
T FILE 00"

0X1NSIM Graphical Interface for a
I- Multiprocessor Simulator

CJ Swee-Chee Pang

DTIC

11111 ~%FLECTE fNOVO08 1989

Report No. UCB/CSD 89/532
September 1980

Computer Science Division (EECS)
University cf California
Berkeley, California 94720

A9 11 0 0

89 11 07 088

0I

XNUSIM - Graphical Interface for a Multiprocessor Simulator

Pang, Swee-Chee

Computer Science Division

Department of Electrical Engineering and Computer Science

University of California, Berkeley, California 94720

Abstract

Xnusim is an Xl Window Interface for the Multi-Processor simulator Nusim. It is a display

oriented interface between the simulator and the user via UNIX'sockets with graphical

objects such as menus, buttons etc. It is designed in such a way that would allow it to be

used with other simulators of the same class. This paper intends to describe the functionality

of the objects, structures and program modules of XNUSIM in detail.

Accession For

NTIS GRA&I
September 8, 1989 DTIC TAB

Unannounced Q
Justification

By
Distribution/~

Availability Codes
Avail and/or

Dist Special

'UNIX is a registered trademark of AT&T Bell Laboratories in the USA and other countries

Acknowledgements

I would like to thank Dr. Vason Srini for his valuable advice and guidance.
I would also like to thank Tam Nguyen for his input and feedback on the xnusim
program.

My thanks also to Darlene Gong whose incessant urging and confidence kept
me going.

This research was partially sponsored by Defense Advanced Research Pro-
jects Agency (DoD) monitored by Office of Naval Research under Contract No.
N00014-88-K-0579, NCR Corporation in Dayton, Ohio, and National Science
Foundation.

0

Contents

1 Introduction

2 General System Requirements and Overview 3
2.1 X W indow System 3
2.2 UNIX 4.3BSD Communication Protocol 4

3 Overview of Xnusim 6
3.1 Design Considerations 6
3.2 W indows 7

3.2.1 T itleB ar . 9
3.2.2 Help W indow 9
3.2.3 Listing Window 9
3.2.4 Command Window 9

3.2.5 Debug Window 11

4 Technical Description 12
4.1 Introduction . 12
4.2 D etails . 12
4.3 Interaction . 15

5 Interfacing to Xnusim 17
5.1 Introduction . 17
5.2 Modifying The Interfacing Module 18

5.2.1 Simulator Communication18
5.2.2 Register names 21
5.2.3 Buttons 21

6 Conclusion 22
6.1 Sum m ary . 22
6.2 Future Development. 23

Bibliography 24

A Procedure Listing for Xnusimn 25

B Manual Page for Xnusimn 28

C Listing of Xnusimn 31

Section 1

Introduction

Xnurim was built with the intention of giving Nusim a more visual interface.

Nusim[NC89] is a simulator for the PPP (Parallel Prolog Processor) [Fag87] which is part

of the Aquarius Project, at the University of California at Berkeley[DS88]. However, aside

from knowing the input-output semantics and the kinds of commands nusim accepts (refer

Section 5), Xnusim does not require knowledge of what level simulation is performed and

what kinds of details are involved in the simulator, so long as it adhere to some fixed set of

criteria which will be presented at the concluding section (Section 6).

Due to this method of interface, xnusim should not be difficult to be converted

to interface with other simulators, especially if care is taken in writng a simulator with

similar debugging capabilities. Section 5 will describe methods of interfacing with xnusim,

changes that can be easily made, and will also outline the criteria for writing a compatible

simulator.

Xnusim is an interface built on top of the X Toolkit Library [MASS9] under X

Protocol Version 11 Revision 3 1[GSN89, SG861. A brief introduction into the X11R3 Win-

dowing system and the XToolkit along with some of the other software used will be presented

in Section 2. In this same section, the 4.3BSD Communication Protocol [LMKQ89] will also

be discussed; to be specific, the use of sockets which is what xnusim uses to communicate

with nusim.

'The X Window System is a trademark of MIT. Copyright @1985, 1986, 1987. 1988 Massachusetts

Institute of Technology, Cambridge, Massachusetts, and Digital Equipment Corporation, Maynard,
Massachusetts.

SECTION 1. INTRODUCTION

Section 3 will present an overview of xnusim, while Section 4 will explain the

technical details that makes up the complete xnusim program set. The concluding section

will discuss improvements possible or desirable. Attached as appendixes are the man page,

a list of xnusim's procedures and files where they may be found and after that, a list of the

entire xnusim program in C.

3

Section 2

0 General System Requirements

and Overview

2.1 X Window System

The X Window System[SG86] was designed by MIT as a windowing system which

runs under 4.3BSD UNIX and several other variants and has since become available for

the VAX/VMS, MS-DOS and other operating systems as well. The display server is a

network-transparent interface that accepts output requests from various client programs

and handles user input which could be of the form of keyboard or mouse events. The client

programs need not necessarily be located on the same machine. The version of X used is

the X Protocol Version 11 Revision 3 System (X11R3) [GSN89]. Xnusim cannot be used

with X of a lower protocol system since it makes use of certain features which had become

available only in the X11R3 system. It is conceivable that it will run on later releases with

minor or no changes at all.

In order to more easily implement the system, the X Toolkit[MASS9] was used.

It is also believed that although much of the Xl system might be changed with latter

releases, updates and bug fixes, the X Toolkit is a relatively stable application package and

utilizing it instead of direct interface to the Xl system calls would render the software

more lasting and less reliant on the system and the update versions.

The X Toolkit Intrinsics, redesigned for the XllR3 windowing system, is intended

SECTION 2. GENERAL SYSTEM REQUIREMENTS AND OVERVIEW 4

to provide some basic mechanism to build sets of widgets for any application environment. A

widget is the fundamental abstraction and data type of the X Toolkit and can be visualized

as a blackbox state machine with associated input/output semantics. Some widgets display

information like text or graphics while others may serve as a container for other widgets

The Intrinsics is built on top of Xlib and serves as an abstract, object based extension to the

X Window System. X Toolkit provides an interface which is consistent throughout, and a

small set of intrinsics easily used to write applications and at the same time provides those

same set of Intrinsics suitable for building other widgets. Because of the way the Intrinsics

is designed, constructing other widgets is almost trivial.

In writing xnusim, extra widgets such as the "Scroll" and "MenuBox" widgets

were constructed and used along with the basic X Toolkit Intrinsics. Documentation for

these two widgets axe available as part of the distribution for these new widgets, or may

be found, respectively, in the subdirectories "Scroll" and "MenuBox" under the "xnusim"

directory.

