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Section I

Introduction

For the linearized acceleration potential. as well as the velocity potential equation in

three-dimensional unsteady flows, there exists a fundamental solution in a closed form.

This makes it possible to formulate the problem of the flow over a wing (or also tor the

whole airplane) in terms of an integral equation, by which the problem is reduced from three

space dimensions and time to two space dimensions and time. Under special conditions, for

instance the flow over an oscillating wing, the problem has been solved before- an example

is the doublet-lattice method. In these approaches, valid for steady or oscillatory flows, the

integral equation formulation does not appear explicitly. It is by-passed by an immediate

discretization of the problem combined with a specialization of the fundamental solution.

By this procedure one avoids the need to deal with the singularities which by necessity

occur in the integral c ,uation.

The authors of Reference 1 (Guderley and Blair) believe that for general applications

which deal with the problem in the time domain, the explicit integral equation may be

advantageous. However, to bring the integral equation into a form suitable for a numerical

approach it is necessary to carry out transformations which weaken certain singularities

otherwise encountered. The analytical work carried out for this purpose in Reference 1 is

rather formidable. By performing the necessary steps in a different order, Professor Marc

H. Williams has accomplished considerable simplifications. Moreover, Professor Williams'

approach leads to a simplification of one of the final equations and makes a complete

exploration of the relations between the steady and the unsteady problem possible. In

addition, it opens the way to a rather intriguing development, namely the treatment of

the integral equation by means of Lorentz coordinates.

The present report, prepared by K.G. Guderley and Mark R. Lee, follows the notes

kindly sent to Guderley by Professor Williams. Some of the intermediate steps have been

filled in. to facilitate the study of the report for a reader, who on one hand does not want

to accept the results on faith but on the other hand has only limited experience in, or time

for. the necessary matheniatical manipulations.



Section II

Basic Equations in Acoustic Coordinates

Let x, . , z Iea Cartesian system of coordinates which is at rest with respect

to the undisturbed air. The superscript zero is applied because at some later stage the

coordinates x. y. z will be introduced for a Cartesian system fixed with respect to the wing.

\ith respect to this (no superscript) system. the undisturbld air moves from left to right

with constant speed in the x-direction. The planform of the wing lies in the x,y-plane. Let

ij.k be unit vectors in the r . y . z' or x. y. z-directions respectively. Let

x ri + yj + z'k (2.1)

Accordingly x represents a vector with components x- , y3 , z . The reader should not

confuse the vector i with its component in the i direction, denoted by x. In the x. y . Z -

system the wing moves with constant velocity in the direction of decreasing x. In this

process it sweeps out a strip in the x",yc plane which has a width (i.e. an extension

in the y -direction) equal to the span. In the xc-direction this strip extends from the

position of the wing at the time when the unsteady motion started to its position at the

current time. In the present analysis viscosity is disregarded and the air is considered as

isentropic. Since the initial state of the air is free of vorticity, the Helmholtz vorticity laws

are applicable, and the velocities can be described as the gradient of a potential (denoted

by 0). The equation for the potential is obtained by the requirement that the equation of

conservation of mass be satisfied. We make the further assumption that the perturbation

generated in the air (which was originally at rest) is small. Then the equation for the

potential reads

- - (2.2)

Here a- is the velocity of sound in the unperturbed state, and V 2 is the Laplace operator

in the x. y'. z -system. The del operator V ' is defined by

V, 9 t9
X ' , + ( , + k (2.3)

Let c be a fixed vector in the x. y ' , z -space.

SiK +jq + k (2.4)

a1 n d

f? R - ( - +) ( - (2.6)
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Then a fundamental solution with singularity at the point Y = is given by
1 1

O . ) --47/? h(7) (2.7)

where

R /a is the time it takes a perturbation to travel from the point C to Y. Obviously

the solution (2.7) has spherical symmetry (the center of the sphere is given by --

The mass flow per unit of time through a sphere with radius R. is given by

4 r () 2 R

where the prime denotes the differentiation with respect to the argument. For Ro -- 0,

one has T - t. and the last expression reduces to h(t). Accordingly, h(t) is the mass flow

per second. This is the interpretation of the function h(t). While this discussion has no

bearing on the following development, it does explain the factor ( .

At the point given by .iC = the potential equation is not satisfied, for there is a

mass flow emerging from this point. The flow will be represented by a superposition of

particular solutions. Eq.(2.7), with centers at different points . The functions h' are

allowed to be different for each value of C. This is expressed by writing hc(&,r). Notice

that also occurs in the definition of -, thus appears in h twice, implicitly (in r) and

explicitly as first argument. The singular points Y = cannot lie inside of the flow field;

and they can appear only within the strip of the x ,y'-plane swept out by the wing. The

component g° of the vector C is therefore zero. This assumes the wake to be flat.

The unsteady up and down motion of the wing generates at its surface a velocity in

the z'-direction which is the same on the upper and lower side of the wing. The field of

the z- components of the velocity is therefore symmetric with respect to the x° ,y°-plane.

The potential is then anti-symmetric with respect to this plane. This implies for points

in the r . y -plane outside of the strip swept out by the wing that the potential is zero.

The source potential of Eq. (2.7) is spherically syiiiietric: therefore. it is symmetric with

respect to the x .y -plane if Z =i + jri' . An anitismnietric expression is obtained

by a differentiation with respect to z . The resulting expression can be interpreted as a

doublet (of moment -1) oriented in the positive F direction (actually this interpretation



is unimportant). Thus we represent the potential by a superposition of "doublets"

-d a hi& 7T

4,, dzi R,

where 1 = + jr}7. is restricted to the above mentioned strip of the xc y°-plane for the

remainder of the report. Accordingly, the potential will appear in the form

t) 47r .J4  h'( )d:dt?? (2.9)

The unibral variables are & and rW-. One must remember that occurs implicitly in 7.

