
ILn
N

Concurrent Actions and External Events

ARichard N. Pelavin

Technical Report 254
May 1988

DTIC
ELECTE

SNOV03 1989D

UNIVERSITY OF

COMPUTER SCIENCE

WwawFT -- -89 Ii 01 053.
Apmwvd fig sf rthcu

I

I A FORMAL APPROACH TO PLANNING WITH

CONCURRENT ACTIONS AND EXTERNAL EVENTS

I by

Richard N. Pelavin

I

I Submitted in Partial Fulfillment

of the

Requirements for the Degree

DOCTOR OF PHILOSOPH1Y

I
I

Supervised by James AllenU
Department of Computer ScienceI

University of Rochester

Rochester, New York

I 1988

I
I
I
I

SECURITY CLASIF &.&.' , OF H.- - 4-.L -",... D .~ Entered,

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER254

4. TITLE (and Subtitle) 5 TYPE OF REPORT 6 PERIOC C(,'E;E:

A Formal Approach to Planninq With Technical Report
Concurrent Actions and External Events 6 PERFORMiNG ORG. REPORT N'WEE

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER o

3 Richard N. Pelavin NOO014-82-K-0193

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK

Computer Science Department AREA 6 WORK UNIT NUMBERS734 Computer Studies Bldg.University of Rochester, Rochester, NY 14627

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

D. Adv. Res. Proj. Agency May 1988
1400 Wilson Blvd. 13. NUMBER OF PAGES
Arlinqton, VA 22209 309

14. MONITORING AGENCY NAME " ADDRESS(ti different from Controlling Office) 15. SECURITY CLASS, (of this report)

Office of Naval Research Unclassified
Information Systems
Arlington, VA 22217 ISA. DECLASSIFICATION'OOWNGRADINC

I SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Distribution of this document is unlimited.

17. DISTRIBUTION STATEMENT (of the abstrect entered in Block 20, If dilfetent fron Report)

I
3 I1. SUPPLEMENTARY NOTES

none

19. KEY WORDS (Continue on reverse side it necesseary and idenlfy b) block nuimber)

Planning, temporal logic, external events, concurrent interaction,

20, ABSTRACT (Continue on reverse side If neceseary anid Identify by block number)

see reverse

I
FORM i

DD IJAN73 1473 EDITION OF NOV 65 IS OBSOLETE Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Dare Entered

I

20. ABSTRACT I

Plann*,ig was originally formulated in the state-based framework where actions are
modeled as functions from instantaneous state to state. This framework provides a
simple basis for describing the different ways the agent can affect the world, but is
inadequate for describing or reasoning about planning problems that involve either
concurrent acticns or external events, i.e., events initiated by forces and agents
other than the planning agent, that may occur while the planning agent is acting. In i
response to these deficiencies, Allen [1984] and McDermott [1982] put forth temporal
logics that can describe simultaneous events. These formalisms, however, cannot
capture the ways in which the planning agent can affect the world by executing I
different actions)

k- This dissertation presents a deductive logic to describe and reason about planning
problems that may involve concurrent actions and external events. A semantic
theory and axiomatization are provided. We exploit the complementary strengths
of the state-based model and those of Allen and McDermott by extending Allen's I
model with a structure similar to the result function found in the state-based model.
This structure captures the result produced by executing different actions at specified
times with respect to a context that includes external events that may be
simultaneously occurring. This provides a framework for modeling concurrent
interactions between the agent's actions and external events. It also provides a
simple basis for composing actions, both concurrent and sequential, to form more i
complex ones (i.e., plans). (, t

Using our framework, we analyze planning problems by showing how they can be I
expressed in our logic and casting planning as deduction in our logic. We pay
particular attention to concurrent interactions and the relation between composite
plan instances and their constituent parts. We also discuss the STRIPS assumption
and its analog, the persistence assumption [McDermott 1982], which have been
employed by most planning systems to determine which properties an action does 3
affect. We demonstrate that these assumptions are inappropriate when planning
with concurrent actions or external events, and propose an alternative approach.

Lastly, we develop a planning algorithm that is applicable in domains with
concurrent actions and external events, which we prove is sound with respect to our
semantic theory.

I
I
I
I

Curriculum Vitae

Richard Pelavin i He spent his childhood and
teenage years in the Westchester NY area and attend i school in Chappaqua, NY. In
1977 he entered the State University of New York at Albany to pursue his interests in Math
and Science. Richard graduated Summa Cum Laude from Albany in 1981. le received a B.S.
degree with a major in both Computer Science and Economics and a minor in Mathematics.
Richard also became a member of Phi Beta Kappa while at Albany.

Richard entered the Computer Science Department at the University of Rochester in 1981
to explore his interest in Artificial Intelligence. During his stay at Rochester, he was both a
teaching and research assistant. He also worked for three summers at the IBM Research
Center in Yorktown Heights, NY.

Soon after arriving at Rochester, Richard became interested and involved in the work of
James Allen, who later became his advisor. Richard's primary interests lie in the area of
knowledge representation and reasoning. His particular focus was in the area of AI planning.

Since the end of 1986, Richard has been employed in the Artificial Intelligence group at
Philips Laboratories in Briarcliff, NY where he is pursuing his interests in Al research.

Acoesston ?or
I4TIS G. A& I

DTIC TAB
Unannounced 0
Just rlo bon

Distrlbutlon/

Availability Co da

-vl andlor
Dit Seca

m iii

3 Acknowledgments

I would like to thank my advisor. James Allen, for his time. guidance, aind encouragemcrnt
throughout my graduate career. I have benefited greatly from the interaction. 13v Nworkiu'z
with James, I have learned how to organize a research project. focus on relevant issues, and
express myself clearly and precisely. I also thank the members of my committee, Henry
Kyburg and Jerry Feldman, for their support and feedback.

I would also like to thank Philips Laboratories, and in particular, Dick Wexelblat, for
their support and willingness to allow me to finish my dissertation amidst my other responsibil-
ities.

Lastly, I would like to thank all the people I encountered in the Computer Science
Department at Rochester, both staff and students, who made my stay both enjoyable and
stimulating. Special thanks goes to Jay Weber and Josh Tenenberg for their hell) in coordinat-
ing things at Rochester while I was at Philips.U

I
I
I
I
I
I
I
I
I
m

I

m

* iv

I Abstract

Planning was originally formulated in the state-based framework where actions are
modeled as functions from instantaneous state to state. This framework provides a simple
basis for describing the different ways the agent can affect the world, but is inadequate for
describing or reasoning about planning problems that involve either concurrent actions or
external events, i.e., events initiated by forces and agents other than the planning agent. that
may occur while the planning agent is acting. In response to these deficiencies, Allen "Allen 8-
and McDermott [McDermott 82' put forth temporal logics that can describe simultaneous
events. These formalisms, however, cannot capture the ways in which the planning agent can
affect the world by executing different actions.

This dissertation presents a deductive logic to describe and reason about planning
problems that may involve concurrent actions and external events. A semantic theory and
axiomatization are provided. We exploit the complementary strengths of the state-based
model and those of Allen and McDermott by extending Allen's model with a structure similar
to the result function found in the state-based model. This structure captures the result
produced by executing different actions at specified times with respect to a context that
includes external events that may be simultaneously occurring. This provides a fiamework for
modeling concurrent interactions between the agent's actions and external events. It also
provides a simple basis for composing actions, both concurrent and sequential, to form more
complex ones (i.e., plans).

Using our framework, we analyze planning problems by showing how they can be
expressed in our logic and casting planning as deduction in our logic. We pay particular
attention to concurrent interactions and the relation between composite plan instances and
their constituent parts. We also discuss the STRIPS assumption and its analog, the persistence
assumption [McDermott 82], which have been employed by most planning systems to determine

which properties an action does affect. We demonstrate that these assumptions are
inappropriate when planning with concurrent actions or external events and propose an
alternative approach.

Lastly, we .develop a planning algorithm that is applicable in domains with concurrent
actions and external events, which we prove is sound with respect to our semantic theory.

I
I
I
U
I
I
I

I
1 Table of Contents

1 . I n t ro d u c t io n .. I

1 .1 . T i e P r o b le m .. . I
1.2. Deficiencies of the State-Based Planning Paradigm .. 3
1 .3 . O v e rv iew o f th e T h esis ... 7

n 2. B ringing in the C om ponents of the Logic ... 11
2 .1 . A lle n 's In te rv a l L o g ic .. 1 1

I 2 .2 . P la n In sta n c es 14
2.3. The Deficiencies of Interval Logic in Connection with Planning 16

2 .4 . T he Inevita bility M od al O perato r .. 2 1
2.5. What the Branching Time Structure Does Not Capture 28

2.6. T h e IFT R IE D M odal O perator .. 35

I 3. T he Form al Specification of the Logic ... 40

3 .1 . T h e L a n g u a g e 4 0
3 .2 . T h e S e m a n tics ... 4 4
3.2.1. T he Interval Logic F ragm ent .. 45
3.2.2. The Interpretation of INEV and the R Accessibility Relation 493 3.2.3. Plan Instances and Goldman's Theory of Actions .. 52
3.2.4. Basic Actions and the Interpretation of IFTRIED ... 57

3.2.5. The Composition of Basic Action Instances and Plan Instances 69

3.2.6. Comparison with Semantic Theories of Conditionals ... 8
4 . A P ro o f T h eo ry 8 83 4.1. Axiomatization of the First Order Connectives 8

4.2. Axioms Describing the Interval Logic Predicates and Terms ... 91
i 4.3. The Axiomatization of the INEV Modal Operator .. 96

4 3 .1 .S 5 P ro p e r tie s ... 9 6
4 .3 .2 . T em po ra l P ro p erties .. 10 5

n 4.4. The Axiomatization of IFTRIED..114

4.4.1. IFT R IED as a Subjunctive C onditional ... 114

I 4.4.2. The Relation Between IFTRIED and INEV 120

4.4.3. The Relation Between IFTRIED and Plan Instance Composition 125

5. A nalyzing the P lanning P roblem .. 130
5 .1. T he P la nn ing E nviro nm ent ... 132

5 .2 . E xecu ta b ility C o nd itio ns ... 134

5 .3 . P la n Insta n ce In te ra ctio n s 1-i

5 .4 . P la n In sta n ce E ff ec ts 15 0

5.5. P ersistence and Sim ultaneous E vents ... 155

I

5.6. Maintaining a Property ... 164

6. A Planning Algorithm ... I

6.1. Overview .. 1 71

6.2. Specification of the Planning Algorithmn.. 1741

6.3. Proving that the Algorithm is Sound 181

6.4. Planning Examples 192

6.4.1. The Two Planning Operators and Interval Logic Reasoning 192

6.4.2. Sequential Interactions and Maintenance .. 19.5

6.4.3. Concurrent Interactions .. 199

7. Conclusion 202

7.1. Summary .. 202

7.2. Limitations and Future Directions 20]1

7.2.1. Limitations of the Planning Algorithm 204

7.2.2. Issues Outside the Scope of the Deductive Logic.. 209

Bibliography ... 213

Appendix A The Primitive Language... 217

Appendix B Defined Symbols... 219

Appendix C The Semantic Model 221

Appendix D The Axiomnatics ... 227

Appendix E Auxiliary~ Theorems and Derived Rules ... 232

Appendix F Proof of Theorems in Chapter 4.. 230

Appendix G Proof of Theorems in Chapter 5... 246

Appendix H Proof that the Algorithm is Sound .. 261

U List of Figures

2.1-4 A Branching Time Structure............ 2I2.4-2 Interpreting the POS and INEV Mo~dal Operators................................... 2

2.5-1 Possibilities Out of the Agent's Control ... 29

2.5-2 Enablement Relation Between Plan Instances .. 30

2.5-3 Relation Between Branching Time Structure and Executability
Conditions that Hold During Execution.. ... 34

3.2-1 Two World-Histories Differing on the Account of the ExecutionIof a Basic Action Instance ... 62
3.2-2 Minimal Revision Links Corresponding to a Game-Tree 6733.2-3 Relation Between thie R Relation and th(. Basic Ad.ion Functions 6I
3.2-4 The Definition of and Two Constraints Relating to the

Composition of Basic Action Instances... .70133.2-5 Interfering Basic Action Instances .. 73

3.2-6 Non-Interfering Basic Action Instances 7 1

3.2-7 Trulv Simultaneous- Plan Instances........ I .. 7U4.1-1 Axioms and Inference Rules Relating to the First Order
Logical Symbols S34.2-1 Axioms Relating to the Interval Logic Fragment 9q2

4.2-2 Soundness Proofs for Axioms AX-ILl - AX-1_4 9-I4.2-3 Soundness Proofs for Axioms AX-1L5 and AX-IL6 97
4.3-I Axioms and Inference Rule Relating to the S5 Properties of INE\' 97

4.3-2 Soundness Proofs for Axioms AX-INVI and AX-INV2 9I4.3-3 Soundness Proofs for AxiomsAX1 3 and AX-INV4 99

4.3-4 Axioms Relating to the Temporal Properties of INEN .. 106I4.3-5 Soundness Proofs for Axioms AX-INNV5 and AX-INV6....................................... 107

4.3-6 Soundness Proofs for Axioms AX-INV6 (cont.) and AX-1NNV8..........I.............. .. 10SI4.3-7 Soundness Proofs for Axioms A.X-INV8 (cont.) and AX-INVO 109

4.4-1 Axioms and Inference Rule Relating to lFTRIED as a
Subjunctive Conditional.. 1141E4.4-2 Soundness Proofs for Axioms AX-IFTRi and AX-IFTR2..................................... 116

4.4-3 Soundness Proofs for Axioms AX-IFTR3 and A.X-IFTR4.................................... 117

4.4-4 Axioms Relating to the Relation Between IFTRJED and JNENV......................... 120I4.4-5 Soundness Proof for Axiom AX-IFTR5.. 121

4.4-6 Soundness Proof for Axiom AN-IFTR6.. 122

4.4-7 Axioms Relating to Plan Instance Composition 12:)4.-Io n n s r o o x o X I T 7 2
4.4-9 Soundness Proof for Axiom AX-IFTRS .. 127S

4.4-10 Soundness Proof for Axiom AX-IFTR 9 129

5.3-1 Pollack's Interpretations of the Ileader-Bod.v-Preconditicn
S pecifica tio n o f A ctio ns 1 17

6.2-1 Definition of the REMOVE and INTRO Planning Operators 17t

6.4-1 The Logical Statements Corresponding to the State of the
P lanning A lgorithm 1

6.4-2 Constraints Imposed on the World Model by the Input Specifications 19

6.4-3 Logical Transform ation Corresponding to REM OVE 1.. 90

6.4-4 Logical T ransform ation Corresponding to INTRO 1.......... 91

3
3Chapter 1

Introduction

U 1.I. The Problem

I
This thesis presents a formal model of action and time to provide a basis for

planning in temporally rich domains. This includes domains where the planning
agent may concurrently execute a set of actions in a world where other agents and
external forces are simultaneously producing changes. The planning agent may need
to interact with these external events in order to prevent some undesirable
occurrence, insure the successful completion of some event, or to perform some action
enabled by an external occurrence. By treating concurrency, we can model a robot
agent that has multiple effector devices that can be operating simultaneously. This
same model can also be used to represent plans that are to be jointly executed by a
group of cooperating agents. In both cases, we refer to the agent or set of agent's
doing the planning as the planning agent.

In domains where external events may produce changes in the world, the time
when a plan is to be executed must be considered and reasoning about temporal
constraints becomes necessary. Consider a simple planning problem. Currently, it is
10:30 PM and the agent is in the library. The agent's goal is to get its books out of
the office before 11:00 PM. The office may be locked anytime between 10:45 and
11:00 PM. Two simple actions that the agent can perform are to walk from the
library to the office, which can be done anytime and takes ten minutes, and to enter
the office, which can only be done if the office door is not locked. If we also assume
that the agent cannot unlock the door, then the agent must plan to leave from the
library before 10:35 PM, getting to the office before it is locked.

In domains where events may occur simultaneously, there are a number of
interactions involving simultaneous actions and events, both constructive and
destructive, to consider. We investigate two types of constructive relations: the
interaction between two actions that can be executed together but not separately,
and the interaction involving an external event that enables the agent to perform
some action. An example of the first type of interaction is where an object is lifted by
applying pressure to two ends of an object, one hand at each end. If pressure were
applied to only one end, the result would be a pushing action, not part of a lifting
action. An example of the second type of interaction is where the action "sailing
across the lake" can only successfully occur if the wind is blowing while the sailing is
taking place. It is a parallel interaction since the wind must be blowing while the
sailing takes place, not before or after.

Destructive interactions refer to situations where the occurrence of an event (or
set of events) precludes another event (or set of events) from occurring. We will refer

2 I
to this interaction as interference. Interference may result from a resource conflict.
For example, there may be only one burner working on a stove, and two dishes to be
heated. Either dish can be heated at any time, but clearly, both dishes cannot be
heated simultaneously. Thus, we must be able to represent interactions where there
are two concurrent actions that can be done separately, but cannot be done together. I
We must also model resource conflicts between three or more actions where only a
subset of them can be done together. Other examples of interference involve actions
that are alternative choices, only one of which can be performed at one time. An I
example is where the agent can move forward at any time, move backward at any
time, but cannot do both simultaneously.

Two concurrent actions may only conditionally interfere. As an example, the
agent may be in the airport and wish to carry two bags onto the plane. Suppose that
each passenger always can carry one bag onto the plane, and can carry additional
bags only if the plane is not going to be full. To model this situation, we must
represent that "carry on bag)" and "carry on bag2" can always be done individually,
but cannot be done together if the plane is going to be full. We must also be able to
represent that the condition "the plane is full" is out of the agent's control. This case
must be distinguished from situations where two actions conditionally interfere, but
the agent can bring about the condition under which they do not interfere. Consider
a simple example. If the agent has more then seven dollars but less than fourteen
dollars on hand, it can buy a record that costs seven dollars or buy some tape that
costs seven dollars, but cannot do both. The agent, however, can purchase both items
by bringing along at least fourteen dollars.

The examples above concern the interference between two actions that the
planning agent can perform. Other types of interference involve the relation
between an action initiated by the planning agent and an event caused by another
agent or external forces. These types of interactions must be treated differently. If
two of the agent's actions interfere and the agent wants to perform one of them, it
can simply choose not to perform the other. On the other hand, if the planning
agent's action interferes with an event caused by another agent or external forces,
the planning agent may not be able to prevent this conflicting event from occurring.
Consider a scenario where the planning agent and another agent share a terminal.
There are a number of different interactions corresponding to different priority
schemes. If the planning agent has priority and can kick the other agent off the
terminal at anytime, then the planning agent can use the terminal at anytime. It
can also prevent the other agent from using the terminal. Conversely, if the other
agent has priority, the planning agent can be sure that it can use the terminal
during some time period t only if it is sure that the other agent will not be using the
terminal anytime during t. A third interaction involves a first come first serve
priority scheme.

In the following chapters, we develop an interpreted logic (i.e., a logic with a
semantic model) to represent planning problems having concurrent actions and
external events. This framework provides the basis for analyzing and constructing
planning systems that handle concurrent actions and external events. In the next
section, we describe situation calculus, the context in which Artificial Intelligence

33
Il planning was originally formulated. This has given rise to the state-based

planning paradigm, exemplified by such systems as STRIPS [Fikes&Nilsson 71]
and NOAH [Sacerdoti 77]. Many of the issues that we consider are in response to the

i inadequacies of these systems. The main limitation of situation calculus is that it
does not model simultaneous events. Consequently, the few state-based planners
that treat concurrent actions or external events have done so without an appropriate

I underlying model. We illustrate that these planning systems are limited and
produce unacceptable results if certain restrictions are not imposed. In order to relax
these restrictions, a more general model of actions and events is needed.

1.2. Deficiencies of the State-Based Planning Paradigm

I One of the most successful approaches for representing events and their effects in
Artificial Intelligence has been situation calculus [McCarthy&Hayes 691. In this
framework an event is represented by a function that takes a situation, which is anU instantaneous snapshot of the world, and yields the situation that would result from
applying the event to its argument. Events can be combined to form sequences. The
result of applying the sequence el;e2;..;en to situation s is recursively defined as the
result of applying e2; ... ;en to the situation that results from applying el to s.

Situation calculus has given rise to the state-based planning paradigm which,
without extension, has the following form: given a set of sentences describing
conditions that are initially true and a set, of sentences describing goal conditions to
be achieved, a sequence of actions must be found that when applied to any situationU where the initial conditions hold yields a situation where the goal conditions hold.
In this framework, the description of the world in which planning is done, which we
refer to as the planning environment, only describes the initial situation, i.e., the
situation that holds just prior to plan execution. As a result, this representation is
only adequate for planning problems where all changes in the world result from the
planning agent's actions. If this is the case, then conditions that are true in the
initial situation will remain true until the agent performs an action that negates it.
Consequently, the future is uniquely determined by the initial situation and the
sequence of actions that the planning agent chooses to perform from this situation.

This simple type of planning environment does not provide for planning problems
where the world may be affected by external events that occur while the agent is
executing a plan. Examples of such conditions include:

i) The bank is going to open at 9:00 and will close at 3:00

ii) It will possibly start raining any time between 3:00 and 4:00

iii)If the agent is outside without an umbrella while it is raining, the agent will
get wet

iv) It is possible that the can of paint sitting in the doorway will be knocked over
if the agent does nothing about it

4

The type of goals considered in state-based planning are also very limited. Goals
are just conditions that must hold at the completion of plan execution. In this
research, a goal may be any temporally qualified proposition describing conditions in
the future of planning time. Thus, a goal may be to avoid some condition while
performing some task, prevent an undesirable condition that possibly will happen,
or achieve a collection of conditions in some specified order. Examples of these type
of goals are:

i) Do not damage the tape heads while repairing the tape deck

ii) Prevent Tom from entering the room

iii)Get to the gas station on the way to driving to school (ordered goals)

More precisely, goals are temporally qualified propositions that partition the set of
possible futures into the set of possible futures where the goal holds and the set of
possible futures where the goal does not hold. In this research, we will not consider
goals such as "finding the best way to achieve ..." which presupposes some utility
measure or precedence ordering relating the possible futures. Whether a goal holds
in some possible future is true or false and not dependent on other possible futures.

Finally, in the state-based approach, the types of actions and plans that can be
represented are limited. Since actions are transformations from state to state, there
is no conception of conditions holding or changing while an action takes place. This
precludes the treatment of an action whose execution depends on conditions that
hold during execution. For example, a necessary condition to edit a document on a
text editor is that the text editor is operational while the editing is taking place.
This relation cannot be described in situation calculus if we treat "editing a
document on a text editor" as an action. Only conditions that hold prior to
execution, which have been called preconditions, can be used as necessary
conditions.

Plans are limited because they are sequences of actions to be executed in the
initial situation. Thus, one cannot treat plans containing concurrent actions and
plans that have an execution time that starts later than the initial situation. The
first restriction comes about because it is impossible to represent concurrent actions
in situation calculus. The second restriction does not matter in state-based planning
problems since all changes in the world are due to the planning agent. Thus, it
makes no difference when a plan is initiated; the world will not change until the plan
is started.

Automated Planning Systems

Most domain independent planners are state-based planners, or limited
extensions of the state-based approach, such as NOAH [Sacerdoti 771, NONLIN
[Tate 77], DEVISER [Vere 1981], and SIPE [Wilkins 1983]. All these systems model
actions as functions that transform one instantaneous state into another. The
ancestor of these systems is STRIPS [Fikes&Nilsson 71].

15
The type of planing problems handled by STRIPS is exactly what we haveI- described as the state-based planning paradigm. The major contribution made by

STRIPS is the so called STRIPS assumption to handle the frame problem, that is. the3 problem of representing that an action only affects a small part of the world, leaving
the rest of the world unchanged. Thus, if situation sI is the result of applying an
action in situation sO, typically, sO and sl will be very much alike. In STRIPS, an
action is defined as ordered triplet consisting of a precondition list, add list, and
delete list, each member of these lists being atomic formulas. An action may be
applied in any state s where all its preconditions hold yielding a new state that is
computed from s by adding the formulas on the add list and deleting all the formulas
on the delete list. Implicit in this treatment is that any formula that is not explicitly
asserted to be true in a state is taken to be untrue. This enables one to avoid
explicitly specifying negated atomic formulas. This approach, however, precludes
the use of partial descriptions of states where the truth values of some formulas are
unknown.

Also in the class of state-based planners are the non-linear hierarchical planners
descending from NOAH [Sacerdoti 77]. Describing a planner as being hierarchical
means that it solves goals by first considering an abstract plan and then considering
more detail at successive stages. The term "non-linear" refers to a search strategy
where the planner solves a conjunction of two sub-goals by looking at them
separately (in isolation). The planner then tries to merge the two plans to avoid
conflicts between actions in these plans. The fact that they are non-linear and
hierarchical does not make them any more expressive then STRIPS. These terms
refer only to the control strategy, rather than to the representation of plans. The
planning environment in these systems are just as we described for the state-based
planning paradigm. The plans returned by these systems are partially ordered set
of actions that are to be linearized upon execution. The use of the STRIPS
assumption is implicit in the method that is used to detect harmful interactions
between two actions entered into a plan. If an action al is detected whose deletion
list mentions a precondition of another action a2, either a2 is ordered after al (if
possible), or a third action that restores a2's precondition is inserted into the plan
and ordered after al and before a2. A concise presentation describing action
interactions in non-linear planners is given by Chapman [Chapman 19851.

There have been a number of domain independent planning systems that have
handled a larger class of planning problems than STRIPS. Wilkins' SIPE [Wilkins
83] and Vere's DEVISER [Vere 811 are two of the most sophisticated types, both of
which are extensions of non-linear hierarchical planners such as NOAH [Sacerdoti
77] and NONLIN [Tate 77]. Wilkins' system handles plans with concurrent actions,
and Vere's system treats future events that may occur while a plan is taking place
and actions that have durations.

Parallel Actions in a State-Based System

In Wilkins' system, a plan is a partially ordered set of actions. Any two actions
where one is not ordered before the other are considered to be in parallel branches.

6

Wilkins introduces resources to reason about the interaction of parallel actions. A
resource is defined as an object that an action uses during its execution. If two
actions share the same resource, they cannot be executed in parallel. Ordering
constraints are imposed (if possible) to insure that any two actions sharing a
resource cannot be in parallel branches.

Wilkins points out that although his notion of resources is very useful, they are
still quite limited. They do not allow one to treat such things as money or
computational power as resources. In general, resources cannot be used to encode
actions that conditionally interact, such as the interaction we mentioned where the
agent can carry two bags onto the plane only if the plane is not going to be full. This
limited treatment of concurrent interactions can be attributed to the fact that his
system is an extension of a state-based system. Situation calculus, the model for
these systems, only represents sequential interactions. This refers to an enablement
interaction where an earlier action brings about a later one's preconditions and a
harmful interaction where an earlier action ruins a later one's preconditions. These
interactions are captured by the precondition-add-delete lists provided for each
action in a state-based system. These lists, however, do not describe the parallel
interaction between actions. Without a model supporting parallelism, it is not clear
what the potential types of parallel interactions are, and there is no clear guide as to
what a correct implementation would be.

Another potential problem is the inappropriate use of the STRIPS assumption in
a representation that models concurrency. Problems arise if the STRIPS assumption
is used naively. Consider two actions al and a2 that are executed in parallel starting
from state sO and completing in state sl. Assume that both al and a2 have the same
precondition P1, which holds in state sO. Also assume that the result of executing al
is that P1 is deleted and the result of a2 is that P2 is added. Using the STRIPS
assumption to compute the result of executing al in sO, we get that P1 is false in
state sl since it is deleted by al. Using the STRIPS assumption to compute the
effects of executing a2 in sO, we get that both P1 and P2 are true in sl, P1 being true
since it is not mentioned in a2's delete list. This of course is a contradiction, P1 and
its negation cannot both hold at the same state.

Future Events in a State-Based System

Vere's DEVISER system can represent a planning environment where there are
assertions about future events. In this system, a time line is modeled by the non-
negative real numbers, zero being the time of planning and the positive real
numbers being future times. This system can represent that an event not under the
planning agent's control will occur starting at some specified time and ending at
another time. The time line is also used for describing goal conditions and durations
associated with actions. One can specify that some goal condition must hold between
two time points. Vere calls the time points in which a goal is to be achieved the
goal's (time) window. A goal can be the conjunction of two or more conditions to be

U7
3 achieved simultaneously within one window, or conditions to be achieved at different

times, thus each condition has its own specified window.

There are number of deficiencies in Vere's system that will be addressed here.
One deficiency is that times of actions, events, and goals must be specified using an
absolute scale. He does not provide a general representation that allows relative
temporal orderings. For example, the system does not handle goals such as: get to
the gas station before getting to school. The treatment of future events is also
limited. One cannot represent that some future event will start any time between
2:00 and 2:15; the exact start and finish time must be given. Secondly, one cannot
describe a future event that is influenced by both the external world and the
planning agent. All future events must be external events, ones that the agent can3work with and plan around, but not prevent.

Vere's system implicitly uses the STRIPS assumption just like other state-based
planners. This leads to some potential problems because he is modeling a world
where other agents and external forces may produce changes. One must assume that
the planning environment completely describes all the external events that will
occur while a plan is to be executed. This also precludes the use of disjunctions to
describe the effects of actions and conditions that hold while a plan may be executed.
If one does not assume that a complete description is given, incorrect results may be
produced. For example, suppose the property "the bank is open" can only be affected
by external events. If it is asserted that "the bank is open" holds in the initial
situation, it is necessary to include the external event that negates this property at

I the time when the bank is closing. If this is not done, the precondition "the bank is
open" is always satisfied since no matter where an action with this precondition is
positioned, there are no earlier events or actions that delete this condition.

1.3. Overview of the Thesis

In order to analyze and circumvent the problems we have just described, we
develop a model of action and time that represents concurrent actions and external
events. Our starting point is Allen's interval logic [Allen 84). In this formalism, a
global notion of time is developed that is independent from the agent's actions.
Temporal intervals are introduced to refer to chunks of time in a global time line.
For any event, one can describe the temporal intervals over which the change
associated with the event takes place. Thus, there is a notion of what is happening
while an event is occurring. One can describe simultaneous events by stating that
two events occur over intervals that overlap in time. Properties, which refer to static
conditions, are treated similarly to events; for any property, one can describe the
temporal intervals over which it holds. Both relative and absolute specifications can
be used to temporally relate events and properties. In [Allen 83a], Allen describes a
system, based on interval logic, that makes inferences about temporal relations
using constraint propagation.

Allen's logic can be used to describe what actually happens over time, but cannot
be used to describe the different possibilities that the agent can bring about. It can

8

be characterized as a linear time logic. Lacking from this logic is a construct like the
result function in situation calculus that describes all the possible effects that can be
produced by executing different actions in different situations. To accommodate this
deficiency, we extend Allen's logic with two modal operators. Both these extensions
are introduced in chapter two after discussing Allen's logic in more detail. First, we
add a modal operator that captures temporal possibility enabling us to describe the
different possible futures at some specified time. This allows us to distinguish
between conditions that are possibly true and conditions that are inevitably true at a
specified time. This extended logic can be characterized as a branching time logic.

After extending Allen's logic with the inevitability operator, we show that this
extension alone is not sufficient for our purposes. For example, it does not
distinguish whether a possibility is caused by the agent, caused by the external
world, or cauised by both factors. Making this distinction is necessary if we want to
formalize what it means to say that a plan executed at a specified time solves the
goal. For this purpose, we introduce a second modality IFTRIED which takes a
plan instance and a sentence as arguments. Roughly, plan instances refer to both
single actions and plans to be executed at specified times in specified ways. Plan
instances take the place of plans and actions in our theory. The IFTRIED modality
represents statements that can be interpreted as saying "if plan instance pi were
attempted then sentence S would be true". There are two ways to look at this
modality, either as a subjunctive conditional or as an to the result function from
situation calculus.

In the third chapter, a formal specification of the logic is given. The first section
describes the formal language and the second section describes the semantic model.
Our basic approach to the semantics can be characterized as possible worlds
semantics which was developed by Hintikka [Hintikka 62] and refined by Kripke
[Kripke 63]. In this framework, a set of objects called possible worlds are included as
part of a model. In our system, we refer to possible worlds as world-histories to
emphasize that they correspond to worlds over time, not instantaneous snapshots.
Each sentence in the language is given a truth value with respect to each world-
history within a model. The truth value of sentences formed using the modal
operators are interpreted in terms of relations and functions that relate world-
histories. In chapter three, we pay particular attention to the functions that are used
to interpret IFTRIED. This treatment derives from the semantic theories of
conditionals developed by Stalnaker [Stalnaker 68] and Lewis [Lewis 73].

In chapter four, we present a proof theory that is sound with respect to the
semantics. The axiomatization of most of the system is standard. The interval logic
fragment is a first order theory that is formulated using a standard first order
axiomatization extended with axioms describing the properties of a small collection
of predicates and function terms found in interval logic. The inevitability modal
operator behaves like a S5 necessity operator for a fixed time argument. An
axiomatization of these properties is taken from Hughes and Cresswell
[Hughes&Cresswell 1968). The properties that are unique to this operator capture
the relations: conditions that hold earlier than or during time i are inevitable at 1,
and what is inevitable at some time is inevitable at later times. The axioms and

19

I rules capturing IFTRIED can be divided into three categories: i) properties relating
to a subjunctive conditional, ii) the relations between IFTRIED and the inevitability
operator, and iii) the relations between a the properties of a plan instance composed
out of simpler plan instances and the individual properties of its constituent parts.

In chapter five, we use the logic that we have developed to analyze and describe
the components of a planning problem having concurrent actions and external
events. These components include the goal description, the planning environment
description, the conditions under which plan instances can be executed both alone
and in conjunction with other ones, and the effects produced by both simple and
composite plan instances. We pay particular attention to the interaction between
plan instances, both sequential and concurrent, and to the persistence problem3 [McDermott 821, which is the problem of determining how long a property remains
true in a formalism that allows simultaneous events. By looking at these problems
using our framework, we are able to explicate some of the problems that we
mentioned earlier in conjunction with state-based systems. We illustrate how to
represent some types of parallel interactions using our logic and describe how these
interactions are used to determine the conditions under which two actions can be
executed together. In the last two sections of chapter five, we examine some issues
relating to the persistence problem. We analyze the relation between the persistence

I problem and the STRIPS assumption. This brings to light some of the problems
encountered when the STRIPS assumption is used in an inappropriate setting. We
also demonstrate that the persistence assumption, as put forth by some authors

I [McDermott 82] [Hanks&McDermott 85] as a replacement to the STRIPS
assumption can lead to problems when reasoning about planning. We then discuss
plan instances that maintain properties over intervals, which we use in place of the3 persistence assumption when reasoning about planning.

In chapter six, we present a planning algorithm that exploits some of the
I properties investigated in chapter five. We relate the algorithm to our logic and then

prove that it can be viewed as a process that forms sound conclusions with respect to
our semantic model. Our algorithm is novel in the way we handle harmful action
interactions and the use of plan instances to maintain properties over temporal
intervals, which are used in place of a STRIPS assumption. The harmful
interactions between two or more plan instances, concurrent or sequential, are
computed from a specification, given by the user, indicating for each pair of
overlapping plan instances, the circumstances under which they do not interfere. By
using maintenance plan instances, rather than the inappropriate STRIPS
assumption or persistence assumption, we are able to remove the restrictions that
must be imposed when using these assumptions.

In the last chapter, we present a summary of this work and discuss future
directions. The future directions section discusses extensions along two dimensions.
First, we discuss implementing and extending the planning algorithm that we
developed in chapter six. We then discuss some issues outside of the scope of "the
deductive planning problem", the focus of this work. In particular, the work in this
thesis provides a precise account as to what it means to have an airtight plan that
solve a goal with respect to some description of the world. We nave not, however,

3I

10!

addressed issues concerned with choosing the appropriate description to work fr ,m,

such as deciding which possible future events to take into account and which ones to i
ignore.I

I
I

1
I
I

i
,,
I
I
I
i

1 11

3 Chapter 2
Bringing in the Components of the Logic

In this chapter, we introduce our logic by bringing in the pieces one by one,
I describing why each piece is needed. The starting point is Allen's interval logic

[Allen 84] which we discuss in section 2.1. This is a linear time logic that models
simultaneous events and can be used to describe what is taking place while an event
is occurring. In section 2.2, we introduce plan instances which roughly refer to
actions and plans at specified times to be executed in specified manners. Plan
instances take the place of plans and actions in our theory. In section 2.3, we3illustrate why a linear time logic must be extended to represent the different
possibilities that the agent can bring about. To demonstrate this point, we describe
Allen's and Koomen's [Allen&Kooinen 83b] method for using interval logic to solve
planning problems and show where their system must go outside the logic and the
ensuing problems. In section 2.4, we introduce the INEV modal operator which
captures temporal possibility. Interval logic extended with INEV is a branching
time logic, a logic that can describe different possible futures. We discuss some
properties of INEV and examine the specification of a planning environment using a
branching time logic. In section 2.5, we illustrate why a further extension is needed
in order to represent what it means to say that a plan instance solves a goal. This
brings to light that a branching time logic cannot distinguish whether a possibility is
caused by the agent, caused by the external world, or caused by both factors. To
make this distinction, we introduce a second modality, IFTRIED which can be used
to describe what the planning agent can and cannot affect. We briefly discuss some of
its properties in section 2.6.

2.1. Allen's Ifiterval Logic

The starting part for our development is Allen's interval logic. Allen describes a
logic of action and time [Allen 84] that overcomes the aforementioned deficiencies in
situation calculus. His logic is cast as a sorted first order theory with terms that
denote temporal intervals (or simply "intervals"), events, and properties (among other
types). Intervals refer to stretches of time in a linear time line. Properties refer to
static conditions which have different truth values at different times, and events
refer to changes in affairs that occur over stretches of time. We will also use the term
conditions to refer to both events and properties. A scenario over time may be
described by specifying the events that occur over various intervals and the
properties that hold throughout various intervals. Concurrent events are easily
handled by asserting that two events occur over the same interval or occur over
intervals that overlap in time. In a similar manner, one can describe the properties
that hold while an event is taking place.

Allen's treatment of events differs from situation calculus in two important ways.
First of all, events in Allen's logic refer only to partial changes in the world, they do

II

12

not refer to all the changes that take place during their time of occurrence. Thus.
one can model two events happening at the same time. This contrasts with situation
calculus, where events are complete changes from one situation to the next. In
section 5.5, we describe Georgeffs [Georgeff 86] treatment of actions and events in
which situation calculus is modified so that events are only partial changes.

The second difference is that Allen's logic can describe what is happening while
an event is taking place. This, as we will see, enables a simple treatment of actions
with conditions needed for execution that must hold during execution. For example,
we will be able to treat an action corresponding to the performance of "editing a
document on a text editor" which succeeds only if the text editor does not go down
while the typing is taking place.

The Interval Logic Fragment

Our formal logic is an extension of interval logic with two modal operators. Thus,
a fragment of our language will consist of interval logic statements. In this sub-
section, we informally present this fragment, which will be referred to as the
interval logic fragment.

Before presenting the interval logic fragment, we must first describe the
notational conventions that we will be using throughout this text. Atomic symbols,
including constant terms, function symbols, and proposition symbols, will be
italicized when presented within the text. All other terms and sentences,when
presented within the text, will be surrounded by Quine corners, which appear as "F-
and "1". All variable terms will be prefixed with a "T such as the variable term ?pr.

When not explicitly noted otherwise, we will be using a LISP-like notation to
specify both sentences and function terms. Function terms, other than constants, are
formed by encasing a function symbol followed by its arguments with parenthesis.
For example (f a)1 refers to a unary function f with the constant term a as its
argument. Atomic formulas, other than proposition symbols, are formed by
encasing a predicate symbol followed by its arguments in parenthesis. Similarly,
the first order connectives are put in prefix form and encased by parenthesis. The
logical connectives will be specified by: AND for conjunction, OR for disjunction,
NOT for negation, IF for material implication, IFF for equivalence, V for the
universal quantifier, and 3 for the existential quantifier. Unbound variables in a
statement are interpreted as universal variables bound at the outermost layer.
Since both conjunction and disjunction are associative and commutative we will
allow them to take two or more arguments. The predicate symbol = will be used to
refer to equality. Lastly, we must note that with the exception of the following sub-

section, we will be cavalier in treating the "use-mention" distinction and, for
example, will use "property pr" in place of "the property denoted by pr", pr being a
constant term in the language.

Allen introduces a number of binary predicates to specify the temporal relation
between two intervals. For example, r(MEETS il i2)1 means that the interval
denoted by il immediately precedes the interval denoted by i2, with no gaps in

1 13

I between. The MEETS relation is considered to be a primitive interval relation. In
all, there are thirteen primitive interval relations which are given in appendix B.
The set of primitive relations are mutually exclusive, that is, two different primitive
relations cannot hold between the same two intervals. All other interval relations
can be defined as a disjunction of these thirteen primitive relations. Two examples of
defined interval relations, that we will make frequent use of, are: r(PRIOR il i2)1
and F(IN il i2)1. The relation r(PRIOR il i2)1 means that the interval denoted by 11
is before the interval denoted by i2. PRIOR is defined as the disjunction of the
primitive relations MEETS and BEFORE, the latter relating two intervals where
one is properly before the other. The relation r(IN il i2)1 means that the interval
denoted by il is properly contained in the interval denoted by i2. This relation is

I defined as the disjunction of STARTS, DURING, and FINISHES (see appendix B).
We will introduce other interval relations as needed throughout the text.

The binary predicate OCCURS is used to specify when an event occurs over some
interval. The formula r(OCCURS ev i)1 means that the event denoted by ev occurs
during the interval denoted by i. Similarly, the binary predicate HOLDS is used to
specify when a property holds throughout some interval. The formula r(HOLDS pr
)1 means that the property denoted by pr holds throughout the interval denoted by

i. Since HOLDS specifies that a property holds throughout some interval, there is an
axiom stating: if a property pr holds during some interval i2, pr also holds during
any properly contained in i. In the language, this is given by:

(IF (AND (IN ?i2 ?i) (HOLDS ?pr ?i))
(HOLDS ?pr?i2))

It is important to distinguish this treatment of HOLDS with a modal approach
such as in [Rescher&Urquhart 71] where an operator like HOLDS takes a sentence
as an argument, instead of a term that denotes a property. In the modal approach,
the sentence supplied as an argument can stand for a property or may also be a
HOLDS statement (or an OCCURS statements for that matter) forming a statement
with nested modal operators. An example, of a nested statement is r(HOLDS
(HOLDS P il) i2))1. These nested statements prove to be useful if one is translating
tensed statements with tenses such as past perfect where there are two implicit
times of reference along with the time that the sentence is uttered. For our purposes,
however, nested statements provide no benefits. Unless one allowed "indexical
intervals", such as a special interval denoting "now", all but the innermost times in a
nested statement are superfluous. For example, r(HOLDS (HOLDS P il) i2))1 is
equivalent to r(HOLDS P il)1. There is also an advantage to using our first order
approach. One can quantify over the set of properties, which cannot be done in a
first order modal logic.

Past, Present, and Future

In interval logic, there is no notion of a current time, and consequently, there is
no formal notion of the past, present, and future. These tense distinctions have been

14

used, however, when we described the planning problems that we wish to formalize.
We stated that the planning environment consists of a descripticn of past. present
and future conditions and the goal refers to desired future conditions. Thus, we are
assuming that the agent is situated at a particular time, the time when planning is
taking place. The terms "past", present" and "future" are with respect to this time of
planning. For simplicity, we will treat these tense distinctions in an informal
manner. We will require that the planning problem specification identifies one of
the intervals as being the time of planning (we place no importance to the duration of
this interval). When describing a planning scenario, we will use the convention that
the future refers to times that are later than the time of planning, the present refers
to the time of planning, and the past refers to times prior to the time of planning.
Thus for example, "future events" refers to events that occur after the time of
planning.

We must contrast this informal treatment of past, present, and future with
formal treatments found in tense logics such as [Prior 67] and [Rescher&Urquhart
71]. In these logics, sentences are interpreted with respect to a particular state
(related to earlier and later states). One can simply assert that some property is
true. An assertion such as "the sky is blue" is taken to mean that "the sky is blue,
now". This contrast with our system where sentences are interpreted with respect to
a whole course of events, not a particular time or state laying within a course of
events. Consequently, assertions about properties can only be made using the
HOLDS predicate where a time is explicitly given along with a property.

In a tense logic, one can also make assertion such as "in the future, the building
will be completed", "in the past, Carol was liberal minded", "in the past, it was the
case that in the future Tom would be seeing John". All these sentences are formed
by combining propositions standing for properties with modal tense operators. For
example "in the future, the building will be completed" is formed by prefacing the
proposition "the building is completed" with the future modal operator. The
statement" in the past, it was the case that in the future Tom would be seeing John"
is formed by prefacing the proposition "Tom sees John" with the past operator
followed by the future operator.

2.2. Plan Instances

Along with identifying the time that planning takes place, It is also necessary to
identify the time when a plan is to be executed. The planning agent must be able to
interact with external events and thus perform the steps in a plan at the appropriate
times. Clearly, whether or not a plan achieves a given goal depends on the time
during which its steps are executed. For this reason, we will talk about plan
instances which have times of execution associated with each step, instead of plans
which are usually taken to be timeless entities. We extend Allen's ontology with
these objects and introduce a sort referring to plan instance terms.

A plan instance is taken to be a set of events at specified times to be brought
about by a particular execution. In situation calculus, one could get away with being

15

vague as to whether an action refers to an event done in a particular way or whether
it refers to any performance that results in an event's occurrence, This is because
there is no notion of what is happening during the time of execution and hence no
way to describe two performances of the same event that differ in how the event is
being executed. In a more general model, however, this distinction becomes
conspicuous since one can represent what is happening while an event is taking
place. Consequently, if the logic is to be used to describe the effects of an action (or
plan instance in our case) one must be clear as to whether actions refer to a
particular way of bringing about some event, or any way of bringing about some

I event.

As an example, consider a simple scenario where there are two paths going from
I location A to location B. Let us refer to these paths as P1 and P2. When talking

about the action "bringing about the event going from A to B", one must be clear as
to whether it refers to a particular way of going from A to B (i.e. whether it refers toE going down path P1, or going down path P2), or whether it refers to taking either
path. If the action refers to a particular way of causing this event, one can simply
talk about its effects. If on the other hand, the action refers to the whole set of
performances that can cause "go from A to B", one must distinguish between saying
? no matter how the action is done, proposition EFF will be true" and saying "there is
a way that the action is done such that EFF will be true". In this example. it is3 correct to say that there is a way for an agent to cause "go from A to B" such that this
agent is on path P1 during execution, but incorrect to say that no matter how an
agent does "go from A to B, this agent is on path P1 during execution.

We say that a plan instance pi occurs iff the events associated with pi all occur
during their specified times and these occurrences are brought about by the
particular execution associated with pi. In our language, we use the atomic formula
r(OCC pi)1 to mean that the plan instance denoted by pi occurs. We must note that
although a plan instance has a set of events at specified times associated with it, a

3 plan instance may be denoted by a simple term, such as a constant, that does not
-- explicitly give this set. For example, we may use the term buy-at-BP to refer to a

plan instance in which the agent buys a newspaper during time i and then buys five
gallons of gas during time i2 while at the BP gas station.

Along with the times associated with the set of events to be caused by the
execution of a plan instance, we refer to a time of occurrence for the plan instance as
a whole. We take the time of occurrence for a plan instance pi to be the smallest
interval that contains all the times (i.e. intervals) associated with its set of events.
In the language, we use the function tcrm F(TIME-OF pi)l to denote the time of
occurrence associated with the plan instance, as a whole, denoted by pi. For
convenience, if there is only one way to perform the event ev during i, we will
sometimes use the term evC@)i (where @ is a binary infix function) to refer to the plan
instance corresponding to the execution of the single event ev at time i. Thus, plan
instance ev@i's time of occurrence is i since the smallest interval that contains {i} is
simply L.

16

Any two plan instances can be composed together to form a more complex plan
instance which occurs iff both its parts occur. In our language. the function term
F(COMP pil pi2)1 is used to denote the plan instance formed by composing the plan
instances denoted bypil and pi2. The set of events at specified times associated with
a composite plan instance is the union of the sets associated with its component
parts. Secondly, the particular execution associated with a composite plan instance
is the executions associated with both its parts done together. Consequently, a
composite plan instance occurs iff both its component parts occur. Thus, we find that
the following statement is valid in our logic:

(IFF (AND (OCC pil) (OCC pi2))
(OCC (COMP pil pi2)))

We also find that the time of occurrence associated with a composite plan instance is
the smallest interval that contains both its component time of occurrence. Thus, the
following statement is valid in our logic:

(= (TIME-OF (COMP pil pi2))
(COVER (TIME-OF pil) (TIME-OF pi2)))

where F(COVER i1 i2)1 refers to the smallest interval that contains both 11 and i2

Our approach is non-standard in that we are composing plan instances instead of
composing events, actions, or plans (if we had such objects). In effect, this allows us
to form plan instances that contain concurrent actions, sequential actions, and
actions with gaps separating their execution times all using the same combinator
function. The standard approach is to have one combinator function for forming
event sequences and a second combinator to form simultancous events, while
typically the formation of event types with gaps are not treated. In section 3.2.5, it
will be shown that the execution associated with the composition of two plan
instances (in terms of objects that we call basic actions) is given without needing to
treat the composition of sequential plan instances differently from the composition of
overlapping plan instances. Consequently, it is simpler to treat only one type of
combinator function. Furthermore, we consider the treatment of different
combinator functions as being concerned with the description of plan instances and
events types. In this work, we are concentrating on what a plan instance is, not on
the description of plan instances.

2.3. The Deficiencies of Interval Logic in Connection with Planning

Allen's treatment of time can be characterized as a linear time logic; interval
logic statements are about what is actually true, not about what is possibly true. A
logic to be used for planning, however, must represent possibilities. In particular, it
must allow us to describe the different possibilities that the agent can bring about.
In solving some goal, the planner must determine whether the goal is one of the
possible conditions that the agent can bring about. Moreover, if the goal is possible,
the planner must find a plan instance that solves the goal. Thus, a logic to be used

3 17

for planning must be capable of representing sentences of the form "C' is a condition
that the agent can bring about", and allow us to adequately formalize "plan instance
pi solves goal G". To achieve this end, we first extend Interval logic so that it can be
used to describe the different courses of events that are possible, not just the actual
course of events. We will see, however, that this extension alone is not sufficient and
that a second modal operator is needed to formalize "plan instance pi solves goal G".

I Before presenting the extensions to interval logic, it will be illustrative to
describe Allen's and Koomen's method [Allen&Koomen 83b] for using Interval logic
for solving planning problems. They describe how interval logic may be used to
generalize the type of planning problems handled by non-linear planners such as
NONLIN [Tate 77] and NOAH [Sacerdoti 77]. Their approach enables them to treat
planning environments that include statements about the past, present, and future,
not just statements about some initial state as can only be done in Sacerdoti's and
Tate's systems.

Statements in interval logic are used to describe the planning environment, to
describe desired future conditions (the goal), and to investigate the effects of
executing the various actions at the planning agent's disposal. To determine the3 effects of executing some action, one simply adds an assertion stating that this action
occurs to the set of sentences describing the planning environment and the effects of
the actions. Although they were able to describe future conditions as part of the
planning environment, they were unable to reason about interfering with future
conditions. The planner could only work around these future conditions. Any logic
or mechanism that is used to reason about interfering with the future must be able to
distinguish between conditions that are possible, and thus possibly could be
prevented, and conditions that are inevitable and thus cannot be prevented. This

*distinction cannot be made in interval logic since it cannot describe possibility.

Now, in Allen's and Koomen's system, the planner concludes that a goal is solved
by some set ofactions making up a plan if i) the actions taken together bring about3 the goal in the planning environment, and ii) the "preconditions" for each action that
is part of the plan hold in the planning environment or are enabled by another
action, or set of actions, that is part of the plan.1

The concept of "precondition" is outside the scope of interval logic and is treated
in an informal manner. Allen and Koomen do not give a precise account as to what
preconditions are. They just describe how one might use preconditions in a small
number of examples and allude to the use of preconditions in state-based systems.
As we will see, this informal approach leads to unacceptable results if one is not
careful when specifying a planning environment description. We will later show
that the extensions we make to interval logic may be used to capture what Allen and
Koomen were getting at by appealing to preconditions.

We are simplifying this description so as to only mention what is
pertinent to the current discussion. In particular, we are glossing over
their method for making frame assumptions.

18

The action specifications in Allen's and Koomen's system are given by relating
each action at a specified time to its preconditions and effects. This is given by
asserting that if an action occurs at some specified time then both the preconditions
and effects hold at appropriate times. As an example, consider the class of actions
where one block is stacked on top of another one. Let the function term r(stack bl
b2)1 refer to a stacking action where block bl is stacked on top of block b2. Thk
preconditions for executing r(stack bl b2)1 during interval i is that both block bl and
b2 are clear immediately prior to i. The effects of executing r(stack bl b2)1 during 1
is that immediately after i, block bl is stacked on top of b2 and b2 is no longer clear.
In our language, this is given by:

(IF (OCCURS (stack ?bl ?b2) ?i)
(AND (3 ?il (AND (MEETS ?il ?i) (HOLDS (clear ?bl) ?il)

(3 ?i2 (AND (MEETS ?i2 ?i) (HOLDS (clear ?b2) ?i2)))
(3 ?i3 (AND (MEETS ?i ?i3) (HOLDS (on ?bl ?b2) ?i3)))
(NOT (3 ?i4 (AND (MEETS ?i ?i4) (HOLDS (clear ?b2) ?i4))))))

The above relation does not distinguish between preconditions and effects, and
hence the preconditions have to be annotated outside the logic in order to distinguish
them from effects. One might suggest that the distinction between preconditions
and effects can in fact be made in interval logic since preconditions hold before the
plan instance's time of execution and the effects hold afterwards. This, however, is
not necessarily the case. Allen and Koomen stated that they were providing for
"preconditions" that may hold while an action is being executed. For example, the
preconditions for sailing across the lake may be that the wind is blowing while the
sailing is take place. Thus, it is a misnomer to call these conditions preconditions.

One can look at preconditions as describing what the planning agent can possibly
bring about and capturing what it means to say that a plan instance solves some
goal 2. Any condition C is possible if there is a plan instance at a specified time
whose effects bring about C and whose preconditions hold in the planning
environment. This conception of preconditions is adapted from state-based planners
and situation calculus, the context in which preconditions were originally
introduced. Preconditions in interval logic, however, are not on the same firm
ground as preconditions in the setting of state-based systems. This is because, in
interval logic, there is no analogue to the underlying structure found in situation
calculus in which alternative actions are applied to a situation yielding the different
possible situations that the agent may bring about. That is, in interval logic, there is
no notion of a context in which we apply alternative plan instances yielding the
different possible effects that the agent may bring about. Thus, we cannot define
preconditions in a similar manner as is done in situation calculus where
preconditions are conditions describing the context (situation) in which the action is
to be executed; an action's preconditions are the conditions under which application

z Although Alien and Koomen do not use the term "plan instance", we
will use this term where it is appropriate, such as referring to a set of
actions at specified times.

U 19

of the action in a context (situation) where the preconditions holds leads to a context
(situation) in which the action's effects hold.

Having a clear conception of preconditions in state-based systems leads to an
intuitive definition of action sequence preconditions. Without having an underlying
structure in which to interpret preconditions in interval logic, it is difficult to give a

I satisfying account as to what a composite plan instance's preconditions are. While
Allen and Koomen explicitly identify preconditions for simple actions at specified
times, preconditions for composite plan instances are treated in an implicit manner.
From the description of their planning algorithm we take liberties and try to give a
more concise account as to what they intended composite plan instances
preconditions to be.

3 Consider an example where a planning environment is given in which the
preconditions for both pil and pi2 hold. In this case, Allen and Koomen would accept
as a solution to some goal a plan instances that contained both pil and pi2 as long as
there are no constraints, specified as part of the planning problem, that prohibit pil
and pi2 from occurring together. Thus, we might suppose that they would subscribe
to the following relation: if the precondition of pl is the temporally qualified
proposition PRE1 and the precondition of pi2 is the temporally qualified proposition
PRE2, then the precondition of their composition is r(AND PRE1 PRE2)0 under the

I conditions that r(AND (OCC pil) (OCC pi2)) is consistent (in interval logic) with
the statements specified as part of the planning problem

One cannot use consistency to define what preconditions are 3 It seems that
Allen and Koomen are using consistency to approximate possibility in the following
manner. They assume that if r(AND (OCC pil) (OCC pi2))1 is consistent with the

I statements given as part of the planning problem then it is possible that both pil and
pL2 occur together. Thus, a more accurate description of preconditions for composite
plan instances is: the precondition of the composition of pil and pi2 is r(AND PRE 1
PRE2)1 as long as it is possible that pil and pi2 occur together.

Approximating possibility using consistency leads to problems if one is not
careful. For example, it must be assumed that a complete description of all the plan

I instances that cannot occur together is given as part of the planning problem
description. If this is not done, the system will erroneously conclude that pil and p12
can be executed together when it is in fact the case that they cannot be executed
together, although this fact was omitted from the description. Therefore, if we want
to construct planning systems that may not have complete knowledge about the
world, in particular about action interactions, Allen and Koomen's strategy must be
modified. To handle these case, it would be necessary to recognize that consistency is
being used as just an approximation. A distinction would have to be made between
the case where it is unknown whether two plan instances possibly occur together and
the case where it is possible that they can be done together.

I This is under the assumption that preconditions are properties of plan
instances, not properties concerning an agent's beliefs about plan
instances, as captured by a set of sentences.

20

Another problem is that the relation "the precondition of the composition of pil
and pi2 is r(AND PRE1 PRE2) if it is possible that pil and pi2 occur together" does
not hold in some simple cases. For example, suppose that two simultaneous plan
instances evl @i and ev2@i share the same type of resource and that both evli @z and
ev2@i have the identical precondition "at least one resource is available during time
i". Also assume that the planning environment description includes the statement
"either one or two resources are available during i and both disjuncts are possible".
Consequently, it is possible that evl @i and ev2@i can be done together. Using the
precondition relation above, we would derive that the precondition of evl@i and

ev2@i taken together is "at least one resource is available during time i" conjoined
with itself which is equivalent to "at least one resource is available during time i.

Clearly, this is unsatisfactory since evl@i and ev2Ci can be done together only if
two resources are available during i.

We will see that the extensions that we make to interval logic remedy the
problems that we have just noted. By appropriately modifying the linear time model
, we are able to describe the different possibilities that the agent can bring about and
capture the concept that Allen and Koomen were getting at by introducing
preconditions. We will be able to formulate the relation between two plan instance's
preconditions and their composition's preconditions, avoiding the problem above.

i 21

i 2.4. The Inevitability Modal Operator

We extend interval logic to model possible courses of events. At each interval i,
there may be many ways that the future can complete depending on which possible
events happen after i. Thus, we arrive at a world model over time that can be
pictured as a tree that branches into the future. The set of intervals are arranged in

I a linear global time line and are used to pick out stretches in different branches that
are co-temporal (see diagram 2.4-1). This type of temporal model can be
characterized as a future branching time model. We are specifically designing the
logic this way to capture all the possible courses of actions that the agent can take.
For every possible circumstance where plan instance pi can occur, it is assumed that
there exists a branch where it occurs under these circumstances and a branch where
it does not occur under these circumstances. Events not caused by the agent may
also lead to a branching in the future. While we are being exact as to possibility with
respect to the agent's behavior, we are allowing different conceptions of possibility as
related to the external events, i.e. events not caused by the planning agent. We will
shortly elaborate on this point.

II

i

I

IIII III I I I I

il I 2 3 1 i I i5 I

I I I I I t

Diagram 2.4-1

To describe possible courses of events in our language, we introduce the

"inevitability" modal operator which we designate by INEV. The INEV operator
takes two arguments, an interval term and a sentence. We give the statement
r(INEV i P)1 the english reading: "regardless of which possible events happen after i,

22 !
P is true". The second argument P may be any sentence in our extended language
(i.e. interval logic extended with INEV) Thus, we may form statements such as
r(INEV il (HOLDS pr i2))1 along statements containing a nested modal operator
such as r(INEV il (INEV i3 (OCCURS ev i2)))1.

If intervals il and i2 finish at the same time, then r(INEV il P)l is true iff
r(INEV i2 P)l is true. The reason for this is because the same events that are in the
future of il are in the future of i2; it is only the end of the interval i that is relevant
to the truth value of r(INEV i PP. Secondly, if interval il ends before interval i2,
then whatever is inevitable at time i1 is also inevitable at time i2. These two
relations taken together can be succinctly stated using the following schema, which
is valid for any sentence P in our language:

(IF (ENDS!- il Mi2)

(IF (INEV ?il P) (INEV ?i2 P)))

where r(END- il i2)1 means that interval il ends before or at the same time as
interval i2

A "possibility" modal operator is defined in terms of INEV. We will use POS to
designate this operator, which like INEV, takes a term denoting an interval as its
first argument and a sentence as its second argument. The statement r(POS i p)i is
given the english reading: "'t here is a course of events possible at time i in which P is
true". POS is simply defined as the dual of INEV for a fixed time. This definition is
given by:

(POS i P) =def (NOT (INEV i (NOT P)))

Our treatment of the modal operators POS and INEV is compatible with interval
logic in that the modal operators are temporally qualified. That is, one does not
simply assert that a sentence is inevitable or possible, but instead that a sentence is
inevitable or possible at a particular time. Statements in our logic are interpreted
with respect to a branch within a tree of possible futures spanning all times, not with
respect to a particular state situated in a tree of possible futures. This pertains to
both modal and nonmodal (i.e. interval logic) statements. For example, consider
diagram 2.4-2. With respect to branch 63, the statements F(HOLDS pr i2))l and
r(INEV il (OCCURS ev i3))1 are true. The latter statement is true with respect to
branch b3 since r(OCCURS ev i3)) is true in branches b3, b4, and b5, these being all
the branches that are possible with respect to b at time il.

This treatment contrasts with a standard treatment of branching time logics
found in the philosophy literature, such as in Prior [Prior 67] and Thomason
[Thomason 70], where a one place inevitability operator is introduced that takes only
a sentence as its argument. The reason for this difference is that these logics are cast
as tense logics; statements are evaluated with respect to an instantaneous state that
is arranged in a tree that branches into the future.

The interval and sentence supplied as arguments to an INEV or POS statement
may have any temporal relation. There is a difference, however, in how r(INEV il

23

b1

b2

pr ev b3 XIIt
ev b4
ev

i i2 i3

I Diagram 2.4-2

I (HOLDS pr i2))1 is treated depending on the relation between the endings of il and
i2. This is because if interval 2 ends before or at the same time as i1, then r(HOLDSIpr i2)1 must be inevitably true at il, or inevitably false at i2; a difference in later
events has no bearing on earlier conditions. Thus, we find that the following
statements are valid in our logic:

8 (IF(ENDS < ?il2)
(OR (TNEV ?i2 (HOLDS ?pr ?il))5(-,EV ?i2 (NOT (HOLDS ?pr ?il)))))

(IF(ENDS=<S Mi ?i2)

(OR (INEV ?i2 (OCCURS ?ev ?il))
(INEV ?i2 (NOT (OCCURS ?ev ?i 1)))))

(IF(ENDS<= (TIME-OF ?pi) ?i2)
(OR (INEV ?i2(OCC ?pi))

(INEV ?i2 (NOT (OCC ?pi)))))

I

24 I
In the Artificial Intelligence literature, McDermott [McDermott 82! has put forth

a branching time model to be used for describing scenarios over time and to be used
for planning. He describes his general approach by saying that his logic can be
thought of as a first order extensional logic that describes the interpretation of a
modal temporal logic. He casts his logic as a sorted first order logic with terms that
denote properties and events, similar to ours, along with terms that denote
instantaneous states. The set of states are arranged in a tree that branches into the
future by a "future-of" relation. To describe a scenario over time, one specifies the
properties that hold at various states and events that occur over stretches of world-
states arranged in the tree. Stretches of world states, more precisely convex sets of
world-states ordered by the future-of relation, are referred to as intervals.

The intervals found in McDermott's system differ from the objects that we have
been calling intervals in two ways. First of all, intervals in McDermott's logic are
constructed out of point-like objects, while in our system intervals are treated as
primitive objects. Secondly, intervals in his system refer to stretches in the tree of
possible futures. This contrasts with our treatment where each interval is arranged
in a linear global time line and serves to pick out stretches in different branches that
are co-temporal. In McDermott's system, an additional function is needed to specify
the global time associated with states in the tree of possible futures.

Since intervals in our system refer to a global time line, the temporal relation
between two intervals does not vary from branch to branch in the tree of possible
futures. This is in contrast to statements such as F(OCCURS ev i)P and r(HOLDS pr
)1 whose truth value might vary from branch to branch. Thus, for example, we find

that with respect to any time i, F(MEETS il i2)P is either inevitably true or
inevitably false. In our language, this is given by the following statement which is
valid in our logic:

(OR (INEV i (MEETS il i2))
(INEV i (NOT (MEETS il i2))))

Describing the planning environment

At planning time, there are many possible ways that the future may complete.
The future that is actually realized depends on the actions (plan instances) that the
agent chooses and the possible external events that actually occur. By choosing a
particular set of future actions the agent constrains the set of possible futures that
can be realized. Therefore, given a goal, the planner tries to find a plan instance that
constrains the set of possible futures to a subset of possible futures in which the goal
holds.

When describing a planning problem we do not work directly with world models
but instead with a partial description of the world model as described by some set of
sentences. We say that the sentences partially describe the world model since there
may be many world models that fit a description given by a set of sentences. As we
have mentioned, state-based planning problems are specified in this manner. In

p 25

these systems, the world model consists of an initial situation and the planning
environment is specified by a set of sentences that partially describe the initial
situation. The goal may be given by a conjunctive sentence that describes a set of

I desired properties that must hold in the situation that results from applying a plan.
Given a goal G, the planner looks for a sequence of actions that transforms any
initial situation that fits the planning environment description into a situation

I where G holds.

In our formalism, we cast the planning problem as follows. A world model
I consists of the set of branches that are possible at the time of planning. The planning

environment is a partial specification of these possible branches and is described by
statements in our extended language, i.e. interval logic extended with INEV. The
goal is specified by an interval logic statement describing desired future conditions.
Given a goal G, the planner looks for a plan instance that transforms any world
model WM (which is a set of possible branches) that fits the planning environment
description into a subset of WM in which G holds (in each branch belonging to the
subset).

In our extended logic, modal statements describe possibility and inevitability,
while statements such as r(HOLDS i pr), F(OCCURS ev)1, and r(OCC pi)l, not
embedded within a modal operator, describe what is actually true. Thus, our
extended language can describe conditions that are inevitable at some specified
time, conditions that are possible at some specified time, and also, conditions that
are actually true. This poses a slight problem. What does it mean to say that some
course of events will possibly happen while also asserting that another course of
events will actually happen? One answer to this is that possibilities are what could
have happened. If this is the case, why should a planner worry about something that

is possibly true if it is asserted that it is actually false?

We get around this problem by restricting the description of the planning
environment so that it only includes statements about inevitable and possible
conditions, omitting non-modal statements describing what is actually true. Thus,
there will be no assertions about a condition that is actually false but possibly true.
In solving a planning problem, we will be looking for a plan instance pi such that at
planning time, it is inevitable that pi brings about the goal, not simply that pi brings
about the goal. (note: Thomason [Thomason 70] describes a formal technique for
avoiding the above problem (although his motivation for developing the machinery
is different from ours). This solution involves giving a non-standard treatment to
the semantic consequence operator which results in the fact that non-modal
statements supplied on the left side act as if they are inevitably true. For our
purposes, however, our simple solution is adequate and is compatible with
Thomason's approach.)

We now see that conditions specified as part of the planning environment can be
classified into three categories: i) conditions inevitably true at planning time, ii)
conditions that are inevitably false at planning time, and iii) conditions that are both
possibly true and possibly false at the time of planning. Both inevitably true and
inevitably false conditions are ones that the agent can plan around but cannot

26

interfere with. Allen and Koomen [Allen&Koomen 83b] treated all future conditions
as if they could not be interfered with, this being the result of not treating
possibility. This is not to suggest, however, that the fUture condidons specified as
part of Allen's and Koomen's planning environment would be treated as inevitably
true in our system. This stems from the fact they did not put any restrictions on the
type of future conditions that can be included as part of the planning environment.
In particular, they allowed future conditions that described the agent's actions.
These type of conditions cannot be treated as being inevitable in our formalism as we
explain below.

The following assumption made in our system restricts the type of conditions that
can be treated as being inevitable: for all possible circumstances where plan
instance pi can be executed, it is possible (at all times prior to pi's execution time)
that pi occurs under these circumstances and possible it does not occur Thus, it is
incorrect to assert that it is inevitable that some future plan instance pi occurs as

long aspi is not a plan instance such as "stay at home or do not stay at home during
time i", one that necessarily cannot occur. The effect of this restriction is more subtle
than this though. It pertains not only to conditions that explicitly mention the
agent's future actions or the agent's future locations, but also to some conditions that
mention only the outside world. An example (taken from McDermott) will help to
clarify. Consider the condition "Little Nell is tied to the train tracks and will be
crushed by an oncoming train". Assume that Little Nell would be saved, if the
planning agent executed the plan instance, save-plan and this plan instance could be
executed. Thus, by our restriction above, it is possibly true that save-plan occurs.
Consequently, the statement " Little Nell is tied to the train tracks and will be
crushed by an oncoming train" cannot be inevitably true since it if were true, "save-
plan occurs" would have to be inevitably false.

Solving The Goal

INEV was introduced as the first step in formulating what it means to say that a
plan instance solves a goal. As we will see, an additional extension must be made in
order to capture our intuitions, but let us first examine how one might try use
interval logic extended with just INEV to formulate what it means to say that a plan
instance solves a goal. Consider a planning problem where at planning time, which
we will denote by 1p, we want to solve a goal G, where G is an interval logic
statement describing desired future conditions (i.e. conditions in the future of Ip).
We let S refer to the set of sentences describing the planning environment and the
effects of executing each plan instance. A necessary condition to conclude that some
future plan instance pi solves the goal G with respect to S is that pi brings about G
under all future conditions that are possible at time Ip as described by S.
Equivalently, we can describe this necessary condition by saying: for any world
model WM (which consists of a set of branches possible at the time of planning Ip) in
which all sentences in S are satisfied, G must hold in the subset of the branches in
WM in which pi occurs. Formally, this condition can be given by relating S to the

I
_____ ____ ____ ____

27

I sentence F(INEV Ip (IF (OCC pi) G)) ,this sentence being true iff G holds in all the
branches that are possible at Ip in which plan instance pt occurs:

Cl)

S (INEV Ip (IF (OCC pi) G))

where the symbol designates the semantic entailment in our system. For a set
SO, consisting of sentences in our language, and a sentence P in our language,
"SO P" is true iff sentence P is satisfied in every model in which all the

I sentences in SO are satisfied in. The formal definition of is given in chapter 3.