2.2 UNIX 4.3BSD Communication Protocol

One of the many features in UNIX 4.3BSD is that of interprocess communciation

(IPC)[LFJ+86, LMKQ89]. It provides capabilities from network level to process level com-

mlnicatiops via relatively simple and transparent means. The 4.3BSD IPC allows different

processes to communicate via many different ways and levels.

For the purpose of xnusim, communication was needed between that of xnusim

and the nusim simulator. Nusim was designed primarily without considerations of whether

a higher level interface was available and used, and takes it's input and output from the

terminal. Since one of the goals of xnusim was to provide an interface that was invisible

to the simulator as well, the most appropriate means of communication was thought to be

that of pseudo terminals. The pseudo terminal model has two parts: a master and a slave

terminal part.

The main process, for example, xnusim, may send data, in our example, this

could be a command to nusim, through the master side which will be passed to the slave

SECTION 2. GENERAL SYSTEM REQUIREMENTS AND OVERVIEW

"terminal" as stdin. Any process (nusim) which exist at the slave end will then be able to

pick this data up as normal standard input. Similarly, the process at the slave end may

output to either standard error or standard output (stderr and stdout respectively) and

* these will be picked up at the master end as data from the slave and may then be processed

accordingly (like output into the main window etc).

Using this method of communication, nusim is completely oblivious to the exis-

tence of a process image of xnusim executing above and controlling it.

0

G

Section 3

Overview of Xnusim and User

Reference

3.1 Design Considerations

Xnusim was designed as an interface to nusim, but it was also desired that xnusim

be sufficiently flexible to be easily adapted to other simulators. Therefore, an interface that

was loosely coupled to the simulator was decided upon. Loosely coupled in the sense that the

simulator has no knowledge of the existence of xnusim. and xnusim has little knowledge of

the workings of the simulator. And what little xnusim needs to know about nusim in order

to function wa localized into specific parts, so as to minimize the modifications necessary

to allow it to fur" "- with other simulators.

Figure 3.1 is a simple construction of the visualization of the design consideration

for xnusim. In the figure, xnusim communicates with the user via the X11R3 window

system, through the use of menus, command buttons, and keyboard entries. All these are

processed by the window system before passing down to xnusim. Xnusim communicates

with the simulator (through IPC) in such a fashion that the simulator thinks it is in direct

communcation with the user.

This method of communication gives the most flexibility to xnusim and :ilso fres

the programmer of the actual simulator (nusim) from needing to put the interface into

consideration when designing the simulator.

SECTION 3. OVERVIEW OF XNUSIM 7

S
[Human User

X11R3 window system Nusim (simulator)

XNUSIM

Figure 3.1: XNUSIM's communication virtual view

The main objective of xnusim is to provide a graphical interface which is capable of

supporting a parallel processor simulator and give the user a visual and easy to understand

mouse-menu oriented system. The behavior of the simulated programs can be studied 1)y

observing the processors/tasks displayed by xnusim. Therefore, the capability of displaying

information for multiple processor and tasks was necessary. But the user must be given an

option to choose the number and which of the processor/task(s) to display at will since the

use of single screen display limits the amount of information possible (xnusim can be easily

reconfigured to display on multiple screens).

3.2 Windows

Xnusim is a window oriented display, and manages several windows, which arc,

technically speaking, actually widgets. And for the purpose of this section they will be used

interchangeably unless specifically mentioned otherwise, due to subtle technical differences.

Upon startup, a large window appears which contains several subwindows, menu-windows

SECTION 3. OVERVIEW OF XNUSIM

-maPR0s -SSOR 0 s-

MD ~00 S ~ st-liat X1
uniPf..contaft 18 TaskTi P'lae(O

nifiLvwiria..ex XI TE
mo-ostn 6TTE(2 Psami"(2)

