
XINOTECH RESEARCH, INC.
TECHNOLOGY CENTER. SUITE 213
1313 FIFTH STREET SOUTHEAST

MINNEAPOLIS, MN 55414
U (612] 379-3844

October 25, 1989

Defense Technical Information Center
Building 5, Cameron Station

S Alexandria, Virginia 22314
Code S47031

Dear Steve:

We are enclosing a copy of the Progress Reports for the first two months of ONR's
N89-001, Phase I. This is contract number N00014-89-C-0277.

Sin zrey,

Romel River
Director of Research
RR/kh

QD

Approveid foT pu , c reoge(
Digtnbuuon UiJnwted

ONR N89-001
A Prototyping Metalanguage with Formal

Semantics for the Xinotech Program Composer

First Monthly Report
September 1, 1989

1. Progress Report

The following was the Performance Schedule proposed in the
phase I proposal:

Month

Task 0 1 2 3 4 5 6
Task

I
Objectives, XML

Task II _ _ _ _

Design, XML

Task Ill
Objectives, XSSL

Task IV _..,%

Design, XSSL

Task V
Prototype, XML

Final Report L%

N89-001 Phase I Schedule

Task I, Objectives of XML, is attached to this report.

Task 11, "The Design of XML" has already been completed. This
means that all major features of XML have been designed.
Obviously, XML will undergo revisions during phase Il and as we
gain experience with it. The preliminary revision, however, is
already complete.

/891 2 110
A- Ad!

Task V, "The XML Prototype" is 80% complete. This project was
started at the time that the N89-001 phase I had been granted,
since we did not want to run the risk of falling behind schedule.
The only subtasks remaining are to complete the
implementation of inheritance and write the "XML Reference
Manual". Having the XML prototype available will allow us to
also produce significant examples of its use, right during phase
I. This will be done by creating a new task, Task VI, "XML
Examples".

Task VI, "XML Examples" will show how languages may be
defined using XML. Specifically, it will show CMS-2, Ada and
ADADL. It will also show how inheritance may be used to
provide support for embedding design languages into
programming languages (Ada + ADADL) by reusing independent
language components (the Ada language component and the
ADADL language component). The Ada + ADADL definition will
also show the use of views to isolate or combine the Ada and
ADADL portions, as well as transformation views to show the
ADADL-to-Ada migration of pseudo code. If possible, we would
also like to show a language definition containing CMS-2 +
ADADL.

Task VII, "Declaration Browser" is also a new task not included
in the original phase I proposal. This will shcw how a simple
prototype for incremental remote evaluation could be,'°
incorporated into XML in order to support interactive semantics
to locate declarations locally or throughout libraries.
Inter-file relationships are difficult to mantain using attribute
grammars. Nevertheless, this is the single most important
issue when dealing with semantics. At Xinotech, we wanted to - _ ...Accc f ,iw ,

show that we indeed view this issue as the most crucial one -

and that we see the feasability of an efficient solution. The '~'s ,, J
OTIC

declaration browser was also started ahead of schedule and the .,

language definition for it as well as its attribute evaluator J' .:,.., -

have been implemented. What remains now is to write the
attribute rules for Ada and CMS-2.

Our experience with Task VII has helped us substantially with "
the objectives and design for the semantical notation (Tasks III
and IV). Both of these tasks are under way and we expect to

have results according to schedule.

We would also like to add another new project, Task IX "XML

2z

Interface to Graphical Design". This task allows the user to
define dependency relationships between compilation units and
procedures using an XML notation, so that the Xinotech
Environment can use such notation to provide a variety of
flowgraphs using graphical design tools (e.g. CADRE, IDE). The
XML flowgraph notation will be sketched, and the flowgraphs
generated, except that in this prototype the XML notation will
not be used to generate the flowgraphs. Flowgraph generation
will be "hardcoded" into the Xinotech Environment. This is a
task which will be shared with NSWC's N89-149. In the NSWC
phase I, it is justified as a mechanism for reverse engineering
the high level (graphical) design. Here in the ONR's N89-001
phase I research, it is justified as an example of how the
flowgraph generation can be specified in a language
independent fashion using XML.