The integration must be extended over the above mentioned strip. So far, the function

h ( ,r) is unknown. One has, because , 0

ORo R°

therefore,

R0 aoR, d, d) (2.10)

where h' denotes the derivative of hc with respect to the second argument r. In potential

theory one determines, for a sheet of sources, the normal component of the potential in

terms of the local source intensity. The expression corresponding for the sources in the

present case is given by Equation (2.7). Equation (2.9) is then the expression for the

component of the potential gradient in the z-direction. We shall show by applying an

analogous procedure that

lim 06(ix-, + jgy' + kzc ,t) - lim 0O(ix + jy° + kz°,t) = h°(ix0 + jy°,t) (2.11)

Here we repeat the main steps of the argument. Consider a point given by F° = ix° +

jy + kz' and determine the limit of Eq.(2.10) as z' -- +0 while x' and y' are fixed. We

divide the region of integration into an inner and outer region by a small circle with :adius

p, around the point = 7r. = y'. Outside the circle R,, j- 0; the integral (over the

outside region) vanishes in the limit z' 0. To carry out the integration within the small

circle we introduce polar coordinates.

- =pcos0

7 -y' = p sin0

4



The dominant term of the integrand for small p, is h:( .t) where i = ix" + j.

The contribution of this term is

I [iP 2 rz p dp 1 (I + '0 (p z dp
4 h (ix + jZ 2)3 2 ( + (p2 + _2)3'2

The integral is rewritten. Setting p/zp: one obtains

f ZP d P - P -(2 + )1 '2
,0 (p2 + z 2)3 2 .i'O (P2 + 1)3 2

Hence

lim z -dp-
Z -.. o (p2 

+  zc 2)3
,
2

With Equation (2.9). and the discussion following it. one now obtains

Slira o' (izx + jy$ + kz°.t) hc'(ixz + jy, t)

Since the potential is antisymmetric one has

irn #(ix -4- jy + kz. t) h -h'(ix + Jy0 . t)

Accordingly h (ix' + jy .t) represents the difference of the potential between the upper

and the lower side of the doublet sheet at the point given by i" = (ix ° + jy). The same

result can be obtained by a simpler argument. According to the discussion leading to

Eq.(2.9) the function o' (F .t) can be inteipreted as the z' component of the potential

generated by a source sheet of strength hc(ix ° + jy,t). We showed, following Eq.(2.8),

that the mass flow per unit time of a single source at a point 7 is h°(-.t). The mass

flow per unit time emanating from an element dA surrounding the point & = ix + jy

is then h*(&,t)dA. The mass flow is also expressed by the difference of the z. velocity at

the upper and lower sides, multiplied by dA. But the velocity components are given by

lim o (ix + Jy + kz .t) hence tie result given in Eq.(2.11).
z' 0

The motion of the wing has a z' component of the velocity, which will be denoted

w(X, . t). In the linearized approximation this is the velocity component normal to the

wing and as such it is transmitted to the air. Therefore

?v( .1) lim (F ) (2.12)
-0 az
\!



where ,' is known on the wving surface

do (f.7) 10 AiO4 (-, 4 O2 . h ( ,r)dcdr (2.13)

R

Firi leriliore
OR
Oz R

O:- a R

('arrying out the differentiation with respect to z we obtain

do .1 _ 1 [[02, 1Z 3 2 - 2  c2]

hUs ~ . 'O 2 1 Lr) + hR TI.) + h~r d~cdq0. 4 , O R a R 4 a--2R, Tr ' ) )

(2.14)

where

= + j

According to Equatioii (2.12) one must carry out the limiting process z '  0. If the point

(x . y ) lies outside the region of integration, this can be done immediately and one obtains

do (.1 ) = 1 f 1 [h t) 1h--(C, ldc'-(.5
Os 47T .1] [R~ ' a, R? ''j (.)

This form of the equation will be useful in conjunction with the acceleration potential.

There one encounters the task of evaluating this expression for points of the x, y-plane

upstream of the wing.

For = ix + jy . one obtains R = 0 and then it is not possible to carry out the

limiting process s - 0 lirectly. Actually some contributions to the integral cancel each

other. This is shown by ns of certain transformations (in essence they are integrations
1

by part!). \We present here the approach of Professor Williams. He points out that

sat isfie, the Laplace equation in the x'. y . z systen. therefore;
)0 l (/) 2 1 + 0 2 1 )

but as

? + (y )2t(.. )2j



One also has

( 2 d2 1 1 02 02 1 (
C9X~~~~' -- 2 ay :2 -

with

The superscript o indicates that the del operator is defined in the -, 77-system (as opposed

to C. rj-system): the subscript 2 emphasizes that it is defined in the two-dimensional &, 177, -

space (rather than in the ,r/ 7 -space). The first term in the integrand of Equation

(2.14) therefore assumes the form

02 2

This is rewritten by means of the following relation, easily verified if one writes it out in

components. Let a( ° , 77') be a scalar field and (7, r) a vector field. Then one has

a7' - F =- ' - (a6) - ha. - F

Accordingly

02
' () =-7 - -; (hc(T) 2 ( ) + 7~(- ~c~r

In forming V7hc( , ) one will remember that the vector & occurs in h' as the first

argument and also implicitly in = - --. To make clear which partial derivatives are
a,

meant, one best writes h' (&. r) h ( ° , 7r, r) and applies the usual notation for partial

derivatives. Then
(h( T))= ihc + h' + h,V"T

(even for z' $ 0). L-t

'(h r) - ih + jh"o (2.16)

and

- ) + j(rr - y-) (2.17)

then even for z" $4 0
V 2 R- =

R



V2 k) -R (2.18)

ilnld I\ Iquiat ion (_'2.S 72a

Thereforc. with i • 2 - Z 2)

