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19. Abstract

The research supported by this grant was essentially concerned with the numerical solution of

the Zakai equation from nonlinear filtering. The Zakai equation is a linear stochastic equation of

parabolic type and its solution provides a nonnormalized probability density from which we can

reconstruct the solution of a dynamical system governed by stochastic ordinary differential equations

when the observation is itself noisy. The Zakai equation presents some unique features in the sense

that

(i) It has practical applications;

(ii) It is a highly advective, advention-diffusion linear parabolic equation;

(iii) The space dimension is very large (of the order of ten and more for practical applications);

(iv) It is a stochastic equation.

Each of the difficulties listed in (ii), (iii), (iv) leads to very challenging problems when it goes to the

numerical solution, but their combination provides a formidable numerical problem which from our

point of view requires computer power beyond the possibility of the existing hardwares and softwares.

In view of developing know now we have been investigating systematicc methods for solving the Zakai

equation, which have proved reliable for solving problems with space dimension six at most (this

number will increase with the progress of computers). The methodology that we have been studying

relies on operator splitting methods in which one decouples, via time discretization, the stochastic part

and th deterministic part of the Zakai equation. Using this approach we obtain subproblems which

have either closed form solution (the stochastic part) or can be solved (the deterministic part; modulo

the difficulty of the dimension) by efficient methods for traditional elliptic and parabolic problems.

The same methodology can be extended to the parabolic inequalities of obstacle type originating from

impulse control.

Concerning the space approximation itself it can be achieved by finite difference or finite element

methods, with a specific treatment of the first order terms for which the first order upwinding methods

investigated by some authors are by tar too dissipative. We have been therefore investigating second

order upwinding methods which are by far much less dissipative (in the detailed final report we also

comment on third order upwinding methods).
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FINAL REPORT CONCERNING GRANT DAAL03-86-K-0138

Title: Numerical Methods for Parabolic Equations & Inequalities in Very High Dimensions.

/
. Introduction. Motivation

The main goal of this projects was to investigate the numerical solution of parabolic equations

in very high dimension, the principal motivation being the solution of the so-called Zakai equation from

nonlinear filtering. As it will be seen in Section 2, below, this equation is of the advection-diffusion

type and therefore is closely related to other equations of this type such as the Navier-Stokes equations

from Fluid Dynamics; since these equations are also of interest for the Department of Defense some

aspects of their numerical solution, byprodiicts of the present investigation will be vaIuleied in ,Ic

present document.

The content of this report is the following:

In Section 2, we describe the Zakai equation and its origin. In Section 3, we consider the solution of

time dependent problems by operator splitting methods, and show in Sections 4, 5, 6 how these

methods apply to the Zakai equation, to parabolic inequalities of obstacle type and to Navier-Stokes

equations.

In Section 7 we comment on the solution of advection-diffusion problems by upwinding, particle and

characteristics methods. In Section 8 we go back to the Zakai equation and its stochastic dynamical

system origin and comment about the feasibility of the Zakai equation approach for the analysis of

such systems.

2. The Zakai equation.

We consider a signal process given by

(2.1) dx, = b(t, x,)dt + u(t, xt)dw,.
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Here tE[O,TI, xER d and xO has a given probability density p,(x). The vector w,={wd' ... , W} isd

d-dimensional Brownian motion defined on a probability space (0, F, p*). Also, b(t, x)

{b.(t, x)} d and o(t, x)= (or,,(t,x)), ij=1, ... , d, have components defined on [,T]xR d which are

b>ounded and smooth. We suppose now that the observation is given by

(2.2) dy,= h(t, x,) + g(t)dw, + 9(t)d~t.

Here,~~~ YEmYo n is a m dimensional Brownian motion defined on (f2, F, p*) and

is independent of w. The function h(t, x) {h,(t, x)} in1 has essentially the same smoothness

and boundedness; properties than b and o-. We shall suppose that matrices g(t) = gjt)

i=1, ... m, j=1, ... d, and ~()(~(),k, 1=1, ...m are continuous on [O,T]. We suppose that

(2.3) g(t)g(t)T+g(t)g(t)T= I.

