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ARO FINAL REPORT
DAAL03-87-0080

F. J. Taylor, University of Florida

( ABSTRACT

Arithmetic bandwidth remains one of the principal bottlenecks in real-time high-end signal, im-

age, and data processing applications. The problem is compounded when ,omplax arithmrtc is
required. The problem, unfortunately, does not stop there. For military applications, size (volume)

and power dissipation often are as important as bandwidth. Unfortunately speed and complexity (size-

power) metrics are often in conflict. As a result, the defense signal processing systems designer finds

that performance reuirements often cannot be satisfied with contemporary hardware. '

As performance demands escalate, the gap between computational bandwidth and packaging will

also increase. This will further stress a defense signal processing system. To achieve the numeric

data processing speeds required in very high-end applications, a highly parallel arithmetic system
called the residue number system [RNS] is considered. Recent results in this field have provided a
framework in which very fast, reliable, and compact VLSI digital systems can be fabricated. It will be
shown that the developed system exhibits a number of advantages which including speed and com-

pactness.

-The reported technology is a central processing element for a signal processing system under
development called the Gauss Machlner.' The Gauss machine is a high RNS-content SIMD array. The

processors are defined in terms of GaussiaA primes which replace traditionally slow complex multiplies
with fast addition. When compared to conventional arithmetic units (e.g., 2's complement) or tradi-

tional RNS implementations, the resulting processors are also shown to be both time and area (silicon)
optimal. In this report, the theory leading to the processor architecture is developed simulated for a

new class of multi-purpose RNS ALUs. In addition, enhancements which extend the utility and versatil-
ity of the Gauss machine are also examined. -

~~You are today where your _

thoughts have taken you-
You will be tommorrow

where your thoughts take you.
J. Allen

1: Gauss refers to Carl Friedrich Gauss, who on March 30, 1796 created the theory upon which this research Is built.

The Machine (Gauss) refers to the functional purpose of the proposed research which Is a now class of General Arith-

metic Unit and Systolic Systems where General Is to be interpreted to mean multi-purpose.
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1: INTRODUCTION

Defense signal (and image) processing systems differ significantly from their commerical coun-

terparts. The principal differences are the need for ultra-high-bandwidths in extremely small pack-
ages which dissipate little power. That is, the mission requirements of a weapon, tactical, or unat-
tended defense signal and image processing equipment are often speciifed in terms of funcitonal
objectives, volumn, and powei budgets. The parameters must also translate into the design of multi-
processor systems. Unfortunately it is often the case that in an attempt to achieve performance in one
of these areas (e.g., speed through multiprocessing), the other design objectives are lost.

Another difference between traditional signal and image processing systems and those devel-
oped for insertion into defense systems is reliability. Reliability, in this case, takes on several conno-
tations. First, the system must electronically be able to provide a layer of fault-detection and correc-

tion capability. In addition, systems must have a high pre-engagement reliability. By this wra mean a
.methodology for rapidly testing a system at time of " power-up " and dynamically repairing detected

failures. This, of course, must be accomplished without a massive infusion of redundant hardware
which would, in all probability, exasperate the non-bandwidth phase of the design. Since military

systems have a much longer life-cycle (e.g., five to ten year) than their commercial counterparts
(typ. one to three years), they must also be robust.

We feel that we have made a technical contribution in this problem area. Our technical approach

to these problems is found in the sub-area of parallel computing theory known as the residue number
system [RNS], or modular arithmetic.

2: REPORT ORGANIZATION

The reported ARO research, conducted under award number DAAL03-87-0080, is presented in
two phases. First, the basic theory and background information, germane to the research is pre-
sented. The new research theory and innovations follow. The new contributions and innovations are
presented in five major areas. They are:

1. Magnitude Scaling - Currently the principal limitation of the RNS is its inability to efficiently

convert RNS data into integers. Called residue to decimal conversion, or RDC, it currently
represents a large temporal and electronic overhead penalty in RNS designs. Unfortunately
the RDC is a critical element of an RNS machine since it is responsible for inhibiting fatal

dynamic range overflows that can easily occur during run-time. The new RNS, developed

under ARO support, radically alters this condition (see Section 5).

2. RNS/VLSI Insertion - It will be shown that the RNS is a technology which is significantly superior

to conventional fixed-point systems in maximizing the speed/area ratio. This is potentially
important to defense system designers who need to maximize throughput in a limited volume.

Our research will also show that an entire RNS machine can be developed using only two RNS
chip types. To develop this concept further, two new VLSI chips are designed and reported
(see Section 6 and 7).

3. Multi-Mode Operation - In order to become a viable technology, the RNS must be capable of
supporting (to a limited degree), conventional arithmetic. Methodologies are developed and

- 2 - HSDAL
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compared which can provide general purpose-like capabilities to a machine possessing a high
RNS content (see Section 8).

4. Discrete Fourier Transforms (DFTs) - An attractive application of the new technology is the
production of DFTs in real-time. DFT architectures are derived and compared in terms of

complexity and bandwidth.

5. Reliability - A preliminary study of the problem of designing machines with a high RNS content
indicates that there is definitely an opportunity to be gained in the reliability area. Fault toler-

ance can be obtained during run-time as well as in the manufacturing process.

3: RATIONALE

Digital signal processing (DSP), whether relating to filters or transforms for signals or images, is
an arithmetic-intensive study with the predominant operation being multiply/accumulate. As a result,
the key to performance is translating the basic algebraic procedures of addition and multiplication into

fast, compact digital operations. The overwhelming majority of digital signal and image processing
operations can be accelerated with the introduction of faster arithmetic units. Existing technology
spans a wide range of cost/performance ratios from large attached array processors to low cost co-
processors. Another option are the popular DSP fixed-point microprocessors shown in Table 1. Still

another innovation are the dedicated multiply, multiply/accumulate, and numeric processor chip which
are summarized in Table 2. These chips offer the designer a wide range of cost/speed/power trade-
offs which can be integrated into a wide variety of DSP designs. When cost is the overriding objective,
arithmetic can be performed by the native CPU in software at the expense of throughput.

DSP chip Year Multiplier Latency (ns) Manufacturer
TMS320C25 1986 16x16-32 100.0 Texas Instruments
DSP56001 1986 24x24--+56 97.5 Motorola
DSP16A 1988 16x1 6--,32 25.0 AT&T
ADSP2100 1986 16x16--32 125.0 Analog Devices
LM329000 1986 16x1 6-32 100.0 National Semi.

Table 1: Fixed-Point DSP Microprocessors

Type 12x2 MUL 12x1 2 MAC 16x15 MUL 16x1 6 MAC 24x24 MUL

Analog Dev. 110n 130n 75n 85n 200n

TRW N/A 135n 45n 50n N/A
AMD N/A N/A 90n N/A N/A
Logic Dev. 8On N/A 45n 45n N/A
Weitek N/A N/A 55n 75n N/A
IDT 30n 30n 35n 35n N/A
CYPRESS N/A N/A 45n N/A N/A

TABLE 2: SUMMARY OF FIXED-POINT ARITHMETIC UNITS

- 3 - HSDAL
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What Are The Other Options?

Even with this concentration of specialized hardware, affordable high-end real-time signal and
image processing remains an unattained goal. The RNS, without question, offers the greatest
bandwidth opportunity in the fixed-point arena. While bandwidths in the tera-hertz range are needed
to process signals in real time, the problem is not one of real arithmetic speed alone. Many important

signal and image processing problems also require complex arithmetic. Due to some unique qualities
of the proposed RNS technology, higher than existing system bandwidths can be realized.

Speed has been the historical forte of the RNS but maybe only its second most important attribute.
The RNS has recently been shown to provide a significant size/speed advantage over traditional de-
signs. That is, given a computational task written as a sum-of-products (e.g.,inner product, linear

convolution), the RNS gate-count per bit of output precision increases linearly in the RNS while the

same metric expands geometrically for a conventional 2's complement design. This compactness can
be used to mitigate a number of serious multi-processor systems-level problems. First, the small
processor cell size and regular data flow make the RNS well suited to wafer-scale insertion. Secondly,
much is known about applying an error-correction error-detection cover for an RNS machine. Thirdly,
if a section of an RNS machine fails, it is well known that the remaining portions can function at maxi-
mum speed as a reduced dynamic range (gracefully degraded) system. Lastly, while the latency

found in conventional architectures are often data dependent, all operations in an RNS machine run at
known speeds. Therefore, developing real-time code for RNS systems is generally a straightforward

task.