TABK inget-.list)m T11(4 7 07s(5

gUticoant 63 77M() 7iieso(7) p i 4 9 i F

TIM 0 un~~~~~iaifi~verable.x)aWao,5 XlG A O10 R-get-ist X1 ________ _______

I~~ 1 ~ ~ wifVvwribix X1 si I 19

gmtj ist X1

iii ffff; 4*iivffLconstt 32A si S u~
Lgnif Lvartale~x X1

Dab~ening Winsdow < 0.21 R e9

emm *im - 9.14 Vrsion 1.1 - W 9,a L989S (fast ccuAtino) u is9 S it4

~~~~ ~~~File 'S~m~a' loaded M~320-0s3.43. tt s ct

(PO TO) 0 vaini': Os32O Allocate 0e2lb i ' P. is T
MEOO I...POTO) (32) Cal main b sF 59 iV

0 (PC TO)S 94 Qd YI.X0wsbl nl xaF el.i
-4IAia:IMa_______ ______

(PC TO) a m .136 cae tlat' 3b s1 t i~
inm a ______

(PC TO) a O3d oat.,list MO s9F t y

(PO TO) a Ox38d trifs-constn 0lb

(P P A0T) S 038d9 unifi..vri abe-. X0

. ASK 1 ==*= isji.fC a F

F0 0 (P0 70) a Ox3Bc unt..lviab X0
P : O ' 0 i:D14)

(PO TO) G Ox3Scd unifuva-istemt 00 JA va >

Figure 3.2: XNUSIM's screendump of all stable windows



SECTION 3. OVERVIEW OF XNUSIM 9

may appear on request and also windows for configuration and a window each for individuaj

task/process that the user chooses to display. The following subsections will discuss each

of the type of windows. Figure 3.2 shows a diagram of most of XNUSIM's windows, and it

is suggested that this be used for cross-referencing the description to follow. In this figure

xnusim's "stable" windows are displayed. Ly stable windows, it is meant that the windows

will not disappear the moment the mouse leaves that window. The step sized has been set

to 2 in the figure as can be noted by comparing the step display in the main debugging

window and the listing window.

3.2.1 Main Window I: Titlebar

The titlebar widget shows the title currently assigned to nusim (easily changed in

"defaults.h" as "SimulatorName"), but also serve as the sensitive point for starting up of

the main menu which allows the display of processors and tasks.

3.2.2 Main Window II: Helpbar

The help widget simply display any error message or messages explaining the use

or name of the window that the mouse is in.

3.2.3 Main Window III: Listing Window

This window is where the program(s) being simulated is loaded into. There is

a cursor in the window which will always be updated to point to the current instruction

being executed after each "step" or "run" instruction. The user may reposition the cursor

anywhere and then set breakpoints at the position where the cursor is (refer 3.2.4). Nested

(or include) files are listed one after the other in the window, in the order by which the

simulator returns them.

3.2.4 Main Window IV: Command Window

The command window consists of several command buttons, and all these com-

mands may be activated by pressing the left mouse button (unless otherwise reconfigured)



SECTION 3. OVERVIEW OF XNUSIM 10

on that command button. Below is a short description and explanation of the command

buttons as they appear in xnusim.

Load Pressing this button will create a dialog widget where you may enter the filename of

the byte compiled program which you wish to simulate.

Step Pressing this button makes xnusim step the simulator n times where n may be con-

figured under the config option (see below).

Run Pressing this button for the first time sends the "run" command and subsequently it

will send the "c" command (for continue) which will cause the simulator to run itself

until the end, an error or a stop point. Pressing reset (see below) will cause it to

send the "run" command the first time this button is activated after that.

Breakenv A dialog window with two inputs, one for process environment, and the other for task

environment, will pop up and the user may change them. A return key at either input

line ends this function.

Breakpoint A menu listing whether the user wishes to select setting trace/break points at the

current cursor position or wishes to input his own trace/break points and a list of all

deletion options currently available will be displayed. Of the list of options offered, if

no breakpoints were set, the list of deletion options is empty; if only one break/trace

point was set, the list has only that member; and if more than one were set, the list

has the "delete all" option as well.

Breaktime A dialog window will be available to set the breaktime (or delete it).

All three are updated at the point of pressing the button, so the user may set/change

these on the main debugging window (refer Subsection refdebugwin) and the updates

will be available here as well.

Config This button activates the config window which currently contains 3 parts:

- Step Where a dialog window will pop up for the selection of the number of steps

which the step button will perform.



SECTION 3. OVERVIEW OF XNUSIM 11

- Processor A configuration list of all known registers for the processor module will

be listed with their current display status (ON : display; OFF : not dislayed) or,

if they're variable (eg A[0-71), the arrow in place of the ON/OFF display will

indicate that going there will make another window pop up showing which of the

variable number (MAXNUM set in "processor.h") register is being displayed.

The user may press on these button to update the display status of that register.

Update is instantaneous and the user may leave this window active while select-

ing a new processor to display. As a policy decision, processors already being

displayed will not have these update affect them. In reference to figure reffull-

windowl Processor 0 and Task 0 in the figure were activated with the default

registers selection and Processor 1 and Task 1 were activated after the set up

change (compare with the "Configure" windows on right side of the figure which

displays the register setup for the new processor and task and not the default).

- Task Similar to the processor module.

Reset Terminates nusim and restarts it. This allows the user to be able to start with a clean

copy of nusim without the need to quit xnusim and then re-setup the task/processor

and other display features.

Quit Simple enough: quits xnusim.

3.2.5 Main Window V: Main Debugging Window

This window is where the user will see the bulk of the activity occur. The com-

munication between xnusim and nusim will be displayed here, and the user may edit and

type in line commands to nusim directly from here too.



12

Section 4

Technical Details: Layout of

Xnus im

4.1 Introduction

Xnusim is made up of and 2 widget library files and 14 files, 7 of which are "header"

(".h") files, The library files have their own description and references, so this section will

be mainly describing the 14 files. The names of procedures used in xnusim are shown in

Appendix A. The manual page for xnusim is found in Appendix B. The actual listings of

the 14 files are in Appendix C. Of these 14 files, 2 of them, general. c and general.h, are files

which are useful for any program since commonly needed routines axe placed there.

4.2 Descriptions of Individual Files

* general.c and general.h

The two files define the general routines that may be used for almost any ap-

plication. Routines there maybe found in any good C book. Included are definitions for

CALLOC, MALLOC, LARGE and forever which speak for themselves, min and max which

return the larger/smaller of two, error which prints an error message and may quit if de-