-. ~~ + h/1\
o-~ R Rr)V aoR

SUl-t it it il, I- ('xt~reion in to Equation (2.14) one obtains:

+ R4 h;(&.r)+ aRh r

Notice that theme transformations hold for z' =/ 0. Thus R- -- 0 and the expression on the

left in the following equation can be transformed by the Gaussian integral theorem.

pr / 1 \f 7 /h 7V. (.)V 7 ) dld?lc -f -~( crV ( ) - ids (.9

where in is the unit vector in the direction of the outer normal to the boundary of the area

of integration. d.; is Ihe line element and S is the contour of the region A 0. But we found

that outside of th, area of integration 0 ( '°,) 0 if lies in the x°,y ° plane and that

h- i the junip of o at the plane z 0: there is no jump of 0P outside the strip of the

." . 9 plane swept out by thu wing. Moreover, o' is continuous, as one moves across the

boundary of the region A (otherwise there would arise a delta function in the velocity).

Therefore h (E'.t) 0 at the boundary of A. and the expression shown in Equation (2.19)

vanishes. This procedure eliminates the worst of the singularities. Equation (2.12) is now

written in the form

,(Y .t) + . ) + , ( .t) (2.20)

wvhere

?I-,. (.F . ././A i .r)dc dt; (2.21),,'.( .)=47r IA R3 (  rd r

and

•~f )".r, 4t,. .. I R: + h, (C-.7) dc drI (2.22),,(-F - ]lr ' '7f 1 ZR a



provided that h ( .r) =0 at the boundary of the region A-. The expression = ih o +

'1, is iefincd in Equation (2.16) and can be intorpreted as follows. We found that

h'r) ( c- therefore 2(i, +jh' ) gives the velocity component on the

surface at the upper side of the sheet and - (ih, + h,, ) is the velocity at the lower

side The strip ')n which 1 -0 is therefore a shear layer. which can be interpreted as a

vortex sheet (Hence the subscript v). The two velocity components have opposite sign. The

vorticitv vector lies in the c . t,, plane and is perpendicular to the vector (ih"o +jh ). The

expression can be obtained by the Biot-Savart law. Not much is gained by thisR 3
interpretation. An isolated vortex element does not exist. because it violates dir curl F=

0. An infinitesimal vortex ring, according to Stokes' vorticitv law, is equivalent to a doublet

distribution over a surface which has the vortex ring as boundary, and this brings us back

to the starting point of these investigations.

For z, - 0, and O i°, the distance R. - 0 and one still encounters a singularity

because of the denominator R, in Equation (2.21). We rewrite

u t) = f ,r) • d dqT°=

1 -+ jyt). ff Rfd C d: + f f 5((r)- (i 2 + jyr)). 4d 'dr7 (2.23)

In the second term the singularity vanishes. This becomes evident if the integration is

carried out in polar coordinates:

-x =pcos 0

r/'-y =psintO

dc dr/1 - pdpdO

where

N~ ~O(p 3 ) dO,

r) - [ +ix jy .1)) is O(p). We therefore obtain an integrand (p +z: 2)3 '2

which. in tile limit z - 0. becomes 0(1)dO. In the first integral in Equation (2.23), the

introduction of polar coordinates would give N; ) dpdO. Carrying out the limiting

p)rocess z -- 0 at this stage. one obtains O ( ) ) dp. which does not converge for p 0.
\P



For z 5- 0 this integral is rewritten using Equation (2.18) and subsequently the gradient
theoreni.

where ii is the unit vector in the direction of the outer normal and ds is the arc length

of the perimeter of the region under consideration. At the boundary curve, along which

the integration on the right is carried out, R- € 0. so that one can perform the limiting

process - 0. then R - Iji. The gradient theorem is readily derived by carrying out

the integrations in the following expression

Iu /(a+ u' dxdy zu(idy- jdx)zuiids

In evaluating ?r,, Equation (2.22), in the limit z' -- 0, a technique familiar from potential

theory is app! d again. Consider a point given by

i x x'i+y j+zk

By drawing a small circle with radius p around the point E' = x " . r1' = y' of the E°,' 1° -

plane. we divide the region of integration into an inner and an outer region. In the outer

region R: 5 0. and the limiting process Z' - 0 gives zero immediately. If p. is sufficiently

small and for z - 0. h$(&,r) can be replaced by h"(ix ° +jy',t) ht(x 0 + jy°,t). Thus

one obtains as contribution of the first term in Equation (2.22) for wp

11
7_ ht(ix'-+ jyt) dd&7

In polar coordinates with polar radius p. one obtains

ht(x.y,t) [P z 2 p

] (p2 + z-2)2d

Hence with (plz)2 = u

h t (r, t) Z p - h x .-td
a .0 (p2 + zoY) 2a- 0~z (U +-i)2

2a,.)(i, + i))K"
Then

h,(xy.t) J .j ' 2pdOdp ht (I.r 4 jy..t)
Z'lm.0- 2rfa.] f ) (p2 + -2 2a

I0



Treating the second term in Equation (2.22) in a similar manner: one obtains zero. Thus

ht (F t)
Wp(V~I) - - 2a-

For an interpretation of this term we observe the following. If w(x-.y--,+0, t) does not

deIe'nd ipoii .r aiid !! t l( the, .ainw holds for i(.r P .t). Th, ilt egral equation then
I dhi h,

reduces to u'(l)= -i- As w(t) oz (t). and 1 = . .+0. t. one then obtains
1

c) - - . This relation holds for a plane wave propagating in the z direction. Thisa
is the approximation of piston theory (therefore the subscript p).

