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The Interpretation and Application

of Multidimensional Item Response Theory Models

Final Report

The work on this research contract consisted of two distinct and

unrelated parts: (1) the investigation of the characteristics of

multidimensional item response theory (MIRT) models, and (2) the application

and evaluation of computerized testing procedures in a military training

environment. For each of these two parts of the project, the initial

objectives will be specified, the research performed will be summarized, and

conclusions about the research will be presented. The work on the MIRT models

will be presented first followed by the work on computerized testirg.

References to contract publications will be given as resources for more

complete presentations of the contract work.

Multidimensional Item Response Theory (MIRT)

Y Multidimensional item response theory (MIRT) is a theoretical framework

for describing the interaction between a person and a test item when it is

believed that performance on the test item is sensitive to person differences

on more than one dimension. Previous ONR contract work on MIRT (Models for

Multidimensional Tests and Hierarchically Structured Training Materials. NR

150-474, NOOO14-81-KO817: Reckase, 1985) identified a number of possible MIRT

models. Work on this contract focused on bringing these models to operational

status. The objectives for this part of the contract, as stated in the

original proposal, are listed below..
V

I-

• , I H i I N H i



1. The development of a conceptual framework for studying

tests composed of items sensitive to multiple cognitive

dimensions.

2. The description of the characteristics of

multidimensional test items.

3. The development of a computer program to estimate the

characteristics of multidimensional items.

4. The evaluation of the available model parameter

estimation programs.

5. The evaluation of alternative MIRT models.

6. The development of procedures for using MIRT concepts for

test construction.

Although these objectives overlap somewhat, work on each one will be

summarized separately.

Conceptual Framework

Before work could be done to develop applications of MIRT to practical

testing problems, a good understanding was needed of what was meant by (1) a

multidimensional ability test, and (2) test items that are sensitive to

differences in cognitive abilities on multiple dimensions. In order to

conceptualize these issues, an ability space was first considered that

encompassed all the areas of variation that exist in the cognitive skills in a

large population of individuals. A person's position in this space is

indicated by a vector of numbers, 0, specifying a location in a Cartesian

coordinate system. The coordinates of this space are defined as orthogonal

for mathematical convenience. This does not imply that the abilities are
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orthogonal. Persons may vary in the space along directions that may not

coincide with the coordinate axes. If these directions of variation are

thought of as ability dimensions, then the axes of the ability space and the

coordinate space may not be the same. They have the same dimensionality, and

there is a one-to-one correspondence between a point located using one set of

axes and a point located using the other, but the axes of one space do not

necessarily correspond to the axes of the other. Different frames of

reference are provided by each of these conceptual spaces. The term "0-space"

will typically refer to the space with orthogonal coordinate axes that is the

mathematically convenient frame of reference.

The common dimensionality of these two reference systems indicates the

rumber of orthogonal measures that must be obtained to unambiguously locate a

person in tne space. In principle, test items can be developed to distinguish

between persons on each one of the coordinate system dimensions, or

combinations of the dimensions. However, a oarticular Lest may not contain

items that are sensitive to differences on all of the dimensions, or examinees

may not differ across all tested dimensions. Therefore, the dimensionality of

the data generated by the administration of a test to the population of

interest may not have the same dimensionality as the full O-space.

In order to more completely specify what is meant by the dimensionality

of a test, the dimensionality of test items will first be addressed. In this

analysis, only dichotomously scored test items will be considered. Items that

yield more than two score categories greatly complicate the analysis. if a

test item is administered to persons who are distributed throughout the

multidimensional space, the item will divide the population into two-groups--

those that responded correctly, and those that did not. If the item is

sensitive to differences in the abilities of the persons in the space, the

3



item may divide the space into two parts that are fairly distinct with persons

in one region having mostly correct responses, and persons in another region

with mostly incorrect responses. Correct responses are assumed to be related

to a higher level of an ability dimension than incorrect responses. Figure 1

provides an example of responses to such a test item in a two-dimensional

space. The more sensitive the item is to differences in abilities in the

space, the sharper will be the transition between the regions defined by the

correct and incorrect responses.
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Figure 1. Typical responses to an item for persons located at different

points in a two-dimensional ability space.
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The data generated by the interaction between one item and the persons in

the population is always unidimensional. Persons will vary only on the

dimension of correctness of the item. However, that dimension may not

correspond to any of the axes in the 6-space or the dimensions in the ability

space. The dimension corresponds to the direction of greatest rate of change

from incorrect responses to correct responses. This direction may be the same

for all points in the space, implying that the item requires the same

combination of skills for all persons, or the direction of greatest rate of

change may vary depending on the location in the space, implying that

different combinations of skills are required for different persons in the

space.

Examples of these two conditions are presented in Figures 1 and 2. In

Figure 1, the direction of greatest rate of change is basically from lower

left to upper right and is the same for persons at the upper left or at the

lower right. In Figure 2, the direction of greatest rate of change is not the

same for all points in the space. For persons at the upper left, the density

of zeros and ones changes horizontally. For persons at the lower right, the

change in density is vertical. Thus, the item shown in Figure 2 measures

(i.e., is sensitive to) different combinations of skills at different points

in the 6-space. However, in both cases the data generated by the interaction

between the single item and the examinee population are unidimensional since

pesons can be ordered on a single number, the probability of a correct

response, and this number summarizes the information in the zeros and ones.

The implication of this conceptualization is that all one-item, dichotomously

scored tests are unidimensional from a statistical perspective even though the

item may require relatively high levels of skills on several different

cognitive dimensions to arrive at the correct response.
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Figure 2. Typical response to an item with sensitivity to different

dimensions at different points in a two dimensional ability space.

When a test is composed of' more than one question, the issue of the

dimensionality of the data generated by the interaction of the population of

persons and one items becomes more interesting and rvore complex. If the

direction of maximum rate of change of the density of zeros and ones is the

same at each point in the space for all of' the items in the test, then the

test is unidimensional from a statistlcai perspective. Hiwever. if the

direction of maximum rate of change at each point in the space differs across

items and the density of correst responses increases monotonically in a

particular direction, the dimensionality of the data generated by the

interaction of the population and the test is equal to the dimensionality of

the space needed to contain all of the directions specified.

