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SUBJECT: Pershing II Fnllow-On Test: Size Reduced by Sequential
Analysis

By memorandum of 30 August 1982 (Reference 1), the Under
Secretary of the Army tasked the service to "review our
[operational test] methodology, to include considerations of
mathematical rigor, risks, planning horizon, costs, and
operational matters." 1In discussion of this matter with the
author, he further elaborated the objectives:

a) Minimize cost of testing over the program life. Monitor
all test results, including those of components as well as of the
system, to minimize "no-tests" and to save on full-up tests. Use
sequential analysis to further pare requirements for missile
flights.

b) Criteria of test adequacy should be no more severe than
those of other services (e.g., Minuteman, Poseidon).

c) Challenge the necessity for an annual update.

d) Consider whether testing, maintenance float, and reload
were independent requirements as opposed to multiple missions for
the same inventory of missiles.

The task was passed to the Army Research Office (Research
Triangle, NC) which manages the business of the Army's Mathematics
Steering Committee (Dr. Jagdish Chandra, Chairman), supporting
mathematical research of relevance to the Army and the
improvements in mathematical methods employed in the Army's
research and study agencies,.

The work summarized here is composed of contributions of
several statisticians whose aid was solicited by the AMSC: Dr.
Michael Woodroofe (University of Michigan)*, Dr., Nozer
Singpurwalla (George Washington University), and Dr. Robert Launer
(Army Research Office), as well as the author of this report.
Others have provided informal comments and criticisms. An early
version of this paper, prior to the author's knowledge of this
other research, was presented as a talk at a conference of Army
mathematicians (Reference 2).

* At Rutgers Uﬂiversity during the course of this research.




Chapter 1

The Problem

Two documents combined set forth the guidance the Joint
Chiefs of Staff have provided to the military services regarding
the conduct and reporting of tests of certain systems. For the
Army only the Pershing Missile system is covered (Pershing I and
Ia, and now Pershing II).

In a memorandum of 1975 (Reference 3), the Joint Chief of
Staff directed that numerical confidence statements should be
based on WSEG Report 92C (Reference 4), an extract of which is at
Appendix C. "The goal of a test program should be to allow
detection of a minimum change of X percent at the Y percent
confidence level." * It suggests, by way of example, the use of
Fisher's Exact Test to demonstrate success or failure in meeting
this criterion,

References 3 and 4 have just been superseded. The revisions
(References 5 and 6) eliminate an ambiguity and add considerations
not previously called for and not discussed here except to note
that the criteria to be applied to Pershing II are now less
demanding than those applied to strategic systems. Fisher's Exact
Test is still countenanced.

This use of this criterion appeared to the author to lack a
sound statistical justification, and attempts to patch it up were
unsuccessful. Appeal to a number of practicing statisticians
within and outside the Army supported my challenge to Fisher's
Exact Test (FET) in its application to Pershing reliability
tracking. No one was contesting the ability of the FET to provide
estimates of the probability that two samples, which have yielded
pass-fail data, come from the same parent population, though
Kendall and Stuart (Reference 7), do condemn its use for small
samples.,

With such an error apparently arising from an application of
the methods of the "frequency" school of statistics, the obvious
alternative was to try the methods of the "Bayesian" school.

There are many expositions of methods based on the use of
Bayes' Theorem, the most recent of which--"Bayesian Reliability
Analysis" by Martz and Waller--(Reference 8) I shall quote at
intervals., Among the works arguing for the adoption of Bayesian
methods, the following are noteworthy:

* X and Y are classified numbers.




. Raiffa and Schlaifer - Applied Statistical Decision Theory
(Reference 9) with a very complete description of the method of
conjugate prior distributions.

Jaynes E.T., "Prior Probabilities" (IEEE Transactions on
System Science and Cybernetics, September 1968) (Reference 10).
Deduction from the principles of maximum entropy and invariance
under certain group transformations leads directly to the Beta
distribution as conjugate prior to a Bernoulli process; indeed to

AP(psm ) = P (- 7 e /B (5,0m5d X

where s is the number of successes in n trials observed as the
basis for estimating p. This removes some of the "ad hoc" or
"mathematically convenient" color of conjugate priors when relying
on Raiffa and Schlaifer.

Martz and Waller perhaps epitomize the case best:

"There are several benefits in using Bayesian methods in
reliability, First of all, it is important to recognize that all
statistical inferential theories, whether sampling theory,
Bayesian, likelihood, or otherwise, require some degree of
subjectivity in their use. Sampling theory requires assumptions
concerning such things as a sampling model, confidence
coefficient, which estimator to use, and so on. For example, a
sampling theory analysis proceeds as if it were believed a priori
that the data were exactly [exponentially] distributed, that each
observation had exactly the same mean life 8, and that each
observation was distributed exactly independently of every other
sample observation. The Bayesian method provides a satisfactory
way of explicitly introducing and organizing assumptions regarding
prior knowledge or ignorance. These assumptions lead via Bayes'
theorem to posterior inferences, that is, inference obtained once
the data have been incorporated into the analysis, about the
reliability parameter(s) of interest. Bayes' theorem provides a
simple, error-free truism for incorporating the prior information.
The engineering judgment and prior knowledge are brought out into
the open and are there for everyone to see instead of being
quietly hidden. The engineer usually appreciates this opportunity
to divulge such prior information in a formalized way."

The authors I commend are not, on philosophical matters, in
complete agreement, and the authors (and critics) of the methods
proposed in this paper have their differences, some of which
become important as we proceed.




. Suffice it to say that the Bayesian approach requires a more
careful statement of the problem, to include in particular the
prior distribution function, costs and risks: matters which the
frequentists collapse into the confidence limits ot and
If there is indeed a legitimate uncertainty in (the form of) the
prior distribution, that uncertainty must surely propagate into an
uncertainty in the predictions for the process. In some cases
results can be shown to be insensitive to the prior, and thus a
convergence of Bayesian and frequentist answers occurs; but
lacking such invariance, the frequentists are hard pressed to
prove they have solved the right problem.

Having said this, I must confess that for some purposes we
shall employ the frequentist approach, primarily because a full
Bayesian solution has not been worked out.

Section 1. Literal Interpretation of JCS Guidance:

", . . annual . . . detection of a minimum reliability change

of X percent at the Y percent confidence level."

A "change" in something means that its previous value has
been defined. It would appear that an evaluation of the results
of the first year's Follow-on-Test (FOT) is to be compared to that
of the Operational Test (the base-line)(0OT), and the evaluations
of subsequent FOTs are to be compared to the evaluations made a
year ago. The tests being of something less than the full combat
mode of the system, projection to combat capability is to be made;
thus while test results are to be reported, they are to be
interpreted as well, This interpretation is surely to be based on
all prior knowledge of system performance; i.e., all prior testing
as well as that most recently at hand, "weighted" (one might say)
by expert judgment of the relevance of older tests and analysis.

In the case of Pershing II, we shall have an inventory of
missiles produced over a period of time and expected to be in
service for a longer period. From the point of view of
homogeneity, the inventory may need to be divided into two or more
blocks, based on the significance of any changes in the production
process during the run., When they are subjected to (annual) test,
missiles will be of different ages as well from different blocks;
so serial number and age may influence reliability at the time of
testing or use in combat., It is clear, then, that in treating of
a "change" in reliability, we are dealing with an uncertain base.
Options which are open to us include:

a) Computing a "best" estimate from the OT firings, and
treating it as the exact value of the reliability at that time of
all the inventory.




b) Computing as in (a), but associating an uncertainty
(standard deviation) to it also, to describe the uncertain
reference point.

In either case, the results of each subsequent (annual) test
would be compared to this as standard.

c) Computing as in (b), but then modifying the estimates
using the results of subsequent tests (more trials, more
successes, more failures). There are extremes in this process
which are to be avoided:

(i) This modification might consist of using only the
previous year's results as indication of the remaining inventory.

(ii) This modification might consist of accumulating
the results of all prior tests, without regard to the aging effect
or block modifications,.

Judgment is clearly needed. Limiting the criterion to the
smallness of the latest annual change (with small samples in the
two cases) could result in a dangerous accumulation of change over
the system life. On the other hand, where no statistically
significant change has been detected, it would be reasonable to
add one year's results to the results of the whole prior test
series of a homogeneous block in estimating the average value at,
say, the average age of the tested articles. It is probably not
possible to specify in advance the details of the critical results
to be reported. What is more important is that analyses be
conducted to discover what are the constant and what are the
variable components of the system reliability. Finally, detection
of a trend should make it possible to forecast when the results of
that trend will no longer be tolerable, and so signal the degree
of urgency with which management should act to correct the trend.

d) This brings us to the question of the frequency of
reporting the results of testing and analysis. The current
practice is an annual report which probably has its roots in
adminstrative cycles. The technical problems which reporting
communicates to management are probably of two sorts: long-term
aging with gradual deterioration, ("one-hoss shay" syndrome) and
catastrophic failures. The latter tend to announce their presence
in consistent repetitions of particular failure modes, and so call
for out-of-cycle action no matter what the standard interval
between reports. The former, on the other hand, are evidence of
problems only slowly exacerbating, and so allow a more leisurely
pace of administrative response. Alternatives to the present
annual cycle are proposed below, for situations in which no
guarantee of ‘a clear bright green light or red light is available
annually: (i) A guarantee can be given of a low likelihood of
having to wait more than, say, 16 months for such a signal, along
with the provision of a technical review of all failures showing
any repetitions of mode. (ii) Administratively, skipping one
year's report may be simpler.




These options will be explored in one or more places in the
mathematical sections to follow.

Two assumptions have immediately to be disposed of:

1) Because Fisher's Exact Test is mentioned in JCS
guidance, its use is correct and mandatory.

Fisher's Exact Test is an enumeration of all possible
relative outcomes in two series of pass-fail tests, subject to the
restraints that the numbers of tests in each series be fixed and
the combined number of successes also. It yields the probability
that the articles tested in the two series were drawn from the
same population--one with a fixed probability of pass. If the
total number of successes is not controlled, the results of
FET admit of this interpretation only in the limit of large
samples. Given that the probability of success could be different
in the two populations, it is sometimes claimed that FET can be
used to estimate the probability that they differ by prescribed
amounts. This claim is unwarranted. The JCS could be faulted for
suggesting the test, but they did not underwrite the extended use
as in the Army's methodology. (See Kendall and Stuart; also
Chapter III).

2) We can know the reliability of an object.

We shall never know the "true" as-manufactured reliability of
the components of the Pershing system, and much of such knowledge
as we do gain will come at the expense of tactical inventory. It
may be that, for the purposes of designing tests of operational
reliability, we need not know this a priori probability with any
great accuracy; and so methods which treat it as known for this
purpose may be satisfactory. This does not justify the assumption
when analyzing the results of actual tests.,




Section 2. Mathematical Preliminaries

Bayes' Theorem: The Need for a Prior Distribution

Fssential to much of what follows is Bayes' Theorem, sketched
here as background. The conditional probability of an event B,
given that another event A has occurred, is symbolized and defined

by
P(A,B)
PA)

where P(A) (# 0) is the marginal probability of event A, and
P(A,B) is the probability of joint occurrence of A and B. One may
also speak of P(A/B) = P(A,B)/P(B) with similar meanings and
linmits, leading to

P(s1a) P(r) = P(A(-) P(B) 1.3

Given that B can occur in n ways Bi (i=1,2,...,n) one of which
always occurs with A, we may sum expressions like Eq. 1.3 for the
entire set of events Bi

PRy 2, PRiIAY=2, P(RIBHP(B)=P(» 4

as the multiplier of P(A) is equal to 1, having encompassed all
possible pairings. If P(A) # O, we have Bayes' Theorem:

o1, _PAIB) PE)) \.3
?(Bg|4>— 2. P(AIBNP(RY) >

Suppose now that events Bi are logically (causally) prior to
cvent A. Then P(Bi) is called the prior distribution of
Bi, P(A/Bi) the likelihood of A, given Bi, P(A) the marginal
distribution of A, and P(Bi/A) the posterior distribution of Bi.
Rayes' Theorem, given in symbols by Eq.l.5, may then be stated in
words:

P(eia) = 1.2

Posterior Distribution = F.ior Distribution X Likelihood {(Function)
Marginal Distribution

(This argument holds for both discrete and continuous distributions
of probability.)

Likelihood functions are a familiar staple of probability
theory, being forecasts of the frequency of chance events A based cr
presumptions about certain prior events or conditions (a die that is
unbiased, the "normal” distribution of errors, half-life of a know:
radioactive substance). Marginal distributions then are forecasts cof




the results of experiments. Bayes' Theorem tells us that inferences
about the events Bi which lead to a marginal distribution cannot be
derived from the likelihood function alone, but require knowledge of
the prior distritution P(Bi) as well. 1In the context of our task, we
need to know more than the results of a set of missile firings to
infer the reliability of the missile.

Other requirements of a Bayesian analysis will be discussed as
the issues arise.

Section 3. Illustration of an Analysis in Accord with JCS
Guidelines

We assume that the missiles and associated ground equipment used
in an annual test do come from a homogeneous population, and that the
several tests within that year are statistically independent. We
assume further that the reliability p is definable, and then may
assert that were we to know p, the probability of s,/ successes and f(
failures in n,/ trials (nl' = sl' 4+ £f1') would be by Bernoulli's
formula (a likelihood function):

n/' s’ _(‘! 0\ _ h',
(\S:’) P (l - ?\) Where (93 = -ﬁ’ '

From component testing, comparison with similar systems,
comparison with other products of the same manufacturer, engineering
analysis, we should develop an estimate of p and a measure of our
confidence in that estimate. Methods exist, e.g. that of Maximum ~-
Entropy (Reference 10), for constructing from this information a
function with the properties of a probability distribution--a prior
distribution., Constraints of reasonableness and mathematical
convenience come into the selection process, With limited
information at hand, there may be no unique solution. The analyst is
free to try several priors and to observe the sensitivity of answers
to such variations.