It is important to point out that we are treating S, which includes a specification
of what is possible at planning time, as a parameter in formalizing what it means to
svy that a plan instance solves a goal. That is, we are formalizing "pi solves the goal
G ,vith respect to S", not simply "pi solves the goal G". As we mentioned earlier,
while we are treating all the actions that the planning agent can execute as being
possible, we are putting no constraints on which external events must be counted as
possible. Whether the planning environment describes a great number of external
possibilities, or just a few of the very likely ones is an interesting issue, but not of
immediate concern here. We want to factor this problem out from the issues we are
considering and thus make it clear how a mechanism that decides which possibilities
to take into account can be integrated with the mechanisms based on the work here.

Now, we do not want to conclude that a plan instance solves a goal if it is an
impossible plan instance, that is, a plan instance that cannot be executed under
any circumstance. This point is mentioned because any impossible plan instance pi
would vacuously satisfy C1 since it is inevitable at any time that an impossible plan
instance does not occur. Thus, we stipulate that a second necessary condition for
"plan instance pi solves the goal G with respect to S" is that it is possible at planning
time that this plan instance occurs. That is, the following must be true:

C2)

S i (POS Ip (OCC pi))

A third necessary condition results from the following observations. A condition
that the agent can prevent must be both possibly true and possibly false. Clearly,
one cannot prevent a condition that is inevitably false. Secondly, the condition must
be possibly false since it does not make sense to say that an agent prevented a
condition that was going to happen anyway.1 For example, it conflicts withIconventional usage to say "I prevented winter for lasting for twelve months". For
similar reasons, it is only proper to say that a condition is brought about if the
condition is both possibly true and possibly false.

We see that a necessary condition for both "G is prevented" and "G is achieved" is
that the G is both possibly false and possibly true. Thus, "G is both possibly true and
possibly false" is a necessary condition for "pi solves the goal G with respect to S".

28

Now, C1 and C2 together entail that the goal is possibly true, that is, the following is
true:

{r(INEV Ip (IF (OCC pi) G))I, r(pOS Ip (OCC pi)) 1 } (POS Ip G)

On the other hand, C1 and C2 (taken together) do not entail that G is possibly false.
In other words, the negation of r(POS Ip (NOT G))' is consistent (in our logic) with
C1 and C2 taken together. Thus, in order to conclude that pi solves the goal G, it is
also necessary that the following holds:

C3)

S (POS Ip (NOT G))

Although C1, C2, and C3 are necessary conditions for "pi solves the goal G with
respect to S", they are not sufficient. Other necessary conditions are that pi can be
executed regardless of possible circumstances out of the agent's control and p? must
contain all the steps needed for execution. As we will see, interval logic extended
with INEV alone is inadequate to represent "pi solves the goal G with respect to S".

2.5. What the Branching Time Structure Does Not Capture I
If it is possible at planning time that plan instance pi occurs, then it is only

possible that pi can be successfully executed. It does not necessarily follow that pi

can be executed under all circumstances that are possible at planning time. For one,
there may be possible external events whose occurrence would prevent pt from being
successfully executed. We want to conclude that a plan instance pi solves a goal only
if under all possible circumstances caused by external events, pi can be executed.

Consider the following planning problem. The goal is to get into a particular
room sometime during the interval Ig, which is in the future of Ip, the time of
planning. Let walk-in-room@Iw refer to a plan instance corresponding to the
performance of the event "walk through the doorway into the room" during interval
1w, where we are assuming that 1w ends at a time during Ig. We assume that it is
possible that this plan instance occurs iff the door is unlocked at a time just prior to
1w. Thus, the execution associated with walk-in-room@Iw does not have a provision
for unlocking the door if it happens to be locked. We also assume that it is possible at
Ip that the door is locked just prior to 1w and possible at Ip that the doo- is unlocked

I To be more exact, we would have to distinguish the reason why an
event is possible. It is not proper to say that the agent prevented
some event from occurring if the the event can only be caused by
the agent's actions alone. In [Pelavin&Allen 86] (section 4), we
describe how the lo ic being developed here can be used to
represent that a possible event is not just caused by the agent's
actions. This is achieved by stating that it is possible that the
event would occur even if the agent were to remain inactive. 1

_____________________________________ ___

29

just prior to Iw. Furthermore, the agent cannot affect whether or not the door is
locked. A diagram of such a scenario is given in 2.5-1.

walk-in-room@lw -- 0
does not occur

door
locked walk-in-room@lw

door -- does not occur
openopen walk-in-room@lw

occurs

p 1wI' I I

Diagram 2.5-1

In this scenario, it is possible at Ip that the plan instance walk-in-room 'w

occurs, but it is not appropriate to say that plan instance walk-in-room@Iw solves
our goal. Whether or not it can be successfully executed depends on whether or not
the door is locked, a condition out of the agent's control. A plan instance is desired
that can be executed under all possible occurrences of external events as described by
the planning environment. Thus, in the above example, a plan instance is sought
that achieves the goal and can be executed regardless as to whether the door is
locked or open.

Finding a plan instance that can be executed regardless of external conditions is
still not sufficient. In order to correctly say that a plan instance solves a goal, the
plan instance must contain all the steps needed for execution. This can be clarified
by the following example.

During planning time Ip, the agent is standing by a locked safe and by a table on
which the safe's key is resting. The goal is to open the safe at some time in the near
future. Let open-safe@Io refer to a plan instance corresponding to the performance
of the event "open the safe with the key" during interval Io. It is possible that this
plan instance occurs iff the agent is grasping the key in its hand just prior to
execution time Io. The agent can also perform grasp-key@Ig which corresponds to
grasping the safe's key at a time immediately after Ip and results in the key being
grasped just prior to lo. We assume, in this simple scenario, that grasp-key(4Ig can
be simply executed by itself. Thus, it is possible at Ip that grasp-key@Ig occurs

30

leading to a possible branch where the agent is grasping the key in its hand just prior
to execution time, Io. Consequently, it is possible that open-safell"Io occurs. A
diagram of such a scenario is given in 2.5-2.

b 1
open-safe@lo
does not occur

grasp-key@lg
does not occur open-safe@lo

grasp-key@lg . does not occur -. * b2
occurs

open-safe@lo
occurs

Sb3
Ip Ig to

I I I

Diagram 2.5-2

In this scenario, it is under the agent's control to enable open-safe 2Io so that it
can be executed. This is done by executing grasp-keygIg. We would not, however,
want the planner to simply return that open-safe ,~o solves the goal, leaving out
that it must be done in conjunction with grasp-key@!g. Instead, we would want the
planner to return a plan instance such as r(COMP grasp-key@Ig open-safe@Io)', i.e.
the plan instance corresponding to the joint execution of grasp-key PJIg and open-
safe@Io.

In summary, we have shown that a necessary condition to conclude that "plan
instance pi solves goal G with respect to S" is that pi can be simply executed alone
under all possible circumstances at planning time as described by S. This insures
that there is no possible external conditions that can prevent pi from being executed
and that pi contains all the steps need for execution. Equivalently, we describe this
necessary condition by saying that pi is executable in all possible futures at
planning time as described by S. The property "executable" is described as follows:

pi is executable in branch b in the tree of futures iff either pi occurs in b or pi
could have occurred in the circumstances holding in b without the aid of another
plan instance to enable it

I'

31

As an example, the plan instance open-safe iIo is executable in branches b2 and b3,
but not in bl as pictured in diagram 2.5-2. As we describe in section 5.2, this term is
also used by Pollack[Pollack 86] to refer to a similar concept.

Analyzing what we mean by executability is crucial to formalizing "plan instance
pi solves the goal G with respect to S". We now dig deeper, asking the question: why
do we say that a plan instance is executable under certain circumstances, but not
under others? We then show that a branching time structure must be extended to
capture executability.

IExecutability and Plan Instance Attempts

3We arrive at an analysis of executability by making a distinction between plan
instance attempts and plan instance occurrences. A similar distinction is made by
Haas [Haas 85] where he distinguishes between the execution of a command to bring
about an action and the occurrence of an acuon. When we first introduced plan
instances, we stated that each one referred to a set of events, at particular times, to
be brought about by a particular execution. Now, it is possible that the particularK, execution associated with a plan instance takes place although the set of events
associated with the plan instance does not occur. In this case, we say that the plan
instance is attempted but does not occur. A plan instance pi occurs iff the
performance of the execution associated with pi brings about the occurrence of the
events associated with pi. We equate "pi is executable" with "if pi were to be
attempted, then pi would occur". This definition makes use of a subjunctive
conditional, an important point which we will shortly get back to.

Consider the previous example where we were reasoning about opening a safe
with a key. Implicitly, we had in mind that this plan instance is attempted by the
agent moving it's arm in such a way that the key being grasped is twisted in the
safe's lock. Now, these arm movements can be performed regardless as to whether or
not the key is being grasped. These arm movements, however, will only bring about
a safe opening event if the key is being grasped just prior to execution. In diagram
2.5-1, we omitted, for simplicity, a branch where the arm movements are performed
while the key is not being grasped.

As a second example, consider a plan instance that corresponds to the3performance of the event "editing a document on a text editor" during interval i. This
plan instance is attempted by typing on a keyboard while sitting in front on a text
editor. Now, typing on a keyboard can be done regardless as to whether the text
editor is operational during interval i, but the event "editing a document on a text
editors" is brought about during i only if the machine is operational during i.

|
I
I
I

32

The Branching Time Structure and Executability

We now examine the relation between the brarching time structure and
executability. Executability can be captured in a branching time structure only if
for every plan instance pi, conditions prior to pi's time of occurrence determine I
whether or notpi is executable. In this case we can encode "pi is executable by":

(POS Ix (OCC pi))

where Ix is any interval that immediately precedes (meets to the left) pi's time of
occurrence

The above relation between executability and the branching time structure is
justified by showing the equivalence of "pi is executable in branch b" and - r(POS Ix
(OCC pi)) is true at b". This equivalence can only be established if conditions prior
to pi determine whether or not it is executable.

The implication from "pi is executable in branch b" to " r(POS Ix (OCC pi)) , is
true at b" holds even in the case where conditions during execution, along with prior
conditions, determine executability. This relation stems from our assumption that
for each possible circumstance in which a plan instance can occur, it is possible that
this plan instance occurs under these circumstances. From this we infer that if plan
instance pi could have occurred in the circumstances holding in b without the aid
another plan instance to enable it, then there must be a branch in which pi occurs
that shares a common past with b up until the beginning of pi's execution time.
Now, a plan instance is executable in branch b iff it occurs in b or could have
occurred in the circumstances holding in b without the aid of another plan instance
that enables it. Consequently, if pi is executable in b then pi occurs in b or there is a
branch in which pi occurs that shares a common past with pi up until the beginning
of pi's execution time. This consequent is exactly the condition described by F(POS
Ix (OCC pi))l. That is, r(POS Ix (OCC pi))l is true at branch b iffpi occurs in b or
there is a branch in which pi occurs that shares a common past with b through Ix, an
interval that meets pi's execution time.

The converse relation "if r(POS Ix (OCC pi))l is true in b then pi is executable in
b" can be established only if conditions prior to pi determine whether or not it is
executable. If r(POS Ix (OCC pi))l holds in b, then it is clear that conditions prior to
pi's time of occurrence cannot preclude pi from being executable in b. Thus, the only
way that r(POS Ix (OCC pi))l can be true at b, while pi is not executable at b, is if
conditions during pi's time of execution preclude pi from being executable. (note: we
are working under assumption that conditions after pi's time of occurrence have no
bearing on whether or not pi is executable) This establishes the desired implication:
"if only prior conditions determine executability, then if r(POS Ix (OCC pi))i is true
in b then pi is executable in b"

Let us now examine the situation where executability is determined (at least
partly) by conditions that hold during execution. We have just shown that we
cannot equate "pi is executable" with F(POS Ix (OCC pi))l if conditions during
execution affect whether pi is executable. We now present an example to

133

demonstrate that the branching time model does not have all the structure needed to
capture executability. Consequently, "pi is executable" cannot be reduced to any
statement, not just r(POS Ix (OCC pi))l, given solely in terms of the language formed

I by extending interval logic with the modal operators INEV and POS.

Consider the following example. Let sail@I refer to a plan instance
corresponding to the performance of the event "sail across the river" during interval
1. We assume that this plan instance is executable in a branch in which the wind is
blowing throughout interval 1. In diagram 2.5-3, a simple model is depicted withg four branches. In branch bl, the wind is blowing throughout interval Iall which
contains intervals Ix, 1, 12, and 13. In branch b2, the wind is blowing throughout
interval 12, but does not blow during interval 13. Additionally, the agent does not try

I to execute sail1@ in either bl or b2. Now, branch b3 is like b2 in that the wind blows
during 12, but not during 13. In this branch the agent attempts to execute sail~iJ but
fails since in the midst of execution the wind stops blowing. In branch b4, however,
the agent attempts sail@I and succeeds (i.e. saillI occurs) since the wind is blowing
throughout interval 1-all which contains I, the time of execution.

The implication from "r(POS Ix (OCC sail@I))l is true in branch b" to "sail,,&I is
executable in b" does not hold for all branches in this example. In particular, it does
not hold in branch b2. This is because r(POS Ix (OCC sail@I))1 holds in branch b2
since sail@I occurs in b4, but sail@I is not executable in b2 since the wind does not

I blow throughout interval I in this branch.

The reason for describing this example is to show that the branching time
structure does not capture executability when there are conditions during execution
that determine whether or not a plan instance is executable. The branching time
structure in this example just captures: i) bi, b2, b3, and b4 all share a common past
through interval Ix, ii) bl and b2 share a common past through 12, and iii) b3 and b4
share a common past through 12. What is lacking from this structure are links suchW as one between bl and 4 that capture our implicit intention that bl differs from 64
on the account of attempting sail@2I. Similarly, b2 and b3 should be related in this
manner. If we had such a relation between b2 and b3, we could determine that if the
agent were to attempt sail@I in an environment given by b2, it would be in a branch
(i.e. b3) in which the attempt does not lead to an occurrence of sail@I. This would
allow us to conclude that sail@1 is not executable in b2.

We will see in section 3.2.4 that our underlying model is an extension of a
branching time model with links, as we have suggested, that relate branches that
differ solely on the account of some plan instance being attempted. We now describe
the extension we make to our language to describe branches that differ on the
account of some plan instance attempt.

I

34

wind blowingI

windbloingwind
not blowing *b2

sail@l attempted but fails1

wind not blowing --- b31

sail@l occurs wind blowing

b 4

lxj

12 13

F------------ lall---- -- -- -- -- -- 1

Diagram 2.5-3

3 35

I 2.6. The IFTRIED Modal Operator

We extend our language with the modal operator IFTRIED to describe the result3 of attempting a plan instance under different circumstances, this being the last
extension we make. IFTRIED takes two arguments, a plan instance term and a
sentence. Both arguments to IFTRIED are temporally qualified and may have any
temporal relation. The first argument, being a plan instance, corresponds to a set of
events to be executed at specified times. The second argument is a statement in the
extended language that consists of interval logic extended with the INEV and
IFTRIED modal operators. Therefore, the second argument to IFTRIED will be
either a interval logic statement, and hence temporally qualified, or a modal
statement whose innermost layers consists of interval logic statements.

We give r(IFTRIED pi P)l the english reading: "ifpi were to be attempted, then
P would be true". As we will see in section 3.2.6, our treatment of IFTRIED closely
resembles the semantic theories of subjunctive conditionals put forth by Stalnaker
[Stalnaker 68] and Lewis [Lewis 73]. Just like a subjunctive conditional, an
IFTRIED statement describes the result of minimally modifying some context to
take into account the antecedent being true. In our case, the context is a branch in
some tree of possible futures and the antecedent is "plan instance pi is attempted".
The statement r(IFTRIED pi P)1 is true at branch b, if P is true in all the branches
that are arrived at by minimally revising b to take into account "pi is attempted". In
section 3.2.5, we discuss this in great detail and we explain why there may be
multiple branches minimally differing from some branch. In this section we just
briefly note some properties of JFTRIED. In this section, we just briefly note some
properties of IFTRIED. A detailed presentation will be given in chapter 4 where we
discuss a proof theory and in chapter 5 where we describe how our logic may be used
to represent and solve planning problems.

Executability is defined in terms of IFTRIED. We will use the formula
r(EXECUTABLE pi)l to mean that plan instance pi is executable. The statement
r(EXECUTABLE pi)l is simply defined by:

I (EXECUTABLE pi) =def (IFTRIED pi (OCC pi))

The above definition can be read as saying: plan instance pi is executable iff if pi
were to be attempted then pi would occur. This treatment of executability allows us
to handle conditions that determine executability that hold during execution. For
example, we can state that sail@I is executable in any branch b possible at Ip iff the
wind is blowing during interval I in branch b. This can be given by:

(INEV Ip (IFF (HOLDS wind-blowing I) (EXECUTABLE sail@I)))

Along with describing what the attempt of pi would affect, IFTRIED may also be
used to describe what a plan instance does not affect. As we will see, describing what
a plan instance does not affect is very important when determining whether two plan
instances can be executed together. To state that the attempt of a plan instance pi
does not affect the temporally qualified condition Ct under all conditions possible at

36

planning time Ip, we simply state that it is inevitable at Ip that if Ct is true then ifpi
were to be attempted then Ct would (still) be true. For example, the following
describes the situation where the attempt of plan instance walk-outside dll does not
affect whether or not it is raining outside during any interval.

(INEV Ip
(AND (IF(HOLDS raining ?ir)

(IFTRIED walk-outside@I (HOLDS raining ?ir))))
(IF (NOT (HOLDS iainingirir))

(IFTRIED walk-outside@I
(NOT (HOLDS raining ?inr))))))

When describing a planning problem, it is not necessary to state that a plan instance
does not affect any earlier condition since this result is a theorem in our system. For
instance, the following statements are valid in our logic:

(IF (PRIOR ?i (TIME-OF ?pi))
(IF(HOLDS ?pr ?i)

(IFTRIED ?pi (HOLDS ?pr ?i)))

(IF (PRIOR ?i (TIME-OF ?pi))
(IF (OCCURS ?ev ?i)

(IFTRIED ?pi (OCCURS ?ev ?i)))

(IF (PRIOR (TIME-OF ?pil) (TIME-OF ?pi2))
(IF (OCC ?pil)

(IFTRIED ?pi2 (OCC ?pil))

As we have discussed, a necessary condition to conclude that plan instance pi
solves any goal is that it is inevitable at planning time that pi is executable. This
insures that there are no external events possible at planning time that prevent pi
from occurring and that at planning time, pi contains all the steps needed for
execution. We take this condition along with conditions C1, C2, and C3, described
earlier, to be the necessary and sufficient conditions for concluding that "plan
instance pi solves goal G with respect to S". These four conditions are given by:

Cl) S W (INEV Ip (IF (OCC pi) G))
C2) S (POS Ip (OCC pi))
C3) S t= (POS Ip (NOT G))
C4) S t= (INEV Ip (IFTRIED pi (OCC pi))

As we will see in chapter 5, condition C2 can be omitted since C2 is entailed by C4.

We conclude this chapter by briefly showing how action specifications are
described and how a composite plan instance is related to its component parts. In
chapter 5, we discuss these and other issues in detail after giving a formal

* 37

Idescription of the language, the model theory, and the proof theory in chapters 3 and
4.

P Action Specifications

Typically, the action specifications for a planning problem are given by specifying
the "effects" and "preconditions" for each simple action. In our formalization of the
planning pruie,_m, the specification for plan instance pi is given by describing the
conditions that will inevitably hold at planning time if pt occurs, and conditions C
under which it is inevitable at planning time that if C holds then pi is executable.
For example, consider the plan instance move-box@I which corresponds to bringing
about the event "move the box against the wall" during interval I by sliding the box
along the floor. The actions specifications for this plan instance may be given by:

(INEV Ip
(IF(OCC move-box@I)

(3 ?i2 (AND (MEETS I ?i2) (HOLDS (against box wall) ?i2)))

(INEV Ip
(IF(AND (3 ?iO (AND (MEETS ?iO I)

(HOLDS (near agent box) ?iO)))
(HOLDS no-obstructions-in-path I))

(EXECUTABLE move-box@I)))

The first expression says that it is inevitable at planning time that if move-box cal
occurs then the box will be against the wall immediately after the occurrence of
move-box@I. This statement does not indicate how long the box will be against the
wall since there may be other possible plan instances or external events that cause
the box to be moved at some time in the future of I.

The second statement says that under all possible circumstances at planning
time, move-box@I is executable if the agent is by the box just prior to execution and
there is no obstructions that will be in the way while the box is being moved.

In general, statements describing conditions for executability will be given in the
form:

(INEV Ip (IF Ct (EXECUTABLE pi)))

where Ct is a sentence in the interval logic fragment

The conditions designated by Ct in the above expression closely resemble the
conditions that Allen and Koomen [Allen&Koomen 83b] referred to by
preconditions. In cases where Allen and Koomen would say that the temporally
qualified statement Ce is pi's preconditions, we would say that if Ct holds in any
branch possible at planning time, then pi is executable in that branch. It is
important to note, however, that we are formalizing executability, not preconditions.
A formal treatment of preconditions would have to bring in the problem of deciding

38

what conditions to consider as being possible and what conditions to ignore when
solving a planning problem. This problcm has been called the qualification problem
[McCarthy 80]. Implicit in the specification of au action's preconditions is a decision
on what is considered possible and what is to be ignored. For example, suppose the
preconditions for bringing about the event "starting the car" (by turi ing the key in
the ignition and then stepping on the gas pedal) are "the agent is in the car, the
ignition system is working and there is gas in the tank". Invariably there are
conditions that can preclude the car from being started that are omitted from this
precondition list. For example, if a potato is in the tail pipe the car cannot be started.
This condition, however, would probably be omitted since its occurrence is highly
unlikely.

Thus, we see that by omitting conditions that can ruin an occurrence, one is
implicitly treating what is considered to be possible. Consequently, any formal
treatment of preconditions would have to consider the problem of deciding which
conditions should be taken into account and which conditions should be ignored. As
we mentioned earlier, we want to factor this problem out from the formal analysis
being presented here.

Composing plan instances

A central operation performed by traditional planning systems is the
construction of a plan by composing simple actions together. Typically, a planning
system is given the preconditions and effects for simple actions from which the
system computes the preconditions and effects for action sequences, i.e. plans,
constructed out of these simple actions. This process can be performea since action
sequences are defined in terms of the individual actions and consequently the
preconditions and effects for action sequences can be computed from the
preconditions and effects of the individual actions making up the sequence.

Analogously, in our logic, we define composite plan instance in terms of the its
components. This construction is given in section 3.2.5. Consequently, we will be
able to give theorems that relate the conditions under which a composite plan
instance is executable to the conditions under which its components are executable
when taken alone. This formal treatment avoids the problems we mentioned in
section 2.3 where we described the pitfalls of characterizing the preconditions for a
composite plan instance.

A rough intuitive view of executability for composite plan instances is as follows.
The composition of pil and pi2 is executable with respect to some branch b if i) they
are both executable at b, and they do not "interfere" with each other at b, or ii) one of
them, say pil, is executable in b, the attempt of pil enables the conditions under
which pi2 is executable and they do not interfere with each other at b. As we will
see, the concept of "interference" plays a central role in formalizing plan instance
composition. For example, consider two simultaneous plan instances evl @i and
ev2@i that share the same type of resource. In any branch b in which there is not at

139
least two resources available during 1, we say that the two plan instances interfere
atb.

In our language, we can characterize the situation where it is inevitable at3planning time thatpil and pi2 do not interfere with each other as follows:

(AND (INEV Ip (IF (0CC pil) (IFTRED pi2 (0CC pil))))
. ((INEV Ip (IF (OCC pi2) (IFTRIED pil (OCC pi2)))))

The first statement can be read as saying that in all branches possible at Ip where pi
occurs, the attempt of pi2 would not ruin pil's occurrence. The second statement has
a symmetrical reading. We get back to these issues, in detail, in section 5.3 where
we describe how different types of plan instance interactions may be represented in
our language.

I

!

I
I

|I

I

40

Chapter 3
The Formal Specification of the Logic

In this chapter. a formal description of our logic is given. In section 3.1, we give a
formal presentation of the language, and in section 3.2, we present the model
theoretic semantics. In just this chapter, we will use symbols having the form "ti"

(i.e. "t" followed by a subscripted sequence of letters or numbers) to refer to terms in
the object language. We adopt this convention because we are discussing both the
object langauge and the model structure in this chapter. Thus, our convention is
used to clearly distinguish between symbols referring to terms in the object language
and symbols that refer to objects in the model structure.

3.1. The Language

The specification of the formal language is given in terms of a primitive
language. All other operators and predicates that we use are defined in terms of the
primitive language. These definitions are given in appendix B. In section 3.2, where
we give the semantic interpretations to sentences in the language, we only specify
interpretations for the primitive symbols. The defined symbols inherit their
interpretations from the symbols they are defined in terms of. Thus, by minimizing
the number of primitive symbols, we can give a more succinct interpretation. As an
example, we treat negation and disjunction as being primitive, but do not treat
conjunction as being primitive since this operator can be defined ir: kerms of negation
and disjunction. Alternatively, we could have introduced negation and conjunction
and defined disjunction in terms of them. As a second example,the MEETS binary
predicate is the only interval relation that is part of the primitive language. All
other interval relations can be defined in terms of MEETS as described in Allen and
Hayes [Allen&Hayes 85] and described here in appendix B. In the following
presentation, informal text interspersed with the formal specification of the
primitive language. An encapsulated description of the primitive language is given
in Appendix A.

The Primitive Language

Our formal language is an extension of a sorted first order language with two
modal operators, INEV and IFTRIED. The language is presented by first
constructing terms which are linguistic entities that denote objects. Terms are
formed from a collection of basic symbols which are classified as individual variables,
functions symbols and special function symbols which correspond to functions that
are given fixed interpretations in all models. Associated with each term is a type
which corresponds to the class of the term's denotation. Atomic formulas are

U41

constructed by prefixing a sequence of terms (of appropriate length) with a predicate
symbol belonging to the set { =, MEETS, HOLDS, OCCURS, OCC}. The arguments
to the predicates MEETS, HOLDS, OCCURS, and OCC are syntactically restricted
so that they denote objects of the appropriate class. For example, the two arguments
related by the MEETS predicate are restricted to be terms that denote temporal
intervals. Finally, well formed formulas are formed by combining the atomicIformulas with the standard first order connectives and the two modal operators. The
z-t of well formed formulas are also referred to as the sentences in our logic.

3The collection of basic symbols are classified as either individual variables or
function symbols.

VAR 0 1 refers to the set of individual variables {?vl, ?V2, ...}
FN0 1 refers to the set of function symbols {fl, f2, ...}

I Associated with each function symbol is the number of arguments that it takes, i.e.
the function's arity. The arity of each function symbol is specified by the function
DEG which takes a function symbol as an argument and yields the non-negative
integer associated with the function symbol's arity. IF DEG(fi) = 0, we say that fi is a
constant.

A set of types refers to the different sorts that may be assigned to each function
symbol and variable. The set of types is given by:

TYPES0 = {OBJ0 1 , INT0 1,PROP0 1, EIl01, P101}

These types correspond to:

OBJ0 1 the class of physical objects in the world
INT01 the class of temporal intervals
PROPol the class of properties
EIo1 the class of event instances
PI01 the class of plan instances

The type associated with a variable corresponds to the class of objects over which the
variable ranges, and the type associated with a function symbol corresponds to the
range of the function.

TYPE-OF refers to the function that takes a variable or function symbol as an
argument and yields the type (member of TYPES0) associated with its argument

The set of terms are constructed from the function symbols, variables, and two
special function symbols TIME-OF and COMP. Following is a recursive definition of
the set of terms TERMSoI and the definition of the function TYPE-OF* which
specifies the type associated with each term.

42

Each variable ?vi is a term and TYPE-OF*(?vi) is defined as the type associated
with ?vi.

For every variable (?vi), ?vi E TERMS 1

and TYPE-OF*(?vi)=defTYPE-OF(?vi)

Each constant fi, i.e. function symbol of arity 0, is a term and TYPE-OF*(fi) is
defined as the type associated with fi.

For every function symbol (fi) such that DEG(fi) = 0, fi E TERMSoI
and TYPE-OF*(fi) = defTYPE-OF(fi)

A left parenthesis followed by a function symbol fi of arity n, n > 0, followed by n
terms, followed by a right parenthesis is a term, and TYPE-OF* applied to this
construct yields the type associated with fi's range.

For every function symbol (fi) such that DEG(fi) = n > 0
and terms (tl, t2, .. tn),r(fi tj t2 ... tn)1 E TERMSoI
and TYPE-OF*(r(f i tj t 2 ... tn) 1) = def TYPE-OF(fi)

The construct r(COMP tj t2)lis a term. where ti and t2 are terms of type plan
instances, and the type of COMP is a plan instance.

For all terms (tj and t2) such that TYPE-OF*(tl) = PI1
and TYPE-OF*(t 2) =PIol, r(COMP tj t 2)1 E TERMSo1
and TYPE-OF*I r(COMP t1 t 2)1) = def PIol

The construct r(TIME-OF tl)1 is a term, where tl is a term of type plan instance,
and the type of TIME-OF is a temporal interval.

For every term (tj) such that TYPE-OF*(tl) = P101,
r(TIME-OF t)1 E TERMSol
and TYPE-OF*(r(TIME-OF tl) 1) =def INT01

An atomic formulas is formed by prefixing a sequence of terms (of the appropriate
length) with a predicate symbol belonging to { =, MEETS, HOLDS, OCCURS, OCC}
and encasing this construct in parenthesis. Following is a definition of the set of
atomic formulas AF 0 .

All constructs of the form r(= ti tj)l are atomic formulas, if both ti and tj are terms
of any type.

For all terms (ti and tj), F(= titj)lE AF 0l

143

All constructs of the form F(MEETS ti tj) 1 are atomic formulas, if both ti and tJ are
temporal interval types.

For all terms (ti and tj) such that TYPE-OF*(ti) = INTtyp
and TYPE-OF*(tj) = INTO,, r(MEETS t tj)] E AF 0 1

All constructs of the form r(HOLDS t tj)l are atomic formulas, if ti is a property
type and tj is temporal interval type.

For all terms (ti and tj) such that TYPE-OF*ti) = PROP 1Iand TYPE-OF*(tj) = INTol, r(HOLDS ti tj)] (AFoI
All constructs of the form r(OCCURS ti tj] are atomic formulas if ti is an event
type and tj is temporal interval type.

For every term (ti) such that TYPE-OF*(tl) = EIlO
and TYPE-OF*(tj) = INTol, F(OCCURS ti tj)1l E AFoI

All constructs of the form r(OCC ti)1 are atomic formulas if ti is a plan instance
type.

For every term (ti) such that TYPE-OF*(tl) = PIoI
r(OCC ti) (AFol

The set of well formed formulas is constructed by combining the atomic formulas
with the modal operators INEV and IFTRIED and the standard first order
connectives. As is typically is done, we use capital letters, such as P, Q, and R, to
refer to the well-formed formulas. The recursive definition of the set of well formed
formulas WFFo1 is given by:

For every atomic formula (afi),
afiEWFFol

For every well formed formula (P),
r(NOT P)1(WFFoi

For all well formed formulas (P and Q),
r(OR P Q)1 EWFFol

For every variable (?vi) and well formed formula (P),
F(V ?vi P)1 EWFF0 l

For every term (ti) such that TYPE-OF*(ti) = INTol
and well formed formula (P), r(INEV ti P)1 EWFFoI

For every term (ti) such that TYPE-OF*(ti) = PIolI and well formed formula (P), F(IFTRIED ti P)1EWFF01

!
i unnnH i N H u lnna i m i H H i n

44

3.2. The Semantics

We present the semantics for our logic by grafting the non-modal fragment of our
logic, i.e. the fragment corresponding to Allen's interval logic, into a model structure
thlat also interprets the modal operators INEV and IFTRIED. This approach is
similar to that of Hughes and Cresswell [Hughes&Cresswell 68] who present the
semantics of propositional modal logic and quantified modal logic by grafting
propositional logic and first order logic, respectively, into a model structure that also
interprets the necessity operator. Their basic approach can be characterized as
possible worlds semantics which was developed by Hintikka [Hintikka 62] and
refined by Kripke [Kripke 631.

In the possible worlds framework, a set of objects called possible worlds (or simply
worlds) is identified as part of a model. Each sentence in the language is given a
truth value with respect to each possible world within a model. Thus, a model in the
possible world framework is a specification of what is true at a set of worlds, not just
the specification of one world.

Relations on possible worlds, called accessibility relations, are introduced in the
model to give interpretations to the modal statements. The truth value of a modal
statement at a world w depends on worlds related to w by an accessibility relation.
For example, to interpret the necessity modality, one introduces an accessibility
relations that relates worlds that are possible with respect to each other. The
statement, "necessary P" is interpreted as true at possible world w iff the statement
P is true at all worlds that are accessible from w. The statement, "possibly P" is
interpreted as true at possible world w iff there exists a world accessible from U' at
which P is true.

The truth value of a non-modal statement is only dependent on the possible world
at which it is evaluated, not other worlds linked by accessibility relations. At a fixed
possible world, the interpretation function is isomorphic to the interpretation
function for the underlying non-modal fragment. For example, in propositional
logic, the interpretation for conjunction would be given by:

For all sentences (P and Q)
V(r(AND P Q)l) = TRUE iff V(P) = TRUE and V(Q) = TRUE

In the possible worlds framework, the interpretation for conjunction would be g.;' .-.
by:

For all sentences (P and Q), and possible worlds (w)
V(r(AND P Q)l,w) = TRUE iff V(P,w) = TRUE and V(Q,w) = TRUE

A sentence is valid if it is assigned the value of true at every possible world in every
model. As a consequence every non-modal statement that is valid in the underlying
non-modal fragment is also valid when the fragment is extended with modal
operators. In the following chapters, we will use the notation " P" to mean that
sentence P is valid with respect to our semantic theory. We will also use " " in
binary form. The relation "S = P" means that sentence P is true in every possible

45

world in any model in which all the sentences in S are true in. Consequently, "0
P" is equivalent to" P".

In section 3.2.1, we describe the interpretation of terms and the interpretation of
interval logic statements. In the next section, we present the accessibility relation
that is used to interpret INEV statements. In section 3.2.3, we describe the
mathematical objects that model plan instances and relate our treatment to
Goldman's theory of action (Goldman 70]. We also describe the interpretation of the
predicate OCC and functions TIME-OF and COMP which take plan instance terms
as arguments (and which are also considered part of the non-modal fragment). In
section 3.2.4, we describe basic action (functions), the structures in terms of which
IFTRIED statements are interpreted. In the next section, we discuss the
combination of these functions which serves to define the composition of two plan
instances in terms of its components. Finally, in section 3.2.6, we discuss the
relation between the interpretation of IFTRIED and the semantic theories of
conditionals put forth by such authors as Stalnaker [Stalnaker 68] and Lewis [Lewis
73].

In this section, the formal specifications of the model are interspersed with
informal discussion. We also omit the interpretation of the first order order
connectives, this treatment being straightforward. In Appendix C, an encapsulated
description of the complete model structure is presented.

3.2.1. The Interval Logic Fragment

The basic components of a model corresponding to the interval logic fragment are
a set of possible worlds, a set of domain individuals, and an interpretation function
that maps terms to domain individuals and assigns interval logic statements truth
values at each possible world. We now discuss these components.

In each model, a non-empty set of possible worlds is identified. We can think of
the set of interval logic statements that are true with respect to a world w as a
partial description of w. Since the set of interval logic statements that are true at a
world may refer to properties that hold and events that occur at many different
times, this set describes a world over time, not an instantaneous snapshot. For this
reason, we will use the term possible world-history (or simply world-history) torefer to a possible world. In chapter 2, world-histories were informally referred to as
branches in the tree of possible futures.

H refers to the set of possible world-histories

Domain Individuals and the Interpretation of Terms

In the language, there are terms that denote objects, temporal intervals,
properties, events, and plan instances. Our models must identify classes of domain

46

individuals that correspond to these objects and the interpretation function must
map terms to the appropriate class. In the model, the following sets are identified:

OBJ the non-empty set of physical objects that existed at any time in any
world-history

INT the non-empty set of temporal intervals
PROP the non-empty set of properties
EV the non-empty set of event types
P1 the non-empty set of plan instances

The sets OBJ, INT, PROP, EV, and PI are pair-wise disjoint. We define D as the
union of OBJ, INT, PROP, EV, and PI. We refer to D as the set of domain
individuals.

Each model identifies an interpretation function that maps variables and
function symbols with arity 0 (i.e. constants) to the domain individuals that they
denote and maps function symbols with arity greater than 0 to functions on D with
the same arity. This interpretation function will be referred to as Vvf. In terms of
Vvf, we define a function that maps terms in the object language into the domain
individuals that they denote.

Vt refers to the function from TERMo1 to D that maps a term in the object
language to the domain individual that it denotes

The construction of Vt in terms of V,,f is given in appendix C. Constraints are placed
on Vvf so that variables and constants are mapped to domain individuals belonging
to the appropriate class (e.g., if f, is a constant of type OBJ0 1 , then Vgfi) is
constrained to belong to the set OBJ), and functions of arity greater than 0 are
mapped to functions on D whose range is restricted to the appropriate class.

Our treatment of the domain of individuals and the denotation of terms is a
simplification in two respects. First of all, we are assuming that the set of domain
individuals and the subsets making up the different classes is constant over world-
histories. This is in contrast to a model where there is a set of domain individuals for
each world-history. In fact, by treating possible worlds as being world-histories,
instead of being instantaneous snapshots, we are precluding a treatment where a
domain is defined for each time in each history.

Our second simplification is that a term's denotation does not vary from world-
history to world-history. We say that all terms in our language are rigid
designators. This is in contrast to a model in which there is a two place
interpretation function from TERMoIXH to D that assigns each term a possibly
different denotation at each world-history. Treating all terms as rigid designators is
a strong restriction, but greatly simplifies matters.

1 47

IThe Interpretation of the Interval Logic Atomic Formulas

The model must specify the truth value for each sentence (i.e. well formed
I formula) at each world-history in the model.

Vs refers to the function from WFFoIXH to {TRUE,FALSE} that assigns each3sentence a truth value at each world-history

In this secton, we only present the truth values for the atomic formulas (the equality
atomic formula, and the MEETS, HOLDS, and OCCURS atomic formulas), these
being the basic building blocks for forming any interval logic statement. The
interpretation of the first order connectives, which combine the atomic formulas
with each other and with the modal statements (in the complete language, not the
interval logic fragment), are given in appendix C.I, The interpretation of atomic formulas having the form r(= t, t 2)1 , i.e. the
equality atomic formula, is straight forward. The formula F(= tl t 2)1 is interpreted
as true at world-history h iff t1 and t2 denote the same domain individual. Formally,I this is given by:

For all wffs of the form F(= ti t2)1 and world-histories (h),
SVs(F (= ti t2) 1,h) = TRUE iff Vt(tl1) = Vt(t2)

Notice that the interpretation of r(= tl t 2)1 is independent of the world-history at
which it is interpreted. This is a direct consequence of our decision to treat terms as
rigid designators.

Interval Relations and the Interpretation of MEETS

The interpretation of the atomic formula F(MEETS tinti tint2)1 is also
independent of the world-history at which it is evaluated. We explicitly design our
models so that if r(MIEETS tintl tint2) 1 is true at one world-history, it is true at all
world-histories. The reason for treating interval relations this way is to provide for
the comparison of two different world-histories at some particular time. If each
world-history had its own private time line, we would not be able to compare world-
histories. This implies that we need a global time line that picks out common times
across all the world-histories. To achieve this end, each model specifies a relation on
intervals that arranges the intervals to form a global time line.

Allen and Hayes [Allen&Hayes 85] describe a construction in which all the
interval relations are defined in terms of the meets relation (i.e. the relation between
two intervals where one interval immediately precedes the other) as long as wemake a few assumptions about the existence of intervals (which is given in appendix
C). Thus, the arrangement of the intervals in a time line can be completely

characterized by the meets relation.

48

MTS(il,i2) refers to the relation defined over intervals that is true iff interval 1
meets interval i2 to the left

The interpretation of the atomic formula F(MEETS tintl tint2)1 is given directly in
terms of MTS:

For all wffs of the form r(MEETS tintl tint2)1 and world-histories (h),
Vs(r(MEETS tintd tint2)1,h) =TRUE iff MTS(Vt(tint1),Vt(tint2)) is true

Since the right hand side of the interpretation above (i.e. "MTS(Vt(tintl),Vt(tint2)) is
true") does not mention the world-history h, the truth value of r(MEETS tinti tint2) 1

does not vary from world-history to world-history.

The model must place restrictions on MTS so it is indeed an arrangement of
intervals in a linear time line. This characterization of a meets relation is given in
Allen and Hayes [Allen&Hayes 85] and is adopted here as described in appendix C.

Properties and Events

In each model, two properties are equal if at every world-history they hold during
the same intervals. This is essentially the same treatment as given by McDermott
[McDermott 82] where properties are defined as the set of instantaneous states over
which the properties hold. We therefore take each property (i.e. each element of the
set PROP) to be a set of elements of the form <i,h > where i belongs to the set of
intervals, and h belongs to the set of world-histories. Intuitively, if <i,h > belongs
to property pr, then pr holds during interval i in world-history h.

We take "property pr holds over interval i1" to be equivalent to "property pr holds
throughout interval i1". Thus, if a property holds during interval 11, this property
holds over all intervals contained in i. This is given by the following constraint
which is imposed on our models:

PROP1)
For all properties (pr), intervals (i and i2), and world-histories (h)
IfIN(il,i2) and <i2,h> E pr then <il,h> E pr

where IN(i 1,i2) is true iff il is properly inside of i2. Its definition in terms of MTS
is given in appendix B

The atomic formula r(HOLDS tpr tint)1 is interpreted as true at world-history h
iff the property denoted by tpr (i.e. Vt(tpr)) holds during the interval denoted by tint 1
(i.e. Vt(tint)) in world-history h, this being true if <Vt(tint),h> belongs to the set
Vt(tp). Thus, the interpretation of r(HOLDS tpr tint)' is given by:

For all wffs of the form r(HOLDS tpr tint)1 and world-histories (h),
Vs(r(HOLDS tpr tint)1,h) = TRUE iff < Vt(tint),h > E Vt(tpr)

1
____ ___ ___ ___ ___ ____ ___ ___ ___ ___ ____ ___ ___ ___ ___ ___

U 49

Events are treated in a similar fashion as properties. Each event (i.e. each
element of the set EV) is taken to be a set of elements each having the form < i.h >
where i belongs to the set of intervals and h belongs to the set of world-histories.
Intuitively, if < i,h > belongs to event ev, then ev occurs during interval 1 in world-
history h. The interval over which an event occurs is taken be the smallest interval
over which the event from beginning to end takes place; thus, we do not impose a
constraint on events that is analogous to PROP1. We also do not impose the
constraint described by Allen [Allen 841 that says that if an event ev occurs over i, it
does not occur over any interval contained in 1. The reason for not imposing this
constraint is so that we can model a situation where there are two instances of the
same event type occurring, one during the other. An example of this is where an
instance of "the agent's hand is waved", referring to the right hand being waved,
occurs during the time when another instance occurs, referring to the left hand being
waved.

The atomic formula r(OCCURS tev tint)l is interpreted as true at world-history h
iff the event denoted by teL. occurs during the interval denoted by t,,t in world-history
h, this being true if < Vt(tint),h > belongs to the set Vt(tev). Thus, the interpretation3 of r(OCCURS tev tint)1 is given by:

For all wffs of the form F(OCCURS tev tint)1 and world-histories (h),
5 Vs(r(OccURS tev tint),h)=TRUE iff <Vt(tint),h> EVt(tev)

5 3.2.2. The Interpretation of INEV and the R Accessibility Relation

We take r(INEV tint P)l to mean that P is true no matter which possible events
happen after the time denoted by tint. Appropriately, the truth value of an INEV
statement depends on a set of world-histories sharing common pasts that are
alternatives to each other. These sets are identified by the R accessibility relation
which takes an interval and two world-histories as arguments. The relation
R(i,hl,h2) is true iff world-histories hl and h2 are possible with respect to each other
and share a common past through the end of interval I

iThe interpretation of the statement r(INEV tint P)1 at world-history h is true iff
P is true in all the world-histories that are possible with respect to h and share a
common past with h through the end of the interval denoted by tint. Formally, the
interpretation of F(INEV tint P)1 is given by:

For all wffs of the form r(INEV tint P)1 and world-histories (h),IVs(r(INEV tint P)1,h) =TRUE if
for all world-histories (h2) if R(Vt(tint),h,h2) then Vs(P,h2) = TRUE

U Restrictions are placed on the R accessibility relation to rule out models that
conflict with the intuitive meaning given to R. To begin with, the truth value of the
relation R(i,hl,h2) depends on the "end of interval 1'. That is, if two intervals ii and
i2 start at different times but end together, then R(il,hl,h2) and R(i2,hl,h2) will
have the same truth values for all world-histories hl and h2 1. Formally, this3

U

50

relation is captured by the following constraint on R:

RO)
For all world-histories (hl and h2) and intervals (i and i2),
ifENDS-SAME(il,i2) then R(i 1,hl,h2) iff R(i2,hl ,h2)

where ENDS-SAME(il,i2) means that intervals ii and i2 end at the same time.
Its definition in terms of MTS is given in appendix B

For a fixed interval, the R relation is an equivalence relation. Thus, we impose
the following constraints on R:

R1) R is reflexive
For every world-histories (h) and interval (i),
R(i,h,h)

R2) R is symmetric
For all world-histories (hl and h2) and intervals (i),
ifR(i,h 1,h2) then R(i,h2,h 1)

R3) R is transitive
For all world-histories (hl, h2, and h3) and intervals (i),
ifR(i,hl,h2) and R(i,h2,h3) then R(i,hl,h3)

For all world-histories, if two world-histories share a common past through the
end of interval i2, then they share a common past through the end of any interval
that ends before interval i. This is formally captured by the following constraint:

R4)
For all world-histories (hl and h2) and intervals (i and i2),
ifENDS-BEF(il,i2) and R(i2,hl,h2) then R(il,hl,h2)

where ENDS-BEF(il,i2) means that ii ends before i2. Its definition in terms of
MTS is given in appendix B.

The R accessibility relation must also be compatible with the specifications in the
model describing the properties that hold at different times and the event that occur
at different times at each world-history. Any two world-histories hl and h2 that are
related by R at time i must agree on all properties holding over intervals that end
before or at the same time as i. Similarly, hl and h2 must agree on all event

I It we had objects in the model corresponding to points, the R relation
would more naturally take a point as its first argument. This is
precisely what Van Fraassen [Van Fraassen 801 and Haas [Haas 85
do in providing models for branching time logics with a time line
composed of points.

U

* 51

occurring over intervals that end before or at the same time as i. These restrictions

are captured by the following constraints:

I R5)
For all world-histories (hl and h2), properties (pr),
and intervals (i and i2),
if(ENDS-BEF(il,i2) or ENDS-SAME(il,i2)) and R(i2,hl ,h2) then
<il,hl>Epriff <il,h2>Epr

I R6)
For all world-histories (hl and h2), events (ev),
and intervals (il and i2),
if (ENDS-BEF(il,i2) or ENDS-SAME(il,i2)) and R(i2,hl,h2) then
<il,hl>Eeviff <il,h2>Eev

Constraints R5 and R6, put together, specify that if two world-histories are R
related at time i, then they agree on all properties that hold and events that occur at
all times up until the end of i.2 They do not, however, specify the converse of this
relation which is given by: "if two world-histories hl and h2 agree on all properties
and events up until the end of interval 1, then R(i,hl,h2) must hold". There are two
reasons why we would not want to impose such a constraint. To begin with, two
world-histories might share a common past but still not be possible with respect to
each other; thus, they should not be R related.

The second reason stems from the fact that the converse relation only mentions
events that end before or at the same time as i. To conclude that two world-histories
share a common past through i, it might be necessary to determine whether they
agree on events that are occurring during i, but complete at a later time. Consider
such an event ev that occurs in hl during i2. Assume that interval i2 starts at the

I same time as i but finishes at a later time (in Allen's terminology we would simply
say that i starts i2). Now, in order to conclude that hl and h2 agree through the end
of i, h2 must agree on ev's behavior during interval i. Thus, we would have to
compute the "prefixes over i" for all events that are in progress during i. We have
not, however, formally introduced the notion of "prefixes" in our model.

1 3.2.3. Plan Instances and Goldman's Theory of Actions

In section 2.2, we described a plan instance as being a set of events at specified
times, to be brought about by a particular execution. Associated with each plan
instance are two sets. The first set consists of ordered pairs formed from events and

I We also get the constraint that two world-histories that are R related
at i, agree on all plan instance that occur before the end of i. This
relation follows from R6 and a relation imposed on plan instances (see
3.2.3) saying that a plan instance occurrence is associated with an
event occurrence

!

52 U
intervals indicating the events at specified times to be brought about by executing
the plan instance. The second set consists of ordered pairs formed from objects. p
which we call basic actions (functions), and intervals. This set of pairs indicates
the steps constituting the particular execution associated with the plan instance. A
plan instance is uniquely identified by these two sets. Therefore, in our model, a
plan instance is taken to be an ordered pair of the form < ei-set,bai-set > where ei-set
is a non-empty set containing ordered pairs formed from events and intervals, and
bai-set is a non-empty finite set containing ordered pairs formed from basic actions ,
and intervals. We will refer to ordered pairs of the form <ev,i > as event instances
and ordered pairs of the form <ba,i> as basic action instances. We will also
designate basic action instances using the syntax ba ai. I

The term "basic action" is adopted from Goldman [Goldman 70] who presents a
theory of human action in which basic actions play a central role. In a non-formal
sense, our conception of basic actions is very similar to that of Goldman's conception.
Formally, however, the treatments differ since we model basic actions as functions
(to be explained in detail in section 3.2.4) while Goldman treats them simply as
objects.

We will also refer to two other concepts examined by Goldman: the generation
relation and standard conditions. In the Artificial Intelligence literature, Pollack l
[Pollack 86] has also made use of Goldman's theory in a way compatible with our
approach (see section 5.2) in her theory of plan recognition with invalid queries.
Before continuing the discussion on plan instances, we give a brief description of I
Goldman's analysis of generation, basic actions, and standard conditions.

The Generation Relation, Basic Actions, and Standard Conditions

A central notion in Goldman's theory of action is a relation on action tokens (an 5
action type at a particular time performed by a particular agent) which he calls
generation. Roughly put, the relation "act token al generates act token a2" holds
whenever it is appropriate to say that a2 can be done by doing al. Associated with
each generation relation is a set of conditions Ci* which are the necessary and
sufficient conditions under which the occurrence of the generator leads to the
occurrence of the token being generated. A typical example of this relation is given
by: "flipping the light switch at time tl" generates "turning on the light at time tl"
under the conditions that the filament is not burnt out, the wiring is not faulty, etc.
Generation is a transitive, irreflexive relation that arranges the set of action tokens
into linear chains. For example, "letting Beth in the room at time tl" is generated by
"opening the door at time tl" which is generated by "turning the doorknob and
pushing at time tl", etc.

Goldman also introduces the concept of a basic action (types). The two essential
features of basic actions are that they can be "done at will" and that they are I
primitive in the sense that every non-basic action token is generated by some basic
action token (or some set of basic action tokens executed together) and there is no
action token more primitive that generates a basic action token. Doing any action

I

i 53

boils down to performing a collection of basic action tokens under the appropriate
conditions. Goldman equated basic actions with the performance of body movements
quch as "raising the left arm", "taking a step with the right leg", etc. He did not not
go to a finer analysis to say that "moving one's arm" is generated by "sending nerve
impulses to the muscles in arm". He argued that events such as sending nerve
impulses should not be considered acts since an agent does not have fine enough
control to send nerve impulses to particular muscles and thus cannot do this at will.

One problem that Goldman had to get around was that there are always
conditions that can preclude any basic action from occurring, and thus it is not
technically correct to say that they can be done at will. For example, "lifting one's
arm" cannot be performed if the arm is being held down by another (stronger) agent,
or if the arm is being tied down, etc.. For this reason, he introduced the notion of
standard conditions which are conditions that must hold in order for the basic
action to take place. If basic action al's standard conditions hold at time tl then al
can be done at will at time t1. As an example, the standard conditions for "lifting
one's arm" are that the arm is not being held by another agent, the arm is not being
tied down, etc. He took standard conditions to be external conditions, that is,
conditions out of the agent's control. Thus, "internal" conditions, such as the arm is
not paralyzed, are not considered as part of the standard conditions for lifting one's
arm. In this case, Goldman would say that one loses the basic action "lifting one's5 arm" during the times when the arm is paralyzed.

Back to Plan instances and Basic Action Instances

In our theory, our conception of basic actions and their standard conditions is
more general tha,, Goldman's formulization. We treat a basic action instance as an
action that is at the finest level of detail that is appropriate for the domain under
consideration. They are not necessarily collections of body movements at specified
times. For example, in modeling a game of chess, we might take our basic action
instances to be simple chess moves such as moving the queen from Q1 to Q3 at a
particular time. The standard conditions would be that the move is legal by the rules
of chess. When reasoning about winning the chess game, there is no benefit in
looking more closely at a chess move and saying that it is generated by the arm
movement that physically moves the piece.

Formally, a basic action is taken to be a function from I X H to 2H. We wait until
section 3.2.4 to explain why these objects are characterized this way. In section
3.2.4, we will also see that if the standard conditions for a basic action at a particular
time (i.e. a basic action instance) does not hold at some world-history h, then the
basic action instance is treated as a "no-op", an action that does nothing if it were to
be executed in h.

Associated with each basic action is the event type that is exemplified by its
execution. This is specified by the following function which is given as part of a
model:

I
I

54 I

BAEV refers to a function from basic actions to event types that maps a basic
action to the event type associated with it

By linking a basic action to an event type we indirectly specifying the intervals at
each world-history over which the basic action occurs. In particular, basic action ba I
occurs over interval i in world-history h iff < i,h > belongs to BAEV(ba).

Members of PI (i.e. the set of plan instances) implicitly encode a relation similar
to Goldman's generation relation. In any world-history where all event instances
contained in ei-set occur at their specified times and all basic action instances
contained in bai-set occur at their specified times, we say that bai-set generates ei- I1
set. Aside from some superficial differences, we can look at the generation relation

captured by the plan instances as agreeing with Goldman's relation for the special
case where the generator is basic. Goldman took generation to be a relation between U
two act instances (which are roughly equivalent to our event instances), while
generation in our case is a relation between a set of event instances and a set of basic
action instances. The fact that generators in our case are basic action instances
instead of event tokens associated with basic actions should not be counted as a
difference. This is because Goldman did not make the distinction, that we are
making, between basic actions and event types associated with basic actions. |
Secondly, the fact that generation in our models relates sets of instances instead of
single instances should not be counted as a difference. This is because Goldman
provided for "compound acts" which correspond to a collection of act types done
together. In effect this allows him to handle the cases that we can handle where a
set consisting of a single event instance is generated by a collection of basic action
instances, and the case where a collection of event instances is generated by a set
consisting of a single basic action instance. Lastly, we must point out a slight
difference in our usage of the term "generates" from that of Goldman. Goldman took
generation to be irreflexive, while we essentially have the case where a basic action
generates itself since we allow plan instances of the form:
< { < BAEV(ba),i > },{ < ba,i >}>. I

In Goldman's theory, if action token al generates token a2, then al and a2 must
have the same time of occurrence. In our theory, we impose a less stringent relation
between the times associated with a set of event instances ei-set and the set of basic n
action instances bai-set that generates it. If <ei-set,bai-set> is a plan instance,
then ei-set and bai-set must start at the same time, and el-set must end at the same
time or latter than bai-set. By relaxing their temporal relation in this way, we can n
model plan instances such as "breaking the vase during il "performed by "knocking
the vase off the table during i2" To model this plan instance, we would want i2 to
end before il because the action of knocking the vase off the table finishes before the
vase actually breaks.

The times associated with the basic action instance set and event instance set
refer to the smallest intervals in which all their components occur. We will use
COVER to designate the function that takes a set of intervals i-set and yields the
smallest interval that contains each interval belonging to i-set. In appendix B, we I
give a definition of COVER in terms of the MTS relation. The time associated with a I

I

55

set of event instances ei-set is given by: COVER({ i I <ev,i> Eei-set }) and the time
associated with a set of basic action instances bai-set is given by: COVER({ i I
<ba,i>Ebai-set }). For any plan instance <ei-set,bai-set>, the temporal relation
between ei-set and bai-set is given by:

P1)
For all plan instances (< ei-set, bai-set >),
STARTS(bai-time,ei-time) or EQUAL(bai-time,ei-time)

where ei-time = def COVER({ i I < ev,i > E ei-set }),
bai-time = def COVER({ i I <ba,i > Ebai-set })

PI1 says that for all plan instances <ei-set, bai-set>, either the time associated
with bai-set starts at the same time but finishes before the time associated with ei-
set, or the two associated times are equals

In our language, the function term r(TIME-OF tpi)1, denotes the time associated
with the plan instance denoted by tpi. This time is simply taken to be the time that is
associated with the plan instance's event instance set. Thus, the interpretation of
r(TIME-OF tpi)Y is given by:

For all plan instance terms (tpi),
Vt(r(TIME-OF tpi) 1) = COVER({ i I <ev,i> EVt(tpi)I 1 })
where Vt(tpi)I1 is the first element of the ordered pair Vt(tpi)

We say that the plan instance <ei-set,bai-set> occurs iff all the event instances
belonging to ei-set occur and they are brought about by the occurrence of all the basic
action instance belonging to bai-set. This is equivalent to saying that plan instance
occurs <ei-set,bai-set> iff all the event instances belonging to ei-set occur and all
the basic action instance belonging to bai-set occur. The reason for this equivalence
is that if the ordered pair <ei-set,bai-set> forms a plan instance, then bai-set
generates el-set. Hence, if all the elements of both ei-set and bai-set occur, one could
say that bai-set brought about ei-set.

In our language, we are using the sentence r(OCC tpi)1 to mean that the plan
instance denoted by tpi occurs. Therefore, the interpretation of r(OCC tpi)1 is given
by:

For all wffs of the form r(OCC tpi) 1 and all world-histories (h),
Vs(r(OCc tpi) 1 ,h)=TRUE iff
for all events (ev), intervals (i) and basic actions (ba)

if <ev,i > EVt(tpi), then <i,h > Eev, and
if <ba,i > E Vt(tpi)1, then < i,h > (BAEV(ba)

where Vt(tpi)l is the first element of the ordered pair Vt(tpi), and Vt(tpi) 2 is the
second element of Vt(tpi)

In the above interpretation, "if <ev,i > EVt(tpi)l, then <i,h > Eev" is true iff all the
event instances belonging to Vt(tpi)l1 occur, where Vt(tpi)ll is the set of event

I

56

I
instances associated with the plan instance denoted by tpi. Similarly, -if < bai >
Vt(tpi) 2, then < i,h > (BAEV(ba)" is true iff all the basic action instances belonging
to Vt(tpi)I, occur, where Vt(tpi)2 is the set of basic action instances associated with
the plan instance denoted by tpi.

Finally, we give an interpretation to the function term F(COMJP tpi tpi2)1 which
denotes the composition of the two plan instances denoted by tpil and tpi2. The
composition of plan instances <ei-setl,bai-setl > and <ei-set2,bai-set2 > is taken
to be <ei-setl Uei-set2, bai-setl Ubai-set2> and, thus, the interpretation of r(COMP
tpil tpi 2)1 is given by:

For all plan instance terms (tpi and tpi2), i
Vt(r(COMP tpil tpi2)1) = < Vt(tpiI)[UVt(tpi 2)1 ,Vt(tpil)12UVt(tpi2)12 >

This formalization of composition gives the desirable result that a composition I
occurs iff both its parts occur, and a composition is generated by the generators of
both its parts taken together. We also place the constraint that the set of plan
instances are closed under composition:

P12) I
For all plan instances (<ei-setl,bai-setl > and <ei-set2,bai-set2 >),
<ei-setl Uei-set2, bai-setl Ubai-set2 > EPI I

I
I
I
I
I
I
1
I
I
I

*I 57

3.2.4. Basic Actions and the Interpretation of IFTRIED

The effects produced by executing some basic action at a specified time, i.e. a
basic action instance, depends on the environment in which it is executed. In a
given environment, there are properties and events that a basic action instance
affects and ones that it does not affect. Thus, to model a basic action instance baL, we
must specify for each environment, the conditions that the execution of bai would
affect and the conditions that the execution would have not affect. In our theory, we
equate "environment" with world-history. To determine what would happen if basic
action bai were to be executed in world-history h, one could "minimally revise" h to
provide for the execution of bai. If bai happens to occur in world-history h, then no
revision is necessary. Otherwise, we get a revised world-history that differs from h
only on conditions that are affected (directly or indirectly) by executing bat. Thus, h
and a revised world-history will agree on all conditions that are not influenced by
executing bai. This includes all conditions that are out of the agent's control along
with properties that hold and events that occur prior to bal's time of execution.

There may not be a unique way to minimally revise a world-history to provide for
the execution of basic action instance. A case of this is where a basic action has non-
deterministic outcomes, an example being the rolling of a fair die. In this case, there
will be (at least) six ways that a world-history can be revised to account for the
rolling of the die. We will therefore speak cf th3 set of world-histories that
minimally differ from a world-history on the account of executing some basic action
at some specified time.

I In agreement with the analysis above, a basic action is take.. to be a functions
from IXH to 2H that serve to specify, for each interval i and world-history h, the
effects that would be produced if the basic action were to be executed during i in
world-history h. The members of ba(i,h) constitute all the world-histories that
minimally differ from h on the account of executing ba during interval i. As we will
shortly discuss, ba(i,h) may contain a world-history in which ba does not occur
during i.

I The Interpretation of IFTRIED and the Execution of a Set of Basic Action
Instances

I In our language, the IFTRIED modality is used to make statements about what
the attempt of a plan instance affects and what it does not affect. As we have
discussed in the last section, a set of basic action instances is associated with each
plan instance. Saying that a plan instance is to be attempted is taken to mean that
the set of basic action instances associated with it are all to be executed together.
Thus, the interpretation of r(IFTRIED tpi P)1 depends on what would happen if the
set of basic action instances associated with tpi were all to be executed together.
Therefore, not only must we be able to determine the effect of executing a basic
action instance alone, but also the effect of executing a set of basic action instances
together. In particular, for every world-history h and non-empty set bai-set

I
I

58

consisting of basic action instances, the model must specify the world-histories that
minimally differ from h on the account of executing all the basic actions belonging to
bai-set. As we will see, the effects of executing a collection of basic action instances
together is computed from the individual basic action (functions). This will be
discussed in detail in section 3.25. We will use Fcl to refer to the function that takes
a set of basic action instances bai-set and a world-history h as arguments and yields
the world-histories that minimally differ from h on the account of executing all the
basic action instances belonging to bai-set. In the case where bai-set consists of only
one member, Fcl is simply defined as follows:

Fci({<ba,i >},h) =defba(i,h)

The interpretation of F(IFTRIED tpip) is succinctly given in terms of Fri:

IFT-INT)
For all wffs of the form r(IFTRIED tpi P)l and world-histories (h),
Vs(r(IFTRIED tpi P)7,h) =TRUE iff
for all world-histories (h2) if h2EFcj(Vt(tpi)12,h) then Vs(P,h2) =TRUE

where Vt(tpi) 2 refers to the second element of the ordered pair Vt(tpi), this being
the set of basic action instances associated with the plan instance term tp

IFT-INT can be read as saying: the statement r(IFTRIED tpi P)7 is true at world-
history h iff P is true in all the world-histories that minimally differ from h on the
account of executing all the basic action instances associated with the plan instance
denoted by tpi . This interpretation of F(IFTRIED tpi P)l would vacuously hold at h if
there did not exist any world-histories that belonged to Fei(Vt(tpi)I1 ,h), i.e.
Fci(Vt(tpi)l1 ,h) equaled the null set. To preclude this condition, the basic action
functions will be constrained so that none of them yield the null set for any
arguments. Consequently, Fc, which is defined in terms of these functions, will not
yield the null set. Formally, this constraint on basic actions is given by:

BAO)
For every basic action (ba), interval (i), and world-history (h),
ba(i,h)= 0

The interpretation of r(IFTRIED tpi P)7 bea's a strong resemblance to the
interpretation of conditionals developed by Stalnaker [Stalnaker 68] and Lewis
[Lewis 73). In fact, our approach was modeled after these treatments. The function
Fcj (which is defined in terms of the basic action functions) can be seen as a variant of
the accessibility relations that are found in Stalnaker's and Lewis' semantic models.
After presenting our analysis of the basic action functions and their compositions
(section 3.2.5), we describe both Stalnaker's and Lewis' theories in section 3.2.6.

I
I
I

59I
Minimally Differing World-Histories

We now go into detail discussing what we mean by saying that two world-
histories minimally differ on the account of the execution of a basic action instance.
Constraints will be imposed on the basic action functions to rule out models that do
not meet our intuitions. In this presentation, a term of the form ba@i will be used
to refer to the basic action instance corresponding to the basic action ba executed
during time i. We will use the phrase "differ solely on the account of ba(Fi"
synonymously with "minimally differ on the account of the execution of ba~a". We
will also us the term "closest world history" to mean "minimally differing world-
history", this terminology being a vestige of Lewis' and Stalnaker's theories.

We begin with the trivial case where the basic action instance under
consideration occurs in the world-history that we want to revise. In this case, no
revision is needed. If a basic action instance ba@i occurs in world-history h , then
there is only one world-history that differs solely on the account of executing ba@z,Iand this world-history is h. We capture this property with the following constraint
which we impose on our models:

3 BA1)
For every basic action(ba), interval (i), and world-history (h),
if < i,h > E BAEV(ba) then ba(i,h) = {h}

If ba@i's standard conditions do not hold in h and thus necessarily ba(i does not
occur in h, we equate ba(i,h) with {h}. In effect, we are treating ba@i at a world-
history where iLS standard conditions do not hold as a "no-op"; it maps a world-
history back into itself. This situation, where ba@i's standard conditions do not hold
in h, is treated differently from the cases where either ba@i occurs in h or ba(.ai's
standard conditions hold at h in that ba@i does not occur in the world-history
belonging to ba(i,h).

* The reason for treating the lack of standard conditions in this special manner is
because we want to restrict the basic action functions so that if h2 belongs to ba(i,h),
then h and h2 agree on all conditions that are not affected (directly or indirectly) by
the execution of ba at time i. This restriction would be violated, if we allowed models
where the following conditions were all true: i) h2 belongs to ba(i,h), ii) ba@i's
standard conditions do not hold in h, and iii) ba@i occurs in h2. The reasoning for3 this goes as follows. A basic action instance's standard conditions are conditions that
are out of the agent's control and/or hold prior to the basic action instance's time of
occurrence; they clearly are not conditions that are brought about by the basic action
instance's execution. Secondly, if basic action instance ba@i occurs in world-history
h2 during i, then ba@i's standard conditions necessarily hold in h2. Thus, if we had
ii) ba@i's standard conditions do not hold in h, and iii) ba@i occurs in h2 as above,
then h and h2 would disagree on conditions that are not affected by the execution of
ba@i, i.e. ba@i's standard conditions. Thus, if i) h2 belongs to ba(i,h) were also true,
we would contradict our assumption that relation i) entails that h2 and h cannot
differ on conditions that are not affected by executing ba@ '.

I

60 i
The lack of standard conditions is intended to model situations where it is

undefined what the performance of a basic action instance would do if executed. This
refers to the execution of impossible basic actions instances such as "move and do not
move at the same time i" or illegal moves when modeling a board game where only
legal moves are possible considerations I Thus, we treat the lack of standard l
conditions in this simple fashion. This treatment, however, does not preclude the
modeling of failed actions. These can be modeled by a plan instance whose associated
basic action instance (or set of basic action instances) is (successfully) executed but
the set of event instances associated with the plan instance do not all occur.

We now turn to the interesting case where ua@i's standard conditions hold in h,
but ba@i does not occur in h. In this circumstance, we refer to the relation
"h2Eba(i,h)" by saying h2 properly differs from h solely on the account of baiil. We
use the term "properly" to imply that it is proper to say that h2 and h differ.

To begin with, if ba@i's standard conditions hold in h, we assume that if ba 'i

were to be executed in h, we would arrive at world-histories in which ba,4t occurs. In
other words, if h2 properly differs from h solely on the account of ba@iai, then ba S'i
occurs in h2. Thus, we have the following constraint on our models:

BA2)
For every basic action(ba), interval (i), and world-histories (h and h2),
ifh = h2 and h2 E ba(i,h) then < i,h2 > E BAEV(ba)

Our intuitive notion of"h2 properly differs from h solely on the account of baci"
is best explained by describing a revision process from h to h2; this does not mean,
however, that the revision process is explicitly given in the model; the model only
gives the result of the revision process as captured by the basic action functions.

1) (In going from h to h2) revise the status ofba@i i
2) Revise the status of basic action instances that occur in h but physically

cannot be done in conjunction with ba@i I
3) Revise the status of properties and events that hold (occur) in h that are

directly dependent on the non-occurrence of baqi and/or the occurrence of the
basic action instances revised in step 2

4) Revise the status of the properties, events, and basic action instances that are
directly dependent on the conditions changed in the previous revision; repeat

No other properties, events, or basic action instances are revised

Alternatively, "move and do not move at the same time i" may refer to
the composition of the two basic action instances"move at time i" and
"do not move at time i", both of which can be done separately, but not
together. As we will see in section 3.2.5, the composition of two basic
action instances they cannot be done together is treated as if its
standard conditions do not hold.

I
I

61I
The revision process is meant to capture that in going from h to h2, the onlyI conditions that are revised are ones that are directly affected by ba 'i's occurrence,
ones that are affected by conditions that are directly affected by ba(qLi, etc. The two
world-histories agree on all other conditions. This includes all conditions that are
out of the agent's control such as whether or not it is raining, when the bank closes
and opens, etc. We also stipulate that h and h2 must agree on all conditions that
hold prior to interval i. ba@i's time of execution. We will shortly describe how a
constraint relating the basic action functions and R captures this restriction.

An example will help to clarify the revision process (See diagram 3.2-1). Consider
I the plan instance <{<init-BOOT,il >},{<type-BOOT,il >}> where init-BOOT

refers to the event "initiating the program BOOT" and type-BOOT refers to the basic
action where the atom "BOOT" followed by a carriage return is typed by the agent.
The occurrence of the basic action instance type-BOOT@il generates the event
instance init-BOOTail under the conditions that the computer is operational
during time il. Diagram 3.2-1 depicts the world-history h where type-BOOT@il

I occurs and the computer is operational during il, and thus necessarily mit-
BOOT@il occurs. Furthermore, in h, the computer is operational during the larger
interval i-all and the initiation of BOOT leads to the occurrence where BOOT runs3 during interval i2.