Why Isn't The RNS Ubiquitous?

With these potential assets, it is reasonable to question why the RNS has not been been a
stronger force in the field of computer design. A critical assessment of RNS based machines and
architectures would indicate that they have only proven their potential speed advantage in highly spe-
cialized applications. These machines were generally "wired for a specific algorithm". Some opera-
tions which are difficult to implement in the RNS were either poorly handled by the RNS machinery or
exported to a conventional system for processing. The latter would imply that an RNS machine would
essentially consist of two computers; one conventional and one modular (RNS). In either case there
has always been a high part-type to total part ratio in reported RNS designs. That is, the designs were
a collection of specialized subsystems having little functional similarity. If multi-purpose RNS signal
and image processing machines are to become a practical reality, then they must begin to move into
the "middle ground." By middle ground we mean a machine with a high RNS content that can run a
wide range of algorithms at high data rates.

Why Consider Fixed Point?

In light of the introduction of third generation (floating-point) DSP chips, and the availability of
floating-point ALU/FPU chip sets, one may question the importance of a new fixed-point processor.
Such a device is justified on the basis of defense and weapon system needs. It is self-evident that
there is a continuing desire and need to "push" processing power closer and closer to the the sensor

systems. Whether it is called the "front-end processing" or sensor fusion, powerful signal and image
processors at these critical locations can off-load the computational burden on other parts of the
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system, provide a level of immediate threat response, plus decrease the fault vulnerability of a multi-

processor system. Regardless, the database produced at the sensor level is generally the result of
low-level (4 to 16-bit) data encoding. At this level of a system hierarchy, linear filter and transform

operations can be performed in fixed-point without loss of information. The output from these front-
end processors can the be exported to a higher level of the system hierarchy for additional analysis if
required.

4: INTRODUCTION TO THE RNS [1-21]

Traditional number systems, such as sign-magnitude 1 's or 2's complement systems, have long

been the mainstay of the DSP/IP chip designer. However, these systems are not without limitations,
the most familiar being the "curse of carry". Many alternative systems have been proposed in an
attempt to overcome their shortcomings. One of them, called the residue number system (RNS), has
received considerable attention within and outside academic circles. The RNS is an arithmetic system

in which addition, subtraction, and multiplication operations are performed within independent small

wordlength data channels in a highly regular and concurrent manner. Both data and arithmetic are

defined in terms of modular operations of the form X1 = X mod Pi where the modulus Pl is a member of

a pairwise prime modulus set of integers P={pl ... PL} . In this system X1 is called the residue of X

modulo Pi . The modular representation X4 -(Xl,...,XL) is unique provided xeZM=[O,M) (ZM denotes

the residue class modulo M) where M is the integer range of the L-moduli RNS system and is given by
M=IT P1, =1.L. A signed-RNS system can also be established by assigning the integers in [0,M/2)

to positive values and those in [M/2,M) to be negative. The decoding of an RNS L-tuple
(Xl,...,XL)-X can be accomplished using the Chinese Remainder Theorem (CRT) or mixed radix

conversion [MRC] algorithm. The celebrated CRT is a classic mapping technique found in algebra,
information theory, and the RNS and is used to recover an integer from its modular representation. If
M I= r'p, an, = (X ..... Xj), hen

X = XNiM i mod M = Mi[NiXi]modPl mod M [CRT] 1.

where
M1=M/p 1 ; (Ni)Mi=I modoi (i.e. Ni is the multiplicative inverse of Mi modulo pi)

The fundamental attraction of the RNS is found in the way that its implements the primitive arith-
metic operations of addition, subtraction, and multiplication (division is not closed in an integer sys-

tem). If 0 denotes either {+,-,x}, and Z=X4)Y, with X,Y,ZeZM, then X+.(X 1 . .. XL), Y.".(Y 1. ...YL),

and Z4-(Zl,....ZL) where Z, = (Y 4X1 ) mod Pi . The importance of this result may, at first, be over-
looked. The production rule for ZI states that:

1. Arithmetic is performed as a set of L-concurrent (parallel) carry -free operations.

2. Arithmetic I/O is defined in terms of short wordlength modulo Pi operations.

Compared to conventional arithmetic, which requires that the least significant digits be processed

before before the more significant digits, the RNS offers several advantages which have an important
VLSI interpretation. Concurrency suggests that high computational bandwidths can be achieved. The

absence of carry management hardware and data paths can result in fast regular dataflow architec-

5 - HSDAL
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tures. The short wordlengths can lead to an RNS device design which consists of a set of independent
processors having a small silicon footprint and minimal I/O requirements. 1'he independence of data
processing channels can also be used to increase the reliability of a design and its fault trapping
capability. The potential VLSI advantages, however, require that there is an e means of imple-
menting high-speed RNS arithmetic. It is generally understood that RNS arithmetic operations are
implemented using table lookup calls from pre-programmed fast semiconductor memory cells. That
is, semiconductor memor cells serve Da te arithmotic e for an NS st

EXAMPLE 1

Consider the modulus set P={3,5,7} which can be used to uniquely represent all the integers in
the residue class Z106=.0,1 .... M-1} for M=-lpi=105. As an example, consider the integers X=22 and
Y=4 which are encoded as X,-+(1,2,1) and Y4-*(1,4,4) . Since 4x22=88<105 the RNS isomorphism
can be used to represent the product as follows

88=(4.22)+-+ (1,4,4).(1,2,1) = (1,3,4),

and, from the definition of the CRT, one obtains

M/p 1 = 35, N1 = 2; M/P2 = 21, N2 = 1; M/p 3 = 15, N3 = 1

and the inverse of the isomorphism yields

CRT((1,3,4)) = (1 .35.2 + 3.21.1 + 4.15.1) mod 105 = 88. -E-

If the RNS moduli are prime, then arithmetic can also be performed in a Galois filed. Suppose p
is prime, then their is a well known ismomorphic relationship between the non-zero elements of Zp
(.e., (1,2.p-l}) and Zp-. For ot, a generator, for every xe{1,2,....p-1} and yEZp-i there exist a
unique mapping ay = x This is sometimes referred to index arithmetic.

EXAMPLE 2:
Let the IQRNS be defined in terms of a moduli set P={5,7}. Compute Zk-(AXtSY)mod p =

(rarx+rbry) mod p = rz

or Z=(ru+rv) mod p where u=(a+x) mod (p-1) and v=(b+y) mod (p-i)

or Z=(ru (1+rW)) mod p where w=(v-uy) mod (p-i)

p=5 2o -1 p=7 3o --+ 1
21- 2 31 3
22 -4 32 2
23 -. 3 33 6

34 --+4

35 -,~ 5

Suppose A=3, X=1, B=2, and Y=4. Then Z=(3*1+2*4] = 11 -. (1,41 (RNS)

For p=5 [23*20+21*22]=[23+23]

- 6 - HSDAL
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SArr I Adriar ILevel 1

(+ 3-31=0- 1
2 ROM _Level 2

Ade Level 3

Sm n dl (n -1lI n rr~rtinn Level 4

For p=7 [31 30+32"341=[31+36=301(=O
] 4) 2

SAdotar AdtdRr Level 1

La h 1+3 1-15 33 Level 2

R ISM

Adder Level 3

14m
I nd(n- .1 rnr; rtnr Level 4

(4 --,34= 4 mod 7 s'

Until recently, a complex RNS (CRNS) system simply emulated a complex conventional arithmetic
system (except for the fact that arithmetic is performed as modular operations). CRNS numbers were
represented as complex residues of the form Zk= Z(real)k + j Z(imag)k eZp[j] where j is the familiar
imaginary operator (vT) of complex number theory. The addition of two elements a + bj and c + dj
is given by (a+c) mod p + j(b+d) mod p and the product of a + bj and c + dj is given by (ac-bd) mod p
+ j(bc+ad) mod p. It is seen that a multiplication in the ring Zp[j] involves four real multiplies and two
real adds. Thus, the principal limiting operation in a conventionally designed complex arithmetic sys-
tem, namely real multiplication, is also the limiting CRNS operation. Recently an alternative method,
called the quadratic RNS (ORNS), has altered this condition [1]. The advantage of the QRNS over the
CRNS is that multiplication requires only two real products versus four real products and two real adds
as found in traditional computer designs. In the QRNS system, a complex number, consisting of a real
and an imaginary component is recoded into two real components. The condition under which this can
be accomplished restricts the moduli Pi to be primes of the form 4k+1. Formally, it is well known that if

a prime p is such that p= 4k + 1, then the congruence [21 ]

x2 =-1 mod p 2.

has two solutions in the ring Zp that are multiplicative and additive inverses of one another. Let one of

the solutions to the above congruence be j and denote the other by (-. Define a mapping
40:Zp[j]-Zp(eZp (from the CRNS to the QRNS) by

4(a + bj) = (z,z*); z = a + jb mod p and z* = a - jb mod p 3.