Given a likelihovod function, there can generally be found a
"conjugate" prior function (so-called because it marries
mathematically to the likelihood function); properly a class of such
functions, dependent on a limited number of parameters to distinguish
members of the class. Conjugate to the Bernoulli's distribution is
the Beta distribution, written

AP (s.,8) = %> (1- 3! &% /BEL) \.6
\

. P (4o
W\"‘"‘,“ SF“’C\? s.f)=1y B = T("S(l+£i> )

awk (“> =n-0)! Lor woax \'\A-QSM‘ ,




Different sets of the parameters s, and fo give rise to functions
whose graphs are variously peaked at some locale within the limits of
0 to 1, are relatively flat, are J-shaped and strongliy peaked at O or
1, or are even U-shaped and strongly peaked at both O and 1. It is a
rich set of functions,

Taking the product of dP(sg,fg) with the Bernoulli function, we
get

/ ’
n/ S, +S, -1 Lo+ Lo
(s"> P e T e /B M
\
which when integrated over the range of 0 to 1 gives

S\: S.+S,/

(“S“,/>B(S.,-(,3/ZB(5°;C°> HLDVQ g "‘\=-C°+'r\,

the marginal distribution of s;'

of Eqs. 1.6 and 1.7 gives the posterior distribution of p for s,
f,' observed:

Ff.-« (I—kig‘-' d? /B(S“*F,) \ <

given B(sy,fq) as prior. The ratio
' and

explaining my notation and revealing the meaning of conjugation.

From a prior distribution B(sg,fgy), and a likelihood function
for a test of a sample of size n,', we have created a function which,
as a posterior distribution from that experiment, is logically the
prior when testing a second sample of size nq'., This process can be
repeated ad libitum, making sample 1 refer to all prior information
and sample 2 the latest test,




Now the JCS asks to know the probability that the reliability of
sample 2 (and by inference that of the population from which it was
drawn) is less than a certain fraction k (o < k < 1)of the
reliability estimate ¢ cf sample 1. If the evidentiary basis for
this answer lies entirely in the test of n2' items, then we may
assume instead a uniform prior distributicn, drop the primes on n2',
s2', and f2' and represent this probability by

kg, - .-
Plrp) = § 587 (- 1) s /BG4

which we then integrate over the distribution of pl to get the
probability that p2 < kpl:

P (pasky) = S o (- by o)ag, B4 1LY

The probability that p2>kpl is just 1 minus this result.




As an aid to understanding the generality of this result,
consider the case where pl = rl x r3 and p2=r2 x r3 where r3 is a
reliability factor not subject to degradation but just as much
subject to discovery as rl and r2, Within the framework of Beta-
function priors, we might be led to the posterior distribution:

AP = Kr\s"‘(q-v,\g‘-' (-— \ v 3 > (\- \‘;‘)ﬁ—l}\r\év;c&\rs \\0

where s3(f3) is the total number of observed successes (failures) of
the subsystems described by r3. For any values of r3 and k between 0O
and 1, P(p2 < kpl) = P(r2 < krl). When the latter function is given
by integrating Eq.1.10 first over r3 from O to 1, it is clear that
the result is the same as though r3 = 1 (i.e., it can be ignored).
Thus using the criterion p2  kpl we cam be freed of any concern
about reliability factors common to pl and p2. I would assert that
this is a good reason to employ this criterion in preference to the
one described next.

The JCS guidance has not always been interpreted as speaking to
a proportional reduction in reliability; sometimes it has been
interpreted a: measuring a reduction of, say, 100d percentage points¥

Instead of Eq. 1.9 we would then use

P(F a) = S v 5"<\~p, o\?-,/B(‘ £)

J P ‘(‘P\ 55:-?’2"‘ (t-v,)‘“'épiép
B (5 4) S >(o- 'ﬂ;"‘d\a

awd ’\D(?,S?— VA

(While we have strayed from the neatness of conjugate functions, by
reason of the incomplete integrasls, we still have a consistent
method. Similar expressions will be found in Reference 8, p. 271.)

* 1Indeed, the latest revision of the JCS guidance (Reference 5)
mandates this form of the criterion,




- Eqs. 1.9 and 1.11 give mathematical meaning to the JCS guidance.
If at the chosen confidence level it is deemed that there has been no
significant change in the relisbility between samples 1 and 2, then
sample 2 should be merged with sample 1 in preparation for the next
year's testing. Other criteria should be examined also (e.g.,
probability that there has been no significant departure from a
nominal value), but that does not refute the translation into
mathematics of the JCS guidelines.

At this point I note that much of the historical course of
development of mathematics has been devoted to a search for solutions
requiring a minimum of actual manipulation of numbers. The
approximations used by statisticians are simply good examples of
this. The ready availability today of powerful computers reduces the
need to employ approximations which may be questionable in particular
cases. Most of the calculations to be described here have been
carried out on a programmable hand calculator (HP-41) or home
computer (Apple, Commodore, etc.). Accordingly, the reader need not
be concerned with an apparent intractibility of the formulas. They
could be evaluated in the field by the troops of a Pershing fire
unit.

There are two matters of concern: the prior distribution and
limits to the size of Sample 1. I have already discussed problems
with the prior distribution. One assertion made is that with
increase in the size of the data base it can become misleadingly
narrow, ignoring "unknown-unknowns." A different way of saying this
is that tests performed sufficiently long ago may be irrelevant in
describing the present state of the missile inventory; the meaning
of this argument is that a larger annual test size is needed to
compensate for stale data in Sample 1. The question of test size
will be the subject of the following chapters., Of course, if there
is no evidence of a change in reliability over the years, there is no
reason to purge old data.

Section 4. Optimum Test Size

In order to determine the number of missiles which must be
procured in the next few years to support a test program through a
long period of service life, one must have an estimate of the average
annual consumption in testing. To get this estimate, especially if
it be glorified by a phase like "optimum test size," one must know
what questions the tests are supposed to answer and how frequently,
This in turn means "getting into the skull" of the JCS. We must
eassume that first of all there is sufficient reason to conduct the
tests, even at the risk of compromise of properly-classified
information. We know that there will be a finite inventory, and that
testing reduces that inventory, whether or not it be formally divided
into tactical and non-tactical portions. We can then ask the




question: how does the result of an additional test change our
perception of the system reliability, and so of the sufficiency of
the lesser inventory of missiles to conrdvct a military mission should
it be committed to combat at a future date? Possible answers are
discussed in Chapter V. As there are circumstances under which the
answer is insensitive to the size of the inventory, we shall spend

more time considering the case where inventory for test has no
tactical mission.

A long string of heads or tails when flipping pennies is not
impossible or even incredible; but after some number, one is entitled
to wonder if the coin is biased. Similarly, when testing a missile
which is alleged to have high reliability, a string of failures--even
a short one--challenges the presumption; contrariwise, a long string
of successes tends to be uninformative. In either case there is a
practical limit to the value of the additional information in an
outcome merely extending such a string.

To address this problem we shall invoke the discipline of
Sequential Analysis, to include Sequential Probability Ratio Tests
and test series truncation, Much of this is "old hat", having been
developed in World War II, most notably by Abraham Wald (Reference
11) working on military problems, and largely standardized by now.
It has recently been reported that the methods were independently
developed simultaneously by Alan Turing while working at Bletchley
Hall to crack the German ENIGMA codes (Reference 12). More
importantly there is recent substantive new work not yet "codified"
in text books. Two applications of sequential analysis to the
Pershing missile test problem will be presented: one by Nozer
Singpurwalla and Robert Launer (Chapter III) and one by Michael
Woodroofe (Chapter IV). While aspects of the treatment will appear
more "frequentist" than Bayesian, both evolve into completely
Bayesian solutions. In this paper I shall extract from their work,
and comment on it as appropriate. The author of this memorandum is
not by profession a statistician, and so requests that the original
researchers not be blamed for errors in translating their work into
this format.




Chapter III

Launer and Singpurwalla's Proposal

The following submission by Launer and Singpurwalla is the
product of over a year of research by the authors, initiated and
guided in discussions with the writer of this note. I believe it
successfully addresses the problem placed before the authors. Note
that all the appendices to this article are to be found at Appendix
E.

As the numerical example in the following exposition employs
fictitious data and arbitrary values of the parameters ¢ , @ and V,
the numerical results should not be taken as applicable to the
Pershing II problem. The dependencies and the savings from
sequential analysis are however clearly indicated, the penalty when
tests are batched, and the potential for squeezing information out of
small samples. The next chapter reports further steps toward savings
through careful test design.




MONITORING THE RELIABILITY OF PERSHING II MISSILES--
A CRITIQUE OF THE CURRENT METHODOLOGY AND A SUGGESTED
" COMBINED BAYESIAN-SAMPLE THEORETIC APPROACH +

by -

Robert Launer*
Nozer D. Singpurwalla** . -

1. INTRODUCTION, TEST REQUIREMENTS, AND ASSUMPTIONS

The reliability of the Pershing Il missile arsenal is an unknown
parameter which pfesumably could change over time. fo monitor the re-
liability, and also to ascertain the amount of change in reliability,
if any, a sanmple of n Pershing II missiles is chosen from the ar-
senal every year, and each missile fired to observe its success or fail-
ure. The testing is destructive, and the arsenal inventory is not
replenisﬁed. Thus, it is highly desirable to reduce the number of test
missiles fired year after year. Also, if possible, it is desirable to
have the total number of missiles fired per year be a multiple of three--
that is, 3, 6, 9, etc. A stated requirement with respect to the year by
year detection of change in reliability is that a change of b should

be detected with a probability of m or more. Since the test data are

+ The authors' appendices are incorporated in this paper as Appendix E. DW

* U.S. Army Research Office, Research Triangle, N.C.
**x George Washington University, School of Engineering
and Applied Science, Washington, D.C.
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of a pass-fail nature, a correct probability model for describing them
is the binomial.

Our goal is to determine a sample size and a decision criterion
that will satisfy the above requirement, and minimize the total amcunt
of testing. Since each missile is expensive to produce and test, there

is a keen desire to incorporate into the analysis all knowledge that is

available, both, from the previous tests and engineering experience.

Thus a Bayesian point of view is natural here.

2, CRITIQUE OF PRESENT METHODOLOGY

Based on our reading of the pertinent literature that has been
made available to us, and our discussions with several people familiar
with the test, it is our understanding that the current methodology for
analyzing the Pershing I1 data is based on Fisher's exact test, hence-

forth FET. We claim that this technique is inappropriate for the situa-

tion described above. Furthermore, a modified version of the FET which
has been used in similar situations is not appropriate, either. Whereas
the FET can be used to detect the equality or otherwise of two binomial

populations, it is not designed to detect a specified difference between

the two binomial parameters in question. Furthermore, FET does not ad-

dress the key question of sample size selection, and thus fails to ans-

wer the main question posed by our problem. A choice of the sample size
should be based on an assumed or target value of the reliability, and
this is nowhere apparent in the test.

CiQen a8 sample size and the test results from this sample, the

FET can give us the "p values" for deciding upon the difference or




otherwise of the two binomial populations in question, and this may be

the sole motivation for using this test here.

3. THE COMBINED BAYESIAN-SAMPLE THEORETIC
APPROACH PROPOSED HERE

Our proposed approach addresses the issues posed before, and
attenpts to do this in an economical manner with respect to sample size.

Since reliability changes over time, we introduce an index t ,

where t = 1,2,... ; thus t = 1 denotes the first year of testing,
t = 2 denotes the second year of testing, and so on. Let n._ denote

the number of missiles to be tested in time period t ; n_ is the

(unknown) sample size, one of our decision variables. Let x denote

the number of missiles that fire successfully in time period t

H
note that 0 € x_ € n_ .

Let p_ be the chance that any missile fired at t will fire

t
successfully, or its propensity to do so. Since pt is unknown to us,
we express our uncertainty about it by a probability distribution, say
g(pt | previous failure data, if any, and H) . Thus P, is treated as
an unknown parameter, and the vertical line in g(*) denotes conditioned

upon or given, and H denotes our background information about p

t

1f we have no previous failure data, then g(pt I H) denotes our prior

distribution for P, 5 otherwise g(- I *) denotes our posterior
distribution.
If for each time period t we judge the missiles in the arsenal

to be exchangeable (we have here finite exchangeability), then it is

appropriate to assume that given P, » the probability of observing X,




svccessful firings in a sample of size n, is a binomial distribution;
that is,

n X n_-x

t t t t
P, (1 - pt)

(1)

P{xt successes in n_ firings | pt} =
t

The choice of the sample size n, is based on the following sample
theoretic arguments for testing hypotheses about pt .

If P, o the chance that a missile is fired successfully at time
t , i§ large, then the number of failures in a sample of size n, would

lJet x*

' tend to be small. Given an n, and having specified a P s t

be the largest integer for which the chance of observing x: or fewer

. .
successes is small, say & ; that is,

*
*t n, . nt-j
P{x* or fewer successes inn_ | p_} = Z pJ 1 -p) €a.
t t t . . t t
3=0 {3
(2)

If p, were to change to P, - A, with A 1large, then the num-

ber of failures in a sample of size n, would tend to be large; if A
were small, the number of failures in n, would tend to be small. Thus,
for some small number B ,

P{xt or fewer successes in n, firings | (pt ~ A}

x: n . n ~j (3)
t h) t

=) (p, = D)7 (1 -p_+ ) =2 1-8.

i=0 (] t ¢

If in (2) and (3) we assume that p_, o, B, and A are the

t
only known quantities, then (2) and (3) can be simultaneously solved to
obtain an n, and x: . Once this is done, (2) can be used to test the

null hypothesis that the reliability of the missile arsenal at time ¢t




is. pt » with a Type T error a . This is done by accepting (rejecting)
the null hypothesis whenever X, >(S) x: , where X, is the total nunber
of successfully fired missiles in a sample of size n,o. If a= .25

and B = .25, then (3) assures us that n, and x: are suitable for
detecting the desired changes in reliability. Note that (3) describes

the power of the test as specified by (2), for changing values of A .