6
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In an idealized case, the distribution of zeros and ones over the space

for an item can be qhown by a surface that represents the proportion of

correct responses at each point in the space. For one item, a particular

proportion of correct responses, p, will trace a contour, labeled the p-

contour, on the surface. All persons at e-points related to a particular

p-contour have the same probability of correctly responding to the item. Thus

they can all be mapped onto a unit line at point p to represent their relative

ability oi the ability measured by the item. Since all persons in the space

(all 9-points) can be mapped onto this line, the interaction between the

single item and the examinee population generates data that is

unidimensional. Some of the contours for the items shown in Figures 1 and 2

are given in Figures 3 and 4. The degenerate case where all persons in the

population have the same probability of a correct response to the item will be

ignored.

if a second test item is administered to the same population as the first

item, the proportion of correct responses on this new item for all the

9-points corresponding to the original p-contour can be determined. If the

resulting proportions are all the same, they define a contour for item two, a

p'-contour where pl may differ from 2, that is related to exactly the same set

-f -points as the p-contour. If this is true for all of the contours that

can be defined for items 1 and 2, the interaction of the population and the

items will generate data that are unidimensional. All persons with 9-points

related to the (2, 2')-contours can be mapped onto the same point on a line to

show the relative position on the construct measured by these two items to

the 9-points related to other pairs of contours.

In general, if n items have contours that are identical except for

differing on the proportion of correct responses, the interaction of these n

7
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items and the examinee population will generate data that are

unidimensional. If the contours do not match, then the maximum possible

dimensionality of the data is equal to the number of distinct sets of items

that have matching contours, but that have contours that differ from other

sets of items.

An actual matrix of dichotomous responses may not have the maximum

possible dimensionality that can be generated by a test when the examinee

population does not vary on all of the dimensions to which the items are

sensitive. Thus, the actual dimensionality of a dichotomous data matrix will

be equal to the number of dimensions to which the test items are sensitive and

for which there is variation in the examinee population. The dimensionality

of the data matrix must always be less than or equal to the smaller of the

number of dimensions of variation of the examinee population and the number of

dimensions of sensitivity of the items in the test.

The key points in this discussion are that:

(1) test items may require more than one cognitive skill for successful

solution but still generate a statistically unidimensional data set

through the interaction with a population that varies on many

dimensions.

(2) a multidimensional ability space has many useful frames of reference-

-a mathematical coordinate system, cognitive ability dimensions, and

dimensions defined by what is measured by one or more test items.

(3) the statistical dimensionality of a data set is the result of the

interaction of the dimensions of variation of the population and the

dimensions of sensitivity of the test items.
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(4) single test items generate data that are unidimensional.

The coordinate system specified in Figures 1 and 2 is strictly

arbitrary. All of the above points hold for any monotonic transformation of

the e-space. However, leaving the metric of the e-space undefined does not

allow a very parsimonious description of the interaction between a person and

an item. To achieve a parsimonious description of this interaction, it is

desirable to select a metric that results in proportion-correct surfaces that

have a convenient form. Many different forms are possible and the selection

of one of them is usually made on the basis of theoretical beliefs about the

underlying psychological process, or for mathematical convenience. Of course,

once a model is selected, its usefulness depends on how well it models

empirical data rather than other considerations. In the research performed on

this contract, several different models were considered and an important issue

is which of these best models data gener-.ced by the actual interaction of

persons and test items.

Characteristics of Multidimensional Test Items.

It is almost trivial to state that the purpose of a test item is to

provide information about the capabilities of an examinee. A not so trivial

issue is how much information is provided and for what examinees does the item

provide the most information. In the unidimensional item response theory

(UIRT) context, the functioning of the test item is described by a measure of

location (b-parameter), a measure of discriminating power (a-parameter), and a

function that indicates the amount of information provided at each point on

the ability scale. These item descriptors indicate the group of examinees the

10



item is best at measuring according to the group location on the ability

line. The intent of the research in this portion of the project was to

generalize these UIRT-features for items that require multiple abilities for

successful solution. Thus a measure of location of an item in the ability

space, its discriminating power, and the information it provides about

examinee abilities were desired.

The conceptual framework given above provides a method for describing the

characteristics of an item in a way that makes use of the same concepts as

UIRT. In UIRT, the measure of location indicates the ability level at which

an item is most discriminating. Thus for a MIRT-based item description, it

would also be useful to indicate the location of the item as the ability

vector for which the item is most discriminating. However, for an item in a

multidimensional space, there may be many points where the item is most

discriminating. That is, there may be many locations in the space where the

rate of change of the probability of a correct response isthe highest that

occurs for the item. The solution proposed here is to define the analog of

the UIRT b-parameter as the distance and direction from the origin of the e-

space to the nearest point of maximum discrimination.

Thus, multidimensional item difficulty (MDIFF) has two component parts,

the distance, D, from the origin of the space to the point of maximum rate of

change, with distance specified in terms of the metric of the ability space,

and the direction specified by the vector of angles, a, between the coordinate

axes and the line connecting the origin and the point of maximum slope.

The analog of the a-parameter of UIRT, MDISC, is defined as a function of

the slope of the proportion correct surface at the point of maximum rate of

change in the direction, a, from the origin. The multidimensional information

function, MINF, is defined by exactly the same expression as is used in

UIRT. That is

11



2
(slope (a))

I (e) =
variance(O)

However, for the MIRT case, the information is indexed by a particular

direction, m. That is, an item does not provide a certain amount of

information about a particular 0, it provides information for differentiating

0 from a nearby 0' that is less than e away in a particular direction a. An

item may provide substantial information in one direction while providing no

information for differentiating between persons in another direction.

