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Abstract:
- , The design of mechanical devices and the planning to assemble them should not be
independent activities. -We--i#du6 a new, fully algorithmic, combinatorially precise
approach to designing devices so that they are easy to assemble and (optionally) hard
to disassemble. Owy analysis can be used to validate good designs, and can be iterated
to generate improved designs. The approach is based on an algorithm for predicting
the motion of flexible objects in contact; the flexible objects have rotationally passively
compliant members, which deform when theyexperience contact forces from the environ-
ment. Such objects are intended to model -"snap-fastener'-type devices, which are very
useful in design for assembly. ., _- t), g I.

The algorithm is based on the theory in ew -eempahon paper-IPD89f; idthis paper
9 -we-describe;the details of the algorithm, its implementation in a system for predicting

and avalyzing the motion of snap-fastener-type devices, and experiments we ran using
the sy.,tem to analyze and design particular devices. I J - -
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To reduce our theory to practice, in this paper we focus on the following issues: the
relevance of our approach to engineering (which we illustrate through the examples we
ran using our system), the computational methods employed, the algebraic techniques
for predicting motions in contact with rotational compliance, and issues of robustness
and stability of our geometric and algebraic algorithms. Our computational viewpoint
lies in the interface between differential theories of mechanics, and combinatorial colli-
sion detection algorithms. From this viewpoint, subtle mathematical difficulties arise in
predicting motions under rotational compliance, such as the forced non-genericity of the
intersection problems encountered in configuration space. We discuss these problems and
their solutions. Finally, we extend our work to predict the forces on the manipulated ob-
jects as a function of time, and show how our algorithm can easily be extended to include
uncertainty in control and initial conditions. With these extensions, we hope that our
system could be used to analyze and design objects that are easy to assemble, even given
control and sensing errors, and that require more force to disassemble than to mate.
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' * 1 Introduction

We are pursuing an algorithmic theory of design for a.ssembly. To this end we are de-
veloping and implementing algorithms that can analyze and generate designs for objects
so that they will be easy to assemble. In particular, we observe that real objects that
robots might assemble are typically not rigid. For example, a Sony Walkman is made
of plastic parts that snap together. Significant advances were made in the design of the
IBM ProPrinter, by replacing traditional fasteners such as screws with plastic parts that
simply snap together. The reason these plastic parts snap together is that they are flez-
ible: more precisely, they are passively compliant. This means that when the parts are
brought together and an external force applied, the parts deform in a prescribed way.
More interestingly, the force required to mate two parts may be much less than the force
required to take them apart.

Since we wish to be able to design and have our robots assemble such objects given
task-level descriptions, we must have a systematic program for reasoning about and
predicting their motions in contact. To this end, in our companion paper [PD89), we
first made precise a sufficiently powerful notion of flexibility to model the objects above,
which encompasses several important and complicated mechanisms in mechanical design
and automated assembly: snap-fasteners, latches, ratchet and pawl mechanisms, and
escapements. We modeled the physics of interaction between the flexible parts and the
environment (including their mating parts). Then, using these tools, we proceeded to
develop combinatorially precise algorithms for predicting the motion of a flexible object
near and in contact with its mating part.

We have implemented our algorithm, and in this paper we describe the details of the
algorithm, implementation, and experiments. We have built a system for predicting and
analyzing the motion of "snap-fastener"-type devices, and we describe experiments we
have run to analyze and design particular objects.

A major impediment to developing systems such as ours has been the apparent ne-
cessity to integrate out the differential mechanics in order to determine the long-term
behavior of the system. This problem is exacerbated by the fact that in many mod-
els of rotational compliance such as the generalized damper (eg., [LMT, Erd, Don88a,b,
Can891), the resulting trajectories are not known to be algebraic; neither do we have ways
of computing algebraic bounding approximations (or forward projections). We begin by
discussing in quite general terms how our model of compliance permits us to obtain al-
gebraic, closed-form solutions to motion prediction problems for a rotationally compliant
object, and how this leads to exact algorithms for analyzing designs for assembly.

We continue by discussing the relevance of our approach to engineering. To this
end, we give several examples of fastener-type objects. We illustrate our discussion with -j
experiments performed with our system to automatically analyze and predict the motion
during execution of the assembly plan.

Our algorithm is algebraic and exact in principle. However, unlike many theoretical
algebraic algorithms, it is also implementable. A chief goal of this paper is to show how

2

S Dist



we implemented it. Next, we discuss our algorithm for motion analysis in detail. Our•
work is interdisciplinary, in that it is situated at the interface between differential theories
of mechanics, and combinatorially precise computational approaches to collision detec-
tion and compliant motion prediction. We employ some simple tools from computational
algebra, and we discuss their application in our algorithm in some detail. While these
tools often seem straightforward from a theoretical viewpoint, there is a host of practical
and implementational problems in trying to build a system and reduce them to practice.
Many of these issues focus on the problems of robustness, non-genericity, and stabil-
ity. We discuss these problems in some detail. For example, while many algebraic and
computational-geometric algorithms can assume genericity (eg., general position), we can
show that in the case of predicting rotational compliance, one is in effect forced to solve
non-generic intersection problems in configuration space. Careful thought is required to
make such algorithms robust.

Finally, we discuss two extensions to our algorithm which are needed in practice. Our
algorithm, as formulated, assumes perfect control and perfect knowledge of the initial
conditions; under these assumptions, it runs in time roughly O(N2 log N) where N is
the geometric complexity. However, real robots are subject to significant uncertainty
in sensing and control. We show that our algorithm can be generalized to predict all
possible outcomes of a motion, given uncertainty in the initial conditions, and in control,
in time roughly O(N 3 log N). Moreover, the algorithm is still "exact" in the sense that
it is a combinatorially precise decision procedure.

Our algorithm predicts where the motion will terminate, and the configuration and
contact history as functions of time. We also show how our algorithm can predict the
forces experienced by the manipulated parts as a function of time. Thus, we can avoid
designs that require excessive forces to assemble, and can analyze how a design can be
easier to mate than to disassemble. This force-history extension requires the introduction
of transcendental functions, and so it results in a numerical (not an exact) algorithm;
however, any desired precision for the forces may be obtained.1

This paper builds on [PD89], and so we assume the reader has a working knowledge
of that paper.

2 Algebraic Solutions to Mechanics Prediction Prob-
lems

2.1 Problem Statement and Assumptions

Please refer to our companion paper [PD89 for a precise statement of the motion pre-
diction problem and our assumptions of quasi-staticity, coulomb friction, etc. We refer
to the static environment as "obstacles", although in fact, it will probably consist of

'By substituting a polynomial approximation for the transcendental functions, the algorithm could be
made an t-approximation scheme.
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Figure 1: The root body is rectangular, and the motion plan is straight down. The two pawls are
"hook-shaped', and are attached with torsional sprins at the hinges to the root body. The environment
('obstacles") are the two filled-in rectangles meeting at right angles; they form a "T"-shaped black body.
In this example, it seems that the pawls will clearly comrly to the "T" and snap around it; presumably
this device cannot be disassembled by reversing the assembly plan. In fact, our algorithm shows that (i)
the right-hand pawl cannot reach the base of the "T", and (ii) with low friction, there is no obstacle to
disassembling the device.

