angic can be expressed as

bcc = —tan'ls, (347)

Given the numerical value for the critical coasting angle ¢cc derived empirically, the solution to Eq. (3.46)

produces a lower bound on the vehicle motion resistance.

The upper bound on vehicle motion resistance occurs under conditions of full braking. In
the limit, just as the brakes become locked, the vehicle motion is no longer due to rolling, but instead, to
sliding. The component of total specific resistance attributable w0 intemal moving element friction eyzr is
at its maximum value under conditions of unity braking.

Definition 3.13: The minimum towing force Fyow required to initiate motion on an arbitrarily-sloped
terrain surface with the braking system fully engaged (A=1)) is proportional to the normal force N and
_represents the vehicle static sliding resistance |1, , defined quantitatively as

Frow — mgsing

N (3.48)

M, =

Eq. (3.48) is analogous to the standard definition of the coefficient of static friction in [Ref. 40) which is
concerned with impending motion. The force required to sustain motion is slightly less than the force
required to initiate the motion which necessitates the extension of Definition 3.13.

Definition 3.14: The towing force Fron required to keep the vehicle moving at constant speed on an
arbitrarily-sloped terrain surface with the braking system fully engaged (A=1) is proportional to the

normal force N and represents the vehicle dynamic sliding resistance 14, expressed quantitatively as

Frow — mgsind

= 349
Ma N ()

Eq. (3.49) is analogous to the traditional definition of the coefficient of kinetic friction [Ref. 40]. The
expressions for both forms of sliding resistance are simplified for the towed vehicle model by the following
assumption.

Assumption 3.4: For vehicular systems, the static sliding resistance ., is equal to the dynamic sliding
resistance [, and is designated as the vehicle sliding resistance p. The vehicle sliding resistance u is
invariant with the siope ¢ of the terrain surface.

Based on Assumption 3.4, it is nossible to develop an upper bound for the vehicle motion resistance. To

accomplish this, it is first necessary 10 define a critical angle associated with the slope of the terrain surface.

Definition 3.15: Given a vehicle at rest on an arbitrarily-sloped terrain surface with the braking system
fully engaged (A = 1), the slope angle at which the vehicle begins to slide down the incline is defined as
the critical braking angle ¢, expressed as

6cp =—tan”'p (3.50)

The critical braking angle ¢, in the towed vehicle model is analogous to the angle of kinetic friction
described in [Ref. 40). Thus, given an experimentally derived value ¢, for a particular vehicle, if Frow is
set to zero (slack towing cable), then an upper limit for vehicle motion resistance is given by

U= —tandcy (3.51)
where 1 is equal to the vehicle sliding resistance.

Given the definitions for total specific resistance € and vehicle sliding resistance L, a
unifying relationship is established based on the braking coefficient. This relationship determines the
portion of the total vehicle motion resistance attributable to the various components of resistance, as a
result of braking system engagement. From the above discussion, it is observed that the motion resistance

coefficient x has a lower bound equal to the total specific resistance € and an upper bound equal to the

vehicle sliding resistance p written as

E<XsSH (3.52)
where x is computed as a weighted sum of the two resistances, defined as

x=g+Au-€), 0<A<l. | (3.53)

The relationship of the vehicle motion resistance coefficient x to the braking coefficient A can be illustrated
by examining the three relevant cases.
Case 1: Braking System Disengaged

When there is no braking, A = 0, and the vehicle motion resistance coefficient is written as
K=Kpyn =€ (354)

The total resistance due to intemal moving element friction is minimized in the absence of any additional

friction caused by the vehicle braking system.

a8

Case 2: Braking System Fully Engaged
For full braking conditions, A = 1, and the vehicle motion resistance coefficient is defined as

K= KMAX =H. (3.55)

The total resistance due to internal moving element is maximized in the presence of additional bearing
friction caused by the vehicle braking system.

Case 3: Braking System Partially Engaged

For partial braking conditions, 0 < A < 1, the vehicle motion resistance coefficient is expressed as

E<K <M (3.56)

The actual value of the motion resistance coefficient x is computed using the appropriate percentages
obtained from Eq. (3.53) and the upper and lower bound definitions from Egs. (3.54) and (3.55).

Having described the conditions of vehicle braking, a relationship can be established
between the slope angle ¢, the critical coasting angle ¢, and the vehicle motion resistance coefficient x.
Given that a path segment S is derived from a position vector 3 which forms an angle ¢ with the reference

axis or datum, it is possible to develop a symbolic interpretation of the path segment.

o Uphill: {0<¢<90)
o Level: {6=0)
¢ Downhill: {-90<0<0}

With this symbolic interpretation, the following calegories are defined.
o Uphill: (x = kpyn =€) No critical coasting angle
o Level: (x =k =€) No critical coasting angle
o Downhill-1: (x=xyyx =€) {Occ <¢<0]
o Downhill-2: (x > €) {-90< ¢ < ¢cc)
The partitioning of downhill path scgments into two groups is important for encrgy-based path planning,
and is formalized in the following definition.
Definition 3.16: A vehicle traversing a downhill path segment § with slope angle ¢ greater than the critical

coasting angle ¢ defines a braking episode. Conversely, a vehicle traversing a downhill path segment §

with slope angic ¢ less than the critical coasting angle ¢¢c defines a non-braking episode.

In addition to the symbolic interpretation of terrain, the vehicle motion resistance coefficient x plays an
integral role in the calculation of energy costs as described in the following section.
4. Energy Cost

For path-planning applications using the towed vehicle model, the cost function is based on the
parameter of energy. From the basic definition of energy given in Section IILB.2, the energy cost
represents the towing force Froy applied to an arbitrary vehicle over a specified distance 4. The concept
of vehicle energy cost is developed in two phases; a local approach involving a single path segment, and a
global approach involving multiple, connected path segments.

a. Local Energy Cost

The energy required to overcome the effects of vehicle motion resistance and the force of

gravity across a single path segment § represents a local energy cost. Substituting the vehicle motion

resistance force Fy into Eq. (3.17), results in a more specific definition of energy cost, expressed as
U, —s, = Furd + mgsingd. (3.57

Eq. (3.57) separates the energy cost attributable to the vehicle motion resistance from the energy cost
associated with gravity. The energy cost due to motion resistance can be expressed in terms of the
projected path distance D which gives rise to the following definition.

Definition 3.17: The energy cost associated with the application of the tangential component of the toving

force across a projected path segment PS of distance D represents the resistance energy cost R defined as
R =xmgD. (3.58)

It is noted that the expression of the resistance energy cost R in the form defined by Eq. (3.58), is possible
due to the cancellation of cosine terms associated with the normal force and calculation of the projected
path distance. The resistance encrgy cost R is associated with the horizontal component of the total
impedance 10 motion for vehicular travel with the vertical component resulting from the gravitational force
and potential-energy considcrations. As this point, a distinction can be made betweer the tangential motion
axis described previously and the horizontal axis on which the resistance energy cost is defined. The latter
(horizontal axis) contains the path segment that is the projection of the path segment contained in the
former (tangential motion axis). This distinction is fundamental to the towed vehicle model since it
facilitates the computation of motion resistance along a single axis. Thus, the resistance energy cost R is a
function of the vehicle motion resistance coefficient x and the straight-line distance D projected along the

horizontal axis. Figure 3.2 illustrates the two components of energy cost for a single path segment. The

40

Path Potential
Segment Energy
[Cost

(mgh)

Resistance Energy Cost

Figure 3.3 Components of Energy Cost

concept of resistance energy cost is formalized with a simplifying assumption and the following theorem.
Assumption 3.5: The vehicle motion resistance coefficient x is invariant across a path segment S and its
associated projected path segment.

Theorem 3.1: If 3 is the position vector defining the path segment S, then the energy cost of vehicle travel
between the initial and final points defining the path segment is equal to the sum of the resistance-energy
cost R for the projected path segment and the potential-energy change mgh between the two endpoints of
the path segment, and is defined quantitatively as

Upee, = R +mgh = mg(xD + h) (3.59)

where R = mg xD represents the energy losses due to Coulomb friction for the path segment and 4 is the

change in elevation over the path segment.

41

Proof: From Eq. (3.3b), the normal force N can be rewritten as

N =mgcosé (3.60)
and therefore,
Fyp = xmg cosé. (3.61)

Substituting into Eq. (3.23), the basic energy equation can be expressed in terms of resistive and braking

coefficients as
U, e, = Xmg cos¢[—D—] +mgh (3.62)
cosé
or equivalently,
U, e, = XmgD + mgh. (3.63)
QED.

Eq. (3.63) represents the total energy required for a vehicle to overcome the effects of friction and gravity
and maintain constant speed on an arbitrary path segment S with slope ¢. From Theorem 3.1, the
following generalization can be made with regard 1o the limits of the motion resistance coefficient x and
resistance enecrgy cost R .

Corollary 3.1: For a given path segment S the resistive forces acting on the vehicle have a lower bound of
KyyvN and an upper bound of Ky N which results in an upper and lower bound for resistance energy cost

R expressed as

R = KMIN ng N (364)
and
R = Kamax ng (365)

The concept of local energy cost is extended by defining vehicle travel over multiple, connected path
segments.
b. Global Energy Cost
For simple plane motion, Eq. (3.12) is extended by introducing the concept of multiple
path segments, and the notion of connectivity between path segments. Figure 3.4 illustrates an instance of

a multiple path segment.

Definition 3.18: Two path segments S; and §; with endpoints (s;,, s;,} and (s, 5;2), respectively, are
connected, denoted by §; «— S, if they share a common endpoint; i.e., 5;) =5;y, $i) = $j2, 5,2=$;,, Of
;r,-2=s,-2. Thus, any path segment S, sharing a common endpoint with another path segment §;, such that
the common endpoint is the termination point for at most two path segments, is defined as a connected path
segment.
With this definition, it is possible to address the issue of multiple path segment traversal and the total
distance covered during vehicle motion.
Definition 3.19: A finite set of connected path segments (S,,55,...,5,}, n>1, such that §; «— S,,
S2698,..., S,y &« §,, defines a global path GP . The length of the set of connected path segments is
designated as the global path distance d, and is the sum of the lengths of the individual path segments,
expressed quantitatively as

dy = f_‘,d,- (3.66)

=]

n-1
s
2
S
2
§
connected connected
path path ¥
segment 1 segment n
:>
5y x

Figure 3.4 Multiple Path Segments

Thus, the total work done over a global path GP is defined as

Uin = XFrowd; =Frowd, + -+ + Frow d, (3.67)

i=]
where each component term in the summation represents the work done over an individual path segment

S;. Substituting the equivalent opposing forces, Eq. (3.67) becomes

Usan = 3 (Fuun, + g sind)d; = (Fag, + mg Siny)d; + - + (Fian, + mg siné, d, . (3.68)

i=]
The resulting expression for the total work done by the towing force Froy over the giobal path of

connected path segments is
Uion = (Fupdy + mgsingd,) +- -+ + (Fyp du + mg sing, d,). (3.69)

Simplifying Eq. (3.69) results in the expression

Uion = XFurd, + mgY sing;d, (3.70)
i=l i=]
or equivalently,
U)—vn = ZFMR,dA + mnghl . (371)
i=1

=]

It is evident that the sum of the elevation changes for the path segments can be expressed globally as
2Ah =h; —h, =h, 3.72)

i=]

where h; and h, represent the respective terrain elevations at the start and finish of vehicle travel. Using

this definition, Eq. (3.71) can be rewritten as
Ul—-m = ZFMR,dI + Mgh‘ (373)
i=]

and, thus, defines a global energy equation for multiple path segments. With this definition, it is evident
that the global energy equation has both conscrvalive and nonconservative components that represent the
total change in potential energy and the total mechanical losses due 1o friction forces acting over the entire
path. The results of Theorem 3.1 arc extended to compute the energy costs for vehicle travel over a finite

sct of connected path segments.

Theorem 3.2: If {§,,S,,....5.) is the set of connected path segments defining a global path GP, then
the global energy cost of vehicle travel between the initial point on path segment S, and the final point on
path segment S, is equal to the sum of the resistance energy costs R; for all projected path segments and
the global potential-energy change mgh, , and is expressed as

n
Uisa =(TR) +mgh, = mg

i=]

(i‘,vq D;)+ h,] (3.74)

i=]

where each R; = mg x,;D; represents the energy losses due to Coulomb friction for an individual projected
path segment and mgh, is the elevation difference between the initial and final position of the vehicle.
Proof: The proof is a trivial extension of the singular path case expressed by Theorem 3.1, Let the resistive
force for path segment S; be represented as Fyp, = x;mgcosd;. Substituting this expression and the

definition of projected path distance, Eq. (3.22), into Eq. (3.73), results in the expression

L] D‘_
Uiow = E(K: mg cosg;) —CO—SQ} + mghg 3.75)
or equivalently,
Ui =(ZR) +mgh, = mg (X x.D;)+mgh,. (3.76)
i=] i=]
QED.

The preceding theorem is designated as the energy cost separation theorem. From the proof of Theorem
3.2, the following gencralizations can be made with respect to the slope ¢ of the terrain and the global path
traversed by the vehicle.

Corollary 3.2: Resistance-energy cost R is a function of vehicle motion resistance x, vehicle weight mg ,
and the projected path distance D, and is, therefore, independent of terrain slope 0.

Corollary 3.3: The global potential-energy change mgh, for a vehicle traveling between any two points on
the terrain, described by a global path GP is a function of the initial and final position of the vehicle, and is
thercfore, a constant, independent of the vehicle path.

The results of Corollarics 3.2 and 3.3 are fundamental to the towed vehicle model and the solution to the
global, minimum-energy, path-planning problem. Evidently, for plane motion, the problem of finding
minimum-cnergy paths can be viewed simply as a function of the vehicle motion resistance cocfficient x

and the total straight-linc distance D of the connected path segments projected onto the horizontal axis.

The actual computation of the coefficient of motion resistance x; for a given path
segment depends on the value of the braking coefficient A. While the value of A; for a particular path
segment can be measured empirically, an alternative method is proposed.

Theorem 3.3: If for a given path segment S; the traversing slope ¢; exceeds the critical coasting angle
écc. that is, A > 0 and the path is classified as a braking episode, then the resistive-energy cost R; is equal
10 the potential-energy loss —mg Ah.
Proof: For braking episodes, the equation of motion is expressed as

Frow = Xmg cosd + mgsing = 0. (3.7
Solving Eq. (3.77) for x, the value for the coefficient of motion resistance is expressed as

X = —tan¢. (3.78)
Substituting Eq. (3.78) into Eq. (3.63) the energy equation can be rewritten as

U,, s, = —mgD tan¢ + mgh, 3.79

where —D tan¢ = —Ah . Since the towing force is zero in braking regions, the total energy equation can be
expressed as
k k
Uisn = sngD‘ + ngAh. (3.80)
where the k path segments are non-braking episodes. Eq. (3.80) can be rewritien as
k n J
Uisa = engD, + mg‘EAh, - ngAh, , (3.81)
where the j path segments are braking episodes and the n path segments are the combined braking and
non-braking episodes.
Rearranging terms, Eq. (3.81) becomes

k] n
U,_,,,=t:ngD,+ng|Ah,l+ngAh,, (3.82)
i=] 1= i=]
or equivalently,
& J
Ul—m =ngD, +ng|Ahul +mghg~ (383)
i=] =]
QED.

46

Thus, Eq. (3.83) is a generalized equation that provides a methodology for computing resistive-energy
costs for both braking and non-braking episodes while maintaining the global, path-invariant component
for potential-energy cost. Specifically, the energy cost involves only horizonsal distance traveled in non-
braking episodes, only vertical distance traveled during braking episodes, and a path-independent constant.
All three terms in Eq. (3.83) are slope independent.

C. MOTION IN THREE DIMENSIONS

Vehicle motion in two dimensions has been described and the corresponding energy cost equations
developed. Now, the towed vehicle model is extended 1o the next level of complexity involving motion in
three dimensions. In the three-dimensional representation, vehicle motion is constrained to the terrain
surface and maintains the restriction of fixed, straight-line path segments. The extended model is described
in two distinct phases: for restricted and unrestricted vehicle motion.

1. Restricted Three-dimensional Motion

The first phase of the extended towed vehicle model involves motion on a restricted, three-

dimensional, cylindrical surface. A cylindrical surface is a special case of a ruled surface which is defined
in [Ref. 45} as a surface that, for every point on the surface, there is at least one straight line passing
through it that lies entirely in the surface. In general, a cylindrical surface is construcicd by sweeping a
straight line along a curve. To establish a frame of reference for cylindrical terrain, a three-dimensional
Cartesian coordinate system is defined with the x and y axes representing the reference or datum plane, and
the z-axis describing the terrain elevation according to the function z = f (x,y). For a topographic map
interpretation of the reference plane, the y-axis equates to compass direction north at an azimuth of zero
degrees. From this baseline, subsequent azimuth readings are measured in a positive, clockwise direction.
For the towed vehicle model, a restricted form of a cylindrical surface is defined from a geometric and
topological perspective.
Definition 3.20: A restricted cylindrical surface generated by moving a straight line of length L parallel to
itself along a global path GP represented by a set of connected path segments {S;,S,.. .., S.).n2l,is
defined as cylindrical terrain. Cylindrical terrain consists of a set of rectangular, connected planar surfaces
{(Pi,Py.... P,), called cylindrical terrain patches. Each cylindrical terrain patch P, has dimensions 4,
by L, where d, is the length of path segment S, .
In order 10 define the boundary of a cylindrical terrain paich P the concept of an undirected line segment is

introduced.

47

Definition 3.21: A straight line bounded by the two endpoints V, and V,, where each endpoint is described
by its Cartesian coordinates (x,, y,, z,) and (x,, ¥. z,), respectively, represents an undirected line segment
and is defined as an edge segment E .

As with path segments, there is a notion of connectivity between edge segments.

Definition 3.22: Two edge segments E; and E; with endpoints {¢;;, ¢;,) and {e;;, ¢}, respectively, are
connected, denoted by E; «— E;, if the two edge segments share a common endpoint; i.c., & =¢;;,
€1 =¢j3, ;3= ¢;y, Of ¢;3=¢;,. Thus, any edge segment E, sharing a common endpoint with another edge
segment E,, such that the common endpoint is the termination point for at most two edge segments, is
defined as a connected edge segment.

Thus, a cylindrical terrain patch P can be defined geometrically by the plane equation
Ax + By + Cz +D =0 and a set of four connected edge segments {E,, E,, E 4, E,} forming a bounded
rectangular planar surface in three dimensions. Each edge segment E; can participate in 1<n<2
cylindrical terrain patches, depending on its location in the sequence of connected paiches.

Figure 3.5 provides several views of a restricted cylindrical terrain surface generated from a global path
GP.

To quantitatively describe the surface configuration of cylindrical terrain, it is necessary to
exlend the concept of slope and discuss spatial change in three dimensions. As previously stated, slope is a
two-dimensional concept expressing the vertical change in land surface over a specified horizontal distance
and is always measured between two points on the terrain. In three dimensions, the concept of slope can be
generalized to that of the gradient representing the maximum rate of elevation change occurring on a
surface measured at a particular point [Ref. 46). Since the gradient represents spatial change in three

dimensions, it can be viewed as a vector with two distinct components defined quantitatively in [Ref. 41} as
dz 0z
Vf=|—,— .
f [ox ay] (384)

where the partial derivatives of z = f (x, y) represent the partial slopes in the x and y directions of the
topographic map plane. The partial slopes in the x and y directions are termed the x-slope and y-slope,
respectively. Thus, the maximum rate of change of the terrain surface at any (x, y) map location is defined

as the gradient magnitude G,, and is expressed as

48

"Side View"

"Oblique View"

Figure 3.5 Restricted Cylindrical Terrain

2 2V %
_[[24%,]2
oue[[2]" (2]

With this definition, the issue of maximum slope for cylindrical terrain patches can be addressed. The

angle between a cylindrical terrain patch P and the topographic map plane is defined as the gradien!

inclination angle ¢ and is expressed as
2 2Y v
SR B - 4
¢=tan [[ax] +[8y] J . 056 <9. (3.86)

The gradient inclination angle ¢ represents the maximum slope of a straight-line path over a rectangular
surface patch with respect to a predefined reference plane.

49

For the towed vehicle model, it is important to know the direction of the spatial gradient as well
as its magnitude. The direction of the spatial gradient is defined in [Ref. 46] as the gradient azimuth angle
& and is measured in the topographic map plane. The gradient azimuth angle 8 is obtained by employing a
Jour quadrant arctangent function defined as

- 1] /g
8, =1an 3 Jox” dz /dx >0, | (3.87a)
and
= -1 oz /a!
8, =180+ tan 32 oz oz /ox <O. (3.87b)

Since the arctangent function uses the x-axis as its reference axis, it is necessary to adjust the gradient
azimuth § to correspond to the topographic referencc frame defined for the towed vehicle model. The
adjustment amounts to a simple 90 degree shift in the gradient azimuth § for the appropriate quadrants and

is expressed as

$=90-9,, 0dz/0x >0, (3.88a)
and

6=90+(360-3,), 0z/0x <O. (3.88b)

The resulting value of & is measured in a clockwise direction from the y-axis (north) and represents the
direction of steepest descent. Thus, for a given cylindrical terrain pawch P, the gradient azimuth &
describes the orientation of the rectangular surface patch. For cylindrical terrain, in general, the oriemation'
of pach P; is equal either to the orientation of patch P,, or to that orientation 180, for ali P, ¢

{P,P,...,P,). It should be noted that the gradient inclination angle and gradient azimuth are strictly

dependent on a particular cylindrical terrain patch, and are therefore, static in nature.

Given the definitions for maximum slope and orientation, it is appropriate to introduce the
concept of path segments in three dimensions. To accomplish this task, it is necessary to extend Definition
3.1 which defines path segments for two-dimensional motion. If a point O defined by Canesian
coordinates (xq, yo, zp) represents the origin of a three-dimensional coordinate system and the initial
position of the vehicie, and point P defined by coordinates (x, . ¥, . 2,), represents the final position of the
vehicle, the vector 3 describes a unique directed line segment OP . If ¥ = OP , then the coordinates of P are

defined as components of 3* represented by the 3-tuple (s), 55, 53), and ¥ is the position vector of point P.

The components of vector 3* can be expressed in terms of unit vectors defined for each of the three
coordinate axes, ie., 1=(1,00), =(0,1,0), and E=(00,1). Thus, ®=(s,, 5, 59 is given by
r= s,x"+ s,]’ + s;f' and is interpreted in the same manner as vector components in two dimensions.
Definition 3.23: For motion on restricted cylindrical terrain, a three-dimensional vector 3*= (s,, 53, 53)
lying entirely within a single cylindrical terrain patch, that is, satisfying the plane equation and the
boundary conditions, is defined as a path segment S where s,, 55, and s, represent the components of ¥
along the x, y, and z axes, respectively. The length or magnitude of 3, denoted by | 3* |, is designated as the
terrain distance d and is computed as the three-dimensional version of Euclidean distance defined as

d=(s2+s2+sD)% (3.89)

4
For the towed vehicle model, several important relationships exist between path segments, edge

segments and the topographic map plane. The first relationship involves a path segment § and its
projection onto the topographic map plane, and provides the distinction between overland distance and the
distance measured on a two-dimensional topographic map.

Definition 3.24: Let "= (1,0,0) and "= (0,1,0) be unit vectors along the x and y axes and let 3* = (s,, 53, 53)
represent an arbitrary position vector defining a path segment S. The projection of 3* onto the topographic
map plane, or the components of 3 in the _and] directions, denoted by 5,7+ 5,7, is defined as a projected
path segment PS. The length or magnitude of the projected path segment PS is designated as the map

distance D and is expressed as

D?=1PIcosp =3)+ (T], (3.90)
or equivalently,
‘A
D= [(Xz—x1)2+(yz-y1)2] =dcosd (3.91)

where ¢ is the angle between 3 and the topographic map plane.

The concept of path segment projection is readily extended to edge segments using Definition 3.21.
Definition 3.25: Let E be an arbitrary edge segment with endpoints V, and V, described by Cartesian
coordinates (x,,y,,z,) and (x, ¥, z,), respectively. The projection of edge segment E onto the
topographic map plane is defined as a projected edge segment PE with endpoints V,” and V,’ described by
coordinates (x,,y;,0) and (x,,y,, 0), respectively. The length of the projected edge segment PE is
computed using Eq. (3.91).

51

For three-dimensional motion, the direction of travel is an important factor in the consideration
of energy costs and is a key factor in the determination of vehicle stability. The direction of vehicle travel,
as represented by a magnetic compass heading is defined as the vehicle heading azimuth angle y and is
measured in a positive, clockwise direction from the previously established baseline, y-axis (north), in the
topographic map plane. The vehicle heading azimuth angle y can also assume a full range of compass
headings, i.e., 0 <y < 360. But unlike the gradient inclination angle ¢ and gradient azimuth 8, azimuth
angle v is strictly independent of any cylindrical terrain patch. There is an important relationship between
the direction of vehicle travel y and a projected path segment PS. A projected path segment PS forms an
azimuth angle with the y-axis in the topographic map plane that is equivalent to the vehicle azimuth .

The relationship between the vehicle heading azimuth angle y and the gradient azimuth 8§
provides the foundation for path segment classification.

Definition 3.26a: Given a cylindrical terrain paich P with gradient and vehicle azimuths & and v,

respectively, if

y=38 (3.92a)
or

v =3+ 180 mod 360 (3.92b)

then the vehicle is traveling along a gradient path. The path segment S within the cylindrical terrain patch
P defines a gradient path segment.

Satisfying the conditions of Eq. (3.92a) implies that the vehicle motion is in the downhill direction along
the line of steepest descent. Fulfilling the conditions of Eq. (3.92b) implies that the vehicle motion is in the
uphill direction along the line of steepest ascent.

Definition 3.26b: Given a cylindrical terrain patch P with gradient and vehicle azimuths § and v,

respectively, if

v =38 + 90 mod 360 (3.93a)
or

v =3+ 270 mod 360 (3.93b)

then the vehicle is traveling along a contour path. The path segment § within the cylindrical terrain paich

P defines a contour path segment.

52

Traveling along a contour path is analogous to following a contour line on a topographic map. In a
mathematical sense, it equates to traveling along a level curve or path perpendicular to the gradient at every
point. A third category of path segment is defined for path segments that do not fall within the limits of
gradient or contour paths.

Definition 3.26¢c: Given a cylindrical terrain patch P with gradient and vehicle azimuths & and v,
respectively, if

0 <x<9%
9 <x<180
180 < x <270
270 < x < 360

v =28+x mod 360 (3.94)

then the vehicle is traveling along an oblique path. The path segment § within the cylindrical terrain patch
P defines an oblique path segment.

Figure 3.6 provides examples of the three general path classifications. .
PATH
—,/—/l-\
Gradient Oblique Contour
—_—
h
¢ ¢ ’

Figure 3.6 Path Segment Classification

§3

Evidently, when a vehicle travels along a non-gradient path, it encounters a slope on a
cylindrical terrain patch that is less than the actual gradient inclination angle ¢ of the patch. This
inclination angle is important in the computation of energy costs for trave! across natural terrain.
Proposition 3.1: The actual slope encountered by a vehicle in three-dimensional motion on cylindrical
terrain is a function of the direction of travel and the surface configuration of the cylindrical terrain patch
where the motion occurs and is defined as the vehicle heading inclination angle © expressed quantitatively

as
0=tan™ Icosy tan¢|. (3.95)

Proof: Let cylindrical terrain patch P defined by the set of connected edge segments (E,, E,; E5. E4)
contain a path segment S satisfying the plane equation and boundary conditions for the patch. Let a
rectangular bounding box B consisting of the set of connected edge segments (Es, E¢, E4, Eg) define a
cylindrical terrain subpatch P, which encloses the two endpoints of the path segment § such that the two
points define a pair of diagonal vertices of the bounding box B. Let L and d represent the width and
length, respectively, of patch P and L, and d, represent the dimensions of subpatch P,. Let 4, represent
the length of the path segment § and Z be defined as the maximum terrain elevation of subpatch P,. Let
the projection of segments S and E onto the topographic map plane define projected segments PS of
length D, and PE of length D |, respectively.

There are three cases to be considered for gradient, contour, and oblique paths. Gradient and
contour paths are special cases representing the limits of the more general (oblique path) case. Using the
illustrations of Figure 3.7 the vehicle heading inclination angle © is derived for the general case with
respect to the first quadrant. The top view in Figure 3.7 represents the projection of the cylindrical terrain

subpatch onto the topographic map plane. From this view, the vehicle azimuth y can be written as

D

= coc-t —L
Y =cos D, 3.96)

Viewing the subpatch from the side, the gradient inclination angle ¢ can be expressed as

Z

= tan~ &
¢ =tan D, 397

54

The diagonal view is generated by conceptually slicing the subpatch along the path segment S . From this
perspective, the vehicle heading inclination angle 8 can be written as

4 1Z1

D, 620. (3.98)

0 =tan

Solving Egs. (3.96) and (3.97) for Z and D, respectively, and substituting the results into Eq. (3.98), it is
evident that

tand = | cosy tan¢ | 3.99)
or equivalently,
0=tan Icosy tano!. (3.100)
QED.

Eq. (3.100) can be generalized to account for the orientation of the cylindrical terrain subpatch P, and
thereby extending the results to all four quadrants with a full range of compass headings. Incorporating the
gradient azimuth § the resultant equation for the four-quadrant vehicle heading inclination angle 6,

becomes
A, =tan™! I(—cos(8 - y) tang)!. (3.101)

Referring to Eq. (3.101), the term —cos(8 —) represents a weighting factor and can assume values from -1
to +1. Therefore, the absolute value is needed to make 8 non-negative. The weighting factor determines the
magnitude and sign of the four-quadrant heading inclination angle 6,. Positive values of 8, indicate uphill
travel while negative values of 0, imply downhill travel. For gradient paths, the four-quadrant heading
inclination angle 6, assumes its maximum (absolute) value and is equal to * the gradient inclination angle
¢. For contour paths, where the vehicle is tilted along a side slope as it travels along a level curve, the
heading inclination angle 6 is equal to zero.

Proposition 3.2: Vehicle motion on restricted, three-dimensional, cylindrical terrain that follows a gradient
path, that is, a connected set of gradient path segments, is equivalent to simple plane motion.

Proof: Let (§,,S,,...,5,]), n21, represent the set of connected path segments defining a global path GP
such that each §; is a gradient path segment obeying the criterion of Eqgs. (3.92a) and (3.92b). Let
{PS,,PS,.PS,), represent the projected path segments generated from the projection of each §; onto
the topographic map plane. Let the plane, described by the equation Ax + By + Cz + D =0, intersect the

cylindrical terrain surface generated from the global path GP at the vehicle azimuth y and normal to the

55

Polyhedral
Terrain Patch

Reference Frame

4

x/ (Top View)

zf
(Top View) (Side View) (Diagonal View)

- —i

D
x Dl y 2

Figure 3.7 Heading Inclination Angle

topographic map plane. Each path segment S defined by its two endpoints s; and s, satisfies the plane
equation and therefore, is fully contained within the designated plane. Since every path segment § within
the set satisfies the criteria of the plane equation and the path segments are all connected, vehicle motion
can be assumed to occur tundamentally in two dimensions which is equivalent to modelling the vehicle in
simple plane motion.

QED.

Extending the range of motion on cylindrical terrain to include other than gradient paths, the

following theorem can be stated:

Theorem 3.4: If vehicle motion on restricted, three-dimensional, cylindrical terrain includes a full range of
possible headings, then the energy cost of vehicle travel can be expressed in terms of the heading

inclination angle 8 and the mution resistance force Fy, and is defined quantitatively as

U, = Fupd + mgsin6d. (3.102)

Proof: The proof is by substitution of Eq. (3.100) into the basic energy equation, Eq. (3.12).
Similarly for global paths, the energy equation can be expressed as
Uiaa = 2Fup d; + mg3 sing;d; (3.103)
i=} i=]
where Fyp = x;mgcosd; . Eq. (3.103) can be reduced using the relationships defined by Egs. (3.71) and

(3.72) 10 produce a global energy equation equivalent to Eq. (3.73) for multiple path segments on restricted
cylindrical terrain.

It is observed that Eq. (3.103) is general in nature and applicable to the three classes of vehicle
paths: gradient, contour, and oblique. The heading inclination angle @ can significantly alter the potential-
encrgy component of the basic energy equation. For example, a vehicle traveling along an oblique path
experiences a lesser change in elevation per unit distance than the same vehicle traveling along a gradient
path. Using the heading inclination angle 8 of the vehicle and the gradient inclination angle ¢ of the terrain
surface, Eq. (3.102) can be rewritten with respect 1o each of the path types. Substituting the heading
inclination angle 0 into Eq. (3.22), an equivalent definition is provided for the path distance d in terms of

the topographic map distance D expressed as

d=——, 0<56<5¢. (3.104)

For a vehicle traveling along a gradient path (8 = ¢), the energy equation is equivalent to Eq.
(3.57). The corresponding resistance energy cost R is defined by Eq. (3.58). A vehicle traveling along a
contour path on restricted cylindrical terrain experiences no change in elevation during its motion; i.e., its
heading inclination angle 8 is equal 1o zerv. Therefore, the potential energy is invariant along the path and
can be ignored. The basic energy equation in this situation is a special case of the general form of Eq.

(3.102) and becomes
U, s, =Fyrd. (3.105)

All motion resistance is attributed to the friction forces acting in the tangential direction to motion. Using

57

the same methodology employed for plane motion, the energy cost can be defined with respect to the two-
dimensiona’, topographic map plane. Eq. (3.105) can be rewritten in terms of the map distance D as

D
U,,_u, = Xmgcosd cose] (3.106)
or simply
U, e, = Kmg cosD. (3.107)

For oblique paths, the energy equation is expressed as

%:)EQ] + mgh. (3.108)

D
' + = D

U, e, = Xmg coscp[cosB

Physically, the term cosd/cos@ represents the ratio of the cosine of the terrain siope to the
cosine of the slope experienced by the vehicle on a safe traversal. 1t is noted that the resistance energy cost
R, defined as xmgD for gradient paths, is modified slightly for non-gradient paths. This modification is
due to a "cosine effect” on the magnitude of the normal force N resulting from the gradient inclination
angle ¢ and the orientation of the vehicle on the slope. The cosine effect is limited by the minimum
possible heading inclination angle that the vehicle can traverse on a sideslope before overturning.} For
example, on relatively steep slopes, cosine ¢ is smaller than on more gentle slopes but the path cannot
deviate much from the gradient. Thus, the value of cosine ¢ is close to the value of cosine 8; that is, the
angle between a gradient path and a possible oblique path is necessarily small. This situation implies that
on steeper slopes the vehicle has a much smaller range of oblique headings permissible before to
experiencing a catastrophic overturn failure. On slopes that are less steep, cosine ¢ is larger and the path
can deviate more from the gradient. But the maximum value for cosine 8 is still 1. Thus, the range of
permissible obligue headings increases accordingly. Figure 3.8 illustrates the relationship between the
vehicle azimuth angle and the slope of the terrain surface for non-gradient paths. Eq. (3.108) shows that
the cosine terms effectively reduce the magnitude of the normal force. However, due 1o the limitations
discussed above, the reduction is less than five percent on the average for a wide class of military vehicles.
For the towed vehicle model, the cosine effect is assumed to affect the resistance energy cost R for

vehicles traveling oblique or contour paths minimally and is, therefore, ignored in the overall computation

1 Minimum slope occurs where vehicle heading differs maximally from gradient heading

58

Gradient Path
¢

“Steep Slope”

Gradient Path
¢

"Moderate Slope”

S = Safe F.ading Ranges U = Unsafe Heading Ranges

Figure 3.8 Cosine Effect on Non-gradient Paths

of minimum-energy paths. With this assumption, the energy equation for gradient paths is sufficient o
handle all classes of paths. The above analysis justifies the application of the energy cost separation
theorem to the three-dimensional case.

2. Unrestricted Three-dimensional Motion

To effectively model the complexity of natural landforms, a representative sampling of
elevation data points is required. The data set, which can be of varying degrees of resolution and accuracy,
is traditionally expressed in the form of a digital terrain database as described in [Ref. 13]. The digital
database provides the basis for the development of a solid geometric model which can be used to create an
unambiguous, informationally complete, mathematical representation of the terrain structure. For the towed
vehicle model, the definition of restricted cylindrical terrain is extended by constructing a generalized,

three-dimensional, planar surface within the same Cartesian coordinate system.

59

To accomplish minimum-energy path plannmny using the ray tracing approach, as opposed 1o
the classic grid-based wavefront approach, it is necessary to develop a terrain representation that considers
regions of uniform gradient. In general, the property of uniform gradient implies that, from any position
within a designated region, the terrain slope and orientation are constant within a designated threshold. The
continuous nature of the terrain can be approximated using several different geometric models, all
employing the uniform gradient property. These models can be viewed as a hierarchy of polygonal uniform
gradient regions each at an increasing level of complexity. In general, the terrain surface is represented by
an irregular polyhedron defined in [Ref. 45] as the arrangement of convex polygons such that a maximum
of two polygons meet at an edge. In the simplest case, joining every three data points results in a set of n
triangles forming the plan: r faces of the polyhedron.

Definition 3.27: A generalized, three-dimensional surface generated by taking a set of triangular surfaces
(Py,P,,P,},n>1, and joining the surfaces along the edges according to the topological constraints of
a polyhedral structure, is defined as triangular polyhedral terrain. Each piecewise flat surface patch P; is
designated as a triangular polyhedral terrain patch. A trianguiar polyhedral terrain patch P can be defined
geometrically by the plane equation Ax + By + Cz + D =0 and a set of three connected edge segments
(Ev.Ey Es) .

A special case of triangular polyhedral terrain occurs when two or more of the triangles lie in the same
plane.

Definition 3.28: A generalized three-dimensional surface generated by combining triangular polyhedral
terrain patches satisfying the same plane equation into a set of convex, planar polygonal surfaces,
(P, P,y ..., P, },n>1, and joining the surfaces along the edges according to the topological constraints of
a polyhedral structure, is defined as generalized polyhedral terrain. Each piecewise flat surface patch P; is
designated as a generalized polyhedral terrain paich. A generalized polyhedral terrain patch P can be
defined geometrically by the plane equation Ax + By + Cz +D =0 and a set of n connected edge

segments (E, E,. ..., E.},n23.

For the towed vehicle model, it is possible 10 generalize the concept of polyhedral terrain and
partition the map by aggregating data points with homogeneous properties. Specifically, the aggregation
process includes the data points that exhibit a constant gradient property within a designated threshold.

60

Definition 329: The aggregation of n constant gradient terrain data points, n 2 I, within a designated
threshold defines a polygonal terrain patch P. The set of n polygonal terrain patches (P, P,, ..., P,).
n 2 1, is defined as polygonal terrain.

Figure 3.9 provides an example of a polygonal temrain surface constructed from individual polygonal
terrain paiches. The concept of projected edge segments can be applied to polygonal terrain surface
patches.

Definition 3.30: The projection of a set of n connected edge segments {E, E,,....E,}, n 23,
representing the boundary of a polygonal terrain patch, onto the topographic map plane is defined as a
projected polygonal terrain paich PL. The set of n projected polygonal temain patches
{PL, PL,,...,PL,}, n 21, is defined as projected polygonal terrain. The set of projected polygonal
terrain patches {PL,,PL,,...,PL,}, n 21, forms a polygonal tiling of the two-dimensional topographic
map plane.

Each projected polygonal terrain patch possesses configuration characteristics (slope and orientation) that
are essential to energy-based path planning. The resulting segmentation of the terrain is based solely on the

POLYGONAL TERRAIN PATCH C°"“‘“‘d5’°P°
an
(Constant Gradient Region)

Constant Orientation
within
Threshhold

Figure 3.9 Unrestricted Three-dimensional Terrain

61

uniform gradient property and is not concemed with the topological constraints imposed on polyhedral
terrain surfaces. The uniform gradient regions represent the fundamental set of objects participating in the
search process for finding minimum-energy paths in natural terrain. In essence, the model views the path-
planning problem from a two-dimensional perspective retaining significant three-dimensional information
as required. Thus, the complexity of the problem is effectively reduced. A complete discussion of
polygonal uniform gradient terrain patches is presented in Section ITLE.

The energy equations developed for restricted cylindrical terrain surfaces are general in nature
and applicable to motion on polygonal uniform gradient terrain. The principal distinction between the two
types of terrain is the restriction placed on the shape and orientation of constituent surface patches.
Polygonal uniform gradient terrain facilitates unrestricted three-dimensional motion on a surface which

more closely approximates the complexity of natural terrain.

D. VEHICLE FAILURE MODES

For a given set of projected polygonal terrain patches (PL,,...,PL,}, representing a set of n
uniform gradient regions, it is possible to restrict vehicle movement over selected patches, or portions of
selected patches, because of the surface configuration, surface composition or direction of travel. For the
towed vehicle model, the restrictions on vehicle travel are designated as motion constraints. Motion
constraints are related to the maximum slope capability of the vehicle and the angles at which the vehicle
will overtum on a given slope. Motion constraints involving maximum slope capability depend upon the
configuration or geometry of the terrain surface as well as the composition and physical state of the
surface. Motion constraints relating to stability, in contrast, depend only on surface configuration and
vehicle azimuth. The restrictions on movement within regions can significantly reduce the global map area
1o be searched in the process of finding a solution to the minimum-erncrgy path-planning problem. It is
noted that failure modes such as hang-up failure (HUF) and nose-in failure (NIF) as described by Bekker
in [Ref. 25), are considered only in local path-planning problems.

1. Motion Constraints for Maximum Slope

Motion constraints for maximum slope exist in regions where the inclination angle of the

terrain patch and the soil composition together cannot provide sufficient support for a particular vehicle.
Therefore, sliding ensues. This type of motion constraint can be quantified using the concept of the critical
braking angle ¢q5. As previously noted, the critical braking angle places an upper limit on the vehicle

motion resistance coefficient x. Exceeding the upper limit on the motion resistance coefficient Ky x

62

represents a situation in which the vehicle, with its brakes locked, slides down the sloped surface. This
friction-force limitation, resulting from the soil-slope combination, is measured empirically and serves o
eliminate entire terrain patches from potential traversal. The motion constraints for maximum slope provide
the principal evaluation parameter in the identification and selection of regions of impermissibility or
obstacle regions for purposes of terrain classification. Obstacle and non-obstacle regions are discussed in
detail in Section ITLE.
2, Motion Constraints for Stability

Motion constraints for stability are primarily concemed with the possibility of the vehicle
overturning on a sloped surface. Previous formalizations of the criteria for determining vehicle stability are
given in [Ref. 47] and [Ref. 48). Following the same methodology as in the development of the energy
cost equations, the problem of stability is first examined in two dimensions for vehicles in plane motion and
subsequently extended to address stability-related motion constraints for unrestricted three-dimensional

motion.

For the two-dimensional representation, the vehicle can be viewed as a rectangle with

dimensions A x b, as Figure 3.10 illustrates. The distance b can either represent the length of the vehicle, if

i |

ceanseccceosws
CEXEIEXYX YT X
XENEE Y NS

"Stable Platform”

Figure 3.10 Two-dimensional Stability Model

63

traveling along a gradient path, or the width of the vehicle, if traveling along a contour path. Let the base
of the rectangle be represented by the edge segment E with endpoints P, and P, described by Cartesian
coordinates (x,,y;) and (x5, y,), respectively. Edge segment E is assumed to be collinear with the line
defining the slope. Let the center of gravity of the vehicle CG with coordinates (xcg, Ycg). be defined by
the intersection of the two perpendicular bisectors of h and b. Given the above configuration, the
projection of edge segment E onto the horizontal axis represents a projected edge segment PE with
endpoints Py, and P, described by coordinates (x,,0) and (x,, 0), respectively. Similarly, the vertical
projection of the vehicle center of gravity CG onto the horizontal axis is defined by the projection point P
with coordinates (x.g,0). The shortest distance from the vertical projection of the center of gravity P to
the endpoints Py, and P, of the projected edge segment PE represents the measure of stability for the

vehicle and is expressed quantitatively as
MIN[SM,,SMz] (3.109)

where SM,=1x,-xcc! and SM,= lx;-xc|. There is also the restriction that x; <xcg <x3 .
Evidently, the vehicle is at a point of maximum stability when the two distances are equal and becomes
progressively less stable as one of the two distances decreases. The threshold between stability and
instability is reached when the distance between P and either endpoint is zero. A state of instability exists
when xq; < x; Of xc > x,. This situation occurs when the vertical projection of the center of gravity
moves outside of the projected edge segment as illustrated in Figure 3.10. After stability in two dimensions
has been described, the model is easily extended to three dimensions.

Assumption 3.6: An arbitrary vehicle with massless extensions of length L, width W, and height / has a
center of gravity located at (xcg , Yeg» 2c6)-

By modifying the definitions of static stability for legged vehicles given in [Ref. 47] and [Ref. 48],
corresponding definitions are developed for the towed vehicle model.

Definition 3.31: The base of a vehicle with massless extensions of length L and width W is represented by
a set of four connected edge segments {E,, E,, E,, E4) positioned in the same plane that defines the
polygonal terrain patch. The rectangular polygon defined by these edge segments is designated as the
vehicle support boundary.

Using Definition 3.25, the edges of the support boundary are projected onto the horizontal plane; i.e., the

topographic map plane.

64

Definition 3.32: The projection of the set of edges {E,, E,, Ej, E,) representing the vehicle support
boundary, onto the topographic map plane forms a set of connected edge segments {PE,, PE,, PE,, PE,}
defined as the vehicle support pattern.

Given a particular support boundary and support pattern defined in the polygonal and topographic map
planes respectively, the vehicle center of gravity is vertically projected onto the horizontal plane. Again, by
geometry, the distance from the vertical projection of the center of gravity to any point on the vehicle
suppont pattern can be computed. Applying the definitions developed in [Ref. 47] and [Ref. 48] 10 the
crileria for vehicle stability in three dimensions gives the following definition,

Definition 3.33: For an arbitrary vehicle represented in three dimensions by a set of massless extensions on
a sloped terrain surface, the shortest distance from the vertical projection of the center of gravity to any
point on the vehicle support pattern is defined as the vehicle stability margin.

In the three-dimensional model, it is evident that maximum stability results when the vertical projection of
the center of gravity is at the exact center of the vehicle support pattern, that is, the point at which the
stability margin reaches its maximum value. The stability margin is assumed 10 be positive when the
vertical projection of the center of gravity is strictly within the support pattern and negative

otherwise [Ref. 48]. Figure 3.11 illustrates the concept of vehicle stability in three dimensions.

Given the two types of motion constraints for vehicle travel over arbitrary terrain surfaces, a
taxonomy of vehicle failure modes is developed. In general, a failure mode occurs when the vehicle
atempts to travel at a heading that exceeds the associated constraints for maximum slope and stability. As
a result, the vehicle is impeded from further movement across the particular terrain surface. The path and
path segment classifications previously defined, provide a framework for analyzing the situations in which
a vehicle failure can occur. For the towed vehicle model, three failure modes are defined.

Definition 3.34: The lack of sufficient friction force 10 keep a vehicle in a fixed position on a sloped terrain
surface when traveling in the direction of maximum ascent or descent, represented by the heading azimuth
v =38o0ry=38+ 180 mod 360, results in a gradient failure and is defined as a gradient failure mode.

As previously noted, with respect to motion constraints for maximum slope, a gradient failure represents a
situation in which the vehicle slides down a sloped surface due to the magnitude of the incline and the
composition of the soil. Gradient failures can also be attributed to stability considerations described in
Bekker [Ref. 25] as longitudinal failures. However, for the towed vehicle model, it is assumed that a
friction-force failure will occur prior to longitudinal overturn for any soil-slope combination when the

vehicle is traveling along a gradient path.

65

Vehicle
Center of Gravity

Support Boundary

Support
Pattern

—UA

/ N

Vertical Projection Stability
Center of Gravity Margin

Cop " "sornchons

Figure 3.11 Three-dimensional Stability Model

The second type of failure occurs when the vehicle orientation is + 90 degrees 10 the gradient
azimuth § of the terrain surface.
Definition 3.35: The lack of a sufficient margin of stability to prevent a vehicle from overturning on a
sloped terrain surface when traveling along a level curve, represented by the heading azimuth
¥ =38+90mod 360 or y =8+ 270 mod 360, results in a contour failure and is defined as a contow failure
mode.
Contour failures are only associated with stability-related motion constraints. Although it is theoretically
possible to slide down a terrain surface while traveling along a level curve, it is assumed that the maximum
angle at which overturn occurs is always less than the maximum angle at which a gradient failure occurs. If
this is not the case, then the entire terrain paich is eliminated from consideration due to motion constraints
for maximum slope, i.e., friction-force failure.
Definition 3.36: The maximum gradient inclination angle ¢ of a terrain surface at which a vehicle can

safely travel along a contour path of that same surface is defined as the critical stability angle ¢¢s.

For military vehicles typically involved in off-road travel, the critical stability angle bcs is described as the
maximum side-slope angle and is established by military doctrine. The critical stability angle ¢¢cs is
significantly smaller than the gradient inclination angle ¢ at which‘ the actual overtum occurs. The
magnitude of this difference is attributed to the size of the stability margin for a particular vehicle traveling
at a contour heading on a given slope. In this situation, the stability margin is considered a safety factor that
is employed to minimize the risk of a catastrophic overturn. With this definition, an observation can be
made with regard to the maximum side-slope angle and the maximum gradient inclination angle for an
arbitrary terrain patch. It is noted that the critical stability angle ¢ is always less than the critical braking
angle ¢cp for a vehicle traveling on an arbitrary terrain surface. This observation has significant
implications for the towed vehicle model; that is, an entire class of terrain paiches can be eliminated from
the potential search area because of motion constraints for maximum slope (friction-force failure). The

remaining terrain patches can be checked for possible stability problems.

The fina! failure mode is a combination of the previous two failure modes and can occur when
the vehicle is traveling along an oblique path. Using the previously defined stability margin associated with
the critical stability angle ¢¢s, an equivalent safety factor is applied to a vehicle negotiating a sloped
surface at an oblique heading angle.

Definition 3.37: The lack of a sufficient margin of stability to prevent a vehicle from overturning on a
sloped terrain surface when traveling along an oblique path, represented by the heading azimuth
¥=38+x mod 360, x #0,90, 180, 270, results in an oblique failure and is defined as an oblique failure
mode.

This type of failure implies that for an arbitrary terrain patch with no motion constraints due to friction
force failure, there is a range of oblique headings that a vehicle can safely travel without overturning.
Depending on the gradient inclination angle ¢ of the patch, the range of permissible headings can extend
symmetrically from the gradient heading to the contour heading. As the slope gets progressively steeper,
the range of permissible headings decreases in the direction of the gradient heading. Conversely, for a very
gentle slopes, there is a much wider range of permissible headings, increasing in the direction of the

contour heading. As with contour failures, oblique failures are only associated with insufficient stability.

Definitions 3.34, 3.35, and 3.37 provide a symbolic interpretation of the various classes of
vehicle failure modes. For the towed vehicle model, it is important o relate vehicle failure modes o a

vehicle azimuth, or heading, in order 10 avoid planning routes with a high probability of motion constraints.

67

Therefore, for each vehicle traversing a terrain patch, a determination must be made as to the ranges of
headings that are safe and the ranges of headings that are unsafe within the patch. Since the motion
constraints for maximum slope eliminate entire terrain patches due to friction-force considerations, the
remaining focus is on stability failures. Using the previously defined compass designation for the
topographic map plane with zero degrees due north, a critical heading angle is developed.

Definition 3.38: Let polygonal terrain patch P contain the support boundary of a selected vehicle and the
corresponding support pattern in the topographic map plane. The vehicle azimuth angle, measured from the
gradient azimuth angle & (or & + 180 mod 360) in the x-y plane, represents the point at which the stability
margin becomes less than the minimum allowable for safety considerations and is defined as the critical
stability azimuth .

An initial critical stability azimuth for the vehicle being determined, the concept is extended to create a set
of limiting bounds for a vehicle operating from a given position on a polygonal terrain patch.

Definition 3.39 The magnitude of the angle between the gradient azimuth 8 (o0 » + 180 mod 360) and the
critical stability azimuth .5 measured in the topographic map plane is defined as the stability offset a
where 0 < a < 90.

The stability offset represents the raiige of permissible headings for a particular vehicle on a specific terrain
surface with respect to a gradient path on that same surface. For a polygonal terrain patch P with gradient
inclination angle ¢ greater than the critical stability angle ¢, there are two sets of symmetric critical
stability azimuths {Wes), Wes—3), and (Wes_y, Wes—s), representing the ranges of vehicle headings that are
permissible for uphill and downhill travel without triggering a stability failure. For downhill travel (¢ < 0),

the critical stability azimuths are expressed as

Yes-1=0-a (3.110a)
and
Vcs_z = 8 + Q. (3.1 10b)

Negative values of ws_, are converted 10 a compass orientation by adding 360 w the initial result. Values

of y¢s-, that are greater than or equal to 360 are adjusted by subtracting a similar amount.

68

For uphill vehicle travel (¢ > 0), the critical stability azimuths become

Wes-3= {8+ 180 mod 360) - a : (3.111a)
and
Wes—= (8 + 180 mod 360) + a. (3.111b)

Corrections to critical stability azimuths for the proper compass orientation are computed as above. The
stability offset provides a mechanism for constructing two sets of critical azimuths that define the limits of
permissible heading ranges for a particular vehicle traveling across a uniform gradient region represented
by a polygonal terrain patch. The critical stability azimuths within each set are symmetric about the
downhill gradient azimuth 8§ or the uphill gradient azimuth § + 180 mod 360. Figure 3.12 provides an
illustration of the critical stability azimuths and the impermissible ranges of headings for a polyhedral
terrain patch.

To complete the discussion on heading constraints, one final set of critical azimuth angles is

proposed. While not affecting vehicle stability, constraints on vehicle headings due to braking phenomenon

Gradient Heading (VY = 5)

y A v

CS-1

Stable Stable

4

\/
0200
o,
&
&

N/

Unstable

}]Unstable

.’/

@,
S
5%

Q)
)

o

)
)

o¥

@
@

)
9

()

@
Q)
()

@,

X/
‘.
&
0

O

Contour Contour

Heading

R/
@,

5%

35
&
&

)

@,

%!

\/
()
.0

Heading

@,

@,
.0

\/
’0
)

@

)
)

Unstable

/
O

O
X

0:0
9,

.0

()

¢

Stable Stable

\

Gradient Heading (¥ = d + 180 mod 360)

Figure 3.12 Critical Stability Headings

69

are considered significant to the minimum-energy path-planning problem. The primary concern for
vehicles traveling an oblique path on a downhill slope is the azimuth angle at which braking is initiated in
order to maintain constant speed, that is, to avoid acceleration.

Definition 3.40: Given a vehicle being towed on a polygonal terrain patch P the vehicle azimuth y
measured from the gradient azimuth & in the topographic map plane, representing the point at which the
tension in the towing cable begins to decrease as the vehicle starts to roll downhill (a three-dimensional
interpretation of Definition 3.12), is defined as the crirical braking azimuth ycp .

An initial critical braking azimuth from Definition 3.40 having been determined, the concept is extended to
create a set of braking constraints for a designated vehicle on a given polygonal terrain patch.

Definition 3.41: The magnitude of the angle between the gradient azimuth & and the critical braking
azimuth Y-z measured in the topographic map plane, is defined as the braking offset B, where 0 < 8 < 90.
The braking offset B represents the range of braking headings for a particular vehicle on a specific terrain
surface with respect to the gradient azimuth on that same surface. For a polygonal terrain patch P with
gradient inclination angle ¢ there is a set of symmetric critical braking azimuths {Wcp_;. Wcp-2).
representing the range of vehicle headings where braking can occur during downhill travel. The critical

braking headings can be expressed quantitatively as

VYep1=8-B (3.112a)
and
VYep2=0+p. (3.112b)

All values are converted to the proper grid compass orientation using the approach outlined above. A
vehicle heading within the range of headings bounded by the critical‘braking headings ycg_; and ycp_, is
designated as a braking heading ygg . A vehicle heading that is not within the range of braking headings is
designated as a non-braking heading yyg. Figure 3.13 provides an illustration of the critical braking
azimuths and the range of braking headings for a polyhedral terrain patch.

From Figures 3.12 and 3.13, it is evident that there can be up to six critical headings defined
relative to a specific vehicle position on a polyhedral terrain patch, i.e., four for stability and two for
braking. An observation can be made with regard to the two types of critical headings. For an arbitrary
vehicle traveling along a downhill slope of a polygonal terrain patch where braking is possible and

stability-related motion constraints exist, the range of braking headings may or may not subsume the range

70

Gradient Heading (¥ =) + 180 mod 360)

A

Uphill Uphill

Contour Contour
Heading

Heading

Downhill Downhill

Braking Range v
CB-2 CB-1

Gradient Heading (V¥ =0)

Figure 3.13 Critical Braking Headings

of (downhill) stability headings. Figure 3.14 illustrates the relationship between the critical braking azimuth
and the critical stability azimuth for selected polygonal terrain patches. The motion constraints for
maximum slope and stability provide the foundation for the development of a terrain classification

methodology that is an essential part of the minimum-energy path-planning process.

E. SYMBOLIC TERRAIN

The components of the towed vehicle model presented in the previous sections developed a
framework for describing the interaction between an arbitrary vehicle and a mathematically defined terrain
surface with respect 0 the forces of gravity and friction. The terrain surface, represented by a polygonal
tiling, consists of a set of projected polygonal terrain patches described by connected edge segments. Each
projected polygon within the tiling maintains a constant gradient property that guarantees the uniformity of
the slope and orientation of the patch within a designated threshold.

To solve the minimum-energy path-planning problem, it is beneficial to attach symbolic descriptions
.+ the projected polygonal terrain patches promoting a classification based on the degree of difficulty of
traversal. The degree of difficulty is attributable to surface configuration properties and surface

!