If the null hypothesis is accepted, we conclude that the reliability of
the missile arsenal at time ¢t is P, -
In our case pt is not specified, as it is an unknown parameter

which is liable to change over time. What we have instead is

.
i. a prior distribution for P, at time (t-1) , say

>
g(pt | (nl,xl), (nz,xz), cens (nt-l’xt-l)’ H) , t 22 and

glpy | H) 5

ii. a posterior distribution for P, at time t , say

g(P l (nl,xl)’ sy (nt’xt)’ H)) for t21.

t

Thus, if we uncondition on P » (2) and (3) would become

X

*
F el 3 3
- <
J/- .Z Sl pe-p0) 8(p, | (n %) -en, (n,_1s%_ 1) H)dp, € a,
o 30 {3

for t 2 2, and

1 x: "t ; n -
/ ) p.(1-p) gp; | Mdp; € @ , for t=1; (4)
3=0 {3
0
1 X‘: ﬂt j nt-
f jZO j (p,~8)" (1-p +4) glp, | (nyux))sein,n _1ux ), H)dp,
A




and

x*
t n

1
. n
/2 I (- )
i 370 13

-3

t glp, | H)dp, 21 -8, for t=1

(5)

In order to obtain the pair (nt,x:) , for t 21 , we need to
solve (4) and (5) simultaneously. Note that a solution to (4) and (5)
would depend on our choice of g(ptl *) . If for example, g(ptl *) is
a member of the family of beta density functions, then (4) and (5) would
involve incomplete beta functions and would call for numerical methods
for solving them. A method for undertaking this is described in Appendix
A. A computer code for implementiné the method of Appendix A is given in
Appendix B. An example using the above is in Section 5.

As an alternative to the above, and one which is easy to imple~-
ment, we replace P, in (Z) and (3) by St , the modal value of
g(p, l (moxy)y ovey (np_y5x%. 1)y H) . The modal value is the most

likely value of p_, given all the previous data, and is determined by

t
the prior distribution g(pt | (nl,xl), ey (nt-l’xt-l)' H) . The
posterior distribution g(pt | (nl,xl), veos (nt,xt), i) represents our
best assessment of the arsenal reliability at time t , given all the
data up to and including that obéained at t . Its model value ﬁ

could be used>as a single number which describes P, - In the next sec-

tion, we discuss an implementation of the above alternative procedure.

An implementation of the main procedure follows along similar lines,

with the exception that in computing the pair (nt,x:) Pe is not

replaced by the modal value of its prior distribution.




3.1 Assessing Our Uncertainty about Dt__and Procedure Implementztion

Since p, can take values between 0 and 1, a convenient but

flexible way for us to express our uncertainty atout pt is via the

family of beta density functions on (0,1). Thus,

1.

We start off our assessment and monitoring procedure by
assigning a prior distribution for Py, » say g(pll Y,8,H) ,
which for the two unknown parameters Y > 0 and 6 > 0 is

a beta density function

o _T(y+6)  v-1 ,, _ 6-1
ep | V6.1 = T TGy Py AP, 0<p <1 (6)

The modal value of the above density is

= o Y-1
Py y+6-2 °

Clearly, Py best describes in the form of a single number
our assessment of El , prior to testing at time t =1 .
Furthermore, 51 is also to be used for determining the pair
n and x*

1 1
We thus replace P, by ;1 in (2) and (3), and simultane-

, for testing at time t =1 .

ously solve these to obtain n, and xI . [In Appendix A

we discuss how to obtain ny and xI without using Sl ,

and by directly solving (4) and (5).]

We take a sample of size n and test these to determine

1 X0
the number of missiles that fire successfully. 1If x1 >(<) xI .
we accept (reject) the hypothesis that the reliability of the

missile arsenal at time 1 is El .

If we accept the above hypothesis, then we update our opinions

- -




about pl in light of ny and Xy via the pcsterior
distribution g(pll (nl,xl), H) . The modal value of this
posterior distribution is

4% -
Y xl 1

P1=Y—+g;n—;_—2,

and this number best summarizes our assessment of pl after
testing at time 1. We now go to step 5.

If the aforementioned hypothesis is rejected, our choice of
Y and O needs to be revised. This should be done follow-
ing a more detailed analy%is about p1 . We then go back to
stage 1.

The posterior distribution g(pll (nl,xl), H) now serves as
the prior distribution for Py s and its modal value ﬁl is
set equal to 52 . Thus

+x_ -
. Y \1 1

P2 = YiEin -7 -

and P, is now replaced by 52 in (2) and (3), which are
solved for n, and xE . [In Appendix A we discuss how to
obtain n, and xi by directly solving (4) and (5).])

We now repeat the steps 3 through 6, and continue the above
procedure. Thus, at time (t-1) we have

ﬁ ) 5 N Y + xl + x2 + ... + xt—l =
t-1 t Y+ 6+ ny + n, + ... + nt_12

as our single best assessment of the reliability of the arse-

nal at time (t-1), after observing the results of the test at




time (t-1) . 1t also represents our choice for P, in
equations (2) and (3), for determining the sample size n,
and the decision variable xt .

8. Suppose that at time t , we test n, items, observe X,
successes, and based on this result, reject the null hypothe-
sis that P, = St = ﬁt—l . Then we conclude that the reli-
ability of the arsenal has changed from its previous value

ﬁt_l . When this happens, we investigate the cause for this

change, choose some new values, say Y' and &' , and
estimate pt by

Y'+xt—1

Pe = Y'+3T+n 2

We now continue as before, bearing in mind that the previous

date (nl,xl), ooy (n ) are no more appropriate for

X

t-1’"t-1
inclusion in our assessment process.

An alternative to the beta prier which has properties of robustness

is currently under investigation. However, there 1is no assurance that

the alternative prior will be void of computational difficulties.

3.2 Sequential Sampling to Reduce the Amount of Testing

At any stage t , given an n, and xt » a further reduction
in the amount of missiles tested can be achieved if the testing is done
sequentially, one item at a time. Specifically, we would test one item

at a time, and stop the test as soon as x, the number of successes is

Jarger than x: . Thus, ideally, the number of missiles tested could be




as few as x; + 1

10

3 this implies a saving of n

t t

-1

mum of missiles tested would of course be no greater than

resulting sample size, that is the number of missiles actually tested

at each stage is known as a curtailed sample.

For the above scheme,

expected number of missiles tested using standard arguments--these are

shown later.

However, since P,

given pt

we can compute E(nt]pt) the

is not known, we average out P

t

with respect to its prior distribution to obtain E(nt) , the un-

conditional expectation of the number of missiles tested at each stage

under the sequentially taken curtailed sample.

Given n

and xg s the probability that n,

sequential sampling scheme is used is

p{nt=x‘pt} =

[

x-1
\nt—x:—l (1-p))
([ x-1
\n -x*-1 (1-Pt)
x-1

+ :
R -
x-x¥ 1] (1 pt)

n %% x-( . t)
pt
ek
e ¥ x-(n_-x%*)
t t
t
x-x*-1 x:+l
P Iy

This is shown below.

= x , when a

A

In order to obtain P{nt=x} , We average out the above by g(pt[°) ’

where

T(Y+S)

e 1) = vmr o

Y-1 §5-1
P, (l—pt)
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When the above is done, we have

1) pay O N Tn -xid)
n_-x*-1 T T (y+84x)
t t
for nt-x: < x < x*
p[ntzx] = x-1 P(Y+(S) F(X’ntﬂ:*’Y) (nt-x:+5)
0 —xko1| TONT(E) T (y+&+x)
t t
. x-1 I (y+6) (x:+1+y)l‘(x—x*c—1+6)
x—x:-l r(y)T(d) T (y+6+x)

for x* < x <n
t ="t °’

from which E(nt) can be computed. The above formula can also be used

to plot a histogram of the various values of no, for each stage t
If the sequential tests are to be done in batches of 3 rather
than teéting a single item at a time, the savings in the number of items
tested will be less. However, this is still better than compulsarily
testing all the n, items. We do not have a general formula like (9)
above to compute the expected sample size. The calculations will have

to be done on an enumerative basis. These are shown in Appendix C.
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4, COM4ENTS ON THE PROFPOSED APPROACH
The proposed approach is a combination of sarple theory and

Bayesian statistics. The former is used to determine the sample size,
and the latter is used for inference about P, - One may express reser-
vations about a procedure in which two philosophical viewpoints are used
simultaneously. However, upon closer examination of the approach, such
a concern should be dispelled, since the sample theory approach is not
used for making inferences about pt 5 it is used for choosing a sample
size. The selection of the sample size after averaging out P, with
respect to its distribution g(ptl °) , see equations (4) and (5), makes

our analysis fall under the category of what is known as pre-posterior

analvsis, a perfectly legitimate device within the Bayesian paradigm
[cf. Box (1982)].

The monitoring of pt is done within the Bayesian framework,
and besides ''coherence'" it has the advantage of inducing economy by
virtue of the fact that all our relevant previous data are incorporated
into the analysis. Furthermore, it allows the incorporation of any
engineering or judgmental knowledge that we may have about the missiles
into our analysis -- this is doée via the parameters Y and § or

Yy' and &' , etc.

5. APPLICATIONS TO DATA
Our proposed approach is designed to specify a sample size for
testing at each stage, and thus its effectiveness cannot be fully ap-

preciated if we apply it to existing data. However, we shall apply it
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to some given (sanitized) success failure data to demonstrate the fact
that the corputations of Appendix A can be undertaken, and to compare
the results of our main procedure and the simplified alternative, de-
scribed in Section 3.1. In Table 1, we present the given success fail-
ure data, our Bayesian estimate of the mode of p, at each stage using
a uniform prior distribution at stage 0 updated at successive stages
using failure data, and the values of x: and Nt using the main pro-
cedure and the alternative.

A few facts emerge from an examination of Table 1.

1. A large number of items to be tested is called for, when
‘
the prior is uniform, with mode .5

2. The number of items to be tested is the smallest when the
mode of P, is closest to 1, namely, at .9 .

3. The number of items to be tested under the main procedure
is always equal to or larger than that under the alternate
procedure., This is because the alternate procedure puts all
the probability mass at the mode, whereas the main procedure

disperses the probability mass over [0,1} , with a concen-

tration at the mode.

5.1 Results of Curtailed Sequential Sampling

The sequential sampling approach discussed in Section 3.2 was

applied to the data and the results of Table 1. The n, and the x:

values considered were those given by the "alternative procedure'; this

procedure gave us smaller values of the nt's than the main procedure.
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TABLE 1
Results for Main Procedure and Alternative, Using Sanitized

Data, and Assuming a Uniform Prior at Stage O

Computed Values of x* and n
t t
Data
Stage Mode Main Procedure | Alt. Procedure

t of p
Success | Failure % n N n
Xt t *t t
0 .500 2 29 5 17
1 6 0 .875 8 13 9 13
2 11 1 .900 | 10 14 8 11
3 11 1 .906 11 15 8 11
4 11 1 .909 8 11 8 11
5 9 3 .875 9 13 9 13
6 9 3 .853 10 15 8 12
7 8 4 .825 9 14 9 14
8 4 0 .833 11 17 9 14
9 3 2 .820 10 16 9 14
10 9 0 .837 10 15 9 14
11 8 1 .841 10 15 10 15
12 7 2 .836 10 15 9 14
13 9 0 .848 10 15 8 12
14 7 1 .850 10 15 8 12
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The expected sa~ple sizes when testing is sequential, in batches

.of 3 as well as one item at a time, were computed. These are shown

in Table 2. The advantage of testing one item at a time is clear
from an inspection of columns 2 and 3 of Table 2.

We also note the overall reduction in sample size using the approach

of this paper. The expected sample size can be as small as 9.
The detailed calculations leading us to Columns 2 and 3 of

Table 2 are given in Appendix C.

6. PROPOSED FUTURE WORK

An objectionable feature of' the proposed procedure, from a
Bayegian point of view, is the testing of hypotheses about p
using the decision variables x: ,» t =1,2,... . The proper Bayesian

way to study this problem would be via a Kalman filter model which

contains two unknown states of nature, P, and mt , where mt denotes
the drift in P, - The Kalman filter would not only have the ability

to monitor the reliability of the arsenal, but would also provide us

with a vehicle for predicting the future arsenal reliability. The

following are our ideas on how a Kalman filter model for this problem

can be developed.

Let Yt denote some transform of xt/nt » and one which makes

Yt approximately normal. The observation equation for the Kalman

filter model would be

Yt - pt + Ylt

where Yit is a disturbance term with mean 0 and variance Oit .

We can postulate the following as system equations:

P, = W + You o and

m = m

t e-1 ¥ V3¢
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TABLE 2
Evpected Sanple Size for Curtailed Sequential Sampling in Batches of

Size 3 and Size 1.

Stage Expected Sample Si;e Expected Sample Size
t for Batch Size 3 for Batch Size 1 x: n
0 11.84 10.91 5 17
1. 12.03 10.66 9 13
2 10.29 : 9.4 8 | n
3 10.37 9.51 8 11
4 10.40 . 9.54 8 1
5 12.28 11.08 9 13
6 11.07 10.16 8 12
7 12.84 . 11.74 9 14
8 12.79 11.69 9 14
9 12.87 11.78 9 14
10 12.78 11.67 9 14
11 13.59 12.72 10 15
12 12.78 11.68 9 14
13 11.14 10.22 8 12
14 11.14 10.21 8 12
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In the above equations, we are saying that Py » the unknown state of

nature, consists of a low frequency drift term mt » which represents

a smooth variation in P, » and th » which is a high frequency compo-

nent that represents drastic changes in pt . We assume that Y2 is
t

. . , 2

a normal variate with mean 0 and variance °2t . The drift term is

assumed constant, except for slight disturbances in it; these are

described by Y3t , which is also assumed normal with mean O and vari-

an o .
ce It
The Kalman filter solution would result in uncertainty statements

about Pe and mo via their distribution functions. These, of course,

would be conditioned on (nl,xl), el (nt,xt) . Large values of m

would indicate a drift in the arsenal reliability, and so m could be
used to monitor the change in the arsenal reliability.

It appears that the Kalman filter solution would have several
advantages over the proposed approach. The problem of choosing n, in
the context of a Kalman filter is an open question, and this calls for
some basic research, assuming that this has not been done before.

A third possible direction for future research is the development
of a sequential procedure for testing the missiles. A sequential proce-
dure employing Bayesian considerations may add a further dimension to

this problem.




Chapter 1V
Woodroofe's Proposal

The proposals of Michael Woodroofe are not yet formally
documented, but are contained in a series of letters and lecture
notes (References 13-17). 1In this chapter I shall mostly quote from
this material with the author's permission, noting that any published
versions may differ markedly from those given here. I accept
responsibility, however, for the accuracy of the material quoted and
the interpretations and extensions of it.