Figure 2: The result of running our algorithm on the two-pawl example. Notice how the pawls comply
around the obstacles as they deform in response to the kinematic constraints and the contact forces. Figs.
2a-g show the motion downwards. At 2g, the root collides with the "T", and the motion is reversed. Figs.
2h-o show the reverse motion upwards.

fixtures and/or the mating half of the manipulated part. As in [PD89], we will consider
the problem of moving a flexible, linked body M in the plane, in a polygonal environ-
ment .K. See fig 1. The motion "plan" to assemble the parts consists of a straight-line
translation of the root body; this motion is parameterized by time and is specified by an
initial configuration and a velocity vector. (Throughout this paper, we will use the term
"assembly/disassembly plan" to mean such a straight-line translation). As the pawls
contact the environment, they can deform in a prescribed way from the contact forces.
In particular, each pawl is attached to the root by a torsional spring. The pawls can also
"snap" off the obstacle edge back to their zero position; this motion is modeled using a
pure rotation. As the motion proceeds, the pawls deform (deflect) around the obstacles
in response to the kinematic constraints and the contact forces. See fig 2.

Fig. 2 was generated by our algorithm. Kinematic constraints are modeled using
configuration space C-surfaces, as in [LoP, Don87]. Reaction forces are modeled using
Coulomb friction. The dynamics of the system are assumed to be quasi-static [Whi82,
Mas86, Pai88]; we regard this assumption as a O'-order approximation of the real dy-
namical system.

2.2 Computing Motions and Intersection Problems

We now provide a somewhat abstract view of the results of [PD89]. Here are the qual-
itative states of the root body: it is either undergoing a pure translation, or else it it
is stuck due to incompatible kinematic constraints. It is clear (PD89] that for the root
body, all we need to compute is the time at which this sticking occurs. This time is an
upper bound on the simulation.

The state of a pawl is more complicated. When a pawl is in free-space undergoing a
pure translation, it can strike a surface. This requires a translational collision detection
algorithm. When the pawl is in contact with a surface, as time increases, its configuration
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(orientation in this case) must change so as to comply with this constraint. (We use the
term "constraint" as in [LoP, Don87, PD89], to refer to the kinematic constraint that (a)
an edge of the pawl touch a vertex of the environment or (b) a vertex of the pawl touch
an edge of the environment. These constraints form type "(A)" and "(B)" configuration
space surfaces, respectively). See, for example, fig. 2. In this case, the configuration
space of the flexible object is R 2 x S1 x SI; a point in R 2 specifies the configuration of
the root body, whereas each angle in S1 specifies the orientation of the right and left
pawls. In this case, we require an algorithm that can return the mapping from time to
configuration, and the curve in configuration space which is the image of this mapping.

Now, as the pawl traces out this curve, three things can happen. First, the pawl
may break contact with the surface constraint, due to incompatible kinematics. Second,
the pawl may stick on the surface, due to force-balance from the reaction forces. (More
generally, for every constraint, there may be at most two disjoint time intervals during
which sliding (resp. sticking) occurs, separated by an interval during with sticking (resp
sliding) occurs). Third, the pawl may strike another constraint. In [PD89], we perform
the kinematic and physical analysis required to compute the times at which these events
occur, and we described the algorithms. In particular, we showed how, given a constraint,
to compute a quadratic function of time whose zeros define the endpoints of these intervals
of sliding and sticking behavior.

Finally, when a pawl breaks contact and "snaps off", we must perform a pure ro-
tational intersection test to determine where it snaps to. When a pawl lies on the
intersection of two constraints, we must determine whether sticking occurs there due
to incompatible constraints, or which constraint takes precedence and becomes a new
constraint at that time. Again, see (PD891 for the analysis and algorithms for these
computations

2.3 Differential Theories of Mechanics

We view the motion prediction problem, even with rotational compliance and quasi-static
mechanics, as a problem that can be solved by careful reduction to the intersection, or
collision detection problems [Can86, Don84,87] that have received much attention. Our
approach [PD89] to modeling rotational compliance and to incorporating frictional con-
straints leads to the first formulation of the motion prediction problem which permits a
reduction of motion prediction to collision detection. Our solution differs from previous
work on predicting, bounding, and planing rotationally compliant motions with quasi-
static mechanics in that it is (i) purely algebraic, and hence exact, (ii) combinatorially
precise, in that the computational complexity is exactly known, (iii) practical and imple-
mentable, and (iv) requires no integration. In this subsection we elaborate somewhat on
these characteristics.

In order to predict the motion of objects in a mechanical system, we require a compu-
tational theory of mechanics. A differential theory of mechanics takes the instantaneous
state and forces, and computes the resultant instantaneous motion.
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Quasi-static analysis is another differential theory of mechanics, in that it predicts
the instantaneous motion given state and friction forces.2 In general, differential theories
can be integrated, in the sense that the long-term behavior can be integrated out given
the differential mechanics. We say that a theory is closed-form integrable when we can
solve for the resultant curves in state-space in dosed form. When a theory is closed-
form integrable, we cwi develop exact, combinatorially precise algorithms for predicting
and planning the motion of objects [Don88a,b, Can89, Briggs89]. When a dosed-form
solution is not known, numerical methods can be used to integrate out solutions in some
cases.

Quasi-static mechanics and generalized damper dynamics are indeed dosed form the-
ories in the case of pure translation. However once rotational compliance-the tendency
of a manipulated object to change its orientation in response to reaction forces from
the environment-is introduced, we do not have dosed-form integrable theories of me-
chanics. We do have precise, algorithmic theories of the differential mechanics, such as
Erdmann's generalized friction cone [Erd84] and the acceleration center force-dual model
of Brost and Mason [BM89], but these theories must be numerically integrated to ob-
tain solutions. The best algorithms for this process are not combinatorially precise, and
do not have solution accuracy bounds. This problem is exacerbated by uncertainty in
sensing and control; in this case we are left with the very hard problem of trying to
integrate out a stochastic vector field on a holonomic constraint, subject to a family of
initial conditions.

In contrast, in [PD89] we use a well-known theory of mechanics with rotational com-
pliance that is not only dosed form integrable, but dosed form algebraic. By this we
mean that the following. Our theory is based on the differential mechanics, but can be
integrated to produce solutions that are algebraic curves in the configuration space. In
fact, the solutions paths are parameterized by time and are piecewise quadratic or lin-
ear. Since we can represent configuration space C-surfaces as quadric surfaces, all of the
intersection problems described above (2.2) are no harder than intersecting a quadratic
path with a quadric surface. Somewhat surprisingly, even the functions that determine
at what times sliding and sticking will occur on a surface are also quadratic in the time
parameter.

Closed form, algebraic solutions permit us to construct exact, combinatorially precise
algorithms for the motion prediction problem. Furthermore, they allow us to straight-
forwardly generalize our techniques to encompass certain simple types of uncertainty in
control and initial conditions.

In principle, our algorithms can be implemented using exact-precision, algebraic num-
bers. In practice, we use finite-precision approximation techniques. Robustness is a key
issue, and algorithms that are theoretically correct with exact precision are often numeri-
cally unstable. A major component of our research consists of building a system that can
strengthen the theoretical algorithms (eg, by adding consistency checks) to make them

21n the came of ambiguity or non-determinism, we view such a theory as a relation.
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practical.

3 Relevance to Engineering and Design for Assembly

3.1 The Two-Pawl Example

Figure 2 shows motion predicted for a typical pawl-like device around a mating part (a
black, "T"-shaped object). Now, for a real device, the pawls will be tiny in comparison
to the root body and mating parts, but we have made them very large here so as to
illustrate the geometric interaction. In this example, the coefficient of friction is very
small. This enables the reverse motion to "pull the pawl back up" out of its mating part.
The "assembly plan" is to move straight down. When a root collision is detected, the
system attempts to reverse the assembly plan and pull straight up. Because there is no
friction, the pawl can be removed. If the coefficient of friction is increased, then the left
pawl will stick on left of the "T" environment, and the flexible object cannot be pulled
back up. This example shows that while it is relatively clear, intuitively, that during
assembly the pawLs may snap around the black "T"-shaped object, that even this simple
problem holds some surprises. First, the right-hand pawl cannot actually reach around
the base of the "T" before the root collision occurs. Second, it is not a priori clear that
the left pawl will not stick during the reverse (disassembly) plan. In fact, it will not stick
on the left of the "T" merely due to kinematic constraints; friction is required.

