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FOREWORD

This Technical Report was prepared by the Aeroelasticity Group of the Analysis and
Optinmnzation Branch, Structures Division. Flight Dynamies Laboratory. Wright Research
ard Developmenty Cenrer. Wright-Patterson Air Force Base. Ohio. Under a previous con-
tract. the ~senlor author treated the tine dependent integral equation for the linearized
potential low over a wing {Reference 1), The present report shows an alternative and
somewhat simpler derivation due ro Professor Mare H. Williams (Purdue University). The
report constitutes a somewhat extended version of Professor Williams™ work. The contri-
bution of the senior authors was made without contractual obligation in order to round
out the previous investigation of Reference 1. Part of the present work was performed by
the junior author in the Aeroelasticity Group under Project 2401 "Structural Mechanics.”
Task 240102 "Design and Analysis Methods for Aerospace Vehicle Structures.” Work Unit
24010273 “Aeroservoelasticity.” This manuscript was released in August 1989 for publica-

tion as a Technical Report. This report covers work conducted from February 1988 to Jan-

uary 1989.
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Section 1
Introduction

For the linearized acceleration potential. as well as the velocity potential equation in
three-dimensional unsteady flows, there exists a fundamental solution in a closed form.
This makes it possible to formulate the problem of the flow over a wing (or also tor the
whole airplane) in terms of an integral equation. by which the problem is reduced from three
space dimensions and time to two space dimensions and time. Under special conditions, for
instance the flow over an oscillating wing, the problem has been solved before: an example
is the doublet-lattice method. In these approaches, valid for steady or oscillatory flows. the
integral equation formulation does not appear explicitly. It is by-passed by an immediate
discretization of the problem combined with a specialization of the fundamental solution.
By this procedure one avoids the need to deal with the singularities which by necessity
occur in the integral € Juation.

The authors of Reference 1 (Guderley and Blair) believe that for general applications
which deal with the problem in the time domain, the explicit integral equation may be
advantageous. However. to bring the integral equation into a form suitable for a numerical
approach it is necessary to carry out transformations which weaken certain singularities
otherwise encountered. The analytical work carried out for this purpose in Reference 1 is
rather formidable. By performing the necessary steps in a different order, Professor Marc
H. Williams has accomplished considerable simplifications. Moreover, Professor Williams’
approach leads to a simplification of one of the final equations and makes a complete
exploration of the relations between the steady and the unsteady problem possible. In
addition, it opens the way to a rather intriguing development, namely the treatment of
the integral equation by means of Lorentz coordinates.

The present report, prepared by K.G. Guderley and Mark R. Lee, follows the notes
kindly sent to Guderley by Professor Williams. Some of the intermediate steps have been
filled in. to facilitate the study of the report for a reader, who on one hand does not want
to accept the results on faith but on the other hand has only limited experience in, or time

for. the necessary mathematical manipulations.




Section 11
Basic Equations in Acoustic Coordinates

Let . y . = be a Cartesian system of coordinates which is at rest with respect
to the undisturbed air. The superscript zero is applied because at some later stage the
coordinates x. y. z will be introduced for a Cartesian system fixed with respect to the wing.
With respect to this (no superscript) system. the undisturbed air moves from left to right
with constant speed in the x-direction. The planform of the wing lies in the x.y-plane. Let

{.j.k be unit vectors in the r . y . = or Xx. y. z-directions respectively. Let
F=xri+yj+z%k (2.1)
Accordingly F represents a vector with components ¢, y°, z°. The reader should not
confuse the vector I with its component in the ¢ direction, denoted by r*. In the . y°.z -
system the wing moves with constant velocity in the direction of decreasing r°. In this
process it sweeps out a strip in the z°,y° plane which has a width (i.e. an extension
in the y -direction) cqual to the span. In the z°-direction this strip extends from the
position of the wing at the time when the unsteady motion started to its position at the
current time. In the present analysis viscosity is disregarded and the air is considered as
isentropic. Since the initial state of the air is free of vorticity, the Helmholtz vorticity laws
are applicable. and the velocities can be described as the gradient of a potential (denoted
by o). The equation for the potential is obtained by the requirement that the equation of
conservation of mass be satisfied. We make the further assumption that the perturbation
generated in the air (which was originally at rest) is small. Then the equation for the

potential reads )
w2 .. 0%0°

a’V2e" = ST (2.2)
Here a- is the velocity of sound in the unperturbed state. and V°? is the Laplace operator

in the ' . y' . z -system. The del operator V° is defined by

o] 0 a

ez O 45 ¢ 2.3
VIS e Tigy Thys (2.3)

Let € be a fixed vector in the .y, z* -space.
€ =i€ +jn +ke (2.4)
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Then a fundamental solution with singularity at the point I” = fﬁj is given by

HF. )= Lhe (2.7)

where

r:t—<R> (2.8)

a

R /a is the time it takes a perturbation to travel from the point 5—5 to . Obviously

the solution (2.7) has spherical symmetry (the center of the sphere is given by I = E_;).
The mass flow per unit of time through a sphere with radius R. is given by

et [0 )

T

where the prime denotes the differentiation with respect to the argument. For R, — O,
one has 7 — . and the last expression reduces to h(t). Accordingly, h(t) is the mass flow
per second. This is the interpretation of the function h(t). While this discussion has no

. . . . -1
bearing on the following development, it does explain the factor <I7?)

At the point given by ¥* = £° the potential equation is not satisfied, for there is a
mass flow emerging from this point. The flow will be represented by a superposition of
particular solutions. Eq.(2.7), with centers at different points €5, The functions h® are
allowed to be different for each value of £°. This is expressed by writing h.c(E-e,r). Notice
that {: also occurs in the definition of 7, thus _5-5 appears in h° twice, implicitly (in 7) and
explicitly as first argument. The singular points ¥ = £¢ cannot lie inside of the flow field;
and they can appear only within the strip of the z°,y°-plane swept out by the wing. The
component ¢” of the vector £ is therefore zero. This assumes the wake to be flat.