7 -HSDAL
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Theorem: The mapping 0:Zptj] - Zp (D Zp is an isomorphism if we define (zl,z 1*) + (z2 ,z2 *)

(z,+z2 ,zl°+z 2 *), and (z,z,*)(z2 ,z 2 *) = (zI 2 ,zI*z 2 *). Furthermore, the inverse of the isomorphism c is

given by

0-1(z.z) = ((2-1(z+z*)) mod p) + j(2-1i-I(z-z)) mod p). 4.

where 2-1 and i-I are multiplicative inverses of 2 and j modulo p respectively (which certainly exist

since p is prime).

Notice that for multiplications, we have reduced the count from four real multiplies and two real
adds to just two real multiplies. This represents a substantial savings in computational complexity as

well as accelerated arithmetic. The mappings 0, -' are easily implemented since j, 2-1', and j-1 are
known a priori. In addition, it can also be seen that the dataflow through the QRNS units is highly

regular and naturally pipelined (table lookup intensive). Finally, the Chinese Remainder Theorem is

used to allow increased dynamic range to by utilizing n primes of the form pi = 4k + 1, i = 1 ...... n. A
2 2 2complex number a + jb is mapped to Z4i E) ZPz E4 ... (D Zpn and the real and imaginary parts are

recovered by applying the integer version of the CRT.

EXAMPLE 3:

As an example consider the case where n = 3 and p, = 5, P2 =13, p3 = 17. Thus, M = 5 .13.17.

Let zi = 3 +j4 and z2 = 10 +j5. Then we get

O(z,) = {(1,0),(10,9),(4,2)}, (z 2) = {(0,0),(9,11),(7,13)}.

The product is given by 4(z)(z 2 ) = {(0,0),(12,8),(11,9)} = (z 3 ), and we can recover the real and
imaginary parts of z3 by

Re(z 3 ) = CRT((0,10,10)) = 10; Im(z3) = CRT((0,3,4)) = 55 EM]E

The QRNS system can also make explicit use of the unique properties of Galois fields. These

properties are summarized in Appendix A. If a modulus is prime, as in the case of the QRNS, then
there exists a primitive element ot which generates all the non-zero elements of the field GF(p). For

example, suppose p=5. Then for ot=2, { otm mod p } = { 20 mod 5, 21 mod 5, 22 mod 5, 23 mod 5 } =
{1,2,4,3 }. By representing the non-zero integers in Zp by their exponents, multiplication can be
replaced with exponent addition. Once a product is produced in this manner, it can be mapped back

into the QRNS using a table to lookup the value of o" mod p (i.e., exponent to integer). This type of

multiplier has been previously used in CRNS applications. Previously, CRNS operations were per-

formed in GF(p 2). When compared to the QRNS technology, the table lookup wordwidths (address-
space) requirements for the CRNS are a factor of two larger. This can represent the difference be-

tween a practical VLSI realization and one that exceeds practical address space limits. The principal
innovation of this theory, which shall be referred to as the Indexed QRNS (IQRNS). The same system
has been reported also under the name Galois enhanced QRNS (or GEQRNS). Regardless, it is impor-

tant to note that the IQRNS is a complex arithmetic system which is multiplier-freel

A brief summary of the IQRNS is as follows. To compute the product of a+jb and c+jd, map a+jb
to the QRNS pair (z,z*) and map c+jd to the pair (w,w*). Now, associate with each of the pairs (z,z*)

-8 - HSDAL
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and (w,w') the ordered pairs of exponents (e, ,e=*) and (ew,e,*). The pairs of exponents are added
componentwise moduio p-1 and the resulting exponents are mapped back to the QRNS and the final

answer recovered from the QRNS by the inverse mapping. In practice, the actual process is more
simple. A complex number can be encoded directly to its IQRNS exponents and can also be recovered

directly from the IQRNS. Thus, the intermediate stages of conversion to and from the QRNS can be
embedded into other operations.

EXAMPLE 4:

Consider now only the moduli path for mod 7. Suppose AX+BY=Z for A=X=5 = 35 mod 7 and
B=Y=4 =34 mod 7, then Z=41.Then 41 mod 7=6 = 33 mod 7.

exponents (GEQRNS form) 5 5 4 4

Binary Addor Binary Adder

observe - no modular correction I --S1 -I FE+
offset-ten adder

s=8-10+[10]=8 I Pipeline r 1 -2 (or s=8)

0<s<l 8 I =1 +3
=1+3 4

=1+4
=5

Using GaAs technology =35, ROM

(8) 4-bit adders
(2) 512x8 ROMs
(1) Register
11 chips/(two multiply- Binary Adder

accumulate)

Sum-of-partial products
collected with CRNS or
GEQRNS accumulator 15 mod 6 = 3 or 33 mod 7 = 6 s'

Studies have shown that the gate complexity of an RNS complex arithmetic finite impulse re-
sponse filter (FIR convolver) is considerably less than that of a conventional design. This feature was
reported by Langston and Miniman [171 in the design of a RNS FIR filter (see Figure 1). This is of major
design consideration and again shows the potential of the IQRNS technology. Because of this feature,
and its proven ability to support high-speed concurrent arithmetic, it becomes a very attractive me-
dium in which to design high-performance DSP/IP systems using either off-the-shelf components or
application specific integrated circuitry [ASIC].
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Dynamic Range in Bits Dynamic Range in Bits
FIGURE 1: HARDWARE COMPLEXITY TRADEOFF

5. MAGNITUDE SCALING

While the RNS and its variations have attracted interest due to their massively parallel arithmetic

structure, it also presents a set of perplexing problems. The principal deterrent to designing RNS

systems is its inability to provide an efficient means of implementing division or division-like (i.e.;

truncation, magnitude scaling, etc.) calls. Such operations are absolutely necessary whenever RNS
multiplication takes place since all products are defined to be full-precision. it is, the product of

two numbers over [,Q-1] would produce a product in [0,Q 2-2Q+l]. Obviously, only a few multiplies

could be nested before the product would exceed any practical dynamic range limit. As such, data

processing within parallel RNS channels must be periodically interrupted for the purpose of magnit'de

scaling. This entails the conversion of the RNS data set into an integer, scaling the integer, and

re-coding the resultant back into an RNS L-tuple. The conversion processes is facilitated using either

the Chinese Remainder Theorem (CRT) or the mixed radix conversion (MRC) algorithm. In either

case, the conversion processes can be temporally inefficient and hardware intense. As a result, RNS

designers have concentrated on applying this fast number system to applications which present a low
magnitude scaling encumbrance.

The classic example of an algorithm with known low scaling overhead is the finite impulse re-

sponse filter (FIR). The Nth order FIR, modeled below:

N-1
y(n) = 7, ajx(n -i); aj E (0, M 1), x0j) E 10, M21 5.

1.0

would have a "worse case" dynamic range bounded by M > N * MI * M2. If the moduli are chosen to

cover this range, then N sum-of-products can be completed in the RNS before a dynamic range

scaling call must be issued (scale factor usually on the order of [SQRT(M)]).

