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Dataflow architectures to exploit the parallelism in large scientific codes are now taking
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Chapter 1

Introduction

1.1 Multiprocessing for Performance

T hroughout the history of computing, researchers have attempted to increase computa,

tional resources focused on a single problem by usefully harnessing multiple central process-

ing units to function as a single unit. Particularly when faced with the real or perceived

physical limitations of the underlying physics of current computers, designers turn to the

"obvious" solution of sharing a computational problem between two or more processing

units.

Unfortunately, as parallel computer architects have discovered many times, most extant

software schemas for expressing problem solutions do not transparently port to multiple

processor environments. Indeed, not only the language but the entire approach to pro-

gramming requires reconsideration in order to fully utilize most of the parallel processing

equipment to date.

Two different paths have been followed to resolve this dilemma. Computer architects have

concentrated most on finding holistic answers, perhaps including mild (instead of dras-

tic) changes to the programming model, combined with a new system architecture. Most

researchers in the area of Artificial Intelligence, however, have attempted to find new pro-

granming methodologies which allow direct expression (by the programmer) of the obvious

parallelism in an algorithm.

The Artificial Intelligence (A. I.) approach to programming has traditionally been a hungry

consumer of computational resources. Due to the explosive combinatorial nature of most
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A. I. algorithms (such as in pattern matching, various search techniques, and large-scale

knowledge representation), A. I. researchers are continually in search of a more powerful

computational engine. The promise of increasing power by simply adding processing units

is too much to ignore.

However, A. I. approaches rely on models of programming that differ in important details.

In fact, the run-time resources necessary for both Lisp and PROLOG are perceived by many

A. I. programmers to preclude efficient implementation on system architectures designed for

more standard computer languages. In addition, the programming styles affected by Lisp

programmers, and forced upon PROLOG programmers, are quite intensive (both in I/O and

computation) in some areas not considered as important in the construction of conventional

architectures. What is different about the A. I. style of programming that seems to draw

so deeply on system resources? Architects of Lisp and PROLOG systems see many answers

to this question.

A strong argument is generally made for dependence on run-time typing (or tagging) of

data values. In effect, the need to be able to determine the type of an object quickly

during the execution of a Lisp or PROLOG program may require type bits to be included

in the object reference (i.e., the pointer) itself. The additional design burden to avoid

the overhead of extracting type information for frequent operations (such as arithmetic

operations) accounts for most of the complexity of existing Lisp implementations executing

on conventional machine architectures.

In addition, both the Lisp and PROLOG programming styles encourage programming with

small procedures, relying on a fast function calling mechanism to allow the program to

be broken up for ease of editing and debugging. This lends greatly to high programmer

productivity in the Lisp environment. LisP and PROLOG function calling mechanisms must

also allow for dynamic name resolution[70, 26] ("dynamic linking") due to the generally

incremental mode of program creation followed by A. I. adherants.

Garbage collection (the process of automatic reclamation of memory for re-use) also extends

the demands of this class of programming languges. In order to support either Lisp's or

PROLOG's fully automatic dynamic storage allocation and reclamation facilities efficiently,

hardware and operating system support are often necessary. This requirement may depend

on standardized stack formats, tag bits in memory cells to disambiguate pointers from
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other values, more involved memory allocation schemes, and even fast or parallel pointer

arithmetic and comparison.

A. I. systems also are often I/O intensive; in fact, the tendency in expert system construction

has been toward "do a little I/O, then do some computing" rather than the scientific

computing approach of reading the dataset, computing, and ending execution. I/O is often

central to A.I. systems.

An often-cited generalization of A. I. codes is that they deal primarily with the organiza-

tion and reorganization of symbolic (i.e., representational) relational data.[39] This is the

meaning of the "symbol processing" moniker frequently pinned on the Lisp language. Im-

plementations of mappings from one representation to another (such as hash tables and the

like), as well as categorization and directory systems, are common in knowledge represen-

tation systems.

Though many of these prerequisites were first found in A. I. programs, features of these

languages have found their way into more "mainstream" languages and applications. Even

BASIC interpreters, for example, require garbage collectors. The tendency to write small

procedure blocks to enhance modularity and software reusability is spreading to many

quarters, encouraging fast function , all support. Heavy I/O demands are found in many

non-A. I. application codes, such as air traffic control. Relational database schemes used

in myriads of non-A. I. codes comprise many of the organizational and symbolic methods

of knowledge representation. And pointer tagging has found its way into various machine

architectures for protection and other purposes.

It is speculation that is usually overlooked in pointing out the differences in the A.I. approach

to programming. Solving problems by searching spaces of knowledge, and thus "throwing

away" computation in execution tracks that do not bear fruit, is a central requirement

of most if not all A. I. systems. This is the important differentiating characterization

of A. I. systems, indeed of search-based "heuristics" versus "algorithms." Even simple

adaptive heuristics (such as virtual memory page replacement algoritms) may be said to be

speculative in that they attempt to optimize resource usage for future events, based on past

information that is not necessarily predictive.

It is important to note that speculative computation that doesn't contribute to the final

result isn't really waste. Although the final result doesn't depend on it, what really counts
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is the expected time to completion, not the amount of "useful" computation. Furthermore,

the extra overhead of speculation is not necessarily great.

A simple example clarifies the point: a sequential search for an element of a n-length vector

takes an expected 0(B) computations to complete (worst case would be 0(n)). The parallel

"stupid" approach of using n processors, each testing the contents of one element of the

vector, completes in one time step (i.e., 0(n) computations). The worst overhead of the

parallel approach was a factor of two.

In addition, speculative approaches to programming are wonderful sources of parallelism.

1.2 Types of Parallelism

The parallelism inherent in any algorithm may be classified into two types; we call these

speculative parallelism and real parallelism. An algorithm is said to contain real parallelism

if two or more blocks of the algorithm, both of which are guaranteed to contribute to the

final result, may proceed completely in parallel. This implies that there are no dependencies

of any kind between the two blocks, but that their results are combined in some way to

form the result of the overall computation. For example, in the evaluation of

(2 x 3) + (4 x 5)

the multiplications can clearly be done at the same time, as neither operation depends on

the result of the other.

On the other hand, an algorithm is said to contain speculative parallelism if two or more

blocks of the algorithm may proceed completely independently (as before), but the results

of one or more of these parallel "tracks" may be ignored by later portions of the algorithm

in forming the final result. A perfect example of speculative algorithm is searching an array

for some element; clearly if one has as many processing elements as elements in the array,

the array could be searched "in parallel" with each processor checking a different element of

the array. However, assuming the element being searched for is found in only one position of

the array, most of the computation performed was, in a sensc, "needless." Thus the search

algorithm is said to be speculative.
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This situation is quite common in A. I. programming, due to the plethora of programming

apprcaches using search or "generate and test" methodologies in problems implying large

search spaces. The core of many A. I. programs contain nothing more than complicated

search paradigms. In particular, rule-based expert systems generally consist of nothing more

than a "recognize and act" structure, composed primarily of a pattern matching search of

the rule base.

PROLOG's backtracking,[26] in fact, is just an implementation method for parallel specula-

tion in a search tree. Attempted rule-matching could be said to be a parallel process in

PROLOG, with backtracking implementing the scheduler for multiprogramming. PROLOG'S

cut operator is just an implementation control which depends on this sequentialization of

the parallel processes to slow tree growth. This implied speculative control structure is

PROLOG'S great strength; programmers wishing to specify simply the logical structure of

a problem rather than steps to its solution may do so. However, PROLOG's depth-first

approach to solving the first-order logical problems posed is also its great weakness, as the

approach constrains the user to a search paradigm that may not be correct for the domain.

Indeed, Clocksin and Mellish concede[26] that PROLOG's strictly sequential semantics pre-

clude it from meeting its goal of an automatic predicate calculus solving system.

Thus many A. I. systems builders have struck out in the direction of more parallel specu-

lative structures.J25, 30, 31 Due to the clarity of the speculative parallelism, approaches to

parallel computers designed by A.I. researchers have tended to emphasize the recognition

of speculative parallelism to the exclusion of real parallelism. Control structures for met-

ing out computational resources, and withdrawing such resources at such time as further

speculation is unnecessary, then become the core of the parallel machine's structure.

Unfortunately, such an approach generally relies on specification of parallelism by the pro-

grammer. Worse, it leaves control of all system resources with the programmer, without of-

fering tools for automating the process. Although this approach has been shown to function

reasonably well, it fails miserably for large numbers of parallel processes or processors[33].

Dataflow control models of computation do not display this property. No explicit program-

mer specification of parallelism, and little or no specification of other system resources,

are required under dynamic dataflow architectures such as the M.I.T. tagged-token class of

dataflow machines[6, 61]. Recognition of fine-grained parallelism, at the operational level,
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combined with functional languages such as ID [58], provide a basis for potentially scalable

high-performance computers.

Most research into such computational models, however, has concentrated on large memory-

and compute-intensive scientific programs[7]. Little view has been given to considering

speculative styles of programming. In fact, because of the lack of the sequential ordering

imposed by execution on serial computers, a straightforward implementation of some A. I.

systems might result in slower, deadlocked or even live-locked machinery due to the overhead

of managing a highly parallel computation.

The problem then becomes one of holding the explosive parallel growth of searches in A. I.

systems to the bounds of the physical machine, and optionally prioritizing the order of those

searches. In fact, some controls are necessary even in non-explosive contexts;17, 28] similar

controls must be found for the controlled serialization of speculation. This serialization

requires a basic synchronization mechanism between the disjoint branches of the execution

tree.

1.3 Synchronization Mechanisms

One of the unique features of the Tagged-Token Dataflow Architecture is that program

synchronization, like the exploitation of program parallelism, is determined entirely by the

compiler and run-time system, without the intervention of the programmer[6]. Although

synchronization is a trivial problem in the general sequential-machine case (each instruc-

tion must wait tr the termination of the linearly previous instruction, due to the implied

full order of the instruction stream), the uncovering of potentially great amounts of par-

allelism in a program invokes a concomitant need to synchronize the far-flung portions of

the execution tree (i.e., to "join" forked execution branches). This need arises in any area

that requires concurrent access to resources, including (1) explicit, static program joins; (2)

dynamic memory access (I-structures[41]); (3) access to ordered streams of data[63]; (4)

ordered access to input/output devices; and (5) control of execution graph growth itself.

Solutions for four of these synchronization problems under the tagged-token dataflow para-

digm exist. These include the following:
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" Concurrent program memory access is managed at compile time by explicitly joining
execution tree branches (static links in the dataflow graph). The waiting-matching
section of the general tagged-token architecture then completes the join operation at
run time, regardless of input order.

" The I-structure controller portion of the tagged-token design[41, 14] implicitly handles
all I-structure synchronization (dynamic links in the dataflow graph) at run time,
maintaining atomicity of memory operations and completing dynamic links in the

dataflow graph, again regardless of read/write order.

" Heller's work covers a solution for the correct execution of finite and infinite stream-
oriented computation.[42]

" The author's paper on input/output in ID specifies a solution to the I/O ordering
problem by using a combination of static and dynamic serialization of I/O-producing

programs.[661

Many controls over execution graph growth (in particular, loop resource usage) have ap-

peared in Culler's work.[28] However, no complete management system for controlling ex-

ecution graph growth has appeared for the tagged-token paradigm. In addition, no syn-

chronization model for parallel, non-interdependent dataflow graphs (such as in speculative

execution) has been developed. This report puts forward solutions for this problem.

1.4 The State of the Art

As noted previously, the idea of shortening the critical path of A. I. codes by taking advan-

tage of speculative parallelism is not new. Here we review some of the state of the art in

parallel A. I. systems, with special emphasis on several questions:

" Does the system take advantage of both real and speculative parallelism?

" Does the programmer need to specify the parallelism of the application, or does the

compiler or machine recognize parallelism automatically?

" If speculative parallelism is allowed, is there a systematic manner in which parallel
speculative work may be controlled? For example, if after a speculative "track" of

computation is known to be worthless (i.e., computing after an alternate answer has

been found) may that computation be terminated?

" If control such as termination is allowed, are the semantics of the host language (the
language in which the heuristic is specified) clarified in the event of termination?

Arguably the most popular family of languages in which A. I. applications are written is the

Lisp group of dialects, with the major offshoots SCHEME and COMMON Lisp as the most
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prominent exemplars.[l, 70] One of the most popular approaches to adding "parallelism

specification" to this class of languages is the FUTURE declaration.[39, 54, 15]

One well-studied exemplar of the FUTURE approach is that of MULTILISP, a FUTURE-

extended version of the SCHEME dialect.[39, 381 In MULTILISP, both real and speculative

parallelism may be specified, and only through the FUTURE procedure. In effect, FUTURE

in MULTILISP takes a single argument, and returns immediately (potentially before the

argument has been evaluated) with a future reference, or placeholder, with which the calling

program may access the value once it has been determined. For example,

(+ (future (* 2 3))

(future C* 4 5)))

implements the real parallelism available in the simple mathematical expression we saw

in Section 1.2. This explicitly-coded parallelism requires the interpreter to, potentially in

parallel, determine the values of the expressions (2 x 3) and (4 x 5), and then sum those

results. The process doing the addition will spawn the two multiplication processes, and

immediately wait for those processes to finish. t

However, this is not wherein the real power of MULTILISP lies. The results returned from the

FUTURE expressions of the program above are in some sense "touched" immediately; the

addition process needs those values before it can compute. Consider instead the program

(cons 8 (future (expensive-computation)))

where expensive-computation may compute for a long time before it is complete. Unlike

the addition in the previous program, the cons in this program may return immediately

after constructing a Lisp cons cell. The car of the cell will contain the requisite 8, while the

cdr of the cell will contain a future. In other words, since cons only stores its arguments,

and doesn't require the "value" of those arguments, it may be "lazy" about the actual

value of its argumentsO In addition to specifying parallelism, futures allow specification of

t Of course, there is some useless expression of parallelism in this program, since the addition process has

nothing to do while the multiplications are going on.
IThis laziness is not the same as the laziness discussed by Henderson[43) or Heller[42], although the

concepts are related.
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argument non-strictness on an argument-by-argument basis (i.e., procedures may be defined

such as to return valid results with invalid or error-value inputs, or even before such inputs

are available).

The FUTURE construct allows us to explicitly specify as much real or speculative par-

allelism as we wish. Programs using MULTILISP for every function, including sorting (a

generally real-parallelism application) [391 to game-tree searching[24] (generally speculative)

have been written and analyzed under various MULTILISP environments. However, a feature

missing from the language becomes clear when writing speculative codes; since FUTURE

is the sole function for specifying parallelism in any way, there is no general methodology

for controlling that parallelism.

Chu[241 shows ways to implement communication between parallel MULTILISP processes,

and suggests that codes use these pathways to communicate messages about process termi-

nation and so on. Either explicit code to handle termination messages, or some exception

signalling, would then be used to remove speculative processes from the execution envi-

ronment. However, although some work on exception handling has been published for

MULTILISP, no complete semantics are given for exception propagation in the language.[40,

However, new work in speculation control for MULTILISP implementations is proceeding at

this time.[60]

Gabriel and McCa-thy's QLIsP takes a different tack to specifying parallelism within

LisP.[35, 36] They choose the COMMON LISP dialect for augmentation, with a half-dozen

parallelism specification and control constructs thrown in. The first new QLisp construct

they introduce is qlet:

(qlet control
((x (compute-x))
(y (compute-y)))

(combine x y))

The qIet construct allows programmer specification of parallelism under dynamic control.

In particular, in the above code, if the value of control is nil, then the entire form acts

exactly as it would if it had been written as a standard COMMON LisP let form (i.e.,

sequentially compute values for x and y and call the function combine on the results).

If, however, the value of control is non-null, then processes are created to execute the
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functions compute-x and compute-y; these processes may concurrently execute, after

which combine is called on the results. This is very much like the MULTILISP addition

example we saw previously with an small difference: the function combine is not executed

until the processes computing x and y have completed.

However, QLisp allows both behaviors. If the value of control happens to evaluate to

the symbol eager, then the function combine is started simultaneously with the parallel

computations of x and y. The values for x and y passed to combine are simply placeholders

exactly analogous to MULTILISP'S futureS.

This may be a useless step to take if combine relies heavily on its inputs, as did the +

function in the MULTILISP addition example. However, if combine can find something else

to do, some more parallelism may be gleaned from the system. For example, in the code

(defun combine (a b)
(expensive-computation)
(+ a b))

the expensive-computation, which does not reference the arguments a and b of combine,

might complete some work while the caller of combine above spawns processes generating

values for the arguments. QLisp also includes explicit functions for introducing parallel

queue-processing functions (i.e., sequential processes communicating via queues d la com-

municating sequential processes[45]); hence the "Q" in QLisp.

In addition, QLisp provides for explicit process termination, and allows "remote" termi-

nation (i.e., one process terminating another) via the communication queues implicit in

the parallelism model. The termination control is built around analogs to the COMMON

Lisp catch and throw nonlocal transfer-of-control functions; these functions are given

process-termination semantics as well.

Unfortunately, the specification of parallelism, whether speculative or real, is still entirely up

to tho programmer. In addition, no hints are given the prospective implementor of QLzsp

as to how to go about implementing the unclear semantics of process termination and

context switching in the language. QLisp specifies that the address space of all processes

is shared; what about the special (dynamic) bindings of variables, a feature inherited from

COMMON Lisp? If bindings are not kept on a per-process basis, the language might display
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unwanted nondeterminism; however, implementing dynamic binding in another fashion may

be expensive. How is the state of a process "wound up" after termination via throw? These

and other implementation (and detailed semantics!) questions need answering.

Another well-studied model of parallel computation is the Actor model of Hewitt and others.

The ACT3 language (and its predecessors ACT and ACT2) have been studied for years

at M.I.T. In ACT3, both real and speculative parallelism may be specified explicitly by

programmers in a communicating sequential processes style. Messages between actors are

queued in mailboxes, much as in the queues in QLisP. Processes may be created (by an

explicit create operator) and mutated (by the become operator) to have specific new

behaviors; control over processes must be communicated by the same channels as any other

messages. The termination of processes is not explicitly supported, although programs may

be written to recognize certain messages as requests to stop using system resources, and

then become an actor which does nothing. Actor-model researchers note that programmers

need not be explicit about opportunities for parallelism in their ACT3 codes, but must

"concentrate on thinking about the parallel complexity of the algorithm used. "[2] Thus the

parallelism of the application must still be programmer-specified.

The ETHER language described by Kornfeld[49] is a language with Lisp syntax. This inter-

esting variant of LISP allows implicit creation of speculative processes within dynamically

enclosing knowledge bases with some automatic inference based on programmer-specified

rules. The function activate is used to initiate a parallel process created by new-activity:

(defun solve-problem (list-of-alternatives current-knowledge)
(foreach possibility list-of-alternatives
(activate (new-activity)
(if (constitutes-solution? possibility)

(within-viewpoint current-knowledge
(assert (answer-is -*possibility)))))))

The function solve-problem above could be used to check each element of a list (with the

function constitutes-solution?) to see if it solves a given problem. The result is returned

to the caller by using assert to change the caller's knowledge base. ETHER also includes

primitives to control tasks, including a termination function stifle. The call
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(stifle activity)

explicitly stops the execution of the process bound to activity. Unfortunately, again we

have a language requiring explicit programmer control over task terminaticn, and an in-

complete understanding of the effects of termination on the semantics of the language.

The A. I. literature is quite full of various methods for implementing parallel execution

of PROLOG.t As a parallel search specification language, PROLOG is quite useful, since in

effect each rule application of a rule with multiple clauses (i.e., nearly all rules) is a choice

point in a decision tree. Although some researchers have concentrated on this approach to

taking advantage of the implicit OR-parallelism in PROLOG programs,[3] other approaches

are generally more popular due to the space overhead of the environment copying required

by OR-parallel execution of PROLOG programs. Nevertheless, these approaches allow im-

plicit parallelism (i.e., not explicitly programmed-specified). However, again termination

semantics are unclear for the control of the rapidl, growing search tree which results from

this style of execution.