sired, inchr and instr which checks if a certain charactor/substring is in another string, and

hextoi and itohex which converts between hexadecimal numbers and decimal numbers.



SECTION 4. TECHNICAL DESCRIPTION 13

e defaults.h

In this file is all the default names and sizes used by xnusim, and would probably

be changed by the user when porting and re-adapting xnusim for other purposes. This file

is needed by all the other files to get their default sizes, fonts and name used.

* interface.h

The fie which is definitely sensitive to the kind of simulator used. Defined in here

are the types of commands recognized, what is a PROMPT, and the functions available for

general use by other files.

e mairnmenu.h

Defines the window information and callback functions for the main menu (refer

Section 3.2.1).

* manager.h

Basic definitions for Xtoolkit functions.

e menucmd.h

This is the Window counterpart to interface.h. It defines the commands which

appear in the command window (refer Section 3.2.4) and the functions to call (in handler.c)

when that command button is activated1 .

For both menu windows (main menu and command window), there is a help in-

formation which is displayed whenever the mouse enters that button. This help information

is displayed in the help window (refer Section 3.2.2).

* processor.h

'A button is termed "activated" when the mouse is placed at that button widget and the activation
button, normally the left mouse button, is pressed.



SECTION 4. TECHNICAL DESCRIPTION 14

This should be more appropriately called processor-and-task.h, but this name was

chosen as it is sufficiently long without being awkward. This file defines the maximum

processors and tasks registers and what they are, and also defines the number of variable

number register2 . It also defines the default registers of the entire set which is activated.

e handler.c

A common module for any Xtoolkit application program. All the functions that are

called when the commands and menu buttons on xnusim are activated are described here.

This probably needs to be modified whenever the commands are changed, but modifications

could be simply cut and paste since most forms of buttons are available, and any programmer

sufficiently versed in C and Xl will immediately recognize the order of changes. Most of

these makes calls to the interface.c module (most probably via the sendMsg procedure)

which does most of simulator dependent work. Most likely to change are the "Break" series

of buttons since these were made specifically for nusim. But it was deemed necessary.

This module has to be changed when it becomes desirable to interface xnusim with other

simulators.

e interface.c

All of the simulator dependent functions are found here (except for those related

to processors and tasks some of which may be found in the misc.c file). A more detailed

discussion of some of the functions in this module is in order and the user is referred to

Section 5 for that. This file is the crux of the interface between nusim and xnusim. All

of xnusim's calls from the user eventually ends up to some routine in this file. There is

a routine (MainDo) which will recognize nusim's output and calls the appropriate routine

(most probably also in this file) to update it's values, like the listing window (on load and

step/run) and the processor/task windows (misc.c involved). It is possible to drop misc.c

and attach these functions here, but it was decided to localize all processor/task related

function to a file.
2For the purpose of this paper, a "variable number register" is a register with suffixes from 0 to a maximum

number defined in that file, like the "A" register which may have suffixes from 0 to 7 thus "AO"-"A7"



SECTION 4. TECHNICAL DESCRIPTION 15

* main.c

Does the initial command line interpretation, performs the necessary "forking" of

processes and executes each correctly. Trap for exit errors is also found in this file. The

user is referred to the xnusim's manual page for the list of options available.

* manager.c

This is the main file for interfacing to Xtoolkit. It does the initial and main

graphics set up for xnusim, defines each window, and their components and then display

them. It also starts the infinite loop that executes xnusim's part of the Xtooikit interface.

* misc.c

This file defines all of the modules needed for the processor and task subwindows.

The processor and task windows are similar in nature, merely differing in names and actual

register set. Thus, modifying one would imply modifying the other (refer to Section 5 for

details on modification). The file contains the functions which pop up each processor/task

window, the functions called when the values need to be updated, and the functions called

when there is some configuration necessary for the register sets for the processor/task win-

dows.

4.3 Interaction of Xnusim's Modules

To understand the interaction between these modules (files), the user should get

familiar Appendix A that lists the functions, and which files contain these functions. To

give a general view of the module's interaction, consider when the user types in a command

or presses a button. The eternal loop in manager.c captures that "event" 3 , then the related

functions are called.

The key events are now described:
3 events are any form of action related to the widgets, including exposure, kevboard input, mouse input,

size change etc



SECTION 4. TECHNICAL DESCRIPTION 16

" If the event is a keyboard input in main window, these functions are found in man-

ager.c which is called and then returned to the eternal loop ( forever line), unless the

"return" key is hit, whereby the keyboard interpretation function in manager.c will

call interface.c which will transmit that command to nusim, and then the eternal loop

will be returned.

" If the event was that of a button pushed, then the functions in handler.c will be

called which eventually (perhaps after some menu which are found in handler.c) will

call interface.c which will again transmit that command to nusim, and then return to

the eternal loop (in manager.c). If, however, this button was to perform some function

with task/processor windows, the file misc.c will be called instead of the interface.c.

Besides configuration, however, misc.c will eventually also call interface.c.

If there is any output from nusim, then as part of the eternal loop, the MainDo

function in interface.c is called. Here, the function will detect the reply, does some simple

interpretation and then pass it on to the appropriate functions in interface.c. When these

functions return, it will then call the processor/task windows to update the appropriate

table. Note that these will be done iff an output from nusim is expected.

A detail missing from the description is that whenever read and write is performed,

the functions MessageRead/Write of main.c will be eventually called which does the raw

biock transfer between xnusim and nusim. Th-se are NOT simulator dependent since they

merely transfer the raw bytes from the master terminal to the slave terminal and vice versa.



17

Section 5

* Interfacing Xnusim to Other

Simulators

5.1 Introduction

As xnusim was designed, it was decided that a desirable feature would be to

make xnusim sufficiently general that it would be easy to modify it to work with other