Condition (2.3) is a normalization hypothesis which can always be satisfied by re-scaling the

observation process.

Denoting by gj the j-th row of g we define the vector cj by

cj~t = at) g~t)
and then hi by

f1 1(t) = hj(t) - div cj(t), j=I, ... d.

Define now an operator Hj, mapping Hl(R d) into L 2 (R d), by

for u E HI(R d).

The elliptic operator L* is the formal adjoint of the generator of (2.1), i.e.

L*(t) = d a 2 a(t d .t)

here a= {aj, j I ,.T

3



Define Y,=--{ys: 0 < s < t} for the u-field generated by the observations up to time t.

There exists an unnormalized density qt of x, conditioned on Y,; qt satisfies

(2.4) q0= p0

and the following stochastic partial differential equation

t t

(2.5) q(x)--P0 (X) + L* qs(x) ds + ME j Hi(s) q5 (x) dys,

0 j= 0

for t E [0,T]. Equation (2.5) is precisely the Zakai equation (see, e.g., [5], [10] for more details).

3. Operator Splitting Methods for Time Dependent Problems.

Let's consider a (deterministic) dynamical system modelled by

(3.1) dd_ + A(u) = 0, for t>0,

(3.2) u(O) = u0 .

In (3.1), (3.2), A is a(possibl) nonlinear) operator from a Hilbert space H into itself, and u0 EH. We

suppose that A has a nontrivial decomposition of the followinig type

(3.3) A = A1 + A2 ;

by nontrivial we mean that A1 , A2 are individually simpler than A (indeed A1 and/or A2 can be

multivalued operators).

There exist many schemes taking advantage of decomposition (3.3) (see, e.g., [1], [2], [3] for such

schemes). We shall present here some of them:

4



3.1 Fractional Step Schemes

1st. Scheme:

(3.4) u0 = U0 ;

then for n>0, it" being known we compute un +
1
/ 2 and then u"+ as follows

(3.5) Un +1/ _ un + Aj(u 2  0,At +A( '+ / ) =O

(3.6) un+1 - un+1/2At(+A 2 (u )-0.

This scheme is at most first order accurate in At. To obtain a better accuracy, we can "symmetrize"

scheme (3.4) - (3.6) by using the following scheme

2nd Scheme:

(3.7) u+/ - u + A, (u 0+/ =0,
At/2

n+2/3 u"+ u-+/3
(3.8) u At/ + A 2 u 2 = 0,

(3.8) un+ Atn+ t+/3 + A2 (Un+ 2/3  0,

(3.9) Un+l- un+2/3 A(u + 1)

At/2

It follows from, e.g., (3] (see also [4]), that in many situations, the above scheme is second order

accurate with respect to At.

3.2. Alternating Direction Schemes.

The above schemes are not too well suited to capture steady state solutions of (3.1), i.e.,

solutions of

(3.10) A(u) = 0

5



(if such solutions exist). This drawback is corrected if one uses the schemes below:

Peaceman-Rachford Scheme:

(3.10) u0 = u0;

then for n > 0,

(3.11) un+1/2 -U +A,(un+1/ 2 + A 2(un) =0,
At/2

(3.12) un+1-,n+1/2 + A, (u " +I/ 2) + A 2 (un+l) - 0.

At/2

Douglas-Rachford Scheme:

0
(3.13) u = U0 ;

then for n > 0,

(3.14) un+1/2- un + A, (u n ' 1/ 2) +

At + A 2 A(u") =0,

(3.15) un+1- Un + A, (un"+/2 ) + A2 (un + ') = 0.

0-Scheme: With 0 E (0,.5), this scheme is defined by (3.13) and

(3.16) U +- u+A (u+0)0A + A 1 (' )±A 2 (u'D) =0O,

(3.17) u u ,, + A(u n+ 0 )+A 2(Uni 0
(1-20)

(3.14) U (- U) + A, + A 2 (un +
'- ) = 0.

OAt ++A + -)
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All these schemes are first order accurate with respect to At in general, the last onL eing (for 0 well

chosen) better suited than the first two to capture steady states.