3.2 "Motion Diode" Example

In design for assembly, we often desire "locking" parts that, when mated, cannot be
disassembled by motion plans in a particular family of directions. More generally, we
may require interlocking parts that cannot be disassembled at all, for any translational
motion plan. Most generally, one might want parts that cannot be disassembled without
exerting large forces (see sec. 4). Following a suggestion of Mason (Ma84], we call such
objects "motion diodes." The term is motivated by the fact that motion is possible in
certain directions, but not in others. Our usage differs from Mason's, in that his motion
diodes are geometries from which a robot cannot be guaranteed to emerge. Our motion
diodes are (flexible object, environment) pairs such that for some family of controls,
(or perhaps all controls), no change in the sign of the controls can reverse the motion
to reachieve the start position. In our simple case a "plan" is a translation given as a
straight line motion

p=po+lt (1)

where t is the time, po is the initial position (at t = 0), and P is the root velocity. A
family of controls corresponds to a set of velocities (p6 }, and changing the sign amounts
to specifying -p).
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Figure 3: "Motion diode" example. There is no root body, and only one triangular pawi which can pivot
about a torsional spring at its center. Pure translations of the diode can be commanded, and the triangular
pawl deflects in response to contact forces from the environment. These figures were generated by running
our analysis algorithm on the data shown. In 3c, the pawl snaps off the upper right obstacle and continues
downward. Fig. 4 shows the reverse motion, during which the pawl gets stuck comping back up.

Figure 4: "Motion diode" example. When we try to pull the flexible object back up (move in direction
+y), it gets stuck due to kinematic constraints.

If motion diodes can be designed, analyzed and verified, then they can be rigidly
attached as "fasteners" to bodies that we wish to mate, but not to disassemble. For
example, if the triangular pawl in fig. 3 is attached in the z-axis (perpendicular to the
figure) to a root body in a parallel x-y plane to the figure, then the root body can be
fastened irreversibly to its mating part.

Our algorithm can analyze designs for these kinds of diodes. In fig. 2, the two-
pawl device and the T-shaped object would form a motion diode with respect to pure
translation in y, for sufficiently high coefficients of friction.

Now see fig. 3. In this example, there is no root body. The one triangular pawl can
pivot about its center; a torsional spring is attached at the pivot. The pawl is moved down
in a pure -y translation, and in response to the reaction forces from the environment, it
rotates compliantly. Let us label the black obstacles, starting with the uppermost one, in
clockwise order, A, B, and C. The pawl contacts A and rotates counterclockwise while
sliding along A's upper left corner. Eventually, the pawl breaks contact with A, and snaps
off, only to hit the rightmost vertex of C. It briefly slides (while rotating compliantly)
along C, until it hits B. The tighter constraint from B takes over, and the pawl is again
"cocked" counterclockwise until it breaks contact at the lower left vertex of B. Finally,
the pawl snaps off B to its rest position.

Now, this mechanical systew is a "diode" with respect to pure y-translation (see the
figures)-when the pawl is moved back up in the +y direction, it jams due to incompatible
kinematic constraints. More interestingly, if B and C are extended to the right and left
(resp.), the system is a diode with respect to all translational motions. That is, no
commanded translation can bring the flexible body back out of the hole between B and
C. Our algorithm can decide that for a particular motion plan, a system is a diode. There
also exists a theoretical extension of our algorithm, using the theory of real closed fields,
which can decide whether the system is a diode with respect to every disassembly plan,
but this algorithm is not practical. In practice, applying the algorithm to a discretization
of the control set would be more practical, although not exact.

3.2.1 A Classification of Motion Diodes
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Figure 5: In (a), we see a pawl-type mechanism affixed to a root body which is translating down in the
-y direction. The pawl is very similar to fig. I. (b) forms a relative motion kinematic diode. Without
constraint (c), there exist other translations that disassemble the "snapped onto" final configuration. If
we make the distance top long enough so that the root collides with the top of 6, then the addition of
constraint (c) turns (b) into a total-motion kinematic diode. Now, (d) forms a friction diode, and (e) forms
a force diode. The presence or absence of (c) determines whether (d) and (e) are total or relative motion
diodes.

Consider figure 5, which is a gedankenexperiment illustrating different types of diodes.
The flexible mechanism, and in particular the pawl structure is very similar to fig. 1.
The commanded motion is in the -y direction. Now, for geometry (b), the pawl deflects
clockwise, and snaps onto the sharp bump at the lower left of (b). The motion is not
reversible, due to kinematic constraints alone. Now, unless constraint (c) is present,
there may exist other translations which will disassemble the mechanism. The addition
of constraint (c) means that no translation can disassemble the mechanism (so long as (b)
is "tall enough"-see fig. 5). Now, consider 5d. This geometry also prevents +y motion,
but the sticking is due to friction, not kinematics. Finally, consider 5e. Here, relatively
small forces are required on the root in the -y direction to assemble the object; however,
large forces are required on the root in the ±y direction to disassemble the object. (e) is
an object that it is easier to assemble than it is to disassemble.

One application of our algorithm has been to determine whether a system is a motion
diode, and what kind of diode it is. Fleible mechanisms which function as motion diodes
can be used to fasten one part to another, and to make the mechanical connection robust
with respect to attempted relative motion of the two parts. This kind of analysis could
be very useful in design for assembly. Using our algorithm, we can form the following
classification of fleible mechanism motion diodes. The classification is "two dimensional"
in the sense that one "axis" is relative vs. total motion, and the other axis is Kinematic
vs friction vs force diodes.

More specifically, the first classification is

1. A relative motion diode is a (flexible object, environment) pair such that for some
family of controls, called the relative motions, no change in the sign of the controls
can reverse the motion to reachieve the start position.

2. A total motion diode is a relative motion diode for all relative motions.

The second classification is:

A A kinematic diode prevents reverse motion due to purely kinematic constraints.

B A fiction diode prevents reverse motion due to a combination of'kinematic constraints
and coulomb friction. It depends on the coefficient of friction.

9



C A force diode is described in sec. 4. Essentially, one imagines replacing the control of
a root body by generalized spring position control, thus equating displacements of
and forces on the root body in a first-order relation. This permits one to ask What
forces are ezperienced by the pawLs as a function of time? and What force is ezerted
on the root to cause the motion? A force diode, roughly speaking, is a friction diode
for all control forces below a certain modulus bound.

Hence, we see that without friction, figs. 1-2 is not a diode. With sufficiently high
friction, it is a relative motion friction diode. Fig. 3 is a total motion kinematic diode.
Our algorithm can decide all these classifications automatically.

In figure 5, we see that (b) is a kinematic diode, (d) is a friction diode, and (e) is a
force diode. If we add constraint Sc and make (b), (d), and (e) "tall enough", then these
are total motion diodes; otherwise they are relative.

One goal of our algorithm has been to provide an algorithmic means of classifying
flexible objects such as snap-fasteners by diode type. Obviously, this is just a start,
and other, finer types of classifications are possible. Ours seems useful in design, and is
efficiently computable by implemented, precise algorithms.

4 Computing Mating Force Information

Consider figure Se once again. We wish to make precise the notion that this is a force
diode.

Force diodes are interesting and useful, in that we can use them to build objects that
are easier to mate than to take apart. More generally, we wish to compute the forces
required to assemble and disassemble our parts, because we must determine that excessive
forces that could damage the parts are never exerted. Conversely, if an assembly we have
designed can be taken apart with very small forces or by a wide range of motions, then
the mechanical connection between the parts may be be insufficient. By extending our
algorithm to calculate the forces the robot is required to exert (external forces) and the
forces the parts experience while mating, we can develop a general tool that performs all
these computations.