In the acoustical approximation, the perturbation pressures are expressed (from the

Bernoulli equation for unsteady flow) by

AP = -PocOt Ph( c.lc,+O,t)

where pe denotes the density of the undisturbed air. The pressure difference between the

upper and the lower side of the wake is 0. Therefore hi = 0 at points of the wake. In the

x:. y-. z' system the value of h' remains constant for points of the wake. It is determined

by the value it assumed at the moment when the trailing edge swept over this point.

In the present formulation it has been assumed that the wing moves within the x", y'-

plane. It need not move in a straight line or with constant velocity. For such a situation.

or even if the wing motion is not restricted to this plane. the ,y' . z -system is the ap-

propriate system of coordinates. (It is. of course assumed that the motions are compatible

with linearized theory.) In the more general cases one will have a wake. which does not
Ah"

lie in the r . y plane but the condition Ot = 0 for points of the wake still applies. If

the wing does not lie within t}be x,y plane. then one must introduce doublets oriented

in the direction normal to the wing(rather than in the z direction). The wing motion

and deformation always determines the velocity component in the direction normal to the

wing.

I'



Section III

Wing Coordinates

For a wing inoving with constant speed U in the x-direction, it is convenient to trans-

f'orin tli eq(JUatioin, to a (artesian syst 'li fixed witi respect to the wing. Accordingly we

t t

The mianner in which c (and i ) is transformed into wing coordinates is based on the

following reflection. The function 1 appears in the integral equation with a third argument

T. We want a newly defined function h(. 71. T) to refer to a fixed location on the wing.

Then the relation between c and is determined by the location of the wing with respect

to the . ] system at the time given by 7. Therefore we have

----- . -I-i''

h,(. r,. ) =~ t, -, -r. i. rJ

A . far a . the integral is concerned this is a transformation from the variables and 71-

to C ai ti . In this transformation r . y .y and I play tle role of parameters. they enter

thriogh ihl (hefinition of the auxiliary function T.

-= - R /(0 (3.1)

NN it I

R - )2 4 (?1 - y ,, (3.2)

In a, ]1,;it onf expr,-ion i , inipler to forimi the lii -ii () after the transformation

tra -ft' , ,''ir,, Tii,, u/u he -. -'. ( ii? l'ilhli, r, , t,'.ri - r ie t~ w rd 'li~ tr

ii~~~l1 h( /l i

IntroAl c



then

W _x o) - x) + U(t - r)

Hence with Equation (3.1)

(- x) - - x) + MR, (3.3)

substituting Equation (3.3) into Equation (3.2) one obtains

C x -) + MRo) 2 + (7- y)2 + 2

This is a quadratic equation for R.. Writing it in detail one has

Ro(1 - M 2 ) - 2M( -- x )R o = (- X) 2 + ( - y) 2 + Z2

The result is written in the following form. Let

02= 1- M 2  (3.4)

and

R - ) + (2- )2 + o2 21 2 (35)

then 1

R, = -[M( - x) + Re] (3.6)

From now on R, and also r are considered as functions of x, y, , ?7, and t. Substitut-

ing Equation (3.6) into equation (3.1), one obtains r; subsequentally one finds E°. The

transformation of 70' and z' are trivial. According to Equation (2.17)

S= i(W- -x°)+j(i,° - y° )

Then with Equation (3.3) in terms of the new coordinates

,U = i( - x + MR.) + j(rt - y) (3.7)

Substituting R, one obtains

= (-x + MR,) + j(7 - y) (3.8)

One obtains from Equations (3.5) and (3.6)

dR, = 1 1 AR, + x) (3.9)
a /32 R,

13



Furthermore
R (3.10)
a ll R e

Let
v2 i+ i (3.11)V; i + all1

Then because of Equation (3.8)

7 2 R- p (3.12)

- R2 (3.13)kI2- = R2?RC

The surface element dA = dE-dr transforms into - d~dr7. One obtains from Equa-

tion (3.3)

Hence with Equation (3.9)

-- (Re + M 2R, + AI(C - x))

and with Equation (3.6)
O9U R-

Thus dA = (Ro/R,)d~d7 Let

h(E, 7,,r) = h°( - Ur. ,,r) (3.14)

Using Equation (2.16)

7, r) = ih + jh,7 = iho + jho = 5(C°, ?70,,r) (3.15)

where r is obtained from Equation (3.1)

.r = t -Ro, =t - 1 (-6
a, aof32 [M('- x) + R,] (3.16)

and Re is given in Equation (3.5). According to the definition of h, Equation (3.14),

h(x,y,t) = h°(x - Ut,y,t)

then
h,(x,y.t) = h'o(x - Ut,y,t) = h',(x',y',t)

hi(x,y,t) = -Uh-o(x - Ut, y,t) + h' (x - Ut, y,t)

h,(x,y.t) = -Uh',(x",y',t) + h'(x ,y" ,t)

14



Therefore

ho (X ,yt)= ht(x, y.t) + Uh 1 (x,y,t)

One thus obtains the integral equation

w(xY,0. t) W ,(x.y.O.t) + wP(x.y,0. t) (3.17)

where
wP(xy,0,t) = 1 (ht(x, y,t) + Uh (x,y,t)) (3.18)

W, (x, y,O, t) = 2c d~dq (3.19)

= ih + jhn

The vector " is found in Equation (3.7). When we treated the problem in the x0 , y°, z

system, the expression w, had been decomposed in order to deal with the dominant sin-

gularity of the integrand by analytical means. The same decomposition is carried out

here.
1 r 7 . 7) r

WV - lim J = RR (xy,t).j d~drl (.1.20)47r z-f RfR kR

Z-0R3R r~R1 77xr - ;7(x,y,t). ]d~dq

Ro R,

In the first term a limiting process z -- 0 is needed. According to Equation (3.13)

R 2 R----R,,

then
f ddq [ [V 2 ( d drds (3.21)

fR~o R,

according to the gradient theorem. In the right hand side of Equation (3.21) one is per-

mitted to make the limiting process z --* 0, i.e., one replaces Ro( , 77, z) by Ro( , 7,0). The

postponement of the limiting process z -- 0 has been necessary, because, in transforming

from °, ?7' to , 77, the contour of the region will in general not retain its shape; the normal

in the ", 77' system is different from the normal in the , il system and so is the length of

the line element. The result, Equation (3.21). is now substituted into Equation (3.20).

w(x,y,O,t) = (X ,y,t). i-i ds+ 2 I I ' d~d? (3.22)
4r R R,



Note that Eq.i3.22) is identical to equations (VI.18) and (VI.19) of Reference 1. The

transition from one formulation to the other is shown in Appendix.