Gradient Heading (VY = d + 180 mod 360)

}

Uphill Uphill
Contour Contour
He.ding Heldin;
¥y Unsafe Safe Safe Ungafe v
CB-2 CB-1
. Braking Braking
Downhill Range Range v Downhill
CS-2

Gradient Heading (VY = §)

Figure 3.14 Critical Braking and Stability Headings

composition properties. Partitioning the terrain surface patches into regions of similar characteristics is an
essential "preprocessing” phase in the path-planning process. A robust symbolic description of the natural
terrain provides a sound problem representation that facilitates reasoning about large regions of the map
instead of individual data points found in the gridded representations of digital terrain databases. The
ability to reason about large areas of the terrain with similar properties is fundamental to the ray tracing
approach proposed for planning optimal routes.
1. Taxonomy of bolic Terrain S es

In general, the classification of natural terrain can be related to the cost of traversing the terrain.
For the towed vehicle model, traversal costs are measured in terms of energy. A simple ternary
classification is used to describe the degree of difficulty a vehicle encounters in atempting to negotiate a
terrain surface. Thus, for a particular area of terrain, traversability with respect to energy expenditure and
motion constraints can intuitively be designated as go, no-go, or conditional-go. This designation is in
contrast to the traditional path-planning models such as [Ref. 49] that posit binary terrain using a strict go
or no-go criteria with respect to obstacle and non-obstacle areas. The additional category of conditional-go

results from a partitioning of non-obstacle regions by considering the concept of directional dependency.

72

To accomplish this classification, it is necessary to employ the principles of isotropism and anisotropism.
An isotropic phenomenon is one in which the relevant properties are identical in all directions. Conversely,
an anisotropic phenomenon is one in which the relevant properties differ according to the direction of

measurement.

By applying these principles to the towed vehicle model and the symbolic terrain, a
classification hierarchy is developed to assist in the partitioning process. The hierarchy can be viewed as a
three-level tree structure with each successive level providing additional classification information. The
polygonal terrain patch, or uniform gradient region, serves as a distinguished (root) node at level zero of
the tree. Each node in the hierarchy, with the exception of the root node, inherits classification parameters
from its ancestors. This produces a cumulative set of restrictions to assist in the partitioning process. Figure

3.15 illustrates the general tree structure that represents the classification hierarchy.

At level one of the hierarchy, a polygonal terrain patch can be classified as an isotropic region,
an anisotropic region, or as an obstacle region. In the ternary classification scheme, an isotropic region
corresponds to "go™ terrain, an anisotropic region corresponds to "conditional-go” terrain, and an obstacle
region corresponds to "no-go” terrain. The following definitions formalize the distinction between various

types of terrain in the classification hierarchy.

REGION
/' e —————
ISOTROPIC ANISOTROPIC OBSTACLE

Background Nested
Isotropic Isotropic

Region Region

Anisotropic Anisotropic
Safe Partially-Safe
Region Region

Figure 2.15 Terrain Classification Hierarchy

73

Definition 3.42: A polygonal terrain paich P with gradient inclination angle ¢ greater than or equal to the

critical braking angle ¢ is defined as an obstacle region and is expressed quantitatively as
&= dcs. (3.113)

Having isolated the regions prohibited from vehicular travel, the direction-dependent components are
defined.

Definition 3.43: An arbitrary polygonal terrain paich P in which the cost of vehicle traversal per unit
distance is independent of the direction of travel y and free from motion constraints is defined as an
isotropic region. An isotropic region describes a polygonal terrain patch P with gradient inclination angle

¢ less than the critical coasting angle ¢ expressed as

¢ < dcc. (3.114)

An isotropic region is distinguished by the fact that there are no motion constraints within the region and
no requirement to initiate braking to keep a vehicle moving at constant speed. Motion resistance is at a
minimum when a vehicle is traversing an isotropic region, that is, X = X,y = €. Thus, an isotropric region

can be interpreted as a region of maximum safety and minimum moveme: . cost.

The other significant class of non-obstacle regions is based on the principle of anisotropism.
The following definition formalizes the direction-dependent regions.
Definition 3.44: An arbitrary polygonal terrain patch P in which the cost of vehicle traversal per unit
distance is dependent on the direction of travel v is defined as an anisotropic region. An anisotropic
region describes a polygonal terrain patch P with gradient inclination angle ¢ greater than or equal to the

critical coasting angle ¢ and less than the critical braking angle ¢ written as

Occ SO <dcp. (3.115)

An anisotropic region is characterized by the absence of motion constraints for maximum slope and the
presence of potential stability problcms at centain vehicle azimuths. It also requires employing some form
of partial braking on downhill slopes to maintain a constant speed during the traversal of the region.
Motion resistance is at a level greater than the minimum resistance and less than the maximum resistance;
that is, Xyyy < K < Kyax- Thus, anisotropric regions can be interpreted as regions of moderate-to-low

safety and moderate-to-high movement cost.

74

The final level of the classification hierarchy partitions the isotropic and anisotropic regions as
appropriate. Isotropic regions can be categorized as either background or nested. The following definitions
formalize the two types of isotropic regions.

Definition 3.45: An arbitrary polygonal terrain patch P satisfying the criteria for isotropism, that is
completely surrounded on all sides by polygonal terrain paiches classified as anisotropic or obstacle, is
defined as a nested isotropic region.

Any isotropic region not classified as nested is designated as part of the general background region.
Definition 3.46: The large, concave region satisfying the criteria of isotropism, that remains after the
obstacle, anisotropic, and nested isotropic regions have been identified, represents a distinguished region
defined as the background isotropic region.

With this definition, polygonal terrain can be viewed as a finite set of polygons superimposed on an
isotropic background region. Figure 3.16 provides an illustration of the principal classes of polygonal
terrain patches viewed as a polygonal tiling of the two-dimensional topographic map plane.

TOPOGRAPHIC MAP PLANE
Background Background
Isotropic Isotropic
Region Region
A
. . Nested
Anisotropic [sotropic Anisotropic
Regions Region ‘_____7Regions
Background Background
Isotropic Isotropic
Region Region

Figure 3.16 Two-dimensional Representation of Region Classes

78

Anisotropic regions are partitioned into two distinct categories based on the presence or
absence of stability-related motion constraints. The following definitions formalize the two types of
anisotropic regions.

Definition 3.47: An arbitrary polygonal terrain patch P satisfying the criteria for anisotropism, with
gradient inclination angle ¢ less than the critical stability angle ¢, is defined as an anisotropic-safe region

expressed quantitatively as
bcc <O < d¢s. (3.116)

An anisotropic-safe region can be viewed as an area free from stability-related motion constraints in which
braking is required on downhill slopes in order to maintain constant speed within the region. Motion
resistance for an anisotropic-safe region has the same limits as the resistance defined for a general
anisotropic region. The presence of stability constraints within an anisotropic region provides the
fundamental restriction for the final direction-dependent region classification.

Definition 3.48: An arbitrary polygonal terrain patch P satisfying the criteria for anisotropism, with
gradient inclination angle ¢ greater than or equal 1o the critical stability angle ¢-¢ and less than the critical

braking angle ¢cp , is defined as an anisotropic-partially-safe region, written as
bcs SO <dcp. 3.117)

An anisotropic-partially-safe region can be interpreted as an area containing stability-related motion
constraints in which braking is required on downhill slopes in order to maintain constant speed within the
region. Motion resistance for an anisotropic-partially-safe region has the same limits as the resistance
defined for a general anisotropic region.
2. Anisotropic Obstacles

Traditional mobility models described in [Ref. 23] define an obstacle region as an area of the
terrain in which vehicle travel is restricted due to certain well-defined constraints that are, in essence,
direction independent. An infinite traversal cost is associated with the obstacle region. Since the region is
considered an "obstacle” irrespective of the vehicle azimuth y at which it is encountered, this region of
impermissibility can be described as an isotropic obstacle. With the introduction of the concept of
anisotropism for region classification and for the computation of traversal costs, a direction-dependent
virtual obstacle is defined based on the stability-related motion constraints ~~cociated with a particular

vehicle on a specified polygonal terrain patch.

76

Definition 3.49: Given an arbitrary vehicle located at position (xp, yp, zp) in an anisotropic partially-safe
region, the range of impermissible vehicle headings described by the set of critical stability azimuths
designates a virtual obstacle area defined as an anisotropic obstacle.
An anisotropic obstacle does not have a static physical boundary does an isotropic obstacle. The boundary
is dynamic in the sensc that the virtual obstacle is a function of the current position in the region and the
critical stability azimuths for that region. An anisotropic obstacle can be viewed as a wedge that fans out
from the wedge tip (current vehicle location) and intersects the boundary of the polygonal terrain patch. A
vehicle heading occurring within one of the designated wedges is considered an impermissible heading for
siability purposes. Changing positions within the anisotropic region results in a corresponding movement of
the wedges and creation of a new anisotropic obstacle. Figure 3.17 illustrates several occurrences of
anisotropic obstacles within a polygonal terrain patch.
3. Homogeneous Mobility Regions
The object of the towed vehicle model and associated symbolic terrain is to develop a two-

dimensional representation of the natural terrain in which the key factors in computing minimum-energy

CS-
Current |

Position

3
Virtual

Obstacle

Virtual

Virtual Obstacle
Obstacle Current

Position

-1

cs-1 ¢ ¢

Figure 3.17 Anisotropic Obstacles

77

paths are a function of the vehicle motion resistance and distance traveled in the topographic map plane.
The representation of the terrain as a set of polygonal terrain patches provides the 1mual structures that are
projected into the topographic map plane. These projected polygonal terrain patches, forming the polygonal
tiling of individual uniform gradient regions, can be further partitioned using other significant factors for
vehicle mobility. For example, the terrain surface composition is an important factor in obtaining the
vehicle motion resistance. It is possible to have multiple soil types within a single uniform gradient region.
Thus, a second level of partitioning must occur to maintain the characteristics of homogeneity within the
projected polygonal terrain patch.

Definition 3.50: Given an arbitrary projected polygonal terrain patch P within the topographic map plane,
a contiguous region strictly contained within the patch that describes an area of uniform surface
composition (soil properties) is defined as a homogeneous mobility region.

With this definition, the following assumption can be made regarding the properties of projected terrain
patches.

Assumption 3.7: A homogeneous mobility region is a two-dimensional representation of an area of the
natural terrain with constant surface configuration properties and constant surface composition properties
defined within a designated threshold.

This assumption guarantees that every region on the map has a distinct cost rate associated with vehicle
motion resistance. Therefore, for non-braking episodes, the cost of traversing a homogeneous mobility
region is a function of the minimum coefficient of motion resistance and the straight-line distance traveled.
For braking episodes, the cost is simply a function of the elevation difference Ak between the path entry
and path exit points in the region. Figure 3.18 illustrates the concept of homogeneous mobility regions

within a topographic map plane.

It should be noted, again, that the small error factor introduced by traveling along non-gradient
paths is assumed 1o be insignificant from a global path-planning perspective. There are several reasons ror
this assumption. First, there are many opportunities for error in the original map data. This can be
attributed to variations in the data collection and/or data recording process, changes in the environmental
surroundings, or inaccuracies in the digitization process from the topographic (source) map. Second, the
empirical measurement of the vehicle specific resistance is not precise. Third, a small amount of error
results from the generation of symbolic terrain (polyhedron) from gridded data. Fourth, and perhaps most
important is that any global path plan is subject to the local path perturbations that can occur during plan

exccution. Thus, the "weighting factor” in Eq. (3.108) resulting from non-gradient path traversals is

78

TOPOGRAPHIC MAP PLANE
e. ~eu -2 Partitioned
HMR -1 .“~. xz . .
Seed Anisotropic
K y, |~ Region
Partitioned 1 s
Anisotropic
Region - HMR - §
'd
HMR - 3 X .." HMR - 4
X, ”,-"HMR-6 L
Ke
Background
Region
Background HMR -7
Regi
egion K7

Figure 3.18 Homogeneous Mobility Regions

effectively ignored in the actual implementation discussed in Chapter IV. Without loss of generality, the
traversal costs can be classified as braking costs and non-braking costs. This conceptual simplicity is
important because the cost of every optimal path traversal is heading independent unless braking is

involved.

From a theoretical perspective, however, it is recognized that the actual cost resulting from
non-gradient path traversals can be computed mathematically using Eq. (3.108). The non-braking traversals
are heading dependen: in this case, and the costs include the slope of each terrain patch and vehicle
heading inclination angle on that patch. Ignoring the error factor from the "cosine effect” results in a small
but consistent overestimate of the minimum-energy traversal cost between any two points on the natural

terrain,

F. SUMMARY
A mathematical model has been proposed to predict the energy requirements of vehicles operating in
an off-road environinent in natural terrain. The terrain is modelled as a set of polygonal regions with each

constituent polygonal terrain surface paich representing a uniform gradient region. A classification

79

hierarchy partitions the uniform gradient regions into three fundamental categories based on the capability
of the vehicle to negotiate the particular soil-slope combination. Further subdivisions are possible due to
the principles of isotropism and anisotropism which introduce the concept of direction dependency in

computing traversal costs.

The principal focus of the towed vehicle model is in the separation of resistance energy costs
involving Coulomb friction forces from the potential-energy costs associated with the force of gravity. For
the global, minimum-energy path-planning problem, potential energy can be factored out as a constant term
and kinetic energy is ignored. Thus, all remaining costs are resistive in nature and a function of the vehicle
motion resistance and the straight-line map distance. The distinction between the "horizontal” and
"vertical" components of energy cost facilitates the development of a two-dimensional path-planning
model that utilizes three-dimensional information for motion constraints. This is achieved by defining all
costs, constraints, and distances on the two-dimensional projection of the three-dimensional surface
representing the natural terrain. The two-dimensional problem representation is conceptually simpler with
respect to any eventual search process that attempts to find minimum-energy paths. It also corresponds

more closely to the topographic maps traditionally used for route planning applications.

80

IV. OPTIMAL-PATH-PLANNING ALGORITHM

A. INTRODUCTION

The planning of optimal paths through natural terrain is fundamentally a search problem. The
solution to a path-planning problem requires a suitable problem representation capturing the relevant
characteristics of the particular vehicle in transit as well as the key features of the surrounding
environment. In addition, there must be an effective strategy for conducting the search. The preceding
chapter introduced a mathematical model describing the energy costs of vehicular travel across natural
terrain surfaces. Determining the most fuel-efficient route between any two points on the map necessitates
the integration of the theoretical concepts developed in the towed vehicle model with an effective path-

planning algorithm.

In this dissertation, the minimum-energy path-planning problem is formulated as a state-space
representation consistent with the approach of Nilsson [Ref. 1]. The state-space formulation has three
basic components: (1) a description of states within the state space, (2) a specification of operators, or
successor functions providing transitions between states, and (3) a control strategy establishing the
precedence among operators during the search. The following sections discuss in detail the composition of
states, the various pruning criteria utilized to reduce the size of the search, the behavior of optimal paths in

isotropic and anisotropic regions, and the algorithm developed to compute minimum-energy paths.

B. PROBLEM REPRESENTATION

1. Windows and Regions

The optimal-path-planning algorithm developed in this dissertation requires a geometric
description of the natural terrain, a vehicle concept describing the key attributes of the prime mover, and a
mission statement asserting global start and goal positions. The required geometric description of the
terrain consists of a finite set of vertices V1 a finite set of edges E forming a convex-polygonal tiling of

the two-dimensional topographic map plane. The tiling results in a set of convex polygons corresponding to

81

the homogeneous mobility regions described in the previous chapter.$ These polygons will be designated
as search regions. The attributes pertaining to the slope and orientation of the region, i.e., configuration
information, are strictly terrain-dependent. The remaining attributes specifying the isotropic, anisotropic, or
obstacle classification as well as the stability and braking constraints depend on both the vehicle and the
terrain.

Given the set of search regions R, it is possible to identify the set of geometric entities an
optimal path must pass through enroute from the start position to the goal position. Referring to Figure 4.1,
a formal definition is provided.
Definition 4.1: The finite set of vertices V and the finite set of edges E forming a polygonal tiling of the
two-dimensional topographic map plane represent the set of search windows. Each search window W, can
be classified as a verrex window or an edge window. A particular set of vertex windows and edge windows
denoted as boundary windows form an irregular convex polygon and bound the optimal path.

An edge window borders two search regions, R; and R, one designated as the pre-frontier search region

-

Search Region

Edge
Window

Vertex
Window

Edge
Window

) Search Region

]
iVertex
’

Window

Edge

Wi
indow Vertex

-
-
-

Search Region
Edge
Window

Vertex

Vertex “inndow
Window , Edge .
J Window .Eelrch Region
. ’ [N
Search Region ’/ Search Region s
Figure 4.1 Search Windows and Search Regions

$ For purposes of the minimum-energy path-plamning algorithm, it is assumed the coefficient of specific resis-

tance € is uniform across the terrain map.

82

and the other as the posi-frontier search region depending on direction of window expansion, as will be
explained. Similarly, a vertex window borders a finite set of search regions, one of which is identified as
the pre-frontier search region with the remaining search regions categorized as post-frontier search regions.
Bounds on the optimal path can be established by the physical limits of the terrain map or by a bounding
cllipse as in [Ref. 2].

A search over the space of all possible paths between the start and the goal solves the
minimum-energy path-planning problem. Thus, it is important to use any information about the vehicle or
the terrain that can serve to reduce the number of paths considered in the search process. Two very
powerful methods employed to simplify the search are geometric visibility analysis and vehicle heading
analysis.

2. Geometric Visibility Analysis

Visibility analysis provides the initial screening of map locations that can be directly reached
by the vehicle from a given other location. The polygonal tiling of the terrain map implies a concise
visibility graph with respect to vertices and edges. This is due to the connectivity properties of convex
polygons. A vertex window is "visible" from another veriex window if the windows are members of the
same search region. Similarly, visibility exists between two edge windows if both windows are part of the
same region. Membership in the same region is necessary but not sufficient to establish visibility between
a vertex window and an edge window. In addition, windows may not overlap. Therefore, endpoint-vertex
windows associated with an edge window are not visible from that edge window.

3. Vehicle Heading Analysis

A significant factor that must be considered in moving from search window to search window
is the range of permissible headings. Vehicle heading analysis is used in the optimal-path-p;anning
algorithm 10: (1) eliminate search regions (isotropic and anisotropic obstacles), and (2) reduce thc area
considered within the remaining search regions. Three classes of "critical headings”, i.e., geometric,
stability, and braking, are required for the analysis. Specific permissible heading ranges arise for each of
these classes.

Geometric headings refer to the configuration of the convex polygons on the two-dimensional
map plane. Let W, and W,,, be intervisible search windows with W, the start window. A heading
generated by connecting a pair of endpoints, one from W, and one from W,,,, is a critical geometric

heading ycg, 0<yeg <360. For W; and W,,, edge windows, four critical geometric headings are

83

generated between windows. The range of permissible headings in going by straight line from a point on
W; to a point on W,,, is bounded by the two endpoint-connection segments that intersect, or the "cross
headings”, and represents a geometric heading range Hgy,. A heading range can be weated as an "open” or
a "closed” interval depending on whether the endpoint-connection segments are included in the range or
not. An endpoint-connectio. segment from one vertex window to another is tagged as a closed heading

interval. Otherwise the interval is open.

The stability-heading ranges establish the permissible headings for stable optimal path
traversals between two search windows, that is, the heading range for stability Hg. Critical stability
headings can be defined according to Definitions 3.38 and 3.39. From Figure 3.12, note that the four critical
stability headings partition the set of all possible headings into four distinct ranges. ., and Y5, bound
the range of headings a vehicle can safely traverse on a "downhill" slope without catastrophic overtumn;
WYcs-3 and yeg_4 bound the range for an uphill slope. Both heading ranges are closed intervals. The single-
heading, non-braking (degenerate) ranges, defined by each of the critical stability headings above,
represent heading ranges for critical stability Hcs and are discussed in detail in Section IV.C.2. Unstable
ranges are obtained trivially as the complement of the two stability ranges. Each range represents a heading

range for instability /{;y and is an open interval.

The braking heading range defines the permissible headings requiring vehicle braking to
maintain constant velocity, that is, the heading range for braking Hyp . The critical braking headings ycp_;
and “v5_, can be defined according to Definition 3.40. The complement of the braking range defines the
non-braking headings or the heading range for non-braking Hy, .

The applicable heading ranges, once derived, must be intersected to obtain a total permissible
heading range HP _pesiGnation > €Xpressed as
HP cpesiguation> = Hou MY Hst (M H crance-1ypE>- 4.1

The <RANGE-TYPE > is either BR (braking), NB (non-braking), or CS (critical stability). The subscript
<DESIGNATION > indicates what adjacent-window pair this heading range describes. It is possible to
produce two disjoint heading ranges as a result of the intersections. If this occurs, the ranges are treated as

separate options.

84

Given the "universe” of all headings HU, 0 < HU < 360, an impermissible heading range
HI pesigaaTion >, defined as the complement of the range of permissible headings, is *xpressed as

HI prgcnarions =HU - HP pesignation >- 4.2)

The heading ranges defined by Egs. (4.1) and (4.2) partition the space of all headings into traversals that
the vehicle can successfully execute and those that cannot be completed safely.

C. PROPERTIES OF OPTIMAL PATHS
1. T iteria

Planning an optimal path between start and goal locations may necessit ‘s crossing various
types of search regions and search windows. An optimal path can tumn either within a search region (intra-
region turn) or at a boundary crossing (inter-region turn). The restrictions on tumns in optimal paths, the
local turn criteria, are paramount to the development of the transition operators (successor functions), for
the optimal-path search, as discussed in Section IV.E.3.
Lemma 4.1: If OP is an optimal path between a given start window S, and goal window Gy, then the path
between any two points on OP must also be optimal.
Proof: The proof is by contradiction. Consider Figure 4.2. Let OP represent an optimal path from start
window Sy to goal window Gy passing through points P, and P,. Assume there is some path between P,
and P, passing through point Q such that the cost of the path from P—Q —P, is less than the cost of the

Search Region

Search Region

Ry

Figure 4.2 Optimal Path Segments

85

path segment P -P , along the original path. Then, the path Sy ~P —Q —P ,—Gy must have a lower cost than
OP. But OP is the optimal path between Sy and Gy and therefore, a path P,—Q ~P, having a lower cost
than the path segment P ,~P , cannot exist.

QED.

A fundamental theorem describes the intra-region behavior of an optimal path.

Theorem 4.1: If optimal path OP emanates from frontier search window W, enroute to post-frontier
search window W, ,, crossing search region R, then the heading (azimuth) v of the path OP must remain
constant within R, unless turns are executed across a stability-impermissible range from one critical
stability heading to another critical stability heading.

Proof: The proof is by induction and has two parts. Let n represent the number of wms within the search
region.

Part 1 (Basis): The 1-Turn Path

It must be shown that for an optimal path crossing a search region at a given heading, it is never
advantageous (energy costwise) to execute a single turn within the region. Refer to Figure 4.3. Let P, and
P, denote points on search windows W, and W,,,, respectively, representing the entry and exit points of
an optimal path OP within search region R,. Let P, represent an arbitrary point within the search region.
Let OP, denote a path consisting of a single "permissible” path segment PE :(P,, P,) and let OP ; denote
a path consisting of two "permissible” path segments PE,:(P,, P.) and PEy:(P.,P,). Let D, D, and D,

o’ Search Region

.° PE
oo P R,

E Pid
P2

Figure 4.3 Single-turn Path Behavior

86

represent the lengths of the respective path segments and let 8,, 8,, and 6, denote the heading inclination
angles of the respective segments. The differences in elevations of the points P,, P,, and P,, can be
expressed by

Ah, =D ,1an@,, (4.33)

Ahy =D ,tand,, (4.3b)

Ahy =D 4tanB,. 4.3¢c)
By geometry,

Ahy = Ahy + Ahy, 4.4)

Using Eq. (3.77), for the single path segment OP, the traversal cost of a non-braking episode is expressed

as
Uop-1 =emgD . (4.52)
The equivalent traversal cost for the single path segment braking episode is expressed as
Uop_1 =mg Ah,. (4.5b)

Basis Case 1a: Single Segment Non-Braking/Multiple Segment Non-Braking
Using Eq. (3.46), the traversal cost U,p_, can be rewritten as

Upp-) =mgD tanfc. (4.6a)
The traversal cost Ugp_, can be expressed as

Uop-2=mg (D, + D 3)tanBc . (4.6h)
Since D < D, + D, itis evident that

mgD tanB.c < mg (D, + Dy)tanBc, @4n

and the straight-line path OP | generates a lower cost.
Basis Case 1b: Single Segment Braking/Multiple Segment Braking

Using Eq. (3.46), the traversal cost Upp_; can be rewritten as

Uop-1=mgD jtané,. (4.8a3)

87

The traversal cost Ugp_; can be expressed as
Uop-g =mg (D 2‘3“92 + Dgtan03) (48b)

Since Ah; = Ah, + Ah,, the traversal cost Ugp_, is equal to the traversal cost Upp_,. Considering the
second-order cost involved in initiating a turn, the straight-line path must have a lower traversal cost
Basis Case 1c: Single Segment Braking/Multiple Segment Non-Braking
Refer to Figure 4.4. Let OP | represent a braking path and OP , a non-braking "switchback” path with path
segments defined as above. Let OP , represent a path consisting of two segments PE, and PE 5 such that
the two path segments cross region R, at the critical braking headings and form a second "switchback™ that
lies within the bend of path OP,. Let D, and D ¢ represent the lengths of PE, and PE 5 and let 6, and 6 be
the respective heading inclination angles. The traversal cost of Ugp_, can be expressed as

Ugp-1 = mgD ;tanf, (4.9a)
and the non-braking traversal cost of Ugp., is written as

UOP—2 =mg (D2 +D gmecc . (49b)
The traversal cost of Ugp_4 can be expressed as

Uop._3 =mg (D4 + Ds)mnecc . (4.9(:)

Since the path OP 5 tumns "inside” of path OP ,, it is evident that (D 4+ D) < (D, + D). Thus, the traversal

Search Region

Rk v
PE, CB-2
Non-braking ‘
Heading or, |, .]
3. ‘ @ ©B
Critical 0 gp . et
[} L d

Braking

0P2 Hesdings ','
.

'

L

Braking

PE
. .
Y Heading Search Region

Non-braking R,

Heading

’
’
.
’
a,

Figure 44 Non-braking Switchbacks

cost of OP ; must be less than the traversal cost of OP ,. But, at the critical braking heading, the traversal
cost Ugp_4 is the same whether the path OP, is considered as a braking or non-braking path. If it is
interpreted as braking, then by Basis Case 1b, Uyp_, is equal (in first-order cost) to Ugp_. Since
Uop.3 <Ugp_3 and Ugp_a=Ugp_;. it must be the case that Upp_; < Ugp_,; that is, the straight-line
(braking) path must have a lower traversal cost.

Basis Case 1d: Single Segment Non-Braking/Multiple Segment Braking

Using Eq. (3.46), the traversal cost Upp_;, can be rewritten as

UOP—] = ng ltanecc . (4108)
The traversal cost Ugp_,, can be expressed as
Uop-z =mg (D 2(3!192 + D;lanB;,). (4.10b)

Since both path segments in OP, are braking episodes, 6, > 6¢¢c and 8, > 6. It is also the case that

D, <D, + D, Thus, itis evident that
ng lmnecc <mg (D2m92 + D3taneg) (41 1)

and the straight-line path OP | generates a lower traversal cosL
Basis Case 1e: Single Segment Braking/Multiple Segment Hybrid

Using Eq. (3.46), the traversal cost Ugp_; can be rewritien as

Uop_, = mgD j1an@,, (4.12a)
and the traversal cost Up_, can be expressed as

Upp—p = mg (D tanB¢¢ + D 4tanB,). (4.12b)

From Basis Case Ic, it is true that mgD ,tan8, < mg (D ,tan8cc + DytanB¢). Since path segment PE; is a

braking episode, 8; > 8. Therefore, it must be true that
ng ltane] <mg (D 2[anecc +D 3(3"93), (413)

and the straight-line path OP, generates a lower traversal cost.
Basis Case 1f: Single Segment Non-Braking/Multiple Segment Hybrid

With Eq. (3.46), the traversal cost Ugp_,, can be rewritten as

Uop-1 = mgD tanB¢. (4.14a)

89

The traversal cost Ugp_, can be expressed as
Uop-2=mg (D ptanBcc + D 3tanBs). (4.14b)

From Eq. (4.13), it is evident that mgD ,1an, < mg (D ylanB.. + D ;tanB,). Since path segment PE, is a
non-braking episode, 8-~ < 0,. Thus, it is obvious that

ng ltanecc <mg D zmecc +D 3‘8“93), (415)

and the straight-line path OP | generates a lower traversal cost.
Part 2 (Induction): The n-Turn Path
It must be shown that if it is never advantageous (costwise) for an optimal path to turn n times within a
search region then it is never advantageous (costwise) for the same path to turn n+1 times. The inductive
hypothesis is that it is never advantageous for an optimal path to tum »n times within a region. Consider
Figure 4.5. Lct OP, represent an {n- 1}-iwrn path bounded by endpoint vertices #, and P.. Let UF,
denote an n-—mrn path representing that part of OP, bounded by endpoint vertices P, and P,. Assume
OP, is an optimal path from P, t» P,. Thus, it is advantageous to turn n+1 times within a region. By
Lemma 4.1, since OP, is an optimal path, then OP, must also be an optimal path. But OP, cannot be
optimal and tumn n times (violates the inductive hypothesis). By contradiction, OP; cannot be an optimal
path, and therefore, it is not advantageous for an optimal path to tum n+1 times within a region given that
it is not advantageous for the path to turn n times.
QED.
Corollary 4.1: An optimal path cannot follow a curved path within a search region.
From the calculus, an optimal path consisting of & straight-line path segments and k-1 tums within the
region can, in the limit as k£ —oo, represent a curved path. From the proof of Theorem 4.1, it is never
advantageous (cost-wise) to turn n times within a region. Thus, the curved path cannot be the optimal path.
2. Traversal Types

Since each search region is classified according to the type of constraints that can occur within
its boundaries, a set of traversal rypes can be specified for optimal paths within each type of region. It is
shown in this dissertation that an optimal path can traverse a region in one of only four ways: (1) straight
across at a non-braking heading, (2) straight across at a critical stability heading, (3) altemating episodes at
a matched pair of critical stability headings, and (4) straight across at a braking heading [Ref. 3]. The

second, third, and fourth traversal types relate to anisotropic regions only; that is, regions that have stability

90

Figure 4.5 Multiple-turn Path Behavior

and/or braking constraints. A definition is provided for each of the four traversal types followed by a
theorem regarding optimal path behavior. The term "path segment” is interpreted in accordance with
Definition 3.25.

Definition 4.2a: A path segment PE that travels across a region at a constant, non-braking, non-critical-
stability heading is an unconstrained traversal or a path traversal of type-I.

Since type-I traversals are non-braking episodes, the cost is a function of the minimum coefficient of
motion resistance, (x = €) and the straight-line distance D . Henceforth, the minimum coefficient of motion
resistance is designated as the optimal cost rate, and the associated cost for a non-braking episode is
defined as the non-braking cost.

Definition 4.2b: A path segment PE that travels across an anisotropic-partially-safe search region at a
constant, non-braking, critical stability heading ycs is a stability traversal or a path traversal of type-II.
Type-1I traversals have a cost computed at the optimal cost rate. The third traversal type allows for intra-
region tums.

Definition 4.2c: A path segment PE that travels across an anisotropic-partially-safe search region
alternating episodes at a matched pair of critical stability headings (either y,s_, and Yes_3 O s and
Wcs-y in Figure 3.12), is a discontinuous stability traversal or a path traversal of type-/lI.

As with type-I and type-II traversals, type-III traversals have a cost computed at the optimal cost rate (for
each turn segment) with a small second-order cost associated with each intra-region turn. The final

traversal type is the only one involving vehicle braking.

91

Definition 4.2d; A path segment PE that travels across an anisotropic-safe or anisotropic-partially-safe
search region at a constant braking heading gy is a braking traversal or a path traversal of rype-IV.

In type-IV traversals, the traversal cost is a function of the elevation difference between the entry point and
exit point of the path in the search region as discussed in Section III.B.4. The cost associated with braking
episodes is the braking cost.

Assumption 4.1: Discontinuous stability traversals, or switchback traversals within search regions will not
be considered for optimal paths.

The restriction on traversals by Assumption 4.1 exists because the prime mover (tracked or wheeled
vehicle) may pass through a range of impernissible headings as it moves from one critical stability heading
to the next within a particular region in discontinuous stability traversals. This situation can occur, for
example, when the vehicle is moving up a slope at a critical stability heading and then tumns to a downhill
critical stability heading. From the mathematical model of vehicle-terrain interaction develcped in Chapter
I11, the vehicle is assumed to move at a low, constant speed and cannot rely on the effects of centrifugal
force to counteract a potentiaily unstable position. Therefore, traversing an impermissible heading
increases the probability of a stability failure, i.e., catastrophic overtum.

Theorem 4.2: If optimal path OP emanates from frontier search window W, enroute to post-frontier
search window W, ., crossing search region R,, and is prohibited from executing discontinuous stability
traversals, then OP must traverse the homogeneous region with a type-/, type-Ii, or type-IV traversal.
Proof: By Theorem 4.1 and Assumption 4.1, the heading of an optimal path must remain constant within a
search region. Consider Figure 4.6. The space of all headings can be described using a tree. From the
mathematical model in Chapter I1I, an optimal path can cross a region at either a non-braking or braking
heading. Thus, at level one of the tree, the space of all headings can be partitioned into two classes.
Braking headings are type-IV traversals. The non-braking headings can be further partitioned into headings
that are impermissible in the region, headings that lie along the boundary of the permissible and
impermissible ranges (critical stability headings, type-II), and all other headings (which must be
permissible but not critical, hence type-I).

QED.

To complete the analysis of optimal path behavior, isotropic obstacles must be considered. An
optimal path that reaches an edge window of an isotropic obstacle region terminates, whereas an optimal
path that intersects an obstacle vertex window can be subject to certain kinds of further expansion. Table

4.1 provides a summary of path traversal types, associated cost factors, and permissible region types.

92

Space of All Headings

/\

Non-Braking Headings Braking Hesadings

(type-1V)
Permissible Impermissible
Headings Headings

(type-1) Boundary
Headings

(type-11)

Figure 4.6 Path Heading Space

D. REGION-BOUNDARY CONSTRAINTS

To confirm the validity of moving {rom one window to another on a path requires the application of a
set of region-boundary (RB) constraints. The RB constraints are classified according to the types (1, II, or
IV) of path traversals in the two regions adjacent the window. The two heading ranges produced as a result
of applying the boundary constraints between the two regions are the region-boundary-constraint heading
ranges HC _pgsignation>- The possible values for <DESIGNATION > are structured window triples. In the
following equations, HC ;),; indicates the range of headings for traversal from window 2 to window 3,
based on the heading range from window 1 to window 2; HC 54, describes the range of headings from
window 1 to window 2, given a heading range from window 2 to window 3. This means that the pre-
frontier heading range affects the post-frontier heading range. It also suggests "backward reasoning” about
the heading range in the pre-frontier region based on the post-frontier region, the technique "constraint
propagation” used for solving certain artificial-intelligence problems. Thus, each type of RB constraint has

Table 4.1 OPTIMAL PATH BEHAVIOR
Traversal Type | Cost Factor | Permissible Region Types

(See Section IILE.1)
Type-1 Non-braking Isotropic
Anisotropic-safe
Anisotropic-partially-safe
Type-Il Non-braking | Anisotropic-partially-safe
Type-IV Braking Anisotropic-safe
Anisotropic-partially-safe

93

two heading-range-update formulas associated with it: one for the post-frontier region and one for the
"revised” pre-frontier region.

The analysis of the region-boundary constraints can be simplified because of the symmetry of the
constraint pairs. Given a fype-X to type-Y traversal pair, such that X ,Y € {1, 11,1V}, the same path behavior
is exhibited for a type-Y to type-X traversal pair. This can be shown informally by reversing the direction of
the gradient on the terrain patch and traversing the path in the opposite direction. Thus, the total number of
region-boundary constraints can be reduced from twelve to six. Table 4.2 provides a summary of the RB
constraints.

1. LIRB ints

The first RB constraint involves two successive unconstrained traversals. Figure 4.7 illustrates
a type I-1 region-boundary constraint RBC,_,. The following theorem describes the behavior of an optimal
path for RBC, ;.
Theorem 4.3 If optimal path OP executes consecutive type-1 traversals across regions R, and R,
respectively, then the path cannot tumn on the boundary W, between the regions.

Proof: Let PE :(P,, P,) represent the straight-line path OP, formed by two consecutive type-I traversals.

Isotropic
Post-Frontier Region

Anisotropic
Post-Frontier Region

"wCS-3 vCS-d l ::

4

L[4
~ P 4
\\',

)
]
]
1}
v " l “ l'
K ' | ¥
) . .
4 1] ¢ o’)
w f ! w '
k] k \
' r]] ' 4 '
S I \ ! P/]
' Sy \ H K '
[} 1
l' iy ! " .’ v '
[} I [}])]
' ‘ J '
L [] ' I.
] . . ' J .
! Pre-Frontier Region ' ! Pre-Frontier Region !
1

Figure 4.7 Type I-I Region-boundary Constraint

94

Let PE,:(P,,P.) and PE4:(P,, P.) represent the path OP, formed by two consecutive type-1 traversals
that tum at the boundary crossing. By Definition 4.2a, type-I traversals must be non-braking episodes.

Therefore, by Basis Case 1a, Theorem 4.1, OP, must have a lower cost than OP, since distance is the
minimization criteria. Thus, the consecutive type-I traversals cannot turn on the boundary W,.
QED.

The constraint dictates that an optimal path not tum when crossing the boundary between regions. Hence,
the heading ranges must be identical, so

HC (yn=HP 3 (\HP 5= HC 3. 4.16)
2. LI RB Constraints

Figure 4.8 illustrates a type I-11 region-boundary constraint RBC;_p. The following theorem
describes the behavior of an optimal path for RBC)_, .
Theorem 4.4: If optimal path OP executes a type-II traversal in region R, ,, and a type-I traversal in an
adjacent region R, , then the heading v associated with the type-I traversal must be impermissible in region
Ryyy.
Proof: Refer to Figure 4.8. The proof is by contradiction. Assume the type-I traversal at heading y in
region R, is permissible in the type-II region R,,;. Thus, the optimal path is represented by the path
P-R—Q such that each segment within the path is a non-braking episode. Let § be a point infinitesimally
close to point R on the edge window W, such that the path P-S—Q turns "inside” optimal path P-R~Q

!’
W [}
Y'cs. 3 vcs .4 H
AN /
'}
] [
. ¢ '
LY]
!_.'
]
W \
k \
1}
1]
1}
R 4
k “.

Figure 4.8 Path Tumns Involving Type-I and Type-II Traversals

95

and consists of non-braking episodes P-S and S—Q. By geometry, path segment S—Q must be
permissible in region R,,; and path segement P-S must be permissible in region R,. Since all path
segments are non-braking episodes, distance is the criteria for optimality. By geometry, the path P-S—Q
must be shorter (and less costly) than path P-R —Q . Therefore, path P—-R—(Q cannot be the optimal path

and the type-I traversal at heading v in region R, must be impermissible in the type-II region R, ;.
QED.

Thus, the heading ranges are written as

and,
HClw)-——'HlanP]z (4.17b)

3. I-IV RB Constraints

The following theorem describes the behavior of an optimal path for a type I-IV region-boundary
constraint RBC, .

Anisotropic
Post-Frontier Region

Anisotropic
Post-Frontier Region

1]
! Isotropic
'

Anisotropic
Pre-Frontier Region

Pre-Frontier Region

Figure 49 Type I-II Region-boundary Constraint

96

Theorem 4.5: Let ¢ represent the slope of the frontier search window with respect to the topographic map
plane and € dznote the optimal cost rate. If the optimal path OP approaches edge window W; with
endpoit-vertex windows W; and W, across pre-frontier search region R, at a braking heading y; , then,
cither there exists a single, non-braking exit heading HUB,_, ; = sin”'(—tan¢ve) with respect to the
boundary normal for the optimal path OP in the post-frontier region or the optimal path is constrained to
pass through one of the endpoint-vertex windows W; or W, .

Proof: Refer to Figure 4.10 for the following derivation. Let frontier scarch window W,:(W;W;)
participate in search regions R; and R, ,,. Let @ and R represent the start point and termination point for
optimal path OP crossing edge window W; at point S. Let the path segment from R to § be a non-braking
episode and the path segment from S to Q be a braking episode. Let PE represent a line segment formed
by the projection of R onto edge window W; with point T designated at the intersection point. Let D4, D ,,
and D, represent the distances between points R and T, 7 and S, and R and §, respectively. Let the
elevation of points T, §, and Q be represented by hg, hy, and h,. Let 6 represent the angle subtended from
the path segment PE to the segment of the optimal path bounded by points R and S, and let ¢ represent

the slope of edge window W;.
. h
Search Region T 0
Q'Q W
R, k
VBR’." Q
o'.' s
! S Side Vi f
W " g w. ide View o
i T: 'c's Vi J the Boundary
D : o.D .
1170 P Search Region
[
L) R
. 1
R” Y\e

Figure 4.10 Path Behavior for Braking Episodes

97

The cost formula for optimal path OP is expressed quantitatively as
Uop =mg€D3+mgAh, (418)

where Ah = h; — h,. By geometry, the distance D 3 can be written as

D, -2
37 cosd

=Dls¢ce’ (4.19)
and the distance D, can be expressed as

D, =D,tan6. (4.20)
Letting h, = D,tan¢, Eq. (4.18) can be rewritten as

Ugp = mgeD sec © + mghy+ mgD tanBtan¢ — mgh,. 4.21)

To find the minimum cost for the braking and non-braking episodes, it is necessary to differentiate the cost

formula with respect 10 the angle 8 and set the resultant expression equal to zero, expressed as

dUop 4 . sin®
= — B —_— - =0. 422
T T (mg eD (cos8)™ + mghy+ mgD py tan¢ — mgh,) = 0 (4.22)

Differentiating, Eq. (4.22) becomes

. 1 1
mgeD sinf =-mgD |tan . 423
85 [cosze] goand cosze] 423)
Rearranging terms and simplifying, and recalling that € = tan6., Eq. (4.23) becomes
. —tan¢
sinf = .
in [wnecc} (4.24)

Thus, the single value, non-braking heading can be written as

- —tan
HUB, _,; =8 =sin ‘[ﬂ . 4.25)

cC

The maximum value for 8 occurs when the slope of the search window is equal to the critical coasting
angle, i.e.,, 8cc = ¢.

QED.

98

The single-heading range produced in the type-1 region for RBC,_y is analogous to the critical stability
(degenerate) range produced in the type-II region for RBC,_; . Hence:

Hclm) = HP’Z M HUB 12¢ (4‘26b)

4. II-I RB Constraints
Figure 4.11 illustrates a type II-II region-boundary constraint RBCp_;;. The behavior of an

optimal path for RBCj,_;; is described by the following theorem.

Theorem 4.6: If optimal path OP executes a type-II traversal in region R, ., and a type-II traversal in
region R,, then the heading associated with the type-II traversal in region R, must be impermissible in
region R,,; and conversely, the heading associated with the type-II traversal in region R,,, must be
impermissible in region R, .

Proof: The proof is trivial. Consider an infinitesimal shift in the type-II heading in region R, to a
permissible heading in that same region. Therefore, the traversal in region R, becomes type-I and the proof
is the same as Theorem 4.5. A similar argument can be made for the type-II heading in region R;,;. QED.

[. .
\ Anisotropic
1 . .
+ Post-Frontier Region
]
L]
[}
1

v y
cs-3
N~ 0'(1 1

Anisotropic
Pre-Frontier Region

Figure 4.11 Type II-11 Region-boundary Constraint

Thus, the constraints are:

HC\yn=HPx ~HI,, (4.27a)

and

HC\30y= HP, M\ HI 3 (427v)
5. LIV RB Constraints
The type I-IV region-boundary constraint RBCp.y is included only for theoretical
completeness. In reality, the constraint can be largely ignored because it occurs in an infinitesimal fraction
of natural terrain. The application of RBCj;_p requires two real numbers (the type-1I critical path heading
and the Theorem 4.5 heading) be equal when picked at random.
6. IVIVRB ints

The final RB constraint addresses consecutive braking traversals. Figure 4.12 illustrates a type

IV-IV region-boundary constraint RBCjy.,. There are two cases to consider: intersecting braking heading

ranges and non-intersecting braking heading ranges. The following theorem describes the behavior of an
optimal path for RBCy_,y in the intersecting range case.

Anisotropic
Post-Frontier Region

Anisotropic
Post-Frontier Region

]

[} [}

L] [

\ s

’ 1

P = e

! Sy Vep) ! <. -
! ¢ 'CB-2 CB-1} ! Y
; T » ! Yep.1 |
' .-” ' ' \
i Pre-Frontier Region E ! Pre-Frontier Region E
2 1 2 [

Figure 4.12 Type IV-IV Region-boundary Constraint

100

Theorem 4.7 If optimal path OP executes consecutive type-IV traversals across regions R, and R;,,
respectively, such that the braking heading ranges in the regions are intersecting, then the path cannot
on the boundary W, between the regions.

Proof: Let PE,:(P,,P,) represent the straight-line path OP, formed by two non-turning consecutive
type-IV traversals. Let PE;:(P,, P.) and PE5:(P,, P,) represent the path OP , formed by two consecutive
type-IV traversals that tum at the boundary crossing. By Definition 4.2d, type-IV traversals must be
braking episodes, and therefore, by Basis Case 1b, Theorem 4.1, OP ; must have a lower second-order cost
than OP ;. Thus, the consecutive type-IV traversals cannot tum on the boundary.

QED.

Thus, if the ranges of braking headings in the regions intersect, the situation is analogous to two type-1
traversals. If the braking ranges are non-intersecting, then to minimize second-order costs, both headings

are constrained to be critical braking headings. The constraints for both cases are:
HC 1y = HP 13 (\HP 5= HC ;55 (4.28a)

if nonempty, else

HC())B = HP23 (4.28b)
and
HC 3= HP ;. (4.28¢c)

HP 3 is the single-heading (degenerate) braking range or critical braking heading for the region bounded
by windows 2 and 3 nearest a braking heading for the region bounded by windows 1 and 2. HP , is the
single-heading (degenerate) braking range or critical braking heading for the region bounded by windows 1
and 2 nearest a braking heading for the region bounded by windows 2 and 3.

7. RB Constraints for Vertex Windows

The RB constraints for vertex window expansions are different for RBC,_;, RBC,;_p, and
RBCp _py. For RBC,_;, the restriction on turning at boundaries is eliminated. The optimal path can follow
any non-braking heading (type-I traversal) from the vertex window. The same situation exists for
RBC}y_py . This constraint is similar to RBCp, _p,, for non-intersecting heading ranges for the edge window
expansion. The restrictive constraint of RBC,_p, is also relaxed for the vertex window expansion, that s,
the application of the constraint does not generate a single type-1 heading as in the edge window

counterpart.

101

For a vertex window expansion, there are three permissible heading ranges for the post-frontier

region: (1) non-braking, (2) braking, and (3) stability-constrained. The constraints can be expressed as:

HC(I)B = HP23 (4.293)
and
HC,;O) =HP 12 (4.29b)

E. CONTROL STRATEGY

Finding the optimal (minimum-energy) path between two points on the two-dimensiona! map
necessitates a search over the set of paths between the two points. This set can be partitioned into "well-
behaved" subsets using the polygonal tiling of the map.
Definition 4.3: Any sequence of search windows beginning with the start point and terminating with the
goal point such that each pair of windows in the sequence has mutual visibility, is a goal-feasible window
list FWL.
Given two vertex windows within a goal-feasible window list, the set of all paths that begin at the first
vertex window, terminate at the second vertex window, and pass through an identical sequence of
polygonal edge windows with the same sequence of traversal types is defined as a well-behaved subspace
of paths WSP. The convexity theorem, given in [Ref. 3], states that for "well-behaved” subspaces of the

Table 4.2 REGION-BOUNDARY CONSTRAINTS

Type-1 Type-1l Type-1V
(Exit) (Exit) (Exit)
Type-1 | Wenray is Non-BRAXING VENTRY IS NON-BRAKING VENTRY IS NON-BRAKING
(Entry) | Wexr is NON-BRAKING VEXIT IS NON-BRAKING VEXIT IS BRAKING
VenTry = VEXir Wenry is impermissible Ventry = HUB
in exit region
Type-1I | Wenrey 15 NON-BRAKING VENTRY IS NON-BRAKING WENTRY IS NON-BRAKING
(Entry) | Vet 1s NON-BRAKING VEXIT 1S NON—BRAKING VEXIT IS BRAKING
Vexr impermissible Wenmry impermissible Ventry = HUB
in entry region in exit region HUB impermissible
Yexr impermissible in entry region
in entry region
Type-1V WENTRY IS BRAKING VENTRY IS BRAKING VENTRY IS BRAKING
(Entry) | Wexr 1s NON-BRAKING VEXIT IS NON-BRAKING VEXIT IS BRAKING
Vexr = HUB Vexr = HUB impermissible VEnTRY = VEXIT
HUB impermissible if intersecting HP
in exit region
y = heading (azimuth) | HUB = sin”'(~tan¢ / tan8)

102

space of all paths on a two-dimensional, topographic map plane consisting of isotropic and anisotropic
polygonal regions with a uniform coefficient of motion resistance, the local path cost is a convex function
of parameters sufficient to uniquely specify the path. Convexity of total path cost implies that there is at
most one path within the well-behaved subspace of paths that is a local minimum with respect to total cost
and therefore, must be the global minimum. The optimization can be performed by bisection iteration.
Figure 4.13 illustrates the concept of a goal-feasible window list and well-behaved subspaces of paths. For
specific start and goal locations, there is a finite set of goal-feasible window lists. Each goal-feasible
window list determines a well-behaved path subspace containing at most one locally optimal path. The
least-cost path within the set of locally optimal paths is the globally optimal path.

For a given search window, the process of generating the next visible window is defined as 8 search
window expansion. Obtaining goal-feasible window sequences requires search-window "expansions” or
repetitive application of the appropriate successor functions. A distinct successor function is defined for
each region-boundary constraint and is instrumental in the transition process from one search window 1o
the next. Let C; denote the region classification of search region R,. Let H;, and T, represent the
permissible heading range and traversal type, respectively, of an optimal path traversal across region R;.

Well-Behaved Subsnace of Paths

Figure 4.13 Goal-feasible Window List

103

Let U, stand for the lower-bound cost estimate. Then, a state description (search node) for a k-window,
well-behaved path subspace is specified as

(W We W)y Rys o RO(Cro e GO Hy oo HYD (The . T Uy, .. U (4.30)

W, represents the current window, W,,, is the post-frontier search window, W;_, is the pre-frontier search

window.

Search nodes are maintained on an agenda. New search nodes are created from old nodes by
expansion, adding new items to the ends of each sublist in the state description. The top-level control of
the search node expansion proceeds as follows: (1) find a post-frontier window visible from the frontier
window, (2) find a possible traversal type for the post-frontier window, (3) determine heading ranges and
cost bounds to the post-frontier window, and (4) add the post-frontier window to window sequence. The
number of new search nodes generated during an expansion depends on the "branching factor™. This is a
function of the total number of visible windows in the post-frontier region. An expansion resulting in the
empty set terminates the path at that point. Figure 4.14 provides a description of the entire algorithm to
find optimal paths.

1. Initialization

The optimal-path-planning algorithm requires certain information to search the state space.
Map data, vehicle data, and mission data define the "planning concept” for the minimum-energy path-
planning problem. First, a terrain map and vehicle type are selected by the user. The information on
vehicle type and surface composition of the terrain establishes the optimal cost rate (coefficient of motion
resistance) and region classifications for the problem. Next, the start and goal locations on the map are
selected and elevation and visibility information computed. The initial agenda consists of a single search

node. From Eq. (4.30), it can be expressed as

{(Sv).().0.0.0). @.31)

After an expansion of the starting state, a typical search node may appear as

{Sv. We.US).U)((315, 0p).(45, 0p)))), (4.32)

where IS stands for an isotropic region class. An expansion of the above stale may generate a search node

such as

{Sv, We, Wi0)(IS, AP)(1, I1),(((315, 0p).(45, 0p)), (20, c!))) }, (4.33)

104

where AP represents an anisotropic-partially-safe region class. The above search node describes a well-
behaved subspace of path traversals from Sy to W and then to Wy, .

2. Generation of Feasible Window Lists

Goal-feasible window list generation requires expansions of search nodes on the agenda until a
valid sequence of windows from start to goal is obtained. The strategy is a modified A* search over
sequences of windows. Similar approaches can be found in Richbourg [Ref. 2] and Rowe [Ref. 4]. In A*
search, the successor function always expands the most promising node on the agenda first. For this, sorting
the agenda helps.

ALGORITHM Anisotropic-polygonal Path Planning

Initialize
Loop
{ until agenda is empty }
Expand Best Search Node on the Agenda
For
{ each successor search node generated)
If
{ search node represents a goal-feasible window list (i.e., goal point is last window) }
If
{ current optimal path cost > lower bound goal-feasible window list cost }
Decompose Goal-Feasible Window List Into Analyzable Pieces
For
{ each subproblem }
Generate Locally-Optimal Path Segment
End
Synthesize Locally-Optimal Path Segments
If
{ new total locally-optimal path cost < current optimal path cost }
Record New Path and Cost
End
End
Else If
{ current optimal path cost > lower bound goal-feasible window list }
Add Search Node to Agenda
End
End
End

Return Globally-Optimat Path and Cost
End

Figure 4.14 Optimal-path-planning Algorithm

105

The A” search strategy requires the sum of a cost function and a heuristic evaluation function.
The agenda is sorted by these sums. The cost function used here is a lower bound on the cost from the start
point to the current frontier search window. The evaluation function used is a lower-bound estimate of the
cost from that window to the goal. Since windows can be edges, the distances (and therefore, costs)
between windows lie within bounds. Given a vertex window W; and an edge window W,, with endpoint-
vertex windows W; and W, the lower-bound distance between W; and W,, is the minimum of three
values: (1) the distance between W; and W;, (2) the distance between W; and W,, or (3) the distance
between W; and the intersection of the perpendicular projection of W; onto W, , if one exists. The lower-
bound distance between two edge windows is determined in a similar manner. It is the minimum of eight
distances: the four distances obtained by connecting all combinations of the endpoint-vertex windows
between the two edge windows and the four distances obtained from the perpendicular projections of each
endpoint-vertex window on the opposite edge window as above. Once a lower-bound distance is
determined, a lower-bound cost can be computed using the optimal cost rate (minimum value for the
coefficient of motion resistance). For type-IV (braking) traversals, a different lower bound cost function is
used; that is, the minimum elevation difference between the two windows. For two edge windows, the cost
is computed as the minimum of four values; the elevation differences obtained from all combinations of the
endpoint-vertex windows between the two edge windows. For edge window and vertex window
combinations, it is the minimum of two elevation differences. The straight-line Euclidean (lower-bound)
distance to the goal was used for the evaluation function. Traversal types are not considered in the
evaluation function because various types of regions can be crossed enroute to the goal. The sum of the

minimum costs between each pair of successive windows in the window list was used for the cosi function.

After picking the best agenda node, the successor functions generate every possible successor
node of it from the visibility, traversal type, and heading information available using the constraints
discussed in Section IV.B. For instance, a type-I traversal in a pre-frontier region can give up to four
distinct successor nodes; one type I-1, two type I-II (one for each symmetric critical stability heading), and
one type I-IV. Asthe A" search continues, there is opportunity to prune nodes based upon the visibility and
heading restrictions discussed earlier. The search eventually generates a sequence of windows that
terminates with the goal, i.e., a goal-feasible window list. The first goal-feasible window list obtained
represents the sequence of search windows from the start to the goal having the best lower-bound cost but
not necessarily the best true cost. Since the algorithm uses "bounded" costs instead of exact costs, the

search cannot necessarily terminate after finding the cost of the optimal path within the first goal-feasible

106

window list. This cost must be compared to all lower-bound costs (cost function and evaluation function)
of items remaining on the agenda. Thus, the cost of the optimal path within the goal-feasible window list is
an upper bound on the globally-optimal-path cost. This cost can be used to guide the search and prune
nodes on the agenda when necessary. Any search node on the agenda with a lower-bound cost exceeding
this upper bound cost can be eliminated from the agenda. Analogously, a goal-feasible window list with a
lower-bound cost exceeding the current upper-bound cost can be pruned immediately. The search
terminates when the lower-bound cost of every item on the agenda exceeds the "best” globally-optimal-
path cost (upper bound) found thus far, or the agenda is exhausted.
3. Decomposition of Feasible Window Lists

Within a goal-feasible window list, two consecutive vertex windows are a deterministic path
segment, or a solved path segment. The segment is considered "solved” because the optimal path must
travel at a single, unique heading between the vertex windows. Other pairs of windows are termed
"unsolved” and the optimal path through them must be found by iterative optimization. The problem of
finding the optimal path within a goal-feasible window list is simplified by: (1) extracting the deterministic
path segments (solved subproblems), and (2) eliminating unnecessary edge-window boundaries that do not
affect the search process. This accomplished, the complete optimal path for the goal-feasible window list
can be determined by connecting the optimal paths found by independently computing the locally-optimal
paths for the set of connected, unsolved subparts of the window sequence. Figure 4.15 shows a goal-

feasible window list decomposed into its constituent subproblems.

There are two ways to eliminate edge windows. A portion of a goal-feasible window list with
consecutive type-I traversals across each region can be treated as a single search region with a region-
boundary-constraint heading range computed from Eqgs. (4.16a) and (4.16b). Since RBC,_; does not allow
an optimal path to turm on a boundary crossing, the intermediate edges in the window sequence can be
eliminated without consequence. An optimal path needs only make one type-I traversal across the newly-
formed region. A similar consolidation can occur with consecutive type-IV traversals with intersecting
region-boundary-constraint heading ranges. The justification for the type-IV consolidation is based on the
premise that an optimal path executing consecutive braking traversals with overlapping heading ranges
never tumns on a boundary crossing. The traversal cost is computed simply as the difference in elevations
from the start of the first braking episode to the end of the last braking episode. Therefore, intermediate
edges can be eliminated without affecting the iterative optimization. There is no analog for a type-II

consolidation.

107

“T~<<._ Subproblem 3

rd W\
'l \\ L .~
-
¢ ’ ~ GV
' w .'-.‘ ’ 8
S e ’
¥ W W
’ ~\ 4 w . ,
SW e . ’
~ g . ¢
4 . 4
Pie AN 4

Subproblem 2 Subproblem 4

Subproblem 1

Figure 4.15 Feasible Window List Subproblems

4. Generation of Optimal Paths
There are two steps in generating an optimal path within an unsolved path segment. The
process of generating a search node containing a goal-feasible window list produces a list of permissible
heading ranges in the regions. A permissible heading range, as it exits a frontier search window, casts a
"shadow” on the window. This is the section of the original window through which an optimal path can
pass. The set of all shadows, together with the entry and exit vertex windows, is an optimization corridor.

Figure 4.16 illustrates an optimization corridor.