For the integers in ZM, the CRNS, and the QRNS are isomorphically related through the following

system of equations:

Z=X+iY; X, YE ZM, i = 6.
CRNS ORNSZ - " (.. Xr + iYr . . - (.. (ZrZ, ' ..

where
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m, = M/pr; (m -A m,) = lmodpr 7.

j, Zpr; j2 = - Imodp,

(2r22, -1) = lmodp; (j'j,) = Imodp,

X, = Xmodpr = (2 -' (z, + z )modp,)modp,

Y, = Ymodpr = (2r'l jr-' (zr-z, *)modpr)modpr

z= (X,+jYr)modp; Y, = (X -jrYr)modpr

Upon applying the CRT equation to the data in the QRNS and CRNS channels, one obtains

X = (=m(mr1 Xr)modpr mod M 8

(=m,(mr-'2r'(Z, +Zr+))modpr)modM

== (fr(Z + Zr ))modpr) modM

Y = ( m (mr' Yr)modpr) mod M

= (r=mr(mr'2r'Jr- (zr-zr'))modpr) modM

= ( Yr(z,-z '))modPr) modM

The coefficient set (f} and {, } have a constant known a priori value and therefore lend them-

selves to direct DAF implementation. By carefully choosing the moduli set, values of M can be defined

which provide for a simple modulo M adder architecture [20]. However, in practice, it is suggested

that due to the extended precision requirements imposed by a long wordlength value of M (Iog2M vs.

log2 p), a custom CRT/QRNS/DAF device can easily be designed. An exception to this case is the

single modulus QRNS system which, as the name applies, is defined in terms of the single modulus p

2n + 1 for n = 2,4,8.16, and 32 [16]. Here, all QRNS/DAF units are alike.

The CRT converts a QRNS dataset into a Gaussian integer which must then be scaled before it is

returned back to the PFT computation stream. Assume that the scaling constant is MO such that

[X/M0] and (Y/M0] are returned to the system. However, it should be remembered that in order to

support efficient modulo p accumulation with the QRNS/DAF engine, several initial design decisions

must be made. They relate to the moduli size and are:
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* SMALL MODULI AND DESIGN - Use small prime moduli (p, < 6-bits) of the form p, = 4 k, + 1,
choose their product (i.e.; M) to be a nearly radix-2 integer. Use the INT[SQR_ROOT(M)J as
the scaling constant MO which is in itself nearly radix-2 integer.

* LARGE MODULI DESIGN - Use Gaussian primes of the form 2n + 1, n = 2,4,8,16, or 32. The

single ended dynamic range is given by

M= 2 '+2b+ 2c+... +2"+21+... + 1

a=nl+n2+...+nL; b=a-nz; ... ;c=a-n 2 ; e=nl; f=ni; ...

Technically, MO is an integer on the order of 2"/2. If MO = 2a/2 + S, then the division (scaling)

process may be slow and awkward. Therefore there may be merit in choosing MO = 212 which defines

a simple scaling rule. For signed data, a dual adder system is often employed where one adder
computes SUM and the other M-SUM. If the data is positive then SUM is scaled, if negative the other
is evoked. The single modulus QRNS can also be used which provides a decimal database which is

scaled by the [SQRT(M)] = 2' for n = 1, 2, 4, 8, or 16. In all cases, except when division by 28/2 + S is
required for certain values of S, scaling can be implemented using elementary shift operations.

After scaling, the data must be re-coded back into the QRNS. The scaled values of X and Y,

emerging at the output of the divide by MO unit, are generally larger than the range covered by the
largest modulus (the exception being the single modulus RNS). As such it is unrealistic to assume that

CRNS or QRNS encoding can not be performed as a direct table lookup. If the moduli are chosen to be

of the form Pk = 2(10 + 1, and X,Y E ZM, for M )o2("k) it follows that for

K

X = . 2kX[k]; X[k] E Z
k=0 9.

K

Y = 2 [k]; Y[k] 2
k=0

where X[k] and Y~k] E ZK, K=2(k) , then, recognizing that j satisfies j = 2(nk/ ) , one obtains:

Zk = (Xmodpk + jYmodpk) = ((XO - XI + X2 -... XK)modpk + 2nk/ 2 (Yo - Yl + Y2 - ... YK)modpK)modpk ...

z *k= (Xmodpi + jYmodpk) = ((X 0 - X I + X 2 -... XK)modpk + 2nk/ 2 (- Y0 + Y1 - - YK)rmodpL)modpk ...

where the design modulo p operator is greatly simplified by the choice of moduli. In particular, unlike

other CRTs, the developed CRT requires no special modulo M adder (where M is usually a large odd

integer having no efficient hardware embodiment). The new CRT consists only of L-lookup tables (for
an L-moduli system) and a binary adder. The execution latency is on the order of one table looklup

cycle.

6. RNS VLSI INSERTION

A number of industries (e.g; Texas Instruments, Harris, Lockheed, Raytheon, GE, Westinghouse,
Hughes) have working RNS devices. Some use custom chips, others semi-custom, and most off-
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the-shelf parts. Tley have been developed for highly specialized applications such as radar matched
filters. Other demonstration and experimental chips and VLSI studies have been announced by federal
and academic research laboratories (e.g., Mitre, University of Windsor. University of Florida, Univer-
sity of Illinois). To be a viable technology, RNS-based devices should be capable of performing a
variety of operations including those which are considered to be traditionally difficult for an RNS ma-
chine. This list includes magnitude comparison, sign-detection, scaling, and division. These opera-
tions require the that RNS data be returned back to a weighted number system (e.g.. 2's comple-
ment), operated on (e.g., division), and then returned to the RNS for further processing. In some
applications this conversion overhead represents a only a small portion of the total computation time.
However, it is likewise easy to define an algorithm in which the overhead associated with real or com-
plex RNS data processing totally dominates the execution phase. In such a case, conventional arith-
metic data processing would be superior. How to achieve both within the same hardware environment
is therefore an important question.

One of the principal disadvantages of traditional RNS designs has been their high chip type to chip
count ratio. While the majority of the work may be performed by standard size (table-lookup) ROMs, a
wide variety of custom logic devices and circuits were needed to "glue" the system together. This is
undesirable from a board-level perspective and significantly worrisome if VLSI or wafer scale technol-
ogy is to be used to integrate future designs. Based on the IQRNS design, we have shown that an
entire Gauss machine sum-of-products machine can be designed using two processor types (chips),
we call T1 and T2 and represented in Figure 2. These two chip-types can be used to perform encod-
ing, decoding and arithmetic. This architecture can be implemented using "off-the-shelf" compo-
nents or as a semi-custom or custom device. For example, 3.0 ns T1 and T2 modules can be de-
signed in GaAs technology using dual 109100 1.2 ns 4-bit adders (with a ripple configuration),
14GD048 1.0 ns 512x8 ROMs, 0.5 ns 109024 latches and 12G044 3.0 ns 1024x4 latched SCRAM.
Therefore, a 0.333 GIP machine can be designed with these few standard parts all of which have a well
documented VLSI/wafer scaling embodiment.

7. IQRNS LAYOUT AND DESIGN

An earlier reported 4-bit wide QRNS gate array device relied on table lookup multipliers. The
IQRNS system is multiplier-free in that it formally replaces multiplication with the addition of number
theoretic logarithms. As such, the design consists of a collection of adders and table lookup encode/
decode devices. As a direct consequence of the replacement of multiplication with addition, IQRNS
systems exhibit fast, compact and highly regular VLSI structures. An example of such a system is
depicted in Figure 3. It was developed under ARO and NSA support. The NSA support provided
needed CAD tools and computing platforms needed to complete the design (in paticular an HP 9000
series 300 system with HP supplied PC8 tools and HSDAL supplied MAGIC VLSI/CAD toolkit). The ARO
provided researcher support for the HSDAL VLSI design engineers. A second chip development effort,
supported entirely by the ARO, is also reported at the end of this section.

ARO/NSA IORNS Chip:

Each module is completely self contained, and requires no additional "glue" logic. Increased
dynamic range may be obtained by simply paralleling identical (except for table lookup contents) units,
which have been programmed with additional 4k+1 primes.
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The new IQRNS VLSI engine implements the schematic abstracted in Figure 3. The IORNS multi-
plier section consists of an adder and logarithmic correction table lookup cell. There is an external

zero multiplier detection control line that will set the output of the table lookup correction cell to zero if
any of the multiplicands are detected to be zero. The adder section can be used as an accumulator or
to add externally supplied data to a partial product.

