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2 Summary of Technical Progress

- We have developed a formal semantic model for real-time concurrency under limited parallelism.
The model addresses memory access mechanisms, limited parallelism under asynchronous pro-
cessors. In the framework of the model, various scheduling paradigms can be imposed.

We formulated a language concept of tri-sections. The concept combines nondeterministic
multiway synchronization of processes and processor holding into a single primitive construct.
The use of the concept has been demonstrated with a process control system, resource allocation
problems, and elevator systems. The concept allows the construction of maximally parallel
regions in an otherwise limited parallel execution model. In a semantic sense, the achieves a
reduction in the complexity of the limited parallelism models.

We provided a formal design of a dialog system using the Z notation. Dialog systems are
very much like operating system in the concepts they provide. The specification addresses the
invariant properties which need to be satisfied by the various components of the system. In
particular, the properties address object relationships in regard to their layout on the graphical
interface, presentation of the visual aspects of the objects, activation and execution of programs
attached to the objects, and concurrency supported by the system.
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3 Introduction

In recent years the development and the use of real-time systems has increased dramatically.
Real-time systems are used in applications where timing behavior is absolutely critical, such as
patient monitoring systems, fly-by-wire avionic systems, process control systems, and weapon
systems. As such, there is an acute need for the development of formal methods for reasoning
about such systems.

Practical limitations often restrict the number of available processors. Processors need not
be identical, or even run at the same speed. For example, a system may consist of a single high-
speed processor which is used solely for critical tasks, along with one or more slower processors
which handle the remainder of the work.

Since the behavior of a real-time system, by its very nature, is highly dependent on the
environment in which it is executed, there is a need for semantic models which address such
pragmatic concerns. In the paper[ShN88], we provide a linear-history based [FLP84] semantic
model for real-time shared variable concurrency under a variety of realistic execution models. We
begin with maximal parallelism [SaM81], in which every process has its own processor, and then
successively generalize the model until we eventually arrive at asynchronous limited parallelism,
in which the number of processes may exceed the number of available processors and processors
may execute at distinct speeds.

We provide a denotational semantics for a small, but realistic, real-time concurrent program-
ming language. The language is based on the notation of Dijkstra'a guarded commands, uses
shared variables for process cooperation, and supports atomic actions, process synchronization,
and a delay command for real-time control. Features of the language appear in various forms
in real-time languages such as Ada [Ada83], CHILL [BLW82I, occam [Occ841, and Modula-2
[Wir85I. The primitives of the language are sufficiently low-level that a rich variety of "high-
level" constructs can be implemented and analyzed with the framework of the semantic model.

4 Brief Summary of the Semantic Development

We briefly describe the various semantic models (in order of complexity) along with some of the
fundamental notions underlying them.

4.1 Machine Models
The formal semantics does not depend on the underlying physical machine used to implement
a real-time system. Intuitively, however, the semantics is based on the notion of a MIMD
(multiple-instruction, multiple-data) shared-memory machine. Such machines consist of one or
more physical processors, each of which contains its own local memory. The processors are
independent of each other and execute at a fixed speed, although different processors need not
execute at the same speed (i.e. they may be asynchronous). There is also a shared memory
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which may be accessed by any processor. We make no assumptions about how conflicting
shared-variable accesses are arbitrated.

4.2 The Maximal Parallelism Model

This is the first step in the semantic development. It assumes that processors are synchronized
with respect to a discrete global clock. In other words, all processors execute at the same
conceptual speed. A unit action takes unit global time on any processor. The fundamental
characteristic of this model is that it seeks to locally maximize concurrent activity at every time
instant. Specifically,

" Each process is allocated a separate processor on which it is executed.

* Processors do not idle unless prohibited by synchronization or mutual exclusion.

* All shared variables are assumed to be located in a shared memory. Tyfical memory scees
models are:

1. Bus-arbitration: no two processes may access the memory at the same time.

2. Exclusive-read, exclusive-write: two processes may access the shared memory at the
same time only if they are accessing distinct locations.

3. Concurrent-read, exclusive-write: two processes may read the same memory location
simultaneously; otherwise same as above.

In all of these models, contention is resolved by interleaving. Further, once a process
requests access to a shared variable, it is granted access in the least possible amount of
time (subject to contention).

" A process executing an atomic action will be granted entry into the action at the earliest
time instant the action becomes available.

The maximal parallelism model has somewhat limited practical applicability since it essentially
assumes unlimited processor resources. However, it provides an excellent starting point for the
formal development and is subsequently generalized.