These descriptive features of a test item in the multidimensional space

have been derived explicitly for one of the MIRT models given by

e

P(u i , , _ , , (1)

1 + e a i+ d

where u. is the item response

0 is a vector of abilities

a. is a vector of discrimination parameters1

and d. is a scalar related to item difficulty.

Based on this model, the MIRT descriptive features of an item are given by;

MDISC. (Ea(

-d.
D. -1 (3)
-i MDISC i'

Csa ak(4)
cos ik - MDISC.'

12



2
and MINF (9) = Pi(e) Q( ) ( aik cos ai) , (5)

where Pi (9) : P(ui = 1 ej, a,, d.)

and Qi(e.) 1 - P.(0.).

The derivations of these statistics are given in

Reckase, M.D. (1985). The difficulty of test items that measure more than one

ability. Applied Psychological Measurement, 9(4), 401-412.

and

Reckase, M. D. (1986, April). The discriminating power of items that measure

more than one dimension. Paper presented at the meeting of the American

Educational Research Association, San Francisco.

For a model with a nonzero lower asymptote, ci, given by

I

ai8j + d i

Pi(e) : C. + (1 - ci) e , (6)-i a.9.+d.

1 + e -i

the statistics given by Equations 2, 3 and 4 still hold, but MINF is given by

G.(6.) (Pi(9 ) - c.)2

MINF (ej) = i ( )- 'i (Za cos C) (7)
(I 9) P 1(0ei) 0 - c i) k -ik ik

(Carlson, 1988; personal communication).

13



While the concepts of MDIFF, MDISC, and MINF presented here can be

applied to any functional description of the proportion of correct responses

at points in the e-space that have increasing proportions of a correct

response with increases in any ai or combinations of 6., many mathematical

forms for the function will not yield convenient or even unique solutions.

The models given in Equations 1 and 6 have particularly nice mathematical

properties.

Estimation of MIRT Item Parameters

The statistics defined in the previous section would have little

usefulness if estimates of the parameters a,, d., and 8 were not

attainable. Therefore, a computer program for obtaining estimates of these

parameters was a high priority for this project.

After reviewing several methods for obtaining estimates, a joint maximum

likelihood procedure, as implemented in LOGIST (Wingersky, Barton & Lord,

1982), was selected as a basis for the program. The resulting program,

labeled Multidimensional Item Response Theory Estimation (MIRTE), has been

thoroughly checked out and has been implemented on numerous data sets. The

following report serves as a manual for the program.

Carlson, J. E. (1987, September). Multidimensional item response theory

estimation: a computer program (Research Report ONR 87-2). Iowa City,

IA: ACT.

Evaluation of MIRT Parameter Estimation Programs

In order to apply MIRT, good estimates must be obtained for the MIRT

model parameters. As part of this project, MIRTE was produced to yield these

14



estimates. However, there are many estimation procedures that can be used to

obtain the parameter estimates and it is not clear which procedure, or which

particular coding of a procedure, will yield the best estimates of the

parameters. Therefore, as part of this project, four estimation programs were

evaluated for use in obtaining MIRT model parameter estimates. These programs

were MIRTE (Carlson, 1987), TESTFACT (Wilson, Wood, & Gibbons, 1984), MULTDIM

(McKinley, 1987), and LISCOMP (Muth~n, 1987).

In evaluating these programs, two sets of criteria were used. The first

were practical criteria concerning whether the programs could yield the

required estimates and how easy the programs were to use. The second criteria

were based on how well the programs recovered the parameters of two sets of

simulated test data that were specifically designed for benchmark testing.

The practical criteria used for evaluating the programs are listed in

Table 1. Table 2 provides a summary of information concerning these

criteria. From the summary, it can be seen that no program had a particular

advantage on many of the criteria. However, LISCOMP is notable in being the

least expensive to use. MULTDIM seems to be the easiest to use, at least

initially. Beyond these considerations the programs would have to be selected

on the basis of preference for a model, or based on the particular needs of an

analysis. The analysis of the benchmark data may help clarify the issue of

program choice.

15



Table I

Practical Criteria for Evaluating

MIRT Estimation Programs

1. What limits are placed on the maximum number of dimensions that can be

estimated with the program?

2. Can a non-zero lower asymptote be specified?

3. What type of estimation algorithm is used?

4. How well is the implementation of the algorithm described?

5. Can item- and/or ability-parameters be fixed to allow the estimation of

only specified parameters?

6. Can the procedure be used to analyze a sparse matrix?

7. What MIRT model is specified?

8. What type of goodness of fit statistics are provided?

9. What constraints are placed on parameter estimates?

10. Are multiple group analyses possible?

11. What summary statistics are reported?

12. What limits are placed on the maximum number of persons and items?

13. How difficult is program set up?

14. How much does it cost to perform an analysis?
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The benchmark data sets that were developed to evaluate the

characteristics of the programs were purposefully produced to yield an easy

test of the programs. For the programs to yield good estimates of the person-

parameter vectors, it was believed that the information provided by the test

questions should be fairly uniform over the region of the ability space where

the persons were located. Therefore, a set of item parameters was selected to

yield approximately uniform information in the region within two standard

deviations from the origin of a two-dimensional space. The e-distribution was

generated to be standard bivariate normal with p = 0 or P = .5. Thus, two

data sets were produced using the set of item parameters, both with 2000

response strings on 50 items. The first was based on uncorrelated es and the

second on correlated es. The item parameters used to generate the data sets

are given in Table 3. The sample size and number of items were selected to be

reasonable in magnitude, but large enough that usable parameter estimates were

expected.

The four programs were evaluated using these benchmark data sets on their

ability to reconstruct the original data matrix. This criterion was used

rather than a comparison of the item-and person-parameter estimates to the

values used to generate the data because of the rotational indeterminacy of

the solutions. While MIRTE and MULTDIM imposed a positive monotonicity

constraint on their solutions limiting the possible orientations of the

coordinate axes somewhat, TESTFACT did not impose such a constraint. The

TESTFACT solution would have to rotate to match the solutions provided by the

other programs and the results would be dependent, in part, on the rotation

selected.

