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Direct Numerical Simulation of Aerodynamic Noise
’ ONR Grant N00014-88-K-0592

L Principal Investigator : Parviz Moin
Sr. Research Associate : Sanjiva K. Lele

Research Assistant : Tim Colonius

‘ OBJECTIVES

" Direct Numerical Simulation of Aerodynamic Noise is a part of an overall research pro-
gram in com ible turbulence being conducted at the Center for Turbulence Research.
The program mclude{ ftudy of the physics of compressible turbulence, shock-turbulence

\,l
interactions, reacting fows with heat release, and aerodynamic sound generation in shear

flows.
The objective of the work in aerodynamic sound generation is to use direct numerical

simulations as a tool to study the noise generation processes directlyj S’peciﬁcally(wé"
A zwzslrte answer the following questions:

1. Can one relate particular flow regions and events to the far-field noise ?
2. What regions are the dominant contributors to the far-field noise?

3. What is the role played by pairing process in noise generation?

4. How important are the small scales to the noise generation?

5. What processes control the far-field directivity pattern?

"'hrm"d‘a- to answer these questions in shear flows wezze first studym§ the acoustics of
e

simple bulldmg—block” flows. The discussion below presents recent results obtained for

one of the ”buxldmgiblock” ﬂows, the scattering of sound by a vortex. A short discussion
of numerical accuracy is also given. Finally, results are presented for aerodynamic sound

2

generation from a 2-d temporal mixing-layer. . >/




DISCUSSION
1. Scattering of Sound by a Vortex.

A 2-d compressible vortex is irradiated with small amplitude {1075 relative to the
maximum vortex velocity) plane sound waves. The scattered sound waves are directly
measured and analyzed. The flow is of interest as a model of scattering of sound by
vortices in shear flows, and is also of technical interest in detection of trailing vortices

from aircraft or other moving objects.

The vortex is nearly inviscid with a Reynolds number based on circulation and kine-
matic viscosity of 10°, and we restrict our attention to cases where the ratio of the
wavelength of the incident sound is comparable with the size of the vortex ( The re-
sults reported have a ratio of 4 ). Intensity and phase of the scattered wave field and
their dependence on Mach Number have been computed. Figure 1 shows a typical re-
sult (M = .125) of the root mean square pressure level of the scattered wave. There
is preferred scattering in the forward direction, and the maximum scattering occurs at
an angle of about -30 degrees from the direction of incident propagation. Scattering in
the backward direction is at least an order of magnitude smaller than in the forward

direction.

The scattered amplitude integrated over all angles multiplied by the radius raised to
the .5 power is plotted as a function of radius for 4 different Mach Numbers in Figure
2. The pressure amplitude should scale with r—5 in the far field (Monopole radiation in
two dimensions decays like r—3 ) and therefore the curves asymptote to a constant value
in the far field. The approach to far- field behavior appears to occur on a length scale
which scales with the wavelength of the incident sound waves. This adjustment length is
only very weakly dependant on Mach Number. Moreover, it is found that as the Mach
Number approaches zero, the far-field intensity scales with the intensity of the incident
waves as predicted by aero- acoustic theory. When un-normalized, the data obeys a Mach
Number squared power law, as is seen in Figure 3. In Figure 4, the abscissa has been
divided Ly the Mach Number squared to show the deviation from the incompressible

aero-acoustic limit. The deviations at M = .25 and M = .5 are 3% and 25% respectively.




The scattering from the compressible vortex has contributions from two main sources:
interactions of the incident wave with the velocity field, and interactions of the incident
wave with the density gradient. To separate the effects, scattering of plane waves by
a density inhomogeneity alone were computed. The scattering amplitude is found to
be an order of magnitude less than that from the vortex, suggesting that the density

inhomogeneity is not an important scattering mechanism in the vortex.

2. Numerical Accuracy

Another objective of the reported studies was validation of the numerical method used
to compute the flows. Sound fluctuations are very small compared to the flow fields, and
extreme care must be taken to insure that numerical errors are kept several orders of

magnitude smaller than sound fluctuations.

