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VLSI Theory and Parallel Supercomputing

Charles E. Leiserson

Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

May 25, 1989

Abstract

Since its inception, VLSI theory has expanded in many fruitful and
interesting directions. One major branch is layout theory which stud-
ies the efficiency with which graphs can be embedded in the plane ac-
cording to VLSI design rules. In this survey paper, I review some of the
major accomplishments of VLSI layout theory and discuss how layout
theory engendered the notion of area and volume-universal networks,
such as fat-trees. These scalable networks offer a flexible alternative
to the more common hypercube-based networks for interconnecting
the processors of large parallel supercomputers. (This paper was an
invited presentation at the 1989 Caltech Decennial VLSI Conference.)

Keywords: Fat-trees, hypercubes, integrated circuits, interconnec-
tion networks, layout theory, parallel computing, supercomputing,
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Ten years ago, Clark Thompson introduced a simple, graph-theoretic
model for VLSI circuitry [22]. In Thompson’s model, a circuit is a graph
whose vertices correspond to active circuit elements and whose edges corre-
spond to wires. A VLSI layout is a mapping of the graph to a two-dimensional
grid, such that each vertex is mapped to a square region of the grid and each
edge is mapped to a path in the grid. Unlike the classical notions of a graph
embedding from mathematics, Thompson’s model allows edges of a graph to
cross over one another, like wires on an integrated circuit.

The interesting cost measure in VLSI is area. In Thompson’s model,
arca can be mecasure as the number of grid points occupied by edges or
vertices of the graph. Quickly, the minimum-area layouts for familiar graphs
were catalogued. As shown in Figure 1, a mesh (two-dimensional array)
with n vertices (y/n by /n) has ©(n) area.! The normal way of drawing a
complete binary tree (Figure 2a) has O(nlgn) area, but the “H-tree” layout
(Figure 2b) is much better: it has ©(n) area. A hypercube, which is a popular
interconnection network for parallel computers, requires considerably more
area—O(n?).

What causes a hypercube to occupy so much area? Although the size of a
vertex grows slowly with the number of vertices in a hypercube, most of the
area of a hypercube layout is devoted to wires. Figure 3 shows how the the
problem of wiring a hypercube grows with the size of the hypercube. Wires
are expensive, and wire area represents the capital cost of communication
on a VLSI chip. By measuring communication costs in terms of the geo-
metric concept of area, Thompson’s model enabled a mathematical theory
of communication in VLSI systems to develop.

From its origin, VLSI theory has ¢xpanded in many fruitful and interest-
ing directions. Rather than attempting to describe the breadth of research
in VLSI theory, however, I would like to revisit the accomplishments along
one narrow path—layout theory-- -which I believe will have a fundamental
impact on the architecture of large parallel supercomputers.

In his early work, Thompson discovered an important lower bound. The
area of an n-vertex graph is related to its bisection width: the minimum num-
ber of edges that must be removed to partition the graph into two subgraphs

IThe notation @(f(n)) means a function that grows at the same rate as f(n) to within a
constant factor as n becomes large. The notation O(f(n)) means a function that grows no
more quickly, and Q( f(n)) means a function that grows no more slowly. Formal definitions
for these terms can be found in any texthook on analysis of computer algorithms.




Figure 1: A mesh (two-dimensional array) on n vertices has a VLSI layout

with ©(n) area.

. @ . . . L) .
Figure 2: A complete binary tree on n vertices laid out in the standard way
(a) takes O(nlgn) area, but an H-tree layout (b) requires only ©(n) area.
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Figure 3: lllustrations (not layouts) of hypercubes on 4, 8, 16, and 32 vertices.
Any layout of an n-vertex hypercube requries 2(n?) area.

of n/2 vertices (to within 1, if the number of vertices is odd). For example,
an n-vertex mesh has a bisection width of \/n. A complete binary tree has a
bisection width of 1. A hypercube has a bisection width of n/2. Thompson
proved that any layout of a graph with bisection width w requires Q(w?)
area.