18



Table 3
Item Parameters for the
Benchmark Data sets

Item Parameters

Item No. al a2  D d MDISC

1 1.35 0.27 -2.50 3.44 1.38 11.31

2 0.65 1.14 0.01 -0.01 1.31 60.10

3 1.36 0.02 -0.79 I.08 1.37 1.15

4 0.30 1.45 2.48 -3.68 1.48 78.39

5 1.39 1.17 2.50 -4.54 1.82 40.09

6 1.83 0.00 0.47 -0.86 1.83 0.00

7 1.80 0.01 -0.98 1.77 1.80 0.36

8 1.47 0.01 2.00 -2.95 1.47 0.64

9 0.01 1.42 -1.50 -0.82 1.42 89.52

10 0.15 1.34 2.49 -3.35 1.34 83.46

11 1.32 0.29 2.07 -2.81 1.36 12.15

12 1.68 0.22 -0.10 0.16 1.69 7.54

13 1.42 0.00 -2.50 3.56 1.42 0.04

14 0.12 1.81 0.87 -1.57 1.81 86.29

15 0.18 1.29 -0.44 0.58 1.31 82.25

16 1.41 0.04 -2.22 3.14 1.42 1.61

17 1.35 0.00 2.39 -3.23 1.34 0.00

18 0.24 1.74 -2.04 3.59 1.76 82.28

19 1.11 0.84 -0.24 0.33 1.39 37.11

20 0.00 1.44 1.31 -1.88 1.44 90.00

21 0.01 1.52 1.75 -2.66 1.52 89.58

22 1.40 0.06 1.94 -2.72 1.140 2.58

23 0.35 1.38 -0.25 0.36 1.142 75.69

24 0.00 1.57 1.36 -2.13 1.57 89.99

25 0.09 1.38 2.38 -3.29 1.38 86.13

26 0.21 1.48 -1.50 -1.51 1.50 82.08

27 1.54 o.43 0.89 -1.43 1.60 15.55

28 0.40 1.34 -2.36 3.30 1.40 73.20

29 0.81 1.52 -0.93 1.61 1.72 61.94

30 1.46 0.13 2.05 -3.00 1.46 5.19



Table 3 (Continued)
Item Parameters for the
Benchmark Data sets

Item Parameters

Item No. a a2 D d MDISC

31 0.61 2.12 -2.22 4.90 2.21 74.06

32 1.38 0.00 2.00 -2.75 1.38 0.08

33 0.09 1.64 -1.98 3.24 1.64 86.74

34 0.16 1.50 2.50 -3.78 1.51 84.00

35 0.00 1.34 2.34 -3.14 1.34 90.00

36 1.45 0.29 -0.22 0.32 1.48 11.24

37 1.89 0.12 -2.43 4.60 1.90 3.55

38 0.03 1.38 -1.17 1.62 1.38 88.91

39 0.40 1.35 0.06 -0.08 1.41 73.71

40 2.17 0.01 -0.71 1.54 2.17 0.15

41 0.06 1.36 1.57 -2.12 1.36 87.60

42 0.68 1.28 -0.86 1.25 1.45 61.77

43 0.06 1.47 2.49 -3.67 1.47 87.50

44 1.27 0.82 2.49 -3.76 1.51 32.62

45 0.44 1.41 -1.40 2.08 1.48 72.73

46 1.45 0.27 0.98 -1.45 1.48 10.39

47 0.08 1.42 -0.34 0.49 1.43 86.89

48 1.32 0.04 -2.39 3.15 1.32 1.56

49 1.41 0.00 -2.50 3.52 1.41 0.01

50 1.40 0.00 0.40 -0.56 1.40 0.00



The actual criteria used to evaluate the programs was the standardized

residual computed by subtracting the expected response from the actual

response and dividing by the standard error of the expected response. The

average standardized residual over the entire response matrix was computed for

the solution obtained for each program for each of the two data sets. These

values are summarized in Table 4. LISCOMP was not included in this analysis

because it did not provide 9-estimates.

Table 4
Average Standardized Residuals
for each Progran by DacaseL

Program
Dataset

MIRTE TESTFACT MULTDIM

P = 0 .251 .001 -.026

o = .5 .253 .000 -.024

From these values it is clear that TESTFACT was the best at estimating

person- and item-parameters that could reproduce the data matrix. MULTDIM was

next best, but with a slight negative bias in the expected responses. MIRTE

was by far the worst of the three programs. An analysis of the parameter

estimates from MIRTE and the estimated responses showed that the program

sometimes gave extreme values of 9-estimates that inflated the residuals.

While the number of these extreme estimates was fairly small, they had a large

effect on the residuals. Clearly, if MIRTE is to be used as an operational

program, a means must be found to stabilize the 9-estimation process.
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Alternative MIRT Models.

The MIRT model that has been emphasized up to this point is a model that

has a linear combination of the elements of the 6-vector in the exponent of

e. In general, this type of model will be called a linear MIRT model, or

LMIRT model. Both logistic and normal ogive versions of LMIRT models are

common. These models are also called compensatory models because a low value

on one 6-dimension can be compensated for by a high value on a different

6-dimension. Also, a low 6-value on one dimension does not limit the

magnitude of the probability of a correct response. With sufficiently high

9-values on other dimensions, probabilities approaching 1.0 can still be

obtained.

One alternative to the LMIRT models is a model based on the product of a

series of probability-like terms (Sympson, 1978; Embretson, 1984). This model

is generally of the form

M e ik - ik)

P(u 1jai, b i, 0i ') c. + (1-c.) a )(8)i j -1 -i k1 e eik jk - bik

where u.J is the item response,

0 is the vector of ability parameters

ai, bi are vectors of item parameters

and c. is a scalar lower asymptote parameter. Since this model derives its

properties from the multiplication of terms, it will be called a

multiplicative MIRT model here, or MMIRT model. This class of models has also

been labeled as noncompensatory models because a low 6-value on one dimension

cannot be totally compensated for by a high 6-value on another dimension.