The unsteady up and down motion of the wing generates at its surface a velocity in
the = -direction which is the same on the upper and lower side of the wing. The field of
the z° components of the velocity is therefore symmetric with respect to the z°. y°-plane.
The potential i« then anti-symmetric with respect to this plane. This implies for points
in the r .y -plane outside of the strip swept out by the wing that the potential is zero.
The source potential of Eq. (2.7) is spherically symmetric: therefore. it is symmetric with
respect to the r .y -plane if £~ = 1" 4 jn' . An antisymmetric expression is obtained
by a differentiation with respect to z°. The resulting expression can be interpreted as a

doublet (of moment -1} oriented in the positive & direction (actually this interpretation

3




is unimportant). Thus we represent the potential by a superposition of “doublets”

where fﬁi =1€ + jn°. is restricted to the above mentioned strip of the z°,y°-plane for the

remainder of the report. Accordingly, the potential will appear in the form

o (Fot) = — ;rd” // g (€ g dn (2.9)

The umbral variables are £ and n°. One must remember that 5 occurs implicitly in 7.
The integration must be extended over the above mentioned strip. So far, the function

h*(€7,7) is unknown. One has, because ¢° =0

therefore,

o5 ] (FGT G e e

where h7 denotes the derivative of h*® with respect to the second argument r. In potential
theory one determines, for a sheet of sources, the normal component of the potential in
terms of the local source intensity. The expression corresponding for the sources in the
present case is given by Equation (2.7). Equation (2.9) is then the expression for the
component of the potential gradient in the z-direction. We shall show by applying an

analogous procedure that

lim d) (iz" + jy" + kz",t) — lim o&°(iz" + jy° + k2°,t) = h°(1z° + jy°,t)  (2.11)

20 -0 20— -0

Here we repeat the main steps of the argument. Consider a point given by 7° = ir° +
Jy~ + kz” and determine the limit of Eq.(2.10) as z° — +0 while z° and y° are fixed. We
divide the region of integration into an inner and outer region by a small circle with radius
p. around the point £ = r".n° = y°. Outside the circle R, # 0; the integral (over the
outside region) vanishes in the limit z° — 0. To carry out the integration within the small

circle we introduce polar coordinates.
£ —r =pcosl

psind

=
|

Q\
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The dominant term of the integrand for small p. is h* (£ .¢) (;23) where £ =ir' + jy .

The contribution of this term is

: 4 27z p v p
i (tr +Jy f).o (p2+:2)32(1/) Sho(ie +Jy t)/ (p2+~”2)”'2dp
The integral is rewritten. Setting p/z = p. one obtains
o zp ppe z p . S
/0 (p2 + = 2)3 2 L A (p2 +1)3 2 P (p )

Hence

p,» 2(3p
I / P dp=1
=0 Jo (p? + z2)372 p

With Equation (2.9). and the discussion following it. one now obtains

_llmoo (lr +jy" +k2"t) = Sh(ix” + jy. 1)

25—~

Since the potential is antisymietric one has

. S . - 1 ... .
\Allmoé'(zr‘ +Jy + k2 t) = —2h"(z:z:' + 7y, 1)

Accordingly h (ir + jy .t) represents the difference of the potential between the upper
and the lower side of the doublet sheet at the point given by ¥* = (iz° + jy°). The same
result can be obtained by a simpler argument. According to the discussion leading to
Eq.(2.9) the function ¢ (F .f) can be interpreted as the z° component of the potential
generated by a source sheet of strength h°(ix° + jy'.t). We showed, following Eq.(2.8),
that the mass flow per unit time of a single source at a point £° is h°(.£"\‘.t). The mass
flow per unit time emanating from an element dA surrounding the point £ = iz° + jy¢
is then h°(€",t)dA. The mass flow is also expressed by the difference of the z” velocity at
the upper and lower sides. multiplied by dA. But the velocity components are given by
zl"in}oo, (ix" + jy + kz .t) hence the result given in Eq.(2.11).

The motion of the wing has a z° component of the velocity, which will be denoted

w(r .y .t). In the linearized approximation this is the velocity component normal to the

wing and as such it is transmitted to the air. Therefore

80)’(?./)) 2.12)

wir .y )= l{imo( -
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where « 1x known on the wing surface

do (F.t) 1 1
d:z N 4rd~»2// R T)dE (2.13)
R
T=1- 0
1
R=7F-¢ ={x —¢)s(y —n)+:?

Furthermore

oR =
Jdz R
ar z
dz ~ aR
Carrying out the differentiation with respect to = we obtain
do (I .t - 32 -R? - 272 oy e
i //[(a * R )h SRUAS a R ho(€.7) + a?R3h”(£’ )| d€dn
(2.14)
where
£ =i& +jn

According to Equation (2.12) one must carry out the limiting process z”> — 0. If the point

{r .y ) lies outside the region of integration. this can be done immediately and one obtains

do (I .t) // 1 = .-
. (€ .1)+ — = h$(€5.7)| dEd 2.15
(): - 0 47_ R; S ) a. R? T(E ) E n ( )
This form of the equation will be useful in conjunction with the acceleration potential.

There one encounters the task of evaluating this expression for points of the z.y-plane

upstream of the wing.

For fﬂ = {r + Jy .one obtains R. = 0 and then it is not possible to carry out the
limiting process = — 0 lirectly. Actually some contributions to the integral cancel each
other. This is shown by . ns of certain transformations (in essence they are integrations

by parts). We present here the approach of Professor Williams. He points out that i

satisfies the Laplace equation in the r*.y .z system. therefore;

LA (')2(1\ 9* 1)
(').:2(1?)‘_ 9r 2 R)+(')y2<1?

but as




One also has

with

The superscript o indicates that the del operator is defined in the -, 7 -system (as opposed
to &.n-system): the subscript 2 emphasizes that it is defined in the two-dimensional £, n° -
space (rather than in the £ .7 .¢ -space). The first term in the integrand of Equation

(2.14) therefore assumes the form

H(E N g () = 80 [72 ()]

This is rewritten by means of the following relation, easily verified if one writes it out in

[}

components. Let a(£°,7°) be a scalar field and ¥(£°.7°) a vector field. Then one has
aVy - v=V5.(a?) -~ V3a-7

Accordingly

e 2, (7)== (R(E 0% (5 ) + %3 g) - van (€ )