It turns out that a small bisection width does not lead immediately to a
small-area layout. After all, if we take two n/2-vertex subgraphs, each with
O(n?) area, and connect them by a single edge, the resulting graph has a
bisection width of 1 but still requires ©@(n?) area. Leslie Valiant and I were
able to show in independent work [24, 14, 15], however, that if there is a good
recursive decomposition of a graph—one where we can keep subdividing the
subgraphs without cutting many edges—then the graph has a small layout.
For example, not only complete binary trees, but any binary tree, no matter
how badly balanced, can be laid out in O(n) area by a divide-and-conquer
method. Valiant and I were also able to show that this method lays out any
n-vertex planar graph in O(n lg?n) area. Later, Leighton was able to show
that a variant of our method was optimal on any graph to within a O(lg® n)




Figure 4: The tree-of-meshes graph.

factor in area [9].

Leighton also introduced an interesting graph which he called the tree-
of-meshes graph, shown in Figure 4. He was able to prove that this graph
requires §}(nlgn) area, thereby refuting a conjecture of mine that all planar
graphs could be laid out in O(n) area. It remains an open question in VLSI
theory as to whether there exists a planar graph that requires Q(nlg? n) area,
or if all planar graphs can be laid out in O(nlgn) area.

Numerous other results in layout theory have been obtained—too many to
mention them all. Paterson, Ruzzo, and Snyder [18] and Bhatt and Leiserson
[3] studied how to keep wires short while preserving small area. Valiant [24],
Ruzzo and Snyder [21], and Dolev, Leighton, and Trickey [4] studied VLSI
layouts in which wires are not allowed to cross. Three-dimensional integration




was studied by Rosenberg [20], Leighton and Rosenberg [13], and Greenberg
and Leiserson [5]. Tault tolerance in wafer-scale circuits was studied by
Rosenberg {19], Leighton and Leiserson {11, 10], and Greene and El Gamal
[7]. The packaging of graphs into chips was studied by Leiserson [15] and
Bhatt and Leiserson [2].

In fact, packaging constraints are analogous to the constraints in Thomp-
son’s model. At any level of packaging—chips, boards, backplanes, racks,
or cabinets-—manufacturing technology constrains the number of external
connections from a package to be much smaller than the number of compo-
nents within the package. In Thompson’s model, a square region with side s
can support 4s external connections, but it can contain s? vertices, which is
considcrably larger than 4s as s becomes large.

As an example of a result [15] in packaging, Figure 5 shows a novel way
to package a complete binary tree using 4-pin packages of a single type. Each
chip contains one internal node of the tree. with three external connections,
and the remainder of the chip is packed as full as possible with a complete
binary tree, with one external connection. To assemble a tree with twice as
many leaves, we use two chips. We wire up one of the unconnected internal
nodes on one of the chips as the parent of the two complete binary trees.
We are left with a complete binary tree with twice as many leaves, plus one
unconnected internal node. Thus, considering the two chips as a single unit,
the siructure is the same as the one with which we began. By repeating
the process, we can recursively assemble a complete binary tree of arbitrarily
large size.

The werk in layout theory culminated with the development by Bhatt
and Leighton (1] of a general framework for VLSI layout. 1hey proposed a
layout method with which they were able to obtain optimal or neai-optimal
layouts for many graph-embedding problems. Their method has three steps.
First, recursively bisect the graph, forming a decomposition tree of the graph.
Second, embed the graph in the tree-of-meshes graph (Figure 4), typically,
with the vertices of the graph at the leaves of the tree-of-meshes graph. The
meshes in the tree-of-meshes are used as crossbar switches for routing the
edges of the graph. The layout of the graph is then obtained by looking at
where the vertices and edges are mapped when the the tree-of-meshes graph
is laid out according to known good layouts.

It seemed to me at the time that Bhatt and Leighton had solved nearly
all the interesting open problems in VLSI layout theory. All new results in

ot




Figure 5: Packaging a complete binary tree.

the area would be little more than refinements of existing methods with no
more real insights into the nature of interconnectivity. I turned my attention
toward parallel computation, in which | had continued to be involved since
my work with H. T. Kung on systolic arrays [8].