The effect of the change of the shape of an area of integration connected with this

Tran-zformatiou i also observed if one conisiders the expression for the upwash in its original

'W- .( ... h~Ct',,r, III( Trai-f;n i matiI I- 1( rcnlov, Ili( -iiigulariiie are carried out. Thii.

Xl:t(',.--il lii> ueallin if r and o (1i0ot lie withiii the region of integration. One ha,

for th e otetial of a source sheet in te r . .. -system

- h f f (, .,, .T)d dil" ( .r .y : . 4 7 ,R1

with
R-

Hence in the r. y: . r7 systems

if th& -)dEd7O(X, Y.t 0 -7frh ' rd d (3.23)
47r . i R,

As before

h( .ri. T) h ( - . T.T) (3.24)

1 A32( -x) + R,] (3.25)

R, --- "
(  - r)2  + .,32(11 - )2 2 . :221

R, y +3(326)

Since
dR, :3 2:

d: R,

oie obtains in the limit : - 0

d h .i -' + -_7- ds d (3.27)

Alternatively one cari begiin by forming the derivatives with respect to in the x . y .

,y9t dci -.

Iii tle( -.1 hvjl uiitit traiiforuuatiou to I I lio i y / - t(u 0i l(, hIm

I .q .7 , 4 T. I/ .7



For the sake of clarity we denote the derivatives with respect to the first and third argument

not by h, and h, but by h( 1) and h(3 ) . The transformation then gives the alternative

expression

hr = -O ) + h (3 )

therefore

4(x.yO.t) f f11 [h( . _-) + a Rh(fl(&17r)+h( 77,r)1 d~dr (3.28)

To bring Equations (3.27) and (3.28) into agreement an integration by parts must be

carried out. We are solely concerned with the integration with respect to , while 7j is

kept constant. One notices that dh for 7 = constant is not identical with h ( l ) because

uocurs also in 7-. We express oT in the following equation by means of Equations (3.25)

and (3.26).
dh = h( 1) + h(3)- (97 (1) h(3) 1 MR, + -

d 0 ao2 R,

With this equation we rewrite the numerator of the second term in Equation (3.28)

Uh ) + h(3 ) = U dh + h(3 )(1 + M MR,_+ _

S-M 2  Rc
Sdh h(3)

U 1 ) + h d(3 ) = U + ( 3 M 2 )R(Rc + M( - x))

and with Equation (3.6)
Uh() +h(3) dh h(3 )Roh( ) + h ( )  U--+

d R,

Now Equation (3.28) appears in the form

1 f f[ h( ,rjr) + M h(3 )(MrA,r)
C(x'y'O't) = i4-f RoR, RoRc aoRC

An integration by parts is applied to the second term.

Od(xyOt) = - M I(d + ( h(,1,r) (- +ddlj

(3.29)

Now

R- Rc 1Ali [Al( - x)R, + R 2(1 1

-a RR ( -M2-) R 2 R? [MR, + R(- - + 2( - x )

17



Then one obtains for the factor of h in Equation (3.29)

Af AfI(E -x)'
R2R[RA1f2(~I( +-P x

(1-M 2) R1 [R + 2M( - x)R+ M( - X) - Re

Thus

o(.r.Y. o. t) - f 1 Mh - 77+f -2 4- a I, dji

This agrees with Equation (3.27) except for the contour integral. If h = 0 at the contour.

this integral vanishes. The formula is applicable even if h 5 0 on the boundary. in which

case the term accounts for the deformation of the region which occurs as one moves from

the c .?yj system to the . 77 system.

18



Section IV

Lorentz Coordinates

As before we denote x . y . z as a Cartesian svstemn at rest with respect i(, i e undis-

turbed air. and with t (formerly f) the time. The transition to wing coordil, - li;, been

made by setting

.r + M\I (4.1)

y~y

The Lorentz transformation2 is given by

= (x' + Mat')/3 (4.2)

a I(a-C + Mrx )/3

with the inverse

x (.- - Ma 1)/3 (4.3)

y

a.1- (aA- Nfi)/3

It follows from the first of Equations (4.1) and (4.2) that

- x13 (4.4)

y~:

Since Equations (4.4) do riot contain t, the x, D. -systern is fixed with respect to the x. y. z-

system. The time f i is expressed in terms of f and ,3 by the last of Equations (4.3).
.