To find the tming points on each window within the corridor to minimize total path cost,
iterative optimization is employed. This technique is a form of minimax search or bisection iteration and
can be employed because the path cost is a convex function [Ref. 3). It is also referred to in [Ref. 5] as
"interval halving”. Once the goal-feasible window list has bracketed the optimal path, the interval reduction
method continuously refines the estimate of the true optimal path within the corridor varying only the
position of the turn point along the edge window. The initial estimate of the turn points at each boundary
crossing within the corridor is assumed to be the midpoint of the edge window unless a stability constraint
(type-ll traversal) dictates otherwise. At each iteration, exactly one-half of the search window is
eliminated. Since the midpoint of subsequent intervals on the edge window is equal to one of the

previously-computed trial points, only two evaluations are required at each iterative step.

108

Figure 4.16 Optimization Corridor

F. SUMMARY

The optimal-path-planning algorithm provides a way to find minimum-energy paths in natural terrain.
It uses the mathematical model of vehicle-terrain interaction from Chapter Il and consists of a
comprehensive problem representation, a description of optimal path behavior, and a search strategy. The
problem representation is divided into two components: a state description and a set of successor functions
to provide movement between states. A key element in the state description is the "search window™ or the
entity through which an optimal path must pass. The geometric structure of the two-dimensional map plane
facilitates visibility analysis between windows. This limits potential successor states in the search space.
Permissible heading ranges for optimal paths using stability and braking constraints are stored. The
headings provide a second method to reduce the search space by limiting the range of path traversals along

search windows.

After the search space is pruned through visibility and heading analysis, the behavior of optimal path
segments between windows is described by a set of path traversal types. A set of successor functions for a
partial window list gives "expansions” of that list based on traversal-sequencing constraints. The control
strategy is a modified A search that finds lower-bound sequences of windows from start to goal, ie.,
goal-feasible window lists. The lists are reduced to simpler subproblems about "deterministic path
segments” that are solved independently by iterative optimization and then linked. The cost of the path
found gives a global upper bound on the optimal path and guides the remainder of the search. The A"

109

search continues to generate possible sequences of windows from start to goal until the agenda is
exhausted.

110

V. DEMONSTRATION

A. INTRODUCTION

The mathematical model of vehicle-terrain interaction and the optimal-path-planning algorithm have
been implemented in a computer program. The program uses a "synthetic terrain map" consisting of a set
of symmetric polygonal regions. These regions represent the discretization of a natural terrain surface into
a polyhedral structure and the subsequent projection into the two-dimensional topographic map plane as
discussed in Chapter I1I.

The LISP programmimg language [Ref. 6] was selected for the implementation due to its fiexibility
in data structures and rapid prototyping capability. The dialect chosen was Common LISP because of its
emergence as the "standard” LISP programming language and also for portability considerations [Ref. 6].
The functional nature of the language facilitated the hierarchical development of a large program.

Individual components of the program were constructed and tested independently.

The programming environment is a Symbolics 3675 computer employing version 7.1 of the Genera
operating system. The Symbolics system was chosen because of its integrated developmental environment
and processing speed. The high-resolution monitor and built-in graphics packages enabled the user

interface to be constructed with minimal difficulty.

B. IMPLEMENTATION
1. Constructing the Terrain Map

The terrain map was constructed in a hierarchic manner using the built-in LISP construct called
structure. The structure is a "generic” object with a set of associated atiributes that describe the object and
is similar to a database schema or a LISP "property list". The LISP structures have built-in access
functions to retrieve attribute values rapidly. Instances of the defined structures are created as needed by
the program. Three structures are created for the synthetic map: (1) a veriex structure, (2) an edge
structure, and (3) a region structure. Figure 5.1 provides a specification for the structures. Using a data
compression technique, the vertices are described by the x, y, and z coordinates [Ref. 7]. Edges are defined
in terms of the endpoint vertices and the regions are constructed in terms of the boundary edges. This
method avoids the data duplication by defining each particular vertex only once. An edge structure also

records information about adjaccnt regions. The region siuctures contain attribute information on slope,

111

VERTEX:

(x-coord y-coord z-coord edge-list visibility-list)

EDGE:

(vertex-list adjacency-list visibility-list)

REGION:

(edge-list slope orientation surface-composition type stability-constraints braking-constraints)

Figure 5.1 LISP Structures for Map Representation

orientation, surface composition, surface covering, type of region, and (vehicle-specific) braking and
stability constraints. Once the set of polygonal regions has been constructed, the concave background
region is partitioned into a set of convex polygonal regions each of which is isotropic. The partitioning
facilitates visibility analysis. There are standard algorithms available for this type of

decomposition [Ref. 8].

Currently, the map is created by an interactive input routine. However, work has been work
undertaken to construct the polygonal regions from a gridded set of data points automatically [Ref. 9.
This is a difficult task since the set of grid points must be fitted to a plane and boundaries constructed 10
create a geometrically consistent mesh. The description of the mesh in terms of its constituent vertices,
edges, and regions defines the map input necessary for creating the search space, i.e., the search windows
and search regions.

2. Constructing the Vehicle Concept

The physical properties of the vehicle, relevant to the minimum-energy path-planning problem,
are defined in the vehicle concept. A LISP structure is used 1o record these properties as illustrated in
Figure 5.2. The properties of the vehicle are used to produce selected values for the region attributes listed
above, that is, the coasting and gradient slopes define the isotropic regions and obstacle regions
respectively, as discussed in Chapter I11. The stability safety margin is used to estimate the critical stability

angles. Once a vehicle concept is selected, a pre-processing routine creates a context-dependent map. This

VEHICLE:
(name type weight center-of-gravity coasting-slope contour-slope gradient-siope stability-safety-margin)

Figure 5.2 LISP Structure for the Vehicle Concept

112

map contains a set of homogeneous mobility regions that retains the terrain-dependent and vehicle-terrain

dependent information on the respective structures.

Three military vehicles served as prototype agents for the program: M113-APC Armored
Personnel Carrier (tracked), M-966 Armored Tow Carrier (wheeled), and M-813 Cargo Truck (wheeled).
Actual data on vehicle weight, gradient slope, and contour slope was obtained from Department of the
Armmy Technical Manuals [Ref. 10-12]. Data on critical coasting slopes was not available since it must be
obtained empirically through a series of controlled tests on the actual vehicles. Therefore, several different
values were used as reasonable estimates for the purpose of the program. The estimates were based on
personal experience in operating wheeled and tracked vehicles in an off-road environment.

3. Spatial Reasoning Functions

To manipulate the map structures and identify certain key spatial relationships such as
"connectlivity” and "containment” requires a set of spatial reasoning functions. The functions perform edge
and vertex visibility operations, location-finding, distance calculations, and heading analysis. The convex
nature of the polygons that tessellate the map simplify the spatial reasoning functions espccially for
visibility operations. Spatial reasoning functions are partitioned into two groups: (1) functions that return a
specific map value, e.g., get-region-from-point, get-distance-to-edge, etc., and (2) functions that test a
particular condition (predicates), e.g., anisotropic-safe-region-p, obstacle-edge-p, eic.. These functions are
the primitive operations that can be applied to the terrain map representation.

4, Search Functions

The search functions are divided into three separate groups. The first group is rc.jonsible for
conducting all vehicle heading analysis operations including geometric, stability, braking, instability, and
non-braking criteria. The second group focuses on building the initial agenda and creating new search
nodes through the set of successor functions discussed in Chapter IV. The final set of search routines
provides higher-level operations such as goal-feasible window-list generation, problem decomposition,
itcrative optimization, and path synthesis.

5. Command-and-Control Functions

The command-and-control module is the nucleus of the path-planning program. There are
three fundamental tasks that must occur. The first task involves selection of a terrain map. Once selected,
the map is loaded from disk and the structures generated to build the terrain. Next, a vehicle concept is
selected and vehicle-terrain dependent map information is updated on the appropriate region structures.

Finally, a set of functions assert a vehicle mission by defining start and goal points on the topographic map.

113

The start and goal can be chosen at any desired map location except within obstacle regions. A guery must
be made to determine which search regions contain the start and goal. Elevations within the regions are
also computed. Visibility from the start and goal to adjacent windows is obtained and all structures are
updated as needed. If all relevant information is provided, search for the minimum-energy path begins.
Incremental paths (locally optimal paths within goal-feasible window lists) are displayed as computed

along with other statistical information (Section V.D).

C. TEST DATABASES

For the prototype implementation, the terrain database consists of the hierarchically-constructed
synthetic map stored as instances of LISP structures. The LISP structures, after initial creation, are saved
on disk and can be regenerated each time the terrain map is used. The tested terrain is a set of multi-level,
truncated pyramids. The elevation of each vertex (z-coordinate) can be controlled to vary the slopes and
orientations of the polygonal faces of the polyhedron. This does not affect the shape of the polygon face in
the two-dimensional projection, but rather influences the relative slope of the region. Thus, by changing the
z coordinates and recomputing the slopes and orientations, the geometric configuration can model truncated
(pyramidal) hills, valleys, ridgelines, ravines, or saddles. The multi-level (terraced) effect is employed to
maximize the number of different types of regions that are crossed to verify the effects of all possible

combinations of region-boundary constraints.

Two databases that provide digital terrain information at a grid resolution of 12.5 and 100 meters
have been obtained from the Defense Mapping Agency. Efforts to generate the appropriate polygonal
format are underway at the Naval Postgraduate School (NPS) and the results will used in the next

generation of the computer program. This work, however, is not part of this dissertation.

D. RESULTS

The minimum-energy path-planning problem is a member of a family of path-planning problems
denoted as the "combinatorial shortest-path problems” [Ref. 13]. In general, the order of complexity of
these problems is exponential in the worst case as a function of the number of the number of vertices in the
search space. It is anticipated that the pruning criteria discussed in Chapter IV will allow the algorithm to
exhibit better performance in the average case. No formal complexity analysis is attempted in this

dissertation,

114

The results of several runs of the program are shown at Figures 5.3, 5.4, and 5.5. Various routes
were selected to include short missions within the same terrain feature and longer missions involving travel
between features. The anisotropic nature of the search is graphically illustrated in Figures 5.6 and 5.7

where the start and goal points were reversed, resulting in different minimum-energy paths.

E. SUMMARY

A Common LISP implementation of the theoretical models discussed in the previous chapters has
been developed. During the prototype development, emphasis was placed on designing an algorithm that
employed the concept of heuristic search over a grid-free terrain representation eliminating unproductive
paths through a comprehensive set of pruning criteria. Less attention was given to efficiency issues and

remains an extension for future research.

115

SIVWIV] D) I|O0SU0O § RS

4270 1311 WMWY WV
84°61 11300 HiWd WHILdD WEO T

05 :SHIYd WMILJ0 WI0Y WI0L
04742 1500 Hild WHILI0 WI0
0 THAZNIT WONIOW 1638IND

INTI0Nd MINN W

8 :SNOIJ3M I IWISe0

91 :SNOIJIN I4US-ATWIL1Nd-I1408108 I

64 :SNOONIN 3243 0:SH0TI3 INS-D1408I09 1N

OF SN0ANIN KI183N 91 :9N01038 J14081091
ABABINS Ul NIUBEI L

906° 51 :NOIIUAIII BEE 'A 6BZ X WO
4vS 91 1NOIUNAITI (6E A SET XN 1aWIS

314084 HOISSIN

‘ ‘n3IA 18

IMT-ATWIIadd :3dAL-8NS
HSNNO ININ3NDD I NS
AT0- 1IN 1NOTLTSOMN0D 30U 3uNS
(930) (99°982Z #S°€9) : (W) WIpesg
SSINIUYISNOD DNINuuE
(330) (0°S91 0°681) : (WP) Wapesy
(93q) (8°SyE 8°58Z) : (On) udjpeay
1SINIBNISHOD ALITVIGULS
(930) 0°SET INOTiWINITN0
(93a) Z0°62 :34079 1HI10ud

JId0NI0SINY :3dAL 41-¥ ‘011001930
3114084 HO193M

18970 : (%) 33300 IMISISIY HOILIOM
98 (VIV) 33300 IDMMISISIS NOTLION
(93¢) 0°81:34073 OMI13603
(930) 8°¢1:34078 W0 1N0D
(93a) 87 1€:34078 1NI10UED
(sav) 8°¥6SPZ : INIIN

GIAJBYL :3dA1l IdU-ETTIMN 1NOTLUNDISIO
37114084 31IIHIN

1y

1963,

uoISE (N 11266y
3342 LSy
14968

Figure 5.3 Computer Simulation: Path 1

116

B0 103])} ¥ou Suipuad 7

AWeIe NN

3s00Yy) Nuay ‘835N-1)

€ 680 £5:92°€ 40y Z ung

MWSIE N3

€9°6Z (Il MNIANW WO
E1°0Z 34900 HiVd WHIL40 W0

9€Z :9Miud WHILdD WI0T WI0L
IS°EE : 1S00 Mivd WMILH0 WI0T
0 HIONIT VBN NININD

3714084 NI

1$97°0 DI 1UA2T3 60T *A $9Z X WOI
84501 INOIIUAITI €6E :A EZZ X 1wIS

313084 NOISSIN

n3ln 018

INS 3dAL-ONS
HSNNE :INTNIN0D ITWIaNS
M0~ 13MAD 0T L ISOAN0D I IuNS
(930) (98°1SZ Z1°001) : (W) Wwapesy
SSANIUEASHOD TR
(930) VN (Wp) us)pesg
(930) TN (9n) I pesy
ISININSISNGD ALINIEVIS
(93a) 0°081 NOIIYINI 1IN0
(930) 14°ST 340 1HIIQUED

J1d0YLOSINY :3dAL 1-8 1NOT1UNOISI0
3115084 NOTO3N

189°0 :(x0uv) 44300 IINMISISIN NOTIOM
408°0 3 (Viv) 23300 IMISIIE NOLION
(93a) 0°S :34078 INI1340D
(930) 0°41:34073 MNOINOD
(93) 0°1E : 34078 INII0UEI
(s81) 002012 F 1HIIN

037331 1 3dAL 12-CT0M 'NOILIUNOISIa

97 :1SH0I%3 IWS-ATWI Lid-I140NI0S INY
919M01930 I NI-21408103 100

64 1SNOONIN 3243
OF :SNOGNIN XIL¥3A

ANBBING Ul NIbNEIL

@ (9N01230 ITWL980

91 :3M01330 J14001031

3711084 IDIHIN

1y
1963y
yied ueiq
0162y Junuexy
UOISEI 1455y
21yap 1358y

Figure 5.4 Computer Simulation: Path 2

117

.
w0y 13} 43 Vou Guypad | 25004y] "Iy 14390 - 12 1p:21:2 404 2 WS

WS 3140 A8 NI

8 :SM0I338 3T 1960
S1°8Z 1311 I W0 TTISNOIOIN INS-ATWI Lid-D140M 109 I

90°01 : 1900 Hivd WMILd0 WO

€9 :SHidd WNI1d0 W01 WioL
49°90 : IS0 Hikd WMIIdD WIOY
8 IHIONIY VENIOY 1NN

31308d MIBN

64 *SNOGNIN 3043 TUI9N0IIIN I rS-I1408109 10

Oy IMOBNIN KI1¥IN
ABASING dUM NIBYIIL

91 :9N0IJ3N J140810S1

T6Z°6 :NOL1IUA3T3 BIZ A SOY IN WO
66Z°9T :N0ILIUAITI 29T A £9C N LawiS

314084 MOISSIN

IWS-ATWIINEd :3dAL-8NS
NSNS :INININ0D W3NS
AYTD-T1IAUUED 1NOLLISON0D 30U NS
(93a) (Z6°SC B0°PEZ) : (W) B PRy
$SINIUNISHOD IMIMNE
(930) (8°SVE 8°S02) : (W) Jusjpesy
(930) (0°S9T B°S81) 1 (an) Judpesy
ESANIVIIMN0D ALINIOUWIS
(93a) @°S1E :NO11UINITN0
(93a) Z8°6Z 134013 IH3I3OUND

J140¥I0S 1N 3dAL ST-¥ :NOTIUND IS
34084 NOII3Y

109°0 : (%0v) 34303 IMWISITIN NOTLION
400°0 ¢ (ViIv) 34300 INWIS1938 NOILIOM
(93a) 0°S 134079 INI4iSHOD
(93a) 0°ZT 134073 ¥N01NOD
(93) 0° 1€ 134078 1NIIqUNY
(sal) 9°0064 : 1H013IN

0373341 3 3dAL J1U-996M NOT 1UNTLS3G
319084 ININN

nnp
1983y
ey weig4
U063y uNLex3
UOISEI 1IIESY
32yap sy

Figure 5.5 Computer Simulation: Path 3

18

1

£2WIL § IP) MUY b G

aniing) Iniay tgiun

© v [0 My H L4y

AWSIS NIvaN3)

€6°SZ :WIL MIMIY WA
22790 : 1500 Hibd WMIId0 W0

99 :SHiYd WuILd0 WI0I WI0L
06°2¢ ¢ 1S00 Hivd WH1id0 WI0T
0 HIONIY HONIDY LNISEND

3713084 NI

91 :SHOTIIYM IWS-ATWI186d-D1408105 TN
8 :SHOIJ38 IWS-I140810S TN

64 *SNOGNIN 3903
85 :SN0ONIN HN31830

ASUHWNS WUl NIbadIl

8 :SHOID3E 31041580

91 :SNO1J3M J140810S1

ST INOLIBAITI SSH A 08 X W09

600°¢ NOLIBAITI EIE :A EBE ‘X LBYIS

3713084 NOISSIM

(230)

(934)
(930)

(930)
(930)

J1

_ ‘n3In IS

IMS-ATWI I ‘ IdAL-8NS

HSNA ONT33N0D I0Y IINS

AYTD- 1IN0 SH0111S04M00 306 130S
(S°¢€2 S°221) : (W) uaypesy

SSINIUYISHNOD INDYuNE
(8°S92 8°66) : (up) IIpesy
(0°58 0°5¢£2) : (an) uIjpesy

SSINIUBISNOD AlLNIBYIS

07081 ‘NOIIYINIINO

41°81 :3407S INIIQuND

d0¥10SINY 3dAl S-¥ NOLIUNDISIO
3114084 NOTI3N

(930)
{230)
(934)
(sa1)

189°0 : (*®u) 33300 IMWLISISIY NOLION
94170 : (V1v) 34300 IDNUISISIN NOLIOM

0781 :3401S IM11S60D
07¢1:3d407S ¥0iINGD
8° 1€ 1 3407S IN31Quad

8 ' 96SrZ : IHO1AN

Q3XuuL F3dA1 DdU-ELTH *HOTIUNDISIE
3714084 3NN

ung

1952
x mamm ue1d
uoibay aujwex]

UoISS I 143SSY

Y 1455y
dep 149ss
-

Figure 5.6 Computer Simulation: Path 4

119

$6°9Z :WIL MINMKEW W0
$6°ZS 11900 Hidd WHIII0 WO

€9 ‘SHiud WHIL0 WI0T WiDI
$9°84¢ 1300 HiYd WMIiIdD WI01
0 HIDNITY VON3IDY 1N 38aND

314084 MINNW

SE0ULY) gy Tqan V) L (A A L M TR TR] |

0 ‘SHOI938 310w 1380

91 :SHOIO3Y IMNS-ATWI 1 add-DI 1408108 [y

64 SNOGNIN 3903 8 :SNOIJ3N IWS-I1404105 1N
OF :SROGNIN XI L8N 91 :5801038 14081081

ASHIUNS dUl Nlbau3)

6v0°¢ NOTIBA3III EIE:A €B8E X WOI

S°F THOILBAITI SCb (A 00 % 1818
3114084 HOISSIN

(93a)

(930)
{(330)

(930)
(93a)

‘ ‘n3In WIS

IMS- AT I8 :3dAL-ANS
HSNSE INININ0D DU JMNS
AYTID-13ABH “NOT1ISOAN0T IDWINS
(1°22 6°¢9Z) : (wP) warpesy
‘SINIGYISNOD I InnE
(0°81 8°89Z) : (up) Iupe]
(0°061 8°08) : (dn) uajpesy
SSINIUMISHNOD AlINIGULS
§°SIE (N0 LY INITN0
BE€ »2 :340713 INIIAUAD

J1d0NLI0SINY :3dA) 13-3 :NOTIUNIISIA

371 4049 NOII3M

(930)
(230)
(234)
(sam)

10970 : (¥®u) 34307 IMYISISI4 HOTI0N
9B (UIY) 4300 IMMISISIY HOLION
0°01 :3d401S ONIiSH0D

@°¢1:3407S N0 iNOD

B8°1€ :3407S INI10UAD

0°P6SKZ : IHD 1IN

GINWYL -3dALl J-ETIM :NOTIUNDISI
ERIE ERERWICE

unp

19634
uoib3y Furuexy

UOISS Il 14255y
3oyap 1SSy

81 L] sunn«

Figure 5.7 Computer Simulation: Path 5

20

1

VI. SUMMARY AND CONCLUSIONS

A. RESEARCH CONTRIBUTIONS

In this dissertation, the problem of finding a minimum-energy path across arbitrarily-contoured
terrain with direction-dependent traversal costs and motion constraints has been examined. The
fundamental contributions of this research are three-fold: (1) the development of a mathematical model of
vehicle-terrain interaction that predicts the performance of an off-road vehicle when operating in natural
terrain, (2) the development of a symbolic terrain model that divides the world into meaningful parts
suitable for spatial reasoning, and (3) the development and implementation of an optimal-path-planning

algorithm that exploits the theory of the mathematical model to compute stable, minimum-energy paths.

With few exceptions, previous research in the areas of mobility modelling, terrain representation, and
path planning did not focus extensively on developing an integrated approach to the problem of finding
optimal routes in an off-road environment. Until now, most of the techniques for path finding have relied
on the traditional grid-based approach for terrain representation and for conducting the search. Those that
attempted to employ a more symbolic approach in the representation of terrain and apply alternative search
strategies such as the ray-tracing approach, posited an isotropic cost function in the generation of the
optimal paths, and did not consider the effects of the vehicle stability or braking. Thus, this research
represents the first attempt at developing a unified set of models that addresses the problem of finding
optimal routes using a combination of symbolic terrain, anisotropic traversal costs, motion constraints, and

heuristic search.

The mathematical model posits a simplified view of motion that assumes the force required to move
between two points on the terrain surface is due to a "towing force” resulting from the vehicle being pulled
by a mythical cable. An analysis of the forces acting on the vehicle results in a set of energy equations that
separate the resistive energy costs due to Coulomb-friction forces from the potential-energy costs
associated with gravity. Since the object is to plan minimum-energy paths over relatively large distances, a
low constant speed is assumed for the vehicle and kinetic energy is ignored. Potential-energy costs are
factored out as a constant term independent of the global path, and the remaining costs are resistive in
nature. The resistive-energy costs are a function of the vehicle motion resistance represented by a

composite resistive coefficient and the straight-line distance in the topographic map plane. The model

121

considers vehicle braking as a significant parameter and incorporates its effects in the overall estimate of
resistive forces. The partitioning of energy costs into resistive-energy costs and potential-energy costs
facilitates the development of a two-dimensional path-planning model that incorporates three-dimensional
information with respect to motion constraints. The mathematical model also exploits the concept of
direction-dependent traversal costs or the principle of anisotropism which is paramount to the computation
of minimum-energy paths. The traversal costs can be classified as either braking (heading-dependent) or
non-braking (heading-independent).

The symbolic terrain model is a key part of the mathematical model. It allows the continuous nature
of the arbitrarily-contoured terrain to be discretized and represented conceptually as a polyhedron.
Retaining the three<limensional gradient information for each convex, polygonal face of the polyhedral
structure, the components are projected into the two-dimensional plane analogous to the representation of a
cartographic map. The resulting polygonal mesh tessellates the map plane into a well-defined set of
homogeneous cost regions. The symbolic model classifies each region according to the constraints set forth
in the mathematical model, specifically in the areas of braking and stability. The partition divides the
terrain into regions of safety and low traversal cost, regions of safety with possible vehicle braking, regions
of partial safety with possible braking, and unsafe or obstacle regions. Traversal costs are divided into two
conceptually simple categories: costs associated with braking episodes and costs associated with non-
braking episodes. The former is a function of the difference in elevations between the start and end of the
braking episode and the latter is a function of straight-line distance across the region and the coefficient of

motion resistance, uniquely determined for a particular vehicle-terrain combination.

The search space in the minimum-energy path-planning problem centers on the concept of "search
windows" representing the physical edges and vertices of the homogeneous mobility regions. This is in
contrast to the more traditional uniform-grid approaches that restricted terrain information to sample points
at arbitrary resolutions. Reasoning about symbolic objects on the topographic map plane more closely
models the way humans think. The symbolic approach is also more computationally accurate in planning
optimal paths since the problem of digitization bias is eliminated. The problem of information loss resulting

from the imposition of a uniform grid is non-existent.

Given a symbolic terrain representation, new approaches to search-space reduction are proposed
using geometric visibility and path heading analysis. The cost criteria and stability constraints from the

mathematical model are exploited in the analysis of optimal path behavior. The path-planning algorithm

122

uses a theory of optimal path behavior applied within the boundaries of the homogeneous search regions
and at boundary crossings between regions. The theory posits a small, but mathematically provable
number of ways that a path can cross a region based on the aforementioned constraints. Using the well-
defined set of path traversal types, a set of region-boundary constraints based on the entry and exit traversal
types describes the behavior of an optimal path at window crossings. Permissible heading ranges are
computed from the region-boundary constraints. Employing a modified A* search technique, sequences of
windows are generated that begin at the start point and terminate at the goal point. Each of these "goal-
feasible” window lists contains, at most, one locally-optimal path. This path is obtained by iterative
optimization using a form of minimax (bisection) search and is an upper bound on the globally-optimal
path. Continuing the search, every goal-feasible sequence of windows is found and then optimized. Within
a window sequence, an optimal path having a lower cost than the upper-bound path cost is retained as the
best path. The process repeats until the agenda is empty or the cost of every remaining path is greater than
the current upper-bound path cost. The best path of the locally-optimal paths is the globally-optimal path.
The algorithm is guaranteed to generate the optimal (minimum-energy) path due to the lower-bound cost

and evaluation functions and the exhaustive search of every goal-feasible window sequence.

The body of theory developed in this dissertation has been implemented in a computer program on a
Symbolics LISP machine. The implementation produced some interesting results on a synthetic terrain map
of symmetric convex polygons. Th- anisotropic nature of the terrain generated completely different paths
when start and goal points were reversed, as predicted by the theoretical model. In general, it was observed
that the minimum-energy paths follow longer routes in isotropic regions rather than shorter routes over
steeper slopes requiring braking. The degree to which this phenomenon occurs is based on how far "out of

the way" the vehicle would have to travel before the non-braking cost would overtake the braking cost.

B. RESEARCH EXTENSIONS

The primary focus of this research has been on developing an integrated approach to solving a
minimum-energy path-planning problem. For the most part, efficiency issues were not given a high priority
in the development of the search algorithm or in the initial demonstration of the theoretical results. Se\:'eral
areas are worth further exploration. Since line-intersection routines are an important part of the computer
program, more efficient algorithms can reduce computation time. Pavlidis [Ref. 14] and Foley and Van

Dam (Ref. 7] describe several approaches to implementing efficient line-intersection algorithms.

123

Efficiency can also be improved by employing parallelism where appropriate and feasible. For
example, during the A® search, after each successful window expansion, a new processor can be assigned
to each newly-created search node. Processors assigned to paths 1hat are pruned can be recycled as needed.
Processors assigned to paths that result in a goal-feasible window list and locally optimal path can report
results to a central location as in the "blackboard model” [Ref. 15].

Other approaches for improving the efficiency of the algorithm involve using different lower-bound
cost functions and using previous optimal path information (leaming from experience) 1o assist in
computing new optimal paths. Storing previous paths may eliminate needless computation when path-
planning operations occur repeatedly within the same map area. Efficiency and speed of computation are
critical if the algorithm is to be used for mobile-robot path planning.

Another interesting extension to the current work involves generalizing the approach outlined in this
dissertation to include the possibility of maultiple soil types and vegetation within the planning space and
employing a combination of search techniques within the same problem. This idea has been partially
explored by Rowe [Ref. 3].

In the area of terrain modelling, the process of creating a polyhedral terrain mode! from a uniform,
gridded data set can be improved. It is possible that a user-assisted approach may be the most appropriate
solution to the problem, in which a computer program creates the initial symbolic terrain map and then

employs human intervention to resolve any anomalies.

As discussed in Chapter I, the decision as to which search strategy is "best” depends on many factors.
Certain parts of a terrain map may be suited to the wavefront-propagation method using a uniform-grid
representation while other sections of the map may be searched more effectively with a polygonal
representation using either the "ray tracing” approach or methods discussed in this dissertation. The
integration of different path-planning techniques could be controlled bv an expert system that wouid
heuristically apply the appropriate search strategy for various types of terrain representations and map

complexity. The value and form of this type of "hybrid" search strategy remains an open question.

124

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

LIST OF REFERENCES

Chamiak, E. and McDermott, D., Introduction to Artificial Intelligence, Addison-Wesley Publishing
Company, Reading, MA, 1986.

Crowley, J. L., “‘Path Planning and Obstacle Avoidance,” in Encylopedia of Artificial Intelligence,
ed. S. C. Shapiro, v. 2, John Wiley and Sons, New York, NY, 1987.

Foley, J. D. and VanDam, A., Fundamentals of Computer Graphics, Addison-Wesley Publishing
Company, Reading, MA, 1984,
Gaw, D. and Meystel, A., *‘Minimum-Time Navigation of an Unmanned Mobile Robot in a 2-1/2D

World with Obstacles,”” Proceedings of the IEEE Conference on Robotics and Automation, April
1986.

Nilsson, N. J., Problem-solving Methods in Artificial Intelligence, McGraw-Hill Book Company,
New York, NY, 1971.

Richbourg, R. F., Solving a Class of Spatial Reasoning Problems: Minimal-Cost Path Planning in
the Cartesian Plane, Doctoral Dissertation, Computer Science Department , U.S. Naval Postgraduate
School, June 1987.

Thorpe, C. E., **Path Relaxation: Path Planning for a Mobile Robot,”’ Proceedings of the AAAI-84,
1984,

Parodi, A. M., "*A Route Planning System for an Autonomous Vehicle,'' /EEE Computer Society
Conference on Artificial Intelligence Applications, 1984.

Pars, L. A., An Introduction to the Calculus of Variations, Heinemann Educational Books, Lid.,
London, 1962.

Finney, R. and Thomas, G., Calculus and Analytic Geometry, 5th Edition, Addison-Wesley
Publishing Company, Reading, MA, 1981.

Tumnage, G. W. and Smith, J. L., Adaptation and Condensation of the Army Mobility Model for
Cross-Country Mobility Mapping, Technical Report GL-83-12, U. S. Army Engineer Waterways
Experiment Station (WES), September 1983.

Shelkin, B. D. and Foster, D. D., “‘Defense Mapping Agency Digital Data Policy,”’ in Geographic
Information Systems in Government, ed. B. K. Opitz, v.2 , A. Deepak Publishing, Hampton, VA,
1986.

Defense Mapping Agency Hydrographic/Topographic Center, Product Specification, Digital Land
Mass System (DLMS) Data Base, 1984,
Batlard, D. B. and Brown, C., Computer Vision, Prentice-Hall, Englewood Cliffs, NJ, 1982.

Pavlidis, T., Algorithms for Graphics and Image Processing, Computer Science Press, Rockville,
MD, 1982.

Yee, D., Three Algorithms for Planar-Patch Terrain Modeling, M.S. Thesis, Computer Science
Department, U. S. Naval Postgraduate School, June 1988.

Zyda, M. 1., et al,, *‘Flight Simulators for Under 100,000 Dollars,”* JEEE Computer Graphics and
Applications, v. 8, no. 1, January 1988.

Kwan, D. T., *‘Terrain Map Knowledge Representation for Spatial Planning,’’ IEEE Computer
Society Conference on Artificial Intelligence Applications, 1984.

Kwan, D. T,, et al., *‘Natural Decomposition of Free Space for Path Planning,’” IEEE Conference on
Robotics and Automation, 1985.

Antony, R. and Emmerman, P. J., ‘‘Spatial Reasoning and Knowledge Representation,’
in Geographic Information Systems in Government, ed. B. K. Opitz, v. 2 , A. Deepak Publishing,
Hampton, VA, 1986.

125

21.

23.

25.

27.

29.
30.

3L

32.

33.

3s.

36.

37.

38.

39.
40.

41,
42,
43,

Samet, H., ‘‘The Quadtree and Related Hierarchical Data Structures,”” Computing Surveys, v. 16,
no. 2, 1984.

Minsky, M., ‘A Framework for Representing Knowledge,”" in The Psychology of Computer Vision,
ed. P. Winston , McGraw-Hill Book Company, New York, NY, 1975.

Rula, A. A. and Nuttall, C. J., An Analysis of Ground Mobility Models (ANAMOB), Technical
Report, M-714, U. S. Army Engineer Waterways Experiment Station, July 1971.

Knight, S. J. and Rula, A. A, ‘‘Measurement and Estimation of the Trafficability of Fine Grained
Soils,”’ Proceedings of the First International Conference on Terrain-Vehicle Systems, 1961.

Bekker, M. G., Introduction to Terrain-Vehicle Systems, University of Michigan Press, Ann Arbor,
MI, 1969.

U. S. Amy Engineer Waterways Experiment Station, Technical Memorandum 3-240, 8th
Supplement, Trafficability of Soils, Slope Studies, May 1951.

Rowe, N. C. and Lewis, D. H., *‘Vehicle Path-Planning in Three Dimensions Using Optics Analogs
for Optimizing Visibility and Energy Cost,’’ Proceedings of the National Aeronautics and Space
Administration-Jet Propulsion Laboratory Conference on Space Telerobotics , February 1989.

Kanayama, Y. and DeHaan, G. R., A Mathematical Theory of Safe Path Planning, Technical Report,
University of California, Santa Barbara, 1988.

Dijkstra, E. W., ‘A Note on Two Problems in Connection with Graphs,'* Numer. Math., v. 1, 1959.

Friedland, P. E., Knowledge-Based Experiment Design in Molecular Genetics, Doctoral Dissertation,
Rep. No. 79-771, Computer Science Department, Stanford University, 1979.

Khatib, O., ““Dynamic Control of Manipulators in Operational Space,”” Sixth CISM-IFToMM
Congress on Theory Of Machines and mechanisms, New Delhi, India, December 1983.

Mitchell, J. S. B., Mount, D. M., and Papadimitriou, C. H., *‘The Discrete Geodesic Problem,’’ SIAM
Journal of Computing, v. 16, no. 4, August 1987,

Canny, J. F. and Reif, J., ‘““New Lower Bound Techniques for Robot Motion Planning Problems,’”
Proceedings 28th Annual IEEE Symposium on Foundations of Computer Science, 1987.

Sharir, M. and Schorr, A., *‘On Shortest Paths in Polyhedral Spaces,’’ S/AM Journal of Computing,
v. 15, no. 1, February 1986.

Mitchell, J. S. B. and Papadimitriou, C. H., The Weighted Region Problem, Technical Report
(Department of Operations Research), Stanford University. July 1986.

Rowe, N. C., Roads, Rivers, and Rocks: Optimal Two-dimensional Rowe Planning Around Linear
Features for a Mobile Robot, Technical Report, NPS52-87-027, U. S. Naval Postgraduate School,
June 1987.

Mithell, J. S. B. and Kiersey, D. M., “'Planning Strategic Paths Through Variable Terrain Data,"’
SPIE Applications of Artificial Intelligence, v. 485, 1984,

Linden, T. A, Marsh, J. P., and Dove, D. L., *‘Architecture and Early Experience with Planning for
the ALV,"" JIEEE International Conference on Robotics and Automation, April 1986.

Meriam, J. L. and Kraige, L. G., Dynamics, v. 2, J. Wiley and Sons, New York, NY, 1986.

Beer, F. P. and Johnston, E. R., Vector Mechanics for Engineers: Statics and Dynamics, Mchw
Hill Book Company, New York, NY, 1972,

Loomis, L. H., Calculus, Addison-Wesley Publishing Company, Reading, MA, 1982,
Seely, F. B., et al., Analytic Mechanics for Engineers, J. Wiley and Sons, New York, NY, 1958.

Gabrielli, G. and Von-Karman, T. H., **What Price Speed,”” Mechanical Engineering, v. 72, no. 10,
1950.

McGhee, R. B., et al., An Approach to Computer Coordination of Motion for Energy-Efficient
Walking Machines, Bulletin of the Mechanical Engineering Laboratory, No. 43, Tsukuba, Ibaraki

126

45.
46.

47.

48.

49.

50.

5L

52.
53.

55.

56.

Pref., Japan, 1986.
Mortenson, M. E., Geometric Modeling, . Wiley and Sons, New York, NY, 1985.

Muehrcke, P. C., Map Use, Reading, Analysis, and Interpretation, JP Publications, Madison, WI,
1980.

McGhee, R. B. and Iswandhi, G. L., ‘‘Adaptive Locomotion of a Muliilegged Robot over Rough
Terrain,”” IEEE Transactions, Systems, Man, and Cybernetics, v. SMC-9, no. 4, April 1979.

McGhee, R. B. and Frank, A. A., *‘On the Stability of Quadruped Creeping Gaits,”" Mathematical
Biosciences, v. 3, no. 3, October 1968.

Brooks, R. A., ‘‘Solving the Find Path Problem by Good Representation of Free Space,”” /EEE
Transactions on Systems, Man, and Cybernetics, v. SMC-13, no. 3, March/April 1983.

Rowe, N. C. and Ross, R. S., Optimal Grid-free Path Planning Across Arbitrarily-Contoured Terrain
With Anisotropic Friction and Gravity Effects, Technical Report, NPS52-89-003, U. S. Naval
Postgraduate School, November 1988.

Reklaitis, G. V., Ravindran, A., and Ragsdell, K. M., Engineering Optimization Methods and
Applications, John Wiley and Sons, 1983,

Steele, G. L., Common LISP: The Language, Digital Press, Hanover, MA, 1984,

Rogers, D. F., Procedural Elements for Computer Graphics, McGraw-Hill Book Company, New
York, NY, 1985.

Department of the Army Technical Manual, TM 9-2300-257-10, Operaitor's Manual, M113-APC
Armored Personnel Carrier, February 1973,

Department of the Ay Technical Manual, TM 9-2320-260-10, Operator’'s Manual, M813-CT
Cargo Truck, June 1985.

Department of the Army Technical Manual, TM 9-2320-280-10, Operator's Manual, M966-ATC
Armored Tow Carrier, April 1985.

127

APPENDIX A - LISP SOURCE CODE FOR PROGRAM

AR AR R R R AR L AR N R AR R AR R A A RN R AR RN R R A AR AR AR A N R AR AR R AR R AN RN AR AR AR AR AR AR AR RN AR RN

N4 e Se Ne Ss ve Ne e e v

-~

“e e e N

Se Ne Ne we Se N

~.

~e

LR PR

File: MPP-LISP-LIBRARY

Functions:

SQR (number)

VECTOR-ADD (vectorl vector2)

VECTOR-SUB (vectorl vector2)

VECTOR-MAGNITUDE (vector)

VECTOR-SCALE (scalar vector)

VECTOR-PROJECT (vectorl vector2)

DOT-PRODUCT (vectorl vector?)

CROSS-PRODUCT (vectorl vector2)

POINT-EQUAL-P (x1 yl x2 y2)

LINE-LENGTH (x1 yl x2 y2)

LINE-EQUATION (x1 yl x2 y2)
LINE-EQUATION-SOLUTION (line-equation x y)
LINE-SEGMENT-RANGE-P (x1 yl x2 y2 x3 y3)
LINE-INTERSECTION (line-equationl line-equation2)
LINE-MIDPOINT (x1 yl x2 y2)

SPLIT-LINE (x1 yl x2 y2)

INTERSECT-COLLINEAR (x1 yl x2 y2 x3 y3 x4 y4)
INTERSECT (x1 yl x2 y2 x3 y3 x4 y4)

POINT-OFFSET (x1 yl x2 y2 offset)

CONCAT (&rest args)

REMOVE-ITEMS (listl list2)

ROTATE-LEFT (list)

ROTATE-RIGHT (list)

LIST-LENGTH-1 (list)

EQUAL-WITHIN-TOLERANCE (numberl number2 tclerance)
MAKE-SIGNIFICANT-FIGURES (number significant-figures)
DEGREES-TO-RADIANS (degrees)

RADIANS-TO-DEGREES (radians)

;t*ii**i'ﬂii*iittt*ti*tttt**tﬁiti***i***ttttﬁtiiiiitﬁitttttttt*ttittitttt*ittiiti

(defun sqr (number)
{(* number number))

(defun vector-add (vectorl vector2)
(mapcar '+ vectorl vector2))

(defun vector-sub (vectorl vector2?)
(mapcar '- vectorl vector2))

(defun vector-magnitude (vector)
(sqrt (apply '+ (mapcar ’sqr vector)))) .

(defun vector-scale (scalar vector)
(let ((result nil))
(dolist (vectorl vector result)
(setf result (cons (* scalar vectorl) result)))
(reverse result)))

128

(defun vector-project (vectorl vector2)
(let* ((vsmagnitude (sqr (vector-magnitude vector2)))
(xproject (/ (dot-product vectorl vector2) vsmagnitude))
(vscale (vector-scale xproject vector2)))
(if (and (>= xproject 0.0) (<= xproject 1.0)) vscale nil)))

(defun dot-product (vectorl vector2)
(apply '+ (mapcar ’'* vectorl vector2)))

(defun cross-product (vectorl vector2)
(let* ((x1 (first vectorl))
(x2 (second vectorl))
(x3 (third vectorl))
(yl (first vector2))
(y2 (second vector2))
(y3 (third vector2))
(xx (- (* x2 y3) (* x3 y2)))
(yr (- (* x3 yl) (* x1 y3)))
(zr (- (* x1 y2) (* x2 y1))))
(list xr yr zr)))

(defun point-equal-p (x1 yl x2 y2)
(if (and (equal-within-tolerance x1 x2 0.01)
(equal-within-tolerance yl y2 0.01)) t nil))

(defun line-length (x1 yl x2 y2)
(sqrt (+ (expt (- x2 x1) 2) (expt (- y2 yl) 2))))

(defun line-equation (x1 yl x2 y2)
(list (- yl y2) (- x2 x1) (- (* x1 y2) (* yl x2))))

(defun line-equation-solution (line-egquation x y)
(+ (* (first line-equation) x)
(* (second line-equation) y)
(third line-equation)})

(defun line-segment-range-p (x1 yl x2 y2 x3 y3)
(let ((xmax (max x2 x3))

(xmin (min x2 x3))

(ymax (max y2 y3))

(ymin (min y2 y3)))

{cond ((and (or (> x1 xmax) (< x1 xmin))
(or (> yl ymax) (< yl ymin))) nil)

((or (> yl ymax) (< yl ymin)) nil)
((oxr (> x1 xmax) (< x1 xmin)) nil)
(t £))))

(defun line-intersection (line-equationl line-equation2)
(let* ((al (first line-equationl))
(bl (second line-equationl))
(cl (third line-equationl))
(a2 (first line-equation2))

129

(b2
(c2

(second line-equation2))
(third line-equation2))

(a (- (* bl ¢2) (* cl b2)))
(b (- (* cl a2) (* al c2)))
(c (- (* al b2) (* bl a2)}))
(1f (= c 0.0) nil (list (/ a c) (/ b c)))))

(defun line-midpoint (x1 yl x2 y2)
(1ist (/ (+ x1 x2) 2.0) (/ (+ yl y2) 2.0)))

(defun split-line (x1 yl x2 y2)
(let* ((midpoint (line-midpoint x1 yl x2 y2))
(midpoint-x (first midpoint))
(midpoint~y (second midpoint)))

(list (list x1 yl) (list midpoint~x midpoint-y)

(list x2 y2))))

(defun intersect-collinear (x1 yl x2 y2 x3 y3 x4 y4)
(cond ((and (point-equal-p x1 yl x3 y3)

(point-equal-p x2 y2 x4 yd4))

(list x1 yl x2 y2))
((and (point-equal-p x1 yl x4 y4)

(point-equal-p x2 y2 x3 y3))

(list x1 yl x2 y2))
((and (line-segment-range-p x1 yl x3 y3

(line-segment-range-p x2 y2 x3 y3

(list x1 yl1 x2 y2))
((and (line-segment-range-p x3 y3 x1 yl

(line-segment-range-p x4 y4 xl1 yi

(list x3 y3 x4 yd4))
((and (line-segment-range-p x3 y3 x1l1 yl

(line-segment-range-p x2 y2 x3 y3

(list x2 y2 x3 y3))
((and (line-segment-range-p x2 y2 x3 y3

(line-segment-range-p x4 y4 x1 yl

(list x2 y2 x4 yd4))
((and (line-segment-range-p x1 yl x3 y3

(line-segment-range-p x3 y3 x1 yl

(list x1 yl x3 y3))
((and (line-segment-range-p xl1 yl x3 y3

(line-segment-range-p x4 y4 x1 yl

(list x1 yl x4 y4))))

(defun intersect (x1 yl x2 y2 x3 y3 x4 yd)
(let* ((lel (line-equation x1 yl x2 y2))
(le2 (line-equation x3 y3 x4 yd))

(sl
(s2
(s3
(s4
(al
(bl
(cl
(a2
(b2
(c2

(line-equation-solution le2 x1 yl))
(line-equation-solution le2 x2 y2))
(line-equation-solution lel x3 y3))
(line-equation-solution lel x4 y4))
(first lel))
(second lel))
(third lel))
(first le2))
(second le2))
(third le2))

(a (- (* bl ¢2) (* ¢l b2)))

130

x4

x2
x2

x2
x4

x4
x2

x4
x2

x4
x2

v4)
y4))

y2)
¥2))

y2)
y4))

y4)
y2))

y4)
yz))

v4)
ye))

(b (- (* cl1 a2) (* al c2)))
(c (- (* al b2) (* bl a2))))
(cond ((point-equal-p x1 yl x2 y2) nil)

((point-equal-p x3 y3 x4 y4) nil)

((and (equal-within-tolerance sl 0.0 0.01)
(equal-within-tolerance s2 0.0 0.01)
(equal-within-tolerance s3 0.0 0.01)
(equal-within-tolerance s4 0.0 0.01))

(intersect-collinear x1 yl x2 y2 x3 y3 x4 y4))

((and (equal-within-tolerance sl 0.0 0.01)

(or (equal-within-tolerance s3 0.0 0.01)
(equal-within-tolerance s4 0.0 0.01))) (list x1 yl))

((and (equal-within-tolerance s2 0.0 0.01)
(or (equal-within-tolerance s3 0.0 0.01)
(equal-within-tolerance s4 0.0 0.01))) (list x2 y2))
((or (and (or (equal-within-tolerance sl 0.0 0.01)
(equal-within-tolerance s2 0.0 0.01)) (< (* 83 s4) 0.0))
(and (or (equal-within-tolerance s3 0.0 0.01)

(equal-within-tolerance s4 0.0 0.01)) (< (* sl s2) 0.0))
(and (< (* sl s2) 0.0) (< (* s3 s4) 0.0)))
(list (/ a ¢) (/ b ¢})))
(t nil))))

(defun point-offset (x1 yl x2 y2 offset)
(let* ((delta-x (- x2 x1l))
(delta-y (- y2 yl))
(x-offset (* delta-x offset))
(y-offset (* delta-y offset)))
(list (+ x1 x-offset) (+ yl y-offset))))

(defun concat (&rest args)
(intern (apply #'concatenate ’'simple-string (mapcar ' (lambda (x)
(if (numberp x) (write-to-string x) (string x))) args))))

(defun remove-items (listl list2)
(dolist (item listl list2)
(setf list?2 (remove item list2))))

(defun rotate-left (list)
(append (rest list) (list (first list))))

(defun rotate-right (list)
(append (last list) (remove (first (last list)) list)))

{(defun list-length-1 (list)
(if (= (length list) 1) t nil))

(defun equal-within-tolerance (numberl number2 tolerance)
(if (< (abs (- numberl number2)) tolerance) t nil))

(defun make-significant-figures (number significant-figures)
(let ((factor (expt 10.0 significant-figures)))

131

(/ (round (* number factor)) factor)))

(defun radians-to-degrees (radians)
(/ radians 0.0174533))

(defun degrees-to-radians (degrees)
(* degrees 0.0174533))

;'ii't*ii*t.tt't*ttt*titiiit*tttt*itl‘ttifittﬁtttﬁtt**tttittﬁttiﬁtittﬁtitiiﬁttt*t

132

;Itti*t*tiiiii*iitttﬁti*iit‘*ti**'k**ii*i*i*iii*i*titittittttttttttttttﬁtt*ttttt*

File: MPP-BUILD-MAP-UTILITIES

Structures: VERTEX (x-coord y-coord z-coord edge-list visibility-list)
EDGE (vertex-list adjacency-list visibility-list)
REGION (edge-list slope orientation surface-material
surface-condition surface-covering type
stability-constraints braking-constraints)

Ns % %o Se wp wa N

Functions: BUILD-VERTEX (xcoord ycoord zcoord elist vslist)

BUILD-EDGE (vlist adlist vslist)

BUILL -REGION (elis=r rslope rorientacion rsmaterial rscondicicen
rscovering rtype rmresistance rsconstraints
rbconstraints)

BUILD-VERTEX-INTERACTIVE ()

BUILD-EDGE-INTERACTIVE ()

BUILD-REGION-INTERACTIVE ()

BUILD-VIRTUAL-VERTEX (xcooxrd ycoord zcoord edge)

BUILD-VIRTUAL-EDGE (vertexl vertex2 edge)

BUILD-VERTEX-VISIBILITY (vertexlist)

BUILD-EDGE-VISIBILITY (edgelist)

BUILD~-BRAKING-CONSTRAINTS ()

BUILD-REGION-TYPE ()

SAVE-MAP (filename)

SAVE-MAP-STATE (filename)

SAVE-MAP-LIST (filename)

SAVE-STRUCTURE (structure-list filename)

LOAD-MAP (filename)

LOAD-MAP-STATE (filename)

LOAD-MAP-LIST (filename)

LOAD-STRUCTURE (filename)

%o %o W %o %y %y %e we W,

Mo Ne e Ss we W

~e So w.