In resolving the sound waves, two types of numerical errors are important-phase and
amplitude error resulting from the time-marching scheme, and spurious reflection of waves
at the artificial numerical boundaries. Simulation of the scattering from a vortex presents
a difficult test case. Since the vortex velocity decays like 1/r, the vortex has infinite en-
ergy, and numerical boundaries must account for inflow and outflow of mass, momentum
and energy. The boundary must also be capable of exciting an incoming sound wave, and

still remain non-reflecting to out-going sound waves.

As a test, the vortex was removed from the domain, and left and right-going sound

waves were generated at the boundaries. For small amplitude waves the exact solution is

well known, viz

u= f(z—ct)+g(z+ ct).

This exact solution is subtracted from simulation results, quantifying phase and ampli-
tude error, and spurious reflection error. A time history of the error is shown in Figure 5.
For the same spatial and temporal resolution as used in simulating the vortex scattering,

the error was about one thousandth of the scattered wave amplitude, which is sufficiently

small.




3. Temporally Evolving Mixing Layer

Mixing layer flows are known to possess organized vortices (ref. 1). The formation of
vortices and their subsequent merger into larger vortices causes the layer to grow (refs.
1-3). It is common to introduce an idealization of the mixing layer flow (in a frame of
reference moving with the vortices) where periodic boundary conditions are posed in the
flow direction. The temporally evolving mixing layer flow contains many aspects of the
spatially evolving mixing layers. The acoustic radiation from temporally evolving mixing
layers is studied here. The simulations use periodic boundary conditions in the flow
direction (x) and non-reflecting boundary conditions (ref. 4) in the shearing direction
(v) at a large distance from the shear layer. Following the experiments of Papamoschou
and Roshko (ref. 5), previous numerical investigations (refs. 6-7) and results of linear
stability calculations (refs. 7-9) the effects of compressibility are characterized by a
convective Mach number, M,, viz. the Mach number defined in a frame of reference

moving with the dominant eddies of the flow.

Instability in the hyperbolic tangent mean velocity profile is initiated by a means of
small (1% peak amplitude) incompressible disturbance confined within the shear layer.
In the numerical experiments described here the initial v disturbance has the form

o(z,y) = f(y)(alcos(i";”—z’f) + ageos(3 +4),

where f(y) is a Gaussian profile confined to the shear layer, ¢ is the phase difference
between the fundamental and the sub- harmonic disturbances. The wavelength of the
fundamental disturbance scaled with the initial vorticity thickness, A., is typically chosen
to be 12. Simulations were also conducted where the domain size was chosen to match
the most unstable wavelength. All results presented here (with fixed domain size) were
also found to hold in these latter simulations. In the simulations discussed here the two

streams forming the mixing layer were taken to have the same static temperature.

For the results discussed here the thickness is normalized by the initial vorticity thick-

ness §,,, distances are normalized by 10 é,, and time is normalized by I}%ﬁ: The
simulations are conducted in a frame of reference moving with U, = alatasly yhere ay

a)-+ay
and a; are the sound speeds in the two streams.




It is also convenient to further rescale the variables characterizing the far-field noise.
This rescaling is based upon the expected Mach number dependence at low Mach numbers

(ref. 10). The pressure is normalized as d—%";—l-, velocity associated with outgoing sound
e
v/ay . . .
waves as AL/{T’ and acoustic flux in terms of these normalized values.
c

Acoustic Radiation

In the temporally evolving mixing layer the radiated acoustic power is a function of
the evolution time. In the following time histories of the hydrodynamic variables as well
as the acoustic variables (at a shifted time to account for the travel time for the acoustic
signal) are presented. By this process the relation between the radiated sound and the
hydrodynamic evolution of the flow may be inferred. The hydrodynamic variables are

normalized with the velocity difference and the convective time scale.