4. Application to the solution of the Zakai equation.

Using the notation of Section 2, we are considering the solution of

(4.1) dy + A*(t)y dt = B(t) y • dw.

The idea here, is to consider

(4.2) A*(t)y dt - B(t)y - dw

as the sum of two operators and using the approach associated to scheme (3.4) - (3.6), consider a

sequence of problems of the form

(4.3) di + A(t) p dt = 0,

(44) dqf = B(Qt~ -dw,

which are considerably simpler than (4.1); indeed, the rp equation is deterministic and the 41 equation

has a closed form solution.

The algorithm investigated has been analyzed in [5] and generalized to more complicated stochastic

partial differential equations in [6]; it is described as follows:

Consider first (4.1) -n the time intlrval [0,T] and define At,= k -- T/(N+I). We shall define two

processes Ylk, Y~k depending on k. We split therefore [0, T] in [0, k[, [k, 2k[, ... [Nk, (N+i)k[.

Consider now [rk, (r+l)k[ with r=0, 1, ..., N; then Ylk, Y2k are defined on this interval by the relations

(4.5) dylk + A*(t) ylkdt -- 0,

7



(4.6) dy 2k = B (t) Y2k " dw,

(4.7) ylk(rk) =y;

(4.8) Y2 k(rk) Yk=+i/2

the sequences y', y are defined as follows

(4.9) k -Y ((r+1) k-0),

(4.10) yk+l - Y2k ((r+l) k-0).

Relations (4.5) - (4.10) define completely Ylk' Y2k on [0, T[. The processes Ylk, Y2k are right

continuous and their discontinuity points are k, ... Nk (on [0, T[); we observe that (4.5) is

deterministic.

The convergence of y1 k, Y2k to the solution y of (4.1) is proved in [5), justifying therefore the

splitting approach.

In practice, problem (4.5) is an advection-diffusion problem whose solution will be discussed in

Section 7.

5. Application to the solution of obstacle type parabolic inequalities.

It follows from [7], that applications in impulse control, lead to the solution of parabolic

inequalities of the following type

(.2) + Au f) (I - u) = 0, a. e. on 

(5.2) + Au- f< 0, a. e.,

(5.3) u - T < 0, a.e.,
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(5.4) u =u O att = 0;

in (5.1) (5.4), A is an advection-diffusion elliptic operator, and it defines the obstacle. From a

numerical point of view, it may be more convenient to formulate (5.1) - (5.4) as a parabolic variational

inequality such as

(5.5) 12u + Au - f) (v - u) dx >0, VvEK(t),

(6.6) u(t) E K(t), Vt > 0,

(5.7) u(O) = u0 (E K (0)),

with

(5.8) K(t) = {vvEV, v(x,t) _< ' (x,t) a.e. on Qx(0,T)

in (5.8), V is a Hilbert space of Sobolev type.

In (5.5) - (5.8) we have implicitely assumed that q1, and therefore the (convex) set K, vary

continuously with t. Concerning the numerical solution of (5.5) - (5.8) by operator splitting methods,

let's introduce

(5.9) C(t) = {vjvEL2(n), v(x) _ qP(x,t) a.e. on II,

and the indicator functional Ic of C(t), defined by

(5.10) Ic(v, t) = 0 if v E C(t), Ic(v,t) = +o if v 0 C(t).

Problem (5.5) - (5.8) can then be formulated as a nonlinear parabolic "equation" (it is in fact a

multivalued equation) by

(5.11) 0 E - + Au + aIc(u) - f,
at

(5.12) u(0) = u0;

9



in (5.11), 0Ic(u) is the subdifJerential of the convex functional Ic at u; it is defined, VvEL 2 (Q), by

(5.13) wEOIc(v,t) -* Ic(z,t) - Ic(v,t) _ f(z-v) w dx, VzEL 2 (Q).