The forces and torques experienced by the root as result of the interaction of the pawls
with the obstacles can be computed by considering the force balances on the pawls. We
shall show the computation of the force and torque at the hinge point of a single pawl due
to its contact. This information is useful to ascertain that the pawl does not experience
excessive loading during assembly. It is straightforward to transform this force and torque
into some other coordinate frame on the root body. The total force and torque on the
root is found by summing the contributions of the individual pawls. The total force and
torque information is important since it has to be supplied by the robot or assembly
machine.

First of all, we observe that if the pawl sticks due to friction (as in the case of a friction
diode) or due to incompatible kinematic constraints (as in the case of a kinematic diode),
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the forces will be infinite as time is increased. This is due to the assumption that the root
and pawl are rigid bodies, but even in practice, we expect the forces to get extremely
large. Hence, we need only to examine the case of the pawl sliding on the obstacles.
Second, the results of [PD89] provides us with a mapping from time to configurations,
i.e., to the angles of the pawl. Hence we shall derive the dependence of force on the
configuration 0 instead of on time.

We first consider the type-B contact: The notation is the same as that of [PD89]. The
torque r at the bYnge point is only due to the displacement of the pawl from its resting
configuration, 00. Hence,

S= k(a - 00), (2)

where k is the torsional stiffness of the spring connecting the pawl to the root. Now the
force on the contact point during quasi-static sliding is some multiple of the vector f,
i.e., f = afe. (fe is the vector along the friction cone edge in the oposite direction of
sliding; see [PD89]). Therefore, balancing the torques on the pawl about the hinge point,

r=r X f = k(0 - 8o). (3)

Simplifying and rearranging terms, we can express a as a function of only 0:

k(o-0 0) (4)
Rep, x (n, - 4)

The type-A case is similar. As in [PD89J, we redefine r to be the vector from the
hinge point to the contact vertex, r = pi - p, and f. = Ron. - jive. We have written the
vector in the sliding direction as we instead of the usual v to emphasize that the direction
depends on 0; more precisely, vo = R,_,ni. Then performing a torque balance as in the

2
type-B case, we get

= rx-f = k(0 - 0o). (5)

The negative sign appears in front of f since it was defined in [PD89] as acting on the
obstacle. Simplifying and rearranging,

a k(O - 00)(6
(R n,-u) x (pj -p) (6)

The above expressions could be used directly to numerically compute the maximum
force during sliding, using well known one-dimensional optimization methods. However,
the maximum force and torque computation for a single pawl turns out to be much
simpler. We define a sliding segment as a connected interval of time in which the pawl is
sliding along an obstacle feature, without changing the contact topology. Since the torque
r varies linearly with 0, its maximum clearly occurs at a boundary of a sliding segment.
We shall show below that the force maximum in a sliding segment can also occur only
at a boundary of the segment. Hence one need only check the force and torque at these
transition points. We have thus reduced the apparently continuous problem of finding
the maxima to a discrete one.
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Proposition 4.1 Let

AO+B (7)
Csinob'

Subject to
a(k) > 0 for all E I ['krnn'=]. (8)

Then a does not achieve a relative maximum (and hence a global mazimum) in the interior
of I.

Proof. We look at the relative extrema of a in I and show that they are minima.
Differentiating with respect to 0,

a' sin OA-(A0 + B)cosb0 (9)C sin? 0

At a relative extremum, a' = 0; hence the numerator of Equation 9 must be zero.
Computing the second derivative of a at the extremum, and simplying, we find

a" = A +B a> 0. (10)

Hence, the extremum is a relative minimum. 0

Our claim follows by showing that our expressions for a are of the form required by
the proposition. First, notice that for both Equations 4 and 6, the denominators simplify
to the form C, sin0 + C2 cos 8, where C and C2 are independent of 0, which can be easily
rewritten as C sin(0 + 0), where C = V 4.C and =tan1 c_* Hence, by making the

substitution t0 = 0 + 0, the expressions for a have the desired form for both type-B and
type-A contacts. Finally, the requirement that a > 0 in the sliding segment is nothing
but the requirement that to maintain contact, the force has to be a positive multiple of
f, (see [PD89]). Hence the above proposition applies, and the maximum a and hence
the maximum force, can only occur at the boundaries of a sliding segment.

With this extension to our algorithm, our system can compute the force required in as-
sembly and disassembly, and also the forces experienced by the pawls during execution.
However, the computation of forces is not exact (because they involve transcendental
functions that cannot be "rationalized" as we do in sec. 5 for pure kinematic constraints
to make them algebraic); and hence this extension makes our algorithm approximate.
(The use of provably good polynomial approximations to the transcendental functions
will make the algorithm a provably good approximation algorithm, however). The com-
putation of mating forces is perhaps one of the most important aspects of our algorithm
for design for assembly.
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5 Collision Detection Algorithms and Intersection
Problems

From an algorithmic point of view, much of our work has been to reduce the motion
prediction problem to a series of collision detection problems. (More accurately, these
problems are intersection problems in Cspace (configuration space), in the sense of [Don
84,85]; eg., one wishes to intersect a path with a C-surface, or with two Csurfaces,
etc). Put bluntly, in this paper and especially in [PD891, we reduced the flexible object
motion prediction problem to intersection problems (like collision detection) in Cspace.
Now, we show how to reduce these intersection problems to problems in elementary
elimination theory (particularly, the simultaneous solution of polynomial equations and
inequalities). We go into some detail about how to solve such systems as specialized to
our particular application, and how to implement the solution. We have two goals. The
first is to elucidate a theoretical, exact, algebraic algorithm that is correct. However, this
algorithm is numerically unstable when implemented with finite precision arithmetic.
Hence robustness is a key issue. We emphasize the steps we have taken in order to
enhance robustness, and, in particular, to strengthen the theoretical algorithm by adding
consistency checks.

Our approach to implementing a robust algorithm is somewhat experimental. The
first step is noticing what robustness difficulties arise. The second is analyzing their
causes, and placing this analysis on a firm mathematical footing. In this paper, we con-
centrate on these first two issues, in an attempt to specify how such algebraic algorithms
should be robust, and under what data and conditions. We point out causes of instability.
Finally, where possible, we propose solutions for some of the cases in which we believe
we have found a robust strengthening of the underlying theoretical algorithms.

We now describe the collision detection algorithms we implemented. These algorithms
are essentially a specialization to 3 x S1 of the six DOF collision avoidance algorithms
of [Don 84, 87]. The basics of this geometric representation may be traced to [LoP, BLP];
in particular, see [BLP, Don 87] for a discussion of applicability constraints.

5.1 Representing Configuration Space Obstacles

W implemented a specialization of Donald's representation [Don 84, 87 for 6 DOF
(R x SO(3)) configuration space obstacles to the case of R2 x S1. We quickly review
that representation. Let C denote the configuration space R2 x S1 , and let (z, 0) be a
typical configuration. Recall from [Don 87] that a Cspace obstacle CO is defined by a
predicate on configurations

A (8 E .==f(z)_.). (11)
eEcjamiVi(A.B)

Here, the functions fi : C - R are called C-functions; their negative conjunction in
effect defines the Cspace obstacle. Each fi is restricted by an applicability region A,
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which is a sector (angular interval [9rm, 9,,]) of the unit circle S1 . The reason for this
is that each fi is generated by considering the interaction of a feature (edge or vertex) of
a pawl polygon A with a feature (vertex or edge) of an obstacle polygon B. Contact, or
interaction between generating features is only possible for a connected angular interval
of orientations; this interval is precisely the applicability interval Ai. The set of all
C-functions generated by A and B is called the "C-family" cfamily(A, B). See [BLP,
Don87] for details on computing the C-functions and the applicability constraints.