4.3 Asynchronous Processors

Next, we relax the requirement that the processor speeds be identical; we permit the processors
to execute at (possibly) distinct conceptual speeds. While we previously characterized a unit
action to take global unit time, we now assume that a unit action takes 0(t) _ 0 global units of
time on processor t (equivalently, process t under maximal parallelism). The lower 0(1) is, the
faster the processor t. Intuitively, each processor has its own local conceptual clock.

4.4 The Limited Parallelism Model
The maximal parallelism model is relaxed to permit fewer processors than there are processes
in the program. The precise number of available processors must be known. Computations are
interleaved when necessary, but concurrency is still locally maximized, i.e. given a choice, the
system must always elect to perform an action rather than idle. We once again assume that all
processors (and hence all processes) have identical conceptual speeds.

The development hinges on the notion of an instantaneous scheduler, one which can make
and carry out scheduling decisions in zero time; there is no overhead due to context-switching,
communication with the scheduler or other implementation dependent details. The scheduler is
assumed to have its own dedicated processor. This characterization has nice formal properties
and can easily be parameterized to handle more sophisticated scheduling disciplines. Realistic
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elements such as context switching delays can be brought to bear as a matter of detail; that is
the nice aspect of it. This semantic model is clearly weaker than the maximal parallelism model.

It is important to note that limited parallelism and interleaving are very distinct models. In-
terleaving models represent the minimal assumptions necessary to ensure (qualitatively) correct
execution of concurrent programs. They impose the least possible implementation restrictions.
Limited parallelism, on the other hand, implicitly refers to time by enforcing the real-time cri-
terion of locally maximizing concurrent activity, and makes the (limited) processor resources
explicit.

4.5 Asynchronous Limited Parallelism

Unlike asynchronous maximal parallelism, in which a process (and hence its speed) may be
identified with that of the processor on which it is executed, here it is useful to distinguish the
two concepts. We associate conceptual speeds with processors, and assume that each process
can execute on any processor. That is, the set of possible speeds associated with a process (at a
given time instant) corresponds to the set of speeds of the available processors (at that instant).
The semantic treatment is akin to that considered earlier, with the added complexity that the
duration of a unit action in a process may change dynamically as the computation evolves.

4.6 Scheduling Policies

Finally, we address how one can characterize specific scheduling policies in the context of limited
parallelism. In particular, we characterize simple priority based scheduling of processes, and
nondeterministic time-slicing.

4.7 Full Abstraction

The semantics as formulated is not fully abstract. However under an appropriate notion of
observational equivalence of processes, it can be made fully abstract by taking ready closures
on the lines of [HGR87]. Unfortunately under limited parallelism, the notion of observational
equivalence of processes is extremely sensitive to the number of processors. We need to develop a
justifiable basis for observing processes under limited parallelism. When such a characterization
is done, formalizing a fully abstract semantics seems useful. We are currently exploring this
issue.

5 Language Concepts

The limited parallelism model formalized earlier, locally maximizes concurrent activity, but
there need not be a physical processor available for every process. The exact number of available
processors is a parameter of the model. Due to the (potentially) limited processor resources it
becomes necessary to introduce the notion of a process scheduler. As a result, the ability to prove
strong quantitative properties of a system is highly dependent on the nature of the scheduler.
This increases the complexity of the model. Further, when subcomputations of processes are
independent, the ability to attain quantitative bounds under a nondeterministic scheduler is
lost. Thus language concepts like processor holding becomes necessary. We develop fundamental
language concepts which can be used to solve the problems arising in the development of real-
time systems under limited parallelism. Consider the following general programming problems:

e Once activated, a device produces an output every 9 time units until it is deactivated.
A process must read the output from the device, evaluate it, output the result of its
computations and then wait for a new input. This all must occur within t time units or
data will be lost.
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* Two or more processes must cooperate in real-time. For example, a motion-detection
process and a 3-D recognition process must cooperate to track a moving figure.

Time-dependent problems such as these are commonly encountered in practice. Moreover, they
may comprise only a small part of an otherwise time-independent system. In the context of
limited parallelism, most real-time programming languages are inadequate for solving such prob-
lems; frequently they are just concurrent programming languages augmented with one or two
time-dependent constructs such as a delay command. In practice, implementations also make
use of a real-time kernel which provides time-dependent system functions, but from a proof-
theoretic standpoint, such extensions are all but worthless.

We introduce in [NaS89] the tri-section, a language concept for real-time programming which
provides direct solutions for such problems. Tri-sections essentially combine real-time nondeter-
ministic multi-way synchronization with the notion of processor holding, in which the execution
of a statement may not be preempted by the process scheduler. The concept allows the creation
of regions of maximal parallelism in an otherwise limited parallel execution of a program. This
makes it possible to infer strong temporal properties within the body of a tri-section, indepen-
dent of the nature of the process scheduler. In practice, this effectively decreases the complexity
of the limited parallelism model.