simulators. Therefore xnusim was designed so that it made as little assumption on the way

the simulator performs as possible. Also due to this, the simulator dependent functions

have been localized to only a few modules. This section intends to outline these modules

and methods of modifications that would allow xnusim to work with other simulators that

adhere to the assumptions listed below.

* The simulator is assumed to have at most multiple procesesors and tasks of the same

class, ie, all processors are homogeneous in terms of register sets, and similarly for

tasks. In this class of simulator is included those simulators which have single task

and single processor and those with either multiple tasks or processors which are

homogeneous.

" Upon receiving any command, the, simulator is assumed to output some feedback

messages which always end with some predefined prompt. This feedback scheme is

necessary only so that xnusim may perform updates correctly, while the predefined

0



SECTION 5. INTERFACING TO XNUSIM 13

prompt is used by xnusim to recognize that nusim has stopped sending output. For this

reason, the simulator would need to have some fixed number of prompts to function

properly.

" The simulator is assumed to need to load some source file which is in ascii format.

Of this loaded format, it is assumed that the simulator will deal with the simulator

at that level as well (It may or may not deal with other levels of coding). This is

required to ensure that the listing window will perform some useful update with the

source code that is loaded. Nested files and/or include files can be handled as well.

" It is also assumed that the simulator has command(s) that will enable xnusim to

enquire about the status of the processor/tasks registers, current simulator position

in source code, break points set.

Of course, these may or may not remain valid depending on the level of changes made to

xnusim, but the simplest changes are necessary for those simulators adhering to the criteria

given. The following section will discuss specifically how to modify xnusim to interface to

simulators agreeing with those above.

5.2 Modifying The Interfacing Module

There are basically three things that need to be modified in xnusim to interface to

the new simulator. The first is the way xnusim interpretes an output from the simulator,

since it is expected that the simulators would definitely defer there. The modifications will

be localized in the file interface.c in this case, and some changes to the file misc.c. The

second is the names of registers for processors/tasks. This is only in processor.h. The third

is the command buttons and the way they are handled. This is in the module menucmd.h

and handler.c.

5.2.1 Simulator Communication

Most of the simulator interpretation is located in just one file, interface.c. The

only other file is misc.c which has two procedures (one in updateTask and the other in



SECTION 5. INTERFACING TO XNUSIM 19

updateProc) that are dependent to simulators.

The two procedures in misc.c are images of each other, following the philosophy

of treating tasks and processors similarly in this simulator, so description of only one is

necessary. The procedure updateTask first sends a command to the simulator to print out

the current register condition for the specific task. The simulator's output is assumed to be

of the form 1:

(({<SPC>*<REG>': '<SPC>*<VAL><SPC>*}*<rubbish>*)* '\n'}*

If the simulator output differs, then this procedure will have to be modified.

The file interface.c is where the major changes would be required. (Remember to

change interface.h if necessary) Below is a quick discussion of most of the procedures, the

rest would be self-evident after these.

needline: Probably would not need to be changed unless there is a change in which

the interpreter is supposed to perceive an "end of output stream" from the simulator, which

currently is when it reads a line ending with the PROMPT. It returns a line that is read

each time.

doload: Needs to change only the part which sends the "load" command if the

simulator does not accept the command sequence of "load filename".

loadprocess: Parses through the buf variable passed (raw bytes read in). It

assumes the buffer to be of the form:

{<rubbish>'\' '<FILENAME'\' '<rubbish>' E'<SPC>*<ADR><SPC>*'-'<SPC>*<ADR>-.SPC>*}*

where ADR is assumed to be a hex address (see procedure gethex) and the content is

assumed to be the filename and the starting address and ending address of the file as it is

loaded in iaemory. (This probably would need changing for another simulator) Once it gets

the filename, it loads the file into the listing buffer, while updating the count of number of

lines and where each line is in the chaactor axray that makes up the listing buffer. The

loading part do not need to be changed. Next it tells the simulator to list it's version of the

code, and then try matching it according to the file it loaded. It assumes the list to be of

the format:

{<ADR><SPC>*': '<SPC>*<CODE><rubbish> '\n')*

'Expressed as a regular expression, where SPC is white space, REG is register name, and VAL is value
of register



SECTION 5. INTERFACING TO XNUSIM 20

And will then match the lines according to this listing, line by line. It thus assumes the

simulator will NOT modify the code as it is loaded. If the simulator does so, xnusim will

run, but will not be able to update the listing window pointer accurately and may produce

unpredictable results.

updateenv, updatebreaktm: These are also reliant on simulator and are quite

similar, assuming the same command in the simulator will provide information for both,

but on different lines. Code is simple enough to understand.

updatebreakpt: This assumes the first line would have a ':' if there had been any

breakpoints set, otherwise it returns. Simulator should output breakpoints of the format:

{<digit>+'. '[(<rubbish>': ')UC)]<ADR><SPC>*' (' ['b'U't') ')'<rubbish>'\n'}*

Where address is the hexadecimal address of where the breakpoint is set, and the -b' or -C

charactor indicates whether it is a break or trace point. This module probabley needs to

be changed for other simulators.

sendMsg: The function which is most important in communicating to the sim-

ulator. Does multiple command communication to the simulator. For each command, it

sends the command and then returns. For some commands it sends the command multiple

number of times.

MainDo: This function is the loop that will read an output from the simulator

if it is expected. and assumes there will be no more output for the time when it sees the

PROMPT, and will also branch to the loadprocess and updateProc/Task procedures. It

also respositions the listing window if it detects movement in the pointer in the simulator.

Therefore, it is necessary to have the simulator output some address information if there is

to be consistent update for the listing window with the actual stepping of the simulator.

The changes in misc.c and interface.c will not affect the execution of other parts if

the information returned and variables accepted are the same. It is believed that regularity

and special keyword output from the simulator would make interface.c module relatively

simple.