A C-surface ker f, is defined as the applicable zero-set (kernel) of a C-function f,. It
contains a patch of configurations where the two generating features of fi can be placed
in contact. The key step in detecting a collision of a path with a cspace obstacle CO
defined by (11) is to simultaneously solve for the path's parameter subject to the csurface
constraint3 f, = 0.

The special structure of the C-functions fi permit us to define combinatorially pre-
cise algorithms for collision detection, and for solving general intersection problems. In
particular (see, eg., [BLP] and apply [PD89]) the general form of a C-function in our
application is

AixS + A2 zC + A3 yS + A4yC + AsS + AeC + A7z + ASy + A9  (12)

where a = (z, y), C = cos 0 and S = sin 9.
Now, as is well-known (but see, eg., [Don 84]), we can make the substitution u = tan£2

in (12). Since 5+and C we obtain a form of the csurface (12) which is
quadratic in u.

Biu2 + B 2 u + B 3 = 0 (13)

where the coefficients B are all affine in z and y. When the root position z is parame-
terized by eq. (1), then note that the B are all afine in the time t, in the initial position
ot the root po, and in the root velocity vector, pi.

Pure translational collision detection is straightforward; see, eg., [LoP, Don 87].

5.1.1 Computing the "Snap:" Pure Rotational Collision Detection

For pure rotational collision detection at a fixed translation z, we implement the following
algorithm. First, note that we must solve (13) for its u-zeros; these zeros determine the
orientation at which the pawl can cross the boundary of the Cspace obstacle CO defined
by (11). Each u-zero can be found by solving a quadratic (13). For each of these events, we
construct an intersection which is a tuple (9, fi, A, cfamily(A, B)). These intersections
are sorted around the unit circle (by 0). The intersections are traversed in order, and the
first valid one is returned. A valid intersection is one where:

Intersection Validity Teats

3We will often use the term "constraint" to blur the distinction between a C-function and its kernel.
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1. The constraint is zero: fi(z, 0) = 0. (This is true by root finding).

2. The constraint is applicable: 9 E A,.

3. The intersection configuration is on the boundary of the CO (11). For all applicable
fi in cfamily(A, B), f,(z, 0) < 0. Thus, we must test the signs of all other applicable
constraints in fi's family.

If A and B have size n and m, this algorithm runs in time O(n 2m2). To achieve the
overall complexity bound of [PD89], we employ the O(mn) algorithm of [Don 871. We
have given the slower algorithm here, because we have found that while it has higher
asymptotic complexity it is more robust geometrically and stable numerically. This is
probably because of the redundant information in the representation of a C-family.

Finally, since one C-family is generated for each convex-convex pawl-obstacle pair,
this rotational intersection test must be iterated for each C-family, and the minimum
valid intersection returned.

5.2 Collision Detection Subject to a Holonomic Constraint

A more complicated intersection problem arises when the pawl is sliding on a surface
(13), subject to (1) (which specifies the motion of the root). Hence, we view the situ-
ation as follows. Suppose the pawl is sliding subject to a type B (vertex-edge) or type
A (edge-vertex) constraint. This corresponds exactly to the reference point sliding on
a quadric Cspace surface ker f, which is generated by those contact features. The con-
straint on position (1) defines a "plane" in configuration space. The intersection of this
plane and ker f, form a quadratic curve in Cspace, parameterized by time. Using this
parameterization, we can generate the configuration of the pawl at any time; that is, we
have solved for how the pawl moves subject to the root motion (1) and subject to the
Csurface (13). We must do this for each pawl (since, as in fig. 2, it is possible for both
pawls to be in simultaneous contact with different features of the environment).

The first problem we must solve is how to detect when the quadratic path above
intersects another csurface. At that point, the new constraint may take over, or the pawl
may snap off due to incompatible kinematic constraints.

Each Csurface has form (13), where the coefficients B are affine in z, and hence
affine in t, p., and p (see (1)). After [Don 84,87], we call this a Trigonometric Quadratic
Form (TQF). To solve for the simultaneous intersection of two Csurfaces in TQF, we
view them as simultaneously quadratic in u and a/flne in t. We treat the variable t as
indeterminate, and use the resultant to obtain a quartic in t. We solve for the t-roots, and
back-substitute for the u-roots. Naturally, we must check for the degenerate case where
the leading coefficients of the TQF's are zero (however, see sec. 5.3.1). Finally, given the
(t, u)-roots, we must then perform the intersection validity tests described above in sec.
5.1.1 (or the faster test in [Don 87]). While there exist closed-form solutions to quartics,
we solve them numerically using Ferrari's method. We view our" implementation as a
practically-motivated approximation to the theoretical, exact decision procedure.
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5.2.1 Algebraic Procedures for Predicting Motion Subject to a Holonomic
Constraint

In general, it is very hard to find exact, algebraic procedures for predicting motion subject
to a holonomic constraint. This is because most dynamical systems do not lend them-
selves to such solutions. Our formulation of rotational compliance enjoys purely algebraic
solution trajectories that can be computed using simple algorithms, and that require no
integration. Of course, this is largely due to the simplicity of the dynamic model. Nev-
ertheless, from the examples in sec. 3, it is clear that it is capable of producing complex
behaviors.

5.3 The Genericity of Intersection Problems

Many algebraic robotics and motion planning algorithms make certain "genericity" or
general position assumptions about the systems of polynomials they manipulate. We
now discuss how certain of these assumptions are not necessary in our algorithm, be-
cause (in one sense), our constraints are "never singular:" (we make this notion precise
below). On the other hand, there are other general position assumptions which would
seem safe (and are, in fact, common in geometry) which, it turns out, are not valid in
our application. We call this situation "forced non-genericity." Intuitively, it occurs with
rotational compliance because of the tendency of the manipulated parts to rotate until
many features are simultaneously aligned. In such cases, special techniques are needed
to solve the non-generic intersection problems.

5.3.1 The Inherent Genericity of C-functions in Trigonometric Quadratic
Form

In essence, our model permits a reduction of the motion prediction problem to solving
polynomial systems of equations. Now, for arbitrary polynomials the leading coefficients
of these systems can vanish. This singular situation is undesirable, since in these cases the
resultant gives us no information, necessitating special checks. However, in the special
case of TQFs that arise from C-functions, it turns out that we do not have to check explic-
itly for this case. More specifically, the degenerate case of the formal leading coefficients
vanishing does occur. But if this happens, it means that in the case of TQFs, 0 = 7r (mod
27r) is a solution for the trigonometric equations [Pai88]. This means that for Csurfaces
in TQF, we can blindly apply elimination theory (and especially, the theory of resultants)
to solve the polynomial systems. This fortuitous circumstance is only true in our special
application, where the quadric surfaces come from TQFs like (13). Thus, while many
algebraic algorithms require the system of polynomials to be in general position (this is
called a genericity assumption), our method has no such genericity requirement.
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Figure 6: The geometry of the flexible object and the environment are the same as in fig. 2. However,
the assembly plan is to move diagonally in direction (1, -) instead of straight down. The bottom vertex
of the left pawl hits first. The next segment of the motion in subject to this constraint, in 6b. At the end
of 6b, both pawl vertices lie on the edge. In 6c-d, the pawl is dragged over the top of the "T". In 6f-g, it
snaps off to the rest position.

Figure 7: A detail of the bottom of the pawl from fig. 6.

5.3.2 On the Forced Non-Genericity of Intersection Problems Subject to a
Holonomic Constraint

Whereas many algebraic motion planning algorithms can make assumptions about general
position (or genericity) of the polynomial constraints, when we predict motions subject
to a holonomic constraint, we find that these assumptions may not hold, and that we are
forced to solve non-generic intersection problems.