2. Refinement of Phase II Goals.

During our August 23 meeting, Xinotech stated that the goals
for XML during phase II were to support:

* embedded languages
• language prototyping

• language reusability
• interactive semantics
• language customization

" multiple views, view sets
" transformation views
" cascading (abstract level migration)
" protecting language integrity

• environment generation (menus, p-holders)
• integration

* compilers, graphical, design, pdls, debuggers
• language version control

" upgrade abstract trees
" compatibility across hosts and versions

Upon reviewing the scope of such projects and their relevance in an
integrated software environment, we feel that all these goals for
XML are viable and realizable during phase II of this research. This
will be justified later.

3

Xinotech Research, Inc.

ONR N89-001 Phase I
Task I. Definition of the Requirements and Objectives for the

Design of the Metalanguage XML.
September 1, 1989

This paper contains the goals and requirements for the design
of XML. This excludes the design of the semantic notation
which is addressed in tasks III and IV.

The metalanguage is the one, comprehensive formalism needed
to instantiate all the language-based aspects of the
environment. The problem of language complexity will be
managed by organizing XML so as to allow both the language
designer and end user to express the major aspects of the
language in the simplest possible terms, while providing
powerful constructs that may be used by the sophisticated
designer in order to support the rigorous demands of a practical
environment. This approach to the design of XML will be
conducive to language prototyping.

XML will be designed to provide support in the following areas:

1. Language Design.

1.1. Readability.

Language descriptions will be easy to read and easy to
document. The XML definition of a language construct will
show the abstract grammar, external syntax, and unparsing (and
other) views in a concise form that resembles the "template" or
actual appearance of the construct in a program. Optional
components will be clearly and simply marked. Each detail of
formatting for an unparsing view will be marked where it
occurs in the syntax, using a small but powerful set of simple
commands. Comments will be allowed anywhere in the
language definition. To make it readable, XML will be given the
syntactic flavor of languages such as Ada and Pascal. An
example appears on the next page.

construct ifStmnt
components

{ This is the abstract syntax for an IF statement. }
condition • expression;
ifPart stmntSequence;
elsif Parts • [elsifPartList];
elsePart [stmntSequence]

view ada (template) scheme
{External syntax --- doubles as main unparsing view}

(-if _ ?> condition)
?I _then_ > ifPart < [elsifParts I]

Lelse > elsePart < _end if_
view summary scheme

_if _ condition _ then_ { Summarized unparsing view.}.
view "list-summary" scheme

-if-.
placeholders

construct
ifstmnt

components
condition, statements, elsif_parts, statements

end ifStmnt

Example: Ada if-statement

Curly brackets {} contain comments. Square brackets [] show
optional components. Short commands, such as "I" (line fold)
and "?>" (optional line fold with indent), control formatting. In
the view schemes, square brackets clearly show which
formatting commands are to be invoked (and which keywords
are to appear) when an optional component is present. The
designer controls the placeholders that will appear in
templates.

1.2. Prototyping Languages from Other Notations.

Languages will be easy to prototype from other notations. The
abstract syntax will be closely related to the extended
Backus-Naur form (EBNF), which is the model for syntax
description in most meta-languages. The XML transformation
views facilities will be available to the user to semi-automate
the process of producing an XML notation from other analogous
notations such as EBNF.

2z

1.3. Prototyping Languages from Previously Defined
Languages (Language Reusability).

Languages will be easy to prototype from previously defined
languages. XML will support: (i) division of a language into
re-usable modules; (ii) module import and inheritance; (iii)
construct inheritance. These will make it easy to re-use parts
of an existing language, with or without modifications. Module
inheritance can be used for coarse-grained modifications, and
construct inheritance for fine-grained changes.

When Ada is to have embedded customized PDL's, it is
important that each language can evolve separately from the
other. Ada may be supported by the vendor (e.g., Xinotech),
whereas the PDL may be supported internally by the customer.
If the metalanguage does not support the reuse of separate
components, both languages would have to be supported by one
party, either the vendor or the customer, a highly undesirable
proposition. If a language needs to be supported by the
customer (e.g., in the case of a confidential PDL), Ada ends up
being supported twice.