—

In forming V5h*(€°.7) one will remember that the vector ¢ occurs in h® as the first

argument and also implicitly in 7 =t — o To make clear which partial derivatives are
o}

meant, one best writes h°(€°.7) = h°(€°.n°,7) and applies the usual notation for partial

derivatives. Then

Talh(€ 0%, 7)) = ihs + jhi + h, Vir

(even for z° #0). L~t

(€ 1) £ ing. + RS (2.16)
and
F=ile —r) 4 il -y (2.17)
then even for z° # 0




and

1y_ 7
Vig)= (2.18)
and by Equation (2.8}
. p
i X
Therefore, with 4 -5 = 710 = (R* =z %)
- ‘ BE 1 - — 1 [7 o = -, Rg_zch
€ g L T (€T () ) = e FE A RHE D T

Substituting this expression into Equation (2.14) one obtains:

wcn= e ean(z) - () @

2~ 2 . 232 i - .
+ (a R?) hr(€7.1) + 50 h},(ff,r)} d¢dn®

Notice that these transformations hold for z° # 0. Thus R. # 0 and the expression on the

left in the following equation can be transformed by the Gaussian integral theorem.

/ [ -<. {h (€.51)T; (i;(;)de’dn‘” - —/shf({:.r)\“; (}%) . fids (2.19)
where 7 is the unit vector in the direction of the outer normal to the boundary of the area
of integration. ds is the line element and S is the contour of the region A,. But we found
that outside of the area of integration o (€°.t) = 0 if £° lies in the z°,y° plane and that
ki is the jump of o at the plane z* = 0: there is no jump of ¢° outside the strip of the
r .y plane swept out by the wing. Moreover. ¢ is continuous, as one moves across the
boundary of the region 4 (otherwise there would arise a delta function in the velocity).
Therefore h (€ .1) = 0 at the boundary of 4. and the expression shown in Equation (2.19)

vanishes. This procedure eliminates the worst of the singularities. Equation (2.12) is now

written in the form

w(F 1) = we (T t) + wp(TF . 1) (2.20)
where
JF o= P S(E e d (2.21)
u,.(.r.)_‘m‘ /4 R:"](\.T)g ] .
and
(F ) = i 1// 202w Yhe ] de dn (2.22)
u,,(.r.)—:m'x“—“_. i a R*LR 'r(E.z)+a (& 7)) dE dn :
&




provided that h' (£ .7) = 0 at the boundary of the region 4.. The expression 5 = thee +
Jh, s cefined in Equation (2.16) and can be interpreted as follows. We found that
o (& .y .7)=3h (& .n .7). therefore 12(7}”‘— + jh, ) gives the velocity component on the
surface at the upper side of the sheet and —%(fhf- + jh, ) is the velocity at the lower
side. The strip oan which & # 0 is therefore a shear laver. which can be interpreted as a
vortex sheet (Hence the subscript v). The two velocity components have opposite sign. The
vorticity vector lies in the £ .7 plane and is perpendicular to the vector (ih"{‘c +jh:’C ). The

-

A-3E.T)

expression P can be obtained by the Biot-Savart law. Not much is gained by this
interpretation. Aﬁ isolated vortex element does not exist. because it violates div curl T =
0. An infinitesimal vortex ring, according to Stokes’ vorticity law, is equivalent to a doublet
distribution over a surface which has the vortex ring as boundary, and this brings us back
to the starting point of these investigations.

For z= — 0, and 6—2 — 7°, the distance R, — 0 and one still encounters a singularity

because of the denominator B3 in Equation (2.21). We rewrite

wo(F. // ) - dgdn

Fiir +Jy, //Rgdf dn” + —// (€.7) = Fliz° + jy".7))- Fdf dn® (2.23)

In the second term the singularity vanishes. This becomes evident if the integration is

4m

carried out in polar coordinates:
£ —xr = pcosh

n° —y = psinf

d¢’'dn” — pdpdb

where

0(p®)
(pZ + :12)3.’2
which. in the limit = — 0. becomes O(1)df. In the first integral in Equation (2.23), the
pp
(2 4 2):

. : 1 .
process = — 0 at this stage. onc obtains O (p) dp. which does not converge for p = 0.

Now (5(€ .7) = 3(ixr +jy .1))is O(p). We therefore obtain an integrand

Q

introduction of polar coordinates would give zdpdﬂ. Carrying out the limiting




For = # 0 this integral is rewritten using Equation (2.18) and subsequently the gradient

/ / zfé*df’d" - —// ¥ (\;%;)dfjdn: = f %ﬁds

where 77 1s the unit vector in the direction of the outer normal and ds is the arc length

theoremn.

of the perimeter of the region under consideration. At the boundary curve, along which
the integration on the right is carried out, R. # 0. so that one can perform the limiting
process »° — 0. then R — |5]. The gradient theorem is readily derived by carrying out

the integrations in the following expression

//( ’*+J )drdy"fu(idy—jdz)=fuﬁds

In evaluating . Equation (2.22), in the limit 2° — 0, a technique familiar from potential

theory is app! d again. Consider a point given by
FF=ri+yg+2z%

By drawing a small circle with radius p. around the point £€° = z°.7° = y° of the £°,n°-
piane. we divide the region of integration into an inner and an outer region. In the outer
region R. # 0, and the limiting process z* — 0 gives zero immediately. If p. is sufficiently
small and for z* — 0, hi({’-,r) can be replaced by h7(iz° + jy°,t) = hi{7z° + jy°.t). Thus

one obtains as contribution of the first term in Equation (2.22) for w,

~9n h (iz" + jy°, //"*—dfd’l

It polar coordinates with polar radius p. one obtains

Po -2
_hi(f;_y:’_)/ L E P dp
a. 0 (p2 -+ 2‘2)2
Hence with (p/z")? = u
lrv-t) EAL IR IICA ) /" du
B a 0 (p2+202)2 p= 2a u=0 (u+ 1)
u- (4)?
_ h,ﬁ(:r,y.t)( .,,1 B :
2a. (“ + l)) u 0
Then
i (r.y.t) // pd0dp _0- h(ir™ + jy .t)
Rt 27”1 p2 + 222 7 2a