In figure-6 the time histories of the momentum thickness, Reynolds stress at the cen-
terline and integrated energy in the v fluctuations are shown. Three cases are plotted
on this figure, viz. M, = 0.05 (solid), 0.1 (dashed) and 0.2 (chain). The initial distur-
bance in the three cases were identical and excited the layer to roll up. It is evident
from this figure that the compressibility effect inherent in M, disappears as M, — 0.
The growth rate of the mixing layer, the Reynolds stresses generated by the roll up and
the disturbance energy level become independent of M., showing a clear approach to
an incompressible hydrodynamic evolution. In figure-7 the time histories of the rescaled
acoustical quantities are shown. The quantities displayed include the scaled pressure and
velocity signal in the far- field and the calculated acoustic flux radiated from the layer.
Also shown is the time history of the rate of work done by the mean flow (integrated over
the domain). It may be seen that as the layer roll up to form vortices and its thickness
increases a compression wave is generated. This compression wave is followed by a weak
expansion wave during the time the flow relaxes. The time history of the hydrodynamic
work is very much like the far-field signal, showing a good correlation between generation
of fluctuation energy and the acoustic radiation. By using aero-acoustic theory (ref. 10)
the far-field noise can be calculated from the hydrodynamic evolution of the flow. These

may be compared to the direct ‘measurement’ of the far-field noise. These comparisons
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will be presented later. It may be noted that the scaled acoustic variables (in fig. 7)
also become independent of M, as M. — 0, as expected from the aero-acoustic theory.
In figure-8 and 9 time histories similar to figure-6 and 7 are shown for roll up at higher
M,. The three cases plotted have M, = 0.2 (solid), 0.38 (dashed) and 0.6 (chain). It
may be noted that as M, is increased the roll up process becomes progressively slower,
generating weaker fluctuations and extracting less energy from the mean flow. It may
also be noted that at late times the hydrodynamic variables develop oscillations which
damp slowly. The scaled acoustic variables in figure-9 show that the far-field radiation
departs significantly from the M, — 0 scaling at M. = 0.38 {the scaling over predicts the
radiated flux by as much as 100%). The expansion wave is almost equal to the compres-
sion wave and this cycle is repeated in time. In this cyclic process the Reynolds stress
oscillates around zero thus the work done by the mean flow changes sign with time. This
oscillatory behavior is associated with the shape oscillations of the elliptical vortices in
the mixing layer.

Results obtained from the simulations that include the sub-harmonic disturbance are
shown in figure-10 and 11. In these figures three cases all with M. = 0.4 are shown.
The cases correspond to forcing the layer with a) fundamental alone (solid line), b) sub-
harmonic alone (dashed line) and ¢) fundamental and sub-harmonic together (chained
line). It may be seen that the initial development of the flow in case {c) is much like case
(a). This corresponds to the roll up stage. There is good correspondence in the radiated
sound also. Further in time, case (c) shows vortex pairing. This process generates
large acoustic radiation (about 8-9 times that due to fundamental roll up). The time
characteristics of the acoustic signal are also quite different. The compression wave
generated by the pairing event is almost equal in magnitude to the expansion wave
generated by the relaxation subsequent to the pairing. In figure-11 the far-field acoustic
pressure calculated from a (modified) aero-acoustic theory is also shown for the three
cases. This may be compared to the far- field pressure ‘measured’ in the computations.

The agreement between the two is excellent (the maximum difference is about 1-2 %).

Finally, an example of roll up and pairing at M; = 0.6 is presented in figure-12. The
roll up, pairing and nutation processes can be identified in the time histories. The roll

up and pairing cause the layer thickness to increase and generate a compression wave.

6
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Subsequent to pairing, the nutation of the vortices causes a periodic energy exchange
between the vortices and the mean flow. This process generates a series of compression
and expansion waves which carry acoustic energy away from the layer. The numerical
simulations show that the nutation frequency is close to %, where w is the peak vorticity.

The primary effect damping the nutations appears to be viscous dissipation.

Mach Number scaling for the Far-Field

Lighthill (ref. 11) in his pioneering work on aerodynamic noise showed that acoustic
power emitted by a jet (into 3-d space) is proportional to the jet speed to the eighth
power (for subsonic jets). He also showed that the experimental measurements were
consistent with this M® dependence of the acoustic flux. For supersonic jets the power
emitted rises more gradually with the Mach number and a power law exponent of 3 seems
to fit the data. Later it was shown by Muller and Obermeier (ref. 12) that for compact
sources in two dimensions the power emitted is proportional to M7. Ffowcs Williams
(ref. 10) showed that for a mt? order pole (with m = 0,1,2 for monopole, dipole and
quadrupole in n space dimensions the power emitted is proportional to M2™m+n+1 for low
Mach number. Thus the quadrupole radiation (m = 2) from temporally evolving shear
layers (n = 1 due to spatial periodicity) is expected to have a M® dependence. Such a
power law has also been proposed for the low frequency emission from localized sources

of turbulence (turbulent spots, slugs and bursts) in pipes and ducts (ref. 13).