1.4. XML, A Powerful Notation.

XML will be powerful enough for the advanced language
designer. By permitting arbitrarily many views, XML will allow
the designer to tailor the appearance of programs to the needs
of many users and installations in one language description.
Views can also be used to produce transformed versions of
programs that resemble other languages, or that support
programming tools, such as compilers. For example, it will be
possible to use XML to define the granularity for incremental
compilation. XML will also provide view commands for
sophisticated control of formatting, such as hierarchical line
folding that varies according to the distance to the right
margin, as in the following example. Consider the Pascal
for-loop statement:

FOR abc := base TO lim BY incrl + incr2 * incr3 DO x := y END

As the horizontal space diminishes, we might want this
statement to fold first to this (next page):

FOR abc := base TO lim BY incrl + incr2 * incr3 DO
x:= y

END

then to this:

FOR
abc := base TO lim BY incrl + incr2 * incr3

DO
x :=y

END

next to this:

FOR
abc := base
TO lim BY incrl + incr2 * incr3

DO
x :=y

END

then to this:

FOR
abc := base
TO lim
BY incrl + incr2 * incr3

DO
x :=y

END

and, finally, to this:

FOR
abc := base
TO lim
BY

incrl + incr2 * incr3
DO

x:= y
END

XML will permit view schemes to express such subtle control,
using only a small repertoire of margin control and folding
commands.

1.5 Language Decomposition and Embedding.

XML will be useful for decomposing and embedding languages.
XML's modules will encourage the splitting of a language
description into re-usable portions. In addition, XML will allow
nesting of language constructs, so that, for example, the
definitions of all the parts of a procedure declaration could be
nested inside the construct that defines "procedure
declaration". This encourages top-down, modular design, which
makes the language easy to read and easy to maintain. The
import and inheritance mechanisms will make it simple to
embed a design language into another language. Conversely,
these mechanisms will make it possible to strip an embedded
design language from another language.

2. Language Semantics.

This topic will be covered in tasks III and IV of phase 1.
However, a prototype attribute notation is being incorporated
into XML, in order to allow us to provide inter-file navigation
through object declarations. With this notation, XML will
provide a mechanism for specifying where declarations occur in
a program, and whether their scope is local or global. This will
allow the Composer to browse for objects with a given name.
In this way, the user in the midst of constructing a program can
find all the declarations of an identifier without having to
search through existing program files.

3. Language Specification and Environment
Generation.

A single XML language definition will describe the syntax of the
language, the semantics of declarations, menus for selection of
alternative constructs during editing, and placeholders for
templates. Furthermore, for each construct, all these
specifications will appear together, in one readable
declaration.

4. Language Customization.

4.1. By using import and inheritance, the designer will be able
to produce a language that differs from an existing language in
some aspect of the abstract syntax, without extensive
rewriting.

4.2. XML will make it easy to add views to an existing language.
Specialized views that affect only a few language constructs
will not require extensive revisions: instead, the designer will
need to write view schemes using the new views on!y for those
language constructs where the customization is relevant; other
constructs will be covered through a flexible default
mechanism.

4.3. XML will permit formatting views that produce localized
effects. For example, a formatting view "vertical_params"
might be written to align procedure and function parameters in
columns. By specifying such formatting views in the
declaration of a global view, the designer will be able easily to
produce a view that reflects a particular mix of formatting
preferences. Furthermore, through a "view alias" mechanism,
XML will permit the specification of variant views that differ
from existing views only in the choice of formatting views, or
in certain global formatting details such as indentation size
and line length.

5. Program Transformation.

5.1. Batch Language Conversion.

XML will support language conversion, through the use of
unparbing views that repcesent a program in a different
external syntax. This capability of XML will be of great
advantage in NSWC's N89-149 Reverse Engineering research
since it will facilitate conversion to other languages as well
as the targetting of the extracted design to specific design
languages.

5.2. Interactive Construct Transformations.

By supplying a command to insert a placeholder, for use in view
schemes, XML will make it possible to write transformation
views that will automatically transform from one construct to
another.

For example, this facility will allow the transformation of an
Ada package specification into a package body, or a procedure
header into a procedure body, or the automatic production of a
procpciure call (with association parameters) from the
procedure's declaration.

This facility will be unique in that:

a) It will be customizable by the user. Transformations are
specified as part of the language definition. Therefore the
user will be able to specify other transformations of interest,

for example:

i. "case" to "if" statements or "if" to "case" statements;

ii. Certain forms of minimization of boolean conditions.

b) It will language independent. Tranformations of the kinds
suggested here can be specified for any language.