See fig. 6. The geometry of the flexible object and the environment are the same as
in fig. 2. However, the assembly plan is to move diagonally in direction (1, -!) instead
of straight down. See fig. 7 for a detail of the bottom of the pawl. The bottom vertex
vi of the left pawl hits the obstacle edge e first. The next segment of the motion is
subject to this constraint. That is, the motion is compliant subject to the csurface ker fi
generated by (vi, e). Now, refer fig 7 again, and consider an arbitrary (generic) motion of
the triangle (a path in Cspace). Obviously, this path can cause either constraint (vi, e) or
(vi, e) to be violated. However, we say that generically, both will not be violated at the
same time. That is, for a path 0 : [0,1] --+ C, it will be generically true that f.(o(t)) or
f j (4(t)) is non-zero. (fj is generated by (vi, e)). This would be a good general position
assumption, but unfortunately, it is simply not true for collision detection subject to a
rotationally compliant motion constraint. In fig. 6, we see that as the motion evolves, A
rotates about vi as vi slides on e. Eventually, this rotation brings vi down on e. In fact,
constraint fi expires (that is, we pass out of its applicability region) at the precise time
that fi is activated (we pass into its applicability region); at the same time, fj changes
sign from positive to zero.4 More precisely, at this time t, the orientation 9(t) crosses the
boundary of A, and Aj (which share an endpoint), and O(t) hits the zero set of fi. See
fig. 8.

The non-genericity illustrated in figs. 6-8 in fact occurs for a large (generic) class of
paths and initial conditions. This is not surprising, since of course one of the outcomes
of rotational compliance is to align parts. Second, it is not surprising that when one
constraint (C-fumction) expires, it is "replaced" by a constraint with "neighboring gen-
erators." This observation has been formalized by [Don 84, 87] and also exploited by

4We use "expire" and "become active" following [Don 87].
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Figure 8: ker fi is the csurface for contact (vi,e) (see fig. 7). ker fj is the caurface for contact (vi,e). The
rotationally compliant path 0 is following ker f,, when it simultaneously (i) strikes the boundary of fi's
applicability region A,., (ii) pierces the boundary of fj's applicability region Ai, and (iii) hits the zero-set
of fi. 0 is shown schematically in solid lines.

[ELP]. For these reasons, naturally, it would seem as if non-generic examples such as fig.
6 would happen all the time with our system. In fact, this has been our experience. It is
unfortunate, in that it places high demands on the robustness of our algebra system. In
particular, the applicability constraint boundaries of A. and A, are, in fact, computed
as the zeros of polynomials also (see [Don 84, 87]). Hence, in observing that three events
occur simultaneously (fig. 8) we axe effectively saying that three polynomials (in t) have

simultaneous zeroes. When these zeroes appear to occur at different times because of

numerical errors, then consistency is not maintained and errors can occur. For example,
if we find that 0 crosses ker fj before it crosses the applicability boundary A, n A., then
that intersection will be judged non-applicable and discarded. If the events are ordered

the other way, the intersection is detected.
We can attempt to maintain consistency by introducing additional tests into the

algorithm, based on topological information. For example, (see [Don 87]), the polynomial
gij whose zeros define the applicability boundary Ai n Aj is essentially f, - fi. Hence,

at any given configuration, there are consistency constraints between the signs (and
values) of fi, fi, and gii = fi - fj. Second, we could employ the techniques of [Don87,
ELP], which compute, when a constraint "expires", which constraints with neighboring

generators become applicable. Thus, when fi expires at time t, we have 0(t) = A, n Ai.

We can look at 4(t) and the neighboring generators of vi and e, to determine that fi

must "replace" fi in the applicability set (see fig. 7).5 Finally, we must perform these
constraint replacement computations "subject to a holonomic constraint". That is, if fj
replaces fi in free space, it suffices to simply substitute fj for fi in the applicability set.
However, in contact, subject to the holonomic constraint

f,(Z ,) = O (14)

we must not only update the applicability set, but we must also update the constraint

(14). That is, we must simultaneously replace fi by fj in the applicability set, and replace

(14) by the constraint fi = 0. This constraint replacement mandates that fi = 0. (This
is equivalent to the saying that we maintain contact). Hence, we know that at time t, we
should simultaneously have fi, fi, and gii vanishing. If because of numerical errors these
zeroes occur at different times, then we should in effect "identify" these times into one
canonical, simultaneous zero-crossing time for topological consistency.

Finally, we note that the issue of forced non-genericity is subtle mathematically, and
has connections to other branches of singularity theory. For example, consider fig. 9. In

5The ,pplicabiliti aet is the set of all constraints (C-functions) that are applicable at a configuration.
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Figure 9: Abstract depiction of forced non-genericity. In a configuration space C consider a lower
dimensional algebraic singular set S of "bad" points that we wish to avoid. For example, S could be the
set of singular configurations of the forward kinematic map.

Figure 10: There are two orientations (u-roots) at which the C-function fj generated by (vi, e) is zero.
Which of these two solutions should we pick?

general, we have a configuration space C containing a lower dimensional singular set S
that is algebraic. (In our case, S is the boundaries in fig. 7). Now, if we choose two
points z, and z2 randomly in C, the chance that one will lie in S is essentially zero (this
is really the definition of measure zero). However, if we now fix z1 and z2 and consider
all paths from one point to the other, it turns out that "many" of them-a measurable
set-cross S. In particular, if S separates C, then one might expect this probability to
be roughly proportional to the ratio of the measure of the two components of C - S.
Finally,

Fact: If z, and z2 are disconnected by S in C, then any path from z, to z2 will cross S.

This means that any such path must experience a singular configuration at some time.
This situation is exactly parallel to ours, in which a singularity cannot be avoided. Note
that this problem arises in other applications-for example, in (Pai88], we observed S
as the singular set of a forward kinematic map. By the claim above, this means (for
example) that any path from z1 to z2 must pass through a singularity.

We have sketched an approach to handling forced non-genericity that exploits the
specific characteristics of our domain. It may be that extensions of [Pai88] may provide
general techniques for handling these problems. See [Pai88] for a general discussion and
more observations on this phenomenon.

5.4 Choosing the Correct Branch

This section deals with the following difficulties. When we reduce motion prediction
problems to the existential theory of the real numbers, we obtain our answers by solving
polynomial equations. These equations may have multiple roots. However, our system
only has one evolution. We must have a method for choosing which root is correct.
Conversely, situations will arise where the algebraic equations fail to have roots. We
must handle these cases also.

The situation of multiple roots corresponds precisely to the existence of several "stat-
ically" or "kinematically feasible" solutions to the dynamical system, only one of which is
feasible (or reachable) from the initial conditions. We present a method for choosing the
correct root. When the correct root is parameterized by time, it sweeps out a connected
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component called a "branch." This occurs in our case, where the formal coefficients are
parameterized by t.

The absence of roots corresponds precisely to the pawl breaking contact with a Csur-
face, or jamming on the Csurface so that no further motion is possible. We show how
to determine which of these events has occurred. These cases are important to handle in
practice, and our methods are both theoretically well-founded and implementable.

Consider fig. 10. Clearly, when we solve a TQF such as (13) for its u-roots, we are
solving a quadratic; hence we obtain two roots. Now, often one root will be inapplicable,
or not on the boundary of the cspace obstacle CO (eq. (11)). However, in fig. 10,
both are good roots. Which one should we pick? This is an important question for
an implementation. First, we note that even though both are good roots, there is no
realizable path between them (and so they are disconnected). Consider the problem of
generating a path in cspace subject to csurface constraint (13) and to the straight-line
motion (1). (This corresponds to intersecting a quadric csuxface with a plane to obtain
a quadratic curve, parameterized by time). The path is constructed using elimination
methods; consider the problem of "following" this path. One reason we need a systematic
way of choosing the correct root is that, due to numerical errors, often one root will appear
to become inapplicable "too early" (see, for example, sec 5.3.2), or else, a root appears
to just slide off the boundary of the cspace obstacle. At this point the implementation
finds the other root (as in fig. 10). This root is applicable, and on the boundary, and so
the predicted path "jumps" discontinuously from one root to the other, even though no
such path is physically feasible.