SECTION 5. INTERFACING TO XNUSIM 21

5.2.2 Register names

The file that needs to be changed is processor.h. For the purpose of xnusim, two

kinds of registers are distinguished. The normal ones and those with variable number, like

A[0-7] for nusim. The constants which control the number of registers and the number of

variable registers are self-documented in that file. The names of each register for processor

are in proc and those for task are in tte, both of which are charactor string arrays. Merely

type in the names (remember to change MAXLEN if there are reasons to use registers name

with more charactors than those defined there) in double quotes.

The variables procstat for processors and ttestat for tasks define the initial display

information for xnusim's processor/task set. They define whether the corresponding register

defined in proc or tte is, by default, being displayed, not being displayed or a variable register

type. If it is the variable type, the number indicates the index (+ 1) into the corresponding

procvar or ttevar arrays where the same displayed or not displayed information, as applied

to variable registers, may be found.

5.2.3 Buttons

The last thing that probably needs to be changed is the handler.c module which

handles the button responses. For each button that is changed, there is probably need to

change the menucmd.h file which contains the names of the buttons and the functionLs they

call. The comments in menucmd.h would be sufficient to modify that file. In order to modify

the fie handler.c, some knowledge of Xtoolkit is necessary. Since only basic functions like

XtSetValues, XtPopup, XtAddEventHandler etc are used, basic knowledge of Xtoolkit and

Xl system would be sufficient to understand and modify this module.



99

Section 6

Conclusion

6.1 Summary

This paper outlines the entire project for Xnusim, which started as a simple inter-

face for a simulator under development at that time but developed into a general debugger

interface. The paper covered the areas of what xnusim is, how xnusim is designed, what to

modify when changes are needed, and what kind of support xnusim gives to and requires

from the simulator.

Xnusim would definitely provide an environment that will ease the user from the

need to keep track of several processors and tasks, and would make it easier for the user

to debug the source code and understand how the parallelism functions because it displays

most of the essential information via windows and allow the user to perform several tasks

via simple button clicking.

Xnusim has been shown to be a powerful interface tool for simulators. Writing a

simulator that is graphics in nature limits its used to that graphics environment. Writing

a simulator without graphics capability makes studying parallelism and debugging source

code a cumbersome process. Thus, xnusim serves as a solution to this seeming conflict. The

simulator may still be used in non-graphics environment or any environment of a different

nature, but when desired, xnusim will serve as the graphical link which will solve the second

part of the problem.



SECTION 6. CONCLUSION 23

6.2 Future Development

Many improvements are possible to xnusim. Some of them are outlined below.

I Xnusim should become much more user friendly, for example, the "loading"

(which could perform directory listing) command.

I[ Xnusim's interface to the simulator could be improved, for example, listing of

breakpoints in the listing window.

I There is currently no summary information printed by xnusim. This is a defi-

nitely desirable feature to be included. But it has not been included since what

kind of information and how these informations are to be arranged and gathered

has not been well-defined.

IV The module handler.c may be modified to be sufficiently general that it will

become unnecessary to modify it for any modification to the simulator. This

is possible if a protocol for defining what kind of menus, how these are to be

manipulated and what functions they call is established. Then, the main func-

tion for interpreting this will be handler.c's heart, and possibly the procedure

sendMsg of interface.c would become more sophisticated.

V The next giant step would be to make interface.c a general file that does some

form of regular expression interpretation and replies with some regular expres-

sion, all of which may be defined, again, by some protocol. If this is done, using a

configuration file of some sort for the kind of simulator, xnusim would be able to

handle different simulators without ever needing any recompilation, and would

truely establish the ideal of being a general simulator interface. (Incidentally,

this would include the modifications mentioned for the handler.c module, since

it would not work otherwise)

With these modifications, xnusim would probably be a very useful package for

people interested in designing parallel systems at different levels, debugging programs that

are to be used in these systems, and studying the behaviour of different programs.



24

Bibliography

[DS88] A M Despain and V P Srini. Aquarius Project Technical Progress Report,

DARPA Contract No. N00014-88-K-0579. Technical report, October 1988.

[Fag87] Barry S Fagin. A Parallel Ezecution Model for Prolog. PhD thesis, CSD, Uni-

versity of California, Berkeley, November 1987. Report No UCB/CSD 87/380.

[GSN89] James Gettys, Robert W Scheifler, and Ron Newman. Xlib - C Language X

Interface, X Version 11, Release 3. Massachusetts Institute of Technology, 1989.

[LFJ+86] S J Leflier, R S Fabry, W N Joy, P Lapsley, S Miller, and C Torek. An Advanced

4.3BSD Interprocess Communication Tutorial. UNIX Programmer's Manual,

CSRG, page PS1:8, April 1986.

[LMKQ89] Samuel J Leffler, Marshall K McKusick, Michael J Karels, and John S Quarter-

man. The Design and Implementation of the 4.3BSD UNIX Operating System.

chapter 10. Addison-Wesley Publishing Company, 1989.

[MAS89] Joel McCormack, Paul Asente, and Ralph R Swick. X Toolkit Intrinsics - C

Language Interface, X Version 11, Release 3. Digital Equipment Corporation,

1989.

[NC89] Tam M Nguyen and Chien Chen. A simulation system for multiprocessor

architectures. Technical report, Aquarius Project Technical Progress Report.

DARPA Contract No. N00014-88-K-0579, April 1989.

[SG86] Rober W Scheifler and James Gettys. The X Window System. ACM Transac-

tions on Graphics, 5(2):79-109, April 1986.



25

Appendix A

0 Procedure Listing for Xnusim

S



APPENDIX A. PROCEDURE LISTING FOR XNUSIM 26

[Procedure Name [ File of origin Prototype of Procedure

CirSel manager.c XtActionProc ClrSel(w, event, parm, num)
DelChar managerxc XtActionProc DelChar(w, event, parm, num)
Del~ine manager.c XtActionProc DelLine(w, event, parm, num)
Del~ord manager.c XtActionProc DelWord(w, event, pazm, num)
Killconfig misc.c void Killcoafig(w, client, call)
MainDo mnterface.c void MainDo()
MessageRead main.c it MessageRead( buf, n)
MessageWrite main.c int MessageWrite( btif, type)
Mmamn maiu.c main(argc, argv)
ModifyProcReg misc.c void ModifyProcReg(w, client, call)
ModifyTaskReg misc.c void ModifyTaskkeg(w, client, call)
ModifyVarReg misc.c void ModifyVarReg(w, client, call)
Sei~ordO manager.c XtActionProc SelWordo(w, event, parm, num)
SendCmd manager.c XtActionProc SendCmd(w, event, parm, num)