10




Treating the second term in Equation (2.22) in a similar manner: one obtains zero. Thus

= he(F 1)
— +
u,,p(_r Jd)y = — - g
For an interpretation of this term we observe the following. If w(z .y . 40.t) does not

depeud upon + and y then the same holds for Ii(r .y .1}, The integral equation then

1 dh I .
reduces to w(f) = oq di - As w(t) = o, (). and 31 =0 (r .y .40.t). one then obtains
O; == 0 This relation holds for a plane wave propagating in the z° direction. This

is the approximation of piston theory (thercfore the subscript p).
In the acoustical approximation, the perturbation pressures are expressed (from the

Bernoulli equation for unsteady flow) by
— — pw o] < o}
Dp = —pocoy = ~ 5 hi (€ .7°.40.1)

where p,. denotes the density of the undisturbed air. The pressure difference between the
upper and the lower side of the wake is 0. Therefore h; = 0 at points of the wake. In the
r .y".2" system the value of h° remains constant for points of the wake. It is determined
by the value it assumed at the moment when the trailing edge swept over this point.

In the present formulation it has been assumed that the wing moves within the z°, y°-
plane. It need not move in a straight line or with constant velocity. For such a situation.
or even if the wing motion is not restricted to this plane, the r*,y .z"-system is the ap-
propriate system of coordinates. (It is. of course assumed that the motions are compatible
with linearized theory.) In the more general cases one will have a wake. which does not
_dh[, = 0 for points of the wake still applies. If
the wing does not lie within the ',y plane. then one must introduce doublets oriented

lie in the r .y plane but the condition

in the direction normal to the wing(rather than in the =  direction). The wing motion
and deformation always determines the velocity component in the direction normal to the

wing.




Section II1
Wing Coordinates
For a wing moving with constant speed I7 in the x-direction. it is convenient to trans-
form the equations to a Cartesian sy<tem fixed with respect to the wing. Accordingly we

~(7

The manner in which ¢ (and 7 ) is transformed into wing coordinates is based on the
following reflection. The function b appears in the integral equation with a third argument
7. We want a newly defined function h(£.7.7) to refer to a fixed location on the wing.
Then the relation between ¢ and ¢ is determined by the location of the wing with respect

to the £ .n system at the time given by 7. Therefore we have

h&ny.r)=h ($=TUrn.7)

As far a~ the integral 1s concerned this is a transformation from the variables £ and
to & and y. In this transformation » .y .z and / play the role of parameters. they enter

throngh the definition of the auxiliary function 7.

T=t—-R /a (3.1)
with
1
! . TRED
R —.‘[(f —r 4y —u )z+:zJ: (3.2)
I at least one expression 1t i< simpler to form the limit = — 0 after the transformation
hasbeencarried aorr The rran~formation frows & o0 1o ooy is <traightforward. The immverse

tran~toriation i~ les= ~o. We introduce




then
(-2 =({-2)+U(t~71)

Hence with Equation (3.1)
(65 —2%) = (6 —z) + MR. (3.3)

substituting Equation (3.3) into Equation (3.2) one obtains
R = ((6 —2)+ MR,)* + (n — y)? + 2*
This is a quadratic equation for R,. Writing it in detail one has
R3(1—-M?) —2M(§ ~2)Ro = (£ - 2)’ + (n —y)* + 2°
The result is written in the following form. Let
B2 =1-M? (3.4)

and

D=
—_—
w
)
—

R = [(6 - 2) + 8%(n — y)* + 8727

then
R. = % M(€ - 2) + R.] (3.6)

From now on R, and also r are considered as functions of z.y,&,7n, and t. Substitut-
ing Equation (3.6) into equation (3.1), one obtains 7; subsequentally one finds £°. The

transformation of #° and 2° are trivial. According to Equation (2.17)
p=i(& —z%) +3(n° - v°)
Then with Equation (3.3) in terms of the new coordinates
p=i(6~z+ MR, +j(n—y) (3.7)
Substituting R. one obtains
F= 6=z +MR)+i(n-) (38
One obtains from Equations (3.5) and (3.6)
%’? = ﬁlz 1;1', MR, + € - 2] (3.9)

13




Furthermore

aR( _ n—-y
=R (3.10)
Let
A L0 .0
Then because of Equation (3.8)
P
VZR? - R( (3'12)
L7
V:zﬁ =" Rin (3.13)

8 [«
The surface element d4 = d¢°dn° transforms into (é{{) dédn. One obtains from Equa-

tion (3.3) e R

Hence with Equation (3.9)

% = LR+ MR+ M(¢ - z))

d¢ c
and with Equation (3.6)
¢ _R.
¢ ~ R
Thus dA = (R,/R.)dédn Let
h(¢,n,7) = h°(E ~Ur.n,7) (3.14)
Using Equation (2.16)
(€, n.7) = the + jhy = thg + jhy = J(€°,n°,7) (3.13)

where 7 is obtained from Equation (3.1)
R, 1
T=t—- — =1 -

a a, 32

and R, is given in Equation (3.5). According to the definition of h, Equation (3.14},

[M(€ —z) + R] (3.16)

h(z,y,t) = h°(x - Ut, y,1)

then
h;(-Tq y~t) = hio (13 - (]tsyat) = h;“(ro’ yovt)

he(r,y.t) = =UhSo(z = Ut,y, t) + hi(z — Ut y.t)
he(r,y.t) = =UhLo (2 y" 1) + hi (2", y", 1)

14




Therefore
hi(z°.y°,t) = hy(z,y. t) + Uhy(z,y,t)

One thus obtains the integral equation

w(r,y,0,t) = wy(z.y.0.t) + wp(z.y,0.t) (3.17)
where
1 .
wp(2,9.0,1) = 5o (he(2,3.1) + Uhy (2,y.1)) (3.18)
1 p-5(&n,7)
(I v, O t) 471_/ —Wdfdn (319)

D .
J=the+ jhy
The vector p is found in Equation (3.7). When we treated the problem in the z° y°, 2°
system, the expression w, had been decomposed in order to deal with the dominant sin-
gularity of the integrand by analytical means. The same decomposition is carried out

here.