Now, consider the plan instance <{ < init-SCAN,i 1 > },{ <type-SCAN,i 1 > }>
which can be executed during interval il instead of the plan instance described
above. The event init-BOOT refers to the event "initiating the program SCAN" and
type-BOOT refers to the basic action where the atom "SCAN" followed by a carriage3 return is typed by the agent (and whose standard conditions hold in h). The
occurrence of the basic action instance type-SCAN@il generates the event instance
init-SCAN@il under the conditions that the computer is operational during time il.
We now consider world-history h2 which properly differs from h solely on the account
of type-SCAN@il. To begin with, type-BOOT@il does not occur in h2 since it
physically conflicts with typing "SCAN" during i2 and thus init-BOOT@il does not
occur in h2 since it is generated by type-BOOT@il. It is also the case that BOOT
does not occur during i2 in h2 since this occurrence was (solely) caused by init-
BOOT@il's occurrence in h. On the other hand, h and h2 agree on the condition "the
computer is operational during i-all" since type-SCAN@il has no effect on the
computer's operational status. Because (in h2) type-SCAN@il occurs under the
conditions "the computer is operation during i1", init-SCAN@il occurs causing the
program SCAN to run during interval i2.

We must emphasize that in computing a world-history that minimally differs on
the account of some basic action instance, all changes are initiated by conditions that
physically cannot be done together. We do not take into account "intention
conflicts". What we mean by "intention conflicts" is described by the the following3 example. Consider a world-history h, where at time 1, the agent performs two basic
action instances, "buy a tape-deck during i" and "buy a cassette tape during i". Now,
consider a world-history h2 that properly differs from h solely on the account of "buy
a turntable during i". If we assume that the agent only has enough money to buy
either a tape deck or record player, but not both, "buy a turntable during i"I

I

62

the computer is operational during i-all

I nit-BOOT@i1 occurs IBOOT-runs@12 occurs
type-BOOT@i I occurs I

type-BOOT@il1 generates init-BOOT@il1

type-SCAN@i 1
occurs

f the computer is operational during i-all/

Ilnit-SCAN@I 1 occurs ISCAN-ru ns@12 occurs
type-SCAN@i 1 occurs I

type-SCAN@il generates init-SCAN@il

i-all

illI i2

Diagram 3.2-1

63I
physically conflicts with "buy a tape-deck during i". Thus, in world-history h2, "buy

i a turntable during i" occurs, but "buy a tape-deck during C does not. On the other
hand, buying a turntable does not physically conflict with buying a cassette tape
(assuming the cost of the turntable is less than or equal to that of a tape-deck).
Therefore, according to our conception of minimal revision, one does not revise the
status of"buy a cassette tape during i" in computing h2. Thus, h2 is a world-history
in which a turntable is bought along with a cassette tape (apparently for no reason).
If, however, our notion of minimal revision took into account intention conflicts, one
would cast out "buy a cassette tape during i" since "buy a tape-deck during i" had to
be cast out (assuming the agent did not have a second reason, such as another tape
deck at home, for buying a cassette tape). In general, one would cast out any
occurrence that was done solely for the reason or in preparation for another

i occurrence which had to be cast out.

We have implicitly ruled out the treatment of intention conflicts by adopting the
following constraint: if h and h2 differ solely on the account of ba@i, then h and h2
share a common past up until the beginning of ba@i's execution time. If we took into
account intention conflicts, this constraint could not be imposed as the following
example demonstrates.

Consider a world-history h where at time il the agent buys a present, and at a
later time i2, the agent goes to a party bringing the present as a gift. Now, consider a
world-history h2 that properly differs from h solely on the account of the basic action
instance "the agent goes to the concert during time i2". It is clearly the case that
"the agent goes to the party during i2" does not occur in h2 since this physically3 conflicts with going to the concert during time i2. If we took into account intention
conflicts, we would also have to cast out "the agent buys a present during i1" since
this is done solely for the reason of going to the party. Thus, we get two world-
histories that solely differ on the account of "the agent goes to the concert during
time t2", but differ on "the agent buys a present during ii" which is a condition thatholds before i2.

Treating intention conflicts would be an interesting project, although quite
complicated. We have ignored this issue for simplification. Our hope is that one
could build a theory of intentions and intention conflicts on top of the theory put
forth here. Whether or not one treats intention conflicts, however, one must still
treat physical conflicts. Physical conflicts are in sense prior to intention conflicts.
Any intention conflict is at some stage initiated by some physical conflict.

i Multiple Closest World-Histories

In the beginning of this section, we mentioned that there may not be a unique
world-history that minimally differs on the account of some basic action instance.
One case of this, which we previously mentioned, is where a basic action instance has
non-deterministic outcomes. In this situation, there will be at least one world-
history in ba(i,h) corresponding to each non-deterministic outcome (in the case

I
I

64

where ba@i does not occur in h while its standard conditions hold). There are other
reasons why multiple closest world-histories may come about.

A second case is where there is not a unique resolution as to which basic action
instances cannot be done in conjunction with a basic action instance that must be
revised so that it occurs. The simplest example is where the agent can do at most
two things at once. Consider three basic action instances balC0, ba2,O)t, and ba3(q. z
all of which have the same time of occurrence (i.e. i). Let h be a world-history where
both bal @i and ba2@i occur. There will be two closest world-histories to h where
ba3@i occurs, one where both bal @i and ba3@i occur, and the other where ba2@i
and ba3@i occur.

A third example of multiple closest world-histories is where the effects of a basic
action instance enable some other event or (the agent's own actions) to be completed
in two or more ways. A simple example crops up when modeling a two player game
where the agent is one of the competitors (See diagram 3.2-2). Suppose that initially
the agent has two possible moves al @il and a2@il which are basic action instances
with time of occurrence i1. At a subsequent time, say i2, the opponent is faced with
the following options: If the agent plays al during il, then the opponent is forced to
make move ol during i2. If the agent makes move a2 during il, then the opponent
has the choice of making move o2 or o3 during time i2. Let hl be a world-history
where the agent makes move al during i1 which is (necessarily) followed by the
opponent's move al. There are two candidates that are equally close to hl where the
basic action instance a2@ i1 occurs. These are given in the diagram by h2 where a2
occurs followed by o2, and h3 where a2 occurs followed by o3.

Relating The Basic Action Functions to the R Relation

There are two constraints relating the basic action functions and R that we I
impose on our models. The first one entails the following restriction which we have
previously mentioned: if h2 differs from h solely on the account of ba@i, then h and
h2 share a common past up until the beginning interval i, ba@i's execution time.
Formally, this constraint is given by:

BA-R1)
For all world-histories (h and h2), basic actions (ba),
and intervals (i0 and i), ifh2E ba(i,h) and MTS(iO,i) then R(iO,h,h2)

BA-R1 can be described as saying: If h2 differs from h solely on the account of ba@i
(i.e. h2Eba(i,h)), then for all intervals iO that immediately precede (meet to the left) 3
interval i (ba@i's time of occurrence), R(iO,h,h2) is true, entailing that h and h2
share a common past through the end of O and thus up until the beginning of i.

BA-R1, however, says something stronger than "if h2 differs from h solely on the I
account of ba@i, then h and h2 share a common past up until the beginning of i". It
can also be seen as a constraint on what world-histories must be possible with
respect to each other as specified by R. As we have previously noted, the R

I
_____ ____ ____i

65

* game tree diagram

U opponent / hl

moves o 1

agent
moves a 1

Iopponent h2
agent moves o2
moves a 1

opponent
moves o3 h3

I Equivalent world-history diagram
with minimal revision links for "move a2 during il"

I agent moves al 1 opponent moves ol

occurs during il occurs during 12

move a2
ocrduring i

agent moves a2 opponent moves o2

occurs during il occurs during i2

h h2

I

I i

5 Diagram 3.2-2

I
I

66

relationship only relates world-histories with common pasts that are possible with
respect to each other. Thus, BA-R1 can be seen as narrowing the meaning of
"possible" as captured by R by implying that under any circumstances (i.e. some
world-history h), the result of applying any basic action instance leads to a
circumstance that is possible with respect to h.

The second constraint relating the basic action functions and R stems from the
observation: if h2 belongs to ba(i,h), then the conditions that hold in h2 up until
some time ir, are a function only of ba@i and the conditions that hold in h up until ir.
The conditions that hold in h after time ir, have no bearing on the conditions in h2
that hold up until ir. This principle is along the lines of "conditions at later times
have no affect on condition at earlier times". The ramifications of this principle is
that if two world-histories hl and h2 are R related at time ir (and thus share a
common past up until ir), the valuation of some basic action ba applied to hl must be
compatible with the valuation of ba applied to h2 in the following manner: for every
member hcll of ba(i,hl), there is at least one member of ba(i,h2) that is R related to
hcll at time ir. Formally, this is given by:

BA-R2)
For all world-histor'ies (hl and h2), intervals (i and ir)
and basic actions (ba), if R(ir,hl,h2) then for all world-histories (hcll) such
that hcllEba(i,hl) there exists a world-history (hcl2) such that hcl2Eba(i,h2)
and R(ir,hcl l,hcl2) are true

In the case where interval ir is prior to ba@i's time of occurrence, BA-R2 logically
follows from {BA-R1, R2, R3, R4}. Thus, we could have equivalently given a variant
of BA-R2 where we restrict the relation between i and ir so that ir starts after the
beginning of interval I.

We must now justify BA-R2 in the case where ir starts after the beginning of
interval i. We will use the term the prefix of ba@i through ir to refer to the
portion of ba@i that falls before the end of interval ir. If i ends before the end of ir,
then "the prefix of ba@i through it" simply refers to ba@i in its entirety. The
justification of BA-R2 is given by arbitrarily picking two world-histories hl and h2
that are R related at interval ir and then showing that the consequent in BA-R2 is
true. We first consider the case where ba@i has the property that for all world-
histories h, there is a unique world-history that minimally differs from h on the
account of ba@i. Thus, ba@i acts in the same way given the same environment. We
then consider the alternative case where there exists a world-history h in which
ba(i,h) has cardinality greater than 1.

* 67

CASE 1 ba(i,h) has cardinality 1 for all world-histories h
and 1 starts be3re the end of interval ir

We assume that world-histories hl and h2 are R related at interval ir. Let hcll
be the world-bistory that differs from hl solely on the account of baUi, and let hc12
be the world-history that differs from h2 solely on the account of ba(ad (See diagram

3.2-3). To justify BA-R2 in CASE 1, we need only show that hcli and hcl2 are R
related at time ir.

The conditions that hold in hcll until the end of ir depend only on the prefix of
ba@i through ir and conditions that hold in hl until the end of ir. Similarly, the
conditions that hold in hcl2 until the end of ir depend only on the prefix of ba@i
through ir and conditions that hold in h2 until the end of ir. Since we are assuming
that ba@i acts in the same way in the same environment and that hl and h2 share a
common past through 1 , hcll and hcl2 must share a common past through ir. We
assume without arg,'ment that hcll and hcl2 are possible with respect to each other
at time ir. Thus, hcll and hcl2 are R related at time ir, thus justifying BA-R2 for
CASE 1.

I CASE 2 ba@i may have multiple closest world-histories
and i starts before the end of interval ir

I We work under the assumption that given the same environment, baqi results in
the same set of possible behaviors. Once again we take world-histories hl and h2 to
be R related at interval 1r. Let pl refer to one of ba@i's possible behaviors with
respect to hi, and let hcll be the world-history that differs from hl solely on the
account of pl. Since we are assuming that for the same environment, ba@i results in
the same set of behaviors, one of ba@i's behaviors with respect to h2 will coincide
with pl's behavior through time ir (Remember, hl and h2 share a common past
through ir). Let p2 refer to this behavior of ba@i with respect to h2 and let hcl2 beE the world-history that differs from h2 solely on the account of p2. To justify BA-R2 in
CASE 2, we need only show that hcll and hcl2 are R related at time ir.

The conditions that hold in hcll until the end of ir depend only on the prefix of pl
through ir and conditions that hold in hl until the end of ir. Similarly, the
conditions that hold in hcl2 until the end of ir depend only on the prefix of p2 throughD ir and conditions that hold in h2 until the end of ir. Since pl's behavior through
time ir coincides with p2's behavior through time ir, and world-histories hl and h2
share a common past through ir, hcll and hcl2 must share a common past through ir.
We assume without argument that hcll and hcl2 are possible with respect to each
other at time ir. Thus, hcll and hcl2 are R related at time ir, thereby justifying BA-
R2 for CASE 2.I

I
I
I

68

applyI
K~ir~i~h2)ba@'

N h2

hi, h2 --W. prefix of ba@i
are all R >through ir
related at 10 ~

lefflohCt 1

hciq apply
ba@i

ba@i occurs

j-q.prefix of ba@i hCi2
through ir

iD o

ir

Diagram 3.2-3

69I
3.2.5. The Composition of Basic Action Instances and Plan Instances

U In this section, we examine the joint execution of a set of basic action instances. A
"closeness" function is developed that takes a world-history and non-empty set of3 basic action instances as arguments and yields the set of closest world-histories
differing from the world-history on the account of executing all the members in the
basic action instance set. This function is defined in terms of the basic action
functions. As we described in the last section, the interpretation of r(IFTRIED tpi
P)l is based on such a function, which we have referred to by F,1. Fcl(bai-set,h)
yields the set of closest world-histories to h in which all the elements in bai-set are
executed. If the elements in bai-set cannot be jointly executed together in the
environment given by h, Fcl(bai-set,h) is set to {h}, treating bai-set as if its standard
conditions do not hold at h. In the simple case where bai-set contains only one basic
action instance, F,1 is equated with the closeness function associated with the basic
action instance it contains. That is, for every basic action instance ba 4'i,
Fci({ba@i},h) is defined to be ba(i,h).

We are indirectly defining plan instances composition by defining basic action
instance composition as given by the closest function applied to a set of basic action3 instances. Remember that the composition of plan instances <ei-setl,bai-setl > and
< ei-set2,bai-set2> is defined as <ei-setlUei-set2, bai-setlUbai-set2>. Thus, the
effect of attempting these two plan instances is given by F,1 applied to bai-setl Ubai-

3 set2.

We now discuss how F,1 applied to a set of basic action instances containing more
than one element is defined in terms of the individual basic action functions. We
begin by presentating the definition of Fcl({ba@i},h) in the general case and
presenting two related constraints that we place on our model. The remainder of the

I . section is devoted to explaining and justifying this definition and the two
constraints. To succinctly specify the definition of Fci({ba@i},h), we introduce the
following notation and conventions. First of all, basic action instances will be
designated by terms such as bail and bai2, instead of using the @-function notation
that explicitly gives the basic action and interval associated with it. We will also use
the notation bai(h) to refer to the set of closest world-histories to h where basic3 action instance bai occurs.

For any basic action instance bai, bai(h) =def ba(i,h), where ba is the basic action
I associated with bat, and £ is the corresponding interval

We will use OC(bai) to designate the set of world-histories in which basic action3 instance bai occurs in.

For any basic action instance bai, OC(ba) = def {h I < i,h >BAEV(ba)}, where ba is3 the basic action associated with bai, and L is the interval associated with bai.

I
I
I

70

Lastly, we introduce a function combiritor designated by ";" which combines any
two functions fx and fy from H to 211 to form fx;fy which is also a function from H to
2H. The definition of fx;fy(h) for any world-history h is given by:

fx.f-h d hxU. f .f()

This combinator function is associative, thus we can unambiguously use fl:f2; ... ;fn
to designate the combination of two or more functions from H to 2H. We call fl;f2;
...fn a sequence function of FS if set FS = { fl,f2, ..., fn}.

The definition of Fc1(bai-set,h) and the two constraints we impose are given in
figure 3.2-4. If the first constraint were not imposed, then the definition of FCL-
DEF would be ill-formed. We explain and justify FCL-DEF, BA-CMP1, and BA-

FCL-DEF)

If there exists a sequence function of bai-set (bail;bai2; .. ;bain) having the

property:

for all world-histories (h2) such that h2Ebail;bai2; .. ;bain(h) and each

basic action instance (bai) such that batis in bail;bai2; .. "bain, h2(OC(bai)

then F,(bai-set,h) =def bal@il;ba2@i2; .. ;ban@in(h)

Otherwise, Fc(bai-set,h) = def {h)

BA-CMP1)

For all world-nistories (h) and finite basic action instance sets (bal-set),

if there exists two sequence functions of bai-set (seql and seq2) such that they

both meet the following property of seq:

for all world-histories (h2) such that h2Eseq(h) and each

basic action instance (bai) such that bai is in e, h2OC(bai)

then seq 1 (h) = seq2(h)

BA-CMP2)

For all world-histories (h) and sequence functions (seq1 and seq2), if the

sequence functions seq2, and seql;seq2 all meet the following property of seq:

for all world-histories (h2) such that h2Esep(h), and each

basic action instance (bai) in the eq, h2EOC(bai)

then seq2;seql also meets the property above

Figure 3.2-4

71I
CMP2 by first considering the composition of two basic actions instances, both of
which have the following property: for all world-histories h. bai(h) contains one
world-history. We will refer to any basic action instances bai meeting this p,'operty
as being deterministic since at every world-history h there is a unique closest

S world-history differing from h on the account of bai. After considering the
composition of two deterministic basic action instances, we look at the composition of
three or more deterministic basic action instances. Finally, we consider the general
case where the basic action instances may have multiple closest world-histories.

3 The Composition of Two Deterministic Basic Action Instances

We examine the composition of two deterministic basic action instances in a case
by case analysis, dividing the cases as follows:

1) i) Both bail's and baz2's standard conditions hold at h, ii) ball's standard1 conditions hold in the world-history contained in bai2(h), and iii) bai2's
standard conditions hold in the world-history contained in bai l(h)

2) i) Both bail's and bai2's standard conditions hold at h, and ii) bail's standard
conditions do not hold in the world-history contained in bai2(h) or bai2s
standard conditions do not hold in the world-history contained in bail(h)

3 3) i) bail's standard conditions hold at h, and ii) bai2's standard conditions do not
hold in h

3 4) i) bail's and bai2's standard conditions do not hold at h

I CASE 1

Intuitively, it seems that there are two alternative derivations that can be used to
compute the closest world-history to world-history h where the composition of bal
and bai2 occurs. One derivation is to minimally modify h so that bal occurs and

i then to minimally modify this world-history so that bai2 occurs. Symmetrically, we
can modify h first by bai2 and then by bail. The result of modifying h first by bail
and then by bat2 is the world-history belonging to the singleton set bail;bai2(h), and

i the result of modifying h first by bai2 and then by ball is the world-history belonging
to the singleton set bai2;bail(h). Both bail;bai2(h) and bai2;bail(h) are singleton
sets because both bail and bai2 are deterministic basic action instances and hence
bail(h) and bai2(h) are singleton sets. For readability, if h-set is a singleton set, we
will sometimes say "bail occurs in h-set" instead of the correct description "bail
occurs in the world-history belonging to h-set".

3 The two revision processes, described above, may not yield the same world-
history, i.e. bail;bai2(h) may be unequal to bai2;bail(h). Consider an example where
bail is "move right hand up during L" and ba12 is "move right hand down during i".
These basic action instances cannot occur together under any circum.stances. Now,

72

the closest world-history to h where ball occurs is a world-history hi where "move
hand up during ('occurs (hl is not necessarily distinct from h since ball might occur
in h. and thus bail(h)={h}). The closest world-history to hi, where bai2 occurs, is a
world-history where "move right hand down during i" occurs. Thus, in the world-
history belonging to bail;bai2(h), baz2 occurs but not bail. Similarly, in the world-
history belonging to bai2;bail(h), bail occurs but not bai2. Thus, the two revision
processes give different results. Diagram 3.2-5 depicts the closest world-histories
differing on the account of "move right hand up during i" and closest world-histories
differing on the account of"move right hand down during i" at four world-histories in
a model. As we will do in the rest of this section, we omit from diagram 3.2-5 the
reflexive arcs that correspond to the application of a basic action instance to a world-
history in which it occurs. So for example, the arc associated with "move right hand
down during i" from h2 to h2 is omitted from the diagram since this basic action
instance occurs in h2.

In the above example, we say chat "move right hand up during i" and "move right
hand down during 1" interfere with each other at every world-history. In this case.
we set Fcl({bail,bai2},h) equal to {h}. Thus, we are treating the composition of two
basic action instances that always interfere with each ot'Aer in the same way that we
treat individual basic action instance's whose standard conditions do not hold. Now,
as we will see, Fci({bail,bai2},h) also equals {h} if both bail and bai2 occur in h. This
case, however, is distinguished from the case where they interfere with each other
since if they interfere they do not both occur together in h.

Now consider two basic action instances that never interfere with each other (See
diagram 3.2-6). Let bail be "move right hand up during i", and let ba12 be "move left
hand down during i". In this case, whether we modify a world-history first by bail
followed by ba12, or by bai2 followed by bail, we arrive at the same world-history
where both ball and bai2 occur. This resultant world-history is taken to be the

closest world-history to h where the composition of bail and bai2 occurs. Thus, for
all world-histories h, Fci({bail,bai2},h) is defined as bail;bai2(h) which is equal to
bai2;bail(h).

In the two above examples, either the two basic action instances interfered with
each other at all world-histories, or they did not interfere at any of them. We may
also have cases where two basic action instances interfere only under certain
conditions. These situations typically arise when two basic action instances share
the same type of resource. Only if a sufficient amount of the resource is present can
the two basic action instances be done together.

Consider an example where a robot's power source fluctuates out of the robot's
control. Only if enough power is being generated can the robot perform
simultaneous actions. Let bail and bai2 be basic action instances with the same
time of execution which we will denote by i. Let h be a world-history in which
sufficient power is not being generated throughout interval L. We find that by
modifying h first by ball, then by bai2, we get to a world-history where bai2 occurs
but not bail. The reason for this is that the condition "sufficient power is not being
generated throughout 1" hoids in the resultant world-history (i.e. bail:bai2(h'

move right hand up apply "right hand
occurs durng I down during i"

move right hand down

does not occur

v rmove right hand up
hl does not occur

apply "right hand up
duapl right hand down

ic nurs during i

move right hand up
does not occur

move right hand downdoes not occur

oor iu during iapply "night hand

k move right hand down
does not occur

move right hand up
does not occur

move right hand down apply "right hand

occurs duringi I up during i"

h2

Diagram 3.2-5

74

move right hand up

occurs during 1

S move left hand down

does not occur

apply right hand apply left hand
up during I hi down during i

move right hand up move right hand up
does not occur occurs during 1

move left hand down move left hand down
does not occur occurs during1

apply left hand apply right hand
appldurringia move right hand up up duringi

downdurig idoes not occur

\1 move left hand down I

h2 II

Diagram 3.2-53 I

I
I

75I
because neither the execution of bail or bai2 affects this condition. Consequently,3 bail does not occur in bail;bai2(h), since baz2 occurs in this world-history along with
the condition "sufficient power is not being generated throughout 1". Thus, ball and
bai2 interfere with each in the environment given by h. Appropriately, we set3 Fci({bai,bai2},h) equal to {h} for any world-history h in which "sufficient power is not
being generated throughout i" holds.

Now, let us look at a world-history h2 where sufficient power is being generated
throughout i. In this case, whether we modify h2 by applying bail followed by ba12,
or instead, by applying bai2 followed by ball, we will arrive at the same world-
history where both bail and bat2 occur and "sufficient power is being generated
during i" holds. Thus, for any world-history h2 where "sufficient power is being
generated during i" holds, Fc!(bail,bai2},h2) is equated with bail;bai2(h2) which is

I equivalent to bai2:bail(h2).

In summary, we can describe the composition of two basic action instances thatI meet CASE] as follows, this being a spccial case of FCL-DEF (see figure 3.2-4). For
all basic actions instances, baix and baiv. such that baix's standard conditions hold at
h and baiy(h), and baiy's standard conditions hold at h and baix(h):

5 FCL-DEF-SC1)
if both baix and baty occur in baix;baiy(h),
then Fcl({baix, baiy},h) = def baix;baiy(h)
if both baix and baty do not occur together in
baix;baiy(h) or baiy;baix(h),5then FI({baix, baiy},h) =def{h}

If bail and bai2 do not interfere with each other at h, then both ball and bai2 o-cur
in bail;bai2(h) and in bai2:bail(h). Consequently, the first definition clause in FCI-
DEF-SCI is applicable for the two substitutions {bail/baix, bai2/baiy} and
{bai2/baix, bail/baiy} leading to the result that FI({bail, bai2},h) is set to both
bail;bai2(h) and bai2;bail(h). This definition is well-formed because of the
following constraint which is a special case of BA-CMPl (see figure 3.2-4),
substituting baix for seql and baiy for seq2:

CONSTRAINT1)
For all world-histories (h) and deterministic basic action instances (baix and
baiy), if both baix and baiy occur in baix;baiy(h) and both baix and baiy occur in
baix;baiy(h), then baix;baiy(h) = baiy;baix(h)

If bail and ba12 interfere with each other at h, then both bail and baL2 do not occur
together in either bail;bai2(h) or bai2;bail(h). Consequently, the second definition
clause in FCI-DEF-SCJ is applicable for the two substitutions {bail/baix, bai2/baiy}
and {bai2/baix, bail/baiy} leading to the result that Fci({bai 1, bai2},h) is set to {h}.

The fact that either i) bail and bai2 occur together in both bail:bai2(h) and
bai2;bail(h), or ii) they do not occur together in either bail;bai2(h) and bai2:bai 1(h),

76

is captured by the following constraint, which is a special case of BA-CMP2,
substituting baix for seql and baiy for seq2 i

CONSTRAINT2)
For all world-histories (h) and deterministic basic action instances (baix and
baiy), both of whose standard conditions hold at h, if both baix and bai2y occur in
baix;baiy(h) then both baix and baly occur in baiy;baix(h)

CONSTRAINT2 insures that the we do not get incompatible results from the two
revision processes, bail;bai2(h) and bai2;bail(h). If both bail and bai2 occurred
together in bail;bai2(h), but did not occur together in bai2;bail(h), the former 3
relation would be saying that bail and bai2 did not interfere at h while the latter
would be saying they did interfere. I

We must emphasize that we are formalizing basic action instance composition,
not plan instance composition. Many interactions between plan instances mirror the
interactions between basic actions instances. There are, however, some interactions
that can only be captured at the plan instance level. One example is where two
programs can be successfully executed separately, but if they are executed
simultaneously they deadlock and neither occurs. Let the plan instances
<{<progl,i>}, {<coml,i>}> and <{<prog2,i>},{<com2,i>}> refer to two U
processes that deadlock if executed together. The first plan instance corresponds to
the event "program progl (successfully) runs" that is performed during interval i by
executing the basic action instance corl i, similarly for the second plan instance.
The basic action instances coml @qi and com2Coi are treated as if the do not interfere,
while the plan instances that they generate are treated so that they do interfere. 3
This is captured by a model in which the execution of coml @i, in any world-history
in which < { < prog2,i > },{ < com2,i > I > occurs, leads to a closest world-history where
neither progl or prog2 occur during i, similarly, for the execution of com2@i in a 3
world-history -where <{<progl,i>}, {<coml,i>}> occurs (see diagram 3.2-7).
Conversely, if comli is executed in a world-history where
<{<prog2,i >},{<com2,i>}> does not occur, then the execution of coml@i leads to i
a world-history where <{<progl,i>},{<coml,i>}> occurs, similarly, for the
symmetrical case.

I
I
I
I
I

77

corn2@i doesnt 0CCI prog2@ doesnt 0cc

5apply coml1@1 apply com2@i

coml1@' doesnt 0CC. corn1 occurs
p rogl1 S d oesnt occ p rog 1@i deadlIocks

corn2@i doesnt 0CC com2@i occursIprog2@i doesnt 0CC. rg@ edok

N appl com2@i apply corn1 @i

I@ I__occurs___

cIg@d0 stoc

Diagram 3.2-7

78

CASE2

The next case to consider is where i) both bail's and bai2's standard conditions
hold at h, and ii) bail's standard conditions do not hold in the world-history
contained in bai2(h) or bai2's standard conditions do not hold in the world-history
contained in bail(h). Let us suppose that the application of bail ruins bai2's
standard conditions. In this case, the desired result is that bail and bai2 cannot be
_xecuted at h. Thus, we want to set Fcl({bail,bai2},h) equal to {h}.

This relationship between bail and bai2, where the execution of bail with
respect to h, ruins bai2's standard conditions, can also be seen as interference at
world-history h. In this case, both bail and bai2 do not occur together in
bail;bai2(h). More specifically, bail occurs, but not bai2, in bail;bai2(h). The reason
for this is as follows. Since application of bail at h ruins bai2's standard conditions,
bai2 does not occur in bail(h) and bai2 applied to the world-history contained in
bail(h) maps back to itself. Consequently, bail;bai2(h) equals bail(h), a set
containing a world-history in which bailoccurs, but not bai2. We also assume that
both bail and bai2 do not occur together in bai2;bail(h). Otherwise, we would get
incompatible results from the two revision processes, bail;bai2(h) and bai2;bail(h),
the first saying that bail and bai2 interfere with each other at h and the other saying
they do not interfere.

Thus, we see that if the application of bail at h ruins bai2's standard conditions.
then bail and bai2 do not both occur together in either bail;bai2(h) or bai2;bail(h).
Consequently, the definition given in FCL-DEF-SC1 yields the correct result. In
particular, the second definition clause in FCl-DEF-SC1 is applicable for the two
substitutions {bail,'baix, bai2/baiy} and {bai2/baix, bail/baiy} leading to the result
that Fci({bai1, bai2},h) is set to {h}. It is also easily established that CONSTRAINT]
and CONSTRAINT2 are compatible with this case.

CASE3

We now consider the composition of two deterministic basic actions instances
where one of the basic action instances's standard conditions holds and the other one
does not hold at h. Without loss of generality assume that bail's standard conditions
hold at h, while bai2's standard conditions do not hold at h. The desired result is
that bail and bai2 can be executed together only if the occurrence of bail brings
about bai2's standard conditions and the two basic action instance do not interfere at
h. To determine whether the occurrence of bail brings about bai2's standard
conditions, we modify h by bail arriving at a world-history, which we will call hl,
and see if ba12's standard conditions hold at hl. If this is the case, then bai2(hl)
which is equal to bail;bai2(h) is a singleton set in which bai2 occurs. Secondly, if it
is also the case that bai2 does not interfere with bail at h (and thus Plso at hl), bail
will also occur in bail;bai2(h). Therefore, if bail;bai2(h) contains a singleton set in
which both bail and bai2 occur, then the occurrence of bail brings about bai2's
standard conditions and the two basic action instances do not interfere at h. In this

79

I case, we equate Fcl({bai1,bai2},h) with bail;bai2(h). On the other hand, if both bail
and bai2 do not occur in bail;bai2(h), we equate Fcl({bailbai2},h with {h}, treating
the composition as if its standard conditions do not hold.

The case where only one of bail's and bai2"s standard conditions holds at h differs
from the case where both basic action instances' standard conditions hold at h in that
we must try out both orderings, "bail followed by baz2"and "bai2 followed by bail".3to determine whether they can be executed together in h. If execution of bail with
respect to h brings about bai2's standard conditions, then both bail and bai2 occur in
bail;bai2(h), but not in bai2;bail(h). Symmetrically, if execution of bai2 with
respect to h bai2 brings about bail's standard conditions at h, then both bail and
bai2 occur in bai2;bail(h), but not in bail;bai2(h). Thus, we do not want to

I necessarily equate bail;bai2(h) with bai2;bail(h) when both bail and bai2 occur in
bail;bai2(h). This is only done when additionally both bail's and bai2's standard
conditions hold at h. CONSTRAINTI, which we put forth to equate bail;bai2(h) and
bai2;bail(h) ir the appropriate cases , does not apply here . This is because its
antecedent (i.e. "both baix and baiy occur in baix;baiy(h)") is false for both
substitutions. CONSTRAINT2 is also compatible since its provision "both baix's and
baiy's standard conditions hold at h" is not met for either substitution.

Definition FCL-DEF-SC1 also applies to this case. If the execution of bail in h
brings rbout bai2's standard conditions and the two basic action instances do not
interfere at h, then the first definition clause in FCL-DEF-SC1 is applicable for the
substitution {bail/baix, bai2/baiy} leading to the result that Fcl({bail, bai2},h) is set
to bail;bai2(h) Conversely, if either the execution of bail in h does not bring about5bai2's standard conditions or the two basic action instances interfere at h, then the
second definition clause in FCL-DEF-SCI is applicable for both substitutions

I leading to the result that FcI({bail, bai2},h) is set to {h}.

U CASE4

The last case to consider is the composition of two deterministic basic action
instances both of whose standard condition do not hold at h. In this case, neither of
the basic action instances can be executed alone to bring about the other one's
standard conditions. We therefore simply equate Fcl({bai1,bai2},h) with {h}. In thisI case, both bail;bai2(h) and bai2;bail(h) also equal {h}, a world-history in which
neither basic action occurs. It is easily shown that FCL-DEF-SC1 yields the correct
result and that both CONSTRAINT1 and CONSTRAINT2 are compatible.I
Summay of Cases 1 - 4

3 In summary, we have shown that Fcj applied to the composition of two
deterministic basic action instances can be given by FCL-DEF-SC1 which is ag special case of FCL-DEF. We have also shown that all these cases are compatible

80

with CONSTRAINT1 and CONSTRAINT2 which are special cases of BA-CMP1
and BA -CMP2.

Composing three or more deterministic basic action instances

The composition of three or more deterministic basic action instances is derived
by generalizing from the case where two basic action instances are composed
together. To begin with, in order to conclude that two basic action instances can be
done together at h, it must be the case that they do not interfere with each other at h.
Analogously, to conclude that three or more basic action instances can be done
together, it must be the case that all the basic action instances when taken together
do not interfere with each other. We must clarify by noting that a set of basic actions
instances taken pair-wise may not not interfere, but when all taken together they
interfere. As an example, consider the case where there are three basic action
instances bail, ba,2, and bai3 that consume the same type of resource. Assume that
bail's execution time is il which is properly before bai2's and bai3's execution time
which is i2. Also assume that in world-history h, none of these basic action instances
occur and there are two units of the resource available during intervals il and i2. In
this case, bai2 and bai3 do not interfere with each other at world-history h, but the
three basic action instances interfere with each other at h. If bail were to be
executed in h, it would use up one resource and therefore only one resource would be
available during i2. Hence, both bai2 and bai3 could not both be executed together
along with bail in h.

Conversely, a relation among basic action instances may arise where two basic
actions interfere with each at some world-history h, but these basic action instances
could be executed together if some additional basic action instance were to be
executed along with them. Consider the example where two simultaneous basic
action instances bail and bai2 share the same type of resource, and let h be a world-
history in which only one unit of the resource is available. In this case, bail and bai2
interfere with e- a other at h. Now, consider a third basic action instance bai3
which produces additional resources. In this case, bail, bai2, and bai3 all can be
executed together, and we say that they do not interfere with each other when taken
together at h.

A second factor that we took into account in deriving the composition of two basic
action instances is the order in which we successively modify a world-history by the
two basic action instances. It might be the case that ball and bai2 can be executed
together because either bail brings about bai2's standard conditions (and they do not
interfere with each other), or bai2 brings about bail's standard condition. Thus, the
order in which we successively modify a world-history by two basic actions may be
crucial. If bail brings about bai2's standard conditions and the two basic action
instances do not interfere with each other at h, then both bail and bai2 occur in
bail;bai2(h) while bai2;bail(h) equals the null set. Conversely, if bai2 brings about
bail's standard conditions and bail and bai2 do not interfere with each other at h,

I

81I
then both bail and bai2 occur in bai2;bail(h) while bail, but not ba12 occurs in

I bail;bai2(h).

This situation is easily generalized to the case where there are three or more
basic action instances. To check if we can execute three or more basic action
instances together with respect to h, we may have to check the modifications of h by
all the possible orderings of the basic action instances. For example. consider the

I composition of ball, bai2 and bai3. To determine whether they can be executed
together, we may have to check the six functions formed by the six orderings of the
three basic action instances: bail;bai2;bai3, bail;bai3;bai2, bai2;bail;bai3,

I bai2;bai3;bail, bai3;bail:bai2, and bai3;bai2;bail. For example, it might be the case
that bail's standard conditions hold everywhere, bai2's standard conditions hold
only if bail occurs, and bai3 standard conditions hold only if bai2 occurs. In this3- case, if h is a world-history where none of three basic action instances occur,
bail;bai2;bai3(h) will be the only one out of the six functions that does not equal the
null set. If additionally, bail, bat2, and baz3 all occur in the world-history belonging

5to bail;bai2:bai3(h), then we conclude they do not interfere with each at h, and we
appropriately set Fci({bai1,bai2,bai3},h) equal to bai l;bai2;bai3(h).

The definition of Fcl given by FCL-DEF provides for this generalization where
there are two or more basic actions instances belonging to bal-set. The "otherwise"
clause in FCL-DEF, which sets Fcl(bai-set,h) to {h}, is only applicable if there are no
sequences that yield a world-history in which all the elements in bai-set occur in.
The constraint given by BA -CMPl insures that if there are two sequences that yield
a world-history in which all the elements in bai-set occur in, then they must yield theIsame world-history. Without this constraint FCL-DEF would be ill-formed.
Constraint BA -CMP2 is a generalization of CONSTRAINT2 and can be explained as
follows.

Suppose that all the basic action instances in bai-set can be executed together in
h as manifested by the fact that there is a function sequence of bal-set that whenIapplied to h yields a world-history in which all the elements in bai-set occur in. We
will say that any sequence function of bai-set that meets this property is a solution
sequence. We consider a solution sequence which we break up into two parts
represented by two sequence functions combined by ";". Let seql;seq2 refer to such a
combined sequence function. We also assume that when seq2 is applied to h it yields
a world-history in which all its members occur in. Now, using BA -CMP2 we can
derive that seq2;seql is also a solution sequence

The justification for this conclusion stems from the assumption that the only
reason that different sequence functions of bai-set must be tried is because there
may be some set of basic action instances or some single one whose standard
conditions do not hold unless other basic action instances in bai-set are sequenced
before it. (Remember, we say that a set's standard conditions do not hold if the
elements cannot be executed together) If, however, there is a subset of bat-set whose
standard conditions hold in h, then we can reorder any sequence that is a solution
sequence so that some sequence of this subset is in front. In our example, the
elements of seq2 are such a subset.

82

Basic Action Instances with Multiple Closest World-Histories

We now examine the composition of two or more basic action instances that may
have multiple closest world-histories. We show that definition FCL-DEF provides
for this case and that constraints BA-CMPl and BA-CMP2 are applicable. The
treatment of basic action instance with multiple closest world-histories is just like
the treatment of basic action instances with unique closest world-histories with the
following exception. Instead of simply having cases where either bail and bai2 I
interfere at h or do not interfere at h, we may also have the situation where only
some of bail's behaviors interfere with some of bai2's behaviors. Similarly, we
encounter cases where some of bail's behaviors bring about bai2's standard 1
conditions while other behaviors do not.

If there is a behavior of bail that interferes with a behavior of bai2,
Fc1({bail,bai2},h) is set to (h}, treating this composition like two deterministic basic
action instance that interfere. Similarly, if some but not all of bail's behaviors bring
about bai2's standard conditions, we set Fci({bail,bai2},h) to (h}. This treatment of 3
F,1 does not distinguish between the case where all of the behaviors of bail and bai2
interfere and the case where some of them interfere. Similarly. Fcl does not
distinguish between the case where some of bail's behaviors bring about baL2's
standard conditions from the case where none of bail's behaviors bring about ba12's
standard conditions. For our purposes, however, making this distinction is not
necessary. We are ultimately interested in whether the composition of two or more I
plan instance are executable so that they can be used a part of a solution for a
planning goal. Now, two plan instances are executable only if the basic action
instances associated with them do not interfere. Whether two basic action instances 1
interfere under all behaviors or interfere only under some behaviors, we would want
to reject, as a solution, the composition of any plan instances associated with these
basic action instances. Making this distinction would only be useful if we wanted a I
more detailed model of harmful interactions.1

FCL-DEF captures the relations described above. Since we are no longer
assuming that the basic action instances are deterministic, bail(h), bail;bai2(h),
bai2(h), etc. may contain more than one world-history. The world-histories that are
in bail;bai2(h) are those that are reached by first modifying h by one of bail's
behaviors and then modifying by one bai2's behaviors. Thus, the set bail;bai2(h) is
the result of pairing all bail's behaviors with all of bai2's behaviors (modifying first
by bail). Consequently, if there are two or more pairings that interfere with each I
other, there will be at least one world-history belonging to bail;bai2(h) in which
both bail and bai2 do not occur together. Similarly, if only some of bail's behaviors
bring about bai2's standard conditions, there will be at least one world-histories
belonging to bail;bai2(h) in which both bail and bai2 do not occur together (more

This is not to suggest that we cannot capture this distinction in the i
model. This difference can be determined by looking at the two basic
action instance functions separately. We are just defining Fcl so as not
to make this distinction

I
i

83
i

precisely. there will be at least one world-history in which ba12 does not occur).
Thus, we see that the first definition clause in FCL-DEF only holds if there is an
ordering of {bail.bai2 bain} where no combination of behaviors interfere with each
other. This is because this clause only holds if all the members in
{bail,bai2,...,bain}occur in all the world-histories (h2) belonging to bail;bai2;
... ;bain(h).

For the case of multiple world-histories, BA-CMP1 says: if there are two sequence
functions, seql and seq2, of the same set baL-set in which all the members of bai-set
occur in all the world-histories in seql(h) and all the world-histories in seq2(h), then
seql(h) equals seq2(h). This makes sense because if all of the combinations of the
different behaviors do not interfere with each other, then the order in which we
modify the world-histories should produce the same set of combinations (as long as
the sequences do not violate the orderings needed to insure that some basic action
instance's standard condition hold). In a similar manner, we could justify" BA -CMP2
by adapting the argument we gave for BA-CMP2 in the last section on deterministic
basic action instances.

I
I
I
I
U
I
I
I
I
I
!
I

84 I
3.2.6. Comparison with Semantic Theories of Conditionals

The semantic interpretion of the IFTRIED modality derives from the the
semantic theories of conditionals developed by Stalnaker [Stalnaker 68] and Lewis
[Lewis 73]. The connection between these theories and our treatment is brought out 3
by looking at F(IFTRIED tpi P)1 as a subjunctive conditional having the form "If tpi
were to be attempted then P would be true". In the following sections, we give a brief
description of both these theories and then discussion their relation to our theory.

The Treatment of Counterfactuals in a Possible Worlds Framework

The approach of interpreting counterfactual conditionals within the possible
worlds framework originates in the work of Stalnaker and Lewis. In both theories, I
counterfactuals are interpreted in terms of an accessibility relation (actually an
accessibility function in Stalnaker's case) that measures the "closeness" (i.e. relative
similarity) between possible worlds in the model. In Stalnaker's models, a selection
function is introduced which takes a proposition P and a world w and yields the
closest world to w where P is true. The counterfactual "If A then C" is interpreted as
true at possible world u, iff C is true at the closest world to w where A is true.1 I
Stalnaker presented a number of constraints that are placed on all selection
functions. For example, one constraint stipulated that the closest that a world is
closet to itself. The other constraints will be described shortly in conjunction with I
Lewis' theory.

Stalnaker motivates the use of a closeness measure to interpret counterfactuals
by first describing a pragmatic principle that specifics how one evaluates a
counterfactual. This principle, which is an adaptation of a test put forth by Frank
Ramsey, is given as follows:

Suppose that you want to evaluate the counterfactual, "If A then C ". First you
hypothetically add the antecedent A to your stock of beliefs and make the I
minimal revision required to make A consistent. You then consider the
counterfactual to be true iff the consequent C follows from this revised stock of
beliefs.

He then states that in going from a principle that describes the justified belief of a
counterfactual to a theory that gives the truth conditions to counterfactuals, we I
make a transition from "a stock of beliefs" to "a possible world", and from the notion
of "minimal belief revision" to the notion of "closest possible world". 3

It proposition P is not possible with respect to w, as specified by a
second accessibility relation in the model, then the selection function
applied to P at w returns the "impossible world", a world where every
proposition is true. The notion ofan "imposible world" is introduced
just for convenience so that the interpretation of"If A then C" at u
comes out to be (vacuosuly) true if P is impossiblc at world u,

I

85I
Lewis' Treatment of Conditionals

Lewis' treatment of conditionals differs "rom Stalanker's theory in two primary
ways. To begin with, he permits models where there may be many worlds equally3close to a world where some proposition holds. If this is the case, then the
counterfactual "If A then B" is interpreted as true at w iff B is true in all the closest
worlds to w where A is true. One result of permitting models with multiple closest
worlds is that the law of the conditional excluded middle, which is valid in
Stalnaker's logic, is not valid in Lewis' logic. The law of the conditional excluded

I middle is given by:

"If A then B" or "If A then not B" is true

If the law of the excluded middle does not hold, one cannot negate a conditional b
simply negating the consequent (i.e. the negation of "If A then B" is not "If A then
not B"). To get around this, Lewis identifies two forms of conditionals, "If A then BI would be true" and "If A then B might be true" which are duals for a fixed
antecedent, that is the following holds:

3the negation of"If A then B would be true" is equivalent to
"If A then not B might be true"

I The second difference between Lewis' and Stalnaker's systems is that Lewis does
not make what he calls the limit assumption. This is a assumption to the effect that
for any world w and proposition P that is possible with respect to w, there exists at
least one closest world to w where P holds. An example that contravenes the limit
assumption is the case where we have an antecedent of the form "Tom is taller than 7
feet". We work under the assumption that for any positive rational number n (say
under 10), there exists a world where Tom is n feet. In this case, given any world w,
there is no closest world to w where Tom is greater than 7 feet. We can get closer and
closer arriving at a world where Tom is 7 + c feet, but for any c, we can always get to
a closer world where Tom is 7 + (/2) feet.

Lewis circumvents this problem by interpreting "If A then C" at world w by
I looking to see if the consequent C is true as we get to closer and closer worlds in

which A is true. In particular, he introduces a comparative similarity relation that
for each world w ordered the set of worlds in accordance with how close they are to w.
He uses "w2 -= wo wl" to mean that with respect to wO, w2 is not closer than wl. The
conditional "If A then C" is interpreted as true at w iff there does not exists a world
(w2) such that A is true and C is false at w2 and u,2 is closer to w than every world
where both A and B is true. In the case where there exists a set of closet worlds
where A is true, the limit-type interpretation coincides with the interpretation
where one checks if the consequent is true in all closet worlds where the antecedent
is true.

Lewis shows that if Lhe limit assumption is adopted in his models, then his3 formulization is essentially Stalnaker's formulization with the exception that
multiple closest worlds are allowed. To illustrate this connection, Lewis defines a

II

86

selection function, defined in terms of his comparative similarity relation, which we
will refer to by SL. SL(P,w) yields the set of closest world histories to w where P is
true (and equals the null set if P is impossible with respect to u,). He demonstrates
that the restrictions imposed on SL (as inherited from the restrictions imposed on
< wo) match the restrictions that Stalnaker imposes on his selection function. These
restrictions are given as follnws:

SL1) If P is true in world w, then SL(P,w) = {w}

SL2) P is true in all the worlds in SL(P,w)

SL3) If Q is true in all the worlds in which P is true in and SL(P,w) is non-empty,
then SL(Q,w) is non-empty

SL4) If Q is true in all the worlds in which P is true in and there exist a world in
SL(Q,w) in which P is true in, then SL(P,w) equals the subset of SL(Q,w) in
which P is true in

note: if P is not possible at w, then SL(P,W) equals the null set

The SI. selection function and the F,1 function

The statement r(IFTRIED tpi P) is interpreted as true at h iff P is true in all
world-histories belonging to FI(bai-set,h), where bai-set is the basic action instance
set associated with tpi. FI(bai-set,h) yields the set of closest world-histories to h
where all basic action instances belonging to bai-set occur (if the can be executed
togi4her). If all the elements in bai-set occur together, we say that tpi is attempted.
Thus the elements of Fcl(bai-set,h) can equivalently be described as the closest
world-histories to h where (the plan instance denoted by) tpi is attempted.
Consequently, we can describe our interpretation of F(IFTRIED tpi p)l as:
r(IFTRIED tpi P)l is true at h iff P is true in all the closest world-histories to h where

tp is attempted. This is just like the interp: .tation of the conditional "if tpi were to
oe attempted, then P would be true" using the framework described by Lewis and
Stalnaker.

Since F,1 yields a set of closest world-histories that differ on the account of a
specified set of basic action instances, our treatment is along the lines of a theory of
conditionals that provides for multiple closest worlds and makes the limit
assumption. Thus, it is natural to compare Fcl with the SL selection function.

To begin with, because of the presence of multiple closet world-histories, the
analog to the law of the excluded middle does not hold in our system. Instead, we get
two senses of IFTRIED corresponding to Lewis's "would" and "might" conditionals.
IFTRIED is treated as a "would" conditional since r(IFTRJED tpi p)l is true at h iff
P is true in all the closest world-histories to h where tpi is attempted. The "might"
counterpart to IFTRIED is designated by P-IFTRIED. The P-IFTRIED modality is
simply defined as the dual of IFTRIED for a fixed plan instance term:

87I
(P-IFTRIED tpi P) = def (NOT (IFTRIED tpi (NOT P)))

Constraint SL1 above, which says that if P is true in w then w is the closest world

to itself where P holds, is analogous to the following constraint which we impose onU the basic action functions:

BA1)
For every basic action(ba), interval (i), and world-history (h),
if <i,h > E BAEV(ba) then ba(i,h) = {h}

I Recall that Fcl (bai-set,h) is defined in terms of the basic action functions that are in
bai-set (see figure 3.2-4). For the simple case when bai-set consists of only one basic
action instance, Fcl({baai},h)= h. Using BA1 and the definition of Fcl given in 3.2-
4, we can derive that if all the basic action instances in bai-set occur in h, then
Fcl(bai-set,h) = {h}.

Constraint SL2 above says that P is true in all the closest worlds to w where P is
true. The analogous constraint in our system is given by BA2

U BA2)
For every basic action(ba), interval (i), and world-histories (h and h2),
if h= h2 and h2(ba(i,h) then < i,h2 > E BAEV(ba)

I BA2 can be interpreted as saying that basic action instance ba@i occurs in every
world-history belonging to ba(i,h) which does not equal h. The last provision is
made because of the way that we are treating basic action instances whose standard
conditions do not hold at h. If ba@i's standard conditions do not hold at h, we simply
set ba(i,h) to {h}. In this case ba(i,h) contains a world-history (i.e. h) in which ba'i
does not occur. Similarly, Fcl(bai-set,h) is set to {h} when bai-set contains two or
more basic action instances that cannot occur together.

Both STL3 and STL4 describe relations between SL(P,w) and SL(Q,w) when
propositon P entails proposition Q. Constraint SL3 does not apply to our system
because It pertains to systems where a closeness function may be applied to a

I propoistion that is not possibleat the world it is being applied at. This constraint
insures that if P entails Q, then SL cannot be defined so that it encodes that P is
possible at world w while Q is not.

3SL4 can be seen as a constraint insuring that a compatible closeness metric is
used to evaluate P and Q. If P entails Q, then we do not want a world w2 in SL(P,w)
that is not in SL(Q,w) unless all worlds in SL(Q,w) are closer than any world in
SL(P,w). One might try to implement an analogous constraint in our system. The
relation between P and Q in our system correspond to a relation between a basic
action instance set bai-setp which contains another basic action instance set bai-setq.
It can be shown that the analogous relation to SL4 holds in for the limited case
where all elements of bai-setq occur in all world-histories in Fcl(bai-setp,h). In this3 case Fcl(bai-setph) equals Fcl(bai-setq,h).

U
I

88 I
Chapter 4

A Proof Theory I
In this chapter, we present a proof theory that is sound with respect to the

semantic theory presented in the last chapter. This proof theory is given by
specifying a set of sentences, i.e. axioms, and a set inference rules that produce the I
sentences that are theorems in our system. We demonstrate that our proof theory is
sound by showing that all axioms and all theorems produced by the inference rules
are valid with respect to our semantic theory.

We break up the rest of the chapter into four sections. We first present a standard
axiomatization of the first order connectives and the equality predicate. We then I
present the axioms concerning the predicates and terms in our non-modal fragment.

The last two sections describe the axiomatization of our two modal operators, INEV
and the IFTRIED. In these sections, we intersperse the presentation of the axioms I
and inference rules with informal discussion. An encapsulated description of the
proof theory is given in appendix D.

We will use the notation "k- P" to mean that sentence P is a theorem with respect I
to our proof theory. We will also use "F-" in binary form. We describe the relation
"S F- P" by saying that sentence P is derivable from the set of sentences in S (which
we will assume to be finite).

4.1. Axiomatization of the First Order Connectives

We adapt a standard axiomatization of the first order connectives with equality
as described in [Hughes and Cresswell 68]. The axioms and inference rules are given
in figure 4.1-1. AX-F08 is the only axiom that is unique to our system. This axiom
captures the fact that the sets of objects corresponding to the different types are pair-
wise disjoint. Consequently, two objects having different types cannot be equal.

Strictly speaking, AX-F01 - AX-F08 are axioms schemas, not axioms, although
we will use both terms interchangeably. Each schema specifies a set of axioms for
any substitutions of the non-logical symbols appearing in them. Sentences in the
language, including both non-modal and modal sentences, are substituted for capital
letters and terms in the object language are substituted for small letters.
Substitutions for any sentence or term can be made as long as they meet the
provision associated with the schema, if such a provision exists. Schemas only have
provisions if noted. Thus, AX-F01 - AX-F04, AX-F06 have no provisions, while
AX-F05, AX-F07, and AX-F08 do.

The only difference made in going from an axiomatization of first order logic I
simpliciter to a logic where first order logic is extended with modal operators is that
the sentence (meta) variables appearing in the schemas given in figure 4.1-1 range
over both modal and non-modal statements, instead of just over first order

I
I

89I

Axioms

AX-FO1)
H (IF (OR P P) P)

AX-F02)
(IF Q (OR P Q))

AX-F03)
1-- (IF (OR P Q) (OR Q P))

AX-F04)
- (IF (IF Q R) (IF (OR P Q) (OR P R)))

AX-F05)
1- (IF (V?v P1) P2)
where P1 differs from P2 in having all free occurrences of ?v In P1 by some
term t that has the same type as variable ?v, and if term t has any variables in
it,then they must not become bound by the substitution

AX-FO6)
i- (= t t)

AX-FO7)
- (IF (= tl t2) (IF P1 P2))
where P1 differs from P2 in having one or more free occurrences of t in P1
replaced by t2 and if term t2 has any variables in it, then they must not
become bound

AX-FOB)
- (NOT (= tl t2))
where t and t2 have different types

Inference rules:

MP)
From: Si -P andS2 1- (IF P Q)
To: 51 US2 -- Q

where S1 and S2 are any finite set of sentences, and P and Q are any sentences

UNV-INTRO)
From: S-(IFPQ)
To: S - (IF P (V?v Q))

where S is a finite set of sentences, P and Q are any sentences, ?v is a variable,
and there does not exist any free occurrences of ?v in P or any member of S

Figure 4.1-1

I _

90 I
statements. Further provisions are not needed to handle modal statements. This is
not true for all modal systems, however. If we allowed terms whose denotation 1
varied from modal context to modal context, we would have to further qualify AX-
F07 so that the terms being substituted for did not appear in any modal context. If
we considered an interpretation where an individual that existed in one context I
might not exist in another, we would have to qualify AX-F05 so that the term being

substituted denotes an object that exists in the context in which it is being
substituted. I

The two inference rules presented in figure 4.1-1 differ from the ones in Hughes
and Cresswell in that we specify our rules in derivability form, instead of in
theoremhood form . For example, they formulate MP, which stands for Modus
Ponens, as a rule from " - P" and "F- (IF P Q)" to "[- Q", rather than a rule from
"Sl-- P" and "S2 H (IF P Q)" to "Sl USl - Q", as given in our system. The reason
that we write rules in derivability form, rather than theoremhood form, is to
facilitate natural deduction style proofs. All our rules will be written in this general
form with the exception of two rules (see section 5.3 and 5.4), sometimes referred to i
as rules of necessitation, where the derivability form would lead to an unsound

system.

Formally, we define derivability by relating it to theoremhood:

IfISI>1 1
"S - P" is true iff "F- (IF (AND sl s2 .. .sn) P)" is true for some sequence
sl,s2, ... ,sn making up the set S

IfISI =1
"{sl} -P" is true iff " F- (IF sl P)" is true

IfS =0
"0 1- P "is true iff"I- P" is true

Typically, theoremhood and derivability ("F-" as a binary relation) are defined
separately, although in many systems, the equivalences given above hold. For our
purposes, it is simpler to just define derivability in terms of theoremhood.

In appendix E, we present the first order theorems and derived inference rules
that we will be using in proofs in the following sections. Proofs of these first order
theorems and proofs that the first order axioms and inference rules are sound are
straightforward and are not given here.

1 91

4.2. Axioms Describing the Interval Logic Predicates and Terms

In this and the following sections, we use the following conventions for
identifying the types associated with constant and variable terms. Token 1
or any token prefixed by "i" (i.e. il, i2, ..) refer to interval constants; pr or
any token prefixed by "pr" refer to property constants; ev or any token
prefixed by "ev" refer to event constants, and pi or any token prefixed by
"pi"refer to plan instance constants. A similar convention is used to
identify the types associated with variables. Token ?i or any token
prefixed by"?i" refer to interval variables; token ?pr or any token prefixed
by"pr" refer to property variables, etc.

3 The interval logic axioms consist of i) an axiom describing a property of
the HOLDS predicate, ii) axioms describing COMP, the function that is
used to denote the composition of two plan instances, iii) axioms describing

I the TIME-OF function which denotes the time of occurrence associated
with a plan instance term, and iv) axioms describing the MEETS relation.
capturing the temporal relations between intervals. These axioms are
given in figure 4.2-1.

Axiom AX-ILl says that if a property pr holds during some interval i23 then pr holds over any interval equal to or contained in i2.

Axioms AX-IL1, AX-IL2, and AX-IL3 capture that the COMP function
behaves just like set union. Axiom AX-IL2 says that a plan instance
composed to itself equals itself. AX-IL3 says that COMP is commutative,
and AX-IL4 say that COMP is associative. Because of the associative
property, we can write the composition of three or more plan instance
unambiguously by F(COMP pil pi2 pi3 ... pin)1.

The occurrence of plan instance compositions and the time associated1 with them are characterized by axioms AX-IL5 and AX-IL6. Axiom AX-
IL5 says that the composition of pil and pi2 occurs iff both pil and pi2

occur together. Axiom AX-1L6 can be interpreted as saying that the time
associated with the composition of pil and pi2 is the "smallest interval that
contains" both pil's and pi2's time of occurrence.

The remainder of the axioms describe the MEETS predicate. We do not
need to axiomatize any other interval relations since all interval relations
are defined in terms of MEETS and the first order connectives (see
appendix B). The axiomatization of MEETS, which is taken from
[Allen&Hayes 85], is given by axioms AX-IRI - AX-IR5. Axiom AX-IR1
can be interpreted as saying that if il and i2 end together then il meets
any interval i4 iff i2 meets i4. Axiom AX-IR2 is the symmetric relation
for two intervals that begin together. Axiom AX-IR3 states that there are
three possible relations between two different meeting places. Either the
meeting places are equal, the meeting place of il and i2 is before the
meeting place of t3 and 14, or the meeting place of i1 and i2 is after the

Axioms

AX-IL 1)
I(IF (IN 11 2)

(IF (HOLDS pr 12) (HOLDS pr 1 1)))

AX-1L2)
I- (= (COMP p1 lpi1) p1)

AX-1L3)
F- (= (COMP pi 1 pi2) (COMP pi2 pil1))

AX-IL4)
I- (= (COMP Pi 1 (COMP PQ2 pi3)) (COMP (COMP pi 1 pi2) p13))

AX-IL 5)
1- (1FF (0CC (COMP p' 1 pi2)) (AND (0CC pl1) (0CC p12)))

AX-IL6)
O-(FF (AND (IN (TIME-OF pi1) i) (IN (TIME-OF pi2) i))

(IN (TIME-OF (COMP pf 1 p12)) i))

AX-IRl)
0- (F (AND (MEETS i1 i3) (MEETS12 i3))

(1FF (M EETS i11i4) (M EETS i 2 i4)))

AX-!R2)
H- (I F (AND (MEETS i11i2) (MEETS 111i3))

(1FF (MEETS iO i2) (MEETS i0 i3)))

AX-1R3)
I- (I F (AND (MEETS i1 i2) (MEETS 3 i4))

(XOR (MEETS i11i4)
(Pix (AND (MEETS i 1 ?ix) (MEETS ?ix i4))
(Ptwy (AND (MEETS 13 ',iy) (MEETS ?iy i2))))

where (XOR P Q R) = def (OR (AND (NOT P) Q R))
(AND P (NOT Q) R)
(AND P Q (NOT R)))

AX-I R4)
H- (3?iO ?i2 (AND (MEETS '1011l) (MEETS il ?i2)))

AX-IRS5)
H- (IF (MEETS i11i2)

(AND (MEETS ')ix i 1) (MEETS i2 'ly) (MEETS ?ix ?iz) (MEETS ?iz ?iy)))

Figure 4.2-1

1 93

3 meeting place of i3 and 14. AX-1R4 states that for every interval 1, there
exists an interval that meets it to the left and one that meets it to the right.
AX-IR5 says that if interval ii meets 12. then there exists an interval (?iz)

I crresponding to the concatenation of L1 and L2.

* Soundness Proofs

The proofs that axioms AX-ILl - AX-IL6 are valid are given in figures
4.2-2 and 4.2-3. Axioms AX-IR1 - AX-IR5 directly correspond to
analogous constraints placed on the MTS relation in the model. For
example, AX-IRI corresponds to:

MTS1)
For all intervals (i, i2, i3 and i4),
if MTS(il i2) and MTS(i2,i3) then MTS(il,i4) iffMTS(i2,i4)

Since the MEETS atomic formula is directly interpreted in terms of theI MTS relation as given below, it is simple to show that axioms AX-IRi -
AX-IR5 are valid:

3 For all wffs of the form r(MEETS tintl tint2)1 and world-histories (h),
Vs(r (MEETS tinti tint2)l,h) = TRUE iff MTS(Vt(tint),Vt(tint 2)) is true

I
I

941

I
Soundness Proofs 3

AX-IL1)
I--(IF (IN 1i2)

(IF (HOLDS pr i2) (HOLDS pri 1)))

This axiom arises from constraint PROP1 which is given as follows:

For all properties (pr), intervals (ix and iy), and world-histories (h)
If IN(ix,iy) and <ix,h> E prthen <ix,h> E pr

For an arbitrary model, let Vs be its interpretation function and let h be any
world-history in H We compute V&(IN il i2)1,h) by replacing r(IN i1 i2)- by its
definition in terms of the MEETS predicate and then using the interpretation of I
MEETS which is given by: Vs(r(MEETS i i2)1,h) = TRUE iff MTS(V,(il),Vt(i2)) is
true. Now, the relation between the predicates IN and MEETS is analogous to
the relation between the relations MTS and IN (in the model). Thus, V,(;(IN i I
i2) 1,h) =TRUE iff IN(Vt(i1),Vt(i2)) is true. Using the interpretation of the
HOLDS predicate, we get V,(r(HOLDS pr i2) 1,h) =TRUE iff <Vt(i2),h> EV,(pr).
Similarly, Vs(r(HOLDS pril) 1,h) =TRUEiff <Vt(il),h> EVt(pr) Using PROPi we
get: if Vs(r(IN il i2)1 ,h) and Vs(r(HOLDS pr i2) 1,h) both equal TRUE, then I
V(r(HOLDS pr i2) 1,h) equals TRUE thereby validating AX-IL1

AX-IL2) IF-- (= (COM Ppil1 pi1) pi 1)

AX-IL3)
1- (= (COMP pil pi2) (COMP pi2 pil))

AX-IL4) I
F- (= (COMP pi 1 (COMP pi2 pi3)) (COMP (COMP pi 1 pi2) pi3)) I

The interpretation of COMP is given by:

Vt(r(COMPpil pi2)1)= <E1,E2>

where El =defVt(pil)llUVt(pi2)jj and E2 =def Vt(pI1)I 2UVt(pi2)12

3
AX-IL2, AX-1L3, and AX-IL4 are validated using the fact that set union is
reflexive, associative and commutative I

Figure 4.2-2 a
I
I

1 95

Soundness Proofs

AXI5
F- (1FF (0CC (COMP pi 1 p12)) (AND (0CC pi 1) (0CC p12)))

3 The interpretation of 0CC can be given by.

V,(fOCC P01 ,h) = TRUE iff -or all events (ev), intervals (i) and basic actions (ba)
i f < ev > E Vt(pifl 1, then < ih>E ev, and
if <ba,i>(Vt0pi1 2, then <i,h> EBAEV(ba)

For an arbitrary model, let V, be its interpretation function and let h be any
world-history in H. Assume that V~r(OCC (COMp pil pi2))i ht) equals TRUE
V,(r(OCC (COMP pi1 p12))' ,h) eq ;31s TRU E iff the following holds.

for all events (ev), intervals (i) and basic actions (ba)
f~ ~ ' <e~ E.plt V(p12)11 then <ij,h > Eev, and

if <ba,i > E Vt(P1 1)12uVt(pi2)12, then < i,h > E BAEV(ba)

I Fromn this we deprive

for a1I events (ev), intervals (i) and basic actions (ba)
if <ev,i > E V(pi 1)11 then < ,h >Eev and
if <ba,i >4 Vj(pi 1)1,, then < i,h > E BAEV(ba)

and
if < evji> E V(pi2)1. then <i0h> Eev, and
if <baji >(Vj(pi2)12 then <i,h > BAEV(ba)

Thus, if VJ(OCC 4COMP vi 1 p12))' ,h) equals TRUE both Vr(OCC pi)1 ih) andI Vsr(OCC p12) 1 ,h) equal TRUE. it is easily seen that this implication goes the
other way. Consequently, AX-115 is valid

AX-I L6)
F(1FF (A!%T (IN (TIME-OF pil) i) (IN (TIME-OF pi2) i))

(1 kI (TIME-OF (COM P pi 1 pi2)) i))

The interpretation of TIME-OF can be given by:

IV,(r(TIM'E-OF pi)1) = COVER([iI <evji>(Vt(pi)1, 1
where COV.ER(i-set) is thesrnalfest interval that contains all intervals in i-set.

3 Letting il equral the set (ijI <ev,i>(Vtjpi1)Il1 and i2 equal the set [I
<evji>(Vt(pi2)Ii}. we have Vt(r(TIME-OF pil)1) equals COVER(il) and
Vt(r(TIME-OF pi2)1) equals COVIER(i2), and Vt(r(TIME-OF (COMP pil1 pi2)) 1)
equals COVER(il~i2) Using the definition of COVER given in appendix C, we
can derive -that an interval is in both COV.ERO 1) and COVER(i2) iff it is in
COVEROi 10U2), thereby validating AX-1L.6.

Figure 4.2-3

96

4.3.The Axiomatization of the INEV Modal Operator

We break up the axiomatization of INEV into two groups. For a fixed interval
argument, the axiomatization of INEV parallels the axiomatization of a S5 necessity
operator [Hughes and Cresswell 681. These properties, which we present first, are
captured by four axioms and one inference rule. In the second part, we present the
axioms that are unique to our system. These pertain to the relation between two
INEV operators with different time arguments and the relation between INEV and
interval logic statements. We wait until section 4.4 to give the relation between
INEV and IFTRIED.

4.3.1. S5 Properties

The INEV modal operator behaves as a S5 necessity modality for a fixed interval
argument. One can think of a necessity operator as a universal quantifier over
"accessible" possible worlds, or branches or world-histories in our case. Thus, we can
read r(INEV i P)l as "P is true in all branches that are possible at time 1'. The
possibility modal operator, which we have defined as the dual of INEV for a fixed
time, can be thought of an existential quantifier over branches. This parallels the
relation between the universal and existential quantifiers. By characterizing INEV
as S5 we are saying that inevitability and possibility are invariant over different
branches. That is, whatever is inevitable is inevitably inevitable, and whatever is
possible is inevitably possible. The axiomatization of INEV as a S5 necessity
operator is taken from [Hughes and Cresswell 68] and is given in figure 4.3-1.

Axiom AX-INV1 says that whatever is inevitable at any time is also actual. AX-
INV2 says that material implication distributes out of INEV. Axiom AX-INV3 says
that if P is inevitable at time 1, then it is inevitable at 1 that P is inevitable at 1, and
AX-INV4 says that if P is possible at time i, then it is inevitable at i that P is possible
at i.

The inference rule involving INEV can be referred to as a rule of
necessitation.This rule can be read as saying that if P is a theorem then r(INEV i P)l
is a theorem for any interval term i. It is important to note that RL-INV is given in
theoremhood form rather than in derivability form, i.e. from "SF- P" to "S -- (INEV i
P)". A rule of necessitation having derivability form is unsound since it could be
used to derive that r(IF P (INEV i P)) is a theorem for any sentence P. This
statement, which says whatever is actual is inevitable, is not valid with respect to
our semantics.

Soundness Proofs for INEV is S5 modality

The proofs that axioms AX-INV1 - AX-INV4 are valid are given in figures 4.3-2
and 4.3-3. These proofs are established using the interpretation of INEV and the
constraints on the R relation (which is used to interpret INEV) that state that R is
an equivalence relation for a set interval argument (see section 3.2.2 or appendix C).

1 97

IAxioms
AX-INV1)
I- (IF (INEV i P)

P)

AX-INV2)
- (IF (INEV i (IF PQ))

(IF (INEV i P) (INEV i Q)))

I AX-INV3)
H (IF (INEV i P)

AX-I
NEV i (INEV

P)))

H (IF (POS i P)I(INEV i (POSi P)))

3 Inference Rule

RL-INV)
From I- P

To: - (INEV i P)

Figure 4 3-1

The proof that RL-INV preserves validity is easily established by noting that if
statement P is valid then it is true in all models at each world-history. Now, r(INEV
i p)l is interpreted as true at world-history h iff P is true in all world-histories that
are R -accessible to h at the time denoted by i. Thus, if P is valid, it is true at all
world-histories, these including the ones that are R- accessible at the time denoted

3by 1.