Figure 4 depicts a preliminary CMOS VLSI layout of the previously mentioned module. The chip

has been designed in a 2.0 micron N-well, single polysilicon, double metal technology (MOSIS), and
is a combination of standard-cell and full-custom design. Operations may be performed on up to eight

bit operands. The ROM contents must be determined a priori and programmed at mask-level. The
ROM's represent the slowest elements in this system, due to the long pulldown delays associated with

minimal gnometry programming transistors. In order to decrease access time, bit-lines were kept

relatively short, and differential sensing techniques were employed. Aggregate source-island diffu-
sions of programming transistors were also kept small and liberally grounded, and long polysilicon

word lines were tied to second level metal at regular intervals. The eight-bit adder modules are

composed of two standard-cell four-bit carry look ahead blocks which have been connected in a ripple

carry configuration. The delay of an eight bit adder is thus twice that of each of its constituent parts.
The total delay must be less than or on the order of the access time for a ROM if the pipeline rate is

to be maintained. In general, as is the case here, n-bit adders tend to exhibit less propagation delays

than do ROMs with n address lines. The resulting pipeline rate is thus determined by the ROM delay,
which has been simulated using SPICE models. A worst-case modest throughput of 50 ns/operation

may be expected from the preliminary design.

In addition to potential IQRNS speed advantage, the described IQRNS chip occupies a relatively

small silicon area of 4.845 mm 2. The small area permits optimistic estimates for yield, which is a
primary metric for all wafer-scale and multi-processor approaches. If we assume a lower bound of

three fatal defects/unit area of silicon [221, yields on the order of 86% and below may be anticipated.
As feature size is further scaled downwards, yield and throughput will increase due to reduced area

and delay, respectively.

The chip will be submitted to MOSIS in early 1990.

ARO IORNS Chip:

Based on the experience of the reported IQRNS chip, a second T1 design was started and is
nearing completion. The system is being developed using CADENCE software tools and a Harris 1.5
micron CMOS standard cell technology using the Harris HSC1000 standard cell library. The ROM ac-

cess time, for this technology, is 12ns. The modular arithmetic lookup ROM is configured as a 216x35

device. Simulation is being performed using Cadat and Silos. The testing provides 95% fault cover-
age. Moduli supported by this chip are {113,109,101,97,89} which provides a dynamic range of
4.29x10 9-32-bits. Generators for these moduli are o,={3,5,2.6,3} respectively. Chip layout details are
summarized in Figure 5.

The chip will hopefully be fabricated in a test wafer lot in late 1989 or early 1990,

L- is- HSDAL



. ARO Final Report - DAAL3-87K-0080 October, 1989

U- j

U I

It ~~ P&f.kVI_

.......

17U

Figur 4:VS xene 1Ci

- 16 - HSDAL



-. .'ARO Final Report - DAALO3-87-K-OO8O 
October. 1989

Fiur 5:MM 1T5.CO iAOCi

-17- HSDA1



."ARO Final Report - DAAL03-87-K-0080 October, 1989

8. MULTI-MODE OPERATION
Conventional Arithmetic

The RNS processor developed to this point can support both real and complex modular arithme-

tic. These devices are intended for use in a high RNS-content machine (viz., the Gauss Machine). It

is assumed that the system programmer or compiler would be able to determine when a task can be
more expeditiously performed in an RNS mode versus a traditional implementation. Examples would

be those operations characterized by long real or complex inner-products (e.g., convolution). This
indicates that new efforts should be placed in the area of "algorithm engineering" in order to design

computing routines which are maximally dense in contiguous sum-of-product calls. The programmed
task is then assumed to be sent to a mesh-connected (e.g., bus-connected, systolic) array of locally

cnmmunicating T1 and T2 processors for execution.

As previously noted, there are situations where logical and arithmetic operations are best per-

formed in a conventional system rather than the RNS. Examples are

i) magnitude ccmparison

ii) sign-detection

iii) division

iv) isolated multiply-accumulate

Consider the last entry, for example. The RNS should be thought of in the manner in which one
would justify the use of an attached array processor. Here, unless there are a number of multiply-ac-

cumulates to be performed in succession (typically 50 or more), the set-up and data I/O overhead of

the array will cause the system to have a lower bandwidth than if the task was run on the native ALU.
Similarly, isolated multiply-accumulates also carry with them an overhead penalty for RNS encoding
and decoding which can negate the speed advantage gained by the fast RNS multiply. In such situ-

ations, the GAUSS machine would benefit from a conventional mode of operation using the hardware
common to the RNS section. To design a conventional system from a collection of GAUSS proces-
sors, they would have to be configured as a cellular array 114]. Such an array is depicted in Figure 6.

However, in order to be consistent with the processor architecture, the fundamental elements must

conform to a Ti or T2 architecture. In this context, three technologies can be considered. They are:

(i) Rioole-carrv multioliers

One direct method of using the IQRNS devices to support conventional arithmetic is to use only

the adder portions of the T1 and T2 chips. These adders would be configured as a ripple-carry
multiplier. While being slow, they do offer a simple way of introducing conventional arithmetic into a
machine with a high RNS content.

(ii) ROM-based orocessors

The most dense table-lookup technology is ROM. Therefore, if highly compact devices are the

objective, then ROMs should be used. However, the IQRNS mapping rules are fixed by the moduli and
therefore cannot be dynamically altered in a ROM implementation. There are, however, several op-

portunities. They are:

(a) Intelligent compilers

An RNS machine can be designed as a mesh array of locally communicating T1 and T2 devices.

Attached to the boundary of the array can be a selected number of general purpose ALUs. An intelli-
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Octber 1989

z4 z3 2n

Figure 6: Cellular Array

gent compiler would interpret the code as a set of arithmetic operations which would be scheduled to
minimize the effects of mode-switching. The compiler can also make use of the general purpose
processor to off-load RNS-inefficient operations and maintain dataflow regularity.

(b) Modified IQRNS arithmetic
For real data, the ORNS degenerates to the RNS. Suppose that a prime modulus p=4k+1=2+1 is

used (e.g., n=2,4,8,16). Let XEZm and YEZm' be real where m=2m m=n/2. Then ZXYZm. where
m '2 2 <p. Alternatively, Z can be expressed as Z=m'ZHi+ZLo. In the modified IQNS case, X and Y
are sent to the Ti cell in exponent form (GEQRNS). The output of the IQRNS multiplier is defined in the
QRNS system which is, in this case, the same as the RNS. This output can be, in turn, sent to a
cellular array for extended wordlength processing. The data sent to the multiplier would be required to
pass through the exponentiation encoder. However, for real data this is simple a one-time table look
up mapping and requires no additional arithmetic.

Suppose two IQNS Ti devices are programmed for p=17 = 2'+1. It then follows that m'=22=4 for
this example. Then the GEORNS table is generated by c=3 as shown below:
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Suppose X=10=4* [2] +2 and Y=13=4*[3+1. then Z=130=64 [2]+16 [0]+4 [0] +2 , which would

be processed as shown in Figure 7.

X=10= [YHi=2:YLO=2] *, low exponent Y=13= [YHi=3:YLO=1I

Figureiat 7: Clluar MltilieAsE DER-I ~~~~ ~ 5 142 . " w~g...

Atthe Aexpen of compactes, a more r t RS p can be aRE, '} :ADDE"R ,. weight = 64

I . .. weight = 16

. - .carry data E egt

Figure 7: Cellular Multiplier

(iii) RAM-based processors

At the expense of compactness, a more robust RNS processor can be architected using RAM. In

a RAM-based design, the compiler, using a lookahead policy, would force the write enable to become

active for some GAUSS processors and down-load the appropriate table look-up contents. The ques-

tion then becomes speed and efficiency. These factors are predicated on the GAUSS architecture,

memory channel bandwidth, and the total number of available processing elements. Say, for exam-

ple, such a machine may be overpopulated with processors by 10%. The surplus units would generally
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be used to provide redundant error correction/detection, or serve as standing replacements for failed
processors. These processors can also be used to support general purpose arithmetic as well, pro-
vided their tables are properly updated.