While the aero-acoustic thecry has lead to useful scaling relations it is, generally,
unable to provide the value of the coefficient in the power laws. This is because of the
nonlinear character of the hydrodynamic flow which generates the noise field. Only for
highly idealized flows it becomes possible to calculated the noise field from this asymptotic
theory. Another limitation of the aero-acoustic theory is that it is unable to provide a
self-consistent derivation of its range of validity. Thus without experimental data on the
measured noise field, the theory is not capable of providing an estimate of uncertainty.
The present simulations overcome both of these difficulties for the flows that have been

simulated. From the ‘measured’ far-field noise in the simulations it is possible to assess




.

both the coefficient in the power law as well as error estimates on its range of validity.

These results are briefly presented here.

In figure-13 the peak level of the far-field acoustic flux (in time) is plotted against
the Mach number M, on a log-log plot. Data is included from four different cases. 1)
fundamental roll-up (circles), 2) sub-harmonic roll-up (triangles), 3) vortex pairing (i.e.
fundamental and sub-harmonic in phase) (pluses) and 4) vortex shredding (fundamental
and sub-harmonic with a phase difference of § (cross). It may be seen that in all cases
the power emitted rises rapidly as the Mach number M, is increased. This increase in
the radiated power is proportional to Mf. It appears that this power law (expected from
the aero-acoustic theory) may be adequate up to M; of 0.6. In figure-14 the same data
is re-plotted with the acoustic flux normalized by ‘Mf. This way it is clearly established
that the emitted power does indeed asymptote to }\'If power law. The constant factor
involved in the power law is estimated to be 0.014, 0.046 and 0.101 for the three cases.
It may be further seen that even at M, of 0.2 there is a 25% departure from the power
law. At M, of 0.5 this departure is larger than 100%. These departures are difficult to
assess from figure-13 since a factor of two change in the Mach number produces a 36 fold
change in the acoustic power. It may be noted from these low Mach number asymptotes
that vortex pairing radiated about 8-9 times the power radiated from the fundamental

roll up.

As M. increases the acoustic power radiated increases less rapidiy. This is due to the
stabilizing effect of compressibility on the vortex roll up and pairing. This stabilizing
effect is missed out in the conventional aero-acoustic theory. It is ,however, possible to
modify the aero-acoustic theory by using the quadrupole sound sources from the simu-
lations. As documented elsewhere (see ref. 6 for details) the hydrodynamic evolution of
the flow is progressively slower for M, larger than 0.4 thus progressively weaker sound
sources are anticipated to emerge. When the fa: field sound is computed from this modi-
fied aero-acoustics, once again a rather good agreement between the ‘measurements’ and
the theory is obtained (as documented in figure-11). For example at M, = 0.6 the (in-
compressible) aero-acoustic theory would be in error by more than 100% while using the

numerical aero-acoustics the discrepancy is reduced to 2-3%.
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Acoustic efficiency

It is possible to calculate the acoustic efficiency of the aerodynamic noise sources. For
the purposes of defining the acoustic efficiency we have chosen to normalize the acoustic
power emitted to the far-field by the rate of extraction of energy from the mean flow. As
discussed earlier at low M, the hydrodynamic evolution of the flow becomes independent
of the Mach number, while the acoustic power emitted is proportional to IVI‘?. These
imply that the acoustic efficiency decreases as M? for low Mach number. The coefficient
in this power law dependence has been evaluated to be 0.11 and 0.36 for the fundamental
roll up and pairing cases. It is seen that at M, of 0.2 only 0.08% (roll up), 0.3% (pairing)
of the energy extracted is converted to noise. This fraction steadily increases with Mach
number, but even at M, of 0.6 only 0.4% (roll up), 1.7% (pairing) of the energy extracted
is converted to sound. Based on these estimates it is suggested that in the transitional
range of M, where the compressibility effect slow down the growth of the layer, this effect
arises primarily from the direct compressibility effect on the eddies and not from eddies

losing their energy to the sound field ~s proposed by some investigators.
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CONCLUSIONS

Acoustic Radiation from Temporal Mixing Layers

. Verification that hydrodynamic evolution approaches the incompressible limit as M, —

0, where M, is the convective Mach number.