Our solution to program transformation is not a "hardwired"
solution to a special case or a specific language. This is a
general mechanism exploiting our essential concepts of
language independence and multiple language representations.

5.3. Cascading or Migrating Through Levels of
Abstraction

One particular application of 5.2 is the potential to generate,
from the code at a given level, the initial skeleton for the
corresponding code at the next level of abstraction. For
example, a high level design for an Ada program could be used
to generate the first approximations to the specification
packages, and they in turn, once supplied with detailed level
design, used to generate package body skeletons. They in turn,
once complemented with the algorithms expressed in an
embedded design language, could be used to generate the initial
Ada code ske!etons. In this way, the Composer supports
"cascading" through levels of abstraction.

7

6. Integrity of Language Versions.

When import and inheritance are used to produce a customized
language, or to embed one language in another, only a single
copy of each previously defined language need be maintained.
This has several benefits: no copying of languages or modules
is required; upgrades to the existing languages are
automatically carried over to the new ones; because the
integrity of the existing languages is not violated,
responsibility for maintenance of languages can be cleanly
divided.

7. Line Formats.

Some languages, for instance COBOL, require that each line of a
program be formatted in a certain way. For example, certain
columns may be reserved for some purpose. XML will provide an
optional mechanism for the detailed control of column use.
Other languages, such as Ada, may use the end of a line to
delimit a comment. XML will provide view commands to control
the recognition of comments that belong to only one line, and to
insert appropriate strings when long comments are broken
between lines. Although such line-oriented issues as
comments in Ada seem simple, they are actually difficult for
language-oriented tools to handle, and it requires considerable
thought to arrive at elegant solutions.

8. Environment Integration.

8.1. Incremental compilation.

Assume that an incremental compiler, say for Ada, has been
written, and that it accepts certain minimal, indivisible
program fragments ("increments") for recompilation, for
example procedure or function bodies. If the XML description of
Ada specifies what language constructs are acceptable
increments, the Composer can keep track of the increments
while the program is being edited, and submit to the compiler
only those that need to be recompiled.

8.2. Protection of the integrity of graphical design.

Graphical Design Tools are used to specify high level design,
package decomposition and interfaces. Some of these tools
support the transition from design to text, by providing the

P

textual skeletons equivalent to the graphical design. By
permitting the language designer to specify what constructs
are part of the skeletons, XML can make it possible to protect a
skeleton against editing changes that -violate the design.
Conversely, if editing is to be allowed to change the graphical
design, XML will permit the language designer to write views
that generate skeletons (sometimes called "picture scripts")
acceptable to the graphical design tool.

9. Language Version Control.

9.1. Language Evolvability.

The compiler for XML will provide a tool that automatically
upgrades existing program files belonging to a language when
the XML description of that language changes. When languages
are rapidly changing, as may be the case with newly designed,
customized or proprietory PDL's, it is important that the
language's evolution does not make obsolete the software
already written. There have to be mechanisms automatically
and transparently to upgrade the software to the new versions
of the language. Without this feature, companies will be
reluctant to use language-based composition tools.

9.2. Language Time-Stamping.

When descriptions of the same language are prepared on
different hosts, the question arises whether program files
prepared using the language generred from the description on
one host may be transferred to the other host(s). By providing
for a unified version control mechanism, XML can make it
possible to identify which program files are truly compatible
across hosts.

A Prototyping Metalanguage with Formal Semantics for the Xinotech
Program Composer

Second Monthly Report
October 1, 1989

1. Progress Report

As specified in the Phase I proposal schedule, we are delivering Task III, "Objectives, XSSL."

Task VIII, the Graphical Design Interface prototype is functional now. It generates graphs for both
Ada and CMS-2, using IDE's Software Through Pictures (we have been unable to obtain a copy of
CADRE's TeamWork). We are now in the process of specifying the full phase II design for this tool
and writing the documentation.

The following chart shows the comparative progress up to this point:

erson-Months 0 2 4 6 8 10 12 14
P Person

-
T T

Task I
ask I

Objectives, XML

TaskII

Design, XNL

Task I I I
Objectives, XSSL

TaskIV

Design, XSSL

Task V

Prototype, XML
.....