The key issue becomes how to rewrite the memory tables. There are several options and they

are:

al Bit-slice microprocessor
Bit-slice microprocessors can be integrated together to build long wordlength computa-

tional units. Some 4-bit wide commercial bit-slice architectures make routine use of table lookup
arithmetic. The problem with this technique is severe address space compression. If the GAUSS
processors are, for example, 8-bit engines, then they can accept only two 4-bit operands per call
(i.e., 40-bit wide processor). As a result, such a design may require considerable resources to

achieve high-performance multiplication.

b) Bluestein's identity I
Bluestein's identity states that

x y2 (x+ 2  10.

It can be used in implementing chirp-z transforms and other applications. The tables can be written to
accept x, y. and x+y and produce their square. The output wordwidth is double precision as assumed
by the cellular array architecture shown in Figure 5. The three distinct terms would be combined in the
indicated manner.

c) Quarter-souare identity 1! 1

The quarter-square identity states that

xy= (.) 2 - Y)2 11.

Similar to Bluestein's method, it only requires two terms be recombined to form the full precision
product. In addition, the algorithm has a direct implementation using a type T1 processor.

Based on a quarter-square algorithm, a bit-slice equivalent processor can be architected. As-

sume that x and y are n-bit numbers and the table size of the T1 device is 2"' by n. Then two
processors would be required to create the full precision product with an arithmetic speed equal to that

of an RNS operation.

An alternative is to reduce the wordwidth of a GAUSS processor and add a second table lookup
memory on-chip. Here one table can be "set-up" while another is being used. This has several

advantages in supporting multi-mode as well as systolic data processing. The disadvantage, of
course, is a reduced wordwidth per processor. Using such a device, conventional mode arithmetic
can be performed directly using one memory call for the least-significant partial product and the other
for the most-significant. The speed would remain that of an RNS operation.

9. DISCRETE FOURIER TRANSFORMS (DFTs)

The discrete Fourier transform (DFT) is an invaluable signal and system analysis tool. Neverthe-
less, many important DFT applications elude a successful implementation because of their high real-
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time bandwidth requirements. A number of DFT algorithms have been proposed to accelerate the
transform process. These schemes establish a variety of speed-complexity tradeoffs (e.g.: Winograd
DFT). However, a principal obstacle to achieving high transforms rates remains ALU speed. More

specifically, DFT algorithms are complex multiply - accumulate bound. The core of many high-end
DFT machines are commercially available fixed-point single chip multiply-accumulators, having a la-
tency on the order of 100ns and which may also dissipate several watts of power. Higher throughputs
can be achieved by introducing additional hardware and performing some or all of the arithmetic op-
erations concurrently (i.e.; parallel processing). Unfortunately, a complex multiply-accumulation call
consists of either four real products and four real adds (conventional complex) or three real multiplies
and seven adds per complex multiply-accumulate (Toom-Cook) cycle. As a result, the hardware
complexity, bus complexity, and cost of a highly parallel DFT machine can rapidly become unaccept-
able.

RNS/DFT ARCHITECTURES

Taylor and Huang [121 studied the CRNS-DFTs designed as:

* a radix-2 FFT o a Good-Winograd DFT

* a radix-4 FFT * a Winograd DFT

and found that the principal obstacle to high throughput was the magnitude scaling servicing. More
recently Taylor [12] repeated the study using the QRNS. Again magnitude scaling was found to be the
major throughput delimiter. However, it was noted in the previous section that FIR structures are
maximally synergistic with RNS architectures. As a result, it would appear as though DFTs appearing in
FIR convolution form should be considered. Two such algorithms are the chirp-z transform (CZT) [13]
and (Rader's) Prime Factor Transform (PFT) [11]. The RNS/CZT is being studied by a group a MITRE
[14] and is given by:

N-1

X(k) = I y(n)h(k- n); y(n) = x(n)W2, h(n) = W N ; WN = exp(-j2;n/N) 12.
n=0

If x and W are coded as CRNS or QRNS words and bounded by Q, then the dynamic range required to

capture (without overflow) the kth harmonic is on the order of NQ4 .

The second method, namely a PFT of length N, offers an alternative approach. More specifically,
if N is a prime number, then there exists a primitive root of unity (say c) of order N-i, such that

aN- modN = 1. The elements of the multiplicative group generated by a, namely (a' } are isomorphic

to the integers {1,...,N-} aNN. Using the substitution rule provided by the isomorphism, one can
rewrite the basic DFT equation to read:

N-I

X(0) Z x(n); 0th harmonic
=0 13.

N-I

X(k) -x(0) = >j x(n)WN'; k E NN
n.0
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Further manipulation yields;

N-2

X(k) -x(O) = > x(a-)modN 14.
m-0

N-2

X(a'modN) - x(O) = >"x(ammodN)Wa(0modN
m=0

n = am mod N; k = amodN

which represents a FIR convolution operation.

Example: L = 5, a =2 such that a4mod5= 1, then

"x(ao =1) -x(o)1 [W1W2 W4 W31FX(l)
" (a' = 2)-x(O)I = W2 W4 W3 W1  x(2)
" (a2 =4)-x(O) w4 w3 w1 w2 Ix(4)I
X(a3 = 3) -x(O)J W3 W1 wI wLx(3)J

observe the symmetry of the exponents along the
anti-diagonal which connotes a circular convolution
operation. As a result, the above algorithm can be
mechanized as suggested in figure shown below:

circular shift-register
x (n) - .

-' , TT TT

X(0)W =1 2 W W3 X (k)

permuted
spectrum

FIGURE 8: Prime Factor DFT

A PFT RNS/CRNS/QRNS implementation has dynamic range requirements on the order of NQ2 (vs

NQ4 for the CZT and much higher for the FFT). Therefore, the PFT opens a unique window of opportu-

nity for the PNS technologist in that the strengths of the RNS (namely fast complex arithmetic and FIR
modeling) can be emphasized while its weakness (magnitude scaling) is minimized.

GENERALIZED PFTs

While the theoretical length of a FIR is unlimited, the RNS magnitude scaling constraint imposes a
practical limit on a FIR's length. This value is moduli limited and will vary from design to design,

Suppose for example that M = 232 and that 14-bit coefficient and variable precision is desired. Then
the FIR length is bounded form above by 16. In general, a discrete Fourier transform of length N is
desired where N > 16. Long transforms can be built using a system of small length transforms
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provided that the data is properly interleaved. When N can be factored into a system of relatively
prime integers, such that

S

(Case 1): N = HNi; GDC(Ni, NJ) = 1 15.

then a system of small sample length N1-PFTs can be arranged in S levels and interconnected along
straight parallel paths. This is referred to as a Good-Thomas PFT. However, if N is highly composite

and satisfies

(Case 2): N=N k; k a 1 16.

then intermediate transform data must be passed between the k levels of Ni-point DFT modules after
being modified by a "butterfly" coefficient multiply along permuted paths. This is referred to as a

Cooley-Tukey PFT.

EXAMPLE 6:

Data Organization for Prime Factor DFT;L point DFT; L-1 point linear convolution; [L/2] convolutions;

[L /2] (L-1)=1024 (SCRAM size); L=44 (maximum)

37 point DFT 35=5*7 point DFT
e (0) e(0)
e(1) e(1)

e(35) e(33)
e(36) e(34)

e(1) e(O)
e (2) e(5) second pass data

modulo 5
e(36) e(25)
e(0) e(30)

e (2) e(1)
e (3) e(6)

e(0) e(26)
e(1) e(31)

e(19) e (4)
e(20) e(9)

e(17) e(29)

e(18) e(34) UULJ

Each of these policies reflect a distinctly different design philosophy. At first it would appear that
the second case may offer the best design choice in that only one type of chip need be designed,
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namely a N-point PFT. Also, since the QRNS simplifies complex multiplication, servicing the addi-
tional butterfly operations becomes a less formidable task than previously thought. However, several
important issues should be recalled and they are:

1. Scaling Encumbrance: Managing potential overflows through magni'Jde scaling was previously
shown to be a high overhead operation. If constants and variables are bounded by Q, then the

data will leave a Ni-point PFT level with a worse case amplitude on the order of NjQ2 if no

butterfly corrections are required and NjQ3 if such actions are necessary.