~,

Ne we S Sa Ne e

; Global Variables: *input-stream* {global input operations)

; *output—~stream®* {global output operations}

; *vertex~list* {global vertex list}

H *edge-list* {global edge list}

H *region-list* {global region list}

H *virtual-vertex-list* {global virtual vertex list)
virtual-edge-list {global virtual edge list}

background-edge-list {global edges of background}
background-region-list {global subregions of background}

Se we wo

; *boundary-vertex-list* {global background vertices}
; *boundary-edge-list* {global background edges}
; *terrain-map-list* {global list of availavle maps)

;t*t’t**t*itt*ﬁtiit*i**ﬁ'*i*tttttﬁtﬁ*i***t*titiﬁ****ﬁﬁtttl*tttttt'ttttttttiti'tit

IR A2 AR S22 R R R R S R R R S R R R R R R R R R R X NSRS RS R RS SRS RS R R

; Geometric Model: Definition of Primitive Structures

.
.
.
’

-
’

;i*ttt*'tttiﬁt'tt"'ﬁttﬁt*ﬁttttttﬁ*tttittﬁtitit*ﬁﬁtiQttt*'titﬁltitttttlitﬁ'tiiii

(defstruct vertex x-coord y-coord z-coord edge-list visibility-list)

(defstruct edge vertex-list adjacency-list visibility-list)

133

(defstruct region edge-list slope orientation surface-materjial surface-condition
surface-covering type stability-constraints braking-constraints)

134

RRA AN R R R R R R A A RN AR AN R A R AR R R R AR R R AR R A AN AR AR AR A A AN RN R AR R R A A RN RN AR AR NAR AN A AR R AR

Geometric Model: Construction of Primitive Structures

Se Se “e N “e

2222222222222 2222282282282 22 20222 s NS Eslist i i 2 i s a0 82 2 2 2 A2 X223 K1

(defun build-vertex (xcoord ycoord zcoord elist vslist)
(make-vertex ’:x-coord xcoord
! :y-coord ycoord
! :z~coord zcoord
‘:edge-list elist
"ivisibility-list wvslist))

(defun build-edge (vlist adlist vslist)
(make-edge ‘:vertex-list vlist

tadjacency-list adlist

tvisibility-list vslist))

~

(defun build-region (elist rslope rorientation rsmaterial rscondition rscovering
rtype rsconstraints rbconstraints)
(make-region ’:edge-list elist
':slope rslope
torientation rorientation
:surface-material rsmaterial
’:surface-condition rscondition
:surface-covering rscovering
'itype rtype
:stability-constraints rsconstraints
:braking-constraints rbconstraints))

:****t*titﬁittttttitt*t*ittttt*tttttttttitt*tiiti*it*tiiiﬁt*i*tt*t*tttttittittii
;

; Geometric Model: Interactive Structure Construction

H
;*itﬁt***ii*t**t**t*t*t*ti*tt*ti*ttt**i*tiittittttttt*tt*ttﬁ***i*ii*i*tttii*titt

(defun build-vertex-interactive ()
(let ((designation nil)
(xcoord nil)
(ycoord nil)
(zcoord nil)
(elist nil)
(vslist nil))
(terpri) (terpri)
(princ "DESIGNATION: ")
(setf designation (read))
(princ "X-COORD: ")
{setf xcoord (read)) -
(princ "Y-COORD: ")
(setf ycoord (read))
(princ "Z-COORD: ")
(setf zcoord (read))
{(princ "EDGE-LIST: *)
(setf elist (read)) (terpri)
(princ "VISIBILITY-LIST: ")

13§

(setf vslist (read)) (terpri)
(eval (list ’'setf designation

(list ’build-vertex xcoord ycoord zcoord elist vslist)))
(setf *vertex-list* (cons designation *vertex-list?*)) t))

(defun build-edge-interactive ()
(let ((designation nil)
(vlist nil)
(adlist nil)
(vslist nil))
(terpri) (terpri)
(princ "DESIGNATION: ")
(setf designation (read))
(princ "VERTEX-LIST: *)
(setf vliist (read)) (terpri)
(princ "ADJACENCY-LIST: ")
(setf adlist (read)) (terpri)
(princ "VISIBILITY-LIST: *)
(setf vslist (read)) (terpri)
(eval (list ’'setf designation (list ‘build-edge vlist adlist vslist)))
(setf *edge-list* (cons designation *edge-list*)) t))

(defun build-region-interactive ()

(let ((designation nil)
(elist nil)
(rslope nil)
(rorientation nil)
(rsmaterial nil)
(rscondition nil)
(rscovering nil)
(rtype nil)
(rsconstraints nil)
(rbconstraints nil))

{(terpri) (terpri)

(princ "DESIGNATION: ")

(setf designation (read))

(princ "EDGE-LIST: ")

(setf elist (read)) (terpri)

(princ "SLOPE: ")

(setf rslope (read))

(princ "ORIENTATION: ")

(setf rorientation (read))

(princ "SURFACE-MATERIAL: ")

(setf rsmaterial (read))

(princ "SURFACE-CONDITION: ")

(setf rscondition (read))

(princ "SURFACE-COVERING: ")

(setf rscovering (read))

(princ "TYPE: ")

(setf rtype (read))

(pcinc "STABILITY-CONSTRAINTS: ") :

(setf rsconstraints (read)) (terpri)

(princ "BRAKING-CONSTRAINTS: ")

(setf rbconstraints (read)) (terpri)

(eval (list 'setf designation (list ‘build-region elist rslope rorientation
rsmaterial rscondition rscovering rtype
rsconstraints rbconstraints)))

(setf *region-list* (cons designation *region-list*}) t)}

136

;'*iitiit*iiili*ittltiiitttttiiiiﬁ*ﬁﬁii*ittiﬁ'iiiittttt.tttiﬁiittﬁtﬁt'iittt.i*ti

Geometric Model: Construction of Virtual Structures

s “e Se we

AR AR AR R AR R AR A AR AR AR R R R A AR R RN R AN A RN R AR R AR AR AR AR R AR R RN R KRR AR AR AR R AR ANRA N RRANN

(defun build-virtual-vertex (xcoord ycoord zcoord edge)

(let* ((virtual-vertex (concat ’‘vv- (l+ tvirtual-vertex-count*)))
(region-list (edge-adjacency-list (eval edge)))
(incident-vertex-list (edge-vertex-list (eval edge)))
(vertex-list-1 (get-vertexlist-from-region (first region-list)))
(vertex list-2 (if (second region-list)

(get-vertexlist-from-region (second region-list))))
(vertex-list (remove-duplicates
(remove-items incident-vertex-list
(append vertex-list-1l vertex-list-2))))
(goal-visibility-1
(if (point-in-region-p (vertex-x-coord (eval ’'g-v))
(vertex-y-coord (eval 'g-v))
(first region-list)) t nil))
(goal-visibility-2
(if (second region-list)
(if (point-in-region-p (vertex-x-coord (eval ’'g-v))
(vertex-y-coord (eval ‘g-v))
(second region-list)) t nil)))
(visibility-list (if (or goal-visibility-1 goal-visibility-2)
(cons ‘g-v vertex-list) vertex-list)))
(eval (list ’'setf virtual-vertex
(build-vertex xcoord ycoord zcoord (list edge) visibility-list)))
(setf *virtual-vertex-list* (cons virtual-vertex *virtual-vertex-listw))
(setf *virtual-vertex-count* (l+ *virtual-vertex-count*)) virtual-vertex)}

(defun build-virtual-edge (vertexl vertex2 edge]
(let ((virtual-edge (concat ‘ve- (l+ *virtual-edge-count*))))
(eval (list ’'setf virtual-edge
(build-edge (list vertexl vertex2) (edge-adjacency-list (eval edge))
(edge-visibility-list (eval edge)))))
(setf *virtual-edge-list* (cons virtual-edge *virtual-edge-lis-'))
(setf *virtual-edge-count* (l1+ *virtual-edge-count*)) virtual-eage))

'-iﬁiitl't*t*"ﬁ**ii*itt*titiﬁ*i*iﬁf*itttttitiit*t*itttiﬁttti*ittitttttttii*ii.i.
H

; Geometric Model: Construction of Visibility Lists

;
’-tttt*tittﬁiﬁitt*titﬁtitttii*itt**tilttttﬁitt'ttitttttttttit*ttttttﬁ*tttit**itﬁt

(defun build-vertex-visibility (vertexlist)
(dolist (vertex vertexlist)
(setf (vertex-visibility-list (eval vertex))
(remove-duplicates
(remove vertex
(apply ’'append (mapcar ’'get-vertexlist-from-region
(remove-if ’'obstacle-region-p
(get-regionlist-from-vertex vertex)))))))) t)

137

(defun build-edge-visibility (edgelist)
(dolist (edge edgelist)
(let* ((region-list (edge-adjacency-list (eval edge))))
(if (= (length region-list) 1)
(setf (edge-visibility-list (eval edge))
(remove edge (region-edge-list (eval (first region-list)))))
(if (= (length region-list) 2)
(let* ((region-1 (first region-list))
(region-2 (second region-list))
(obstacle-region-1
(if (obstacle-region-p region-1) t nil))
(obstacle-region-2
(if (obstacle-region-p region-2) t nil)))
(if (and (null obstacle-region-1) obstacle-region-2)
(setf (edge-visibility-list (eval edge))
(remove edge (region-edge-list (eval region-1))))
(if (and obstacle-region-1 (null obstacle-region-2))
(setf (edge-visibility-list (eval edge))
(remove edge (region-edge-list (eval region-2))))
(if (and (null obstacle-region-1)
(null obstacle-region-2))
(setf (edge-visibility-list (eval edge))
(remove edge
(apply ’append
(mapcar ’‘region-edge-list
{mapcar ’eval
region-list)}))}))}))))))) ¢)

IR EE AR RS RS S RS SRS S RS s s AR R RS S R R R R R R R R R SRS 2RSS X

; Geometric Model: Construction of Vehicle-Dependent Structures

;t***ik*itt**titi*tt***ttt*t*i*it*itititititiit*titiiiitﬁttiiittitt*tttt*ttttttt

(defun build-braking-constraints ()
(if *current-vehicle*
(dolist (region *region-list*)
(if (anisotropic-region-p region)
(eval (list ’‘setf (list 'region-braking-constraints (eval region))
(list 'braking-headings *critical-coasting-angle*
(region-slope (eval region))
(region-orientation (eval region))))}))) t)

(defun build-region-type ()
(if *current-vehicle*
(let ()
(dolist (region *region-list*)
(if (isotropic-region-p region)
(setf (region-type (eval region)) ‘isotropic)
(if (anisotropic-safe-region-p region) -
(setf (region-type (eval region)) ’‘anisotropic-safe)
(if (anisotropic-partially-safe-region-p region)
(setf (region-type (eval region))
‘anisotropic-partially-safe)
(if (obstacle-region-p region)
(setf (region-type (eval region)) ‘obstacle))))))
(dolist (background-region *background-region-listt)

138

(setf (region-type (eval background-region)) ’‘isotropic)))) t)

;iiﬁ'.tttit*t*tit*iititttittttitﬁtittﬁtt.iiiﬁitttttitittttttittt*ﬁiittttittttttt

~

Geometric Model: Saving and Restoration of Structures

EY YRS

LA AR AR RS Rl sl 222222222222 222222228

(defun save-map (filename)
. (eval (list 'setf ’‘*output-stream*

(list ’‘open filename ‘:direction ’:output)))

(print *vertex-list* *output-streamt*)

(print *edge-list* *output-stream*)

(print *background-edge-list* *output-stream*)

(print *region-list* *output-stream*)

(print *background-region-list* *output-stream*)

(dolist (gstructure (append *vertex-list* tedge-list* *background-edge-list*

region-list *background-region-list*))

(print (eval gstructure) *output-streamt*))

(close *output-stream*) t)

(defun save-map-state (filename)

(eval (list ’'setf ’'*output-stream*

(list "open filename ’:direction ‘:output)))

(print *vertex-list* *output-stream*)

{print =edge-list* *output-stream*)

(print *background-edge-list* *output-stream*)

(print *region-list* *output-stream*)

(print *background-region-list* *output-streamt*)

(dolist (gstructure (append ' (s-v g-v) *vertex-list* *edge-list*
background-edge-list *region-list*
background-region-list))

(print (eval gstructure) *output-~stream*))

(close *output-stream*) t)

(defun save-map-list (filename)
(eval (list ’setf '*output-stream*
(list ’‘open filename ’:direction ‘:output)))
(print *terrain-map-list* *output-stream*)
(close *output-stream*) t)

(defun save-structure (structure-list filename)

(eval (list ’setf ‘*output-stream*

(list ’'open filename ’':direction ‘:output)))

(princ structure-list *output-stream*)

(terpri *output-stream?*)

(terpri *output-stream*)

(dolist (gstructure structure-list) :
(princ (eval gstructure) *output-streamt*)
(terpri *output-stream®*)

(terpri *output-stream*))

(close *output-stream*) t)

(defun load-map (filename)

139

(eval (list ‘setf ’'*input-stream* (list ‘open filename ’:direction ’‘:input)))
(setf *vertex-list* (read *input-streamt))
(setf *edge-list* (read *input-stream?*))
(setf *background-edge-list* (read *input-stream®*))
(setf *region-list* (read *input-stream®*))
(setf *background-region-list* (read *input-streamt*))
(dolist (gstructure (append *vertex-list* *edge-list* *background-edge-list*
region-list *background-region-list*))
(eval (list ’‘setf gstructure (list ’‘read ‘*input-streamt*))))
{(close *input-stream*) t)

(defun load-map-state (filename)

(eval (list ’'setf ’'*input-stream* (list ‘open filename ’‘:direction ':input)))

(setf *vertex-list* (read *input-streamt*))

(setf *edge-list* (read *input-streamt))

(setf *background-edge-list* (read *input-streamt*))

(setf *region-list* (read *‘input-stream*))

(setf *background-region-list* (read *jinput-streamt*))

(dolist (gstructure (append ' (s-v g-v) *vertex-list* *edge-list*
background-edge-list *region-list*
background-region-list})

(eval (list ’‘setf gstructure (list ’read ’'*input-stream*))))

(close *input-stream*) t)

(defun load-map-list (filename)
(eval (list ’'setf ’"*input-stream* (list ‘open filename ’':direction ‘:input)))
(setf *terrain-map-list* (read *input-stream*))
(close *input-stream*) t)

(defun load-structure (filename)
(let ((structure-list nil))
(eval (list ’'setf ’'*input-stream*
(list ‘open filename ’:direction ’:input)))
(setf structure-list (read *input-stream*))
(dolist (gstructure structure-list)
(eval (list ’'setf gstructure (list ‘read '*input-stream*))))
(close *input-stream*) structure-list))

;ﬁﬁﬁﬁt’iiﬁﬁtﬁﬁtﬁit!iittﬁti’iﬁti't'**ﬁtﬁ*ﬁ*i*’i*i**ﬁtﬁ**ﬁiiiQ'ﬂiiiiti**ti**‘ti‘iﬁi
H

; Geometric Model: Definition and lnitialization of Global Variables

;
'-ttttliii*itﬁ"i't*iii****ii*ii***itiiit*it*ittti'ﬁiitltttiit'**t'ttttiiiiit'ti'i

(defvar *input-streamt*)

(defvar *output-stream*)

(defvar *vertex-list*)

(defvar *edge-list*) -
(defvar *region-list*)

(defvar *virtual-vertex-list*)
(defvar *virtual-edge-list®)
(defvar *background-edge-list*)
(defvar *background-region-list*)
(defvar *boundary-vertex-list*)
(defvar *boundary-edge-list*)

140

(defvar *terrain-map-list*)

(setf *input-stream* nil)

(setf *output-stream* nil)

(setf *vertex-list* nil)

(setf *edge-list* nil)

(setf *region-list* nil)

(setf *virtual-vertex-list* nil)

(setf *virtual-edge-list* nil)

(setf *background-edge-list* nil)

(setf *background-region-list* nil)

(setf *boundary-vertex-list* ’ (v-nw v-ne v-sw v-se})
(setf *boundary-edge-list* ' (e-n e-s e-e e-w))
(setf *terrain-map-list* ’ (synthetic-terrain-map))

:iitttt**ttttttiﬁ'itttttt*ﬁtttitttttitiiﬁtti‘ki*tttii*tttttti'*tttt*it!ttt*tttttt

141

L 2222222222 X222 22222222222 222 R 2222222222 XYY 2SR RS RE & & &

File: MPP-BUILD-VEHRICLE-~UTILITIES

Structures: VEHICLE (name type weight center-of-gravity coasting-slope
contour-slope gradient-slope stability-safety-margin)

Functions: BUILD-VEHICLE (vname vtype vweight vcg vcslope vctslope vgslope
vsmargin)
BUILD-VERICLE-INTERACTIVE ()
SAVE-VEHICLES (filename)
LOAD-VEHICLES (filename)

Global Variables: *vehicle-list* {global vehicle concepts})

AN AR AR AR R R R AR R AR A AR R AR R AR AR AN AR RN AR R RN R AR AR R R AR AR AR AR AR AR R R AR A n

Se %s %o %a e % M. Ne N N5 %5 Ss %g Ne Sy N

LA E RS2 R R RS RS s R RRsREREssatl st XX s s 222222222222 ¢

Vehicle Model: Definition of Primitive Structures

e Se %y %e N

AR AR AR R AR AR AN T AR R AR R AR R A AR AR A A A R R R R AR AR AR R AR AR AR AN AR A AN R AR AR AR A AR RN

(defstruct vehicle name type weight center-of-gravity coasting-slope
contour-slope gradient-slope stability-safety-margin)

AR R A AR A A AR R R AR A A AR AR A AR R R A A R R AR A R R R R AR R AR AN A AR A A AR A AR AR AR AR AR AR AR

; Vehicle Model: Construction of Primitive Structures
h

ERA AT R AR AR R AR A KRR A AN R A R AR AR R R AR Rk R R R R AR R AR AR R R KA R AR AR AR AR AR R AR R Ak hk N

(defun build-vehicle (vname vtype vweight vcg vcslope vctslope vgslope vsmargin)
{(make-vehicle ’:name vname
':type vtype
’ :weight vweight
':center-of-gravity vecg
’:coasting-slope vcslope
' :contour-slope vctslope
':gradient-slope vgslope
:stability-safety-margin vsmargin))

AR R AR R R A AR ARk R R AR A AN AR AR AR A AR R R R AT R AR R R RN R AR R AR AR TR R AR AR A AR R R R AR AR AR b

Vehicle Model: Interactive Structure Construction

P O T

R AR AN AR R IR AR A AN R R R AR R AR R R AR R AR R R AR R AR AR RN AR RRRAANR RN AR AR R AR R AN R R R R AR R AR Rk

(defun build-vehicle-interactive ()
(let ((designation nil)
(vnhame nil)
(vtype nil)
(vweight nil)
(veg nil)

142

(veslope nil)
{(vetslope nil)
(vgslope nil)
(vsmargin nil))
(terpri) (terpri)
(princ "DESIGNATION: ")
(setf designation (read))
(princ "NAME: ")
(setf vname (read))
(princ "TYPE: ")
(setf vtype (read))
(princ "WEIGHT: ")
(setf vweight (read))
(princ "CENTER OF GRAVITY: ")
(setf vcg (read))
(princ "COASTING SLOPE: ")
(setf vcslope (read))
(princ "CONTOUR SLOPE: ")
(setf vctslope (read))
(princ "GRADIENT SLOPE: ")
(setf vgslope (read))
(princ "STABILITY-SAFETY-MARGIN: ")
(setf vsmargin (read))
(eval (list ’'setf designation (list ‘build-vehicle vname vtype vweight vcg
vcslope vctslope vgslope vsmargin)))
(setf *vehicle-list* (cons designation *vehicle-list*)) t))

;Qtti*tt***iit***i*it*i*ttﬁt****t*t*titt*tt*tt***t*ttti*ti*tiﬁt**tttt*ttttttttit
:
; Vehicle Model: Saving and Restoration of S.ructures

’
;i*iﬁ*ﬁii*'tit*i*****i**!ittttti*it*ii*tt******iﬁ*it*ttii*t*ti*t*ittti'fﬁtii'iti

(defun save-vehicles (filename)
(eval (list ’setf ’*output-—-stream*
(list ‘open filename ’‘:direction ’:output)))
. (print *vehicle-list* *output-stream*)
(dolist (gvstructure *vehicle-list*)
(print (eval gvstructure) *output-stream*))
(close *output-stream*) t)

(defun load-vehicles (filename)}
(eval (list ’setf ’*input-stream* (list ’‘open filename ’:direction ‘:input)))
(setf *vehicle-list* (read *input-stream*))
(dolist (gvstructure *vehicle-list*)
(eval (list ’'setf gvstructure (list ’‘read ‘'*input-stream*))))
(close *input-stream*) t)

L3222 R R R R R 2222222222022 2222222222 X222 2R

Vehicle Model: Definition and Initialization of Global Variables

1222222222 R 222 R 2222223 X222 2R 22222222 R 22222 R 322222 2R 8 R 2

e %o wa we wg

(defvar *vehicle-listt)

(setf *vehicle-list* nil)

;Qittittttttt*ttt*ﬁ*iitittittttti*ttﬁ*itt*ttﬁtttttﬁttit'*ﬁitttiti*liittit'itttti

14

e Mo we W

%e Ne e %e Mo %o We s %o We s Np Ne Ny N e Ne N % e e

Ne e Mo Ny We Se Na Ne e s Ne “e N we e

Ne %s We Wa %e Se Se Se S e N

e

%o % %s %o Wi we wo

222233222222 3222223322323 3222222 22 222 2 222 S 222222 222222222222 222

File:

MPP~SPATIAL-REASONING-UTILITIES~I

Functions: GET-COORD-FROM-VERTEX (vertex)

AR AR AN AR RN RN R R R R R R R R R AR AN R R R R R RN R R R R A AR R R A AR AR R R R R AR SRR AR AR R A AN A

GET~XYZ~COORD-FROM-VERTEX (vertex)
GET-ELEVATION-FROM-VERTEX (vertex)

GET~ELEVATION-FROM-EDGE-POINT (intersection-point edge-pointl

edge-point2)

GET-ELEVATION-FROM-INTERIOR-POINT (interior-point region)

GET-VERTEX-FROM-POINT (xcoord ycoord)
GET-EDGE-FROM-POINT (xcoord ycoord)
GET-REGION-FROM-POINT (xcoord ycoord)
GET-VERTEXLIST~-FROM-REGION (region)
GET~VERTEX-LISTS-FROM-EDGELIST (edgelist)
GET-VERTICES-AND-EDGES-FROM-REGION (region)
GET-REGIONLIST-FROM-VERTEX (vertex)
GET-REGIONLIST-FROM-EDGE (edge)
GET-INCIDENT-VERTEXLIST-FROM-VERTEX (vertex)
GET-INCIDENT-EDGELIST-FROM-EDGE (edge)
GET-NON-INCIDENT-VERTEX-FROM-REGION (edge region)
GET-EDGELIST-FROM-INTEDGELIST (list)
GET-TRAVERSAL-REGION-EDGE-EDGE (edgel edge2)
GET-TRAVERSAL-REGION-VERTEX-VERTEX (vertexl vertex2)
GET-TRAVERSAL-REGION-EDGE-VERTEX (edge vertex)
GET-TRAVERSAL-REGION-VERTEX-EDGE (vertex edge)
GET-STATIC-EDGE-FROM-VIRTUAL-EDGE (virtual-edge)
GET-STATIC-VERTEXLIST-FROM-EDGELIST (edgelist)
SEIZCT-REGION (edge)

OBSCURE-EDGE (edgel edge2)
XY-LISTS-FROM-VERTEXLIST (vertexlist)
MEMBER-COMMON-VERTEX-LIST (listl 1ist2)
SEQUENCE-VERTEX-LISTS (list)
COALESCE-VERTEX-LISTS (list)
TRI-EDGE-INCIDENT-VERTEX-P (edgel edge2 edge3)
TRI-EDGE-INCIDENT-EDGE-P (edgel edge2 edge3)
VERTEX-WINDOW-P (window)

EDGE-WINDOW-P (window)

BOUNDARY-VERTEX-P (vertex)

BOUNDARY-EDGE-P (edge)

OBSTACLE-VERTEX-P (vertex)

OBSTACLE-EDGE-P (edge)

OBSCURE-EDGE-P (edgel edge2)

VERTEX-EQUAL-P (vertexl vertex2)

EDGE-EQUAL-P (edgel edge2)

CONVEX-REGION-P (region)

ISOTROPIC-REGION-P (region)
ANISOTROPIC-REGION-P (region)
ANISOTROPIC-SAFE-REGION-P (region)
ANISOTROPIC-PARTIALLY-SAFE-REGION-P (region)
OBSTACLE-REGION-P (region)

UPHILL-P (heading region)

DOWNHILL-P (heading region)

POINT-AT-VERTEX-P (xcoord ycoord vertex)
POINT-ON-EDGE-P (xcoord ycoord edge)
POINT-IN-REGION-P (xcoord ycoord region)
POINT-IN-REGION-INCLUSIVE-P (xcoord ycoord region)

14§

;ttti*t*ititit*ﬁtt*ititttttt*kiitttt*ttt*ttt*tﬁiititttﬁi*t*tttttittttttttttitttt

~e we

Geometric Model: Structure Manipulation and Interpretation

AR R AR R R R RN AR R AR AN R AR AR AN R AR R AR R RN AR AR AR R RAN R AR AR AR R R AR R AR A A A AR AR ANA AR R AN

~e wo

(defun get-coord-from-vertex (vertex)
(1f (vertex-p (eval vertex))
(list (vertex-x-coord (eval vertex))
(vertex-y-coord (eval vertex)))))

(defun get-xyz-coord-from-vertex (vertex)
(if (vertex-p (eval vertex))
(list (vertex-x-coord (eval vertex))
(vertex-y-coord (eval vertex))
(vertex-z~coord (eval vertex)))))

(defun get-elevation-from-vertex (vertex)
(if (vertex-p (eval vertex))
(vertex-z-coord (eval vertex))))

(defun get-elevation-from-edge-point (intersection-point edge-pointl
edge-point2)
(if (point-equal-p (first edge-pointl) (second edge-pointl)
(first edge-point2) (second edge-point2))
(third edge-pointl)
(let* ((edge-ptl-x (first edge-pointl))
(edge-ptl-y (second edge-pointl))
(edge-ptl-z (third edge-pointl))
(edge-pt2-x (first edge-point2))
{(edge-pt2-y (second edge-point2)})
(edge-pt2-z (third edge-point2))
(base-point (if (< edge-ptl-z edge-pt2-z) edge-pointl edge-point2})
(base-point-x (first base-point))
(base-point-y (second base-point))
(base-point-z (third base-point))
(projected-edge~distance
(distance-point-to-point edge-ptl-x edge-ptl-y edge-pt2-x
edge-pt2-y))

(elevation-difference
(abs (- edge-ptl-z edge-pt2-z))) (edge-slope
(radians-to-degrees (atan (/ elevation-difference
projected-edge-distance))}))
(intersect~pt-x (first intersection-point))
(intersect-pt-y (second intersection-point))
(projected-distance
(distance-point-to-point base-point-x base-point-y
intersect-pt-x intersect-pt-y))
(offset-elevation -
(* projected-distance (tan (degrees-to-radians edge-slope)))))
(make-significant-figures (+ base-point-z offset-elevation) 3))))

(defun get-elevation-from-interior-point (interior-point region)
(let* ((vertex-list (get-vertexlist-from-region region))
(target-vertex (first vertex-list))

146

(target-vertex-x (vertex-x-coord (eval target-vertex)))
(target-vertex-y (vertex-y-coord (eval target-vertex)))
(target-vertex-z (vertex-z-coord (eval target-vertex)))
(interior-region-slope (region-slope (eval regicn)))
(interior-region-orientation (region-orientation (eval region))))
(if interior-region-orientation
(let* ((interior-point-x (first interior-point))
(interior-point-y (second interior-point))
(interior-heading
(heading interior-point-x interior-peint-y
target-vertex-x target-vertex-y))
{(interior-heading-slope
(heading-inclination-angle interior-heading
interior-region-slope interior-region-orientation))
(projected-interior-distance
(distance-point-to-point interior-point-x interior-point-y
target-vertex-x target-vertex-y))
(offset-elevation
(* projected-interior-distance
(tan (degrees-to-radians
(abs interior-heading-slope))))))
(if (plusp interior-heading-slope)
(make-significant-figures (- target-vertex-z offset-elevation) 3)
(if (minusp interior-heading-slope)
(make-significant-figures
(+ target-vertex-z offset-elevation) 3))))
target-vertex-z)))

(defun get-vertex-from-point (xcoord ycoord)
(let ((vertex-flag nil)
(result nil))
(do ((vertex-list *vertex-list* (rest vertex-list)))
((or (null vertex-list) vertex-flag) result)
(let* ((vertex (first vertex-list))
(x1 (vertex-x-coord (eval vertex)))
(yl (vertex-y-coord (eval vertex))))
(if (and (= x1 xcoord) (= yl ycoord))
(let ()
(setf vertex-flag t)
(setf result vertex)))))))

(defun get-edge-from-point (xcoord ycoord)
(let ((result nil))
(dolist (edge (append *edge-list* *background-edge-list*) result)
(if (point-on-edge-p xcoord ycoord edge)
(setf result (cons edge result))))))

(defun get-region-from-point (xcoord ycoord)
(let ((result nil))

(do* ((region (append *region-list* *background-region-list*) (rest region))
(current-region (first region) (first region)}))
({(or (null region) result))

(if (point-in-region-p xcoord ycoord current-region)

(setf result (list current-region))))

(1f (null result)

(let* ((edgelist (get-edge-from-point xcoord ycoord)))

(if edgelist

147

(setf result
(remove-duplicates
(apply ’'append
(mapcar ’'get-regionlist-from-edge edgelist))))))) result))

(defun get-vertexlist-from-region (region)
(remove-duplicates (apply 'append (mapcar ’'edge-vertex-list
(mapcar ’‘eval (region-edge-list (eval region)))))))

(defun get-vertex-lists-from-edgelist (edgelist)
(let ((vertex-lists nil))
(dolist (elist edgelist (reverse vertex-lists))
(setf vertex-lists (cons (edge-vertex-list (eval elist)) vertex-lists)))))

(defun get-vertices-and-edges-from-region (region)
(let* ((edge-list (region-edge-list (eval region)))
(vertex-list (remove-duplicates
(apply ’'append (mapcar ‘edge-vertex-list
{(mapcar ‘eval edge-list))))}))
(append edge-list vertex-list)))

(defun get-regionlist-from-vertex (vertex)
{remove-duplicates
(apply ’'append (mapcar ‘get-regionlist-from-edge
(mapcar 'eval (vertex-edge-list (eval vertex)))))))

(defun get-regionlist-from-edge (edge)
(edge-adjacer.cy-list (eval edge)))

(defun get-incident-vertexlist-from-vertex (vertex)
(if (member vertex *virtual-vertex-list*) nil
(remove vertex
(remc-- Luplicates
(apply ’‘append (mapcar ‘edge-vertex-list
(mapcar 'eval (vertex-edge-list (eval vertex)))))))))

(defun get-incident-edgelist-from-edge (edge)
(let* ((static-edge (if (member edge *edge-list*) t nil))
(background-edge (if (member edge *background-edge-list*) t nil))
(parent-edge (if (member edge *virtual-edge-listt)
(get-static-edge-from-virtual-edge edge) nil))
(vertex-list (edge-vertex-list s-edge))
(vertexl (first vertex-list))
(vertex?2 (second vertex-list))
(virtual-vertexl (if (member vertexl *virtual-vertex-list*) t nil))
(virtual-vertex2 (if (member vertex2 *virtual-vertex-list*) t nil)) .
(result nil))
(if (or static-edge background-edge)
(setf result (remove edge
(apply ‘append (mapcar ‘vertex-edge-list
(mapcar 'eval vertex-list)))))
(if (and virtual-vertexl virtual-vertex2)
(setf result nil)

148

(let ((static-vertex (if virtual-vertexl vertex2 vertexl)))
(setf result
(remove parent-edge
(vertex-edge-list (eval static-vertex))))))) result))

(defun get-non-incident-vertex-from-region (edge region)
(let ((region-vertex-list (get-vertexlist-from-region region})
(edge-vertexlist (edge-vertex-list (eval edge))))
(first (remove-items edge-vertexlist region-vertex-list))))

(defun get-edgelist-from-intedgelist (list)
(let ((result nil))
(dolist (intelist list)
(setf result (append (mapcar ‘first intelist) result)))
(remove-duplicates result)))

(defun get-traversal-region-edge-edge (edgel edge2)
(let ((region (first (intersection (edge-adjacency-list (eval edgel))
(edge-adjacency-list (eval edgel2))))))
(if (obstacle-region-p region) nil region)))

(defun get-traversal-region-vertex-vertex (vertexl vertex2)
(if (or (equal vertexl ’'s-v) (equal vertex2 ’‘s-v))
(first (get-region-from-point (vertex-x-coord (eval ’'s-v))
(vertex-y-coord (eval ‘s-v))))
(if (or (equal vertexl ’'g-v) (equal vertex2 ’‘g-v))
(first (get-region-from-point (vertex-x-coord (eval ‘g-v))
(vertex-y-coord (eval ‘g-v))))
(let ((edge
(first (intersection (vertex-edge-list (eval vertexl))
(vertex~edge-list (eval vertex2))))))
(if edge
(select-region edge)
(let ((region (first (intersection
(get-regionlist-from-vertex vertexl)
(get-regionlist-from-vertex vertex2)))))
(if (obstacle-region-p region) nil region)}))}))

(defun get-traversal-region-edge-vertex (edge vertex)
(if (equal vertex ’'g-v)
(first (get-region-from-point (vertex-x-coord (eval ’'g-v))
(vertex-y-coord (eval ’'g-v))))
(let ((region (first (intersection (get-regionlist-from-vertex vertex)
(edge-adjacency-list (eval edge))))))
(if (obstacle-region-p region) nil region))))

(defun get-traversal-region-vertex-edge (vertex edge)
(1f (egqual vertex ’'s-v)
(first (get-region-from-point (vertex-x-coord (eval ’'s-v))
(vertex-y-coord (eval ‘s-v)}))
(let ((region (first (intersection (get-regionlist-from-vertex vertex)
(edge-adjacency-list (eval edge))))))
(if (obstacle-region-p region) nil region))))

149

(defun get-static-edge-from-virtual-edge (virtual-edge)
(let ((region-list (edge-adjacency-list (eval virtual-edge))))
(first (intersection (region-edge-list (eval (first region-list)))
(region-edge-list (eval (second region-list)))))))

(defun get-static-vertexlist-from-edgelist (edgelist)
(let ((static-vertex-list nil))
(dolist (edge edgelist)
(let* ((vertex-list (edge-vertex-list (eval edge)))
(vertexl (first vertex-list))
(vertex2 (second vertex-list)))
(if (member vertexl *vertex-list*)
(setf static-vertex-list (cons vertexl static-vertex-list)))
(if (member vertex2 *vertex-listt)
(setf static-vertex-list (cons vertex2 static-vertex-list)))))
(remove-duplicates static-vertex-list)))

(defun select-region (edge)
(let* ((region-list (edge-adjacency-list (eval edge)))
(region-1 (first region-list))
(region-2 (second region-list))
(isotropic-region-1 (isotropic-region-p region-1))
(isotropic-region-2 (isotropic-region-p region-2))
(anisotropic-safe-region-1 (anisotropic-region-p region-1))
(anisotropic-safe-region-2 (anisotropic-region-p region-2))
(anisotropic-partially-safe-region-1
(anisotropic-partially-safe-region-p region-1))
(anisotropic-partially~safe-region-2
(anisotropic-partially-safe-region-p region-2))
(obstacle-region-1 (obstacle~region-p region-1))
(obstacle-region-2 (obstacle-region-p region-2))
(region-l-slope (region-slope (eval region-1)))
(region-2-slope (region-slope (eval region-2))))
(cond ((and obstacle-region-1 isotropic-region-2) region-2)
((and obstacle-region-2 isotropic-region-1) region-1)
((and obstacle-region-1 anisotropic-safe-region-2) region-2)
((and obstacle-region-2 anisotropic-safe-region-1) region-1)
((and isotropic-region-1 isotropic-region-2) region-1)
((and anisotropic-safe-region-1 anisotropic-safe-region-2
(<= region-l-slope region-2-slope)) region-1)
((and anisotropic-safe-region-1 anisotropic-safe-region-2
(> region-l-slope region-2-slope)) region-2)
((and isotropic-region-1 anisotropic-safe-region-2) region-1)
((and isotropic-region-2 anisotropic-safe-region-1) region-2)
((and isotropic-region-1 anisotropic-partially-safe-region-2)
region-1)
((and isotropic-region-2 anisotropic-partially-safe-region-1)
region-2)
((and anisotropic-safe-region-1 anisotropic-partially-safe-region-2)
region-1)
((and anisotropic-safe-region-2 anisotropic-partially-safe-region-1) °
region-2)
((and anisotropic-partially-safe-region-1
anisotropic-partially-safe-region-2)
(let* ((vertex-list (edge-vertex-list (eval edge)))
(vertexl (first vertex-list))
(vertex2 (second vertex-list))
(x-vl (vertex-x-coord (eval vertexl)))

150

(y-vl (vertex-y-coord (eval vertexl)))
(x-v2 (vertex-x-coord (eval vertex2)))
(y-v2 (vertex-y-coord (eval vertex2)))
(edge-heading (heading x-vl1 y-vl x-v2 y-v2))
(stability-constraintsl
(region-stability-conastraints (eval region-1)))
(stability-constraints2
(region-stability-constraints (eval region-2)))
(heading-l1-lower (heading-range-p edge-heading
(first stability-constraintsl)
(second stability-constraintsl)))
(heading-1-upper (heading-range-p edge-heading
{(third stability-constraintsl)
(fourth stability-constraintsl)))
(heading-2-lower (heading-range-p edge-heading
(first stability-constraints2)
(second stability-constraints2)))
(heading-2-upper (heading-range-p edge-heading
(third stability-constraints2)
(fourth stability-constraints2))))
(cond ((and (or heading-l-lower heading-l-upper)
(or heading-2-lower heading-2-upper))
(if (<= region-l-slope region-2-slope) region-1 region-2))
((and (or heading-l-lower heading-1l-upper)
{or (null heading-2-lower) (null heading-2-upper)))
region-1)
((and (or (null heading-l-lower) (null heading-l-upper))
(or heading-2-lower heading-2-upper)})
region-2)
((and (or (null heading-l-lower) (null heading-1l-upper))
(or (null heading-2-lower) (null heading-2-upper)))
nil))))
((or (and obstacle-region-l anisotropic-partially-safe-region-2)
(and obstacle-region-2 anisotropic-partially-safe-region-1))
(let* ((vertex-list (edge-vertex-list (eval edge)))
(vertexl (first vertex-list))
(vertex2 (second vertex-list))
(x-vl (vertex-x-coord (eval vertexl)))
(y-vl (vertex-y-coord (eval vertexl)))
(x-v2 (vertex-x-coord (eval vertex2)))
(y-v2 (vertex-y-coord (eval vertex2)))
(non-obstacle-region
(if obstacle-region-1 region-2 region-1))
(edge-heading (heading x-v1 y-vl x-v2 y-v2))
(stability-constraints (region-stability-constraints
(eval non-obstacle-region)))
(heading-lower (heading-range-p edge-heading
(first stability-constraints)
(second stability-constraints)))
(heading-upper (heading-range-p edge-heading
(third stability-constraints)
(fourth stability-constraints))))
(if (or heading-lower heading-upper)
non-obstacle-region nil)))
(t nil))))

(defun obscure-edge-p (edgel edge2)
(let* ((edgel-vertexlist (edge-vertex-list (eval edgel)))
(edgel-vl (first edgel-vertexlist))

151

(edgel-v2 (second edgel-vertexlist))
(edgel-vl-x (vertex-x-coord (eval edgel-vl))})
(edgel-vl-y (vertex-y-coord (eval edgel-vl)))
(edgel-v2-x (vertex-x-coord (eval edgel-v2)))
(edgel-v2-y (vertex-y-coord (eval edgel-v2)))
{(edgel-line-equation
(line-equation edgel-vl-x edgel-vl-y edgel-v2-x edgel-v2-y))
(edge2-vertexlist (edge-vertex-list (eval edge2)))
(edge2-vl (first edge2-vertexlist))
(edge2-v2 (second edge2-vertexlist))

{(edge2-vl-x (vertex-x-coord (eval
(edge2-vl-y (vertex-y-coord (eval
(edge2-v2-x (vertex-x-coord (eval
(edge2-v2-y (vertex-y-coord (eval

edge2-vl)))
edge2-vl)))
edge2-v2)))
edge2-v2)))

(edge2-line-equation
(line-equation edge2-vl-x edge2-vl--y edge2-v2-x edge2-v2-y))
(line-intersection-point
(line-intersection edgel-line-equation edge2-line-equation)))
(if line-intersection-point t nil)))

(defun obscure-edge (edgel edge2)
(let* ((edgel-vertexlist (edge-vertex-list (eval edgel)))
(edgel-vl (first edgel-vertexlist))

(edgel-v2 (second edgel-vertexlist))

(edgel-vl-x (vertex-x-coord (eval
(edgel-vl-y (vertex-y-coord (eval
(edgel-v2-x (vertex-x-coord (eval
(edgel-v2-y (vertex-y-~-oord (eval

edgel-vl)))
edgel-vl)))
edgel-v2)})
edgel-v2)))

(edgel-line-equation
(line-equation edgel-vl-x edgel-vl-y edgel-v2-x edgel-v2-y))
(edge2-vertexlist (edge-vertex-list (eval edge2)}))
(edge2-vl (first edge2-vertexlist))
(edge2-v2 (second edge2-vertexlist))
(edge2-v1-x (vertex-x-coord (eval edge2-vl)))
(edge2-vl-y (vertex-y-coord (eval edge2-vl)))
(edge2-v2-x (vertex-x-coord (eval edge2-v2)))
(edge2-v2-y (vertex-y-coord (eval edge2-v2)))
(edge2-line-equation
(line-equation edge2-vl-x
(intersection-point
(line-intersection edgel-line-equation edge2-line-equation))})
(if intersection-point
(let ((intersection-pt-x (first intersecticon-point))
(intersection-pt-y (second intersection-point))
(tolerance 0.01))
(if (or (and (equal-within-tolerance edgel-vl-x
intersection-pt-x tolerance)
(equal-within~tolerance edgel-vl-y
intersection-pt-y tolerance))
(equal-within-tolerance edgel-v2-x
intersection-pt-x tolerance)
(equal-within-tolerance edgel-v2-y
intersection-pt-y tolerance))
(equal-within-tolerance edge2-vl-x
intersection-pt-x tolerance)
(equal-within-tolerance edge2-vl-y
intersection-pt-y tolerance))
(equal-within-tolerance edge2-v2-x
intersection-pt-x tolerance)

edge2-vl-y edge2-v2-x edge2-v2-y))

(and

(and

(and

152

(equal-within-tolerance edge2-v2-y
intersection-pt-y tolerance))) nil
(let ((in-range-edgel

(line-segment-range-p intersection-pt-x intersection-pt-y
edgel-vl-x edgel-vl-y edgel-v2-x edgel-v2-y))

(in-range-edge2
(line-segment-range-p intersection-pt-x intersection-pt-y
edge2-vl-x edge2-vl-y edge2-v2-x edge2-v2-y)))

(if in-range-edgel edgel
(if in-range-edge2 edge2))))))))

(defun xy-lists-from-vertexlist (vertexlist)
(let* ((xlist nil)
(ylist nil))
(dolist (vertex vertexlist)
(let ((svertex (eval vertex)))
(setf xlist (cons (vertex-x-coord svertex) xlist))
(setf ylist (cons (vertex-y-coord svertex) ylist}))))
(list (reverse xlist) (reverse ylist))))

(defun member-common-vertex-list (listl list2)
(let ((vertexl (first listl))
(vertex2 (second listl)))
(if (n11 (member vertexl 1is-2)) vertex2 vertexl)))

(defun sequence-vertex-lists (list)
(let ((vertex-lists nil))
(do* ((vlists list (rest vlists))
(vlistl (first vlists) (first vlists))
(vlist2 (second vlists) (second vlists))
(count (- (length list) 1) (- count 1))
(cmember (member-common-vertex-list vlistl vlist2)
(member-common-vertex—-list vlistl vlist2)))
({(null (rest vlists)) (reverse vertex-lists))
(if (equal cmember (first vlistl))
. (setf vertex-lists (cons (reverse vlistl) vertex-lists))
(setf vertex-lists (cons vlistl vertex-lists)))
(if (equal cmember (second vlist2))
(setf vlist2 (reverse vlist2)))
(if (= count 1) (setf vertex-lists (cons vlist2 vertex-lists))}))))

(defun coalesce-vertex-lists (list)
(let ((vertexlist nil))
(dolist (vlist list)
(setf vertexlist (append vertexlist vlist)))
(remove~-duplicates vertexlist)))

183

L2 R R R 2 R R R R RS 2 R 2 e R A s R R R R R R R R R YRS S22 2 2 B4

.
’
.
’

; Geometric Model: Spatial Predicates
H
;**ttittttttt'*tttit*ttttttttttﬁtttﬁttititi*it*ttﬁttitiittttitttt'ittttttttttt'ﬁ

(defun tri-edge-incident-vertex-p (edgel edge2 edge3)
(let ((edgel-vertexlist (edge-vertex-list (eval edgel)))
(edge2-vertexlist (edge-vertex-list (eval edge2)))
(edge3-vertexlist (edge-vertex-list (eval edge3))))
(if (intersection (intersection edgel-vertexlist edge2-vertexlist)
(intersection edge2-vertexlist edge3-vertexlist)) t nil)))

(defun tri-edge-incident-edge-p (edgel edge2 edge3)

(let* ((edgel-vertexlist (edge-vertex-list (eval edgel)))
(edge2-vertexlist (edge-vertex-list (eval edge2)))
(edge3-vertexlist (edge-vertex-list (eval edge3)))
(intersection-1

(first (intersection edgel-vertexlist edge2-vertexlist)))
(intersection-2
(first (intersection edge2-vertexlist edge3-vertexlist)))
(edge2-vertexl (first edge2-vertexlist))
(edge2-vertex2 (second edge2-vertexlist)))
(if (or (and (equal intersection-1 edge2-vertexl)
(equal intersection-2 edge2-vertex2))
{(and (equal intersection-]1 edge2-vertex2)
(equal intersection-2 edge2-vertexl))) t nil})))

(defun vertex-window-p (window)
(if (vertex-p (eval window)) t nil))

(defun edge-window-p (window)
(if (edge-p (eval window)) t nil))

(defun boundary-vertex-p (vertex)
(if (member vertex *boundary-vertex-list*) t nil))

(defun boundary-edge-p (edge)
(if (member edge *boundary-edge-list*) t nil))

(defun obstacle-vertex-p (vertex)
(if (member vertex *boundary-vertex-list*) nil
(let ((edge-list (vertex-edge-list (eval vertex))))
(if (null (remove-~if ’'null
(mapcar ‘obstacle-edge-p edge-list))) nil t))))

(defun obstacle-edge-p (edge)
(if (member edge *boundary-edge-list*) nil
(let* ((region-list (edge-adjacency-list (eval edge)))
(region-1 (first region-list))
(region-2 (second region-list}))
(if (or (obstacle-region-p region-1)

154

(obstacle-region-p region-2)) t nil))))

(defun obscure-edge-p (edgel edge2)
(let* ((edgel-vertexlist (edge-vertex-list (eval edgel)))
(edgel-vl (first edgel-vertexlist))
(edgel-v2 (second edgel-vertexlist))
(edgel-vl-x (vertex-x-coord (eval edgel-vl})))
(edgel-vl-y (vertex-y-coord (eval edgel-vl)))
(edgel-v2-x (vertex-x-coord (eval edgel-v2)))
(edgel-v2-y (vertex-y-coord (eval edgel-v2)))
(edgel-line-equation
(line-equation edgel-vl-x edgel-vl-y edgel-v2-x edgel-v2-y))
(edge2-vertexlist (edge-vertex-list (eval edge2)))
(edge2-vl (first edge2-vertexlist))
(edge2-v2 (second edge2-vertexlist))
(edge2-vl1-x (vertex-x-coord (eval edge2-vl)))
(edge2-vl-y (vertex-y-coord (eval edge2-vl)}}))
(edge2-v2-x (vertex-x-coord (eval edge2-v2)))
(edge2-v2-y (vertex-y-coord (eval edge2-v2)))
(edge2-line-equation
(line-equation edge2-vl-x edge2-vl-y edge2-v2-x edge2-v2-y))
(intersection-point
(line-intersection edgel-line-equation edge2-line-equation)))
(if intersection-point
(let ((intersection-pt-x (first intersection-point))
(intersection-pt-y (second intersection-point))
(telerance 0.01))
(if (or (and (equal-within-tolerance edgel-vl-x
intersection-pt-x tolerance)
(equal-within-tolerance edgel-vl-y
intersection-pt-y tolerance))
(and (equal-within-tolerance edgel-v2-x
intersection-pt-x tolerance)
{equal-within-tolerance edgel-v2-y
intersection-pt-y tolerance))
(and (equal-within-tolerance edge2-vl-x
intersection-pt-x tolerance)
(equal-within-tolerance edge2-vl-y
intersection-pt-y tolerance))
(and (equal-within-tolerance edge2-v2-x
intersection-pt-x tolerance)
(equal-within-tolerance edge2-v2-y
intersection-pt-y tolerance}))
nil t)))))

(defun vertex-equal-p (vertexl vertex2)
(let* ((s-vertexl (eval vertexl))
(s-vertex2 (eval vertex2))
{(x1 (vertex-x-coord s-vertexl))
(yl (vertex-y-coord s-vertexl))
(x2 (vertex-x-coord s-vertex2))
(y2 (vertex-y-coord s-vertex2)))
(if (point-equal-p x1 yl x2 y2) t nil)))

(defun ecuge-equal-p (edgel edge2)
(let* ((s-edgel (eval edgel))
(edgel-vertexlist (edge-vertex-list s-edgel))

155

(edgel-vl (first edgel-vertexlist))
(edgel-v2 (second edgel-vertexlist))
(s-edge2 (eval edge2))
(edge2-vertexlist (edge-vertex-list s-edge2))
(edge2-vl (first edge2-vertexlist))
(edge2-v2 (second edge2-vertexlist)))
(if (or (and (vertex-equal-p edgel-vl edge2-vl)
(vertex-equal-p edgel-v2 edge2-v2))
(and (vertex-equal-p edgel-vl edge2-v2)
(vertex-equal-p edgel-v2 edge2-vl))) t nil)))

(defun convex-region-p (region)
(let* ((s-region (eval region))
(edge-list (region-edge-list s-region))
(vertex-list (remove-duplicates
(apply ‘append
(mapcar ’‘edge-vertex-list (mapcar ‘eval edge-list)))})
(target-edge (first edge-list))
(s-target-edge (eval target-edge))
(te-vertex-list (edge-vertex-list s-target-edge))
(target-vertexl (first te-vertex-list))
(s-target-vertexl (eval target-vertexl))
(target-vertex2 (second te-vertex-list))
(s-target-vertex2 (eval target-vertex2))
(tvl-x (vertex-x-coord s-target-vertexl))
(tvl-y (vertex-y-coord s-target-vertexl))
(tv2-x (vertex-x-coord s-target-vertex2))
(tv2-y (vertex-y-coord s-target-vertex2))
(edge-line-equation (line-equation tvl-x tvl-y tv2-x tv2-y))
(plus-or-zero-result nil)
(minus-or-zero-result nil)
(result nil)
{(convex-result nil))
(dolist (vertex vertex-list)
(let* ((s-vertex (eval vertex))

(vertex-x (vertex-x-coord s-vertex))

(vertex-y (vertex-y-coord s-vertex))

(le-solution

(line-equation-solution edge-line-equation vertex-x vertex-y)))
(setf result (cons le-solution result))))
(setf plus-or-zero-result
(remove-if ‘zerop (remove-if ’plusp result)))
(setf minus-or-zero-result
(remove-if ’zerop (remove-if ‘minusp result)))
(setf convex-result (if (or (null plus-or-zero-result)
{null minus-or-zero-result)) t nil))))

(defun isotropic-region-p (region)
(if (obstacle-region-p region) nil
(if (< (region-slope (eval region)) *critical-coasting-angle*) t nil)))

(defun anisotropic-region-p (region)
(if (obstacle-region-p region) nil
(if (>= (region-slope (eval region)) *critical-coasting-angle*) t nil)))

(defun anisotropic-safe-region-p (region)

156

(if (obstacle-region-p region) nil
(let ((slope (region-slope (eval region))))
(1f (and (> slope *critical-coasting-angle*)
(< slope *critical-stability-angle*)) t nil))))

(defun anisotropic-partially-safe-region-p (region)
(1f (obstacle-region-p region) nil
(let ((slope (region-slope (eval reaion)}))
(if (and (> slope *critical-stability-angle*)
(< slope t*critical-braking-angle*)) t nil))))

(defun obstacle-region-p (region)
(if (> (region-slope (eval region)) *critical-braking-angle*} t nil))

(defun uphill-p (heading region)
{(let* ((s-region (eval region))
(slope (region-slope s-region))
(orientation (region-orientation s-region))
(heading-incl-angle
(heading-inclination-angle heading slope orientation)))
(i1f (> heading-incl-angle 0.01) t nil)))

{defun downhill-p (heading region)
(let* ((s-region (eval region))
(slope (region-slope s-regicn))
(orientation (region-orientation s-region))
(heading-incl-angle
(heading-inclination-angle heading slope orientation)))
(if (< heading-incl-angle -0.01) t nil)))

(defun point-at-vertex (xcoord ycoord vertex)
(let* ((s-vertex (eval vertex))
(x1 (vertex-x-coord s-vertex))
(yl (vertex-y-coord s-vertex))
(tolerance 0.01))
(if (and (egqual-within-tolerance xcoord x1 tolerance)
(equal-within-tolerance ycoord yl tolerance)) t nil)))

(defun point-on-edge-p (xcoord ycoord edge)
(let* ((s-edge (eval edge))
(vertexlist (edge-vertex-list s-edge))
(s-vertexl (eval (first vertexlist)))
(s-vertex2 (eval (second vertexlist)))
(x1 (vertex-x-coord s-vertexl))
(yl (vertex-y-coord s-vertexl))
(x2 (vertex-x-coord s-vertex2))
(y2 (vertex-y-coord s-vertex2))
(le (line-equation x1 yl x2 y2))
(le-solution (line-equation-solution le xcoord ycoord))
(tolerance 0.01)
(zero-solution
(if (equal-within-tolerance 0.0 le-solution tolerance) t nil))
(line~segment-range (if zero-solution
(line-segment-range-p xcoord ycoord

157

x1 yl x2 y2) nil)))
(if (and zero-solution line-segment-range) t nil)))

(defun point-in-region-p (xcoord ycoord region)
(let* ((region-flag nil)
(edge-list (region-edge-list (eval region)))
(result-list nil)
(result-test-positive nil)
(result-test-negative nil))

(do* ((vertex-lists (get-vertex-lists-from-edgelist edge-list))
(svertex-lists (sequence-vertex-lists vertex-lists))
(edgelist svertex-lists (rest edgelist))

(current-edge (first edgelist) (first edgelist)))
((null edgelist))
(let* ((s-vertexl (eval (first current-edge)))

(s-vertex2 (eval (second current-edge)))
{x1 (vertex-x-coord s-vertexl))
{yl (vertex-y-coord s-vertexl))
(x2 (vertex-x-coord s-vertex2))
(y2 (vertex-y-coord s-vertex2))
(lequation (line-equation x1 yl x2 y2)))

(setf result-list

(cons (line-equation-solution lequation xcoord ycoord)
result-list))))
(dolist (result result-list)
(if (plusp result)
(setf result-test-positive (cons t result-test-positive))
(setf result-test-positive (cons nil result-test-positive))))

(if (null (remove-if-not ‘null result-test-positive))

(setf region-flag t)
(let ()
(dolist (result result-list)
(if (minusp result)
{setf result-test-negative (cons t result-test-negative))
(setf result-test-negative (cons nil result-test-negative))))
(if (null (remove-if-not ’'null result-test-negative))
(setf region-flag t)))) region-flag))

(defun point-in-region-inclusive-p (xcoord ycoord region)
(let* ((region-flag nil)
(tolerance 0.01)
(edge-list (region-edge-list (eval region)))
(result-list nil)
(result-test-positive-or-zero nil)
(result-test-negative-or-zero nil))

(do* ((vertex-lists (get-vertex-lists-from-edgelist edge-list))
(svertex-lists (sequence-vertex-lists vertex-lists))
(edgelist svertex-lists (rest edgelist))

(current-edge (first edgelist) (first edgelist)))

((null edgelist))

(let* ((s-vertexl (eval (first current-edge)))
(s-vertex2 (eval (second current-edge)))
(x1 (vertex-x-coord s-vertexl))
{yi (vertex-y-coord s-vertexl))
(x2 (vertex-x-coord s-vertex2))
(y2 (vertex-y-coord s-vertex2))
(lequation (line-equation x1 yl x2 y2)))
(setf result-list (cons (line-equation-solution lequation xcoord yccord)

158

result-list))))
(dolist (result result-list)
(if (or (plusp result)
(equal-within-tolerance result 0.0 tolerance))
(setf result-test-positive-or-zero
(cons t result-test-positive-or-zero))
(setf result-test-positive-or-zero
(cons nil result-test-positive-or-zero))))
(if (null (remove-if-not ’'null result-test-positive-or-zero))
(setf region-flag t)
(let ()
(dolist (result result-list)
(if (or (minusp result)
(equal-within-tolerance result 0.0 tolerance))
(setf result-test-negative-or-zero
(cons t result-test-negative-or-zero))
(setf result-test-negative-or-zero
(cons nil result-test-negative-or-zero))))
(if (null (remove-if-not ‘null result-test-negative-or-zero))
(setf region-flag t)))) region-flag))

;ﬁtiittit*tttittt*titt**tttt**i*'kﬁ**t*t*t*t*t**tti*ittttitttii**'**tittt**ttt*t*

159

~e ws

R P LTI T

Ne we we e w

we weo o

..~

Ne %s ts Se Me Se Se Mo %a Ns We S S e we Wy e e Np N

.