. For low M, the measured far-field radiation arising from vortex roll up and pairing

behaves like M® as expected from aero-acoustic theory.

. Deviations from the incompressible aero-acoustic limit are obtained as a function of M.

At M, of 0.2 and 0.5 these deviations are 25% and 100%, respectively. The deviations

are reduced to 1-2% when the ‘exact’ source field is used from the simulations.

. Peak noise generated by vortex pairing is about 8-9 times the peak noise generated by

vortex roll up.

. Acoustic efficiency is quantified by the simulations. It scales with M3 for low M.

Even at M, of 0.6 less than 2% of the energy extracted from the mean flow is radiated.

. The slower growth of the compressible mixing layer is not due to the increased acoustic

radiation.

Acoustic Scattering from a Vortex

. Intensity and phase of the scattered field and their dependence on vortex Mach number

M, and 7’\?:- is obtained.

. At low M, far-field intensity scales with the intensity of the incident waves (as predicted

by aero- acoustic theory).

. Deviations from the aero-acoustic limit are quantified. At M, of 0.25 and 0.5 the

deviations are 3% and 25%.

. Scattering arising from the density inhomogeneity in the vortex is an order of magni-

tude smaller than the sverall scattering.

10




Ve

FUTURE WORK

Our future plans are:

1. Continue studying the dynamics and acoustics of "simple” vortex flows to develop a
better understanding of complex flows.

2. Computation of 3-d spatially evolving flows, in particular the near field of a circular
jet and a mixing layer.

3. Computation and understanding of the far-field noise characteristics of these flows.

11
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Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

LIST OF FIGURES

Iso-contours of the root mean square pressure level of the scattered wave. (Normalized by am-
plitude of incident waves) Incident wave propagation from left to right. Vortex spins clockwise.

Contour levels: Minimum = .01, Maximum = .59, Increment = .02. M = .125.
Total Scattered Wave Amplitude versus Vortex Radius. (Vortex core ends at r = 1).

Mach Number Scaling of total far-field scattered wave amplitude. Total far-field scattering

amplitude versus Mach Number.

Deviation of total scattered wave amplitude from incompressible aero-acoustic limit. Total

far-field scattered wave amplitude divided by Mach Number squared versus Mach Number.

Time history of a) Numerical solution for left and right going one-dimensional waves. b) Error
in same numerical solution. (Numerical solution minus exact solution.) Both a) and b) scaled

by amplitude of wave. Time increasing from top of page to bottom.

Time history of hydrodynamic variables for vortex roll up; a) Momentum thickness, b) Center-

. line Reynolds stress, c) Integrated energy in v on linear and log scale. Solid line (M. = 0.05),

Figure 7

Figure 8

Figure 9

Dashed line (M, = 0.1) and chained line (M, = 0.2)

Time history of acoustic variables for vortex roll up; a) Scaled pressure, b) Scaled v velocity, c)
Reynolds stress work, d) Scaled acoustic flux Solid line (M, = 0.05), Dashed line (M, = 0.1)
and chained line (M; = 0.2)

Time history of hydrodynamic variables for vortex roll up; a) Momentum thickness, b) Cen-
terline Reynolds stress, c) Integrated energy in v on linear and log scale. Solid line (M, = 0.2),
Dashed line (M, = 0.38) and chained line (M, = 0.6)

Time history of acoustic variables for vortex roll up; a) Scaled pressure, b) Scaled v velocity, c)
Reynolds stress work, d) Scaled acoustic flux Solid line (M, = 0.2), Dashed line (M, = 0.38)
and chained line (M, = 0.6)
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Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