Task VI
XNL Examples
CNS-2, Ada, ADADL

Task VII
Declaration Browser

Task VIII
Graphic Design
Interface

Final Report
Phase 11 Design

0 2 4 6 a 10 12 14

ONR's N89-001 Phase I
Month 2 Progress Chart

N89-001 Phase I, Task III Objectives for XSSL

ONR N89-001 Phase I
A Prototyping Metalanguage with Formal Semantics for the Xinotech Program

Composer

Task III
Definition of the Requirements and Objectives for the Design of the

Semantic Notation XSSL.

October 1, 1989

N89-001 Phase I, Task III Objectives for XSSL

Abstract

This paper contains the goals and requirements for the design of XSSL, the semantic notation for XML.

The Xinotech Semantic Specification Language (XSSL) will be the portion of XML (the Xinotech Meta-
Language) devoted to specifying the semantic properties of languages needed to instantiate language-
based programming environments. This programming environment in question is the Xinotech Program
Composer.

The Objectives for XSSL are:
Providing a high-level notation for formal specifications of semantics, Providing for a time and space
efficient implementation of the notation, Providing a notation that is well suited for the construction of
interactive language-based programming environments.

Contents

1. Introduction

2. Objectives

2.1 Reducing the Complexity of the Formal Specification

2.2 Focus on Interactive Semantics

2.2.1 The Specialized Notation Should be Targeted for Interactive Use
2.2.2 Reducing Execution Time and Memory Utilization
2.2.3 Specific User Interface

3. Requirements

3.1 Language-Specific Semantics
3.1.2 Use-Declaration Facilities
3.1.3 Scope and Visibility Rules
3.1.4 Generality

3.2 Clarity
3.2.1 Integration with XML
3.2.2 Scalable to Large Specifications
3.2.3 Declarative Language

3.3 Interactive Semantics
3.3.1 Program Display and Manipulation
3.3.2 Program Navigation

3.4 Timing and Capacity
3.4.1 Response Time
3.4.2 Incremental Evaluation
3.4.3 Efficient Changes to Aggregates
3.4.4 Large Collections of Program Units

3.5 Language Prototyping
3.5.1 Easy Modification of Specifications

2

N89-001 Phase I, Task III Objectives for XSSL

1. Introduction

The Xinotech Semantic Specification Language XSSL will be the portion of XML devoted to specifying
the semantic properties of languages. Although XSSL is an integral part of XML, its design is considered
in a separate task because semantic formalisms are a different technology than syntactic notations.

The need for XSSL comes from the need to use semantic information in a language based software
environment. A language-based editor that uses syntactic information allows a user to manipulate a
program structurally. Such an editor can make sure that a program is structurally correct - that is, that each
construct is correct according to the syntax rules, given knowledge of the construct's immediate
surroundings in the program. But, a language-based programming environment needs to make use of
the non-local context of a construct. For instance, an environment might allow manipulations or enforce
language rules using type information about an object, or knowledge of the kind of program unit that
contains a particular construct. That information can't be found locally, but must be brought from a remote
location in the program - the declaration section, or the procedure header. Such non-local information is
called the static semantics of a program. Since XML is a meta-language for describing language based
software environments, it needs to describe the static semantics of languages.

XSSL can also be used to support the implementation of interactive environment commands which rely of
the resolution of the static semantics of the language. Examples include: 1) a facility for navigation
through declaration dependency chains, or 2) a command to complement a record field reference with an
automatic expansion of its preceding designator sequence (qualifiers, array references, dereferences).

2. Objectives

Attribute grammars have been the formalism studied the most for expressing static semantics. However,
they have not reached the maturity necessary to be applied in practical software environments. These
are the reasons:

a) Their Inherent Complexity. Specifying the semantics for a language using attribute grammars is
a comparable task to writing a compiler for that language. Even though attribute grammars provide
the advantage of producing a formal specification of the semantics of a language, it comes at no
savings in the complexity of the resulting product. In addition, the unstructured, production-
oriented form of traditional attribute grammar notations make them unsuited for creating large,
reliable language descriptions.

b) Their Exorbitant Consumption of Computational Resources. The CPU and memory
requirements for processing attribute grammars is very high.