T Y 2222232222223 222322 R R R R R R s 22 s 2222222222 X2 R RS

File: MPP-SPATIAL-REASONING-UTILITIES-II

Functions: DISTANCE-POINT-TO-POINT (x1 yl x2 y2)
DISTANCE-POINT-TO-EDGE-MIN (xcooxrd ycoord edge)
DISTANCE-POINT-TO-EDGE-MAX (xcoord ycoord edge)
DISTANCE-VERTEX-TO-VERTEX (vertexl vertex2)
DISTANCE-VERTEX-TO-EDGE-MIN (vertex edge)
DISTANCE-VERTEX-TO-EDGE~-MAX (vertex edge)
DISTANCE-EDGE-TO-EDGE-MIN (edgel edge2)
DISTANCE-EDGE-TO-EDGE-MAX (edgel edge2)
DISTANCE-WINDOW-TO-WINDOW-LOWER (windowl window2)
DISTANCE-WINDOW-TO-WINDOW-UPPER (windowl window2)

QUADRANT (x1 yl x2 y2)

HEADING~QUADRANT (heading)

QUAD1-HEADING (x1 yl x2 y2)

HEADING (x1 yl x2 y2)

REVERSE-HEADING (heading)

NORMALIZE-HEADING (heading)

ORDER-HEADINGS (headingl heading2)

INTERVAL-ORDER-HEADINGS (heading-list-1 heading-list-2)

HEADING-INCLINATION-ANGLE (heading slope orientation)

HEADING-POINT (x1 yl vheading)

HEADING-EQUAL-P (headingl heading2)

HEADING-RANGE-P (heading heading-1 heading-2)

INTERVAL-HEADING-RANGE-P (heading-list heading-list-1

heading-1ist-2)

HEADING-RANGE-~-INTERSECTION (heading-rangel heading-range2)

INTERVAL-HEADING-RANGE-INTERSECTION heading-range-1 heading-range-2)

SAME-QUADRANT-P (headingl heading2)

TOTAL-HEADING-RANGE-P (heading heading-11 heading-12 heading-21
heading-22)

BRAKING-HEADING-P (heading region)

STABILITY-HEADING-P (heading region)

BRAKING-HEADINGS (critical-coasting-angle slope orientation)

STABILITY-HEADINGS (stability-offset region)

GRADIENT-HEADING (region)

CONTOUR-HEADING (region)

:ttt*tiﬁ*tttttﬂtittiitttﬂtt*itttitttt*tﬁit*'tttii**Q*tt'i*tﬁttﬁﬂ*t*itt****t***t*

IR R XS E R E R X EE EE R RS S AR SRS A SRS SR AR R R AR RRlS R Rt ReR RS

-, “o

Geometric Model: Distance Functions

222222222222 2R 2R R 2SR R R EERS XSRS RESRSZRRR SRR Rl st l s

(defun distance-point-to-point (xl1 yl x2 y2)

(line-length x1 yl x2 y2))

(defun distance-point-to-edge-min (xcoord ycoord edge)

(let* ((s-edge (eval edge))
(vlist (edge-vertex-list s-edge))
(s~-vertexl (eval (first vlist)))
(s-vertex2 (eval (second vlist)))
(x1 (vertex-x-coord s~vertexl))

160

(yl (vertex-y-coord s-vertexl))
(x2 (vertex-x-coord s-vertex2))
(y2 (vertex-y-coord s-vertex2))
(lequation (line-equation x1 yl x2 y2))
(a (first lequation))
(b (second lequation))
(¢ (third lequation))
(distancel (line-length x1 yl xcoord ycoord))
(distance2 (line-length x2 y2 xcoord ycoord))
(distance3 (/ (abs (+ (* a xcoord) (* b ycoord) ¢))
(sqrt (+ (* a a) (* b b)))))
(vectorl (list (- xcoord xl) (- ycoord yl)))
(vector2 (list (- x2 x1) (- y2 yl))))
(if (null (vector-project vectorl vector2))
(min distancel distance2)
(min distancel distance2 distance3))))

(defun distance-point-to-edge-max (xcoord ycoord edge)
(let* ((s-edge (eval edge))
(vlist (edge-vertex-list s-edge))
(s-vertexl (eval (first vlist}))
(s-vertex2 (eval (second vlist)))
(x1 (vertex-x-coord s-vertexl))
(yl (vertex-y-coord s-vertexl))
(x2 (vertex-x-coord s-vertex2))
(y2 (vertex-y-coord s-vertex2))
(lequation (line-equation x1 yl x2 y2))
(a (first lequation))
(b (second lequaticn))
{c (third lequation))
(distancel (line-length xl1 yl xcoord ycoord))
(distance2 (line-length x2 y2 xcoord ycoord))
(distance3 (/ (abs (+ (* a xcoord) (* b ycoord) c))
(sqrt (+ (* a a} (* b b}}}})
(vectorl (list (- xcoord xl1) (- ycoord yl)))
(vector2 (list (- x2 x1) (- y2 yl))))
(if (null (vector-project vectorl vector2))
(max distancel distance2)
(max distancel distance2 distance3))))

(defun distance-vertex-to-vertex (vertexl vertex2)
(let* ((s-vertexl (eval vertexl))
(s-vertex2 (eval vertex2))
(xl1 (vertex-x-coord s-vertexl))
(yl (vertex-y-coord s-vertexl))
(x2 (vertex-x-coord s-vertex2))
(y2 (vertex-y-coord s-vertex2)))
(line-length x1 yl x2 y2)))

(defun distance-vertex-to-edge-min (vertex edge)
(let* ((s-vertex (eval vertex))

(s~edge (eval edge))

(x3 (vertex-x-coord s-vertex))

(y3 (vertex-y-coord s-vertex))

(vlist (edge-vertex-list s-edge))
(s-vertexl (eval (first vlist)))
(s-vertex2 (eval (second vlist)))

161

(x1 (vertex-x-coord s-vertexl))
(yl (vertex-y-coord s-vertexl))
{x2 (vertex-x-coord s-vertex2))
(y2 (vertex-y-coord s-vertex2))
(lequation (line-equation xl1 yl x2 y2))
(a (first lequation))
(b (second lequation))
(¢ (third lequation))
(distancel (line-length x1 yl x3 y3))
(distance2 (line-length x2 y2 x3 y3))
(distance3 (/ (abs (+ (* a x3) (* b y3) c))
(sqrt (+ (* a a) (* b b)))))
(vectorl (list (- x3 x1) (- y3 yl)))
(vector2 (list (- x2 x1) (- y2 y1))))
(if (pull (vector-project vectorl vector?))
(min distancel distance2)
(min distancel distance2 distance3))))

(defun distance-vertex-to-edge-max (vertex edge)
(let* ((s-vertex (eval vertex))
(s-edge (eval edge))
(x3 (vertex—-x-coord s-vertex))
(y3 (vertex-y-coord s-vertex))
(vlist (edge-vertex-list s-edge))
(s-vertexl (eval (first vlist})))
(s-vertex?2 (eval (second vlist)))
(x1 (vertex-x-coord s-vertexl))
(yl (vertex-y-coord s-vertexl))
(x2 (vertex-x-coord s-vertex2))
(y2 (vertex-y-coord s-vertex2))
(lequation (line-equation x1 yl x2 y2})
(a (first lequation))
(b (second lequation))
(c (third lequation))
(distancel (line-length x1 yl x3 y3))
(distance2 (line-length x2 y2 x3 y3))
(distance3 (/ (abs (+ (* a x3) (* b y3) <))
(sqrt (+ (* a a) (* b b)))))
(vectorl (list (- x3 x1) (- y3 yl)))
(vector2 (list (- x2 x1) (- y2 yl))))
(if (null (vector-project vectorl vector2))
(max distancel distance2)
(max distancel distance2 distance3))))

(defun distance-edge-to-edge-min (edgel edge2)

(let* ((vertex-listl (edge-vertex-list (eval edgel)))
(vertex-list2 (edge-vertex-list (eval edge2)))
(vertexll (first vertex-listl))
(vertexl2 (second vertex-listl))
(vertex2l (first vertex-list2))
(vertex22 (second vertex-list2))
(distancel (distance-vertex-to-edge-min vertexll edge2))
(distance2 (distance-vertex-tn-edge-min vertexl2 edge2))
(distance3 (distance-vertex-to-edge-min vertex2l edgel))
(distance4 (distance-vertex-to-edge-min vertex22 edgel)))

(min distancel distance2 distance3 distanced)))

162

(defun distance-edge-to-edge-max (edgel edge2)

(let* ((vertex-listl (edge-vertex-list (eval edgel)))
(vertex-list2 (edge-vertex-list (eval edgeZ)))
(vertexll (first vertex-listl))
(vertexl2 (second vertex-listl))
(vertex2l (first vertex-list2))
(vertex22 (second vertex-1ist2))
(distancel (distance-vertex-to-edge-max vertexll edge2))
(distance2 (distance-vertex-to-edge-max vertexl2 edge2))
(distance3 (distance-vertex-to-edge-max vertex2l edgel))
(distance4 (distance-vertex-to-edge-max vertex22 edgel)))

(max distancel distance2 distance3 distanced)))

(defun distance-window-to-window-lower (windowl window2)
(let* ((s-windowl (eval windowl))
(s~-window2 (eval window2))
(windowl-vertex (if (vertex-p s-windowl) t nil))
(window2-vertex (if (vertex~p s-window2) t nil))
(window-distance nil))
(setf window-distance (cond ((and windowl-vertex window2-vertex)
(distance-vertex-to-vertex windowl window2))
((and (null windowl-vertex)
(null window2-vertex))
(distance-edge-to—-edge-min windowl window2))
((and windowl-vertex (null window2-vertex))
(distance-vertex-to-edge-min windowl window2))
((and (null windowl-vertex) window2-vertex)
(distance-vertex-to-edge-min
window2 windowl))))))

(defun distance-window-to-window-upper (windowl window2)
(let* ((s-windowl (eval windowl))
{s-window2 (eval window2))
(windowl-vertex (if (vertex-p s-windowl) t nil))
(window2-vertex (if (vertex-p s-window2) t nil))
(window-distance nil))
(setf window-distance (cond ((and windowl-vertex window2-vertex)
(distance-vertex-to-vertex windowl window2))
((and (null windowl-vertex)
(null window2-vertex))
(distance-edge-to~edge-max windowl window2))
((and windowl-vertex (null window2-vertex))
(distance-vertex-to-edge-max windowl windowZ2))
((and (null windowl-vertex) window2-vertex)
(distance-vertex-to-edge-max
window2 windowl))))))

AR AR R R R AR AR AR R AR AR AR R AN AR AR AR R AR R R R AR AR AR A AR AR AR R AN R AR AR AR AR RN AR R Ak

; Geometric Model: Heading Functions

A AR AR S R R R RS R 2 e R R R R R R R R R R X R AR RER R AR XY

(defun quadrant (x1 yl x2 y2)
(cond ((and (> x2 x1) (> y2 yl)) ’'ne)
((and (< x2 x1) (> y2 yl)) ’'nw)

163

((and (< x2 x1) (< y2 yl)) 'sw)
((and (> x2 x1) (< y2 yl)) 'se)
((and (= x2 x1) (> y2 yl)) ’n)
((and (< x2 x1) (= y2 yl)) ‘w)
((and (= x2 x1) (< y2 yl)) ‘s)
((and (> x2 x1) (= y2 yl)) ‘e)))

(defun heading-quadrant (heading)
(if (= (mod heading 360.0) 0.0) ’n
(if (= (mod heading 360.0) 90.0) ‘e
(if (= (mod heading 360.0) 180.0) ‘s
(if (= (mod heading 360.0) 270.0) 'w
(if (and (> (mod heading 360.0) 0.0)
(< (mod heading 360.0) 90.0)) ’‘ne
(if (and (> (mod heading 360.0) 90.0)
(< (mod heading 360.0) 180.0)) ’‘se
(if (and (> (mod heading 360.0) 180.0)
(< (mod heading 360.0) 270.0)) ’'sw
(if (and (> (mod heading 360.0) 270.0)
(< (mod heading 360.0) 360.0))
‘nw)))))N)

(defun quadl-heading (x1 yl x2 y2)
(1f (point-equal-p x1 yl x2 y2) nil
(- 90.0 (rad:ains-to-degrees (atan (abs (- yl y2))
(abs (- x1 x2)))))))

(defun heading (x1 yl x2 y2)
(let ((quad (quadrant x1 yl x2 y2))
(qlheading (quadl-heading x1 yl x2 y2)))
(cond ((equal quad ’‘ne) glheading)
((equal quad ’'nw) (-~ 360.0 glheading))
((equal quad ’'sw) (+ 180.0 glheading))
((equal quad ’‘se) (- 180.0 gqlheading))
((equal quad ‘n) 0.0)
((equal quad ‘w) 270.0)
({equal quad 's) 180.0)
((equal quad 'e) 90.0))))

(defun reverse-heading (heading)
(mod (+ heading 180.0) 360.0))

(defun normalize-heading (heading)
(mod heading 360.0))

(defun order-headings (headingl heading2)

(let* ((heading-1 (normalize-heading headingl)})
(heading-2 (normalize-heading heading2))
(heading-quadrantl (heading-quadrant heading-1))
(heading-quadrant2 (heading-quadrant heading-2))
(greater-heading (max heading-1 heading-2))
(lesser-heading (if (= greater-heading heading-1) heading-2 heading-1))
(tolerance 0.01))

(if (and (same-quadrant-p heading-1 heading-2)

164

(= heading-1 lesser-heading))
(list heading-1 heading-2)
(if (and (same-quadrant-p heading-1 heading-2)
(= heading-1 greater-heading))
(list heading-2 heading-1)

(if (or (and
(and
{(and
(and
(and
(and
(and
(and
(and
(and
(and
(and
(and
(and
(and
(and
(and
(and
(and
(and
(and
(and
(and

{(and

(equal
(equal
(equal
(equal
(equal
(equal
(equal
(equal
(equal
(equal
(equal
(equal
{equal
(equal
(equal
(equal
(equal
(equal
(equal
(equal
(equal
(equal
(equal
(equal
(equal
(equal
(equal
(equal
(equal
(equal
(equal
(equal
(equal
(equal
(equal
(equal
(equal
{(equal
(equal
(equal
(equal
(equal
(equal
{(equal
(equal
(equal
(equal
(equal

heading-quadrantl
heading-quadrant2
heading-quadrantl
heading-quadrant2
heading-quadrantl
heading-quadrant2
heading-quadrantl
heading-quadrant2
heading-quadrantl
heading-quadrant2
heading-quadrantl
heading-quadrant2
heading~gquadrantl
heading-quadrant2
heading-quadrantl
heading-quadrant2
heading—-quadrantl
heading-quadrant2
heading-quadrantl
heading-quadrant2
heading-quadrantl
heading-quadrant2
heading-quadrantl
heading-quadrant2
heading-quadrantl
heading-quadrant2
heading-quadrantl
heading-quadrant2
heading-quadrantl
heading-quadrant2
heading-quadrantl
heading-quadrant2
heading-quadrantl
heading-quadrant2
heading-quadrantl
heading-quadrant?2
heading-quadrantl
heading-quadrant?2
heading-quadrantl
heading-quadrant2
heading-quadrantl
heading-quadrant2
heading-quadrantl
heading-quadrant2
heading-quadrantl
heading-quadrant?2
heading-quadrantl
heading-quadrant2

(list heading-1 heading-2)

(i1f (or (and (equal
(equal
(and (equal
(equal
(and (equal
(equal

168

In)
‘ne))
In)
‘e))
vn)
'se))
'sw)
‘n))
'V)
'n))
‘nw)
‘n))
'.)
'se))
Ie)
's))
le)
'sw))
‘nw)
‘e))
‘ne)
‘e))
'8)

' aw))
Is)
‘w))
ls)
‘nw))
'ne)
‘8))
rse)
's))
IH)
‘nw))
Iw)
‘ne))
‘se)
‘w))
‘sw)
‘w))
‘ne)
‘se))
‘nw)
‘ne))
‘se)
'sw))
‘sw)
"nw))

heading-quadrant2
heading-quadrantl
heading-quadrant2
heading-quadrantl
heading-quadrant2 ‘n)
heading-quadrantl

)

'n)
'ne))
In)
‘e))

'se))

(and (equal heading-quadrant2 ’sw)
(equal heading-quadrantl ‘n))
(and (equal heading-quadrant2 ‘w)
(equal heading-quadrantl ‘n}))
(and (equal heading-quadrant2 ’nw)
{(equal heading-quadrantl ‘n))
(and (equal heading-quadrant2 ‘e)
(equal heading-quadrantl ’se))
(and (equal heading-quadrant2 ‘e)
(equal heading-quadrantl ’s))
(and (equal heading-quadrant2 ’‘e)
(equal heading-quadrantl ’sw))
(and (equal heading-quadrant2 ’nw)
(equal heading-quadrantl ‘e))
(and (equal heading-quadrant2 ’ne)
(equal heading-quadrantl ’‘e))
(and (equal heading-quadrant2 ’s)
(equal heading-quadrantl ‘sw))
(and (equal heading-quadrant2 ’s)
(equal heading-quadrantl ‘w))
(and (equal heading-quadrant2 ’s)
(equal heading-quadrantl ’'nw))
(and (equal heading-quadrant2 ’ne)
{(equal heading-quadrantl ’s))
(and (equal heading-quadrant2 ‘se)
{equal heading-quadrantl ’‘s))
(and (equal heading-quadrant2 ‘w)
(equal heading-quadrantl ‘nw))
(and (equal heading-quadrant2 ‘w)
(equal heading-quadrantl ’'ne))
(and (equal heading-quadrant2 ‘se)
(equal heading-quadrantl ’'w))
(and (equal heading-quadrant2 ’sw)
(equal heading-quadrantl ‘w))
(and (equal heading-quadrant2 ‘ne)
(equal heading-quadrantl ’se))
(and (equal heading-quadrant2 ’‘nw)
{(equal heading-quadrantl ‘ne))
(and (equal heading-quadrant2 ‘se)
(equal heading-gquadrantl ’sw))
(and (equal heading-quadrant2 ’sw)
(equal heading-quadrantl ’‘nw)))
(list heading-2 heading-1)
(if (< heading-2 (mod (+ heading-1 180.0) 360.0))
(list heading-1 heading-2)
(if (> heading-2 (mod (+ heading-1 180.0) 360.0))
(list heading-2 heading-1)
(if (or (equal-within-tolerance
heading-2 (mod (+ heading-1 180.0)
360.0) tolerance)
(equal-within-tolerance
heading-1 (mod (+ heading-2 180.0)
360.0) tolerance))
nil)))))))))

(defun interval-order-headings (heading-list-1 heading-list-2)

(let* ((heading-1 (normalize-heading (first heading-list-1)))
(heading-designation-1 (second heading-list-1))

(heading-2 (normalize-heading (first heading-list-2)))

166

(heading-designation-2 (second heading-1list-2))
(ordered-headings (order-headings heading-1 heading-2))
(ordered-heading-list-1
(if ordered-headings
(if (= (first ordered-headings) heading-1)
(list heading-1 heading-designation-1)
(list heading-2 heading-designation-2)})))
(ordered-heading-list-2
(1f ordered-headings
(if (= (second ordered-headings) heading-1)
(list heading-1 heading-designation-1)
(1ist heading-2 heading-designation-2)))))
(if ordered-headings
(list ordered-heading-list-1 ordered-heading-list-2))))

(defun heading-inclination-angle (heading slope orientation)
(radians-to-degrees
(atan (* (- (cos (degrees-to-radians (- orientation heading))))
(tan (degrees-to-radians slope))))))

(defun heading-point (x1 yl vheading)
(let* ((nw-x (vertex-x-coord (eval ‘v-nw)}))
(nw-y (vertex-y-coorc (eval ‘v-nw)))
(ne-x (vertex-x-coord (eval ‘v-ne)))
(ne-y (vertex-y-coord (eval ’'v-ne)))
(sw-x (vertex-x-coord (eval 'v-sw)))
(sw-y (vertex-y-coord (eval ’‘v-sw)))
(se-x (vertex-x-coord (eval ‘v-se)))
(se-y (vertex-y-ccord {(eval v-se}))
(ymin 0.0)
(ymax 559.0)
(tan-theta (if (or (= vheading 0.0) (= vheading 90.0)
(= vheading 180.0) (= vheading 270.0)) nil
(tan (degrees-to-radians (- 90.0 vheading)))))
(x2
(if (and (> vheading 270.0) (< vheading 360.0))
(+ x1 (/ (- ymax yl) tan-theta))
(if (and (> vheading 90.0) (< vheading 180.0))
(+ x1 (/ (- ymin yl) tan-theta))
(if (and > vheading 0.0) (< vheading 90.0))
(+ x1 (/ (- ymax yl) tan-theta))
(if (and (> vheading 180.0) (< vheading 270.0))
(+ x1 (/ (- ymin yl) tan-theta)))))))
(intersection-point
(if (= vheading 0.0)
(list x1 (vertex-y-coord
(eval (first (edge-vertex-list (eval ‘e-n)))}))
(if (= vheading 180.0)
(list x1 (vertex-y-coord
(eval (first (edge-vertex-list (eval ‘e-s))))))
(if (= vheading 90.0)
(list (vertex-x-coord
(eval (first (edge-vertex-list
(eval ‘e-e))))) yl)
(if (= vheading 270.0)
(list (vertex-x-coord
(eval (first (edge-vertex-list
(eval ‘e-w))))) yl)

167

(if (and (> vheading 270.0) (< vheading 360.0))
(list x2 ymax)
(if (and (> vheading 90.0) (< vheading 180.0))
(list x2 ymin)
(if (and (> vheading 0.0) (< vheading 90.0))
(list x2 ymax)
(1f (and (> vheading 180.0)
(< vheading 270.0))
(list x2 ymin))))))))))
(intersection-point-x (first intersection-point))
(intersection-point-y (second intersection-point))
(intercept-north (intersect xl1 yl intersection-point-x
intersection-point-y
nw-x nw-y ne-x ne-y))
(intercept-south (intersect x1 yl intersection-point-x
intersection-point-y
Sw-X sw-y se-x se-y))
(intercept-east (intersect xl yl intersection-point-x
intersection-point-y
ne-x ne-y se-x se-y))
(intercept-west (intersect x1 yl intersection-point-x
intersection-point-y
NW-X NW-y SW-X Sw-Yy))
(heading-point
(first (remove-if ‘null
(list intercept-north intercept-south
intercept-east intercept-west))))) heading-point))

(defun heading-egqual-p (headingl heading2)
(let ((tolerance 0.01))
(if (equal-within-tolerance headingl heading2 tolerance) t nil)))

(defun heading-range-p (heading headingl heading2)
(let* ((ordered-headings (order-headings headingl heading2)))
(if ordered-headings
(let* ((heading-1 (first ordered-headings))
(heading-2 (second ordered-headings))
(tolerance 0.01))
(if (or (equal-within-tolerance heading heading-1 tolerance)
(equal-within-tolerance heading heading-2 tolerance)
(and (> heading-1 heading-2)
{(or (not (> heading heading-2))
(not (< heading heading-1))))
(and (> heading heading-1)
(< heading heading-2))) t))})))

(defun interval-heading-range-p (heading-list heading-list-1 heading-list-2)
(let* ((heading-1 (first heading-list-1))
(heading-2 (first heading-list-2))
(ordered-headings (order-headings heading-1 heading-2)))
(if ordered-headings
(let* ((heading (first heading-list))
(ordered-heading-1 (first ordered-headings))
(ordered-heading-2 (second ordered-headings))
(tolerance 0.01)
(limit-1
(equal-within-tolerance heading ordered-heading-1 tolerance))

168

(limit-2
(equal-within-tolerance heading heading-2 tolerance))
(heading-designation (second heading-list))
(heading-designation-1 (second heading-list-1))
(heading-designation-2 (second heading-list-2)))
(if (or limit-1 limit-2)
(if (or (and limit-1
(equal heading-designation ’CL)
(equal heading-designation-1 ‘CL))
(and limit-2
(equal heading-designation ’CL)
(equal heading-designation-2 ‘CL))) t)
(if (or (and (> ordered-heading-l1 ordered-heading-2)
{or (not (> heading ordered-heading-2})
(not (< heading ordered-heading-1))))
(and (> heading ordered-heading-l)
(< heading ordered-heading-2))) t))))))

(defun heading-range-intersection (heading-range-1 heading-range-2)
(let* ((heading-range-1-full
(if (= (length heading-range-1l) 2) t nil))
(heading-range-l-partial
(if (= (length heading-range-1) 1) t nil))
(heading-range-2-full
(if (= (length heading-range-2) 2) t nil))
(heading-range-2-partial
(if (= (length heading-range-2) 1) t nil))
(ordered-heading-range-1-full
(i1f heading-range-1-full
(order-headings
(first heading-range-~1)
(second heading-range-1))))
(ordered-heading-range-2-full
(if heading-range-2-full
(order-headings
(first heading-range-2)
(second heading-range-2})))
(tolerance 0.01))
(Lf
(and heading-range-l-partial
heading-range-2-partial
(equal-within-tolerance
(first heading-range-1) (first heading-range-2) tolerance))
heading-range-1
(if
(and heading-range-l-partial
heading-range-2-full
(heading-range~-p (first heading-range-1)
(first ordered-heading-range-2-full)
(second ordered-heading-range-2-full)))
heading-range-1
(if
(and heading-range-1-full
heading -range-2-partial
(heading-range-p (first heading-range 2)
(first ordered-heading-range-1-full)
(seco..d ordered-heading-range-1-full)))
heading-range-2
(if

169

(and ordered-heading-range-1-full
ordered-heading-range-2-full)
(if
(and (heading-range-p (first ordered-heading-range-2-full)
(first ordered-heading-range-1-full)
(second ordered-heading-range-1i-full))
(heading-range-p (second ordered-heading-range-2-full)
(first ordered-heading-range-1-full,
(second ordered-heading-range-1-full)))
(order-headings (first ordered-heading-range-2-full)
(second ordered-heading-range-2-full})
(if
(and (heading-range-p (first ordered-heading-range-1-full)
(first ordered-heading-range-2-full)
(second ordered-heading-range-2-full))
(heading-range-p (second ordered-heading-range-1-full)
(first ordered-heading-range-2-full)
(second ordered-heading-range-2-full)))
(order-headings (first ordered-heading-range-1-full)
(second ordered-heading-range-1-full))
(if
(or
(and (heading-range-p (first ordered-heading-range-2-full)
(first ordered-heading-range-1-full)
{second ordered-heading-range-1-full))
(null (heading-range-p
(second ~-Jdered-heading-range-2-full)
(first ¢ uered-heading-range-1-full)
(second ordered-heading-range-1-full))))
(and (heading-range-p (second ordered-heading-range-1-full)
(first ordered-heading-range-2-full)
(secona ordered-heading-range-2-full))
(null (heading-range-p
(first ordered-heading-range-1-full)
{(first ordered-heading-range-2-full)
(second ordered-heading-range-2-full)))))
(1f
(equal-within-tolerance
(first ordered-heading~range-2-full)
(second ordered-heading-range-1-full)
tolerance)
(list (first ordered-heading-range-2-full}))
(l1ist (first ordered-heading-range-2-full)
(second ordered-heading-range-1-full}))
rif
(or (and (heading-range-p
(second ordered-heading-range-2-full)
(first ordered-heading-range-1-full)
(second ordered-heading-range-1-full))
(null (heading-range-p
(first ordered-heading-range-2-full)
(first ordered-heading-range-1-full)
(second ordered-heading-range-1-full))))
(and (heading-range-p
(first ordered-heading-range-1-full)
(first ordered-heading-range-2-full)
(second ordered-heading-range-2-full))
(null (heading-range-p
(second ordered-heading-range-1-full)
(first ordered-heading-range-2-full)

170

(second ordered-heading-range-2-full)))))
(if (equal-within-tolerance

(second ordered-heading-range-2-full)

(first ordered-heading-range-1-full)

tolerance) :
(list (second ordered-heading-range-2-full})
(list (first ordered-heading-range-1-full)

(second ordered-heading-range-2-£full)))})))))))))

(defun interval-heading-range-intersection (heading-ranye-i ..aading-range-2)
(let* ((heading-range-1-full
(if (= (length heading-range-1) 2) t nil))
(heading-range-l-partial
(if (= (length heading-range-1) 1) t nil))
(heading-range-2-full
(if (= (length heading-range-2) 2) t nil))
(heading-range-2-partial
(if (= (length heading-range-2) 1) t nil))
(tolerance 0.01))
(if (and heading-range-1-full heading-range-2-full)
(let* ((ordered-heading-range-1
(interval-order-headings
(first heading-range-1) (second heading-range-1}))
{ordered-heading-range-2
(interval-order-headings
(first heading-range-2) (second heading-range-2)))
{heading-list-11 (first ordered-heading-range-1))
(heading-11 (first heading-list-11}))
(heading-designation-11 (second heading-list-11))
(heading-list-12 (second ordered-heading-range-1)\
(heading-12 (first heading-list-12))
(heading-designation-12 (second heading-list-12))
(heading-1list-21 (first ordered-heading-range-2))
(heading-21 (first heading-list-21))
(heading-designation-21 (second heading-list-21;)
(heading-list-22 (second ordered-heading-range-2))
(heading-22 (first heading-list-22))
(heading-designation-22 (second heading-list-22))
(partial-heading-range~-intersection
(if (= (length (heading-range-intersection
(list (first (first heading-range-1l))
(first (second heading-range-1)))
(list (first (first heading-range-2;)
(first (second heading-range-2))})) 1)
t nil))
(heading-1limit-21-11
(1f (equal-within-tolerance heading-11 heading-21 tolerance)
t nil))
(heading-limit-21-12
(if (equal-within-tolerance heading-12 heading-21 tolerance)
t nil)})
(heading-limit-21
(if (or heading-limit-21-11 heading-limit-21-12) t nil))
(heading-limit-closed-21
(if (or (and heading-iimit-21-11
(equal heading-designation-11 ’CL)
(equal heading-designation-21 ‘CL))
(and heading-limit-21-12
(equal heading-designation-12 ’CL)

m

(equal heading-designation-21 ’'CL))) t nil))

(heading-limit-22-11

(if (equal-within-tolerance heading-11 heading-22 tolerance)
t nil))
(heading-1imit-22-12
(if (equal-within-tolerance heading-12 heading-22 tolerance)
t nil))
(heading-limit-22
(1f (or heading-limit-22-11 heading-limit-22-12) t nil))
(heading-limit-closed~22
(if (or (and heading-limit-22-11
(equal heading-designation-11 'CL)
(equal heading-designation-22 ’CL))
(and heading-limit-22-12
(equal heading-designation-12 ’CL)
(equal heading-designation-22 'CL))) t nil))
(heading-limits
(remove-if ‘null (list heading-limit-21 heading-limit-22))))
(if (null heading-limits)
(let ()

(if (and (irterval-heading-range-p heading-list-21
heading-list-11
heading-list-12)

(interval-heading-range-p heading-list-22
heading-list-11
heading-list-12))

(interval-order-headings heading-list-21 heading-list-22)
(if (and (interval-heading-range-p heading-list-11
heading-list-21
heading-list-22)
(interval-heading-range-p heading-list-12
heading-list-21
heading-list-22))

(interval-order-headings heading-list-11

heading-list-12)

(if (or (and {interval-heading-range-p heading-list-11
heading-list-21
heading-1ist-22)

{null (interval-heading-range-p
heading-1list-12
heading-list-21
heading-list-22)))

(and (interval-heading-range-p heading-list-22
heading-list-11
heading-1list-12)

{(null (interval-heading-range-p
heading-list-21
heading-list-11
heading-list-12))))

(interval-order-headings heading-list-11
heading-list-22)
(if (or (and (interval-heading-range-p
heading-1list-21
heading-list-11
heading-list-12)

(null (interval-heading-range-p
heading-list-22
heading-list-11
heading-list-12)))

(and (interval-heading-range-p

172

heading-list-12
heading-list-21
heading-list-22)

(null (interval-heading-range-p
heading-list-11
heading-list-21
heading-1ist-22))))

(interval-order-headings

- heading-list-21 heading-list-12))})))
(if partial-heading-range-intersection
{let ()
(if heading-limit-closed-21
. (list (list heading-21 ‘CL))

(if heading-limit-closed-22
(list (list heading-22 ’CL})))))
(if (= (length heading-limits) 2)
(let (}
(if (and heading-~limit-closed-21 heading-limit-closed-22)
(interval-order-headings
(list heading-21 ‘CL) (list heading-22 ’‘CL}))
(if (and (null heading-limit-closed-21)
heading-limit-closed-22)
(interval-order-headings
(list heading-21 ‘OP) (list heading-22 ’'CL))
(if (and heading-limit-closed-21
(null heading-limit-closed-22))
(interval-order-headings
(list heading-21 ‘CL) (list heading-22 ’‘OP))
(if (and (nuli heading-limit-closed-21)
(null heading-limit-closed-22))
(interval-order-headings
(list heading-21 'OP)
(list heading=-22 'OP))))}))
(if (= (length heading-limits) 1)

(let ()
(if heading-limit-21
(let ()

(if (interval-heading-range-p heading-list-22
heading-list-11
heading-list-12)

(if heading-limit-closed-21
(interval-order-headings
(list heading-21 ‘CL) heading-list-22)
(interval-order-headings
(list heading-21 '"OP) heading-list-22))
(if (null (interval-heading-range-p
heading-list-22
heading-list-11
heading-list-12))
(if heading-limit-closed-21
(interval-order-headings
(list heading-21 ‘CL)
heading-1ist-12)
(interval-order-headings
(list heading-21 ’'OP)
heading-list-12))
(if (interval-heading-range-p
heading-list-12
heading-list-21
heading-1ist-22)

173

(if heading-limit-closed-21
(interval-order-headings
(1ist heading-21 ‘CL)

heading-list-12)
(interval-order-headings

(list heading-21 ‘OP)

heading-1ist-12))

(if (null (interval-heading-range-p
heading-1ist-12
heading-list-21
heading-list-22))

(if heading-limit-closed-21
(interval-order-headings
(list heading-21 ‘CL)
heading-list-22)
(interval-order-headings
(list heading-21 ‘OP)
heading-1ist-22)))))))
(if heading-limit-22
(let ()

(if (interval-heading-range-p heading-list-21
heading-list-11
heading-list-12)

(if heading-limit-closed-22

(interval-order-headings

(list heading-22 ‘CL)
heading-list-21)

(interval-order-headings

(list heading-22 ’'OP)
heading-1list-21))

(if (null (interval-heading-range-p
heading-list-21
heading-list-11
heading-list-12))

(if heading-limit-closed-22
{interval-order-headings
(list heading-22 ‘CL)

heading-list-11)
(interval-order-headings

(list heading-22 ‘OP)

heading-list-11))

(if (interval-heading-range-p
heading-list-11
heading-list-21
heading-list-22)

(if heading-limit-closed-22
(interval-order-headings
(list heading-22 ‘CL)
heading-list-11)
(interval-order-headings
(l1ist heading-22 ’'OP)
heading-list-11))
(if
(null (interval-heading-range-p
heading-list-11
heading-list-21
heading-1ist-22))
(if heading-limit-closed-22
(interval-order-headings
(list heading-22 'CL)

174

heading-1list-21)
(interval-order-headings
(list heading-22 ’OP)
heading-1ist-21))))}))}))))))}))
(if (and heading-range-l-partial heading-range-2-partial)
(let* ((heading-list-11 (first heading-range-1})
(heading-list-21 (first heading-range-2))
(heading-11 (first heading-list-11))
(heading-21 (first heading-list-21))
(heading-designation-11 (second heading-list-11))
(heading-designation-21 (second heading-list-21)))
(if (and (equal-within-tolerance heading-11 heading-21 tolerance)
(equal heading-designation-11 ‘CL)
(equal heading-designation-21 ‘CL)) heading-range-1))
(if (and heading-range-1-full heading-range-2-partial)

(let ((heading-list-21 (first heading-range-2))
(heading-list-11 (first heading-range-1))
(heading-list-12 (second heading-range-1)))

(if (interval-heading-range-p heading-list-21
heading~list-11
heading-list-12)

heading-range-2))

(if (and heading-range-l-partial heading-range-2-full)

(let ((heading-list-11 (first heading-range-1))
(heading-1ist-21 (first heading-range-2))
(heading-1ist-22 (second heading-range-2)))

(if (interval-heading-range-p heading-list-11
heading-list-21
heading-list-22)

heading-range-1))))))))

(defun same-quadrant-p (headingl heading2)
(if (or (and (>= headingl 0.0)
(<= headingl 90.0)
(>= heading2 0.0)
(<= heading2 90.0))
(and (>= headingl 90.0)
(<= headingl 180.0)
(>= heading2 90.0)
(<= heading2 180.0})
(and (>= headingl 180.0)
(<= headingl 270.0)
(>= heading2 180.0)
(<= heading2 270.0})
(and (>= headingl 270.0)
(< headingl 360.0)
(>= heading2 270.0)
(< heading2 360.0))) t nil))

(defun total-heading-range-p (heading heading-11 heading-12
heading-21 heading-22)
(let* ((heading-12 (if (= heading-12 0.0) 360.0 heading-12))
(heading-21 (if (= heading-21 0.0) 360.0 heading-21)))
(cond ((and (> heading-11 heading-12)
(or (not (and (> heading heading-12)
(< heading heading-11)))
(and (< heading heading-21)
(> heading heading-22)))) t)

17§

{(and (> heading-22 heading-21)})
(or (not (and (> heading heading-21)
(< heading heading-22)))
(and (<= heading heading-12)
(>= heading heading-11)))) t)
((or (and (> heading heading-11)
(< heading heading-12))
{and (<= heading heading-21)
(>= heading heading-22)}) t)
(t nil))))

(defun braking-heading-p (heading region)
(if (or (isotrcpic-region-p region)
(obstacle-region-p region)) nil
(let ((heading-incl-angle
(heading-inclination-angle
heading (region-slope (eval region))
(region-orientation (eval region)))))
(if (and (minusp heading-incl-angle)
(>= (abs heading-incl-angle) *critical-coasting-anglet*))
t nil)}))

(defun stability-heading-p (heading region)
(if (member heading (regiori-stability-constraints (eval region))) t nil))

(defun braking-headings (critical-coasting-angle slope orientation)
(let* ((adjusted-orientation (if (= orientation 0.0) 360.0 orientation))
(braking-headingl
(- adjusted-orientation
(radians-to-degrees
(acos (/ (tan (degrees-to-radians critical-coasting-angle})
{(tan (degrees-to-radians slope)))))))
{braking-heading2
(- (mod (+ 180.0 adjusted-orientation) 360.0)
(radians-to-degrees
(acos (- (/ (tan (degrees-to-radians critical-coasting-angle))
(tan (degrees-to-radians slope)})})))))
(order-headings (make-significant-figures
(normalize-heading braking-headingl) 3)
(make-significant-figures
(normalize-heading braking-heading2) 3))))

(defun edge-slope (edge)
(let* ((region-list (edge-adjacency-list (eval edge)))
(region (first region-list})
(slope (region-slope (eval region)))
(orientation (region-orientation (eval region)))
(vertex-list (edge-vertex-list (eval edge)))
(vertexl (first vertex-list))
(vertex2 (second vertex-list))
(vl-x (vertex-x-coord (eval vertexl)))
(vl-y (vertex-y-coord (eval vertexl)))
(v2-x (vertex-x-coord (eval vertex2)))
(v2-y (vertex-y-coord (eval vertex2)))
(edge-heading (heading vl-x vl-y v2-x v2-y)))
(make-significant-figures

176

(abs (heading-inclination-angle edge-heading slope orientaticn)) 3)))

(defun braking-entry-angle (edge-slope)
(radians-to-degrees
(asin (/ (tan (degrees-to-radians edge-slope)) *motion-resistance-lower*))}))

(defun stability-headings (stability-offset region)
(1f (anisotropic-partially-safe-region-p region)
(let* ((gradient-list (gradient-heading region))
(gradient-down (first gradient-list))
(gradient-up (second gradient-list))
(down-heading-1 (- gradient-down stability-offset))
(down-heading-2 (+ gradient-down stability-offset))
(up-heading-1 (+ gradient-up stability-offset))
(up-heading-2 (- gradient-up stability-offset))
(heading-1 (if (minusp down-heading-1l) (+ down-heading-1 360.0)
down-heading-1))
(heading-2 (mod down-heading-2 360.0))
(heading-3 (if (minusp up-heading-2) (+ up-heading-2 360.0)
up-heading-2))
‘heading-4 (mod up-heading-1 360.0)))
(list heading-1 heading-2 heading-3 heading-4))))

(defun gradient-heading (region)
(let* ((rorientation (region-orientatisn (eval region))))
(if (null rorientation) nil
(list rorientation (mod (+ rorientation 180.0) 360.0)))))

(defun contour-heading (region)
(let* ((rorientation (region-orientation (eval region))}))
(if (null rorientation) nil
(list (+ 90.0 rorientation) (mod (+ rorientation 270.0) 360.0)))))

‘-t**f*it'ﬁtt**it**'k*ittl*i*t*ittt*-ﬂi*tit'kii'k'ittit*tt****ﬁttitk*'itiittiiitiltttﬁ

177

;*ti (2R3 R R RS S S RS R RES R iRl a2 R 22 RRRRRXRR AR R R R & 4

.
.

.

Se Ne Se W5 %e Ve Se g wa W

~e e

. Ne S

Se wa S N

File: MPP-SEARCH-UTILITIES-I

Functions: PERMISSIBLE-HEADING-RANGE-FROM-EDGE-TO-EDGE-NON-INCIDENT
{(frontier-windowl frontier-window2)
PERMISSIBLE-HEADING-RANGE~FROM-EDGE-TO-EDGE-INCIDENT
(frontier-windowl frontier-window2)
PERMISSIBLE-HEAD ING-RANGE~FROM~-EDGE-TO-EDGE-OBSCURE
(frontier-windowl frontier-windowl-approach-region
frontier-window2 frontier-window2-approach-region)
PERMISSIBLE-HEADING-RANGE-FROM~-EDGE-TO-EDGE
(frontier-windowl frontier-window2)
PERMISSIBLE-HEAD ING~-RANGE-FROM~-EDGE-TO-VERTEX
(frontier-windowl frontier-window2)
PERMISSIBLE-HEADING-RANGE-FROM~VERTEX-TO-EDGE
(frontier-windowl frontier-window2)
PERMISSIBLE-HEADING-RANGE-FROM~-VERTEX-TO~VERTEX
(frontier-windowl frontier-window2)

PERMISSIBLE-HEADINGS~CRITICAL-STABILITY (frontier-region)
IMPERMISSIBLE-HEADINGS-CRITICAL-INSTABILITY (frontier-region)
PERMISSIBLE-HEADINGS-CRITICAL-BRAKING (frontier-region)

PERMISSIBLE-HEADINGS-GEOMETRIC
(frontier-windowl frontier-window2);
PERMISSIBLE-HEADINGS-STABILITY
(frontier-windowl frontier-window?2)
PERMISSIBLE-HEADINGS-BRAKING
(frontier-windowl frontier-window2)
PERMISSIBLE-HEADINGS-NON-BRAKING
(frontier-windowl frontier-window2)

PERMISSIBLE-HEADINGS-INTERSECTION
(PERMISSIBLE-headings-1 PERMISSIBLE-headings-2)

'-ttiiittiiﬁﬂttﬁttﬁit*ttttittt’lt**itttitiiitt'ttt*t'iti*tttiiiﬁiﬁt**tttttttttitt

;ﬁttﬁtt'ﬁ"*tﬂttﬁtﬂtttﬁﬁ*ﬁtt*ﬁﬁtﬂQtiii-ﬁittﬁtﬁt*tﬁ*ttﬁ*ttttt'tﬁtﬁﬁtﬁﬁ*'ttﬁttttiitt

’
’
’

.
’

Path Planning Model: Construction of Permissible Heading Ranges
(Geometric Constraints)

AR A R A A R AR AR AN R AN R AR R R R R R R AR R Rk R A A AR AN AR A RN A AR AR A R RRRANR RN R A AR AT R kA Rk R kR

(defun permissible-heading-range-from-edge-to-edge-non-incident

(frontier-windowl frontier-window2)
(let* ((frontier-windowl-vertexlist
(edge-vertex-list (eval frontier-windowl)))
(fwl-vl (first frontier-windowl-vertexlist))
(fwl-v2 (second frontier-windowl-vertexlist))
(fwl-vl-x (vertex-x-coord (eval fwl-vl1)))
(fwl-vl-y (vertex-y-ccord (eval fwl-vl)))
(fwl-v2-x (vertex-x-coord (eval fwl-v2)))
(fwl-v2-y (vertex-y~-coord (eval fwl-v2)))
(frontier-window2-vertexlist
(edge-vertex-list (eval frontier-window2)))
(fw2-vl (first frontier-window2-vertexlist))

178

(fw2-v2 (second frontier-window2-vertexlist))
(fw2-v1l-x (vertex-x-coord (eval fw2-vl)))
(fw2-vl-y (vertex-y-coord (eval fw2-vl)))
(fw2~-v2-x (vertex-x-coord (eval fw2-v2)))
(fw2-v2-y (vertex-y-coord (eval fw2-v2)))
(cross-heading
(if (intersect fwl-vl-x fwl-vl-y fw2-v2-x fw2-v2-y
fwl-v2-x fwl-v2-y fw2-vl-x fw2-vl-y) t nil))
(permissible-headings
(if cross-heading
(list (heading fwl-vl-x fwl-vl-y fw2-v2-x fw2-v2-y)
(heading fwl-v2-x fwl-v2-y fw2-vl-x fw2-vl-y))
(list (heading fwl-vl-x fwl-vl-y fw2-vl-x fw2-vl-y)
(heading fwl-v2-x fwl-v2-y fw2-v2-x fw2-v2-y))))
(permissible-heading-1 (first permissible-headings))
(permissible-heading-2 (second permissible-headings))
(tolerance 0.01)
(ordered-headings
(if (equal-within-tolerance
permissible-heading-1 permissible-heading-2 tolerance)
nil
(order-headings permissible-heading-1 permissible-heading-2}}))
(if ordered-headings
(list (list (first ordered-headings) ’'OP)
(list (second ordered-headings) ‘OP)))))

(defun permissible-heading-range-from-edge-to-edge-incident
(frontier-windowl frontier-window2)
(let* ((frontier-windowl-vertexlist

(edge-vertex-list (eval frontier-windowl)))
(fwl-vl (first frontier-windowl-vertexlist))
(fwl-v2 (second frontier-windowl-vertexlist))
(frontier-window2-vertexlist

(edge-vertex-list (eval frontier-window2)))
(fw2-vl (first frontier-window2-vertexlist))
(fw2~-v2 (second frontier-window2-vertexlist))
(fwl-v1-fw2-vl (if (vertex-equal-p fwl-vl fw2-vl) t nil))
(fwl-v1-fw2-v2 (if (vertex-equal-p fwl-vl fw2-v2) t nil))
(fw2-vl-fwl-vl (if (vertex-equal-p fw2-vl fwl-vl) t nil))
(fw2-vl-fwl-v2 (if (vertex-equal-p fw2-vl fwl-v2) t nil))
(fwl-incident-vertex

(if (or fwl-vl-fw2-vl fwl-vl-fw2-v2) fwl-vl fwl-v2))
(fwl-incident-vertex-x (vertex-x-coord (eval fwl-incident-vertex)))
(fwl-incident-vertex-y (vertex-y-coord (eval fwl-incident-vertex)))
(fwl-non-incident-vertex

(if (or fwl-v1-fw2-vl fwl-vi-fw2-v2) fwl-v2 fwl-vl))
(fwl-non-incident-vertex-x

(vertex-x-coord’ (eval fwl-non-incident-vertex)))
(fwl-non-incident-vertex-y

(vertex-y-coord (eval fwl-non-incident-vertex)))
(permissible-heading-1

(heading fwl-non-incident-vertex-x fwl-non-incident-vertex-y

fwl-incident-vertex-x fwl-incident-vertex-y))

(fw2-incident-vertex

(if (or fw2-vl-fwl-vl fw2-vi-fwl-v2) fw2-vl fw2-v2))
(fw2-incident-vertex-x (vertex-x-coord (eval fw2-incident-vertex)))
(fw2-incident-vertex-y (vertex-y-coord (eval fw2-incident-vertex)))
(fw2-non-incident-vertex

(if (or fw2-vli-fwl-vl fw2-vl-fwl-v2) fw2-v2 fw2-vl))

179

(fw2-non-incident~vertex-x
(vertex-x-coord (eval fw2-non-incident-vertex)))
(fw2-non-incident-vertex-y
(vertex~y-coord (eval fw2-non-incident-vertex)))
(permissible-heading-2
(heading fw2-incident-vertex-x fw2-incident-vertex-y
fw2-non-incident-vertex-x fw2-non-incident-vertex-y))
(tolerance 0.01)
(ordered-headings
(if (equal-within-tolerance
permissible-heading-1 permissible-heading-2 tolerance)
nil
(order-headings permissible-heading-1 permissible-heading-2))))
(if ordered-headings
(list (list (first ordered-headings) ’‘OP)
(list (second ordered-headings) ‘OP)))))

(defun permissible-heading-range-from-edge-to-edge-obscure
(frontier-windowl frontier-windowl-approach-region
frontier-window2 frontier-window2-approach-region)

(let* ((obscured-edge (obscure-edge frontier-windowl frontier-window2))
(obscured-edge-approach-region
(if (equal obscured-edge frontier-windowl)
frontier-windowl-approach-region
frontier-window2-approach-region))
(obscuring-edge
(if (equal obscured-edge frontier-windowl)
frontier-window2 frontier-windowl))
(obscuring-edge-approach-region
(if (equal obscured-edge-approach-region
frontier-windowl-approach-region)
frontier-window2-approach-region
frontier-windowl-approach-region))
(obscured-edge-vertexlist (edge-vertex-list (eval obscured-edge)))
(obscured-edge-vl (first obscured-edge~vertexlist))
(obscured-edge-v2 (second obscured-edge-vertexlist))
(obscured-edge-vl-x (vertex-~x-coord (eval obscured-edge-vl)))
(obscured-edge-vl-y (vertex-y-coord (eval obscured-edge-vl)))
(obscured-edge-v2-x (vertex-x-coord eval obscured-edge-v2)))
(obscured-edge-v2-y (vertex-y-coord (eval obscured-edge-v2)))
(obscuring-edge-vertexlist (edge-vertex-list (eval obscuring-edge)})
(obscuring-edge-vl (first obscuring-edge-vertexlist))
(cbscuring-edge-v2 (second obscuring-edge-vertexlist))
(obscuring-edge-vl-x (vertex-x-coord (eval obscuring-edge-vl)))
(obscuring-edge-vl-y (vertex-y-coord (eval obscuring-edge-vl)))
(obscuring-edge-v2-x (vertex-x-coord (eval obscuring-edga-v2)))
(obscuring-edge-v2-y (vertex-y-coord (eval obscuring-edge-v2}))
(obscuring-edge-line-equation
(line-equation obscuring~edge-vl-x obscuring-edge-vl-y
obscuring-edge-v2-x obscuring-edge-v2-y))
(distance-obscuring-edge-vl
(distance-point-to-edge-min obscuring-edge-vl-x
obscuring-edge-vl-y obscured-edge))
(distance-obscuring-edge-v2
(distance-point-to-edge-min obscuring-edge-v2-x
obscuring-edge-v2-y obscured-edge))
(closest-obscuring-edge-pt
(if (<= distance-obscuring-edge-vl distance-obscuring-edge-v2)
obscuring-edge-vl obscuring-edge-v2))

180

(closest-obscuring-edge-pt-x
(if (equal closest-obscuring-edge-pt obscuring-edge-vl)
obscuring-edge-vl-x obscuring-edge-v2-x))
(closest-obscuring-edge-pt-y
(if (equal closest-obscuring-edge-pt obscuring-edge-vl)
obscuring-edge-vl-y obscuring-edge-v2-y))
(farthest-obscuring-edge-pt
(if (equal closest-obscuring-edge-pt obscuring-edge-vl)
obscuring-edge-v2 obscuring-edge-vl))
(farthest-obscuring-edge-pt-x
(i1f (equal farthest-obscuring-edge-pt obscuring-edge-vl)
obscuring-edge-vl-x obscuring-edge-v2-x))
(farthest-obscuring-edge-pt-y
(if (equal farthest-obscuring-edge-pt obscuring-edge-vl)
obscuring-edge-vl-y obscuring-edge-v2-y))
(frontier-windowl-obscured
(if (equal obscured-edge frontier-windowl) t nil}))
(frontier-window2-obscured
(if (equal obscured-edge frontier-window2) t nil))
(test-vertex
(first (remove-items obscuring-edge-vertexlist
{(get-vertexlist-from-region obscuring-edge-approach-region))))
(test-vertex-x (vertex-x-coord (eval test-vertex)))
(test-vertex-y (vertex-y-coord (eval test-vertex)))
(le-solution-obscured-edge-vl
(line-equation-solution obscuring-edge-line-equation
obscured-edge-vl-x obscured-edge-vl-y))
(le-solution-test-vertex
(line-equation-solution obscuring-edge-line-equation
test-vertex—-x test-vertex-y))
(obscured-edge-vertex
(if frontier-windowl-obscured
(if (or (and (plusp le-solution-obscured-edge-vl)
(plusp le-solution-test-vertex))
(and (minusp le-solution-obscured-edge-vl)
(minusp le-soclution-test-vertex)))
obscured-edge-vl obscured-edge-v2)
(if frontier-window2-obscured
(if (or (and (plusp le-solution-obscured-edge-vl)
(minusp le-sclution-test-vertex)})
(and (minusp le-solution-obscured-edge-vl)
(plusp le-solution-test-vertex)))
obscured-edge-vl obscured-edge-v2)}})
(obscured-edge-vertex-x
(if (equal obscured-edge-vertex obscured-edge-vl)
obscured-edge-vl-x obscured-edge-v2-x))
(obscured-edge-vertex-y
(if (equal obscured-edge-vertex obscured-edge-vl)
obscured-edge-vl-y obscured-edge-v2-y))
(permissible-heading-1
(if frontier-windowl-obscured
(heading closest-obscuring-edge-pt-x closest-obscuring-edge-pt-y
farthest-obs-uring-edge-pt-x
farthest-obscuring-edge-~-pt-y)
(if frontier-window2-obscured
(heading farthest-obscuring-~edge-pt-x
farthest-cbscuring-edge-pt-y
closest-obscuring-edge-pt-x
closest-obscuring-edge-pt-y))))
(permissible-heading-2

181

L

(if frontier-windowl-obscured
(heading cbscured-edge-vertex-x obscured-edge-vertex-y
closest-obscuring-edge-pt-x closest-obscuring-edge-pt-y)
(if frontier-window2-obscured
(heading closest-obscuring-edge-pt-x
closest-obscuring-edge-pt-y
obscured-edge-vertex-x
obscured-edge-vertex-y))))
(tolerance 0.01)
(ordered-headings
(if (equal-within-tolerance
permissible-heading-1 permissible-heading-2 tolerance)
nil
(order-headings permissible-heading-1 permissible-heading-2))))
(if ordered-~headings
(list (list (first ordered-headings) ‘OP)
(list (second ordered-headings) ‘OP)))))

(defun permissible-heading-range-from-edge-to-edge
(frontier-windowl frontier-window2)
(if (member frontier-windowl
(get-incident-edgelist~from-edge frontier-window2})

(permissible-heading-range-from-edge-to-edge-incident
frontier-windowl frontier-window2)

(permissible-heading-range-from-edge-to-edge~-non-incident
frontier-windowl frontier-window2)))

(defun permissible-heading-range-from-vertex-to-edge
(frontier-windowl frontier-window2)
(let* ((fwl-x (vertex-x-coord (eval frontier-windowl)))
(fwl-y (vertex-y-coord (eval frontier-windowl)))
(frontier-window2-vertexlist
(edge-vertex-list (eval frontier-window2)))
(fw2-vl (first frontier-window2-vertexlist)) 1
(fw2-v2 (second frontier-window2-vertexlist))
(fw2-v1l-x (vertex-x-coord (eval fw2-vl)))
(fw2-vl-y (vertex-y-coord (eval fwz-vl)))
(fw2-v2-x (vertex-x-coord (eval fw2-v2))) *
(fw2-v2-y (vertex-y-coord (eval fw2-v2)))
(permissible-heading-1 (heading fwl-x fwl-y fw2-vl-x fw2-vl-y))
(permissible-heading-2 (heading fwl-x fwl-y fw2-v2-x fw2-v2-y))
(tolerance 0.01)
(ordered-headings
(if (equal-within-tolerance
permissible-heading-1 permissible-heading-2 tolerance)
nil
(order-headings permissible-heading-1 permissible-heading-2))})
(if ordered-headings
(list (list (first ordered-headings) ‘OP)
(list (second ordered-headings) ‘OP)))))

(defun permissible-heading-range-from-edge-to-vertex
(frontier-windowl frontier-window?2)
(let* ((frontier-windowl-vertexlist
(edge-vertex-list (eval frontier-windowl)))
(fwl-vl (first frontier-windowl-vertexlist)) '
(fwl-v2 (second frontier-windowl-vertexlist))

182

(fwl-vl-x (vertex-x-coord (eval fwl-vl)))
(fwl-vl-y (vertex-y-coord (eval fwl-vl)))
(fwl-v2~x (vertex-x-coord (eval fwl-v2)})
(fwl-v2-y (vertex-y-coord (eval fwl-v2)))
(fw2-x (vertex-x-coord (eval frontier-window2)))
(fw2-y (vertex-y-coord (eval frontier-window?2)))
(permissible-heading-1 (heading fwl-v2-x fwl-v2-y fw2-x fw2-y))
(permissible-heading-2 (heading fwl-vl-x fwl-vl-y fw2-x fw2-y))
(tolerance 0.0C1)
(ordered-headings
(if (equal-within-tolerance
permissible-heading-1 permissible-heading-2 tolerance)
nil
(order-headings permissible-heading-1 permissible-heading-2))}))
(if ordered-headings
(list (list (first ordered-headings) ‘OP)
(list (second ordered-headings) ‘OP)))))

(defun permissible-heading-range-from-vertex-to-vertex

(frontier-windowl frontier-window2)

(let* ((fw2-x (vertex-x-~coord (eval frontier-window2)))

(fw2-y (vertex-y-coord (eval frontier-window2}))

(fwl-x (vertex-x~coord (eval frontier-windowl)})

(fwl-y (vertex-y-coord (eval frontier-windowl)))

(permissible-heading (heading fwl-x fwl-y fw2-x fw2-y)))

(list (list permissible-heading ‘CL}))))

RS RRSREER SR R R RS R R RS R R SRR R SRS S R R SRR RS R R RS R 28]
;

; Path Planning Model: Construction of Permissible Headings

.