There is some level of compensation, so a better label would be partially

compensatory, but the term MMIRT is generally more descriptive.
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The upper limit on the probability of a correct response to an item

modeled by a MMIRT model is set by the lowest 8-value. This 8-value and the

corresponding item parameters set a probability of correct response that is

reached at a limit as the values of 8 on the other dimensions increase.

The equiprobable contours of the MMIRT model are similar to a hyperbola

in shape. This is a result of the multiplicative form of the model. An

example of the contours is given in Figure 4.

Both of these types of MIRT models have advantages and disadvantages.

The LMIRT model is mathematically convenient and estimation programs exist for

simultaneously estimating the person- and item-parameters of the models. The

MMIRT model is argued to be more psychologically realistic in that real test

questions probably do not allow the total compensation of abilities. However,

it is a mathematically intractable model, and no estimation program exists for

the simultaneous estimation of person- and item-parameters.

Because of the interest in both models, a logical question is: Which

model yields a better representation of real item response data? Because of

the lack of an estimation program for the MMIRT model, this question could not

be addressed in the straightforward manner of estimating parameters and

checking relative fit to the data. Instead, an approach was taken that

derived parameters for LMIRT and MMIRT items that were matched on the

proportion of correct responses for a specified population and then analyzed

item response matrices generated from the different models to determin

whether there were noticeable differences in the data matrices.

The first task was to select the item parameters from the LMIRT model

given in Equation 1 that would produce "reasonable" proportion-correct

indices. Therefore, a target set of p-values for a 20-item test was

established based on actual ACT tests, and parameter values for the LMIRT
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model were selected by trial-and-error untii the expected p-value for a

standard bivariate normal examinee population with o = 0 were approximately

equal to the target values. Table 5 gives the set of LMIRT item parameters

for the 20 items in columns 2, 3, and 4. The table also gives the expected

proportion correct in the last column.

Table 5
Original LMIRT Item Parameters and their

MMIRT and LMIRT Estimates

LMIRT I MMIRT LMIRT II
Parameters Parameters Parameters

Item a, 2 d I 2 I ;2 21 12 d E(P)

1 2.00 2.25 -1.00 1.97 2.41 -.63 -.19 .90 1.31 -.67 .38

2 3.00 1.20 -1.50 3.00 1.52 .27 -1.34 2.10 .50 -1.13 .34

3 2.00 2.25 1.00 1.89 2.09 -1.09 -.88 .89 1.10 .52 .60

4 1.78 1.78 -.55 1.92 1.95 -.52 -.49 .99 1.00 -.44 .42

5 1.80 3.00 1.38 1.61 2.60 -1.63 -.68 .58 1.65 .78 .63

6 2.50 3.00 1.00 2.02 2.42 -1.05 .73 .91 1.27 .42 .58

7 2.50 2.50 2.20 2.04 2.05 -1.23 -1.29 1.03 .95 1.08 .70

8 1.10 3.00 .50 1.28 2.95 -2.21 -.29 .32 2.27 .38 .54

9 1.00 1.10 2.00 1.25 1.35 -2.21 -1.99 .61 .72 1.63 .80

10 1.35 1.80 .90 1.53 1.91 -1.41 -.87 .67 1.12 .60 .62

11 1.50 1.50 -.20 1.73 1.75 -.67 -.64 .91 .91 -.21 .47

12 1.75 3.00 .00 1.(6 2.76 -1.29 -.29 .64 1.72 -.05 .49

13 2.10 .90 .50 2.25 1.25 -.43 -1.99 1.65 .38 .40 .56

14 .60 1.80 2.00 1.04 1.91 -3.37 -1.19 .18 1.61 1.84 .78

15 1.50 1.70 .20 1.69 1.87 -.93 -.69 .82 1.02 .09 .52

16 2.87 2.00 -.30 2.60 1.90 -.32 -.91 1.45 .81 -.24 .46

17 3.10 2.00 1.55 2.63 1.73 -.72 -1.56 1.64 .62 .85 .64

;8 1.00 1.00 -1.00 1.34 1.36 -.28 -.27 .77 .76 -.91 .32

19 2.30 1.40 .20 2.35 1.57 -.42 -1.30 1.46 .62 .10 .52

20 .80 1.70 .40 1.17 1.90 -1.97 -.48 .39 1.37 .32 .56
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In order to produce a comparable or "matched" set of MMIRT item

parameters, estimates of these item parameters were obtained by minimizing

N 2

Pa ., d., 8.) - PM(uij = 11ai, b i, 6 2

for N 2000 randomly selected examinees with e distributed as before, where

PL and PM represent LMIRT and MMIRT models respectively. This process was

repeated for each item yielding the noncompensatory item parameter estimates

listed in columns 5-8 of Table 4.

Classical item statistics were calculated from 0/1 item response data

generated from the 2000 examinees randomly selected earlier. Although the p-

value distributions were similar for the 20-item tests from each model, the

classical discrimination indices were significantly higher for the LMIRT

set. Therefore, the process of estimation was repeated but this time, the

MMIRT item parameters were considered known and the LMIRT item parameters,

listed as LMIRT II in Tables 5, were estimated. These new matched item

parameters produced closely equivalent tests, as shown by the similar item

characteristics given in Table 6.

Three sets of analyses were performed using these matched sets of

parameters to determine whether data generated from them were noticeably

different. First, the number-correct score distributions were compared for

the two models. Second, the estimated-true-score surfaces were compared.