Several authors have researched variants of PROLOG which allow some automatic and some

explicit control of the other parallelism that can be found in PROLOG programs (i.e., AND-

parallelism of multiple goals to be proved in proving a clause).[30, 75] This again leads us

back to programmer- specified parallelism.

Another interesting class of A. I.-inspired parallelism research is the massive parallelism

approach. Typified by languages such as NETL[34) and architectures such as the Connec-

tion Machine[4,I], massive parallelism approaches (also called active memory approaches)

generally try all possible answers for a problem, and simply waste computation power.

For example, in a database search, a Connection Machine could be configured such that

each element of the machine represented a database record; a search then proceeds as a

parallel match between the query and every record, with each processor checking its asso-

ciated database record. Assuming only one match is found, the rest of the computation is

"wasted." Despite this limitation, there are a large class of speculative algorithms that are

t This is actually a contradiction in terms, because of PROLOG'S sequential semantics. We mean instead
a parallel implementation of a language with PROLOG's basic syntax, but some different (and parallel)
semantics.
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well matched to this approach, such as database searches, certain vision algorithms, etc.

Despite various approaches to allowing, controlling, and maintaining parallel search, for

speculative problems researchers will always attempt to pare the search space as much as

possible. However, the current activity in architectures for parallel A. I. programming show

that even after limiting the search space as much as possible, A. I. programmers still find

they could take advantage of some ability to specify speculative parallelism. There are

problems in the A. I. literature, for example, that are known not to have polynomial-time

solutions, yet which are still useful to solve in a search-like manner (a perfect example is

the provably co-NP-complete subsumption problem in knowledge representation[21]).

Therefore, this report will attempt to allow speculative parallelism within the ID language

and under dataflow paradigms of execution. Our goal is to avoid any explicit programmer

specification and control of parallelism, either real or specL'ative (as is currently true in

ID) and yet maintain the useful invariants of the ID language and the underlying dataflow

instruction firing mechanism (such as self-cleaning dataflow graphs). We will look at a small

set of search problems that are simple to specify, yet form the core of (or are similar to)

many A. I. codes. We choose a class of search problems in which any solution among a set

of solutions forms an "acceptable" answer (i.e., even if more than one answer to a problem

exists, a single answer is an acceptable result). This still forms a useful class of programs,

particularly for game-tree search-it doesn't matter how we win, as long as we win!

1.5 Road Map

The balance of this report presents solutions to embedding controlled speculation in tile ID

language and the tagged-token dataflow architecture in a consistent, programmable manner.

Chapter 2 discusses language syntax and semantics changes in the ID language to support

these .iew features, with examples of usage and motivations for the approach.

Chapter 3 goes on to present implementation strategies for these new structures within

the ID language. Approaches are presented for each, with advantages and disadvantages

clarified. (lose scrutiny is given to the general approach to resource control in the It)

language, and how it relates to controlling speculative usage of resources.

(hapter I expands on these st ruct ures by presenting the architeci ural support for these ID
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language structures within dynamic dataflow execution paradigms. The abstract tagged-

token dataflow architecture[9, 11] is taken as the starting point for architectural extensions.

Appendix A clarifies the semantic requirements of dataflow operators in order to properly

support speculation control, and gives compiler schemas for various major ID language

constructs based on those semantics.

Chapter 5 presents a finished application written in ID and using the new speculative

constructs developed in the report. Some commentary is also presented on the results of

executing this application. Measurements of the success of the approaches are discussed.

The final chapter, Chapter 6, summarizes the impact of the constructs of this report on the

ID language and the tagged-token dataflow architecture. Suggestions for further research

and development are also presented.

In testimony before a congressional panel investigating the causes of the 1929 Crash,
Bernard Baruch was asked to describe his occupation.

le replied: "a speculator."
- A. MICHAEL LIPPER, Back to the Future: The Case for Speculation, Baruch-Style
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Chapter 2

Language and System Design

W e propose to extend the syntax and semantics of the ID language in order to fully

support controlled speculation at an abstract level. The approach to controlling speculative

parallel execution that we take involves nondeterministic constructs and other features that

are not currently defined within the ID language. We begin by justifying these large changes

in ID language semantics.

2.1 Controlling Speculation

The fundamental problem we are trying to solve is taking advantage of the speculative

behavior of many programs to provide another source of parallelism from which dataflow

compilers and machines may benefit. Other methodologies for automatically handling spec-

ulation "lazily" exist, even under dataflow execution paradigms[43, 42]. It has even been

shown that such approaches are optimal in the total amount of work done.[20] Baker and

lIewitt point out, however, that lazy evaluation is not optimal for multiprocessors, in the

sense that it does not necessarily generate the shortest critical path.[15]

Therefore we take the approach 3f allowing parallel execution of speculative branches of

program choice points. However, the parallelism generally found in speculative programs

has a tendency to be explosive; it therefore must be controlled in some fashion not currently

explored in dataflow research.

The search for methods of control is aroused by the seemingly obvious source of parallel

execution. Even simple algorithuis can exhibit large amounts of this speculative parallelism.
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For example, the standard minimax algorithm is used to find a best-path traversal of trees

of data. In a game tree (representing the possible moves and counter-moves of a competitive

game), each tree node would contain an estimate of the relative probability, on some well-

ordered scale, of winning the game given a certain sequence of moves from that point on. A

program which is evaluating the possible moves from the current game situation will choose

a move which maximizes this probability of winning.t

The usual implementation of this algorithm models the possible moves of a game as a

tree. Each node of the tree represents a possible sequence of game moves from the current

situation; the branching factor of each node is equal to the number of legal moves after

a given sequence of moves. The root of the tree represents the current game situation.

Finally, the leaves of the tree represent the relative merits of all possible "final moves" in

the game.

For all interesting games, the size of the tree just described would be immense. The game

of chess, for example, presents a branching factor of up to 32, with games consisting of over

100 moves. Clearly the computational expense of searching the entirety of this tree is too

high; thus most game programs limit their search space by looking ahead some set number

of moves (plies). The values at the leaf nodes, therefore, represent some approximation of

the probability of winning the game after reaching that node.

The minimax procedure assumes that both players wish to win the game, and thus traces

the sequence of moves which maximizes this probability for each player. That is, at levels

of the tree representing our moves, we choose the most advantageous move for us; at the

levels of the tree representing the opponent's moves, we choose the least advantageous move

for us. Thus the name minimax, for the successive maximizing and minimizing, arises.

For example, in the minimax tree in Figure 2.1, we have a three-ply lookahead into some

game. The best sequence of moves we can find from the current starting point is the move

signified as the left branch, as this leads us to the best result (eight) of the minimax search.

The algorithm to compute this search is given below coded in ID:

IThere is an implicit assumption in this approach of "rational play," i.e., that the opponents are both

trying to win and will always find the best move in each situation. This does not, however, impact our
discussion of speculation and speculative parallelism; see Nilsson[591 for more information and references.
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Figure 2.1: Minimax Game Tree

type tree - leaf N
I subtree (list tree);

def minimax node = mm (max, min) node;

def mm (maximize, minimize) (leaf value) = value
I mm (maximize, minimize) (subtree nodes) =

fold maximize (map-list (mm (minimize, maximize)) nodes);

Ideal simulation of this straightforward algorithm applied to a three-ply (depth three) tree

with a branching factor of ten showed maximum ALU (non-overhead) parallelism levels

of 1,361 searching all 1,111 nodes in the tree. The average parallelism fared better than

354, as can be seen in Figure 2.2. The critical path of the simulated execution was only

360 instructions long. This is the shape of the parallelism profile we would expect, with

a critical path of length O(d) and maximum parallelism 0(bd- i) for a search tree with a

branching factor of b and depth of d, since there is no search constraint between subtrees

of a node.

This result is not realistic, however. In any real machine, we would constrain the parallelism

arising in the map-list function to match the real available machine power. This approach

to parallelism control is called loop bounding, and is fully explored in other work.[28] For the

rest ot this discussion we will present statistics which imply that no loop may be "unrolled"

more than an arbitrary six instances at a time (for purposes of comparison), using this loop

bounding approach.
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Re-executing the same minimax code with the same input data and a loop bound of six yields

somewhat different results. The same number of instructions were executed (127,652), but

the critical path was more than doubled to 787 as portions of the execution tree "slid" later.

The maximum ALU parallelism dropped some 69% to 427, with an average parallelism of

about 162. Figure 2.3 shows this ALU parallelism over execution time.
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Figure 2.3: Minimax Algorithm with Bounding: ALU Parallelism Over Time
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Figure 2.4: Minimax Algorithm: Token Storage Over Time

Importantly, however, the loop bounding approach to loop control has lowered the system
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resources necessary to store pending execution tokens. While the unbounded execution

required token queues of length 5,734 to store pending operations, the bounded execution

lowered this number to 1,700, or 69% smaller token queues. The profile of token storage

needed over execution time is in Figure 2.4.

The loop bounding certainly controlled the unbridled indulgence in system resources. How-

ever, exhaustive speculation is what we indulged in; even in the bounded scheme, we

searched all 1,111 nodes of the search space (which accounts for the instruction counts

being the same). Better search methodologies exist for searching minimax trees.

2.2 Serialization is Used to Control Speculation

Many search algorithms rely on serialization (sequentialization) to control this speculation

in finding "correct" or "best" answers. A good example is the well-known alpha-beta search

algorithm[59, 62], which relies on knowledge of already-searched portions of the search tree

to help "prune the search path," that is, ignore portions of the search tree which can be

proven to be fruitless.

The alpha-beta search pruning paradigm, therefore, relies on some particular ordering (for

example, depth-first) and later knowledge of previous results from the search. With this

knowledge, we can ignore portions of the tree which can be proven to be irrelevant to the

final minimax result. For example, in Figure 2.5, the tree outlined in Figure 2.1 is searched

by the alpha-beta minimax procedure. Under this procedure, the third leaf node (containing

nine) implies that the result of minimax search on its parent node will be at least nine (no

less, since the parent is a maximizing node); however, the parent of that node has been

shown to be eight or less. Therefore, we needn't search more descendants along this path.

A "deeper" cutoff (i.e., containing a larger subtree) can be seen on the right of the figure,

in which we can ignore an entire subtree.

In ID, this algorithm c.,, be outlined as follows:
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Figure 2.5: Minimax Game Tree with Alpha-Beta Cutoff

def alphabeta node = ab ((<), (>)) (-oo) oo node;

def ab (lesser?, greater?) a /3 (leaf value) = value
I ab (lesser?, greater?) a /3 (subtree nodes) =

{ def minmax x y = if lesser? x y then y else x;
value = a
in

{ while nodes 6 nil and lesser? value /3 do
node : next nodes = nodes;
next value = minmax value (ab (greater?, lesser?) /3 value node)

finally value }};

This algorithm, as can be seen from Figure 2.6, is quite sequential, since it simply examines

one node at a time. Nevertheless, the pruning technique did reduce the total number of

instructions executed by nearly 55% to 57,604, by searching only 346 nodes of the search

space. In fact, in has been shown by Knuth[47] that the alpha-beta search paradigm in

general explores O(,,/') nodes of an n-node search tree, if all move choices are ordered

best-first. Therefore, the benefits of alpha-beta search increase with tree size. We expect

to see, and the shape of the parallelism profiles do show, a maximum parallelism of 0(1).

The critical path, however, has lengthened from the ideal minimax O(d) for a tree of branch

factor b and depth d to
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In other words, in this particular case, these cutoff gains were at the expense of a critical path

now 17 times longer! Average parallelism was only 4.3, peaking at eleven, with maximum

token storage requirements only 86 tokens. Although a large segment of the search space is
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ignored by virtue of the alpha-beta approach, nearly no parallelism is found in what seems

intuitively to be (and clearly was, under the minimax algorithm) a parallel problem.

2.3 A Hybridized Search Scheme

A middle ground is needed to bridge this gap. If it was possible to support some com-

munication between the subscarches of the choice points of a node of a search tree, we

might be able to prune parts of a search in a manner equivalent to the alpha-beta search

pruning technique. We propose to extend the heretofore determinate ID language with con-

structs that are not only non-functional in nature, but present a nondeterministic primitive

functionality to the ID programmer.

The following code will search alternatives within a game tree in parallel, nevertheless

allowing pruning of the search tree, using imperative-style writing into I-structure cells. The

blackboard primitive is used to create such a communications cell; the ":=" construct is

used to write into such a cell imperatively (i.e., without the benefit of I-structure presence

detection). We emphasize that this proposed construct is a nondeterministic extension to

the ID language.

def hybrid node =

{ a = blackboard oo;
= blackboard (-oo);

in
h ((<), (>)) nodel;

def h (lesser?, greater?) a/3 (leaf value) = value
I h (lesser?, greater?) a 0 (subtree nodes) =

{ def minmax x y = if lesser? x y then y else x;
value - a[O];

child = blackboard value
in

{ while nodes $ nil and lesser? child[O] 3[o] do
node : next nodes = nodes;
next value = minmax child[O] (h (greater?, lesser?) 3 child node);
child[O] := value % Write value onto the "child" blackboard.

finally value }};

The blackboard construct represents a communication area which branches of the search
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tree can consult to ascertain whether cutoff should occur. The "blackboarding" communi-

cation paradigm is borrowed from the A. I. parallel-programming literature;J331 the analogy

is to a team of people cooperating on the solution to a problem, using a blackboard to store

subproblem results which may be useful to other members of the team. In this case, as the

search progresses, the blackboard for each node of the search tree reflects an incrementally

refined "best yet" result which might allow alpha or beta search cuts of subtrees. In effect,

we can think of the search at each point as a stepwise refinement of the correct alpha or beta

value at that choice point, with subnodes noting that value at various levels of refinement.

The alpha or beta value seen by a subtree of a choice point can be thought of as a temporal

approximation of the correct alpha/beta value, i.e.the best value found so far.

The semantics of the blackboard construct can be outlined in a rewrite manner similar to

that used in lescribing the remainder of the ID language.J8] In this approach, we specify

the execution of an ID program as a series of reductions to the final result. The following

program fragment demonstrates the semantics of the blackboard and constructs:

{ B = blackboard 1;
B[0I := 3;
B[O] := 5
in

B[0] }

B[O]
" B = blackboard 1;
* B[O] := 3;
" B[O] := 5

<bo>[O]
" <bO>O := 1
" <bO>O := 3
" <bO>O := 5

= bO
" bO := 1
* bO := 3
" bO := 5

= 1 1 or 3 or 5

We have extended the reduction meta-language of Arvind and Ekanadharn to include the
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or operator, specifying nondeterministic choice of several results. Thus the result of reading

a blackboard object (i.e., referencing a blackboard such as in B[O]) at any given time t,

has the semantics of one of the values written to the blackboard at some time t < tn.

There is no guarantee of which value will be returned, which gives us just the small amount

of nondeterminism we needed to unchain the strict sequentiality of the alpha-beta search

formulation.

Using these new constructs, we can see in Figure 2.7 the parallelism of the hybrid approach

(in this particular execution, with the same game tree). The maximum ALU parallelism is

now 325, with a critical path of 5,359. 822 nodes of the search tree were explored, more

than twice the number as were searched in alpha-beta search, but only 74% of the total

nodes searched using the simple minimax approach. The maximum ALU parallelism was

pared from simple minimax by nearly 24%, while the maximum token storage needed was

cut from the simple minimax by 20%. However, the hybrid method displays a critical path

of 5,350, a full 60% shorter than the fully sequentialized alpha-beta search.

We can see a pronounced difference in storage and processing requirements in the hybrid

approach. Figure 2.8 shows the maximum number of function invocations executing at

each time step of the execution of the program along the critical path. As expected, the

minimax procedure finishes first and presents the most parallelism (much of it unnecessary).

The alphabeta procedure takes the longest to execute (by far), but does not exhibit much

parallelism. The hybrid approach seeks out the happy medium.

It is important to note that nondeterministic primitives such as blackboard and := do in-

troduce an element of surprise. Even the simple program above can exhibit different resource

usage behavior on every multiprocessor execution, due to its nondeterminism. However, the

program will always return the same result, regardless of erecution order and resource us-

age. This is an important property, enforced only by the disciplined ("conventional") use of

nondeterministic constructs by the programmer, and not by any Church-Rosser properties

of the language itself.t

The ID language, as augmented by the blackboard construct, does not in fact exhibit the

?And just to prove the difficulty of programming with explicit nondeterministic constructs, the careful
reader will notice that the hybrid alpha-beta code presented contains a race condition between the minmax
computation and the writing of value into child which may cause incorrect results. We will ignore this
problem for now, as it does not directly impinge on our discussion of the blackboard approach. However,
this problem will become more grist for our argument of encapsulated speculation controls later on.

36



800

500

100

1000 2000 3000 4000 6000

Time

Figure 2.7: Hybrid Minimax Algorithm: ALU Parallelism Over Time

37



Soo

Mini max Algorithm

x00 Hybrid Algorithm

Alphabeta Algorithm

138

00
0

0

5,000 10,000 15,000

Execution Time Steps

Figure 2.8: Invocations Executing at Each Time Step for the Three Algorithms

3s



Church-Rosser property[29]; execution order does (in general) affect the result of nondeter-

ministic computations. Instead, the determinacy of the result follows from programmer-

enforced consistency. The correctness thus exhibited is akin to the sequential consistency

developed by Lamport[51]. We axe depending on the nature of the problem, in particular the

conservative cutoff criterion of the hybrid alpha-beta algorithm, to enforce this invariant.

2.4 A Concrete Example: A Cryptarithmetic Solver

Let's choose a specific example on which to explore extensions of this approach to parallelism

control. The ID code presented below solves typical "cryptarithmetic" problems as presented

by Kornfeld in discussing parallel speculation.[49] A cryptarithmetic solver finds a solution

to the class of "mind bender" problems in which ten alphabetic characters are assigned

digit values from zero to nine, such that the addition of two strings of characters results in

another particular string.t An example problem is outlined in Figure 2.9. In this example,

we seek a matching of the characters (D 0 N A L G E R B T) to the numbers from zero

through nine which makes the addition correct.

D O N A L D

+ G E R A L D

R O B E R T

Figure 2.9: Typical Cryptarithmetic Problem

Such problems have "obvious" search trees of size 10!, though of course much pruning can

be applied. This class of problems is particularly interesting, as input order and search

order can have a profound impact on the number of solution rodes which must be searched

to find a correct answer. In one particular solution algorithm for solving the problem in

Figure 2.9, the same program that solved the problem by searching only 3,988 nodes had to

search 1,995,840 nodes to find the same answer when presented the problem in a different

order.

tTypically, to make such mind benders more interesting, the three strings of characters form English

words, often proper nouns.
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The following code implements the cryptarithmetic solver in a depth-first manner. The core

of the solver is in the recursive solve-crypt function, which controls the search. In actual

usage, the crypt function would be presented with three lists of symbols representing the

addends and result strings of the problem.
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% Top-level: take the three lists, generate a merged symbol
% search order and present to solve-crypt.
def crypt al a2 a3 =

{ rl = reverse al;
r2 = reverse a2;
r3 = reverse a3
in

solve-crypt rl r2 r3 (merge rl r2 r3) nil };

% Solve a crypt puzzle recursively. Check if a solution has
% been found or is impossible; else recursively try all possible
% bindings for the next letter in the search list.
def solve-crypt 11 12 result letters bindings =

if not (check-solve 1112 result bindings)
then nil
else if letters == nil

then bindings
else { letter : rest = letters;

-, digits-used = unzip2 bindings;
def try nil = nil
I try values =

{ v vt = values;

answer = solve-crypt 1112 result rest
((letter, v) bindings)

in
if answer 0 nil

then answer
else try vt }

in
try (difference (0 to 9) digits-used) };

% Subtract sublist from list set-wise.
def difference list sublist =

{ result = nil
in

{ for item -- list do

next result = if member? (==) item sublist
then result

else item : result
finally result }};

%%%~ This code is continued on page 42.
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16 % This code is continued from page 41.