I Derived Theorems and Rules for INEV is S5 modality

The following theorems and derived inference rules are derivable from AX-INV13 - AX-INV4, inference rule RL-INV, along with the axioms and inference rules for
the first order connectives (AX-FO1 - AX-F08 and inference rules MP and UNV-
INTRO). We provide proofs only for the theorems and derived rules that are notIanalogous to proofs in Hughes and Cresswell. The theorems and derived rules that
we present can be divided into four categories corresponding to: i) the relation
between POS and INEV, ii) deduction within a modal context, iii) nested modal
statements with the same temporal argument, and iv) distributing first order
connectives in and out of INEV and POS.I

I
I

98 I

Soundness Proofs

The interpretation of INEV, which is used in all the proofs in this fic-e and 4 3-3,
can be given by:

V,(r(INEV i P)I,h) = TRUE iff
for all world-histories (h2) if R(Vt(i),h,h2) then Vs(P,h2) = TRUE

The interpretation of r(POSi P)l which is defined as r(NOT (INEV i (NOT P)))' is used
in the proof of AX-INV4 and can be given by: I

Vs(r(POS I P)1 ,h) = TRUE iff
there exists a world-history (h2) such that R(Vt(i),h,h2) and V,(P,h2) = TRUE

AX-INV1)
- (IF (INEV i P) P)

For an arbitrary V, and world-history h, assume that V,(r(INEV I P)I,h) equals TRUE.
We validate AX-INV1 by showing that Vs(P,h) equals TRUE under our assumption
This is established using constraint R2 (R is symmetric) and R3 (R is transitive) to
derive that R is reflexive. In particular R(Vt(i),h,h) is true. Now, since Vs(r(INEV i
P)l,h) equals TRUE, we have: for all world-histories (h2) if R(V.(i),h,h2) then
Vs(P,h2) = TRUE. This relation in conjunction with "R(Vt(i),h,h) is true" yields that
V,(P,h) = TRUE

I
AX-INV2)

I- (IF (INEV i (IF P Q)) (IF (INEV i P) (INEV i Q))) 1
For an arbitrary V, and world-history h, assume that both V,(r(INEV i (IF P
Q))bh) and V&(INEV i P)1,h) equal TRUE. We validate AX-INV2 by showing that
v,(r(INEV i Q) 1 ,h) equals TRUE under our assumptions. Using VS(r(INEV i (IF P
Q))Ih) = TRUE, we get:

for all world-histories (h2) if R(V(i),h,h2) then V,(r(IF P Q)I,h2) = TRUE 1
Using V,(r(INEV i P)',h) = TRUE, we get:

for all world-histories (h2) if R(V,(i),h,h2) then Vs(P,h2) = TRUE I
Taking this two relations together (and using the interpretation of IF), we get
the following which is true iff Vs(r(INEV i Q)1,h) is TRUE: I

for all world-histories (h2) if R(Vt(i),h,h2) then Vs(Q,h2) = TRUE

F
Figure 4.3-2 1

I
I

99I

Soundness Proofs

I AX-INV3)
-- (IF (INEV i P) (INEV i (INEV i P)))

For an arbitrary V, and world-history h, assume that V,(r(INEV i P)7,h) equals

TRUE. We validate AX-INV3 by showing that V,(r(INEV (INEV I P))7,h) equals
TRUE under our assumption. This is Eitablished using constraint R3 which says1 that R is transitive and entails the following relation:

For all world-histories (hx, and h2)3 if R(V(i),h,hx) and R(V(),hx,h2) then R(Vt(i),h,h2)•

Now, since V5(r(INEV i P)7,h) equals TRUE, we have:

For all world-histories (h2) If R(Vt(i),h,h2) then V,(P,h2) = TRUE.

Taking the two relations above together we derive the following which is true

iff V,(r(INEV i (INEV i P))I,h) equals TRUE:

For all world-histories (hx) if R(Vt(i),h,hx) then for all world-histories (h2)3 if R(Vt(i),hx,h2) then V,(P,h2) = TRUE

AX-INV4)31,- (IF (POS i P) (INEV i (POS i P)))

For an arbitrary V, and world-history h, assume that Vs(F(POS ; P) 1 ,h) equals
TRUE. We validate AX-INV3 by showing that V,(r(INEV i (POS i P))I,h) equals
TRUE under our assumption. This is established using the following relation
which is derived from R2 (R is symmetric) and R3 (R is transitive)

1) For all world-histories (hx and hy)

if R(Vt(i),h,hx) and R(Vt(i),h,hy) then R(VT(i),hx,hy)

3Now, since Vs(r(POS i P)I,h) equals TRUE, we have:

2) There exists a world-history (h2) such that R(Vt(i),h,h2) and Vs(P,h2) = TRUE

Substituting the world-history (h2) meeting the property in 2 for hy in 1 gives us the
following which is true iff Vs(r(INEV i (POS i P))1,h) equals TRUE

5For all world-histories (hx) if R(V(i),h,hx) then
there exists a world-history (h2) such that R(Vt(i),hx,h2) and V,(P,h2) = TRUE

F
3Figure 4.3-3

5'
I

100

The relation Between POS and INEV

The definition of F(POS i P)l was given as F(NOT (INEV i (NOT P)). In other
words, POS is the dual of INEV for a fixed time point. The following theorem
captures that duality is a symmetrical relation:

TH-INV-SF1)

F- (IFF (INEV i P) (NOT (POS i (NOT P))))

The three following theorems will be used in many later proofs:

TH-INV-SF2)
F- (IF P (POS i P))

TH-INV-SF3)
F- (IF (INEV i P) (POS i P))

TH-INV-SF4)
I- (IF (INEV i (IF P Q))

(IF (POS i P) (POS i Q)))

TH-INV-SF2 says that whatever is actual is possible at any time. This theorem is
derived substituting F(NOT P)l for P in axiom AX-INV1 and transposing the
implication. Theorem TH-INV-SF3 says that whatever is inevitable at time i is
possible at time i. This theorem may be derived by chaining together TH-INV-SF2
and AX-INVI. Finally, TH-INV-SF4 says that if the implication from P to Q is
inevitable at time i, then if P is possible at i, then Q is possible at i.

Deduction within a Modal Context

An important property of the INEV operator is that if statement Q is entailed by
statement P, then r(INEV i Q)1 is entailed by r(INEV i P)P. This is very useful when
doing proofs for our planning examples. Many of the proofs require a derivation from
a sentence of the form: r(INEV i IL1)I to a sentence of the form F(INEV i IL2)1 where
ILl and IL2 are interval logic sentences. We can prove that r(INEV i IL2)1 follows

from r(INEV i IL1)I by proving that ILl follows from IL2. This latter step only
involves derivation in first order logic. Haas [Haas 85], who has an operator similar
to INEV, elaborates on this argument and claims that most of the modal reasoning
needed to do planning (in his system) requires only first order theorems applied
within some modal context. The same argument can be used in our case.

We present a derived rule that captures a generalization of the above relation for
any modal context formed by nested POS and INEV statements. To describe this I
rule, we refer to a class of functions from sentence to sentence, which we call modal
chains. A modal chain is any function that when applied to a sentence P yields a
nesting of INEV and POS statement with P embedded on the inside. The operators 1
in a chain need not have the same interval argument. An example of a modal chain

i

101

is MCI where MC1(P) is defined as r(INEV il (POS i2 P))l for any sentence P.
Using thib terminology, we can succinctly describe our derived inference rule by:

DRL-INV1)
From: -- (IF P Q)
To: I- (IF MC(P) MC(Q))

where MC is any modal chain formed by INEV and POS operators

The derivation of DRL-INV1 is given in appendix F. A more general rule is
presented in section 4.4 that covers the cases where IFTRIED statements are part of
the modal chain. Now, rule DRL-INV1, just like RL-INV, is given in theoremhood
form, not derivability form. Adopting this more general form would render our
system unsound. That is, we do not specify DRL-INV1 as a rule from "S -- (IF P Q)"
to "S F- (IF MC(P) MC(Q))". If this were done, we could derive that invalid

statements, such as r(IF P (INEV i P))1, are theorems.

I A second rule that is useful for working within modal contexts allows us to
substitute equivalent statements nested within the scope of INEV and POS
operators. This is a generalization of the first order rule SUBST which applies to the
substitution of any equivalent sentences that are not nested under any modal
context. Our derived rule is given by:

IDRL-INV2)
From: F- (IFF P Q)
To: I-(IFF R1 R2)

where R1 and R2 are sentences in the interval logic fragment extended with
INEV (which includes POS since it is defined in terms of INEV), and R2 differs
from R1 by replacing one or more occurrences of P with Q

We give a derivation of DRL-INV2 in appendix F and present a more general rule in
section 4.4 that covers the cases where substitution may be under the scope of an
IFTRIED operator. We also make use of the following derived rule which is easily

I derived from DRL-INV2 (see appendix F):

DRL-INV3)
From: I- (IFF P Q)and S F- R1
To: S F-- R2

where S is a finite set of sentences, R1 and R2 are sentences in the interval logic
fragment extended with INEV, and R2 differs from R1 by replacing one or more
occurrences of P with QI

I

102

Nested operators with the same temporal index

Any iterated chain of S5 necessity and possibility operators can be collapsed into

a Lingle cperator. This is reflected in our system by the following set of axioms:

TH-INV-SF5)
- (IFF (INEV i (INEV i P)) (INEV i P))

TH-INV-SF6)
-- (IFF (INEV i (POS i P)) (POS i P))

TH-INV-SF7)
- (IFF (POS i (INEV i P)) (INEV i P))

TH-INV-SF8)

-- (IFF (POS i (POS i P)) (POS i P))

Theorems TH-INV-SF5 and TH-INV-SF8 are both derived using axiom AX-INVi,
which says whatever is inevitable at i is actual and AX-INV3, which says whatever
is inevitable at i is inevitably inevitable at i. Theorems TH-INV-SF6 and TH-INV-
SF7 are both derived using AX-INVi and AX-INV4, the latter saying. whatever is
possible at i is inevitably possible at i. A chain of three or more INEV and POS
operators with the same temporal index can be reduced to a single operator by
successively applying DRL-INV2 using the equivalences given above. For example,
r(POS i (INEV i (POS i P)))1 can be reduced to r(POS i P)1 by first using equivalence
TH-INV-SF6 to reduce it to r(POS i (POS i P)) and then using equivalence TH-
INV-SF7 to reduce this intermediate form to r(POS i P)1. In general, a chain
consisting of POS and INEV operators can be reduced to the operator that is nested
at the innermost layer.

Interaction with the First Order Connectives

We describe how the first order connectives interact with INEV and POS by
presenting axioms showing whether they distribute in and/or out of these modal 3
contexts. Proofs of analogous theorems can be found in Hughes and Cresswell. We
only present the proof associated with the universal quantifier to illustrate the
additional complications stemming from the fact that INEV and POS have a term I
argument along with a sentence argument, not just a sentence argument as in
Hughes and Cresswell.

The relations for conjunction are given by:

TH-INV-SF9)
- (IFF (AND (INEV i P) (INEV i Q))

(INEV i (AND P Q)))

I
I

5 103

TH-INV-SF10)
1- (IF(POS i (AND P Q))

(AND (POS i P) (POS i Q)))

J TH-INV-SF9 says that conjunction distributes in and out of INEV. By using this
theorem along with DRL-INV1, we can derive that r(INEV i P1)1 is entailed by
(INEV i P2)1 and r(INEV i P3)1 taken together, if P1 is entailed by P2 and P1 taken

together. This is a generalization of the entailment between two sentences that we
noted earlier.

I Theorem TH-INV-SF1O says that conjunction distributes out of POS. The
opposite relation does not hold, however. Conjunction does not necessarily distribute
into POS. An example of this is when both P and r(NOT P)l are possible at i.

The relations between the modal operators and disjunction are given by:

TH-INV-SF11)
F- (IF(OR (INEV i P) (INEV i Q))

(INEV i (OR P Q)))

ITH-INV-SF12)
- (IFF (OR (POS i P) (POS i Q))

I(POS i (OR P Q)))

These relations are symmetric to the relations given in TH-INV-SF9 and TH-INV-
I SF10. Theorem TH-INV-SF11, which says that disjunction distributes into INEV,

is symmetric to TH-INV-SF1O. That is, theorem TH-INV-SF11 can be derived by
substituting r(NOT P)l for P in TH-INV-SF1O and then transposing the material
implication; the symmetric derivation also holds. Similarly, theorem TH-INV-
SF11, which says that disjunction distributes in and out of POS, is symmetric to TH-
INV-SF9.

The relations between negation and the modal operators are given by:

TH-INV-SF13)
(IF(INEV i (NOT P))

(NOT (INEV i P))

TH-IUNV-SF14)
I- (IF(NOT(POSiP))5(POS i (NOT P)))

TH-INV-SF13 says that negation can be bought out of INEV, and TH-INV-SF14
says that negation can be brought into POS. These two relations are symmetric to
each other. The opposite relations to TH-INV-SF13 and TH-INV-SF14 (i.e.
negation being brought into INEV and negation being brought out of POS) do notI hold if both P and r(NOT P)l are possible at i.

I
I

104

In our system, the relation between the modalities and the two quantifiers
parallels the relation between the modalities and conjunction and disjunction, V
behaving like conjunction and 3 behaving like disjunction. These relations are
given as follows:

TH-INV-SF15)
I- (IFF (V?v (INEV i P))

(INEV i (V?v P)))

where ?v does not appear in i

TH-INV-SF16)
(IF (POS i (V?v P)))

(V?v (POS i P))

where ?v does not appear in i

TH-INV-SF17)
(IF(3?v (INEV i P))

(INEV i (3?v P)))

where ?v does not appear in i

TH-INV-SF18)
-- (1FF (3?v (POS i P))

(POS i (3?v P)))

where ?v does not appear in i

In appendix F, we present a proof of TH-INV-SF15 to show where the provision "?c
does not appear in i" arises from. Without this provision, we could use TH-INV-
SF15 to derive that r(IFF (3?i (INEV ?i P) (V?i (INEV ?i P)))1 is a theorem. This
sentence, which is not a theorem, says whatever is inevitable at some time is
inevitable at all times (note: The implication from TH-INV-SF15's antecedent to
consequent is not a theorem in some systems where the set of objects that exists vary
from world to world (see [Hughes and Cresswell 68]).

The opposite relation to TH-INV-SF1 7 (the existential quantifier moves out of
INEV) does not necessarily hold. This has unfortunate consequences for a simple
skolemization scheme, such as the one used for first order logic. We cannot simply
replace every existential (that is not preceded by a universal) with a skolem
constant. If this were done, the distinction between r(3?v (INEV i P))l and r(INEV i
(3?v P))1 would be lost. For example,r(3?i2 (INEV i (HOLDS pr ?i2))1 and r(INEV i
(3?i2 (HOLDS pr ?i2)))1 would both be mapped to r(INEV i (HOLDS pr sk))l for some
skolem constant sk. This problem can be avoided in Moore's system [Moore 80],
which is a first order theory that describes the interpretation of a modal logic and
consequently has terms denoting possible worlds. Very roughly, the distinction
between r(3?i2 (INEV i (HOLDS pr ?i2))1 and r(INEV i (3?i2 (HOLDS pr ?i2)))7 is

105

captured by the distinction between a skolem function with an argument that ranges
over possible worlds and a skolem constant (see [Moore 80] for details).

We conclude this section with the relation between equality and the modal
operators. This relation can be given by:

TH-INV-SF19)
F-- (IF (POS i(tl1t2))

(INEV i (= t1 t2)))

I! Theorem TH-INV-SF19 can be interpreted as saying that the equality relation is
invariant over possible branches at time i. This relation would not be valid in a
system in which the denotation of terms varies from branch to branch. By using TH-
INV-SF19, axiom AX-INV1, and theorem TH-INV-SF2, we can derive the following
relation, which will be used in later proofs:

TH-INV-SF20)
I-(IFF (= tl t2)

(INEV i (= t1 t2)))

I Theorem TH-INV-SF20 says that two terms are equal iff it is inevitable at i that
they are equal. By substituting a variable that does not appear in tl or t2 for i in TH-
INV-SF20 and then applying UNV-INTRO, we can derive that two terms are equal
iff it is inevitable at all times that they are equal. We can also derive that if it is
inevitable at some time that tl and t2 are equal then it is inevitable at all times that3they are equal.

I 4.3.2. Temporal Properties

In this section, we present the axioms describing to the temporal properties of
INEV. This concerns the relation between two modal operators with different
temporal arguments and the relation between the modalities and the interval logic
predicates. These properties are captured by the axioms in figure 4.3-4.

Axiom AX-INV5 says that whatever is inevitable at some interval il is
inevitable at any interval that ends at the same time or after interval il. Thus, the
set of sentences that are inevitable grows as time moves on. We compare the end of
intervals because we are interpreting r(INEV i P)l as meaning "regardless of which
possible events happen after i, P is true". Thus, the end of an interval argument is
all that is used in determining the truth value of an INEV statement. If two
intervals il and i2 end at the same time, then r(INEV il P)l is true iff F(INEV i2 P)l
is true. This can be easily derived using axiom AX-INV5.

Axioms AX-INV6, AX-INV7, and AX-INV8 capture the fact that any condition
holding or occurring over an interval that ends earlier than or at the same time as i
is inevitable at i if it is possible at i. This is equivalent to saying that any condition
holding or occurring over an interval that ends earlier than or at the same time as i

I
I

106

AX-IN V5)
H -(IF (ENDS:5ii 12)1

(IF (INEV i 1 P)
(INEV i2 P)))

AX-I NV6)
1- (IF (ENDS 11i2)

(IF (POS i2 (HOLDS pri11))
(INEV i2 (HOLDS pr il))))

AX-IN V7)
H(IF (ENDS!5 11i2)

(IF (P01i2 (OCCURS evil))
(INEV i2 (OCCURS ev il))))

AX-IN V8)
I(IF (ENDS:5 (TIME-OF pi) i)

(IF (POS i (0CC pi))
(INEV i (0CC pi))))

AX-I NV9)
H- (IF (POS i(MEETS i1 i2))

(INEV i (MEETS i11i2)))

Figure 4.3-4

is inevitably true or inevitably false at i'. Axiom AX-INV9 captures the fact that the
interval relation MEETS is either inevitably true or inevitably false at any intervala

Soundness Proofs

The proofs that axioms AX-INV5 - AX-INV9 are valid are given in figures 4.3-5,
4.3-6, and 4.3-7

107

Soundness Proofs

The interpretations of INEV and POS, which are used in the proofs in this figure
and 3.3-6, and can be given by:

vs (r(INEV j P) 1 ,h) = TRUE iff
for all world-histories (h2) if R(Vt(i),h,h2) then V,(P,h2) = TRUE

VS(r(POS i P)1 ,h) = TRUE iff
there exists a world-history (h2) such that R(Vt(i),h,h2) and V,(P,h2) = TRUE

AX-INV5)
(IF (ENDS:_ i1 12)

(IF (INEV il P) (INEV i2 P)))

For an arbitrary Vs and world-history h, assume that both Vs(r(ENDS- 11 i2) 1,h)
and v,(r(INEV il P)I,h) equal TRUE. We validate AX-INV5 by showing that
V,(r(INEV i2 P)1 ,h) equals TRUE under our assumptions. This is established using
constraints R1 and R4 to derive:

1) For all world-histories (h2)
if ENDS s (Vj(i 1),Vj(i2)) and R(Vt(i2),h,h2) then R(Vt(i 1),h,h2)

Now, the relation between the relations ENDS_< and MTS (in the model) is
analogous to the relation between the ENDS_< and MEETS predicates. Thus,
from V,(r(ENDS_5 i1 i2) 1 ,h) and V,(r(INEV il P)I,h) equal TRUE we get:

2) ENDS - (Vt(i1),Vt(i2)) is true.
3) for all world-histories (h2) if R(Vt(i 1),h,h2) then V,(P,h2) = TRUE.

Taking 1-3 together leads to the following, which is true iff Vs(r(INEV i2 P)1,h)

equals TRUE:

for all world-histories (h2) if R(Vt(i2),h,h2) then Vs(P,h2) = TRUE

AX-INV6)
H (IF (ENDS-< i1 i2)

(IF(POS i2 (HOLDS pril)) (INEV i2 (HOLDS pr il))))

For an arbitrary V, and world-history h, assume that both V,(r(ENDS - i1 i2)1,h)

and V,(r(POS i2 (HOLDS pr il))l,h) equal TRUE. We validate AX-INV6 by
showing that Vs(r(INEV i2 (HOLDS pr il))1,h) equals TRUE under our
assumptions. This is established using constraint R5 which entails:

1) For all world-histories (hi and h2) if ENDS S (Vt(i 1),Vt(i2)) and R(Vt(i2),h 1 ,h2)
then <Vt(i1),hl >(Vt(pr)iff <Vt(i1),h2>(EVt(pr)

From Vs(r(ENDS _ i1 i2)1,h)) equals TRUE we get:

2) ENDS - (Vt(i 1),Vt(i2)) is true.

Soundness proof for AX-INV6 continued in 4.3-6

Figure 4.3-5

108

Soundness Proofs

Continuation of AX-INV6 soundness proof

From 1 and 2, we can derive:

3) For all world-histories (hi and h2) if R(Vt(i2),hl,h2)
then <Vt(i 1),hl > EV,(pr) iff <Vt(i 1),h2> EVt(pr)

From Vs(r(POS i2 (HOLDS pr ii))1,h) equals TRUE we get:

4)There exists a world-history (hi) such that R(Vt(12),h,h1) and
<V,(i11),hl1>(EVt(pr)

From 3A4 and R2 and R3 (R is an equivalence relation for a fixed time argument),
we can derive the following which is true iff V,(r(lNEV i2 (HOLDS pr il))1 ,h) equals

For all worl d-hi stories (h2), if R(V&(2),h,h2) then <Vt(il1),h2 >EVt(pr)

AX-IN V7)
H(I F (ENDS5 11ii2)

(IF (P05 2 (OCCURS ev il)) (INEV i2 (OCCURS ev 11))))

The proof is just like the proof for AX-INV6, with the exception that R6 is used for R5.
R6 entails the following relation:

For all world-histories (hi and h2) if ENDS s(V&(1),Vt(i2)) and R(Vt(i2),hl,h2) then
<Vt(il1),hl > EV(ev) iff <Vt(i 1),h2 > E V(ev)

AX-I NV8)
i,- (IF (ENDS:5 (TIME-OF pi) i)

(IF (POS i (0CC pi)) (INEV i (0CC pi))))

For an arbitrary V,~ and world-history h, assume that both V,(F(ENDS!S (TIME-OF pi)
i1,h) and V,(r(pOS i (0CC pi))1,h) equal TRUE. We validate AX-INV8 by showing
that V,(r(INEV i (0CC pi))l,h) equals TRUE under our assumptions. From
V,(r(ENDS:5 (TlME-OFpi)i)1,h) = TRUE, we ge,:

1) ENDS 5 (i-cov,Vt(i)) where i-COV = def COVdER((ix I< ev,ix >EVt(p)I1))

The interval i-coy is the smallest interval that contains all the intervals in (ix
<ev~ix>EVt(pi)Iil. Thus, any interval ,. ixI <ev~ix>EVt(piflil is contained in or
equals i-coy. Using constraint Pl1, we derive that any interval in [ixI
<baix>Vt(Pi)121 is contained in or equals i-coy. Using the interval relation 'if
ENDS:5 (icJi2) and ix is contained in or equals ic, then ENDS:5 (ix,i2)", we get:

2) for all events (ev), intervals (ix) and basic actions (ba)
if <evix > E Vt(pi)J1 then ENDS 5 (ix,Vt(i)) and
if < baix > V00pi1 2 then ENDS:5 (ix,Vt(i))

Soundness proof for AX-INV8 continued in 4.3-7
Figure 4.3-6

109

Soundness Proofs

I Continuation of AX-INV8 soundness proof

From constraint R6, we get:

I 3) For all world-histories (hi and h2), events (evx) , and intervals (ix),
if ENDS 5(ix,Vt(i)) and R(Vt(i),hl,h2) then <ix,hl >Eevx iff <ix,h2> Eevx

I From 2 and 3 used twice with the substitutions [evfevx, BAEV(ba)/evxl:

4) For all world-histories (hi and h2), if R(Vt(i),h1,h2)I then for all events (ev), intervals (ix) and basic actions (ba)
if <ev,ix >E Vt(pi)Ii then <ix,hl > Eev iff < ix,h2 >Eev
if <baix> EV0(pi1 2 then < ix,hl > EBAEV(ba) iff < ix,h2 > E BAEV(ba)

I From V,(r(p0S i (0CC pi))Ibh) = TRUE, we get:

5) There exists a world-history (hi) such that R(V.(i),h,hl) and
for all events (ev), intervals (ix) and basic actions (ba)
if <ev,ix >EVt(pi)Ii, then < ix,hl >E(ev, and3 if <baix> E V00pi1 2, then < ix,hl > E BAEV(ba)

From 4,5 and R2 and R3 (R is an equivalence relation for a fixed time argument)
we can derive the following which is true iff V,(r(lNEV i (0CC pi))I,h) = TRUE

I For all world-histories (h2) if R(Vt(i),h,h2) then
for all events (ev), intervals (ix) and basic actions (ba)
if <ev,ix > gVt(pi)J1, then < ix,h2 >E(ev, and

if < baix > E V00pi1 2, then < ix,h2 > E BAEV(ba)

5 AX-I NV9)
I(IF (POS i (MEETS ii1 i2)) (INEV i (ME ETS ii1 i2)))

This is easily established because the interpretation of F(MEETS ii 12)1 does notftmention a world-history, i.e. V,(F(ME ETS ii 1i2)1 ,h) = MTS(Vt(i 1),Vt(i 2)). Thus, if
V1(r(poS i (MEETS ii1 i2))' ,h) = TRU E which is equivalent to:

there exists a world-history (Q2) such that R(Vt(i),h,h2) and MTS(Vt(i 1),Vt(i2))

from this we get V,(r(INEV i (MEETS ii 1i2))' ,h) = TRUE, since it is equivalent to

for all world-histories(h2) if R(Vt(i),h,h2) then MTS(Vt(i 1),V.(i2))

5 Figure 4.3-7

110

Theorems

We divide the theorems that we are presenting into two groups. The first set
describes the relation between interval logic statements (i.e. non-modal statements)
and the INEV modality. They are derived using axioms AX-INV6 - AX-INV9. The
second group of theorems describes the relation between two POS statements with
different temporal arguments and the properties of iterated INEV and POS
statements with different temporal arguments. These theorems are derived using
axiom AX-INV5 along with a theorem we present in the first group.

Theorems Relating INEV with Interval Logic Statements

We present some general theorems that permit us to take certain interval logic
statements out of of the scope of the INEV modal operator. In section 4.4, we present
related theorems that allow us take take certain interval logic sentences out of the
scope of the IFTRIED modal operator.

To describe the following theorems, we make use of the function CI which stands
for "condition intervals". Function CI takes an interval logic sentence ILS as an
argument and yields the set of interval terms, possibly empty, that appear in a
OCCURS or HOLDS sentence in ILS and terms of the form r(TIME-OF pil)l for
each r(OCC pil)i that appear in ILS. For example, CI(r(OR (HOLDS pr il) (OCC
pi))1) is equal to {il, r(TIME-OF pi)l}.

Using CI, we can succinctly describe the following theorem: I

TH-INV-ILl)
{r(ENDSS ix i)1 l ix E CI(ILS)} F- (IF (POS i ILS) (INEV i ILS))

where ILS is an interval logic sentence that does not contain any quantifiers
(although ILS may contain free variables)

Examples of instances of TH-INV-ILI are:

{F(ENDS!- i3 i)1}
I- (IF (POS i (IF (MEETS il i3) (HOLDS pr i3)))

(INEV i (IF (MEETS il i3) (HOLDS pr i3))))

{ r(ENDS -5 il i), r(ENDS=< i (TIME-OF pi2))1}
-- (IF (POS i (AND (OCCURS evl ii) (OCC pi2)))

(INEV i (AND (OCCURS evl il) (OCC pi2))))

A more general theorem may be developed that allows quantifiers in ILS. The g

form of this theorem, however, would be more complex because the
statements in (r(ENDSs ix i)1 Iix E CI(ILS)) must be correctly scoped with
respect to the quantifivrs in ILS)

U
I

Theorem TH-INV-IL] says that if all conditions mentioned in interval logic
statement ILS occur or hold over intervals that end before or at the same time as i,
then if ILS is possible at i then ILS is inevitable at i. The proof of theorem TH-INV-
ILl is given in appendix F. Using TH-INV-IL1, axiom AX-INV1, which says
whatever is inevitable is actual, and theorem TH-INV-SF2, which says whatever is
actual is possible, we can derive the following theorem:

I TH-INV-IL2)
{r(ENDS - ix i)1 I ix E CI(ILS)} - (IFF ILS (INEV i ILS))

I where ILS is an interval logic sentence that does not contain any quantifiers

rTheorem TH-INV-IL2 may be used to lift an interval statement, all of whose
condition intervals end before or at the same time as i, out of the scope of INEV with
argument i.

If we have an interval logic statement that only mentions relations between
intervals, then we can use the following theorem, the proof of which is given in
appendix F:

TH-INV-IL3)
-- (IF (POS i IRS) (INEV i IRS))5where IRS is an interval relation sentence, that is, one formed only by the first

order connectives, including equality, and the MEETS predicate.

5 Unlike the two theorems above, IRS is not restricted so that it does not contain any
quantifiers. Thus, theorem TH-INV-IL3 is applicable for all interval relations (i.e.

I IN, ENDSI, PRIOR, ...) substituted for IRS since these relations are defined in
terms of MEETS and the first order connectives. Theorem TH-INV-IL3 is a special
case of TH-INV-IL1 when IRS does not contain any quantifiers. This is because forI any statement IRS only containing MEETS and equality predicates, CI(IRS) is
empty, and consequently {F(ENDS! ix i)1 lix E CI(IRS)} is empty. Thus, "{F(ENDS -

ix)1 lix E CI(IRS)} I- (IF (POS i IRS) (INEV i IRS))" is equivalent to "- (IF (POS i
IRS) (INEV i IRS))" since, by definition, "01-P" is equivalent to "F- P" for any
sentence P.

We can also derive a form analogous to TH-INV2-IL3 for interval relation
statements. This is given by:

TH-INV-IL4)
I- (IFF IRS(INEV i IRS))

where IRS is an interval relation sentenceI
I
I
I

112

POS and INEV with Different Temporal Arguments

The relation between time movement and possibility is the opposite of that with
inevitability. As time goes on, the set of possible sentences shrinks. This is captured
by the following theorem:

TH-INV-Ti)
I- (IF (ENDS'- il i2)

(IF (POS i2 P) (POS il P)))

Theorem TH-INV-Ti says that whatever is possible at interval i2 is possible at any
interval that ends at the same time or earlier than interval i2. TH-INV-Ti may be
derived by substituting r(NOT P)l in AX-INV5, transposing the material
implication, and then substituting the definition for POS. In the last section, we
have characterized a relation such as the one between TH-INV-Ti and AX-INV5 as
being symmetric statements. In the following developement, if two relations are
symmetrical, we only give proofs for one of the pairs, the other one being easily
derived from its symmetric counterpart.

The nesting of two INEV statement with different temporal arguments can be
described by:

TH-INV-T2)
- (IF (ENDS--[ii i2)

(IFF (INEV il (INEV i2 P))
(INEV il P)))

TH-INV-T3)
I- (IF (ENDS< ii i2)

(IFF (INEV i2 (INEV il P))
(INEV il P)))

The proofs of TH-INV-T2 and TH-INV-T3 are given in appendix F. Taking TH-
INV-T2 and TH-INV-T3 together, we see that two nested INEV statements may be
collapsed into a single operator with the earlier time (or either one, if they end at the
same time) serving as the index. This relation may be generalized to a chain of three
or more INEV operators. In this case, by successively using TH-INV-T2 and TH-
INV-T3 we can derive that a chain of three or more INEV operators can be reduced
to a single operator that has any interval argument i meeting the property: there are
no interval arguments in the chain that end before i.

The relation between two nested POS statements with different intervals can be
given by:

113

TH-INV-T4)
F- (IF (ENDS = i1 i2)

(IFF (POS i1 (POS i2 P)
(POS i1 P)))

TH-INV-T5)
-- (IF (ENDS= i1 i2)

(IFF (POS i2 (POS i P))
(POS ii P)))

These two relations are symmetric to the relations for nested INEV statements.
Theorem TH-INV-T4 is symmetric to TH-INV-T2, and theorem TH-INV-T5 is
symmetric to TH-INV-TH3. This leads to the same nesting relation for POS chains
as for INEV chains. That is. two or more nested POS statements may be collapsed
into a single operator that has any interval argument i meeting the property: there
are no interval arguments in the chain that end before i.

There are two relations describing the collapsing of a INEV and a POS statement
nested together:

TH-INV-T6)
F- (IF (ENDS< il i2)

(IFF (POS i2 (INEV il P))

(INEV il P)))

TH-INV-T7)
I- (IF (ENDS < il i2)

(IFF (INEV i2 (POSii P))
(POS ii P)))

Theorems TH-INV-T6 and TH-INV-T7 are symmetric, thus we only prove one of
them (see Appendix F).

There are two nested forms, r(INEV il (POS i2 P))1 and r(POS il (INEV i2)),
that cannot be reduced to a single operator. If one of these statements could be
reduced then the other could be reduced since they are duals of each other with

L,, respect to P. That is, F(INEV il (POS i2 P))1 is equivalent to F(NOT (POS il (NOT i2
(NOT P))))1 and r(POS il (INEV i2))1 is equivalent to r(NOT (INEV il (POS i2 (NOT
P))))I. Statements of the form r(INEV il (POS i2 P)) are useful for describing

situations where some occurrence is possible no matter what transpires between the
end of il up until the end of i2.

i
I
I
I

114

4.4. The Axiomatization of IFTRIED

We break the axiomatization of IFTRIED into three different groups. The first
group captures the properties associated with a subjunctive conditional. The second
group captures the relation between IFTRIED and INEV, and the third group I
describes the relation between the attempt of a composite plan instance and the
attempt of the individual plan instances constituting the composition.

4.4.1. IFTRIED as a Subjunctive Conditional

The axioms capturing the properties of IFTRIED that are associated with a
subjunctive conditional are given in figure 4.4-1. Axiom AX-1FTR1 captures that

Axioms

AX-IFTR1)
I-(IF (IFTRIEDpiP)

(NOT (iFTRIED pi (NOT P))))

AX-IFTR2)
I- (IF (IFTRIED pi (IF PQ))

(IF (IFTRIED pi P) (IFTRIED i Q)))

AX-IFTR3)
-(IF (OCC pi)

(1FF (IFTRIED pi P) P))

AX-IFTR4)
I(FF (IFTRIED pi (IFTRIED pi P))

(IFTRIED pi P))

Inference Rule

RL-IFTR)

From: F- P
To: -(IFTRIED pi P)

Figure 4.4-1
r(IFTRIED pi P)l and r(IFTRIED pi (NOT P))1 cannot both hold together. This
contrasts with the material conditional where r(IF P Q) and F(IF P (NOT Q)) are
both (vacuously) true when P is false. Axiom AX-IFTR2 says that m.aterial
implication distributes out of the IFTRIED modality.

Axiom AX-IFTR3 corresponds to a property found in both Stalnaker's [Stalnaker
68] and Lewis' [Lewis 73] theories of conditionals which says that if antecedent A
holds, then the conditional "if A then C" is true iff C is true. Remember that
r(IFTRJED pi P)l can be interpreted as saying "if pi were to be attempted then P

115

would be true". Now, in our language, we do not have an atomic formula that
corresponds to "pi is attempted". We do, however, have a formula corresponding to
pi occurs (i.e. r(OCC pi)l) which is stronger than "pi is attempted" (see section 3.2.3).
Thus in our system, if r(OCC pi)i is true, r(IFTRIED pi P)l is true iff P is true.

Axiom AX-IFTR4 reflects that two nested IFTRIED operators having the
same argument can be collapsed to a single operator. Generalizing, we can use AX-
IFTR4 to prove that two or more nested IFTRIED operators with the same plan
instance argument can be collapsed to a single operator. In section 4.4.3, we presentIaxioms describing nested IFTRIED operators with different plan instance
arguments, these being the more interesting cases.

Inference rule RL-IFTR can be characterized as a rule of necessitation. This rule
says: if P is a theorem then r(IFTRIED pi P)l is a theorem for any plan instance term
pi. Just like the rule of necessitation for INEV, RL-IFTR is given in theoremhood
form rather than in derivability form, i.e. from "SF- P" to "S F- (IFTRIED i P)". Thi,
more general form would lead to an unsound system.

Soundness Proofs

The proofs that axioms AX-IFTRI - AX-IIFTR4 are valid are given in figures
4.4-2 and 4.4-3. These proofs are established using the interpretation of IFTRIED,
the constraints BAO, BAI, and BA2 (which are placed on the basic action functions),

iSand the Fci function, which is defined in terms of the basic action functions. The
proof that RL-IFTR preserves validity is established in a similar fashion as was done
to show that RL-INV preserves validity (see section 4.3). The statement r(IFTRIED
pi P)l is interpreted as true at world-history h iff P is true in all the closest world-
histories to h where the plan instance denoted by pi is attempted. If P is valid, it is
true at all world-histories in all models, this includes the closest world-histories to h
where the plan instance denoted by pi is attempted.

II

116

Soundness Proofs

The interpretation of IFTRIED, which is used in all the proofs in this figure and
4.4-3, and can be given by:

V,(r(lFTRIED pi P)I,h) = TRUE iff
for all world-histories (h2) if h2E Fci(Vt(pi)12,h) then V,(P,h2) = TRUE

AX-IFTR 1)
I- (IF (IFTRIED pi P) (NOT (IFTRIED pi (NOT P))))

For an arbitrary V~and world-history h, assume that V,(r(IFTRIED pi P)1,h) equals
TRUE. We validate AX-1rTR1 by showing that V,(r(NOT (IFTRIED pi (NOT P))) 1,h)
equals TRUE under our assumption. This is established using constraint BAO and
the definition of Fci which can be used to derive:1

1) Fci(Vt(pi)12,h) * 0

From V,(F(lFTRIED pi P)I,h) equals TRUE, we get:

2) For all world-histories (h2) if h2E FCi(Vj(pi)12,h) then V,(P,h2) = TRUE

Taking 1 and 2 together yields the following which is true iff V,(r(NOT (IFTRIED
pi (NOT P)))l,h) equals TRUE:

It is not true that for all world-history (h3) if h3E Fci(Vt(pi)I 2,h) then
Vs(P,h3) = FALSE

AX-IFTR2)
F- (IF (IFTRIED pi (IF P Q))

(IF (IFTRIED pi P) (IFTRIED i Q)))

For an arbitrary V, and world-history h, assume that both V,(r(IFTRIED pi (IF P
Q))l,h) and Vs(r(IFTRIED pi P)I,h) equal TRUE. We validate AX-IFTR2 by showing
that Vs(r(IFTRIED pi Q)l,h) equals TRUE under our assumptions. Using
V6(r(IFTRIED pi (IF P Q))1 ,h) equals TRUE, we get:

1) For all world-histories (h2) if h2E F,(Vt(pi)12,h) then V6(r(IF P Q)1,h2) = TRUE

Using V,(r(IFTRIED pi P)1,h) equals TRUE, we get:

2) For all world-histories (h2) if h2E FcI(Vt(pi)I 2,h) then V6(P,h2) = TRUE

Taking 1 and 2 together (and using the interpretation of IF), we can derive the
following which is true iff Vs(r(IFTRIED pi Q)1,h) equals TRUE:

For all world-histories (hQ) if h2E F~(Vt(pi)I 2,h)then Vs(Q,h2) = TRUE

Figure 4.4-2

117

Soundness Proofs

AX-IFTR3)
--(IF (0CC pi) (1FF (IFTRIED piP) P))

For an arbitrary V, and world-history h, assume that V,(r(0CC pi)1 ,h) equals
TRUE which gives us:

1) For alt events (ev), intervals (i) and basic actions (ba)
if <ev,i >EVt(pi)I:,, then < i,h > Eev, and
if < baj > E V00pi1 2, then < i,h > E BAEV(ba)

Using constraint BA1 and the definition of Fc we can derive:

2) If for all intervals (i) and basic actions (ba)
if < ba,i >E V.(pi)l,, then < i,h >E BAEV(ba)

then Fcl(Vt(p)1 2 , h) = {h)

Taking the first conj unct in 1 and 2 together yields "Fcj(V.(pi)j 2 ,h) = (h)" which
implies that V,(r(IFTRIED pi P)1,h) equals TRUE iff Vs(P,h) equals TRUE

AX-I FTR4)
I- (IFF (IFTRIED pi (IFTRIED pi P)) (IFTRIED pi P))

Let Vs be an arbitrary interpretation function and let h be an arbitrary world-
history. Using constraint BA2 and the definition of Fcj we can derive:

1) For all world-histories (h2),
if h * h2 and h2E Fcj(Vj(pi)I 2 ,h) then for all intervals (i) and basic actions (ba)
if < ba, > E V00p1~2 then < i,h2 >E BAEV(ba)

Taking 1 and step 2 from the proof of AX-IFTR3 above, we get:

2) For all world-histories (h2),
if h ; h2 and h2E F,(Vt(pi)12 ,h) then Fcl(Vt(pi)I 2 ,h2) = {h2)

From 2 we can derive the following which implies that V,(r(IFTRIED pi (IFTRIED
pi P))',h) equals TRUE iff V,(r(IFTRIED pi P)1,h) equals TRUE:

hxEFci(Vt(Pi)I 2,h) iff hxEFcI(Vt(p:i)I 2,h2) for some h2 s.t. h2E Fci(Vt(pi)12,h)

Figure 4.4-3

118

Theorems

In section 4.3.1., we discussed deduction in a modal context and presented a
general rule allowing us to infer from "P entails Q" to "MC(P) entails MC(Q)" where
MC is a modal chain consisting of INEV and POS statements. In this section, we
give a more general rule covering modal chains that also contain IFTRIED and P-
IFTRIED statements (P-IFTRIED is the dual of IFTRIED for a fixed plan instance
argument). This generalized rule is given by DRL-IFTRI:

DRL-IFTR1)
From: F- (IF P Q)
To: F- (IF IMC(P) IMC(Q))

where IMC(P) is a modal chain formed by INEV, POS, IFTRIED, and P-
IFTRIED operators with P embedded on the inside. Any modal chain IMC(P)
must have one of the following forms:

i) F(INEVi P)l v) r(IFTRIED pi P)l

ii) F(POS i p)1 vi) r(P-IFTRIED pi p)
iii) r(INEV i IMC2(P)) vii) F(IFTRIED pi IMC2(P))l
iv) r(POS i IMC2(P)) viii)r(P-IFTRIED pi IMC2(P)YW

where IMC2(P) is any modal chain formed by INEV, POS, IFTRIED, and P-
IFTRIED operators with P embedded on the inside

We can also generalize the rules DRL-INV2 and DRL-INV3 given in section 4.3.1.
The following two rules permit substitutions within an IFTRIED modal operator:

DRL-IFTR2)
From: - (IFF P Q)
To: F-(IFF R1 R2)

where R1 and R2 are any sentences, and RI differs from R2 by replacing one or
more occurrences of P with Q

DRL-IFTR3)
From: (IFF P Q) and S R1
To: S - R2

where S is a set of sentences, RI and R2 are any sentences, and R1 differs from
R2 by replacing one or more occurrences of P with Q

119I
Two other rules that will be used in later proofs are given by:

DRL-IFTR4)
From: S1 - NP-MC(P) and S2 F- NP-MC(r(IF P Q)])5 To: S1US2 F- NP-MC(Q)

where NP-MC is a modal chain consisting only of IFTRIED and INEV operators,
S1 and S2 are sets of sentences, and P and Q are sentences

DRL-IFTR5)
From: S1 F- NP-MC(P) and S2 -- NP-MC(Q)
To: S1US2 F- NP-MC(r(AND P Q)1)

where NP-MC is a modal chain consisting only of IFTRIED and INEV operators,
S1 and S2 are sets of sentences, and P and Q are sentences

The relation between IFTRIED and the logical connectives parallels the relation
between INEV and the logical connectives (see section 4.3.1). These relations are
given by the following theorems:

TH-IFTR-SC 1)
F- (IFF (AND (IFTRIED pi P) (IFTRIED pi Q))

(IFTRIED pi (AND P Q)))

" TH-IFTR-SC2)
-- (IF(OR (IFTRIED pi P) (IFTRIED pi Q))

- (IFTRIED pi (OR P Q)))

TH-IFTR-SC3)
F- (IF(IFTRIED pi (NOT P))

(NOT (IFTRIED pi P))

I TH-IFTR-SC4)
F-- (IFF (V?v (IFTRIED pi P))

(IFTRIED pi (V?v P)))

where pi has no free occurrences of ?v

TH-IFTR-SC5)
F- (IF(3?v (IFTRIED pi P))

(IFTRJED pi (3?v P)))

where pi has no free occurrences of ?v

120

4.4.2. The Relation Between IFTRIED and INEV

The relation between IFTRIED and INEV are given by the two axioms in figure
4.4-4. Axiom AX-IFTR5 can be interpreted as saying that if a proposition P is
inevitably true at time 1, then the attempt of a plan instance that starts later than 1
cannot negate P. This axiom is used to derive that the attempt of a plan instance
cannot affect earlier conditions. Axiom AX-IFTR6 says that if the attempt of plan
instance pi would result in P being inevitably true at time i, then it is inevitable at
time i that the attempt of pi would result in P being true. An instantiation of this
axiom, where pi ends before interval i, reflects the fact that the attempt of plan
instance pi cannot be influenced by possible conditions that happen later than pi's
time of occurrence.

Axioms

AX-IFTRS)
- (IF (PRIORi (TIME-OF pi))

(IF (INEV IP)
(IFTRIED pi P))

AX-IFTR6)
- (IF (IFTRIED pi (INEV i P)))

(INEV i (IFTRIED pi P)))

Figure 4.4-4

Soundness Proofs

The proofs that axioms AX-IFTR5 and AX-IFTR6 are valid are given in figures
4.4-5 and 4.4-6.

121

I Soundness Proofs

AX-IFTR5)
i- (IF (PRIOR (TIME-OF pi))

(IF (INEV i P) (IFTRIED pi P)))

For an arbitrary V, and world-history h, assume that both V(f(PRIOR i (TIME-OF
pi)) 1 ,h) and Vs(r(INEV i P)1,h) equal TRUE. We validate AX-IFTR5 by showing
that Vs(r(IFTRIED pi P)Ih) equals TRUE under these assumptions This is
established by making use of constraint BA-R1 which entails the following:

1) For all world-histories (h2), basic actions (ba), and intervals (ix),
if h2E ba(ix,h) and MTS(Vt(i),ix) then R(Vt(i),h,h2)

From 1, R1, and interval relation "if Vt(i) is prior to ix, then there exists an
interval iy that ends at the same time as ix and is met by Vt(i)", we can derive:

2) For all world-histories (h2), basic actions (ba), and intervals (ix),
if h2Eba(ix,h) and PRIOR(Vt(i),ix) then R(Vt(i),h,h2)

From 2, the definition of Fdj and R3 (R is transitive) we can derive:

3) For all world-histories (h2)
if h2(Fc(Vt(pi)12,h) and for all basic actions (ba) and intervals (ix)

if <baix> (Vt(pi)12 then PRIOR(Vt(i),ix)

then R(Vt(i),h,h2)

From V,(r(PRIOR i (TIME-OF pi))l,h) equals TRUE, we can derive:

4) for all basic actions (ba) and intervals (ix),

if <ba,ix>(Vt(Pi)12 then PRIOR(Vt(i),ix)

Taking 3 and 4 together yields:

5) For all world-histories (h2) if h2E FCj(Vt(pi)12 ,h) then R(Vt(i),h,h2)

From V,(r(INEV i P)1,h) equals TRUE we get:

6) For all world-histories (h2) if R(Vt(i),h,h2) then Vs(P,h2) = TRUE

Combining 5 and 6 gives us the following which is true iff Vs(r(IFTRIED pi P)1,h)
equals TRUE:

For all world-histories (h2) if h2E FC(Vt(pi)12,h) then V,(P,h2) = TRUE

I Figure 4.4-5

I
I

122

Soundness Proofs

AX-I FTR6)
1,- (IF (IFTRIED pi (NEV iP))

(INEV i (IFTRIED pi P)))

For an arbitrary V, and world-history h, assume that Vs(r(IFTRIED pi (INEV
P))1,h) equals TRUE We show that V,(r(INEV i (IFTRIED pi P))I,h) equals TRUE
follows from. our assumption. From Vs(r(lFTRIED pi (INEV iP))I,h) equals TRUE
we have:

1) For all world-histories (h2) if h2(FCiV0pi) 2,h)
then for all world-histories (h3) if R(Vt(i),h2,h3) then V,(P,h3)

Rewriting 1 in an equivalent form.

2) if there exists a world-history (h2) such that h2E FC(Vt(pi)12,h) then for all
world-histories (h3) if R(Vt(),h2,h3) then Vs(P,h3)

From BA-R2, the definition of Fci and R2 and R3 (R is an equivalence relation for
a fixed time argument), we can derive:

3) For all world-histories (hi), if R(Vt(i),h,h1) then for all world-histories (h3) if
h3EFc;(Vt(pj)12,h1) then there exists a world-history (h2) such that
h2E F~l(Vt(Pi)I 2,h) and R(Vt(i),h2,h3)

From 2 and 3 , we can derive: the following which is true iff Vs(r(INEV I (IFTRIED
pi P))I,h) equals TRUE:

For all world-histories (hi), if R(Vt(i),h,hi) then for all world-histories (h3) if
h3EF~j(VT(pi)I 2,h1) then Vs(P,h3)

Figure 4.4-6

123

Theorems

The following three theorems, which are derived from axiom AX-IFTR5, are
useful for bringing interval logic statements in and out of the scope of IFTRIED
operators. These theorems are similar to theorems TH-INV-IL1 - TH-INV-IL4 (see
the end of section 4.3) which are used to bring interval logic statements in and out of
the scope of INEV operators. The three theorems below capture that an interval
logic statement ILS can be brought in and out of the scope of an IFTRIED operator
with index pi if all the conditions in ILS refer to times that are prior to pi's time of
occurrence.

To describe the following axioms we make use of the CI function which we
described in section 4.3. Reiterating, function CI takes an interval logic sentence
ILS as an argument and yields the set of interval terms, possibly empty, that appear
in a OCCURS or HOLDS sentence in ILS and terms of the form r(TIME-OF pi) for
each r(OCC pil)l that appear in ILS. For example, CI(F(IF (MEETS il i2) (OR
(HOLDS pr il) (OCC pi)))1)k equal to {il, r(TIME-OF pi)1l.

Theorem TH-IFTR-IN1 below says that if all conditions mentioned in interval
logic statement ILS occur or hold over intervals that are prior to pi's time of
occurrence i, then 'fILS is true then if pi would be attempted then ILS would (still)
be true.

TH-IFTR-IN I
{r(PRIOR ix (TIME-OF pi)) l ix ECI(ILS)} F- (IF ILS (IFTRIED pi ILS))

where ILS is a sentence in the interval logic fragment containing no quantifiers
(although it might have free variables)

(PRIOR i1 i2) =-def

(OR (MEETS i1 i2) (3?i (AND (MEETS il ?i) (MEETS ?i i2))))

Some instances of TH-IFTR -IN1 are:

{r(PRIOR i (TIME-OF piW)l}I- (IF (HOLDS pr i) (IFTRIED pi (HOLDS pr i)))

{r(PRIOR i2 (TIME-OF pi))1}

(IF (IF (MEETS i ?i2) (OCCURS ev i2))
(IFTRIED pi (IF (MEETS i i2) (OCCURS ev i2))))

{r(PRIOR i (TIME-OF pi2))l, r(PRIOR (TIME-OF pil) (TIME-OF pi2))1}
I- (IF (OR (HOLDS pr i) (OCC pil))

(IFTRIED pi2 (OR (HOLDS pr i) (OCC pil))))

124

The proof of theorem TH-IFTR-IN1 is given in appendix F. Using TH-IFTR-IN1,
axiom AX-INV1, which says whatever is inevitable is actual, we can derive the
following theorem:

TH-IFTR-IN2)
{r(PRIOR ix (TIME-OF pi l ix ECI(ILS)}

F- (IFF ILS (IFTRIED pi ILS))

where ILS is a sentence in the interval logic fragment containing no quantifiers

TH-IFTR-IN2 may be used to lift an interval statement ILS out of the scope of an
IFTRIED operator with argument pi if the conditions in ILS refer to intervals that
are prior to pi's time of occurrence.

The following theorem is applicable to interval relation statements, that is,
statements formed by the MEETS atomic formula and the first order connectives
(including the equality relation):

TH-IFTR-IN3)
F- (IFF IRS (IFTRIED pi IRS))

where IRS is an interval relation sentence

Unlike the two theorems above, IRS may contain quantifiers. For the case where
IRS does not contain quantifiers, TH-IFTR-IN3 is a special case of TH-IFTR-IN2.

The following two theorem are derived using axiom AX-!FTR6, the proof of
which is given in appendix F:

TH-IFTR-IN4)
(IF (ENDS'- (TIME-OF pi) i))

(IF(POS i (EXECUTABLE pi))
(INE\: i (EXECUTABLE pi))))

TH-IFTR-IN5)
F- (IF (PRIOR (TIME-OF pil) (TIME-OF pi2))

(IFF (EXECUTABLE pil)
(IFTRIED pi2 (EXECUTABLE pil))))

Theorem TH-IFTR -N4 says that if a plan instance pi ends before or at the same as
interval i then if it is possible at i that pi is executable, then it is inevitable at i that
pi is inevitable. TH-IFTR-IN4 can also be interpreted as saying that if a plan
instance pi ends before or at the same as interval i then it is inevitably true or
inevitably false at i thatpi is executable.

Theorem TH-IFTR-IN5 reflects the fact that the attempt of a plan instance
cannot affect whether or not an earlier plan instance is executable. It is derived
using TH-IFTR-IN4, substituting pil for pi and r(TIME-OF pi2)1 for i. where pil
is prior to pi2, and then using axiom AX-IFTR5.

125

4.4.3. The Relation Between IFTRIEI) and Composition

The three axioms in figure 4.4-7 describe relations between the attempt of a
composite plan instancc and the individual attempts of the plan instances making up
the composition. In this section, we will only briefly describe these axioms. For a
better understanding of these axioms, the reader may wish to re-examine section
3.2.5 where the constraints in the model from which these axioms are validated are
described in detail. In a later section (5.3), we will discuss the relation between
composite plan instances and their component parts in some detail. Thereoms that
are derived from the axioms in figure 4.4-7 will be presented in this later section,

* instead of here.

Axioms

AX-IFTR7)
I- (IF (IFTRIED pil (IFTRIED pi2 (AND (OCC pi1) (OCC pi2))))

(IFF (IFTRIED (COMP p;1 p, 2) P)
(IFTRIED pil (IFTRIED pi2 P))))

I AX-IFTR8)

- (IF (PRIOR (TIME-OF pi 1) (TIME-OF pi2))
(IF (EXECUTABLE (COMP pi1 pi2))

(EXECUTABLE pi 1)))

AX-IFTR9)
1- (IF (EXECUTABLEpil)

(IF (IFTRIED pi2 (IFTRIED pil (AND (OCC pi1) (OCC pi2))))))

(IFTRIED pi1 (IFTRIED pi2 (AND (OCC pil) (OCC pi2))))))

Figure 4.4-7

To justify axiom AX-IFTR7 we use an explanation that parallels the one we gave
in section 3.2.5 where we described the composition of basic action instances. AX-
IFTR7's antecedent is true iff both pil and pi2 would occur if pi2 were to be
attempted in the scenario that would result from pil being attempted (note: This
does not imply that pi2's time of occurrence must be after pil's time of occurrence;
the two plan instances may have any temporal relation). We take the truth of this
antecedent to imply that pil and pi2 do not interfere, and consequently they could be
executed together. Moreover, if AX-IFTR7s antecedent is true then the statements
that would be true if the composition of pil and pi2 (i.e., r(COMP pil pi2)l) were to be
attempted are exactly the statements that would be true if pi2 were to be attempted
in the scenario that would result from plI being attempted.

Axiom AX-IFTR8 captures that if the composition of pil and pz2 is executable,

where pil is properly before p12 , then pil must be executable by itself. Axiom AX-

126

IFTR9 reflects the fact that the only way that r(IFTRIED pix (IFTRIED piy (AND
(OCC pix) (OCC ply))))1 and F(IFTRIED piy (IFTRIED pix (AND (OCC pix) (OCC
piy))))l can have different truth values is if either pix or piN, is not executable. Using
this axiom along with AX-IFTR7, we can derive that ifpix, piy and their composition
are all executable, then F(IFTRIED pix (IFTRIED piy P))1 is true iff F(IFTRIED piy
(IFTRIED pix P)) is true for all sentences P.

Soundness proofs

The proofs that axioms AX-IFTR7 - AX-IFTR9 are valid are given in figures 4.4-
8- 4.4-10.

127

Sou-,dness Proo's

AX-IFTR7)
I(IF (I FTRIED pil (IFFTRIED p12 (AND (0CC pil) (0CC pi2))))

(IF F (iFTR IED (COMP pil pi2) P) (I FTRIED pill (I FTRIED pi2P))))

For an arbitrary V, and world-history h, assume that V,(r(IFTRIED pil1 (IFTRIED
p12 (AND (0CC pil) (0CC p12))))I,h) equals TRUE. We show that Vs(r(IFTRIED
(COMP pi 1 p12) P)1,h) equals V,(r(IFTRIED pil1 (IFTRIED pi2 P))1,h) follows from
this assumption.

From our assumption we can derive:

1) For all world-histories (h2 and h3) If h2E F,,(V.(pi 1)12,h) and
h3EF,(V:(pi2)12,h2) tnen V,(r(0CC pil)1 ,h3) and V,(r(OCC p12) 1,h3) equal
TRUE

From 1 and the interpretation of 0CC we can derive:

2) For all world-histories (h2 and h3) if h2E F,1(Vt(pi 1)12,h) and
h3E F~j(V(pi2)12,h2) then for all basic actions (ba) and intervals (i) if
<ba,i >EVt(pi 1)I2UV,(pi2)[2 then < i,h3> EBAEV(ba)

From 2 and definition of F, , we can derive:

I 3) For all wvorl-histories (h3) h3E FCI(Vt(Pi 1)J2UVt(pi2)12,h) iff there exists a
world-history (h2) such that h2E Fc(V.(pi 1)12,h) and h3E Fci(Vt(pi2)I 2,h2)

From 3 and the equality "Vt(r(C0Mp pil1 pi 2)1)12 = Vt(Pi 1)12 UVt(pi 2)12 ", we ca n
derive:

4) For all world-histories (h3) h3E Fc;(r(COMp pil1 pi2)1)12,h) iff there exists a

worl d-hInistory (h2) suc h that h2 E Fcj(Vt(pi 1)12, h) a nd h3E(Fcl(Vt(pi 2)12, h2)

From 4, we can derive the following which is true iff V,(r(IFTRIED (COMP pil1I pi2) P)1,h) equals VS(r(IFTRIED pi 1 (IFTRIED pi2 P))I,h):

5) [For all world-histories (h3) if h3E Fc(r(COMp pil1 pi2)1)12,h) then V5(P,h3)I equals TRUE] iff [For all world-histories (h2 and h3) if h2E FcI(Vt(pi 1)12,h) and

h3EFCI(Vt(pi2)I 2,h2) then Vs(P,h3) equals TRUE]

Figure 4.4-8

128

Soundness Proofs

AX-I FTR8)I
H(IF (PRIOR (TIME-OF pi 1) (TIME-OF pi2))

(IF (EXECUTABLE (COMP pi 1 p12)) (EXECUTABLE pi1)))I

For an arbitrary V, and world-history h, assume that V&((PRIOR (TIME-OF pil1)
(TIME-OF pi2))1 ,h) and V&~(EXECUTABLE (COMP pi1 pi2))1,h) equal TRUE. WE
show that VSU(EXECUTABLE pil)l,h) equals TRUE follows from theseI
assumptions. For convenience, we will use PRIOR-PI2(i) to mean that interval
is prior to all the basic action instances contained in plan instance pi2:

PRIOR-PI2(1) =def for all basic actions (ba2) and intervals (12) ifI
<ba2,i2 >EV(pi2)12 then PRIOR(iji2)

From V,(r(PRIOR (TIME-OF pil) (TIME-OF pi2))-,h) equals TRUE and constraint
P11, we can derive:

1) For all events (ev),basic actions (ba 1) and intervals (11i) if
<evlil >EVt(pi1) 1 or <bal,il >EVt(pil)12 then PRIOR-P12(il)I

From Vs(E(EXECUTABLE (COMP pil pi2))I,h) equals TRUE and the definition of
EXECUTABLE, "(EXECUTABLE pi) = def (IFTRIED pi (0CC pi))", we can derive:I

2) For all world-histories (hQ) if h2E Fcl(Vt(r(COMp pi 1 pi2)1)12,h)

then Vs(r(OCC (COMP pil1 pi2) 1),h2) equals TRUEI

From 3, the interpretation of 0CC and the equality "Vt(F(COMP pil pi2)1)12
Vt(Pi 1)12UVt(pi2)I2 ", we can derive:

3) For all world-histories (hQ) if h2E Fc,((Vt(pil1)I-,1Vt(pi2)12),h) then for all basic
actions (ba) and intervals (i) if <ba,i > EVt(pI)12 uVt(pi2)12 , ther.

< i,h2 > E BAEV(ba)

From 1,3 and constraint BA-DRy which is derived from BA-CMP2, BA-Ri, BA-R2,
and R6 (See appendix C for derivation), we can derive.I

4) For all world-histories (h2 and h3) if h2EFci(Vt(pi1)I 2,h) and
h3EFci((Vt(pi1)I 2uVt(pi2)I 2),h) then for all events (ev) and intervals (i) if

PRIOR-P12(i) then < i,h2 > E ev iff <i03 > E ev

Finally, from 1,2, arid 4 we can derive the following which is true iff

V,(r(EXECU TABLE pi1) 1,h) equals TRUE:

For all world-histories (h2) if h2EFcj(Vt(pi1)12,h) then Vs(r(OCC pil)1),h2)
equals TRUEI

Figur 4.4-

3 129

Soundness Proofs

I AX-I FTR9)
I(IF (EXECUTABLEpil)

(IF (IFTRIED pi2 (IFTRIED pi1 (AND (0CC pil) (0CC pi2))))))

(IFTRIED pil (IFTRIED pi2 (AND (0CC p1) (0CC pi2))))))

For an arbitrary V, and world-history h, zs:ume that both Vs(r(EXECUTABLE
pil)1,h) and Vs(r(lFTRIED pi2 (IFTRIED pil (AND (0CC pil) (0CC pi2))))l,h) equal
TRUE. From our assumptions and definition of EXECUTABLE "(EXECUTABLE
Pi) =def (IFTRIED pi (0CC pi))" ,we can derive:

I 1) For all world-histories (h2) if h2EFci(Vt(pi 1)12,h) then V5(r(OCC pilY',h2)
equals TRUE

2) For all world-histories (h2 and h3) if h2E Fcl(V.(pi2)I-,h) and
h3EF,(V-dp11)! 2,h2) then Vs(r(OCC pil)1,h3) and V,(r'(OCC pi2)1,h3) equal
TRUE

I From 1,2 and the interpretation of 0CC we can derive:

3) For all world-histories (h2) if h2E FI(Vt(pi 9)12,h) then for all basic actions (ba)I and intervals (i) if < baji > E Vt(Pi 1)12 then < i,h2 > E BAEV(ba)

4) For all world-histories (h2 and h3) if h2E Fct(Vt(pi2)I 2,h) andI h3EF~j(Vt(pi1)12,h2) then for all basic actions (ba) and intervals (i) if
<bai> EVt(Pi 1)I2UVt(pi2)12 then <i,h3> EBAEV(ba)

From 3A4 constraint BA-CMP2 and the definition of Fc1, we can derive:

5) For all world-histories (h2 and h3) if h2E Fcl(Vt(pi 1)12 ,h) and
h3E Fc!(V(pi2)I2,h2) then for all basic actions (ba) and intervals (i) if

<baji>(EV(Pi 1)I2UV(pi2)I2 then <i,h3 >(EBAEV(ba)3 From 4,5 and constraint BA-CMP1, we can derive:

6) For all world-histories (h3l) there exists a world-history (hQ) such that
h2EFcj(Vt(pi1)12,h) and h3EFcl(Vt(pi2)12,h2) iff there exists a world-history3 (h4) such that h4E FC(Vt(pi2)12,h) and h3E Fc,(Vt(pi 1 2,M4)

Finally, from 2 and 6 we can derive the following which is true iff Vs(r(IFTRIED3 pi 1 (IFTRIED pi2 (AND (0CC pi 1) (0CC pi2))))',h) equals TRU E:

For all world-histories (h2 and h3) if h2EFci(Vt(pi1)I 2 ,h) and
h3EF~i(Vt(pi2)j 2,h2) then V1(r(OCC pil)',h3) and VS(r(OCC pi2)1,h3) equalI TRUE

Figure 4.4-10

130 I

Chapter 5 I
Analyzing the Planning Problem i

In this chapter, we analyze the planning problem using the logic that we have !
developed and show that the noted problems and limitations associated with state-
based systems are circumvented by switrhing to this new framework. We pay
particular attention to the interaction between plan instances, both sequential
and concurrent, and to the persistence problem [McDermott 82], which is the
problem of determining how long a property remains true in a formalism that n
allows simultaneous events

Our general conception of a planning problem can be given as follows: i
Input

IN1) a goal condition to be solvedI

IN2) a description of the world in which the plan is to be executed (the
planning environment) 1

IN3) for each member al of a set of simple actions, the conditions under
which al can be executed and the effects produced by al (the action
specifications)

Output !

OT1) a plan, which is a composition of simple actions, that can be executed
and if executed achieves the goal in any world that meets the description
given by the planning environment and the action specifications

Such a system must be able to perform these principle operations: I
OP1) determining the conditions under which a composition of simple actions

can be executed together

OP2) determining the combined effects of a composition of simple actions

I
For typical state-based planners such as STRIPS [Fikes&Nilsson 71] and

NOAH [Sacerdoti 77], the goal condition is a set of properties that must hold
immediately following plan execution. The planning environment is a description !
of the initial state in which the plan is to be executed, and the action specification
consist of properties called preconditions, describing the states in which each
simple action can be executed, and effects, which are properties that are produced I
after execution. A plan that solves the goal is either taken to be a linear sequence I

I

131

I of simple actions or a partially ordered set of simple actions to be linearized upon
execution.

In our framework, goal conditions are described using interval logic
statements. Thus, we can describe goals that refer to a set of conditions that hold
at various times, not just an instantaneous state. This enables us to represent
goals such as avoiding some condition while performing some task, achieving a
collection of goals to be done in some specified order, and preventing an
undesirable condition that possibly will happen.

Simple plan instances take the place of actions and composite plan instances
take the place of action sequences. The composition of a set of plan instances
refers to a plan instance that occurs iff all its components occur. Since each
component has a time associated with it, we can form composite plan instances
that have concurrent actions, ones that correspond to action sequences, and ones3 that have gaps in between the time when two components are executed.

Given goal G, and a set of sentences S describing the planning environment
and action specifications, a composition of simple plan instances pi is sought that
meets the following conditions:

SG1) S (INEV Ip (IFTRIED pi (OCC pi))
SG2) S w (INEV Ip (IF (OCC pi) G)
SG3) S = (POS Ip (NOT G))

3 SG1, SG2, and SG3 are the necessary and sufficient conditions under which "pi
solves goal G with respect to S" is true. These are three of the four conditions thatEwe put forth in chapter 2. The fourth condition "S (POS Ip (OCC pi))" is not
needed because if SG1 is true then "S (POS Ip (OCC pi))" is true for any plan
instance pi in the future of Ip (see appendix G).

In the rest of this chapter, we discuss the elements making up S (i.e. the action
specifications and planning environment) and the relation between composite
plan instances and their components. In section 5.1, we discuss the planning
environment, which consists of a description of conditions that will possibly hold
and conditions that will inevitable hold in the future of planning time. In section
5.2, we discuss the executability conditions of simple plan instances.
Executability conditions in our system take the place of preconditions. In section
5.3, we discuss the interaction between plan instances, both concurrent and
sequential, and discuss how these interactions relate to the composition of two
plan instances. In section 5.4, we discuss the effects of both simple plan instances
and composite plan instances. In section 5.5, we discuss the persistence problem.
This brings to light some of the problems encountered when the STRIPS
assumption is used in an inappropriate setting. We also demonstrate that the
persistence assumption, as put forth by some authors [McDermott 82]
[Hanks&McDermott 85] as a replacement to the STRIPS assumption, can lead to
problems when reasoning about planning. In the final section, we describe plan

I
I

132

instances that maintain properties over intervals which we use in place of the
persistence assumption when reasoning about plans.

5.1. The Planning Environment

The planning environment is given by statements having the form r(INEV ip
C)1 and r(POS Ip C)1, which describe conditions that are inevitable and possible at
planning time Ip. Thus, we can specify conditions that possibly or inevitably hold
while a plan is being executed, not just conditions that hold prior to execution,
which are the only type of conditions that are treated in most state-based
planners. 1

The agent can only plan around or work with conditions that are inevitable at
planning time. The attempt of a plan instance in the future of planning time
cannot prevent one of these conditions from holding. Conditions that are possible
but not inevitable, can be classified into three different categories: i) conditions
that the agent can bring about under all possible circumstances, ii) conditions that
the agent cannot prevent under any possible circumstances, and iii) conditions
that are influenced by both the external world and by the agent.

If under all possible circumstances at planning time Ip, the agent can bring
about condition C (by performing a future plan instance), then the following holds:

PE1)
(INEV Ip

(3?pi (AND (PRIOR Ip (TIME-OF ?pi)) (IFTRIED ?pi C))))

PEI says that it is inevitable at planning time Ip that there exists a plan instance
pi in the future of Ip such that if pi is attempted then C would be true. A stronger
condition than PEI is given by:

PEI')
(3?pi (INEV Ip (AND (PRIOR Ip (TIME-OF ?pi)) (IFTRIED ?pi C))))

I As we mentioned, Vere's system [Vere 81] is a notable exception. He allows
scheduled external events which correspond to inevitable occurrences in our
system. He cannot, however, represent possible conditions that may be
prevented

3 133

PEl 'is true if there is a particular plan instance that achieves C under all possible
circumstances. PE1 may be true when there is a different plan instance thatS achieves C for each possible circumstance. 2

If a condition cannot be prevented by the agent under any possible
circumstances, then the following is true:

PE2)
(IF (PRIOR Ip (TIME-OF ?pi))

(INEV Ip (IF C (IFTRIED ?pi C)))

I PE2 says that it is inevitable at Ip that if C happens to hold, then C would still
hold no matter which future plan instance the agent were to attempt. If both PEl
and PE2 are false, then C is a condition that is influenced by both the external

I world and the agent.

Now, there are cases where the agent cannot prevent some condition under any
circumstances, but could always bring about its negation. One example is where
the agent cannot prevent the property "the mainframe is not operational" from
happening, but could always bring about this state by deliberately crashing the
machine. More generally, the classification of a property and that of its negation
are independent for the three categories. Thus, there are nine different
classifications for a property taking into account its negation.