1 (€, n.7)-p _ 1= .//ﬁ 8
w, 4W£L0/' Tt ddn = A t) [ [ prpdedn (420)

[3(¢,m.7) —'v(ryt ) - Bl

In the first term a limiting process z — 0 is needed. According to Equation (3.13)

P 1
R?R, —V <72§>

/ %g? //W( )““- fﬁm“ (3.21)

according to the gradient theorem. In the right hand side of Equation (3.21) one is per-

then

mitted to make the limiting process z — 0, i.e., one replaces R.(€,7n,z) by R.(£,7,0). The
postponement of the limiting process z — 0 has been necessary, because, in transforming
from £°,7° to €, n, the contour of the region will in general not retain its shape; the normal
in the £, 7n° system is different from the normal in the £.7n system and so is the length of

the line element. The result, Equation (3.21). is now substituted into Equation (3.20).

-1 1 r - ~lz,y.t p
UJU(I,y,O,t) = 4?’7(Tsyst)fﬁc 4 // 6"7 R;} y )] dEd (322)
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Note that Eq.(3.22) is identical to equations (VI.18) and (VI.19) of Reference 1. The
transition from one formulation to the other is shown in Appendix.

The effect of the change of the shape of an area of integration connected with this
transformation is also observed if one considers the expression for the upwash in its original
for. .o before the transformations to remove the singularities are carried out. This
cxpression has meaning it » and y do not lie within the region of integration. One has

for the potential of a source sheet in the r .y . & .y -system

-1 //h E,‘, )dE d71

o'(r .y .
with
T=1-— }—{
a
Hence in the r.y: £, n systems
-1 rh{€.n.7)d€dn
\ —— \S: - LTS Ed i
oNzu) = 37 // R, (3.23)
As before
h(€.n.7)=h (E-TUr.n.7) (3.24)
1 -
T =1 032[’\[( ) + R,] (3.25)
1
R = [(€ = r)t+ 32(n - y)? + 3227 (3.26)
Since
dR, 3%z
i — R,
one obtains in the limit z — 0
T h.
ol (r.y.0.1) = of(r.y.0.1) //[32 (&1 )+ (H‘I?zr-)]dsdn (3.27)

ro

Alternatively one can begin by forming the derivatives with respect to = inther .y : ¢ .7

svsterns.

. I Y O AN 2 NN o B (Y NN T
e[ T ey

In the subsequent rransformation 1o the Loy svstenn one has

B8y .ry = h(e + Uy . 7)




For the sake of clarity we denote the derivatives with respect to the first and third argument
not by h¢ and h, but by R(1) and h3). The transformation then gives the alternative
expression

ki = Ut + p0)

therefore

('h(”(ﬁ. n.7) +hB (€. n, 7)

To bring Equa*tions {3.27) and (3.28) into agreement an integration by parts must be
carried out. We are solely concerned with the integration with respect to £, while 7 is
kept constant. Dne notices that for n = constant is not identical with h{!) because ¢
uecurs also in 7. We express (—3—2 in the following equation by means of Equations (3.25)

and (3.26). | MR +¢
MR, -z

a,f? R,

With this equation we rewrite the numerator of the second term in Equation (3.28)

M MR.+€—-=z
1 - M? R, )

dh or
N § ) (3)Y" _ (1) _ p(3)
€ = A% 4+ h 3¢ h h

UhM 4 aB) = Uj—g +h® (1 +

3
UR) 4 1@ = R G

dE (I_MZ)R (Rc+M(€_I))

and with Equation (3.6)

dh  hOIR
TR(D) B) = o= °
UhY) +h Udf R
Now Equation (3.28) appears in the form
M‘”‘ L(3)
d h(€,n,7 d¢ (&,m.7)
¢5(2,3.0.1) 47r// RZR YRR T Rz | NN
An integration by parts is applied to the second term.
d - L [ [ SV LR W
d)z(.’L',y.O.t)-— 47 [ d77+ 5 n,T RZR af (RoRc) +a°RC2 6 n
(3.29)
Now
RR. = [M(E-I)R +R2]
T 1 - M2 e
9 1y 1 1 M(¢ - 2)?
e(zuz)—(l_wjmz [M’“ A

17




Then one obtains for the factor of h in Equation (3.29)

M(€ ~ r)?

MR, + Pc +2(£—T))j| =

R?R? Re+

1- \[2(

‘,1, - 1
(1 = M?) RIR}

2
odr.y.0.1) = 4% [ Mh // [3 f hT }dﬁdr}}

This agrees with Equation (3.27) except for the contour integral. If h = 0 at the contour.

[R?+2M (& - 2)R. + M2(€ - ) H=(1- M?)R3

Thus

this integral vanishes. The formula is applicable even if # # 0 on the boundary. in which
case the term accounts for the deformation of the region which occurs as one moves from

the £ .n° system to the £.7 system.




Section 1V
Lorentz Coordinates
As before we denote r .y .z as a Cartesian system at rest with respect 1o the undis-
turbed air. and with ¢ (formerly ¢) the time. The transition to wing coordina i« ~ has heen

made by setting

r=ur +Ma't (4.1)
y=1y
t=1°

The Lorentz transformation? is given by

r=(r +Ma.t)/3 (4.2)

with the inverse

r=(r-Mat)]3 (4.3)

(%]
|
tar

a.t =f(at—-Mz)/3
It follows from the first of Equations (4.1) and (4.2) that
r=1z/3 (4.4)

v=y

¥ = =z
L e

Since Equations (4.4) do not contain t. the 7, j. 2-systemn is fixed with respect to the r y.z-
system. The time t =t is expressed in terms of { and 7 by the last of Equations (4.3).