% Alerge three lists in an order good for search. The search
% order we choose is from low-order to high-order digits, so
% that chances for search cutoff are magnified.
def merge sl s2 s3 =

{ result = nil;
def glue nil s2 h3 - nil
I glue sl s2 s3=

(lid sl) : (lid s2) : (hd s3) : (merge (tl sl) (tl s2) (tl s3))
in

{ for item - glue sl s2 s3 do
next result = if member? (==) item result

then result
else item : result

finally reverse result };

% Check bindings to see if we have a possible solution.
def check-solve 11 12 result bindings =

{def check nil 12 result carry = carry == 0
1 check 11 12 result carry =

{ v1 = lookup (lid 11) bindings;
v2 = lookup (hd 12) bindings;
vr = lookup (hd result) bindings
in

if(vl < 0) or (v2 < 0) or (vr < 0)
then true
else { total = vl + v2 + carry

in
if (mod total 10) 5 vr

then false
else check (tl 11) (tl 12) (tl result)

(floor (total/lO)) }
in

check 11 12 result 0 };

% Look up a symbol's binding in current environment.
def lookup symbol nil = -1
I lookup symbol bindings =

{ (s, v) : rest = bindings
in

if s == symbol
then v
else lookup symbol rest };
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This solution of the problem uses knowledge of partial addition to decide during the search

whether portions of the subtree need not be searched. This is accomplished by calculating as

much of the puzzle as possible with the unfinished solution. For example, in the DO NALD +

GERALD = ROBERT problem presented, if in any portion of the search tree we have

D + D mod 10 y T then the current and all future search subtrees may be terminated, as

they cannot possibly bear fruit.

Using this knowledge, the crypt function orders the search (using the merge function) such

that partial solutions can be checked for correctness. Then possible bindings for each letter

in turn are considered by speculation in the recursive solve-crypt function. This function

then uses the check-solve (and helper function lookup, for looking up extant bindings for

symbols) to check for the impossibility of a set of bindings, which should terminate that

branch of the search tree.

As was the case in the alpha-beta tree search, this solution is quite sequential, as prior

knowledge of previous search paths is required before the search continues down another

path.t However, there is no a priori knowledge that one particular search path is better

than another at any given point; all possibilities are equally likely to be solution paths.

Therefore we might take the liberating approach of a parallel speculative approach, by

reimplementing solve-crypt to search all possible paths concurrently:

tI.e., this code implements a depth-first search.
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o New version of solve-crypt removes the if serialization
% previously found in the try function, allowing parallel
% search of all subtrees of a choice point.
def solve-crypt 11 12 result letters bindings =

if not (check-solve 1112 result bindings)
then nil
else if letters == nil

then bindings
else { letter : rest = letters;

-, digits-used = unzip2 bindings;
def try nil = nil
I try values =

{ v vt = values;
answer = solve-crypt 1112 result rest

((letter, v) bindings);
another-answer = try vt
in

if answer i nil
then answer
else another-answer }

in

try (difference (0 to 9) digits-used) };

As expected, there is a distinct critical-path shortening from the sequential to the parallel

version (nearly six times); yet we find an even worse explosion of work in the parallel

version (more than sixty times). Again we might generate a hybridized version using the

blackboard approach; in this code, each blackboard holds either true (meaning that a

solution has been found at the previous search level) or false (a solution has not yet been

found). The solve-crypt procedure checks the blackboard done before doing any work;

likewise, it writes true into the cell passed down to inferior searches (cell) when an answer

has been found.
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% Hybridized cryptarithmetic solver, using blackboards.
def crypt al a2 a3 =

{ cell = blackboard false;
rl = reverse al;
r2 = reverse a2;
r3 = reverse a3

in
solve-crypt rl r2 r3 (merge rl r2 r3) cell nil };

% New version of solve-crypt without the if serialization
% but with cutoff controls using blackboard.
def solve-crypt 11 12 result letters done bindings -

if done[O]
then nil
else if not (check-solve 1112 result bindings)

then nil
else if letters == nil

then bindings
else { letter : rest = letters;

-, digits-used = unzip2 bindings;
cell = blackboard false;
def try nil = nil
I try values =

{ v : vt = values;
answer = solve-crypt 11 12 result rest cell

((letter, v) : bindings);
another.answer = try vt
in

% Check to see if we're done.
if answer # nil

then { cell[O] := true % Yes, notify.
in

answer }
else another.answer }

in
try (difference (0 to 9) digits-used) };

This slightly more complex code, like the hybridized alpha-beta search previously seen, will

perform some cutoff of search paths once an answer has been found, provided that the other

subtrees of a choice point have not yet started. This is a crucial point; since although cutoff

is detected (and recorded) at all levels of the search, it is only checked for one level deep

(inside solve-crypt). Thus, even though a complete solution has been returned to crypt,

we might find that search subtrees many levels deep are still executing, having sampled the
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done blackboard too "early."

It seems that we could work around this problem, however, by checking for completion at

multiple levels (i.e., at the previous choice point and its ancestors). The following implemen-

tation of the cryptarithmetic solver performs these checks. It does so by passing descendant

(recursive) calls to solve-crypt a list of blackboards instead of a single blackboard. Recur-

sive invocations of solve-crypt then treat the head of the list as the blackboard recognizing

completion of the immediate parent, while blackboards further down the list represent com-

pletion at higher levels of the search. Figure 2.10 shows a done list that might be seen by

an invocation of solve-crypt four levels deep in the search; completion at three levels deep

has been noted, while none of the other levels has yet recognized completion of the search.

The solve-crypt procedure then uses any-done? to check all blackboards on the list for

completion, fulfilling our goal of looking for completion in all ancestors of the current search

node.

fale

2

false

fale

0

Figure 2.10: List Structure Representing Multi-Level Completion Blackboards

The code to implement this approach in ID is:
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% Hybridized cryptarithmetic solver, using deep communication.
def crypt al a2 a3 =

{ cell = (blackboard false) : nil;
rl = reverse al;
r2 = reverse a2;
r3 = reverse a3
in

solve-crypt rl r2 r3 (merge rl r2 r3) cell nil }:

% New version of solve-crypt without the if serialization
% but with deep cutoff controls using blackboard.
def solve-crypt 11 12 result letters done bindings =

if any-done? done
then nil
else if not (check-solve 1112 result bindings)

then nil
else if letters == nil

then bindings
else { letter : rest = letters;

-, digits-used = unzip2 bindings;
% Generate new list of completion blackboards.
cells = (blackboard false) : done;
def try nil = nil
I try values =

{ v : vt = values;
answer = solve-crypt 1112 result rest cells

((letter, v) : bindings);

another-answer = try vt
in

% Notify of completion if appropriate.
if answer 6 nil

then { (hd cells)[O] true in answer }
else another-answer }

in
try (difference (0 to 9) digits-used) 1;

% Check if any ancestor is finished.
def any-done? nil = nil

any-done? first : rest =

if first[O]
then true
else any-done? rest;

We now have a cryptarithmetic solver with deep completion-checking; a, solution at any level

will eventually be noticed by all descendant search levels, which will then cut off usage of
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system resources. However, we have now increased the complexity of the code with quite a

few extraneous checks, and have caused a per-search-level overhead to check for completion

in all ancestors. This seems "backwards;" if we could instead perform some sort of forward

communication of completion only when a solution is found in a subtree, we could cut down

this overhead.

Since each level of the search described by solve-crypt knows precisely how many descen-

dants it will have, we could use an alternate data structure. In this approach, each recursive

level of solve-crypt constructs a vector; element zero of that vector, as before, records non-

deterministically whether that level of the solver has completed. The rest of the elements,

however, point to the vectors constructed by descendant invocations of solve-crypt (by

specifically storing into various indices of the parent's vector). The value nil is stored at

the leaves of the search. Figure 2.11 shows the state of such a search through the use of

these vectors. The root node 0 has not completed the search (therefore shows false in index

zero); it has three descendants (labeled la through 1c). Some of the level-one searches have

terminated (signified by the null entries in their vectors), while some of the level-one search

is still expanding (signified by the empty cells, to be filled in by a descendant recursive call

to solve-crypt). Node lb has found a solution, and has communicated that fact to node

2b by its forward pointer.

The following ID code implements the cryptarithmetic solver with "forward communica-

tion." Each level of the solver keeps reierences to all search subtrees so that it can commu-

nicate completion to them, using the data structure discussed.

% Hybridized cryptarithmetic solver, using forward communication.
def crypt al a2 a3 =

{ cell = blackboard false;
cells = i.array (0, 1);
cells[O] = cell;
rl = reverse al;
r2 = reverse a2;
r3 = reverse a3

in
solve-crypt rl r2 r3 (merge rl r2 r3) cells 1 nil };

%16% This code is continued on page 50.
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Figure 2.11: Vector Structure Representing Forward- Communication Blackboards

49



o% This code is continued from page 48.

% New version of solve-crypt without the if serialization
% but with deep forward cutoff controls using blackboard.
def solve-crypt 11 12 result letters done index bindings =

if done[OI[O]
then { done[index] = nil % Leaf of termination tree.

in nil }
else if not (check-solve 11 12 result bindings)

then { done[index] = nil in nil }
else if letters == nil

then { done[index] = nil in bindings }
else { letter : rest = letters;

/ _, digits.used = unzip2 bindings;

cell = blackboard false;
possibilities = (difference (0 to 9) digits-used);
cells = i-array (0, (length possibilities));
cells[O] = cell;
done[index] = cells;
def try nil = nil
I try i values =

{ v : vt = values;
answer = solve-crypt 11 12 result rest cells i

((letter, v): bindings);
another-answer = try (i + 1) vt
in

if answer 6 nil
then { call termination cells in answer }
else another.answer }

in
try 1 possibilities };

% Communication termination "forward." The 011 element of the
% "cell" holds the completion indicator for the ancestor level,
% while the balance of the cell holds pointers to descendant levels.
def termination cells =

if cells == nil

then nil
else { cells[Ol[O] := true;

., descendants = bounds cells;
{ for i +- 1 to descendants do

call termination cells[i] }};

We have followed a very structured approach to generating a powerful hybrid solution for
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the cryparithmetic solver. The steps were:

1. Generate the simple sequential solution.

2. Add parallelism by removing the successor constraint in the search. Though our

critical path shortened significantly, we increased parallelism to a ludicrous extent.

And we ignored knowledge about the search progress, a dangerous approach.

3. Begin to control that parallelism (in a one-deep fashion) by using the blackboard

construct to communicate completion to a child invocation of the solver. This helps,

but has a timing problem-the child may start and do its completion check just before

the parent signals completion.

4. Checking for completion at all ancestor levels fixes this problem. But it introduces

too much overhead in deep searches.

5. Using forward communication of search knowledge alleviated that problem, with an

attendant cost of program complexity.

Yet the realization of this simple hybrid approach is beginning to be incomprehensible.

Worse, we haven't yet hit the bottom of the well; the solution above doesn't do anything

to stem the usage of resources in functions other than solve-crypt. In the general case

we might want to check for search completion (and perhaps notify of search completion)

in many, many functions; should all ID procedures be recompiled for usage with search to

check for completion? That approach seems excessive. Nevertheless, it seems not to insure

that the propagating termination information will "catch up" with the continued unfolding

of the execution tree, and therefore might not even work.

We should be able to design a single construct for speculative search of the type we're

interested in that would encapsulate and hide the details of nondeterminism and control

from the programmer, while still allowing (and guarantceing) that control.

2.5 General Search Speculation

Efficient general constructs for controlled speculation. with less work reqtired of the pro-

grammer, are the goal of this report. In tlis section we introdtice such a construct, and
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follow with how this organization may be realized in the ID language with lower-level lan-

guage forms.

A general tool for speculative search would be nice in order to avoid the explicit parallel na-

ture of the hybrid tree-search code. By introducing some more syntax into the language, we

can provide the power of speculative search with controlled parallelism with two important

features:

" Abstraction: a single syntax can control all speculative parallelism, and contain the
control features we decide to implement.

" Encapsulation: all non-functional operators (such as :=) can be hidden inside this ab-
straction, leaving the user to write purely functional codes (increasing the probability
of correct code and the ease of debugging).

The speculate form is defined simply in a manner analogous to list mapping functions

found in ID or Lisp. The following form

speculate f list

is defined (operationally) to call the function f on each list element of the argument list,

returning one of the results. This is quite similar to the EITHER construct of Baker and

Hewitt[15]. Given the tone of this report, there is of course an operational implication that

all of the applications of f to elements of list will begin in parallel, with unfinished branches

being "terminated" once another branch finishes.

Specifically, in a manner similar to the description of blackboard above, the speculate

form presents the following operational interface:

speculate ((+) 1) (1 : 3 : 5 : nil)

== ((+) 1 1) or ((+) 1 3) or ((+) 1 5)

== 2 or 4 or 6

This operational definition, however, sidesteps many implications of speculate on the I)

language--what, for instance, does speculate return if its list argument is an empty list?

What is the result of branches taken inside the speculate form that are "terminated?" To
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solve this problem, we introduce a new ID basic type NOVALUE, with a single exemplar

of that type represented by the symbol R.t R may be the result of any operation inside an

execution tree which is undergoing termination.

We might then take an approach akin to the explicit representation of run-time error values

in the denotational semantics literature for specifying the se _iantics of expressions which

might undergo termination. For example, in Gordon's TINY language[371 the semantic

clauses of the language all must explicitly represent the possibility of run-time error out-

put. The denotational behavioral description (i.e., the mapping C) of the TINY addition

expression, for example, becomest

£[E1 + E 21 = (VI = C[E1])
((V2 = CIF I)-

(isNum v, and isNum v2

v1 + V2, error), error), error

We could take the same approach in specifying speculate's static semantics (type). In

particular, the static semantics of speculate could be specified in this manner as

typeof speculate = (*0 -- *1) -+ (list *0) - *1 + NOVALUE;

where the + operator specifies the disjoint sum of types. We must also, however, describe

the impact of R on the rest of the ID language. In particular, we intend to specify that

dataflow operators are in general strict in the NOVALUE type§ (strictness of dataflow

operators will be discussed in detail in Section 4.1). This would therefore imply that any

and all ID language constructs might have the result R; this would have to be reflected in

the type signatures of every operator in the language, as in

tThis symbol, the Hebrew character "aleph," should be pronounced no value in this report.
IFor the purposes of this discussion, we ignore the issues of state transformation in the TINY language.
1I.e., a dataflow operator that has a N input will have a R result. There will be numerous counterexamples,

however, including structure storage, explicit tests for 9, etc.
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typeof + = N + NOVALUE - N + NOVALUE N + NOVALUE
typeof- = N + NOVALUE -- N + NOVALUE - N + NOVALUE
typeof* N + NOVALUE - N + NOVALUE - N + NOVALUE
typeof/ = N + NOI'ALUE , N + NOVALUE N + NOVALUE
typeof== N + SYM + NOVALUE - N + SYM + NOVALUE

- B + NOVALUE

This cumbersome construction would be extended to generating a disjoint sum of the NO-

VI L UE type with every other type in the language. However, this approach is really useless.

The only reason we would need any type specification to explicitly represent the NO VALUE

type would be to infer properties of programs which might take or return N. But by def-

inition all ID programs might take or return R; if in fact we could infer that a particular

program would definitely return R then speculation over a branch of code including that

program would be useless!

Therefore, for the purposes of specifying static semantics, we will ignore the NOVALUE

type. Where a type checker for our improved language specifically infers type NOVALUE,

it would treat the result as being of unspecified value (unifying with any other type),

allowing the dynamic behavior to be ignored by the static semantics. This approach to the

treatment of R is quite similar to the treatment of statically recognized dynamic errors of

omission discussed by Nikhil.[56]

We will continue to use the symbol N, however, to help specify the dynamic semantics of

various constructs, including speculate. Some properties of speculate therefore include

the following, where the symbol #- represents evaluation:

/c Static semantics:
typeof speculate = (*o - *I) -4 (list *o) - *I;

% Dynamic semantics:
typeof speculate = (*0 x *I) x (list *o) = *i ± { + }

and:
1. Vf, speculate f nil = N;
2. ifVx E I, f x =: N then speculate f 1 => R
3. if 3x E I such that f x # N then speculate f I N
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We will explore the affect of R on dataflow operators and compilation of the ID language in

Chapter 4. Meanwhile the reader may simply assume that R objects propagate through a

dataflow execution graph in a well-behaved manner, as has been implied in various papers

in the dataflow literature.[19] t

For the balance of this chapter we will explore the use of speculate and related forms.

2.6 Using Speculation

This approach is perfect for solving problems which have two or more known solution algo-

rithms, with neither being guaranteed optimal in time. For example, a symbolic integration

system might define a general integration function as[15]

def integrate expression ={ def try expression f =

f expression
in

speculate (try expression) (heuristic-integrate : Rischintegrate nil) };

This function would then try two general methods of symbolic integration, returning the

result of the one that finishes first.

More generally, the speculate construct is a powerful approach to searching a tree in which

any one result is acceptable. For example, we can re-write our cryptarithmetic solver's top-

level function quite simply now:

tIn fact, the simulation of the Tagged-Token Architecture used to produce results for this report simply
used the error-propagation mode of the simulation system.
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% Solve a crypt puzzle recursively, using speculate.
def solve-crypt 11 12 result letters bindings =

if not (check-solve 1112 result bindings)
then nil

else if letters == nil
then bindings

else { letter : rest = letters;
-, digits-used = unzip2 bindings;
def try possibility =

solve-crypt 1112 result rest ((letter, possibility) : bindings)

in
speculate try (difference (0 to 9) digits-used) 1;

Assuming that generating and checking for puzzle solution is relatively expensive, the value

of the speculate form is in executing all generations and tests in parallel, yet terminating

all still-running tests once a particular search branch succeeds. Although this latter ability

doesn't affect the semantics of the solution (as the hybrid alpha-beta algorithm didn't affect

the semantics of minimax tree search), efficiency gains can be made. The multiple calls to

try are said to be interspeculative, as they represent the search of the disjoint subtree

at any given point in the search space. Furthermore, we specify that each application of

the speculate function argument to an element of the list argument, and the resulting

execution tree, represents a task.t Thus we can speak of task termination in a well-defined

manner. In addition, any task can spawn further subtasks by suitably calling speculate; we

define the termination of a task, for our purposes, to include the termination of all subtasks

of that task.

In fact, there is something a bit strange about task termination as it has been presented.

We allow the speculate form to terminate tasks somehow, but we give the user no tool to

indicate to the system that the current task is known not to be able to generate a successful

solution (e.g., in the check-solve procedure of our cryptarithmetic solver). We introduce

another form, terminate, to allow this indication. We might define the functional semantics

of terminate as follows:

ITo some extent we rely on the reader's intuition about what constitutes a task. We will back this
intuition with a better description in Chapter 3.
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typeof terminate = *0 - *I;

ignoring the side-effect of terminate (that is, the notification of termination). This specifi-

cation shows a single argument; that argument is actually a dummy argvment, used simply

to trigger the execution of the terminate function.t We will generally specify nil as the

argument to terminate, although any argument will do as it is ignored by the program.

The following dynamic semantics of terminate would serve us better than the semantics

given above:

typeof terminate *0 = R;

as it would cause immediate injection of R into the computation at the point of specification.

This is just an optimization, however, and either approach is acceptable. Using this new

construct, we can re-write some of our cryptarithmetic solver even more simply:

tThis is due to an aytifactual bug in the syntax of ID which disallows the specification of a call to a

non-constant (i.e., side-effecting) code-block with no arguments.
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% Speculating cryptarithmetic solver using self- termination.
def solve-crypt 11 12 result letters bindings =

{ call check.solve 11 12 result bindings in
if letters == nil

then bindings
else { letter : rest = letters;

-, digits-used = unzip2 bindings;
def try possibility =

solve-crypt 1112 result rest ((letter, possibility) bindings)
in

speculate try (difference (0 to 9) digits-used) }};

% Version of check-solve using self- termination.
def check-solve 1112 result bindings =

{ def check nil 12 result carry = carry == 0
I check 1112 result carry =

{ vl = lookup (hd 11) bindings;
v2 = lookup (hd 12) bindings;
vr = lookup (hd result) bindings
in

if (vl < 0) or (v2 < 0) or (vr < 0)
then true
else { total = vl + v2 + carry

in
if (mod total 10) 5 vr

then terminate nil
else check (tl 11) (tl 12) (tl result)

(floor (total/10)) }}
in

check 1112 result 0 };

The terminate form is what we term a post-speculative control construct, one of the two

phases of speculation control. The terminate structure is post-speculative in that it checks

execution of a task which is known not to be capable of producing a correct response,

and thus may be terminated (in the sense that no new resources should be allotted the

task). The priority form, introduced and explained in Chapter 3, is a pre-speculative task

priority control device. In the pre-speculative phase, before it is known which of a group of

interspeculative tasks will compute the correct result, there is the problem of constraining

the resource usage of each interspeculative task against each other interspeculative task.