In fact, I was very much a proponent of special-purpose parallel compu-
tation over general-purpose parallei computation, largely as a result of my
work on VLSI layout theory. After all, as Kung and I had shown, and as
Kurng has continued to forcefully demonstrate, many computations can be
performed efficiently on simple linear-area structures such as one and two-
dimznsional arrays. These special-purpose networks have the nice property
that they can be laid out so that processors are dense and packaging costs
are minimized. Moreover, for many problems, they otfer speedup which is
linear in the number of processors in the systolic array.

General-purpose parallel computers, on the other hand, are typically
based on interconnection networks, such as hypercubes, that are very costly
for the computation they provide. For example, any hypercube network em-
bedded in area A has at most O(v/A) processors. The processors are therefore
sparse in the embedding, and connections dominate the cost. Similar results
can be shown for a three-dimensional VLSI model. Only O(V?/3) processors
of a hypercube network can fit in a volume V.

Hypercube networks do have a major advantage over many other networks
for parallel computing, however. They are universal: a hypercube on n




processors can simulate any n-processor bounded-degree network in O(lgn)
time. The simulation overhead is polvlogarithmic (a polvnomial of lg n). an
indication that the simulation is a parallel simulation. A polynomial overhead
in simulation is less interesting, since O(n) overhead is easily obtained by a
serial processor simulating cach of the n processors in turn.

The proof that an n-processor hypercube is universal goes roughly as
follows. Suppose we have a bounded-degree network R with n processors.
Fach processor can communicate with all its neighbors in unit time. The
hypercube can simulate the network, therefore, by sending at most a constant
number of messages from each processor. where each message contains the
information that travels on one of the interconnections in f£. It turns out,
all messages can be routed on the hypercube to their destinations in O(lgn)
time [23].

The notion of universality -the ability of one machine to efficiently sim-
ulate every machine in a class--is central to the origins of computer science.
A universal machine is the computer theorist’s idea of a general-purpose, as
opposed to mnltipurpose. machine. A universal machine can do the function
of any niachine. just by programming it, or. in the case of parallel-processing
networks, just by routing messages. A universal machine may not be the
best machine for any given job. but it is never much worse than the best.
The universality theorem for hypercubes does not say that a hypercube is
the fastest network to build on n processors. What it says is that the fastest
special-purpose network for any given problem can’t be much faster.

From a VI.SI theory standpoint, however, a special-purpose parallel ma-
chine has a clear advantage over a universal parallel machine. Packaging its
network can cost much less. And although universality 1s a selling point,
our economy favors machines that are cheap and efficient. even if they are
not universal. (How many combination telephone-lawnmower-toothbrushes
have been sold recently?) Special-purpose networks for parallel computation
are much clieaper than hypercube networks. Thus, for a long time, I was
skeptical about the cost-cffectiveness of general-purpose parallel computing.

I changed my mind, however, and became an advocate general-purpose
parallel computing when 1 started to look more closely at the traditional
assumptions concerning universal networks. In fact, from a VLSI theory
perspective, | discovered that hypercubes are not really “universal™ at all!
An n-processor hypercube may be able to efficiently simulate any n-processor
bounded-degree network. but if we normalize by area instead of by number of
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Figure 6: An area-universal fat-tree.

processors, we discover that an area-A hypercube cannot simulate all area-A
networks efficiently. IFor example, since an area- A hvpercube has only O \/Z)
processors, it can’t simulate an arca-A mesh, which has ©(A) processors, in
polylogarithmic time. A network that is universal from a VLSI point of view
should be a network that for a given area can efficiently simulate any other
netwe k of comparable area.

One such area-universal network is a fat-tree 16, 6], which is based on
Leighton’s tree-of-meshes graph. As shown in Figure 6, processors occupy
the leaves of the tree, and the meshes are replaced with switches. Unlike
a computer scientist’s traditional notion of a tree, a fat-tree is more like
a real tree in that it gets thicker further from the leaves. Local messages
can be routed within subtrees, like phone calls in a telephone exchange,
thereby requiring no bandwidth higher in the tree. The number of external
connections from a subtree with m processors is proportional to y/m, which
is the perimeter of a region of area m. The area of the network is O(n lg? n),
which is nearly linear in the numnber n of processors. Thus, the processors
are packed densely in the layout.




Figure 7: Any area-n network R can be etficiently simulated by an n-
processor area-universal fat-tree.