All of the calculations described in this chapter were carried
out by Dr. Woodroofe and/or myself. I have programmed most of them
for an HP-41C, and listings are given in Appendix D. Instructions
and copies on magnetic cards are available. Dr. Woodroofe has used
an Apple computer.

Section 1. (Extract from Reference 14).

The Truncated Sequential Probability Ratio Test.

Illustration with a sequential test of the type of savings
which are possible and the loss of information which results from the
savings. Note that the process starts with the conventional
Uniformly Most Powerful test, to be terminated when a specific nunmber
Sn of failures has been observed; or when, out of a planned test of
size n, the number of observed successes assures that the number of
Failures cannot reach Sn; or after n tests if not terminated earlier.
The choice of n is at this time arbitrary; the value 12 was used in
the example to permit comparison to the Pershing test program, past
and planned.




/We start with a discussion oz7 the problem of sequentially testing
[such that/ that a failure probability does not exceed a given level. I will
illustrate the type of savings which are possible and the loss of infor-

mation which result from the savings with a specific example.

let X, , .. X 2 be l.l.d.*iandom variables which take the values
1 and 0 wit prcbabl‘ntles p and q = 1-p, where 0<p<], Is
unknown; and consider the problem of testing

HO: p<.15.

Let Sk - xl f;;;f + Xk , Sl <kg<iz.,
Then the (UMP) test which rejects H, If and only if S‘z'z_b has power
function
3 ‘o
(l)s(p)-l-z('i)p"q"". O<p<t. .-
° k=0

0f course, it may not be necessary to take all 12 observations to determine
whether S,, > 4 . The test may be curtalled at time

tq = min{k>1: 5 >4 or S, < k-9) .

Then

12
k-1) 4 k-h
(2) Ep(to) kaz-u k(3) P q

12 :
+ I k<%ai> q9 pk“9 , 0 <pc<c
k=9

* Identically and Independently Distributed.
*%* Uniformly Most Powerful.
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Is the expected sample size of the curtalled test.

Selected values of Bo(p) and Ep(to) are listed In columns 2
and 4 of Table 1 below.

Observe that the type | error probability is .0922 when p = .15 and
the type || error probability is .2253 when p = .k,

| tried to construct a truncated version of the SPRT whose power
funct ion matched Bo as closely as possible. Wald's approximations

allow one to match the power function at two points. | picked .15 and
.40. Wald's approximations then give formulas for the upper and lower
stopping boundaries In the (k, S.) plane. These are listed In columns
2 and 3 of Table 2. There are two problems with these boundaries: Wald's
approximations tend to overestimate the error probabilities; and | wanted
the test to take at most 12 observations. After some experimentation

with formulas (3) and (4) below, | was led to the upper and lower
bound:ries listed in columns 4 and 5 of Table 2.

Thus, | considered the sequential test which takes
t = min{k > 1: S, <a or Sk_>_bk}

observations and rejects Ho if and only if St >b

where a, and
bk are as In Table 2.

t »

The power function and expected sample size may be easily computed.
Let

fk(.'tp) - Pp{sk-J ’ f > k}

for k=0, ... , 11, j=0,1,2, ..., and 0< p=< 1., Then the
power function and expected sample size are
N

® B(p) = kEl falo -t p " p -
and
12 )
@ Ep(t) - k::] k{f b=V, P p+ f _ (3, p)a)

for 0 < p <1 ., Thus, one need only compute the values of fk ; and this
is easy in view of the initlal conditions, f (0,p) = 1 and
fo(j,p) =0 for J # 0, and the recursion

(5) Cf e = Ip £\ (=1,p) + q f, _(J,p)] t{a <] <b)




M\for k=1, ...,12,]=0,1,2, ...,ad 0<p<l. Here I,
denotes the Indicator of A.

The power function and expected sample size may be computed from

(3), (4), and (5). Selected values are listed in columns 3 and 5 of
Table 1.

Observe that the power functions Bo and B differ by at most
.0103 for the values computed. This Is = much better than | had )
expected when | began the exercise. Observe also that the expected |

sample size of the modified SPRT Is substantially smaller than that of |
the curtailed test when p Is small,

After the test has been performed, one may set confidence limits
for p by using the relatlionship between tests and confidence intervals.
Order the possible outcomes in a clockwise manner, as in column 1

of Table 3. For each r , 0 <r <1 , one may test the hypotheslis

: >
Kr. p2r

as follows: the acceptance region A(r) of the test consists of an
initial segment of outcomes, in the order of Table 3; one includes
precisely enough outcomes to make

P_(Alr) ) > .90 .

L
Then, after the test has been performed, an upper confidence bound p
for p may be obtained from the relation

p<p’  IFf (1,5,) € Alp) .

This is essentially the approébh of Siegmund (1978, Blometrika), but
substitutes exact calculatlions for his approximations.

| Vist some approximate 75% upper confidence bounds for p in Table 3
These were obtained by linear interpolation with formulas like (3).

To the extent that the modified sequential test takes fewer observa-

tions than the curtailed test, one may expect less accurate estimation of
P-




Table 1: Power Functlons and Expected Sample Sizes

p 8, (p) 8(p) £ (1) £ (1)
.05 . 0022 .0022 9.47 6.93
0 .0256 . 0251 © 9,92 7.85
.15 .0922 .0899 10.23 8. 62
.20 .205k .2004 10. 40 9.13
.25 _ .3512 3434 10.3) 9.35
.30 .5075 k975 10.02 9.30
.40 L7747 L7644 9.00 . 8.57
.50 - .9270 .9204 7.77 7.42

Here: Column 1 is computed from (1), column 2 from (3), column 3
from (2), and column & from &

Table 2: Upper and Llower Stopping Boundaries In the (k, gk) Plane

The SPRT Modifled

k a* b* a b
x k k k
1 -1 2 -1 3
2 -1 3 -1 3
3 -1 3 -1 -3
b -1 3 -1 !
5 0 3 -1 4
6 0 4 0 y
7 0 Y 0 y
8 1 4 0 y
9 1 A 1 L
10 1 5 | §
1) ) 5 2 4
12 2 5 3 L

Here columns 2 and 3 are from Wald's approximatlons; columns & and 5
are ad hoc approximatlions.




Table 3: Approximate 75% Upper Confldence Bounds

Outcome Confldence Bound
t St

3 3

5 % .9
6 & .70
7 4 .61
8 4 .58
9 4 . 5
10 & .45
11 & 42
12§ <39
12 3 .34
17 2 .29
9 1 .21
6 o




Corment. by Dl

As indicated in Chapter III, expectations of ? and E can be
corputed based on a prior probability distribution. Closed-form
coluticns exist for “o and Ep(to) for a Beta prior, among others.

For *(p), and Ep(t), rnumerical integration is necessary. Other

indices derived from the fk(j,p) in manners
can also be meaningfully be averaged over a
I'p(t) has here a narrow range of variation,
will not be very sensitive to the choice of

like that for [  or E(t)
prior distribution. As
its expectation value

the prior distribution,




Section 2. (Extract from Reference 15).

To clarify some of the points raised in Secticn I, Woodroofe
provided a more extensive treatment of the development of the limits
on observed successes and failures at which the test is terminated,.
It begins with the method described by Wald (op. cit.) and then
continues with a procedure, somewhat judgmental, for modifying those
boundaries to reduce the expected size of the test while retaining
its power.




1) Testing Ho: 6 > .15 is the same as testing 6' =1 -8 < .85, 1If
you want to have

Pg{decide 8' > .85) < qp for 8*' <..85

and

Pg{decide ' < .85} < a) for all e' > ei > .85,

wheregoandalaresmalland.85<ei<l,thenyoucanmtsinplyreverseﬂ)e

roles of zero and 1 in the test described in my earlier letter. A new test
must be constructed. See (2) below.

In ig_gctio_n__ﬂ @ was the probability of a system failure.

2) For testing Ho: 6 < 8g at level ap with type II error at most aj

when & > 63, where 0 < 89 < 8) < 1 are specified, the SPRT continues sampling
as long as

Al/A<Ln<B | )

where B = (l-al)/ao,‘A = (l—co)’ul','and L, is the likelihood ratio. One finds




rd

(M

Ly = exp {8;S, -~ n 8p)

where' _
A1 = log 61(1—80) - log 30(1—91)
&g = log (1-8g) - log (1-8))

and . S, = xl+.';.+)in, no> 1.

Since S, are integer valued, equation (*) may be rewritten

a; < S8, < b;
b
a = I 3, (8 = log M)
i : el
b = (%l(mo +log B)) +1

where [x] is the greatest integer which is less than or equal to x.
Suppose now that one wants the test to be truncated at M say. Then one

wants boundaries ap and by, 1 < n < M. What I did in the example was the
following. let ay and by be such that :

4 <3 =by-land b, <b,

say two integers near the middle of the interval from a; to b; Then let

a = max {a;, ay- (M - n)}
and bn = min {bn, bM}

) fog n < M. This gives a first approximation to the boundary. 1In the example,
I then computed the power function of the sequential test with boundaries a,
and b, and compared it with the power function of the fixed sample size test.
1 then changed a few of the boundary points to get better agreement between

the two power functions. The adjustments were minor and tended to make the
continuation region fatter.

The reason that you can't pin me down on the adjustments is that it is a
trial and error operation. .
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(3) In the example,

Pg{t=k, Sk

by) = fx-1(bx - 1;0)- 8

and

Pgl{t=k,Sx = ax) = fx_1(ak;8)e (1-8)
Then Pg{¥X; » X} is the sum of these probabilities over all pairs (k,ay) and
(x,bx) for which ax/k > x or by/k > x.

4) For inverse sampling there is just one boundary. For curtailed
sampling, there are two. let

t* = min{k > 1: § > 4)

and -
tT = min{k > 1: Xk - S » 9}

Then Eg(tt) = 4/0

and B8 (t™) = 9/(1-8)

The stopping time for the curtailed fixed sample size test is
tg = min(tt,t7)

« So Eg(tg) < min{Eg(t¥),+Eg(t™)}
When 6 = .15, Eg(t™) = 10.6. '
The formulas for Eg(t*) and Eg(t™) hold for all §; 0 < 8 < 1.
5) I think of the boundaries as a modified S.P.R.T. 1In the
example, they were similar to the curtailed fixed sample size test, but
sufficiently different to reduce the expected sample size by about 1 over the

range of interest. -

64) The calculations in my letter to Launer are for fixed 6. To do
. a Bayesian calculation, one would average them over 8 values

The formulas which I gave for computing the power and expected sample
implicitly assume that that the bo.rn!.ries ap and b, are non-decreasing in n.




Section 3 (Extract from Reference 16).
The Truncated SPRT, Aggregated over Several Tests,

Derivation of a conservative estimate of the probability
that in 10 years of testing, at 12 missiles planned for expenditure
each year, no more than, say 100, will be needed using the proposed
stopping rules.




This is to explain how savings in expected sample size may be
translated into savings of units which must be purchased prior to the
experimentation. For definiteness, I illustrate the method with the -
truncated SPRT, which is described in' / Section I/ '

In particular, recall the computation of 7 T T
£(x,3;p) = PR(T>k,Sk=3),
where p denotes the true failure probability, Sy denotes the number of

failures after k units have been tested, and t denotes the stopping time.
From this, one gets 1%

G(k; P) = PI(T<k) - 1 - xj“o f(kl 'p)
and glk;p) = Pr('r-k) = G(k;p) - G(k-1;p)
for k=1,...,12and 0 < p < 1.

Suppose that the truncated SPRI is run n times, say once each year
for n years, vwhere n is a positive integer. Then there will be a sequence
P1r-«+Pp Of unobservable true failure probabilities and a sequence tj,...,t,
of random sample sizes.- Here I regard p),...,Pp as unknown paraméters, and
suppose that tj,...,tp are independent random variables for which

Pr(ti=k) = g(k;p;)
fork=1,...,12 and i = l,i..,n. If P)se+« Py are really random variables,

then the calculations described below are valid, if the conditional distri-
~ bution of tj,...,ty given p},...,p, is as just described.




0

Let T denote tj,«: total number of units used during the tests,
T = tl+o-o+tno

Then the distribution of T is required. The distiibution of T is the
convolution of the indiyidual distributions of t;,... +tn. This depends

on p)se+«sPp in a complicated manner, but it is possible to find the sharp
bound which is valid for all possible choices of p),...,p,. That is, it is
possible to find a function H for which :

© Pr(T<k) » H(K)
for all k = 1,...,12n and all possible choices of pj,...,Ppn.

I describe the derivation below, .
“Fhe values of H are included in Table 2 in the special case that
= 10. Observe that then :

i

Pr(T > 105) < .054

for all p),.. /Py The bound is reasonably sharp, since Pr(T>105) = .050
when all of Plr---:Pn are equal to .27.

While the bound is sharp, the approach is conservative, since it
ignores data from previous years and assumes the worst possible values for
P)s--++Pp. If an independent verification is required for each year, then
same of this conservatism may be unavoidable.

The derivation of the bound uses the notion of stochastic dominance.
1f X and Y are random variables with distribution functions F and G, then Y
is said to be stochastically larger than X if and only if G(z) < F(z) for
all z. If X and X' are independent random variables and Y and Y' are
independent random variables and if Y and Y' are individually stochastically
larger“aﬁ- X and X', then Y+Y' is stochastically larger than X+X' (as is
easily verified); and this result extends from two summands to several.
To apply this result, let

G(k) = min G(k;p).

where the minimum extends over 0 < p < 1. Then, for any choice of Pleee«sPnr
the distribution of T is stochastically dominated by the sum of n independent
random variables having common distribution function G. Camputing G is
straightforward, For k < 6, the minimum is attained when p = 0 and G(k) = 0.
For k > 6, 1 computed G(k;p) for a grid of p values and took the minimm over
this grid. The values are listed in Table 1. I used a grid width of .0l.




.24
.25
.26
.27
.28
.29
.30
.31
.32
.33
.34

.35

Minimum

Mean and St dev

Values of G(k:p)

TABLE 1.