We shall see some example usage of the priority form in Chapter 5.

58



2.7 Another Example

As another example of the use of speculation, the following ID code implements a solution

for the n-queens problem. The aim of this well-known problem is to place n queens on an

n by n chess board such that no queen is threatening another (under the standard rules of

chess). Typically solved by a backtracking approach, the solution below instead uses the

speculate form we have introduced into ID.

The solution is straight-forward. The toplevel function queens taker, as input the parameter

n, the size of the problem. It then calls the recursive function place-queen for each possible

placement of a queen on the first row of the board. place-queen, after determining whether

the problem has been solved or cannot be solved, then speculates over each of the possible

placements of a queen in the next row. In this way, we either come to a "dead" branch

(wherein not all of the queens have been placed, but already we have queens threatening

each other) or to the end of the game, with all queens placed in non-threatening positions.

The threatened?, threatened-diagonally? and member? are auxiliary functions which

check for positions threatened under the standard rules of chess.

Figure 2.12 shows a typical search tree for the 4-queens problem.
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SOLUTION

Figure 2.12: Typical Search Tree for the Four-Queens Problem.
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% Call to solve four-queens problem.
solution = queens 4;

% Solve the n-queens problem.
def queens n --

speculate (place-queen I n nil) 1 to n;

% Check if done; if not, speculate on placement of next queen.
def place-queen row size placements column =

if row > size
then placements
else if threatened? row column size placements

then terminate nil
else speculate

(place.queen (row + 1) size (row,column):placements)
(1 to size);

% Check if a placement is threatened from previous placements.
def threatened? row column size placements =

--, columns = unzip placements
in

member? (==) column columns
or threatened.diagonally? row column 1 size placements
or threateneddiagonaly? row colump 1 size placements

% Check if a placement is threatened from diagonal placements.
% We only have to search previous rows.
def threatened -diagonally? row column dy placements =

{ def test (ri, cl) (r2 , C2 ) =
rl == r2 and ci == c2;

answer = false;
x = row - 1;
y = column + dy
in

{ while x > 0 -4nd v " 0 and y size
next answer = answer or member? test (row, y) placements;
next x = x - 1;

next y = y + dy
finally answer )};

% Test for list membership given a particular element comparison.
def member? test number list = fold (or) (maplist (test number) list);

In this chapter, we have seen the kind of speculative parallelism we wish to exploit with

ID programs, and the type of control over that parallelism that we expect. We built two
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different approaches to execution control; the first (blackboard) approach was difficult to

use and didn't solve all of our problems. The latter approach (i.e., speculate) gives the

control we want by definition, but clearly requires support in the language and the run-time

system.

In the following chapter, we shall see how these speculation control forms can be imple-

mented within the ID language. Changes in the underlying dataflow architecture to support

these constructs efficiently will also be explored.

Nondeterminism means never having to say you're wrong.

- SEAN PHILIP ENGELSON
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Chapter 3

Implementation within the
Language

n this chapter we explore the realization of the speculation control devices suggested by

Chapter 2. We will begin by implementing these constructs within the language, and then

investigate the architectural support necessary for efficiency in Chapter 4.

3.1 Is Speculation Trivial?

Initially, it seems that the speculate form could be realized by a simple definition:

% First stab at definition of speculate.
def speculate function list =

function (choose list);

def choose list =
element-index = random (length list)
in

nth elementindex list };

where the function application random n function returns (perhaps) uniformly distributed

random numbers in [0, n). This trivial speculate function would simply choose a random

element of the input list, and call function with that element. Clearly this definition

returns the function applied to an element of the list.

However, this definition fails both the semantic definition of speculate as well as the
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operational requirements of our new form. No provision is made for the behavior evidenced

when function applied to the list element does not generate a value (through error or

an explicit R); our special speculate form is supposed to return the result of applying K

function to a list element which generates a value. Operationally, the definition above

might also choose the "wrong" element to operate on, in the sense that another element

might have proved to return an answer sooner.

Another stab at the problem, which successfully fulfills the semantic requirements by using

the mechanisms of I-structure storage, might be written as in the following:t

% Explosive definition of speculate.
def speculate function list =

{ result = i.array (0, 0);
def task element =

answer = function element
result[O] = if not (novalue? answer)

then answer
else result[O] 1;

map.list task list
in

result[O] 1;

By using I-structures, and depending on the synchronization feature of I-structures (i.e.,

that an I-structure cell may only be written once), this proposed solution will correctly

return the result first returned by the applications of function on the elements of list. All

other applications of function will fail in their attempts to write the result cell, getting

run-time errors which will eventually cause termination.

This completely ignores the question of how the I-structure error signalled by such a code

is treated. Does all computation terminate? Does the machine halt? There is not current

literature on error handling in ID, although "error propagation" is glibly spoken of in various

papers.[19]?

Worse, however, the above definition does not fulfill the operational goal. Once any of

t We ask the reader to give an intuitive meaning to the "novalue?" predicate; we will see the details of
this procedure in Chapter 4 and Appendx A.

IPlouffe's work[64] contains a more complete discussion of error handling and propagation in functional
languages. This report, however, will define a propagation semantics for R, which may be thought of as a

subclass of the class of errors.
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the interspeculative tasks returns a result, we wish all other tasks to stop consuming re-

sources. This solution does not gain that effect, as post-speculative (and therefore known

to be garbage tasks) will continue spending system resources until they attempt to return

a result. Worse, because of the generally non-strict argument-passing semantics of ID [74],

a post-speculative task could continue to use resources even after generating an error while

returning a result.

How can we specify this operational goal in the language in a consistent manner, useful for

controlling execution in general, and fitting in to the ID language as a whole? With the

addition of certain inherently nondeterministic constructs and the augmentation of various

system-level structures, the ID language is itself a suitable medium for implementing the

speculate routine and its approach to parallelism control.

In any language under any execution paradigm, application of a procedure (function call-

ing) requires some set of system resources. The work of the operating system in supporting

a function call might be as trivial as allocating an activation frame (e.g., stack frame), or

it might be as complex as mapping the function "name" to an address (dynamic linking),

checking access, copying arguments, etc. Regardless, some entry into the system resource

management system is necessary. This continues to be true in the ID language under data

flow execution. Obviously, this resource control issue must be central to the prioritization

and termination of tasks as well.

For the next several sections of this chapter we will digress, discussing various ID language

features considered necessary for our purposes. We will explore argument strictness issues,

resource management in the ID language, and dynamic enclosing constructs which will give

form to the intuitive "task" idea we have used previously. In Section 3.6 we will pull together

these lower-level constructs into an ID-language implementation of speculate that meets

the semantic and operational goals we require.

3.2 Strictness-Enforcing Constructs

Procedures in the ID language are non-strict in their arguments,t in the sense that func-

tion bodies may begin executing-and even return results-before all arguments have been

t To be more exact, ID procedures are lenient in their arguments. For a more full treatment of this topic,
see Traub.[74] We will simply use the term non-strict in this report.
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supplied to the function.[58] For example, in the following code

def f x y = x;

f3±

the call to the function f will return 3, regardless of the fact that the second argument to

f was ill-defined. Though this feature has major repercussions in the architecture of the

compiler and implementation for the ID language,[74] it is quite powerful and allows simple,

declarative specification of difficult concepts. In fact, arguments to ID procedures may even

depend on the results of the procedure call. In particular, a circular list of sevens may be

constructed in ID via the following expression:

{ result = cons 7 result
in

result }

This fragment of proper ID code clearly constructs and returns a cons (list element) con-

taining 7 in its head, and itself in its tail. This behavior depends on the non-strict argument

passing behavior of cons and every other ID function, whether system- or user-defined.

However, this feature has drawbacks. In particular, once the language contains nondeter-

ministic features (which we have already seen), control-based time-ordering of certain code

fragments becomes important. The partial-order of execution scheduling represented by the

datatfow graph is gleaned only from data dependency information; the control information

needed for careful use of nondeterminate constructs cannot be automatically computed by

the ID compilert

Hence we introduce into the language a construct named gate to allow explicit language-

based sequentialization of function calls and other operations. The code fragment

gate value trigger

tThis is not true in some specialized cases, such as input/output ordering. See the author's 1/0 serial-

ization work[66] for more information.
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is defined to return its first argument (value) as soon as the second argument (trigger)

has arrived. We will see the use of this functional, safe construct in many implementation

details below.

The implementation of this construct relies on the dataflow execution model underlying the

ID language. Although the ID language implements non-strict function argument passing,

the underlying execution paradigm for dataflow graphs is itself strict. That is, no dataflow

operator will "fire" (execute) until all of its arguments are available. Thus the ID compiler

can simply use a gating instruction which passes a value through untouched upon receipt

of a second argument. This instruction is represented in dataflow graphs by the symbol

shown in Figure 3.1, and directly implements the gate functionality discussed above.

Input

Control

Output

Figure 3.1: The Gate (Strictness Imposition) Operator

3.3 Managers

The central important feature of ID that we need to exploit in order to control speculatiol

is the concept of a manager. Though managers have not been fully explored in the dataflow

or functional language literature,10, 5, 13, 23] they have been explored in other media[16]

and actually implemented on a trial basis under various dataflow systems.f61, 55, 57] Since

the speculate form is intimately dependent on the semantics of managers, e include

here a discussion of how managers operate, and the effect of managers on system-code

implementation. In a later section (Section 4.2) we will explore the implementation of
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these nondeterministic structures. We believe that the nondeterminism encapsulated by

managers is required for reasonable resource allocation control; in fact, it has been said

that determinate computation is not adequate in general for resource allocation.[22]

Managers provide the highest-level interface within the ID language for serializing access

to shared resources.J13, 51. These shared resources may be memory space (or portions of

memory, such as databases), input/output devices, registers (or other function context in-

formation), and so forth. Traditionally, access to these resources is controlled by operating

system code, and interfaced to user code via "trap vectors," "software interrupts," "dy-

namic link names" or other globally-named means. The operating system software must

nondeterministically serialize access to these generally non-reentrant codes via some means

Ii.e., critical section control).

In ID, the manager construct provides a methodology for implementing shared resource

controllers with two powerful features:

* Managers are created and used in a manner similar to function creation and calling.
This makes the writing of managers more simple, which decreases programming errors
in them.

e User-written manager code is automatically contained within whatever critical section
control is necessary; users need not serialize manager requests (input). In particular,
this implies that manager codes can be deterministic, leaving the complexities of
nondeterministic coding to the lower-level system.

Figure 3.2 shows the general schema of a manager code. All calls to a manager are serialized

via some lower-level feature (which will be discussed later). Each request is then presented to

the code body of the manager. which may be completely deterministic. Any state necessary

for the implementation of the manager is automatically circulated as in loop schemas.[73]

Once the manager body has completed computing the "answer" for a particular request,

this result is combined with the tag specifying the caller and sent on to the caller. Thus,

to the calling function requesting resources the manager appears as a standard ID function.

Yet this simple structure allows fully general nondeternfinistic resource access with state in

the controlling code.

This encapsulation of the nondeterministic behavior of resource controllers is the primary

feature of the manager scheme. Nearly as important, however, is the fact that the manager

code body. itself deterministic and adhering to the standard ID rules, may be executed
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Incoming ReqUest

SERIALIZEInitial

State

Outgoing Results

Figure 3.2: General Manager Schema Containing Deterministic Code
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with fine-grain parallelism like any other ID code. Thus ID with managers allows parallel

execution in managers themselves.

The syntax for manager creation and usage is simple and general. The following code

implements the usual bank account example:

% Account manager code body. Requests are 'deposit and 'withdraw.
% Returns (true, new balance) if the request is allowed.
% Returns (false, new balance) if the request is not allowed.
def account balance request amount =

if request == 'deposit
then true, balance + amount
else if balance < amount

then false, balance
else true, balance - amount;

% Create a bank account with a particular balance and return it.
def new-account initial-balance =

manager account initial-balance;

% Deposit some amount to an account.
def deposit amount account =

use account 'deposit amount;

% Attempt to withdraw some amount from an account.
def withdraw amount account =

if use account 'withdraw amount
then "Withdrawal succeeded."
else "Withdrawal failed.";

In this example, the function account is a deterministic (in fact, functional) code that

implements the core functionality of a bank account. When presented with a past state (the

balance of the account) and a new request to 'deposit into the account, it increments

the account balance by the value of the amount argument. When presented with a
Iwithdraw request, it either performs the subtraction or not, depending on the current

balance and the requested withdrawal amount. In any case, this function returns a boolean

informing the caller whether the request succeeded, and a new value for the state of the

manager.

Thus, new bank accounts are created by the new-account function by simply calling man-

ager on the bank account function account, specifying an initial state (i.e., initial balance).
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The manager call expands into the nondeterministic schema outlined in Figure 3.2. The

two functions deposit and withdraw then make calls to the manager via the use schema,

which simply presents the requests to the manager's serializer. The implementation of this

serialization structure will be examined in detail in Section 4.4.

This high-level example, though it shows the power of manager-based nondeterministic pro-

gramming, glosses over the lower-level usage of managers that underlies all ID programming.

3.4 Managers for Basic Language Functions

Since resource access is central to any computer system, the manager scheme is central

to the execution of ID codes on dataflow machines. In particular, requests to the system

for memory allocation and for code block execution (i.e., function calling) are handled by

resource managers which may themselves be written in ID.

In particular, the abstract dataflow graph for implementing the ID function call f a (i.e.,

the application of the function f to the argument a) involves a call to a manager that

implements function call context and argument storage, as is outlined in Figure 3.3.

In the figure, we see two uses of the use abstract instruction for calling managers. The first

allocates context and argument space for the named function (perhaps loading and linking

the function dynamically first); the second deallocates that space for other use. In this

simple single-argument case, the result of the first use instruction directs two instructions

for sending return address information as well as the argument to the function. On the

completion of execution of the function, the result is passed to the caller, and is used to

start the second call to the application manager to deallocate the function's context and

argument space.

Calls to allocate memory (e.g., for array storage) are quite similar in structure; a use

instruction is used to call the manager to allocate or deallocate memory.

3.5 Hierarchical Naming of Managers

This brings us to the problem of naming managers. In the abstract graph of Figure 3.3, we

glossed over this point by providing a symbol ( 'application-manager) which names the
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f a

'application- manager

'start-call

USE
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SEND SN

RECEIVE
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result

Figure 3.3: Function Calling Abstract Graph
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manager to call. At some point, however, this symbol needs to be mapped into an actual

serialization structure as outlined in Figure 3.2.

This naming problem has not been resolved in the manager literature.[5, 57] The "obvious"

idea, using the same mapping that takes place in order to map function names into their

corresponding dataflow graph entry points, cannot work-that is one of the functions of the

application manager itself! As was pointed out above, this problem of recursion is generally

solved on traditional machines by static naming solutions (i.e., trap or interrupt vectors or

global symbolic names). However, static solutions are not powerful enough for our purposes,

nor are they in the spirit of the dataflow execution model.

Instead, we use a dynamic scoping model to map manager names to manager serialization

entrypoints. This is a departure from the name scoping paradigms found elsewhere in the

ID language, which include

" Lexical scoping, which is used to resolve free variable references inside function defi-
nitions, and

" Global (or static) scoping, which in ID is primarily used to resolve free function name
references. In the abstract, global scoping is identical to lexical scoping if we imagine
that all top-level function definitions are contained within a single "invisible" all-
encompassing lexical scope. Hence the word "global" is used.

However, we find the ability to specify dynamic (call-tree based) scoping for various variables

to be a simplifying solution for some problems. Other researchers have also noted that the

use of controlled dynamic scoping can in fact simplify programs,[71] and optional dynamic

binding of variables is found in production versions of various languages, including COMMON

LisP.[70]

In particular, in our formulation of managers, manager name scoping is dynamic. Once a

mapping from a manager name to a manager serialization entrypoint is specified, all users

of that manager in the same lexical context and all subsidiary dynamic contexts see that

particular mapping. For example, if we assume that the symbol application-mgr specifies

the manager that is to be called to perform function application, in the code

73



% Declare application.mgr to be dynamically scoped.
Odynamic application -mgr;

% Define x to simply apply y to its argument, using the current
% (dynamically enclosing) application manager.
def x a = y a;

% Define y to apply z to its argument, using the application manager
% new-manager to gather application resources. Also, dynamically enclose
% the call such that future calls use new-manager also.
defy b =

{ application.mgr = new-manager
in

z b;}

% Define z to simply apply w to its argument, using the current
% (dynamically enclosing) application manager.
def z c = w c;

the function x calls the function y using the system-defined application manager; but y calls

z with the manager entrypoint new-manager (which is assumed to be globally bound to a

manager entrypoint). In addition, z will call w with the new manager specified by y, since

it is dynamically enclosed by a binding of the "applicationmanager symbol. Figure 3.4

clarifies this point.

Although optional dynamic binding has various uses in a language, this use of dynamic

binding to control the mapping of manager names to manager entrypoints will be the only

use of dynamic binding we will need in implementing speculation control. In particular,

we will use it to "filter" manager requests going to the implicit system function application

and storage allocation managers.

In essence, this use of dynamic binding will define the term task as used in this report. The

concept of a task is difficult to gather in a dataflow execution paradigm, where the number

of concurrently executable threads of execution may be in the thousands per processor, and

where constant context switching is the norm rather than the exception.t Even in parallel

processing specification languages such as MULTILISP [38] or QLlsP [35], wherein tasks are

not first-class objects in the language, implementation details of tasks become convenient

t The Monsoon dataflow execution engine, for example, is designed to context switch on every pipeline
beat.[61]
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Set up the system function application manager.
application.mgr = systemapplication-mgr;

defxa
y a + z a;

SCall Z with a new manager. def" c =

def y b = w C;

{ appllcation-mgr new-manager
in

5 b;

defwv=v+1;

defsc =

Applications managed
by system manager.

def w v = v + 1; Applications managed

by new manager.

Figure 3.4: Dynamic Binding of Application Management
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boundaries for various task-dependent operations such as termination and exception han-

dling. For example, dynamic exceptions across task boundaries in MULTILISP are handled

by propagating the exception Liformation through the shared memory point (future) of the

calling and called task.[40

For our work, a task is operationally defined to be the set of execution threads dynamically

enclosed by a dynamic binding of the application and allocation manager names (which

we shall always bind simultaneously). Note that this definition does not preclude tasks

enclosed by ancestor tasks; we rely on this feature of task nesting to correctly handle nested

speculation (since nested speculation, by way of recursion, will be the normal mode of

searching a search space).

The central method we shall employ for controlling the growth of a task (relative to its

other interspeculative tasks) will be this filtering approach. For example, in the following

ID code

% Define a new manager code body to filter incoming requc.,s
% based on some predicate allowrequest?.
def filter.-manager old.manager request =

if allow-request? request
then use old.manager request
else fail-request request;

% Call another function with the same argument, but in a dynamic
% environment in which the filtering manager above is instated
% as the handler for function application management.
def f x =

{ old.application-.mgr = applicationjngr
in

{ application.mgr = manager (filter-manager old.application-mgr)
in

the filter-manager function will be called to handle function application manager requests.

If it decides (based on some predicate allow.request?) to allow the request to proceed, it

simply passes the request along to the dynamically enclosing application manager (which

was passed in when the manager was created by f). If the criterion fails, then the manager

may disallow the request. It can easily be seen that this basic structure can allow many
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kinds of control over execution graph growth.