Time history of hydrodynamic variables at M. = 0.4; a) Momentum thickness, b) Centerline
Reynolds stress, c¢) Integrated energy in v on linear and log scale. Solid line (fundamental
alone), Dashed line (sub-harmonic alone) and chained line (fundamental and sub-harmonic

together)

Time history of acoustic variables at M. = 0.4; a) Scaled pressure, b) Calculated acous-
tic pressure c) Scaled v velocity, d) Reynolds stress work, e) Scaled acoustic flux Solid line
(fundamental alone), Dashed line (sub-harmonic alone) and chained line (fundamental and

sub-harmonic together)

Acoustic radiation from vortex pairing and nutation at M, = 0.6; Time history of a) normalized
pressure, b) normalized v velocity, c) Reynolds stress work and d) normalized acoustic flux are

shown. Solid line (fundamental alone), Dashed line (fundamental and sub-harmonic together).

Peak acoustic flux as a function of Mach number M,; a) fundamental roll up (circles), b)

sub-harmonic roll up (triangles) c) vortex pairing (pluses) and d) vortex shredding (tearing)

(cross).
Normalized peak acoustic flux as a function of Mach number M;; a) fundamental roll up

(circles), b) sub-harmonic roll up {triangles) ¢) vortex pairing (pluses) and d) vortex shredding

(tearing) (cross).
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L Objectives

Use the direct numerical simulations as a tool to study
the noise generation processes directly.

] The simulations are used to address the following questions.

. Can one relate particular flow regions and events to the far-field noise ?
. \What regions are the dominant contributers to the far-field noise ?

. What is role playved by the pairing process in noise generation ?

. How important are the small scales to the noise generation ?

" e \What processes control the far-field directivity pattern ?




Simulations of compressible mixing layers

Direct numetical simulations of temporallv evolving mixing lavers were conducted.

e Far-field Acoustic radiation is direct]ly measured.

o Far-field noise is also calculated using the aero-acoustic theorv but using the ‘exact’ source field.
The exact source field is taken to be the source term in the Lighihill equation.

It is evalua‘ed directly from the simulations. thus providing the appropriate
compressiblity effects on the flow fieid.

Results on Acoustic Radiation from Temporal Mixing Layers

Verification that hvdrodvnamic evolution approaches the incompressible limit as M, — 0.
where M, is the convective Mach number.

For low M. the measured far-field radiation arising from vortex roll up and pairing behaves
like M¢ as expected from aero-acoustic theory .

e Deviations from the incompressible aero-acoustic limit are obtained as a function of M..
At M. of 9.2 and 0.5 these deviations are 25%% and 1007 respectively.
The deviations are reduced to 1-2% when the ‘exact” soufce firld is used from the simulations.

e Peak noise generated bv vortex pairing is about 3-9 times the peak noise generated bv vortex roll up.

s Acoustic efficiency is quantified bv the simulations. It scales with M3 for low M,
Even at M of 0.6 less than 2'T of the energy extracted from the mean flow s radiated.

The slower growth of the compressible mixing faver is not due to the increased acoustic radiation.




Simulation of Acoustic Scattering by vortices

e Small amplitude (10-3) plane sound waves are irradiated on a “inviscid® vortex Re = E =10° &
where T is the circulation of the vortex. 1/ is the kinematic viscosity,
A, s the wavelength of the incident sound waves and R. the radius of the vortex.

o Scattered sonund waves are directly measured and analvzed.

Results on Acoustic Scattering

o Intensity and phase of the scattered field and their dependence on vortex Mach number VM, and ;,— is obta
e At low 3, far-field intensity scales with the intensity of the incident waves (as predicted by aero-acoustic t
e Deviations from the aero-acoustic limit are quantified. At M, of 0.25 and 0.5 the deviations are 3% and 25

e Scattering arising from the density inhomogeneity in the vortex is an order of magnitude smaller
than the overall scartering.




Future Plans

) Computations of 3-D spatiallv-evolving flows. in particular the near field of a circular jet and a mixing laver
i

Computation of the far-field noise characteristics of these flows.

. Decomposition of the far-field noise in terms of contributions originating from different spatial regions.

—-

study the dvynamics and acoustics of “simple” vortex flows 1o develop a better understanding
of the complex flows.
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