3 If the agent cannot prevent a property or prevent its negation under any
possible conditions, we say that the agent cannot affect this condition, or
equivalently, the condition is out of the agent's control. If condition C is out of the3 agent's control at time Ip. then the following holds:

PE3)3 (IF (PRIOR Ip (TIME-OF?pi))
(AND (INEV Ip (IF C (IFTRIED ?pi C)))

(INEV Ip (IF (NOT C) (IFTRIED ?pi (NOT C))))))

Just like properties that are inevitably true, the agent can only plan around
properties out of its control that are both possibly true and possible false. AnyS solution to a goal must provide for both possibilities. That is, if condition C is out
of the agent's control and is both possibly true and possibly false, then any plan

zI This distinction relates to the use of conditional plan instances. Consider a
simple example. Suppose if condition A is true, pil brings about condition C,
but pi2 does not, andif A is false then pi2 brings about C, while pil does not.
In this case, condition PE1 holds. Whether PEI' holds in this situation
depends on whether there exists a conditional plan instances corresponding
to "if CND is true then do pil else do pi2". Treating such plan instances,
however, involves some complications and relates to some issues considered
by Moore [Moore 80]. In section 7.2. we discuss these complications and
issues.I

134

instance that solves a goal must be executable and must bring about the goal when C
is true and when C is false. Similar problems have been investigated by Stuart
[Stuart 86] who presents a logic of action that distinguishes between angelic and
demonic non-determinism. He describes these two forms by saying that angelic non-
determinism corresponds to choices by the agent while demonic non-determinism
corresponds to choices under the control of the external environment. Angelic non-
determinism relates in our system to possibilities that the agent can bring about by
choosing different plan instances. Demonic non-determinism relates to events out of
the agent's control that possibly occur and possibly do not occur. In both Stuart's
system and our system, we are interested in plans that achieve their goals under all
possibilities out of the agent's control. Stuart also treats a form of demonic non-
determinism that affects the amount of time that the planning agent's actions take
to complete. In order to handle this in our framework, we would have to relax the
restriction that a plan instance's time of occurrence is fixed over all possible world-
histories.

5.4. Executability Conditions

In a traditional planning system, preconditions are given for each simple action
as part of the specification of a planning problem. In our framework, executability
conditions take the place of preconditions. If we say that interval logic statement
EC describes the executability conditions for future plan instance pi, then we assume
that pi is executable in all branches possible at planning time in which EC holds.
Thus, if the specification of a planning problem is given by the set of sentences S, EC
describes the executability conditions for pi with respect to S only if the following
holds: I

EC-CND)
S (INEV Ip (IF EC (EXECUTABLE pi)))

where Ip denotes planning time

Typically, in a planning system, preconditions are not given for each action
individually. Instead, preconditions are given for a whole class by making use of
function terms. The same may be done in our logic. For example, we might use the
function term F(move loci loc2)@I 1 to refer to the plan instance where the agent
moves from locl to loc2 during interval I (For simplicity, we are assuming that there
is a unique way to perform the event r(move loci loc2)1 which is presupposed by our

I Eu-CND is not sulicient conditions for "EC describes the executability
conditions for pi with respect to S" because, for one, EC-CND holds for any
logically false statement substituted for EC. Intuitively, if EC describes the
executability conditions for pi with respect to S, then EC must not be a fallacy
and there must be not exist any weaker conditions that satisfy EC-CND. It is
problematic to precisely formalize the "weakest" relation. One property that we
want, though, is that C1 is not weaker than C2 if Cl entails C2.

135

use of the @ function) The executability condition for r(move locl loc2)(J 1 is that
the agent is at locl just prior to execution time 1. The relation between a "move"
plan instance and its executability conditions can be given by: 2

AV 1)
(INEV Ip (IF(3?iO (AND (MEETS ?iO ?i) (HOLDS (at agt ?locl) ?i)

(EXECUTABLE (move ?locl ?loc2)@?i)))

where agt refers to the planning agent

Relation Between Executability and Preconditions

We have used the term "executability conditions", instead of "preconditions",
because preconditions have been treated in an ad hoc manner and consequently have
a variety of interpretations. In the next section, we show that executability
conditions are more general than the preconditions that are found in state-based
planners. In this section, we describe the different possible interpretations that can
be given to the preconditions specifications that are found in a planner such as
NOAH [Sacerdoti 771. These interpretations were noted by Pollack [Pollack 86].

Pollack describes different interpretations for preconditions by showing how they
can be encoded in a language that represents basic actions, standard conditions, and
generation, which are all concepts from Goldman's theory of action [Goldman 70] .
She uses Allen's logic of time and action [Allen 84] to represent her adaptation of
Goldman's concepts (her objective for doing so is to describe a theory of plan
recognition with invalid queries). She defines "executability" in terms of Goldman's
concepts. Her use of this term coincides with our usage with the exception that she
encodes executability in a first order theory, while we make use of modal
connectives. 3

The precondition specifications for some action in NOAH is given by i) a header
action, ii) a precondition list, and iii) a body, which consists of a sequence of actions
specifying a way of executing the header action. Typically, a specification is given
for a whole class of actions by using function terms. We will just show how one
ground instance is translated. We let A stand for the event associated with the
header action, B stand for the event associated with the sequence of actions in the
body, and P stand for a term that denotes the conjunction of the conditions in the
precondition list. We take some liberties in showing how Pollack's set of possible

We are glossing over the fact that we want to restrict the variables ?Iocl and
?loc2 to only range over locations. Secondly, we might want to restrict the
arguments to r(move ?locl ?loc2)@?il so that the duration of ?i is greater than
or equal to the minimal time it takes the agent to get from ?locl to ?Ioc2.

J In section 3.3.3, we related plan instance attempts to Goldman's concepts. This
served to relate executability to these concepts since "pi is executable" is
defined as "ifpi were to bc attempted then pi would occur"

136

translations are described using our formal language. These translations are given
in figure 5-3.1.

The header-body-precondition specifications allow one to describe a header action
with two different bodies to indicate that there are (at least) two different ways to
perform the action. In our formalism, it does not make sense to talk about two
different ways of performing some plan instance since these objects refer to a set of
events at specified times to be brought about by a particular execution. We can,
however, relate plan instances and header-body-precondition specifications. The
particular execution associated with a plan instance is given by a set of basic actions
at specified times (see section 3.2.3). A plan instance is executable if i) the standard
conditions associated with the set of basic actions hold and ii) if these basic actions
were to be executed then the events associated with the plan instance would occur.
This suggests the following translation of header-body-precondition specification
into executability condition specifications for the case where the body consists of a
set of basic actions. In this case, each header body pair <A,B> corresponds to the
set of plan instances associated with event A occurring by executing the basic action
instances in B. A particular plan instance can be picked out by specifying a time of
occurrence. Using this translation, our use of executability conditions most closely
resembles the interpretation of preconditions given by i) in figure 5.3-1. In this case,
preconditions relate an event to be brought about with the particular execution that
is performed in an attempt to bring about the event.

Different Types of Executability Conditions

Executability conditions are more general than preconditions that are used in
state-based systems. In these systems, an action's preconditions are properties that
describe the state in which the action is to be executed. In our system, a plan
instance's executability conditions may have any temporal relation with the plan
instance and may include statements about event occurrences along with statements
about properties.

Although there is no restriction imposed on the temporal relation between a plan
instance and its executability conditions, typically, executability conditions hold
prior to or during plan instance execution. The reason for this is that the truth of
r(EXECUTABLE pil cannot be determined by conditions that possibly occur in the
future of pi. This is reflected by the following theorem:

EC1)
(OR (INEV (TIME-OF pi) (EXECUTABLE pi))

(INEV (TIME-OF pi) (NOT (EXECUTABLE pi)))))

Statement EC1 says that it is inevitable at pi's time of occurrence that pi is
executable or inevitable that pi is not executable. Consequently, it does not make
sense to use executability conditions that are both possibly true and possibly false at
a time in the future ofpi's time of occurrence.

137

I
Possible translations of.3Header: A

Body: B
Preconditions: P

i) The performance of B generates the action corresponding to event A under
conditions P. This entails the following relation:

3(INEV Ip
(IF (AND (HOLDS P ?i) (OCCURS B ?i))

(OCCURS A ?i)))

ii) "Property P holding during i" is a necessary condition under which A can3occur during i. Thus, the following must hold:

(INEV lp
(IF (OCCURS A ?i) (HOLDS P ?i)))

iii) "Property P holding during i" is a necessary condition under which B canUoccur during t. Thus, the following must hold:

(INEV Ip3 (IF (OCCURS B ?i) (HOLDS P ?i)))

iv) A is executable during i if P holas during i:

(INEV Ip
(IF (HOLDS P ?i) (EXECUTABLE A@7i)))

Inote: one might qualify iv) by putting a restriction on the duration of ?i

v) B is executable during iif P holds during i:

(INEV Ip3(IF (HOLDS P ?i) (EXECUTABLE B@?i)))

note: one might qualify v) by putting a restriction on the duration of ?i

I -OR.
a variation on ii) - v) where the precondition holds immediately prior to the5time when A and B occur, instead of during their time of occurrence.

Figure 5.3-1

138

A plan instance's executability conditions may include a condition describing
another plan instance's occurrence, i.e. a statement of the form F(OCC pi)Y. The use
of these conditions may lead to an implementation that is more efficient than state-
based systems, where preconditions only refer to properties. This is explained as
follows. In a state-based system, if an action's preconditions do not hold in the initial
situation, then an earlier action or set of actions must be introduced to bring about
these preconditions. Thus, preconditions are used as intermediate values to
determine the actions that enable another's preconditions. This intermediate step
can be eliminated by using the OCC predicate as part of the executability
specification. A plan instance can be directly related to the plan instance or set of
plan instance that enables it. For example, if under all possible circumstances at
planning time the occurrence ofpi2 enables pi, then we could specify F(OCC pi 2)l as
executability conditions for pi. 4

Lanksy [Lanksy 85] presents a representation where an enablement relation
(which she calls the causal relation) between two events is treated as a primitive
relation, this being analogous to an enablement relation between two plan instances
in our system. In this formalism, events are treated as primitive objects, while
properties, if included, are defined in terms of events. This is in direct contrast to
state-based systems where states, and properties which describe them, are treated as
the primitive objects, while events are defined as mappings from state to state. In
her work, she argues that a more succinct description and more efficient planning
algorithm can be achieved by working in a language where events are directly
related. In section 5.3, we show that the description of two actions that cannot occur
simultaneously is awkward when only using property preconditions while straight
forward when using a language such as ours or Lanky's that represents direct
relations between events.

4 bavings such as these have been exploited in the state-based planning paradigm
under the guise of triangle tables [Fikes&Hart&Nilsson 72]. Triangle tables
store the relations between the preconditions and effects of a sequence of
actions. One can use these table to enter a sequence of operators into a plan
without the need to re-compute the enablement relations within the sequence.
For example. if action al is followed by a2 in a triangle table and al's effects
achieves a2's preconditions, then the planner does not have to actively achieve
a2's preconditions when introducing the sequence al;a2 into a plan (assuming
that no other action is inserted between al and a2))

I

139I
Interaction Between Plan instances and Simultaneous External Events

An important feature of our logic is the ability to model executability conditions
that hold while the plan instance occurs. This allows us to represent different forms3 of interactions between plan instances and events that occur simultaneous with
them. We describe three types of interaction by considering a simple resource
conflict example where the planning agent shares a terminal with some other agent.

Let r(use-terminal agt)l refer to the event "the agent agt uses the terminal". We
let the term agtp refer to the planning agent and agt2 refer to another agent that
may also use the terminal. In all cases examined below, we assume that it is
inevitable at time Ip that the planning agent cannot use the terminal at the same
time as the other agent:

IUTI
(IF (NOT (DISJOINT ?i ?i2))

(INEV Ip
(NOT (AND (OCCURS (use-terminal agtp) ?i))

(OCCURS (use-terminal agt2) ?i2)))))

I The first case to consider is where, under all circumstances possible at planning
time Ip, agent agt2 has priority over the planning agent. We assume that it is3 inevitable at Ip that If agt2 is using the terminal then agtp must wait until agt2 is
done. Furthermore, we assume that it is inevitable at Ip that agt2 can interrupt agtp
at any time and gain use of the terminal. As a consequence, a necessary condition3 under which it is inevitable at 1p that r(use-terminal agtp)@Il is executable is that
it is inevitable at Ip that r(use-terminal agt2)l does not occur during any time that
overlaps with I. For simplicity, we also assume that this condition is sufficient for

I the executability of r(use-terminal agtp)@Il. This can be expressed in our language
as follows:

IUT2)
(INEV Ip

(IFF (EXECUTABLE (use-terminal agtp)@?i)
(NOT (3?i2 (AND (NOT (DISJOINT ?i ?i2))

(OCCURS (use-terminal agt2) ?i2))))))

3Under this "priority scheme", in order to guarantee that it is inevitable at Ip that the
planning agent can use the terminal during interval I1, it must not be possible at Ip
that agt2 will be using the terminal during any time during Il.

-- The second case to consider is the converse of the above priority relation, where
agtp has priority over agt2. Thus, we assume that It is inevitable at Ip that If agtp is1using the terminal then agt2 must wait until agtp is finished. Furthermore, we
assume it is inevitable at Ip that agtp can interrupt agtp at any time and gain use of
the terminal. If terminal availability is the only condition needed for executability,3 then r(use-terminal agtp)@Il is executable under all conditions possible at time Ip:

agp)I

I

140

UT3)
(INEV Ip (EXECUTABLE (use-terminal agtp)W?i))

Under this priority relation, it is inevitable at Ip that the planning agent can
prevent the other agent from using the terminal just by using the terminal itself:

UT4)
(INEV Ip

(IFTRIED (use-terminal agtp)@'?i
(NOT (OCCURS (use-terminal agt2) ?il))))

The third relation that we examine is the case where the first agent who tries to
use the terminal gets the terminal until its done. If both agents try to use it at the
same time then we assume that the planning agent gets the terminal. In this case, it
is inevitable at Ip that F(use-terminal agtp)@1 is executable iff agt2 has not started
to use the terminal before I begins and is still using it at least through the beginning
of I:

UT5)
(INEV Ip

(IFF (EXECUTABLE (use-terminal agtp)@?i)
(NOT (3?i2 (AND (OR (OVERLAP ?iO ?i)

(FINISHES ?i ?i) (DURING ?i ?iO))
(OCCURS (use-terminal agt2) ?iO))))))

In the above examples, we have illustrated that we can make a finer distinction
than just saying that a plan instance and an event occurrence that overlap in time
cannot occur together. Their "priority i'elation" can also be specified by indicating
whether the event occurrence prevents the plan instance from (successfully)
occurring if attempted, or whether the attempt of the plan instance prevents the
event form occurring.

These type of priority relations do not arise in connection with overlapping plan
instances. Just like the relation between a plan instance and an overlapping event
occurrence, it is possible that two overlapping plan instances can occur separately,
but not together (which we will discuss in the next section). There is no need to
worry about their priority relation, however. This is because it is under the agent's
control to choose which plan instance is to be executed. If there is a priority relation
between two conflicting plan instances, the agent could always execute the one with
lower priority by simply choosing not to perform the one with the higher priority. On
the other hand, if there is an external event with higher priority that possibly occurs,
it is not in the agent's control to choose not do it or to prevent it from occurring.
Consequently, when planning, the agent must find a plan that works whether this
external event occurs or not.

1
1

141

5.3. Plan Instance Interactions

One of the essential features of our logic is that it provides a formal basis for
determining when two or more plan instances, concurrent or sequential, can be
executed together. In a state-based formalism, the interactions of interest involve an
action enabling a later one's preconditions, and an action interfering with a later
one's preconditions. These interactions only concern linearly ordered actions. In our
formalism, concurrent interactions must also be treated. In this section, we first
examine the interaction between plan instances that do not overlap in time and then
consider concurrent interactions.

Consider two plan instances pil and pi2 that do not have overlapping execution
times. Without loss of generality assume that pil's execution time is prior to pi2's
execution time. In this case, the composition of pil and pi2 is executable iff i) pil is
executable and ii) if pil were to be attempted then pi2 would be executable. That is,
the following is a theorem in our logic, the proof of which is given in appendix G:

SEQ-THI)
(IF(PRIOR (TIME-OF pil) (TIME-OF pi2))

(IFF (EXECUTABLE (COMP pil pi2))
(AND (EXECUTABLE pil)

(IFTRIED pil (EXECUTABLE pi2)))))

It is important to reiterate that statements in our logic are interpreted with
respect to a branch in a tree of possible futures or what we have called world-
histories in our semantic model. Thus, SEQ-THJ describes the interaction between
two non-overlapping plan instances with respect to the circumstances given by a
branch. Now, when solving a planning problem, the planner must determine
whether or not the composition of two plan instances is executable in all branches
that are possible at planning time Ip. Consequently, we are interested in the
conditions under which it is inevitable at Ip that F(COMP pil pi2)1 is executable.
This relation is given by:

SEQ-TH2)
(IF (PRIOR (TIME-OF pil) (TIME-OF pi2))

(IFF (INEV Ip (EXECUTABLE (COMP pil pi2)))
(INEV Ip (AND (EXECUTABLE pil)

(IFTRIED pil (EXECUTABLE pi2))))))

Theorem SEQ-TH2 may be derived using SEQ-TH1, the proof being given in
appendix G.

Using SEQ-TH2, we can derive that for pzl and pi2 in the future of Ip and pul
prior to pi2, if ECJ refers to the executability conditions for pil and the occurrence of

142

pil brings about EC1, then it is inevitable at Ip that r(COMP pil pi2rl is executable
if EC1 holds:

SEQ-TH3)
(IF(AND (PRIOR Ip (TIME-OF pil))

(PRIOR (TIME-OF pil) (TIME-OF pi2)))
(IF (AND (INEV Ip (IF EC1 (EXECUTABLE pil)))

(INEV Ip (IF EC2 (EXECUTABLE pi2)))
(INEV Ip (IF (OCC pil) EC2)))

(INEV Ip (IF EC1 (EXECUTABLE (COMP pil pi2))))))

The relation given by SEQ-TH3 is analogous to the relation in situation calculus: if
action al brings about action a2's preconditions, then the preconditions for the
sequence al :a2 hold in situation s if al's preconditions hold in s.

Composing Concurrent Plan instances

We now examine the composition of plan instances that overlap in time. There
are a number of different ways that two overlapping plan instances may interact.
Just like the relation between two plan instances that do not overlap in time, one
concurrent plan instance may be executable and if it were to occur, then the other
plan instance would be executable. As we will shortly see, this type of interaction
between overlapping plan instances differs from the non-overlapping case because it
does not necessarily follow that their composition is executable.

A second interaction is where two concurrent plan instances are executable
individually, but their composition is not. This situation arises if two plan instances
interfere with each other. Examples of this is where two plan instances share the
same resource, and where two plan instances are alternative choices, one of which
can be executed at one time. Consequently, it is incorrect to define the executability
conditions for a composite plan instance as the conjunction of its component's
executability conditions.

The converse of the above statement does not hold either. As we just mentioned,
it might be the case that F(COMP pil pi2)l is executable while pi2 is not because the
occurrence of pil brings about the conditions under which pi2 is executable. There
are also examples where r(COMP pil pi2)1 is executable, but neither pil or pi2 is
executable: Such is the case if pil and pi2 are truly parallel acttons, ones that must
be executed together. An example of this is where an object is lifted by applying
pressure to two ends of the object, one hand at each end. If pressure were applied to
only one end, the result would be a pushing action, not part of a lifting action.

If pil is earlier than pi2, but the two plan instances overlap in time, the following
relation, which holds between two non-overlapping plan instances, may not hold: if
pil is executable and an attempt of pi would make p12 executable, then r(COMP pi 1
pi2)l is excutable. We show that this relation, which we refer to by OVRLP*, is not

143

valid by constructing a world-history within some legal model where a statement
having OVRLP1 -'s form does not hold.

Consider the function term r(walk home store)@I21 which denotes the plan
instance where the agent walks from home to the store during interval 12. We
assume this plan instance is executable in any world-history in the model where the
agent is at home just prior to execution. The effects of this plan instance are that the
agent is outside during execution and is at the store at a time immediately following
execution. Let us also consider the term r(stay-at home)@IlI which refers to the
plan instance where the agent stays at home during interval I1. This plan instance
is executable as long as the agent is at home just prior to execution and its effects are
that the agent is at home during execution. Assume that interval I1 starts before but
also overlaps interval 12. Consequently, F(walk home store)@12 1 is executable in
any world-history where r(stay-at home)@I11 occurs. This is because if r(stay-at
home)@Ill occurs then the agent will be at home during il, and in particular, the
agent will be at home just prior to i2 since we are assuming interval I1 starts before
and overlaps interval 12. We also assume that there are no world-histories in which
both plan instances occur together, this being a consequence of the principle that the
agent cannot be at two places at once. In particular, the agent cannot be at home and
on its way to the store during the time common to the overlapping intervals I1 and
12.

Let h be a world-history in which r(stay-at home)@I1l is executable. This is
equivalent to saying that the following statement holds at h:

(IFTRIED (stay-at home)@I1 (OCC (stay-at home)@I1))

Since we are assuming that r(walk home store)@121 is executable in any world-

history where r(stay-at home)@I11 occurs, the following holds at h:

(IFTRIED (stay-at home)@I1 (EXECUTABLE (walk home store)@12))

Thus, we find that the antecedent of O VRLP1 *, substituting r(stay-at home)@I 11 I for
pil and r(walk home store)@12 1 for pi2, holds at h. OVRLPI*'s consequent, with
the same substitution, does not hold at h since the two plan instances cannot occur
together in any world-history. Thus, at world-history h, the negation of OVRLP1 *
with the above substitutions is satisfiable and consequently the relation described by
OVRLP1 * cannot be a theorem.

The next case to be examined is where it is inevitable at planning time that two
plan instances are executable. We look at the cases where i) It is inevitable at
planning time that two plan instances interfere, ii) inevitable they do not interfere,
and iii) the case where two plan instances conditionally interfere.

We start with a simple resource conflict example. Consider a scenario where
there is a number of burners on a stove which may be used to heat some pan. Let the
function term r(heating pn brnr)@Il denote the plan instance where pan pn is being
heated on burner brnr during the interval I. It is inevitable at planning time Ip that

144

one burner cannot be used to heat two different pans at the same time and one pan
cannot be heated on two different burners at the same time:

HT1)
(V ?pnx ?pny ?brnrx ?brnry ?ix ?iy

(INEV Ip
(IF (AND (OCC (heating ?pnx ?brnrx)@?ix)

(OCC (heating ?pny ?brnry)@?iy))
(OR (DISJOINT ?ix ?iy)

(AND (NOT (= ?pnx ?pny))
(NOT (= ?brnrx ?brnry)))

(AND (= ?pnx ?pny) (= ?brnrx ?brnry)
(= ?ix ?iy))))))

HT1 says that under all circumstances possible at time Ip, if two "heating" plan
instances occur then either i) their times of occurrence are not overlapping, ii) they
refer to different pans and different burners, or iii) they refer to the same plan
instance (we are implicitly assuming that (heating pnx brnrx)@ix and (heating pny
brnry)@iy) denote different plan instances if they disagree on any of their three
arguments). This type of relationship between plan instances is what Lansky
[Lansky 85] calls a behavioral constraint; it is a constraint that directly relates two
plan instances (actions) instead of indirectly relating two plan instances by use of
action precondition-effect lists. Lanksy also refers to the relation between an action
and an earlier one that enables it, which we mentioned in section 5.2, as a behavioral
corstraint.

Using precondition-effect lists, it is awkward to represent the behavioral
constraint captured by HT1. First of all, properties such as "burner brnr is in use"
and "pan pn is in use" would have to be introduced. Secondly, the action "heat pan
pn on brnr"could not be treated as a simple action, one modeled by a precondition-
effect list. Instead, this action would have to be treated as two simple actions to be
performed consecutively (Vere's system [Vere 81] has such a facility). The reason
for this is that "burner brnr is in use" holds during the execution of "heat pan pn on
brnr" and ceases to hold immediately following execution, similarly for the property
"pan pn is in use". In a state-based system these type of effects can be modeled by
consecutive actions where the earlier action's effect is that the object (i.e. burner or
pan) is in use and the later one's effect is that the object is free. As noted in section
1.2, SIPE [Wilkins 83] has a special mechanism for treating a limited class of
resource conflicts. This mechanism could be used to solve the above example without
recourse to the "in use" properties.

In order for the behavioral constraint HT1 to be useful, it must lead to the
conclusion that a composite plan instance consisting of two overlapping heating plan
instances using the same burner but different pans, or different burners but the
same pan, is not executable This is easily shown. Let us consider plan instances
r(heating pnl brnr)@Il1 and r(heating pn2 brnr)@12 1 in the case where pnl and pn2
denote different objects and the intervals I1 and 12 overlap in time. We want to

145

prove that it is inevitable at Ip that the composition of r(heating pnl brnr)@ 111 and
r(heating pn2 brnr)@12 1 is not executable, i.e.,

HT2)
(INEV Ip

(NOT (EXECUTABLE (COMP (heating pnl brnr)@I!
(heating pn2 brnr)@12))))

From i) statement HT1, ii) 11 and 12 overlap in time and are later than Ip, and iii)
pnl and pn2 are unequal, it logically follows that HT2 is true. A proof of this is given
in appendix G. A similar proof can also be given to show that two overlapping
heating plan instances using the same pan, but different burners, are not executable
under any possible conditions.

The relation given by HT1 only describes when two heating plan instances cannot
be done together. HT1 does not specify when two heating plan instances can be done
together. Typically, we would want to model the above scenario so that any two
heating plan instances that meet the "constraints" given in the consequent of HT1
may be executed together if they can be executed individually. That is, we would
want the following to hold:

HT3)
(IF (OR (DISJOINT ?ix ?iy)

(AND (NOT (= ?pnx ?pny)) (NOT (= ?brnrx ?brnry)))
(AND (= ?pnx ?pny) (= ?brnrx ?brnry) (= ?ix ?iy)))

(IF (AND (INEV Ip (EXECUTABLE (heating ?pnx ?brnrx)@?ix))
(INEV Ip (EXECUTABLE (heating ?pny ?brnry)@?iy)))

(INEV Ip (EXECUTABLE (COMP(heating ?pnx ?brnrx)&;?ix
(heating ?pny ?brnry)@?iy))))))

The above statement is true iff for any two heating plan instances pil and pi2 that
meet the constraints in the antecedent, if it is inevitable at Ip that both pil and pi2

are executable individually then it is inevitable at Ip that their composition is
executable.

Relation HT3 is not a theorem; if two heating plan instances refer to different
pans and different burners, it does not necessarily follow that these two plan
instance can be executed together. In order to derive that they can be done together,
they must not interfere with each other. If plan instance pil does not interfere with
pi2 under all circumstances possible at Ip, then the following holds:

NI-CND)
(AND (INEV Ip (IF (OCC pil) (IFTRIED pi2 (OCC pil))))

(INEV Ip (IF (OCC pi2) (IFTRIED pil (OCC pi2)))))

NI-CND is true iff it is inevitable at lp that if pil occurs and pi2 were to be attempted
then pil would (still) occur, and if pi2 occurs and pil were to be attempted then pi2

would (still) occur. If plan instance pil and pi2 are related by NI-CND, and it is

146

inevitable at Ip that both pi and pi2 are individually executable, then it is
inevitable atlp that r(COMP pil pi2)l is executable:

NI-TH)

(IF(AND (INEV Ip (IF (OCC pil) (IFTRIED pi2 (OCC pil))))
(INEV Ip (IF (OCC pi2) (IFTRIED pil (OCC pi2)))))

(IF (AND (INEV Ip (EXECUTABLE pil))
(INEV Ip (EXECUTABLE pi2))

(INEV Ip (EXECUTABLE (COMP pil pi2))))))

Plan Instances that Conditionally Interfere

Although two plan instances having the form F(heating pn brnr)CqI 1 interfere
with each other depending on the arguments to the heating function, two particular
heating plan instances either interfere under all possible conditions or do not
interfere under all possible conditions. We now examine two plan instances that
conditionally interfere. Suppose that the agent can always carry on one suitcase for
a plane flight, but can only carry on two suitcases if the plane is not completely full.
We assume that this relation is inevitable at the time of planning Ip. Let the
function term r(carry sc)@I1 refer to a plan instance where the agent carries on
suitcase sc for the plane flight during interval I. If we assume that the terms scl and
sc2 denote distinct suitcases, we have the following relation:

CR1)
(INEV Ip

(IF (AND (OCC (carry scl)@I) (OCC (carry sc2)CI))
(HOLDS plane-not-full I)))

Now, CR1 alone does not indicate that F(HOLDS plane-not-full I)1 is a necessary
condition needed in order to execute f(carry scl)@Il and r(carry sc2)@I1 together. It
might be the case that r (HOLDS plane-not-full I)1 is the joint effect of executing
r(carry scl)@I1 and r(carry sc2)@I1 together.

Allen's and Koomen's system [Allen&Koomen 83b] cannot distinguish between
the case where r(HOLDS plane-not-full I)1 is a necessary condition needed to execute
r(carry scl)@lI and r(carry sc2)@Il together from the case where r(HOLDS plane-
not-full I)l is their joint effect. This lead to some problems that we noted earlier in
section 2.3. Suppose, using their system, the planning environment specifies that
the material implication embedded within INEV in CR1 holds, but the planning
environment does not specify that r(HOLDS plane-not-full 1)1 is either true or is
false. If both F(carry scl)@Il and F(carry sc2)@Il are executable individually (their
preconditions hold), the system would allow a plan with both plan instances in it.
The reason for this is that a statement saying that both r(carry scl)@Il and r(carry
sc2)@I1 occur is consistent (in interval logic) with the material implication
embedded within INEV in CR1. The behavior of Allen's and Koomen's system is

147

correct if r(HOLDS plane-not-full 1)] is the joint effect of the two plan instances. On
the other hand, their system leads to incorrect results if F(HOLDS plane-not-full I)1
is a necessary condition under which the two plan instances can be executed
together. If the agent cannot bring about F(HOLDS plane-not-full)1, then we
would want the planner to conclude that the plans success is contingent on whether
r(HOLDS plane-not-full I)1 is true. Conversely, if the agent can bring about
r(HOLDS plane-not-full)1, we would want the plan to contain a step that brings

about this condition.

In our logic, we can state that r(HOLDS plane-not-full I)1 is a necessary condition
under which r(carry scl)4I 1 and r(carry sc2)@Il can be executed together:

CR2)
(INEV Ip

(IF(EXECUTABLE (COMP (carry scl)@I (carry sc2)@I))
(HOLDS plane-not-full I)))

A specification of a planning problem may explicitly encode relations such as CR2.
For example, the planning algorithm we present in chapter six requires the user to
specify, for each pair of overlapping paln instances, the conditions under which they
do not interfere. One, however, can also derive such relations in our logic from other
facts about the world. For example, CR2 is true if the agent cannot bring about the
property plane-not-full at any time under any circumstances possible at Ip. This
relation can be given by:

CR3)
(INEV Ip

(IF (NOT (HOLDS plane-not-full ?i))
(IFTRi ?pi (NOT (HOLDS plane-not-full ?i)))))

In appendix G, we show that CR2, can be derived from CR1 and CR3 (if I is in the
future of Ip). We can even prove something stronger from CR1 and CR3:

CR4)
(INEV Ip

(IF(NOT (HOLDS plane-not-full I))
(NOT (IFTRIED ?pi

(EXECUTABLE (COMP (carry scl)(I (carry sc2)@I)))))

CR4 says that it is inevitable at Ip that if r(NOT (HOLDS plane-not-full I)1 holds
then there is no plan instance that the agent can perform to make r(COMP (carry
scl)@I (carry sc2)@I))l executable.

In the above example, CR1 relates two concurrent plan instances to a condition
that holds during their execution time. If we modified this specifications so that it
relates two concurrent plan instances to a condition that holds prior to their

I_

148

execution time, then we can prove that this condition is a necessary condition, not a
joint effect. That is, from:

CR5)
(AND (Prior 10 I)

(INEV Ip
(IF(AND (OCC (carry scl)@I) (OCC (carry sc2)@I))

(HOLDS plane-not-full I0))))

we can derive:

CR6)
(INEV Ip

(IF(EXECUTABLE (COMP (carry scl)@I (carry sc2)@I))
(HOLDS plane-not-full 10)))

Truly Parallel Plan Instances

We conclude this section by describing an example where we compose two "truly
parallel" plan instances, ones that must be executed together in order to occur.
Consider a situation where the agent may lift an object by applying pressure to two
ends of the object, one hand at each end. If pressure is applied to only one end, the
result is a pushing action, not part of a lifting action. Let lift-left (: refer to the plan
instance that occurs if applying pressure to the left end of the object and raising this
arm results in a lifting event. Similarly, let lift-right @2 refer to the plan instance
that occurs if applying pressure to the right end of the object and raising this arm
results in a lifting event. To state that these two plan instances can only occur
together we write:

TP1)
(INEV Ip (1FF (OCC lift-left@I) (OCC lift-right@I)))

We introduce pressure-left@I to refer to the plan instance associated with the
generator of lift-left@1 (see section 3.2.3) and use pressure -right@I to refer to the
plan instance associated with the generator of lift-right@I. Thus, saying that lift-
left@I is attempted means that pressure-left@I occurs, similarly, for the connection
between pressure-right(@I and lift-right@I. Both these relations, which we assume
to be inevitable at Ip, are given by:

TP2)
(AND (INEV Ip (IFTRIED lift-left@I (OCC pressure-left@I))

(INEV Ip (IFTRIED lift-right@I (OCC pressure-right@I)))

We also assume that it is inevitable at lp that if lift-left@1 were to be attempted then
it would occur (i.e. it is executable) iff pressure is simultaneously being applied to the

149

right end. Similarly, we assume that the symmetric relation holds for lift-right @I.
These relations are given by:

TP3)
(AND (IFF (OCC pressure-right@I) (EXECUTABLE lift-left@I))

(IFF (OCC pressure-left@I) (EXECUTABLE lift-right@I))

Using TP1 - TP3, we can prove:

TP4)
(IF(NOT (INEV Ip (AND (OCC lift-left@I) (OCC lift-right@I)))

(AND (POS Ip (NOT (EXECUTABLE lift-left@I)))
(POS Ip (NOT (EXECUTABLE lift-right I)))
(INEV Ip (EXECUTABLE (COMP lift-left@I lift-right I))))

TP4 says that if it is not inevitable at Ip that lift-left@(I and lift-right adI both occur,
then i) it is possible at Ip that lift-left@1 is not executable, ii) it is possible at Ip that
lift-right@CI is not executable, but iii) inevitable at Ip that their composition is
executable. In appendix G, we give a proof showing the derivation from TP1 - TP2 to
TP4.

150

5.4. Plan Instance Effects

In a traditional planning system, the specification of a planning problem includes
the effects produced by each simple action. In these systems, an action's effects can
be given by a set of properties that hold immediately after the action completes. The
effects produced by a sequence of simple actions can be computed from the
specification of the effects of the simple action's along with deductive operators,
which we will shortly describe. In our framework, we will speak about the effects
produced by a plan instance. A plan instance's effects can be given by an interval
logic statement. In this section, we show holv the effects produced by simple plan
instances may be described and how the effects produced by a composite plan
instance can be determined from its component's effects.

If we say that interval logic statement EFF is an effect of plan instance pi, then
we assume that EFF holds in all branches possible at planning time Ip in which pi
occurs. Thus, if the specification of a planning problem is given by the set of
sentences S, EFF is an effect ofpi with respect to S only if the following holds:]

EFF-CND)
S = (INEV Ip (IF (OCC pi) EFF)

This treatment of effects is more general than the treatment of effects in state-
based systems. An action's effect in state-based systems refers to properties that
hold immediately after the action is executed. In our framework, a plan instance's
effects may refer to both events that occur and properties that hold while a plan
instance is being executed along with referring to conditions that hold after
execution.

Just like executability conditions, the effects for a whole class of plan instances
may be described by a function term. For example, we might use the function term
F(grasp obj)@Il to refer to the plan instance where the agent grasps the object obj
during interval I. The effect produced by r(grasp obj)@I1 is that the planning agent
is holding obj at a time immediately following I. The relation between a "grasp" plan
instance and its effect can be given by:

FIFI-CWDI) is not sutficient grounds to conclude that "EFF is an effect of pi with
respect to S" because, for one, EFF-CND is true for any logical truth that is
substituted for EFF. It is only proper to say that EFF is an effect of plan
instance pi if there is some connection between pi's occurrence and EFF being
true, that is, pt brings about about EFF. Thus, we might want another
necessary condition such as 'if pi were not to be executed, then EFF would not
be true". This condition could be represented in our framework, if we had a
construct, opposite to F(IFTRIED pi P)1, meaning that P would be true if pi were
not to be attempted. This glosses over some complications such as situations
where two agents bring about the same event.

151

GRI)
(INEV Ip

(IF (OCC (grasp ?obj)@?i)
(3?i2 (AND (MEETS ?i ?i2) (HOLDS (holding obj) ?i2)))))

Direct and Indirect Effects

In some planning systems [Wilkins 831 and formalisms [Georgeff 86], a
distinction is made between an action's direct effects and its indirect effects. In

I state-based planning systems, direct effects refer to properties that are explicitly in
the precondition-effect list. An action's indirect effects may be inferred from its
direct effects using a deductive operator, a term which we use from Wilkins. A
deductive operator specifies a relation between properties that hold in all states. For
example, a deductive operator can be used to represent that a block is clear iff there
is no block on top of it. Thus, if we specify that the action "stack block bl on block b2"Ihas the direct effect "block bl is on block b2", we can use a deductive operator to infer
the indirect effect "block b2 is not clear". Without using deductive operators, both
"block bl is on block b2 and "block b2 is not clear" would have to modeled as direct
effects and would have to be explicitly included in the precondition-effect list. Thus,
the use of deductive operators affords a more succinct planning problem description.
Wilkins also notes that deductive operators can be used to specify conditional effects,
something that cannot be done in systems such as NOAH [Sacerdoti 77] and
NONLIN [Tate 77].

3I3eorgeff uses the term causal law to describe statements that relate properties
and events (In section 5.5, we describe Georgeff's theory, which treats simultaneous
events, in some detail). Causal laws are more general than deductive operators since
they relate events with events, properties with properties, properties with events,
etc. They can be used to represent the relation between the "on" relation and the
"clear" relation that we just described. They can also be used to describe a relation
between events such as "If a cup is resting on a saucer and the saucer is moved then
the cup also moves".

In our framework, we would encode causal laws so that they are relations
between conditions that inevitably hold at planning time. For example, the causal
law "if the vase is dropped, it will break" can be given by:

CL1)
(INEV Ip

(IF (OCCURS (drop vase) ?i)
(3?i2 (PRIOR ?i ?i2) (HOLDS (broken vase) ?i2))))

Statements having form CLI and statements describing the relation between a plan
instance and its effects can be combined together. Given that EFF is the effect of
some plan instance pi and that it is inevitable that if EFF holds then EFF2 will also
hold, we can derive that it is inevitable at planning time that if pi occurs then EFF2.

152 i
Thus, if r(OCCURS (drop vase) I2)1 is an effect of the plan instance where the agent
pushes the vase off the table at a time I which is immediately prior to 12:

CL2)
(INEV Ip 3

(IF (OCC push-vase-off@I1)
(OCCURS (drop vase) 12)))

we can derive using CLI that it is inevitable at Ip that if the agent pushes the vase
off during I1, the vase will break at a time after 12:

CL3)
(INEV Ip

(IF (OCC push-vase-off@ 11)
(3?i3 (PRIOR 12 ?i3) (HOLDS (broken vase) ?i3)))

When solving a goal, it does not matter whether a plan instance's direct effects I
achieves the goal, or whether the action's indirect effects achieves the goal. We are
only interested in whether or not it is inevitable at planning time that if a plan
instance occurs, then the goal holds. Moreover, our logic does not provide a basis for I
distinguishing between indirect and direct effects.

The Effects Produced by Composite Plan Instances I
The relation between the effects of a composite plan instance and the effects of its 3

components stems from the following relation. If EFF1 is an effect of plan instance
pil, then EFF1 holds ifpil occurs, no matter which other plan instances are executed
in conjunction with pil. That is, the following is a theorem in our logic: I

CE1)
(IF(INEV Ip (IF (OCC pil) EFF1))I

(INEV Ip (IF (OCC (COMP pil pi2)) EFF1)))

CE1 can be interpreted as saying that if EFF1 holds in all branches possible at Ip in 3
which pil occurs, then EFF1 also holds in all branches possible at Ip in which both
pil and pi2 occur together. Consequently, if EFF1 is an effect of pil and EFF2 is an
effect of pi2, both effects hold if the composition of pil and pi2 occurs:

CE2)
(IF(AND (INEV Ip (IF (OCC pil) EFF1)) I

(INEV Ip (IF (OCC pi2) EFF2)))
(INEV Ip (IF (OCC (COMP pil pi2)) (AND EFF1 EFF2)))) l

The converse of relation CE2 does not necessarily hold, however. There may be
effects that are only produced if two plan instances are executed together, such as 3

U
3

i 153

I when an object can be lifted by using both arms together, but not by either of the
arms individually.

The relation captured by CE2 suggests a simple connection between non-linearI planning [Sacerdoti 77] and our framework. If the goal condition consists of a
conjunction of two conditions G1 and G2, we can look for two plan instances pil and
p12 that respectively achieve G1 and G2, knowing that if they occur together then
both G1 and G2 will hold. This does not mean, however, that these two plan
instances can be executed together. We must also show that it is inevitable that
their composition is executable. As we illustrated in section 5.3, the relation
between a composition's executability conditions and the executability conditions for
its components is more complex than the relation for effects. It is not simply the case
that if both pil's and pi2's executability conditions hold, then it is inevitable that
their composition is executable.

There is no relation analogous to CE2 in situation calculus. That is, it is notI necessarily true that if EFF1 is an effect produced by action al, and EFF2 is an effect
produced by a2, then the conjunction of EFF1 and EFF2 is an effect of a composition
of al and a2 (a sequence). The reason for this is that the effects of a sequence are the
effects produced when the sequence completes. In situation calculus, one does not
say that the effects of sequence al;a2 are that al's effects are true between al's and
a2's execution and a2's effects are true after a2's execution. When al,:a2 compleles,3 al's effects may not hold, this being the case if a2 negates these effects. Thus, to
compute the effects of a sequence, one must know which properties that the actions
in the sequence affect along with the properties that they do not affect. This involves
a solution to the frame problem. For example, the effects of al,'a2 are the effects of a2
conjoined with the effects of al that are not adversely -fected by a2.

In our system, the above situation surfaces under a different guise. Suppose that
we have two plan instances evl@I1 and ev2@I2 where interval I1 meets interval 12.
Thus, the composition of evl@I1 and ev2@12 can be thought of a sequence. Also

I assume that evl@ll makes property prl true immediately following its execution
and ev2@ 2 makes property pr2 true immediately following its execution. These
relations can be given by:

I CE3)
(AND (INEV Ip (IF (OCC evl@Il)

(3?i (AND (MEETS I1 ?i) (HOLDS prl ?i)))))
(INEV Ip (IF (OCC ev2@I2)

(3?i (AND (MEETS 12 ?i) (HOLDS pr2 ?i)))))I
I
I
1
I

154

Now, if both evl@I1 and ev2(4712 occur together, it is not necessarily true that both
pri and pr2 hold after this composition completes, i.e. immediately following 12.
Rather, if this composition occurs, then prl is true immediately after I1, and pr2 is
true immediately after 12:

CE4)
(INEV Ip

(IF (OCC (COMP evl@I1 ev2@I2))
(AND (3?i (AND (MEETS I1 ?i) (HOLDS prl ?i)))

(3?i (AND (MEETS 12 ?i) (HOLDS pr2 ?i))))))

CE4 says nothing about whether prl holds immediately after 12. This would not be
the case if the occurrence of ev2gI2 negates pr2, or if some other event, that possibly
occurs during 12, negates prl. One way to insure that pri remains true th-nughout
interval 12, is to explicitly introduce a plan instance that maintains this pr.perty, if
such a plan instance exists. Determining how long a property, that is true at some
time, remains true and whether there is a "maintenance plan instance" that can be
executed in conjunction with other plan instances is where the frame problem
surfaces in our system. This and related issues are discussed in the next two
sections.

155

5.5. Persistence and Simultaneous Events

In this section, we examine the persistence problem [McDermott 82] which is the
problem of determining how long a property remains true in a formalism that allows
simultaneous events. We first show that the STRIPS assumption (see section 1.2) is
inappropriate in a formalism that allows simultaneous events. Recall that the
STRIPS assumption is used to determine which properties remain constant from one
state to the next when an event is applied. We then analyze the persistence problem
by breaking it up into two steps: i) finding the set of possible events that can negate
some property, and ii) determining whether any of these events possibly occur. Only
the first step is related to the STRIPS assumption. We demonstrate that the
persistence assumption, as put forth by some authors [McDermott 82]
[Hanks&McDermott 85] as a replacement to the STRIPS assumption, hides these
two steps and can lead to problems when reasoning about planning. In the following
section (5.6), we investigate plan instances that maintain properties over intervals,
which we use in place of the persistence assumption when reasoning about planning.

In situation calculus, the result of applying an event in a situation typically
leaves most properties unchanged. The reason that a property does not change from
situation to situation is not really due to the event that occurs between the
situations, but instead is due to the non-occurrence of other events that can negate
this property. This distinction is not made when using the STRIPS assumption but
this is not problematic since in the state-based representation, only one event can
occur between two successive situations. On the other hand, it is important to make
this distinction in a formalism, such as ours, that represents simultaneous events. If
property pr persists through interval I, we must attribute this persistence to the non-
occurrence of any event that can negate property pr during interval I. The
persistence is not attributed to the occurrence of an event or set of events that occurs
during I. Georgeff makes a similar point in (Georgeff 86] where he describes a
theory of action and events that models simultaneous events. Very roughly,
Georgeff's theory is a modification and extension of situation calculus that can model
simultaneous events. We will shortly describe his theory in some detail.

We clarify the above point with an example. So as not to distract from the main
points and to facilitate a comparison between our work, situation calculus, and
Georgeff's theory, we will work with a temporal theory that is simplified in the
following ways. We assume that there is a set of intervals that are numbered by the
non-negative integers. Interval 10 corresponds to the "initial situation" which meets
interval 11 which meets 12 etc. An interval term such as 11-2 will be used to refer to
the interval that is the concatenation of intervals I1 and 12. We also assume that
events only occur during the odd numbered intervals and produce effects that hold
throughout the following even numbered interval. Secondly, no change takes place
during the even numbered intervals. Thus, either a property is true throughout an
entire even interval or false throughout the entire interval (Allen and Hayes
[Allen&Hayes 84] refer to these type of intervals as moments). This simplified
theory is like situation calculus in that the world over time can be seen as an
alternating sequence of events and static situations.

156

Consider an "initial situation" in which two blocks A and B are at location locl:

Si)
(AND (HOLDS (at A locl) 10)

(HOLDS (at B locl) 10))

Let the term r(move A loc2)1 refer to the event "block A is moved to location loc2".
The result of this event is that block A is at location loc2 following its occurrence.
We assume that this connection is inevitable at time 10. The result of r(move A
locl)7 occurring during I1 may be given by:

S2)
(INEV 10

(IF(OCCURS (move A loc2) I1)
(HOLDS (at A loc2) 12)))

If only one event can occur at a time, as in situation calculus, we would be able to
infer that r(at B locl)1 remains true throughout interval I1-2 if r(move A loc2) 1

occurs during 11 and it does not affect this property. The STRIPS assumption could
be used to make such an inference. On the other hand, in a representation that
allows simultaneous events, this conclusion would be incorrect if it is possible at 10
that there is an event that occurs simultaneously with F(move A loc2)1 that changes
B's location. For example, consider the event F(move B loc2)l whose effect is that
block B is at location loc2 following its occurrence. Thus, the result of event r(move
B loc2)1 occurring during interval I1 may be given by:

S3)
(INEV 10

(IF(OCCURS (move B loc2) I1)
(HOLDS (at B loc2) 12)))

If we assume that it is possible at 1O that both r(move A loc2) 1 and F(move B loc2)1

occur simultaneously during I1,

S4)
(POS I0

(AND (OCCURS (move A loc2) I1)
(OCCURS (move B loc2) I1)))

then it is possible at 10 that r(move A loc2)1 occurs during I1 while block B ends up
at location Ioc2 at 12:

157U
S5)

(POS I0
(AND (OCCURS (move A loc2) I1)

(HOLDS (at B loc2) 12)))

IIn appendix G, we present a proof that demonstrates that S5 follows from S3 and S4.
Now, from statements Si and S5 along with a statement saying that an object3 cannot be at two locations at once, we can derive:

S6)3 (AND (HOLDS (at B locl) 10)
(POS I0

(AND (OCCURS (move A loc2) II)3(NOT (HOLDS (at B locl) 11-2))))

Statement S6 can be interpreted as saying that it is possible at 10 that the property
S"block B is at location locl"is negated during interval I1 -2 as block A is moved to

location loc2 during interval I1.

The Persistence Problem

We can analyze the persistence problem by breaking it up into two steps: i)

finding the set of possible events that can negate some property and ii) determining
whether any of these events occur. Using the simplified temporal theory that we

I' described above, it is straightforward to describe the set of possible events that can
negate some property. In this theory, a property that holds during an "even
interval" will persist through the two intervals that immediately follow it iff there is
no event that negates the property that occurs during the "odd interval" that
immediately follows the even interval. To state that property pr will persist through
the two intervals that immediately follow i as long as no member of {evl, ev2....
,evm} occurs during the interval following i, we write:

PP1)
(INEV 10

(IF(HOLDS pr i)
(IF(AND (NOT (OCCURS evl (S i)))

(NOT (OCCURS ev2 (S i)))

(NOT (OCCURS evm (S i))))

(HOLDS pr (SS i)))))

I where r(s i)1 refers to the interval that immediately follows i, and r(ss i)1 refers
to the concatenation of the two intervals that successively follow i. For example,3 r(S I0) equals 11 and F(SS I0)1 equals II -2.

158

As an example, we might state that property r(at B locl)l will persist through
interval 11 -2 as long as no member of { r(move B loc)] I loc is a location} occurs
during 11:

PP2)
(INEV 10

(IF(HOLDS (at B locl) 10)
(IF (V?loc (NOT (OCCURS (move B ?loc) I1))))

(HOLDS (at B locl) 11-2))))

From PP2 and a statement saying that it is not possible at 10 that r(move B loc)1

occurs during I1 for any location loc, we can derive that it is inevitable at 10 that if
r(at B locl)l holds during 1O, then it persists through I1 -2.

Using a more general temporal theory. one must take into account the time when
a property is negated with respect to the time when an event occurs. Is the property
negated at the completion of the event, negated when it begins, or negated in the
middle of execution? For example, suppose that it is inevitable at time Ip that if
event evl occurs, then property pr is negated at the completion of execution. If we
also assume that only evl can negate pr, we have the following relation:

PP3)
(IF (MEETS ?il ?i2)

(INEV Ip
(IF(HOLDS pr ?il)

(IF(V?i (IF (ENDS-DURING ?i ?i2) (NOT (OCCURS evl ?i))
(HOLDS pr ?i2)))

PP3 says that it is inevitable at Ip that if property pr holds during an interval ?il,
then it persists throughout any following interval ?i2 if event evl does not end
during ?i2. Vere [Vere 81], whose system handles actions with durations, makes the
assumption that simple actions produce changes at their completion. He also allows
actions that produce changes at the start of execution by modeling them as
"consecutive actions" which are two simple actions that must be executed together.

Georgeff [Georgeff 86] develops a representation that can succinctly describe the
set of actions that may negate some property. This formalism is a modification and
extension of situation calculus to allow for simultaneous events and actions. An
event in this theory is modeled by a transition function. This function is a mapping
from situation to set of situations, instead of a mapping from situation to situation as
in situation calculus. This modification allows the representation of simultaneous
events. Let TReyj refer to the transition function associated with event evi. Any
situation belonging to the set TRevi(s) is the result produced by the occurrence of evi
along with any event that possibly can occur simultaneously with evl starting from
situation s. If property pr is true in situation s, and evl does not affect property pr, it
does not necessarily follow that pr holds in any situation belonging to TRe.l(s).
Property pr might be negated by an event that occurs simultaneously with evl

1 159

starting at s. This result is analogous to the result that we have just shown in our
system.

An action in Georgeffs theory is more finely distinguished than an event. An
action is associated with a transition function along with a direct effects formula for
each n-ary predicate symbol in the language. Action al's transition function
corresponds to the event that is brought about by performing al. Action al's direct3 effects formulas are used for two purposes: i) to compute which actions can be
performed simultaneously with al, and ii) to describe the properties that are directly
effected by al, the ones that would necessarily be affected if al were to be executed in
isolation or in conjunction with other actions. In this section, we are primarily
concerned with the second function which gives rise to a schema for determining
when a property persists.

For simplicity, we only describe the direct effects formulas for propositional
symbols and will describe how Georgeffs system works if there are no other n-ary
predicates, that is, there are no n-ary predicates for n>0. Propositional symbols
refer to propositions that either hold or do not hold at each situation. With relation to
our system, they correspond to constant terms that denote properties. (note: n-ary
predicates correspond to n-ary property functions in our system). For each
proposition symbol P and action al, we let EFFp(al) refer to al's direct effects
formula for P. The truth value for the formula EFFp(al) may vary from situation to
situation. If EFFp(al) is true at situation s. then the performance of al directly
affects property P and its negation.

Using the direct effect formulas, Georgeff encodes "a persistence law" that says1 :

GPL)
Under all possible circumstances, if P (not P) holds in situation s, and there does
not exist an action al that occurs starting in s where EFFp(al) is true in s, then P
(not P) holds in the successor to s.

I We can translate Georgeffs persistence law into a schema in our language. We
make use of our simplified temporal theory where "even intervals" refer to static
situations and events occur during "odd intervals". The following schema ranges
over all property constants substituted for pr:

T To encode the law UPL, situation calculus is modified so the actual course of
events can be described. Typically, situation calculus has been used to describe
only the possible states that would arise if different sequences of events were to

I occur.

I
I
I
I

160

PP4)
(IF(EVEN ?i)

(AND (INEV 10
(IF (AND (HOLDS pr?i)

(V?ev (IF (HOLDS EFFpr (?ev) ?i)
(NOT (OCC ?ev (S ?i))))))

(HOLDS pr (SS ?i))))
(INEV I0

(IF (AND (NOT (HOLDS pr ?i))
(V?ev (IF (HOLDS EFFpr (?ev) ?i)

(NOT (OCC ?ev (S ?i))))))
(NOT (HOLDS pr (SS?i)))))))

where r(EVEN i)1 is true iffi is an even interval, r(s)1 refers to the interval that
immediately follows 1, and r(SS)1 refers to the concatenation of the two intervals
that successively follow i.

PP4 says that for any even interval i, it is inevitable at 10 that if property pr holds at
i, then pr will persist through the two intervals that successively follow i as long as
no event et,, that makes EFFpr(ev) true at i, occurs in the interval following i,
similarly for pr not holding during i. Thus, we see that GPL is a schema for
specifying statements of the form PP1 where {ev I EFFpr(ev) holds during i}
represents the set of possible events, occurring during r(s i)1, that can negate the
persistence ofpr and its negation during interval r(SS)1.

Persistence and Non-Deductive Schemas

The difficulties associated with the persistence problem arise when a description
of a temporal scenario does not include statements, such as PP1, that specify all the
possible events that can negate some property. For example, a description might
specify that events evl and ev2 negate property pr, but does not indicate whether
these are the only events that can negate pr. Using deductive rules alone, one
cannot infer from this description that pr persists over interval I even if the
description includes that evl and ev2 do not occur during a time that can negate pr
during I. This inability to reach conclusions based on deductive inference has led to
non-deductive schemas such as:

PER-ND)
if property pr holds immediately prior to interval I, and there is no indication that
pr is not true throughout I, assume that pr holds throughout I

We call PER-ND a non-deductive schema because a conclusion can be reached from
the lack of information. It is non-monotonic since later information can nullify an
earlier conclusion. McDermott [McDermott 82] encodes a schema similar to PER-
ND by extending his deductive logic of events and time with a non-monotonic
operator. Very roughly, he equates "there is no indication that P is false" with "the

161

negation of P is not provable from the set of sentences (describing the scenario under
consideration)". Dean [Dean 84] has developed a system that represents temporal
scenarios that makes use of this interpretation of the persistence schema suggested

i by McDermott. To implement this mechanism he has to be able to efficiently
compute when a set of properties are inconsistent when taken together. This is done
by restricting the way properties can be logically related.

McDermott states that his persistence schema is intended to represent the
relation "properties stay constant unless they are forced to change". This is not what
his non-monotonic rule is capturing, however. (He does note that the introduction of

a non-monotonic operator might cause some problems.) The statement "properties
remain constant unless they are forced to change" describes the outside world and
makes no mention of an agent's set of beliefs. On the other hand, by using a non-
monotonic operator, he is encoding a relation between a set of sentences, presumably
representing an agent's belief state, and a conclusion that may be reached from these
sentences. He is encoding "Unless it is known (from some set of sentences) that a

property is forced to change assume that this property does not change". Now, such
an inference may be warranted, but only if we assume that the description of a
temporal scenario adheres to the following principle:

DSCRPT-ASMPT)
A description of a temporal scenario explicitly mentions when properties change
and, by omission, it is assumed that a property remains constant.

In summary, by proposing his non-deductive persistence assumption, McDermott
is implicitly making an assumption about the kind of descriptions that are used to
represent a temporal scenario (i.e., they adhere to principle DSCRPT-ASMPT). He
does not take care in distinguishing the issues concerned with assumptions about theI- type of descriptions that are explicitly stored from the issues concerned with a logic
that describestimes and events. Georgeff [Georgeff 86] makes a similar point by
saying, "Unfortunately, this problem [reasoning with incomplete descriptions] is
often confused with the representation of actions, with the result that there is no
clear model-theoretic semantics for the representation". It seems that the
persistence problem has been taken to be the problem of computing and representing
the persistence of properties when working with a description that meets DSCRPT-
ASM2T.

Breaking the persistence assumption into two steps

Earlier in this section, we noted that the persistence problem can be analyzed by
breaking it up into two steps: i) finding the set of possible events that can negate
some property and ii) determining whether any of these events occur. Only the first
part relates to the STRIPS assumption. The second part is not concerned with
describing what events do not affect, which we take to be the general problem that
the STRIPS assumption is addressing. The non-deductive persistence assumption

162

given by PER -ND does not divide the problem into these two parts. This may lead to
unexpected "side-effects". We present an example to clarify this and then show that
two different types of non-deductive rules may be used to replace the persistence
assumption.

Consider the following example which we represent using our simplified
temporal theory. Suppose that pr is true at 10 and it is inevitable at 1O that if event
ev occurs during I1 then pr will not persist throughout 11-2. This can be given by the
following statements:

Si) (HOLDS pr I0)

S2) (INEV 10 (IF (OCCURS ev Il) (NOT (HOLDS pr 11-2)))

If this is the entire description of a temporal scenario, then there is no evidence that
contradicts "it is inevitable at 10 that pr holds during I1 -2". Thus, if we used a
persistence assumption similar to McDermott's, we would get the following
conclusion:

S3) (INEVIO (HOLDS prI1-2))

Taking S2 and S3 together leads to F(INEV 10 (NOT (OCCURS evl I1)))1, the
conclusion that it is inevitable at 10 that event ev does not occur during I. Thus, a
side-effect of applying a persistence assumption is that if there is an event that can
negate some persistence and there is no information about this event's occurrences,
then it follows that this event does not occur. This side-effect can lead to problems
when reasoning about planning. If it is not explicitly asserted that the planning
agent's actions are possible, then the conclusion may be reached that the agent
cannot perform any actions that can negate some persistence.

An alternative to having a persistence assumption, such as PER-ND, is to have
two assumptions that correspond to the two steps involved in the persistence
problem. Thus, we might have the following non-deductive schemas:

NOT-NGT-ND)
If there is no evidence that event ev occurring during 1I negates the persistence of
property pr during 12, assume that this occurrence does not negate this
persistence

NOT-OC-ND)

If there is no evidence that event ev occurs during I, assume that ev does not occur
during . 3

Alternatively, we can weaken NOT-OC-ND so that it only applies to events not
performed or caused by the planning agent so as not to lead to problems when
reasoning about planning. One might even choose to only use one of these two
assumptions, or weaken them in different ways.

I

!

163

We intend to use NOT-NGT-ND so that we can go from a description saying that
the persistence of pr during I1 -2 is negated if evl or eu2 occur during 11:

NDS1)
(INEV 1O

(IF(HOLDS pr IO)
(IF(OR (OCCURSevlI1)

(OCCURS ev2 II))
(NOT (HOLDS pr II-2)))))

to a description saying that the persistence ofpr during I1 -2 is negated iff eul or ev2
occur during II:

NDS2)
(INEV I0

(IF(HOLDS pr 10)
(IFF (OR (OCCURSevl II)

(OCCURS ev2 II))
(NOT (HOLDS prIl-2)))))

In this work, we have not tried to formalize NOT-NGT-ND in some non-monotonic
logic thereby formalizing an inference from NDS1 to NDS2. This problem can be
factored out from the problems that we are concentrating on here, namely
characterizing a deductive logic of action and time.

If we had a procedure that could go from NDS1 to NDS2, we could start with a
description suct as NDS1, preprocess it to form NDS2, and then use deductive
reasoning (in our logic) to form a plan. We make use of such "preprocessed"
descriptions in the next section where we describe the conditions under which the
planning agent can cause some property to persist. 2 As we will see, in order to
conclude that the agent can cause some property to persist under all conditions, we
must know that there are no possible external events that can negate the property.

2 Treating non-deductive reasoning as a preprocessing operation seems more in
the flavor of circumscription [McCarthy 80] than default logic [Reiter 80] or
McDermott's and Doyle's logic [McDermott&Dolye 80] where deductive and
non-deductive reasoning are intermixed. We must note, however, that we do
not necessarily favor one approach over the other. We are describing non-
deductive inference as a preprocessing stage to the deductive part for analysis
purpose. This enables us to look at the role played by deductive reasoning.
When constructing an inference mechanism, however, we do not necessarily
want to do all the non-deductive reasoning first.

164 I
5.6. Maintaining a Property

If the agent can execute some plan instance to make property pr persist, we say I
that pr can be maintained. In an environment in which all changes are caused by
the planning agent, any property can be maintained. In a planning environment in
which external events can also produce changes, the treatment of maintenance is
more complex. There are some properties that the planning agent can maintain,
there are properties that the planning agent cannot maintain, and there are
properties that the planning agent can conditionally maintain.

If it is inevitable at 10 that pr can be maintained throughout interval 11-2, then
the following holds 1,2: I

MTN)
(3?pi (INEV 10

(IF (HOLDS pr 10)
(IFTRIED ?pi (HOLDS pr I1-2))))) 1

A case where MTN does not hold is when the agent cannot prevent a property from
being negated. Consider the following example. Assume that i) a mainframe is
operational during 10, ii) it is possible that this machine will not be operational I
during I1 -2, and iii) it is not in the agent's control to prevent the mainframe from
going down. This can be represented in our language by: I

MF1)
(AND (HOLDS (mf-status running) 10)

(POS 10 (NOT (HOLDS (mf-status running) 11-2))) I
(INEV 10

(IF (NOT (HOLDS (mf-status running) 11-2))

(IFTRIED ?pi (NOT (HOLDS (mf-status running) 11-2))))))

where the term r(mf-status running)l refers to the property "the mainframe is
operational". I

In appendix G, we give a proof that shows that MTN, substituting r(mf-status
running)l for pr, is inconsistent with MF1. We must also point out that the agent I
may not be able to maintain a property although it can bring about its negation. For

We are glossing over the fact that its is not entirely correct to say that pr is I
maintained through interval I1-2 if it is inevitable at 10 that pr holds during 11 -

2. In this case, no matter what the agent does, pr will hold during 11-2.

2 There is weaker sense of "it is inevitable at 1O that pr can be maintained
throughout interval 11 -2" corresponding the case where the 3 symbol is on the
inside of INEV, instead of on the outside. This corresponds to the case where in I
different possible branches, a different plan instances may be required to keep
property pr true. A similar distinction was discussed in section 5.1 1

I
____ ___ ___ ____ ___ ___ ____ ___ ___I

3 165

example, the agent may be able to deliberately crash the machine but cannot
prevent the machine from going down.

Let us now examine a case where it is entirely in the agent's control to maintain
some property. Suppose that if the agent's car is parked on Wilson Boulevard during
time 10, it will remain parked through interval I1-2 if the car is not moved to another5 location during interval 11. We can express this in our language as follows:

CP1)
(INEV I0

(IF(HOLDS (car-parked Wilson) 10)
(IF (V?loc (NOT (OCCUR (car-moving-to ?loc) I1)))3 (HOLDS (car-parked Wilson) I1-2))))

If we assume that only the planning agent can cause a car moving event (and the
agent is not forced to perform a car moving event) then the agent can choose not to
perform a car moving event. Consequently, there will be a plan instance that
corresponds to the non-occurrence of any car moving event during interval Ii. We
will let not-move-car@L1 refer to this plan instance. 3 The relation between not-
move-car,,I1 and F(car-moving-to loc)1 is given as follows:

CP2)
(INEV 10

(IF (OCC not-move-car@il)3 (V?loc (NOT (OCCURS (car-moving-to ?loc) II)))))

Using statements CP1 and CP2, we can derive:

I CP3)
(INEV 10

(IF (HOLDS (car-parked Wilson) 10)
(IF (OCC not-move-car@il)

(HOLDS (car-parked Wilson) 11-2))))

I Statement CP3 says that it is inevitable at 10 that if the car is parked on Wilson
i Boulevard during time 10, it will remain parked through interval 11-2 if the plan

instance not-move-car@il occurs. In a typical situation, a plan instance
corresponding to the non-occurrence of a set of events, such as not-move-car@1 , can
be done at will. That is, there are no executability conditions associated with a non-

1 We can also talk about a plan instance that corresponds to the non-occurrence of
a car moving event to a particular location during interval I1. The plan instance3 not-move-car(g:ll equals the composition of all these plan instances

I

I

166 I
occurrence plan instance. Thus, we assume that it is inevitable at 10 that not-motle-
card)I1 is executable:

CP4)
(INEV 10 (EXECUTABLE not-move-car@i1))

Taking CP3 and CP4 together, we can derive:

CP5)
(INEV 10

(IF(HOLDS (car parked Wilson) 10)
(IFTRIED not-move-car@I1

(HOLDS (car parked Wilson) I1-2)))))

Statement CP5 says that under all circumstances possible at 10, the property F(car
parked Wilson)1 can be maintained by performing not-move-ca r(411.

In the above scenario, the property (car parked Wilson)1 may also be maintained I
through 11 2 as a "side effect" of performing a plan instance that cannot occur
simultaneously with any car moving event. For example, the performance of a plan
instance corresponding to working in the library during interval 11 precludes a car
moving event from occurring:

SLI)
(INEV 10

(IF(OCC stay-in-library@I1)
(V?loc (NOT (OCCURS (car-moving-to ?loc) I1))))) I

Using the same line of reasoning as we did for not-move-ca r@t11, we can prove that
r(car parked Wilson)l may be maintained through 11-2 by performing stay-in-
library@I1.

The next case to consider is where both the agent and the external environment
can cause the car to be moved from Wilson Boulevard. Assume that there are two
ways that the car may be moved from Wilson Boulevard. One way is if the agent
moves the car and the other way is if the car is towed away. Thus, we have the
following:

CT1)
(INEV 10

(IF (HOLDS (car-parked Wilson) 10)
(IF (AND (OCC not-move-car @I1)

(NOT (OCCURS (car towed) I1)))
(HOLDS (car-parked Wilson) I1-2))))

CT says that it is inevitable at 10 that if the car is parked on Wilson during 10. then
it will remain on Wilson during 11-2. if the agent does not move the car during 11 and
the car is not towed during I1. We would like to show that F(car-parked Wilson)l can

167

be maintained through 11 -2 if it is not possible at 10 that the car is towed during II.
That is, we would like to show the following:

CT2)
(IF(NOT (POS 10 (OCCURS (car towed) I1)))

(INEV 10
(IF (HOLDS (car-parked Wilson) 10)

(IFTRIED not-move-car@ I1
(HOLDS (car parked Wilson) 11-2)))))

CT2, however, does not logically follow from CT1 because CT1 does not rule out the
case where the execution of not-move-car1 causes F(car towed)l to occur during
I1; statement CT1 does not describe the relation between r(car towed)1 and not-
move-car@1. For a realistic example, we would want to specify that not-move-
car@I1 has no affect on whether r(car towed)1l occurs or not. This can be represented
by:

CT3.)
(INEV 10

(AND (IF (OCCURS (car towed) I1)
(IFTRIED not-move-car@I1 (OCCURS (car towed) I1)))

(IF (NOT (OCCURS (car towed) I1))
(IFTRIED not-move-car(di1

(NOT (OCCURS (car towed) I1))))))

Maintenance and Phantom Nodes

Phantom nodes, which are used in non-linear planning systems [Sacerdoti 771,
relate to maintenance plan instances. In a non-linear planner, if an action a, that is
introduced into the plan, has a precondition that holds at an earlier time and there is
-io intermediate action that negates this precondition, a phantom node is created.
The presence of a phantom node indicates that it is not necessary (at least at this
stage) to explicitly introduce another action to achieve this precondition. If the
system finds another action a2 in the plan whose effects negates al's precondition,
the system tries to order this action to follow al. If this ordering is not possible, the
system must introduce a third action following a2 and before al that restores al's
precondition, or remove either al or a2 from the plan. This strategy can be seen as
an implementation of the STRIPS assumption.

In our system, plan instances that maintain some property take the place of
phantom nodes, although there are some important differences. In our system, not
every property can be maintained, while in a non-linear planning system, a phantom
node may be created for any property. For example, if property pr is out of the
agent's control, then pr cannot be maintained. In a state-based system , if property
pr is asserted to hold in the initial state, then a phantom node may be created for pr
appearing in any action's precondition list. This is true since we are assuming that

168

pr is out of the agent's control, and consequently there are no intermediate actions
that can negate pr. As we mentioned in section 1.2, this leads to problems if we do
not assume that all changes in the world are caused by the planning agent. In a
system, such as DEVISER [Vere 81] that uses phantom nodes and represents
external events, one must be careful in specifying the planning environment. If a
property that th,- agent cannot affect is asserted to be initially true, then the
planning environment must also include all external events that affect the value of
this property. For example, if it is asserted that "the bank is open" holds in the
initial state, it is necessary to include the external event that negates this property
at the time when the bank is closing. If this is not done, we would get the spurious
result that the precondition "the bank is open" is always satisfied.

One might suggest that a quick fix to a state-based system is to characterize
properties as being either in the agent's control or not in the agent's control and to
only create phantom nodes for properties in the agent's control. While this will
handle some cases, there are other situations that cannot be treated. For instance,
properties that are affected by both the agent and the external world cannot be
handled by this simple scheme. Consider the example we gave in the last section
where a parked car is moved iff the agent moves the car or if the car is towed. In this
situation, we come up with the plan instance "do not move the car during time F' that
conditionally maintains the property "the car is parked" during I. It is not clear how
a state-based system can be modified to handle a conditional maintenance without
moving to a system that treats phantom nodes just like actions, as we do in our
system. By treating phantom nodes as maintenance actions, we could encode the
above scenario by representing an action "maintain 'the car is parked"' whose
executabilitv conditions are that "the car is parked" holds just prior to execution and
"the car is not being towed" holds during execution.