This example illustrates pathological behavior. Fortunately, we can give a principled
way for choosing the correct root. Essentially, one is finding zeros of a simple algebraic
variety in the plane; the problem is equivalent to choosing the correct "branch" of the
variety. We show how to do this algorithmically. In the process, we also derive a method
for determining when a pawl "jams" against a constraint, and when a pawl "snaps off"
a constraint due to incompatible differential kinematics. The two prove to be related
problems.

Let us assume that the Csurface is in the form (from (13))

S(u, t) = A(t)u2 + B(t)u + C(t) = 0 (15)

where

A(t) = Ao + Alt
B(t) = Bo + Bit (16)
C(t) = Co + ct

and u = tan 1 as usual. Then the branch problem is essentially the problem of choosing
the correct sign of the radical in

-B±+ /B2 -4AC
2 A C (17)
2A
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Figure 11: Plotting the discriminant A(t) = B 2 - 4AC vs. time, for type (B) and (A) constraints. We
illustrate the qualitative regions in the space. The "pawl" here is represented as follows. For a type (B)
constraint, the pawl is a straight line connecting the pivot p with the contact vertex. The obstacle edge is
stationary. For a type (A) constraint, the edge moves rigidly with p, and v is a stationary obstacle vertex.

Figure 12: If t,. is finite, we must now check the behavior at this time. Two things can happen as t
is increased a small amount from t... We can break contact (i) or jam (ii). See fig. 11. p is the pivot
point, and P the pivot velocity. Type (B) and (A) contacts are shown. Case (i-B) (break contact) shows
the friction cone. Case (i-A) is impossible, and cannot occur unless we started from this configuration.

The problem of determining when the pawl snaps off or jams is essentially that of
determining if the discriminant A(t) = B 2 - 4AC is becoming negative, and hence failing
to have a real solution. Let us discuss this second case first, and then we will return to
discuss the branch problem (how to choose the sign of lB 2 - 4AC) afterwards.

5.4.1 Application: Snapping Off and Jamming

See fig. 11, plotting the discriminant A(t) = B 2 - 4AC vs. time, for type (B) and
(A) constraints. We illustrate the qualitative contact regions in the space. In the type
(3) case, the "pawl" here is drawn as a straight line segment, pivoting about its end
point. (The pivot is the center of rotation of the pawl-where it would be attached to a
root body). The other endpoint is in contact with an edge. A type (B) constraint is a
csurface generated by a vertex of the moving pawl and an edge of the obstacle. A type
(A) constraint is generated by an edge of the moving pawl and a vertex of the obstacle.
See [PD89]. Hence in the type (A) figure, the edge moves with the pivot p and the vertex
v is stationary, whereas in the type (B) figure, the edge is stationary, and the vertex at
the end of the line segment pawl moves.

Now, the discriminant A(t) is non-negative if and only if eq. (15) has a real solution.
hence we need the following test for the zero crossings of the discriminant A(t), which is
obtained by solving the quadratic A(t) = 0 for its root t.. That is,

A(t) = B 2 -4AC
= (B2 - 4A1 C) 2 + 2(BoB, - 2AoC - 2ACo)t + Bo - 4AoC 0 . (18)

This will produce two times t,, and t., with t,, _< t,,. Clearly, the time of the first
collision with this surface, to, must satisfy t, < t" !5 t. for type (B) csurfaces, and
t,, >_ t, or t, _ t,2 for type (A). Therefore, the next critical time t,. is t, = t, for type
(B) csurfaces. For type (A) csurfaces, t, = t,1 if t, < t,,. Otherwise, t,. = 00 if t4 >_ t.2
(i.e., there is no critical time).

If t,. is finite, we must now check the behavior at this time. Two things can happen
as t is increased a small amount from t... See fig. 12. The pawl-obstacle contact is
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Figure 13: Non-geueric cae of translation parallel to the edge.

represented as in fig. 11. For either type (B) or (A) contact, we can either (i) break
contact or (ii) jam. The figure shows these possibilities.

Now, which behavior occurs can be determined from the Csurface equation. We
assume that the sign of the equation is the same as in [Don87,PD89], i.e., S(u, t) > 0
means that the vertex is outside the half-space bounded by the edge.

Equation (15) for S(u, t) can be rewritten as

S(u,t) = (Alu 2 + Blu + C)t + (Aou 2 + Bou + Co) (19)

First, we solve for u, at time t,, from eq. (15). There should be only one solution:

-B(t,.) -(Bo + Bit , . )

U, = 2A(t,) 2(Ao +At 5 .)" (20)

Next, we examine the sign of the coefficient of t in eq. (15) for this value of u.. Let
= Alu, + Bu. + C1 .

1. If a > 0, then the pawl breaks free. We perform a "snap" (pure rotation) towards
the zero position.

2. Else, a < 0. The pawl is jammed. Report this and terminate the prediction.

3. Note: a = 0 is the non-generic case of translating parallel to the edge (see fig.
13). This should probably be considered a "snap", but the exact semantics are
somewhat unclear.

5.4.2 The Branch Problem

We now return to the branch problem. This is essentially the problem of choosing the
correct sign of the radical in eq. (17). This may be done as follows. First we define
the following algorithm, which computes the branch sign for a Csurface at time t and
orientation u.

Algorithm Branch-Sign(u, t, Csirface)

1. Let A(t), B(t), C(t) be the coefficients of the Csurface.

2. Z -

S . -- 2I) 1 /B2(t) - 4A(t)C(t).
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Figure 14: With uncertainty, the root position starts out in some region R. The control system ensures
that as time evolves, the root position stays in a cylinder T-.

4. If u = x + y then return Plus.6

5. If u = z - y then return Minus.

Now, every time we move onto a new Csurface, we record its sign Branch-Sign(uc, tc,
Csurface1). When new candidate intersections are produced when sliding along csur.
face1, then we check that the corresponding u, and t,. for the intersection fall on
the branch of csurfacel with the same branch-sign. That is, we check whether or not
Branch-Sign(uc, to, Csurfacel) = Brarwh-Sign(u,,., t,, Caurface 1).

6 Incorporating Uncertainty in Control and Initial
Conditions

6.1 Assumptions

Real robots are subject to significant uncertainty and error in sensing and control. For
this reason we would like to generalize our algorithm to deal with uncertainty in ini-
tial conditions, and uncertainty in control. In this section we show how this may be
done, using a simple model of uncertainty. The introduction of uncertainty changes the
complexity of our algorithm from O(N 2 log N) to O(N 3 log N); the algorithm remains
combinatorially precise and algebraic.

First, we assume that the initial position P. of the root body is known to start within
some "start region" R. This region represents uncertainty in the initial conditions. We
will still assume that the root body is controlled as a "moving constraint", parameterized
by time. However, we assume that it is controlled by something like a generalized spring
controller with feedback position correction. This model is very similar to that analyzed
by Buckley (the spring-damper model) (Buc87], and we adopt it because Buckley's error
analysis is convenient algorithmically. However, we will not usc the damper component of
the model to slide on surfaces. Under these assumptions, the set of possible positions that
the root position p can reach (in free space, without obstacles) is bounded by a cylinder.
In short, we incorporate sensing in control by assuming that with initial conditions P. in
R, the set of positions that the root position p can reach is contained in a cylinder T1,
starting at R. See fig. 14.