Substitut ing here 0 one obtains

a. I a. f,3 + M (4.5)

13



Equation (4.4) and (4.5) give the relation between the wing system .r, y. z. t and the Lorentz

svstem ,.. Z. One has as inverse transformation

at (at Ai-M)
x 3

A. mentioned above, the Lorentz transformation leaves the wave equation

a2  2 .' 2  I 2

dr 2 + Oy 2 + 49 Z -2 a2 (9t ,  =2

uiiCl, rigd.( i.e. one obtains in the '. i. t system

02 , d2 (1 a2, 0
49. 2 9 + (2 a, at2

The integral equation in the i. y. z, t system therefore has the same form as in the

.r . t . -syste i. namely

, i i) 0 1o(. .. .= i)

47r . Rj3 U + ( 9 O

,A, i e re

In this equation y(.'. . t) is the unknown function. The transformation gives

h(x y.t) ) h( -. i) Y I (3a, t + •

arid

Ya 1 +3

H enrc

(.,.z,,) = , . ,.0

201



If o is the velocity potential. then in most practical applications

QZ (-. Y,o. t) , X, , v t)

is a given function. on the wing. Then

(a - MA,)/( a3))

In the indicial problem one has for instance

w7,(X, y, t)= g(x, y)H(t)

where the step function H(t) is defined by

H (t) =1, t > 0

H(t) O, t < 0

Then

(.i t)g (O~, ,) H ((a, M.i)/(a,,3)

Therefore

P, 0 g( 3 ii). a:, > Mi,

f.(. P., 0) 0. ,a,. < Ali

The pressure difference between the upper and lower side of the wing is given b

~p = -p(( h, + ht)

One has. from Equations (4.4) and (4.5)

Uh + ht +  h +it

Therefore
A~p = - + 3

In the wake

(1h 1  = 0

The Lorentz transformation maintains the general struclure of the integral equation, but

the expressions are somewhat simpler. It requires a transformation of the given upwash.
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For the indicial tprolhi, li t he vale of I for which i?' jumps from zero to the value g(3?. jj)

l1(W ,eh)ewrd- utpor X. The pressumres in the Jr. y,. t system are expressed by the above formula.

Aft er Ili, pre--uir,- in the t.. . t system have been found one must transform back to the

x. !i. / Ix ii. This P- impossible if one tries to apply the results in an aeroelastic problem.

fonr there the di-thlaccencit, of tle wing are expressed in terms of the time variable t while

Ihe dt abt ajicd IN mneans of the Lorentyz transforms appear in terms of . This is of minor

iuiport hnc('c. if wie fir>t evaluates the indicial response. If one uses the Lorentz transform

Owhn Ow li propJioaa ion of disturbances occur with the same speed in all directions. This

fac ilittvt (lie, choice of the panels on the wing and the tinestep. especially at high subsonic

Mach ium}iner-. However the speed of propagation may be of importance only during the

initial phase of the indicial response. The remainder of the report presents some detailed
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Section V

Identity of Equations (3.21) and Equation (VI.18) of Reference I

The reader is reminded of the following identity. Let c - (I).rj = 77(l) describe a

curve C, in the cri plane and let f(c. ij) be a given one-valued or vector-valued function.

Then

de" C 72f = ( + - ) dl -- dl
9ia dl a77 dl

In other words. the operator d .7- represents differentiation along the curve C. Hence

d- . V 2 f idf dl = fB - fA

If the curve is closed, and f is continuous, then the integral is zero. This holds for a scalar

as well as a vector valued function:

J 7&2 fJ('f{d + 'fd??) =0 (5.1)

\Ve address ourselves to the first term on the right of Equation (3.20) after Equation (3.21)

has been substituted. Let

- - 7{... Rd (5.2)
47, JR,

and
dB8I lirn - -z-.O dz

where (' is the expression Eq. (VI.18) from Reference 1. We want to show the identity

of I and I. In the present notation, I can be written in the form

1 f(k d)( .d ) 1
RR = " - × - kx1 (5.3)

where

_f 
(X5-d )

I is rewritten using Equation (3.13)

To transforrii this expression. consider the following integra! which is zero because of

Equation (5.1).

2 3



a
Applying the scalar operator d • 7 2 =d + d?7 to the vector R oneobtains

The vector , is found in Equation(3.7). One obtains this by carrying out tl: differentiation

in the second term and rewriting the first one.

According to Equation (5.4). the first term is -I. Therefore

o +iM (logR)d+ (logRo)d7]

The second term vanishes because the integration is carried out around a closed curve.

Therefore

NOW

kx d -rids

Thus.
ids

This then shows the identity of the expressions I (Equation (5.1)) and I (Equation (5.3)).
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Section VI

Steady State Equations

The present formulation can be specialized to the steady state. The equations so

obtained are different from those obtained by a direct treatment of the steady state. In

this section we show by the procedure of Professor Williams that the two formulations are

id(ltical.

In the steady state u, and h are independent of t. One obtains from Eouptions (3.17).

(3.18) and (3.19)
U -(x. Y) = w, (x. Y) + wp (6.1)

where
-U Oh -M h

up=2a, (9x 2 dx

and

Here
p' P- =fl + if2

R? R,

Substituting f from equation (3.8) one obtains

1 (-x + MR) (6.2)
fi = 2 ? R6R2

f2 (27 Y) (6.3)

- ih + jh,

Written in detail Equation (6.1)reads

1
u'(x.y) = 4 hr mf f [f.( ,r7)h, + f 2 ( , 7 )hj d d - -h 1 (x.y) (6.4)

Treating the steady case independently one obtains

wY(x. Y) - f (im - xdh~±( (6.5)4 r o-. R .3

It is our aim to establish that the lastr two equations are in essence identical. Because of

the singularity in the denominator, the discussion is carried out for z 5 0. Only at the end

the limiting process z - 0 will be made. The only procedure to transform one equation

25



into the other is to add some expression to the integrand in Equation (6.4) which can be

transformed, by an integration by parts. into an integral around the contour of the region

of integration. (This contour integral will not always vanish, but at least the area integrals

in Equations (6.4) and (6.5) can be made to agree. The iinportant fact here is that fl is

I .i': k* C ai J2 Ilie ta('tor ( f,/. i- P)I! T I o H o f 01 View 01 operai or (ht or . ol

iiake. uc( of' tli relat ion t hat

/ / Fgrad h, d.cdq= conl oir terni, - / /Ii iv dcd 1

i.e. that the negative divergence is the adjoint operator to the gradient. (This is readily

shown by the integration by parts.) The double integral remains unchanged. if one adds

a vector, whose divergence vanishes, to F. In the two-dimensional case such a vector can

be written ia - joth. where ?, is the same scalar function. (In the three-dimensional case,

it would be curl A. where .4 is some vector valued function.) Accordingly we write, with

function t, (so far arbitrary)

[-.\ -' j -(f ,)h + (f2 + i_ h7 dlcd7 + c,- vh,7)d~7dq (6.6)

The second integral can be transformed by integrations by part into a contour integral

.f f(~~ - t'h,7)d~d?)- h(E. r;)(t_,,d 7 + z:-dlc) - / h(C. ~('

The double integral on the right vanishes. If h ( . i;) vanishes at the contour of the region

under consideration. then the contour integral vanishes, too (otherwise one must carry this

expression along).