Problem (5.11), (5.12) can be approximated by the following nonlinear parabolic equation (with e >0):

(5.14) o+u&C + + f,

(5.15) uC0) = U0,

which corresponds to a penalty approximation of condition (5.6). Operator

(5.16) v -. (v- P)+

is (for t given) a ("nice") monotone operator from L2( 2) -. L2(0).

Both problems (5.11), (5.12) and (5.14), (5.15) can be solved by operator splitting methods. For

simplicity, we shall just describe the application of scheme (3.4)-(3.6), but the other schemes described

in Section 3 also apply. We obtain then for problem (5.11), (5.12)

(5.17) u° = u0 ;

then for n>O, we compute un+ 1/ 2 and un + 1 via

Un+-/2 + (un+i/2
(5t18) u _ + aIc  (n+l)At) = 0,

(5.19) n+- Un1/ + Aun1 = ffl+iAt

Problem (5.19) is an advection-diffusion elliptic problem whose solution is discussed in Section 7; on

the other hand problem (5.18) has a closed form solution which is given by

(5.20) u +1/2(x) = min (un(x), T (x, (n+l)At)).

10



A similar conclusion would hold for problem (5.14), (5.15). In fact from the simplicity of schenie

(5.17), (5.19) it seems that penalty is useless in this context; we have mentioned it however since it

may be useful in some other situations. We call switch of course the splitting order and solve first the

advection diffusion part, and then project as in (5.20).

6. Application to the Navier-Stokes equations.

Another advection-diffusion problem of interest is associated to the Navier-Strokes equations

for viscous fluids. Concentrating on the incompressible case we obtain

(6.1) _u - vAu + (u - V) u + Vp = f in 0.
at

(6.2) V.u = 0 in Q (incompressibility condition),

(6.3) u (x, 0) = uO (x) in 2,

with appropriate boundary conditions; for simplicity we shall assume that

(6.4) u = g onr(=0!).

In (6.1) - (6.4), u = {ui}IN 1 is the velocity, p is the pressure, 02 is the flow region, v(>0) is a viscosity

coefficient and f a density of external forces and

N
(6.5) (v.V)w = v N

Following the approach in [8] (see also [9]) we shall discretize (6.1)- (6.4) by the following P-scheme,

which decouples nonlinearity and incompressibility:

(6.6) u0 = uo,

and then for n>0,

(6.7), u t avuu9 + 0 + VpnO = f+O + OivAu' - (u".V)u n  in f0,
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(6.7)2 V.u" +  0 in fQ,

(6.7)3 u-+0 = g +0 on r,

(6.8)1 U1-20)At -/'VLu"+-0 +(un+1-0"V) u+,-O= +u-O+a u+-Vp n+O in 0,

(6.8)2 un+,-O = gn+l-O on F,

(6.9)1 -1Un + l -un+l- - Cev'Lu 1 + Vp+ --" fn+l+pvAun+1-- -(un+i-O.V)un+1-a in 0,

(6.9)2 V.u1 = 0 in 0,

(6.9)3 Un+1 = g+l on r.

A good choice for 0 is 0 = 1-1/'2f and for a and P

0 .1-200,1-

Numerical results obtained using the above scheme, combined to finite element methods are given in

[8]; the above methods has been extended to two-phase flow problems in [9].

7. Numerical Solution of Advection - Diffusion Problems

7.1. Synopsis. Motivation

We follow here the presentation in [8], completed by some recent findings concerning

upwinding methods of order three. In order to concentrate on Zakai equation related problems we shall

illustrate the subsequent developments by considering an advection-diffusion problem associated to the

following stochastic ordinary differential equation

12



(7.1) dx = V(x) dt + dw,

where x is an N-dimensional vector and w a noise. Assuming convenient hypotheses on the noise w,

the probability of finding at time t the state vector x, in neighborhood of ERN of measure dl =

d~j...d N, is p( ,t) d where

(7.2) p(M t) - q( ,t)

q(,7,t)d 7

RN

where the unnormilizaed probability density q satisfies a parabolic equation (see Section 2 for details).

In the particular case where V is divergence free and for simple noise models, this parabolic equation

reduces to

(7.3) _ V2q + V Vp = 0.