The utility of tri-sections is demonstrated by providing solutions for the following generic
problems:

1. A process control system: a simple program which introduces the reader to programming
with tri-sections.

2. The dinivig philosophers problem and its generalizations: each of these can be conveniently
represented by a class of graphs in which the nodes represent clients (philosophers) and
the edges represent resources. In the dining philosophers problem, the graph is a cycle.
In the drinking philosophers problem it is an arbitrary undirected graph [ChM84], and in
the cooking philosophers problem it is an arbitrary (undirected) hypergraph.

The dining and drinking philosophers problems have been explored in the literature [Dij72,
ChM84]. However, our solutions are novel because the resources ensure that they are
properly used, not the clients. Our solution to the drinking philosophers problem differs
from Chandy and Misra's in that we do not use auxiliary resources, and require only that
the process scheduler be just to ensure starvation freedom. Their solution requires strong
fairness. To our knowledge, no solution to the cooking philosophers problem has been
presented.

3. An elevator system: we consider a multi-lift system servicing a building. The elevator
system is typical of the synchronization problems encountered in circuit switching systems
and channel allocation schemes. Unlike the philosophers problems, here we have a client-
server problem. Clients do not know who the servers are. Each client must be matched to
exactly one server. A server must be prepared to match with any potential client, and must
be able to infer the identity of the client with which it is matched. This is a non-trivial
problem when we note that tri-sections do not provide an explicit means of establishing
the identity of the partners in a semantic match. We prove conditional starvation freedom
of the system with only a justice requirement on the scheduler.

Relation to Other Work

In TCSP (Hoa85], Hoare introduces an operator for parallel composition which provides lock-
step synchronization between processes. However, the participants in a synchronization event
are statically determined. CCS [Mil80] permits synchronization between exactly two processes,
but synchronization is not mandatory; processes may refuse to synchronize even if given the
opportunity to do so. In SCCS [Mil83 it is possible to model multi-way synchronization with
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precise timing. However, using the 6 operator to model waiting for a synchronization event
admits the possibility of divergence even if all of the participants are able to engage in the
event. Francez [FHT84] introduces multi-way synchronization in a communication abstraction
construct known as a Script. However, critical roles in Scripts are static; we allow the dynamic
specification of the synchronizing set of processes. Further, Scripts (in its present form) does
not allow processes to enroll in different scripts simultaneously, i.e. it does not permit external
nondeterminism; our mechanisms do permit external nondeterminism.

5.1 Tri-Sections

The general form of a tri-section is IS t>, where I is the label, X is an index set consisting
of zero or more indices, and S is an executable statement. An index is a non-empty set of
tri-section labels. X may be a variable or an expression, in which case the underlying language
must support the set abstract data type. We use the following abbreviations: if X is a constant
{z}, then the outermost braces are dropped, and if X is the constant {i}}, then the tri-section
is written <IS >. Syntactically, tri-sections within different processes must have different labels,
although two or more tri-sections with the same label may appear within. a process. Semantically,
the following restrictions are imposed: 1) X : 0, 2) for all z E X, t E X, and 3) for all x E X,
no two of the tri-sections named by z (i.e. no two labels in z) are contained in the same process.

A set {<i ,Si L>} of tri-sections is matching iff f-L. Xi : 0. The set is maximally matching if
UIti} E niXi. The set is deadlockedif it is not matching and for all x E Xi, (z\{f,})nU{t}
0.

The operational semantics of a tri-section is as follows. When a process begins execution
of '41S0 o >, the tri-section to is said to be enabled. The process is suspended immediately

before execution of So, and waits until there exists a maximally matching set M = {i ,Si i>}
of enabled tri-sections containing t o. The first such M (in real time) is always chosen. If two
or more maximally matching sets are established simultaneously, the oldest match is chosen,
i.e. the one which contains a tri-section which has been enabled the longest; if two maximal
matches are the same age, one is chosen nondeterministically. Each suspended process2 in M
is then granted an available physical processor as soon as possible. A processor is available if it
is not executing a tri-section (in which case the process running on it may be preempted). If
IMI is greater than the number of physical processors in the system, then the program aborts.
The physical number of processors is a parameter of the model. Once all of the processors are
acquired, M is executed, i.e. the tri-sections in M are initiated for execution simultaneously.
Thus, for all t4,4k E M, tri-sections tj and t will begin execution of Si and St concurrently.
Each process ti holds its processor (may not be preempted or re-scheduled) until it has finished
executing statement Si. This ensures that concurrent activity is locally maximized throughout
the execution of the tri-section.