. . . . I .
Substituting here r = 3 one obtains
i

ai=atd+ M {(4.5)

3
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Equation (4.4) and (4.5) give the relation between the wing system r.y. z.t and the Lorentz

system r.y. 2. t. One has as inverse transformation
r=3r

y=y

- = -
S = =z

(a i— M)
3

atl =
As mentioned above. the Lorentz transformation leaves the wave equation

9% 9% v 1 9%y
gr2 T g2t g 07 353 =0
dr dy a: a* at-

unchanged. i.e. one obtains in the 7.§. 2.t system

AR N LR N v 1 Qzu" B
057 T apr T o T 2 air

The integral equation in the z. y. 2, t system therefore has the same form as in the

I .y .z .t -systeui, namely
w(r. y.t) = 80.3(1 U.2=0.1)
1 g~ - . 1 Oh(r.y.t
= -— //p."zdfdf] — - - ( ‘y -)
47 R3 2a ot
where

2 -
Lo

7= 1h(&.0.7) + Tha(€ 1. 7)
In this equation A(F.3.f) is the unknown function. The transformation gives

r 1

S ) Mz
h(r.y.t):h(r,y.t)—h(.;}-y-a/ (*?a*t+ 3 >)

and

2
o~y
i
=
—
A &)
i
t2
—
—_———
w
Q
~
+
-
[T
~
e
~—

olr.y. z.t) = o(z.9. 5.

Hence

or.y. 2 0) = o:(F.§.50)




If o is the velocity potential. then in most practical applications

0:(2.9.0.1) Z w(z.y.1)
is a given function. on the wing. Then
(5. 5.1) = 05(£.9,0.0) = w (3.9, (a1 — M1)/(a.3))
In the indicial problem one has for instance

w(z,y.t) = g(z,y)H(t)

where the step function H(t) is defined by

H(t) =1, t>0
H(t) = 0. t<0
Then
i(2.9,t) = (8%, §) H ((ai — M2)/(a.3))
Therefore
w(z,y,t) = g(8z,9). a.t >Mzr
@(x.g.t) = 0. a,i < Mi

The pressure difference between the upper and lower side of the wing is given by
Ap = —p(Uhy + k)

One has. trom Equations (4.4) and (4.5)

Therefore

In the wake

Uh; + h; =0
The Lorentz transformation maintains the general structure of the integral equation, but
the expressions are somewhat simpler. It requires a transformation of the given upwash.
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For the indicial probleni. the value of 1 for which @ jumps from zero to the value g(3r. j)
now depends upon 7. The pressures in the F. j. f system are expressed by the above formula.
After the pressures in the r.j. ¢ system have been found one must transform back to the
Lot systent This s impossible if one tries to apply the results in an aeroelastic problem.
for there the displacements of the wing are expressed in terms of the time variable t while
the data obtained by mieans of the Lorentz transforms appear in terms of ¢. This is of minor
inportance. if one first evaluates the indicial response. If one uses the Lorentz transform
then the propagation of disturbauces occur with the same speed in all directions. This
facilitates the choice of the panels on the wing and the timestep. especially at high subsonic
Mach numbers. However the speed of propagation may be of importance only during the
initial phase of the indicial response. The remainder of the report presents some detailed

discussion.
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Section V
Identity of Equations (3.21) and Equation (VI.18) of Reference 1
The reader is reminded of the following identity. Let £ = £(I).n = n(l) describe a
curve C. in the 7 plane and let f(£.7) be a given one-valued or vector-valued function.

Then
gsaf ondf

- df
18- Nof = (ol o T ol oy

i =l

In other words. the operator uk V" represents differentiation along the curve C. Hence
B B df
d€-Vof = [ S = 15~ 14
A A

If the curve is closed. and f is continuous, then the integral is zero. This holds for a scalar

as well as a vector valued function:

fdg T,f = f( d£+ n):o (5.1)

We address ourselves to the first term on the right of Equation (3.20) after Equation (3.21)

has been substituted. Let

:_ ):I:(I‘ y*’) ﬁ . =4
] — (17[’__ I R d\S (02)
and
~ 4, dBg
I'=lim o>

where d£§ is the expression Eq. (VI.18) from Reference 1. We want to show the identity

of I and I. In the present notation, I can be written in the form

ii'f%(kxﬁ)(ﬁ‘dfu LiRxT (5.3)

where

I is rewritten using Equation (3.13)

i:~fﬁ{d;§.v2([§ )} (5.4)

To transform this expression. consider the following integra! which is zero because of

1:[(15-\‘2(]’?'):0

20
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—

3] o .
Applying the scalar operator d€ - V; = d*d{ + dnd to the vector Rﬁ one obtains

=312 e 4o 3 (3 ) -o

The vector g is found in Equation(3.7). One obtains this by carrying out tl.. differentiation

in the second term and rewriting the first one.
= 1 1 v OR: ) 3
‘{Pdf-vg(i)+‘{ﬁo{<z+z7\lag>d£+( 377+J, dn}—O
According to Equation (5.4). the first term is —I. Therefore

I= + M/ ~(logR, d£+ 0 (logR )dn]

The second term vanishes because the integration is carried out around a closed curve.

Therefore -
= d§
=1 &
Now
E x dE = —nds
Thus.

This then shows the identity of the expressions I (Equation (5.1)) and I (Equation (5.3)).
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Section VI
Steady State Equations
The present formulation can be specialized to the steady state. The equations so
obtained are different from those obtained by a direct treatment of the steady state. In
this section we show by the procedure of Professor Williams that the two formulations are
identical.
In the steady state u' and h are independent of t. One obtains from Eaquatious (3.17).

(3.18) and (3.19)

w(r.y) = w,(z.v) + wy (6.1)
where

‘ —U 0h —M dh

Wp = 2a. 9r ~ 2 a9z
and

wo =l | [P siear

Here

F=_t-=ifi+ih

RZR,

Substituting g from equation (3.8) one obtains

1 ({-z+ MR)

E 6.2
fl 32 RZR ( )
(n—v)
= 6.3
f2 RZR ( )
é the + jhy,
Written in derail Equation (6.1)reads
1 .. M
w(z.y) = 47%;1_%// [f](fa nhe + fz(f,ﬂ)hn] dfdn — 5 he(z.y) (6.4)
Treating the steady case independently one obtains
—x)h - y)h
w(r.y) = - llm // {)-5R+3(vn }/) Tdedn (6.5)