2. Non-reoccurrina enineering cost: Normally one would like to reduce the number of custom
VLSI circuits in a design in order to reduce the non-reoccurring engineering cost. Therefore,

at face value, the Case 1 design would appear to be at a disadvantage. However, such is not
the case since a FIR and the PFT are both linear operators. A PFT of any legitimate size can be
implemented as a collection of PFT cells. The outputs of each FIR section are collected by a
modular adder tree. As a result, only one FIR/PFT engine need be designed as a custom chip.

PFT IMPLEMENTATION

In the previous section the PFT was shown to reduce the DFT down to a highly desirable FIR
convolution task for simplified RNS implementation. As such there are two viable design strategies
that should be considered. They are:

" sum-of-products (SOP) form using general purpose RNS multipliers.

" distributed arithmetic filter (DAF) sum-of-products processor which will replace general multi-
plication with table lookup scaling operations (scaling is to mean the combining of a single
variable with a known a priori constant using the rules of multiplication) [14]).

Several SOP design options are available with the first being to replace the lumped multipliers and
adders with CRNS or QRNS engines. It is assumed that only one CRNS or QRNS complex multiply
accumulate unit will be available per modulus. Each modular N-sample PFT section is summarized in
Table 3 and is based on the assumption that modular multiplication and addition can be performed as a
direct table lookup operation (if required) in one table lookup cycle T(cycle).

EXAMPLE 7:

LONG DFTs

For DFTs of length 15 samples or greater and PFT lengths of L={3,5,7,11,13}, following direct PFT
transfrom lengths are available:

15 =3*5
21 =3*7
33 =3"11
35 =5*7
39 =3*13
55 =5"11

65 =5"13
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INDEX
ITEM CRNS QRNS (GF) DAF

1. Hardware (per modulus)
a. shift-registers N-1 N-1 N-1 N-1
b. modulo(p) multipliers 4 2 0 0
c. modulo(p) adders 3 2 2 4V-2
d. modulo(p) subtracts 1 0 0 0
e. modulo(p-1) adders 0 0 2 0
f. GF tables 0 0 2 0
g. DAF tables 0 0 0 2V

2. Memory Requirements (b-g) in bits 22n+3xm 22n*2xm 22n+Z26 xm V(2 2 n 2.6xm)#

3. Pipelined latency (per harmonic) N+I N N+1 m+V 0

4. Pipelined cycle time (b) (b) (c) (c)
Tcycie = longest extended delay

5. Latency-Complexity Product (2 x 3) m(N + 1)22m+3 raN2'm+ 2 m(N + 1)22m+2.6 -m 2V2 2 m +2
.
6

# for common address space design (Q = 2m)

p, S 2' (dynamic range of target moduli)
V = INT rN/Qj
Vo log2(V)

COMPARATIVE LATENCY COMPLEXITY PRODUCT

ITEM CRNS QRNS GF DAF (n=6-bits)
N = 13 N = 25 N = 37

1 2 1.516 3.264 3.154 1.115
1RNS " 0.5 0.659 0.306 0.317 0.324

QRNS 1 0.659 0.355 0.343 0.339
1 1.516 2.814 2.914 2.952

1 2.15 2.08 2.05
F 1 .464 0.480 0.480

TABLE 3:

77 =7"11
91 =7*13
105 =3*5*7
143 =11*13
165 =3*5*11
195 =3*5*13
385 =5*7*13
455 =5*7*13
1001 =7*11*13

Using Good-Thomas ordering, M would be equal to 32 + Iog2(length). One thousand point type
two pass DFT can be generated using the relatively prime 33 and 35 point sections. Using Cooley-
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Tucky ordering, M would be equal to 32 + 16 + 1og 2 (length) unless it is treated as a two-pass algorithm
with intermediate CRT scaling as shown in Figure 8:

QRNS QRNS QRNS

Radix-R Radix-R
x(k) DFT DFT

CRT Butter- CRT X (k)
16bt, g:3+ Scaling fly Scaling 4

16-bit' eg 37+ 16-bit Scaling 2-bit a 16-bit eg: 37+
R=35 bits R=35 bits

Output
Spectrum
Sent to

Figure 8: Two-Pass PFT CRT

If prime moduli of the form 4k + 3 are used, then the multiplications can be converted to additions
if the data is coded as the exponents in a Galois field or extension field. If the ith modulus is bounded
by 2", then each exponent in the extension field is a 2n bit word. While not imposing a severe exponent
adder design problem, it does force the use of small moduli (< 6 bits) if fast table lookup Galois to
CRNS decoders are to facilitate the code conversion.

An alternative is to encode the data into first the QRNS and then map each QRNS digit in ZP into
GF(p) for p = 4k + 1. As a result, the address space requirement to map back to the QRNS from
GF(p) is but n-bits (vs. 2n-bits for a CRNS or GF(p 2 ) code). Computations would be performed in the
QRNS/GF(p) domain until an overflow prevention scaling call is required. The QRNS data set would be
mapped into an integer (passing through the CRNS), scaled, and encoded back into the QRNS. A
QRNS/GF can be designed using modulo (p-i) index adders, table lookup GF(p) to Zp code convert-
ers, and modulo p adders to accumulate the decoded QRNS partial products. There is prior evidence
that whenever applicable, a DAF/FIR will offer a significant throughput and packaging advantage over

other SOP designs [131. If the largest modulus is p, and if p < 2", then the DAF version of the N-point
PFT given by:

X,(s) =I> (i 1 [ts])Jmod(p); i= 1,.... N 16.

where

xi(r) = x(a)mod(p1)

X1(s) = X(a')mod(pi)
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Wi0) = Wa*
rmod(pi)

4i(t, s) = x(0) + xi(r)Wi(r + s) mod(pi)
i=0

That is, using modular arithmetic, the bits from the rth common bit location of the variable data set {x}

are presented as to the mapping operator which responds with the appropriate precomputed value of

D mod p. After n successive table calls and shift/accumulates, a harmonic cycle is complete. It is

reasonable to assume the a modulo p shift/adder can be designed to run at least as fast as memory if

p is chosen to be on the order of 2n [1]. If p is an arbitrary prime, then special purpose combinational

logic circuits or an offset (biased) adder would have to be used. In particular, if the table cycle time is

again given by T(cycle), then a filter cycle would be completed in (n+l) T(cycle) seconds. Using a

QRNS code, with L moduli chosen to be Gaussian primes of the form 2n + 1, for n = 1,2,4,8,16, or 32

[15], 2L DAF PFTs would be configured. The partial product lookup table would be defined in terms of

the coefficient set {Wi(j)} of equation 16. For a QRNS implementation, this would be a set of

two-tuples de.,oted { wi(J), w* (j) }. In practice, the partial product table would be implemented using

two distinct semiconductor memory chips defined by { wi)} and { wt* (j)}.

There exists a straightforward implementation procedure to handle the case where the length of a

N-point DFT exceeds the capacity of an individual high-speed DAF table. Suppose that the size of a

lookup table is chosen to be 20 xn in bits (i.e.; Q-bit address space) and a N+1 sample PFT is desired.

Then referring to the non-reoccurring engineering cost discussion of the previous section, DAF/PFT

would consist of 2T tables where T = INT[N/Q], and 2(T-1) adders configured as an adder tree as

suggested in Figure 3. The design could be highly pipelined for ultra-high speed applications. A

non-pipelined DAF/PFT would run at the following estimated rate:

p for DAF calls n*T(cycle)/per moduli

adder tree latency - (log2V) * T(cycle)/per moduli

total -- (n+log2V) *T(cycle)/per harmonic

10. RELIABILITY

The reliability of signal and image processing machines is always a concern. This is especially

true of systems which must always function and can not be maintained once they are committed to a

mission. Reliability, for a high-content RNS machine can be viewed in a four-fold manner. They are:

1. Reliability of the RNS parts:

An RNS system having a dynamic range equal to or in excess of 24-bits is estimated to require

considerably fewer gates (i.e., less area) than comparable conventional fixed-point counterparts.

The advantage becomes even greater when longer convolution, transforms, or inner products are

considered. Based on a 75% area reduction model, the improvement in device yield would be on the

order of seven-fold. Furthermore, a number of T1 and T2 IQRNS processors can be integrated onto a
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single chip and some elements reserved as standby (redundant) processors. Particulars will be de-

ferred to a future study when the chip architecture is better refined.

