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Abstract

In this report, we prove that the state vector of a two-point boundary

value modei is a reciprocal process.
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1. Introduction

When modeling physical systems in which one or more of the

independent variables is spatial, the a priori information is usually given in

the form of boundary conditions rather than initial conditions. Such systems

arise in acoustics and oceanography, for example. Consider the following

linear, two-point boundary value model for to < t < t,:

k(t) = Ax(t) + Bu(t) (1)

r = Vx(to) + Vx(t,) (2)

where u is a Gaussian, zero-mean, unit intensity white noise with m

components, r is a Gaussian, zero-mean random vector with n components

and is independent of u, x is the n-component state vector, and A, B, Vo, V,

are appropriate matrices.

Structural properties of such two-point boundary value models have

been studied in [5]-[6]. Estimation problems based on such models have

been treated in [21-[3], [71-[8]. As is customary, we will assume that the

model is well-posed; i.e., that u and r give rise to a unique x. This will be

the case if and only if the matrix Vo + V,'$(t,, to) is nonsingular, in which case

we can assume, without loss of generality, that

Vo +VI (t1 ,to)=I

where 0 is the state transition matrix of (1).

Since, in general, x(to) is correlated with u, the state vector x is not r

Markovian. However, as we shall prove, it does possess the weaker property 0
0

of reciprocity, which will be defined presently. First, we note that Krener
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stated this result in [51 and sketched a method of proof for it. However, we

have been unable to complete the proof along the suggested lines, and were

thus motivated to find a different approach.

A process is reciprocal on an interval if, given any subinterval, the

values of the process inside the subinterval are conditionally independent of

the values outside the subinterval, given the values of the process at the two

endpoints of the subinterval. For information on reciprocal processes, see

[11, [41-[5] and the references therein. In a recent paper [4], Carmichael et

al give a very useful characterization of reciprocal processes, based on the

projection theorem. They prove that a process x is reciprocal if and only if,

for all aE fto , t1l, the two (one-sided) error processes el and e2 given by

e, (t) = x(t) - E[x(t)lx(a)] for t o < t < a
e 2 (t) = x(t) - E[x(t)lx(a)] for a < t < t,

are Markovian. Our proof is based on this result, and on the fact that if a

Gaussian process has a semi-separable covariance function, it is Markovian.

2. The Main Result

The boundary value model (1), (2) can be solved for x(a), for all

a e [to , t 1], as follows:

x(a) = 0(a, to)r + fto G(a, -)Bu( r)dr

where G is the Green's function given by

G(at) =-(a,to)V<P(t1,t) for a<t ()
G(a,to)VoO(to,t) for a> t
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Let R(a,a) denote the covariance matrix of x(a). We assume this matrix is

nonsingular for all a e [to , t1]. From (1) and the definitions of e, and e 2 given

above, it is clear that for t. < t < a

el (t) =Ael (t) + Bd(t), el (a)= 0 (4)

and for a _ t < ti

62(t) = Ae 2(t)+BL(t), e2(a) = 0 (5)

where

d(t) = u(t) - E[u(t)Ix(a)]

= u(t) - E[u(t)x'(a)]R-1 (a, a)x(a)

= u(t) - B'G'(a,t)R-(a,a)x(a)

and

E[CI(t'(s)] = M(t - s) - B'G'(a, t)R - (a, a)G(a, s)B (6)

Theorem: The state vector process x is reciprocal.

Proof. As discussed above, it is sufficient to prove that el and e 2

are Markovian for all a E [to, t1]. Consider first the case of e2 . For a < t _< tj

and a _< s < t1 , its covariance function is given by

K 2 (t, s) = E[e 2 (t)e2(s)

= fi fJ (t, )B{E[d()'( )]I}B'@'(s, a) dudr

where we have used (5). Substituting in the above using (6) produces

K 2 (t,s) = ci (Dt'st) )BB'O'(s, T)dT

and using equation (3) for the Green's function, we get
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K, (t, s) E ~ .s) 0t,,r)BB"P'(s,'r)dr

tO4t,v) BB",P'(t,r) dr] V"1'(a, to)R-'(a, a)O'(a, to)VI [F 1t, ,r)BB"OP'(s, r) d~r]

fC2(t)D2(s) for a:5 s: t tj

1D2(t)C2(s) for a5t 5s~t1

where

C2 (t) = (1P(t, t1) - JaCP(t, r)BB"IY (t,, ) dT] V'cI(a, t0 )R' (a, a) P4a, t0 )V,

D, (t) = J C(P(tj, r)BB"(P'(t, ,r) d'r

Since its covariance function is semi-separable, e2 (t), a:5 t:5 t1, is Markovian

for all a r= [to , t1]. Using the same approach, it can be shown that, for

to 5 t:5 a and to! s:5 a,

K, (t, s) =E[ej (t)el(s)]

0(fnxt~).It, -rJBB'Ol'(s, 'r)d'r

'[j(t, v)BB's' (t0,,rd idVo s'(a. t0 )- 1 (a, a)Oc(a,to)Vo [J:P(to, r)BB '(P(s, ,r) dr

(C1(t)D,(s) forto0 t:5s:5a

1D'(t)C(s) for 4, 5 s!5 t:5 a

where

q1 (t) = 0(t, t0)- [J'O(t. 'r)BB'i1'(t,,rz) d~r Vo O'(a,to,)R'1 (a, a) 'P(a. t0 )V0

DI (t) = P,'(to, 'r)BB'P'(t, -r)dv

Therefore, el (t), t0:5 t:5 a, is Markovian for all a E [to, t1 1 and the theorem is

proved.
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