6 7
.2313  .2590
.2222  .2535
.2144  .2496
.2081  .2474
.2032  :2468
1996 .2477
.1974  .2501
11964  .2540
.1967  .2593
.1981  .2659

o- 5
.1964  .2468
u = 9.4528

8
« 2966
+ 2955
.2962
. 2987
.3030
.3088
.3163
«3252
.3355

.3472

[ <8
. 2955

.5032
.4967
.4923
.4900

:4897

.4914

.4949
.5002
.5072

.5156

a
-4897

“o = 2.1992

120 = (@2becada 2 £)

6_1.

10
.5556
15537
.5538
.5559
.5599
.5657
.5731
.5819
.5922

.6036

.5537

11
.7723
.7685
.7661
17651
.7654
.7669
.7696
.7735
.7783

. 71840

£
.7651

\,o

=\ - (\1~u\&—(|u'.d\. e~ (1o+q)d ~ (g« e - 1) b (7*‘) o
Notes: G(12;p) = 1 for all 0 < p < 1; the minimum is 2zero for k < 5; y and

arc the standard deviation of the minimizing distribution.
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100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

115

TABLE 2.

1 - H(k)

.2026
.1622
.1273
.0978
.0734
.0537
.0382
.0263
.0175
.0112
.0069
.0040‘
.0022
.0012
.0006

.0002

Values of H

H(k) - H(k-1)

.0460
.0404
.0349
.0295
.0244
.0197
.0155
.0118
.0088
.0063
.0043
.0029
.0018
.0011
.0006

.0003




Comments by DW:

Let g(k) = G(k)-G(k-1). 4.1
o)

Then d(n,z) = EZ? zkg(n-k) 4.2
k=o

is a generating function of the distribution g(k). The generating
function for the dominant of m years' test results is then

- - nm
—DG"M\:’\,C\(“’Z\Y = 2 ?jéj say | 4.3

=

Q

and the dominant of the probability that a specific number J of tests

can be forgone is given by the coefficient dJ of zJ in the expansion
of D(rn,m).

In our example n=12, and the g(k) for k < 6 are all

zeros. Sample data are given in Table 3. So, for m=10,

D Qz,lo\ = b4ob .
[%(l?.) *Z%(U) -+ Z) CS(lo\ -+ 23 3(9) + Z% 3 (?\)4—2(8(7\ -4—-2@%((9;)

- B(.Syo + o2 %(n\[s(uf R




TABLE 3

g (k)

P = .85 P= .75

Batch Size Batch Size
k 1 3 1
12 .2349 .5103 .0940
11 L2114 0 .1258
10 0640 0 .2235
9 .1942 .2933 .1694
8 .0487 0 .0361
7 .0504 0 .1549
6 .1964 .1964 .1963




In Woodroofe's rnotation
A‘SZ.HG““— 3\ - H (“M" ‘S- ') .
In particular, in our case,

As Koy -t () = 1= w(na)=[a(m)

is the dominant of the probability that all 120 are required (none
can be foregone). It follows tha«

J.
73520\'(_: \- H(‘mn—l—'f)

ts the dominant of the probability that at most J can be forgone; the
generating function for eJ is

E(n,m\= %g;_n_vqs = _D(h)wﬁ/((-;) )

The calculation of the dJ or eJ presents no difficulty except
possibly in the control of round-off errors for J large. Sarmple
results are given in Tables 4 and 5 partly repeating material in
Table 2, with differences presumably due to differences in accuracy
between our computers.

In actual conduct of Follow-on Tests, three failures in a row,
cr two with an identifiable cause, would be sufficient justification
for halting the test until the problem were (identified and) fixed.
There would then remain some number of missiles from that year's
allocation available for intensive investigation of the fault and for
demonstration of remediation. It is not clear that any additional
missiles would need to be allocated to those missions, as they could
serve the FOT mission at the same time.

It is a2 trivial matter to revise the expression for D(n,m) to
treat the case of batched tests: for example, in groups of 3.
Tables 3-5 compare the results for single and triple tests. For the
data in the example, whatever the number of missiles considered an
adequate inventory for 10 years' testing without batching, about 6-10
more would be required when fired in batches of 3. The analysis in
Chapter IJI gave a similar result,

Up to this point the development has assumed that up to 12
would, in fact, be expended if necessary to provide the foundatio.
for an annual confidence estimate. The question now is: why




TABLE 4

P = .85
Singles Batches of 3

k dJ= el= dj eJ

H(k)-H(k-1) 1-H(k)
120 5.1E-7 5.1E-7 .0012 .0012
119 4,5E-6 5.1E-6
118 2.0E-5 2.5E-5
117 .0001 . 0001 .0069 .0081 °
116 L0001 . 0002
115 .0003 .0006
114 . 0006 .0012 .0224 .0305
113 .0011 .0022
112 .0018 . 0040
111 .0029 .0069 .0511 .0816
110 . 0043 .0112
109 . 0063 .0175
108 .0088 .0263 .0202 L1718
107 .0118 .0382
106 .0155 . 0536
105 .0196 .0733 .1291 .3010
104 .0243 .0975
103 .0292 .1268
102 .0342 .1609 <1545 .4554
101 . 0392 .2001

100 . 0439 L2441

—
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120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100

99

98

97

96

95

Singles

dJ=
H(k)-H(k-1)

SE-11
7E-10
6E-9
3E-8
J4E-7
.5E~7
.0E-6
.0E-6
+4E~-5
.0E-5
.0001
.0002
.0003
.0C05
.0010
.0016
.0025
.0039
. 0057
.0082
.0113
.0152
.0197
.0248
.0304
.0364

W i —

elJ=
1-H(k)

.0001
. 0001
.0003
.0006
.0011
.0021
.0037
.0062
.0101
.0159
.0241
.0354
.0505
.0702
.0950
.1255
.1618

TABLE 5

P = .75

dJ

.0003

.0024

.0100

.0284

. 0604

.1016

.1401

.1615

.1578

Batches of 3

elJ

.0003

.0027

.0127

L0411

.1014

. 2031

.3432

.5047

VooV WN-=O




annually? If an annual series should end without clear resolution,
as indeed it must occasionally according to the current plans what
then? If there is not a clear cause of alarm, there is no need for
alarm.

Consider a decision to limit the annual expenditure to 9
missiles, while extending the reporting period to cover 12 missiles
(the current standard) if uncertainty had not been earlier resolved.
In the worst case (all 12-missile series) reports would occur at 16-
month intervals, or 8 reports in 11 years. Were the JCS to accept
biennial reporting as an (occasional) substitute for annual
reporting, this would be a technically simple solution.




Section 4 (Extract from Reference 17)

A Completely Bayvesian Stopping Algorithm

[This is my suggestion for doing a complete Bayesian] decision theoretic
analysis of the stopping problem. On the basis of the preliminary calculations
described below, I estimate that this approach would reduce the number of units
needed for testing by at least one per year over the savings which may be
attained by using a sequential probability ratio test.

The approach requires the specification of a prior distribution and a
loss structure. I suggest a possible form for these quantities below; but
other choices would yield to similar analyses.

Let p denote the proportion of non-defective items in the population.
Let h; denote a density on the unit interval, 0<p <1; let hp denote the
uniform density on the unit interval; and consider prior densities of the form

(1) g(p) =w hl(p) + (l-w)ho(p),

where 0 < w <1 is a prior parameter. Here h, may be thought of as the
posterior density which resulted from last year's tests, and w is the
proebability that p hasn't changed during the past year. If p has changed,
which it may with probability 1l-w, then it is assumed to be uniformly
distributed over the interval 0 < p <1. ’

Suppose now that one may observe conditionally independent Bernoulli

randon variables Xl""’xk with common success probability p, given p, and let

Sk = Xl+...+Xk

denote the number of successes. Then the posterior distribution of p, given
Xl""’xn is

g,(P) = ¥ hy (p) + (1-w)h((p)

S k-S
hi(p3k,5) = b N(1-p)  “n ()

where h?(p)

and . h?(p)dp=l
&
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Suppose now that a critical level py is given with the following
properties: if p > pp, then the population contains enough good items; if

p < Py, then the populatlon no longer contains enough good itens and
corrective action is desirable; and if p is much less than Po, then corrective
action is necessary. Suppose further that the purpose of each year's test is
to decide whether p < pp or p »>.py; and define one unit of cost to be the cost
of testing one item. Then the decision problem may be modelled as follows:
the possible decisions are 1 to decided that p < pg and 2 to decide that

P > pp; if one decides that p < pg when, in fact, p >pp, then one loses C)
units; and if one decides that p > py, when, in fact, p < pp, then one loses
C2(pp-p) units. Here Cy and Cy are positive constants, C) represents the

cost of inspecting the entire system; and the ratio C;/C; is determined by the
relative importance of the two kinds of erors. .

These three elemnents, the prior distribution, the sampling distributions,
and the loss structure, detexrmine an optimal sampling plan, one which
minimizes the sum of sampling costs and expected loss to due an incorrect
decision. To describe it, first let m denote the maximum number of tests
which oould be conducted in any given year (e.g. m = 12). Next, let

L(k,s) = C3P(p > pglSk=s) + k

and  Lo(k,s) = CoE{max(0,py - p)|Sk = s} + k - -

for k = 0,...,m and possible values of s. Thus L; and Lp denote the
conditional expected losses for the two decisions, given Xj,...,Xx, plus the.
cost of cbseving X3,...,Xx. If k=0, then s = 0 and the expectations are
unconditional. If sampling is teminated after k tests, then it is optimal to

make decision 1 if and only if Ly(k, sk) < La(k, sk), in which the expected loss
due to taminal decision is

’ -
Lo(k,Sx)= min{Lj(k,Sk),L2(k,Sk}.
Let p(k,s) = P(Xx41 = 1 | Sx = s)
for X = 1,...,m1 and possible values of s; and define L by

L(m,s) = Lg(m,s)
and L(k,s) = min {Lg(k,s),

(2) plk,s)L(k+l,s+1) + (1-p(X,s)L(k+l,s)}

for k = 0,...,m1 and possible values of s. Then the optimal sampling plan is
to continue sampling as long as L(X,Sx) < Lg(k,Sx), stopping at time
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t = min{k20:Lp(k,Sy) = L(k,Sk)}.

Here L(¥,s) is the minimum expected loss plus sampling cost among all sampling
plans vhich take at least k obsearvations.

If h is a beta density, then it is possible to compute L; and Ly as sums
of products of - py and (l-pg) times ratios of factorials. 1 can supply the
details, if you are interested. Using these explicit expressions, it is
straightforward to compute L by the backward induction (2); and, once L and
have been computed, it is simple to classify the possible outcomes (k,s) as
stopping points, points for which Lg(k,s) = L{k,s), or continuation points.
Moreover, the stopping points divide thenselves into lower stopping points far
which Lg(k,s) = Lyj(k,s) and upper stopping points for which Lg(k,s) = Lp(k,s).
If the largest (smallest) lower (upper) stopping point is called ay (resp. by),
then

t = min{k>1l: S,<ag ar S‘Z by}

and it is optimal to decide that p < pp if and only if S¢ < at.

The several tables which accompany this letter describe the optimal
sampling plan in a special case in which m = 12, hy is a beta density with
paraneters a = 6 and b = 2, w= 3/4, pg = 3/4, C; = 60, and C3 = 180. Hexre the
ratio C2/C; = 3 eguates the seriousness of deciding that p < pg when p > p
with that of deciding that p > py when pyp - p = 1/3; and the magnitudes of CQ
and Cy were chosen to make it optimal to take up to about 12 observations.

I believe that this is consistent with the power and sample size requirements
discussed earlier. ~ In a certain sense, these values of C) and Cy are
implicit in those reguirements.

Table 1 lists the boundaries a and by of the optimal test. These
boundaries are remarkably insensitive to atb. I got nearly the same values
when a = 9 and b = 3. Table 2 lists an ad hoc modification of the optimal
boundaries which takes account of the economies of testing items in groups of
three. Table 3 gives the posterior probability that p > pg for each possible
odutcome, using the adhoc boundaries. It clearly exhibits the following
gualitative feature of the test: if the results of the first six tests this
year are consistent with last year's results, then further testing is not
optimal. Table 4 gives the freguentist properties of the adhoc test, the power
function and expected sample size as a function of p. Observe that the maximum
expected sample size is substantially smaller than that of the adhoc test; and
recall the crucial role of the maximum in detemining the number of items which
must be purchased for testing.




TABLE 1: AN OPTIMAL BOUNDARY

Design Parameters: m=k, a=1, b=2, w=3/4, p=3/4, Cl=60, C2=180

k ak bk
1 - -
2 0 2
3 0 3
4 1 4
) 2 4
6 2 5
7 3 6
8 4 6
9 5 7
10 5 7
11 6 8
12 7 8

TABLE #2: A MODIFIED BOUNDARY

k ak bk
1 - -
2 - -
3 0 3
4 0 4
5 0 5
6 1 5
7 2 6
8 3 6
9 4 7
10 5 7
11 6 8
12 7 8

TABLE #3: POSSIBLE OUTCOMES WITH MODIFIED BOUNDARY

k Sk P(p= po)
3 0 .0251
6 1 .0084
6 2 .0507
7 3 .0813
8 4 .1211
9 5 .1634
11 6 .1185
12 7 .1546
12 8 .3111
10 7 .4543
8 6 .5183
6 5 .6517
3 3 . 7450




TABLE #4: FREQUENTIST PROPERTIES

2 BETA MEAN VAR
.05 . 9999 3.4575 1.281
.1 .999 3.8288 2.4702
.15 .9983 4.4161 3.5485
.2 .9903 4.8134 4.5345
.25 .9788 5.4154 5.43
.3 . 9582 5.8102 6.2305
.35 . 9244 6.3797 6.8348
.40 .8728 6.7887 7.559

<45 .8V00 7.1384 8.1442




Comments by DW:

With this note Woodroofe completes the transition from Wald's
classic treatment to a Bayesian approach. The use of a prior
probability which is a mix of two hypotheses is in part an attempt to
address the criticism that priors can become too sharply peaked,
neglecting the potential staleness of old data. One might still ask

whether there should be an upper limit to the value of k used in the
prior.

The loss functions included in this section are representative,
rather than my recommendation. The variable called po in the
functions L1 and L2 could have different values in the two cases.