Maintenance and interference

The important feature of a phantom node is that it cannot be used to link a
property true at some state to a later state if there is an intermediate action that
negates the property. Analogously, in our system, a property cannot be maintained
over some interval I if a plan instance occurs during I that negates this property.
Consequently, if plan instance pi2 maintains the properties during ! that are needed
for plan instance pi to be executable, any earlier plan instance that would negate pi's
executability conditions would also conflict with pL2. Thus, the conflict where an
earlier plan instance ruins a later one's executability conditions can be detected by
only considering concurrent interactions. In the following chapter, we present an
algorithm that exploits this relation.

In a system such as Wilkins' [Wilkins 83] that uses phantom nodes but allows
concurrent actions, there is one mechanism for finding conflicts where one action's
effects ruins another's preconditions and another for finding conflicts between
concurrent actions, this being the resource mechanism. In our system, since both
types of conflicts are detected as concurrent interactions, only one type of mechanism

169

is needed. In a paper describing resource management in planning, Bell suggests a
similar idea in [Bell 85] where he says that the interaction between an earlier
action's effects and a later one's preconditions can be though of as "logical" resource
conflicts. Thus, all conflicts can be detected by making sure that concurrent actions
do not use up the available resources.

To help clarify the points made above, we present a simple "blocks world"
example. We will refer to three intervals: Ip, which meets I1, which meets 12.
Interval Ip refers to planning time. Consider the term r(grasp blkl)C121 which
refers to the plan instance where the agent grasps block blkl during interval 12.
This plan instance is executable if the property r(clear blkl)l holds during interval
I1. We assume that r(clear blkl) holds at planning time Ip. Thus, the agent can
successfully perform r(grasp blkl)(I21 if it can maintain r(clear blkl) through
interval I1. We assume that this can be done and will let r(keep-clear blkl)@I 1 I
refer to the plan instance that maintains property r(clear blkl)l through interval 11.
We also assume that it is inevitable at Ip that r(keep-clear blkl)66 Ill is executable.
Consequently, it is inevitable at Ip that the composition of [(keep-clear blkl)& Ill
and r(grasp blkl)@12' is executable. This result follows from the theorem thatis
given below (and which is derivable from SEQ-TH2 and SEQ-TH3, given section
5.3):

SEQ-TH4)
(IF(AND (PRIOR Ip (TIME-OF pi1))

(PRIOR (TIME-OF pil) (TIME-OF pi2)))
(IFF (AND (INEV Ip (EXECUTABLE pil))

(INEV Ip (IF EC2 (EXECUTABLE pi2)))
(INEV Ip (IF (OCC pil) EC2)))

(INEV Ip (EXECUTABLE (COMP pil pi2))))))

SEQ-TH4 says that iflp is prior to pil which is prior to pi2, then it is inevitable at Ip
that the composition of pil and pi2 is executable iff i) it is inevitable at Ip that pui is
executable and ii) it is inevitable at !p that pil brings about pi2's executability
conditions. SEQ-TH4 applies to our example by substituting r(keep-clear blkl)@UI1I
forpil, r(grasp blkl)@121 forp12, and r(HOLDS (clear blk1) I1)1 for EC2.

Let us now consider a third plan instance that is prior to r(grasp blkl)@12 1 , one
that might ruin r(grasp blkl)@121's executability conditions. We assume that this
plan instance's time of occurrence is I and we will use ev@I1 to denote it. Now, if
ev')11 is introduced into the plan along with r(keep-clear blkl)@I11 and r(grasp
blkl)121, we must make sure that it is inevitable at Ip that all three plan instances
are executable together (We are ignoring the case where a fourth plan instance is
introduced that enables the three plan instance to be executed together). Applying
SEQ-TH4, substituting r(COMP ev(aIl (keep-clear blkl)@I1)1 for pil, r(grasp
blkl)aI21 for p12, and F(HOLDS (clear blkl) I1)1 for EC2, leads to:@

170

I
GB1)

(IFF (INEV Ip (EXECUTABLE (COMP ev_ II (keep-clear blkl)(11)
(INEV Ip (EXECUTABLE (COMP ev@I1

(keep-clear blkl)@aI1
(grasp blkl)@12))I

where we are letting COMP take three arguments since it is associative

GB1 can be read as saying that it is inevitable at Ip that all three plan instance are I
executable iff it is inevitable at Ip that ev'a)II and r(keep-clear blkl)(,I1)l are
executable when taken together. Thus, we can detect whether eL',1l ruins r(grasp
blkl)@121's executability conditions by seeing whether ev 1 conflicts with F(keep-
clear blk1)@I11, the simultaneous plan instance that maintains r(grasp blkl)(121's
executability conditions. Clearly, if ev1 negates F(clear blkl)l during its
execution then it conflicts with r(keep-clear blk 1)CI 11.4

i
4 Ifev'J11 negated '(clear blkl)l after execution then it is possible that this plan

instance and F(keep-clear blk1)CiT'T can be done together. If they can be done I
together and additionally, negating r(clear blkl)l after 11 ruins F(grasp
blkl)@12 1's executability conditions, then it is not inevitable that the
performance of F(keep-clear blkl)@I11 brings about F(grasp blkl)@121's
executability conditions, if ev@I1 possibly occurs. Any stronger plan instance,
however, whose occurrence inevitably brings about F(grasp blkl)(6I21"sexecutability conditions would conflict with ev(4,11.

1
I
I
I
I
I
I
1

171

- Chapter 6
A Planning Algorithm

I
6.1. Overview

In this chapter, we present a planning algorithm based on our formal logic. The
input to the planning algorithm consists of:

Ii) the goal conditions, which are given by a conjunction of interval logic
statements which we will designate by G

I ii) a specification of the planning environment
iii) the executability conditions for each simple plan instance
iv) the effects produced by each simple plan instance
v) the non-interference conditions, which relate pairs of simple plan instances

that directly interfere with each other (which we will describe in section 6.2)

The specifications in ii) - v) induce constraints on the possible set of world models.
These constraints can be captured by a set of sentences in our iormal language,
which we will designate by S. We will use Ip to denote the time of planning.

3- The algorithm searches for a set of simple plan instances, in the future of
planning time Ip, such that their composition pi meets the relation: it is inevitable at
Ip that pi is executable and inevitable at Ip that if pi occurs then G is true in anyImodel where all the sentences in S are satisfied. Using our formal notation, this
relation can be given by:

I SOL-PI)
S h (AND (INEV Ip (EXECUTABLE pi))

i (INEV Ip (IF (OCC pi) G)))

Relation SOL-PI contains two of three necessary and sufficient conditions that we
gave in the chapter 5 introduction for concluding that plan instance pi solves goal GI with respect to S. We will not consider the third condition "S = (POS Ip (NOT G)) "

which is used to insure that the goal condition does not inevitably hold at Ip in all the
models that satisfy S. Since this condition does not mention the argument pi, it can
be checked separately, irrespective of the plan instance under consideration.

The procedure that we present is a non-linear backward chaining algorithm
loosely based on the algorithm described by Allen and Koomen [Allen&Koomen 83b]
which in turn is based on non-linear planning systems such as NOAH [Sacerdoti 77]
and NONLIN [Tate 77]. At the beginning of each cycle, there is a conjunction of
conditions to be achieved, which we call the causal gap, adopting the terminology
from Allen and Koomen. Initially, the causal gap is equated with the goal
conditions. During each cycle, an operation is chosen that removes one or more ofI! the conjuncts from the causal gap, although new conditions may be added. A
solution has been found if the last conjunct is removed from the causal gap and noV

I

172

new ones added. We call the algorithm non-linear because at times the algorithm
can be seen as solving two conjuncts separately and then checking whether thp two
plan instances that solve the two goals can be executed together.

There are two types of operations that can be performed to reduce the casual gap.
One type of operation involves removing a conjunct from the causal gap that
inevitably holds in the planning environment. The other type of operation involves
the introduction of a simple plan instance "into the plan" to remove one or more
conjuncts in the causal gap. By introducing plan instance pi, we can remove any 1
conjunct that inevitably holds in the planning environment augmented by pi's
effects. We shortly give a precise characterization of "the planning environment
augmented by pi's effects". The introduction of plan instance pi also results in
conditions being added to to the causal gap; pi's executability conditions are added
along with the non-interference conditions relating pi and any plan instance that i
has previously been entered into the plan. Roughly, If the non-interference
condition between pi and pi2 hold, then under all conditions possible at planning
time, if both pi and pi 2 are executable separately, then their composition is
executable. In section 6.2, we discuss non-interference conditions in some detail.

At each cycle, there may be a number of different operations that can remove one
or more conjuncts from the causal gap if applied. In this work, we will not analyze
heuristics that may be used to choose among a set of applicable operations or analyze
backtracking schemes that may be used when a causal gap is reached that cannot be
solved, an example being where both P and F(NOT P)I are in the causal gap. Instead,
we describe a non-deterministic algorithm by just describing the set of planning
operators, specifying when they are applicable and what their effects are. Each non-
deterministic behavior corresponds to a finite sequence of operators, all of whose
members are applicable when reached within the sequence. A sequence yields a
solution if the casual gap is empty after all the operators in the sequence are applied.
In this case, the solution consists of the composition of the simple plan instances that

have been introduced by one of the operators in the sequence. Substituting this
composition for pi in SOL-PI makes SOL-PI true.

We justify the algorithm by showing that the application of a sequence of
operators can be mapped to a transformation from the initial problem state STO
through a succession of problem states ST1 ,, STf, where STi is true if STi + I is true
for every i in the sequence (except i = f). The initial problem state is given by:

STo)
S (?'pi(AND (PRIOR Ip (TIME-OF ?pi))

(INEV Ip (EXECUTABLE ?pi))
(INEV Ip (IF (OCC ?pi) G)))))

Problem state STO is true iff there exists a plan instance in the future of planning
time Ip that meets the two conditions in SOL-PI. A solution sequence corresponds to
a sequence of transformations from ST0 to a problem state that is logically true.

173

One can think of the algorithm as a limited proof procedure that is sound with
respect to the semantic theory. In this chapter, we will be using the proof theory that
we developed in chapter 4 as a tool for showing that the algorithm is sound with
respect to the semantics. We would say that our algorithm was complete, if it also
had the following property: anytime that STO is true, there exists a sequence of
operators yielding a solution. One could develop a complete algorithm without
developing a complete proof theory for the entire language. This is because the
algorithm only involves the proof of a particular form of sentence (i.e. the sentence
on the right of " " in STO) from a set of sentences describing the planning
environment and action specifications, these sentences also having limited form.

Our algorithm differs from previous planning systems in the method used to
handle action interactions and the use of maintenance plan instances, instead of
using ghost nodes (see section 5.5). The interaction of two or more plan instances is
computed by only considering the interaction of two plan instances that overlap in
time. As we discussed in section 5.5, the conflict where an earlier plan instance
ruins a later one's executability conditions can be detected by only considering
concurrent interactions. In section 6.4, we present an example to show that the
interaction of three or more plan instances can be detected by only looking at binary
interactions.

To emphasize the novel features of our algorithm, we make some simplifications.
For one, we only consider the introduction of grounded plan instance terms.
Typically, planning systems such as NOAH [Sacerdoti 77], DEVISER [Vere 81], and
SIPE [Wilkirs 83]allow the introduction of a set of actions described by a function
term that has one or more arguments that are constrained to meet some relations.
As other constrained actions are introduced into the plan, new constraints may be
imposed on the actions already in the plan.1 The advantage to this approach is that,
in some cases, the algorithm can decide if a whole class of actions conflict with other
actions in the plan without trying out each instance of the class separately.
Furthermore, the algorithm can delay deciding on the 3;pecific objects to be used as
part of some action before knowing what other actions might use the same objects.

Another issue that we do not consider is hierarchical planning such as described
by Sacerdoti [Sacerdoti 77]. This refers to planning initially at an abstract level,
ignoring detail, and then successively planning at more and more detailed levels.
Tenenberg [Tenenberg 86] describes a formal representation that may be used to
support hierarchical planning. A problem may be characterized at different levels of
detail by a set of theories which form an abstraction hierarchy. If there is a solution
to a planning problem in some theory t1, then there is a corresponding solution in
any theory that is an abstraction of t1. This is formalized using state-based actions.

These systems deal with actions, instead of plan instances, that are
successively ordered as planning goes on. In our framework, we can think of
the ordering process as adding constraints to the "time of occurrence
arguments" associated with the plan instances in the plan.

174

Future work may involve adapting this approach to be used with the representation
of actions developed here. I

In the next section we give a succinct description of the planning algorithm. We
then discuss some simplifications made beyond what can be represented in our
framework, as discussed in chapter 5. In the following section, we prove that the
algorithm is sound with respect to our semantics, and in the last section, we present
some simple examples.

6.2. Specification of the Planning Algorithm

In this section, we present the planning algorithm and then discuss the inputs,
which characterize the planning problem. The algorithm is specified by describing i)
the inputs that are required, ii) the two state variables that are transformed by the
planning operators, and iii) for both types of planning operators, the states in which
they are applicable and the transformations produced by their application. We then
characterize applicable operator sequences and the result produced by these
sequences. Each applicable sequence corresponds to a non-deterministic behavior of
the planning algorithm. A solution corresponds to a sequence that when applied to
the initial state, removes all the conjuncts from the causal gap.

The inputs to the planning algorithm are given by:

G a conjunction of interval logic statements describing the goal
conditions

PE a set of interval logic statements describing the conditions that are
inevitable at planning time

For each simple plan instance pi

EC(pi) an interval logic statement describing pi's executability conditions
EFF(pi) an interval logic statement describing pi's effects

For each of pair of plan instances pil and pi2 that overlap in time

NI(pil,pi2) an interval logic statement describing the conditions under which
pil and pi2 do not interfere which we will refer to as their non-
interference conditions

notes: NI is symmetric in its arguments, so only NI(pil,pi2) or NI(pi2,pi!) need
be given. If pil and pi2 interfere under all conditions, NI(pil,pi2) is set
to a false statement and if pil and pi2 do not interfere under any
conditions NI(pi 1,pi2) is set to a tautology.

175

IA state is an ordered pair having the form <INPLANi,CGi > where:

INPLANi is the set of plan instances already entered at cycle I

CGI is the conjunction of interval logic statements making up the causal
gap at cycle 1.

In the initial state, the plan is empty and the causal gap is equated with the goal
conditions:

INPLANo = 0

CGO = G

The planning operators are given as partial functions form state to state. An
operator's domain specifies the states in which it is applicable. A function applied to
an applicable state captures the transformation produced by applying the operator.
There are two types of planning operators, which we refer to by REMOVEc and
INTROpi.C, whose descriptions are given in figure 6.2-1.

A sequence of operators is applicable in state <INPLANI,CGi > if each operator
is applicable when reached in the sequence. More precisely, this can be given by the
following recursive definition:

A sequence opi consisting of one operator is applicable in state <INPLAN1 ,CGi >
if op1 is applicable in this state

A sequence of two or more operators opi oP2 ... Opn is applicable in state
<INPLAN ,CGi> if opi is applicable in this state and sequence op2 ... OPn is
applicable in state op1(<I' PLANi,CGi>).

The result of applying a sequence of operators that are applicable in state
<INPLANi,CGi> is the final state reached after applying all operators in order
starting from <INPLANi,CGi >.

A solution corresponds to sequence of operators that are applicable in the initial
state <INPLANo,CGo> and whose result produces the state <INPLANn,CGn>I where CGn is a tautology, which means that the causal gap is empty. The solution is
given by the composition of simple plan instances in INPLANi.

We now examine some of the simplifications that we have made beyond what can
be represented in our formalism as described in chapter 5. We also examine some
relations to other other non-linear planners.

The planning environment

The planning environment is given by PE which specifies conditions that are
inevitably true at planning time. Thus, saying IL belongs to PE is tantamount to

I
I

176

REMOVEC removes an inevitably true conjunct C from the causal gap

Applicable in state <INPLAN CG > iff
C isa conjunct in CG, and PE i-iLC

where "PE -ILC" is true iff C is derivable from PE only using inference
rules and axioms in the non-modal fragment

note: if "PE -ILC" is true then we say that "C inevitably holds in the
planning environment"

Transformation produced:l

For any applicable state <INPLAN,,CG,>,
REMOVE,(<INPLAN,,CG >) =d,; <lNPLAN,r(CG.- C)>

where r(CG - C)1 refers to the conjunction of all the conjuncts in CG,
with the exception of C; if C is the only conjunct in CG., r(CG - C
stands for a tautology

INTROp C introduces plan instance pt into the plan in order to remove
conjunct C

Applicable in state <INPLAN,,CG,> iff
C is a conjunct in CG, and PEU{EFF(pi)) 1 _,L C

note: if "PEU{E} I- C" is true we say that "C inevitably holds in the
planning environment augmented by E"

Transformation produced:

For any applicable state <INPLAN,,CG,>,
lNTRO ,,,c(<INPLAN,,CG,>) =ae(f <INPLAN U(pi},CG, 1>

where CG, , I stands for:
r(AND (CG,- C) EC(pi) NI(pi,pi1) NI(pi,pi 2)... Nl(pi,pin))1

for all pi, such that piJEINPLAN, and pi, overlaps (in time) with pi

note: The conjunction CG,, . consists of the conjuncts in CG, with the
exception of C, pi's executability conditions, and the non-
interference conditions relating pi and all plan instances that
have previously been entered into the plan that have
overlapping times with pi

Figure 6.2-1

177

saying that F(INEV Ip IL)1 belongs to S, the set of sentences that describe the
planning problem discussed at the beginning of this chapter.

We do not put any restrictions on the interval logic statements belonging to PE.
They may include statements describing the temporal relation between interval
constants and statements describing the times when events occur and properties
hold, both relative and absolute. In Vere's system [Vere 81], one can only use
absolute dates to specify when some external event occurs. In our system, absolute
dates roughly correspond to assertions about conditions that hold over some interval
constant. We can also describe relative relations such as event ev2 occurs after some
occurrence of evl. This would be given by:

(3?i1?i2 (AND (PRIOR ?il ?i2) (OCCURS evl?il) (OCCURS ev2 ?i2)))

Disjunctive statements may also belong to PE. In a system such as Vere's, that
implicitly uses the STRIPS assumption, disjunctions cannot be used. In section 6.4,
we present a simple example showing that disjunctions, which are harmless in our
system would lead to problems if the STRIPS assumption were used. Moreover, we
do not need to assume that the planning environment completely describes all the
external events that can affect any property that is asserted to be initially true. In
section 1.2, we showed that this assumption is necessary in Vere's system since he
uses the STRIPS assumption.

The simplification that we have made beyond what can be represented in our
language is the omission of conditions that are possible but not inevitable from the
planning environment. For our purposes here, it does not matter whether conditions
that are possible but not inevitable are omitted or whether they are asserted to be
possible. This is because we have only characterized when a sequence of operators
yields a solution plan instance, i.e. a plan instance pi that meets the two conditions
in SOL-PI, r(INEV Ip (EXECUTABLE pi))l and r(INEV Ip (IF (OCC pi) G)1. These
two statements refer to conditions that are inevitably true. One can only prove the
truthhood of inevitable conditions from other inevitable conditions. Possible
conditions would only be needed if we wanted to prove the falsehood of an inevitable
statement, such as proving that there is no plan instance that meets the two
conditions in SOL-PI. Thus, conditions that are possibly true may be needed if we
wanted to prove that a goal is unsolvable or if we wanted to investigate search
techniques for rejecting, in the midst of the planning process, a set of simple plan
instance that cannot be part of any solution.

In this work, we have not considered these issues. This is typical of current
planning systems. They have characterized when a solution is found, but have not
precisely characterized when a goal is unsolvable. One might suggest that a
planning system can conclude that the goal is unsolvable if the set of planning
operators supplied cannot be used to find a solution. If this technique is adopted,
however, one cannot distinguish beLween the case where the system knows that a
solution does not exists from the case where the system knows that it cannot solve
the problem, but does not know whether a solution exists.

178

The Goal Conditions and the Causal Gap

The goal conditions and the causal gap are taken to be conjunctions of interval
logic statements. Each conjunct may be a complex formula, but is treated as a single I
unit. That is, each conjunct is either removed as a whole or not removed during the
planning cycles. For example, if there are two formulas that mention the same
existential variable, they must be treated as a single unit. This restriction precludes
the use of a search strategy that is employed by the non-linear planners such as
NOAH [Sacerdoti 77]. In these systems, two formulas that share an existential
variable may be solved separately. When the solution for one of the formulas

involves binding a constant or imposing constraints on one of the shared variables,
the other solution must be checked to see if the bound constant or constraints
imposed are compatible.

The criteria that we use to check if a condition can be removed from the causal
gap is more general than the test typically employed by the non-linear planners.
Using the operation REMOVEC, a conjunct C can be removed if"PE F-i. C" where
F-IL. refers to derivability only using the interval logic (i.e non-modal) axioms and
inference rules. Similarly, conjunct C can be removed using INTROpic if
"PEU{EFFpi)} I-IL C" holds. In a non-linear planner, an action can be used to
remove a condition C only if the action's effects syntactically entail the condition.
This is a special case of our relation; if"EFF(pi) -IL C" is true then "PEU{EFF~pil}
F-IL C" is true. The relation between C and EFF(pi) might, however, depend on the
sentences that are in PE. For example, suppose that C stands for r(HOLDS pr I1)1
and EFF(pi) stands for r(HOLDS pr 1201. We can only establish that "PEU{EFF(pi}
1 -IL C" is true if r(IN I1 12)0, meaning that interval I1 is contained in or equals 12, is
derivable from PE. Other type of relations between C and EFF(pi) are associated
with indirect effects (see section 5.4). For example, suppose that r(INEV Ip (IF A
B)) is in PE. In this case, one might say that a plan instance pi whose effects include
A, indirectly brings about B, and thus pi may be introduced to remove B if it is in the
causal gap.

For simplicity, we have not provided for the case where a conjunct can only be
removed by using the effects of two plan instances taken together and not by either
of the plan instances taken alone. This condition could easily be provided for by
modifying the relation "PEU{EFF(pi)} F--IL C" so that the left hand side also
mentions the occurrences of all the plan instances that have previously been entered
into the plan. Another simple extension that we can make to the relation
"PEU{EFF(pi)} F-IL C" is to add r(OCC pi)l on the left hand side. This would allow
us to take advantage of behavioral constraints (see [Lansky 85] and sections 5.2 and
5.3) where one specifies the executability conditions for some plan instance pi2 using
a form such as r(OCC pi)l to indicate the the occurrence of pi enables pL2 . This type
of relation allows one to bypass the use of properties that must be used in state-based
systems to indirectly relate two actions where one enables the other.

179

3 Action Specifications

The relation between a plan instance and its executability conditions and
between a plan instance and its effeLts were given in sections 5.2 and 5.4,
respectively. Specifying EC(pi) as pi's executability conditions implies that the
following sentence holds in S, the set of sentences that describe the planning5 problem:

(INEV Ip (IF EC(pi) (EXECUTABLE pi))

W Specifying EFF(pi) as pi's effects implies that the following sentence holds in S:

I' (INEV Ip (IF (OCC pi) EFF(pi))

We place no restrictions on the form of EC(pi) (other than it is an interval logic
statement). A disjunction in EC(pi) can be used to specify that there are different
ways to enable plan instance pi. For example, if we employed behavioral constraints.
as we just discussed in the last sub-section, we could set EC(pi) to F(OR (OCC pil)
(OCC pi2)) to specify that both pil and pi2 enable pi.

We also do not place any restrictions on the form of EFF(pi). Thus, we allow
disjunctive effects. If we were using the STRIPS assumption, disjunctive effects, just
like disjunctions in the planning environment, would lead to problems. Moreover,
omitting an effect would lead to problems since STRIPS works under the assumption
that unless otherwise noted an action does not affect a property. This restriction
does not have to be made in our system. Consequently, EC(pi) may only include
some of pi's effects.

Non-Interference Conditions

We distinguish between direct and indirect interference. Non-interference
conditions describe the conditions under which two plan instances do not directly
interfere. Direct interference refers to the case where the attempt of a plan instance
pil precludes another plan instance pi2 from occurring, although the attempt of pil
would not ruin pi2's executability conditions. Two plan instance can directly
interfere only if they overlap in time. An example of direct interference is where two
simultaneous plan instances share the same resource type and only one resource is
available. Another example is where two simultaneous actions are alternatives to
each other, such as "move forward at time i" and move backward at time i".

Indirect interference refers to the case where one plan instance pil interferes
with another one pi2 by interfering with a third plan instance that enables pi2"s
executability conditions. The interaction where an earlier plan instance ruins a later
one's executability conditions is an example of indirect interference. As we described
in section 5.5, this type of interaction between sequential actions is the principal

conflict that must be detected in a state-based system. In our framework, indirect

180 I
interference plays a secondary role because it can be computed from direct
interference relations. I

The non-interference conditions NI(pil,pi2) are conditions that meet the
following relation:

NI-RS)
(INEV Ip (IF NI(pil,pi2) NI-CND))

where NI-CND = def
(IF(AND (EXECUTABLE pil) (EXECUTABLE pi2))

(AND (IF (IFTRIED pil (EXECUTABLE pi2)) 1
(IF (OCC pi2) (IFTR1ED pil (OCC pi2))))

(IF(IFTRIED pi2 (EXECUTABLE pil))
(IF (OCC pil) (IFTRIED pi2 (OCC pil))))))

Saying that NIbpil,pi2) is the non-interference conditions for pil and pi 2 is
tantamount to saying that NI-RS is in S, the set of sentences that describe the I
planning problem. Now, we are only interested in whether two plan instances,
which are executable individually, interfere which each other. Thus, the conditions
r(EXECUTABLE pil)l and F(EXECUTABLE pi2)l are included in the antecedent of I
NI-CND. This means that non-interference conditions do not need to include the
conditions under which the two plan instances are executable individually.

NI-CND's consequent is false only if pil and pi2 directly interfere. The first
conjunct in NI-CND's consequent is false if the attempt of pil would ruin pi2's
occurrence but would not ruin pi2's executability conditions. Similarly, the second I
conjunct is false if the attempt of pi2 would ruin pi1's occurrence but would not ruin
pills executability conditions. If both these conditions are true, then pil and pi2 can
only interfere indirectly. Since non-overlapping plan instance can only indirectly I
interfere, it is not necessary to specify their non-interference conditions; NI-CND
holds in all possible branches. This is reflected by the following theorem which we
prove in appendix H:

NON-OVRLP)
(IF(PRIOR (TIME-OF pil) (TIME-OF pi2)) (INEV Ip NI-CND))

!
I

I
I

I

181I
6.3. Proving the Algorithm is Sound

We prove that our algorithm is sound by showing that the application of a
sequence of operators can be mapped to a transformation from the initial problem
state STO through a succession of problem states ST 1 , , STf, where bTi is true if
STi -4-1 is true for every i in the sequence (except i= f). The initial problem state isIgiven by:

STo)
S (3?pi (AND (PRIOR Ip (TIME-OF ?pi))3(INEV Ip (EXECUTABLE ?pi))

(INEV Ip (IF (OCC ?pi) G)))))

it where S is the set of sentences describing the planning problem

If problem state STo is true then there exists a plan instance in the future of
planning time Ip that solves the goal G with ;espect to description S (see 6.1). A
solution sequence corresponds to a transformation from STo to any state where the
causal gap is empty, these being states that we will show to be necessarily true.
Thus, if is an operator sequence corresponds to a transformation from STo to a state
where the causal gap is empty, ST 0 is true.

To give an o-. rview showing the relation between the planning operators and theIproblem state transformations, we work through the application of three particular
operators starting from the initial problem state. In particular, we describe theSproblem state ST 1 that would result from applying INTROpi,C in state STo and the
state ST 2 that would result from applying REMOVEc in ST1 . To give a sketch of the
proofs that we use to prove that the transformations are sound, we present some

I intermediate steps that are needed to show that if ST1 holds then STo holds, and to
show that if ST 2 is true then ST1 is true. The intermediate steps are labeled by
INTI,INT2, etc. We then present the transformation that is produced by
introducing a second plan instance which serves to illustrate where the non-
interference conditions fit in. Following this, we show that the transformations
produced by application of any operator applied in any state STi yields a state ST,
having the property ifSTi + I is true then STi is true.

I
I
i
I
i
I

182

An Overview Showing the relation Between the Logic and the Algorithm

The initial casual gap CGo is equated with the goal conditions. Thus, we can
specify the initial problem state by:

STo)
S (3?pi (AND (PRIOR Ip (TIME-OF ?pi))

(INEV Ip (EXECUTABLE ?pi))
(INEV Ip (IF (OCC ?pi) CGo))))

The introduction of plan instance pil to remove conjunct C1 (i.e. INTROpi1,C1) may
be performed iff Ci is a conjunct in CG 0 and "PEU{EFF(pil)} -ILCl" is true, in
which case we say that C1 inevitably holds in the planning environment augmented
by pil's effects. The important property of the relation "PEU{EFF(pil)} F-ILC1 " is
that if it holds then "S (INEV Ip (IF (OCC pi) C1))" holds. The reason for this is as
follows. First of all, saying that interval logic statement IL belongs to PE is
equivalent to saying that r(INEV Ip IL) belongs to S. Saying that EFF(pil) is pil's
effects is equivalent to saying that r(INEV (IF (OCC pil) EFF(pil)))l belongs to S.
Secondly, our proof theory (of which '-IL refers to a limited part) is sound with
respect to our semantics. Thus, if "PEU{EFF(pil)} -ILCI" holds then
'PEU{EFF(pil)} C1" holds. Finally, we make use of the relation: if"A K=B" is true,
then {r(INEV Ip Q) 1 IQ EA} (INEV Ip B)" is true.

By introducing pil into the plan, we are transforming STO into a problem state
that is true iff there exists a plan instance containing pil that solves the goal. Thus,
we are committing to a particular form to substitute for ?pi in So, namely r(COMP
?pi2 pil)1 .Our problem now becomes solving:

INT1)
S (3?pi2 (AND(PRIOR Ip (COMP ?pi2 pil))

(INEV Ip (EXECUTABLE (COMP ?pi2 pil))
(INEV Ip (IF (OCC (COMP ?pi2 pil)) CGo))))

The last conjunct in INT1 is true iff it is inevitable at Ip that CGO is true if both ?pi2
and pil occur together. Thus, the last conjunct is true, if ?pi2 brings about all the
conjuncts in CGo that are not brought about by pil. Since, it is inevitable that C1
holds if pil occurs, INT1 is true if the following relation holds:

INT2)
S 1= (3?pi2 (AND (PRIOR Ip (TIME-OF (COMP ?pi2 pil)))

(INEV Ip (EXECUTABLE (COMP ?pi2 pil)))
(INEV Ip (IF (OCC ?pi2) (CGo - C1)))))

In INT2, we have used the notation that we presented in the last section. The
construct r(CGo - C1)1 stands for the conjunction of conditions in CGo with the
exception of Cl.

183I
The second conjunct in INT2, F(INEV Ip (EXECUTABLE (COMP ?pi2 pilm1.Imay be transformed by making use of a theorem stating that it is inevitable at Ip

that r(COMP pi2 pil)l is executable if i) it is inevitable at Ip that pL2 is executable.
i ii) it is inevitable at Ip if pi2 occurs then pil is executable, and iii) it is inevitable at

Ip that if pi2 occurs then the attempt of pil would not ruin pi2's occurrence. Thus,
INT2 is true if the following is

IINT3)
S (3?pi2 (AND (PRIOR Ip (TIME-OF (COMP ?pi2 pil)))

(INEV Ip (EXECUTABLE ?pi2))
(INEV Ip (IF (OCC ?pi2) (EXECUTABLE pil)))
(INEV Ip (IF (OCC ?pi2) (IFTRIED pil (OCC ?pi2)))S (INEV Ip (IF (OCC ?pi2) (CGo - C 1)))))

The next step is to replace F(EXECUTABLE pil)l in INT3 with the executability
conditions for pil. which we refer to by EC(pil). In all models in which all the
sentences in S are satisfied, it is inevitable at Ip if EC(pil) holds then pil is
executable. Consequently, INT2 is true if the following holds:

I INT4)
S m (3?pi2 (AND (PRIOR Ip (TIME-OF (COMP ?pi 2 pil)))

(INEV Ip (EXECUTABLE ?pi2))
(INEV Ip (IF (OCC ?pi2) EC(pil)))
(INEV Ip (IF (OCC ?pi2) (IFTRIED pil (OCC ?pi2))))3 (INEV Ip (IF (OCC ?pi2) (CGo - Cl)))))

Rearranging the conjuncts in INT4, distributing conjunction into INEV and making
* use of the equivalence between sentences of the form F(INEV Ip (AND (IF P Q) (IF P

R)))7 and r(INEV Ip (IF P (AND Q R)))I, gives us:

INT5)
S (3?pi2 (AND (PRIOR Ip (TIME-OF (COMP ?pi2 pil)))

(INEV Ip (EXECUTABLE ?pi2))
(INEV Ip (IF (OCC ?pi2) (AND EC(pil) (CGo - C))))
(INEV Ip (IF (OCC ?pi2) (IFTRIED pil (OCC ?pi2))))

9 We can replace the last conjunct in INT5 by r(INEV Ip (IF (EXECUTABLE pil) (IF
(OCC ?pi2) (IFTRIED pil (OCC ?pi2)))))l since if the third conjunct holds, it is
inevitable that pil is executable if ?pi2 occurs. We also replace F(PRIOR Ip (TIME-I OF (COMP ?pi2 pil)))1 by r(PRIOR Ip (TIME-OF ?pi2))l because i) Ip is prior to the
composition of ?pi 2 and pil iffIp is prior to both ?pi2 and pil, and ii) we assume that
that each plan instance that we introduce into the plan, such as pil, is in the futuregof Ip (thus, we assume "S = (PRIOR Ip (TIME-OF pil))" is true). Consequently,
INT5 is true if the following is true:

1
I
I

184

STI)
S - (3?pi2 (AND (PRIOR Ip (TIME-OF ?pi2))

(INEV Ip (EXECUTABLE ?pi2))
(INEV Ip (IF (OCC ?pi2) (AND EC(pil) (CGo - C 1))))
(INEV Ip (IF (EXECUTABLE pi 1)

(IF (OCC ?pi2)
(IFTRIED pi1 (0CC ?pi2)))))

Problem state ST 1 is true if there exists a plan instance ?pi2 in the future of Ip
such that i) it is inevitable at Ip that ?pi2 is executable, ii) it is inevitable at Ip that
if ?pi2 occurs then both pil's executability conditions and F(G - C1)1 hold, and iii) it
is inevitable at Ip, if pi is executable, then the attempt of pil would not ruin ?pi2's
occurrence. The application of the operation INTROpi,C, can be seen as a
transformation from problem state STO to problem state ST1 ; the intermediate steps
INT1 - INT5 are just used to show this connection. In the end of this section, we
rigorously prove that if ST 1 is true, then STO is true, thereby justifying the
transformation from STO to ST 1 .

At the completion of cycle 1, the new causal gap CGI is set to r(AND EC(pil) (G -
Cl 1 . Using CG 1 to denote this caisal gap, we can rewrite problem state STI as:

STi')
S (3?pi 2 (AND(PRIOR Ip (TIME-OF ?pi2))

(INEV Ip (EXECUTABLE ?pi2))
(INEV Ip (IF (OCC ?pi2) CG1))
(INEV Ip (IF(EXECUTABLE pil)

(IF (OCC ?pi 2)
(IFTRIED pi I (OCC ?pi2))))))

The second type of operation that may be performed is the removal of a conjunct in
CG 1 (i.e. REMOVEc 2) that inevitably holds in the planning environment. This
operation can be performed iff C2 is a conjunct in CG 1 and "PE -ILC2" is true, in
which case we say that C2 inevitably holds in the planning environment. Using a
similar line of reasoning that we used in going from STo to INT2 above, we can
transform ST1 ' into:

ST2)
S (3?pi2 (AND (PRIOR Ip (TIME-OF ?pi2))

(INEV Ip (EXECUTABLE ?pi2))
(INEV Ip (IF (OCC ?pi2) (CG 1 - C2)))))
(INEV Ip (IF (EXECUTABLE pil)

(IF (OCC ?pi2)
(IFTRIED pil (OCC ?pi2))))))

185

The formal justification that if ST 2 holds then STI' holds is given at the end of this
section.

If we remove the last conjunct from CGI, then we have found a solution (ie. pil).
This happens ifpil's effects brings about the goal condition G and pil's executability
conditions inevitably holds in the planning environment. In this case CGI is equal to
EC(' 1), and r(CGI - C2)1 is a tautology, signifying that the causal gap is empty. In
the end of this section, we prove a general result that can be used to show that if
F(CG1 - C2)1 is tautology, then ST 2 is vacuously true for any set of sentences S.

To illustrate where non-interference conditions come in, let us investigate the
effect of introducing a second plan instance at problem state ST2 corresponding to
operator INTROpi2,C 3 . Substituting CG 2 for r(CG 1 - C)1 in ST 2 (the new causal gap)
and r(COMP ?pi3 pi2)1 for ?pi2 gives us:

INTS1)
S (3?pi3 (AND (PRIOR Ip (T. . F-OF (COMP ?pi3 pi2)))

(INEV Ip (EXECUTABLE (COMP ?pi3 pi2))
(INEV Ip (IF (OCC (COMP ?pi3 pi2)) CG 2)
(INEV Ip (IF (EXECUTABLE pil)

(IF(OCC (COMP ?pi3 pi2))
(IFTRIED pil (OCC (COMP ?pi3 pi2)))))))

The second and third conjuncts in INT4 have the same syntactic forms as the second
and third conjuncts in INTS1. Applying the same transformation to INTS1 as we
did to get from INT1 to INT4 gives us:

INTS2)
S (3?pi3 (AND (PRIOR Ip (TIME-OF (COMP ?pi3 pi2))))

(INEV Ip (EXECUTABLE ?pi3))
(INEV Ip (IF (OCC ?pi3) (AND EC(pi2) (CG2 - C3))))
(INEV Ip (IF (EXECUTABLE pil)

(IF(OCC (COMP ?pi3 pi2))
(IFTRIED pil (OCC (COMP ?pi3 pi2)))))))

The last conjunct in INTS2 can be transformed to the following form by using the
equivalence between r(OCC (COMP ?pi3 pi2))1 and r(AND (OCC ?pi3) (OCC pi2))l
and the theorem that conjunction distributes into INEV and into IFTRIED:

186

INTS3)
S t (3?pi3 (AND (PRIOR Ip (TIME-OF (COMP ?pi3 pi2)))

(INEV Ip (EXECUTABLE ?pi3))
(INEV Ip (IF (OCC ?pi3) (AND EC(pi2) (CG 2 - C3)))
(INEV Ip (IF (OCC ?pi3) (IFTRIED pi2 (OCC ?pi3))))
(INEV Ip (IF (OCC pi 2)

(IF(EXCUTABLE pil)
(IF (OCC ?pi3) (IFTRIED pil (OCC ?pi3))))))

(INEV Ip (IF (OCC ?pi3)
(IF (EXCUTABLE pil)

(IF (OCC pi2) (IFTRIED pil (OCC pi2))))))))

The last conjunct in INTS3 is true iff it is inevitable at Ip that if ?pi3 occurs then if
pil is executable then the attempt of pil would not ruin pi2's occurrence. This is
where the non-interference conditions come in. If it is inevitable at Ip that the
occurrence of?pi3 brings about the non-interference conditions between pil and pi2,
then it is inevitable at Ip if?pi3 occurs and pil is executable then p1i would not ruin
pi2's occurrence. We use NI(pil,pi2) to refer to the non-interference conditions
between pil and pi 2 . Using this relation we can transform INTS3 to form:

INTS4)
S m (3?pi 3 (AND (PRIOR Ip (TIME-OF (COMP ?pi3 pi2)))

(INEV Ip (EXECUTABLE ?pi3))
(INEV Ip (IF (OCC ?pi3) (AND EC(pi2) (CG 2 - C3)))
(INEV Ip (IF (OCC ?pi3) (IFTRIED pi2 (OCC ?pi3))))
(INEV Ip (IF (OCC pi2)

(IF (EXCUTABLE pil)
(IF (OCC ?pi3) (IFTRIED pil (OCC ?pi3))))))

(INEV Ip (IF (OCC ?pi3) NI(pil,pi2)))))

In the end of the section, we prove that if pil and pi2 do not overlap in time then the
last conjunct in INTS4 can be omitted.

The next transformation is to replace F(PRIOR Ip (TIME-OF (COMP ?pi3 pi2))) 1

with r(PRIOR (TME-OF ?pi3))l (since we are assuming that "S (PRIOR Ip (TIME-
OF pi2))" is true) and to replace the fifth conjunct in -NTS4 with the stronger
statement r(INEV Ip (IF (EXECUTABLE pil) (IF (OCC ?pi 3) (IFTRIED pil (OCC
?pi3)))))l to get a simpler form:

INTS5)
S = (3?pi3 (AND (PRIOR Ip (TIME-OF (COMP ?pi3 pi2)))

(INEV Ip (EXECUTABLE ?pi3))
(INEV Ip (IF (OCC ?pi3) (AND EC(pi2) (CG2 - C3)))
(INEV Ip (IF (OCC ?pi3) (IFTRIED pi 2 (OCC ?pi3))))
(INEV Ip (IF (EXCUTABLE pil)

(IF (OCC ?pi3) (IFTRIED pil (OCC ?pi3))))))
(INEV Ip (IF (OCC ?pi3) NI(pil,pi2)))))

187

Finally, we replace the fourth conjunct by F(INEV Ip (IF (EXECUTABLE pi 2) (IF
(OCC ?pi3) (IFTRIED pi2 (OCC ?pi2)))))l (see step from INT5 to ST1 for an
analogous justification), and we group together the third and last conjunct in INTS5
to get:

ST 3)
S (3?pi3 (AND (PRIOR Ip (TIME-OF ?pi3))

(INEV Ip (EXECUTABLE ?pi3))
(INEV Ip (IF (OCC ?pi3)

(AND EC(pi2) (CG2 - C3) NI(pil,pi2))))
(INEV Ip (IF (EXCUTABLE pi2)

(IF (OCC ?pi3) (IFTRIED pi2 (OCC ?pi3)))))
(INEV Ip (IF (EXCUTABLE pil)

(IF (OCC ?pi3) (IFTRIED pil (OCC ?pi3)))))))

The new causal gap CG3 is equated with F(AND (CG 2 - EFF(pi2)) NI(pi 1,pi2))). This
transformation from ST 2 to ST 3 is just like the one for introducing pil (STO to STI)
with the exception that we include the non-interference conditions between p.' and
pi2 in the causal gap (if they overlap). If there were more than one plan instance
entered into the plan when we introduced pi2, we would also have to include the non-
interference conditions between pi2 and each plan instance that overlapped with
pi2.

Soundness Proofs for the General Transformations

In section 6.2, we presented the algorithm in terms of the transformations of two
state variables INPLANi and CGi. Each pair of variables corresponds to a problem
state. This relation is given in figure 6.3-1. The input to the planning problem,
given by PE, EC, EFF, and NI, are related to the problem states by constraints that
they impose on the set of sentences S appearing on the left side of The
constraints imposed by each input is given in figure 6.3-2.

In section 6.2, the two planning operators, REMOVEc and INTROpi.c, were
given in terms of variable transformations. The problem state transformations
corresponding to REMOVEc and INTROpi,C are given in figures 6.3-3 and 6.3-4. To

show that these transformations are sound, we show that for any S meeting the
constraints corresponding to the input specification in 6.3-2, if STi + I is true then
STi is true as long as the operator applicability conditions are met. The proofs that
these transformations are sound are given in appendix H.

A solution operator sequence corresponds to a transformation from STO to any
state where the causal gap is empty, signified by CGi being a tautology. The solution
consists of the composition of the simple plan instances that have been introduced by
one of the operators in the sequence. To prove that the initial problem state is true if
a state is reached where the causal gap is a empty, we show that any problems state
STi, where CGi is a tautology, is true for any set of sentences S. We also show that
the composition of simple plan instances that have been entered as part of a solution

I

188

operator sequence makes ST0 true when substituted for ?pi. These proofs are given
in appendix H.

< INPLAN,CG,> corresponds to.

GEN-ST,
S P= (3?pi (AND(PRIOR lp (TIME-OF ?pi))

(INEV lp (EXECUTABLE ?pi))
(I N EV I p (I F (0CC ?pi) CG,))
*(INEV Ip (IF (EXECUTABLE pil1)

(IF (0CC ?pi) (I FTRI ED pi 1 (CC 'p)))))

(1NEV Ip (IF (EXECUTABLE pii)
(IF (0CC ?pi) (IFTRIED pu '(0CC 'p)))))))

for pi 1, p2,..., pit E INPLAN,

The initial problems state is given by < INPLAN,CG 0>, where INPLANO is empty

and CG0 is set to the goal condition G. This problem state can be written as:

ST0)

S = (B?pi (AND(PRIOR Ip (TIME-OF ?pi))
(INEV Ip(EXECUTABLE 'pi))
(INEV Ip (IF (0CC ?pi) G))))

Figure 6.3-1

189

I,

Constraints imposed on S by the input specifications

PE the planning environment

For every statement IL such that IL(PE, r(INEV Ip IL)IES

EC(pi) the executability conditions for each simple plan instance pi

f(INEV Ip (IF EC(pi) (EXECUTABLE pi)))' (S

EFF(pi) the effects for each simple plan instance pi

r(INEV Ip (IF (OCC pi) EFF)' (S

NI(pil,pi2) the non-interference conditions between two overlapping simple
plan instances, p, 1 and pi2

r(INEV Ip
(IF Ni(pi 1,pi2)

(IF (AND (EXECUTABLE pil) (EXECUTABLE pi2))

(AND (IF (IFTRIEDpil (EXECUTABLE pi2))
(IF (OCC pi2) (IFTRIED pi1 (OCC pi2))))

(IF (IFTRIED pi2 (EXECUTABLE pi1))

(IF (OCC pi1) (IFTRIED pi2 (OCC pi)))))))) ES

We also assume that every plan instance pi that may be introduced into the
plan is inthe future of lp:

r(PRIOR lp (TIME-OF pi))I ES

Figure 6.3-2

190

Transformation produceo by applying REM0VEC in problem state ST,

From
ST,)

S (3?pi (AND (PRIOR lp (TIM E-OF ?pi))
(INEV Ip (EXECUTABLE ?pi))
(lNEV Ip (IF (0CC ?pi) (AND C REST-CG,)))
(INEV Ip (IF (EXECUTABLE pi 1)

(IF (0CC ?pi) (IFTRIED pi I(0CC 'pi)))))

(INEV Ip (IF (EXECUTABLE pii)
(IF (0CC ?pi) (IFTRIED pii (0CC ?pi)))))))

for pi ,pi2,., pli E INPLAN,

To

ST
S (3?pi (AND(PRIOR lp (TIME-OF ?pi))

(INEV Ip (EXECUTABLE ?pi))
(INEV lp (IF (0CC ?pi) REST-CG,))
(INEV Ip (IF (EXECUTABLE pi 1)

(IF (0CC ?pi) (IFTRIED pi I1(0CC ?pi)))))

(INEV lp (IF (EXECUTABLE pii)
(IF (0CC ?pi) (IFTRIED pli (0CC ?pi)))))))

for pi1,. pj2. pit (INPLAN,

where PE t'- IC

note. " ' IL stands for the derivability relation in the interval logic fragment

Figure 63-3

191

Transformation produced by applying INTROp,,,c in problem state ST,

From
ST,)

S I: (37pi (AND(PRIOR lp (TIME-OF 7p))
(INEV/ Ip (EXECUTABLE ')p'))
(INEV Ip (IF (0CC 7pi) (AND C REST-CG,)))
(INEV Ip (IF (EXECUTABLE pil1)

(IF (0CC ?pi) (IFTRIED pil1(OCC 7pi)))))

(INEV Ip (IF (EXECUTABLE phi)
(IF (0CC ?pi) (IFTRIED pi (0CC 'pi)))))))

for P,1, .,pi E INPLAN,

To

ST)

S i: (3?pi (AND(PRIOR lp (TIME-OF ?)pi))
(INEV Ip (EXECUTABLE ?pi))
(iNEV lp (IF (0CC ?pi) (AND REST-CG, EC(pix) NI,. NI))
(INEV Ip (IF (EXECUTABLE pi)

(I F (0CC ?pi) (I FTRI ED pil1(OCC ?)pi)))))

(I NEV Ip(I F (EXECUTABLE pi)
(IF (CC pi) (IFTRIED pi1 (0CC 7pi)))))

(INEV Ip (IF (EXECUTABLE pix)
(IF (OCC ?pi) (IFTRIED pix (0CC ?p1)))))))

for NI1 Nlk E {NI(pix,pi) I pi E INPLAN, and pix and pi overlap in time)

and pil,-. pii, pix E INPLAN.

where PEU{EFF(pix)} l-iLC

Figure 6.3-4

19:2

6.4. Planning Examples

In this sect; r. a number of simpo planning problems are presented to demonstrate the basic
features of ,-ur planning algorithm. In particular, we illustrate the use of the two planning
operat.,--, REM\OIE and INTRO. the role played by interval logic reasoning. and the
treptment of both sequential and concurrent interactions. We also comment on the novel
aspects of our approach. shlwing how it enables us to relax some of the restrictions that had to
be imposed using other methods.

Both "relative" temporal descriptions, such as "event et, occurs aftLr planning time" and
temporal relations that are given by referring to intervals forming a date-line structure may be
used in our simple algorithm. If a date-line structure is used. the temporal relation between
the intervals forming this structure must be specified in the set PE (i.e.. the planning
environment description). For the examples in this section, we make use of a simple date-line
structure that is indexed by the terms 1O, II. 12 ... , where 10 refers to the time cf planning. Ii
meets 1O to the right. Ii meets 12 to the right, etc.. We will assume then that the set
{r(MEETS 10 I1. r (MEETS 1 1112. }. which captures these temporal relations, belongs to PE
in each of our planning examples.

6.4.1. The Two Planning Operatars and Interval Logic Reasoning

To start with, we work through a simp~le planning example that illustrates the use of the
two planning operators, REMOVE and I.VTRO. and the role played by a procedure that can
compute the derivability relation in interval logic. Consider a safe which is locked at the time
of planning (1O). At this time also. the key. that opens this safe rests on a nearby table. The
agent's goal is to haie the safe opened by the end of interval 12. We show that this goal can
be solved by a plan instance composed of the two simple plan instances "grasp the key during
Ii" and "open the safe with the key during 12". We will use the term gr-kygI1 to refer to this
first plan instance ad op-sf@iI2 to refer to the second. We assume that gr-kyg1l is
executable as long as the key is on the table just prior to its execution and that its effects are
that the agent is grasping the key by it.s completion. Secondly. we assume that plan instance
op-sf]12 is executable if the agent is grasping the key just prior to its execution and its effects
are that the safe is open by its completion.

The input specification capturing this planning problem is given by an interval logic
statement describing the goal (G). a set of interval logic statements describing the planning
environment (PE), and four interval logic statements describing the executability conditions
and effects for both plan instances (EC(gr-ky@l1), EFF(gr-ky@I1)), EC(op-sf@12). and
EFF(op-sf@2)). This specification, which is listed below, does not include non-interference
conditions between gr-ky@I1 and op-sf(412 since these plan instances do not overlap in time.

I 19.5

G: (EXISTS ?i (AND (HOLDS sf-opn ?i)
(ENDS< ?i 12))))

PE: {(HOLDS sf-lkd 10)). (HOLDS ky-on-tbl 10)).
(FORALL ?i (NOT (AND (HOLDS sf-lkd ?i)

(HOLDS sf-opn ?i))))
(MEETS 10 11), (MEETS 11 12) ... }

gr-ky@ll

EC: (EXISTS ?i (AND (HOLDS kv-on-tbl ?i)
(MEETS ?i I1)))

EFF: (EXISTS ?i (AND (HOLDS kv-grspd ?i)
(ENDS= ?i 11)))

EC: (EXISTS ?i (AND (HOLDS ky-grspd ?i)I(MEETS ?i 12)'))

EFF: (EXISTS ?i (AND (HOLDS sf-opn ?i)(ENDS= "1 12)))

The sentence assigned to G (the goal conditions) is true if the property "the safe is open" holds
during an interval that ends before or at the same time as 12. i.e, by the end of 12. The
planning environmenit set PE contains sentences describing the date-line structure and
sentences capturing that the safe is locked during planning time 10, the key is on the table
during 10, and the safe cannot be both locked and open at the same time. Plan instance gr-
ky@,Ifs executability conditions are true if the property "the key is on the table" holds during
an interval that meets Ii. i.e., a time just prior to gr-ky@I1 's execution. Plan instance gr-
ky@I1 's effects are true if the property "the key is grasped" holds during an interval that ends
at the same time as I1, i.e., a time that holds during gr-ky@Il's completion. Finally. op-
sf@12's executability conditions are true if the property "the key is grasped" holds just prior to
op-sf@12 execution, and its effects are true if the property "the safe is open" holds at its
completion.

During each cycle of the planning algorithm, the state variables IAPLAN and CG are
updated. Before execution, INFLAN is set to the null set indicating that initially there are no
simple plan instances in the plan, and the causal gap CG is set to G, the conjunction of goal
conditions. In our example, the goal is given by one condition, and consequently we will say
that there is one conjunct forming the causal gap (which is a slight abuse of the language).
The operator REMOVE can be used to remove a conjunct C from the causal gap if it is
derivable (in the interval logic fragment) from PE. The operator INTRO using a plan
instance pi can be used to remove a conjunct C from the causal gap if C is derivable (in the
interval logic fragment) from the set containing the members of PE and the sentence EFF(pi).
In our example, INTRO applied to op.sf@12 is applicable, while REMOVE and INTRO using
gr-kyCI1 are not. INTRO using op-sf@I2 is applictble because the goal condition is derivable
from {r(EXISTS ?i (AND (HOLDS sf-opn ?i) (ENDS= ?i I2))}, a subset of PEu{EFF(op-sf@12)}.

One way to mechanize the process of detecting operator applicability is to employ a
theorem prover that forms proofs in interval logic. A resolution theorem prover can be used

I

191

since interval logic is cast as a first order theory. Unfortunately. finding an efficient
implementation can be quite difficult since potentially there may be any logical relation
between a condition in the causal gap and the set formed by the planning environment
augmented by a plan instance's effects. In this work, we have not yet investigated efficiency
issues, although in the conclusion we sketch some approaches that can be taken. \hat we have
done, however, is to isolate the role of interval logic reasoning and have not confounded it. as
Allen and Koomen iAllen&Koomen 83b' did, with non-deductive reasoning to handle the frame
problem (persistence) or reasoning to detect action interactions.

A second problem that must be faced is that we want any procedure used to determine
operator applicability to halt whether or not the operator is applicable. If we do not restrict
the form of our inputs it is impossible to find a procedure that says "no" in all cases when an
operator is not applicable. The reason for this is that this problem is equivalent to detecting
the lack of derivability in any arbitrary first order theory, an undecidable task. Thus, we may
take two approaches (which are not mutually exclusive): we can restrict the form of our inputs.
or we can employ a mechanism that may say "no" in cases where a more complete procedure
would find a derivation and consequently say "yes". The only ramification of this second
limitation is that there may exist a solution to a planning problem that is not detected.
Erroneous results are not produced where the planner concludes that a composite plan instance
solves a goal, while it could be derived that it does not.

Now, back to our planning example. The eflect of introducing a plan instance pi to remove
a condition C from the causal gap is that C is removed while pi's executability conditions are
added along with the non-interference conditions between pi and any plan instance already in
the plan (i.e., belonging to IXPLA.') that overlaps with pi. In our example. since INPLA.\ is
empty, there are no non-interference conditions to be added. Thus. CG at the end of the first
cycle is set to:

(EXISTS ?i (AND (HOLDS kv-grspd ?i) (MEETS ?i 12)))

and INPLAA is set to {op-sf@12}.

At the second cycle, L'TRO using gr-ky@I1 is applicable since the cor'dition making up the
causal gap is derivable from {'rEXISTS ?i (AND (HOLDS k.-grspd ?i) (ENDS= ?i 11))7,
r(MEETS I1 12'}, a subset. of PEu{EFF(gr-ky(aI1)}. Notice that this derivation men'lions the
formula (MEETS I1 12), which captures part of the date-line structure. This formula is
needed because the condition to be removed is in terms of 12, while the plan instance's effects
are in terms of 11.

The effect of introducing gr-ky@ll is that INPLAN is set to {cp-sf@12,gr-ky@l1}, and CG
is set to:

(EXISTS ?i (AND (HOLDS ky-on-tbl ?i) (MEETS ?i I1)))

In forming this new causal gap, only gr-ky@J1's executability conditions are added, and n.ot
any non-iniarierence conditions, because op-sf@I2 is the only member of INPLAN and it does
not overlap with gr-ky@Il.

At cycle three, REMOIE can be used to remove the condition making up the causal gap
since this condition is derivable from {r(MEETS 10 ii), r(HOLDS ky-on-tbl I0)}, a subset of PE.
In this example, after applying REAIOVE an empty causal gap is produced because this
operator removes the single condition forming the causal gap, and REMOVE never adds any
new conditions. Consequently, the algorithm terminates indicating that the plan instance

195

rjCOMP gr-kyCll op-sfCI27, which is the composition of the members of LVPL.4.. solves the
goal G.

If we modified the above example so that the sentence r(HOLDS ky-on-tbl IOT was not
included in PE, we would not be able to remove the condition making up the causal gap at
cycle three. In general, the only ramification that can result from an incomplete planning
environment specification is that there might be a goal that could be solved, but this cannot be
detected from the information provided in the input specification. This contrasts with other
planning systems that handle external events, such as DEVISER 'Vere 81' and Allen's and
Koomen's algorithm jAllen&Koomen 83b.. which can produce erroneous results if an incomplete
planning description is used. In particular, these systems can act as if a property persists that
actually does not (a conclusion reached from the omission of (relevant) information). For
example. if the above planning environment was encoded in either of these systems, and we
omitted a description capturing that a safe cannot, both be locked and open at the same time,
these system can act as if the safe remains locked even after op-sf@12, which causes the safe
to be opened. occurs.

Similarly, the only ramification of using imprecise descriptions, such as "either event evl or
ev2 occurs during I", (a disjunctive description), or "pr holds sometimes during I1". is that
there might be a goal that could be solved, but this cannot be detected. In other planning
systems, either these type of descriptions are precluded or erroneous results can be produced.
Allen's and Koomen's algorithm i.: an example of the later. For instance, if they use a planning
environment description capturing that "pr holds during 10" and "the negation of pr holds
sometimes during interval 1-2 (the concatenation of 11 and 12)", their system can act if pr
holds during 11, which is a conclusion that does not hold under the possible outcome "the
negation of pr holds during Ii".

6.4.2. Sequential Interactions and Maintenance

We now consider a situation where an earlier plan instance may ruin a later one's
executability conditions, this being the principal conflict detected in state-based systems. To
illustrate this situation, we complicate our first example by adding a second condition that
must hold in order for op-sf@12 to be executable: the agent must be within arms reach of the
safe just prior to execution (which implies that op-sf@12 does not involve moving to the
location of the safe if moving is necessary). Thus, op-sf@12's executable conditions are now
taken to be:

EC(op-sf@12)

(AND (EXISTS ?i (AND (HOLDS ky-grspd ?i) (MEETS ?i 12)))
(EXISTS ?i (AND (HOLDS sf-arms-In ?i) (MEETS ?i 12))))

where the term sf-arms-ln refers to the property "the safe is within arms length". We also
assume that this property holds at planning time, and thus modify PE from the above example
to include (HOLDS sf-arms-In 10).

Let us now examine the operation of the planning algorithm with these two modifications.
We first iterate through three cycles of the planning algorithm as before. The only differences
from our earlier example is that there are two conjuncts, not a single one, in the causal gap
after IVTRO using op-sf@12 is applied. Consequently, there are two conjuncts after gr-ky@ll
is introduced and one after REMOVE is applied. In particular, after INTRO using op-sf @R0,
is applied, CG is set to:

19 t

(AND (EXISTS ?i (AND (HOLDS kyv-grspd ?i) (MEETS ?i 12)))
(EXISTS ?i (AND (HOLDS sf-arms-in ?i) (MEETS ?i 12))))

After applying LNTRO using gr-ky@I1 to remove the first conjunct. CG is set to:

(AND (EXISTS ?i (AND (HOLDS kv-on-tbl ?i) (MEETS ?i I1)))
(EXISTS ?i (AND (HOLDS sf-arms-in ?i) (MEETS ?i 12))))

Finally, after applying REMOVE to remove the first conjunct, CG is set to:

(EXISTS ?i (AND (HOLDS sf-arms-In ?i) (MEETS ?i 12)))

At this stage, the planner is at an impasse. The condition making up the causal gap cannot
be removed using INTRO applied to any plan instance presented so far. Neither can
REMIOIE be used; from the planning environment description, one can infer only that the
property sf-arms-ln holds during 10. This specification is noncommittal as to whether this
property holds at any later times, such as a time just prior to 12. Unlike existing systems. we
do not operate as if a property remains true unless it can be determined otherwise. Instead, a
plan instance must be introduced into the plan to guarantee that a property remains true over
some interval: i.e.. the property must be maintained. We now extend our example by
introducing such a plan instance.

Whether there exists a plan instance to maintain a property depends on whether the agent
can affect this property: a property cannot be maintained if it is totally out of the agent's
control. In this example, we assume that the property "the safe is within arms length" is not
totally out of the agent's control, and we will use the term (mtn sf-arms-ln)@I1 to refer to a
plan instance that maintains this property over interval Ii. The specification for this plan
instance is given by:

(mtn sf-arms-ln)@I1

EC: (EXISTS ?i (AND (HOLDS sf-arms-In ?i) (MEETS ?i I1)))

EFF: (HOLDS sf-arms-In I1)

The above specification captures that (mtn sf-arms-ln)@I1 is executable if the safe is within
arms length at a time just prior to execution, and its effect is that this property holds during
execution. It is important to note that this specification implies not only that the agent can
influence the property "the safe is within arms reach" during time Ii, but furthermore, that
there are no external events that can prevent the agent from maintaining this property during
Ii. If for example, it were possible that another agent could perform an action that would
result in the safe being moved sometimes during Ii, (mtn sf-arms-ln)@II's executability
conditions would have to mention that this action does not occur.

Since gr-ky@I1 and (mtn sf-arms-ln)@I1 overlap in time, their non-interference conditions
must be specified. If the performance of gr-ky@Il does not involve a change in location, then
gr-ky@l and (mtn sf-arms-ln)@I1 do not interfere under any conditions. In this case, we can
set their non-interference conditions to TRUE. On the other hand, if grasping the key
necessarily involves moving out of arms reach from the safe, gr-ky@ll and (mtn sf-arms-
In)@I1 would interfere under all conditions. and consequently we would set their non-
interference conditions to FALSE. The third alternative is where the two plan instances
interfere only under certain conditions. As an example, suppose that grasping the key involves

I

197

moving out of arms distance from the safe only if the key is not resting on the side of the table
closest to the safe. In this case, we could set their non-interference conditions to r(AND
(EXISTS ?i (HOLDS ky-cls ?i) (MEETS ?i 11)7, which we assume to be true if and only if the
key is on the side of the table closest to the safe at the time just before the key may be
grasped. We now investigate the operation of our planning algorithm in all three cases.

To begin with, what gr-ky@ll s and (mtn sf-arms-ln)@I1's non-interference conditions is set
to does not affect whether I.N'TRO using (mtn sf-arms-ln) @11 is applicable. For the causal gap
considered above, this operator is applicable since r(EXISTS ?i (AND (HOLDS sf-arms-In ?i)
(MEETS ?i 12)) is derivable from {rHOLDS sf-arms-In I1)1 , (MEETS 11 12 }, a subset of
PEu{EFF((mtn sf-arms-ln)@l1)}.

The result of introducing (mtn sf-arms-ln)@I1 into the plan when CG is set to r(EXISTS ?i
(AND (HOLDS sf-arms-In ?i) (MEETS ?i 12)) and INPLAN is set to {op-sf@12,gr-key@1} is
that the condition making up the causal gap is removed, while (mtn sf-arms-ln)@lI's
executability conditions and the non-interference conditions between (mtn sf-arms-ln)(Ill and
gr-ky@I1 are added. In the case where (mtn sf-arms-]n)@1I1 and gr-ky@l do not interfere
(under any conditions), the following causal gap would be produced:

(AND (EXISTS ?i (AND (HOLDS sf-arms-In ?i) (MEETS ?i 11)))
TRUE)

During the next two cycles both these conditions could be removed by applying REMOVE. The
first conjunct can be removed since it follows from {r(HOLDS sf-arms-In 10T. '(MEETS 10 11'}.
a subset of PE. TRUE can be removed since it is derivable from any set. Thus. to gain

efficiency, one can modify our planning algorithm sb that TRUE is ignored (i.e., not added to
the causal gap) in situations were it would have been added using our simple algorithm.

In the case where the two plan instances interfere under all conditions. the result of
introducing (mtn sf-arms-ln)Ill into the plan is that CG is set to:

(AND (EXISTS ?i (AND (HOLDS sf-arms-ln ?i) (MEETS ?i 11)))
i FALSE)

This new causal gap is unsolvable since FALSE is not derivable from any set. Thus. to gain
efficiency, one can modify our planning algorithm by considering any operator that would enter

S FALSE into the causal gap (using our simple algorithm) as not being applicable.

The last case to consider is where the two plan instances interfere only if the key is not
resting on the side of the table closest to the safe, and thus we set (mt.n sf-arms-ln)@IIs and

gr-ky@I1's non-interference conditions to 'AND (EXISTS ?i (HOLDS ky-cls ?i) (MEETS ?i 11)).
In this case, introducing (mtn sf-arms-ln)@ll into the plan produces the new causal gap:

(AND (EXISTS ?i (AND (HOLDS sf-arms-In ?i) (MEETS ?i I1)))
(EXISTS ?i (HOLDS ky-cls ?i) (MEETS ?i I1)))

S Like the cases above, the first conjunct in this causal gap can be removed since it is derivable
from PE. To remove the second condition, we would need to show that this condition is
derivable from the planning environment. The second condition cannot be removed using
INTRO since this condition is not in the future of planning time and we can only introduce
plan instances that occur after planning time.

I

198

In these examples, whether gr-ky@Il ruins op-.sf@1's executability conditions is detected
through the interaction between gr-,-y@I1 and (mtn sf-arms-ln) 1 1, which is captured by their
executability conditions. There are a number of advantages gained by detecting interactions
in this fashion, as opposed to the standard approach where interactions are detected by looking
at the relation between preconditions and effects and using phantom nodes. For one, our
method is more expressive in the type of sequential interactions that can be treated. In other
systems, either an earlier action ruins a !ater one's preconditions, or does not. In our
framework, we can also model the situation where an earlier plan instance conditionally ruins
a later one's precondition. Our last example is one of these cases.

Secondly, we have more flexibility in how we describe plan instance (action) effects because
they are used in our system only to determine if an action can achieve a condition, rather than
for determining both achievement relations and action conflicts, as is typically done. For
example, our algorithm does not require a complete and non-disjunctive specification of a plan
instance's (action's) effects. This is in contrast to the standard methods which must work
under the assumption that each action's effect list is complete and must preclude the use
disjunctive effects.' Using the standard methods, if EFF is an actual effect of al that is
omitted from al's effect list, one would not detect the harmful interac_*.,], Vhere al conflicts
with a later action that has a precondition mentioning the negation of EFF. In our system.
the only ramification of an incomplete effect list is that there may be a goal that can actually
be achieved, but this cannot be determined from the incomplete description given as input.

Lastly, the use of maintenance plan instance allows us to make a distinction that cannot be
captured using phantom nodes. In particular, we are able to distinguish between three cases:

1) The agent cannot affect property pr during time ix; in which case, there does not exist a
plan instance that maintains pr any time during ix.

2) Property pr is completely in the agent's control during interval ix; in which case. the
only executability conditions for maintaining pr during ix is that pr holds just prior to
ix.

3) Property pr is affected by both the agent and the external world during interval ix: in
which case, the executability conditions for a plan instance that maintains pr during ix
must mention the external events or conditions that could prevent this property from
holding.

Being able to make the above distinctions is critical if we permit external events and do not
assume that the planning environment description is complete.

1 In our system, if we have a non-deterministic plan instance that brought about either property p at time IX or
property q at time ix, we could set its effect list to this disjunction We must also set to FALSE the non-
interference conditions between pi and any plan instance that either maintains the negation of p during a time
overlapping with ix and between pi and any plan instance that maintains the negation of q during a time
overlapping with ix

I 199

6.4.3. Concurrent Interactions

We now examine plan instance interactions that would be detected as concurrent
interactions in other systems. We first present a simple example showing how we can model
the conflict between two plan instances that share the same type of resource. We then
complicate this example to take into account the possibility where an external event is also
competing for this resource type.

Consider two plan instances evl@Il and et,2@Zi that share the same type of resource. If
there is just one resource available then one but not both can be executed, while if there are
two or more resources available then they both can be executed together. We will use the
function term r(rsrc-avl n. to denote the property "n resources are available". To focus on the
interaction between evi@Ii and ev2@Il, we set up the following simple planning problem:I

G: (AND (HOLDS prl 11) (HOLDS pr2 I1))

I PE: {(FORALL ?i (IF (HOLDS (rsrc-avl 2) ?i)
(HOLDS (rsrc-avl 1) ?i)))

(FORALL ?i (IF (HOLDS (rsrc-avl 3) ?i)
(HOLDS (rsrc-avl 2) ?i)))

(MEETS 10 I1), (MEETS 11 12) ... }

I ev1 @11

EC: (HOLDS (rsrc-avl 1) 11)

EFF: (HOLDS pri II)

I2EC: (HOLDS (rsrc-avl 1)11)

EFF: (HOLDS pr2 11)

f{ev I@I 1,ev2@I1 }

NI: (HOLDS (rsrc-avl 2) 11)

In the planning environment set PE, we include the two instances of a general relation, that
we will make use of, capturing that if there is at least n resources available during any time i,

then there is also at least n-1 resources available during i. The executability conditions
specifications for evl@I1 and ev2@Ii capture that both plan instances can be executed
individually as long as one resource is available. The non-interference conditions specification

captures that the two plan instances do not interfere if at least two resources are available.
Implicit in the executability and non-interference specifications is that there are no external
events or other plan instances that can compete for the same resource. In our second example,

we show how the specification can be modified to provide for this possibility.

Using our planning algorithm, the interaction between evl@Ii and ev2@I1 would first be
considered when one of them is already in the plan and we are considering introducing the
other. One can get to such a state by first introducing either evl@I or ev2@1l into the plan,
these both being applicable at the first cycle when the causal gap is set to the conjunction3 assigned to G. Suppose we first introduce evl@fl into the plan, which can be used to remove

200

the first conjunct in G. The result of applying this operator is that CG is set to:

(AND (HOLDS pr2 11)
(HOLDS (rsrc-avl 1)11))

and LNPLAN is set to {evl@I1}.