;'.uw*ﬁitittﬁitﬁﬁ*i*iiit*tiiii*itt'i*iti**tttﬁiﬁtitiiititti**ﬁ*tttt'ittttﬁi*ti*ﬁ

(defun permissible-headings-critical-stability (frontier-region)
(let* ((stability-constraints

(region-stability-constraints (eval frontier-region))))
(if stability-constraints

(let* ((ordered-headings-rangel
(order-headings (first stability-constraints)

(second stability-constraints)))
(ordered-headings-range2

(order-headings (third stability-constraints)
(fourth stability-constraints))))
(list (list (list (first ordered-headings-rangel) ‘CL)
(list (second ordered-headings-rangel) ‘CL)}
(list (list (first ordered-headings-range2) ’'CL)
(list (second ordered-headings-range2) 'CL})})))))

(defun impermissible-headings-critical-instability (frontier-region)
(let* ((stability-constraints

(region-stability-constraints (eval frontier-region))))
(if stability-constraints

(let* ((ordered-headings-rangel
(oxrder-headings (first stability-constraints)

(fourth stability-constraints)))
(ordered-headings-range2

183

(order-headings (second stability-constraints)
(third stability-constraints))))
(list (list (list (first ordered-headings-rangel) ’‘OP)
(list (second ordered-headings-rangel) ’‘OP))
(list (list (first ordered-headings-range2) ‘OP)
(list (second ordered-headings-range2) ‘OP)))))))

(defun permissible-headings-critical-braking (frontier-region)
(let* ((braking-constraints
(region-braking-constraints (eval frontier-region))))
(if braking-constraints
(let* ((ordered-headings-range
(order-headings (first braking-constraints)

(second braking-constraints))))

(list (list (list (first ordered-headings-range) ’‘CL)
(list (second ordered-headings~range) ‘CL)))))))

(defun permissible~headings-geometric (frontjier-windowl frontier-window2)
(let ((frontier-windowl-vertex (vertex-p (eval frontier-windowl)))
(frontier-window2-vertex (vertex-p (eval frontier-window2))))
(if (and (null frontier-windowl-vertex) (null frontier-window2-vertex))
(list (permissible-heading-range-from-edge-to-edge
frontier-windowl frontier-window2))
(if (and frontier-windowl-vertex (null frontier-window2-vertex))
(list (permissible-heading-range-from-vertex-to-edge
frontier-windowl frontier-window?2))
(if (and (null frontier-windowl-vertex) frontier-window2-vertex)
(list (permissible-heacing-range-from-edge-to-vertex
frontier-windowl frontier-window2))
(1f (and frontier-windowl-vertex frontier-window2-vertex)
(list (permissible-heading-range-from-vertex-to-vertex
frontier-windowl frontier-window2))))))))

(defun permissible-headings-stability (frontier-windowl frontier-window2)

(let* ((frontier-windowl-vertex (if (vertex-p (eval frontier-windowl)) t nil))
(frontier-window2-vertex (if (vertex-p (eval frontier-window2)) t nil))
(post-frontier-region

(if
(and (null frontier-windowl-vertex) (null frontier-window2-vertex))
(get~traversal-region-edge-edge frontier-windowl frontier-window2)
(if
(and frontier-windowl-vertex (null frontier-window2-vertex))
(get-traversal-region-vertex-edge irontier-windowl
frontier-window2)
(if
(and (null frontier-windowl-vertex) frontier-window2-vertex)
(get-traversal-region-edge-vertex frontier-windowl
frontier-window2)
(if
(and frontier-windowl-vertex frontier-window2-vertex)
(get-traversal-region-vertex-vertex frontier-windowl
frontier-window2)))))))
(if post-frontier-region
(if (anisotropic-partially-safe-region-p post-frontier-region)
(permissible-headings-intersection
(permissible-headings-geometric frontier-windowl frontier-window2)
(permissible-headings-critical-stability post-frontier-region))

184

(permissible-headings-geometric frontier-windowl
frontier-window2)))})

(defun permissible-headings-braking (frontier-windowl frontier-window2)

(let* ((frontier-windowl-vertex (if (vertex-p (eval frontier-windowl)) t nil))
(frontier-window2-vertex (if (vertex-p (eval frontier-window2)) t nil})
(post-frontier-region

(if
(and (null frontier-windowl-vertex) (null frontier-window2-vertex))
(get-traversal-region-edge-edge frontier-windowl
frontier-window2)
(if
(and frontier-windowl-vertex (null frontier-window2-vertex))
(get~traversal-region-vertex-edge frontier-windowl
frontier-window2)
(if
(and (null frontier-windowl-vertex) frontier-window2-vertex)
(get-traversal-region-edge-vertex frontier-windowl
frontier-window2)
(if
(and frontier-windowl-vertex frontier-window2-vertex)
(get-traversal-region-vertex-vertex frontier-windowl
frontier-window2)))))))
(if post-frontier-region
(permissible-headings-intersection
(permissible-headings-stability frontier-windowl frontier-window?2)
(permissible-headings-critical-braking post-frontier-region)))}))

(defun permissible-headings-non-braking (frontier-windowl frontier-window2)
(let* ((frontier-windowl-vertex (if (vertex-p (eval frontier-windowl)) t nil})
(frontier-window2-vertex (if (vertex-p (eval frontier-window2)) t nil))
(post-frontier-region
(if
{(and (null frontier-windowl-vertex) (null frontier-windowZ-vertex))
(get-traversal-region-edge-edge frontier-windowl
frontier-window2)
(if
(and frontier-windowl-vertex (null frontier-window2-vertex))
(get-traversal-region-vertex-edge frontier-windowl
frontier-window2)
(if
(and (null frontier-windowl-vertex) frontier-window2-vertex)
(get-traversal-region-edge-vertex frontier-windowl
frontier-window2)
(if
(and frontier-windowl-vertex frontier-window2-vertex)
(get-traversal-region-vertex-vertex frontier-windowl
frontier-window2)))))})
(if post-frontier-region
(let* ((ph-stability
(permissible-headings-stability frontier-windowl
frontier-window2))
(ph-critical-braking
(permissible-headings~-critical-braking post-frontier-region))
(stability-heading-list-1 (first (first ph-stability)))
(stability-heading-1 (first stability-heading-list-1))
(stability-heading~list-2 (second (first ph-stability)))
(stability-heading-2 (first stability-heading-list-2))

185

(braking-heading-list~1 (first (first ph-critical-braking)))
(braking-heading-1 (first braking-heading-list-1))
(braking-heading-1list~2 (second (first ph-critical-braking)))
(braking-heading-2 (first braking-heading-list-2))
(tolerance 0.01))
(if
(null (permissible-headings-braking frontier-windowl
frontier-window2))
ph-stability
(if
(and (= (length (first ph-stability)) 1)
(braking-heading-p stability-heading-1 post-frontier-region))
nil
(if
(and (equal-within-tolerance braking-heading-1l
stability-heading-1 tolerance)
(equal-within-tolerance braking-heading-2
stability~-heading-2 tolerance))
nil
(if
(and (interval-heading-range-p braking-heading-list-1
stability-heading-list-1
stability-heading-list-2)
(interval-heading-range-p braking-heading-list-2
stability-heading-list-1
stability-heading-1ist-2))
(list (interval-order-headings
stability-heading-list-1 (list braking-heading-1 ’OP})
(interval-order-headings
(list braking-heading-2 ’OP)
stability-heading-list-2))
(if
(or (and (interval-heading-range-p braking-heading-list-1
stability-heading-list-1
stability-heading-list-2)
(null (interval-heading-range-p
braking-heading-list-2
stability-heading-list-1
stability-heading-list-2)))

(and (interval-heading-range-p braking-heading-list-1
stability-heading-list-1
stability-heading-list-2)

(equal-within-tolerance
braking-heading-2 stability-heading-2
tolerance)))
(list (interval-order-headings
stability-heading-list-1
(list braking-heading-1 'OP)))
(if
(or (and (interval-heading-range-p
braking-heading-list-2
stability-heading-list-1
stability-heading-list-2)

(null (interval-heading-range-p
braking-heading-list-1
stability-heading-list-1
stability-heading-list-2)))

(and (interval-heading-range-p
braking-heading-list-2
stability-heading-list-1

stability-heading-list~2)
(equal-within-tolerance
braking-heading-1 stability-heading-1
tolerance)))
(list (interval-order-headings
stability-heading-list-2
(list braking-heading-2 'OP)))
(if
(or (and (null (interval-heading-range-p
braking-heading-list-1
stability-heading-list-1
stability-heading-list-2))
(equal-within~-tolerance
braking-heading-2 stability-heading-1
tolerance))

(and (null (interval-heading-range-p
braking-heading-list-2
stability-heading-list-1
stability-heading-list-2))

(equal-within-tolerance
braking-heading-1 stability-heading-2
tolerance))

(and (null (interval-heading-range-p
braking-heading-list-1
stability-heading-list-1
stability-heading-list-2))

(null (interval-heading-range-p
braking-heading-list-2
stability-heading-list-1
stability-heading-list-2))))

nil)})))))

(defun permissible-headings-intersection
(permissible~-headings-1 permissible-headings-2)
(let ((permissible-headings nil})
(dolist (permissible-heading-rangel permissible-headings-1)
(dolist (permissible-heading-range2 permissible-headings-2)
(setf permissible-headings
(cons (interval-heading-range-intersection
permissible-heading-rangel permissible-heading-range2)
permissible-headings})))
(remove-if 'null permissible-headings)))

:t*i*i'Rtt**tlit*tliiﬂitQttt*i*tti*itﬂitittt*t’kt*ti*tititi**tti*ttit*tlttiﬁitti

187

PR AR AR R R R R R R R R AR R RN R R R R A A AR AR R R R R AR R R AR R AR AR AR R RN R AR R AR AR AR R R R A AR A AR R AR A A AR

Ne Ne Mo Ve Ns N % Se we ve N ~ LTI TI YO

~.

we se v

File:

MPP-SEARCH~UTILITIES-II

Structures: SEARCH-NODE (window regions region-type traversal-type

permissible-headings cost-from-start
estimate-to-goal)

Functions: BUILD-SEARCH-NODE (swindow sregion srtype sttype sperheadings cost

estimate)

BUILD-INITIAL-AGENDA ()
EXPAND-FRONTIER (pre-frontier-search-node)
BUILD-FRONTIER-SEARCH-NODE-LIST

(pre-frontier-search-node post-frontier-expansion-list)
GET-BASE-WINDOW-ANC~-APPROACH-REGION (post-frontie.-—-search-node)
EXPAND-FRONTIER-WINDOW

(frontier-window pre-frontier-traversal-type

pre-frontier-region permissible-headings)

EXPAND-FRONTIER-WINDOW-GENERIC
(frontier-window pre-frontier-region)
EXPAND-VERTEX-WINDOW-I
(frontier-window post-frontier-window post-frontier-region)
EXPAND-VERTEX~-WINDOW-IV
(frontier-window post-frontier-window post-frontier-region)
EXPAND-EDGE-WINDOW-I-FROM-1
(frontier-window post-frontier-window
post-frontier-region permissible-headings)
EXPAND-EDGE-WINDOW-I-FROM-IX
(frontier-window post-frontier-window post-frontier-region
pre-frontier-region permissible-headings)
EXPAND-EDGE-WINDOW-I-FR{M-1 .,
(frontier-window post-frontier-window
post-frontier-region permissible-headings)
EXPAND~-EDGE-WINDOW-II-FROM-I
(frontier-window post-frontier-window
post-frontier-region permissible-headings)
EXPAND-EDGE-WINDOW-II-FROM-11I
(frontier-window post-frontier-window
post-frontier-region permissible-headings)
EXPAND-EDGE-WINDOW-II-FROM-IV
(frontier-window post-frontier-window
post-frontier-region permissible-headings)
EXPAND-EDGE-WINDOW-IV-FROM-I
(frontier-window post-frontier-window
post-frontier-region permissible-headings)
EXPAND-EDGE-WINDOW-IV-FROM-I1I
(frontier-window post-frontier-window
post-frontier-region permissible-headings)
EXPAND-EDGE-WINDOW-IV-FROM-1V
(frontier-window post-frontier-window
post-frontier-region permissible-headings)

Global Variables: *virtual-vertex-count* {virtual vertex count}
virtual-edge-count {virtual edge count}
search-node-count {search node count}

’oitt*tttiitt***tt*ﬁtittttti'tiﬁtt‘iitt'itit*t'it'ﬁi'.tlt'ﬁﬁ'ﬁ"ttiiiiiii.t'tttit

188

AR AR R R R R R R R R AR R R R R A AR AR R A A R R A AR AN R R AR R AR AR AR AR AN R AR R AR RN AR RN AR R A AR AR AR AN

Path Planning Model: Definition of Primitive Structures

I Ry R R R R N e R R R R R R R R XS R Y RS RS SR RS RS RS ER RS S

we we e wa v

(defstruct search-node window region region-type traversal-type
permissible-headings cost-from-start estimate-to-goal)

AR R R AR R R A AR R AR AR R AR A A AR R R R AR R R R R R R R R AR R AR AR AR R AR R RN R AR AR R RN R A AR RN AR R AR A RSN R

Path Planning Model: Construction of Primitive Structures

Se e Se e No

(X2 R R R R R R R R R IR RS SRS RS RA RSS2 2222282222222 R 2R Rt X2 22 2R

(defun build-search-node (swindow sregion sregiontype straversaltype
sperheadings scost sestimate)

(make-search-node ’:window swindow
':region sregion
‘:region-type sregiontype
‘:traversal-type straversaltype
’:permissible-headings sperheadings
':cost-from-start scost
':estimate-to-goal sestimate))

AR KR A AR A RN AR R AR AN R R R R TR AR R A AR R R AR RN IR A R IR AR A AR AR AR AR AR AR AR AR AR AR AR R R AR AR hh

Path Planning Model: Construction of Initial Agenda

S Se e we v

LSRR R R R R R R R R RS R R RR RS R S SR RS R 2R d R Rttt iR RE NSRS

(defun build-initial-agenda ()
(eval (list ’'setf 'n-0
(build-search-node
*{s-v) nil nil nil nil ’ (0.0)
(list
(* (distance-vertex-to-vertex ’'s-v ‘g-v)
motion-resistance-lower)))))

(setf *search-node-~count* 1) ’ (n-0))

(defun expand-frontier (pre-frontier-search-node)
(let ((post-frontier-search-node-list
{build-frontier-search-node-list pre-frontier-search-node))
(revised-agenda nil))
(dolist (post-frontier-search-node post-frontier-search-node-list)
(let* ((window-list
(search-node-window (eval post-frontier-search-node)})
(post-frontier-window (first window-list})
(region-list
(search-node-region (eval post-frontier-search-node)))
(post-frontier-window-approach-vegion (first region-list))
(traversal-type-list
(search-node-traversal-type (eval post-frontier-search-node)))
(post-frontier-traversal-type (first traversal-type-list))

189

(pre-frontier-traversal-type (second traversal-type-list))
(permissible-headirgs-list
(search-node-permissible-headings
(eval post-frontier-search-node)))
(permissible-headings-post-frontier
(first permissible-headings-list))
(base-list
(get-base-window-and-approach-region post-frontier-search-node))
(base-window (first base-list))
(base-window-approach-region (second base-list))
(obscure~-window
(if (and (edge-p (eval base-window))
{(edge-p (eval post-frontier-window)))
(obscure-edge base-window post-frontier-window)))
(base-window-obscure
(if obscure-window
(if (equal base-window obscure-window) t nil)))
(post-frontier-window-obscure
(1f obscure-window
(if (equal post-frontier-window obscure-window} t nil))))
(if (or (and (equal post-frontier-traversal-type ’I)
(equal pre-frontier-traversal-type ‘1))
(and (equal post-frontier-traversal-type 'I)
(equal pre-frontier-traversal-type 'I-B))
(and (equal post-frontier-traversal-type ’'1IV)
(equal pre-frontier-traversal-type '1IV))
(and (equal post-frontier-traversal-type ’‘1IV)
(equal pre-frontier-traversal-type 'IV-B)))
(let ((revised-permissible-headings nil))
(if
(and (vertex-p (eval base-window))
(vertex-p (eval post-frontier-window)))
(setf revised-permissible-headings
(permissible-headings-intersection
permissible-headings-post-frontier
(list (permissible-heading-range-from-vertex-to-vertex
base-window post-frontier-window)}))
(if
(and (vertex-p (eval base-window))
(edge-p (eval post-frontier-window)))
(setf revised-permissible-headings
(permissible-headings-intersection
permissible-headings-post-frontier
(list (permissible-heading-range-from-vertex-to-edge
base-window post-frontier-window))))
(if
(and (edge-p (eval base-window))
vertex-p (eval post-frontier-window)))
(setf revised-permissible-headings
(permissible-headings-intersection
permissible-headings-post-frontier
(list (permissible-heading-range-from-edge-to-vertex
base-window post-frontier-window))))
(if
(and (edge-p (eval base-window))
(edge-p (eval post-frontier-window)))
(if
post-frontier-window-obscure
(setf revised-permissible-headings
(permissible-headings-intersection

190

permissible-headings-post-frontier
(list
(permissible-heading-range-from-edge-to-edge-obscure
base-window base-window-approach-region
post-frontier-window
post-frontier-window-approach-region))))
(if
base-window-obscure
(setf revised-permissible-headings
(permissible-headings-intersection
permissible-headings-post-frontier
(list
(permissible-heading-range-from-edge-to-edge-obscure

base-window base-window-approach-region
post-frontier-window

post-frontier-window-approach-region))))
(if (and (null base-window-obscure)
(null post-frontier-window-obscure))
(setf revised-permissible-headings
(permissible-headings-intersection
permissible-headings-post-frontier
(list
(permissible-heading-range-from-edge-to-edge
base-window post-frontier-window)})))))}))))
(if revised-permissible-headings
(let ()
(setf (search-node-permissible-headings
(eval post-frontier-search-node))
(cons revised-permissible-headings
(rest (search-node-permissible-headings

(eval post-frontier-search-node)})})
(setf revised-agenda

(cons post-~frontier-search-node revised-agenda)))))
(setf revised-agenda

(cons post-frontier-search-node revised-agenda)))))
revised-agenda))

(defun build-frontier-search-node-list (pre-frontier-search-node)
(let* ((frontier-window

(first (search-node-window (eval pre-frontier-search-node))))
(pre-frontier-window

(second (search-node-window (eval pre-frontier-search-node))))
(pre-frontier-region

(first (search-node-region (eval pre-frontier-search-node))))
(pre-frontier-traversal-type
(first (search-node-traversal-type (eval pre-frontier-search-node))))
(permissible-headings
(first (search-node-permissible-headings
(eval pre-frontier-search-node))))
(post-frontier-expansion-list
(expand-frontier-window frontier-window pre-frontier-traversal-type
pre-frontier-region permissible-headings))
(post-frontier-search-node-list nil))
(dolist (candidate-window-list post-frontier-expansion-list)
(let ((post-frontier-region (first candidate-window-list))
(post-frontier-window (second candidate-window-list))

(post-frontier-traversal-type (third candidate-window-list})
(permissible-headings-post-frontier (fourth candidate-window-list))
(permissible-headings-pre-frontier (fifth candidate-window-list)))

191

(if (member post-frontier-window
(search-node-window (eval pre-frontier-search-node))) nil
(let* ((designation (concat ‘n- *search-node-countt*))
(window-list
(cons post-frontier-window
(search-node-window (eval pre-frontier-search-node}}})
(region-list
(cons post-frontier-region
(search-node-region
(eval pre-frontier-search-node))))
(region-type-list

(cons
(if
(isotropic-region-p post-frontier-region) ‘is
(if
(anisotropic-safe-region-p post-frontier-region) ‘as
(if

(anisotropic-partially-safe-region-p
post-frontier-region) ‘ap)))
(search~node-region-type
(eval pre-frontier-search-node))))
(traversal-type-list
(cons post-frontier-traversal-type
(search-node-traversal-type
(eval pre-frontier-search-node))))
(permissible-headings-list
(if permissible-headings-pre-frontier
(cons permissible-headings-post~frontier
(cons permissible~headings-pre-frontier
(rest (search-node-permissible-headings
(eval pre-frontier-search-node)))))
(cons permissible-headings-post~frontier
(search-node-permissible-headings
(eval pre-frontier-search-node)))))
(cost-rate *motion-resistance-lower*)
(distance
(if (and (edge-p (eval pre-frontier-window))
(edge-p (eval frontier-window))
(edge-p (eval post-frontier-window))
(tri-edge-incident~edge-p
pre-frontier-window frontier-window
post-frontier-window))
(distance-window-to-window-lower
pre-frontier-window post-frontier-window)
(distance-window-to-window-lower
frontier-window post-frontier-window)))
(cost-from-start-list
(cons (+ (first (search-node-cost-from-start
(eval pre-frontier-search-node)))
(* cost-rate distance))
(search-node-cost-from-start
(eval pre-frontier-search-node))))
(estimate-to-goal-list
(cons (* cost-rate (distance-window-to-window-lower
'g-v post-frontier-window))
(search-node-estimate-to-goal
(eval pre~frontier-search-node)))))
(eval (list 'setf designation
(build-search-node window-1list
region-list

192

region-type-list

traversal-type-list
permissible-headings-list
cost-from-start-list
estimate-to-goal-list)))

(setf *search-node-count* (l+ *search-node-count®*))

(setf post-frontier-search-node-list
(cons designation post-frontier-search-node-list))))))
post-frontier-search-node-list))

(defun get-base-window-and-approach-region (post-frontier-search-node)
(let ((base-list nil))
{(do* ((window-~list (rest (search-node-window
(eval post-frontier-search-node)))
(rest window-list))
(region~list (search-node-region (eval post-frontier-search-node))
(rest region-list))
(traversal-type-list (search-node-traversal-type
(eval post-frontier-search-node))
(rest traversal-type-list)))
({(not (null base-list)))
(if (or (equal (first traversal-type-list) ’'I1-B)
(equal (first traversal-type-list) ’'IV-B))
(setf base-list
{(cons (first window-1list)
(cons (second region-list) base-list))))) base-list))

(defun expand-frontier-window (frontier-window pre-frontier-traversal-type
pre-frontier-region permissible-headings)
(let* ((frontier-vertex-window (if (vertex~p (eval frontier-window)) t nil))
(frontier-edge-window (if (edge-p (eval frontier-window)) t nil))
(post-frontier-window-list
(expand-frontier-window-generic frontier-window pre-frontier-region))
(expansion-list nil))
(dolist (post-frontier-window post-frontier-window-list)
(let* ((post-frontier-vertex-window
(if (vertex-p (eval post-frontier-window)) t nil))
(post-frontier-edge-window
(if (edge-p (eval post-frontier-window)) t nil))
(post-frontier-region
(if (and frontier-vertex-window post-frontier-vertex-window)
(get-traversal-region-vertex-vertex
frontier-window post-frontier-window)
(it (and frontier-vertex-window post-frontier-edge-window)
(get-traversal-region-vertex-edge
frontier-window post-frontier-window)
(if (and frontier-edge-window post-frontier-vertex-window)
(get-traversal-region-edge-vertex
frontier-window post-frontier-window)
(if (and frontier-edge-window
post-frontier-edge-window)
(get-traversal-region-edge-edge
frontier-window pos frontier-window)))}))}))
(1f post-frontier-region
(let ((anisotropic-non-braking-region
(if (anisotropic~region-p post-frontier-region)
(if (permissible-headings-non-braking
frontier-window post-frontier-window) t nil)))

193

(anisotropic-partially-safe-non-braking-region
(if (anisotropic-partially-safe-region-p
post-frontier-region)
(if (permissible-headings-non-braking
frontier-window post-frontier-window) t nil)))
(anisotropic-braking-region
(if (anisotropic-region-p post-frontier-region)
(if (permissible-headings-braking
frontier-window post-frontier-window) t nil))))
(if
(or (isotropic-region-p post-frontier-region)
anisotropic-non-braking-region)
(if
frontier-vertex-window
(dolist (candidate-window-list
(expand-vertex-window-1
frontier-window post-frontier-window
post-frontier-region))
(setf expansion-list
(cons (cons post-frontier-region
candidate-window-list)
expansion-list)))
(if
(or (equal pre-frontier-traversal-type I}
(equal pre~frontier-traversal-type ‘'I-B))
(dolist (candidate-window-list
(e>.pand-edge-window-I-from-I
frontier-window post-frontier-window
post-frontier-region permissible-headings))
(setf expansion-list
(cons (cons post-frontier-region
candidate-window-list)
expansion-list)))
(if
(equal pre-frontier-traversal-type ‘II)
(dolist (candidate-window-list
(expand-edge-window-I-from-I1I
frontier-window
post-frontier-window post-frontier-region
pre-frontier-region permissible-headings))
(setf expansion-list
(cons (cons post-frontier-region
candidate-window-list)
expansion-list}))
(if
(or (e~ual pre-frontier-traversal-type ‘'IV)
(equal pre-frontier-traversal-type 'IV-B))
(dolist (candidate-window-list
(expand-edge-window-I-from-1IV
frontier-window post-frontier-window
post-frontier-region
permissible-headings))
(setf expansion-list
(cons (cons post-frontier-region
candidate-window-list)
expansion-list))})}))))
(if
anisotropic-braking-region
(if
frontier-vertex-window

194

(dolist (candidate-window-list
(expand-vertex-window-IV
frontier-window post-frontier-window
post-frontier-region))
(setf expansion-list
(cons (cons post-frontier-region
candidate-window-list)
expansion-list)})
(if
(ox (equal pre-frontier-traversal-type 'I)
(equal pre-frontier-traversal-type 'I-B))
(dolist (candidate-window-list
(expand-edge-window-IV-from-1
frontier-window post-frontier-window
post-frontier-region
permissible-headings))
(setf expansion-list
(cons (cons post-frontier-region
candidate-window~list)
expansion-list)))
(if
(equal pre-frontier-traversal-type 'II)
(dolist (candidate-window-list
(expand-edge-window-IV-from-II
frontier-window
post~frontier-window
post-frontier-regicn
permissible-headings))
(setf expansion-list
(cons (cons post-frontier-regicn
candidate-window-lis®=)
expansion-list)))
(if
(or (equal pre-frontier-traversal-type 'IV)
(equal pre-frontier-traversal-type 'IV~B))
(dolist (candidate-window-list
(expand-edge-window-IV-from-IV
frontier-window
post-frontier-window
post-frontier-region
permissible-headings))
(setf expansion-list
(cons (cons post-frontier-region
candidate-window-list)
expansion~list))))))))
(if
anisotropic-partially-safe-non-braking-region
(if
(or (equal pre-frontier-traversal-type ‘I)
(equal pre-frontier-traversal-type ‘I-B))
(dolist (candidate-window-list
(expand~edge-window-II-from-1I
frontier-window post-frontier-window
post-frontier-region permissible-headings))
(setf expansion-list
(cons (cons post-frontier-region candidate-window-list)
expansion-list)))
(if
(equal pre-frontier-traversal-type ’'II)
{dolist (candidate-wina..w-list

195

(expand-edge-window-II-from-I
frontier-window post-frontier-window
post-frontier-region permissible-headings))

(setf expansion-list
(cons (cons post-frontier-region
candidate-window-1list)
expansion-list)))
(if
(or (equal pre-frontier-traversal-type ‘IV)
(equal pre-frontier-traversal-type ’'IV-B))
(dolist (candidate-window-list
(expand-edge-window-II-from-I
frontier-window post-frontier-window
pcst-frontier-region permissible-headings})
(setf expansion-list
(cons (cons post-frontier-region
candidate-window-list)
expansion-list)))))))))))
(remove-if * (lambda (candidate-window-list)
(if (null (second candidate-window-list)) t nil))
expansion-list)))

(defun expand-frontier-window-generic (frontier-window pre-frontier-region)
(if (vertex-p (eval frontier-window))
(let* ((post-frontier-region-list
(remove pre-frontier-region
(get-region-from-point

(vertex—-x-coord (eval frontier-window))

(vertex-y-coord (eval frontier-window)))))
(incident-edge-list (vertex-edge-list (eval frontier-window}))
(post-frontier-region-edge-list

{(remove-duplicates
(remove- if
’‘boundary-edge-p
{remove-if
'obstacle-edge-p
(remove-items
incident-edge-list
(apply ‘append
(mapcar ’‘region-edge-list
(mapcar ‘eval post-frontier-region-list))))))}))
(post-frontier-region-vertex-list
(remove-duplicates
(remove-if ’'boundary-vertex-p
(remove frontier-window
(apply ’append
(mapcar ’‘get-vertexlist-from-region
post-frontier-region-list)))))))
(if (member ‘g-v (vertex-visibility-list (eval frontier-window)))
(list 'g-v)
(append post-frontier-region-edge-list
post-frontier-region-vertex-list)))
(if (edge-p (eval frontier-window))
(let* ((post-frontier-region
(first (remove pre-frontier-region (edge-adjacency-list
(eval frontier-window)))))
(post-frontier-region-edge-list
(remove-if ‘boundary-edge-p
(remove-if ’'obstacle-edge-p

e,

(remove frontier-window
(region-edge-list
(eval post-frontier-region))))))
(post-frontier-region-vertex-list
(remove-if ‘boundary-vertex-p
(remove-items (edge-vertex-list (eval frontier-window))
(get-vertexlist-from-region
post-frontier-region)))))
(if (member ‘g-v (edge-visibility-list (eval frontier-window)))
(list ’g-v)
(append post-frontier-region-edge-list
post-frontier-region-vertex-list))))))

{(defun expand-vertex-window-I
(frontier-window post-frontier-window post-frontier-region)
(let ((permissible~headings-post-frontier
(permissible~headings-non-braking frontier-window post-frontier-window))
(candidate-window-1ists nil))
(if permissible-headings-post-frontier
(dolist (permissible-heading-range-post~frontier
permissible-headings-post-frontier)
(setf candidate-window-lists
(cons (list post-frontier-window ’'I-B
(list permissible-heading-range-post-frontier) nil)
candidate-window-lists)))) candidate-window-lists))

(defun expand-vertex-window-1V
(frontier-window post-frontier-window post-frontier-region)
(let ((permissible-headings-post-frontier
(permissible-headings-braking frontier-window post-frontier-window))
(candidate-window-lists nil))
(if permissihle-headings-post-frontier
- (setf candidate-window-lists
(cons (list post-frontier-window ‘IV-B
permissible-headings-post-frontier nil)
. candidate-window-lists))) candidate-window-lists))

(defun expand-edge-window~I-from-I
(frontier-window post-frontier-window post-frontier-region
permissible-headings)
(let* ((permissible-headings-post-frontier
(permissible-headings-intersection
permissible-headings
(permissible-headings-non-braking frontier-window
post-frontier-windcw)))
(candidate-window-lists nil))
(if permissible-headings~-post-frontier
(dolist (permissible-heading-range-post-frontier
permissible-headings-post-frontier)
(setf candidate-window-lists
(cons (list post-frontier-window 'I
{list permissible-heading-range-post-frontier)
(list permissible-heading-range-post-frontier))
candidate-window-lists)))) candidate-window-lists))

(defun expand-edge-window-I-from-11

197

(frontier-window post-frontier-window post-frontier-region
pre-frontier-region permissible-headings)
(let ((permissible-headings-post-frontier
(permissible-headings-intersection
(impermissible-headings-critical-instability pre-frontier-region)
(permissible-headings—non-braking frontier-window
post-frontier-window)))
(candidate-window-lists nil))
(if permissible-headings-post-frontier
(dolist (permissible-heading-range-post-frontier
permissible-headings-post-frontier)
(setf candidate-window-lists
(cons (list post-frontier-window ’'I-B
(list permissible-heading-range-post-frontier)
permissible-headings)
candidate-window-lists)))) candidate-window-lists))

(defun expand-edge-window-I-from-IV
(frontier-window post-frontier-window post-frontier-region
permissible-headings)

(let* ((permissible-headings-pre-frontier permissible-headings)
(frontier-window-vertexlist (edge-vertex-list (eval frontier-window)})
(frontier-window-vl (first frontier-window-vertexlist))
(frontier-window-vl-x (vertex-x-coord (eval frontier-window-vl)))
(frontier-window-vl-y (vertex-y-coord (eval frontier-window-vl}))
(frontier-window-v2 (second frontier-window-vertexlist))
(frontier-window-v2-x (vertex-x-cocrd (eval frontier-window-v2))})
(frontier-window-v2-y (vertex-y-coord (eval frontier-window-v2)))
(frontier-window-heading

(heading frontier-window-vi-x frontier-window-vl-y
frontier-window-v2-x frontier-window-v2-y))
(frontier-window-slope
(if (region-orientation (eval post-frontier-region))
(heading-inclination-angle
frontier-window-heading
(region-slope (eval post-frontier-region))
(region-orientation (eval post-frontier-region))) 0.0})
(adjusted-frontier-window-heading
(if (plusp frontier-window-slope)
(normalize-heading (+ frontier-window-heading 180.0)})
frontier-window-heading))
(adjusted-frontier-window-slope
(if (plusp frontier-window-slope) (- frontier-window-slope)
frontier-window-slope))
(frontier-window-heading-normal
(if (permissible-headings-intersection
(list (list (list
(+ adjusted-frontier-window-heading 90.0) ’‘CL)})
(permissible-headings-non-braking frontier-window
post-frontier-window))
(normalize-heading (+ adjusted-frontier-window-heading 90.0))
(normalize-heading (- adjusted-frontier-window-heading 90.0))))
(optimal-braking-heading
(abs (radians-to-degrees
tasin (/ (- (tan (degrees-to-radians
adjusted-frontier-window-slope)))
optimal-cost-rate)))))
(permissible-headings-optimal-braking
(if (< optimal-braking-heading 90.0)

198

(list
(list
(list (normalize-heading (+ frontier-window-heading-normal
optimal-braking-heading)) 'CL)))))
(permissible-headings-post-frontier
(if permissible-headings-optimal-braking
(permissible-headings-intersection
permissible-headings-optimal-braking
(permissible-headings-non-braking rrontier-window
post-frontier-window))))
(candidate-window-lists nil))
(if permissible-headings-post-frontier
(setf candidate-window-lists
(cons (list post-frontier-window ’'I-B
permissible-headings-post-frontier
permissible-headings-pre-frontier)
candidate-window-lists))) candidate-window-lists))

(defun expand-edge-window-II-from-I
(frontier-window post-frontier-window post-frontier-region
permissible-headings)
(let* ((stability-constraints
(region-stability-constraints (eval post-frontier-region)))
(permissible-headings-post-frontier
(permissible-headings-intersection
(mapcar ' (lambda (stability-constraint)
(list (list stability-constraint ‘CL)))
stability-constraints)
(permissible~headings-non-braking
frontier-window post-frontier-window)))
(permissible-headings-pre-frontier
(permissible-headings-intersection

(impermissible-headings-critical-instability post-frontier-region)

permissible-headings))
(candidate-window-lists nil))
(if permissible-headings-pre-frontier
(dolist (permissible-heading-~range-post~frontier
permissible-headings-post-frontier)
(dolist (permissible-heading-range-pre-frontier
permissible-headings-pre-frontier)
(setf candidate-window-lists
(cons (list post-frontier-window ’II
(list permissible-heading-range-post-frontier)
(list permissible-heading-range-pre-frontier))
candidate-window-lists))))) candidate-window-lists))

{(defun expand-edge-window-II-from-II
(frontier-window post-frontier-window post-frontier-region
pre-frontier-region permissible-headings)
(let* ((stability-constraints
(region-stability-constraints (eval post-frontier-region)))
(permissible-headings-post-frontier
(permissible-headings-intersection
(mapcar ‘ (lambda (stability~constraint)
(list (list stability-constraint ’'CL)))
stability-constraints)
(permissible-headings-non-braking
frontier-window post-frontier-window)))

199

(candidate-window-lists nil))

(if (permissible-headings-intersection
(impermissible-headings-critical-instability post-frontier-region)
permissible-headings)

(dolist (permissible-heading-range-post-frontier
permissible-headings-post-frontier)
(if (permissible-headings-intersection
{impermissible-headings-critical-instability
pre-frontier-region)
(list permissible-heading-range-post-frontier))
(setf candidate-window-lists
(cons (list post-frontier-window ’'II
(l1ist permissible-heading-range-post-frontier)
permissible-headings)
candidate-window-lists))))) candidate-window-lists))

(defun expand-frontier-window-II-from-IV
(frontier-window post-frontier-window post-frontier-region
permissible-headings)
(let* ((stability-~constraints (region-stability-constraints
(eval post-frontier-region)))
(permissible-headings-post-frontier
(permissible-headings-intersection
(mapcar ‘ (lambda (stability-constraint)
(list (list stability-constraint ‘CL)))
stability-constraints)
(permissible-headings-non-braking
frontier-window post-frontier-window)}))
(frontier-window-vertexlist (edge-vertex-list (eval frontier-window)))
(frontier-window-vl (first frontier-window-vertexlist))
(frontier-window-vl-x (vertex-x-coord (eval frontier-window-vl)))}
(frontier-window-vl-y (vertex-y-coord (eval frontier-window-vl}))
(frontier-window-v2 (second frontier-window-vertexlist))
(frontier-window-v2-x (vertex-x-coord (eval frontier-window-v2}))
(frontier-window-v2-y (vertex-y-coord (eval frontier-window-v2)))
(frontier-window-heading
(heading frontier-window-vl-x frontier-window-vl-y
frontier-window-v2-x frontier-window-v2-y))
(frontier-window-slope
(if (region-orientation (eval post-frontier-region))
(heading-inclination-angle
frontier-window-heading
(region-slope (eval post-frontier-region))
(region-orientation (eval post-frontier-region))) 0.0))
(adjusted-frontier-window-heading
(if (plusp frontier-window-slope)
(normalize-heading (+ frontier-window-heading 180.0))
frontier-window-heading))
(adjusted-frontier-window-slope
(if (plusp frontier-window-slope) (- frontier-window-slope)
frontier-window-slope))
(frontier-window-heading-normal
(if (permissible-headings~intersection
(list (list (list
(+ adjusted-frontier-window-heading 90.0) 'CL)))
(permissible-headings-non-braking frontier-window
post-frontier-window))
(normalize-heading (+ adjusted-frontier-window-heading 90.0))
(normalize-heading (- adjusted-frontier-window-heading 90.0))))

200

(optimal-braking-heading
(abs (radians-to-degrees
(asin (/ (-~ (tan (degrees-to-radians
adjusted-frontier-window-slope)))
optimal~cost-rate)))))
(permissible-headings-optimal-braking
(if (< optimal-braking-heading 90.0)
(list
(list
(l1ist (normalize-heading (+ frontier-window-heading-normal
optimal-braking-heading)) ‘CL)))))
(candidate-window-lists nil))
(1f permissible-headings-optimal-braking
(dolist (permissible-heading-range-post-frontier
permissible-headings-post-frontier)
(if (permissible-headings-intersection
(impermissible-headings-critical-instability
post-frontier-region))
permissible-headings-optimal-braking)
(setf candidate-window-lists
(cons (list post-frontier-window ‘1I
(list permissible-heading-range-post-frontier)
permissible-headings)
candidate-window-lists))))) candidate-window-lists))

(defun expand-edge-window-IV-from-I
(frontier-window post-frontier-window post-frontier-region
permissible-headings)
(let* ((permissible-headings-post-frontier
(permissible-headings-braking frontier-window post-frontier-window))
(frontier-window-vertexlist (edge-vertex-list (eval frontier-window)))
(frontier-window-vl (first frontier-window-vertexlist))
(frontier-window-vl-x (vertex-x-coord (eval frontier-window-vl)))
(frontier-window-vl-y (vertex-y-coord (eval frontier-window-vl}})
(frontier-window-v2 (second frontier-window-vertexlist))
(frontier-window-v2-x (vertex-x-coord (eval frontier-window-v2)))
(frontier-window-v2-y (vertex-y-coord (eval frontier-window-v2)))
(frontier-window-heading
(heading frontier-window-vl-x frontier-window-vl-y
frontier-window-v2-x frontier-window-v2-y))
(frontier-window-slope
(if (region-orientation (eval post-frontier-region})
(heading-inclination-angle
frontier-window-heading
(region-slope (eval post-frontier-region))
(region-orientation (eval post-frontier-region))) 0.0))
(adjusted-frontier-window-heading
(if (plusp frontier-window-slope)
{normalize-heading (+ frontier-window-heading 180.0))
frontier-window-heading))
(adjusted-frontier-window-slope
(if (plusp frontier-window-slope) (- frontier-window-slope)
frontier-window-slope))
(frontier-window-heading-normal
(if (permissible-headings-~intersection
(list (list (list
(+ adjusted-frontier-window-heading 90.0) 'CL)))
(permissible-headings-braking frontier-window
post-frontier-window))

201

(normalize-heading (+ adjusted-frontier-window-heading 90.0))
(normalize~heading (- adjusted-frontier-window-heading 90.0))))
(optimal-braking-heading
(abs (radians-to-degrees
(asin (/ (- (tan (degrees-to-radians
adjusted-frontier-window-slope)))
optimal-cost-ratet)))))
(permissible-headings-optimal-braking
(if (< optimal-braking-heading 90.0)
(list
(list
(l1ist (normalize-heading (+ frontier-window-heading-normal
optimal-braking-heading)) ‘CL)))))
(permissible-headings-pre-frontier
(if permissible-headings-optimal-braking
(permissible-headings-intersection
permissible-headings-optimal-braking
permissible-headings)))
(candidate-window-lists nil))
(if permissible-headings-pre-frontier
(setf candidate-window-lists
(cons (list post-frontier-window ’'IV-B
permissible-headings-post-frontier
permissible-headings-pre-frontier)
candidate-window-lists))) candidate-window-lists))

(defun expand-edge-window-IV-from-II
(frontier-window post-frontier-window post-frontier-region
permissible-headings)
(let* ((permissible-headings-post-frontier
(permissible-headings-braking frontier-window post-frontier-window))
(frontier-window-vertexlist (edge-vertex-list (eval frontier-window)))
(frontier-window-vl (first frontier-window-vertexlist))
(frontier-window-vl-x (vertex-x-coord (eval frontier-window-vl)))
(frontier-window-vl-y (vertex-y-coord (eval frontier-window-vl)))
(frontier-window-v2 (second frontier-window-vertexlist))
(frontier-window-v2-x (vertex-x-coord (eval frontier-window-v2)))
(frontier-window-v2-y (vertex-y-coord (eval frontier-window-v2}})
(frontier-window-heading
(heading frontier-window-vl-x frontier-window-vl-y
frontier-window-v2-x frontier-window-v2-y))
(frontier-window-slope
(if (region-orientation (eval post-frontier-region))
(heading-inclination-angle
frontier-window-heading
(region-slope (eval post-frontier-region))
(region-orientation (eval post-frontier-region))) 0.0})
(adjusted-frontier-window-heading
(if (plusp frontier-window-slope)
(normalize-heading (+ frontier-window-heading 180.0))
frontier-window-heading))
(adjusted-frontier-window-slope
(if (plusp frontier-window-slope) (- frontier-window-slope)
frontier-window-slope))
(frontier-window-heading-normal
(if (permissible-headings-intersection
(list (list (list
(+ adjusted-frontier-window-heading 90.0) ’'CL)))
(permissible-headings-braking frontier-window

202

post-frontier-window))
(normalize-heading (+ adjusted-frontier-window-heading 90.0))

(normalize-heading (- adjusted-frontier-window-heading 90.0))))
(optimal-braking-heading

(abs (radians-to-degrees
(asin (/ (- (tan (degrees-to-radians
adjusted-frontier-window-slope)))
optimal-cost-rate))}))
(permissible-headings-optimal-braking

(if (< optimal-braking-heading 90.0)

(list

(list
(list (normalize-heading (+ frontier-window-heading-normal

optimal-braking-heading)) ‘CL)))))
(candidate-window-lists nil}))

(if permissible-headings-optimal-braking
(if (permissible-headings-intersection
(impermissible-headings-critical-instability post-frontier-region)
permissible-headings-optimal-braking)
(setf candidate-window-lists
(cons (list post-frontier-window ‘IV-B
permissible-headings-post-frontier
permissible-headings)
candidate-window-lists)))) candidate-window-lists))

(defun expand-edge-window-IV-from-IV
(frontier-window post-frontier-window post-frontier-region
permissible-headings)
(let* ((permissible-headings-post-frontier
(permissible-headings-intersection
permissible-headings
(permissible-headings-braking
frontier-window post-frontier-window)))
(candidate-window-lists nil})
(if permissible-headings-post-frontier
(setf candidate-window-lists
(cons (list post~frontier-window ‘IV
permissible-headings-post-frontier
permissible-headings-post-frontier)
candidate-window-lists))
(setf candidate-window-lists
(cons (list post-frontier-window 'IV-B
(permissible-headings-braking
frontier-window post-frontier-window)
permissible-headings)
candidate-window-lists))) candidate-window-lists))

;iitt!ittt*i*tiﬁﬁ*ﬁtiiiﬁiﬁ*'titttti'itititttt.itttttttﬁiﬁ*iiﬁtiiiii**ttt'tii*itt

Path-Planning Model: Definition and Initialization of Global Variables

Se Na we

KAR AR R KRR R RN AR AR R R A AR R R Rk R A A R R R A R R AR AR AR R AR RN R AR R AR AR AR AR AR RN AR AR AR R RS

(defvar *virtual-vertex-count?*)
(defvar *virtual-edge-count?*)
(defvar *search-node-count*)

203

(setf *virtual-vertex-count* 0)
(setf *virtual-edge-count* 0)
(setf *search-node-count* 0)

'-**t**t!ii*i*tiiti*ittti*t**itt*ttt**tttttttti*ltttittt*itt*i*t*tt*ﬁtttt'ttttttt

204

;titttiﬁ**tit*iti"tttﬁitiftﬁtt'ﬂﬁi*ﬁtﬁttttitt‘ﬁtiﬁttitt'tittitt'tttittttﬁttit*'

.
’

.
’

e o wa

Se %o Ne N we Se Ne e v

~e

P R)

~e

~

File: MPP-SEARCH-UTILITIES-III

Functions:

MPP ()
PLAN-PATH ()
DECOMPOSE-FEASIBLE-WINDOW-LIST (search-node)
EXTRACT-FEASIBLE-WINDOW-SUBLIST (search-node)
CONSOLIDATE-ISOTROPIC-AND-ANISOTROPIC-CORRIDORS (search-node)
DECOMPOSE-FEASIBLE-WINDOW-SUBLIST (search-node)
EXTRACT-DETERMINISTIC~ENTRY-PATH-SEGMENTS (search-node)
EXTRACT-DETERMINISTIC-EXIT-PATH-SEGMENTS (search-node)
GENERATE-OPTIMAL-PATH-SEGMENTS (search-node-list)
GENERATE-OPTIMAL-PATH-SEGMENTS-WITHIN-CORRIDOR (search-node)
GENERATE-OPTIMAL-PATH-SEGMENT-WITHIN-CORRIDOR

(start-point edge traversal-type-list permissible-headings-list)
GENERATE-PATH-SEGMENTS-WITHIN-CORRIDOR

(start-point way-point-list window-list traversal-type-list

permissible-headings-list)

SYNTHESIZE-OPTIMAL-PATH-SEGMENTS (optimal-path-segments)
BUILD-SEARCH-CORRIDOR (search-node)
GENERATE-OPTIMIZATION-WINDOWS

(start-point goal-point window-coord-lists

permissible-headings-list)
GENERATE-WAY-POINT

(start-point optimization-edge-segment permissible-headings)
GENERATE-WAY-POINT-DETERMINISTIC

(start-point edge-pointl edge-point2 permissible-headings)
GENERATE-WAY-POINT-NON-DETERMINISTIC (edge-pointl edge-point2)
PATH-SEGMENT-DETERMINISTIC-P (search-node)
PATH-SEGMENT-NON-DETERMINISTIC-P (search-node)
PURSUIT-EDGE-SEGMENT-POINT-EQUAL~P

(pursuit-edge-segment-ptl pursuit-edge-segment-pt2)
POINT-IN-RANGE-P (target-point pointl point2 headingl heading2)
POINT-IN-RANGE-SIMPLE-P (target-point point headingl heading?2)
POINT-IN-CORRIDOR-P (target-point pointl point2 heading)
LEAST-COST-P (search-nodel search-node2)
PATH-LENGTH (path)

Global Variables: *agenda-length*

local-optimal-path-cost
local-optimal-path
total-local-optimal-paths
global-optimal-path-cost
global-optimal-path

:ttt*tti*ﬁttittttittiﬁt**t*tt'titiitittittttiﬁtitiit*t*tﬁi'itﬁit'tt.tﬂtititiiiit

;tiiitiitt**itﬁt*ttiittittitttitttt!t.‘i'tttt‘ﬁtittiﬁii.iiitit"itt'itifitttttt‘

.
’
’

.
’

; Path Planning Model: Minimum-energy Path Planning (MPP) Algorithm

;iﬁtitl*tiitﬁttt*tﬁ'itttﬂiﬂ'ﬁtﬁtttttttitti*ﬁtﬁtittﬁiiitiit'iitittt'tittﬁti!i'i*i

(defun plan-path ()
(if (mission-go)
(let ((universal-start-time (get-universal-time}})
(retract-start-goal-visibility)

205

(assert-start-goal-visibility)
(do* ((revised-agenda nil
(append candidate-search-node-list (rest agenda)))
(agenda (build-initial-agenda) (sort revised-agenda ‘least-cost-p))
(candidate-search-node-list nil nil))
((null agenda) (setf *agenda-length* (length agenda)))
(dolist (search-node (expand-frontier (first agenda)))
(if (equal (first (search-node-window (eval search-node))) ’'g-v)
(let* ((search-node-list
(decompose-feasible-window-1list search-node))
(local-optimal-path-segments
(if search-node-list
(generate-optimal-path-segments search-node-list}))
(local-optimal-path-list
(if local-optimal-path-segments
(synthesize-optimal-path~segments
local-optimal-path-segments))))
(if local-optimal-path-segments
(let ()
(setf *agenda-length* (length agenda))
(setf *local-optimal-path*
(mapcar ‘' (lambda (coord-list)
(remove (third coord-list) coord-list))
(second local-optimal-path-list)))
(setf *local-optimal-path-cost*
(first local-optimal-path-list))
(setf *total-local-optimal-paths*
(1+ *total-local-optimal-paths*))
(if (or (null *global-optimal-path*)
(< *local-optimal-path-cost*
global-optimal-path-cost))
(let ()
(setf *global-cptimal-path* *local-optimal-path*)
(setf *global-optimal-path-cost*
local-optimal-path-cost)))
(refresh-display-with-local-path))})
(let ((search-node-cost~estimate-current
(+ (first (search-node-cost-from-start
(eval search-node)))
(first (search-node-estimate-to-goal
{(eval search-node))))))
(if *global-optimal-path-cost*
(if (< search-node-cost-estimate-current
global-optimal-path-cost)
(setf candidate-search-node-list
(cons search-node candidate-search-node-list)))
(setf candidate-search-node-list
(cons search-node candidate-search-node-list})))))))
(setf *global-planning-time*
(- (get-universal-time) universal-start-time))
(refresh-display-with-global-path)
(special-effects))))

(defun MPP ()
(retract-start-goal-visibility)
(assert-start-goal-visibility)
(terpri)

(do* ((revised-agenda nil (append candidate-search-node-list (rest agenda)))
(agenda (build-initial-agenda) (sort revised-agenda ’‘least-cost-p})

206

(candidate-search-node-list nil nil)
(global-optimal-path nil global-optimal-path)
(global-optimal-path-cost nil global-optimal-path-cost))
((null agenda) (list global-optimal-path-cost global-optimal-path))
(terpri)
(princ "GLOBAL OPTIMAL PATH: ")
(princ global-optimal-path) (terpri)
(princ "GLOBAL OPTIMAL PATH COST: ")
(princ global-optimal-path-cost) (terpri)
(terpri)
(princ "CURRENT AGENDA: ")
(princ agenda) (terpri)
(dolist (search-node (expand-frontier (first agenda)))
(if
(equal (first (search-node-window (eval search-node))) ‘g-v)
(let* ((search-node-list
{(decompose-feasible-window-list search-node))
(local-optimal-path-segments
(if search-node-list
(generate-optimal-path-segments search-node-list)))
(local-optimal-path-list
(if local-optimal-path-segments
{synthesize-optimal-path-segments
local-optimal-path-segments)))
(local-optimal-path
(if local-optimal-path-segments
(mapcar ' (lambda (coord-list)
(remove (third coord-list) coord-list))
(second local-optimal-path-list))))
(local-optimal-path-cost
(if local-optimal-path-segments
(first local-optimal-path-list))))
(if local-optimal-path-list
(if (or (null global-optimal-path)
(< local-optimal-path-cost global-optimal-path-cost))
(let ()
(setf global-optimal-path local-optimal-path)

(setf global-optimal-path-cost local-optimal-path-cost))))

(terpri)

(princ "Pursuing Local Optimal Path...") ({(terpri) (terpri)
(princ "FEASIBLE WTNDOW LIST: ")

(princ search-nod: (terpri)

(princ "FEASIBLE + .2OW SUBLIST: ")

(princ search-node-list) (terpri) (terpri)

(terpri)

(princ "LOCAL OPTIMAL PATH SEGMENTS: ")

(princ local-optimal-path-segments) (terpri)

{princ "LOCAL OPTIMAL PATH: ")

(princ local-optimal-path) (terpri)

{(princ "LOCAL OPTIMAL PATH COST: ")

(princ local-optimal-path-cost) (terpri))
(let ((search-node-cost-estimate-current

(+ (first (search-node-cost-from-start (eval search-node)))

(first (search-node-estimate-to-goal (eval search-node))))))

(if global-optimal-path-cost

(if (< search-node-cost-estimate-current global-optimal-path-cost)

(setf candidate-search-node-list
(cons search-node candidate-search-node-list)))
(setf candidate-search-node-list
(cons search-node candidate-search-node-list))))}))))

207

(defun decompose-feasible-window-list (search-node)
(do* ((search-noue-list
{mapcar ‘consolidate-isotropic-and-anisotropic-corridors
(extract-feasible-window-sublist search-node))
(rest search-node-list))
(pursuit-flag t pursuit-flag)
(feasible~-window-sublist
(if (path-segment-deterministic-p (first search-node-list))
(list (first search-node-list))
(let ((feasible-window-sublist-result
(decompose-feasible-wir dow-sublist
(first search-node-list))))
(if feasible-window-sublist-result
feasible-window-sublist-result
(setf pursuit-flag nil))))
(if (path-segment-deterministic-p (first search-node-list))
(cons (first search-node-list) feasible-window-sublist)
(let ((feasible-window-sublist-result
(decompose-feasible-window-sublist
(first search-node-list))))
(if feasible-window-sublist-result
(aprend feasible-window-sublist-result
feasible-window~sublist)
(setf pursuit-flag nil))})))
((or (= (length search-node-list) 1) (null pursuit-flag))
(if (null pursuit-flag) nil feasible-window-sublist}))))

(defun extract-feasible-window-subliat (search-node)
(let ((designation nil)
(initial~-vertex-flag t)
(search-node-count 1)
(feasible-window-sublist nil))
(do ((window-list (reverse (search-node-window (eval search-node}))
{rest window-list))
(region-list (reverse (search-node-region (eval search-node)))
(rest region-list})
(region-type-list
(reverse (search-node-region-type (eval search-node)))
(rest region-type-list))
(traversal-type-list
(reverse (search-node-traversal-type (eval search-node)))
(rest traversal-~type-list))
(permissible-headings-list
(reverse (search-node-permissible-headings (eval search-node)))
(rest permissible-headings-list)))
((null window-1list})
(if initial-vertex-flag
{let ()
(setf designation (concat (concat search-node ’'-)
search-node-count))
(eval (list ‘setf designation
(build-search-node
(list (first window-list))
(list (first region-list))
(list (first region-type-list))
(list (first traversal-type-list))
(list (first permissible-headings-list)) nil nil)))
(setf initial-vertex-flag nil)
(setf search-node-count (l1+ search-node-count)))

208

(if (and (null initial-vertex-flag)
(edge-p (eval (first window-list))))
(let ()
{setf (search-node-window (eval designation))
(cons (first window-list)
(search-node-window (eval designation))))
(setf (search-node-region (eval designation))
(cons (first region-list)
(search-node-region (eval designation}))))
(setf (search-node-region-type (eval designation))
(cons (first region-type-list)
(search-node-region-type (eval designation))))
(setf (search-node-traversal-type (eval designation))
(cons (first traversal-type-list)
(search-node-traversal-type (eval designation))))
(setf (search-node-permissible-headings (eval designation))
(cons (first permissible-headings-list)
(search-node-permissible-headings
(eval designation)))))
(if (and (null initial-vertex-flag)
(vertex-p (eval (first window-list))))
(let ()
(setf (search-node-window (eval designation))
(cons (first window-list)
(search-node-window (eval designation))})
(setf feasible-window-sublist
(cons designation feasible-window-sublist))
(if (null (equal (first window-list) ‘g-v))
(let ()
(setf designation
(concat (concat search-node ’'-)
search-node-count}))
(eval (list 'setf designation
(build-search-node
(list (first window-list))
(list (first region-list))
(list (first region-type-list})
(list (first traversal-type-list))
(list (first permissible-headings-list))
nil nil)))
(setf search-node-count (1+ search-node-count))}))}))))
feasible-window-sublist))

(defun consolidate-isotropic-and-anisotropic-corridors (search-node)
(let ((revised-window-list nil)
(revised-traversal-type-list nil)
(revised-permissible-headings-list nil)
(first-window-in-corridor t))
(do* ((window-list (search-node-window (eval search-node))
(rest window-list))
(traversal-type-list (search-node-traversal-type (eval search-node))
(rest traversal-type-list))
(traversal-type-I-base
(if (equal (first traversal-type-list) 'I-B) t nil)
(if (equal (first traversal-type-list) ’'I-B) t nil))
(traversal-type-I (if (equal (first traversal-type-list) ’'I) t nil)
(if (equal (first traversal-type-list) 'I) t nil))
(traversal-type-IV-base
(if (equal (first traversal-type-list) ‘IV-B) t nil)

209

(if (equal (first traversal-type-list) ’‘IV-B) t nil))
{traversal-type-1IV (if (equal (first traversal-type-list) ‘IV) t nil)
(if (equal (first traversal-type-list) ’'IV) t nil))
(permissible-headings-list (search-node-permissible-headings
(eval search-node))
(rest permissible-headings-list)))
({(null traversal-type-list))
(if first-window-in-corridor
(let ((traversal-type
(if traversal-type-I-base 'I
(1f traversal-type-IV-base '1IV
(first traversal-type-list)))))
(if (or traversal-type-I traversal-type-1V)
(setf first-window-in-corridor nil))
(setf revised-window-list
(cons (first window-list) revised-window-list))
(setf revised-traversal-type-list
(cons traversal-type revised-traversal-type-list))
{setf revised-permissible-headings-list
(cons (first permissible-headings-list)
revised-permissible-headings-list))
(if (vertex-p (eval (second window-list)))
(setf revised-window-list
(cons (second window-list) revised-window-list))))
(if (null first-window-in-corridor)
(let ()
(if (or traversal-type-I-base traversal-type-IV-base)
(setf first-window-in-corridor t))
(if (vertex-p (eval (second window-list)))
(setf revised-window-list
(cons (second window-list) revised-window-list)))))))
(setf (search-node-window (eval search-node)) revised-window-list)
(setf (search-node-region (eval search-node)) nil)
(setf (search-node-region-type (eval search-node)) nil)
(setf (search-node-traversal-type (eval search-node))
revised-traversal-type-list)
(setf (search-node-permissible-headings (eval search-node})
revised-permissible-headings-list)
(setf (search-node-cost-from-start (eval search-node)) nil)
(setf (search-node-estimate-to-goal (eval search-~node)) nil) search-node))

(defun decompose-feasible-window-sublist (search-node)
(let ((feasible-window-sublist nil)
(feasible-window-sublist-entry
(extract-deterministic-entry-path-segments search-node)))
(if feasible-window-sublist-entry
(let ((terminal-search-node
(first (last feasible-window-sublist-entry))))
(if (path-segment-deterministic-p terminal-search-node)
(setf feasible-window-sublist feasible-window-sublist-entry)
(let ((entry-search-nodes
(remove terminal-search-node
feasible-window-sublist-entry))
{(feasible-window-sublist-exit
(extract-deterministic-exit-path-segments
terminal-search-node)))
(if feasible-window-sublist-exit
(let ((exit-search-nodes
(rest feasible-window-sublist-exit))

210

(non-deterministic-search-node
(first feasible-window-sublist-exit)))
(setf feasible-window-sublist
(append entry-search-nodes
(list non-deterministic-search-node)
exit-search-nodes)))))))) feasible-window-sublist))

(defun extract-deterministic-entry-path-segments (search-node)
(do* ((window-list
(search-node-window (eval search-node))
(cons virtual-vertex (rest (rest window-list))))
(start-point (list (vertex-x-coord (eval (first window-list)))
(vertex-y-coord (eval (first window-list})))
(vertex-z-coord (eval (first window-list))))
way-point)
(edge-points
(if (edge-p (eval (second window-list)})
(mapcar ‘get-xyz-coord-from-vertex
(edge-vertex-list (eval (second window-list}))))
(get-xyz-coord-from-vertex (second window-list)))
(if (edge-p (eval (second window-list)})
(mapcar ‘get-xyz-coord-from-vertex
(edge-vertex-list (eval (second window-list))))
(get-xyz-coord-from-vertex (second window-list})))
(traversal-type-list
(search-node-traversal-type (eval search-node))
(rest traversal-type-list))
(permissible-headings-list
(search-node-permissible-headings (eval search-node;)
(rest permissible-headings-list}))
(permissible-headings
(if (edge-p (eval (second window-list)})}
(first permissible-headings-list)
(list
(list
(list
(heading (first start-point) (second start-point)
(first edge-points) (second edge-points))’cl))))
(if (edge-p (eval (second window-list)))
(first permissible-headings-list)
(list
(list
(list
(heading (first start-point) (second start-point)
(first edge-points) (second edge-points)) ‘cl)))))
(deterministic-approach-heading
(if (= (length (first permissible-headings)) 1) t nil)
(if (= (length (first permissible-headings)) 1) t nil))
(pursuit-flag t pursuit-flag)
(way-point
(if (and deterministic-approach-heading
(edge-p (eval (second window-list))))
(let ((way-point-result
(generate-way-point-deterministic
start-point (first edge-points) (second edge-points)
permissible-headings)))
(if way-point-result way-point-result (setf pursuit-flag nil))))
(if (and deterministic-approach-heading
(edge-p (eval (second window-list))))

211

—

(let ((way-point-result
(generate-way-point-deterministic
start-point (first edge-points) (second edge-points)
permissible-headings)))
(if way-point-result way-point-result
(setf pursuit-flag nil)))))
(virtual-vertex
(if way-point
(build-virtual-vertex
(first way-point) (second way-point) (third way-point)
(second window-list)))
(if way-point
(build-virtual-vertex
(first way-point) (second way-point) (third way-point)
(second window-list))))
(search-node-count 1 (1+ search-node-count))
(designation (concat (concat search-node ’'-) search-node-count)
(concat (concat search-node '-) search-node-count))
(feasible-window-sublist nil feasible-window-sublist))
{((or (null deterministic-approach-heading)
(null pursuit-flag)
(vertex-p (eval (second window-list))))
(if (null pursuit-flag) nil
(let ()
(eval (list 'setf designation
{build-search-node
window-list nil nil
traversal-type-list
(if (edge-p (eval (second window-list)))
permissible-headings-list
(list permissible-headings))
nil nil)))
(reverse (cons designation feasible-window-sublist)))))
(eval (list 'setf designation
(build-search-node
{list (first window-list) virtual-vertex) nil nil
(list (first traversal-type-list))
(list (first permissible-headings-list)) nil nil))}))
(setf feasible-window-sublist (cons designation feasible-window-sublist)}))

(defun extract-deterministic-exit-path-segments (search-node)
(do* ((window-list
(reverse (search-node-window (eval search-node)))
{(cons virtual-vertex (rest (rest window-list))))
(start-point (list (vertex-x-coord (eval (first window-list)))
(vertex-y~coord (eval (first window-list)))
(vertex-z~coord (eval (first window-list))))
way-point)
(edge-points
(if (edge-p (eval (second window-list)))
(mapcar ’‘get-xyz-coord-from-vertex
(edge-vertex-list (eval (second window-list))))
(get-xyz-coord-from-vertex (second window-list})))
(if (edge-p (eval (second window-list)))
(mapcar ‘get-xyz-coord~frum-vertex
(edge-vertex-list (eval (second window-list))))
(get-xyz-coord-from-vertex (second window-list))))
(traversal-type-list
(reverse (search-node-traversal-type (eval search-node)))

212

(rest traversal-type-list))
(permissible-headings-list
(reverse (search-node-permissible-headings (eval search-node)))
(rest permissible-headings-list))
(permissible~-headings
(if (edge-p (eval (second window-list)))
(first permissible-headings-list)
(list
(list
(list
(heading (first edge-points) (second edge-points)
(first start-point) (second start-point)) ‘cl))))
(if (edge-p (eval (second window-list)})
(first permissible-headings-list)
(l1ist
(list
(list
(heading (first edge-points) (second edge-points)
(first start-point) (second start-point)) ’‘cl)))))
(deterministic-approach-heading
(if (= (length (first permissible-headings)) 1) t nil)
(if (= (length (first permissible-headings)) 1) t nil))
(pursuit-flag t pursuit-flag)
(revised-permissible-headings
(if deterministic-approach-heading
(list (list (list (reverse-heading
(first (first (first
permissible-headings)))) ‘cl}))))
(if deterministic-approach-heading
(list (list (list (reverse-heading
(first (first (first
permissible-headings)))) ‘cl})))))
(way-point
(if (and deterministic-approach-heading
{edge-p (eval (second window-list))))
(let ((way-point-result
(generate-way-point-deterministic
start-point (first edge-points) (second edge-points)
revised-permissible-headings)))
(if way-point-result way-point-result
(setf pursuit-flag nil))))
(if (and deterministic-approach-~heading
(edge-p (eval (second window-list))))
{let ((way-point-result
(generate-way-point-deterministic
start-point (first edge-points) (second edge-points)
revised-permissible-headings)))
(if way-point-result way-point-result
(setf pursuit-flag nil)))))
(virtual-vertex
(1f way-point
(build-virtual-vertex (first way-point) (second way-point)
(third way-point)
(second window-list)))
(if way-point
(build-virtual-vertex (first way-point) (second way-point)
(third way-point)
(second window~list))))
(search-node-count 1 (l1+ search-node-count))
(designation (concat (concat search-node ‘-) search-node-count)