From the postulate that the double integrals in Equations (6.5) and (6.6) agree. one

obtains as one Condition

f2 .) + ( )

Hence. after substitution of f2 fromn Equation (6.3)

(u - )["I RrR 2

f.12 R - ,(6.7)
RI2

ali(l after partial sul)siitution of

R 2 "i.\( .7') - R, (6.8)
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we obtain

M - X) 2 + 2R,( - x)+ MR 2 (6.9)
I32RCR2 ) F2~~-x

One remembers that

x) 2 + -2(71 y)2 + 32z2] (6.10)

From this expression z; can be obtained by an integration; the integral encountered in this

process exists in a closed form. The simple result has been given by Marc H. Williams.

M RR- 
(6.11)

This can be verified by differentiation. One has

R R c-=f 2 [M ( - x)R , + Rc2 ]

O(R,R) _ 3-2 MRc + M( - x) 2 + 2( -x)
O RcJ

D(R, R) _ 1 [MR2 + 2Rc( - x) + M(E - x)2 ]  (6.12)

0 ]r • = -1- [M(E _ X) 2 + 2Rc( - x) + MR 2]O $/2 R2, R+

This vindicates the above choice of V).

One still has to examine the remaining terms in Equation(6.6) (and then those in

Equation(6.4)). One has

O(RoRc) r- )9 aR. j _ - y) [M (E - x) + 2R]

Then
M M(r?- )- [M( - x) + 2Rc] (6.13)

RoR c + oRC) 2 RC

and using Equation (6.2)

f-x+MRc M M(77 _ y)2
fI - = W3 RCR- + RoR2 - ___-___

- = R [( - x)R 2 + MR 3 + M,3 2RRc - M13 2 (? - Y)2 IM(E - X) + 2RI]]

Here
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and

32(71 - y)' = Re -x -3 2Z

are substituted. Then the expression reduces to
1 - x[M(2 c(- )-R

Mz2 M(E - x) + 2R<j
3R Lw C.11( - x) 2MVR( x ) -r R?'+~Re RD

The term within the first bracket on the right is 34 R 2 . Hence

3 2( - x) Mz 2 [MA( - x) + 2Rc]f, -t. = ...- c - - + 3 2
Re Re Ro

At least the first term has the expected form. So far we have found

02 ( x)h + (71 - y)h,W (, ) f 'd dn + f h( , 77)( t,d6 + V d )

+ limM _ [2 M _-X)Idd?M h (6.14)

z-6 4 7 rRJ ReJ 2+ R j 2 (x

here t,' and z, are found in Equations(6.7), (6.8), and (6.11).

The first term on the right is the one familiar from steady state theory. It will be

shown that the last two terms cancel in the limit i - 0. The results are summarized in

the form
1 rrM

41 fIfI f, h + f 2 h,) d d - M -h,(x, y)

32 [ )h + (r/ -_y)hq ~r ~d h( ,7,)(p~dE + tdql) (.4. Y~'ld~dqlh ? + ,rl (6.15)

47r f IA R347r ,V

where flfV,,v',,W,,,,Ro, and Re are found in Equations (6.2), (6.3), (6.9), (6.7), (6.11),

(6.10), and (6.9).

To show the last two terms in Equation (6.14) cancel in the limit z -* 0, one must

consider that because of the factor z , the contribution of the second to last term in

Equation (6.14) vanishes everywhere except for the immediate vicinity of the point (x, y).

Thus can be replaced byv and the second to last term in Equation (6.14) simplifies to

ah M (6.16)

where

I f - [2R, + M( -r)jdd2 (6.17)
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The integration is extended over the interior of a small ellipse given by

-x) + 3'2 (r - y)' = 35p p, = constant (6.18)

where p 0 is small. Outside of the ellipse, the limit as z 0 is 0. According to

R J2 (R. + 'I'( X))

R - + 3 2(77 2 + 32,2)

and let

7- Y- Z?7

RC = zo( 2 + 2 + 1) 1

R[=j ( 2+ I) +M

d~dq = z 2Oddi?

Then the boundary of the e]lipse, given by Equation (6.18) becomes 2 + 92 P. In the

limit z -* 0 the radius for this circle tends to infinity in the . i-plane. The values of z in

the integral cancel and one obtains

Jf [3(2/'2 + 2 +1I + Md)I :J -:- - - d~dij+ 2 + I j)13(l+ + 1 1

Now let

pcosO

= p sin 0

Then

d'd = pdpdO

and one obtains

I.J (2 I (p)dp (6.19)

wherc
( ' 7 2\ p2 1 + Alp Cos O (,0/\ PP) =dO (6.20)

• (\ p-2 + 1 + Ipcos 0)2
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The following formula can be found from the integral tables, for instance Reference 3.