An interesting and difficult case is the one where the level of noise is "weak", implying that is

"small". We have then an advection dominated advection-diffusion equation.

Using the splitting methods described in Section 4, the solution of such equations plays a fundamental

role in the implementation of some solution methods for the Zakai equation.

In the sequel, we consider the following initial boundary value problem.

(7.4), P _ CV2p + V . Vp = f in Qx(O,T),

(74)2 p = g on 862 x (0,T),

(7.4)3 p(x,0) = p0 (x) in Q,

with Q C RN.

For solving such problems, particularly the ones associated to filtering, one has to face two outstanding

difficulties, namely

13



(i) When c is small, the problem is advection-dominaied,

(ii) For practical problems, we have N>3 (in fact we may have N-10 and more).

The methods described here have been applied in [81 to N=2 to 6.

7.2 Solution of problem (7.4) by finite differences and upwinding methods.

The methods we need have to be accurate and robust; in our opinion, we have to avoid those

methods requiring parameter tuning.

For simplicity, we consider the case where 2 = (0 ,1 )N, with N=2; the extension to N>2 is

straight forward. With I a positive integer, we define h by h=1/I+1 and consider over n=QUa2Q the

mesh points

(7.5) M, = {ih, jh}; 0 < ij<I+l.

At the points Mij interior to 02 (i.e., 1<ij_ I) we approximate (7.4) by the following finite difference

scheme (with V={V1 ,V 2 }):

n:l n n+1 n+i n+I n+1
p pi - Pi~~+ 1 1  + p 1 ~+ p-+ -4i j~~ ~ + i P i + 

- - 
P i - j 

+  i i + I 
"  t -- 1 - P i j

th 2

p I n+1 n+1 n+1Pi- hPi-ij P~i+lj --. Pit

+ V+ (M,,) V (Mij)h 1h
(7.6),

pn+1 - n+l n+1 - n+i

" V+ (M. )j-1 Nr (M )pj+l -Pi

2 ( h 1 h

= f(Mj, (n+l)At),

with , in (7.6), At(>0) a time discretization step, P) "" p(Mn,, nat), at = max (0,a), a+  max

(0,-a), Va E R, and

(7.6)2 PkI - g(Mki, (n+l) At) if MkI E an,

14



(7.6)3 Pkl _ Po(Mkl).

Scheme (7.6) is of the backward Euler type for the time discretization and of the first order upwinded

type for the space discretization. Probabilists favor the above finite difference scheme because it

satisfies a discrete maximum principle and therefore possesses a probabilistic interpretation.

Unfortunately the above scheme is only first order accurate, very dissipative and not well-suited for

those situations where c is small and V has a fast variation over Q.

An interesting alternative to (7.6) is obtained through a space/time discretization which is

second order accurate and also of the upwind type (however, it does not satisfy the discrete maximum

principle). Such a scheme is obtained as follows:

P0 = (Mk) 1 is obtained (for example) via (7.6);(7.7) Pkl Pkl

then for n>1 and 2<ij<I-1, discretize (7.4)1 by

3 -n+i 2pn+ 1n-I n+1 n+I n+- n+1Si 2 1  2 p+ 4p'f- C Pi+lj +at Pi-Ij + pij+l -+ Pij-1

Ath 2

_3 +i 2n+1 + +i 3 n+1 2Pn+' + l - n+ l
"V 1(Mii) '- Pij -- zlh + 2i2 4 V 1 (Mij) 2 j hV+M :pnl- p 7+ - p,) 2 i+2,

(7.7)2)

3_n+1 - 2pin+l + 1 n+l 3 n+i 9pn+l + 1 n+l

"V' (M..) 2 P ij i-1 2Pij-2 + V (Mij) 2Pi -- j+l 2Pij+2
2 '2 h 2 h

= f(MA,, (n+1)At).