At the second cycle, ev2@I1 can be introduced to remove r(HOLDS pr2 127 from the causal
gap. The new causal gap produced by this operator is formed from the previous one by
removing (HOLDS pr2 12) while adding ev2@I1's executability conditions and the non-
interference conditions between evl@i and ev2@Il yielding:

(AND (HOLDS (rsrc-avl 1)11)
(HOLDS (rsrc-avl 1) 11)
(HOLDS (rsrc-avl 2)11))

Th.s new causal gap contains the conditions that must hold or be brought about in order for
the composition of et, 1ll and ev2@I1 to be executable. It can be deduced that all these
conditions hold if r(HOLDS.(rsrc-avl 2) I1T is derivable from PE. In this case, the planning
operator REMOVE can be applied three times to remove these three conjuncts from the causal
gap. The reason that r(HOLDS (rsrc-avl 1) I1V can be removed (twice) is because of the
presence of r(FORALL ?i (IF (HOLDS (rsrc-avl 2) ?i) (HOLDS (rsrc-avl 1) ?i))T in PE. For
similar reasons, if some plan instance can be introduced to remove rHOLDS (rsrc-avl 2) ii,
then this plan instance can be introduced three times to remove the three conditions. While
introducing the same plan instance more than once might be wasteful, it does not produce
erroneous results.

One can modify our simple algorithm to avoid this wasteful behavior where an operator is
applied more than once to remove the same condition from a causal gap. A simple solution is
to avoid this situation by only adding new conditions to the causal gap if they are not already
present (and not allowing duplicates in the goal). A more encompassing solution is to only add
a condition C .to the causal gap, if it is not derivable from the planning environment
augmented with the conditions in the causal gap. Thus, for example, if condition C1 were in
the causal gap and 'IF C1 C2) were in PE, one would not add condition C2 to the causal gap.

Let us now complicate the above example by taking into account an external event that
competes for the same type of resource used by evl@I1 and ev2@I1. For simplicity, we will
assume that only one external event, which we will designate by ext-ev, occurring during Ii
competes for this resource type during 11. In this case, each plan instance is executable only if
either there are at least two resources available during Ii (so that whether or not ext-et
occurs during 11 there will still be enough resource available), or ezt-ev does not occur during
Ii and there is at least one resource available. We therefore modify the above example so that
evl@I1 's and ev2@I1 's executability conditions are both given by:

(OR (HOLDS (rsrc-avl 2) I1)
(AND (HOLDS (rsrc-avl 1) 11) (NOT (OCCURS ext-ev I1))

We must also modify the non-interference conditions between evl@I1 and ev2@I1 to provide
for the possibility where ext-ev occurs during Ii; in which case they would interfere if at least
three resources were not available. Thus, we assume that their non-interference conditions are
now given by:

201

(OR (HOLDS (rsrc-avl 3)11)
(AND (HOLDS (rsrc-avl 2) 11) (NOT (OCCURS ext-ev I1))

A similar specification could be used if instead a third plan instance was competing for the
resource.

Using these modifications, the causal gap produced by introducing both erlI11 and er2(JI1U is given by:

(AND (OR (HOLDS (rsrc-avl 2)11)
(AND (HOLDS (rsrc-avl 1)11) (NOT (OCCURS ext-ev I1))))

(OR (HOLDS (rsrc-avl 2)11)
(AND (HOLDS (rsrc-avl 1) 11) (NOT (OCCURS ext-ev I1))))

(OR (HOLDS (rsrc-avl 3)11)
(AND (HOLDS (rsrc-avl 2) 11) (NOT (OCCURS ext-ev I1)))))

If r(HOLDS (rsrc-avl 3) I1T is derivable from PE, then we could remove all three conjunm s
from the causal gap using REMOVE. The last condition could be removed since its left
disjunct would be derivable from PE. The first two conditions could be removed since their

I left disjuncts (i.e.. both r(HOLDS (rsrc-avl 2) I1) would be derivable from PE because of the
presence of r(FORALL ?i (IF (HOLDS (rsrc-avl 3) ?i) (HOLDS (rsrc-avl 2) ?i))T in PE.
Similarly, if some plan instance could be introduced to remove r(HOLDS (rsrc-avl 3) I1, then
this plan instance could be introduced three times to remove these three conditions.

We could also remove all three conditions if both r(NOT (OCA.TRS ext-ev II)T and
r(HOLDS (rsrc-avl 2) IlY are derivable from PE. meaning that it deducible that ext-el' will not
occur during 11 and that there will be at least two resources available at this time. We could
not introduce a plan instance, however, to achieve both conditions since ext-et is an external
event, and thus we are assuming that no plan instance can affect it and consequently '(NOT

I (OCCURS ext-ev II)) cannot be achieved. Instead, if r(NOT (OCCURS ext-ev 11)7 is derivable
from PE, and plan instance pi achieves r(HOLDS (rsrc-avl 2) I1, we could introduce pi to
remove all three conditions from the causal gap.I

I
I
I
I
I
I
I

202

Chapter 7
Conclusion

7.1. Summary

In this dissertation an interpreted deductive logic was developed to describe and reason
about planning problems that may involve external events and concurrent actions. We also
developed a simple planning algorithm that can handle these features. A rigorous construction
was provided demonstrating that this algorithm can be viewed as a sound (but limited) proof
procedure.

We motivated our development by first describing the inadequacies of state-based systems
and their underlying formalism, situation calculus, which is the context in which planning was
originally formulated. While situation calculus is suitable for describing the effects of executing
different actions, both individually or in a sequence, from some instantaneous state, it cannot
directly model simultaneous events or conditions that may hold while an action is to be
executed. As a result, this formalism is insufficient for describing planning problems that
mention either concurrent actions or external events that may be taking place while the agent
is to be executing its plan. There has been, however, work in extending the capabilities of
state-based planners to handle some of these features, while keeping close to the state-based
framework. In this work. we discussed SIPE i\Vilkins 831 and DEVISER !Vere 81, which are
two of the more sophisticated types. These systems, however, have many restrictions. We
illustrated that some of these restrictions stem from their use of the STRIPS assumption which
is an approach intimately tied to the state-based framework, which is used to determine
whether a property remains true.

In response to the deficiencies of the state-based framework, Allen Allen 84 and
McDermott jMcDermott 82 put forth temporal models that can be used to describe
simultaneous events and conditions that hold or are changing while an event is occurring. We
demonstrated, however, that both Allen's model (which is a linear time model) and
McDermott's model (which is a branching time model) lacked the structure necessary to
describe the different ways the agent can affect the world by executing the different actions at
its disposal. That is. although these models are suitable for capturing the perspective of an
"outside observer". they are not suitable from the perspective of an agent that is an active
participant, one who can influence the world.

More specifically, we demonstrated that neither model can be used to express "temporally
rich" planning problems having the form: given a description of the world in which planning is
to be done that may specify conditions that either possibly or inevitably hold in the future of
planning time, find a collection of actions at specified times (i.e., a plan instance) that achieves
a desired future condition (i.e., the goal). To capture such problems, for example, it is
necessary to distinguish possibilities that are out of the agent's control from ones that the
agent can influence. We demonstrated that neither Allen's or McDermott's model can make
this distinction. Secondly, we showed that neither model can express that some action can be
executed only under certain conditions, where these conditions may refer to times that hold
while the action is to be executed.

To remedy these problems, we developed a model of action and time that. can be viewed as
a branching time model (indexed by temporal intervals) extended with a function analogous to
the result function in situation calculus. This function captures the different ways in which the

203

I
I agent can affect the world. In our models, world-histories and basic action instances take

the place of situations and actions. World-histories refer to complete worlds over time. rather
than to :"gtantaneous snapshots. Basic action instances refer to primitive actions at a
specified times and are used to construct plan instances, our analog to plans which can be
thought of as collections of actions at specified times. A world-history serves as the context in
which the execution of a basic action instance is specified. For each world-history h and basic
action instance ba@i, the model specifies the world-histories that differ from h solely on the
account of ba@i's occurrence. This function is similar to ones found in the semantic models for
conditionals developed by Stalnaker IStanaker 68] and Lewis Lewis 73. This structure
enables us to model the influence of conditions that may hold during the time that a plan
instance is to be executed, and provides a simple basis for modeling concurrent interactions
and for composing plan instances to form more complex ones.

The models we developed served as the semantic structures used to construct and interpret
a deductive logic. To describe these models, we extended Allen's language, which is a first
order language, with two modal operators INEV and IFTRIED. Statements formed using the

INEV operator are used to describe the branching structure; that is, LNEV is used to describe
conditions that are inevitable at a specified time and ones that are possible. Statements
formed by the IFTRIED operator are used to describe the conditions that would be affected ifthe agent were to attempt a specified plan instance and the ones that would not be affected.

After specifyir, the language and semantic theory, we provided an axiomitization and
showed that the resulting proof theory is sound with respect to the semantics. We then
illustrated how temporally rich planning problems could be expressed in the logic and p'ovided
derivations showing the relation between composite plan instances and their constituent parts.
We also investigated plan instance interactions, paying particular attention to concurrent
interactions.

Using our framework, we re-examined the STRIPS assumption and its analog "the
persistence assumption" {McDermott 82i which is a non-deductive scheme used for detecting
whether a property remains true when simultaneous events are allowed. We demonstrated

that these assumptions are inappropriate when planning with simultaneous events. As an
alternative, we' introduced plan instances that maintain properties over intervals and
investigated their relation to the STRIPS assumption.

Lastly, we presented a simple planning algorithm that nandles concurrent actions and
external events. We proved that this algorithm is sound with respect to our semantics, using
our general proof theory as a tool. This algorithm is novel in that all action interactions, both
sequential and concurrent, derive from a conditional interference relation specified by the user
that relates only concurrent plan instances. Secondly, we employ maintenance plan instances,
rather than resorting to the STRIPS assumption. This enables us to relax some pressing
restrictions that had to be imposed when using the STRIPS assumption, such as requiring a
description of all the (relevant) external events that will occur during the time that plan

* execution is to take place.

U
I
I
I

201

7.2. Limitations and Future Directions

We describe extensions of the work presented in this dissertation along two different
dimensions. We first discuss implementing and extending our simple planning algorithm to gain
efficiency. 'We then discuss some issues that are outside the scope of "the deductive planning
problem", which we have formulated, and focus on the role that would be played by our
deductive logic when considering these more encompassing issues.

7.2.1. Limitations of the Planning Algorithm

When presenting our simple planning algorithm in chapter six, we did not consider efficiency
issues. In a number of places the algorithm is abstract in the sense that there are many
implementations, affording various degrees of efficiency, that meet the specification. Thus, we
must fill in the details, trying to find an efficient implementation. In particular, we would like
i) an efficient mechanism for determining which planning operators are applicable at each
cycle, ii) a mechanism that wisely chooses the appropriate operator from the set of applicable
ones at each cycle, and iii) a mechanism that detects that an unsolvable state has been
reached and backtracking should be performed. In this sub-section, we discuss i) and iii) in
some detail.

Efficiency can also be improved by adapting techniques employed by some current state
based planning systems, such as constraints [Stefik 81], abstract actions [Sacerdoti 74'
[Tenenberg 86, and decomposable actions [Sacerdoti 77. Unlike the issues mentioned in the
paragraph above, to incorporate these features it is necessary to modify our algorithm rather
than just plugging in the details. In this sub-section, we describe planning with constraints in
more detail.

Lastly, we discuss the problem of finding alternate input, specifications that may be more
readily available than those required by our simple algorithm.

Determining Applicable Operators (Mechanizing Interval Logic)

In this work, we have not investigated efficient techniques for determining which planning
operators are applicable at each cycle; we have just given "correctness conditions" that must
be met by any procedure used to perform this task. As we have seen, detecting operator
applicability involves determining whether an interval logic statement is derivable from a set
of interval logic statements. This does not necessitate, however, that the mechanism for
determining operator applicability must be a theorem prover that forms proofs in interval
logic. Any procedure can be used as long as the procedure concludes that an operator is
applicable only when the condition being removed from the causal gap is derivable from the set
of sentences associated with the operator (and that it halts on all inputs).

One approach that can be taken to gain efficiency is to restrict the form of the inputs to
the planning algorithm. We can look at existing planning systems to find suitable restrictions,
such as NOAH [Sacerdoti 77j, SIPE [Wilkins 833, or DEVISER [Vere 811. In these systems,
simple and efficient mechanisms have been found to check whether an action achieves some
condition because these systems can express only simple relations between an action's effects
and conditions to be achieved. Moreover, these mechanisms can be interpreted as meeting our
criteria for correctness. Thus, one may build an efficient mechanism by first restricting our
planner's inputs to guarantee that the relation between any plan instance's effects and any

condition in the causal gap only corresponds to a relation found in one of these planners chosen

20.5

as our model. We then can implement a mechanism for detecting operator appl~icabilitv that is
analogous to the one used by the model planner, thereby affording the same efficiency.

The limitation of this approach is in the loss in expressability. Current planning systems do
not describe the variety of examples that we wish to handle. For example. they cannot describe
actions (plan instances) that have disjunctive effects or describe the various temporal relations
we would like to consider. One might then try to extend a mechanism for detecting operator
applicability so that we can relax some of the more imposing restrictions placed on the form of
the inputs.

If we are striving for expressability. an interval logic theorem prover might be a more
appropriate mechanism for detecting operator applicability. In a theorem prover framework.
one typically strives for efficiency by implementing an appropriate control strategy. This
control strategy may be domain dependent, driven by information about the specific problem
being considered.

We may also improve the efficiency of an interval logic theorem prover by trying to
separate interval relation reasoning (i.e., reasoning about temporal relations) from reasoning
about the causal and definitional relations between events and properties. We can then exploit
an efficient procedure tuned for interval relation reasoning to gain efficiency. Stickel iStickel
851 haz developed a technique, called theory resolution, that may be used for this purpose. His
method enables one to augment a resolution theorem prover, given a particular theory, with
special purpose procedures tuned for efficiency that reason about sub-theories. A special
purpose procedure can be employed for a sub-theory when a mechanism can be found that
detects unsatisfiability in this sub-theory.

In our case, we would naturally look at Allen's interval relation reasoner Allen 83a,. which
can detect an unsatisfiable set of ground interval relation statements. Thus, to employ theory
resolution, we may restrict the inputs to our planning algorithm so that only ground interval
relation statements need be considered, or we may extend Allen's mechanism to handle
quantified statements. The former approach, however, may be overly restrictive: for example.
it would preclude the use of the statement "event ev occurs after planning time" in the
planning environment description. In general, this approach precludes the use of any
statement in the planning environment or effect lists that would contain a free variable in an
interval relation formula when put in clause form; it also precludes the use of any statement in
the goal, executability, or non-interference conditions (these being the conditions that can be
added to the causal gap) that would contain a free variable in an interval relation formula
when its negation is put in clause form.

Backtracking and Detecting when the Causal Gap is Unsolvable

We want to provide for the situation where during the planning process a bad choice, or a
bad set of choices, has been made. In this case some of the earlier choices made (and their
ramifications) must be rtracted before proceeding. We would like a mechanism that
implements this process to recognize when a bad state has been reached in as many cases as
possible and as early as possible. We would also like a retraction mechanism that, only retracts
the choices that are causing the problem.

In our planning algorithm, a bad state corresponds to the situation where the the causal
gap is unsolvable, that is, when there is no applicable sequence of operators that can be used to
remove all the conditions from the causal gap. This situation is immediately detectable when
there exists a condition in the causal gap that cannot be removed by any applicable operator.

206

One can also determine that the causal gap is unsolvable by detecting that there exists a 3
condition in the causal gap that is impossible to achieve. We must clarify by noting that
"being impossible" is a stronger (i.e., more specific) condition than "being unsolvable". The
causal gap would be unsolvable but not impossible in cases where there are plan instances that
could be performed to achieve the conditions in the causal gap. but this cannot be determined I
because the (incomplete) description of the planning problem either does not mention these

plan instances or does not mention all their effects. 3
In section 6.4.2 we encountered a simple case where we detected that the causal gap is

impossible, this being the case when the causal gap contained the condition FALSE (which
stands for an inconsistent statement). More generally, it can be shown that the causal gap is I
impossible to achieve if the conditions in the causal gap taken with the conditions in the
planning environment are inconsistent. There are also additional cases where it could be
detected that the causal gap is unsolvable if we extended the type of information that could be 3
provided as input. For example, we might include information about conditions that are both
possibly false and out of the agent's control. If condition C has this property, then any causal
gap containing C is impossible. We must note that we could not simply conclude that a causal
gap containing a condition that is possibly false (and not necessarily out of the agent's controh
is impossible: it might be the case that a condition is possibly false because of a course of
action that the agent can take but is not going to take in the plan under consideration. 3

Let us now turn to the problem of isolating the choices that produce a bad state. In order
to narrow down the choices to retract when the causal gap is unsolvable, it is necessary to find
the conditions in the causal gap that are the source of the problem. If it is detected that the I
causal gap is unsolvable because there are no applicable operators, then each condition that
cannot be removed is a source of the problem. If we detected that the causal gap is unsolvable
because it is impossible. then there may be conditions that individually cause a problem along
with ones that jointly cause a problem. For example, if two conditions are inconsistent with
each other, then they jointly cause a problem.

For each condition that individually causes a problem, we must retract the operator that 3
resulted in this condition being added to the causal gap. 1 For each set of conditions that
jointly cause a problem, we must retract one of the operators that resulted in adding one of
these conditions to the causal gap. One must also retract an) decision where plan instance pi
was introduced into the plan if the only reason that pi is in the plan is to achieve the
executability conditions of another plan instance being removed during retraction. Secondly.
we must remove any plan instance that achieves the non-interference conditions between a pair
of plan instances, where one or both of the pair is being removed.

Partially Specified Plan Instances (Planning with Constraints) I
One restrictive aspect of our simple planning algorithm is that each plan instance must be

completely specified when it is entered into the plan. By "completely specified" we mean that
the plan instance is represented by a ground term. This is in contrast to current planning
systems, such as MOLGEN [Stefik 81], SIPE [Wilkins 83], and DEVISER JVere 81], that permit
features of an action, such as the objects manipulated by the action or the action's time of I
occurrence, to be only partially specified when the action is first entered into the plan. A

If there is a condition causing a problem that is not entered by any operator, then it was entered as part of the 3
goal, and consequently there is no solution to the planning problem

I

207I
partially describe(, action can be represented by a function term containing arguments whose
values are just constrained to meet some property or relation, rather than arguments that are
ground terms. As the planning process continues, additional constraints may be imposed on
these values for such reasons as preventing the plan instances in the solution from conflicting
with each other.

The use of partially described plan instances permits more flexible control strategies than
those that can be employed using our simple algorithm since more choices are available at each
decision point. This added flexibility allows one to better approximate the "least commitment

control strategy" where one commits to detail only when necessary, trying to avoid premature3 decisions that, are made before other requirements needed to solve the problem are known.

In order to extend and modify our algorithm to allow partially described plan instances, a
number of issues must be considered. We keep in mind that we want to provide a mapping (as
we did with our simple algorithm) that interprets the new algorithm as reaching conclusions
that follow (in our logic) from knowledge about the problem given as input. Mapping the
algorithm to the logic forces us to be precise as to what the algorithm is doing. For example, if
the algorithm returns a partially described plan instance, we need to decide the relation
between the solution and the goal. For example, does the mechanism return a partially
described plan having the property that each of its completions solves the goal (and at least
one completion exists), or does it return a partially described plan instance having the property
that there exists a completion that solves the goal.

We must. provide a syntax to describe partially described plan instances and must modify
our action specifications so that executability conditions, effects. and non-interference
conditions are given for partially described plan instances rather than for specific ones (which
is currently done). For example, we may want an executability specification that captures: for
any interval i that has duration D, the plan instance etmi is executable if property pr holds
just prior to i. As another example, we may want a non-interference specification that
captures that for any objects ol and o2, and any intervals ii and i2, (grasp ol)@il and (grasp
o2)@i2 interfere only if ol and o2 denote the same object and ii and il overlap in time.

A syntax is also needed to describe partially described conditions appearing in the causal
gap. Partially described conditions may be entered into the causal gap as the result of
introducing a partially described plan instance. For example, the result of introducing the
partially described plan instance ev@,i (described above) can be that the partially described
condition "pr holds during an interval ix that is constrained to meet i to the right" is added to
the causal gap.

The presence of partially described plan instances and conditions forces us to modify the
INTRO and REMOVE planning operators. We must come up with a new characterization of
when these operators are applicable. For example, we may say that INTRO is applicable
using partially described plan instance P1-PD to remove partially described condition C-PD iff
there is a completion of PI-PD (pi) and a completion of C-PD (C) such that C is derivable
from the planning environment augmented with pi's effects. This modified INTRO operator
will require a more sophisticated mechanism to determine operator applicability. The use of
partially described operators also complicates the process of backtracking from bad planning
choices.

Finally, a third type of planning operator must be provided that adds additional constraints
to arguments appearing in partially described plan instances and to arguments appearing in
partially described conditions appearing in the causal gap. This operator may be performed
when a partially described plan instance is being entered. For example, when introducing aI

I

208

partially described plan instance PI-PD to remove a partially described condition C-PD, we
may add constraints to PI-PD and C-PD so that any completion of PI-PD with the added
constraints achieves any completion of C-PD with the added constraints.

A mechanism must also be provided that checks that the result of adding a new constraint
does not lead to some partially described plan instance or condition having no completions.
Typically, this has been determined by seeing if the set of constraints are satisfiable. In our
system, however, satisfiablity may not be sufficient, because we are mapping our algorithm to a
deductive logic, interpreting the property "there exists a completion", as conclusion with an
existential quantifier. For example, while sentences capturing that "grasp object ol during i"
and "grasp object o2 during i" both occur. and ol -and o2 are constrained to be distinct may
be satisfiable, this does not guarantee that there is a completion for each partially described
plan instance meeting the constraint. In order to prove that such a completion exists, we
would have to prove that at least two objects exist that can be manipulated by a grasping
action.

Using Different Types of Input Specifications

The algorithm that we presented required that one specify the planning environment, the
executability conditions and effects for each action, and the non-interference conditions for
each pair of non-overlapping plan instances as the input to the planning algorithm. Some of
these descriptions, however, may not be readily available or may require the user to perform
complex computations to be determined. As an alternate, we might put the burden on the
computer system and derive these relations from descriptions that may be more readily
available.

Coming up with non-interference conditions may be particularly difficult. For example.
determining whether a plan instance pi interferes with a plan instance that maintains property
pr over interval i involves determining whether the occurrence of pi leads to pr not holding
any time during interval i.

Instead of requiring the user to compute non-interference conditions, we mar try to find
other types of information from which these conditions can be derived. For example. one could
compute that plan instances pil and pi2 interfere under all conditions (and thus, their non-
interference conditions would be set to FALSE) if r(NOT (OCC pil) (OCC pi2)) is derivable
from the planning environment description. One however, could not use the planning
environment alone to deductively derive all non-interference relations. For one. there is no
information in the planning environment description (which consists only of interval logic
statements in our current incarnation) enabling us to deductively derive that two overlapping
plan instances do nol interfere under any conditions.

To remedy the above problem, one might propose that one concludes that pil and pi2
interfere if and only if r(NOT (OCC pil) (OCC pi2)) is not derivable from the planning
environment description. 2 There are problems, however, with this approach. It might be the
case that pil and pi2 interfere although (NOT (OCC pil) (OCC pi2)) is not derivable from
the planning environment description. This case arises when the planning environment
description is incomplete. Thus, to exploit this approach, we would have to make assumptions
about the completeness of our planning environment description.

2 This type of relation is not deductive, it could, however, be formulated using a non-monotonic logic

209

A more serious fla-w is that this approach does not take into account plan instances that
just conditionally interfere. In fact, if we do not extend the planning environment to include
statements other than interval logic statements, it is impossible to detect conditional
interference. For example, suppose that plan instances pil and pi2 interfere under conditions
C. As we have shown in section 2.3. this is not detectable by seeing if r(IF C (NOT (OCC pil)
(OCC pi2))) is derivable from the planning environment (even if we assume that the planning
environment description is complete). This statement does not distinguish between the case
where C is a condition that must hold in order for pil and pi2 not to interfere from the case
where (NOT C) is an effect of executing pil and pi2 together. Thus, if we want to derive
non-interference conditions, we have to find a convenient way to augment the planning
environment description to capture these type of distinctions.

7.2.2. Issues Outside the Scope of the Deductive Logic

In this section, we briefly look at some issues that are not fully addressed by developing a
deductive logic to express planning problems. We first discuss the problem of deciding what
possibilities to take into account when forming a plan. We then discuss planning with an
incomplete description where it may be appropriate to suspend planning to obtain relevant
information. Lastly, we mention the problem of planning with incorrect descriptions where
planned actions might fail or not produce desired results. These discussions will elicit the role
that the deductive logic can play in these reasoning tasks, demonstrating that the logic is not
rendered obsolete when considering these more encompassing issues.

The Deductive planning Problem and a Simplified World Model

Ve have formulated the "deductive planning problem"; given a description of the world S
and a goal G, we are looking for a plan instance pi such that it deductively follows from S
that pi is executable and if pi occurs then G holds under all possible circumstances. One
might argue that this framework is inappropriate or useless since an agent never comes up
with a plan that works under all conceivable possibilities. This, however, is not the problem
that is necessarily faced in this framework; the possibilities referred to are just the ones that
are captured by our world description S. This description can represent a simplified view of
the world that takes into account only the few possibilities that the agent is actively
considering.

This is in line with our more encompassing view of planning: the task of finding a plan that
is airtight with respect to the possibilities that are actively being considered. For example, if
you tell me that my plan would not work if so and so happens, a typical response would be
"Oh, I was not taking that into account" and would either argue that it should not be taken
into account or would modify my plan to take it into account.

Identifying a deductive logic is essential for formalizing this more encompassing planning
process since this formalism provides the notion of "being airtight". The other problem, that of
determining the possibilities to take into account, however, is outside the scope of this work.

There has been some work that is relevant to this problem of coming up with a simplified
world description. Of particular relevance, is any framework for handling the qualification
problem [McCarthy 771. This is the problem that typically, action precondition specifications
and causal statements only take into account certain possibilities. For example, one might
include a precondition specification for starting a car that mentions such things as the key

210

being in the ignition and there being gas in the tank. Typically, however, one would not
mention the condition that there is no potato in the tailpipe, although this situation could
conceivably arrive and prevent the car from starting. This suggests how we may describe

simplified scenarios in our framework: our specifications of executability conditions. non-
interference conditions, and causal statements (which we have been capturing using a material
implication) need only mention conditions that one is actively considering.

There has been a number of schemes addcessing the qualification problem that employ non-
monotonic logics, such as !Ginsberg&Smith 87* and [Shoam 86'. In both these approaches. when
describing a general domain theory that is to be used for a number of different problems, one
explicitly mentions only the conditions that are considered normal, that is, conditions that are
to be taken into account in all given problems. For a particular problem, one can also sp'ecify
abnormal conditions that should be taken into account when solving this particular problem.
When solving a problem, these systems take into account the normal conditions plus the
specified abnormal conditions, ignoring all other conditions. Unfortunately. deciding which
conditions to be considered as normal is a difficult problem which is outside the scope of
these approaches.

Planning with an Incomplete Description

While planning at a particular time, the agent may be unable to find a plan to solve a given
goal because it is missing relevant pieces of information about the external world. In our
framework, this situation manifests when neither the truthhood or falsehood of a relevant
condition follows from the description of a planning problem. Since our logic is deductive, the
only ramification resulting from the presence of an incomplete description is that results may
not be derived that could be if a more complete description were supplied. Thus. this
framework is quite suitable for reasoning with incomplete information, as opposed to ones that
mix in non-deductive schemes such as the persistence assumption !McDermott 82'. which can
lead to incorrect results when incomplete descriptions are used.

When one's knowledge is incomplete, it is necessary to determine which additional pieces of
information are relevant and how or whether that information can be obtained before needed.
For example, if there are two routes that can be taken to reach a destination, and one of them
may be blocked, one would like to determine which route is blocked before reaching the point
where the two routes diverge.

In order to reason about such examples in a static planning framework, it is necessary to
represent the agent's knowledge of the world and actions that change the agent's knowledge
state (along with representing the external world and actions that affect the external world).
We can then introduce a "conditional plan instance" such as (if-else end i pil pi2) which refers
to executing pil if the agent determines that property cnd holds during interval i, while
executing pi2 if the agent determines that cnd is false during i. This plan instance is
executable only if the agent either knows, at a time prior to pil's and pi2's execution times,
that cnd is true during i or knows that cnd is false during i. Typically, this conditional plan
instance would be used only if the agent does not know at planning time whether or not this
condition holds. Thus, in order to make sure that the conditional plan instance (if-else cnd i
pil pi2) is executable, one would have to introduce a prior plan instance whose effect is that
the agent knows whether cnd is true or false during i. For instance, in the example above,
there may be sign where the routes diverge indicating which route is blocked. In this case, one
would introduce a plan instance referring to reading the sign to determine which route is

blocked.

211

An alternative to coming up with a conditional plan (that contains "branches" for the
different possibilities that can result) is to suspend planning to gather relevant information.
This option clearly would be favored in the case when a conditional plan would require many
branches. In order to use this approach, hovever, one must determine which relevant
information should be gathered. This reasoning task is similar to the one that would be
encountered when using the conditional constructs. This is because relevant information refers
to information that allows one to choose between different options (or determine that all of our
options will not work) for achieving the current goal. Thus, we feel that a good starting point
for dealing with incomplete knowledge is to extend our logic to incorporate i) information
about the agent's knowledge state, ii) actions that produce knowledge, and iii) conditional plan
instance constructs. A mechanism then would be needed that decided when to suspend
planning to gather relevant information.

Relevant to the above issues is work presented by Moore rMoore 80', which describes a
rigorous and principled framework for relating actions and knowledge. He integrated situation
calculus and a possible worlds approach to knowledge enabling him to describe both the
external world and one's knowledge of the world at each situation, along with actions that
change the agent's state of knowledge. Oiie may try to do adapt his method in our framework
by extending our semantic structure to include an accessibility relation to interpret an
epistemic modal operator (i.e., a modal operator for describing an agent.s knowledge state).
Some complications that would have to be considered are the interplay between epistemic
possibility and temporal possibility (as captured by the POS modal operator) and the
introduction of non-rigid designators (i.e., terms that can denote different objects in different
possible worlds (world-histories))., which have a central role in Moore's theory.

Planning with Incorrect Descriptions

During planning time, one's view of the world may be incorrect, a fact that may be verified
by later observations indicating such things as a planned action that could not be executed or
an expected result which was not produced. A deductive logic, such as ours, can be used to
provide a precise characterization of this conflict between one's view at planning time and
later observations. Each of these conflicts can be formalized as an inconsistency between
sentences describing one's view during planning time and sentences describing later
observations.

One must be careful, however, when choosing an appropriate language for describing the
world at planning time and expressing later observations. For example, suppose that a
simplified world description is used (as discussed earlier) that does not take into account a
condition C that actually turns out to ruin plan instance pi's executability conditions. Since
this world view does not even mention C, this description would not be inconsistent with the
observation that C is true. Thus, to detect an inconsistency, one would either need an
observation that pi was attempted but failed in conjunction with the simplified description, or
an observation that C does not hold in conjunction with a more detailed world view that takes
into account the relation between C and pi.

Along with detecting that a conflict exists, one wants to isolate the cause of the conflict and
possibly use this information to patch up a plan to compensate for the unexpected occurrence
or result. Isolating a conflict and patching up a plan, however, are tasks outside the scope of
our logic. For example, suppose that we derive that condition C holds using a planning
description and description about the plan that is going to be executed, but later determine
that it does not or will not hold. In this case, it would be natural to look for the events or plan

212

instances that cause C, possibly under some expected circumstances. and then try to
determine whether the event (plan instance) did not occur or whether the expected
circumstances did not result. If we want to revise the plan to provide for the fact that C does
not hold or will not hold, we would need to find the plan instances whose executabilit*v
conditions or non-interference conditions depend on C being true. Thus. to isolate a conflict
and patch plans, information is needed such as links between effects and their causes in
conjunction with circumstances setting the context, and links between plan instances and their
executability and non-interference conditions. These links cannot be expressed in tl.e logic we
have presented.

There are techniques that have been developed relevant to this task, such as Doyle's TMS
system [Doyle 791 used to resolve inconsistencies and Ginsberg's belief revision scheme
[Ginsberg 86] used to evaluate counterfactuals. A deficiency of these approaches, however, is
that the results produced are sensitive to syntactic differences that may not reflect semantic
ones. For example, consider the logically equivalent sets: S1, which consists of our non-modal
axioms plus the set {r(OCC (CONIP pil pi2))}}, and S2. which consists of our non-modal
axioms plus the set {rOCC pil,(OCC pi2?}. If we used either method to resolve the conflict
produced by 1(NOT (OCC pil)), we would get a different results depending on whether Si or
S2 is used. As a second example, both systems would produce different results dep-nding on
whether theory {A.B} or theory {A, (IF A BT} is used in a problem where we find that r(7NOT
B) holds. Ginsberg mentions this result. but suggests that it is not a problem. We. however.
favor an approach where the ontology is extended to capture the intended differences for cases
where different results are warranted. 1

We think that the two examples presented are manifestations of two different problems, the first dealing with

the "granularity" of the assertions and the second with causal connections implicitly ntended by the use of the
material implication conditional

i
I

213

Bibliography

Allen 83a'

Allen, J. F.. Maintaining Knowledge about Temporal Intervals, Communications of the
ACM 26.11 (1983). 832-843.

[Allen&Koomen 83b'

Allen, J. F. and Koomen. J. A., Planning Using a Temporal World Model, 8th International
Joint Conference on Artificial Intelligence, Karlsruhe, Germany, August 1983. 711-714.

[Allen 841

Allen, J. F.. Towards a General Theory of Action and Time. Artificial Intelligence 23.2

(1984). 123-154.

'Allen&Hayes 85'

Allen, J. F. and Haves. P. J.7 A Common-Sense Theory of Time. 9th International Joint

Conference on Artificial Intelligence, Los Angeles, USA, August 1985.

[Bell 851

Bell, C., Resource Management in Automated Planning, Working Paper Seri. No. 85-33.
University of Iowa, Iowa City, August 1985.

[Chapman 85]

Chapman. D.. Planning for Conjunctive Goals, Artificial Intelligence 82.3 (1987). 333-377.

[Doyle 79'

Doyle, J., A Truth Maintenance System, Artificial Intelligence 12,3 (1979). 231-272.

[Fikes&Nilsson 71i

Fikes. R. E. and Nilsson, N. J., STRIPS: A new Approach to the Application of Theorem
Proving to Problem Solving. Artificial Intelligence 2,3/4 (1971).

[Georgeff 86]

Georgeff, M., The Representation of Events in Multiagent Domains, Proceedings of the
National Conference on Artificial Intelligence, Philadelphia, PA, August 1986, 70-75.

(Ginsberg 86]

Ginsberg, M. L., Counterfactuals, Artificial Intelligence 80(1986), 35-80.

[Ginsberg&Smith 87,

Ginsberg, M. L. and Smith, D. E., Possible Worlds and the Qualification Problem,
Proceedings of the National Conference on Artificial Intelligence, Seattle, \WA. August,
1987, 212-217.

21-1

[Goldman 70'

Goldman, A. I., A Theory of Human Action. Prentice Hall, Englewood Cliffs. NJ. 1970.

[Haas 85

Haas, A.. Possible Events, Actual Events, and Robots, Computational Intelligence 1.2
(1985), 59-70.

[Hanks&McDermott 851

Hanks, S. and McDermott. D., Temporal Reasoning and Default Logics. Computer Science
Research Report No. 430, Yale University, October 1985.

[Hintikka 62;
Hintikka. J., Knowledge and Belief, Cornell University Press, Ithica, NY, 1962.

[Hughes&Cresswell 68'

Hughes. G. E. and Cresswell, M. J., An Introduction to Modal Logic. Methuen and Co.
Ltd., London UK, 1968.

]Lansky 85'

Lansky, A. L., Behaviorial Specifications and Planning for Multiagent Domains, Technical
Report 360, SRI International, Menlo Park, CA, August 1985.

jLewis 73

Lewis, D. K., Counterfactuals, Harvard University Press, Cambridge, MA, 1973.

[McCarthy&Hayes 69]

McCarthy, J. and Haves, P., Some Philosophical Problems from the Standpoint of
Artificial Intelligence, in Machine Intelligence , vol. 4 , Michie, B. M. D. (editor), 1969.
463-502.

IMcCarthy 77]

McCarthy, J., Epistemological Problems of Artificial Intelligence, 5th International Joint
Conference on Artificial Intelligence, Cambridge, USA, August 1977, 1038-1044.

[McCarthy 80]

McCarthy, J., Circumscription-A Form of Nonmonotonic Reasoning, Artificial
Intelligence 18(1980), 27-39.

[McDermott&Doyle 80]

McDermott, D. and Doyle, J., Non-Monotonic Logic I, Artificial Intelligence 18(1980), 41-
72.

[McDermott 821

McDermott, D., A Temporal Logic for Reasoning about Process and Plans, Cognitive
Science 6,2 (1982), 101-155.

[Moore 80'

Moore, R., Reasoning about. Knowledge and Action, Technical Report 191, SRI
International, Menlo Park, CA, August 1980.

215

Pelavin&Allen 1986'

Pelavin, R. N. and Allen. J. F., A Formal Logic of Plans in Temporally Rich Domains.
Proceedings of the IEEE 74,10 (October 1986), 1364-1382.

[Pollack 86'
Pollack, M. E., Inferring Domain Plans in Question-Answering, Ph.D. Dissertation.
University of Pennsylvania, Philadelphia. PA, 1986.

[Prior 67]
Prior, A., Past. Present, and Future, Oxford University Press, Oxford UK, 1967.

[Reiter 80'
Reiter, R., A Logic for Default Reasoning, Artificial Intelligence 1. 1980), 81-132.

[Sacerdot i 74'

Sacerdoti, E. D., Planning in a Hierarchy of Abstraction Spaces, Artificial Intelligence 5.2
(1974).

iSacerdoti 77'
Sacerdoti. E. D., A Structure for Plans and Behavior, American Elsevier, 1977.

[Shoam 86'
Shoam, Y., Chronological Ignorance, Proceedings of the National Conference on Artificial
Intelligence. Philadelphia, PA. August 1986, 389-393.

[Stalnaker 68,
Stalnaker. R., A Theory of Conditionals, in Studies in Logical Theory, Rescher, N. (editor),
Basil Blackwcll, Oxford, 1968, 98-112.

[Stefik 811
Stefik. M., Planning with Constraints (MOLGEN: Part 1), Artificial Intelligence 16(1981),
111-140.

[Stickel 851
Stickel, M. E.. Automated Deduction by Theory Resolution, 9th International Joint
Conference on Artificial Intelligence. Los Angeles, USA, August 1985, 1181-1186.

[Stua-# 86]

,.rt, C. J., A New View of Parallel Activity for Conflict Resolution, Proceedings of 1986
Workshop on Reasoning about Actions and Plans, Timberline, OR, 1986, 92-115.

[Tate 77]

Tate, A., Generating Project Networks, 5th International Joint Conference on Artificial
Intelligence, Cambridge, USA, August 1977.

[Tenenberg 86]

Tenenberg, J. T., Planning with Abstraction, Proceedings of the National Conference on
Art.ficial Intelligence, Philadelphia, PA, August 1986, 76-80.

'Tho mason 7021

Thomason, R. H.. Indetermninist Time and Truth Value Gaps, Tlzeori'a 86(1970). 264-281.

INere 81~
ere. S. A., Planning in Time: Windows and Durations for Activities and Goals. Research

Report, Jet Propulsion Laboratory. Pasadena, CA. November 1981.

lWilkins 831
Wilkins, D. E., Domain Independent Planning: Representation and Plan Generation,
Technical Note 266R1, SRI International, Menlo Park, CA, May 1983.

217I
Appendix A

The Primitive Language

Primitive symbols

The set of individual variables VAR.] = {? N.?v

The set, of function symbols FN01 - {f1 , f2. ...}

The function DEG: FN 1 -- Z (the set of non-negative integers). DEG yields the arity for
each function symbol. If DEG(fi)==. then fi is a constant.

The set of types TYPES0 1 {OBJ 1 , INT 1 . PROP, EVo1 . Plo0 }

The function TYPE-OF: VAR u FNu - TYPES. I. TYPE-OF yields the type associated with
each function symbol and variable.

The set of terms TERMSJ and the function TYPE-OF* that yields the type associated vith
each term are defined by:

For every variable (?vi), ?vi E TERMS0 1
and TYPE-OF*(?vi) =der TYPEOF(?vj)

For every function symbol (fi) such that DEG(fi)=0.

fi E TERMS 1

and TYPE-OF*(f1) =der TYPE-OF(fi)

For every function symbol (fi) such that DEG(fi)=n>O

and terms (t1 , t2, .. tn). r(fi t1 t2 ... tnT E TERM'S.,
and TIPE-OF*((f i t1 t2 ... t0) =der TYPE-OF(f1)

For all terms (ti and tj) such that TYPE-OF*(tj)=Pol
and TYPE-OF*(t,)=PIo1 , r(COMP t. tj' E TERMS0 1

and TYPE-OF*((COMP ti tjT) =der P10
For every term (ti) such that TYPE-OF*(ti)=PI0 ,

r(TIME-OF tiT E TERMS,

and TYPE-OF*(r(TIME-OF ti)) =der INT.,

21 S

The set of atomic formulas AFo]:

For all terms (ti and t). = ti tj)E AFoI

For all terms (ti and t) such that TYPE-OF*(t)=INTol
and TYPE-OF*(tj)=INTo1 , r7IEETS t, ty E AF 0

For all terms (ti and ti) such that TYPE-OF*(tj)=PROPo1
and TYPE-OF*(tj)=INTO, r(HOLDS ti tjTE AF01

For all terms (ti and t,) such that TYPE-OF*(ti) =EV01
and TYPEOF*(tj)=INToj, r(OCCURS t, tjT E AFoI

For every term (ti) such that TYPE-OF*(t) =Pl,,
7OCC tjo E AF.,

The set of well formed formulas \\TFo

For every atomic formula (afi),
afi E \\TFo

For every well formed formula (P),
r(NOT PT E N"TFo,

For all well formed formulas (P and Q).
r(OR P QTE \\ToFI

For every variable (?vi) and well formed formula (P),
r7v?v i P 5 E \\TF

For every term (ti) such that TYPE-0F*(t)=INTo,
and well formed formula (P),r7INEV ti P7 E N\TFol

For every term (ti) such that TYPE-0F*(ti)=Plo
and well formed formula (P), r(IFTRIED t1 p5 E \TFoj

219

I Appendix B
Defined Symbols

I Logical Symbols

3 ~(AND P Q) =der (NOT (OR (NOT P) (NOT Q)

(TV P) =der (NOT (V'v (NOT P)))

3 (POS i P) =der (NOT (INEV i (NOT P)))

(P4IFTRIED i P) =der (NOT (IFTRIED pi (NOT P)))

Interval Relation Predicates

(BEFORE ill 12) =def
(EXISTS ?133 (AND (MEETS 11 ?13) (MEETS ?i3 12)))

(AFTER il i2) =der (BEFORE 12 11)

I (EQUAL il i2) =der
(EXISTS ?i3 '.i1

(AND (MEETS ?13 il) (MEETS 11 ?i14)

(MEETS ?i-3 i2) (MEETS 12 ?i4)))

(OVERLAPS il 12) =derI (EXISTS ?i3 ?i4 ?15 ?i6 ?17
(AND (MEETS ?13 ii) (MEETS ii ?i6) (MEETS ?16 ?i7)

(MEETS ?13 ?14) (MEETS "14 12) (MEETS i2 ?i7)

(MEETS ?14 ?i5) (MEETS ?i5 hi6)))5 (OV'ERLAPPED-BY ii i2) =der (OVERLAPS 12 il)

(STARTS il 12) =der
(EXISTS ?13 ?i4 ?i5I (AND (MEETS ?13 ii) (MEETS il ?14) (MEETS ?i4 ?i5)

(MEETS ?i3 12) (MEETS i2 ?i5)))

220

Interval Relation Predicates (C'ont.)

(STARTED-BY ii 12) =d, f (STARTS 12 11)

(FINISHES 11 i2) =d&r
(EXISTS ')i3 ?)i-1 15

(AND (MEETS 9i3 ?i4) N\EETS "14 i1) (MEETS il)15)
(MEETS i3 12) (MEETS i2 "i5)))

(FINISHED-BY 11 12) =der (FINISHES i2 i1)

(DURING i1 12) =

(EXISTS 13 ?i14 ?i5 "16
(AND (MEETS ?i3 "i-4) (MEETS '14 i1)

(MEETS A 'i-5J(MEETS ?.i5 Ai6)
(MEETS ?)13 12) (MEETS 12 ?16)))

(CONTAINS 11 i2) =dd (DURING i2 11)

(ENDS= ii 12) =d~

(EXISTS '13
(AND (MEETS 11 ?13) (MEETS 12 i3)))

(EN\DS-< ii 12) =def
(EXISTS ?13 4

(AND (-MEETS 11 '13) (MEETS ?i3 ?14) (MEETS 12 13))~

(ENDS< i1 12) =d,

(ORt (ENDS= 11 12) (EN\DSK- il 12))

(IN il i2) =def
(OR (STARTS 11 12) (EQUALS i1 12)

(DURING i1 i2) (FINSIHES 11 i2))

(PRIOR ii I 2) =def
(OR (MEETS i1 12) (BEFORE il 12))

(DISJOINT ii i2) =def

(OR (PRIOR i1 12) (PRIOR i2 ii))

221

Appendix C
The Semantic Model

IA model is a tuple <H.I,OBJ,PROP,EV, PIITS.R,BABAEV.V,V.r> where

H is a non-empty set designating the world-histories
(i.e., complete worlds over time)

Iis a non-empty set designating the temporal intervals
(i.e., stretches of time in a date lin

OBJ is a non-empty set of physical objects

PROP is a non-empty subset of 2" H designating the properties (i.e.. static conditions).
A property is equated with the interval/world-history pairs over which it holds.

EV is a non-empty subset of 2I" J1 designating the events.An event is equated with the interval/world-history pairs over which it occurs.

P1 is a non-empty subset of 2 E\'Ax 2BAxA designating the plan instances.
A plan instance pi is associated with a set of event instances (i.e., event/interval
pairs) ei-set and a set of basic action instances (i.e., basic action/interval pairs)
bai-set: attempting pi refers to executing the basic action instances in bai-set: pi
is successfully executed (i.e., pi occurs) iff all the basic action instances in bai-set
are executed and all the event instances in ei-set occur.

NITS is a relation defined on Ixl specifying the meets interval relation:
MTS(il.i2) means that interval ii immediately precedes interval i2.

R is a relation defined on IxHxH; R(i,hl,h2) means that world-histories hi and h2
are possible with respect to each other and share a common past through the
end of interval i.

BA is a non-empty set of basic actions where each element is a function from
lxH to 2 H: for a basic action ba. the members of ba(i,h) constitute all the world-
histories that minimally differ from h on the account of executing basic action ba
during interval i.

BAEV is a function from BA to EV specifying the event associated with each basic
action; basic action ba is executed during interval i in world-history h iff event
BAEV(ba) occurs during interval i in world-history h.

V is a function from \\TFoxH to {TRUE,FALSE} specifying the truth-value of
each well formed formula at each world-history.

Vr is a function from TERMSJ to functions with domain D' and range D
specifying the denotation of each variable term, constant term. and function
symbol.

where D =der IuOBJuPROPuEVuPI and n is a non-negative integer

I

I

We make use the following definitions in specifying the constraints on the model struc-tur(

BEG-BEF(ili2) =de there exists intervals (i0 and i0')
such that MITS(i0,il) and MITS(i0,iO') and NITS(i0'.i2)

BEG-SAAME(Iili2) =der there exists an interval (i0)
such that NITS6i.il) and N1TS(1ii2)

ENDS-BEF(il.i2i =,j~ there exists intervals (13 and 13')
such that \lTS(12Ji3*) and NITS(i3,i3') and NITS(ilIJ3)

EN\DS-S.AME(il,i2) =der there exists an interval (13)
such that MTS i11.3) and MTS(i2.i)

IN(il .i2) =def (I3EG-BEF(i2.il) or BEC-SAVME(i2,il)) and
(ENDS-BEF(ili2) or ENDS-S.AME(ili2))

STARTStI,12) =d~ BEG-SAMNE(il.i2) and ENDS-BEE (il,i2)

LQUAL(il i2) =der BEG-S.AMNE(il 12) and ENDS-S.AME(il,12)

COVER(i-set) =def the interval (i) having the property
For every interval (IN), if IN E i-set then IN(i,ix)
and there exists intervals (IN and iv,) such that

1iy E I-set and BEG-S.AMEti,iv) and
iz E i-set and E.NDS-SAM\E(,i,iv)

Constraints on the model structure

MITI)
For all intervals (ii, i2, i3, and 14)
if NITS(il.13) and MITS(i2.i3)
then NITS(il.i4) ifi NITS(12.i4)

MTS2)
For all intervals (11, i2, i3, and i14)
if MITS(il,i2) and NITS(1l,i3)
then MITS(iO,i2) iff NTS(iO,i3)

MTS3)
For all intervals (ii. 12, i3, and 14)
if MITS(il,i2) and MITS(i3,i4)
then one of the following is true

MITS(il,i4) or
there exists an interval (ix)

such that NITS(il,ix) and 'MTS(ix~i4) or
there exists an interval (iy)

such that TMTS(i3,iv) and NITS(iy,i2)

22:3

MTS-1)
For all intervals (11)
there exists Iintervals (iO and 12)
such that NITS(iOil) and NITS(12i.2)

NITS5)
For all intervals (11 and i2)
if NMTS('i,i2) then there exists iOevk(x, v andiz
such that MITS(ix,il) and MTS(i2.iv) and MITS(ix,iz) and MTS(iz.iv)

PROP 1)
For all properties (pr), intervals (11 and 12),
and world- histories (h),
If IN('il~i2) and <12,hi> E pr then <11,11> E pr

RI)
For all Nvorld-histories (hii and h2) and intervals (11 and i2).
if ENDS-SAME(.i.2) then R(il,hl,h2) iff R(i2.hl,h2)

R2)
For all world-histories (hii and h2) and intervals (i),
if R(i,hl,h2) then R(i,h2.hl)

R3)
For all 'world-histories (hii, h2, and h3) and intervals (i),
if R(i,hl~h2) and R(iU2,h3) then R(i,hl,h3)

R4)
For all world- histories (hi and h2) and intervals (11 and 12).
if ENDS-BEF(il,i2) and R(i2,hl,h2) then R(II.hi,h2)

R5)
For all world-histories (hi and h2), properties (pr),
and intervals (ii and i2).
if (ENDS-SAME6ili2) or ENDS-BEF(iliJ2)) and R(i2,hl.h2) then
<il,hl> E pr iff <11,112> E pr

116)
For all world-histories (hi and h2), events (ev).
and intervals (ii and i2),
if (ENDS-SAMIE(il,i2) or ENDS-BEF(ili2)) and R(i2,hi,h2) then
<il,hl> E ev iff <il,h2> Eev

P11)
For all plan instances (KeiS, baiS>),
STARTS(bai-t ime,ei1-time) or EQUAL(bai-time,ei-time)

where el-time =der CO\TRiWjI<e v,i> E eiS)
bai-time =di COVER({i I <ba,i> E baiS})

221)

P1 2)
For all plan instances (<eiSi.bai :l> and KeiS2,baiS2>).
<eiSlueiS2. baiSlubaiS2>EPI

BAO)
For every basic action (ha). interval (i). and wvorld-history (11),
ba (i. h)3$0

BAI)
For every basic action(ba), interval (1). and world-history (h).
if <i,h>EBAEV(ba) then ba(ih)={h}

BA2)
For ev'ery basic action (ba), interval (i),
and wvorld-histories (hi and h2),
if hih2 and h2Eba(i,h) then <i,h2>EBAEV(ba)

BA-R-I)
For all world-histories (h and h2). basic actions (ba),
and intervals 0i0 and di).
if h2Eba(i,h) and N.ITS(iO,iA) then R(iO,h,h2)

BA-fl2)
For all world-histories (hi and h2), intervals (I and ir),
and basic actions (ha),
if R(ir,lil,h2) then for all world-histories (hcll) such that. hcll~ba(i~h1), then there exists a
world-history (hcl2) such that hcl2Eba(i.h?) and R(ir~hclI .hcl2) are true

We make use the following definitions:

fx;fy(h) =d~f U fv (h x)
hxEfx(h)

SEQF({<ba,i>}) =def {Xh.ba(i,h)}

SEQF(baiSU{<ba2,i>}) -'der
{seq;Xh.ba2(i,h) I seqe-SEQF(baiS)}

where IbaiSI>1

ALL-OC(h,seq,baiS) =def
seqESEQF(baiS) and
seq(h)g{h2 I <i,h2>EBAEV(ba) for all <ba,i>EbaiS)

FCL-DEF)
If there exists a sequence function (seq) such that ALL-OC(h,seq~baiS),
then Fdi(baiS,h) =def seq(h)

Otherwise, FC1(baiS,h) =dtt {h)

I BA-CNIPI)
For all world-histories (h). basic action instance sets (baiS).
and sequence functions (seqI and secq2)
if ALL-OC(h.seqI bai'S) and ALL-OC(h .seq2,baiS)

then seql(h)--s-eq2(h)

BA-CM.\P2-)I For all world-histories (hi). basic act ion instance sets
(baiSi and baiS2) and sequence functions (seqI and seq2).
if ALL-OC(h~seq2.baiS2) andI ALL-OC(h ~seqi :seq2.baiSlubaiS2)
then ALL-OC(hiseq2;,seql baiS ub~aiS2)

I The interpretation functions

We make use of the following defined function:

TYP-MANP(0BJ 0 I) =der B
TYP-MAP(NT~!) "-der1TYP-MAL-P(PROP 1) =deFPO
TY-P-MAL-P(IEV 0 1) =defN
TY'P-M-NAP(PI,,.) =de1 PI

The denotation function for primitive sy mbols (Var)

3 For every variable ("v), V, 1 ?v) ETY'P-M\AP(TYPE-OF(?v))

For every function symbol (f) such that DEG(f)=0,

U For every function symbol (f) such that DEG(f)>O,
N"#~() is a function with doman D DEG ') andIrange TY'P-MNAP(TY'PE-OF(f))
where D =der IuOBJuPROPuE~uPI

The definition of the the denotation function for terms (Vt)

For every variable (?v), V't(?V)=der Vv '(V)I For every function symbol (f) such that DEG(f)=O,
't(f)=der N'X~)

For every function symbol (f) such that DEG(f)=n>O
and terms (tj, t ,

Itrft 2..t) dfV#(tt) '~2, Ntt)

226

The interpetation function for -well formed formulas (N'.

For all wffs of the form '(= t, t,,) and world-histories (h),
Vjr(= tI t.2),h)=TRUE iff

For all wffs of the form r(OR PI P2T and world-histories (h),

N';r(RP1 P27}1)=TRUE ill N',(P1 .h)==TRUE or V,(P2.h)=TRUE

For all Nvffs of the form r_(NOT PT' and world-histories (h),
N\SC-(NOT PT,h)=TRUE iff \',(P~h)3#TRUE

For all wffs of the form r-(V ?)v PT~ and world-histories (h),
N',(r(V ?v PT,h)-TRUCE iff for all objects (x)
if XETYP-MAkP(TYPE-OF(?'v)), then N' ,,,(P, h) =TRUE

where VR.. is identical to V5 with the exception thatV

For all witfs of the form r-.NEETS ti~t tint2T and world-histories (h).
N\(r\IEETS ti,, t 1 2J,h) =TRUTE ifl MTS(\Vt(ti 1 ,~),V'(ti~t2))

For all wffs of the form r-(HOLDS-; tf~r tintT and world-histories (h),

N'S(r(lIOLDS tPr ti, 1 j'.h)=TRUE iff <Vt(tint).h> E'\t(tpr)

For all wNffs of the form r_(OCCURS tev tt
and world-histories (h).
\.(r(OCCURS te, tiJ~h):=TRUE iff <N't(tin).h> E't(tev)

For all wffs of the form r(OCC tj) and all world-histories (h),
v5 (r(OCC tJ~ .h)==TRUE
iff for all events (ev), intervals (i) and basic actions (ba)

if <ev i>ENt(tPJ)I, then <i,h>Eev and
if <ba,i>EVt(t~i)Io. then <i,h>EBAEV(ba)

For all wits of the form r(INEV ti,1 t P7' and world-histories (h),
XT((JNEN t1,, PY,h)=TRUTE iff for all world-histories (h2)

if R(Vt(t 1~t),h,h2) then N\,(P,h2)=TRUE

For all wffs of the form r(IFTRIED t~i P7' and world-histories (h),
V,(r(IFTRIED t P)',h)=TRUE iff for all world-histories (h2)
if b2EFC) (NV(tPiA 2,h) then V,(P,h2)=TRUE

For all plan instance terms (p)
Vt(TIMiE-OF t~iT) = COVER({Z I <ev,i>E~t(tpi)I))

For all plan instance terms (tp11 andy2,NI

I

IAppendix D
The Axiomatics

I
Axioms:

A-X-FOl1)I X (IF (OR P P) P)

hX-r1 02)I- (IF Q (OR P Q))

AX-F03)
[-(IF (OR P Q) (OR Q P))

AX-FO4)
F- (IF (IF Q R) (IF (OR P Q) (OR P R)))

AX-F05)
[- (IF (V?v P1) P2)
where P2 differs from P1 in having all free occurrences of ?v in P1 replaced by some term t
that has the same type as variable ?v, and if term t has any variables in it, then they must
not become bound by the substitution

A-X-F06)
I-(=t t)

AX-F07)
-- (IF (= tl t2) (IF P1 P2))
where P2 differs from P1 in having one or more free occurrences of t1 in P1 replaced by t2,
and if term t2 has any variables in it, then they must not become bound

AX-FOS)
-- (NOT (=tl t2))

where ti and t2 have different types

AX-ILl)
I- (IF (IN i1 12) (IF (HOLDS pr 12) (HOLDS pr ii)))

AX- IL2)
F- (= (COMP pil pil) pil)

AX-I L3)
I- (= (COMIP pil pi2) (COMIP pi2 pli))

AX- I LA)
I(=(COMIP pil (COMfP pi2 p13)) (COMIP (COMP pil pi2) pi3))

F(1FF (0CC (COMP pil pi2)) (AND (0CC pul) (0CC pi2)))

AX-1L,6)
F(1FF (AND (IN (TIME-OF pil) i) (IN (TIME-,IOF pi2) i))

(IN (TIME-OP- (CONIP pil pi2)) i))

F(IF (AND (MEETS 11 13) (MEETS 12 13))
(1FF (-MEETS 11 14) (MEETS 12 i4)))

AX-1R12)
F(IF (AND (MEETS 11 12) (MEETS il i3))

.(1FF (IMEETS 10 i2) (MEETS jO i3)))

A-X-I1R3)
F(IF (AND (MEETS i1 12) (MEETS i31i4))

(XOR (MEETS 11 i4)
(B ?ix (AND (MEETS ii ?ix) (MEETS ?ix i4))
(3 ?iN. (AND (MEETS 13 ?ivy) (MEETS ?13- i2))))

where (XOR P Q R) =def (OR (AND (NOT P) Q R))
(AND P (NOT Q) R)
(AND P Q (NOT R)))

AX-IR4)
F- (B ?iO 'i2 (AND (MEETS ?iO ii) (MEETS il ?i2)))

AX-IRS)
F(IF (MEETS il i2)

(B ?ix ?iN ?iz
(AND (MIEETS ?ix il) (MEETS i2 ?iy)

(MEETS "ix ?iz) (MEETS ?iz ?iy)))

3229

i
I--(IF (INEV I P)

_i P)

AX-INV2)
-(IF (INEV i (IF P Q))3 (IF (INEV I P) (INEV i

AX-INNV3)
m- (IF (INEV i P)

(INEV i (INEV I P)))

I AX-INNV4)

-(IF (POS i P)
(1NEV i (POS i P)))

I AXIINN5)

-(IF (ENDS< il 12)
(IF (INEV il P)

(INEV i2 P)))

I AX-INV6)
-- (IF (ENDS< il i2)

(IF (POS i2 (HOLDS pr il))3 (INEV i2 (HOLDS pr ii))))

AX-IN,7)
-(IF (ENDS< il i2)

(IF (POS 12 (OCCURS ev ii))
(INEV i2 (OCCURS ev il))))

3 AX-INV8)

-(IF (ENDS< (TIME-OF pi) i)
(IF (POS i (OCC pi))

(INEV i (OCC pi))))

AX-INg)
I- (IF (POS i (MEETS il i2))

(INEV I (MEETS il i2)))

I
!
I
I
I

230

A-X-IFTRI)
H(IF (IFTRIED pi P)

(NOT (IFTRIED pi (NOT P))))

AX-IFTR2)
H(IF (IFTRIED pi (11F P 0))

(IF (IFTRIED pi P) (IFTRIED iQ)

AX-IFTR3)
I(IF (0CC p1)

(IFF (IFTRIED pi P) P))

AX-IFTRI1)
H(1FF (IFTRIED pi (IFTRIED pi P))

(IFTRIEI) pi I))

AX-IFTR5)
H(IF (PRIOR I (TIME-OF pi))

(IF (INEV i P)
(IFTRIED pi P))

AX-IFTR 6)
H(IF (IFTRIED pi (INEV I P)))

(I.NEV i (IFTRIED pi P)))

AX-IFTR7)
H(IF (IFTRIED pil (IFTRIED p12 (AND (0CC pil) (0CC pi2))))

(1FF (IFTRIED (COMP pil pi2) P)
(IFTRIED phl (IFTRIED pi2 P))))

AX-IFTR8)
H(IF (PRIOR? (TIME-OF pi1) (TI.M-OF pi2))

(IF (EXECUTABLE (COMP p11 pi2))
(AND (EXECUTABLE pi1)

(lFTRIED pi (EXECUTABLE pi 2)))))

AX-IFTR9)
H(IF (EXECUTABLE pi)

(IF (IFTRIED pi2 (IFTRIED pil (AND (0CC pii)
(0CC pi2))))))

(IFTRIED pi (IFTRIED pi2 (AND (0CC pi1)
(OCC pi2))))))

2.31

Iniference Rules:

From: SI - P and S2F- (IF PQ)
To: SlLIS2F- Q
where SI and S2 are any finite set of sentences, and P and 0 are any sentence-,

I UN V-INTRO)
From: S I-(IF P Q)
To: S I-(IF P (V'?v Q))
where S is a finite set of sentences. P and 0 are anyN sentences, "v is a variable, and there
does not exist any free occurrences of 'v in P or any member of S

E RL-INV)
From: PF-P ViP
To: F-(INE I P

RL-IFTR)
From: FP1 To: F-(IFTRIED pi P)

232

Appendix E
Auxiliary Theorems and Derived Rules

This appendix contains first order logic theorems and derived rules and interval relation
theorems that are used in the proofs in appendices F, G. and H1.

First crder logic #he'-ems and derived rules

Discharging single assumption
From: Su{A} 1-- P
To: SF-- (IF A P)
where S is a finite set of sentences, and A and P are sentences

Discharging multiple assumptics
From: Su{A .A. A) I-P
To: S-- (IF (ANDA1 A, ... A) P)
where S is a finite set of sentences, and each A is a sentence

TRNSP)
F- (IF (IF P Q) (IF (NOT Q) (NOT P)))

NNP-P)
.- (IFF (NOT (NOT P)) P)

MP-TRNS)
From: S1 - (IF P 0) and S2 I- (IF Q R)
To: S1US2 -(IF P R)

AND-ELIM-1)
F- (IF (AND P Q) Q)

AND-ELIM\1-2)
F- (IF (AND P Q) P)

EXT-INTRO)
From: S f- (IF P Q)
To: S -- (IF (3 ?v P) Q)
where ?v does not appear free in Q or any member of S

AND-MI)
From: S1 F- (IF P1 Q1) and S2 I- (IF P2 Q2)
To: SluS2 I- (IF (AND P1 P2) (AND (Q1 Q2)))

23.3

First order logic theorems and derived rulcr (Cont.)

AND-INTRO)
From: SI[-P and S2I-Q
To: S IuS2 I- (AND P 0Q)

RCS)
From: Si I- (OR P1 P2) and S2 I- (IF PI 01) and S3 I-(IF P2 02.)
To: SiuS21JS3 I- (OR Q! Q2)

SUBST)
From: I(FF P 0)
To: I(FF R I R2)
where R2 differs from RI in that one or more occurrences of P in RI are replaced by Q.
and no occurrences of P in Ri are under the scope of a modal operator

ANTCD-INTRO)
From: S1 I- P
To: S2s-2US1 I- P

DEMI)
I- (1FF (NOT (AND P Q)) (OR (NOT P) (NOT Q)))

DEM2)
1-- (1FF (NOT (OR P Q)) (AND (NOT P) (NOT Q)))

UN-'MI)
1-- (I F (I F P Q) (I F (V x P) (V' x Q)))

EXT-MI~)
1-- (I F (I F P Q) (I F (T x P) (3'x Q)))

UINX-EXT)
1-- (1FF (V~x (NOT P)) (NOT (3?x P)))

Interval relation theorems

TH-IRI1)
F-- (I F (MEET'S i1 12) (PRIOR 11 12))

Ti- I R2)
1-- (IF (PRIOR i1 iv) (IF (MEETS I INI (ENDS< 11 i))

TH-1R3)
{(PRIOR i1 iv)). .. ,(PRIOR in IN,))

F(IF (MEETS I iy)
(AND (ENDS -, ii i) (ENDS< in 0)

TH-IR.I)
F- (IF (AND (IN ip) i2) (MEETS i 12)) (PRIOR I ip))

TH-1R5)
F(IF (AND (PRIOR i ipi) (PRIOR I ip2))

(3 'i2 (AND (M'\EE-TS i ?i2)) (IN 1p] ?i2.) (IN ip2 ?12))

TH-1R16)
F(ENDS< j

T1I4117)
F- (IN 1i1)

TI-IhS)
F(IF (AND (PRIOR i1 12) (IN i3 i2)) (PRIOR i1 1'3))

Appendix F
Proof of Theorems in Chapter 4

We use the following conventions in this appendix and in appendices G and l to present the
proof of theorems and derived rules.

Proof form for theoer. :ns

A proof of theorem TI] is given in the fclloNwng form:

i) PL1

2) PL..,

<2>

n) TH
<Js >n

We refer to each PL, as a proof line and each JS, as the justification for PL,.

Each proof line PL) refers to a theorem or axiom in the logic. Each justification JS, specifies
the name of the axiom or theorem (if it has been proven elsewhere) that PL, corresponds to. or
specifies the inference rule(s) (possibly derived) along with the axioms and theorems that it is
applied to yielding the theorem associated with PLI. J, may mention theorems that are on
earlier lines in the current proof; these theorems are identified by their line numbers in the
proof.

The different forms of a proof line PL and the theorem that each form stands for is given as
follow:

P) stands for {P} I-- P1

S--- P 1 ... -- P IJSF-P1 .. S -P

LN 1,LN,..,LNJ F-P .. I xG{LN, LN,..,"LNj}} F-P

SuLNYLN 2,.., LNj -P Su{P, I xE{LN 1 ,LN2,..,LN}} F-- P

where P is a sentence in the logic, LN .LN 2...,LN are positive integers, each less than 1
(referring to proof line numbers), S is a non-eMpty) finite set of sentences in the logic, and
each PX refers to the sentence in proof line x appearing on the right side of the turnstile
operator (or the proof line itself, if proof line x has no turnstile)

'2.36

Proof Form for Derived Rules

The proofs for derived inference rules have the same form as proofs for theorems wNith the
exception that

i) There are proof lines of the form "-- P" and "S -- P" that are not theorems: they are
just assumptions made for the proof of the rule. If this is the case. the proof line's
justification specifies "assumption for proof of rule".

ii) A proof line for a rule may have any of the five forms for theorems plus the additional

form:

LN 1,LN 2', LN j .. RPLI

where LN 1,LN LN are earlier line numbers, and RPL is one of the five proof line
forms for theorems.

The meaning of the above proof line is that if the statements in lines LNN L\.. L.N " are
theorems, then RPL, corresponds to a theorem.

_73

DRL-WFTRI1)
From: I- (IF P 0)
To: I- (IF IFT-NIC(P) IFT-.\IC())
where IFT-NIC(P) is a modal chain formed by INEV. POS. IFTRIED. and P-IFTRIEI)
operators w.%ith P embedded on the inside

Lemmal)
From: I- (IF P Q
To: H- (IF (LETRIED pi P) (IETRIED piQ)

Proof of Lemma 1

1) I- (IF PQ
<ass8umption for proof of rule>

2) 1.- (IFTRIED pi (IF P Q)')
<RL-IFTR applied to 1>

3) 1 -~H(IF (IFTRIED pi (IF P 0))
(IF (IFTRIED pi P) (IFTRIED pi Q)

<AX-IF TR2>

4) 1 - 1-- (IF (!FTRIED pi P) (IFTRIED pi Q)
< MIP applied to 2.S>

QED (Lemma 1)

Lemma 2)
From: H- (IF P Q)
To: H- (I1F (P-FTRIED pi P) (P-FTRIED pi Q))

Proof of Lemma2

1) H-(IF PQ)
<assumption for proof of rule>

2) 1 I (IF (NOT Q) (NOT P))
<MIP applied to 1. TRNS-P>

3) 1 H (IF (IFTRIED pi (NOT Q)) (IFTRIED pi (NOT P)))
<Lemmal with su~bstitutions~ /(NOT Q)/P, (NOT PftQ,' applied to 2

4) 1 H(IF (NOT (IFTRIED pi (NOT P)))
(NOT (IFTRIED pi (NOT Q))))

<AMP applied to 3. TRV-SP>

5) 1 - H (IF (P-FTRIED pi P) (P-FTRIED piQ)
<(P-IFTRIED pi P) and (P-IFTRIED pi Q) substitu ted for their definitions appearing in 4>

QED (Lemma2)

Proof of DRL-IFTRI continued on next page

Continuation of proof of DRL-IFTRI

Proof of DRL-IFTR1 by induction on the length of the modal chain

Proof of Base case: length = I

If IFT-M-\C has length 1. then IFT--MC(P) has form '-INE\V i PT. 7-POS PT
r-(IFTRIED pi PT, or r-(P.IFTRIED pi P

The proof that DRL-IFTR1 is true when IFT-MIC(P) has form r-(INEN' Pj or
F-(POS i PT follows from DRL-INVI

The proof that DRL-IFTR1 is true when IFT-MIC(P) has form 7(IFTRIED pi PT' or
r-(P-IFTRIED pi PT follows from Lemmal and Lemma2, respectively

QED (Base case)

Proof of Inductive step

Assume that DRL-IFTRi holds for any IFT-MCn that has length n. We prove that
DRL-IFTR1 holds for any modal chain with lengthi n+1-.