The use of inherited and synthesized attributes to specify flow through the nodes of a tree requires that
every node in the tree be a participant in this flow, even if only as intermediaries for passing attributes
otherwise irrelevant to them. This is the inherent reason why attribute grammars impose such an
exorbitant space requirement.

This could be best exemplified by the fact that, to the best of our knowledge, a software environment with

formal semantics for a language with the complexity of Ada has not even been attempted.

In stating our objectives we need to find solutions or alternatives to these two drawbacks.

2.1 Reducing the Complexity of the Formal Specification

The typical semantic issues of programming languages will be characterized so that a specialized
notation, SN, for such issues can be developed. Its relationship to the general formalism selected, GF,
will also be shown. The specialized notation SN is to be designed so that it can coexist with the general
formalism GF, as part of the XSSL. They both should integrate into the single XSSL. This arrangement
presents the following advantages:

3

N89-001 Phase I, Task III Objectives for XSSL

a) The size and complexity of the description for the most needed semantic features of a
language will be reduced by an order of magnitude.

b) When the specialized notation SN is used, the expressing power is amplified, enhancing
readability.

c) It allows easy prototyping of the semantic features of the language that are most frequently
used interactively.

d) The general mechanism is still available whenever it is appropriate to complete the semantic
details of the language.

e) The specialized notation SN can be mapped to the more general formalism from which it was
derived by the automatic means of a translator whenever this step may be required, for example,
to make use of general evaluation algorithms, or to give uniform treatment internally to the SN and
GF notations.

2.2 Focus on Interactive Semantics

2.2.1lThe Specialized Notation Should be Targeted for Interactive Use.

The first priority, when designing the formal specification of semantics, is that it be used effectively to help
automate the process of the interactive construction of programs. In this situation, what is needed most is
the ability to describe the scoping rules of the language so that interactive name resolution may be done.
This would facilitate the construction process by allowing automatic navigation through the complex inter-
relations of software systems and libraries to locate objects that need to be looked up or referenced
during program construction.

We feel at Xinotech that it is our responsibility to integrate with existing compilers and use interactive
semantics not to replace the functionality already provided by compilers, but rather, to support the role of
the front end composition tool (the Composer) in the whole environment. The result is emphasis on
techniques to support program construction and manipulation, and less emphasis on error correction
(type checking) and code generation. Some examples of these support techniques are program
navigation and interactive transformations. Program navigation techniques are used to locate
declarations locally and throughout libraries to provide knowledge about the system to the programmer.
Interactive transformations provide language specific commands, for instance to create a procedure call
template from a procedure declaration.

2.2 Reducing Execution Time and Memory Utilization.

Application of static semantics during interactive program construction has a higher priority than other
potential uses such as formally specifying code generation (dynamic semantics). This is an important
consideration given that the use of formally specified program synthesizers to replace carefully targeted
code generators for complex languages such as Ada and CMS-2 cannot even be considered in the short
term.

For such a case, incremental semantic evaluation on a partially attributed tree may be ideal in combination
with the specialized scoping mechanism to explicitly retrieve, for example, the specific object declarations
needed for inspection or expansion during program construction. The use of a specialized notation with
no explicit attribute flow would substantially reduce the space and time requirements.

2.2.2 Specific User Interface.

This interactive semantic scheme will make it possible to design a user interface that provides access to
. . the semantic information within the abstract trees.

4

N89-001 Phase I, Task III Objectives for XSSL

3. Requirements

These are the requirements for XSSL. Also, some requirements are listed for the evaluator that will be
used to evaluate XSSL. This is done since the design of XSSL and the evaluator influence each other,
and so some requirements for the evaluator impose requirements for XSSL.

3.1 Language-Specific Semantics

XSSL has to be able to specify the language-specific semantics of a software development environment.

3.1.2 Use-Declaration Facilities

XSSL must be capable of specifying "use-declaration" facilities. A "use-declaration" facility is a facility that
can provide the declaration(s) of an identifier that are visible at a particular point in a program. The at!Lty t
specify use-declaration facilities has been chosen as the immediate goal of this project. This is so
because the ability to find the declaration of an object in a program that consists of a large number of
modules, including library units, is an important tool for the development and maintenance of large
programs.