If Mij E Q with either Mij± 1 or M,±,, belonging to r, it is possible that Mi,±2 or Mi+2, are

outside F2; in such a case we can use to discretize V .Vp at Mij, a first order scheme like in (7.6)1, or

alternatively a centered second order approximation like

(78) ( -V) Mi )Pi+j-Pi-ij + 2 hi) Pij+I- Pij-1(7.8) (V.Vp) (M1 2 ) ,, V1 (M, .) 2h + V(i)2

P,+,'j P,-2h(M 1  2h

15



The boundary conditions are treated as in (7.6)2. The fact that the problems under

consideration may have a fast dynamics, requires the use of small h and At; indeed, we can take

advantage of the fact that At is small, to solve the above discrete elliptic problems by successive over-

relaxation, since the method has good vectorization and parallelization properties (in practice few

iterations will insure convergence at each time step).

Numerical experiments (see, e.g., [8]) show the superiority of the second order upwinding

method, over the first order method (it is more accurate, less dissipative and almost as easy to

implement).

7.3. A third order in space upwinded scheme.

Influenced by third order in space, upwinded finite difference schemes, recently developed in

Japan, for Computational Fluid Dynamics purposes, we shall describe here a variant of scheme (7.7)

which uses a third order accurate space discretization of the advection and which is second order

accurate in time. The basic principle of this scheme is to combine two second order accurate schemes,

one centered (in fact, it is scheme (7.8)) and the one used in (7.7). The resulting scheme is more

accurate than scheme (7.7) but less robust; we have then (7.7), and

3-p+' - 2 p'- + p-- ' -- 1 + +1 + -+- -+P - 4p-+
21 2 ii i+lP i-ij ij+1

"  +j-1 ij
At -h2

Sn+1 + n+1- _+I l n+1 n+i lIntl n+l I n++
V+(Mij 1  3p i+lj 2pij Pi-lJ "-Pi-2j+{-(Mj)3  P -lj+2'ij -i+lj- 6 p+2j

h I h

(7.9)

_-+l--n+lpn+l --1 2 n+11 n+i 1 n+1 n+l 1p ,+1

+ V+2 (M.j) 3 ij+- 2 ii ij-l +6pij-2 2(Mi') Pij-12Pij -P'j+I+6 ij+2
h 2 h

= f(Mij, (n+l)At);

we shall use (7.8) for those grid points at distance h of the boundary.
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8. Further Comments. Conclusion

Operator splitting methods provide a systematic way to obtain efficient solution methods for

parabolic equations and inequalities in high dimension. This point of view has been illustrated by the

design of efficient methods for fundamental problems such as the Zakai equation, the Navier-Stokes

equations and time dependent obstacle problems (other applications, like liquid crystal problems are

discussed in [8]). Concerning now more specifically the Zakai equation we would like to point out the

following facts:

(a) Due to the very high space dimension associated to practical problems, there

is no hope that fast solution can be achieved for several years to come. Indeed

the methods described here are quite fast, since the experiments in [8] show

that the solution cost per time step is of the order of the number of grid points;

however this number is so large that the task is still formidable, requiring

among other things highly massive parallelism and huge computer memory.

(b) It is perplexing to realize that several partial differential equation specialists

advocate to solve deterministic systems of advection-diffusion type (such

as the Navier-Stokes equations) by particle methods where the advection is

treated via the integration of a (large) system of ordinary differential

equations, and the diffusion by a random walk method. Indeed the stochastic

dynamical systems leading to the Zakai equation are already in the above form

since they couple the system of ordinary differential equations modelling the

dynamic of the problem to a noise "generator", and this suggests therefore

to deal more directly with the original form of the problem.

(c) Since the Zakai equation is linear even if the associated dynamical system is

not, we can see it as a simplication. This is a quite superficial conclusion

since in the case of a treatment by particle or characteristic methods we

shall have nevertheless to solve a very large number of nonlinear ordinary

differential systems very close to the original one in order to accurately

construct the characteristic curves associated to the advection term.
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Our very conclusion concerning the Zakai equation will be therefore that due to lack of computing

power it is hopeless that genuine real life systems can be treated by this approach; (at least for several

years to come) in fact the situation is very close to the one encountered in the solution of the time

dependent Schrodinger equation where only the simplest molecules can be investigated, precisely due to

the dimension difficulty.
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