213

{concat (concat search-node ‘-) search-node-count))
(feasible-window-sublist nil feasible-window-sublist))
((or (null deterministic-approach-heading)
(null pursuit-flag)
(vertex-p (eval (second window-list))))
(if (null pursuit-flag) nil
(let ()
(eval (list ’'setf designation
(build-search-node
(reverse window-list) nil nil
(reverse traversal-type-list)
(if (edge-p (eval (second window-list)))
(reverse permissible-headings-list)
(list permissible-headings))
nil nil)))
(cons designation feasible-window-sublist))))
(eval (list ‘setf designation
(build-search-node
(list virtual-vertex (first window-list)) nil nil
(list (first traversal-type-list))
(list (first permissible-headings-list)) nil nil)))
(setf feasible-window-sublist (cons designation feasible-window-sublist))))

,-**ﬁ****tii*ttt*i*ttilti**iktiti*tit**itttt**titt**t**i*iiiii*t*tt**tﬁiii*ii'iii

(defun generate-optimal-path-segments (search-node-list)
(do* ((optimal-path-segments nil optimal-path-segments)
(optimization~search-node-list
search-node-list (rest optimization-search-node-list))
(search-node (first optimization-search-node-list)
(first optimization-search-node-list))
(traversal-type
(if (path-segment-deterministic-p search-node)
(first (search-node-traversal-type (eval search-node))))
(if (path-segment-deterministic-p search-node)
(first (search-node-traversal-type (eval search-node)))))
(coord-list
(if (path-segment-deterministic-p search-node)
(mapcar ’'get-xyz-coord-from-vertex
(search-node~window (eval search-node)))})
(if (path-segment-deterministic-p search-node)
(mapcar ’‘get-xy.-coord-from-vertex
(search-node~window (eval search-node)))))
(pursuit-flag t pursuit-flag)
(optimal-path-segment
(if (path-segment-deterministic-p search-node)
(list traversal-type coord-list))
(if (path-segment-deterministic-p search-node)
(list traversal-type coord-list)))
(optimal-path-segments-within-corridor
(if (null (path-segment-deterministic-p search-node))
(generate-optimal-path-segments-within-corridor search-node))
(if (null (path-segment-deterministic-p search-node))
(generate-optimal-path-segments-within-corridor search-node)))
(optimal-path-segments
(if (path-segment-deterministic-p search~node)
(cons optimal-path-segment optimal-path-segments)
(if (null (path-segment-deterministic-p search-node))

214

(if optimal-path-segments-within-corridor
(append optimal-path-segments-within-corridor
optimal-path-segments)
(setf pursuit-flag nil))))
(if (path-segment-deterministic-p search-node)
(cons optimal-path-segment optimal-path-segments)
(if (null (path-segment-deterministic-p search-node))
(if optimal-path-segments-within-corridor
(append optimal-path-segments-within-corridor
optimal-path-segments)
(setf pursuit-flag nil)))}))
((or (= (length optimization-search-node-list) 1) (null pursuit-£flag))
(reverse optimal-path-segments))))

;ﬁt'ii**fittttt*tttti'tﬁttt*ttttﬁti*li*t*tt'ittttttttt.t*ttittiitittﬁ"ttii'ﬁﬁ.t

(defun generate-optimal-path-segments-within-corridor (search-node)
(let ((search-corridor
(build-search-corridor search-node)})
(if search-corridor
(do* ((start-point
(first (first search-corridor))
(second (second (first optimal-path-segments))}))
(goal-point
(first (last (first search-corridor))))
(window-list
(remove (first (first search-corridor))
(first search-corridor)) (rest window-list))
(traversal-type-list
(second search-corridor) (rest traversal-type-list))
(permissible-headings-list
(third search-corridor) (rest permissible-headings-list))
(optimal-path-segments

(list (generate-optimal-path-segment-within-corridor
start-point window-list traversal-type-list
permissible-headings-list))

(cons (generate-optimal-path-segment-within-corridor
start-point window-list traversal-type-list
permissible-headings-list)

optimal-path-segments)))
((= (length window-list) 2)
(cons (list (second traversal-type-list)
(list (second (second
(first optimal-path-segments))) goal-point))
optimal -path-segments))))))

'-ttittt!tﬁ'titititttﬁt"*ﬁtttttit'ttitttfiitt.i't'tttttt‘ittt.iiiiiiiiiit‘iit*ti

(defun genarate-optimal-path-segment-within-corridor
(start-point window~-list traversal-type-list permissible-headings-list)
(do* ((path-result

(generate-path-segments-within-corridor
start-point nil window-list traversal-type-list
permissible-headings-1list)

(generate-path-segments-within-corridor
start-point way-point-list pursuit-window-list traversal-type-list

215

permissible-headings-list))
(path-cost
(first path-result) (first path-result))
(path
(second path-result) (second path-result))
(pursuit-edge-segments
(third path-result) (third path-result))
(pursuit-edge-segmentl
(first pursuit-edge-segments) (first pursuit-edge-segments))
(pursuit-edge-segment2
(second pursuit-edge-segments) (second pursuit-edge-segments))
(way-point-list
(rest (second path-result)) (rest (second path-result)))
(path-resultl
(generate-path-segments-within-corridor
start-point way-point-list
(cons pursuit-edge-segmentl
(rest window-list)) traversal-type-list
permissible-headings-list)
{(generate-path-segments-within-corridor
start-point way-point-list
(cons pursuit-edge-segmentl
(rest window-list)) traversal-type-list
permissible-headings~list))
(path-costl
(first path-resultl) (first path-resultl))
(pathl
(second path-resultl) (second path-resultl))
(path-result2
(generate-path-segments-within~corridor
start-point way-point-list
(cons pursuit-edge-segment2
(rest window-list)) traversal-type-list
permissible-headings-list)
(generate-path-segments-within-corridor
start-point way-point-list
(cons pursuit-edge-segment2
(rest window-list)) traversal-type-list
permissible-headings-list))
(path-cost2
(first path-result2) (first path-result2))
(path2
(second path-result2) (second path-result2))
(pursuit-edge-segment-center
(list (second (second path-resultl))
(second (second path-result2)))
(list (second (second path-resultl))
(second (second path-result2))))
(pursuit-direction
(if (< path-costl path-cost) 1
(if (< path-cost2 path-cost) ‘2
(if (and (>= path-costl path-cost)
(>= path-cost2 path-cost)) 'C)))
(if (< path-costl path-cost) ‘1
(if (< path-cost2 path-cost) ‘2
(if (and (>= path-costl path-cost)
(>= path-cost2 path-cost)) ‘C))))
{(pursuit-directionl
(if (equal pursuit-direction ‘1) t nil)
(if (equal pursuit-direction ‘1) t nil})

216

(pursuit-direction2
(if (equal pursuit-direction ’2) t nil)
(if (equal pursuit-direction ’2) t nil))
(pursuit-direction-center
(if (equal pursuit-direction ’C) t nil)
(if (equal pursuit-direction ’'C) t nil))
{(pursuit-window-list
(if pursuit-directionl
(cons pursuit-edge-segmentl (rest window-list))
(if pursuit-direction2
(cons pursuit-edge-segment2 (rest window-list))
(1f pursuit-direction-center
(cons pursuit-edge-segment-center
(rest window-list)))))
(if pursuit-directionl
(cons pursuit-edge-segmentl (rest window-list))
(if pursuit-direction2
(cons pursuit-edge-segment2 (rest window-list))
(if pursuit-direction-center
(cons pursuit-edge-segment-center
(rest window-list))})}})
(threshold 0.001)
(tolerance 0.001)
(optimization-edge-distance
(if pursuit~directionl
(distance-point-to-point (first (second path))
(second (second path))
(first (second pathl))
(second (second pathl)))
(distance-point-to-point (first (second path))
(second (second path))
(first (second path2))
(second (second path2))))
(if pursuit~directionl
(distance-point-to-point (first (second path))
(second (second path})
(first (second pathl))
(second (second pathl)))
(distance~point-to-point (first (second path))
(second (second path))
(first (second path2))
(second (second path2))))))
((or (< optimization-edge-distance threshold)
(equal-within-tolerance path-cost path-costl tolerance)
(equal-within-tolerance path-cost path-cost2 tolerance))
(if pursuit-directionl
{(list (first traversal-type-list)
(list (first pathl) (second pathl)))
(if pursuit-direction2
(list (first traversal-type-list)
(list (first path2) (second path2)))
(if pursuit-direction-center
(list (first traversal-type-list)
(list (first path) (second path}))))}))))

(defun generate-path-segments-within-corridor
(start-point way-point-list window-list traversal-type-list
permissible-headings-list)
(do* ((optimization-window-list
window-list

217

(rest optimization-window-list))
(optimization-traversal-type-list
traversal-type-list
(rest optimization-traversal-type-list))
(optimization-permissible-headings-list
permissible-headings-list
(rest optimization-permissible-headings-list))
(deterministic-approach-heading
(if
(= {(length (first (first optimization-permissible-headings-list)))
1) t nil)
(if
(= (length (first (first optimization-permissible-headings-list)))
1) t nil))
(optimization-way-point-1list
way-point-list
(rest optimization-way-point-list))
(optimization-start-point start-point way-point)
(way-point
(if
deterministic~approach-heading
(generate-way-point-deterministic
start-point (first (first optimization-window-list))
{second (first optimization-window-list))
(first optimization-permissible-headings-list))
(if
optimization-way-point-1list
(first optimization-way-point-list)
(generate~way-point-non-deterministic
(first (first optimization-window-list))
(second (first optimization-window-list)))))
(if
deterministic~approach-heading
(generate-way-point-deterministic
start-point (first (first optimization-window-list))
(second (first optimization-window-list))
(first optimization-permissible-headings-list))
(if
optimization-way-point-list
(first optimization-way-point-list)
(generate-way-point-non-deterministic
(first (first optimization-window-list))
(second (first optimization-window-1list))))))
(optimization-edge-segments
(list (list way-point (first (first window-list)))
(list way-point (second (first window-list))))})
(path-segments
(list (list (first optimization-traversal-type-list)
(list optimization-start-point way-point)))
(cons (list (first optimization-traversal-type-list)
(list optimization-start-point way-point))
path-segments)))
((= (length (second optimization-window-list)) 3)
{(let ((path-list
(synthesize-optimal-path-segments
(reverse
(cons (list (second traversal-type-list)
(list way-point
(second optimization-window-list)))
path-segments)))))

218

(list (first path-list) (second path-list)
optimization-edge-segments)))))

(defun synthesize-optimal-path-segments (optimal-path-segments)
(let ((optimal-path-segment-costs nil)
(optimal-path nil)
(optimal-path-cost nil))
(dolist (optimal-path-segment optimal-path-segments)
(let* ((traversal-type (first optimal-path-segment))
(coord-list (second optimal-path-segment))
(x1 (first (first coord-list})})
(yl (second (first coord-list);)
(z1 (third (first coord-list))!
(x2 (first (second coord-lisz;})
(y2 (second (second coord-list)))
(z2 (third (second coord-list))))
(if (or (equal traversal-type ‘I)
(equal traversal-type 'II))
(setf optimal-path-segment-costs
(cons (* (distance-point-to-point x1 yl x2 y2)
optimal-cost-rate)
optimal-path-segment-costs))
(if (equal traversal-type ‘IV)
(setf optimal-path-segment-costs
(cons (abs (- z2 zl)) optimal-path-segment-costs))))))
(setf optimal-path-cost (apply '+ optimal-path-segment-costs))
(setf optimal-path
(append (mapcar ’'first (mapcar ’'second optimal-path-segments))
(list (second (second (first
(last optimal-path-segments)))}))))
(list optimal-path-cost optimal-path)))

AR R R R AR AN A A A R R AN AN AR R R RN AR A AR R AR R AR R R R AR AR R R AR AR AR RRA R A AR AR R R T AR Rk Rk TRk

; Path Planning Model: Miscellaneous Path Planning Support Functions

;it*ti***i**i*itii***iit***i*titttit**t**ii*iittt***ittiittti*iiiiitf*tittttt*it

(defun build-search-corridor (search-node)
(let* ((start-point
(get-xyz-coord-from-vertex
(first (search-node-window (eval search-node)})))
(goal-point
(get-xyz-coord-from-vertex
(first (last (search-node-window (eval search-node))))
(window-list (rest (search-node-window (eval search-node))
(window~-coord-lists
(mapcar ’ (lambda (window-coord-list)
(mapcar ‘get-xyz-coord-from-vertex window-coord-list))
(mapcar ’'edge-vertex-list
(mapcar ’‘eval
(remove (first (last window-list)) window-1list)})))
(permissible-headings-list
(search-node-permissible-headings (eval search-node)))
(reversed-permissible-headings-list
(mapcar ’ (lambda (permissible-headings)
(if (= (length (first permissible-headings)) 1)

))
))

219

(list
(list
(list
(reverse-heading
(first (first (first permissible-headings))))
‘el})))
(list
(list
(list (reverse-heading
(first (first (first permissible-headings))))
(second (first (first permissible-headings))))
(list (reverse-heading
(first (second (first permissible-headings))))
(second (second (first
permissible-headings))))))))
permissible-headings-list))
(traversal-type-list (search-node-traversal-type (eval search-node)))
(optimization-coord-lists
(generate-optimization-windows
start-point goal-point window-coord-lists
permisaible-headings-list))
(revised-optimization-coord-lists
(if optimization-coord-lists
(ger.- rate-optimization-windows
(f.rst optimization-coord-lists)
(first (last optimization-coord-lists))
(mapcar ’'reverse (remove (first optimization-coord-lists)
(remove (first
(last optimization-coord-lists))
optimization~coord-lists)))
(reverse reversed-permissible-headings-list)))))
(if revised-optimization-coord-lists
(let* ((start-point (first revised-optimization-coord-lists))
(goal-point (first (last
revised-optimization~coord-lists)))
(intermediate-edges
(remove start-point
(remove goal-point
revised-optimization-coord-lists))))
(list
(cons
(list
(make-significant-figures (first start-point) 2)
(make-significant-figures (second start-point) 2)
(make-significant-figqures (third start-point) 2))
(append (mapcar ' (lambda (edge)
(mapcar ' (lambda (point)
(list
(make-significant-figqures (first point) 2)
(make-significant-figures (second point) 2)
(make-significant-figures (third point) 2)})
edge))
intermediate-edges)
(list (list
(make-significant-figures (first goal-point) 2)
(make-significant-figures (second goal-point) 2)
(make-significant-figures (third goal-point) 2))}))
traversal-type-list
(mapcar ' (lambda (permissible-headings)
(mapcar ’ (lambda (permissible-heading-list)

220

(list (make-significant-figures
(first permissible-heading-list) 2)
(second permissible-heading-1list)))
(first permissible-headings)}))
permissible-headings-list))))))

(defun generate-optimization-windows
(start-point goal-point window-coord-lists permissible-headings-list)
(do* ((optimization-permissible-headings-list
permissible-headings-list
(rest optimization-permissible-headings-list))
(optimization-permissible-headings
(first optimization-permissible-headings-list)
(first optimization-permissible-headings-list))
(deterministic-approach-heading
(1f (= (length (first optimization-permissible-headings)) 1) t nil)
(1f (= (length (first optimization-permissible-~headings)) 1) t nil))
(optimization-window-coord-lists
window-coord-lists
(rest optimization-wind-w-coord-lists))
(pointl
(first (first optimization-window-coord-lists))
(first (first optimization-window-coord-lists)))
(point2
(second (first optimization-window-coord-lists))
(second (first optimization-window-coord-lists)))
(pursuit-flag t pursuit-flag)
(way-pointl
(generate-way-point-deterministic
start-point pointl point2
(list (list (first (first optimization-permissible-headings)))))
(if (or (point-equal-p
(first optimization-pointl) (second optimization-pointl)
(first pointl) (second pointl))
(point-equal-p
(first optimization-pointl) (second optimization-pointl)
(first point2) (second point2)))
optimization-pointl
(if deterministic-approach-heading
(generate-way-point-deterministic
optimization-pointl pointl point2
optimization-permissible-headings)
(generate-way-point-deterministic
optimization-pointl pointl point2
(list
(list
(first
(first optimization-permissible-headings))))))})
(way-point2
(generate-way-point -deterministic
start-point pointl point2
(list (list (second (first optimization-permissible-headings)))))
(if (or (point-equal-p
(first optimization-point2) (second optimization-point2)
(first pointl) (second pointl))
(point-equal-p
(first optimization-point2) (second optimization-point2)
(first point2) (second point2)))
optimization-point2

221

(if deterministic-approach-heading
(generate-way-point-deterministic
optimization-point2 pointl point2
optimization-permissible-headings)
{generate-way-point-deterministic
optimization-point2 pointl point2
(list
(list
(second
(first optimization-permissible-headings))))))))
(optimization-coord-lists
(list
(let ((point-in-range
(point-in-range-simple-p
pointl start-point
(first (first (first optimization-permissible-headings)))
(first (second (first
optimization-permissible-headings))))))
(if
(and (null way-pointl) (null way-point2) point-in-range)
(list pointl point2)
(if
(and (null way-pointl) (null way-point2)
(null point-in-range))
(setf pursuict-flag nil)
(if
(and (null way-pointl) point-in-range)
(list pointl way-point2)
(if
(and (null way-pointl) (null point-in-range))
(list point2 way-point2)
(if
(and (null way-point2) point-in-range)
(list way-pointl pointl)
(if
(and (null way-point2) (null point-in-range))
(list way-pointl point2)
(list way-pointl way-point2)))))))))
(cons
(i1f
deterministic-approach~heading
(let ((point-in-corridor
(point-in-corridor-p
pointl optimization-pointl optimization-point2
(first (first (first
optimization-permissible-headings))))))
(if
(and (null way-pointl) (null way-point2) point-in-corridor)
(list pointl point?2)
(if
(and (null way-pointl) (null way-point2)
(null point-in-corridor))
(setf pursuit-flag nil))
(1f
(and (null way-pointl) point-in-corridor)
(list pointl way-point2)
(if
(and (null way-pointl) (null point-in-corridor))
(list point2 way-point2)
(if

222

(and (null way-point2) point-in-corridor)
(list way-pointl pointl)
(if
(and (null way-point2) (null point-in-corridor))
(list way-pointl point2)
(list way-pointl way-point2)))))))
(if (null deterministic-approach-heading)
(let ((point-in-range
{point-in-range-p
pointl optimization-pointl optimization-point2
(first (first (first
optimization-permissible-headings)))
(first (second (first
optimization-permissible-headings)))}))
(if
(and (null way-pointl) (null way-point2) point-in-range)
(list pointl point2)
(if
(and (null way-pointl) (null way-point2)
(null point-in-range))
(setf pursuit-flag nil)
(if
(and (null way-pointl) point-in-range)
(list pointl way-point2)
(if
(and (null way-pointl) (null point-in-range))
(list point2 way-point2)
(if
(and (null way-point2) point-in-range)
(list way-pointl pointl)
(if
(and (null way-point2) (null point-in-range))
(list way-pointl point2)
(list way-pointl way-point2)))})}))))))
optimization-coord-lists))
(optimization-pointl
(first (first optimization-coord-lists))
(first (first optimization-coord-lists)))
(optimization-point2
(second (first optimization-coord-lists))
(second (first optimization-coord-lists))))
{((or (= (length optimization-window-coord-lists) 1) (null pursuit-flag))
(if (null pursuit-flag) nil
(cons goal-point
(append optimization-coord-lists (list start-point}))))))

(defun generate-way-point
(start-point optimization-edge-segment permissible-headings)
(if (= (length (first permissible-headings)) 1)

(generate-way-point-deterministic start-point
(first optimization-edge-segment)
(second optimization-edge-segment)
permissible-headings)

(generate-way-point-non-deterministic (first optimization-edge-segment)

(second optimization-edge-segment))))

(defun generate-way-point-deterministic
(start-point edge-pointl edge-point2 permissible-headings)

23

(let* ((start-pt-x (first start-peoint))
(start-pt-y (second start-point))
(edge-ptl-x (first edge-pointl))
(edge-ptl-y (second edge-pointl))
(edge-pt2-x (first edge-point2))
(edge-pt2-y (second edge-point2))
{(heading-pt
(heading-point start-pt-x start-pt-y
(first (first (first permissible-headings)))))
(heading-pt-x (first heading-pt))
(heading-pt-y (second heading-pt))
(intersect-pt
(intersect start-pt-x start-pt-y heading-pt-x heading-pt-y
edge-ptl-x edge-ptl-y edge-pt2-x edge-pt2-y))
(intersect-pt-x (if intersect-pt (first intersect-pt)))
(intersect-pt-y (if intersect-pt (second intersect-pt))))
(if intersect-pt

(list (first intersect-pt)
(second intersect-pt)
(get-elevation-from-edge-point
(list intersect-pt-x intersect-pt-y)
edge-pointl edge-point2)}}))

(defun generate-way-point-non-deterministic (edge-pointl edge-point2)
(let* ((edge-ptl-x (first edge-pointl))
(edge-ptl-y (second edge-pointl))
(edge-pt2-x (first edge-point2))
(edge-pt2-y (second edge-point2}))
(edge-midpoint
(line-midpoint edge-ptl-x edge-ptl-y edge-pt2-x edge-pt2-y))
(edge-midpoint-x (first edge-midpoint))
(edge-midpoint-y (second edge-midpoint))
(edge-midpoint-z
(get-elevation-from-edge-point
(list edge-midpoint-x edge-midpoint-y) edge-pointl edge-point2)}})
(list edge-midpoint-x edge-midpoint-y edge-midpoint-z)))

(defun path-segment-deterministic-p (search-node)
(if (remove-if-not ’'null
(mapcar ‘vertex-p
(mapcar 'eval
(search-node-window
(eval search-node))))})) nil t))

(defun path-segment-non-deterministic-p (search-node)
(if (path-segment-deterministic-p search-node) nil t))

(defun pursuit-edge-segment-point-equal-p (pursuit-edge-segment-ptl
pursuit-edge-segment-pt2)
(let ((tolerance 0.001))
(if (and (equal-within-tolerance
(first pursuit-edge-segment-ptl)
(first pursuit-edge-segment-pt2) tolerance)
(equal-within-tolerance
(second pursuit-edge-segment-ptl)
(second pursuit-edge-segment-pt2) tolerance)

24

(equal-within~tolerance

(third pursuit-edge-segment-ptl)

(third pursuit-edge-segment-pt2) tolerance))
t nil)))

(defun point-in-range-p (target-point pointl point2 headingl heading2)
(let* {(pointl-x (first pointl))
(pointl-y (second pointl))
(point2-x (first point2))
(point2-y (second point2))
(target-point-x (first target-point))
(target-point-y (second target-point}))
(test-headingl
(heading pointl-x pointl-y target-point-x target-point-y))
(test-heading2
(heading point2-x point2-y target-point-x target-point-y)))
(if (or (heading-range-p test-headingl headingl heading2)
(heading-range-p test-heading2 headingl heading2)) t
(let* ((heading-ptll (heading-point pointl-x pointl-y headingl))
(heading-ptll-x (first heading-ptll))
(heading-ptll-y (second heading-ptll))
(heading-ptl2 (heading-point pointl-x pointl-y heading2))
(heading-ptl2-x (first heading-ptl2))
(heading-ptl2-y (second heading-ptl2))
(heading-pt21 (heading~point point2-x point2-y headingl))
(heading-pt21l-x (first heading-pt2l))
(heading-pt21-y (second heading-pt21})
(heading-pt22 (heading-point point2-x point2-y heading2))
(heading-pt22-x (first heading-pt22))
(heading-pt22-y (second heading-pt22))
(line-equationll
(line-equation pointl-x pointl-y
heading-ptll-x heading-ptll-y))
(1ine-equationl?2
(line-equation pointl-x pointl-y
heading-pt12-x heading-ptl2-y))
{line-equation2l
(line-equation point2-x point2-y
heading-pt21-x heading-pt2l-y))
(line-equation22
(line-equation point2-x point2-y
heading-pt22-x heading-pt22-y})
(le-solutionll
{(line-equation-solution line-equationll
target-point-x target-point-y))
(le-solutionl2
(line-equation-solution line-equationl2
target-point-x target-point-y))
(le-solution2l
(line-equation-solution line-equation2l
target-point-x target-point-y})
(le-solution22
(line-equation-solution line-equation22
target-point-x target-point-yj))
(if (oxr (and (plusp le-solutionll)
(minusp le-solution2l))
(and (minusp le-solutionll)
(plusp le-solution2l))
(and (plusp le-solutionl2)

22§

(minusp le-solution22))
(and (minusp le-solutionl2)
(plusp le-solution22))}) t)))}))

(defun point-in-range-simple-p (target-point point headingl heading2)
(let* ((point-x (first point))
(point-y (second point))
(target-point-x (first target-point))
(target-point-y (second target-point))
(test-heading (heading point-x point-y target-point-x target-point-y)))
(if (heading-range-p test-heading headingl heading2) t))}))

(defun point-in-corridor-p (target-point pointl point2 heading)
{(let* ((pointl-x (first pointl))

(pointl-y (second pointl))
(point2-x (first point2))
(point2-y (second point2))
(target-point-x (first target-point))
(target-point-y (second target-point})
(heading-ptll (heading-point pointl-x pointl-y heading))
(heading-ptl1-x (first heading-ptll})
(heading-ptll-y (second heading-ptll))
(heading-pt21 (heading-point point2-x point2-y heading))
(heading-pt21-x (first heading-pt2l))
(heading-pt21-y (second heading-pt21))
(line-equationll

(line-equation pointl-x pointl-y heading-ptll-x heading-ptll-y)})
(line-equation2l

(line-equation point2-x point2-y heading-pt21-x heading-pt2l-y))
(le~solutionll

(line-equation-solution line-equationll target-point-x

target-point-y))

(le~solution2l

{(line-equation-solution line-equation2l target-point-x

target-point-y)))
(if (or (and (plusp le-solutionll)
(minusp le-solution2l))
(and (minusp le-solutionll)
{(plusp le-solution2l))) t)))

(defun least-cost-p (search-nodel search-node2)
(let* ((cost-from-startl
(first (search-node-cost-from-start (eval search-nodel))))
(cost-from-start2
(first (search-node-cost-from-start (eval search-node2)})))
(estimate-to-goall
(first (search-node-estimate-to-goal (eval search-nodel))))
(estimate-to-goal2
(first (search-node-estimate-to-goal (eval search-node2))))
(path-costl (+ cost-from-startl estimate-to-goall))
(path-cost2 (+ cost-from-start2 estimate-to-goall)))
(if (< path-costl path-cost2) t nil)))

(defun path-length (path)
(cond ({(null (rest path)) 0.0)
(t (let* ((windowl (eval (first path)))

226

{window2 (eval (first (rest path))))
(x1 (vertex-x-coord windowl))
(yl (vertex-y-coord windowl))
(x2 (vertex-x-coord window2))
(y2 (vertex-y-coord window2)))
(+ (distance-point-to-point xl1 yl x2 y2)
(path-length (rest path))))}))

AR R AR AR R AR R R R R R R R R R R R R R R AR AR R AR R R R A AR AR A R AR AR R R RARR AR R R RN AR AR A RR AR A A AN R AR AR RN

.
’
.
’

Path-Planning Model: Definition and Initialization of Global Variables

~ %o ws

(AL S22 28222 R 2R RSt s X222 222X 22 R S22 28222222222

(defvar *agenda-lengtht*)

(defvar *local-optimal-path-cost*)
(defvar *local-optimal-patht*)
(defvar *total-local-optimal-paths?*)
(defvar *global-optimal-path-cost*)
(defvar *global-optimal-patht*)

(setf *agenda-length* nil)

(setf *local-optimal-path-cost* nil)

(setf *local-optimal-path* nil)

(setf *total-local-optimal-paths* 0)

(setf *global-optimal-path-cost* nil)
(setf *global-optimal-path* nil)

;i't'ittttt*t'itt*t*tﬁtt*tit*ii**ii*tiitttti*tﬁiﬁttﬁtﬁiii*it***i**i*i*ittiiit'*i

.

227

Ne Mo We We %e Ne Ny wg We Se N N

.

~e %o e wo

Se S Ny Ne N

LTI TRE TR PRR Y

Ne e e Ne N4 Ne Se we

(222 2222 R 222t a2 SRR sa222R222 2222 sRR 2R R 2R

File: MPP-COMMAND-CONTROL-UTILITIES

Functions: MINIMUM-ENERGY-PATH-PLANNING ()

MPP-INITIALIZE ()
MPP-INITIALIZE-WITH-CURRENT-MAP ()
ASSERT-MAP (filename)

ASSERT-VEHICLE (vehicle)
ASSERT-REGION-TOTALS ()

ASSERT-START ()
ASSERT-START-COORDINATES (xcoord ycoord)
ASSERT-GOAL ()

ASSERT-GOAL~COORDINATES (xcoord ycoord)
ASSERT-START-GOAL-VISIBILITY ()
RETRACT-START-GOAL-VISIBILITY ()
ASSERT-REGION ()

MISSION-GO ()

Global Variables: t*start-location®

goal-location
critical-coasting-angle
critical-braking-angle
critical-stability-angle
optimal-cost-rate
current-map

current-region
current-region-examined
current-vehicle
motion-resistance-lower
motion-resistance-upper
total-isotropic-regions
total-anisotropic-safe-regions
total-anisotropic-partially-safe-regions
total-obstacle-regions
termination-flag
global-planning-time

RARELE RS RS RRS RS REsssR RS R R R s RS 2222222222 RS2 R 2SR

~

’-ttﬁt*t*ttttttttttfiﬁi**tttttttﬁﬁﬁﬁﬁ*t*ttt*tttttttt**i*ttti**iit**ﬁi*tﬁﬁtttt*tti

(defun minimum-energy-path-planning ()
(mpp-initialize)
(set-display)
(do ((termination-flag nil *termination-flag*))
((equal termination-flag t) t)
(mpp-top-level-menu-window))

(kill-

display))

(defun mpp-initialize ()

{load-

(setf
(setf
(setf
(setf
(setf

vehicles "VEHICLE-PROFILES")
start-location nil)
goal-location nil)
critical-coasting-angle nil)
critical-braking-angle nil)
critical-stability-angle nil)

228

(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf

optimal-cost-rate nil)
current-map nil)

tcurrent-region* nil)
current-region-examined nil)
current-region-examined-coords nil)
current-vehicle nil)
motion-resistance-lower nil)
motion-resistance-upper nil)
local-optimal-path-cost nil)
local-optimal-path nil)
total-local-optimal-paths 0)
tagenda-length* 0)
global-optimal-path-cost nil)
global-optimal-path nil)
global-planning-time nil)
total-isotropic-regions 0)
total-anisotropic-safe-regions 0)
total-anisotropic-partially-safe-regions 0)
total-obstacle-regions 0)
termination-flag nil) t)

(defun mpp-initialize-with-current-map ()
(load-vehicles "VEHICLE-PROFILES")

(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf

start-location nil)

goal-location nil)
critical-coasting-angle nil)
critical-braking-angle nil)
critical-stability-angle nil)
optimal-cost-rate nil)
current-region nil)
current-region-examined nil)
current-region-examined-coords nil)
current-vehicle nil)
motion-resistance-lower nil)
motion-resistance-upper nil)
local-optimal-path-cost nil)
local-optimal-path nil)
total-local-optimal-paths 0)
global-optimal-path-cost nil)
global-optimal-path nil)
global-planning-time nil)
total-isotropic-regions (length *background-region-list*))
total-anisotropic-safe-regions 0)
total-anisotropic-partially-safe-regions 0)
total-obstacle-regions 0)
termination-flag nil) t)

(defun assert-map (filename)

(setf

current-map filename)

(load-map filename) t)

(defun assert-vehicle (vehicle)

(setf
(setf
(setf
(setf
(setf

current-vehicle vehicle)

critical-coasting-angle (vehicle-coasting-slope (eval vehicle)))
critical-braking-angle (vehicle-gradient-slope (eval vehicle)))
critical-stability~angle (vehicle-contour-slope (eval vehicle)))
motion-resistance-lower

229

(make-significant-figures
(tan (degrees-to-radians *critical-coasting-anglet*)) 3))
(setf *motion-resistance-upper?*
(make-significant-figures
(tan (degrees-to-radians *critical-braking-angle*)) 3))
(setf *optimal-cost-rate* *motion-resistance-lower?*)
(build-braking-constraints)
(build-region-type) t)

(defun assert-region-totals ()
(setf *total-isotropic-regions* 0)
(setf *total-anisotropic-safe-regions* 0)
(setf *total-anisotropic-partially-safe-regiona* 0)
(setf *total-obstacle-regions* 0)
(dolist (region (append *region-list* *background-region-list*))
(if (isotropic-region-p region)
(setf *total-isotropic-regions* (1+ *total-isotropic-regionst))
(if (anisotropic-safe-region-p region)
(setf *total-anisotropic-safe-regionst*
(1+ *total-anisotropic-safe-regions*))
(if (anisotropic-partially-safe-region-p region)
(setf *total-anisotropic-partially-safe-regions*
(14 *total-anisotropic-partially-safe-regionst*))
(if (obstacle-region-p region)
(setf *total-obstacle-regions*
(1+ *total-obstacle-regions+*)})})))) t)

(defun assert-start ()
(let* ((coordinate-list (get-mouse-coordinates))
(xcoord (first coordinate-list))
(ycoord (second coordinate-list))
(region-list (get-region-from-point xcoord ycoord))
(start-region (if (= (length region-list) 1) (first region-list))))
(if start-region
(let ((zcoord (get-elevation-from-interior-point
(list xcoord ycoord) start-region)}))
(setf s-v (build-vertex
xcoord ycoord zcoord nil
(get-vertices-and-edges-from-region start-region}})
(setf *start-location* (list xcoord ycoord zcoord))
(setf *current-region* start-region) t)
(setf s-v nil))))

(defun assert-start-coordinates (xcoord ycoord)
(let* ((region-list (get-region-from-point xcoord ycoord))
(start-region (if (= (length region-list) 1) (first region-list))))
(if start-region
(let ((zcoord
(get-elevation-from-interior-point
(list xcoord ycoord) start-region)))
(setf s-v (build-vertex
xcoord ycoord zcoord nil
(get-vertices-and-edges-from-region start-region)))
(setf *start-location* (list xcoord ycoord zcoord))
(setf *current-region* start-region) t)
(setf s-v nil))))

(defun assert-goal ()
(let* ((coordinate-list (get-mouse-coordinates))
{(xcoord (first coordinate-list))
(ycocrd (second coordinate-list))
(region-list (get-region-from-point xcoord ycoord))
(goal-region (if (= (length region-list) 1) (first region-list))))
(if goal~-region
(let ((zcoord
(get-elevation-from-interior-point
(list xcoord ycoord) goal-region)))
(setf g-v (build-vertex
xcoord ycoord zcoord nil
(get-vertices-and-edges-from-region goal-region})))
(setf *goal-location* (list xcoord ycoord zcoord)) t)
(setf g-v nil))))

(defun assert-goal-coordinates (xcoord ycoord)
(let* ((region-list (get-region-from-point xcoord ycoord))
(goal-region (if (= (length region-list) 1) (first region-list))))
(if goal-region
(let ((zcoord
(get-elevation-from-interior-point
(list xcoord ycoord) goal-region)))
(setf g-v (build-vertex
xcoord ycoord zcoord nil
(get-vertices-and-edges-from-region goal-region}))
(setf *goal-location* (list xcoord ycoord zcoord)) t)
(setf g-v nil))))

(defun assert-start-goal-visibility ()
(if (or (null (eval ’s-v))
(null (eval ’‘g-v))) nil
(let ()
{(dolist (window (vertex-visibility-list (eval 's-v)))
(if (edge-p (eval window))
(setf (edge-visibility-list (eval window))
(cons ’'s-v (edge-visibility-list (eval window))})
(if (vertex-p (eval window))
(setf (vertex-visibility-list (eval window))
(cons ’'s-v (vertex-visibility-list (eval window}}))}})
(dolist (window (vertex-visibility-iist (eval 'g-v)})
(if (edge-p (eval window))
(setf (edge-visibility-~list (eval window))
(cons ‘g-v (edge-visibility-list (eval window))))
(if (vertex-p (eval window))
(setf (vertex-visibility-list (eval window})
(cons ‘g-v (vertex-visibility-list (eval window)))))))
(if (equal (get-region-from-point (vertex-x-coord (eval ‘s-v))
(vertex-y-coord (eval ’‘s-v)}}
(get-region-from-point (vertex-x-coord (eval ’'g-v))
(vertex-y-coord (eval ‘g-v))))
(let ()
(setf (vertex-visibility-list (eval ’s-v))
(cons ‘g-v (vertex-visibility-list (eval ’'s-v))))
(setf (vertex-visibility-list (eval ‘g-v))
(cons 's-v (vertex-visibility-list (eval ‘g-v))))))} t)))

231

(defun retract-~start-goal-visibility ()
(if (or (null (eval ’'s-v))
(null (eval ‘g-v))) nil
(let* ((start-window-visibility-list (vertex-visibility-list (eval ’'s-v}))
(goal-window-visibility-list (vertex-visibility-list (eval ’‘g-v))))
(dolist (start-window-visible start-window-visibility-list)
(if (vertex-p (eval start-window-visible))
(setf (vertex-visibility-list (eval start-window-visible))
(remove 's-v (vertex-visibility-list
(eval start-window-visible))))
(setf (edge~visibility-list (eval start-window-visible))
(remove ’'s-v (edge-visibility-list
(eval start-window-visible))))))
(dolist (goal-window-visible goal-window-visibility-list)
(1f (vertex-p (eval goal-window-visible))
(setf (vertex-visibility-list (eval goal-window-visible))
(remove 'g-v (vertex-visibility-list
(eval goal-window-visible))))
(setf (edge~visibility-list (eval goal-window-visible))
(remove ‘g-v (edge-visibility-list
(eval goal-window-visible)))))) t)))

(defun assert-region ()
(let* ((coordinate-list (get-mouse-coordinates))
(xcoord (first coordinate-list))
(ycoord (second coordinate-list))
(region-list (get-region-from-point xcocord ycoord))
(region (if (= (length region-list) 1) (first region-list)))) -
(if region
(let ()
(setf *current-region-examined* region)
(setf *current-region-examined-coords* (list xcoord ycoord))))) t)

(defun mission-go ()
(if (or (null *start-location*)
(null *goal-location?)
(null *current-vehicle*)) nil t))

'-'lﬁtiﬁttiii*i***tiit**i*ttt*itiittti**ttitt***ttttt*itt*i***tttittttt*l*tt*t*'tt

(defvar *start-location*)

(defvar *goal-locationt)

(defvar *critical-coasting-anglet*)
(detva: *critical-braking-angle*)

(defvar *critical-stasility-angle*)
(defvar *optimal-cost-rate*)

(defvar *current-map*)

(defvar *current-regiont)

(defvar *current-region-examinedt*)
(defvar *current-region-examined-coordst)
(defvar *current-vehiclet)

(defvar *motion-resistance-lowert)
(defvar *motion-resistance-upper*)
(defvar *total-isotropic-regionst)
(defvar *total-anisotropic-safe-regions*)
(defvar *total-anisotropic-partially-safe-regions*)

32

(defvar *total-obstacle-regions*)
(defvar *termination-flag*)
(defvar *global-planning-time*)

(setf *start-location* nil)

(setf *goal-location* nil)

(setf *critical-coasting-angle* nil)

(setf *critical-braking-angle* nil)

(setf *critical-stability-angle* nil)

(setf *optimal-cost-rate* nil)

(setf *current-map* nil)

(setf *current-region* nil)

(setf *current-region-examined* nil)

(setf *current-region-examined-coords* nil)

(setf *current-vehicle* nil)

(setf *motion-resistance-lower* nil)

(setf *motion-resistance-upper* nil)

(setf *total-isotropic-regions* (length *background-region-list*))
(setf *total-anisotropic-safe-regions* 0)

(setf *total-anisotropic-partially-safe-regions* 0)
(setf *total-obstacle-regions* 0)

(setf *termination-flag* nil)

(setf *global-planning-time* nil)

;ttt*ttttii***t**t*tti*tiittitti!**ttt*iﬂtiﬁﬁtttt*i*tt**'tﬂ*tttki*t*tt*tit*ﬁiti*

:*t*ﬂﬁﬁttﬁiﬁiii*i'i*ﬁﬁiiﬁttiit'ﬁtit#i*fﬁti'ii'tittltttﬁtitttttiiitttﬁﬁttl*tttﬁtﬁ

..

File: MPP-DISPLAY-MAP-UTILITIES

Flavors: SPECIAL-WINDOW ()

e Ss e % N,

Functions: CREATE-TERRAIN-WINDOW ()
CREATE-PROFILE-WINDOW ()
CREATE-TOP-LEVEL-MENU-WINDOW ()
CREATE-MAP-MENU-WINDOW ()
CREATE-VEHICLE-MENU-WINDOW ()
CREATE-MISSION-MENU-WINDOW ()
INITIALIZE-TERRAIN-WINDOW ()
INITIALIZE-PROFILE-WINDOW ()
SET-DISPLAY ()

RESET-DISPLAY ()

REFRESH-DISPLAY ()
REFRESH-DISPLAY-WITH-LOCAL-PATH
REFRESH-DISPLAY-WITH-GLOBAL-PATH
KILL-DISPLAY ()

DELAY-LOOP ()

SELECTION-MAP ()

; SELECTION-VEHICLE ()

: SELECTION-MISSION ()

; SELECTION-REGION ()

; SELECTION-PLAN ()

H SELECTION-RESET ()

; SELECTION-QUIT ()

Ne Ne e we N,

Ne Se we we Mo e

e wo w

; SELECTION-~-MAP-LEVEL-1 ()

; SELECTION-VEHICLE-LEVEL-1 ()
; SELECTION-MISSION-START ()

; SELECTION-MISSION-GOAL ()

; MPP-TOP~LEVEL-MENU-WINDOW ()

; DISPLAY-MAP ()
: DISPLAY-MAP-SUMMARY ()

; DISPLAY-VERICLE ()
; DISPLAY-MISSION ()
; DISPLAY-REGION ()

H DISPLAY-STATISTICS ()

H DRAW-EDGE (edge)

; DRAW-THICK-EDGE (edge)

H DRAW-PATH-SEGMENT (coord-listl coord-list2)
; DRAW-PATH (path-list)

: GET-MOUSE-COORDINATES ()

; SPECIAL~-EFFECTS ()

; Global Variables: *terrain-window®

; *profile-window*

H *top-level-menu-window*
H *map-menu-window*

H *vehicle-menu~-window*

H *mission-menu-window?*

'-ttﬁﬁtﬁi.tt."i't'tit'ﬁttttttﬁ‘ttttiiittttt*i*ti*ttt*tii'tttﬁ*tﬁtttiﬁQtﬁttitttﬁit

;i't*iﬁti***i't*ﬁtitttiii‘illﬁiﬁ'i*ﬂittﬁttttttiitiii**ﬁ*iiil!ttttttiit'ttitttitt

(defflavor special-window ()
(tv:margin-space-mixin
tv:window))

(defun create-terrain-window ()
(setf *terrain-window*

(tv:make-window ‘' special-window
margin-space 1
position ’ (64 43)
:width 640
theight 748
:name "TERRAIN DISPLAY"
:borders 10
:blinker-p nil
texpose-p t
:save-bits t)) t)

(defun create-profile-window ()
(setf *profile-window*

(tv:make-window ’special-window
:margin-space 1
:position ' (704 43)
:width 420
theight 748
:name "PROFILE DISPLAY"
tborders 10
:blinker-p nil
:expose-p t
:save-bits t)) t)

(defun create-top-level-menu-window ()
(setf *top-level-menu-window*
(tv: make-window

"tv:pop-up-menu

’:label "Minimum-energy Path Planning”

‘ :borders 3

':item-list ‘' (("Assert Map” :funcall selection-map)
("Assert Vehicle" :funcall selection-vehicle)
("Assert Mission" :funcall selection-mission)
("Examine Region" :funcall selection-region)
("Plan Path" :funcall selection-plan)
("Reset" :funcall selection-reset)
("Quit” :funcall selection-quit)))) t)

(defun create-map-menu-window ()
(setf *map-menu-window*
(tv: make-window
‘tv:pop-up-menu
':lahel "Map Selection"
' :borders 3
‘iitem-list ’ (("Synthetic Terrain-1"
teval (selection-map-level-1l
"MAP-SYNTHETIC-TERRAIN-1"))

("Synthetic Terrain-2"
ceval (selection-map-level-l
"MAP-SYNTHETIC-TERRAIN-2")"

("Synthetic Terrain-3"

:eval (selection-map-level-l
"MAP-SYNTHETIC-TERRAIN-3"))

Hunter Liggett-HR"

(selection-map-level-1
"MAP-FORT-HUNTER-LIGGETT~HR"))

Hunter Liggett-LR"

(selection-map-level-1
"MAP~-FORT-HUNTER-LIGGETT-HR"))))) t)

("Fort
teval

("Fort
teval

(defun create-vehicle-menu-window ()
(setf *vehicle-menu-window*
(tv: make-w. ndow
’tv:pop-up-menu

’:label "Vehicle Selection"
’:borders 3
‘:item-list ‘ (("M113 Armored Personnel Carrier"

(selection-vehicle-level-1
Armored Tow Carrier"

reval
("M966

‘mll3-apc))

teval (selection-vehicle-level-1 'm%966-atc))
("M813 Cargo Truck"
teval (selection-vehicle-level-1 ‘m813-ct))))) t)
(defun create-mission-menu-window ()
(setf *mission-menu-window*
(tv: make-window
‘tv:pop-up-menu
‘:label "Mission Selection"
' tborders 3
":item-list ‘' (("Assert Start Location"
:funcall selection-mission-start)
("Assert Goal Location"
:funcall selection-mission-goal)))) t)

(defun initialize~terrain-window ()

(send
(send
(send
(send

terrain-window
terrain-window
terrain-window
terrain-window

:draw-fat-line
:draw-fat-line
:draw-fat-line
:draw-fat-line

30 30 589 30)
30 30 30 589)
30 589 589 589)
589 30 589 589)

(send *terrain-window* :draw-fat-line 30 600 589 600)
(send *terrain-window* :draw-fat-line 30 600 30 700)
(send *terrain-window* :draw-fat-line 589 600 589 700)
(send *terrain-window* :draw-fat-line 30 700 589 700)

(send *terrain-window* :draw-string "TERRAIN MAP SUMMARY" 225 620)
(send *terrain-window* :draw-string "ISOTROPIC REGIONS: " 40 640)
(send *terrain-window* :draw-string "ANISOTROPIC-SAFE REGIONS: " 40 655)

(send

(send
(send
(send

terrain-window?

terrain-window
terrain-window
terrain-window

:draw-string

"ANISOTROPIC-PARTIALLY-SAFE REGIONS: " 40 670)
:draw-string "OBSTACLE REGIONS: " 40 685)
:draw-string "VERTEX WINDOWS: " 375 640)
:draw-string "EDGE WINDOWS: " 375 655) t)

tdefun initialize-profile-window ()

(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
{send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send

profile-window
profile-window
profile-window
profile-window
profile-window
profile-window
profile-window
profile-window
profile-window
profile-window
profile-window
profile-window
profile-window
profile-window
profile-window
profile-window
profile-window
profile-window
profile-window
profile-window
profile-window
profil=-window
profile-window
profile-window
profile-window
profile-window
profile-window
profile-window
profile-window
profile-window
profile-window
prcfile-window
profile-window
profile-window
profile-window
profile-window
profile-window
profile-window
profile-window?
profile-window
profile-window
profile-window
profile-window
profile-window
profile-window
profile-window
profile-window
profile-window
profile-window
profile~-window
profile-window
profile-window
profile-window
profile-window
profile-window
profile-window
profile-window
tprofile-window?*

:draw-fat-line
:draw-fat-line
:draw-fat-line
:draw-fat-line

:draw-string
:draw-string
:draw-string
:draw-string
:draw-string
:draw-string
:draw-string
:draw-string
:draw-string
:draw-string
:draw-string
idraw-string
:draw-string

:draw-fat-line 375 200 375 460)

20 20 375 20)
20 20 20 185)
375 20 375 185)
20 185 375 185)

"VEHICLE PROFILE" 140 40)

"DESIGNATION:" 40
"TYPE:" 225 60)
"WEIGHT:" 40 90)
" (LBS)"™ 325 90)

60)

"GRADIENT SLOPE:" 40 105)

" (DEG) " 325 105)

"CONTOUR SLOPE:" 40 120)

*(DEG) " 325 120)

"COASTING SLOPE:” 40 135)

*(DEG) " 325 135)

"MOTION RESISTANCE COEFF (min):" 40 155)
"MOTION RESISTANCE COEFF (max):" 40 170)
:draw-fat-line 20 200 375 200)
:draw-fat-line 20 200 20 460)

:draw-fat-line 20 460 375 460)

:draw-string
:draw-string
:draw-string
:draw-string
:draw-string
:draw-string
:draw-string
:draw-string
:draw-string
:draw-string
:draw-string
:draw-string
:draw-string
:draw-string
:draw-string
:draw-string
:draw-string
:draw-string
:draw-string

:draw-fat-line 375 475 375 540)

"REGION PROFILE"
“DESIGNATION:" 40
"TYPE:" 210 240)
"GRADIENT SLOPE:"
" (DEG) " 325 270}
"ORIENTATION:" 40
" (DEG) " 325 285)

140 220)

240)

40 270)

285)

“STABILITY CONSTRAINTS:" 40 300)
"Gradient (up):" 52 315)

" (DEG) " 325 315)

"Gradient (dn):" 52 330)

" (DEG) " 325 330)

“BRAKING CONSTRAINTS:™ 40 345)
"Gradient (dn):" 52 360)

" (DEG) " 325 360)

“"SURFACE COMPOSITION:" 40 375)
“SURFACE COVERING:" 40 390)
"SUB-TYPE:" 40 405)
"SIDE VIEW:” 40 430)
:draw-fat-line 20 475 375 475)
:draw-fat-line 20 475 20 540)

:draw-fat-line 20 £40 375 540)
"MISSION PROFILE" 140 495)

:draw-string
idraw-string
:draw-string

“"START X: Y:
"“GOAL X: Y:

:draw-fat-line 20 555 375 555)
:draw-fat-line 20 555 20 700)

:draw~fat-line 375 555 375 700)

:draw-fat-line 20 700 375 700)
"PLANNING PROFILE" 140 575)
"CURRENT AGENDA LENGTH:" 40 595)
*LOCAL OPTIMAL PATH COST:” 40 610)
"TOTAL LOCAL OPTIMAL PATHS:" 40 625)
“GLOBAL OPTIMAL PATH COST:" 40 655)
"GLOBAL PLANNING TIME:" 40 670)

" (MIN)" 325 670) t)

:draw-string
:draw-string
:draw-string
:draw-string
:draw-string
:draw-string
:draw-string

237

ELEVATION:" 40 515)
ELEVATION:" 40 530)

(defun set-display ()
(create-terrain-window)
(initialize-terrain-window)
(create-profile-window)
(initialize-profile-window)
(create-top-level-menu-window)
(create-map-menu-window)
(create-vehicle-menu-window)
(create-mission-menu-window) t)

(defun reset-display ()
(send *terrain-window* :clear-window)
(send *profile-window* :clear-window)
(initialize-terrain-window)
(initialize-profile-window)
(display-map)
(display-map-summary) t)

(defun refresh-display ()
(send *terrain-window* :clear-window)
(send *profile-window* :clear-window)
(initialize-terrain-window)
(initialize-profile-window)
(display-map)
(display-map-summary)
(display-vehicle)
(display-mission)
(display-region)
(display-statistics) t)

(defun refresh-display-with-local-path ()
(send *terrain-window* :clear-window)
(send *profile-window* :clear-window)
(initialize-terrain-window)
(initialize-profile-window)
(display-map)

(display-map-summary)
(display-vehicle)
(display-mission)
(display-region)
(display-statistics)
(display-local-path) t)

(defun refresh-display-with-global-path ()
(send *terrain-window* :clear-window)
(send *profile-window* :clear-window)
(initialize-terrain-window)
(initialize-profile~window)
(display-map)

(display-map-summary)
(display-vehicle)
(display-mission)
(display-region)
(display-statistics)
(display-global-path) t)

(defun kill-display ()
(send *terrain-window* :kill)
(send *profile-window* :kill) t)

(defun delay-loop ()
(do ((value 0 (1+ value)))
((= value 500000))) t)

(defun selection-map ()
(send *map-menu-window* ’:expose-near '’ (:mouse))
{send *map-menu-window* ‘:choose) t)

(defun selection-vehicle ()
(send *vehicle-menu-window* ’:expose-near ’ (:mouse))
(send *vehicle-menu-window* ’:choose) t)

(defun selection-mission ()
(send *missjion-menu-window* ‘:expose-near ' (:mouse))
(send *mission-menu-window* ’:choose) t)

(defun selection-region ()
(send *top-level-menu-window* ’:deactivate)
(assert-region)
(refresh-display) t)

(defun selection-plan ()
(send *top-level-menu-window* ’:deactivate)
(plan-path) t)

(defun selection-reset ()
(send *top-level-menu-window* ‘:deactivate)
(mpp-initialize-with-current-map)
(reset-display) t)

(defun selection-quit ()
(setf *termination-flag* t))

(defun selection-map-level-1l (filename)
(send *map-menu-window* ’:deactivate)
(send *top-~level-menu-window* ’:deactivate)
(assert-map filename)
(refresh-display) t)

(defun selection-vehicle-level-1 (vehicle)
(send *vehicle-menu-window* ‘:deactivate)
(send *top-level-menu-window* ’:deactivate)
(assert-vehicle vehicle)
(assert-region-totals)

(refresh-display) t)

239

(defun selection-mission-start ()
(send *mission-menu-window* ’:deactivate)
(send *top-level-menu-window* ’‘:deactivate)
(assert-start)
(refresh~-display) t)

(defun selection-mission-goal ()
(send *mission-menu-window* ’:deactivate)
(send *top-level-menu-window* ’:deactivate)
(assert-goal)
(refresh-display) t)

(defun mpp-top-level-menu-window ()
(send *top-level-menu-window* '‘:expose-near ' (:mouse))
(send *top-level-menu-window* ’:choose)
(send *top-level-menu-window* ’:deactivate))

(defun display-map ()
(if *current-map*
(dolist (edge *edge-list*)
(draw-edge edge))) t)

(defun display-map-summary ()

(send *terrain-window* :draw-string

(write-to~string *total-isotropic-regions*) 187 640)
{send *terrain-window* :draw-string

(write-to-string *total-anisotropic-safe-regions*) 243 655)
(send *terrain-window* :draw-string

(write-to~-string *total-anisotropic-partially-safe-regions*) 323 670)
(send *terrain-window* :draw-string

(write-to-string *total-obstacle-regions*) 180 685)
(send *terrain-window* :draw-string

(write-to-string (length *vertex-list*)) 498 640)
(send *terrain-window* :drs:--string

(write-to-string (+ ngth *edge-list?*)

(le. h *background-edge-list*)}) 482 655) t)

(defun display-vehicle ()
(if *current-vehicle*
(let ()
(send *profile-window* :draw-string
(write-to-string *current-vehicle*) 140 60)
(send *profile-window* :draw-string
(write-to-string (vehicle-type (eval *current-vehicle*))) 268 60)
(send *profile-window* :draw-string
(write-to-string (vehicle-weight (eval *current-vehiclet*))) 101 $0)
(send *profile-window* :draw-string
(Wwrite-to-string (vehicle-gradient-slope
(eval *current-vehicle*))) 163 105)
(send *profile-window* :draw-string
(write-to-string (vehicle-contour-slope
(eval *current-vehicle*))) 155 120)
(send *profile-window* :draw-string
(write-to-string (vehicle-coasting-slope
(eval *current-vehicle*)}) 163 135)

(send *profile-window* :draw-string

(write-to-string *motion-resistance-lower*) 283 155)
(send *profile-window* :draw-string

(write-to~string *motion-resistance-upper*) 283 170))) t)

(defun display-mission ()
(let ()
(if *start-locationt*
(let ((xcoord (truncate (first *start-locationt)))
(ycoord (truncate (second *start-locationt)))
(zcoord (third *start-location*)))
(send *terrain-window*
:draw-filled-in-circle (+ 30 xcoord) (- 589 ycoord) 2)
(send *terrain-window*
:draw-string "S" (+ 35 xcoord) (- 589 ycoord))
(send *profile-window*
:draw-string (write-to-string xcoord) 116 515)
(send *profile-window*
tdraw-string (write-to-string ycoord) 180 515)
(send *profile-window*
:draw-string (write-to-string zcoord) 300 515)))
(if *goal-location*
(let ({xcoord (truncate (first *goal-location*)})
(ycoord (truncate (second *goal-location*)))
(zcoord (third *goal-locationt*)))
(send *terrain-window*
tdraw~filled-in-circle (+ 30 xcoord) (- 589 ycoord) 2)
(send *terrain-window*
:draw~string "G" (+ 35 xcoord) (- 589 ycoord))
(send *profile-window*
:draw-string (write-to-string xcoord) 116 530)
(send *profile-window*
:draw~string (write-to-string ycoord) 180 530)
(send *profile-window*
tdraw~string (write-to-string zcoord) 300 530))))
(delay-loop) t)

(defun display-region ()
(if (and *current-region-examined* *current-vehicle*)
(if (obstacle-region-p *current-region-examined*)
(let ()
(send *profile-window* :draw-string
(write-to-string *current-region-examined*) 140 240)
(send *profile-window* :draw-string "OBSTACLE" 253 240)
(send *profile-window* :draw-string "> CBR"” 163 270)
(send *profile-window* :draw-string "NIL" 139 285)
(send *profile-window* :;draw-string “NIL" 167 315)
(send *profile-window* :draw-string “NIL" 167 330)
(send *profile-window* :draw-string "NIL" 167 360)
(send *profile-window* :draw-string "NIL" 204 375)
(send *profile-window* :draw-string "NIL" 182 390)
(send *profile-window* :draw-string “NIL" 116 405)
(send *profile-window* :draw-rectangle 75 35 145 415) t)
(let* ((rslope (make-significant-figures
(region-slope (eval *current-region-examined*)) 2))
(stability-constraints
(if (anisotropic-partially-safe-region-p
current-region-examined®)

241

(region-stability-constraints
(eval *current-region-examined*))))
(stability-constraints-revised
(if stability-constraints
(mapcar ‘' (lambda (constraint)
(make-significant-figures constraint 2))
stability-constraints)))
(braking—-constraints
(if (or (anisotropic-safe-region-p
tcurrent -region-examined®*)
(anisotropic-partially-safe-region-p
current -region-examined?))
(region-braking-constraints (eval *current-region—examined*))))
(braking-~constraints-revised
(if braking-constraints
(mapcar ’ (lambda (constraint)
{make-significant-figures constraint 2))
braking-constraints)))
(stability~gradient-down
(if stability-constraints-revised
(list (first stability-constraints-revised)
(second stability-constraints-revised))))
(stability-gradient-up
(if stability-constraints-revised
(list (third stability-constraints-revised)
(fourth stability-constraints-revised))))
(region-type nil)
(region-subtype nil))
(if (and (isotropic-region-p *current-region-examined?)
(null (member *current-region-examined*
background-region-list)))
(let ()
(setf region-type ‘isotropic)
(setf region-subtype ’'nested))
(if (equal (region-type
(eval *current-region-examined*)) ‘isotropic)
(let ()
(setf region-type 'isotropic)
(setf region-subtype ‘background))
(if (equal (region-type (eval *current-region-examined*))
'‘anisotropic-safe)
(let ()
(setf region-type ‘anisotropic)
(setf region-subtype ‘safe))
(if (equal (region-type
(eval *current-region-examined*))
‘anisotropic-partially-safe)
(let ()
(setf region-type ’‘anisotropic)
(setf region-subtype ’'partially-safe))))))
(send *profile-window* :draw-string
(write-to-string *current-region-examined*) 140 240)
(send *profile-window* :draw-string
(write-to-string region-type) 253 240)
(send *profile-window* :draw-string
(write-to-string rslope) 164 270)
(send *profile-window* :draw-string
(write-to-string (region-orientation
(eval *current-region-examined*))) 139 285)
(send *profile-window* :draw-string

242

(write-to-string stability-gradient-up) 167 315)
(send *profile-window* :draw-string

(write-to-string stability-gradient-down) 167 330)
(send *profile-window* :draw-string

(write-to-string braking-constraints-revised) 167 360)
(send *profile-window* :draw-string

(write-to-string (region-surface-material

(eval *current-region-examined*))) 204 375)
(send *profile-window* :draw-string

(write-to-string (region-surface-covering

(eval *current-region-examined*))) 182 390)
(send *profile-window* :draw-string

(write-to-string region-subtype) 116 405)
(if (= rslope 0.0)
(send *profile-window*
:draw-fat-line 130 450 200 450)
{send *profile-window*
:draw-triangle 130 450 200 450 200
(- 450 (truncate (* (tan (degrees-to-radians rslope))
70))1)))))) ¢)

(defun display-statistics ()
(if *agenda-length*
(send *profile-window* :draw-string
(write-to-string *agenda-length*) 220 595))
{(if *local-optimal-path-cost*
(send *profile-window* :draw-string
(write-to-string
(make-significant-figures *local-optimal-path-cost* 2)) 236 610))
(if (> *total-local-optimal-paths* 0)
(send *profile-window* :draw-string
(write-to-string *total-local-optimal-paths*) 252 625))
(if *global-optimal-path-cost*
(send *profile-window* :draw-string
(write-to-string
(make-significant-figures *global-optimal-path-cost* 2)) 244 655))
(if *global-planning-time*
(send *profile-window* :draw-string
(write-to-string
(make-significant-figures
(/ *global-planning-time* 60.0) 2)) 212 670)) t)

(defun display-local-path ()
(if *local-optimal-path*
(draw-path *local-optimal-path*)) t)

(defun display-global-path ()
(if *global-optimal-path*
(draw-path *global-optimal-patht*)) t)

(defun draw-edge (edge)
(let* ((s-edge (eval edge))
(vertex-list (edge-vertex-list s-edge))
(vertexl (eval (first vertex-list)))
(vertex2 (eval (second vertex-list))))
(send *terrain-window* :draw-line

(+ 30 (truncate (vertex-x-coord vertexl)))

(- 589 (truncate (vertex-y-coord vertexl)))

(+ 30 (truncate (vertex-x-coord vertex2)))

(- 589 (truncate (vertex-y-coord vertex2))))) t)

(defun draw-thick-edge (edge)
(let* ((s-edge (eval edge))
(vertex-list (edge-vertex-list s-edge))
(vertexl (eval (first vertex-list)))
(vertex2 (eval (second vertex-list))))
(send *terrain-window* :draw-fat-line

(+ 30 (truncate (vertex-—-x-coord vertexl)))
(- 589 (truncate (vertex-y-coord vertexl)))
(+ 30 (truncate (vertex-x-coord vertex2)))
(- 589 (truncate (vertex-y-coord vertex2)))}) t)

(defun draw-path-segment (coord-listl coord-list2)
(let ((x1 (first coord-listl))

(yl (second coord-listl))

(x2 (first coord-list2))

{(y2 (second coord-list2)))

(send *terrain-window* :draw-fat-line

(+ 30 (truncate x1))
(- 589 (truncate yl))
(+ 30 (truncate x2))
(- 589 (truncate y2)))) t)

(defun draw-path (path-coord-list)
(do ((coord-list path-coord-list (rest coord-list)))
((= (length coord-list) 1) t)
(let* ((coord-listl (first - .d-list))
(coord-1ist2 (second coord-list)))
(draw-path-segment coord-listl coord-list2))) t)

(defun get-mouse-coordinates ()
(let* ((mouse-blip (send *terrain-window* :list-tyi))
(xcoord (- (fourth mouse-blip) 40))

(ycoord (- 599 (fifth mouse-blip))))
(list xcoord ycoord)})

(defun special-effects ()

(let ((original-brightness-level (tv:screen-brightness tv:main-screen)))
(dotimes (counter 20)

(dotimes (counter 10000))
(setf (tv:screen-brightness tv:main-screen) 0)
(dotimes (counter iCC00)}

(setf (tv:screen-brightness tv:main-screen) 1))
(setf (tv:screen-brightness tv:main-screen) original-brightness-level)) t)

'-tiit*ﬁ'l*itﬁtiit*itttittltitlt"i'itttittttiti***i'lttﬁ*ittttttiii*tﬁtifﬁ*iitttt

(defvar *terrain-windowt*)
(defvar *profile-window*)

(defvar *top-level-menu-window*)
(defvar *map-menu-window*)
(defvar *vehicle-menu-window*)
(defvar *mission-menu-window*)

{setf *terrain-window* nil)

(setf *profile-window* nil)

(setf *top-level-menu-window* nil)
(setf *map-menu-window* nil)

(setf *vehicle-menu-window* nil)
(setf *mission-menu-window* nil)

'-tii**tttﬁi**ﬁ*i’tiltiitt*tﬁtﬁtiiitﬁtt***tttti*ﬁitttttitt*tttiit*ltﬁtﬁ*ititt*ﬁ*tt

APPENDIX B - SYNTHETIC TERRAIN STRUCTURES

:*ti*iiiitiitii*it*itt*ttitiit*tttﬁt**ttttii*tﬁtiQtt'ﬁt*tttttltttiittttitttt***ﬁ

Global Vertex List:

R AR AR AR R RN AR AR R AR AR A AN AR R AR AR R AR AR R AR A A AR A RN A AR AR R AR R RN RN R AR R AR AR R AR R A AR A TR

~e N ws wg

(V-58 V-57 V-56 V-55 V-54 V-53 V-52 V-51 V-50 V-49 V-48 V-47 V-24 V-23 V-22 V-21
V-20 V-19 V-18 V-17 V-16 V-15 V-14 V-13 V-12 V-11 V-10 V-9 V-8 V-7 V-6 V-5 V-4
V-3 V-2 V-1 V-NW V-NE V-SE V-SW)

AR R R R AR R R R R R R R R R R R N R AR AR AR R R R R A R A AR R R AN R R R R R A AR AR AR AR AR AN R AR AR R AR NN RN

Global Edge List:

“e %e % wa w

1 222222 X222 R R R R a 2222 2222 R R 2R 22

(E-86 E-85 E-84 E-83 E-82 E-81 E-80 E-79 E-78 E-77 E-76 E-75 E-74 E-73 E-72 E-71
E-70 E-69 E-68 E-67 E-66 E-65 E~-64 E-63 E-40 E-39 E-38 E-37 E-36 E-35 E-34 E-33
E-32 E-31 E-30 E-29 E-28 E-27 E-26 E-25 E-24 E-23 E-22 E-21 E-20 E-19 E-18 E-17
E-16 E-15 E-14 E-13 E-12 E-11 E-10 E-9 E-8 E-7 E-6 E-5 E-4 E-3 E-2 E-1 E-N E-S
E-E E-W)

;ittttittt*ﬁiﬁ*ttit*tt*ttﬁttttﬁtt*tttit*ttiitit'ﬁt*ti*t*tt**ttttittttttiitﬁtttiﬁ
.