For the rest of this chapter, we will return from our detour into ID language features, and

implement the speculate form in the language.

3.6 Implementing Speculate within the Language

When we last visited an implementation of the speculate form, in Section 3.1, we saw that

ID as previously explored didn't include enough power to match the operational goals of the

speculate form outlined in Chapter 2. The previous sections outline enough language-level

support to fully implement the speculate form within the ID language itself. In this section

we will explore this realization.

What was missing in our earlier construction was a "daemon" which could observe that a

result has been returned from an interspeculative task, and terminate all other interspecu-

lative tasks, restricting their usage of system resources. The following code, which employs

nearly all of the new language functionality developed above, correctly implements the basic

speculate form we need.

In this code, we will use the new primitive LOCK to synchronize the returning of results

by speculate. The basic operations related to LOCK, all of which are atomic, include the

following:

" (makelock value): creates a "lock cell," with an initial value of value.

" (lock cell): locks cell, returning the value currently stored therein.

" (unlock cell value): unlocks cell, storing value in the cell.

We will see more details on this construct in Section 4.3; until then we ask the reader to

rely on an intuitive critical-section semantics for locks.

The procedure terminate-manager used by the following and later codes is used to request

a manager to return (stop executing); it synchronizes on its second argument, in our case

the result of the task.
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% Definition of speculate with task termination.
def speculate function list =

{ result = i.array (0, 0);
ntasks - length list;
terinination = makejlock false;
tasks = Larray (1, ntasks);
{ for i -- 1 to ntasks do tasks[i] = true };

def task element i =
{ old-apply = application -mgr;

oldalloc allocation-mgr;
in

{ applicationmgr = manager speculation.mgr old-apply tasks i;
allocationrngr = manager speculation.mgr old.alloc tasks i;
answer = function element;
terminate-manager application-mgr answer;
terminate..manager allocationmgr answer;
old-lock-value = lock (gate termination answer);
result-determined? = not (novalue? answer)
in

if result-determined? and (oldlock-value == false)
then { result[OI = answer;

remove-othertasks tasks i ntasks
unlock termination true }

else unlock termination oldlock-value }};

{ for element +- list & i +- 1 to ntasks
task element i }

in
result[O] };

def speculation-mgr old-mgr control index request =

if control[index]
then use old.mgr request
else terminate request;

defsubst removeother-tasks tasks winner ntasks =
{ for index - 1 to ntasks do

tasks[index] := index == winner };

def terminate request =
R;

Obviously getting the right result required quite a bit more complexity, although the ap-

proach is quite similar to the last attempted solution. The difference can be attributed
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completely to the need to terminate execution of tasks which are post-speculative, e.g.,

which are known to be computing values which are not needed.

A few parts of this solution bear inspection. The general approach is to dynamically bind the

implied application and allocation managers within the (thereby defined) interspeculative

tasks to filter managers, as outlined in Section 3.5. Thus all requests for function application

and storage allocation are handled by the manager constructed inside the task function of

speculate. The code body of this manager (in speculation-mgr) then selects the original

system manager if the task is still running, or a special termination manager if the task

should be destroyed.

These special termination managers are the key to the removal of "dead" post-speculative

(but still running) tasks. The difficulty lies entirely in the need to maintain the "well-

behaved dataflow graph" concept.[13] Where numerous other paper attempts to define ter-

mination constructs for parallel systems have concentrated on "killer tokens" and special

associative wait-match "destruction" controls[4, 491 or garbage-collection based dead-tree

search schemes[151, we wish to remain within the language in our approach to causing post-

speculative tasks to terminate. This will help in maintaining the well-behaved (self-cleaning)

dataflow graph invariant, which holds that

" Initially, the program graph is empty (contains no tokens, either waiting to be matched
or executing).

" Given exactly one token on each input of each procedure, the procedure will produce
exactly one token on each output.

" Once output tokens have appeared on every output of a procedure, the procedure's
graph is again empty (contains no tokens). This is the so-called self-cleaning property
of dataflow graphs.

These properties are central to the way in which tagged-token dataflow architecture memory

and process resources are controlled, as well as to the approach to debugging taken by the

machine. The importance of maintaining these assumptions is paramount. Therefore we

choose a solution to application and allocation control which maintains these invariants.

In particular, the speculation-mgr function, called for allocation requests from a "dying"

task, does not actually allocate any memory, but instead returns N:. Similarly requests for

contexts receive only a N result, returned by the special function terminate. This causes

special problems in the way that functions are called in the tagged-token regime. As can be
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seen in Figure 3.3, there is an implicit graph continuation (labeled RECEIVE RESULT)

which receives data from the called function; when the application manager simply returns

R, this portion of the graph is never triggered.

The solution, instead, is to rely on slightly different function-calling schemas (and other

major language schemas), as well as carefully defined R propagation rules in the operators

of the underlying datafiow operator language. We previously stated (in Section 2.5) that

dataflow operators are generally strict in N, in the sense that if any input to a dataflow

operator is N, the result of the operation will also be N. More detailed analysis of the archi-

tecture is necessary to guarantee that graphs remain self-cleaning, however; the necessary

architecture clarifications are discussed in Section 4.1.

3.7 Control Forms

Many parallel Al implementation schemes include the need for "killing"[49] or "garbage

collection"[15] of tasks which are performing computation that is no longer necessary. Im-

plementing this functionality under the dynamic dataflow paradigm (or any paradigm in

which the state of computation is often found in the communication network) presents ob-

vious difficulties. We take the same tack as above in providing this feature through the

terminate special form. This form can be simply expressed using the same managers as

previously. We simply add a new manager for handling task termination, as in the following

code:
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% Declare control-mgr to be dynamically bound.
@dynamic control..mgr;

% Definition of speculate with task control manager.
def speculate function list =

{ result = Larray (0, 0);
ntasks = length list;
termination = make-lock false;
tasks = i.array (1, ntasks);
{ for i *- 1 to ntasks do tasks[i] = true };

def task element i =

{ old-apply = applicationmgr;
old-alloc = allocation-mgr;
in

{ application.ngr = manager speculation.mgr old-apply tasks i;
allocation-mgr = manager speculation.mgr old.alloc tasks i;
control-mgr = manager control-task tasks i;
answer = function element;
terminate.manager application-mgr answer;
terminate-manager allocation-mgr answer;
terminate-manager control.mgr answer;
oldlockovalue = lock (gate termination answer);
result-determined? = not (novalue? answer)
in

if result-determined? and (oldioclkvalue == false)
then { result[O] = answer;

remove.other.tasks tasks i ntasks
unlock termination true }

else unlock termination oldlockvalue }};

{ for element +- list & i - 1 to ntasks
task element i }

in
result[O] };

%% This code is continued on page 82.
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%% This code is continued from page 81.

def speculation-mgr oldmgr new.mgr control index request =

if control[index]
then use old-imgr request
else terminate request;

defsubst remove-other-tasks tasks winner ntasks =

{ for index +- 1 to ntasks do
tasks[index] := if index == winner

then 1
else 0}}

% Manager code body for controlling tasks.
def control-task tasks index request =

if request == 'terminate-branch
then tasks[index] := false;

% Now we can write the terminate code itselL
def terminate ignore =

{ use control-mgr 'terminate-branch
in

As before, the value tasks[index] specifies whether task index is currently being termi-

nated. (As we saw previously, if this is the case then application and allocation requests

for that task are handled specially). Thus we need only add the call to the control-task

manager, which sets the tasks[index] for the current task to false. Eventually this wi.

cause termination for that task.

Another control issue strongly related to speculation, particularly in the case of multiple

speculative processes in parallel, is prioritization of tasks. Dataflow architectures have

traditionally embraced eager, data driven approaches to program execution. When coupled

with algorithms that perform little or no speculation, this is generally an unimportant point.

However, speculation by definition implies that the results of some tasks to be executed may

be unimportant; though an approximation of the probability of usefulness of a task result

might be known before task execution, that approximation is often non-zero.

That knowledge of usefulness, however, might provide a perfect control for the overflowing
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parallelism of a speculative search. A degenerate example of this is the alpha-beta pruning

mechanism presented above. This uses absolute certainty of zero percent usefulness to prune

(avoid starting) tasks.

This absolute certainty is hard to find in most systems, however. A. I. researchers have

built models of certainty for various search problems[49], and suggested prioritization of

tasks based on these approximations of usefulness measures. These measures could be used

to control search mechanisms.

However, as was noted above, current dataflow architectures do not have any concept of pri-

oritization of tasks or instructions. Such an approach to the scheduling of enabled dataflow

instructions might further cut down instruction overhead in speculative programs without

introducing the overhead of lazy evaluation such as that found in current demand-driven ex-

ecution schemes[42]. We would, however, want to continue to require that dataflow graphs

remain self-cleaning.

The priority special form, mentioned in Chapter 2, provides a way of controlling pre-

speculative priorities of interspeculative tasks. This feature of control is commonly needed

for various speculative languages. For example, in Kornfeld's discussion of cryptarithmetic

solving programs,[50] it becomes clear that much pre-speculative knowledge is known about

the relative merits of various subtrees of any search tree node. In Section 2.4 we dealt with

cryptarithmetic solvers while ignoring this information; thus all interspeculative tasks would

compete on an equal basis for system resources. This is a foolish when more knowledge is

present about the domain.

In particular, Kornfeld suggests that relative processing power in cryptarithmetic solvers

should be parceled out to interspeculative tasks in portions based on the following equation:

((!0- n)2 + ... + (10- n1 0 )2)2

for each task where ni is the number of possible digit assignments for the letter i in the

task's situation. Higher numbers in this formulation represent higher priorities (i.e., more

access to system resources). In addition, the values are taken to signify priority ratios rather

than orders; in other words, a task with a priority of 2n will get twice the resources of a

task with priority n. For simplicity, we will retain this scher
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Other A.I. systems for solving speculative problems using terminating and prioritizing sys-

tems exist, such as the PARADISE chess-playing program.[77] Wilkins points out that this

approach is applicable to many domains, such as other game searches, scene-understanding

systems, and so forth. Even in the simple example of Section 2.3 (the alpha-beta hybrid

search), a priority system could delay the execution of low-likelihood tasks long enough that

they may be proven irrelevant.

The implementation of the priority control is not quite as simple as above, however. We

now require application and allocation management to maintain prioritized lists of requests.

We will gloss over the exact points of prioritization here, and concentrate on the communi-

cations which allow us to implant prioritization of interspeculative tasks within the confines

of dataflow graphs which retain the self-cleaning invariant. With this said, we can present

an implementation of speculate which allows termination and prioritization:
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% Declare control.mgr to be dynamically bound.
@dynamic control-mgr;

% Definition of speculate with prioritizing task control manager.
def speculate function list -

{ result - i.array (0, 0);
ntasks - length list;
termination = make-lock false;
apply.queue = make-lock nil;
alloc-queue - make-lock nil;
tasks = Larray (1, ntasks);
% Preset all task priorities to one.
{ for i *-- 1 to ntasks do tasks[ij = 1 };

def task element i =
{ old-apply - application-mgr;

old-alloc - allocation-.mgr;
in

{ application-mgr = manager speculation.mgr apply queue tasks i;
allocation..mgr = manager speculation-mgr allocqueue tasks i;
control-mgr = manager control-task tasks i;
managepriorityqueue apply-queue old-apply;
managepriorityqueue allocqueue old.alloc;
answer = function element;
terminate.manager applicationmgr answer;
terminatemanager allocation.mgr answer;
terminate-manager control-mgr answer;
old-lock-value = lock (gate termination answer);
result-determined? = not (novalue? answer)
in

if result -determined? and (oldlockvalue == false)
then { result[O] = answer;

removeothertasks tasks i ntasks
unlock termination true }

else unlock termination oldilock.value }};

{ for element +- list & i -- 1 to ntasks
task element i }

in
result[O] };

%%% This code is continued on page 86.
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% % This code is continued from page 85.

% Manage a queue of requests based on priority. Termination has
% already been handled for all requests already queued.
% We omit particular details of priority queue management.
def managepriorityqueue queue manager =

{ while queue 5 nil do
% Choose request based on weight of request & task priority.
request = Choose request which balances queue.;
use manager request };

def speculation-mgr queue control index request =

% Call for termination if priority is now zero.
% Otherwise push request onto the queue.
if control[index] == 0

then terminate request;
else add-to-queue queue request;

% Now we can write the priority fu.,ction.
def priority new-priority =

use controLmgr "set-branch.priority new-priority;

% The terminate function now just sets zero priority.
def terminate ignore =

{ use control-mgr 'terminate-branch 0
in

% Manager code body for controlling tasks.
def controltask tasks index request new-priority -

tasks[index] := new-priority;

3.8 Changes to Compilation

An interest* .g side-effectt of adding nondeterministic structures to the ID language is the

impact on compilation strategies, particular optimizations as discussed by Traub.[73] In

particular, the ID compiler was originally written under the assumption that it would be

compiling code for functional semantics. Later instantiations assumed side-effects as en-

capsulated by I-structures.[12]

t Excuse the technical pun.
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The changes needed for the speculate form and its control structures, however, support a

strictly more expressive language, as proven by Ward's discussion of his EITHER extension

to the lambda calculus.[76] Nondeterminism alters the assumptions for various compiler

optimizations as represented in extant ID compilers. In particular, three areas of ID com-

pilation are affected:

" Fetch Elimination. This optimization, which assumes that structure cells have write-
once semantics, short-circuits I-structure read operations from structure cells that are
written in the same procedure. With the presence of the := operator, however, this
optimization no longer preserves the program semantics.

" Code Hoisting. This common optimization (in other languages as well as ID) moves
"loop cofistant" code within loops outside loop expressions. The unbounded sidc
effects of our nondeterministic constructs, however, disallows the movement of code
containing := outside a loop.

" Common Subexpression Elimination, or collapsing sections of repetitive code, presents
a problem similar to code hoisting for nondeterministic structures.

Although we do not go into more detail about these problems in this report, it is important

to be sensitive to the altered semantics of ID we present when designing and implementing

a compiler for the language.

More importantly, however, we have not seen how ID may be compiled into data/low graphs

in a manner such as to continue to insure well-behaved self-cleaning execution, in the pres-

ence of N propagation. This topic will be covered in Chapter 4.

The id seeks immediate gratification
and operates on what Freud called the pleasure principle.

When the id is not satisfied, tension is produced,
and the id strives to eliminate this tension

as quickly as possible.

- GERALD DAVISON & JOHN NEALE, Abnormal Psychology, Second Edition
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Chapter 4

Architec',ural Support for the
Implementation

T his chapter comprises a discussion of the architectural features needed by a dataflow

machine to support the language semantics presented in Chapter 3. Although these changes

were not forseen in earlier work presenting dynamic dataflow architecture,[13] some features

have appeared in newer dataflow systems like Monsoon[61] and simulators such as Gita[55]

through the work of the author and other members of the dataflow research group at M.I.T.

4.1 Assumptions of Dataflow Operator Strictness in R

In Section 2.5 we first discussed requiring some general strictness of dataflow operators in

a special value R. By this we intended that, in general, individual dataflow actors and

aggregate operations should always emit R results when any or all inputs happened to be

R. As we saw in Chapter 3, we depend on this strictness to correctly execute self-cleaning

dataflow graphs which are undergoing termination either by other interspeculative tasks

(through completion of a speculative search) or through self-termination (the terminate

expression). This problem is similar to the error-propagation assumed to exist in tagged-

token dataflow execution engines.[9, 19] Some treatment of exact semantics for dynamic

dataflow graphs in the presence of error inputs has been undertaken by Plouffe.[64]

Our problem is somewhat simpler, however. Since for the purposes of task termination

there is no need to remember the source of an error, or to combine N inputs in any way,

we can be somewhat more arbitrary in our strictness definitions. In general, all that we
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need to ensure is that dynamic graphs of execution continue to terminate correctly (i.e., in

a self-cleaning manner). In addition, we perhaps would like to allow some static execution

graph cutoff in the presence of 1R inputs to certain graph structures, such as in function

calling or looping.

With some changes to the compilation of various structures, and careful definition of the

dynamic semantics of all dataflow operators, it is possible to generate graphs which remain

self-cleaning in the presence of R inputs. We ask the reader's indulgence in believing that

such graph schemata exist, and refer to Appendix A for a more thorough treatment of this

topic.

Besides the changes to compilation schemas and clarification of 1 propagation, we require

other alterations to the dynamic semantics of various portions of the tagged-token model.

In particular, we wish to expand the purpose of I-Structure memory in two major categories.

4.2 Extensions to I-Structure Semantics

As was mentioned in Section 1.3, I-Structures fill an important r6ie in the ID language as

the dynamic memory access medium of the language.[41, 14, 13] These split-phase memory

operations allow for out-of-order access to memory locations with dynamic naming, letting

the programmer ignore issues )f producer-consumer synchronization while the run-time

hardware manages the ieat. The simple semantics of an I-Structure read cycle also fit

into the general dataflow paradigm of scheduling operations upon data availability. An I-

Structure read of an "empty" (not yet written) cell becomes a deferred continuation which

is restarted when the cell is written; this powerful concept is similar to static graph joins

used throughout dataflow execution of the ID language.

In order to put into perspective the changes we outline to the semantics of I-structure storage

under dataflow regimes, it is important to take this synchronization point of view on the

previously extant semantics suggested by various authors. Although generally thought of

as memory in the data storage sense, in dataflow execution paradigms I-structure fetch and

store may be considered dynamically created communication between tasks. That is, they

represent dataflow graph arcs that need not be constructed until execution, as opposed to

the static graphs created by the , compiler. From this point of view, for example, we can
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see that the assertion by Agha and others[2] that dataflow graphs exclude dynamic graph

reconfiguration, a major feature of Actor semantics, is incorrect; the I-structure data storage

model, while it removes ID from the ranks of functional languages, may be considered a

method of allowing limited reconfiguration of communications paths between ID procedures.

I-structures allow late-binding of synchronization which cannot be resolved in the compiler.

From this point of view, we see two missing features of I-structures. One involves repeated

communication through the dynamic pathway created by store and fetch instructions; this

is the "rewriteable cell" (or blackboard) semantics of Section 2.3. In addition, support for

nondeterministic merge (serialization) is missing from these communication paths. These

features are encapsulated in the ID manager and use constructs, which require some forms

of rewriteable memory and serialization, as we have seen.

We propose to extend the contract of the I-structure storage controller[41] to include the

(potentially dangerous) notions of critical section locking and unhindered rewriting of I-

structure cell contents. Such constructs will of course remove the guarantee of determinacy

from the language executed on the machine, but will support styles of programming like

the hybrid search program outlined above.

Our proposal is to expand the I-Structure Controller to the two new state machines outlined

in Figure 4.1. These functions represent the three uses of dynamically allocated memory

under this new regime:

* Dynamic program links for "array storage" and program linkage, as is currently sup-
ported by I-Structures[41, 14, 61]. This may be implemented via "presence" bits (as
mentioned in the Monsoon discussion) to correctly link data producers and consumers.

* Unrestricted memory write access, or updatea - storage. This may be implemented
simply by a bypass of the error-checking of I-Structure writes, to allow refinement
protocols such as the one outlined in Section 2.3.

* Resource locking interfaces, to support critical-section controlled access to physical
resources. An implementation might use the "presence" bits as resource lock bits; we
can thus implement locking primitives much like those proposed by Dijkstra.[31, 32, 65]
Some related work in resource locking support has also been reported by Jayaraman
and Keller.[46]

We must emphasize that multiple use of structure cells is obviously represented by the

controller states outlined in Figure 4.1. This multiple access, analogous to multiple inter-

pretation of memory under traditional architectures (e.g., integer and floating-point) must
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be enforced either by the compiler (in a type-checking fashion) or by programmer con-

vention. We present no architectural mechanism for enforcing correct usage of structure

storage.

The simpler of the two modifications to extant I-structure semantics is the addition of the

Write operation, as can be seen in Figure 4.1. Without adding any new states to the

diagram, the I-Structure Write request simply allows bypassing of the write-once semantics

of I-Structure storage. This allows direct implementation of the blackboard semantics of

Section 2.3. The:= operation is implemented simply as an I-Structure Write operation. We

now see that the blackboard operator itself is just a general I-structure allocate request,

likely with different type, and with use of its slots controlled either by convention or type

information.