Chapter V
Other Stopping Criteria

A possible argument for small test sizes may arise after all
missiles have been bought: any test reduces the potential tactical
inventory. The decision criterion is unfortunately not unique. This

chapter discusses a few examples.
Section 1. Utility as a Criterion

Let 4>(PB 5.£§5T> be the posterior probability distribution
of p, given s "equivalent" successes and f "equivalent" failures on
which to base a prediction. Let U (N,p) be the "utility" of an

inventory of N missiles of reliability p. The estimate of the
utility of the inventory is then

LNy = O, & (pys, D dp

Now perform a test: N goes to N-1; with probability p,
s .goes to s+l; and with probability 1-p, f goes to f+l.

After the test the utiligy is
U (ni- ) = S\)(N-\s F\\fd’ (p-,w, £) <+ (:-p@(\ags)%)‘_\_ép.
The criterion is: Is U(N-1)>U(N)?
Examples of utility functions are:
Np (expected targets killed);
-Np(1l-p) (uncertainty is reduced);

N-T/P (excess inventory, where T is size of critical
target list);

T(] - (l - P)N/T] (expected damage);

- (- \)

—r[( (\ Q?)(\‘P) :‘ (b=largest integer in N/T; a=N/T-b is the
fractional part; this reduces to Np for small N, goes to expected
damage for large N).

Clearly there is a similarity between this method and that in
Secion 4 of the previous chapter.

Section 2. Information as & Criterion

Another criterion would be the information the decision maker
gains from the test about the posterior distribution of p. This
would be applicable when no single utility function can be agreed on.
An example is the Kullback-Leibler information measure on two
probability density functions




Fl and fZ (Reference 18): (
)
INGRCOERANOREN- Z P

It can be applied to the current problem by defining Fl and F2
respectively as the posterior and prior density functions for p.

Shannon's information measure S(F1,F2) is the expectation value of
I(F1,F2) over the observed values of success and failures.

To illustrate, we may identify F2 with expression 1.6 from
Chapter I:
S, -\ L -1
AOEEA I VA YONS

and Fl1 with expression 1.8:

+S. -1 L+ fo-
F\ (?): ?S' S\’ <'- PX\‘\- ‘/B(S;tgl)"'\'(" ‘(t)

so that log F1/F2 is
Ep g J0GendPEIN Y] svy, Y"-\
S LTy - NN RAN (-]

= c_* S,_Qos ?-\- ‘g; QOBG’ FB

where C is the logarithm of the gamma~function combination in curly
braces, all independent of p. Noting that

5 Cospéo -2 \x ey
e

S
and letting LF(; P(z) 3 the logarithmic derivative of the
gamma function, the expression for I(Fl,F2) reduces to
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Consider now the case where s2=n2=1 (a single successful trial),
_ LI +n)-V(its i
Tz g2 E&P(/ N-W(es).

In the alternative case wher S2=0,n2=1 (a single unsuccessful trial)

T =l 2 - { & () Y (e R

Then

an—

and the Shannon information is S, ‘L$+ ;|TF {
— ~S

= — ¢
As this never goes to zero (for finite nl), the cost of this
information must be balanced against the use made of it.

LR ]

1 have not yet found a way to apply this criterion to the
Pershing testing problem.




Chapter VI
Conclusion

I return now to the tasking from the Under Secretary of the
Army, as given in the opening of this memorandum. The mathematical
methods of sequential analysis proposed here for estimating
reliability changes possess a rigor not found in the Army's current
method, and make clear the risks in following their prescription.
They provide a basis for reducing the size of an annual test and so
reducing too the cost of a testing program. Indeed, they even
challenge the need for an annual report, and suggest that the
interval between reports can be enlarged (e.g., to two years) with no
increase in risk to management. They do not, however, encompass a
variety of other issues which are fundamentally operational in
nature: firings to support training, alternate uses of inventory,
system life. These must be the subject of further investigation.

Readers of this report may be disappointed that such very
different approaches to the stopping problem have been presented in
the foregoing chapters. I observe that such a seemingly simple
problem has apparently not been hitherto subject to the scrutiny it
deserves, and that it is comforting that two separate investigations
have reached similar conclusions.

] see ultimately more promise in the methods proposed in Chapter
IV, but would recommend that those of Chapters III and IV be applied «~-
to Pershing using the best available data so that a refined test
program can be determined. In Chapter III is proposed the
application, as yet unexplored, of Kalman filtering techniques to
this problem. This research merits monitoring, if not support.
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Appendix D

HP-41 Programs

The HP-41 handheld calculator is slow but remarkably powerful.
For example, a program listing for the standard Fast Fourier
Transform (FFT) algorithm is no lengthier than that for a FORTRAN
version and because of some quirks of the HP-41, the program is in
some ways more efficient. With a 56-bit word, numerical accuracy is
higher than in most personal computers, and so round-off problems are
slower to arise.

Reported in this appendix are a set of programs written for this
study. Their original purposes were to give or to verify solutions,
but they have two additional values justifying their inclusion here:
they demonstrate that the mathematics called upon is not intractible
and can be packaged small, and they may be useful as is to others
working the same or related problems.

The first group provde solutions to Equations 1.9 and 1.11 and
thus can be considered a proper means of getting the answers wrongly
sought via Fishei's Exact Test. The versions given are lengthy but
are relatively robust to the accumulation of round-off errors.
Included is the program PII, written to be a model for and to verify
calculations of Singpurwalla and Launer.

The second group provide handy means of exploring Woodroofe's
treatment of sequential analysis. ET provide solutions to Equations
1 and 2 of Chapter III, Sec 1. BND provides Wald's and Woodroofe's
boundaries of the region of test continuation; and MW perrits
computation of a number of properties of a test plan defined by BND.
LOP computes boundaries using the Bayesian method of Chapter III,
Sec. 4.

Net included is a package of routines which manipulate truncated
Taylor series and was used to compute the expansion of D(n,m) given
in Eq 4.4. This is available from the author.

The memory requirements of an HP-41CV or CX are needed, and if
it is not the CX version, then an Extended Functions module (XF) with
its Expanded Memory. The occasional use of Synthetic Programming can
be circumscribed, or if the programs are identical to those listed
here, they should run on any version of the HP-41 with adequate
memory and the XF module.




JCS+ - Implements Eq.1.9 and DA+ Eq.l.1ll.

They call for inputs and report the value of the integral as
"CL=" for Confidence Level. The plus sign means there are no
subtractions in the algorithm, hence less round-off error.

PII Implements Eqs.4-6 of Section III.3.

Entering at LBL A leads to an evaluation of «/ and at LBL® to
evaluation of . Lines 51-62 clear a block of registers, using
program BC in a module called PPC ROM. This can be replaced by
ordinary coding. If Flag 02 is set, then the summation sign in Eq.4
or 5 is ignored; only a single term is considered. Subroutines 1, 2,
and 13 are the core of algorithm.

ET

Solves Eqs. 1 and 2 of Section IV.1.

i :
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Calls for N, c, and p (unadjusted values will be used as is).

Memory utilization keyed to that in MW: N, ¢, and p in same
registers,

MW

Requires two files in Extended Memory named Am and Bm where m is
a number provided in response to query "FILE#?" or is already stored
in register 19. (Routine BND may have been used to create these
files.)

Start program at line 1 or at LBL E; line one to provide/revise
the value of N, the maximum number of tests. At E, provide "p" and
"FILE#." 1If RAD-DEG selection set to RAD, program computes and
reports G(k) as required by Section IV.3; if set to DEG, this is

ignored.

Program reports (p), E(t), and a (p) (which in effect
interchanges meaning of "reliable™ and "unreliable’). Sect IV.1.




- LBL B produces output stating "bi/i = cumulative probability of
sufficient failures to halt." Accumulates probability of exit
passing clockwise around boundary., If there are several points on
boundary at N=N max, then these are labeled F. Then program
continues along "a" boundary.

LBL C does the same as LBL B but counterclockwise.
LOP

To meet the goals of Section IV,4, Computes the boundary
conditions for continued testing, based on the loss functions L1 and
L2 (which can have associated with them different criteria Pl and P2,
as well as cost factors Cl and C2).

Program invites all necessary input insertion/revision/
verification, and then constructs a diagram cf the operating space,
To conserve space this pattern is stored as packed binary data (a la
flags). LBL J provides a visualization of this pattern, for display
or printing (see figures below). This algorithm has also been run on
a Commodore for verification.

Routines 6 and 7 support generation of loss functions L, and Lj
If others are chosen, these must be rewritten along with some of
Routine 2 (lines 57-100).

BND

Develops the boundaries to be used in MW, by Wald's and
Woodroofe's methods. Input called for: PO, Pl, a, and b (later, m).

O<PO<KP1< 1. Level of test = a. Probability of Type II error = b
(P=2 Pl1). Ho: p<po. (Sectionm IV.2). M is number of tests.

Lines 1-85: Wald's methods, an' and bn' reported out,
86-156: Woodroofe's modification.
157-END: Subroutine E., Calls for a file number k; then stores
Woodroofe's boundary numbers an and b in files
AKX and BK. If Flag 25 is clear to start, program
halts if attempt is made to overwrite existing file.
Set the Flag to permit overwriting.
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Appendix E

The appendices to Chapter III.




APPENDIX A
An Algorithm, A Computer Code, and A User's Guide, for

a Bayesian Binomial Hypothesis Testing Procedure

A.l1. INTRODUCTION
In the Bayesian binomial hypothesis testing procedure, we need

to find the pair (nt,xt) such that [see Equations (4) and (5)]:

1 x* ,
t [n, 3 n, -j .
/ g R (1r- pt) g(pt)dpt < a
0 J“O ]
and
1 =¥ ¢ .
© Pt i Re=d
f ) t (pt-A) (l-pt+A) g(pt)dpt 2 1-8,
120 |
A J
where

_ T'(y+8) y-1 8-1
8(Pt) = F(Y)F(é) pt (l - pt) .

The above inequalities can be rewritten as:

x* 1 .
t [n T(J+Y)T(n _~3j+6)
_ I'(y+®) t t
SN (HONR [ TG +7+0) B
x: ( .
T(y+8) "t N L PR B
g (x*,n ) = ——L2_ At ¥ % []A (-1)
2\ XP 0, T(Y)T(S) 120 u’] WL 2
' (9A)

nt-j nt-j -m
. ™ A B(A,1; 2+, mtd) z 1-8 ’

18




19

where

1
_ r-1 s-1
B(Ay]-’ r,S) = / Pt (l Pt) dpt -
A
A computer code designed to obtain the smallest values of n. s
x: subject to the two inequalities (BA) and (9A), based on an enumera-

tion procedure discussed next, is obtained.

A.2 DESCRIPTION OF THE ENUMERATION PROCEDURE

The enumeration procedure exploits the fact that both gl(xt,nt)
and gZ(Xt’nt) are increasing functions of X, if n, is fixed. The
procedure starts with some initial value of n, , say ng , and finds
the largest X, such that gl(xt,ng) < a . Once such an X, » say xg R
is found, it is guaranteed that the first inequality will be satisfied
for values of X, smaller than xg . The procedure then tries to -~ -
find an X, smaller than xg such that gZ(Xt’nt) 21~8 . If such
an  x, does not exist, the value of nt is increased by one and the
procedure starts all over again. As n, increases, the procedure finds
the smallest values of n, and X, satisfying both inequalities. The

flow chart for this eaumeration procedure is presented in Figure A.l.

A.3 THE COMPUTER CODE
The program requires certain JCL cards and a user input of some

parameters.
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Figure A.1l. Flow chart for
d ti
Initialize NT | enuneration
- |
A XT =0
v
Compute gy .

| XT = XT+1 s

NT = NT+1
XT = XT-1
A
0>
Y
20
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Compute g, e

= XT-1 |- Compute g3

Write XT,NT b—ed XT = XT+]l e




A.3.1 Input Specifications

The cards should be arranged in accordance with Figure A.2; each

card will be explained individually.

Job Card and JCL Cards: The standard job card is used and so are

the following JCL cards:
//BEXECBFORG2
//FORT.SYSINBDD
//GO.SYSLIBBDD
//BBpBBODEPYBDSN=GWU . IMSL .V9.DLOAD,DISP=SHR
//GO.SYSINBEYBODBBEL*
where the character "P" indicates a blank space. The first two JCL
cards immediately follow the job card. The remaining JCL cards are
placed after the program and just before the input information card.
The fourth JCL card is needed to use the IMSL subroutines on an IBM

machine.

Input Information Card--DEL, SGM, SDEL, ALF, BETA, NT: This card

contains sorted input information, DEL, SGM, and SDEL, which are the
parameters A, vy, and &6 in Equations (8A) and (9A); ALF aqd BETA are
the right-hand side parameters a and B in these inequalities. These
parameters are specified in format F10.5. The input NT is the initial

value of nt selected, and is in I4 format. Usually, this value is one.
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/1l

Input Information Card \\

/

JCL Cards

Program

JCL Cards

Job Card

Figure A.2, Card deck structure.

A.3.2 TInterpretation of Output

The program uses an iterative scheme and evaluates gl(xt,nt)

and g,(x ,n ) for different values of x  adn n . On the output,

the values of gl(xt,nt) and gz(xt,nt) are printed as

FIRST CONST =
SECOND CONST =

for different values of X, and n,

The solution of the problem, that is, the smallest values of xt

and n, satisfying the inequalities (8A) and (9A), are printed in the
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last line of the output as
X = N =
Sample ocutput is presented in Table A.l.
The smallest values of x, and n satisfying the inegqual’ties
(8A) and (9A) are X =10 and N =15 . In this example, the values
of the parameters are A =0.25, y=106 , § =19 , a = 0.10 , and

B =0.25 . The initial value of nt is one.

The listing of the program is given in Appendix B.