Set VarReg misc.c void SetVarReg(w, client, call)
Siglnt manager.c XtActionProc Siglnt(w, event, parm, num)
bombed main.c bombed(sig, code, scp)
breakenv handler.c void breakenv(widget, client, call)
breakpoint handler.c void breakpoint (widget, client, call)
breaktime handler.c void breaktime(widget, client, call)
buttons handler.c void buttons(widget, client, call)
config haiidler.c void coaflg(widget, client, call)
configProc misc.c void configProc(sendtop)
configTask misc.c void configTask(sendtop)
control handler.c void control(widget, client, call)
dialog handler.c char *dialog( str )
dispbreakpt handler.c dispbreakpt (widget, j, call)
dispbreaktm handler.c void dtispbreaktm(widget, i, call)
displayprocess handler.c void displayprocess(widget, i, call)
displaytask handler.c void displaytask(widget, i, call)
dispsize managerxc void dispsize(size)
dobreak interface.c mnt dobreak( linenum, mode)
doload interface.c static void doload()
error general.c error( str, type )
findLine interface.c mnt findLine( position)
findplace manager.c int findplace(str, posn)
format misc.c static void format( label, name, val)
gethex interface.c mnt gethex(s)
getlistposn managerxc mt getlistposn()
getport main.c void getport()



APPENDIX A'. PROCEDURE LISTING FOR XNUSIM 27

Procedure Name [File of origin Prototype of Procedure

handler-init hancller.c void handler-init (pass)
help handler.c void help(widget, text, event)
hextoi general.c hextoi(str)
inchr general.c inchr(str, c)
init-interface interface.c void init-interface(size)
instr general.c mnstr(sl, s2)
interfacedinit.-screen interface.c void interface-ni-screen(scrl, scr2, scr3)
itohex general.c char *jtohex(val, size)
kiliChild main.c killChild()

*kiliWindows handler.c void killWindows()
load handler.c void load(widget, client, call)
loadprocess interface.c void loadprocess(buf)
makemenu manager.c static void makemenu( top , name)
manageProc misc.c void manageProc(n, top)

*manageTask misc.c void manageTask(n, top)
manager manager.c manager( title, fie, argv, argc)
needline interface.c char *needllne(type)
printHeip main.c printHelp()
procMain handler.c void procMain(widget, client, call)
putList interface.c int putList( str, type )
putList2 interface.c mnt putList2( str, type)
putMain interface.c int putMain( str )
quit handler.c void quit(widget, text, event)
reposition interface.c void reposition( line )
reset handler.c void reset(widget, text, event)

*resetmanager manager.c void resetmanager()
run handler.c void run(widget, client, call)
sendMsg interface.c void sendMsg( sendcomm, str, times
setdisp manager.c setclisp(cmd, dpy)
startsplit main.c void startsplit()
step handler.c void step(widget, client, call)
summMain handler.c void summMain(widget, client, call)
taskMain handler.c void taskMain(widget, client, call)
updateProc misc.c void updateProc( n)
updateTask misc.c void updateTask( n)
updatebreakpt interface.c lipdatebreakpt(bp, count)

*updatebreaktm interface.c updatebreaktm(bt)
updateenv interface.c updateenv(task, proc)



2S

Appendix B

Manual Page for Xnusim



0 XNUSIM( 1) USER COMMANDS XNUSIM( 1)

NAME
xnusim - X window interface to a multiple processors/tasks simulator

SYNOPSIS
xnusim [ -toolltoption ...] [-m host:display] [ -p host:display] [-t host:display ] [-s simulatorname
I [ w-filename ] [ -e simulator_options]

DESCRIPTION
Xnusim is a graphical interface to a multiple processor and task simulator, currently implemented for

* the simulator nusim, but could be modified to handle other simulators with similar needs. It provides
visual feedback and mouse input for the user to interface into the simulator.

Xnusim provides windows for each processor (maximumn configurable) and task which the user wish to
see, and these are updated each time the simulator returns from it's tasks.

The -rapt options are used to describe the display where each of the main, processor and tasks windows
will be displayed (respectively).

The simulaorname option allows the user to specify another simulator to run under xnusim. However,
reprogramming is necessary to support other kinds of simulators. So, this feature, thus far, only allow
for name changes.

The w-filename option allows the user to specify a default working file which may be passed to the
simulator to load once the program is started up.

0 The -e option should be the last option. Xnusim treats all arguments following this option as argument
to pass to the simulator Besides these, xnusim accepts all of the standard X Toolkit command line
options (see X(l)), but is yet unable to understand the simulator's options.

Xnusim is made up of the following subwindows:

* Title Bar Display the current simulator name. Also, when a mouse is place in this win-
dow, it triggers the MainMenu(see Below).

Message Window Display any shor Help message available and or messages from xnusim to the
user.

Listing Window Display the file that is currently being executed, and shows the last line that
• had been executed when stepping through.

Command Window Provide a list of the commands which xnusim understands and is capable of
executing. This is also modifiable.

Main Window This window provides the actual simulator feedback and the user is allowed to
type directly any command to the simulator through this window (Note: update
MIGHT not be properly performed in that case).

MainMenu Activated by the mouse entering the "Title Bar" region, it allows the user to
choose to display/delete a processor or a task from the menu.

The relative sizes of any window in this set can be adjusted to suit the users needs. Although the
default size is normally suggested. To select any command in a button-box, click the left mouse but-
ton.

• Scrollbars can be found in both the Main and Listing windows. The left mouse button scrolls the text
forward, the right scrolls backward and the middl mouse button selects the text at the current mouse
position of the complete text relative to the scroll bar, changing the thumb position of the scrollbar.
Tr agging the middle mouse button moves the thumb along and changes the text displayed. The amount
o: scrolling depends on the distance of the pointer from the top of the scroll bar (or bottom). Top line
scrolls one line, and bottom one screenful. Clicking the left button twice quickly on either the main or
listing windows will select a word from the window which you may then echo back by clicking middle
mouse. Typing a command into the debugging window will create the same effect as clicking the

Last change: 27 June 1989 1



XNUSIM( 1) USER COMMANDS XNUSIM (1)

mouse window.

COMMAND BUTTONS
Main Menu Commands

Processor Another window with a list of processor will popup, and choosing the processor from
this new window will either delete it if it's already being displayed, or create a new
window for this processor clicked.

Task Same function as the Processor command but for tasks.

Summary To be implemented: will display necessary statistics for the system.

Commands In Command Window
Load Prompts for the filename and then loads the ".w" file. Can only be activated once

because of simulator limitations.

Step Steps throught the simulator "n" steps a time where n is defined at the Config button
(see Below).

Run Either starts or performs continuous execution (Note: the display will not be updated).