4.3 Locking Protocol Support in the Architecture

Architectural support for locks is more interesting. The semantics we wish to support

include compl-te critical-section locking as in the work of Dijkstra,[31, 32 but more tightly

integrated into the dataflow execution framework.

Typical von Neumann machines, parallel or otherwise, accomplish interlocking with some

variant of the test and set paradigm;[31] non-interruptible access to particular memory

locations on a single-instruction basis is guaranteed for some small set of instructions.t

These instructions can then atomically test to see that a resource is free to be used, and

claim it if so. If not, typically the program needing the resource will "busy wait," or

continually attempt to find the memory location free. Unfortunately, this claims processor

and memory system time, reduces the performance available for useful work and tends to

cause increased latency for claiming access to resources. This is wasteful of CPU resources.

Our interlock mechanism obviates the need for busy waiting, depending heavily on the

inherently message-based execution model of dataflow.t

A split-phase memory operation not unlike the dataflow I-structure paradigm[41 will allow

implementation of locking memory cells that do not require busy waiting. As in the I-

'-,ften just a single instruction.

tSuch a locking protocol has already been implemented on the Monsoon dataflow testbed,[61] and mote
work is planned by Steele for future hardware implementations of this protocol.68]
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structure fetch paradigm, lock requests to a cell that is already "locked" will be deferr-d

until the cell is unlocked; unlock requests will, end until a cell is locked. The abstract code

below represents the behavior of these lock cells, where the initial state is UNLOCKED. The

two instructions that act on these lock cells include

" LOCK (cell): returns only when the cell has been locked, with the value written to
the cell when it was allocated or last unlocked.

" UNLOCK (cell, value): unlocks the cell specified, writing the given value into the cell.

The precise dynamic semantics of these operations, with particular reference to their actions

in the presence of R inputs, may be found in Appendix A.

Needless to say, these requests can take unbounded time to return values to the "calling"

program, due to their split-phase nature. The structure controller follows a simple con-

trol path to produce these results. A finite state machine implementation of this locking

protocol is outlined below. The methodology below allows multiple outstanding LOCK

and UNLOCK requests at any given time, queueing them for later matching requests. No

busy-waiting is ever needed by the calling processor or process.

The abstract state-transitioas defining these operations within the I-structure memory con-

troller may be found in Figure 4.2 and Table 4.1. In this chart, contents refers to the

contents of the locking cell. The right-arrow (---) is used to specify the next state. The

initial state is UNLOCKED.

This simple functionality could be used, for example, to implement a serializing asyn-

chronous queue with the following code: t

tActually, since the order of enqueuing on a lock cell is nondeterministic and not guaranteed to be FIFO

(or any other ordering), the queues we are implementing are not FIFO or LIFO queues. They may be though
of instead as unordered task queues.
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STATE LOCK (continuation) UNLOCK (value)

LOCKED contents = cons continuation nil contents = value
- LOCKED/DEFERRED - UNLOCKED

LOCKED/ contents = cons continuation contents send value to (head contents)
DEFERRED - LOCKED/DEFERRED contents = tail contents

if contents = nil
then -- LOCKED

else -- LOCKED/DEFERRED

UNLOCKED send contents to continuation contents = cons value contents
-* LOCKED - UNLOCKED/DEFERRED

UNLOCKED/ send (head contents) to continuation contents = cons value contents
DEFERRED contents = tail contents -- UNLOCKED/DLt'ERRED

if contents is list
then - UNLOCKED/DEFERRED

else -- UNLOCKED

Table 4.1: State Transitions for the Locking Protocol

def push element queue =
{ old-list = lock queue;

new-list = cons element old-list
unlock queue (gate new-list (tl newlist)) };

def pop queue =
{ old-list = lock queue;

new-list = tl old-list;

unlock queue new-list
in

hd oldlist };

In fact, the entire lock/unlock framework outlined above can be looked upon simply as

hardware support for queuing, which dataflow machines that support the I-structure mo(lel

need anyway.[l1, 14] With this different slant, we can see a simpler imlplementation of push

and pop:
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def push element queue =

unlock queue element;

def pop queue =
lock queue;

For some programs, outstanding deferred UNLOCK requests may not be necessary for cor-

rect operation; likewise deferred UNLOCK requests may be difficult to implement for some

architectures.t A simplified model that correctly implements the protocol (sans outstanding

UNLOCK requests) is presented.

The abstract state-transitions may be found in Figure 4.3 and in Table 4.2. Again in this

chart, contents refers to the contents of the locking cell. The right-arrow (-+) again is used

to specify the next state. The initial state remains UNLOCKED.

STATE LOCK (continuation) UNLOCK (value)

LOCKED contents = cons continuation nil contents = value
- LOCKED/DEFERRED - UNLOCKED

LOCKED/ contents = cons continuation contents send value to (head contents)
DEFERRED -* LOCKED/DEFERRED contents = tail contents

if contents = nil
then -- LOCKED

else -- LOCKED/DEFERRED

UNLOCKED send contents to continuation send error to continuation
"" UNLOCKED

Table 4.2: State Transitions for the Simplified Locking Protocol

Some more examples will clarify the semantics of the locking operation outlined above. A

function which exchanges the value in a cell with another value, using a related locking cell,

might be written (quite sequentially!) as is outlined below.

tNote, however, that our implementations of push and pop given do require locking with deferred

UNLOCK requests, as there is no guarantee of request ordering.
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def exchange cell new-value =

{ old-value = lock cell;
unlock cell (gate new-value old-value)
in

old-value };

We can also implement more powerful constructs. For example, each of three processes

competing to produce a best possible answer for some problem might all deposit their results

in a single cell if and only if it represents the best result found so far. This "maximizing"

function (really a sort of "compare-and-swap") could be implemented as follows:

def maximize cell new-value =

{ old-value = lock cell;
unlock cell (max new-value old-value)
in

old-value };

4.4 Using New Structure Semantics in Managers

A particularly important use of locking semantics is that required to implement the manager

serialization entries needed for correct implementation of resource management constructs

as outlined in Section 3.3. Although approaches to this problem have been studied cursorily

for other dataflow architectures,[23, 461 no solution for tagged-token dataflow systems such

as Monsoon[61] have been published. Here we show an implementation using the locking

constructs suggested. We depend heavily on the view of locking as a queueing mechanism,

as shown above.

We deal first with the creation of managers. Given a manager creation directive

manager function

to create a new manager object and entry for a manager with no state, we need to accomplish

two things:
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" Create a manager serialization entry object (a name or address for that manager, in
essence) to be written to by callers and read from by the manager code body.

" Wrap the appropriate nondeterministic operators around the functional code body
function to allow it to act on incoming serialized requests.

The serialization entry is implemented as an I-structure cell used as a lock. A manager

request block containing information about the request to the manager and space for a

result is created, filled in by the requestor, and passed to the manager by entering it onto

the manager's input queue (i.e., by using unlock). A manager request block, as used in

this report, is a three-cell structure (3-tuple), with the layout given in Figure 4.4. The

requestor creates this request block, and fills in the request type with a symbol denoting

the type of request; and the request data, which varies by request type. The -c1qucztor thcr.

reads from the result slot of the tuple. This of course relies on the implicit synchronization

of I-structure memory to continue to requestor when the manager has finished processing

the request.

Request type (e.g., 'get-context)

Request data (e.g., procedure name)

Result (e.g., context)

Figure 4.4: Structure of a Manager Request Block

Managers are thus created by the function
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def manager function =

{ alive = true;
entry = make-lock nil;
% Loop until manager is terminated by request.
{ while alive do

request = lock entry;
request-type = request[O];
data = request[1];
% Check to see if request is for manager termination.
next alive = request-type # 'destroy-manager;
request[2] = function request-type data }

in
entry };

which returns a serialization entry (structure cell) which can be used to pass requests to

the manager code body. This structure can be seen more clearly in the abstract graph of

Figure 4.5.

Managers with inherent state are created by the ID call

manager function initial-state

and can be implemented via

def manager function initial-state =

{ alive = true;
state = initial.state;
entry = make-lock nil;
% Loop until manager is terminated by request.
{ while alive do

request = lock entry;
request-type = request[0];
data = request[l];

% Check to see if request is for manager termination.
next alive = request.type 0 'destroy.manager;
result, next state = function state request-type data
request[2] = result }

in
entry };
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This function is identical to the previous implementation of manager, except that it cir-

culates manager .rate information as returned by the manager code body. The abstract

graph for this approach can be seen in Figure 4.6.

The sole remaining abstract graph to present is, of course, the structure for calling managers

(i.e., the use primitive). This algorithm, as outlined at the beginning of this section, can

be coded in ID in the quite straightforward manner below; the resultant graph is outlined

in Figure 4.7.

def use manager request-type request-data =

{ request = request-type, request-data, ?;
-, -, result = request;

unlock manager request
in

result };

4.5 Fine Points of Manager Implementation

These simple ID programs and their related graphs gloss over several important fine points

of manager use and construction, however. In particular, the codes given above might entice

us to construct our application manager in the following manner:

def application -manager.code.body request-type data =

if request-type == 'get-context
then Allocate context object large enough for function data
else Deallocate context object data;

systemapplicationmanager = manager application -managercode-body;

A second thought about the structure of managers, however, makes it clear that this will not

work, as the application manager code body itself will need to perform a function application

to call application-manager-code-body. Clearly, application managers (and probably

allocation managers) are primitive in some special way. Either they must be provided by

a lower level of the operating system, as in the dataflow virtual memory technology of the

author and Steele,[69] or a primitive function application style must be used. The latter
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Figure 4.7: Manager Use Abstract Graph
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structure was chosen for use in this report, with special managers written for function

application and allocation. Managers to filter requests, however, were implemented exactly

as proposed above.

There are, however, other possible problems with the approach to manager implementation

given, revolving primarily around issues of fairness and deadlock avoidance. In particular,

since the locking primitives presented give no guarantee of queuing order, the resulting

managers do not necessarily arbitrate "fairly" between requests. However, order of request

arrival is not necessarily at all related to the fair order of request handling in a dataflow

system, even if the requests were issued by the same task or procedure. This is due to the fact

that instruction scheduling in a dataflow machine is determined solely by data dependence

issues, with no other ordering control in general.t Fairness (and possibly resultant minimized

critical execution paths) is a difficult issue in dataflow architectures, and is discussed in the

work of Steele[68] and Barth[17, 16, 18] in the context of managers and locking primitives.

Deadlock avoidance is an important aspect of any operating system support, and is partic-

ularly difficult in general managers given ID non-strict structure semantics. For example,

consider the following situation:

" A manager's loop body (as outlined above) is evaluated sequentially (i.e., one-bounded
loops as defined by Culler[28] are in place).

" The first manager request block retrieved from the manager's input queue has a
request type of 'get.context (i.e., to request allocation of a function application
context), but the request data cell of the block has not yet been filled in.

Given this simple situation, no further manager requests will be haidled hy this manager

until the request data (e.g., function to call) has been determined and passed to the manager.

At bpst this will tend to lengthen t , critical execution path of the application: at worst

a deadlock will occur (for instance, if a function call is necessary to determine the request

data!).

Unfortunately, simply unrolling the manager code body loop is not a complete answer.

Although it lessens the possibility of such a deadlock, it does not decrease that probability

to zero. The solution used in this report was to avoid queuing requests until the request

type and data had been determined and stored (i.e., by making request queuing strict).

tExceptions include the gate operator discussed in Section 3.2, input/output serialization discussed

elsewhere,[66] and the locking primitives outlined above.
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This work- I .), our purposes (application and allocation) because we can clearly state our

strict a.o5 needs; all request types and data are non-compound (non-aggregate) data. If,

however, in general managers, request data is composed of I-structure references, strictness

becomes more complex to insure. Barth explores this problem further in his work.[18]

The last problem of real manager implementation is the central structure of managers

given. Not only will this approach have a tendency to cause network hotspots in a real

multiprocessor machine, but a sequentialization of function applications can occur if the

critical path of the function application manager itself is long compared to the critical

path of the average procedure used. Solutions to this problem generally involve multiple

managers for a given operating system function, and are beyond the scope of this thesig. It

is expected that Barth will touch on this problem as well in his doctoral work.[18]

4.6 Dynamic Binding

The sole remaining architectural feature we need in order to realize the language structures

of Chapter 3 is dynamic binding support. There are two standard approaches to realiz-

ing dynamic free variable binding within languages. The first, and simplest, is called deep

binding.t71] In a deep-binding scheme, a binding stack (or list) is constructed and used to

map free variable names to values. This table is then passed dynamically from procedure

to procedure (e.g., as a function argument). Associative lookup is then used to find the dy-

namic value of a free variable. Thus dynamic variable binding schemes can be implemented

within lexically scoped languages. For example, in ID, a source-to-source method could be

used to translate the following:
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% Declare the variable x to be dynamically scoped.
@dynamic x;

% Apply f to a with x bound to value.
def withx value f a =

{ x = value
in

fa};

% Increment input value y by current value of x.
definc y =

x + y;

to the equivalent code for a lexically-scoped environment

def withx value f a bindingso =
{ bindings, = cons ('x, value) bindingso

in
f a bindings1 };

def inc y bindingso =
(lookup-dynamic.value 'x bindingso) + y;

def lookup-dynamic-value variable nil = nil
I lookup-dynamic-value variable (symbol, value): tail =

if variable == symbol

then value
else lookup.dynamicvalue variable tail;

In other words, we add an implicit argument to every piece of user code to pass along the

current dynamic scope information. Dynamic bindings are achieved by adding to the front

of the binding stack; lookups are linear matching searches through that stack.

Other schemes for accomplishing dynamic scoping architectures have been considered and

used in non-dataflow contexts. The most popular is probably the shallow-binding approach

of the Lisp Machine world.[67] This hybrid scheme for implementing dynamic binding within

a naturally lexically- and globally-scoped environment stores current dynamic variable val-

ies in variables of global scope, and then uses a binding stack (as outlined above) to rene'm-

ber old dynamic values. This permits fast dynamic binding of variables, and fast lookup of
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current dynamic variable values, but it depends on sequential code ezecution. Since global

values are accessible to all code executing, at any given time this scheme supports only a

single binding for a dynamically-bound variable. Therefore it is unacceptable for a parallel

execution environment such as a dataflow execution paradigm.t

Our proposal for dynamic binding under dataflow paradigms is deep binding, but with a

twist. In a normal Lisp deep-binding scheme, the binding list is built with one binding

element per bound variable.t Then a binding list might appear as in Figure 4.8.

a

APPLY"

ALLOC

Figure 4.8: Simple Deep Binding List

This structure is quite simple to create, although it can be expensive to search (e.g., for

variable binding lookup). Worse, it fails to take advantage of the fact that in our use

of dynamic binding (at least), we will always be binding the application and allocation

manager symbols (here represented as APPLY and ALLOC) at the same time. Knowing

this, we might represent binding lists in a manner which made these variable names implicit

and assumed, as in Figure 4.9.

t Actually, the Lisp Machine environment is parallel in that it supports multiprogramning. The shallow-
binding scheme used in Lisp Macbin. .nvironments forces expensive task switches to correctly switch shallow
binding stacks.

lWhere in LISP a "binding element" might be two conses, a 3-tuple serves well in ID.
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d

Figure 4.9: Deep Binding List with Implicit Variable Names

In this model, each time we open a new binding level we assume that we are binding both

APPLY and ALLOC, the former in the first cell of the binding block and the latter in

the second cell, with the third cell reserved to link to previous binding levels. This makes

lookup quite fast, as it is done simply by a tuple fetch on a lexical variable.

Unfortunately, this does not fully solve the problem. The binding of FOO to c in Figure 4.8

was not preserved in Figure 4.9. Assuming that FOO is a variable that we wish to dynam-

ically bind only sporadically, requiring another slot in the implicit variable name scheme

has unacceptable overhead. The approach we use instead is a hybrid of the two schemes,

which allows implicit variable names for commonly- (and jointly-) bound variables, with

explicit names for other variables. Figure 4.10 shows how we would structure the bindings

of Figure 4.8 under this hybrid scheme.

Regardless of binding list implementation, all of these methods use lexical scoping to im-

plement dynamic scoping through the use of binding lists. It is interesting to note the

parallels between this use of added lexical arguments and the use mentioned by the author

in his work on implicit I/O ordering, a related problem.[66] There might, in fact, be some

unification of the two systems.

4.7 Summary

In this chapter we have provided abstract architectural modifications to the general tagged-

token dataflow design to allow managers as defined in Chapter 3, to be used in operating
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NIL

POO C

Figure 4.10: Hybrid Deep Binding List Structure

system modes (e.g., function application and memory allocation) as well as in user codes

requring support of state-based computation. In addition, we have given extensions to

dynamic dataflow designs to support the blackboard style of nondeterministic computation

as well as the dynamic variable binding mechanism we use to define tasks. In the following

chapter we Wi_- put this work to use.

Une maison est une machine 6 habiter.
- LE CORBUSIER, Vers une architecture

110



Chapter 5

Experiments and Results

W e will journey in this chapter step-by-step through an example program, and see if

our new approach to speculation adds the expressive power we sought with the efficiency

we need. Measurements of efficacy based on parallelism profiles, total instructions executed

and critical execution path length are used.

5.1 An Example

In this section we add to the repetoire of examples started in Chapter 2 the Eight-Puzzle

game search described by Nilsson.[59] We choose to use the Eight-Puzzle game because

Nilsson displays so many different search strategies for the game, with clear discussions of

the repercussions of various approaches.

283
164

7 5
Figure 5.1: The Eight-Puzzle: A Starting Position

The Eight-Puzzle game is a familiar hand-held "brain teaser" in which eight numbered

square tiles (e.g., numbered 1 to 8) are arranged in some fashion on a three-by-three square

grid, as in Figure 5.1. One square is empty; thus a neighboring tile can be slid into that
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slot. The object of the game is to arrange the numbered tiles on the board such that the

central slot is empty, while the numbered tiles are arranged in order around the center,

as in Figure 5.2. Though the solution for the game is not obvious, the rules of play (and

therefore approach to programmatic solution) are straightforward.

123
8 4
765

Figure 5.2: Solution Position for the Eight-Puzzle

In our solution, we will eschew the view of moving numbered tiles into the blank space,

but rather view the problem in the light of swapping the blank "tile" with a neighboring

numbered tile. Thus we can avoid computing move legality (i.e., avoid checking to see if

we're moving a tile onto another tile). From this point of view, there are a limited number

of moves possible from each position based on the current location of the blank space. For

each position i E [0,8] we can compute a number encoding each of the possible moves (up,

right, down and left) as a bit in a four-bit number (i.e., up = 1, right = 2, down = 4

and left = 8). Figure 5.3 graphically displays the possible moves for each puzzle cell; the

number in the upper-left corner is the cell number, while the lower-right number encodes

the possible moves for that cell.

We will represent a position in the Eight-Puzzle game as a 9-element zero-based vector,

with offset i corresponding to cell i of the game, and with 0 marking the blank cell. Thus

the ID vector

encodes the position shown in Figure 5.1. The following ID code implements the puzzle

solver:
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0 19

6 14 12

9 4 5

7 15 1

6 7 8

8 11 9

Figure 5.3: Possible Move Map for the Eight-Puzzle

% Encode the possible move map of Figure 5.3.
def move-map =

{vector (0, 8)
1 [0] = 6 1 [1] = 14 1 [2] = 12
1 [3] = 7 I [4] = 15 1 [5] = 13
I[61 = 3 1 [7] = 11 I[8] = 9;

% Compute the possible blank "tile" moves from a current
%6 position of the blank tile.
def compute.possible-moves blank -

{ def possibleamoves direction offsets -
if direction == 0

then nil
else { rest = (possible-moves (direction > 1) (tI offsets))

in
if (move.map[blank] A direction) j 0

then (cons (hd offsets) rest)
else rest };

in
possible.moves 8 (-1 : 3 : 1 : -3 : nil) };

66% This code is continued on page 114.
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1 16% This code is continued from page 113.