See eq. (1). The geometric formalization of our assumptions is that (i) P. E R, and
(ii) for all times t, the root position p(t) lies in a cylinder T- from R as in fig. 14. The

sWith finite precision arithmetic, these equality checks cannot be exact.
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practical realization of these assumptions requires (i) a bound on sensing errors so that
the initial position can be ascertained to some known accuracy, and (ii) a feedback control
system with bounded error, such as that of [Buc87].

6.2 Algorithms

6.2.1 Motion Prediction under Uncertainty is Computable

It is immediately dear that with this formulation of uncertainty, the motion prediction
problem (to predict all possible outcomes from R subject to T -) is decidable. We see
this as follows. First, our algorithm for motion prediction from a single initial condition
given p) (as described in [PD89] and above) defines an algebraic predicate Fp(p., z) that
decides whether a configuration z is reachable from initial condition p. given commanded
motion .p. In effect, our algorithm computes the entire set

3z Fp(po,-z)- (21)
That is, our algorithm outputs the entire set Z(po, p) satisfying (21). Thus we can define
another predicate

.F(z,z) 4= (3z) (3a E R) F6(z,z). (22)

Correspondingly, predicates can be defined to decide all surfaces on which the pawls
might stick, all surfaces the pawls might slide on, etc. Since the predicates are algebraic,
they are decidable.

6.2.2 A Practical Alorithm

More practically, we can define a direct ,1gorithm with a computational geometric flavor.
Assume that generically, only one initial contact can occur at a time. Imagine that we
"project" R onto the obstacle environment in "direction" i. This is similar to "intersect-
ing" T- with the environment. That is, we sweep the flexible body along p from R, and
find aifedges of the environment it can hit. We find all initial contact tuples

(9A , tc.,., tc., 9s BvZ (tc) )

such that pawl feature gA can strike obstacle feature gs at times tc, tc0 ,, _ t' _5 to.m .
Note that at initial contact of (gA,g), the orientation of gA and the other pawls is
unchanged. z(tr) is a function that maps initial contact times to root positions. Hence,
the initial contact tuple represents the fact that for t,.,. :_ tc :_ t,., pawl feature gA
can strike obstacle feature g, if the root position is at z(tc).

For example, in fig. 14, assume the pawl is a line segment anchored at p (as in
fig. 11). There would be three initial contact tuples, one for each type (B) csurface of
( v } { 1, 2, 3 ). We call the set of initial contact tuples the projection irp(R) of R under

TP .
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Given the initial contact tuples, we chose a "sample point" for each one, and run
our standard, no-uncertainty algorithm from that sample point. The algorithm is given
below.

Algorithm for Motion Prediction Under Uncertainty

1. Compute the initial contact tuples irp(R).

2. For each initial motion tuple (gA, tc,, , z(tc)), do

3. Assume type (B) contact, so that 9B is an obstacle edge.' Segment gB into 3 regions:

4. The sliding region el,

5. The sticking region e"

6. and the portion eo of e that cannot be hit initially.

7. Output eC.

8. Choose a sample point z E ei.

9. Compute and output the reachable set Z(z, p) (eq. (21)) using our motion pre-
diction algorithm for perfect initial conditions and no uncertainty.

Let N be the geometric complexity, that is, the product of the moving object features
and obstacle features. Then there are at most O(N) initial contact tuples. Thus the loop
is executed O(N) times. el, e*, and eo have size at most 2. Hence there are at most O(N)
sample points z, and so the basic algorithm is called O(N) times as a subroutine in the
last step. Since the basic algorithm runs in time O(N 2 log N), that means the algorithm
for motion prediction under uncertainty takes time O(N 3 log N).

6.3 Extensions and Limitations

Ideally, one would like to extend our model of uncertainty to be more realistic. Ideally
it should cover uncertainty in the direction of the moving constraint, and uncertainty in
initial orientation. As of now, we hope it is rich enough to model interesting phenomena,
but still be computationally feasible. Much work remains to be done in reasoning about
assemblies in the presence of significant uncertainty. Our initial algorithm is just a st:-rt.

?The cae for type (A) contact is very similar.
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7 Conclusions

In this paper we described a system for reasoning about and analyzing the motion of a
"flexible object"-i.e., a compliantly-connected system of rigid bodies. We reviewed the
basic theory developed in [PD89] on the motion prediction problem for such bodies, at a
fairly abstract level, emphasizing connections to computational mechanics and the long-
term behavior of dynamical systems. We discussed how our formulation of the problem
led to theoretically precise algorithms for motion prediction with rotational compliance,
and showed how these algorithms could be implemented and used to analyze designs for
assembly. We stressed the fact that while the theoretical algebraic algorithms we give are
correct when exact arithmetic is employed, in practice we must strengthen the algorithms
to make them robust when implemented using finite-precision arithmetic. We showed how
this may be done in a systematic fashion. Issues of robustness and numerical stability
turned out to be related to problems of genericity and branch-choice, and we described
the theory behind these problems and their practical solution. This elaboration of the
algorithm sketched in [PD89] completes the description of the computational approach,
with an emphasis on the pitfalls and subtleties that an implementation foregrounds.

The research contributions of this paper include:

1. New algebraic techniques for predicting the motion of objects in contact under our
model of rotational compliance.

2. A systematic catalog of singular and non-generic situations that must be handled,
and algorithms for dealing with these events.

3. An extension of our algorithm to compute mating force information. This facility
can be used to design objects that are easier to mate than to disassemble.

4. An extension of our algorithm to efficiently predict motions given uncertainty in
sensing and control.

5. A manifesto for the relevance of our approach to engineering, and particularly to
design for assembly. As an application, we studied several classes of flexible devices
that we term "motion diodes." We developed a classification of these devices into
total vs. relative motion "diodes", and described kinematic, frictional, and force
diodes. Our algorithm can analyze designs, and classify the diode type. We showed
how motion diodes could be useful in design for assembly.

Much remains to be done. We wish to extend and test our system in analyzing real
designs. We also intend to fabricate parts we have designed, and test them by assembling
them with real robots. Perhaps the most challenging area for the future involves the
interaction of our analysis approach with uncertainty. We hope to extend our analysis
and algorithms of sec. 6 to model uncertainty more precisely and to generate designs
that can be assembled robustly. In particular, we hope to develop a precise notion of the
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"stability" of a motion with respect to a design. For example, an assembly plan might
be "stable" if the qualitative outcomes of execution are equivalent. Another direction for
future research would involve extending our analysis to articulated bodies (our flexible
objects are trees of depth one; however, one could imagine many compliantly-connected
links in a chain). This would be of practical interest. Finally, we hope to add more
sophisticated dynamics to our work, and to model continuously deformable bodies as
well.

We feel that algorithmic research on design for assembly represents a new direction
in robotics which could significantly impact the field. In the future, one could imagine
our techniques employed in an approach to "design as search", in which we modify and
improve an existing design oy changing its geometry incrementally and applying our
analysis algorithm. For example, suppose we are given geometric models of two parts
to mate, and an approximate "assembly plan" (direction of mating). We envision an
algorithm that searches around the boundaries of the models, and modifies the shape by
introducing snap-fasteners and ratchet and pawl mechanisms. After each modification,
the analysis algorithm described above could be run, to determine how the parts will
mate, and the forces required to mate and disassemble them. Depending on the results
of the analysis, the design change could be modified, retracted, or declared suitable. Of
course, there is a host of conceptual and algorithmic problems that must be solved to
make such an approach possible, but we believe that with the algorithmic underpinnings
described in our analysis algorithm, a research program in this area is now viable. Such
research could help to put design for assembly on a firm algorithmic footing, build software
tools for generating good designs, and result in a unified framework for designing and
assembling mechanisms.
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