It is our aim to establish that the last two equations are in essence identical. Because of
the singularity in the denominator. the discussion is carried out for =z # 0. Only at the end

the limiting process z — 0 will be made. The only procedure to transform one equation
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into the other is to add some expression to the integrand in Equation (6.4) which can be
transformed. by an integration by parts. into an integral around the contour of the region
of integration. {This contour integral will not always vanish. but at least the area integrals
im Equations (6.4) and (6.5) can be made to agree. The important fact here is that f; is
the factor ol fre and ) the tactor of 7,01 Frow the point of view ot operator theory. one

makes use of the relation that
/ / f-grud h d&dn = contour terme — // h divF dédy

i.e. that the negative divergence is the adjoint operator to the gradient. (This is readily
shown by the integration by parts.) The double integral remains unchanged. if one adds
a vector. whose divergence vanishes, to F. In the two-dimensional case such a vector can
be written z'g—; - _]((;LI where 1 is the same scalar function. (In the three-dimensional case,
it would be curl A. where A4 is some vector valued function.) Accordingly we write, with

function v (so far arbitrary)

wo= o [ [l = vdhe+ (r + vhhg den + [ [(enhe - wehy)dedn  (66)

The second integral can be transformed by integrations by part into a contour integral

[ [teahe = vehgidedn = { hign)(undn + vedg) = [ [ h(&n)(vne = veq)dtdn

The double integral on the right vanishes. If h(£.7) vanishes at the contour of the region
under consideration. then the contour integral vanishes. too (otherwise one must carry this
cxpression along).

From the postulate that the double integrals in Equations (6.5) and (6.6) agree. one

obtains as one condition
o (N =Y
2 (€. +L'::Jz< . >
fz \ ) ~ R;

Hence. after substitution of f, from Equation (6.3)

92 1
-0 [ ptel

R} RcR?
{7 B 7 B A ) 97 -
© = LATRY - RO (6.
T pert : o7
and after partial substitution of
R - 3 4M(< )+ R (6.8)




we obtain
ve = %2(-;72{7;;—) [M(€—2)2 +2R(¢ — 2) + MRZ?] (6.9)
One remembers that
Ro=[(€—2)*+ 8%n—y)*+ 3222]% (6.10)

From this expression v can be obtained by an integration; the integral encountered in this

process exists in a closed form. The simple result has been given by Marc H. Williams.

o= —MR(:’R: y) (6.11)
This can be verified by differentiation. One has
R.R. = 872 [M(¢ - )R, + R."]
A Fe) = g2 [MRC ¥ M—(%Z:—xﬁ +2(¢ - x)]
‘”%ERC) - ﬁch [MR2 + 2R (€ — 2) + M(¢ - 2)?] (6.12)
.a(gﬁéﬁc“) - ﬁ;:;fz? [M(g — ) + 2R (€ - 1) + MR?]

This vindicates the above choice of .
One still has to examine the remaining terms in Equation(6.6) (and then those in
Equation(6.4)). One has

a(RoRc) — (77
an

,}cy’ [M (€ - z) + 2R.]

Then ,
M M-y
Yn="mR, T (R.E)E

[M(€ - z) + 2R (6.13)
and using Equation (6.2)

E—zr+ MR, 4 M M-
B2R.R? R.R, R2R}

fi = vy = W (¢ - z) + 2R

Sy ~%q = (6 — ) RZ + MR? + MBR,RZ - MB*(n — y)* [M(€ - <) + 2R.]]

ﬂ2R3R2
Here

B2R, = M(€ — z) + R,
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and

Pln -y = RE - (€~ 2)? - 322
are substituted. Then the expression reduces to

1 €-z , 7] .Mzz[M E-zx +2R(]

f] — Uty =

The term within the first bracket on the right is 3*R2. Hence

. BHE-zx)  M[M(€-1)+2R,]
fi — Yy = ‘ﬁ“"fé?'““' + — R?RS -

At least the first term has the expected form. So far we have found

—_ h h
// 2 ' - W ey + fh(s,n)(w,,dn + Yedé)

M(f - z) M oh
here ¥¢ and ¢, are found in Equatxons(6.7), (6.8), and (6.11).
The first term on the right is the one familiar from steady state theory. It will be

shown that the last two terms cancel in the limit Z — 0. The results are summarized in

the form

41%// (fihe + fohg)dédn - A—;hz(z,y) =

Sy Rer =W gean s+ L hemwede+udn) (@13
T4
where fi, f, ¢, ¥, ¢y, R,, and R, are found in Equations (6.2), (6.3), (6.9), (6.7), (6.11),
(6.10), and (6.9).
To show the last two terms in Equation (6.14) cancel in the limit z — 0, one must
consider that because of the factor 22, the contribution of the second to last term in
Equation (6.14) vanishes everywhere except for the immediate vicinity of the point (z,y).

Thus g—’g can be replaced by% and the second to last term in Equation (6.14) simplifies to

oh M
3. a1 (6.16)
where
2
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The integration is extended over the interior of a small ellipse given by
(€ —1)2 4+ 3%n —y)t = 3%p? p. = constant (6.18)

where p # 0 is small. Outside of the ellipse. the limit as z — 0 is 0. According to

Eguations [3.51 «na 13.6)

R = 312(1?(- +M(E=71))
= (€~ 2)' + 3 (n - y)* + 57:7):
and let
£—z=0z2¢
n—y=zn
=287+ 7 +1)

(2 + % +1)2 + ME

W=

R

(=}

W &

dédn = 22 Bdédq
Then the boundary of the ellipse, given by Equation (6.18) becomes 82 +7? = gﬁ. In the

limit z — O the radius for this circle tends to infinity in the é f-plane. The values of z in

the integral cancel and one obtains

3(2 /€ 2 + 1+ M .
1_// - \£+77 6) *;Bdfdf]
/ﬂ+n2+1+AMVBWe+nZ+Uz
Now let
é = pcos
n=psinf
Then
dedi = pdpd
and one obtains
/= .i/ P L(p)dp (6.19)
0 (pt+ 1)z
where
w2y pt+ 14+ Mpcosl
Iip) = / \ d6 (6.20)

(\ P2+ 1+ Mpcos8)?
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The following formula can be found from the integral tables, for instance Reference 3.