% Compute the new board situation from the current board
% situation and blank tile location and a possible blank tile move.
def computenewboard board blank move =

{vector (0, 8)
I [i] = board[i + move] when i == blank % Swap into blank tile.
I [i] = 0 when i == blank + move % New blank tile.

[i] = board[i] };

% Find the blank tile in a board position.
def find-blank-tile board =

{ def find board i =
if board[i] == 0

then i
else find board (i + 1);

in
find board 0 };

% Compare two board layouts for equality.
def compare-boards board1 board2 =

{ same? = true
in

{ for index +-- 0 to 8 do
next same? = same? and (boardi[index] == board2[index])

finally same? } };

% Solve the puzzle, starting from a particular position.
% Do not search more than search-depth for solution.
def solve.thepuzzle startingboard search-depth =

solve-puzzle nil search.depth (board, (find-blank-tile startingboard));

% The solution board layout.
def solution =

{vector (0, 8)
I [0] = 1 [1] =2 I 12] = 3
S13] =8 1 [4] =0 1 [5]= 4
1 [6] = 7 1 [7] = 6 1 [8] = 5 };

%%% This code is continued on page 115.
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%%% This code is continued from page 114.

% Find all successor positions of the current board position.
def successors board blank =

{ def successor move =
compute.new.board board blank move, blank + move;

in
map-list successor (compute-possiblemoves blank) 1;

% The heart of the solver: Take a board and blank position, list
% of positions seen so far, and search depth count. Stop if
% we've seen this position, or it's the solution, or we've
% reached the maximum search depth. Else recursively search.
def solve.puzzle boards-seen depth (board, blank) =

if compare.boards board solution
then boards-seen % Return series of boards searched.
else if depth < 0 or member? compare.boards board boards-seen

then terminate nil
else speculate

(solve.puzzle (cons board boards-seen) (depth - 1))
(successors board blank);

The heart of the program is the code block solve-puzzle, which recursively speculates on

possible next board positions (e.g., movements of tiles into the blank tile position). At

each node, it checks to see if the game has been successfully solved; if so, the program has

finished. If, on the other hand, the program has generated a position already searched, or

if the maximum search depth has been reached, it terminates the search branch. Otherwise

the program continues searching recursively. A typical depth three search tree that might

be computed by the program above in finding the solution, from Nilsson,[59] is in Figure 5.4.

The reader may wish to try re-coding solve-puzzle (and its helping functions!) using only

the simple blackboard construct of Chapter 2; we really have gained some expressive power

through the use of speculate!

It is also important to note that we have picked a relatively small search problem for this

first example. The branching factor for the Eight-Puzzle search tree averages 1.75, creating

a tree growth which may be found in Figure 5.5. We will also examine statistics for longer

searches.
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Figure 5.5: Growth of Eight-Puzzle Search Tree by Search Depth
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5.2 Speculation Features

In order to gauge the efficiencies of the approach to speculation taken by this report, the

Eight-Puzzle code described above was used. A particular problem (that of Figure 5.4), with

a known solution composed of two moves, was given to the solve-puzzle procedure. The

code for the puzzle solver was used exactly as presented above, but with five different styles

of speculation. Each study was instantiated simply by varying the definition of speculate.

This section reports the results of these runs.

The first approach to speculation to be presented is the simple, maximally parallel ExPLO-

SIVE SEARCH. The ID code to implement this style of search is quite straightforward:

def speculate function list =

{ result = ld-iarray (0, 0);
{ for elt + list do

answer = function elt;
if novalue? answer

then {}
else { result[O := answer

in
result[O] };

This implementation of speculate simply calls the input function on every element of the

input list, returning the result which is written into the one-element vector result first. This

code ignores questions of error-handling and propagation raised and answered in the context

of the proper solution for the implementation of speculate, in Chapter 4. Nevertheless, it

provides a concrete baseline with which to compare other approaches to solving speculative

parallelism problems.

Executed for a search depth of three, solve-puzzle used with this implementation of spec-

ulate examines every possible subtree at each choice point in the search, despite the fact

that the solution is found at a search depth of two. This results in the ALU parallelism

profile in Figure 5.6, consuming 55,183 instruction cycles with a critical execution path of

5,516.

A BACKTRACKING SEARCH approach to implementing speculate linearizes the solution

search path, much as in logic languages such as PROLOG. The implementation used for
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Figure 5.6: ALU Parallelism for Explosive Puzzle Search
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this study directly realizes depth-first backtracking, by checking solutions one at a time and

sequentializing future search paths based on completion of the last. The implementation in

ID is again straightforward:

def speculate function list =

if list == nil
then terminate nil
else { answer = function (hd list)

in
if novalue? answer

then speculate function (tl list)
else answer };

As expected, for a search depth of three, we see a smaller number of instructions to find

a solution: 21,565. Suprisingly, we also see a shorter critical path, of 3,478. This is ac-

counted for by the higher average search depth of the explosive approach, combined with

the idiosynchratic way that results are collected in that implementation. The resulting ALU

parallelism for BACKTRACKING SEARCH may be found in Figure 5.7.

At last we come to a real form of speculation, wherein the machinery of speculation control

(e.g., dynamic managers filtering application and allocation requests) are in place. However,

the results for EXPLOSIVE SPECULATION axe in some sense a measure of the pure overhead

of speculation control, since in this measure we do not do any task termination. In other

words, this implementation executes all possibilities, collecting the first non-failing result,

but not terminating any running tasks. The results, displayed in Figure 5.8, are terrible

as one might expect. The critical path was 55,017, with 685,433 instructions executed to

search three levels deep in the search space.

But these results are to be expected, since EXPLOSIVE SPECULATION is simply EXPLOSIVE

SEARCH with speculation control overhead. For this reason, we will not explore EXPLOSIVE

SPECULATION more deeply.t

Once we returrv termination to the picture, better results are found. In particular, SPECU-

LATION WITH TERMINATION is the implcmentatic .fpeculation as presented in Chapter 3,

tBesides, the simulation system (Gita) which was used fails after simulating more than several seconds

of a tagged-token machine!
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Figure 5.7: ALU Parallelism for Backtracking Puzzle Search

121



so-

40-

20-

10-

0 16,00 2,00030,000 40,000 50,000

0. 10000 2,000 Time

Figure 5.8: ALU Parallelism for Speculative Puzzle Search
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but with a special implementation of terminate that simply returns Rl (but does not ac-

tually request termination of the current task). After the first valued response is returned,

termination of all other interspeculative tasks is requested. For this approach, with a depth-

tree search, we find ALU parallelism as in Figure 5.9, with 123,614 instructions executed

during a critical path of 9,909 instructions.

40

0
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0 1 1 0oo 00 660 760 86 0

Time

Figure 5.9: ALU Parallelism for Speculative Puzzle Search with Termination

The last step, SPECULATION WITH SELF-TERMINATION, implements the full non-prioritized

speculate and terminate as implemented in Chapter 3. Here terminate is still defined

to return N, but additionally has the side effect of requested termination of the current

task. Now we see parallelism as displayed in Figure 5.10, with only 97,120 instructions in

a critical path of 7,944.

Table 5.1 summarizes these results.

Surprisingly, Table 5.1 appears to show that speculation is a losing proposition; simple
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Figure 5.10: ALU Parallelism for Speculative Puzzle Search with Self-Termination

STRATEGY INSTRUCTIONS CRITICAL PATH
EXPLOSIVE SEARCH 55,183 5,516
BACKTRACKING SEARCH 21,565 3,478
EXPLOSIVE SPECULATION 685,433 55,017
SPECULATION WITH TERMINATION 123,614 9,909
SPECULATION WITH SELF-TERMINATION 97,120 7,944

Table 5.1: Puzzle Solution Performance with Search Depth = 3
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BACKTRACKING SEARCH wins handily even over the "complete" solution, SPECULATION

WITH SELF-TERMINATION. This is due to the inherent overhead of the speculative approach.

In deeper searches, we find much better arguments for speculation with control. Table 5.2,

for example, presents simulation results for the four interesting speculation approaches,

with the same problem and a search depth of five.

ISTRATEGY FINSTRUCTIONS CRITICAL PATH

EXPLOSIVE SEARCH 218,714 20,310
BACKTRACKING SEARCH 62,218 11,435

SPECULATION WITH TERMINATION 123,614 9,909
SPECULATION WITH SELF-TERMINATION 97,120 7,944

Table 5.2: Puzzle Solution Performance with Search Depth = 5

Already speculation wins over other approaches on a critical-path basis, although the to-

tal work is higher in SPECULATION WITH SELF-TERMINATION than in BACKTRACKING

SEARCH. However, at more reasonable search depths (for the given problem), speculation

wins hands down. Table 5.3 presents results for the same problem and inputs, but with a

search depth of eight.

STRATEGY if INSTRUCTIONS CRITICAL PATH

EXPLOSIVE SEARCH 1,493,342 128,883
BACKTRACKING SEARCH 388,220 78,166

SPECULATION WITH TERMINATION 123,614 9,909
SPECULATION WITH SELF-TERMINATION 97,120 7,944

Table 5.3: Puzzle Solution Performance with Search Depth = 8

Needless to say (and as expected), the overhead of speculation is non-trivial, and must be

amortized over the execution of a search. If there is only shallow search, or the amount of

work to be computed at each node is quite small, the overhead of speculation will overpower

the actual useful work. However, at deeper search depths or with more complex computa-

tions, speculation control overhead provides the encapsulated support we want with efficient

solutions. Figure 5.11 and Figure 5.12 show this result by displaying the total number of

instructions executed and critical execution path, respectively, of the Eight-Puzzle solution

code run by various speculation methods, and over the three search depths.
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We must note that the parallelism of the graphs and counts presented here does vary some-

what from what has been published in previous accounts of research in dynamic dataflow

execution paradigms. This is in general due to our accounting for resource management over-

head, and to the particular implementation of our resource management. As implemented

for this study, no resource manager can have a critical path less than 22 instructions; calling

a manager, going through the manager code body loop, and receiving a result incurs a cost

of at least 200 instructions. Clearly these numbers can be improved upon; prototypical

primitive managers for the Monsoon machine[61] do better than this by a wide margin.

However, a more important problem is brought forward by the overall shapes of the graphs

presented here. They have a tendency toward longer critical paths not seen in other work on

the tagged-token architecture. This is caused by the serial handling of application manager

requests; for small procedures this approach tends to serialize the program unnecessarily.

Solutions to this problem exist, however; proactive managers (which push as much of the

work ahead of requests as possible) and multiple managers for a given resource are consid-

ered promising. These problems, and those discussed in Section 4.5, are currently being

investigated by Steele[68] and Barth.[17, 18]

5.3 Prioritized Speculation

We turn now to prioritization of interspeculative tasks. At first blush it might seem that

the version of the puzzle solver presented above implements an equal-priority search (i.e.,

priority 1 in the syntax given in Chapter 3) of the descendants of a choice point. In fact,

this is not the case; each interspeculative task uses as many system resources as it needs

without regard to the usage of its "brother" interspeculative tasks.

Instead, we may want to control interspeculative tasks among each other, balancing the

usage of each against the usage of the others. If we use the version of speculate with

priorities given in Chapter 3, and do not specify priorities (i.e., just use the puzzle solving

code as specified above) we get a search with the priorities of all interspeculative tasks

equal; thus no task's requests for system resources (e.g., I-structure memory and function

application) are allowed to heavily outweigh any other task's usage. This then implements

a mostly best-first search, since subtrees of each search point will share the balanced priority
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Figure 5.11: Puzzle Solution Performance: Total Instructions by Depth
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of their parents.

If instead we chose to rewrite solve.the.puzzle and solve-puzzle as in the following code:

% New puzzle solver with mostly-depth-first search.
def solve.the.puzzle starting.board search-depth =

solve-puzzle nil search-depth
((startingboard, (findblank.tile starting.board)), 1);

% Solve-puzzle rewritten to set task priority.
def solve-puzzle boards-seen depth ((board, blank), prio) =

{ priority prio
in

if compare-boards board solution
then boards.seen
else if (depth < 0) or (member? compareboards board boards-seen)

then terminate nil
else { new = successors board blank;

priorities = compute-priorities new
in

speculate (solve-puzzle (cons board boards-seen)
(depth - 1))

zip 2 successors priorities }}1;

% Compute a descending list of priorities for left-to-right mostly-depth-first.
% For example, (compute-priorities 1!st of length '3>) -+ (4 2 1).
def compute-priorities list =

{ 1 = length list;
n =1;
result = nil
in

{ for i 4- 1 to 1 do
next result = n : result;
next n = 2 *n

finally result };

we would in effect have a mostly depth-first search, in which subnodes of a search point to

the "left" (examined first) are allowed more system resources than other interspeculative

tasks. Similarly, we could implement a best-first search using a variant of Nilsson's suggested

h ,or, tic[59]

f(n) = d(n) + W(n)
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for determining the relative "goodness" of a particular point in the search tree (where f

computes the relative merit of a particular subnode n, d(n) is the depth of the subnode n

in the search tree, and W(n) is the number of tiles "out of place" in reference to the correct

placement of tiles in the solution). That may be coded in ID as:

% New puzzle solver with mostly-best-first search.
def solvethe.puzzle startingboard searchdepth =

solve-puzzle nil search-depth
((startingboard, (find.-blank-tile startingboard)), 1);

def solve-puzzle boards-seen depth ((board, blank), prio) =

{ priority (goodness board depth)
in

if compare.boards board solution
then boards-seen
else if (depth < 0) or (member? compare.boards board boards-seen)

then terminate nil
else speculate (solve-puzzle (cons board boardsseen) (depth - 1))

(successors board blank) };

% Compute a priority for each task based on a heuristic measure.
% Returns higher priorities for positions more likely to be in the solution path.
def goodness board depth =

{ total = depth
in

{for i +- 0 to 8 do

next total = if board[i] == solution[i]
then total + 1
else total

finally total }};

As expected for our three-deep search (with a solution found at depth two) these codes

show different behaviors. The mostly best-first approach wins, followed closely by the most

depth-first (due to the fact that the ordering of the search happened to match the ordering

of the solution), followed by the breadth-first search.

Unfortunately, all three solutions had instruction counts and critical paths at least an

order of magnitude higher than the non-prioritized versions of Section 5.2. In those codes,

the extra overhead of speculation control was minimal, with a few instructions to check

for termination interceding before resource usage was granted. In our implementation of
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prioritization, multiple queues of "ready to run" application and allocation requests, scanned

many times for balancing purposes, increased the overhead of the approach over the usable

limit (indeed, over the amount of "real" computation to solve the problem).

5.4 Summary

In this chapter we saw that our new speculative constructs extend the expressive power

of ID in a useful fashion for writing searching types of programs. Although not entirely

successful from the standpoint of system efficiency, we saw how dynamically defined tasks

can be controlled on a prioritized basis as well. In the following chapter, we will look at

other kinds of programs in ID which might benefit from a speculative approach. We will

finish with an exploration of possible future directions of the work: support of alternative

approaches to speculation, and general uses of the task control constructs we have built.

An ensampull yn doyng ys more commendabull
en ys techyng ober prechyng.

-JOHN MIRK, The Festyuall
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Chapter 6

Conclusions and Future Directions

C hapters 1 and 2 outlined a problem in the solution of typical Artificial Intelligence

codes; although taking advantage of the speculative parallelism of these programs seems

to be the natural course of mapping searching programs to parallel hardware, the dataflow

paradigm (and others!) require some control over the resultant explosive tree of execution.

Prioritization and termination (particularly the latter) are often the basic levels of control

needed by these codes. Chapter 2 presented a simple-minded methodology for such con-

trol by extending the ID language using a straightforward nondeterministic construct (the

blackboard). We saw that this construct, while theoretically quite powerful, was expen-

sive to use in both execution and programming. A better approach to speculation, using

the construct speculate, was suggested to encapsulate the nondeterministic behaviors in a

simple-to-understand structure.

Chapters 3 and 4 proceeded to give implementation details for speculate. While uncovering

the details of resource management for the ID language under dataflow execution, we saw

that some support for dynamic scoping of names was desirable, particularly for precisely

defining the idea of a "task" so that task termination could be implemented. Propagation

of N to support the collapsing of tasks undergoing termination was explored to ensure that

important dataflow invariants could continue to be supported.

Finally, in Chapter 5, we saw a finished application using speculate and related new ID lan-

guage constructs, along with some measurements of the expense of using those structures.

We saw that the speculate and terminate forms successfully encapsulate the nondeter-

ministic structures needed to control explosive execution tree growth, while preserving the
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dataflow execution invariants for correct termination of dynamic execution trees. Never-

theless, we have not imposed on the programmer a need to explicitly specify algorithm

parallelism, or directly manipulate task structures.

In this chapter we will expand on the usefulness of the basic structures supporting specu-

lation in order to assist other speculative programming styles.

6.1 Speculative Convergence

We saw in Chapter 5 that there are critical path elongating problems with our approach

to prioritized speculation. Other kinds of non-prioritized speculation control also show

promise, however. A common type of loop expression in numeric code implements conver-

gence. Fc example, the fragment

{ while error > tolerance do

next error =

is often used to express the looping computation which continues until error is less than

or equal to tolerance. While this correctly implements the intent of computing until

some convergence is reached, under the dataflow execution paradigm it causes a single

bottleneck disallowing parallel calculation of the loop body. This is h',,-e we do not

know whether an execution of the loop body may be begun until the previous value of

error has been computed by the previous run of the loop body. This common occurrence

causes low-parallelism points in otherwise high-parallelism codes, for example the Simple

code.J28] Figure 6.1 displays the ALU parallelism of the Simple code over time; although the

maximum parallelism of the code is over 6,000 instructions, and even the average parallelism

is greater than 500, there are several times during execution where the parallelism bottoms

out (becomes one).

The usual solution for this problem in extant ID codes is to replace the convergence-test of

a loop with some set number of iterations, for example
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Figure 6.1: ALU Parallelism Over Time for the Simple Code

{for iteration-number *- 1 to 5 do

.,

next error-..

For some codes with weak inter-loop-body dependencies, this style of programming relaxes

the strict sequentialization of loop instantiations and allows parallel execution of the loop

body for each iteration. However, there are two prolulenis with this solution:

* The code no longer declares the intent of the programmer. Besides confusing the point
of the loop, the number of iterations may not be appropriate for the calculation of
the loop series to convergence.

* Worse, the number of iterations may overshoot the number necessary for convergence
within the tolerance the programmer wishes to express. Therefore, unnecessary (and
perhaps expensive) calculations may be performed, increasing both total instruction
count and critical path length.

Speculation allows a middle ground. What we would really like to specify for series cal-

culations with few dependencies between loop bodies is the tolerance computation for the

loop control (as in the first example), but with some allowance for execution of "future"

instantiatiops of the loop body. In addition, we could use the control features developed in

this report to stop execution of these "future" threads when the convergence condition is
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finally met.

We can code this in a style analogous to that of speculate in the following way:

% Speculation -style series convergence.

def speculative-converge function initiaLstate tolerance speculation
{ result - i.array (0, 0);

state - initial-state; count = 1;
termination = makelock false;
still-looping = Larray (0, 0);
stil~looping[O] = true;
tasks = iarray (1, maximum-iterations);

{ for i - 1 to ntasks do tasks[i] = true };

def task state i =
{ old-apply = application -mgr;

old-alloc = allocationrngr;
in

{ application.mgr = manager speculationmgr old-apply tasks i;
allocationmgr = manager speculation.angr old.alloc tasks i;

error, new-state = function state;
call terminate-manager application-mgr answer;
call terminate-manager allocation.mgr answer;
oldiock-value = lock (gate termination answer);
result-determined? = not (novalue? answer);
in

if result-determined? and (oldiockvalue == false)
then { if error < tolerance then result[O] = answer;

call remove-othertasks tasks i ntasks
call unlock termination true
stilllooping[O] := false;
in

new.state }
else { unlock termination oldJocksvalue

in
state }}};

{ while stilllooping[0] bound speculation do
next state - task state count;

next count = count + 1 }
in

result[0] };

This code works in exactly the same way as our earliest working speculate without pri-
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oritization nor task self-termination; we control tasks via the allocation and applicaztion

managers. The function speculative-converge expects as arguments a function (which

takes some internal state and returns a new error and state), an initial state, a minimum er-

ror tolerance, and the amount of speculation to allow. This speculation amount is enforced

simply by setting the loop bound of the loop to that amount, which restricts the unrolling

of the loop (maximum co-executing loop bodies) to the control amount.