Third, the information provided about abilities in the two dimensional space

was compared. Finally, the characteristics of the data were evaluated by a

general MIRT model that encompassed both the LMIRT and MMIRT models.
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Table 6
Item Analysis Summary
LMIRT and MMIRT Models

LMIRT I MMIRT LMIRT II
Item 2 Epb Lb 2 Epb Lb 2 [pb Lb

1 36 70 90 37 61 78 37 60 77

2 32 63 82 31 52 68 32 53 69

3 60 74 94 59 60 76 58 55 69

4 43 69 87 43 59 74 42 54 68

5 62 75 96 61 61 77 62 60 76

6 57 78 99 56 61 77 57 56 71

7 70 72 95 68 54 71 68 51 66

8 55 69 87 55 58 63 55 56 71

9 80 47 68 80 41 59 80 38 54

10 61 65 83 62 53 68 61 51 64

11 45 63 79 45 54 68 44 51 64

12 49 74 92 48 61 76 49 58 73

13 54 60 76 55 49 62 55 47 59

14 78 52 73 78 47 66 78 45 63

15 52 68 85 50 59 73 50 54 67

16 44 74 93 45 61 76 45 55 70

17 64 73 93 62 56 71 63 50 64

18 31 50 66 31 45 59 31 43 56

19 51 68 85 49 58 73 50 55 69

20 55 63 79 55 52 65 55 52 65

x 10.81 10.70 10.71

S.D. 6.40 5.32 5,04

KR20 .93 .88 .86



The number-correct score densities were estimated assuming a standard

bivariate normal distribution of ability with U = 0 and p= 0. These densities

were estimated by applying a recursive procedure described by Lord and

Wingersky (1984) to the following expression

h1 (y) f fI (yje)g(e)de,

where h (y) is the density of score y for model Z,

f (yle) the probability of score y for ability vector 0,

and g(e) is the bivariate normal density.

Table 7 gives the estimated densities for the two models.

The differences between the two densities appeared to be negligible.

Both distributions were negatively skewed and platykurtic with the MMIRT

density slightly greater in the left tail. For large samples of examinees,

such a difference in number-correct scores might be significant. These

differences at the low end of the number-correct score scale are consistent

with the MMIRT model's tendency to produce lower scores when either

01 or 82 is low.

The second set of analyses, the comparison of the estimated true score

surface for the two models, supports this interpretation. The difference in

the estimated true score surface is shown in Figure 5. The difference in the

surfaces shows that the estimated true scores are fairly similar for a-vectors

with elements within one unit of each other. Large differences in the

surfaces occur when the difference in the elements of the O-vector is greater

than 1.0. In these cases the LMIRT model yields higher expected true

scores. Because most of the bivariate density is within one unit of the

origin of the space, large differences in the true score distribution are not

expected as confirmed by the data in Table 7.
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Table 7
Number-Correct Relative Frequencies

Under Each MIRT Model

Number-Correct LMIRT MMIRT
Score Relative Cumulative Relative Cumulative

Frequency Relative Frequency Relative
Frequency Frequency

0 .007 .007 .012 .012

1 .018 .025 .025 .037

2 .027 .052 .034 .071

3 .035 .087 .040 .111

4 .042 .119 .044 .155

5 .047 .176 .048 .203

6 .051 .227 .050 .253

7 .055 .282 .052 .305

8 .058 .340 .054 .359

9 060 .400 .055 .414

10 062 .462 .056 .470

11 .063 .525 .056 .526

12 064 .589 .057 .583

13 .064 .653 .058 .641

14 063 .716 .058 .699

15 .061 .777 .058 .757

16 .059 .836 .058 .815

17 .055 .891 .057 .872

18 .048 .939 .053 .925

19 .038 .977 .046 .971

20 .022 .999 .029 1.000

x 10.89 10.82

Variance 25.68 29.09

Skewness -.12 -.12

Kurtosis 2.05 1.95
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The third set of analyses was based on a general MIRT model, GMIRT, that

included both MMIRT and LMIRT as special cases. This model is given by

P (0 ) : c + (1 - c ) exp(fi 11  + fiP )

G -i -i + exp (ip + fij2) + uiexP(fijl) + exp(fij2)1

where fi jm = aim (ejm - bim ) and p = 0 for LMIRT and 1 for MMIRT. The key

question to be answered by these analyses was whether the u-parameter could be

used to identify the special case, LMIRT or MMIRT, that was underlying the

matrix of observed response data. To investigate the value of u for this

purpose, five sets of data were generated by the LMIRT parameters specified

earlier and five sets of data were generated for the matching MMIRT

parameters. In all cases the same set of 2000 true Os were used. These were

sampled from a standard bivariate normal with p=O.

For these ten data sets, the item parameters of GMIRT were estimated

using the known es. When 4 was close to zero, the item parameters of the

LMIRT model were obtained from fijm by setting d = -a - a b . When u was

close to 1.0, the MMIRT parameters were estimated. In all cases, the

estimation of the u-parameter identified the proper model. The generating

parameters and the mean and standard deviation of the estimates from the five

replications of each model are given in Tables 8 and 9 for each item.

Mean estimates of the model identification parameter, p, showed that the

parameter was estimated fairly accurately under each underlying model

condition. Table 8 shows that the largest estimate of the LMIRT condition

(i.e., P = 0) was item #18 with u = .07 followed by item #13, u = .06.

Relatively small standard deviations of these estimates for five replications

on each item indicated the precision of these least squares estimates.
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Table 9 shows slightly poorer estimates of ji when the true generating

model was MMIRT (i.e., = 1). However, the LMIRT and MMIRT estimation

simulations tended to support a conclusion that data generated from these two

models are noticeably different, at least under the conditions reported here.

Procedures for Test Construction

In order to determine how MIRT procedures could be used to improve the

test construction process, the procedures were first applied to existing data

to determine their characteristics. Two major findings were the result of

these analyses. First, it was determined that the data generated by the

interaction of an examinee sample and a set of cognitively complex items could

meet the assumptions to be considered statistically unidimensional. That is,

even though each test item required many different cognitive skills, the

responses to the collection of items on the test could still form a

unidimensional data set. To generate unidimensional data, the items on the

test must all measure the same composite of skills. In the language of MIRT,

this means that all items are best at measuring in the same direction, a, in

the &-space.

This finding was described in the following two convention papers.

Reckase, M. D. (1985, August). Trait estimates from multidimensional items.

Paper presented at the meeting of the American Psychological Association,

Los Angeles.