H

; Global Background Edge List:

;
;ﬁt*tﬁ*tfittitttiﬁt‘ttttttitttittitt**tttititt*tttittttttttit*iittttttttﬁit**itt

(BE-11 BE-10 BE-9 BE-8 BE-7 BE-6 BE-5 BE-4 BE-3 BE-2 BE-1)

;ttttitti*tit*ttiii*'ttititl*iiﬁittti*i**t*tﬁ*tt*itttitttt*titﬁitittittﬁttitttii
.

H

; Global Region List:

.

H
;'*itﬁiltiiﬁti**i*i*ti*t*ﬁtﬁiitt*t***ttt*fﬁtt*i*t*iiti**ﬁit*ttiiii*i*tiittiittti

(R-35 R-34 R-33 R-32 R-31 R-30 R-29 R~28 R-27 R-26 R-25 R-24 R-18 R-17 R-16 R-15
R-14 R-13 R-12 R-11 R-10 R-9 R-8 R-7 R-6 R-5 R-4 R-3 R-2 R-1)

;'ﬁttiﬁtiQﬁﬂttt!ii*ii*itt't*ttt*ﬁtiiﬁitt*ii*tﬁ'l*t**ttttt*tttii*tttitiititiit*ti
H

; Global Background Region List:

;
;*Q'tiiﬁi'it'tiﬁ'tttﬁtﬂﬁititﬂti’titii**'ﬁttﬁiﬁﬁtii*i*'.tttttittti'ﬁﬁttiititliitt

(BR-10 BR-9 BR-8 BR-7 BR-6 BR-5 BR-4 BR-3 BR-2 BR-1)

;ititttttitt"ttttitit**ﬁttkﬁtttﬁttit*tﬁitittﬁi*'*"'tittitttitﬁiti.ilttttttitﬁt

..

~e o

Vertex Structures:

(2 22 R R R R R R R R R R s e R R R SRR 2SS SRS RS RR S22 2 8 84

;i**iﬁ'itttttttiiiiiit*t*tiittttttit'*tttittt*ﬁititttt*ﬁi'tttitt'ﬁtt*ttttitttitt

#S (VERTEX

4S (VERTEX

#S (VERTEX

#S (VERTEX

#S (VERTEX

#S (VERTEX

#S (VERTEX

#S (VERTEX

4S (VERTEX

:X~COORD 352.0
:Y-COORD 96.0
$Z-COORD 14.5
:EDGE-LIST (E-36
tVISIBILITY-LIST

:X-COORD 480.0
:Y-COORD 224.0
:Z-COORD 14.5
¢tEDGE-LIST (E-35
:VISIBILITY-LIST

:X-COORD 400.0
:Y-COORD 304.0
:2-COORD 14.5
:EDGE-LIST (E-34
:VISIBILITY-LIST

:X-COORD 272.0
:Y-COORD 176.0
:Z-COORD 14.5
sEDGE-LIST (E-33
:VISIBILITY-LIST

:X-COORD 240.0
:Y-COORD 320.0
:Z2~COORD 9.0
¢tEDGE-LIST (E-20
:VISIBILITY-LIST

:X-COORD 240.0
:Y-COORD 448.0
¢+Z-COORD 9.0
:EDGE-LIST (E-19
:VISIBILITY-LIST

:X-COORD 112.0
:Y-COORD 448.0
:Z2-COORD 9.0
:EDGE-LIST (E-18
tVISIBILITY-LIST

:X-COORD 112.0
:Y-COORD 320.0
:Z-COORD 9.0
:EDGE-LIST (E-17
:VISIBILITY-LIST

:X-COORD 192.0
:Y-COORD 368.0
:Z-COORD 27.75
:EDGE-LIST (E-63
:VISIBILITY-LIST

E-79 E-82 E-86)
(V-13 v-15 V-16 V-17 V-55 V-19 V-57 V-20))

E-81 E-82 E-85)
(V-14 v-15 V-16 V-18 v-56 V-19 V-20 V-58))

E-80 E-81 E-84)
(V-13 v-14 V-15 V-17 Vv-55 V-18 V-19 V-57))

E-79 E-80 E-83)
{(V-16 V-13 V-14 V-20 V-58 V-17 V-18 V-56))

E-73 E-74 E-78)
(v-11 v-12 V-9 V-5 V-51 V-8 V-7 V-53))

E-72 E-73 E-77)
(V-10 v-11 V-12 V-6 V-52 V-8 V-54 V-7))

E-71 E-72 E-76)
(V-9 V-10 V-11 V-5 V-51 V-7 V-53 V-6))

E-71 E-74 E-75)
(V-10 Vv-12 v-9 V-8 V-54 V-6 V-52 V-5))

E-66 E-70)
(V-47 V-9 V-49 V-12 V-11 V-48))

247

#S(VERTEX :X-COORD 1€0.0
:Y-COORD 368.0
:2-COORD 27.75
:EDGE-LIST (E-63 E-64 E-67)
:VISIBILITY-LIST (V-48 V-12 V-50 V-10 V-47 V-9))

#S (VERTEX

#S (VERTEX

4S (VERTEX

#S (VERTEX

#S (VERTEX

#S (VERTEX

#S (VERTEX

4 S (VERTEX

#S (VERTEX

#S (VERTEX

:X-COORD 192.0
:Y-COORD 400.0
:Z-COORD 27.75
:EDGE-LIST (E-65
tVISIBILITY~LIST

:X-COORD 160.0
:Y-COORD 400.0
:Z-COORD 27.75
+tEDGE-LIST (E-64
tVISIBILITY-LIST

:X-COORD 352.0
:Y-COORD 160.0
¢t2-COORD 35.75
:EDGE-LIST (E-32
:VISIBILITY-LIST

:X-COORD 416.0
:Y-COORD 224.0
:Z-CUORD 35.75
:EDGE-LIST (E-31
tVISIBILITY-LIST

:X-COORD 400.0
:Y-COORD 240.0
:Z-COORD 35.75
:EDGE-LIST (E-30
sVISIBILITY-LIST

:1X-COORD 336.0
:Y-COORD 176.0
:12-COORD 35.75
:EDGE-LIST (E-29
:VISIBILITY-LIST

:X-COORD 352.0
:Y-COORD 112.0
:Z-COORD 18.0
:EDGE-LIST (E-25
:VISIBILITY-LIST

:X-COORD 464.0
:Y-COORD 224.0
:2-COORD 18.0
¢tEDGE-LIST (E-27
sVISIBILITY-LIST

:X-COORD 400.0
:Y-COORD 288.0
:2-COORD 18.0
+:EDGE-LIST (E-26
:VISIBILITY-LIST

:X-COORD 288.0
:Y-COORD 176.0
:2~COORD 18.0
$sEDGE-LIST (E~25
:VISIBILITY-LIST

E-66 E-69)

(V-49 V-10 V-47 V-12 V-50 V-11))

E-65 E-68)

(V-50 V-9 V-49 V-11 V-48 V-10))

E-29 E-40)
(V-22 v-17 v-21

E-32 E-39)
(v-21 v-18 v-22

E-31 E-38)
(V-24 v-17 v-21

E-30 E-37)
(V-23 Vv-20 V-24

E-28 E-40 E-86)
(V-21 v-24 v-23

E-28 E-39 E-85)
(V-22 V-24 v-23

E-27 =-38 E-84)
(V-21 V-23 v-22

E-26 E-37 E-83)
(V-24 V-22 V-21

249

v-20

v-20

v-19

v-18

v-17

v-18

v-17

v-19

V-24

v-23

v-22

V-55

vV-56

V-55

v-58

v-23))

v-19))

v-18))

v-17))

v-19 V-57 Vv-58))

V-57 V-20 V-58))

V-56 V-19 V-57))

V-55 V-18 V-56))

4S(VERTEX :X-COORD 352.0
:Y-COORD 48.0
:2-COORD 0.0
:EDGE~LIST (BE-9 BE-10 E-21 E-24 E-36)
sVISIBILITY-LIST (V-SW V-SE V-13 V-55 V-15 V-57 v-58))

#S (VERTEX

#S (VERTEX

#S (VERTEX

#S (VERTEX

#S (VERTEX

#S (VERTEX

#S (VERTEX

#S (VERTEX

#S (VERTEX

#S (VERTEX

:X-COORD 528.0

:Y-COORD 224.0

:Z-COORD 0.0

:EDGE-LIST (BE-5 BE-11 E-23 E-24 E-35)
:VISIBILITY-LIST (V-NE V-SE V-14 V-56 V-16 V-57 V-58))

:X-COORD 400.0

:Y-COORD 352.0

:2-COORD 0.0

:EDGE-LIST (BE-4 BE-6 E-22 E-23 E-34)

:VISIBILITY-LIST (V-3 V-4 V-NE V-13 V-55 V-15 V-56 V-57))

:X-COORD 224.0

:Y-COORD 176.0

:Z-COORD 0.0

:EDGE-LIST (BE-7 BE-8 E-21 E-22 E-33)

:VISIBILITY-LIST (V-1 V-SW V-4 V-16 V-58 V-14 V-55 V-56))

:+X-COORD 208.0

:Y-COORD 352.0

:2-COORD 19.5

:EDGE-LIST (E-9 E-1Z E-20 E-70)

:VISIBILITY-LIST (V-51 V-53 V-54 V-9 V-49 V-50 V-11 V-48))

:X-COORD 208.0

:Y-COORD 416.0

:Z-COORD 19.5

:EDGE-LIST (E-11 E-12 E-19 E-69)

:VISIBILITY-LIST (V-52 V-53 V-54 V-10 V-47 V-12 V-50 V-48))

:X-COORD 144.0

:Y-COORD 416.0

:Z-COORD 19.5

:EDGE-LIST (E-10 E-11 E-18 E-€8)

:VISIBILITY-LIST (V-51 V-52 V-53 V-9 V-49 V-11 V-48 V-47))

:X-COORD 144.0

:Y-COORD 352.0

:Z2-COCRD 19.5

:EDGE-LIST (E-9 E-10 E-17 E-67)

:VISIBILITY-LIST (V-54 V~51 V-52 V-12 V-50 V-10 V-47 V-49))

:X-COORD 256.0

:Y-COORD 304.0

:Z-COORD 9.0

:EDGE-LIST (E-5 E-8 E-16 E-78)

:VISIBILITY-LIST (V-1 V-4 V-3 V-5 V-51 V-54 V-7 V-53))

:X-COORD 256.0

:Y-COORD 464.0

:2-COORD 9.0

:EDGE-LIST (E-7 E-8 E-15 E-77)

tVISIBILITY-LIST (V-2 V-4 V-3 V-6 V-52 V-8 V-54 V-53))

:X-COORD 96.0

:Y-COORD 464.0

:2-COORD 9.0

:EDGE-LIST (E-6 E-7 E-14 E-76)

tVISIBILITY-LIST (V-1 V-3 V-2 V-5 V-51 V-7 V-53 V-52))

251

#S (VERTEX

:X-COORD 96.0

:Y-COORD 304.0

:Z-COORD 9.0

:EDGE-LIST (E-5 E-6 E-13 E-175)

:VISIBILITY-LIST (V~4 V-2 V-1 V-8 V-54 V-6 V-52 V-51))

252

#S (VERTEX

#S (VERTEX

#S (VERTEX

#S (VERTEX

#S (VERTEX

#S (VERTEX

#S (VERTEX

#S (VERTEX

:X-COORD 288.0

:Y-COORD 272.0

:Z-COORD 0.0

:EDGE-LIST (BE-6 BE-7 E-1 E-4 E-16)

:VISIBILITY-LIST (V-SW V-13 V-NE V-14 V-1 V-5 V-8 V-3 V-7))

:X-COORD 288.0

:Y-COORD 496.0

:Z-COORD 0.0

:EDGE~-LIST (BE-3 E-3 E-4 E-195)

:VISIBILITY-LIST (V-NW V-NE V-14 V-2 V-6 V-4 V-8 V-7))

:X-COORD 64.0

:Y¥Y-COORD 496.0

:Z-COORD 0.0

:EDGE-LIST (BE-2 E-2 E-3 E-14)

tVISIBILITY-LIST (V-SW V-NW V-NE V-1 V-5 V-3 V-7 V-6))

:X-COORD 64.0

:Y-COORD 272.0

¢t2-COORD 0.0

:EDGE-LIST (BE-1 E-1 E-2 E-13)

:VISIBILITY-LIST (V-13 V-SW V-NW V-4 V-8 V-2 V-6 V-5))

:X-COORD 0.0

:Y-COORD 559.0

:2-COORD 0.0

:EDGE-LIST (BE-2 E-W E-N)
:VISIBILITY-LIST (V-SW V-1 V-NE V-2 V-3))

:X-COORD 559.0

:Y-COORD 559.0

:Z-COORD 0.0

¢:EDGE-LIST (BE-3 BE-4 BE-5 E-N E-E)
tVISIBILITY-LIST (V-4 V-14 V-NW V-2 V-3 V-SE V-15))

:X-COORD 559.0

:Y-COORD 0.0

:Z-COORD 0.0

:EDGE-LIST (BE-10 BE-11 E-S E-E)
:VISIBILITY-LIST (V-16 V-SW V-NE V-15))

:X-COORD 0.0

:Y-COORD 0.0

:Z-COORD 0.0

:EDGE-LIST (BE-1 BE-8 BE-9 E-W E-S)
:VISIBILITY-LIST (V-4 V-13 V-NW V-1 V-2 V-~16 V-SE))

253

;QQ**iﬁ*ttﬁﬁtt*ttiit*tttitttii*ttitt*tttt*tt**i*ﬁ*tiﬂittﬁ*'itttt*i**t**tttt*tttt

~e

Edge Structures:

. “o

’-ttttt*ttt**ttﬁtﬁttttiiiﬁt*iii***iiti*ttti*ttii*ttititttiiitilttttittttlttttt*li

#S (EDGE :VERTEX-LIST (V-20 V-58)
:ADJACENCY-LIST (R-32 R-35)
:VISIBILITY-LIST (E-25 E-79 E-83 E-28 E-85 E-82))

#S (EDGE :VERTEX-LIST (V-19 V-57)
:ADJACENCY-LIST (R-34 R-35)
:VISIBILITY-LIST (E-27 E-84 E-81 E-28 E-82 E-86))

#S (EDGE :VERTEX-LIST (V-18 V-56)
:ADJACENCY-LIST (R-33 R-34)
:VISIBILITY-LIST (E-26 E-83 E-80 E-27 E-81 E-85))

#S (EDGE :VERTEX-LIST (V-17 V-55)
:ADJACENCY-LIST (R-32 R-33)
:VISIBILITY-LIST (E-25 E-86 E~-79 E-26 E~-80 E-84))

#S(EDGE :VERTEX-LIST (V-57 V-58)
:ADJACENCY-LIST (R-13 R-35)
:VISIBILITY-LIST (E-35 E-24 E-36 E-28 E-85 E-86))

#S(EDGE :VERTEX-LIST (V-56 V-57)
:ADJACENCY-LIST (R-12 R-34)
:VISIBILITY-LIST (E-34 E-23 E-35 E-27 E-84 E-85))

#S(EDGE :VERTEX-LIST (V-55 V-56)
:ADJACENCY-LIST (R-11 R-33)
s:VISIBILITY-LIST (E-33 E-22 E-34 E-26 E-83 E-84))

#S (EDGE :VERTEX-LIST (V-55 V-58)
¢:ADJACENCY-LIST (R-10 R-32)
:VISIBILITY-LIST (E-21 E-33 E-36 E-25 E-86 E-83))

#S(EDGE :VERTEX-LIST (V-8 V-54)
:ADJACENCY-LIST (R-28 R-31)
:VISIBILITY-LIST (E-5 E-75 E-74 E-8 E-73 E-77))

#S (EDGE :VERTEX-LIST (V-7 V-53)
:ADJACENCY-LIST (R-30 R-31)
:VISIBILITY-LIST (E-7 E-72 E-76 E-8 E-78 E-73))

#S (EDGE :VERTEX-LIST (V-6 V-52)
¢:ADJACENCY-LIST (R-29 R-30)
:VISIBILITY-LIST (E-6 E-71 E-75 E-7 E-77 E-72))

#S (EDGE :VERTEX-LIST (V-5 V-51)

:ADJACENCY-LIST (R-28 R-29)

:VISIBILITY-LIST (E-5 E-74 E-78 E-6 E-76 E-71))
#S(EDGE :VERTEX-LIST (V-51 V-54)

:ADJACENCY-LIST (R-5 R-28)

:VISIBILITY-LIST (E-9 E-20 E-17 E-5 E-75 E-78))

#S(EDGE :VERTEX-LIST (V-53 V-54)

254

:ADJACENCY-LIST (R-8 R-31)

:VISIBILITY-LIST (E-12 E-19 E-20 E-8 E-78 E-~177))
#S (EDGE :VERTEX-LIST (V-52 V-53)
ADJACENCY-LIST (R-7 R-30)
sVISIBILITY-LIST (E-11 E-18 E-19 E-7 E-77 E-76))

258

4#S (EDGE

4S (EDGE

#S(EDGE

#S (EDGE

#S (EDGE

#S (EDGE

4#S (EDGE

#S (EDGE

#S (EDGE

#S (EDGE

#S (EDGE

¢S (EDGE

#S (EDGE

#S (EDGE

#S (EDGE

tVERTEX-LIST (V-51 V-52)
:ADJACENCY-LIST (R-6 R-29)

¢VISIBILITY-LIST (E-10 E-17 E-18 E-6 E-76 E-75))

tVERTEX-LIST (V-12 V-50)
:ADJACENCY-LIST (R-24 R-27)

tVISIBILITY-LIST (E-9 E-67 E-63 E-12 E-66 E-69))

:VERTEX-LIST (V-11 V-48)
sADJACENCY-LIST (R-26 R-27)

tVISIBILITY-LIST (E-11 E-65 E-68 E-12 E-70 E-66))

:VERTEX-LIST (V-10 V-47)
:ADJACENCY-LIST (R-25 R-26)

tVISIBILITY-LIST (E-10 E-64 E-67 E~11 E-69 E-65))

¢tVERTEX-LIST (V-9 V-49)
:ADJACENCY-LIST (R-24 R-25)

¢tVISIBILITY-LIST (E-9 E-63 E-70 E-10 E-68 E-64))

:VERTEX-LIST (V-48 V-50)
:ADJACENCY-LIST (R-9 R-27)
:VISIBILITY-LIST (E-63 E-64

VERTEX-LIST (V-47 V-48)
ADJACENCY-LIST (R-9 R-26)
:VISIBILITY-LIST (E-63 E-64

:VERTEX-LIST (V-47 V-49)
:ADJACENCY-LIST (R-9 R-25)
:VISIBILITY-LIST (E-63 E-65

:VERTEX-LIST (V-45 V-50)
sADJACENCY-LIST (R-9 R-24)
:VISIBILITY-LIST (E-64 E-65

:VERTEX-LIST (V-20 V-24)
:ADJACENCY-LIST (R-14 R-17)
:VISIBILITY-LIST (E-25 E-37

:VERTEX-LIST (V-19 V-23)
:ADJACENCY-LIST (R-16 R-17)
:VISIBILITY-LIST (E-27 E-31

¢VERTEX-LIST (V-18 V-22)
:ADJACENCY-LIST (R-15 R-16)
:+VISIBILITY-LIST (E-26 E-30

:VERTEX-LIST (V-17 V-21)
:ADJACENCY-LIST (R-14 R~15)
s:VISIBILITY-LIST (E-25 E-29

:VERTEX-LIST (V-16 V-58)
:ADJACENCY-LIST (R-10 R-13)
:VISIBILITY-LIST (E-21 E-33

:VERTEX-LIST (V-15 V-57)
:ADJACENCY-LIST (R-12 R-13)
:VISIBILITY-LIST (E-34 E-23

E-66

E-66

E-66

E-29

E-38

E-37

E-40

E-79

E-81

E-12 E-70 E-69))

E-11 E-69 E-68))

E-10 E-68 E-67))

E-9 E-67 E-70))

E-28 E-32 E-39))

E-28 E-40 E-32))

E-27 E-39 E-31))

E-26 E-38 E-30))

E-35 E-24 E-82))

E-24 E-36 E-82))

#S (EDGE

#S (EDGE

#S (EDGE

#S (EDGE

4S (EDGE

#S (EDGE

#S (EDGE

#S (EDGE

#S (EDGE

#S (EDGE

#S (EDGE

45 (EDGE

4S (EDGE

#S (EDGE

4S5 (EDGE

:VERTEX-LIST (V-14 V-56)
:ADJACENCY-LIST (R-11 R-12)
:VISIBILITY-LIST (E-33 E-22

VERTEX-LIST (V-13 V-55)
ADJACENCY-LIST (R-10 R-11)
:VISIBILITY-LIST (E-21 E-79

:VERTEX-LIST (V-23 V-24)
¢:ADJACENCY-LIST (R-17 R-18)
:VISIBILITY-LIST (E-28 E-40

s:VERTEX-LIST (V-22 V-23)
:ADJACENCY-LIST (R-16 R-18)
:VISIBILITY-LIST (E-27 E-39

VERTEX-LIST (V-21 V-22)
ADJACENCY-LIST (R-15 R-18)
:VISIBILITY-LIST (E-26 E-38

:VERTEX-LIST (V-21 V-24)
:ADJACENCY-LIST (R-14 R-18)
:VISIBILITY-LIST (E-25 E-37

:VERTEX-LIST (V-19 V-20)
+ADJACENCY-LIST (R-17 R-35)
sVISIBILITY-LIST (E-40 E-32

¢tVERTEX-LIST (V-18 V-19)
:ADJACENCY-LIST (R-16 R-34)
¢:VISIBILITY-LIST (E-39 E-31

:VERTEX-LIST (V-17 V-18)
:ADJACENCY-LIST (R-15 R-33)
:VISIBILITY-LIST (E-38 E-30

:VERTEX-LIST (V-17 V-20)
:ADJACENCY-LIST (R-14 R-32)
:VISIBILITY-LIST (E-37 E-29

:VERTEX-LIST (V-15 V-16)
:ADJACENCY-LIST (R-13 BR-8)
¢:VISIBILITY-LIST (E-35 E-36

:VERTEX-LIST (V-14 V-15)
:ADJACENCY-LIST (R-12 BR-6)
sVISIBILITY-LIST (E-34 E-35

:VERTEX-LIST (V-13 V-14)
:ADJACENCY-LIST (R-11 BR-5)
sVISIBILITY-LIST (E-33 E-34

¢tVERTEX-LIST (V-13 V-16)
:ADJACENCY-LIST (R-10 BR-10)
¢VISIBILITY-LIST (E-33 E-79

sVERTEX-LIST (V-12 V-54)
:ADJACENCY-LIST (R-5 R-8)

E~80

E-36

E~39

E-37

E-40

E-39

E-37

E-40

E-82

E-81

E-80

E-36

E-23

E-22

E-29

E-29

E-30

E-85

E-84

E-83

E-86

E-35

E-34

E-30

E-31

E-31

E-82

E-80

E-79

E-81))

E-80))

E-31))

E-32))

E-32))

E-32))

E-86))

E-85))

E-84))

E-83))

BE-10 BE-11))

BE-4 BE-5))

BE-7 BE-6))

BE-8 BE-9))

:VISIBILITY-LIST (E-9 E-74 E-17 E-12 E-19 E-73))

257

T T

#S (EDGE

#S (EDGE

#S (EDGE

#S (EDGE

#S (EDGE

#S (EDGE

#S (EDGE

#S (EDGE

#S (EDGE

4#S (EDGE

#S (EDGE

#S (EDGE

#S (EDGE

#S (EDGE

4S (EDGE

¢VERTEX-LIST (V-11 V-53)
:ADJACENCY-LIST (R-7 R-8)
:VISIBILITY-LIST (E-11 E-18 E-72 E-12 E-73 E-20))

:VERTEX-LIST (V-10 V-52)
:ADJACENCY-LIST (R-6 R-7)
:VISIBILITY-LIST (E-10 E-17 E-71 E-11 E-72 E-19))

tVERTEX-LIST (V-9 V-51)
:ADJACENCY-LIST (R-5 R-6)
tVISIBILITY-LIST (E-9 E-20 E-74 E-10 E-71 E-18))

¢VERTEX~-LIST (V-4 V-8)
:ADJACENCY-LIST (R-1 R-4)
:VISIBILITY-LIST (E-1 E-13 E-5 E-4 E-8 E-15))

:VERTEX-LIST (V-3 V-7)
sADJACENCY-LIST (R-3 R-4)
:VISIBILITY-LIST (E-3 E-7 E-14 E-4 E-16 E-8))

:VERTEX-LIST (V-2 V-6)
:ADJACENCY-LIST (R-2 R-3)
:VISIBILITY-LIST (E-2 E-6 E-13 E-3 E-15 E-7))

:VERTEX-LIST (V-1 V-5)
:ADJACENCY-LIST (R-1 R-2)
:VISIBILITY-LIST (E-1 E-5 E-16 E-2 E-14 E-6))

:VERTEX-LIST (V-11 V-12)
:ADJACENCY-LIST (R-8 R-27)
:VISIBILITY-LIST (E-19 E-73 E-20 E-70 E-66 E-69))

:VERTEX-LIST (V-10 V-11)
:ADJACENCY-LIST (R-7 R-26)
:VISIBILITY-LIST (E-18 E-72 E-19 E-69 E-65 E-68))

:VERTEX-LIST (V-9 V-10)
:ADJACENCY-LIST (R-6 R-25)
:VISIBILITY-LIST (E-17 E-71 E-18 E-68 E-64 E-67))

:VERTEX-LIST (V-9 V-12)
:ADJACENCY-LIST (R-5 R-24)
:VISIBILITY-LIST (E-20 E-74 E-17 E-67 E-63 E-70))

:VERTEX-LIST (V-7 V-8)
¢+ADJACENCY-LIST (R-4 R-31)
:VISIBILITY-LIST (E-4 E-16 E-15 E-78 E-73 E-77))

:VERTEX-LIST (V-6 V-7)
:ADJACENCY-LIST (R-3 R-30)
:VISIBILITY-LIST (E-3 E-15 E-14 E-77 E-72 E-76))

:VERTEX-LIST (V-5 V-6)
:ADJACENCY-LIST (R-2 R-29)
:VISIBILITY-LIST (E-2 E-14 E-13 E-76 E-71 E-75))

:VERTEX-LIST (V-5 V-8)

ADJACENCY-LIST (R-1 R-28)
:VISIBILITY-LIST (E-1 E-13 E-16 E-75 E-74 E-78))

258

#S (EDGE :VERTEX-LIST (V-3 V-4)
:ADJACENCY-LIST (R-4 BR-4)
:VISIBILITY-LIST (E-16 E-8 E-15 BE-3 BE-4 BE-6))

4S (EDGE :VERTEX-LIST (V-2 V-3)
:ADJACENCY-LIST (R-3 BR-3)
:VISIBILITY-LIST (E-15 E-7 E-14 BE-2 E-N BE-3))

#S (EDGE :VERTEX-LIST (V-1 V-2)
:ADJACENCY-LIST (R-2 BR-2)
:VISIBILITY-LIST (E-14 E-6 E-13 BE-1 E-W BE-2))

¢S (EDGE :VERTEX-LIST (V-1 V-4)
tADJACENCY-LIST (R-1 BR-1)
:VISIBILITY-LIST (E-13 E-5 E-16 BE-8 BE-1 BE-7))

#S (EDGE :VERTEX-LIST (V-NW V-NE)
:ADJACENCY-LIST (BR-3)
:VISIBILITY-LIST (BE-2 BE-3 E-3})

#S (EDGE :VERTEX-LIST (V-SE V-SW)
:ADJACENCY-LIST (BR-9)
:VISIBILITY-LIST (BE-$ BE-10))

#S(EDGE :VERTEX-LIST (V-NE V-SE)
:ADJACENCY-LIST (BR-7)
:VISIBILITY-LIST (BE-S BE-11))

#S(EDGE :VERTEX-LIST (V-SW V-NW)
tADJACENCY-LIST (BR-2)
:VISIBILITY-LIST (BE-1 BE-2 E-2))

#S (EDGE :VERTEX-LIST (V-SE V-15)
:ADJACENCY-LIST (BR-7 BR-8)
¢:VISIBILITY-LIST (BE-5 E-E BE-10 E-24))

#S (EDGE :VERTEX-LIST (V-SE V-16)
:ADJACENCY-LIST (BR-8 BR-9)
:VISIBILITY-LIST (E-24 BE-11 BE-9 E-S))

#S (EDGE :VERTEX-LIST (V-SW V-16)
:ADJACENCY-LIST (BR-9 BR-10)
:VISIBILITY-LIST (BE-10 E-S BE-8 E-21))

#S (EDGE :VERTEX-LIST (V-SW V-13)
:ADJACENCY-LIST (BR-1 BR-10)
tVISIBILITY-LIST (BE-1 E~1 BE-7 E-21 BE-9))

#S(EDGE :VERTEX-LIST (V-4 V-13)
:ADJACENCY-LIST (BR-1 BR-5)
:VISIBILITY-LIST (BE-8 BE-1 E-1 BE-6 E-22))

¢S (EDGE :VERTEX-LIST (V-4 V-14)
:ADJACENCY-LIST (BR-4 BR-5)
:VISIBILITY-LIST (BE-3 BE-4 E~4 BE-7 E-22))

#S (EDGE :VERTEX-LIST (V-NE V-15)

:ADJACENCY-LIST (BR-6 BR-7)
:VISIBILITY-LIST (BE-4 E-23 E-E BE-11))

259

#S (EDGE

#S (EDGE

#S (EDGE

#S (EDGE

:VERTEX~LIST (V-NE V-14)
:ADJACENCY-LIST (BR-4 BR-6)
:VISIBILITY-LIST (BE-3 BE-6 E-4 BE-5 E-23))

¢:VERTEX-LIST (V-NE V-3)
:ADJACENCY-LIST (BR-3 BR-4)
:VISIBILITY-LIST (BE-2 E-N E-3 BE-4 BE-6 E-4))

:VERTEX-LIST (V-NW V-2)
¢:ADJACENCY-LIST (BR-2 BR-3)
:VISIBILITY-LIST (BE-1 E-W E-2 E-N BE-3 E-3))

¢:VERTEX-LIST (V-SW V-1)
:ADJACENCY-LIST (BR-1 BR-2)
:VISIBILITY~-LIST (BE-8 E-1 BE-7 E-W BE-2 E-2))

;ilitiitﬁ‘l*i*iiittititiitit**it*t*ittitittﬁttttiittt*ﬁit*iﬁt*tﬁﬁ'titt'tttttttiﬁt

Region Structures:

Ns we we g

AR R AR R R R R AR R A R AN R A R A AR R R R AR R R AR AN AR A AR R AR AR AR R AR R RAR AR R A A AR R AR A RS

#S(REGION :EDGE-LIST (E-28 E-85 E-82 E-86)
¢SIOPE 12.339
:ORIENTATION 135.0
:SURFACE-MATERIAL GRAVEL-CLAY
$SURFACE-CONDITION DRY
:SURFACE-COVERING BRUSH
:TYPE NIL
:STABILITY-CONSTRAINTS NIL
¢:BRAKING-CONSTRAINTS (98.714 171.286))

#S (REGION :EDGE-LIST (E~27 E-84 E-81 E-85)
:SLOPE 12.339
:ORIENTATION 45.0
:SURFACE-MATERIAL GRAVEL-CLAY
:SURFACE-CONDITION DRY
:SURFACE-COVERING BRUSH
:TYPE NIL
:STABILITY-CONSTRAINTS NIL
:BRAKING-CONSTRAINTS (8.714 81.286))

#S(REGION :EDGE-LIST (E-26 E-83 E-80 E-~84)
:SLOPE 12.339
:ORIENTATION 315.0
:SURFACE-MATERIAL GRAVEL-CLAY
¢:SURFACE-CONDITION DRY
:SURFACE-COVERING BRUSH
:TYPE NIL
:STABILITY-CONSTRAINTS NIL
:BRAKING-CONSTRAINTS (278.714 351.286))

#S(REGION :EDGE-LIST (E-25 E-86 E-79 E-~83)
:+SLOPE 12.339
:ORIENTATION 225.0
:SURFACE-MATERIAL GRAVEL-CLAY
:SURFACE-CONDITION DRY
:SURFACE~COVERING BRUSH
:TYPE NIL
:STABILITY-CONSTRAINTS NIL
:BRAKING-CONSTRAINTS (188.714 261.286))

#S(REGION :EDGE-LIST (E-8 E-78 E-73 E-77)
:SLOPE 0.0
:ORIENTATION NIL
:SURFACE-MATERIAL GRAVEL-CLAY
:SURFACE-CONDITION DRY
: SURFACE-COVERING BRUSH
:TYPE NIL
:STABILITY-CONSTRAINTS NIL
:BRAKING-CONSTRAINTS NIL)

4S(REGION :EDGE-LIST (E-7 E-77 E-72 E-76)

:SLOPE 0.0
:ORIENTATION NIL

261

:SURFACE-MATERIAL GRAVEL-CLAY
:SURFACE-CONDITION DRY
:SURFACE-COVERING BRUSH

:TYPE NIL
:STABILITY-CONSTRAINTS NIL
:BRAKING-CONSTRAINTS NIL)

262

#S({REGION :EDGE-LIST (E-6 E-76 E-71 E-75)
:SLOPE 0.0
tORIENTATION NIL
:SURFACE-MATERIAL GRAVEL-CLAY
:SURFACE-CONDITION DRY
:SURFACE-COVERING BRUSH
:TYPE NIL
:STABILITY-CONSTRAINTS NIL
:BRAKING-CONSTRAINTS NIL)

#S(REGION :EDGE-LIST (E-5 E-75 E-74 E-78)
:+SLOPE 0.0
:ORIENTATION NIL
:SURFACE-MATERIAL GRAVEL-CLAY
:SURFACE-CONDITION DRY
:SURFACE-COVERING BRUSH
:TYPE NIL
:STABILITY-CONSTRAINTS NIL
:BRAKING-CONSTRAINTS NIL)

#S (REGION :EDGE-LIST (E-12 E-70 E-66 E-69)
:SLOPE 27.277
:ORIENTATION 90.0
:SURFACE-MATERIAL GRAVEL-CLAY
:SURFACE-CONDITION DRY
:SURFACE-COVERING BRUSH
:TYPE NIL
:STABILITY-CONSTRAINTS (50.0 130.0 230.0 310.0)
:BRAKING-CONSTRAIN1Z (19.997 160.003))

#S5 (REGION :EDGE-LIST (E-11 E-69 E-65 E-68)
¢:SLOPE 27.2717
:ORIENTATION 0.0
:SURFACE-MATERIAL GRAVEL-CLAY
:SURFACE-CONDITION DRY
:SURFACE-COVERING BRUSH
:TYPE NIL
:STABILITY-CONSTRAINTS (320.0 40.0 14..0 220.0)
:BRAKING-CONSTRAINTS (289.997 70.003))

#S (REGION :EDGE-LIST (E-10 E-68 E-64 E-67)
:SLOPE 27.277
:ORIENTATION 270.0
:SURFACE-MATERIAL GRAVEL-CLAY
:SURFACE-CONDITION DRY
:SURFACE-COVERING BRUSH
:TYPE NIL
:STABILITY-CONSTRAINTS (230.0 310.0 50.0 130.0)
:BRAKING-CONSTRAINTS (199.997 340.003))

4S(REGION :EDGE-LIST (E-9 E-67 E-63 E-70)
:SLOPE 27.277
:ORIENTATION 180.0
:SURFACE-MATERIAL GRAVEL-CLAY
:SURFACE-CONDITION DRY
:SURFACE-COVERING BRUSH
:TYPE NIL
:STABILITY-CONSTRAINTS (140.0 220.0 320.0 40.0)
:BRAKING-CONSTRAINTS (109.997 250.003))

263

¢S (REGION :EDGE-LIST (E-29 E-30 E-31 E-32)
:SLOPE 0.0
:ORIENTATION NIL
:SURFACE-MATERIAL GRAVEL-CLAY
:SURFACE-CONDITION DRY
:SURFACE-COVERING BRUSH
:TYPE NIL
sSTABILITY-CONSTRAINTS NIL
:BRAKING-CONSTRAINTS NIL)

#S (REGION :EDGE-LIST (E-28 E-40 E-32 E-39)
:SLOPE 29.017
:ORIENTATION 135.0
:SURFACE-MATERIAL GRAVEL-CLAY
:SURFACE~CONDITION DRY
:SURFACE-COVERING BRUSH
:TYPE NIL
:STABILITY-CONSTRAINTS (105.0 165.0 285.0 345.0)
:BRAKING-CONSTRAINTS (63.535 206.465))

#S(REGION :EDGE-LIST (E-27 E-39 E-31 E-38)
:SLOPE 29.017
:ORIENTATION 45.0
:SURFACE-MATERIAL GRAVEL-CLAY
:SURFACE-CONDITION DRY
:SURFACE-COVERING BRUSH
:TYPE NIL
:STABILITY~-CONSTRAINTS (15.0 75.0 195.0 255.0)
+BRAKING-CONSTRAINTS (333.535 116.465))

#S(REGION :EDGE-LIST (E-26 E-38 E-30 E-37)
:SLOPE 29.017
:ORIENTATION 315.0
:SURFACE-MATERIAL GRAVEL-CLAY
:SURFACE-CONDITION DRY
: SURFACE-COVERING BRUSH
:TYPE NIL
:STABILITY-CONSTRAINTS (285.0 345.0 105.0 165.0)
:BPAKING-CONSTRAINTS (243.535 26.465))

#S (REGION :EDGE-LIST (E-25 E-37 E-29 E-40)
:SLOPE 29.017
:ORIENTATION 225.0
:SURFACE !'\TERIAL GRAVEL-CLAY
:SURFACE-CONDITION DRY
:SURFACE-COVERING BRUSH
:TYPE NIL
:STABILITY-CONSTRAINTS (195.0 255.0 15.0 75.0)
:BRAKING-CONSTRAINTS (153.535 296.465))

#S(REGION :EDGE-LIST (E-35 E-24 E-36 E-82)
:SLOPE 24.376
:ORIENTATION 135.0
:SURFACE-MATERIAL GRAVEL-CLAY
:SURFACE-CONDITION DRY
:SURFACE-COVERING BRUSH
:TYPE NIL
:STABILITY-CONSTRAINTS (80.0 190.0 260.0 10.0)
:BRAKING-CONSTRAINTS (67.901 202.099))

#S (REGION

#S (REGION

#S(REGION

#S (REGION

#S (REGION

#S (REGION

:EDGE-LIST (E-34 E-23 E-35 E-81)

:SLOPE 24.376

:ORIENTATION 45.0

:SURFACE-MATERIAL GRAVEL-CLAY
:SURFACE-CONDITION DRY

:SURFACE-COVERING BRUSH

:TYPE NIL

:STABILITY-CONSTRAINTS (350.0 100.0 170.0 280.0)
:BRAKING-CONSTRAINTS (337.901 112.099))

:EDGE-LIST (E~33 E-22 E-34 E-80)

:SLOPE 24.376¢

:ORIENTATION 315.0

:SURFACE-MATERIAL GRAVEL-CLAY
:SURFACE-CONDITION DRY

:SURFACE-COVERING BRUSH

:TYPE NIL

:STABILITY-CONSTRAINTS (260.0 10.0 80.0 190.0)
:BRAKING-CONSTRAINTS (247.901 22.099))

:EDGE-LIST (E-21 E-33 E-79 E-36)

:SLOPE 24.376

:ORIENTATION 225.0

:SURFACE-MATERIAL GRAVEL-CLAY

:SURFACE-CONDITION DRY

: SURFACE-COVERING BRUSH

:TYPE NIL

:STABILITY-CONSTRAINTS (170.0 280.0 350.0 100.0)
:BRAKING-CONSTRAINTS (157.901 2982.099))

:EDGE-LIST (E-63 E-64 E-65 E-66)
:SLOPE 0.0

:ORIENTATION NIL
:SURFACE-MATERIAL GRAVEL-CLAY
:SURFACE-CONDITION DRY
:SURFACE-COVERING BRUSH

:TYPE NIL

:STABILITY-CONSTRAINTS NIL
:BRAKING-CONSTRAINTS NIL)

:EDGE-LIST (E-12 E-19 E-73 E-20)

:SLOPE 18.166

:ORIENTATION 90.0

:SURFACE-MATERIAL GRAVZL-CLAY
:SURFACE-CONDITION DRY

:SURFACE-COVERING BRUSH

:TYPE NIL

:STABILITY~-CONSTRAINTS (5.0 175.0 185.0 355.0)
:BRAKING-CONSTRAINTS (32.505 147.495))

:EDGE-LIST (E-11 E-18 E-72 E-19)

:SLOPE 18.166

:ORIENTATION 0.0

:SURFACE-MATERIAL GRAVEL-CLAY
:SURFACE-CONDITION DRY

:SURFACE-COVERING BRUSH

:TYPE NIL

:STABILITY-CONSTRAINTS (275.0 85.0 95.0 265.0)
:BRAKING-CONSTRATINTS (302.505 57.495))

265

L

#S (REGION :EDGE-LIST (E-10 E-17 E-71 E-18)
:SLOPE 18.166
:ORIENTATION 270.0
:SURFACE-MATERIAL GRAVEL-CLAY
:SURFACE-CONDITION DRY
:SURFACE-COVERING BRUSH
:TYPE NIL
:STABILITY-CONSTRAINTS (185.0 355.0 5.0 175.0)
:BRAKING-CONSTRAINTS (212.505 327.495))

#S (REGLON :EDGE-LIST (E-9 E-20 E-74 E-17)
:SLOPE 18.166
:ORIENTATION 180.0
:SURFACE-MATERIAL GRAVEL-CLAY
:SURFACE~CONDITION DRY
:SURFACE-COVERING BRUSH
:TYPE NIL
:STABILITY-CONSTRAINTS (95.0 265.0 275.0 85.0)
:BRAKING-CONSTRAINTS (122.505 237.495))

#S (REGION :EDGE-LIST (E-4 E-16 E-8 E-15)
:SLOPE 15.709
:ORIENTATION 90.0
:SURFACE-MATERIAL GRAVEL-CLAY
: SURFACE-CONDITION DRY
:SURFACE-COVERING BRUSH
:TYPE NIL
:STABILITY-CONSTRAINTS NIL
¢BRAKING-CONSTRAINTS (38.824 141.176))

#S (REGION :EDGE-LIST (E-3 E-15 E-7 E-14)
:SLOPE 15.709
:ORIENTATION 0.0
:SURFACE-MATERIAL GRAVEL-CLAY
:SURFACE-CONDITION DRY
:SURFACE~COVERING BRUSH
:TYPE NIL
:STABILITY-CONSTRAINTS NIL
:BRAKING-CONSTRAINTS (308.824 51.17€))

#S(REGION :EDGE-LIST (E-2 E-14 E-6 E-13)
:SLOPE 15.709
:ORIENTATION 270.0
:SURFACE-MATERIAL GRAVEL-CLAY
:SURFACE-CONDITION DRY
:SURFACE-COVERING BRUSH
:TYPE NIL
:STABILITY-CONSTRAINTS NIL
:BRAKING-CONSTRAINTS (218.824 321.176))

#S(REGION :EDGE-LIST (E-1 E-13 E-5 E-16)
:SLOPE 15.709
:ORIENTATION 180.0
:SURFACE-MATERIAL GRAVEL-CLAY
:SURFACE-CONDITION DRY
:SURFACE-COVERING BRUSH
:TYPE NIL
:STABILITY-CONSTRAINTS NIL
:BRAKING-CONSTRAINTS (128.: . 231.176))

#S (REGION

4S (REGION

#S (REGION

#S (REGION

#S (REGION

#S (REGION

:EDGE-LIST (BE-8 E-21 BE-9)
:SLOPE 0.0

:ORIENTATION NIL
:SURFACE-MATERIAL GRAVEL-CLAY
: SURFACE-CONDITION DRY
:SURFACE-COVERING BRUSH

:TYPE NIL
:STABILITY-CONSTRAINTS NIL
:BRAKING-CONSTRAINTS NIL)

:EDGE-LIST (BE-9 BE-10 E-S)
:SLOPE 0.0

:ORIENTATION NIL
:SURFACE-MATERIAL GRAVEL-CLAY
:SURFACE-CONDITION DRY
:SURFACE-COVERING BRUSH

:TYPE NIL
:STABILITY-CONSTRAINTS NIL
:BRAKING-CONSTRAINTS NIL)

+EDGE-LIST (BE-10 E-24 BE-11)
:SLOPE 0.0

:ORIENTATION NIL
:SURFACE-MATERIAL GRAVEL-CLAY
:SURFACE-CONDITION DRY
:SURFACE-COVERING BRUSH

:TYPE NIL
+STABILITY-CONSTRAINTS NIL
:BRAKING-CONSTRAINTS NIL)

:EDGE-LIST (BE-5S E-E BE-11)
:SLOPE 0.0

:ORIENTATION NIL
:SURFACE-MATERIAL GRAVEL-CLAY
:SURFACE-CONDITION DRY

- SURFACE-COVERING BRUSH

:TYPE NIL
:STABILITY-CONSTRAINTS NIL
:BRAKING-CONSTRAINTS NIL)

:EDRE-LIST (BE-4 BE-~5 E-23)
:SLOPE 0.0

:ORIENTATION NIL
:SURFACE-MATERIAL GRAVEL-CLAY
:SURFACE-CONDITION DRY
:SURFACE-COVERING BRUSH

:TYPE NIL
:STABILITY-CONSTRAINTS NIL
:BRAKING-CONSTRAINTS NIL)

:EDGE-LIST (BE-7 BE-6 E-22)
:SLOPE 0.0

:ORIENTATION NIL
:SURFACE-MATERIAL GRAVEL-CLAY
:SURFACE-CONDITION DRY
:SURFACE-COVERING BRUSH

:TYPE NIL
:STABILITY-CONSTRAINTS NIL
:BRAKING-CONSTRAINTS NIL)

267

#S(REGION :EDGE-LIST (BE-3 BE-4 BE-6 E-4)
:SLOPE 0.0
:ORIENTATION NIL
:SURFACE-MATERIAL GRAVEL-CLAY
$SURFACE-CONDITION DRY
:SURFACE-COVERING BRUSH
:TYPE NIL
:STABILITY~-CONSTRAINTS NIL
:BRAKING-CONSTRAINTS NIL)

#S(REGION :EDGE-LIST (BE-2 E-N BE-3 E-3)
:SLOPE 0.0
:ORIENTATION NIL
:SURFACE-MATERIAL GRAVEL-CLAY
:SURFACE-CONDITION DRY
:SURFACE~-COVERING BRUSH
:TYPE NIL
:STABILITY-CONSTRAINTS NIL
:BRAKING-CONSTRAINTS NIL)

#S (REGION :EDGE-LIST (BE-1 E-W BE-2 E-2)
:SLOPE 0.0
:ORIENTATION NIL
:SURFACE~-MATERIAL GRAVEL-CLAY
:SURFACE-CONDITION DRY
:SURFACE-COVERING BRUSH
:TYPE NIL
:STABILITY-CONSTRAINTS NIL
:BRAKING-CONSTRAINTS NIL)

#S(REGION :EDGE-LIST (BE-8 BE-1 E-1 BE-7)
:SLOPE 0.0
:ORIENTATION NIL
:SURFACE-MATERIAL GRAVEL-CLAY
¢:SURFACE-CONDITION DRY
:SURFACE-COVERING BRUSH
:TYPE NIL
:STABILITY-CONSTRAINTS NIL
:BRAKING-CONSTRAINTS NIL)

;*iﬁ**ii**ttitti*i'iitiittii*ﬁit*t*tttt*tIiiiii'htitttttttiitttttititt!ﬂt*ttttttt

APPENDIX C - VEHICLE STRUCTURES

AR R A R R R R AR R R AR R R A R A AN R R R AR AR R R R R AR AN R AR A A AR AN R R AR R A AR R AR AR R SR AN RN R AR RERS

Vehicle List:

Se Ne na Se N

L2220 RSl d s e s Xz 2222222 XRRYRRSYRLR S 8

(M113-APC M966-ATC M813-CT)

LB AR SRS RS2 R RS SR s 2222222222322 X2 2322228 2 2 24

Structures:

4
~. Se %o e

-

#S(VEHICLE :NAME ARMORED-PERSONNEL-CARRIER
:TYPE TRACKED

:WEIGHT 24594.0
:CENTER-OF-GRAVITY NIL
:COASTING-SLOPE 10.0
:CONTOUR-SLOPE 17.0
:GRADIENT-SLOPE 31.0
:STABILITY-SAFETY-MARGIN NIL)

#S(VEHICLE :NAME ARMORED-TOW-CARRIER
:TYPE WHEELED
:WEIGHT 7900.0
:CENTER-OF-GRAVITY NIL
:COASTING-SLOPE 5.0
:CONTOUR-SLOPE 22.0
:GRADIENT-SLOPE 31.0
:STABILITY-SAFETY-MARGIN NIL)

- #S (VERICLE :NAME CARGO-TRUCK
:TYPE WHEELED
:WEIGHT 21020.0
:CENTER-OF-GRAVITY NIL

L 4 :COASTING-SLOPE 5.0
:CONTOUR-SLOPE 17.0
:GRADIENT-SLOPE 31.0
:STABILITY-SAFETY-MARGIN NIL)

;t*ittttt***tttﬁtitt**ti*i**it*ﬁit***titttttttt**ttﬁ*i**t**ittttt*tttttttiit**tt

269

R AL R SRS R R s 2 R 22 2 X R X R R R R R RS ZE Y SRS RRRTSS SRS K 2 X S

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Director of Research Administration, Code 012 1
Naval Postgraduate School
Monterey, California 93943

4. Robert B. McGhee, Code 52Mz 10
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

5. Neil C. Rowe, Code 52Rp 10
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

6. Michael J. Zyda, Code 52Zk 1
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

7. C. Thomas Wu, Code 52Wq 1
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

8. Harold M. Fredricksen, Code 53Fs 1
Department of Mathematics
Naval Postgraduate School
Monterey, California 93943

9. Edward B. Rockower, Code 55Rf 1
Department of Operations Research
Naval Postgraduate School
Monterey, California 93943

10. Major Ron §. Ross, Code 52 50
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

270