Tri-sections combine two real-time concepts: processor holding and nondeterministic multi-
way synchronization. Consider the tri-section < S C>. The operational semantics says that the
processor on which the tri-section is executed should be held until the execution of S is completed.
In effect, this introduces a syntactically determined region of maximal parallelism into the
program. As such, strong temporal properties of S can be established, since the execution of S
is not subject to interleaving by the process scheduler. One might be inclined to regard < S r>
as the real-time analogue of the atomic action (S). However, the resemblance is not so strong
as it might seem. There are at least three fundamental differences:

1. Atomic actions must terminate [ScA85]; tri-sections need not.

2. In order to ensure termination, there may be an arbitrary delay before an atomic action is
executed. However, a tri-section -IS D> will be executed after a bounded implementation-

IThe notation for tri-sections was developed before the name; the term fri-section is derived from the shape
of the symbols "3" and ">'".

2 We will sometimes refer to a tr-section and the process in which it appears interchangeably.
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dependent delay, since there is an available processor (namely the one on which the tri-
section is running).

3. Atomic actions are indivisible; the intermediate states of S are not visible to the environ-
ment. The intermediate states of a tri-section are completely visible to the environment
(unless they are hidden by some other means), and tri-sections impose no restrictions on
concurrent behavior (other than those implicit in the physical processor requirements).

The synchronization aspect of a tri-section is necessary for those situations in which two or
more processes must cooperate in real-time. It is well-known that time-independent synchro-
nization between n processes (which essentially means ensuring that each process has reached
a particular state) can be programmed in an interleaving environment with O(n) synchronous
interprocess communications. Thus it might seem that tri-sections need not include synchro-
nization, since it can be programmed by other means. However, this is not the case, for the
following reasons:

1. Tri-sections can exhibit external nondeterminism. When a process executes <i S >, where
JX[ > 1, the choice of who the process will synchronize with is made by the environment,
not the process itself. Further, the process is unaware of which choice was made.

2. The synchronization part of a tri-section is established in real time; the first maximally
matching set of tri-sections is chosen.

3. Tri-sections are literally synchronized. Given a maximally matching set {<, i>} of
enabled tri-sections, the S are initiated simultaneously.

The synchronization part of a tri-section is in fact extremely useful in its own right, independent
of processor holding. As a result, we use the notation Al as an abbreviation for the tri-section
<1 null 1>, where null is the empty statement.

Weak Tri-sections

Tri-sections require a process to name all of the tri-sections with which synchronization should
occur. Occasionally this requirement is too strict; a process may only know with whom it would
like to synchronize, and may not care if additional processes are involved. Thus we introduce
the weak tri-section <31S C>, which is semantically equivalent to <41S r>, where

Y = {y : 3z E X(y is a valid index set Az C y)}.

This definition is adopted for convenience; it is not realizable as written, since the set Y may be
infinite. However, a practical, efficient implementation can be given. As above, we will take _At

-Xto be an abbreviation for _<1 null C>. We use the term strong tri-section to refer to a tri-section
which is not weak.

For simplicity, we insist that any set of maximally matching tri-sections contain at least one
strong tri-section. The other definitions remain as before.

Proof Obligations

Tri-sections are inherently unfair. Most process schedulers are at least weakly fair (or just). That
is, if an action of a process is continuously enabled from some point onward, then eventually
that action will be executed. If the number of processes in a system exceeds the number of
physical processors, it is possible that all of the processors may be utilized by non-terminating
tri-sections, preventing other enabled processes from executing. Thus, in order for an otherwise
fair scheduler to be fair in the presence of tri-sections, it is necessary to prove that this situation
cannot arise. Two practical strategies for doing so are either to prove that all tri-sections
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terminate, or prove that at least one processor is always available (i.e. that the cardinality of a
maximal match is always strictly less than Lhe number of available processors).

A set of enabled tri-sections which is deadlocked is clearly unable to make progress and
will wait forever for execution. Since the semantics admits the possibility of deadlock, the
programmer must prove that such a situation cannot arise.

6 Formal Specification of Dialog Systems

Dialog systems are servers for an interface; graphical interfaces are one such. They are like
operating systems in the concepts they provide. From a functional point of view, they maintain
the interface for the application, permit concurrent execution of programs attached to graphical
objects on the interface, and provide services with which a user (or programs) can edit the object
of the interface. We formulate the invariant properties which need to be satisfied by the various
components of the system. These properties involve treatment of object relationships in regard
to their layout, activation and execution of programs attached to objects, concurrency model
supported by the system, and the presentation of visual aspects. A formal specification of the
system has been developed in [Nar89,NaS89,NaS89]. This specification addresses the various
aspects in the design of dialog systems.
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