Reckase, M. D. (1985, November). The true versus the observed dimensionality

of test data. Paper presented at the meeting of the Society for

Multivariate Experimental Psychology, Berkeley, CA.
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The procedure for constructing unidimensional tests was described in the

article

Reckase, M. D., Ackerman, T. A., & Carlson, J. E. (1988). Building a

unidimensional test using multidimensional items. Journal of Educational

Measurement, 25 (3), 193 - 204.

The second major finding was that the substantive meaning of points on

the score scale generated by a set of test items is not constant throughout

the score range when the difficulty of the items is related to the content of

the items. This finding applies both to the number-correct score scale and

the 9-estimates obtained from unidimensional IRT models. Further, the

differences in the meaning of the score scale at different points cannot be

detected using global procedures such as factor analysis. Procedures like

MIRT, that focus on the item/person interaction, are needed. These results

were reported in the following series of convention papers:

Reckase, M. D., Carlson, J. E., & Ackerman, T. A. (1985, June). When

unidimensional data are not unidimensional. Paper presented at the

meeting of the Psychometric Society, Nashville.

Reckase, M. D., Carlson, J. E., Ackerman, T. A., & Spray, J. A. (1986,

June). The interpretation of unidimensional IRT parameters when

estimated from multidimensional data. Paper presented at the meeting of

the Psychometric Society, Toronto.
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Reckase, M. D. (1987, April). A comparison of the results of applying several

different unidimesional IRT procedures to multidimensional item response

data. Paper presented at the meeting of the American Educational

Research Association, Washington.

Reckase, M. D. (1989, August). Controlling the psychometric snake: or, how I

learned to love multidimensionality. Invited address at the meeting of

the American Psychological Association, New Orleans.

Davey, T., Ackerman, T. A., Reckase, M. D., & Spray, J. A. (1989, July).

Interpreting score differences when item difficulty and discrimination

are confounded. Paper presented at the meeting of the Psychometric

Society, Los Angeles.

Because it was determined that scores on a test at different points on

the score scale may have different meaning, it became of concern whether test

forms that were constructed to be parallel on the basis of content

specifications and traditional statistics would continue to look parallel when

analyzed from a MIRT perspective. Five forms of the ACT Assessment

Mathematics Usage Test were analyzed using MIRT to address that concern. In

general, the forms were found to be multidimensionally parallel, but a two-

dimensional solution was needed to describe the item/person interactions and

the score points did vary in their meaning. These results were reported in:

Reckase, M. D., Davey, T., & Ackerman, T. A. (1989, March). Similarity of the

multidimensional space defined by parallel forms of a mathematics test.

Paper presented at the meeting of the American Educational Research

Association, San Francisco.
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The conclusions of this line of research were: (a) tests could be

constructed to meet the unidimensional assumptions of IRT even if individual

test items required more than one cognitive skill for their successful

solution; (b) for the meaning of the score scales defined by parallel forms of

a test to be truly parallel, the multidimensional structure of the test must

be considered rather than merely meeting unidimensional statistical criteria;

and (c) if .he difficulty of test items is related to their content, the

points on the score scale for the test will not have the same meaning

throughout their range.

Computerized Testing

The goal of the computerized testing component of this project was to

determine the feasibility of using computerized tests, and possibly adaptive

tests, for the assessment of the skills acquired in ihe military training

environment. To achieve this goal, several specific tasks and research

studies were planned. These included:

1. The selection of hardware and the development of software

for the computerized testing system.

2. The investigation of the effect of the medium of item

/presentation on the statistical characteristics of the

items.

3. The investigation of the effect of the order of item

presentation on the statistical characteristics of items.

4. The evaluation of the item pool for its adequacy for use

with adaptive testing.
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5. The evaluation of adaptive testing procedures as

alternatives to current testing procedures.

Each of these topics will now be discussed in turn.

Hardware and Software

In selecting a hardware configuration, several factors were considered.

These included equipment reliability, security, computing capability, and ease

of use. Reliability was perhaps the most important factor because the

computerized tests were replacing paper-and-pencil tests which seldom suffer

from equipment failure. In order to be assured of a reliable system, common,

easily serviced equipment was desired with some redundancy built in to cover

for any unanticipated equipment failures.

Security was a concern because of the need to control access to the item

pools and examinee performance records. Sufficient computing capacity was

needed to support the background computation needed for adaptive testing and

to store item pools, test results, and programs for administration, scoring,

and report generation. Finally, the system should be easy to program and easy

for instructional staff to use.

The system configuration selected for this purpose was a network of 28

IBM PCs with two IBM PC/ATs serving as network servers. Two IBM PC/ATs were

used as servers as a redundancy feature, because they were critical to the

operation of the system. They contained the item pools, test results, and

programs. Thus if one of these machines failed during a test session, the

other would automatically take over all of the operations of the systems. The

IBM PCs served as tasting stations. Programs and appropriate item pools were

downloaded to a testing station for a test, but would not reside there at
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other times. The system also included a backup power supply and a printer for

report generation.

IBM equipment was selected for its reliability and the availability of

convenient servicing. It was also selected because the IBM PC-DOS environment

was familiar to all persons involved.

The servers and testing stations were connected using Novell Advanced

Netware-G LAN. This network allowed very tight controls over access to the

item pools, records, and programs.

The software for the system was custom-developed for the project. It

included modules for item pool editing and management, test assembly, test

administration, and report generation. Many of the characteristics of the

software were a result of the needs of the particular school that was the host

site for the project. The staff of the school developed tests by randomly

sampling items from sets of items constructed to measure specific

objectives. Therefore, the software was required to emulate that process and

produce printed forms to match the computer presented version. Thus, the

software was developed to not only produce paper-and-pencil forms, but also to

give the computer administered tests as many of the options as possible that

are available to persons taking paper-and-pencil tests. These included the

ability to review and preview the test, change answers, skip items, and review

responses. Software that closely matched the paper-and-pencil administration

process was needed to determine whether differences in item performance were

due to medium of administration procedures, or to restrictions placed on the

test-taking process.