Breakenv Prompts for new values for the processor and task break environment (see Nusim
reference).

Breakpoint Allows user to delete, and set breakpoints (could set at current cursor point in listing
window, program will search for first "stoppable" code memory for inserting the stop.

Breaktime Allows setting and resetting of the breaktime.

Config Allows reconfiguration of a number of things. Pressing it pops up a new window
where user can select the particular type to configure.

Reset Resets the system so that you may re-run the simulator without need to exit the sys-
tem. Since the simulator is actualy re-runned, the whole system is completely
refreshed. The only window which is not affected is the main (debugging display)
window which merely reprints a start up line after the last line. This is so that you
may click fiom the lines above to copy down.

Quit Exits xnsim.

LIMITATIONS
Xnusim is still underdeveloped. Much needs to be done.

BUGS
Probably quite a lot. Still shaky because of inherent problems with socket communications and Xtl 1.

COPYRIGHT
Copyright 1989 Regents of the University of California.

AUTHOR
Pang Swee-Chee, University of California.

Last change: 27 June 1989 2



31

Appendix C

Listing of Xnusim



cc-

9.

p a .

It' -a 121. 1

UU b a

w CIE a

-f -0 -l M-E.

.-.-- c --o

I I cc 'r I

I ii0 lat bll



I]

0QQ

011 ThYP

M 5II =A;:

SS

0qq3.

q -

I - -6
*-. -

X;:X: X: X X x xx xx A -a x-xxxa ,T ,T i; QT CQT

TP TR22
0j -113911 9il1 H - titn 'i ii tI i 21i l



'0

LO

0

-4

7,8

'o V~'-w
"* 0:

z Ua0

LL L

04 u



S

S A

IO~

iLAA

- " o i w

-ra

-I . I' -

lii- ~ii i Ii_
S .. . . . ..



IL ga
; !III



e2 j

I.m

V- 6. r- -

-a -I

IL ~ 1 w2 WI A~- S. A L- = w 0

SWU (L a:! 0 )2Iih;5~T<~xx x 2: &
v v- v v" tv k2 k2 v... v v

-
jig

.4 t, 'as 4,4GA a a AS*



V

000

* I

g1 a ~

xx a gal 0 I1
-1p at ~ ta- i

431

u ++ 43

41 .51

~~ v~

>~ I (-" -

Oi I~' j() I I.O It I..

, , 5 x t



uA

00

a2 4 0
*0 A A40

'a 0 00.
0 0n

E- 0

9 0 .0

k; A1 4,
co o 0

4) M ~ E-COE

Lo f.o.. *J

HIP oj:3>

3~ = U4_ a ~ . ~.H 0 0
-~I E5 .w *.. .

9 iI u s~ 3 ~ 0 . -~ rd

~ 
.~ .

4 , [ L

lie 41 a CL4) 0 ,0
0

0 0 t

0. 0 :

12 - I - I4

* j U141j 06 4 8
4"h 0 0 0 .j

1

- ~o . 40

~ '-~ -

i~j,



2

4 1

0 -p

*00 CCAr -C

2cC 
PLI ~

Li xu 
>

ro ~
E ~ £D

Lfl
+ + -4:

+. N .. C a

++ + + Cc

it! Li -5 d,)x

HUS fli i a 1111 fxliliI



00

9z

Me0

lift3

41-4



I ii ,I ,*. , I.:

-,, : , _- ,. - -- . ,

Ii '
.r tp

I! " I

*t. . ill '"++ ++++ ii p,
A A AA A z C

II ! I I I II-

o . c . .. .~ . .3.I... * '... " I..111=1 •



00

0

5 0

E 41 do

-4 - ii -

ow- ow -~ '. -

.* n g r, I - 10

m-2a 4 Sr-J. +P 4

** a.+ O

Cj 
e

+

0

0,

I z~

C" 0

Va @

r~~~u ' ~ 4 .6 s 4I0 j 3. +

&a d0

Lv*



a-

C *

~-01 -± g

in * a
.~ q

.- .- *1 C 0
A + a ~z,

A *~ -~ S 09
- 4', a.I AV gig

CL 1 O412
_ :4-' b

I.4 A

A -,.r i~i ..-- +-

voa is-
Z4 

-1.

a If

Va.

li lii



0I

0o

lie 01 -
c :. zn .- - -.:FF

0 W.
.01 1 C.- CO.

c01 11rpiC

is cc. CL .co

-- 2. VO z~*

II -4 m5=~ a a

- - p11] i



4A

a

I~ + SZ0

px is4,i!r a %w
-1 - C

-E~

'-0a
0 U V

jt~ ~ : I. L4~, Iw 1I0 ~ 'i'~o'



c0; -

TIT ;.z

7 9.

: -f 7j~ ' -i
Ul iij .

c5~ ;. '. 1.2 A

0If-~ - g ~. .t 7 1 A

.- 4 ,..&nI I C



lb
a8

illii'
IjI
I - -

~1 -I BK

iii ~ oj~i$~jo

4iii IIZjZZIIZII I
I' I~IHHll I U 1...



00

00

3~ 
A4

IL

US-3. vvv



,-Z -

CL.

-J~ ~ 4J U

zrz 00 g. g

Fe~~C CL m.~ ~ 0

ej. 
CL - ~ I

m .3 3

cc 
C

0

4.4

9.C.



I. .I

go

. ,5

° o



j0

-w

U



00

f

*x
UU

0 CI
• " - - ,I

• 1, - .-" G",+. - . -

2 L o. 3! ~~u x- Mai MAO --- - A I .. 6 i.e

S- 

-- - -o

A= A -r- 1 1-

S-4 4-C 00. .

M M 6 0N: . 21 0

r o IW

al11a1as a
2. ... . .. i -... !I I



.3f

-II .0.

3f- S - cc '
I. - J

ilia~S. IOI- 
Ij 

.

x Z

.36

CWC

Id 9X M ~!

jIU if ii
Hill milli



*+

-q ... I. CLJ

aga

+ 3c

0 ++

0~ ai +1!! Vaj I::
E~ E~ -r

O - A . L- . .L-I

x I a. R SW 5W

0
I 3n

0

-4 -4

V -4 0

Cc 0 Q

w 3
0 2z1-

1, -4 E
W C/ .1

rC -H 0 I66

0. X0 .

-.l4 4jaC 0;' 41)d .24 IX
444 - 3 c;

) 1 0 4 U) 442oV.: L4 Li L4 Aj! 0
Cj 0 1 U.

w 1 1 1 C A ) '0'0 W 411

0~ C.C C 0*

xv uI 0 ~ 0031 Uv3

.- _ 4 4 0U.0 0 u -4 j0 0- 1
0,lO O 4))-44104) 40 00c c 0 0 0 x x _)c 1

0 . ~ I ~ 'b0 lj2
0 0.C *..c

4)404) 464) 0
.4. -4 .U 4j C C4C

I MWU

'ucuuvvvvvvvvvvv- i..*1



5j
*1

I j ITy

*1x
I-. lg

ix~



L60~

ca

fi

0

U 5

0L



44

W 41111 . 0 -

4 'd 0 '

S ~~ 
414j.4I

'V .0 0 ~4j 4
", 0% -4 0 $41

'-4
.40 '4 . 4j .'A 4 0

C41 OX1
Nl j2. .1 -4

j ~ ~ ~~ 4 C14~41. ~ X

lo w 4 w C414 In,

*.. 0 W W 5~'4 0 -0 I
s. ~ ~ 4 mO-m3 .



0r

+
+~. a I N .

- L '

*1 .~ .~ iz

*~ 01U
isbr

o t

~~xi-

vtg 

LM~

O.C.

0 0 41 4 .
A A A A

N A.I2 A A A 0-14AP 9 .1 M M M :3 w
li 

C C_4

A XX IX A 
)*

A4 
- iiv

.rrr .rrr.rrr. rrrrrrrrrrrrrrrrrrr- N
11 12, 1 C)3VW' '. . E7 p



nLE ixi
I JIM aLj all

c BCjf' 51XC c -
c II ak R-

N 3r

5- a z
zO d -J0

fi IIa-i'.: s v Qx-IIX "jl II



5 *j .0111

r.. I.,, -I-0
0~~ 00

;.z $4A-d
1.41i

LMM itj o

CL~

=3 -+ +
Cal cog,

x 3 1

A C I C I

TH ',oI

I Ii * ~ il

~aa* ~ - ~+
a 4 II Ill1I~ -

+ 71 4 ~ ~~.
I - -~IJ~+



yaII-

x

- i

1 I A -- "C -

0,

W _!llt i uII _ .. _

-U Z Lm +
P1, i -- 11 1

it : A

I lb
WT I iiin xX



I0

.. '70 bg C C d

.3e Coc



SECURITY CLASSIFICATION OF THIS PAG

REPORT DOCUMENTATION PAGE
Is. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

unclassified
2a. 5C-URITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

S unlimited
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

U1CB/CSD 89/532
6@. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OP MONITORING ORGANIZATION

of ClifoniaONR

6c. ADDRESS (Cify. State, end ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Berkeley, California 94720 800 N. Quincy Street

Arlington, VA 22217-5000

Ba. NAME OF FUNDING /SPONSORING & b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
OMMAIZATION I 1appliabe)
DARPA I________ N00014-88-K-0579

11c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
1400 Wilson Blvd. PROGRAMg PROJECT TASK WORK UNIT
Arlington* VA 22209 ELEMENT NO. NO. NO. ACCESSION NO.

DARPA

11. TITLE (Include Security Classification)

XINUSIM - Graphical Interface for a Multiprocessor Simulator

12. PERSONAL. AUTHOR(S)
* * Swee-Chee Pang AE ON

13s. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, PAECON
technical FRMI18 TO 11/3/9@* September 1989 6

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary an identify by block number)
FIELD GROUP SUB-GROUP

19.' STRACT (Otinue on revers.e if necessay adidentify by block number)

Xnusim is an X11 Window Interface for the Multi-Processor simulator Nusim.
it i-' a display oriented interface between the simulator and the user via
UNIX sockets with graphical objects such as menus, buttons, etc. It is
designed in such a way that would allow it to be used with other simulators
of the same class. This paper intends to describe the functionality of the
objects, structures and program modules of XNUSIM in detail..

20. DISTRIBUTIONI/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
UUNCLASSIFIED/UNLIMITED D3 SAME AS RPT. 0DDTIC USERS unclassified

22s. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPH1ONE (Include Area Code) 22c, OFFICE SYMBOL
Andre M.Van Tilborg E 22696-4302I

DODFORM 1473 u mAit 83 APRedition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.