6.2 Future Directions

We have shown how parallel tasks to implement parallel speculative search can be im-

plemented in a consistent manner within the ID language and for tagged-token dataflow

machines. Specification of parallelism is implicit in our approach, as are the details of task

control and termination. The implementation is brought to the ID language level through

three simple constructs: speculate, terminate and priority, only the first of which is

actually necessary for a complete solution.

Since the specification and control of speculation is entirely within the language, we could

imagine having other versions of speculate with different semantics. We have seen in

this chapter that other semantics may be applied to the speculate form to achieve differ-

ing results. Highly explosive or depth first implementations of speculate were displayed

in Section 5.2. We could also imagine implementing a simple speculation semantics d la

PROLOG:
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def speculate function list =

{ alive = true;
element : tail = list;
{ while alive and tail j nil do

next element : next tail = tail;
terminated = Larray (0, 0);
terminated[0] := false;
control-mgr = manager set-termination terminated;
answer = function element;
alive = terminated[gate 0 answer]

finally if alive
then answer, tail
else 'fail };

def terminate x =
use control-mgr 0 0;

This implementation of speculate returns the first non-failing (in the PROLOG sense) result

of applying function to elements of list left-to-right; it also returns a tail of the list so that

further backtracking search can be done by re-calling speculate. Further research into

useful definitions of speculate and related functions (including the failed experiment in

prioritization) would greatly extend this work.

It would also be useful to look for other "choke points" on execution graph growth (i.e.,

other than function application and memory allocation). For example, it might be useful

to compile all (or certain) loops with schemas that check for termination in the enclosing

tree of tasks, and stop looping if termination is found.

In addition, a different syntactic structure for speculation might be helpful. Separating

the generation and execution of speculative threads would make certain problems easier to

state. The problems we have looked at in this report assumed that the branching factor

at each decision point is static during speculation itself; in fact, there are problems for

which we would like to add more interspeculative tasks during the process of speculation.

A syntactic structure more like CLU'S iterators[53] might be a good solution.

Finally, this report has developed a definition of tasks (dynamically enclosed regioils of the

execution graph) that makes intuitive sense, despite the parallel nature of computation even

within a task. Moreover. the approach to termination we have taken leaves the concept well-
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defined, rather than the careless descriptions of termination found in most operating system

manuals.1 We could use these better-defined tasks to solve other speculative problems (for

example, in which more than one, or all, solutions of a speculative search are required) or

non-speculative problems requiring task support (such as operating system task control).

The future ain't what it used to be.
But then, it never was.

- LEE HAYS & THE WEAVERS

tSee, for example, the description of the kill command or function under the Unix operating system.[27]
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Appendix A

Dataflow Operator Strictness in R

n this appendix we develop precisely what we mean by strictness in l, in terms of the

exact behavior of dataflow operators given the presence and intended usage of R, as well as

in compiler behavior for generating compound, self-cleaning program graph schemata.

The precise dynamic semantics of tagged-token dataflow actors have been expounded on

in various sources[9, 11, 61, 13]; we choose a variant of Traub's syntax[73] for its clarity

in expressing exceptional cases. In this expression, a token comes in several types for

transmitting messages between the instructions of a dynamic datallow graph. Five token

types are found in the model:

*<DATA,c, i, q,p, v> denotes a general data token targeted as input to an ALU (gen-

eral processor) instruction. The dynamic context, or instantiation, of a graph ad-

dressed by this type of token is specified by the pair (c, i) for context number and

iteration. The particular instruction (address, for example) is referred to by q, while

p specifies the port (or operand/argument number) of the incoming datum. v carries

the actual data to be sent to the instruction.

* <FETCH, A, c, i, q> denotes a request to fetch the contents of a synchronized memory

cell (I-Structure). This request to fetch the contents of the cell named A (e.g., at

address A) is handled by a structure control processor rather than a general instruction

processor.t The result of the fetch is to be sent to the instructions specified by the

tThe general instruction machinery may or may not be exactly the same as the structure controller

machinery. Both models have been assumed in the literature.
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destination list of instruction q (i.e., qdet), in the dynamic context (c, i) as noted

previously.

* <STORE, A,c, i,q, v> denotes a request to store the value v into the I-Structure

cell named A. A signal signifying completion of the action is then requested to be

forwarded to instruction q in context (c, i).

" <LOCK, A, c, i, q> carries a structure memory LOCK request for reading and locking

the memory cell named (e.g., at address) A. After successfully locking the cell, the

value read is then returned to the instructions specified by instruction q (i.e., to qd,,t)

tagged for context (c,i).

" <UNLOCK, A, c, i, q, v> denotes a structure memory controller request to UNLOCK

the memory cell named A. Upon successful unlock, the value v is written into the cell

for the next LOCK request to read. Upon completion, a request acknowledgement is

forwarded to the destinations of instruction q tagged for context (c, i).

Instructions, as addressed by the q portion of tokens, are defined to specify (in general)

an operation (qop), an optional constant (qont) and a list of destinations (qdeat). After

executing the operation qop on the values specified by the input tokens (and optionally the

constant qot), the processor generates output tokens directed to instructions specified by

qde,,. Thus each element of the list qdejt specifies a (q',p) pair (destination instruction,

destination port). We now have the basic language with which to specify the dynamic

semantics of our library of dataflow actors, particularly with reference to R inputs.

By far the majority of operators, such as arithmetic instructions, fall into the broad category

of binary arithmetic operators, as typified by the addition instruction +. The semantics of

+ are simple:

Table A.1: Behavior of Operation +

Input: Output:
<DATA,c,i,q,1, v1,> ifv = RVv 2 =
<DATA, C, i, q, 2, V2 > then V(q',p') E qdeat = 'tDATA,C,i,q,,, R >

else V(q',p') E qdeat < .DATA,C,i,q',Ip', V + V2 + qconat >
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Here we see that strictness in R is directly required by the semantics; a N input directly

causes a R output. Even simpler are unary operators, which are trivially strict in R. A good

example of a unary operator is the Identity instruction, which simply replicates its input

v to its destinations:

Table A.2: Behavior of Operation Identity

Input: Output:
<.DATA, c, i,q,I1, v> V(q', p) E qdet = , <"DATA,c, i, qjp , v >

Most all tagged-token instructions fall into the broad category of unary or binary arithmetic-

like operators, and are defined to be strict in N. More interesting instructions, with neces-

sarily more complex semantics, fall into two general categories:

" I-Structure operations, or dynamic program arcs, need special treatment; and

" Encapsulation structures, including conditionals, function calls and loops must be
carefully examined.

We begin with scrutiny of I-Structure operations. The basic I-Structure operation cycle is:

1. A general purpose processor issues an I-Structure Fetch instruction, causing a

"Fetch" request to be sent to a structure memory controller.

2. A structure memory controller either satisfies the request (if the data has been writ-

ten), or defers the request until the data is available.

3. A general purpose processor issues an I-Structure Store instruction, causing a

"Store" request to be sent to a structure memory controller.

4. Any deferred structure fetch requests are "undeferred" (i.e., outstanding fetches on

the same address) are satisfied.

This basic sychronization mechanism provides a methodology for creating dynamic arcs in

program graphs. Therefore, we need to propagate R values across this arcs correctly.

The I-Structure Fetch instruction is basically unchanged, except for strictness in its

structure (S) and offset (o) arguments:
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Table A.3: Behavior of Operation I-Structure Fetch

Input: Output:
<YDATA, c,i,q,1,S> if S= RVo= R
<DATA, c, i, q, 2, o> then V(q,p') E qdeit =* <DATA, C, i, q,,p', >

else * < FETCH, Sbase + o + qcont, c, i, q>

If in fact a request is sent to a memory control subsystem, then that system will respond

(upon availability of data). We explicitly require our memory control units to be able to

store R; therefore we can simply send back whatever value is stored in the memory:

Table A.4: Behavior of Operation Structure Controller Fetch

Input: Output:
<FETCH,A,c,i,q> V(q',p') E qde.t < <DATA,c,i,q',p',contents(A)>

The I-Structure Store instruction is complicated in two ways. First, since we have set a

limit of two input tokens (i.e., two input ports) to any given operation, we need to compile

a store request into two stages. First, the structure base address of structure S is added to

an offset o by a Form Address instruction to form a new structure address; then the result

of this instruction is used by the actual I-Structure Store instruction to send a value

store request.

The Form Address actor is quite simple; it is very similar, in fact, to the + instruction in

action and strictness in R:

Table A.5: Behavior of Operation Form Address

Input: Output:
<DATA,c,i,q,1,S> ifS = N V o = R
<DATA, c, i, q, 2, o> then V(q',p') E qdest < <DATA,C,i, q,P, R >

else V(q',p') E qde.t < .DATA,c,i,q', p, Sbase + O>

However, I-Structure Store instructions must not be strict in the value to be stored

(v), since future fetches on the same location must fetch a N result to insure correct R

propagation. Therefore, I-Structure Store semantics are:
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Table A.6: Behavior of Operation I-Structure Store

Input: Output:
<DATA, c,i, q,1,A> if A =
<DATA, C,i, q,2, v> then V(q', p') E qdest = <DATA, c, i, q, p,

else #* <STORE, A + qconst, c, i, q, v>

The action then taken by the structure storage module upon receipt of a store request is:

Table A.7: Behavior of Operation Structure Controller Store

Input: Output:
<STORE, A,c,i,q,v> V(q',p') E qdest =0' <DATA,c,i, q', p', true>

where the "result" true is simply an acknowledgement of the completion of the storage

request.t

Similar definitions define the behavior of the locking operators described in Section 4.3. The

semantics of the structure memory controller responses to those requests are also outlined.J

Table A.8: Behavior of Operation I-Structure Lock

Input: Output:
<DATA,c,i,q,1,S > ifS = N v o = N
<DATA, c, i, q, 2, o> then V(q' , p) E qdeat => <DATA, c, i, qp', R>

else < LOCK, Sbase + 0 + qconst,C,i,q>

Table A.9: Behavior of Operation Structure Controller Lock

Input: Output:
<LOCK, A, c, i, q> V(q', p') E qdeet = <DATA, C, i, q', p', contents(A)>

t On some tagged-token architectures, notably Monsoon,[611 this acknowledgement is returned when the
request is sent rather then at the time the request is acted upon. In general, this behavior is not acceptable
to insure proper termination detection, which Monsoon must then secure by other means.

$These operations are suspiciously similar to the controller fetch and store operations, of course.
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Table A.10: Behavior of Operation I-Structure Unlock

Input: Output:
<.DATA,c,i,q,1,A > ifA = R
<DATA, C, i, q, 2, v> then V(q',p') E qdeet #- «DATA , C, i, , p', R>

else <UN LOCK, A + qconjt, c, i, q,v >

Table A.11: Behavior of Operation Structure Controller Unlock

Input: Output:
<UNLOCK, A,c,i,q,v> V(q',p) E ql,.t =:: <DATA,c,i,q',p', true>

More interesting are the semantics of encapsulated (compound) operations. For example,

the extant compiler for the ID language treats function application as a single pseudo-

instruction Apply, as outlined in Figure A.1; a function f of arguments a, ... a,, is called,

with a single result as an answer.[73] This pseudo-instruction must be compiled down into

a series of primitive instructions.

,f a.

APPLY

Figure A.: The Apply Pseudo-Instruction

Previously we have seen only actors which send output tokens to instructions in the same

context (c, i) as their inputs. To implement the Apply pseudo-instruction, we present the

first operation which has an output context not equal to the contexts of its inputs. Change

Tag is described as following:
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Table A.12: Behavior of Operation Change Tag

Input: Output:
<DATA,c,i,q,1,C> if C R
<DATA, C, i, q, 2, v> then * <DATA, C', i', q' + qcons t , 1, V>>

where C = (', i', q')
else [None]

In English, the Change Tag instruction sends its value input v to a new context, specified

by the context input C.

We also need instructions that display conditional behavior in order to support conditional

and looping ID expressions. These are supported by a special instruction Switch:

Table A.13: Behavior of Operation Switch

Input: Output:
<DATA, c,i,q,I,v>> ifc = true
<DATA, C,i,q, 2, c>> then V(q',p') E qtr, e <DATA,c,i,q',p', v>>

else if c = false
then V(q',p') E qsue= <DATA,C,i, q',p v>>

else [None]

The reader will note that, unlike other operators, Switch instructions have two destination

lists; one is used for conditions of false, and the other for true. If the condition is R, then

no output token is emitted by the Switch instruction.

We include a new instruction No-Value? (which we will draw as "= W') which is used to

check for R data. (and is therefore not strict in N):

Table A.14: Behavior of Operation No-Value?

Input: Output:
<DATA,c,i,q,1,v>> ifv = N

then V(q',p') E qdcst < «DATA,c, i, q',p', true>>
else V(q',p') E qdest < «DATA, C, i, q', p', false>>

In order to make our schemas easier to read, we also introduce a pseudo-instruction R?,

which is simply a combination of No-Value? with a Switch as in Figure A.2. As a primitive
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instruction, R? would have the following semantics:t

Table A.15: Behavior of Operation Novalue-Switch

Input: Output:
<DATA,c,i,q,,v> ifc = R
<DATA, c, i, q, 2, c> then V(q' , p) E qtrue < «DATA, , i, q, p, v>

else V(q',p') E qfalae < 'DATA, c, i,q ,p', v>

CONTROL

DA TA

DATA

CONTROL

TRUE FALSE

TRUE FALSE

Figure A.2: Schema for Branch on R

Given these instructions, we can now implement the Apply pseudo-instruction of Figure A.1

in primitive operations as in Figure A.3. In this figure, we see that if the output of the

Get Context instruction is not R, then the result and output signal (to remove the now

finished context) are generated by the called procedure itself; otherwise, the procedure is

never called and the output result (R) and signal are determined locally. An important

detail of this figure is that while function calling is strict in N for the function itself (f),

argument passing is not strict in R. Therefore, ID procedures are not strict in N.

Schemata also must be found for compiling the other two major encapsulations of the ID

language. The first is the ID conditional if:

t Implementations are of course free to have a primitive R? instro-tion rather than generating the pair of
instructions.

lWe have abstracted away, however, the details of context creation and removal, which were explored in
Chapter 3.

lNor are arguments to functions strict in any value in ID.
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if (Predicate Code Body)
then (TRUE Code Body)
else (FALSE Code Body)

The sciiena for if blocks, taking into account the possibility of a R conditional, is presented

in Figure A.4. In this figure, input1 . .. input, represent the free variables in the two code

bodies. The ganged Switch instructions send these free variables to the correct code body,

and the outputs of the two encapsulated code bodies are then merged. This nondeterministic

merge does not cause problems in the determinism of the language, since only one of the

encapsulated code blocks will send a value to the merge.

The other major encapsulating structure in ID is that created for loops (while):t

{ while (Predicate Code Body)
do (Loop Code Body) }

Figure A.5 presents a schema for generating looping execution. In order to support the

execution of multiple simultaneous iterations, we need to alter the context information of

tokens flowing through loop graphs. This is accomplished with the D and D- ' instructions

shown in Figure A.5, which manipulate the iteration field of the context information.

Both of these operations are unary and trivially strict in R. The former moves a value from

one iteration of the loop to the following:

Table A.16: Behavior of Operation D

Input: Output:
<DATA, C,i1"q,I1,v> V(q',p') E qd st :=€" <DATA,c, i + 1, q',p', v>

while the latter returns a result from the loop body out into the surrounding context, by

clearing the iteration field:

'The for construct can be simply converted into a while loop.
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predicate inp u*t inp uts

C~Je Body Code Body

output

Figure A.4: Schema for Conditionals Accounting for N
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loop inputa

loop output.

Figure A.5: Schemn for Loops Accounting for 
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Table A.17: Behavior of Operation D- 1

Input: Output:
<DATA,c,i,q,1,v> V(q',p') E qdest =*' <DATA,c,O,q',p',v>

Now we have a complete set of instructions and schemas for compiling and executing ID

code with well-defined propagation of R. Unfortunately, however, we have not taken into

account the termination of contexts (instantiations of code blocks). In order to do this, the

current ID compiler requires every instruction in any encapsulator to contribute to a signal

tree, the result of which is the tcrmination signal of that encapsulator. This information

is then used to decide (at run time) when resources of dynamic extent (e.g., related to

particular code block instantiations) may be reclaimed. Signal trees are simply built out

of trees of the Gate instruction we saw in Section 3.2, which have the following dynamic

semantics:

Table A.18: Behavior of Operation Gate

Input: Output:
<DATA,c,i,q,1,v> V(q',p') E qdest #' <DATA,C,i,q',p',V>

<DATA, c, i, q, 2, c>

In other words, the gate simply forwards its first (port 1) input to its output destinations.

The instruction is strict in R only in its first argument.

With this new information in hand, we can review Figure A.3, Figure A.4 and Figure A.5 (for

function calling, conditions and loops respectively) for proper termination. Unfortunately,

we find them all deficient exactly in the case of R propagation. Some stronger medicine is

necessary.

To that end, we introduce some new semantics for the Switch and Change Tag instructions,

as well as a new three-output instruction NVSwitch:
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Table A.19: New Behavior of Operation Change Tag

Input: Output:
<DATA,c,i,q,1,C> ifC # R
<DATA, c, i, q, 2, v> then : <DATA, c', i', q' + qconst, 1, V>

where C = (c',i', q')
else V(q' ,p) E qdeat < : <DATAC,i, q,p ,R>

The new semantics for Change Tag make it in effect a conditional; if the context input C is

invalid (R), then the Change Tag instruction simply sends R to its destination list. On any

value context input C, the value v is forwarded into the new context as before. This allows

the clearer (and termination-correct) schema for function application found in Figure A.6.

The critical path for function application is now no longer than before the introduction of

Table A.20: New Behavior of Operation Switch

Input: Output:
<DATA,c,i,q,1,v> ifc = true
<DATA,c,i,q,2,c> then V(q',p') E qtrue = <DATA,C,i,q',p',v>

else if c = false
then V(q',p') E qal,e =: <DATA, c,i, q1,p,v >

else V(q', P) E qal.,a = <DATA, c,i,q',p',v>

These new semantics for Switch simply treat R conditionals (c) as if they were false. A quick

look at the schema for loop compilation shows that this will be a tremendous simplification,

as can be seen in Figure A.7. Again, the critical path for any given loop is now no longer

because of the necessary treatment of R.

Conditional blocks remain problematic. Although our previous approach to if schemas (in

Figure A.4) provided correct results, it did not and could not provide correct termination

for R conditionals. For proper termination, we need to think of conditionals as three-armed:

the true arm, the false arm and the R arm. To that end we describe the semantics of a new

NVSwitch instruction:
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Figure A.6: Schema for Function Application with Proper Termination
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Figure A.7: Schema for Loops with Proper Termination
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Table A.21: Behavior of Operation NVSwitch

Input: Output:
<DATA, c,i,q,1,v> if c = true
<DATA, c,i,q,2, c> then V(q',p') E qt,,, #. < DATA,c,i,q',p',v>

else if c = false
then V(q', p) E qfalae #- <DATA, c,i, q,p,v >

else V(q',p') E qx =- <DATA,c,i, qp', v>

This new three-destination instruction allows us to directly implement the three-armed con-

ditional as in Figure A.8. It should also be noted that we could simply ignore treatment of

R in conditionals and generate a two-armed conditional with standard Switch instructions;

the run-time overhead of this approach would simply be the overhead of propagating R

through the false code block of the conditional. This trade-off can be made by the machine

architect (in deciding whether to implement three-destination instructions) and/or the ID

compiler writer (in deciding whether to generate a two- or three-armed conditional block,

or which arm of the conditional to take on R input).
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