It is necessary to be able to find the declarations of an object that are visible at a use, to help in
understanding an existing use of an object.

It is also useful to be able to find all the declarations of a particular identifier. This is helpful when changing
a program, to look at the declarations that are available but not yet visible at a given point.

3.1.3 Scope and Visibility Rules

XSSL must be capable of specifying language scope and visibility rules. Because of requirement 3.1.2,
an environment supporting a language specified in XSSL needs to make use of the scope and visibility
rules of the language. This will be restricted to languages with static scope and visibility; since a language
specific environment needs to manipulate a program before it is executed, dynamic scope is outside the
range of this proposal.

3.1.4 Generality

XSSL must be general.

Although the initial goal of XSSL is to specify use-declaration facilities, it should not be a tool for creating
language-dependent facilities to compute use-declaration information. Instead, it should be a more
general notation in which use-declaration facilities can be expressed. There are two reasons for this
requirement. The first is that a specialized tool that can be parameterized to several different languages
runs the risk of not being general enough to handle new languages. The second is that this project
should be the base for other more advanced applications, and so a more general notation is needed.

It may be the case that there are conflicts between the need for generality and other requirements, in
particular the requirements for conciseness and efficient implementability. For that reason we've
introduced the idea of extending a general notation (GF) with a specialized notation (SN) where
necessary.

Our primary goal is the support of program construction and maintenance. To meet that goal it is important
to efficiently support features that help understand large programs, including:

5

N89-001 Phase I, Task III Objectives for XSSL

o find the declarations visible at a use

o find all declarations of a name

o find all references to an object for a declaration of a name,

o find the implementation (for instance, from a declaration in an Ada package specification, find a
specification in the package body)

Where needed the specialized notation will have features to efficiently support those features.

There are many potential applications for interactive semantics in a programing environment. These
include:

o translation from one source language to another (For instance, translating from a Modula-2 WITH
statement to Ada requires static semantics)

o interactive transformations of constructs (case statement to if statement, procedure declaration
to procedure call template, etc.)

o automatic type checking

o checking of other static semantic constraints (actual parameters matching formal parameters, etc.)

o user-defined pretty printing of programs

o generation of interpretive code

o data flow analysis

o production of input to analysis tools such as graphical design tools

The general notation is intended to be able to support these.

3.2 Clarity

XSSL specifications must be clear and simple

3.2.1 Integration with XML

This is necessary to manage the complexity of a large semantic specification. XML's modularity allows a
language definition be decomposed into understandable parts. Since XSSL specifications will be an
integral part of XML definitions, they can also be written as modules. Also, the integration of XML and
XSSL will allow XSSL specifications to be part of hierarchy language definitions, for example, an Ada
specification embedded into an Ada+PDL specification.

3.2.2 Scalable to Large Specifications

XSSL must not be overwhelmed by large semantic specifications. The size of a specification should be
proportional to the complexity of the semantics being described. So, the notation should not include
book-keeping information that grows more than linearly with an increase in the size of the specification.
An example of that is the use of "copy-rules" in a traditional attribute grammar.

3.2.3 Declarative Language.

6

N89-001 Phase I, Task III Objectives for XSSL

Semantic specifications for a language-specific environment should be declarative, not procedural. This
requirei . nt is needed to get incrementality (See section 3.4). If the semantics is defined procedurally,
then evaluating the semantics for a part of a program has an effect that is defined by a procedure. In
general, procedures can interact in ways that depend on the order in which they are executed. If a part of
the program is deleted, the effect of the corresponding procedure has to be "undone" somehow. That is
difficult, since the effect of a procedure depends on the other procedures that are executed before and
after it. If the definition is declarative, however, then the effect of each rule of the definition is not order
dependent, it is only dependent on the explicit inputs to the rule. So the evaluator can "undo" each rule
in a controlled way.

If a procedural specification is used, explicit inverse procedures can be provided to undo the effect of
each procedure, but that is difficult and error prone.

3.3 Interactive Semantics

XSSL must be focused on the task of specifying interactive semantics. That is because the purpose of
semantic specifications in XML is to help automate the process of the interactive construction of
programs.

3.3.1 Program Display and Manipulation.

The purpose of specifying semantics in a programming environment is to support the interactive
construction of programs. So, there has to be a way of using the information defined by a semantic
specification to provide interactive tools. So, the language-specific programming environment needs
access to the values specified in XSSL.