Any network R that fits in a square of area n can be efficiently simulated
by an area-universal fat-tree on n processors. To perform the simulation,
we ignore the wires in R and map the processors of R to the processors of
the fat-tree in the natural geometric way, as shown in Figure 7. As in the
hypercube simulation, each wire of R is replaced by a message in the fat-
tree. If we look at any m-processor subtree of the fat-tree, it simulates at
most a region of area m in the layout of R. The number of wires that can
leave this area-m region in R’s layout is O(y/m), and the fat-tree channcl
connecting to the root of the subtree has ©(y/m) wires. Thus, the load factor
of the channel, the ratio of the number of messages to channel bandwidih, is
O(1). It turns out that there are routing algorithms (16, 6, 12] that eflectively
guarantee that all messages are delivered in polylogarithmic timec. (In fact,
the algorithms can deliver messages near optimally even if the load factor is
quite large.)

Similar universality theorems can be proved for three-dimensional VLSI
models using volume-universal fat-trees. For a fat-tree to be universal for
volume, however, the channel capacities must be selected differently from
those in an area-universal network. Whereas the average growth rate of
channels in an area-universal fat-tree is v/2, the average growth rate in a
volume-universa! {at- tree is V4.




In practice, of course, no mathematical rule governs interconnect tech-
nology. Most networks that have been proposed for parallel processing, such
as meshes and hypercubes, are inflexible when it comes to adapting their
topologies to the arbitrary bandwidths provided by packaging technology.
The growth in channel bandwidth of a fat-tree, however, is not constrained
to follow a prescribed mathematical formula. The channels of a fat-tree
can be adapted to effectively utilize whatever bandwidths the technology
can provide and which make engineering sense in terms of cost and per-
formance. Figure 8 shows one variant of a fat-tree composed of two kinds
of small switches: a three-connection switch and a four-connection switch.
By choosing one of these two kinds of switches at each level of the fat-tree,
the bandwidths of channels can be adjusted. If the three-connection switch
is always selected, an ordinary complete binary tree results. If the four-
connection switch i1s always selected, a butterfly network which is a relative
of a hypercube, results. By suitably mixing these two kinds of switches, a
fat-tree that falls between these two extremes can be constructed that closely
matches the the bandwidths provided by the interconnect technology.

The notion of locality exploited by fat-trees is but one of three such
notions that arise in the engineering of a parallel computer. The most ba-
sic notion of locality is exemplified by wire delay and measured in distance.
Communication is speed-of-light limited. If this notion of locality dominates,
the nearest-neighbor communication provided by a three-dimensional mesh is
the best one can hope. For many systems, however, wire delay is dominated
by the time it takes for logic circuits to compute their functions. The second
notion of locality is exemplified by levels of logic circuits and measured in
gate delays. Communication time is essentially limited by the number of
switches a message passes through. From this point of view, structures with
small diameters, such as hypercubes, seem ideal. In a routing network, how-
ever, a heavy load of messages can cause congestion, and the time it takes to
resolve this congestion can dominate both wire and gate delays. Congestion
is especially likely to occur in networks that make efficient use of packag-
ing technology. The last notion of locality is exemplified by the congestion
of messages leaving a subsystem and measured by load factor. From this
standpoint, fat-trees offer provably good performance by a general-purpose
network that can be packaged efficiently. Recent work [17] has shown that
efficient parallel algorithms can be designed for this kind of network, as well.

Whatever the point of view, however, all three notions of locality must
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Figure 8: A scalable fat-tree.

guide the engineering and programming of very large machines. There are
problems in the sciences that cry out for massive amounts of computation,
most of which exhibit locality naturally: problems in astronomy, such as
galaxy simulation; problems in biology, such as the combinatorics of DNA
sequencing; problems in economics, such as market prediction; problems in
aerospace, such as fluid-flow simulation; problems in earth, atmospheric,
and ocean sciences, such as earthquake and weather prediction. To address
these problems effectively, very large parallel computers must be constructed.
Some of these computers may even be “building sized.” To construct and
program such large machines, however, locality must be exploited, and com-
puter engincers must come to grips with the lessons of VLSI theory.
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