TABLE A.1

Sample Output

FIRST
FIRST
FIRST
FIRST
FIRST
FIRST
£ IKST
FIRST
Fraen

a0

TeCOoND ZON3T=

FTRST £N{ST=
FIRST CJN¥ST=
TIKST CONST=
FIRST CJONST=
CIRST C)N3T=
TIFST T)4sT=
TIPSP COUAT=
STRST 2Y43T=
FIRST C©I837=
TIRST CONST=
STCOLND Ti3T=
TTRST 1J43T=
FTAST CHN3T=
FIRIT CIY3T=
FIRST COU3T=
FI2ST CONST=
FIRST ©T)isT=
TIPSD CHNSl=
FTRST TON3T=
FIRST Zow5T=
FIRST CIu3T=
FTRST CONST=
IICOND ZINST=
TIPST TUNST=
FIRST CIYiST=
FIXST CJi3T=
FIRST 2J.4ST=
FIRST CONIT=
FTRST COV5T=
FTRSY CO%3T=
FIRS! CIN3T=
FIPSI Z2)i¥3™=
FINST CUI3T=
FIRI] ZINS™=
FILS: C)¥s3T=
Z7COUD CIMSY
TECHID CING

v = 13'

CONST=
CINST=
CriST=
CONST=
CONST=
CONST=
CONST=
CON3T=
CON3T=

Y. 29022
DI Re TV RS
).
220572
2.322139
)eJ2133
Te2073A
Jel 3140
J.13522
3«3527
b oty e ks
I R o I o]
TN
Y.20001
J«JJ2)5
LS N |
1.332L5
e 1137
Je2U4370
Y.132-70

IPEEEEE

22700
TetL07
J.J2203
Y227
Y.203°2
)«J3212
e D07
Jeduln
Y. NVY1T717
Je 73357
71416275

Je71438

JedBNG

« 20000
3.J0232)
Je 0200
2.20257
J¢JJJD4

e Te Bl
PR B S

332101
J.3J545
el 2032
NL,NT5TN
>.12317

.o 787EUL
e 332772

AIR)
- 4

¢ o o & o o
3OO DO DD

~

P DN E WY a0
d e

DO DD IO Do

S e
el B I
i
1 ] ® ) [ ] L ] [ ] L] L)
QM
)

O L ~NMNE W=

~:
1]
.

(8]

e
)

~

(LI TR T I I I T

[P BRI

Y
L]

-1 2 A ¢ M .
ram™ .4 4 13
® * o o LI )

S

R RV TRNT | I~ PVIN O [N

he |
.

LU L O 1 N N I T | I [

- oo
[ ]

< < T
D DD DO OO O

-
(]

- ¢

DD DLODO QO

"
.
9]

> > b e
R e R e R |
T TR I e T

_;-A(_)QC.,Q'?\J\J:“J\)_A-.J
W D e o s & 9o e & 8 @
e ) H ¢ DD

LI g

Pl

A SRR}

R A [ [ L | B |

&

£
R R R N I

PP

12
12
12
12
12
12
12
12
12
12
13
13
13
13
13
13
13
13
13
13
13
14
14
14
14
14
14
14
14
14
14
14
14
15
15
15
15
15
15

15
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Lim=1,5
\"TEST
// EXEC FORX2
//FORT.SYSIN DD *
IMPLICIT REAL%8 (A-H,0-2)
INTEGER |ER
READ (5,10) DEL,SGM,SDEL,ALF,BETA,NT
10 FORMAT (5F10.5,14)
BET=1.0-BETA
X1=DEL
X2=1.0
C WE START THE ALGORITHM BY INITIATING XT AS ZERO
Wi=SGM
W2=SDEL
A=W
B1=W2
CALL FACT)(A),B1,SON)
W=SON
1} XT=0.0
WNT=NT
Wh=WNT+SDEL
TA1=SGM
TB1=W
CALL FACT2(TA1,TB1,TERS)
PAR=TERS
COI=W*PAR
C THIS 1S THE VALUE WHEN XT IS ZERO
C NOW WE COMPUTE THE VALUE 61 WHEN XT 1S OTHER THAN ZERO.
301 (XT=XT
TOT=C0]
IF (XT.EQ.0.0) GO TO 1001
DO 1000 I=1,IXT
Ri=)
Pl=Wi+R|
P2=WL-RI
TAl=P1
TB1=P2
CALL FACT2(TA1,TB},TERS)
P3=WNT+1.0
PL=P3-R|
PS=R1+1.0
I=(DGAMMA (P3)) / ((DGAMMA (PL) ) % (DGAMMA (P5)))
P=TERS
TOT=TOT+ (PXZ%W)
1000 CONTINUE
1001 G1=TOT
WRITE (6,60) G1,XT,NT
60 FORMAT (5X,'FIRST CONST=',F10.5,5X, 'XT=' F5.1,5X, 'NT="', L)
C SO WE COMPUTED THE VALUE OF FIRST CONSTRAINT
1F(G1.GT.ALF) GO TO 333
IF(XT.EQ.NT) GO TO 380
XT=XT+1.0
GO TO 301
333 XT=XT-1.0
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IF(XT.LT.0.0) GO TO 999

C OTHERWISE WE GO AND CALCULATE G2

380
C NOW

Ww=Wi (DEL**WNT)
COMPUTE THE VALUE WHEN XT IS ZERO,THAT 1S J IS ZERO.

C WHEN J IS ZERO L IS ZERO
C WHEN J 1S ZERO,M GOES FROM ZERO TO NT AND L IS ALWAYS ZERO IN THIS CASE
C FIRST CONSIDER THE CASE WHERE WHEN M (S ZERO

C NOW

1500

A=W

B=W2

TAI=W1

TB1=W2

CALL FACT2(TA),TB1,TERS)
CALL MDBETA(X1,A,B,P1,1ER)
CALL MDBETA(X2,A,B,P2,IER)
Y=TERS

VALO= (P2-P1) %Y

SUM=VALO

CONSIDER THE CASES WHERE M 1S ONE TO NT.
DO 1500 M=1,NT

A=W

BM=M

BMI=WNT+1.0
BM2=WNT-BM+1.0

BM3=BM+1.0
BMCOM=DGAMMA (BM1) / ((DGAMMA (BM2) ) * (DGAMMA (BM3)))
BFAC= (DEL%* (-BM) ) *BMCOM
B=W2+BM

TA=W]

TB1=B

CALL FACT2(TA1,TB1,TERS)
CALL MDBETA(X1,A,B,P1,ER)
CALL MDBETA(X2,A,B,P2,1ER)
Y=TERS

VAL= (P2-P1) *YABFAC
SUM=SUM+VAL

CONTINUE

IXT=XT

RJSUM=SUM

C IF XT IS ZERO WE HAVE ONLY THE ABOVE TERM

VF (XT.EQ.0.0) GO TO 2001
DO 2000 J=1,JXT

C THIS 1S THE MOST OUTER SUM

C NOW

RJ=J

RJ1=WNT+1,0

RJ2=WNT=-RJ+1.0

RJ3=RJ+1.0

COMBJ= (DGAMMA (RJ1) ) / ((DGAMMA (RJ2)) * (DGAMMA (RJ3)))

L IS FROM ZEROC TO J.AGAIN CONSIDER THE CASE WHERE L 1S ZERO
LP=(~1) k%)

PL=LP

C NOTE WHEN L 1S ZERO M GOES FROM ZERO TO NT-J

LIL=NT~J
1F(LJL.EQ.0) GO TO 2101
D0 2100 M=i,LJL
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RRM=M
RRMI1=WNT-RJ+1.0
RRM2=WNT-RJ-RRM+1.0
RRM3=RRM+1.,0
RCOM= (DGAMMA (RRM1) ) / ( (DGAMMA (RRM2) ) # (DGAMMA (RRM3)))
FFAC= (DEL** (~RRM) ) XRCOM
A=SGM
B=RRM+SDEL
TAI=A
TB1=B
CALL FACT2(TA1,TB1Y,TERS)
CALL .MDBETA(X1,A,B,P1,IER)
CALL MDBETA(X2,A,B,P2,1ER)
Y=TERS
VALM= (P2-P1) *FFACHY
VALO=VALD+VALM
2100 CONTINUE
210) RLSUM=VALO*PL
C THIS 1S THE VALUE WHEN L 1S ZERD
C NOW WE WANT TO CONSIDER L FROM 1 TO J.THIS 1S THE SECOND SUM
DO 2500 L=1,J
RL=L
RL1=RJ-RL+1.0
RL2=RL+1.0
COMBL= (BGAMMA (RJ3) )/ ((DGAMMA (RL 1)) * (DGAMMA (RL2)))
LPL=(-1) %% (J-L)
FLP=LPL
POWER=DEL** (-RL)
FACL=FLP#COMBL*POWER
C NOW SHOULD CONSIDER M LOOP AGAIN.NOW M |S FROM ZERO TO NT-J FOR GIVEN L
C START WITH MIS ZERO
A=RL+SGM
B=SDEL
CALL MDBETA(X1,A,B,P1,(ER)
CALL MDBETA(X2,A,B,P2,IER)
TAl=A
TB1=B
CALL FACT2(TA),TB1,TERS)
Y=TERS
VAL= (P2-P1) *Y
RMSUM=VAL
LL=NT-J
IF(LL.EQ.0Y GO TO 3001
DO 3000 M=1,LL
RM=M
RM1=sWNT-RJ+1.0
RM2=WNT-RJ-RM+1.0
RM3=RM+1.0
COMBM= (DGAMMA (RM1)) / ((DGAMMA (RM2)) ® (DGAMMA (RM3)))
FACM= (DEL*% (-RM)) % (COMBM)
A=RL+SGM
B=RM+SDEL
CALL MDBETA(X),A,B,P1,I1ER)
CALL MDBETA(X2,A,B,P2,IER)
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TAI=A
TB1=B
CALL FACT2(TA1,TB1,TERS)
Y=TERS
VAL= (P2-P1) XF ACM#Y
RMSUM=RMSUM+VAL
3000 CONTINUE
3001 RRSUM=RMSUM
C THE MOST INNER LOOP 1S FINISHED.
RLSUM= (FACLZRRSUM) +RLSUM
C THIS IS THE SUM FOR L LOOP
2500 CONTINUE
C L LOOP IS FINISHED
C NOW FINISH J LOOP.THE MOST OUTER LOQOP.
RJSUM= (COMBJ*XRLSUM) +RJISUM
2000 CONTINUE
C SO WE EVALUATED G2.
2001 G2=RJSUM*WW
WRITE(6,61) G2,XT,NT -
61 FORMAT (5X, 'SECOND CONST=',F10.5,5X,'XT=',F5.1,5X, 'NT=', kL)
1F(G2.LT.BET) GO TO 999
777 1F(XT.LT.1.0) GO TO 888
XT=XT~1.0
C CHECK G2 AGAIN.
Ww=Ws (DELX*WNT)

C NOW COMPUTE THE VALUE WHEN XT IS ZERO,THAT IS J IS ZERO.
C WHEN J 1S ZERO L IS ZERO.
C WHEN J IS ZERO,M GOES FROM ZERO TO NT AND L IS ALWAYS ZERO IN THIS CASE
C FIRST CONSIDER THE CASE WHERE WHEN M IS ZERD
A=W
B=w2

CALL MDBETA(X1,A,B,P1,I1ER)
CALL MDBETA(X2,A,B,P2,|ER)
TAl=A
TB1=8
CALL FACT2(TA1,TB1,TERS)
Y=TERS
VALO= (P2-P1) &Y
SUM=VALO