2. Error Correction and Detection

The ability to detect and correct random errors in a defense signal and image processing system

is of major importance for obvious reasons. Much is known about using the RNS as an algebraic error

code (i.e., verify the accuracy of a computed result [1]). These techniques are generally based on

the use of elementary redundant codes. In a L-modulus system, for example, L+1 residues may be

transmitted with the (L+lst) considered a redundant digit. Here p(L+l)>p(i) for i [1 .... L] (i.e., the

(L+lst) moduli is the largest in the moduli set). Using this method, the result of an algebraic operation
is reconstructed using (L+I) CRTs, each of which accept a different collection of L RNS digits from the

(L+I) RNS digit field. The L+1 results are compared and a majority-rule used to determine which is the

correct result up to the limit of the code (here it is an error in one RNS digit). This technique, while
valid, does extract a high temporal and hardware penalty. However, in a real-time defense applica-

tion, the error handling process cannot compromise the bandwidth of the machine. By this we mean

that the overhead associated with error correction and detection must be transparent to the system.
We have developed a simple system which behaves essentially like a SECDED (single error correction

- double error detection) code. It is based on a two-dimensional parity code which assumes that:

1. All RNS transactions at any cut-set through the RNS system consists of L RNS words being

communicated along regular bus-connected paths.

2. The maximum modulus is bounded by n-bits (n_<8-bits typically)

3. All RNS words are appended with a single parity bit (assume even parity).

4. An (L+lst) channel can be designed which runs at the same pipelined data rate as the multi-

channel RNS processor. The (L+lst) channel need not contain any RNS arithmetic capability.
If desired, it can simply be a collection of (n+l)-bit shift registers.

An RNS L-tuple {Xi,...,XL}, prior to communication (on or off-chip), would be mapped into the

two dimensional parity code shown in Figure 9. The code is (L+l)x(n+l) bits. More importantly, only
simple (real-time) parity checking circuits are needed to detect and correct for a transmission error.

Many double errors can also be detected using this processes (provided they do not occur in the same

rows or columns).

3. System-Level Error Detection

Often a defense system remains idle or in a standby state. Nevertheless, it must be tested

periodically. This process should be automatic as well as self-repairing. Suppose a collection of M

identical T1 and T2 cells populate a system. Suppose further that only M' are needed to support the

mission. Then M-M' can be taken "off-line", in a round-robin sense, for testing. The testing of these

devices would simply consist of supplying the device with a error-signature binary pattern and evaluat-
ing the output. This is identical to the acceptance test used for combinational logic (e.g., PLAs). A

failed cell would be labeled as such and not returned to the resource queue. This is a very effective
method of performing self-test and repair.
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L=3. X1=329, X2=69, X3=130

X 1 01011 01 ,'1 11 __,__,,___,___1__.____

00100101 A'. Locatio/ X 0
2 of __2 _0@_10__ 1

Transmission
X 0,1000010: Error X 0 1 0000 1 0 0

3 Ero

column column '1 x t I
parity parity

row row
parity parity faults parity

Transmitted RNS complex Received RNS complex

FIGURE 9: Real-Time Error Correction and Detection

4. Graceful Degradation

There may be times in the life-cycle of an RNS machine when there remains insufficient redun-

dancy to mask errors. When this occurs, a L-moduli RNS processor (assuming n-bit moduli) can run
with L-k moduli with a degradation in dynamic range of kn bits out of Ln bits. This is, in fact, a classic

example of graceful degradation

11. CONCLUSIONS

The design theory and methodology of a multi-purpose arithmetic processor for use with ma-

chines having a high RNS content has been presented. The study provides a means for designing the
first high-RNS content machines with the ability to serve a broad class of applications. This is a

departure from traditional RNS design which have been application- or algorithm-specific. RNS opera-

tions in both real and complex PNS modes are supported with real arithmetic on real operands. The
multiplier element of the processor is based on Galois filed theory and uses exponent addition to

replace traditional multiplication. As a result, the "multiplier-free" chip has a simple and regular

architecture. A complete multi-purpose system can be defined in terms of two chip types, called Ti
and T2. The T1 and T2 parts are virtually identical in terms of their internal layout. This eliminates the

high part-type to part-count handicap of previous RNS designs.

A 50MHz silicon extended T1 chip is reported. It demonstrates one of the important, but often

unrecognized, speed-area advantages of the RNS. The small compact RNS engine will lend itself to

future wafer scale integration and high-level applications requiring a blend of speed, volume, and
fault-tolerance beyond that obtainable using conventional architectures.
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APPENDIX A:

FINITE FIELDS AND THE IORNS

We are now in a position to present some results from the theory of finite fields to arrive at an
extremely efficient technique for complex multiplication known as the Galois Enhanced Quadratic Resi-
due Number System.

Our primary interest will be the multiplicative group of the field. Recall that by Lagrange's theo-
rem, the order of any element of a finite group divides the order of the group. We then have the
important result:

Theorem 1 Let F be a finite field of order r. Then F*, the multiplicative group of F of order r-1 is cyclic.

Proof: Let IFI = r and let g be an element of F* with maximal order m. Then by Lagrange's theorem,
ml (r-1), so m < r-1. Conversely, consider the roots of xm - 1 in F*. Let 0 e F* have order n.
since the order of any element of a finite group divides the order of the element of maximal order

in the group, we have n Im so that m = kn for some integer k. Then

p- -1 = (p) - 1 = 1kn - 1 = 0

so that all r-1 elements of F* are roots of the polynomial xm - 1 which has at most m distinct roots
in the ring Fix]. Thus m > r-1 which means that m = r-1 and hence F" is cyclic.

A generator of the cyclic group F* is called a primitive element.

Now, we know that every finite field is of prime characteristic p. Thus, every finite field contains a
prime subfield Z. and hence can be viewed as a finite extension of Z.. With this in mind, we have
proven the following theorem.

Theorem 2 A finite field F has pn elements for p the characteristic of the field and n the degree of the

minimum polynomial over Zp of a primitive element y of F.

When speaking of a finite field of order p", we call it GF(pn) (for Galois Field).

We have actually laid the foundation for a useful scheme to multiply complex numbers. Recall
that in the QRNS we exploited the isomorphism between Zp4j] and Zp E$ Zp. Since p is a prime, Z. is a
finite field. We map Gaussian integers a + jb and c + jd to their images (w,w*, (z,z*) in Zp (D Zp and
compute the product (wz mod p, w*z* mod p). We are actually computing two products in the cyclic
multiplicative group of Zp. Consider the following alternative to multiplication:

IORNS: Since ZP is cyclic, there exists a generator y r ZP. Thus,

w = ,yew and z = y'z

for some integers ew and e,, called the logarithms of w and z. Furthermore, the logarithms will always
be smaller than p-1. Hence, we can compute the product by

w. z mod p = y'- .y'z = (y)(ew+ez)mod(P-1)

The same procedure is carried out for w* and z*.

This suggests that once the mapping from the Gaussian integers is carried out, we can retrieve the
logarithms from a look-up table, add the exponents modulo p-1 and then perform the exponentiation
by look-up table, as well. What we now have is a procedure for the multiplication of two complex
numbers that involves no multipliesl
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APPENDIX B:

Since the last short-from scheduled report was filed (8/14/1989), the following DAAL03-87-0080
activity is reported.

Student support:

Mr. Glenn Zelniker, Ph.D. candidate

Papers Accepted:

1. An RNS Prime Factor DFT - accepted as a full paper by the IEEE ASSP Society

2. Multiplier Policies for Digital Signal Processing - accepted by as a full paper by the IEEE
Circuits and Systems Magazine (with G-K Ma).

3. RNS Based GaAs Signal Processing Systems - MILCOM 89, Boston, Oct. 1989, with Kosek,

Griffin, and Hardy

Industrial and Federal Contacts

1. With L. Langston, Texas Instruments Inc. in October - re: Joint Proposal to SDIO-Hunstville.

2. With M. Kosek, Harris - re: GaAs RNS opportunity and design aid.

3. With M. Griffin, United Technologies Inc. - re: RNS technical paper development

4. Members of the Image Processing Technical Staff, Martin Marettia Inc. - re: RNS replacement

of GAPP technology for DFTs.
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