The interfaces needed to XSSL values include the following:

There must be a way to display specific points in a program. For instance, an XSSL specification may
describe the declarations corresponding to a use of an object. The environment has to be able to display
the part of the program containing those declarations.

There must be a way of displaying messages computed by an XSSL specification, and relating messages
to points in a program. For instance, if an XSSL specification computes violations of type rules, the
environment must display an error message when a violation is fourd, and must display it with the point in
the program where the error occurred.

The XSSL computed values must be usable to control the _view_ used to display the program. For
instance, an XSSL specification could be written to specify an indentation scheme, and the values
computed would control the display of the program. Another use for XSSL values is in translation views,
which are used to translate from one source language to another. Semantic information needed for such
a translation would be computed using XSSL and used in the result of the translation.

XSSL values must be usable to control interactive transformations. Interactive transformations convert a
language construct to a related one. For instance, a transformation might be defined to convert a
procedure declaration into a template for a procedure call. When such a translation requires semantic
information, values computed with XSSL need to be used in the transformation.

3.3.2 Program Navigation

XSSL must support movement inside and between programs. Semantic values defined in XSSL must
support a facility for navigating from a use of an object to its definition (which may be in a different file or
library unit from the use.) So there must be a way of defining interfaces between XSSL and the
environment, so that the environment can use the values defined in XSSL to provide a navigation facility.

7

N89-001 Phase I, Task III Objectives for XSSL

In a system intended for large-scale, practical software engineering use, it will be neccessary to move from
one program unit to another on the basis of semantic information. For instance, given a use of an object,
the environment will need to display the declaration of the object, even if it is declared in a library, or
another program unit. In some applications the set of program files to be considered will be very large.
The problem of keeping track of the connections between a large set of files and navigating among them
has not received much attention in the past. Work on attribute grammars has usually assumed that
attributes are computed over the abstract syntax tree for a single program.

3.4 Timing and Capacity

The evaluator for XSSL must work interactively, with large software systems.

3.4.1 Response Time

There must be an evaluator for XSSL that provides reasonable response time.

When a user of an environment makes a change to a program, the values defined by the semantic
specification must be re-evaluated quickly enough to provide a reascnable response time.

3.4.2 Incremental Evaluation.

The complete re-evaluation of an XSSL specification after each change to a program will take too long.
So, the evaluator for XSSL must work incrementally. When a change is made to a program, an
incremental evaluator saves time by re-using the values that are not affected by the change. The point of
incremental evaluation is to update the semantic information for a program after each change in less time
than re-evaluation of the specification for the entire program.

3.4.3 Efficient Changes to Aggregates

The evaluator for XSSL must evaluate incremental changes to aggregates efficiently.

An "aggregate" is a single object that represents many smaller pieces of information. An example is a
symbol table, which represents many declarations. Re-evaluation after a small change to an aggregate
should be fast, and so should not take time proportional to the size of the entire aggregate. For instance,
if a declaration in a symbol table is changed, the time to re-evaluate the semantics should be small and
close to constant, not close to the time needed to re-create the entire symbol table. This requirement is a
result of the requirement for incremental evaluation.

3.4.4 Large Collections of Program Units

The evaluator for XSSL must be able to handle large programs, consisting of many files and library
packages.

It has to be able to do this interactively, so a small change to a library cannot require immediate re-
evaluation of semantic information for all the modules that use the library. So, the evaluation method
needs to be able to reduce or defer the re-computation required by a change that has a global effect.

3.5 Language Prototyping

The evaluator for XSSL should support language prototyping.

3.51 Easy Modification of Specifications

The evaluator for XSSL should be able to respond quickly to a change in an XSSL specification.

8

N89-001 Phase I, Task III Objectives for XSSL

The semantic specification for a language should be separate from the code implementing the attribute
evaluator and the environment. Changing a specification should not require re-compilation of the
environment or evaluator. There are two reasons for this requirement :

A single environment should be able to handle multiple languages, for the convenience of the
user, and

Re-compilation of the entire system will make the job of tailoring the environment to a new
language difficult, because a small change made while debugging a language specification will
require a time consuming recompilation.

9