C NOW CONSIDER THE CASES WHERE M IS ONE TO NT.
DO 1501 M=1,NT
A=W
BM=M
BMI=WNT+1.0
BM2=WNT-BM+1.0
BM3=BM+1.0
BMCOM=DGAMMA (BM1) / ((DGAMMA (BM2) ) * (DGAMMA (BM3)))
BFAC= (DEL*% (-BM)) *BMCOM
B=W2+BM
TAl=A
TB1=B
CALL FACT2(TA1,TB1,TERS)
CALL MDBETA(X1,A,B,P1,IER)
CALL MDBETA(X2,A,B,P2,IER)
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Y=TERS
VAL= (P2-P1) *YABFA(
SUM=SUM+VAL
1501 CONTINUE
JXT=XT
RJSUM=SUM
C IF XT 1S ZERO WE HAVE ONLY THE ABOVE TERM
IF(XT.EQ.0.0) GO TO 2011
DO 5000 J=1,JXT
C THIS 1S THE MOST OUTER SUM
RJ=J
RJ1=WNT+1.0
RJ2=WNT-RJ+1.0
RJ3=RJ+1.0
COMBJ= (DGAMMA (RJ1)) / ((DGAMMA (RJ2)) % (DGAMMA (RJ3)))
C NOW L IS FROM ZERO TO J.AGAIN CONSIDER THE CASE WHERE L IS ZERO
LP= (-1) #*%
PLe=LP
C NOTE WHEN L 1S ZERO M GOES FROM ZERO TO NT-J
LJL=NT-J
1F(LJL.EQ.O) GO TO 2102
D0 2105 M=1,LJL
RRM=M
RRM1=WNT-RJ+1.0
RRM2=WNT-RJ-RRM+1.0
RRM3=RRM+1.0
RCOM= :DGAMMA (RRM1)) / ((DGAMMA (RRM2) ) * (DGAMMA (RRM3)))
FFAC= (DEL** (-RRM) ) *RCOM
A=SGM
B=RRM+SDEL
CALL MDBETA(X1,A,B,P1,IER)
CALL MDBETA(X2,A,B,P2,IER)
TAI=A
TB1=8
CALL FACT2(TA),TB1,TERS)
Y=TERS
VALM= (P2-P1) *FFACHKY
VALO=VALO+VALM
2105 CONTINUE
2102 RLSUM=VALO%PL
C THIS 1S THE VALUE WHEN L IS ZERO
C NOW WANT TO CONSIDER L FROM ) TO J. THIS IS THE SECOND SUM
DO 250) L=i},J
RL=L
RLI=RJ-RL+1.0
RL2=RL+1.0
COMBL= (DGAMMA (RJ3)) / ((DGAMMA (RL1)) * (DGAMMA (RL2)))
LPL= (=1) k% (J-L
FLP=LPL ’
POWER=DEL*% (-RL)
FACL=FLPXCOMBL*POWER
C NOW SHOULD CONSIDER M LOOP AGAIN.NOW M IS FROM ZERO TO NT-J FOR GIVEN L
C START WITH MIS ZERO.
A=RL+SGM
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B=SDfL
CALL MDBETA(X1,A,B,P1,IER)
CALL MDBETA(X2,A,B,P2,IER)
TAI=A
TBi=B
CALL FACT2(TA),TB),TERS)
Y=TERS
VAL= (P2-P1) &Y
RMSUM=VAL
LL=NT-J
1F(LL.EQ.0) GO TO LOOM
DO 4LOOO M=1,LL
RM=M
RMI=WNT-RJ+1.0
RM2=WNT-RJ-RM+1.0
RM3=RM+1.0
COMBM= (DGAMMA (RM1)) / ( (DGAMMA (RM2) ) * (DGAMMA (RM3)))
FACM= (DEL*% (-RM) ) * (COMBM)
A=RL+SGM
B=RM+SDEL
CALL MDBETA(X1,A,B,P1,IER)
CALL MDBETA(X2,A,B,P2,I1ER)
TAI1=A
TB1=B
CALL FACT2(TA1,TB!,TERS)
Y=TERS
VAL= (P2-P1) ®F ACMKY
RMSUM=RMSUM+VAL
LOOO CONTINUE
LOO1 RRSUM=RMSUM
C THE MOST INNER LOOP IS FINISHED.
RLSUM= (FACL%RRSUM)+RLSUM
€ THIS 1S THE SUM FOR L LOOP
2501 CONTINUE
C L LOOP 1S FINISHED.
C NOW FINISH J LOOP. THE MOST OUTER LOOP.
RJSUM= (COMBJ®RLSUM) +RJSUM
5000 CONTINUE
€ SO WE EVALUATED G2.
2011 G2=RJSUM#WW
WRITE (6,62) G2,XT,NT
62 FORMAT (5X, 'SECOND CONST='F10.5,5X%,'XT=',F5.1,5X, 'NT="', |4)
C CHECK G2 NOW
IF(G2.GE.BET) GO TO 777
XT=XT+1.0
GO To 888
999 NT=NT+)
GO TO 1
888 WRITE (6,555) XT,NT
§55 FORMAT (10X, 'X=',F10.5,5X, 'N="',1L)
STOP
END
SUBROUTINE FACT) (A),B),SON)
IMPLICIT REAL*8 (A-H,0-2)
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C=A1+81
IF-(AV.LE.57.0.AND.C.LE.57.0) GO TO L)
Ci=C-1.0
A2=A1-1.0
B2=B1-1.0
C2=A2+B2
1B=A2+1.0
1C=C2
PAY=C]
DO L2 I=IB,IC
Zi=|
PAY=PAYZ|
L2 CONTINUE
PAYDA=1.0
JA=B2
DO 43 J=1,JA
Vi=J
PAYDA=PAYDA%VY
43 CONTINUE
SON=PAY/PAYDA
GO TO 45
L1 SON=DGAMMA (C)/ ((DGAMMA (A1}) * (DGAMMA(B1)))
L5 CONTINUE
RETURN
END
SUBROUTINE FACT2(TA1,TB1,TERS)
IMPLICIT REAL*B (A-H,0-2)
C=TA1+TB!
)F (TA).LE.57.0.AND.C.LE.57.0) GO TO 71
C1=C-1.0
A2=TA1-1.0
B2=TB1-1.0
C2=A2+8B2
1B=A2+1.0
1C=C2
PAY=C]
DO 72 I=i(B,IC
Zi=|
PAY=PAYXZ |
72 CONTINUE
PAYDA=1.0
JA=B2
DO 73 J=1,JA
Vi=J
PAYDA=PAYDAXVJ
73 CONTINUE
TERS=PAYDA/PAY
GO TO 75
71 TERS=((DGAMMA (TA1)) * (DGAMMA (TB1))) / (DGAMMA (C))
75 CONTINUE
RETURN
END
//G0.SYSLIB DD
// 0D DSN=GWU. IMSL.V9.DLOAD,DISP=SHR
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//GO.SYSIN DD x
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Cc.1.

reject

We illustrate this for Stage 0. Here x* =5, n

APPENDIX C
Illustrative Calculation of Expected Sample

Sizes for Curtailed Sequential Sampling

THE CASE OF TESTING ONE ITEM AT A TIME

3 t

We must have either 6 successes to accept, or 12 failures to

P[nt—6[pt] = [5] p, = 0.015625
Pln.=7]p.] = |8] p8(1-p.) = 0.046875

t t 54 Tt t '

_ _ (7 6, N2 _
P[nt—BIpt] = {5] P, (1-p) 0.0820312
Pln_=9|p.] = p6(l-p )" = 0.109375

t t t '

_ - (9] 6., . \6 _
P[nt—lolpt] = 5] p.(1-p,) 0.1230469

_ _ {10} 6 5 _
P[nt—lllpt] = |5 | pe(1-p,)7 = 0.1230469

P[nt=12lpt] 11

~~
[ )
[}
o
~
+

P[nt=13|pt] 11

2

n
——— — f‘—: — —— w o
—

P[nt=}élpt]

34

Po(1-p )0 + {11) (l—pt)12'= 0.1136371
[12) pt(l-pt)lz = 0.0968018

p_(l-p ) + [ii) pt(l-pt)12 = 0.083313
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14) _6 9 . {14} 3 12
Pln, lSIpt] [5) P (1-p.)" + (11) P, (1-p,) 0.0722046

— _ [1sy 6, 10 _ {15} 4 . 412
Ping 16[p,] [5] P (1-p )7 + [11) p,(1-p,) 0.0666504

: _ [} 6, 11", [16]) 5., _ 12 _
P[nt=17{pt] = [5] pt(l pt) + [11] pt(l pt) 0.0666504

To obtain P[nt=j] , §=6,7,...,17, we average out the above by

using g(pt!-) . At Stage 0, y=1, &§=1.

. _T(YHOT(S _
P(nt-6] = T8 0.1428571

oy _ o T(y#6)T(84+1)
PIng=7) = & —Tryx5)

= 0.1071429

21 T(+6)T(642) 0.083333

pln.=8] = T (y+3+48)

pln =9] = 56 T(F?glgigj3) = 0.0666667

pln =10] = 126 r(%?ﬁlgifg?) = 0.0545455

pln =11] = 252 7(¥;$lgii1§) = 0.0454545

pln,=12] = 402 LOREILOR) , TOOTLED) - o 1103896

pln =13] = 792 r‘%{ﬁigii;;) + 12 r<¥?¢12ii;§2) = 0.0989011

pln =14] = 1287 r(gzﬁlgifzg) + 78 r‘;:iigii:}z) = 0.0857143
pln =15] = 2002 r‘};ﬁlgii;?’ + 364 r(gtslgiigiz) = 0.075
pln,=16] = 3003 r<¥;§1§i§:§0) + 1365 r<}:¢l§i§:§2) = 0.066176
pln =17] = 4368 r(}tsigif;il) + 4368 r(;riigii;iz) = 0.0588235

E[nt] = 10.91 .
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C.2. THE CASE OF TESTING IN BATCHES OF SIZE 3

Stage 0
P, = 0.5 (l-pt) = 0.5
xg =5 n, = 17

We must have either 6 successes to accept or 12 failures to reject.

Thus, ntc{6,9,12,15.18}

6 6
p[nt = 6!pt] = (6) P, = 0.015625

ol _ (6} 6, 7\ 6, |2 8) 6,. 3 _
pln, =2ip ] [5} P, (1-p.) + {5] P, (1-p )" + || P (1-p )" = 0.2382812
9} 6 4 10
pln =12lp 1 = [ } p.(1-p. ) + [ } 6, \5 (11 6,. 6
t t 5 Tt t 5 pt(l pt) + 1 pt(l pt)
+ ig] (1-pt)12 = 0.344482¢4
B
_ _ 12} 6 7 (13} 6, .8 (14} 6, 9
p[nt-l5lpt] = 5} pt(l-pt) + [5} pt(l pt) + {5) pt(l pc)
(12 12 13} 2 12 14} 3 12
+ 11 pt(l-pt) + 11 pt(l-pt) + 1 pt(l-pt) = 0.2536621
- B} 15} 5 10 . (15} 4, 11 _
p[nc—18]pt] = (15’ pt(l—p ) + [4} pt(l pt) 0.1333008
Stage 1

p, = 0.875 (1-p.) = 0.125

x: =9 n = 13

We must have either 10 successes to accept or 4 failures to reject.

Thus, nt€{6,9,12,15}

6 2 4 , (6 s (6 6
p[n:=6lpt] - {4] P (1-p ) + [5}pt(1-pt) + [6) (1-p,)" = 0.0029678
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7

pln,=9(p,] = { } 21-p " + {3] pa(l-p) " + {g] p3(1-p)" = 0.0140249
9
3

9
) p, (2-p, 4 [ﬁf} pZ(l-pt)4 + [%:] pg(l-pt)4 + [9) by
. .

11} _10 2
] (1 Py ) + [9] P, (l-pt) 0.852551

6
3
p[nt=12|pt] = [
+[5

t

12

3) (1-p ) = 0,1291889

pln =15|p ] =
Stage 2
P, = 0.9 (l—pt) = 0.1

* = =
x¥ 8 n, 11

We must have either 9 successes to accept or 3 failures to reject.

Thus, nt€[3,6,9,12}

- 3 3
p[nt—3!pt] (3} (1-p,)~ = 0.001

- _ (3 ey 3 4y 2., 3 5/ 3.1_. 43 .
P[nt—ﬁlpt] = [2} Pt(l Pt) + [2] pt(l pt) + [2) pt(l pt) 0.01485

[3] pi(l-pt)3 + (;} pi(l—pt)3 + [2) pi(l-pt)3 + [g] pz = 0.4245426

pln =9(p )

) (9} 7 2 . (9] 8
p[nt—12|pt] = [2] pt(l-pt) + [1] pt(l—pt) = 0.5596074

Stage 3
pt = 0.906 1-pt = 0.094
* = -
xt 8 nt 11

The same enumeration as in Stage 2.

Stage 4
P, = 0.909 l-pt = 0.091

* = -
x¥ 8 n, 11

The same enumeration as in Stage 2.
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Stage 5

P, = 0.875 1 - P, = 0.125

* = -
xt 9 n, 13

The same enumeration as in Stage 1.

Stage 6
P, = 0.853 1 - Py = 0.147

* = =
x¥ 8 nt 12

We must have either 4 failures to reject or 9 successes to accept.

Thus, nt€{6,9,12}

=l
pln =6ip,]

[2} pi(l-pt)4 + (g] pt(1~pt)5 + (g} (1—pt)6 = 0.0054577
P[nt=9[Pt] l

6] _3 6, (7} & 4, [8) 5 4 . [9) 9 _
{3] P (1-p )" + 3] p (1-p) + {3] P (1-p) " + [0] P, = 0.2653362

_ _ {9} .6 3 91 7 2 9 8, ..
p{nt-Ilet] = [3} pt(l-pt) + [2] pt(l-pt) + [l) pt(l pt) 0.7292061

Stage 7
P, = 0.825 (l—pt) = 0,175

x* =9 n, = 14

3 t

We must have either 10 successes to accept or 5 failures to reject.

.

Thus, nte{6,9,12,15}

P[nt-6|pt] = (g] pt(l-pt)5 + [g] (l-Pt)6 = 0.0008412

6 2 5 7 3 5 8 4 5
p[nt=9[pt] - [4] pt(l-pt) + [4) pt(1~pt) + [4) Pt(l‘Pt) = 0.0102237
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8}y 5 5 10y 6 5 11V 7,,_ 43 9y _10
p[nt=12|pt] = {4] Pt(l'Pt) + [‘.] Pt(l-pt) + {4) pt(l Pt) + [9) pt
10} 10 11} 10 2
+ [9) p, (1-p,) + [9} P, (1-p,) = 0.6805573
12 1

8 4 2} 9, 3
p[nt=15lpt] = {4] pt(l—pt) + 9} pt<1-°t) = 0.3083778

Stage 8
P, = 0.833 (1—pt) = 0.167

X = =
xt 9 n, 14

The same enumeration as in Stage 7.

Stage 9
P, = 0.820 (1-pt) = 0,180
*x = =
x¥ 9 nt 14

The same enumeration as in Stage 7.

Stage 10

e
]

0.837 (l-p) = 0.163

X = =
x¥ 9 n, 14

The same enumeration as in Stage 7.

Stage 11
P, = 0.841 (l—pt) = (0,159

X = =
x¥ 10 n, 15

Ve must have either 11 successes to accept or 5 failures to reject.

Thus, nt€{6,9,12,15}
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pln =6lp,] = [g} pt(l—pt)s + [g) (l—pt)6 = 0.0005289

5, (1) .3 5, (8) 4 5 .
(1-p)”~ + [4] P (1-p,)° + {a] P, (1-p,)” = 0.0067523

p[nt=12lpt]

fl
r— »H o

5 5, (10} 6, .5, (11) .7 5 f10) 11
) P (1-p )" + [4) P (1-p )" + [4) P (1-p)" + (10] P,
1
0

1) 11
1 ) py (1-p,) = 0.4321114

_ _f12) 8, 4, [12) 9. 3, [12) 10 .. 2 _
p[nt—15[pt] = 4] p, (1-p.) " + [9] P, (1 p)” + [10) P, (1-p,) 0.5606073
Stage 12
p, = 0.836 (1-p,) = 0.164
* = =
x} 9 n, 14

The same enumeration as in Stage 7.

Stage 13

o
"

0.848 (1-p,) = 0.152

x: = 8 n = 12

The same enumeration as in Stage 6.
Stage 14
p, = 0.850 (l-pt) = 0.150

t

* = =
x¥ 8 n 12

The same enumeration as in Stage 6.

To obtain the E(nt) » we average out the above by using g(ptl-)

We illustrate this for Stage O.
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et = L) F(y+6)T(8) _
1>[nt 6] TOTE) T (+5+6) 0.1428571

T'(y+$)

= - T (y+6)T(8+1)
Pln.=9] = T,37(5)

T(Y+6)T(8+2) T(Y+6)T (843 ]g
ezrrs) i yow= ) I —%myl 0.2571429

6

pln =12] =-¥%¥§%%33 126 r‘}:ﬁlgiig?’ + 252 r(¥t$lgifzg) + 402 Il%%%%%éggg)

+ %f_l] = 0.2103897
pln =15] = FLX |92 Lo L) + 1287 Tt () + 2002 Lo

+ 12 LOEDICAD) 5 TRDTEHD 4+ 364 T2 | - 0.2596154
o - 5 [ ERR s RS T - oo

E[“:] = 11.84 .

Similarly, we can obtain E[nt] for other stages.
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