The resulting software had the capability of randomly selecting items

from the pool by objectives, administering items on the computer screen and

printing matching paper-and-pencil forms, scrambling items from the base
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version and administering the items in the computer screen, and printing

individual and group reports of results. The software design was modular so

that other administration options could be added as needed.

Research Studies

The goal of this project was to determine whether computerized adaptive

testing could be profitably implemented in a military training environment.

In order for such a system to work, several technical requirements had to be

satisfied by the item pool and the data obtained from examinees. First,

because items are usually calibrated based on the results of paper-and-pencil

administrations, it was necessary that the calibrations should also apply to

items administered by computer. Second, because adaptive tests administer

items in different orders, the effect of presentation order must be minimal.

Finally, it must be possible to obtain accurate parameter estimates from the

data available from the training programs in question. The studies which

investigated each of these issues will be discussed in turn.

The data for these studies were obtained with the cooperation of the

staff of the Ground Radio Repair Course in the Marine Corps Communication-

Electronics School at the Marine Corps Air-Ground Combat Center, Twenty-nine

Palms, California. The hardware and software were installed in a room at the

school and operational tests and quizzes were administered on the system.

Medium Effects. The first study was designed to determine whether the

test items used to assess achievement in the Ground Radio Repair Course

functioned differently when presented on the computer screen than when given

in paper-and-pencil form. The research design used was to randomly split each

class in half and administer the same items in the same order to each half of

the class, but one group received the items in paper-and-pencil form and the
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other on the computer screen. Three different course exams were used for this

purpose. The results of the study will be reported in the following journal

article.

Spray, J. A., Ackerman, T. A., Reckase, M. D., & Carlson, J. E. (1989).

Effects of the medium of item presentation on examinee performance and

item characteristics. Journal of Educational Measurement, in press.

The study showed that on two of the tests, no medium effects could be detected

while on the third test, a small difference in performance, with higher scores

on the paper-and-pencil version, was noted. Because the detected differences

were small, it was concluded that data from paper-and-pencil administrations

of items could be used to obtain parameter estimates for the computerized

tests.

Order Effects. The design of the order effect study was similar to that

of the medium effect study in that classes were randomly split into two groups

where one group received one treatment, and the other group another. The

first treatment group received the test items in a fixed order. The second

treatment was to present the items in an order that was a random rearrangement

of the fixed order with a different order for each examinee. Four different

tests were used for this study. The results of this study were presented in:

Ackerman, T. A., Spray, J. A., Reckase, M. D., & Carlson, J. E. (1989,

February). A comparison of the effects of random versus fixed order of

item presentation via the computer (Research Report ONR89-1). Iowa City,

IA: ACT.
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The study found seven items out of 308 that differed on difficulty and five

out of 308 that differed on discrimination as a result of the different

presentation orders. Because no pattern could be identified to explain the

difference in performance of the items that were found to be significant, the

effect was considered to be extremely weak and of little consequence.

Estimation of Parameters. Because both the medium effects and order

effects studies supported pursuing adaptive testing, a study was planned to

determine whether item parameter estimates of sufficient quality could be

obtained using the data collected during the operational administration of the

tests. Course tests were constructed on a weekly basis by sampling without

replacement from the item pools. Three nonoverlapping forms were produced

before items were again eligible for selection. For one of the tests in the

Ground Radio Repair Course, each form was composed of 25 items randomly

selected from a pool of 75 items. Thus, the entire pool was used for each of

three forms that were constructed.

Over a period of several months, data on 351 examinees were collected on

these 75 items. However, the 75 x 351 matrix of responses was very sparse

because the items had been administered in blocks of 25. In order to

determine whether these data, or a more extensive set administered to 2000

examinees, could be used to get good parameter estimates, a matrix of 75 x

2000 was generated to match the characteristics of the items and the random

sampling plan for forms. This matrix was analyzed using both LOGIST and BILOG

with missing data coded as not reached. Neither program yielded usable item

parameter estimates.

Several procedures were evaluated for improving the estimates, such as

imputing the missing data values and using more robust estimates (e.g.,

inverse normal transforms of p). In all cases, parameter estimates of
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sufficient accuracy for use in adaptive testing could not be obtained. This

was a result of both the sparse data matrix and the fact that the test items

were fairly easy. As a result of these analyses, it was concluded that a

fully adaptive computerized test could not be supported by the data available

from this administration pattern. Unfortunately, it was not possible to

modify the data collection design or the item pool to permit an evaluation of

adaptive testing in this environment.

Alternatives to Fully Adaptive Testing

The tests used in the Ground Radio Repair Course are designed to make a

pass/fail decision at a particular score level. They have been designed to be

predominantly mastery tests. For this type of application it may not be

necessary or desirable to use a fully adaptive testing model because that

model is best for obtaining equal measurement precision over a wide range of

achievement. Instead a model that adapts only the length of the test and

focuses the test precision at the decision point may better meet the needs of

the course.

A procedure that adapts the length of the test can be made very efficient

if the characteristics of the test items relative to the decision point can be

taken into account. Such a procedure would require that the item parameter

estimates were obtained and that they be used by the procedure to determine

whether a person should be classified above or below the decision point.

Because parameter estimates always contain error, a concern is whether the

error will affect the accuracy of decisions made using such a procedure.

To determine the effect of parameter estimation error on decision

accuracy, a series of computer simulations were performed using a sequential

probability ratio test (SPRT) to make the decisions. The details of this

study were described in the following report:
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Spray, J. A., & Reckase, M. D. (1987, September). The effect of item

parameter estimation error on decisions made using the sequential

probability ratio test (Research Report ONR87-1). Iowa City, IA: ACT.

The results showed that when parameter estimates had the amount of error

typical of a calibration based on 2500 examinees, the misclassification rates

were actually lower than those obtained using true parameters, but that the

average number of items needed to make a decision was greater. Overall, the

differences observed were negligible.
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