S+ Bcosx sinx dx.1 (a+box -B- -d -=  - bA) a+bcosx + (aA -bB) bx

It can. of course, be verified by differentiating the right hand side. The variable x cor-

responds to 0. For the limits -r and +7- the first term on the right vanishes and one

obtains
A + Bcosx a4-bB 7r I

S(a + bcosx)2  a a + bcosx

Furthermore one has

12 ,a 2 - b2 (tg )/ .....dx = --- .arctg b
r a+bcosx .a2_- 2  a+b

(again verified by differentiating). Therefore

1rd - 27rf_ dx= 2

a- -+- bcos x va - b2

Hence
[ A+Bcos0 aA-bB

7T (a + bcos 0) d2  W :2 - V• ,r (a(a 2  .
-b

2):

Applying this formula to Equation (6.20), one has

A - 2 \'P 2 + 1

B =Alp

a p 1'2 + 1

b Alp

Hence

aA - bB = 2(p 2 + 1) - M 2p (2 - M 2 )p2 +2

a 2 - b 2  p 2 - 12 p 2 /32 p2 + 1

Thus

I, (p) = 27r (2 - M12 )p2 + 2

(3 2 p2 + 1)

and. from Equation (6.19)

I =27r ,1 ((2- M 2 )p 2 + 2)p dp
I (p 2 + 1)'2 (3 2p 2 + 1)
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Let

p2 U

2pdp dio

-,,.1 , do (6.22)

/.) [32?2 + (:2 + +1 +1

which one can find in the tables of integrals. For X - ax2 + 2bx + c

dx 1 bx+c

I - x ax+b
X3 ac - b2 X1

In the present case

a= 
2

3 2 + I m 2

b 2 1

c =

2 m
4

ac - b2 = -- 4

OCx 4 [ ( 12)x + 1 O
Io x M 4 (02x2 + (32 + 1)X + 1) 0

J x dx 4 1 [ 1

f o ~ x M2 [ 2x 3 <

JC 1.~ 4_ !2+ ,21O

Io x 42 M (32X2 r + M' _2 + 2)x

M 4 X'' 4With these formulae one obtains from Equation (6.22)

47r!3 (2 - 2MVj 2 + ,, 2 + 2M 2 )

3

I I I I I2 Ir

To c01111 leti, the 1)rooftlial thev last two 1 eris in Equati]on (6.14) cancel, we rewrite Equa-

tion (6.16) (the( ,(ecoljd to last terin in Equation (6.14)).

011 Ai
Ox 4 r



arid substitute our result for I
M

h

which cancels with the last term in Equation (6.14).
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AI))endix

Identity of the Present Equations (3.17). (3.18). and (3.22) with Reference I

In ref,,rence I dIniensionless quantities are used while in the present derivation the

(Ilant it ies in their original formi are used. Equations (3.17). (3.18). and (3.22) correspond to

Eujation (VI.22) in reference 1. For the present (iscussion, we characterize the quantities
of reference 1 by a tilde.

They are

-27, a h Oh 1, 9 tixv.+ Al -,. ) (A.1)

/ f (C Xr ± f)1( 2)(T, . i) + (I- MX2)i - ,)( 3 )(-. ~ d di A2

-2 ~~ [o,(,.i+'i( d.b) (A.2)

00 . 1H e r e , P r-

it'= - 1 - A 2 -x +

aii(l at the wino

Y(. , o) 27r h(t.,)

The notation i (2) and j (3) refers to the derivatives of h(', (, i ) with respect to its second

and third argument respectively. We now turn to the present formulation. To make the

analogy between the present formulation and that of reference I more evident, we write

- X- )2 A 1 2 )i - y)2 2

Then
_12

1. =-- M2 VXM( - x-)+±p3

The vector (Equation (3.18)) then appears as

I .[ - x + Af P] + '(77 - y)

Furthermore. we write h(r. . r;) instead of h( . ?1. -) and denote by h (2) and hI
(
3 ) the deriva-

tives of h witi respect to the second anti third argument. Then

V 2h = ih 2 ) + jh (3 )
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Then Equations (3.17). (3.218), and (3.19) assume the form

, = ?I,, +- Ul'p

1

U - 2 a (ht(t.x.y) + Uh(tx.y) (4.3)

i r ( +- x+Mp)h)( .,) (1- 7)()(- )
4,7 (1 - ] I[,_ j ( X) + p)]2 _y) d dr (A.4)

1 -C
7 a:(1 -iM2) [M( - x) + p]

p - x)2 + (1- M 2 )(?7 y)2]- 2

0:(9z

On the upper side of the wing

(t,xy) h h(t,x,y)

(see discussion preceeding, Equation (2.12)).

The difference between the two formulations is brought about by the fact that in

reference 1 the authors deal with dimensionless quantities, and apply the Prandtl-Glauert

coordinate transformation. (In unsteady problems the Prandtl-Glauert transformation is

less useful and in a later report Guderley abandoned it.) Moreover the definitions of h

differ by a factor of 47r. The quantities in Reference 1 are made dimensionless with a

characteristic length, L, the freestream velocity, U, and the freestream, velocity of sound,

a.

One has

x iL
DLL

tL

a,

o(t,x,y.z) ='Lo(, , Y,

h(t,x,y) = 4 rUL i(t,,
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Therefore

d F' L d l f'

Ld j

1) = L [(7 - + (i - p)2] Lj

P + -I a T L

h (r. 4 7r U ' L+ '(, I-L

h( 2 )(T . ,) 47rU'Lh(2)

h(:0) (7 , . 4 - 7r U(' L hL
(r; - y)h,(:)(,-, z. ,) =4irU(i1  - j1)Lh( )L

( - + + Mp) L(- + Mp)

[M C x)±+p] =L[ f ) ± IJ

Since

h, 0 ( ) 47rUJh,

ht h ( 3)  47r(Tah-i

- -27rU(hj + Mi 1 )

Substituting these quantities into Equations (A.3) and (A.4) one indeed obtains Equations

(A.1) and (A.2).
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