dr

a+bcoszr

A+ Becosr 1 sin T
[ o Sheoman®® = 1 =g |08 = b4)

a+ bcosr +(ad - bB)/

It can. of course. be verified by differentiating the right hand side. The variable x cor-
responds to 8. For the limits —7 and +# the first term on the right vanishes and one

obtains
/’” A+ Bceosr aA~—bB/"r 1
P - Ir = I _—
x (a+bcoszr)? a? —b? /. a+bcosr
Furthermore one has
/-ﬂ 1 dr — 2 ) va? — b2 (tg})
. a+bcosz®T T Ja? _~i)—2-arc T

(again verified by differentiating). Therefore

/‘" 1 27
e dr = =
-x a+bcosr a2 — b2

Hence

/‘*ﬂ VA%‘;BC_O,SQ 0 x aA - bB
7 (a+ bcos8)? - (a2_b2)%

Applying this formula to Equation (6.20), one has

A= 2\/,p? +-l
B = Mp
a=ypt+1
b= DMp
Hence
aA - bB =2(p* +1) - M?*p? = (2 - MY)p? +2
a? = =p 41 - M =522 +1
Thus

(2 - M*)p* +2

! (6.21)
(32p2 + 1)3

Li{p) = 2r

and. from Equation (6.19)

3
oc 2 — M2%))? 2

0 /)2+1)g(;32p2+1)
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Let

PP =u
2pdp = du
Then
o 2 - M4 2
] =13 / ( YT du (6.22)
O 4 (B2 4 1ju + 1)

which one can find in the tables of integrals. For X' = ar? + 2bz + ¢

T 1 br+e¢
‘X’Q ac — b A"-?
1 1 az+b
.Yf ac — b XQ
In the present case
a=p03%
2 2
p= 2t _ M
2
c=1
4
ac — b = ~—MT
x 4 (&) +1 |~
L st = g Il
0 X: (B2z2 4+ (B2 + 1)z + 1)z | o
/°° EIP N LR S
0 X3 M1 3

o ] 4 32r + 9 >
0 X3 MU (3222 4 (324 D)z +1)2 | g

o 1 4 M?
/0 }—_gdl'— W(l—ffz—*ﬂ)

With these formulae one obtains from Equation (6.22)

;L amB (2~ 2M? + M 24 202
i 77 Al B
I =2nr

To complete the proof that the last two terms in Equation (6.14) cancel. we rewrite Equa-

tion (6.16) (the second to last term in Eqguation (6.14)).

oh .\II
drdr
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and substitute our result for I
M
e h,

which cancels with the last term in Equation (6.14).
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Appendix
Identity of the Present Equations (3.17). (3.18). and (3.22) with Reference 1
In reference 1 dimensionless quantities are used while in the present derivation the
quantities in their original form are used. Equations (3.17). (3.18). and (3.22) correspond to

Equation (V1.22) in reference 1. For the present discussion, we characterize the quantities
of reference 1 by a tilde.

They are

~27 Oh dh
! u) = —--- = “—.—tA ] Alft y Al
wy(t. 1. y) (1= ar)! [81( ry)+M (1Y) (4.1)
- Fa MPRDG )+ (1 - MY (7 - PDRBGF. 7)) - .
i //(\ P+ Mp)h (T £-1) ( » )= 9hE € g g, (4.2)
pM(E - 1) +0)
1
Here b= (e 02+ (7 -]
do . 1 ..
= Pl g [ME-3) 4

and at the wing

The notation A(2) and A3 refers to the derivatives of I;(%, £.7) with respect to its second
and third argument respectively. We now turn to the present formulation. To make the

analogy between the present formulation and that of reference 1 more evident. we write

Rol:o=0p

1
p = [(f ~r)t 4+ (1 - Alz)(n - 31)2}2
Then

= 1 __lj\'lz {Af(f - -T) + P]

The vector g (Equation (3.18)) then appears as

R

_;2 (€ — 7+ Mp]+j(n -y

Furthermore. we write k(7. £.7) instead of h(£.7n.7) and denote by h(2) and h(3) the deriva-

tives of h with respect to the second and third argument. Then
Tyh = ih(2 4 jRt)
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Then Equations (3.17). (3.218). and (3.19) assume the form
w = w, + up

1 .
wy, = —zf%a(h,(t.r.y) + Uh,(t.x.y) (A.3)

Uy =

Lo / / (€ —z+ Mp)h¥(r.€.n) + (1 — M?)(n - y)h”’)(ﬁ€~77)al€d,7 (A.4)

i pIM(¢ - 1)+ o))

1

o (1= M7 (M (& = z) + p]

T=1-—

L L

p=[(6-2)2+ (1= MY)(n-y)?
L
w = &

On the upper side of the wing
1
¢ = (t,z.y) = 3h(t,z.y)

(see discussion preceeding, Equation (2.12)).

The difference between the two formulations is brought about by the fact that in
reference 1 the authors deal with dimensionless quantities, and apply the Prandtl-Glauert
coordinate transformation. (In unsteady problems the Prandtl-Glauert transformation is
less useful and in a later report Guderley abandoned it.) Moreover the definitions of h
differ by a factor of 47. The quantities in Reference 1 are made dimensionless with a

characteristic length, L, the freestream velocity, U. and the frcestream velocity of sound,

a.
One has

z=zL €=¢L
_ il _nlL

~_.~2L

R

{L

t = -

a.

o(t.z,y.2) = UL(f,7.9.3)
h(t'_r,y) = 471’('Lil(f.~j'.§/)
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-t 3
h(t.r.y) = 47rI'Lh< L)

Therefore .
3‘f = 133‘” w = Ui
d¢ = Ld¢ w, = U3,
dn = Ljf’ w, = Ui,
p=L[(E- 72+ (- P =L
i (v (E- ) +p| = Fiooa2T
h(r.€.) = 4nULh(7, &, 7)
and
R (r. ¢.0) = 4nU LA
RNz €.m) = ansU LA™
(n = y)hC)r. €.n) = 4n(5 — ) LAOIL
(6 -7+ Mp)=L(£ -7+ Mp)
(M(€ - 2) +p) = L[M(E ~ ) + ]
Since

hy = h(®) = 47Uh;
hy = h®) = 4nliah;
UBi, = —2nU(h; + Mh;)
Substituting these quantities into Equations (A.3) and (A.4) one indeed obtains Equations

(A.1) and (A.2).