If the modal chain IFT-MC has length n+1, then IFT-MIC(P has form r-IlNEV
IFT-IC (P)71 r/PO iFT-MC (P)T, r(IFTRIED pi IFT-MC (P)or r1(P-FTRIED pi

n (S 1] n n()
IFT-'M\Cn(P)) where IFT-MnIC is a modal chain with length n

Proof of DRL-IFTR1 for r(INEV I IFT-M-\Cn(P)T

1) l- (IF PQ)
<assumption for proof of rule>

2) 1 1 - (IF IFT-M"C,(P) IFT-M'Cn(Q))
<inductive hypothesis rule applied to 1>

3) 1 -.- (IF (I.NEV7 i IFT-"Cn(P))
(INEV' i IFT..MC n(Q))

<DRL-I1l'1 applied to 2>

QED

Proof of inductive step continued on next page

230I

5 Continuation of proof of DRL-IFTRi

Continuation of proof of inductiVe step

I Proof of DRL-IFTRI for r(POS i NICn(P)T

1) 1-(1IFP Q)I <assumnption for proof of rule>
2) 1 - 1-- (IF IFT-"Cn(P) IFT-M\Cr(Q))3 <inductive hypothesis applied to 1>
3)1 1 - (IF (POSi 'FT-MCn(P))

QD<DRL-IX11 applied to ->

3Proof of DRZL-IFTRI for r(1FTRIED pi IFT-.MCn(P)7

1) l_-(IF PQ)
<as 2ton for proof of rule>S2) 1<-assu-(IFnIFT-,MC,(P) IFT-MICn(Q))

<inductive hypothesis rule applied to 1>

3) 1 - F-(IF (IFTRIED pi IFT-MC n(P))

(IFTRIED pi IFT-M'%C'(Q)))
<Lemmal applied to 2>3 QED

3 Proof of DRL-IFTRI holds for riP-FTRIED pi NMCn(P)7

1) 1-(IF PQ)
<assumption for proof of rule>

2) 1 -- F- (IF IFT-M"Cn(P) IFT-MCn(Q))
<inductive hypothesis applied to 1>

3) 1 - (IF (P-FTRIED pi IFT-"Gn(P))
(P-FTRIED pi IFT-MCn(Q)))

< Lemma2 applied to 2>

QEDI QED (Inductive step)
QED (DRL-IFTRI)

240

DRL-IFTR2)
From: l- (IFF P Q)
To: -- (IFF S1 S21
where S1 differs from S2 by replacing one or more occurrences of P with 9. and Si and S2
are any sentences in the complete language

Lemmal)
From: F (IFF P 0)
To: F- (1FF (IFTRIED pi P) (IFTRIED pi 9))

Proof of Lemmal

1) l--(IFF P Q)
<assumption for proof of rule>

2) 1 -- l-- (IF (IFTRIED pi P) (IFTRIED pi Q))
<DRL-IFTRI applied to (IF part of 1)>

3) 1 --- -- (IF (IFTRIED pi Q) (IFTRIED pi p))
<DRL-IFTRI applied to (ONLY-IF part of IJ>

4) 1 I- (AND (IF (IFTRIED pi P) (IFTRIED pi 9))
(IF (IFTRIED pi Q) (IFTRIED pi P)))

<AND-INTRO applied to .5>
5) 1 - i- (IFF (IFTRIED pi P) (IFTRIED pi Q))

<IFF substituted for its definition of in 4>

QED (Lemmal)

We prove DR-INV2 for the case where S1 and S2 differ by only one substitution of Q for
P. Once this is established, we can apply this rule successively to provide for multiple
substitutions of Q.

We prove DR-INV2 for the single substitution case by induction on the number of
IFTRIED operators that the substitution of Q is under the scope of (we do not have con-
sider P-IFTRIED because it is defined in terms of IFTRIED)

Proof of Base case

This is the case where the substitution of Q for P in S1 does not fall under any
IFTRIED operators (although Q and P may be IFTRIED statements): this case
can be proved using a slight variant of rule DRL-INV2; the proof of DRL-INV2
goes through when Q and P contain IFTRIED statements as long as the P being
replaced in RI is not under the scope of IFTRIED

QED (Base case)

Proof continued on next page

i
I
I

3 Continuation of proof of DRL-IFTR2

Proof of Inductive step

Assume that DRL-IFTR2 holds for the substitution of 0 for P wvhere P is nestedI under n IFTRIED operators. 'We prove DRL-IFTR2 holds for the substitutioii of P
for Q where the P is nested under n+1 IFTRIED operators.

ifLet NN(P) be a sentence containing P nested under n IFTRIED operators

Let S1 have form SF(-'IFTRIED pi NN(P))), where SF(S) is a sentence containing
sentence S in which S does fall not under any IFTRIED operators. Thus. S2 has form

SF(r-(IFTRIED pi MNn(Q)T).

I 1) I(IFF PQ
<assumnption for proof of rule>

2) 1 - (1FF M\-n(P) MNn(Q))
<inductive hypothesis rule applied to 1>

3) 1 - -(1FF (IFTRIED pi M.N (P))

<Lemynal applied to 2>

4) 1 -- 1-- (1FF SF(' -IFTRIED pi NIn(P)
SF((IFTRIED pi N nQ)

<the variant of DRL-INV'12 (mentioned in the base case) with substitutions A7IFTRIED piI ALV jP)7/S1.r(IF TRIED piAL.\n(Q17/S2, applied to 3f>

QED (Inductive step)

QED (DRL-IFTR2)

TH-IFTR-I.N1)
{r(PRIOT? ix (TI-OF pi)? I ix E Cb(ILS)I'

I- (IF ILS (IFTRIED pi ILS ')))
where ILS is a sentence in the interval logic fragment.CI(ILS) is the set of intervals
associated with any HOLDS. OCCURS, or 0CC predicate contained in ILS

Proof of TH-IFTR-INl
1) (MEETS I (TIME-OF pi))

<assu mption>

2) {r-(PRIOR ix (TIM.%E-OF pi)T I ix E CI(ILS)}
1-- (IF (MEETS I (TIME-OF pi))

(AND (ENDS< i1ii) ... (ENDS< in i)
where CI(ILS) = {i1, ... , in)

< TI1-IRSf>

3) {r(PRIOR i\ (TIM\E-OF pi)T I i\ C CI(ILS)}ul
V(AND (ENDS< i Ii) ... (EN\DS< in i)

<MP? applied to 1.2O>

4) f{rjENDS< ix i? I ix E CI(ILS)}
I- (IF ILS (INEV i ILS))

<IF part of TII-IN'V-1L2>

5) H(IF (AND (ENDS< 11ii) ... (ENDS< in i)
(IF ILS (INEV I ILS)))

<equivalent to 4 (using definition of S I- Pl>

6) {r-(PRIOR ix (TI'ME-OF pi)T'" I ix C CI(ILS)} ul
H(IF ILS (INEV I ILS))

<MfP applied to 3.5>

7) H(IF (PRIOR I (TIMIE-OF pi))
I(IF (INEV I ILS) (IFTRIED pilILS)))

< AX-IF TR5)>

8) 1 H- (PRIOR i (TIMIE-OF pi))
<MfP applied to 1, TH-lR1>

9) 1 H- (IF (INEV i ILS) (IFTRIED pi ILS)))
<MfP applied to 8,2>

10) {r-(PRIOR ix (TIME-OF pi) I ix C CI(ILS)}ul
H- (IF ILS (IFTRIED pi ILS))

<MP-TRNS applied to 6,9>
11) {r(PRIOR ix (TIME-OF PiOT lix E CI(ILS)}

H- (IF (MEETS I (TIME-OF pi)) (IF ILS ([FTRIED pilILS))
<discharging assumption 1 in 10>

12) ('-(PRIOR ix (TIME-OF pi)T' I ix E CI(ILS)}
H- (IF (MEETS ?v (TIME-OF pi)) (IF ILS (IFTRIED pilILS))

<substituting a variable ?v' for i in 11 where we pick a ?v' that does not appear in ILS or pi'>

Proof continued on next page

213

Continuation of Proof of TII-IFTR-I.Xi

13) ('-PRIOR ix (TIME-OF pi)7 ix E CI(ILS)j
I(IF (3 ?v (MEETS ?v (TIME-OF pi)))

(IF ILS (IFTRIED pilILS))
<EXVT-IN'TRO applied to 12>

14) - (3 'N- (\TEETS ?v (TIME-OF pi)))
<AlIP applied to A-Y-R4.VD-EL.V>

15) {r-(PRIOR ix (TIME-OF pi))' I ix E CI(ILS)}
F-- (IF ILS (JFTRIED pi ILS))

<ALP applied to 14.15f>

QED (TH-IFTR-LN 1')

TII-IFTR,-1N2)
{r(PRIOR P, (TIM.\E-OF pi))'I ix E CI(ILS)}

I- (1FF ILS (IFTRIED pi ILS)fl
where ILS is a sentence in the interval logic fragment and CI(ILS) is the set of intervals
associated with any HOLDS. OCCURS. or 0CC predicate contained in ILS

Proof of TH-IFTR-1N2

1) {r(PRJOR ix (TIME-OF pi))' Iix C CI(ILS))
H- (IF ILS (IFTRIED pi ILS))

< TH- IFTR -INi >

2) {r(PRIOR ix (TIME-OF pi)T I ix E CI(r(NOT ILSTj')
H- (IF (NOT ILS) (IFTRIED pi (NOT ILS))))

< TH-IFTR-I.Vi with substitution /(NOT ILS)/ILS>

.3) {rlPRIOR ix (TEIE-OF pi))' I ix E CI(ILS)}
H- (IF (NOT ILS) (IFTRIED pi (NOT ILS)))

<equivalent to 2, since CI(NOT ILS7)-=CI(ILS) by definition of CI>
4) {F-(PRIOR ix (TlIE-OF pi)T I ix C CI(ILS)}

H- (IF (NOT (IFTR TED pi (NOT ILS))) (NOT (NOT ILS)))
< ALP applie d to 8. TRNSP>

5) I- (IF (IFTRIED pilILS) (NOT (IFTRIED pi (NOT ILS))))
<AX-IFTRJ>

6) {r(PRIOR ix (TIME-OF pi))' I ix C CI(ILS)}
H- (IF (IFTRIED pi ILS) (NOT (NOT ILS)))

<MP-TRNS applied to 5,4>

7) ('-(PRIOR ix (TIME-OF pi)y I ix E CI(ILS)}
H- (IF (IFTRIED pilILS) ILS)

<DRL-IFTRS applied to 6 using equiv'alence NNP-P>

8) {r(PRIOR ix (TIME-OF pi))' I ix E CI(ILS)}
H- (1FF ILS (IFTRIED pilILS)))

<AND-INVTRO applied to 1,7 and then substituting in 1FF for its definition>

QED (TH-IFTR-1N2)

24-1

TH-IFTR-1N4)
I(IF (ENDS< (TIME-OF pi) i)

(IF (POS I (EXECUTABLE pi)) (INEV I (EXECUTABLE pi)f))

Proof of TH-IFTR-1N4
1) (ENDS< (TIME-OF pi) i)

<aisumption>

2) F-(IF (ENDS< (TINIE-OF pi) i)
(IF (P05 i (0CC pi)) (INEV i (0CC pi))))

<AX IN'V8>

3) 1 F- (IF (POS i(0CC p1)) (INEVi (0CC pi)))
<MfP applied to 2,3>

4) F- (IF (0CC pi)) (POS I (0CC pi)))
< TH-IXI'-SF2 with substitution f(OCC pi)/P'>

5) 1 F- (IF (0CC pi) (INEV i (0CC pi)))
<MP-TRNSP applied to 4.39>

6) F-(IF (ENDS< (TIMIE-OF pi) i)
(IF (0CC pi) (INEV i (0CC pi))))

<discharging the assumption in.)->

7) F-(IF (IFTRIED pi (ENDS< (TI.ME-OF pi) i))
(IFTRIED pi (IF (0CC pi) (INEV 1 (0CC pi)))))

<DRL-IFTRi applied to 6>

8) F-(1FF (ENDS< (TIME-OF pi) i)
(IFTRLED pi (ENDS< (TITME-OF pi) 0))

< TH- IF TR -LN3f>

9) F-(IF (ENDS< (TI'ME-OF pi) 1)
(IrTRIED pi (IF (0CC pi) (INEV i (0CC pi)))))

<DRL-IFTRS applied to 7 using equivalence 8>

10) 1 F- (IFTRIED pi (IF (0CC pi) (INEV I (0CC pi))))
<AI? applied to 1.9>

11) 1 F- (IF (IFTRIED p) (0CC pi))
(IFTRIED pi (INEV 1 (0CC pi))))

<MP applied to 1,AX-IFTR2>

Proof continued on next page

245I
S Continuation of proof of TH-IFTR-IN-4

12) 1 I- (IF (EXECUTABLE pi) (IFTRIED pi (INEV i (OCC pi))))
<substituting EXECUTABLEfor its definition in 11>

13) - (IF (IFTRIED pi (INEV i (OCC pi)))
(INEV i (IFTRIED pi (OCC pi))))

<aziom AX-IFTR6 with substitution /(OCC pi/P5

14) 1 I- (IF (EXECUTABLE pi) (INEV i (IFTRIED pi (OCC pi))))
<MP-TRNS applied to 12.13>

15) 1 I- (IF (EXECUTABLE pi) (INEV i (EXECUTABLE pi)))
<substituting EXECUTABLE for its definition in 14>

16) I- (IF (ENDS< (TIME-OF pi) i)
(IF (EXECUTABLE pi) (INEV i (EXECUTABLE pi)))

<discharging assumption in 15>

17) I- (IF (INEVi (ENDS (TIME-OF pi) i))
(INEV i (IF (EXECUTABLE pi)

(INEV i (EXECUTABLE pi))))
<DRL-IFTRI applied to 16>

18) I- (IF (ENDS< (TIME-OF pi)i)
(INEV i (IF (EXECUTABLE pi)

(INEV i (EXECUTABLE pi))))
<DRL-IFTRS applied to 17 using equivalence TH-LVV1L4>

19) 1 I- (INEV i (IF (EXECUTABLE pi)
(INEV i (EXECUTABLE pi))))

<MfP applied to 1,18>

20) 1 I- (IF (POS i (EXECUTABLE pi))
(POS I (INEV i (EXECUTABLE pi))))

<MP applied to 19, TH-IN'V-SF4>

21) 1 I- (IF (POS i (EXECUTABLE pi))
(INEV i (EXECUTABLE pi)))

<DRL-IFTRS applied to 20 using equivalence TH-VIV-SFT>

22) -- (IF (ENDS< (TIME-OF pi) i)

(IF (POS i (EXECUTABLE pi))
(INEV i (EXECUTABLE pi)))

<discharging assumption in 21>

QED (TH-IFTR-IN4)

Appendix G
Proof of Theorems in Chapter 5

See introduction to Appendix F for convent ions used in presenting proofs.

TH-APG-1)
F(1FF (AND (PRIOR I (TIME-OF pil)) (PRIOR I (TIMIE-OF pi2)))

(PRIOR I (TIE-OF (COM-\P pil pi2))))

Proof of TH-APG- I

1) H- (IF (AND (IN (TIME-FOF pul) ?12)
(IN (TIMIE-OF pi2) ?12))

(IN (TiM-\IOF (CO-MP pli pi2)) i)
<IF part of AX-IL 6>

2) (AND (IN (TIMIE-OF pul) ')12) (IN (TIME-OF pi2) 9i2))
< assumptionl>

3) 2 H- (IN (TIME-IOF (COMIP pil p12)) 9i2)
<AlP applied to 1. 2>

4) (M\EETS I ?i2)
<assumption>

5) 2.4 I- (PRIOR I (TIM\E-OF (COM\P pil pi2)))
<MfP applied to (AND-INTRO 8,4), TH-1R4>

6) i- (IF (AND (MIEETS I ?i2)
(IN (TUIE-OF pil) ?i2)
(IN (TIME-OF p12) ?12))

(PRIOR I (TIMNE-OF (COMP pil pi2))))
<discharging the assumptions in 6>

7) H- (IF (3 ?12 (AND (M\EETS i ?12)
(IN (TIM\E-OF pil) ?12)
(IN (TIMIE-OF pi2) 'i2)))

(PRIOR i (TIME-OF (COMIP pil pi2))))
<EXVT-IN1TRO applied to 6>

8) H- (IF (AND (PRIOR I (TIM1E-OF pil))
(PRIOR i (TIME-OF pi2)))

(3 ?12 (AND (MEETS i ?i2)
(IN (TIME-OF pil) ?i2)
(IN (TIMIE-OF pi2) ?i2))))

< TH-IR5>

Proof continued on next page

2] 7

Continuation of TH-.APG-1

9) F- (IF (AND (PRIOR I (TIME-OF pil))
(PRIOR i (TIME-OF pi2)))

(PRIOR I (TIME-OF (COMP pil pi2))))
<MVP- TRNS applied to 8. 7>

10) (PRIOR i (TIME-OF (COMP pil pi2)))
<assum"ption>

11) I- (IN (TIMIE-OF (COMP pil pi2))
(TIME-OF (COM'\P pil pi2)))

< TH-1R 7>

12) F- (AND (IN (TIME-OF pil) (TIME-OF (COMP pil pi2)))
(IN (TIME-OF pi2) (TIME-OF (COMP pil pi2))))

<,V? applied to 10. (ONLY-iF part of AX-1L6 with substitutions (TIME-OF (COMl? pil
pi2J)/i,.>

13) F- (IN (TIME-OF pil) (TI'ME-OF (COMP pil pi2)))
<.VP applied to 12,A ND-EL LII>

14) 10 F- (PRIOR I (TIME-OF pil))
<.VP applied to (AND-INTRO applied to 10,13},(TH.1R8 with substitution.5 'i/il. (TLIME-OF
(COMP pil pi2 fl/i'2 , (TI.ME-OF pil)/i'3>

15) F- (IN (TIME-OF pi2) (TIME-OF (COMIP pil p12)))
<AlP applied to 12,AND-ELIfl>

16) 10 F- (PRIOR I (TIME-OF pi2))
<MP? applied to (AN'\D-IN'TRO applied to 10,18),(TH-1R8 with substitutions f'i/il. (TIME-OF
(COMP pi pt:2))/:2. (TIME-OF pi 2)/:8>,

17) F- (IF (PRIOR I (TIME-OF (COMIP pil 1)i2)))
(AND (PRIOR i (TIME-OF pul))

(PRIOR I (TUIE-OF pi2))))
<AND-INTRO applied to 14.16 then assumption discharged>

18) F- (1FF (PRIOR i (TIME-OF (COMIP pil pi2)))
(AND(PRIOR i (TIME-OF pil))

(PRIOR i (TIME-OF pi2))))
<1FF substituted for its definition after AND-INTRO applied to 17,9>

QED (TH-APG-1)

DRL-APG-1)
From: IRS I- (IF P 0))
To: IRS I- (IF NP-MC(P) NP-MC(Q)))
where IRS is an interval relation statement and NP-MC is a modal chain consisting only of
IFTRIED and INEV operators

Lemmal)
From: IRS F- (IF P Q
To: IRS I-(IF (INEV i P) (INEV i Q))
Proof of Lemmal

1) IRS - (IF P Q)
<assumption for proof of rule>

2) 1 -- I- (IF IRS (IF P Q))
<equivalent to 1 by definition>

3) 1 - - (IF (INEV i IRS) (INEV I (IF P Q)))
<DRL-IFTR1 applied to 2>

4) 1 -. - (IF IRS (INEV i (IF P Q))j
<DRL-IFTRS applied to 3 using equivalence TH-IVV-IL4>

5) 1 -, IRS - (IF (INE\' P, (!NEV i Q))
<assumption IRS discharged after MP-TRNS applied to 4,AX-LIT'2>

QED (Lemmal)

Lemma2)
From: IRS - (IF P Q)
To: IRS I-- (IF (IFTRIED pi P) (IFTRIED pi Q))
Proof of Lemma2

1) IRS - (IF P Q)
<assumption for proof of rule>

2) 1 H (IF IRS (IF P Q))
<equivalent to 1 by definition>

3) 1 -. -- (IF (IFTRIED pi IRS) (IFTRIED pi (IF P Q)))
<DRL-IFTRi applied to 2>

4) 1 - - (IF IRS (IFTRIED pi (IF P Q)))
<DRL-IFTRS applied to 3 using equivalence TH-ILNV-1L4>

5) 1 - IRS - (IF (IFTRIED pi P) (IFTRIED pi Q))
<discharging assumption IRS after MP-TRNS applied to 4,AX-IFTR2>

QED (Lemma2)

Proof continued on next page

249I

5 Continuation of proof of DRL-APG-1

Proof of DRL-APG-1 by induction on the length of the modal chain

Proof of Base case: length 1 ,p
If NP-MC has length 1, then NP-NIC(P) has form 7INEV i PT or -(IFTRIED pi P)

The proof that DRL-APG-1 is true when NP-MC(P) has form r-(INEN" , P7~I follows from Lemmal

Similarly.the proof that DRL-APG-1 is true when NP-MIC(P) has form3 'j(IFTRIED pi P71 follows from Lemma2

QED (Base case)

3 Proof of Inductive step
Assume that DRL-APG-1 holds for any NP-TMC n that has length n. We prove that
DRL-APG-1 holds for any modal chain with length n+1. If NP-MC has length n+1.Ithen NP-MC(P) has form rINEV i NP-MC,,(P)7 or r_(IFTRIED pi NP--\IC(P)T -where
NP-1C~ is a modal chain with length n.

IProof of DRL-APG-1 for r-IN\E\ I INP-MC n (P)?
1) IRS l-- (IF P Q)

<assumption for proof of rule>I 2) 1 - IRS l-- (IF NP-NICn(P) NP-MCn(Q))
<inductive hypothesi's rule applied to 1>

3) 1 -F-(IF IRS (IF NP.MIC n(P) NP-NIC,(Q)I <equivalent to 2 by definition>
4) 1- (IF (INEV iIRS I

(IINEV i(IF NP-MIC (P) NP"'MCn(Q))))I <DRL.IFTRi applied to 5f>
5) 1 .- -(IF IRS

(INEV I (IF NP-MCn(P) NP-MCn(Q))))I <DRL-IFTRS applied to 4 using equivalence TH-LVV-1L4>

6) 1 -F-(IF IRS (IF (INEV i NP-MG n(P))

I, <AfP. TR.NS- applied to 5, AX-1INV2>
7) 1 -~ IRS F-- (IF (INEV i NP-MC n(P))

I <equivalent to 6 by definition>

QED

Proof continued on next page

250

Continuation of proof of DRL.-APG-i (inductive step)

Proof of DRL-APG-1 for r(IFTRIED pi NP-.MCn(P)7

1) IRS F- (IF P Q)
<assumption for proof of rule>

2) 1 - IRS F- (IF -\P-\ICI,(P) NP-M\C Q))
<inductive hypothesis rule applied to 1>

3) 1 - F- (IF IRS (IF NP-NICn(P) NP-NICn~(Qi)
<equivalent to 2 by definition>

4) 1 - [-- (IF (IFTRIED pi IRS) (IFTRIED pi (IF NP-MC' r(P) N-CQW
<DIL-IFTRl applied to 5>

5) 1 --- F- (IF IRS (IFTRJED pi (IF NP-MCn(P) NP-M"Cn(Q))))
<DRL-IFTR8 applied to 4 us~ing equivalence TH-LVV-1L4>

6) 1 -F-(1I IRS (IF (JETRIED pi N')-"cn(P)) ' IFTRED pi NP-MCL(OQflf
<MP-TRABS applied to 5.,AX-IFTR2>

7)1 -~ IRS F- (IF (IFTRIED p) NP-MNC 1 (P)) (IFTRIED pi NP-MCW
<equivalent to 6 by definitionl>

QED

QED (Inductive step)

QED (DRL-APG- I)

TII-APG-2)
F- (IF (AND (PRIOR I (TIME-OF pi)) (INEV i P)) (INEV I (IFTRIED pi P))'j

Proof of TH-APG-2

1) (PRIOR I (TIME-OF pi))
<assumption>

2) (INEV i P)
< a88u mption>

3) F- (IF (INEV i (PRIOR I (TIME-OF pi)))
(INE\' I (IF (INEV I P) (IFTRIED pi P))))

<DRL-IFTRi applied to A-X-IFTR5>

4) F- (IF (PRIOR I (TIME-OF pi)) kiNEV I (IF (INEV I P) (IFTRIED pi P))))
<DRL-IFTRS applied to 5 using equivalence TH.INl'-1L4>

5) 1 F- (INEV I (IF (INEV I P) (IFTRIED pi P)))
<MP applied to 1,4>

6) 1 F- (IF (I1NEN' i (INEV I P)) (INEV i (JFTRIED pi P)))
<MP applied to 5,(AXY-INI'2 with substitutions /(IN'EVt P)/P, (IF TR lED pi P)/Q I>

7) 2 F- (JNEN' I (I1NEV I P))
<AfP applied to 2,AX-IFTRff>

8) 1.2 F- (INEX' I (IFTRIED pi P))
<AlP applied to 7,6>

9) F- (IF (AND (PRIOR I (TIME-OF pi)) (INE\' I P)) (lNEV I (TFTRIED pi P)))
<discharging assumptions in 8>

QED (TH-APG-2)

TII-APG-3)I F- (IF (IFTRIED pli (IFTRIED pi2 (AND (OCC pil) (0CC p]2f))
(EXECUTABLE (COMP pl Ipi2)))

Proof of TII-APG-3

1) (!FTRIED pil (IF'TRIED p12 (AND (0CC pul) (0CC pi2))j
< assumption>

2) I- (IF (JETRIED pil
(IFTRIED pi2 (AND (0CC pil) (0CC pi2))))

(1FF (IFTRIED (COMP pil pi2)
(0CC (CO-MP pil pi2)))

(IFTRIED pill
(IFTRIED pi2 (0CC (COMP pil pi2)))))))

<AX-IFTR7 with substituti'onY/OCC (COMP pi pi'2))/P>

3) 1 I- (1FF (IFTRIED (COMIP pil pi2) (0CC (COMP pil pi2)))
(IFTRIED pil

(JFTRIED pi2 (0CC (COMP pil pi2)))))
<MIP applied to 1Le>

4) 1 K- (1FF (EXECUTABLE (COMP pil pi2'))
(IFTRIED pil

(IFTRIED pi2 (0CC (COMP pli pi2)))))
<substituting EXECUTABLE for its definition in S>

5) 1 I- (IF (IFTRIED pil (IFTRIED pi2 (0CC (COMfP pil pi2))))
(EXECUTABLE (COMP pil pi2)))

< ONLY-IF Fart of 4>

6) 1 K- (IF (IFTRIED pil
(IFTRIED p12 (AND (0CC pil) (0CC pi2))))

(EXECUTABLE (COMIP pil pi2)))
<DRL-IFTRS applied to 5 using equivalence AX-IL 5>

7) 1 K- (EXECUTABLE (COMP pl pi2))
<AlP applied to 1,6'>

8) K- (IF (IFTRIED pill
(IFTRIED pi2 (AND (0CC pil) (0CC pi2)))
(EXECUTABLE (COMP pil p]2))

<discharging the assumption in 7>

QED (TH-APG-3)

TH-CH5-1)
if S (PRIOR I (TIME-OF pi)) and

S (INEV i (IFTRIED pi (0CC pi)))
then S j=(POS i (0CC pi))

Lemma 1)
F(IF (AND (PRIOR I (TIME-OF pi))

(INEV i (IF'TRIED pi (0CC pi))))
(POS I (OCC pi)))

Proof of Lemma I

1) (PRIOR i (TIME-OF pi))
<assumption>

2) (INENT i (IFTRIED pi (0CC pi)))
<assumnption>

3) 1 F- (IF (IINEV i (NOT (0CC pi)))
(IFTRIED pi (NOT (0CC pil))))

<AlP applied to 1,(A-JFTR5 with substitution /(NOT (0CC pi]]j/P5'

4) 1 F- (IF (NOT (IFTRIED pi (NOT (0CC pi))))
(NOT (I.NEV I (NOT (0CC pi))))

<MfP applied to 8, TRNSF'>

5) 1 F- (IF (IFTRIED pi (0CC pi))
(NOT (INEV I (NOT (0CC pi)))))

<Al?- TRNS,, applied to AX-IF TR1,4>

6) 1 F- (IF (IFTRIED pi (0CC pi)) (P05 I (0CC pi)))
<substituting POS for itsa definition in .5>

7) 1 F- (IF (INEV I (JFTRIED pi (0CC pi)))
(INEV' i (POS i (0CC pi))))

<DRL-APG-1 applied to 6'>

8) 1,2 F- (INEV I (P05 I (0CC pi)))
<AlP applied to 2,7>

9) 1,2 F- (P05 i (0CC pi))
<AlP applied to 8,AX-INVI1'>

10) F- (IF (AND (PRIOR I (TIME-OF pi))
(IINEV I (IETRIED pi (0CC pi))))

(P05 i (0CC pi)))
<discharging assumptions in 9>

QED (Lemmal)

Proof continued on next page

Continuation of proof of TIH-C11-1

Lemma2)
If I-- (IF (AND P Q) R) and S j= P and S Q
then S I= R

Proof of Lemma2

1) I- (IF (AND P Q) R)
<assumption for proof of ecta-theorern>

2) S= P
<assumption>

3) S 1=Q
< assumption>

4) 2 - For every model (m), if for every sentence (A)
if AES then A is true in m. then P is true in m

<using definition of:= in 2>

5) 3 - For every model (m). if for every sentence (A)
if AES then A is true in m, then Q is true in m

<using definition of = in 3>

6) 2,3 - For every model (in). if for every sentence (A)
if AES then A is true in m, then P is true in m
and Q is true in m

<taking 4 and 5 together>

7) 2,3- For every model (m). if for every sentence (A)
if AES then A is true in m, then r(AND P QT
is true in m

<using the interpretation of AND in 6>

8) 1 - S 1= (IF (AND P Q) R)
<using 1 and the fact 'S:= X' is true if 'S I- X' is true (our proof theory is sound)>

9) 1 For every model (m), if for every sentence (A)
if AES then A is true in m, then '(IF (AND P Q) R)
is true in m

<using definition of j= in 8>

10) 1 -- For every model (m). if for every sentence (A)
if AES then A is true in m, then if r(AND P Q))
is true in m then R is true in m

<using the interpretation of IF in 9>

11) 1-3 -- For every model (m). if for every sentence (A)

if AES then A is true in m, then R is true in n
<taking 7 and 10 together>

12) 1-3 - S '= R
<substituting:= for its definition in 11>

QED (Lemma2)

Proof continued on next page

Continuation of proof of TII-C115-1

Proof of TII-CH.5-1

1) S j (PRIOR I (TIME-OF pi))
< assumnpti*on>

2) S j=(INE\ I (IFTRIED pi (0CC pi)fl
< assumption>

3) F- (IF (AND (PRIOR i (TIME-OF pi))
(INEV I (IFTRIED pi (0CC pi))))

(POS i (0CC pi)))
<L emmr a 1>

4) 1,2 -S 1=(POS i (0CC pi))
<Lemma2 applied to 8,1,2 using substitutions /(PRIOR i (TIME-OF pi))/P. (LNVU
(IFTR lED pi (0CC pif)/)Q, (P05 I (0CC' pif/IR,,>

QED (TH-CH5-1)

SEQ-TH 1)
F(IF (PRIOR (TIME-OF pil)) (TIME-OF pi2)

(1FF (EXECUTABLE (CONIP pil pi2))
(AND (EXECUTABLE pil)

(IFTRIED pil (EXECUTABLE pi2)))))

Proof of SEQ-THI

1) (PRIOR (TIME-OF pil) (TIME-OF pi2))
< assumption>

2) (EXECUTABLE pil)
<assumption>

3) (IFTRIED pil (EXECUTABLE pi2))
< assumption>

4) 3 F- (IFTRIED pil (IFTRIED pi2 (0CC pi2)))
<replacing EXECUTABLE by its definition in 3>

5) 1 F- (IF (0CC pil) (IFTRIED pi2 (0CC pil)))
<MP applied to 1,(TH-IFTR.IA1i with substitutions /pi2/pi, (0CC pii)/ILSjI>

6) 1 F- (IF (IFTRIED pil (0CC pil))
(IFTRIED pil (IFTRIED pi2 (0CC pil))))

<DRL-APG-1 applied to 5>

7) 1,2 F- (IFTRIED pil (IFTRIED pi2 (0CC pil)))
<MP applied to 2,6 after EXECUTABLE is replaced by its definition in 2>

8) 1-3 F- (IFTRIED pil (IFTRIED pi2 (AND (0CC pul) (0CC pi2))))
<DRL-IFTR5 applied to 7,4>

Proof continued on next page

Continuation of proof of SEQ-TII-1

9) 1-3 F- (IF (IFTRIED pil (IFTRIED pi2 (AND (0CC pil) (0CC pi2))))
(IFTRIED (COMP pil pi2) (AND (0CC pil) (0CC pi*2))))

<ONLY-IF part of (MP applied to 8.(AX-IFTR7 with substitution f/AN4.D (0CC pil) (0C'C

piW/FjYI>
10) 1-3 F- (IFTRIED (COMIP pil pi2) (AND (0CC pil) (0CC pi2)))

<MAP APPLIED to 8.9>

11) 1-3 F- (IFTRIED (COMP pil p12) (0CC (CO'MP pil pi2)))
<DRL-IFTRS applied TO 10 using equivalence AX-IL 5>

12) 1 F- (IF (AND (EXECUTABLE pil)
(IFTRIED pil (EXECUTABLE pi2)))

(EXECUTABLE (COMP p11 pi2)))
<discharging assumption 2 and 8 in 11 after substituting E.YECUTABLE for its definition>

13) 1 F- (IF (EXECUTABLE (COMP pil pi2))
(AND (EXECUTABLE pil)

(IFTRIED pi (EXECUTABLE pi2))))
<-VP applied to 1,AX--IFTRS>

14) 1 F- (1FF (AND (EXECUTABLE pi1)
(IFTRIED pli (EXECUTABLE pi2)))

(EX.ECUTABLE (COMP pil pi2)))
<AND-INTRO applied to 12,18 and then 1FF substituted for its definition>

1.5) F- (IF (PRIOR (TIME-OF pil) (TIME-OF pi2))
(1FF (AND (EXECUTABLE pil)

(IFTRIED pil (EXECUTABLE p12))
(EXECUTABLE (COMP pil pi2)))))

<discharging assumption in 14>

QED (SEQ-THI)

SEQ-TH2)
-- (IF (PRIOR (TIME-OF pil)) (TIME-OF pi 2)

(IFF (INEV i (EXECUTABLE (COMP pil pi2))
(INEV i (AND (EXECUTABLE pil)

(IFTRIED pil (EXECUTABLE pi2))f)

Proof of SEQ-TI12

1) (PRIOR (TIME-OF pil) (TIME-OF pi2))
<assumption>

2) 1 - (IFF (AND (EXECUTABLE pil)
(IFTRIED pil (EXECUTABLE pi2)))

(EXECUTABLE (COMP pil pi2))))
<AP applied to I,SEQ- THI>

3) 1 V- (IF (INEV i (AND (EXECUTABLE pil)
(IFTRIED pil (EXECUTABLE pi2))))

(INEV i (EXECUTABLE (CONIP pil pi2))))
<DRL-APG.1 applied to (IF part of 2)>

4) 1 - (IF (INEV i (EXECUTABLE (COMP pil pi2))))
(INEV i (AND (EXECUTABLE pil)

(IFTRIED pil (EXECUTABLE pi2))))
<DRL-APG-1 applied to (ONLY-IF part of 2)>

5) 1 - (IFF (INEV i (EXECUTABLE (COMP pil pi2)))
(INEV i (AND (EXECUTABLE pil)

(IFTRIED pil (EXECUTABLE pi2)))))
<AND-LNTRO applied to 3,4 and then IFF substituted for its definition>

6) - (IF (PRIOR (TIME-OF p1l) (TIME-OF pi2))
(IFF (INEV i (EXECUTABLE (COMP pil pi2)))

(INEV i (AND (EXECUTABLE pil)
(IFTRIED pil (EXECUTABLE pi2)))))

<discharging the assumption in 5>

QED (SEQ-TH2)

TIIT2)
I-(F (AND (PRIOR Ip (TIME-OF pil)) (PRIOR Jp (TIME-OF p]2)))

(NOT (DISJOINT 11 12))
(NOT (= pnl pn2)))
(V ?pnx ?pny *?brnrx ?brnry ?i x ?iy (INEV Ip HT))

(INEV Ip (NOT (EXECUTABLE
(COMIP (htg pnl brnr)CUI1 (htg pn2 brnr)@12Yl)))

,where HT -de
(IF (AND' (0CC (tg ?pnx ?brnrx)@?i x)

(0CC (htg 9pny ?brnry)Cai.))
(OR (DISJOINT .iX .?iy)

(AND (NOT (= ?pnx ?pnyl)) (NOT (- brnrx ?brnrv)))
(AND (= ?pnx ?pny) (= ?brnrx ?brnry) (-?ix ?iy))))

Lemma 1)
i- (IFF (NOT (= t] t2)) (INEV I (NOT (= ti t2))))

Proof of Lemnma 1

1) I- (IF (= t I t2) (INEV I (= t1 t2))
<IF part of TII-.NV-SF2O>

2) V- (IF (NOT (INEV I (= t I t2))) (NOT (= 0i t2)))
<hIP applied to 1, TRNSP>

3) I- (IF (NOT (NOT (POS I (NOT (= ti t2)))))
(NOT (= t I t2)))

<DRL-IFTR8 applied to 2 using equivalence TH-INI'-SFI>

4) 1- (IF (P05 1 (NOT (= ti t2))) (NOT (= t1 t2)))
<DRL-IFTRS applied to 8 using equivalence NNP-P>

5) I- (IF (INEV i (POS i (NOT (= ti t2))))
(INEV i (NOT (= t~i t.2)),))

<DRL-IFTR1 applied to 4>
6) V- (IF (POS I (NOT (= ti t2))) (INEV i (NOT (= t1 t2))))

<DRL-IFTRS applied to 5 using equivalence TH-INV-SF6>

7) V- (IF (NOT (= ti t2)) (INEV 1 (NOT (= ti t2))))
<MAP-TRA'S applied to (TH-I-NU-SF2 with substitution /(NOT (= ti tl"ff/P.6>

8) I- (IF (INEV I (NOT (= t] t2))) (NOT (= t1 t,2)))
<AX-IN Vi with substitution /(NOT (= ti t2))/P/>

9) V- (1FF (NOT (= ti t2)) (INEV i (NOT (= ti t2))))
<AND-INTRO applied to 7,8 and 1FF substituted for it8 definition>

QED (Lemmal)

Proof continued on next page

Continuation of proof of TIt-1IT2

Proof of TH-HT2

1) (V ?pnx ?pny ?brnrx ?brnry ?ix ?iy HT)
<assumption>

2) (NOT (DISJOINT 11 12))
<assumption>

3) (NOT (= pnl pn2)))
<assumption>

4) -- (= brnr brnr)
<AX-FO6>

5) I- (NOT (NOT (= brnr brnr)))
<MP applied to 4,(ONLY.IF part of NNP-PJ>

6) -- (OR (NOT (NOT (= pnl pn2)))
(NOT (NOT (= brnr brnr))))

<AP applied to 5.AX-F02>

7) -- (NOT (AND (NOT (= pnl pn2)) (NOT (= brnr brnr))))
<SUBST applied to 6 using equivalence DEWi>

8) 3 -- (OR (NOT (= pnl pn2)) (NOT (= brnr brnr)) (NOT (= 11 12)))
<MP ciilied to (MP applied to 8,AX-F021,AXFO2>

9) 3 F- (NOT (AND (= pnl pn2) (= brnx brnNv) (= 11 12)))
<SUBST applied twice to 8 using equivalence DEAi>

10) 2,3 F- (AND (NOT (DISJOINT 11 12))
(NOT (AND (NOT (= pnl pn2)) (NOT (= brnr brnr)))))
(NOT (AND (= pnl pn2) (= brnr brnr)(= 11 12))))

<AND-INTRO applied to (AND-INTRO applied to 2, 7),9)>

11) 2,3 F- (NOT (OR (DISJOINT 11 12)
(AND (NOT (= pnl pn2)) (NOT (= brnr brnr)))
(AND (= pnl pn2) (= brnr brnr)(= 11 12)))))

<SUBST applied twice to 10 using equivalence DEM2>

12) 1-3 F- (NOT (AND (OCC (htg pnl brnr)@I1) (OCC (htg pn2 brnr)@12)))
<MP applied to 1I,(MP applied to (AlP applied to 1,A.X-F05 for the variable substitutions
{pnl/?pnz, pn2/.pny, brnr/?brnrx, brnr/?brnry, I/l'iz, I2/1iiy}), TRNSP]>

13) F- (IF (AND (INEV Ip (V ?pnx ?pny ?brnrx ?brnry ?ix ?iy HT))
(INEV Ip (NOT (DISJOINT 11 12)))
(INEV Ip (NOT (= pnl pn2))))

(INEV Ip (NOT (AND (OCC (htg pnl brnr)@I1)
(OCC (htg pn2 brnr)@2)))))

<DRL-IFTRS applied two times to (DRL-IFTR1 applied to 12 after discharging assumptions)
using equivalence TH-INV-SF9>

Proof continued on next page

259

TH-CR2)
I(IF (PRIOR Ip 1)

(IF (AND (INE 'Ip CR-Si)
(V ?I ?pi (INEV Ip (IF (NOT (HOLDS pnf ?i'))

(IFTRIED ?pi (NOT (HOLDS pnf "i)Y)))
(!NEV Ip (IF (EXECUTABLE (COM.\P (carry scl)@i' (carry Sc2)Cq@I)(

(HOLDS pnf I)))
where CR-Si =e

(IF (AND ("CC (carry sc) @1) (0CC (carry sc2)@I)) (HOLDS pnif I)))

Proof of TH-CR2

1) (PRIOR Ip I)
.<assumption>

2) (INEV Ip CR-Si)
<assumption>

3) (V ?I ?o)i
(I'.;EV" Ip (IF (NOT (HOLDS pnf ?i))

(IFTRIED ?pi (NOT (HOLDS pnf ?i)))))
<a ssurnptlion>

4) (IF(.NOT (HOLDS pnf 1))
(IFTRIED(COM'%P (carry sci)@Il (carry sc2)@Icu)

(NOT (HOLDS pnf 1))))
<assumption>

5) 4 H- (IF (INOT (IFTRIED (COM.NP (carry sci)@Il (carry sc2)@Il)
(NOT (HOLDS pnf 1))))

(NOT (NOT (HOLDS pnf I)))(
<AlP applied to 4. TRSN\P>

6) 4 H- (IF (NOT (IFTRIED (COM.vP (carry scl)@I1 (carry sc2)@I)
(NOT (HOLDS pnf 1))))

(HOLDS pnf 1))
<SUBST applied to 5 using equivalence AXVP-P>

7) 4 H- (IF (IFTRIED (COM.\P (carry scl)@Il (carry sc2)@CCI) (HOLDS pnf 1))
(HOLDS pnf 1))

<MP-TRNS applied to A.Y-IF TR1,6>

8) 1 H- (PRIOR Ip (TIME-OF (carry scl)@I))
<MfP applied to 1,(MtP applied to r(= I (TIME- OF (carry, saa)@qI,AX-FO7j>

9) 1 H- (PRIOR Ip (TIME-OF (carry sc2)@I))
<MP applied to 1,(MfP applied to r(= I (TIME-OF (carry sc2)@IJP ,AX-FO 7)>

Proof continued on next page

Continuation of proof of TH-CR2

10) 1 1- (PRIOR Ip (TIMfE-OF (COMPff (carry scIJ Cal (carry sc2)@CCI))
<MfP applied (AND-INTRO applicd to 8,9].(IF part of TH-APG-.uj>

11) 1.2 I- (IFTRIED (COMP (carry sci)((f (carry sc2)@Il) CR-SI)
<MlP applied to 2.(MIP applied to OAN4-I-F TR,5,>

12) 1,2 F- (IF (IFTRIED (COMIP (carry scl)CaI (carry sc2)@l) _

(AND (0CC (carr ' scl)@Ca) (0CC (carry sc2) CI)))
(IFTRIED (COMIP (carry sci) @1 (carry sc2)@I)

(HOLDS pnif I)))
<,VP applied to ii.ANL-IFTR2>

13) 1,2,4 F- (IF (EXECUTABLE (CONIP(carry scl)@C(I (carry sc2)CaI))
(HOLDS pnif I '))

<MfP-TR.VS applied to 12,7 and EXECUTABLE substituted for its definition>

14) 1 F- (IF (INEV Ip
(AND (INEV Ip CR-Si)

(IF (NOT (HOLDS pnf 1))
(IFTRIED (COMP (carry scl)@Il (carry sc2)CaI)

(NOT (HOLDS pnifI)))
(INEV Ip (IF (EXECUTABLE (COMP(carry scl)@1l (carry sc2) CqI))

(HOLDS pnif 1))
<DRL-APG-I applied to 13 after discharging assumptions f' and 4>

15) 1 F- (IF (AND (INEV Ip CR-Si)
(INEV Ip

(IF (NOT (HOLDS pnf 1))
(IFTRIED (COMIP (carry scl)@Il (carry sc2)CaI)

(NOT (HOLDS pnif I))))))
(INEV Ip (IF (EXECUTABLE (CONIP(carry scl)@1l (carry sc2)@1l))

(HOLDS pnif I))
<DRL-IF7'R3 applied to twice to 14, first using equivalence TH'.INV-SF9 and then using
equivalence TH-IV-SF,5>

16) 3 F- (INEV Ip (IF (NOT (HOLDS pnif 1))
(IFTRIED (COMIP (carry scl)@Il (carry sc2)@Icu)

(NOT (HOLDS pnif 1)))))
<AlP applied to 3.AX-F05 for the variable substitutions {(COMP (carry, 8rl)@I (carry, 8c2K@I)/9pi

17) F- (IF (PRIOR Ip 1)
(IF (AND (INEV Ip CR-SI)

(V ?I ?pi
(INEV Ip (IF (NOT (HOLDS pnif ?i))

(IFTRIED ?pi (NOT (HOLDS pnf ?i))))))
(JNEV Ip

(IF (EXECUTABLE (COMP (carry scl)@il (carry sc2)@Il))
(HOLDS pnif 1)))

<Discharging assumptions 2 and 8 then I after (MlP applied to (AND-INVTRO 2, 17).161>

QED (TH-CR2)

261

Appendix H
Proof that the Algorithm is Sound

Proof for NON-O\'RLP and proof showing that algorithm is sound Nwh respect to the

semantics

See introduction to Appendix F for conventions used in presenting proofs.

NON-OVRLP)
-(IF (PRIOR (TIMIE-OF pil) (TIME,-OF pi2))

(INEV i NI-CND(pi1,pi2))

Note- see p). 26-1 for definition of NI-CND(pilpi2)

Lemma 1)
I(IF (PRIOR (TlIE--OF pil) (TIME-OF p12))

(IF (AND (EXECUTABLE pul)
(IFTRIED pil (EXECUTABLE p12)))

(IF (0CC pi2) (IFTRIED pil (0CC pi2)))

Proof of Lemma I

1) (PRIOR (TIME-OF pil) (TI'ME-OF pi2))
K asscumption>

2) (EXECUTABLE pul)
<assumption>

3) (IFTRIED ilI (EXECUTABLE pi2))
< assumption>

4) (0CC pi2)
<assumption>

5) (0CC p11)
<asum~ption>

6) (EXECUTABLE pi2)
<assumption>

7) I- (IF (PRIOR (TIMIE-OF pul) (TIME-OF pi2))
(IF (0CC pil) (IFTRIED pi2 (0CC pil)))

< TH-IFTR.INi with substitutions /pi2/pi, (0CC pil)/ILS/>

8) 1,5 I- (IFTRIED pi2 (0CC pil))
<MfP applie d to 5, (MP applied to 1, 7/>

9) 1,5,6 H- (IFTRIED pi2 (AND (0CC pi2) (0CC pil)))
<DRL-IFTR5 applied to 6,8 after replacing EXVECUTABLE by its definition in 6>

10) I- (IF (PRIOR (TIME-OF pil) (TIME-OF pi2))
(IF (AND (0CC pul) (EXECUTABLE pi2))

(IFTRIED pi2 (AND (0CC pi2) (0CC pil)))))
<discharging assumptions 5 and 6. then assumption I in 9>

Proof of NON-OV'RLP (Lemnmal) continued on next page

26 2

Continuation of proof of NON-ON'RLP (Lemmal)

11) I- (IF (IFTRIED pli (PRIOR 'TI'ME-OF pil) (TIME-OF p12)))
(JFTRIED pil (IF (AND (0CC pil) (EXECUTABLE pi2))

(IFTRIED pi2 (AND (0CC pi2) (0CC 1)l1f))))
<DERL-iF TPI applied to 10>

12) V- (IF (PRIOR (TIIE-OF pi1l) (TIME-OF pi2))
(IFTR1ED pil (IF (AND (0CC pil) (EXECUTABLE pi2)1

(IFTRIED pi2 (AND (0CC pi2) (0CC pil))flfl(
<DRL-IFTRS applied to 11 using equivalence TH-IFTR-IXS9>

13) 1 -(IF (IFTRIED pil (AND (0CC pil) (EXECUTABLE 1)i2'1)
(IFTRIED pli (IFTRIED pi2 (AND (0CC pi2j (0CC pil))fl)

<AlP applied to (.VP applied to i,i2),AX-FTR2>

14) 1-3 V- (IFTRIED pil (IFTRIED pi2 (AND (0CC pi2) (0CC phi))))
<ALP applied to (DRL-IFTR5 applied to 2.8 after EXECUTA4BLE replaced by it-5 definition
in)13>

15) 4 V(IF (0CC 1i2) (IFTRIED pi2 (0CC pi2))
<ONLY-IF part of (MP applied to 4.(AXY-IFTRS9 with substitutions rpi2/pi. (0CC
pi/P,>

16) 4 V(EXECUTABLE pi2)
<MfP applied to 4.15 and EXECUTABLE substituted for its definition>

17) 1-1 V- (IFTRIED pi2 (IFTRIED pil (AND (0CC pi2) (0CC piOMl)
<MP applied to 14,(MP applied to 16,(AX--IFTR9 with substitutionsjpi2/pil, pil/pi2 II

18) 4 V- (IF (IFTRIED pi2 (IFTRIED pil (AND (0CC p12) (0CC pil))))
(lFTRIED pi (AND (0CC pi2) (0CC pil))))

<IF p irt of (MP applied to 4,(AX-IFTR3 with substitutions .!pi2/Ipi, (IFTRIED pil (AND
(0CC pie) (0CC pi1jfj)/P},l>

19) 1-4 V- (IFTRIED pi (AND (0CC pi2) (0CC pil)Y)))
<AIP applied to 17,18>

20) 1-4 V- (AND (IFTRIED pil (0CC pi2))
(IFTRIED pil (0CC pil)))

<DRL-JFTR3 applied to 19 using equivalence TII-IFTR-SC1>

21) 1-3 V- (IF (0CC pi2) (IFTRIED pil (0CC pi2)))
KDi'scharging assumption 4 after AND-ELIAL applied to 20>

22) V- (IF (PRIOR (TIMIE-OF pil) (TIME-OF pi2))
(If (AND (EXECUTABLE pi)

(IFTRIED pil (EXECUTABLE p]2)))
(IF (0CC p12) (IFTRIED pil (0CC pi2)))

<discharging assumptions 2 and 8,lhen amumplion 1 in 21>

QED (Lemmal)

Proof of NON-OVRLP continued on next page

Continuation of proof of N\ON\-ON"PRLP

Proof of NON-OVRLP

1) (PRIOR (TIME-OF pilJ) (TI'ME-OF pi2l))
<assumption>

2) (EXECUTABLE pil)
<assumption>

3) (EXECUT ABLE pi2J
<assumption>

4) (IFTRIED pi2 (EXECUTABLE pil))
<assumption>

5) (IFTRIED pli (EXECUTABLE pi2))
<as~qumption>

6) 1- (IF (PRIOR (TIME-OF pil) (TIME-OF p2j))
(IF (0CC pil) (IFTRIED p12 (0CC pil))

< TH-IFTR-EVi with substitutions 'Pi2/pi. (0CC pill/ThE >

I) I- (IF (0CC pil) (IFTRIED p12 (0CC pil)))
<AI? applied to 1.U>

8) 1.A - (IF (0CC pil) (JFTF-LED pi2 (0CC pul)))
<ANT(CD-INTRO applied to 7>

9) 1 I- (IF (IFTRIED pi2 (EXECUTABLE pil))
(IF (0CC pil) (IFTRIED p12 (0CC pil))))

<discharging assumption 4>

10) 1.2,5 I- (IF (0CC pi2) (IFTRIED pli (0CC pi2)))
<MlP applied to (.YD-INTRO applied to 2,5),(MF applied to 1,Lemnzal)>

11) 1.2 V- (IF (IFTRIED pil (EXECUTABLE pi2))
(IF (0CC 1)2) (IF TR!ED pli (0CC pi2))))

<discharging assumption 5 in 10>

12) 1-3 I- (AND (IF (IFTRIED pi2 (EXECUTABLE pil))
(IF (0CC pil) (IFTRIED pi2 (0CC pil))))

(IF (IFTRIED pli (EXECUTABLE pi2))
(IF (0CC pi2) (IFTRIED pil (0CC p12)1))

<ANTCD-I.NTRO (introducing .9) applied to (ANVD-INTRO applied to 9,111>

13) 1 V- NI-CND(pil,pi2)
<suLbst ituting NI-CND for its definition after discharging assumptions 2 and 8 in 1f>

14) V- (IF (PRIOR (TIME-OF p)Il) (TIM\E-OF p12))
NI-CND(pil ,pi2))

<discharging assumption I in 18'>

15) V- (IF (INEV I (PRIOR (TIME-OF pil) (TIME,-OF pi2)))
(INEV I NI-CND(pilpi2)))

<DR[T1 applied to 14>

16) V- (IF (PRIOR (TIME-OF pil) (TIME-OF p12))
(JNEV I NJ-CND(p)l,p'2W)

<DRL-IN'V8 applied to 15 using equivalence TII-I.V-1L4>

QED (NON-OVRLP)

Proof that the Algorithm is Sound with Respect to the Logic

We mak(use of the followving definitionls:

PI-DISJOINT(pix.piv) d

(OR (PRIOR (TIME-OF pi)xl (TIMTE-OF- PINy(J
(PRIOR (TIME-OF ply) (TIME-OF pix))

CNIP(pi) -6"~ PI

CNIP(p i P ' Ii2 C -" 111P

(IF (A.ND (EXECUTABLE PIN (EXECUTABLE Ply))
(AND (IF (TETRIED p)ir (EXECUTABLE Pixij

(IF (OC'C JAN) (I ETRI ED PI.N (0CC 1 JjX)))

(IF JIFTRlED pix (EXECUTABLE i)
(IF (0CC ply) (IE1TRIED pix (0CC piv)YF())

EXC-'NI(pix~piy) =def

(IF (EXECUTABLE Ply)
(IF (0CC PIN) (IFTRIED Ply (0CC PIN))),)

GEN\-ST(i~pI.CGi e
(AND (PRIOR I (TIME-FOF p1))

(INEV i(EXECUTABLE pi))
(INLV (IF (0CC(pi'l C'G)))

GE\-ST(i.pi,CG,pi " P 9) =de
(AND GE\-ST(i~piCG,pi ,.pi

(INEV 1I) (EXC-I(pi~pi j))))

.NDV-CG(C'G.pi'Cj = d.1

(AND (CC - C) LC(pi,1))

INI -CG(VGLpiC,pi j)1
(AND NEW\-CG(CG,pi.C,pi . .pi I iOVLpI~p

NI)pIp

NE\VCG(('G.PI.C,pI . -p1 -) ;otherAwise

2-J

The description of the planning problem (.)

An input to the algorithm is given by"
<G,PE,PI-SETOVRLP,EC.EFF,NI> where

C is a member of ILS (the set of interval logic,
sentences). that specifies the goal

PE is a subset of ILS. that specifies the planning
environment

PI-SET is a set of terms denoting the simple plan instance
that can be entered into the plan

OVRLP is a relation defined on PI-SETxPI-SET that holds for
any pair of simple plan instances that overlap in time

EC is a function from PI-SET to ILS, that specifies the
executability conditions for each simple plan instance

EFF is a function from Pl-"- T to ILS, that specifies
the effects for each simple plan instance

NI is a partial function from PI-SETxPI-SET to ILS defined
for all pairs <pil.pi2> when OVRLP(pil,pi2) holds. that specifies the non-
interence conditions between pairs of overlapping plan instances. We assume
that for any overlapping plan instances (pil and pi2). NI(pil.pi2)=NI pi2.pi1).

In the proofs. we assume that S is the set of sentences corresponding to the planning
problem <GPE.PI-SETOVRLP,EC.EFF.NI> given as input. S is defined as follows:

S def {(PRIOR Ip (TIME-OF pi)) I piEPI-SET}u
{(INEV Ip il) I ilPE}u
{(INEV 1p (IF EC(pij (EXECUTABLE pi))) I piEPI-SET}..
{(INEV 1p (IF (OCC pi) EFF(pi))) I piePI-SETu
{(INEV Ip (IF NI(pil,pi2) NI-CND(pil,pi2)))

I OVRLP(pil,pi2)}u
{PI-DISJOINT(pil,pi2) I O\RLP(pil,pi2) is false}

i\LkIN-PROOF)
If the sequence of' operat ors ori1 -....:opn i- appli,-able Ini thle m1111-,l

state and the result of %ppling the !sequence leads to any empty causal gal, and
INPLAN={~pil . piil

then S 1=(AND (INEV 11p (EXECUTABLE CNIP(pli p10f)
(INEV 1I) (IF (0CC CNIF(pil-..,i)) GM~

where i > I

We use j to refer to the integer having thle property that opj I., the latINTRO operator
in the sequence opi: ... :opn (w~hich introduces plan instance pii). Since we are assuming
that there is at least one INTRO operator in the sequence, such a J exists.

We let CGj- refer to thle causal gap that is produced by applying the sequence opi:
:opj-1 (which might be empty) to the initial state. Associated with CGJ-l is pil..,pi-1.
which are the plan instances that have been entered when CC,- is reached.

We let CG.J refer to the causal gaplproduced by applying INTRO using pii to remove C.
from CGj- 1. Since pil,.pi-1 have been entered when CC~ is reached. CGCNE\
CG(CG1 1l,pi 1 CGj-pi 1...Ipi i-)

Proof of NMIN-PROOF

1) The sequence of operators op] .. opn is applicable in the initial state and the
result of applying the sequence ieads, to any empty causal gap and INPLAN=jpi1.
Pii

< assuniption>

2) 1 - INTRO using pii can be applied to remove C.i from causal gap CG,_1
<using I and Mhe definition of j>

3) 1 -An app~licable sequence of zero or more REMOVEs applied to causal gap CG
leads to an empty causal gap)

<using 1 and the fact that opj' is the last LVTRO operator in opi: ... -opn. and thus opj4-
-opn are all REMOVES>

41)1 5 j GEN-ST(lppii.CGC p .. pilp-I)
<TERA!-COYD applied to 2.38>

5.)1 S : (AND (INEV Ip (EXECUT.NBLE C\IP(p..,pilP)))
(INEV 11p (IF (0CC CNIPiplII-,pii)) G)))

<REDUC'TION\S applied to 4 with substitutions 1'pii/pi. j.1/k, i-i/m, using the definition of
CCjl

QED (INPROOF)

TERM -COND)I If INTRO using pi ican be applied to remove C'j
from causal gap) CGj~i
and an applicable sequence of zero or more REMOVEs applied to
causal gap) CG j leads to an emipty causal gap)

then S j=GE N-ST(lp.pi P) -0pi

where CGj = NENVCG(CG. 1 .C,,pi I pi i-I)

Proof of TERM-COND

1) INTRO using pi jcan be applied tc' remove C. from causal gap CG-
<a8,Surnption>

2) An applicabie sequence of zero or more REMOVEs applied to causal gap CGj (which
equals NEN%'-C(;(CGj. 1,Pj r.C'T1 . .. P)i-)) leads to an empty causal gap

<assum iption>

3) 1.2 -S I- GEN-ST(Jp.pi j.CG -1 .p I.. Ti i
<TERMf-COXD" applied to 1.42>

4) 1.2 -S j= GEN-ST(Ip.pi j.CG- 1.1i . p, i- 1)
<using 8 and the fact that 'S = i'sv trut if 'S - X' i's true (our proof theory is Soundj>

QED (TERM-COND)

TERNI-COND*)
If INTRO using pi ican be applied to remove C

from causal gap CG2..1
and an applicable sequence of zero or more RZEMOVEs applied to
causal gap CCGj leads to an empty causal gap

then S l-- GEN-ST(Ip.pi i~c-,l ,.. pi i-1)

w-here CGJ = NE\V-CG(CGj.. 1 ,pi 1,Cj.p I, P .pi)

Proof of TERM-COND * by induction on the number of
plan instances in {pi 1,. pi j-11

Proof of base case: the set is empty (i=1)

1) INTRO using pi 1 can be applied to remove Ci from causal gap CGj_,
< ass U17PtIion >

2) An applicable sequence of zero or more REMOVEs applied to causal gap CG~
(which equals NE\N-CG(CGj..1 .pi 1 .Cj)) leads to an empty causal gap

<assumption>

Proof continued on next page

Continuation of TERNI-COND* (base case)

3) (PRIOR Ip (TIME-OF pil))
<assumption>

-i) (INEV I) (IF EC(pi l)(EXECUTABLE pi 1))
< asstmption>

5) S j- (PR]OI? 1 (TIM-OF , pi 1)
<AXTCD-LVTRO applied to 8 (applicable since {(PRIOR Ip (TLIE-OF pi 1))) it a ,ubset
of S>

6) 2 - - (INEV I) EC'(pI 1))
<TAIL-RMVS applied to 2 (EC(pi 1) is a conjunct in CG)

7) 2 - 4 - (iNEV Ip (EXECUTABLE pi 1))
<DRL-IT"TR4 applied to 6.4>

8) 2 - S -- (INEV Ip (EXECUTABLE pi 1))
<A.T(CD-I.TRO applied to 7 (applicable since {(I.\EV Ip (IF EC(pi 1) (EXECUTABLE
pi)))} is a subset of S>

9) 2 - F- (INEV Ip (C'G,_1 - C)
< T4IL-R.I VS applied to 2 ((C(J_ 1 - C() is a conjunct in CGj)>

10) 1 -. {EFF(pi)}uPE I- CI
<follows from I since I.VTRO using pi , to remove Cj is applicable>

11) 1,2 - S F- (INEV Ip (IF (OCC pi 1) CGJi-)
<ANVTCD-L\TRO applied to (.1P applied to 9.(lemnal applied to 10 with substittions
,pi I/pi. CGJ-/CG. Cj/C) (note: ANTCD-INTRO is applicable since S-EF
(mentioned in lemmal) is a subset of S>

12) 1.2-. S -- (AND (PRIOR Ip (TIME-OF pi 1))
(INEV Ip (EXECUTABLE pi 1))
(INEV Ip (IF (OCC pi 1) CGJ- 1))

<AND-INTRO applied to 5.8.11>

13) 1,2 F- - GEN-ST(Ip,pi 1,CGJI)
<substituting GEV-ST for its definition in 12>

QED (base case)

Proof continued on next page

I

29

Continuat ion of TERM-C0NI)*

Proof of inductiVe step

Assume that TERNI.C0ND* holds if the size of {pi ,..,pi .}ilesta kwhrk

is a positiVe integer greater than I. W\e prove that TEPRNI-CON\D* iiolds Nwici the
size of {pi .. ,pi 4-1 is k (i=k).

Lemma 1I)
From: {EFF(pi)}uPE 1 -IL C
To: S-EF V- (IF (I.NEV' Ip (CG - C))

(INEV Ip (IF (0CC pi) CC)))

where S-F =der {(INE\' I p) I pE PE}
u {(I.NEV I (IF (0CC pi) EFF(pi)))}

Proof of Lemma I

II PEuj EFF pi8, 'ILC

<assumiption for proof of rule>

2) 1 - PE V- (IF EFF(pi) C)
<discharging assumption JEFF(pihj in 1 and using fact that if A 1B, i.,; true

true then .A I- B Is true (if B is derivable from A in the interval logic fragment

then B is derivable from A using all axioms and inference ruiles,>

3) (IF (0CC pi) EFF(pi))
<assumption>

4) 1 - PEu3 V- (IF (0CC pi) C)
<AfP-TRA'S applied to 8,2>

5) (0CC pi)
<assum~ption>

6) (CC -C)
<assumrption>

7) 1 -PEu3,5 V- C
<MfP applied to 5.4>

8) V- (IF (AND C (CG - C)) (CC)
<property of (P.- Qj>

9) 1 - PEu3,5,6 V- CC
<MP applied to (AND-INVTRO applied to 7,6),8>

10) 1 -PEu3 V- (IF (CC - C) (IF (0CC pi) CC))
<assuniption 5 then 6 discharged in .9>

11) 1 -~ S-EF I- (INEV Ip (IF (CC - C) (IF (0CC pi) CG)))
<DRL-IFTRS applied :PE, times using equivalence TH-INV'I-SF9 to (DRL-IFTRJ
applied to 10 after assumptions discharged)>

12) 1 - S-EF V- (IF (INEV 11) (CC - C)) (INEV (IF (0CC pi) CG)))
<MfP applied to 1.<II2

QED (lemmal)

Proof continued on next page

Continuation of TERNI-COND* (Inductive step (Lemmal

The main proof for the inductive sufp

For convenience, wve let CGi* refer to
NEN\-CG;(CGj.. 1,pi k-CjPi 1!.. Pi k-2)

1) INTRO Using Pi k can be applied to remove C~ from causal gap CG- 1
<asupin

2) An applicable sequence of zero or more REMOVEs applied to causal gap CGJ
(which equals NENV-CG(CGi- 1Pi k,'j!P' 1, -- ,Pi k-1)) leads to an empty causal gap

< assumption>

3) 2 -~ An applicable sequence of REMOV-Es applied to causal gap CGJ* leads to
an ernpt causal gap

<Since eivery conjunct in CC * is also in CGj. we can form a sequence of
REMOVEs for CG* by deleting from the sequence of RENIO\Es meeting 2 the
ones that remove conjuncts that do not appear in CG >

4) 1,2 - S F- GEN-ST(Ip,pi k.CGJ-l-Pi 1' --- k-2)
<the inductitve hypothesis applied to 1.5f>

5) P1 k and pi k~ overlap
<aSsumption>

6) 2,5 S 1-- (INEV Ip Nl(pi k.Pi k-1))
<T.4IL-R~kf1S applied to 2 (i Pi k and pi k-i overlap then NpikPk-)is a
conjunct in p

7) {(PRIOR Ip (TIN\iE-OF Pi k-1)), (INEV Ip (IF NI(pi kP1 k-1) NI-
CND pi k-Pi k-1)))}f

F-- (IF (INEV Ip NI(pi k,Pi k-1))
(IF (INEV Ip (EXECUTABLE P) k))

(INEV Ip EXC-Nl(pi k-P' k-i))))
< TERA!-COND-OV RLP with substitutions /pi k-i/PX, Pi k/1)1,>

8) 5 -S F-- (IF (INEV Ip N I(pi kPi k-1))
(IF (lNEV 11) (EXEC'UTTABLE Pi k))

(INEV 1p EXC-NIMp k'P' k-i))))
<ANTCD-INTRO applied to 7 and using 5 (applicable since {(PRIOR Ip (TIME-OF
P1 k-1)), (INEV Ip (IF NI(pi k,Pi k-i) NI-CND(pi k,Pi k-i)))} is a subset of S, the
latter because it is assumed that Pi k and Pi k-I overlap>

Proof continued on next page

Caontinuation of TERN1-COND* (inductive step)

9) 2.5 -S I- (IF (INEV Ip (EXECUTABLE pi k))

(INEV Ip EXC-,NI(pi k'P' k-1))
<MP applied to 6,8>

10) 1,2 -S 0- (NEV 11) (EXTCUTABLE Pi 0)
<AND-ELIM applied to 4 after G'E'-ST replaced with its definition>

11) 1.2,5 - SI1- (INEV 11) EXC-NI(pi k-PI k-)
<MRf applied to 10.9>

12) P] k and Pi k-i do not overlap
<assumption>

13) {(PRIOR Ip (TIME-OF pi k-1)), PI-DISJOINT(pi k-IP1 k)

v(IF (INEV Ip (EXECUTABLE P 0)
(INEV Ip EXC-NI(pi kP' k-i)

< TRMf-C'OND-DISJ with substitutions /pt k/Pl k-I/Pix.>

14) 12 -S H- (IF (INEV Ip (EXECUTABLE Pi 0)
(INEV Ip EXC-NI(pik,pi k-i)))

<ANVTCD-I.\'TRO applied to 13 and using 12 (applicable since {(PRIOR Ip (TLIfE-OF
Pi k-1))- PI-DISJOINT(pi k-1,rui k) is a subset of S, the latter because it is assumed
that pi k and P1 k-i do not, overlap)>

15) 1.2 12 -S 1-- (INEV Ip EXC-NI(PI kP1 k-i)
<MP applied to 10,14>

16) 1,2 -S H- (INEV]p EXC-NI p kPi k-)
<using 11, 15, and fact that either 5 or 120 must hold>

17) 1.2 - S H- GEiN-ST(lp,Pi k.CGj-iPi I, ,-P1 k-l)
<AND-I.NTRO applied to 4,16 and then CEN-ST substituted for its definition>

QED (Inductive step)

QED (TERM-COND*)

TAIL-RMV\ S)
If an applicabie sequence of k (k > 0) REMOVES applied to

causal gap CG leads to an empty causal gap
then S H- (INEV lp C) for each conjunct C in the causal gap CG

Proof of TAIL-RMVS by induction on k

Proof of base case: k=O

If k=0O then there are no conjuncts in CC and thus 'S 1- (INEV Ip C) for each
conjunct C in the causal gap CC' trivially holds.

QED (Base case)

Proof continued on next page

C'ontinuat ion of TAIL-R,\NS

Proof of Inductive step

Assume that TAIL-RN1YS holds for any k<n where n Is a positive integer. We
prove that Ti'-L-RNIVS holds for K-n.

1) An applicable sequence of n REMOVEs applied to causal gap CG leads to an
empty causal gap

< assumption>

2) 1 -~ An applicable sequence of n-i REMIOV~s applied to (CG - CI) leads to an
empty causal gap where C1 is the conjunct removed by the firs(REMOVE In the
sequence

Kustnyg 1 and the definition of an applicable sequence of REAIOlEs>

3) 1 - S 1-- (INEV Ip C) for each conjunct C in (CC - CI)
< The inductive hypothesis applied to 2>

.4) 1 PE l-i1L (1
<follows froyn I because the first REMOVE, which remnoves C, . is applicable>

5) 1 -PE F-- C1
<follouA fron, 4 and the fact that 'S I- X7is true if 'S t*.-i true since H-IL refers to
the derivability relation in a fragment (the interval logic fragment) of our logic>

6) 1 -~ {(INE\ I p) I pE PEI 1-- (INEY Ip C1)
<Lemm~a-STJ-ST2 applied to 5>

7) 1 -S F- (INEV Ip CI)
<.4NTCD-INVTRO applied to 6 (applicable since ((INEV1 iP) I PE E is a subset of S>

8) 1 S F- (INEV lp C) for each conjunct C in CC
<follows froin 9, 7, and the fact that if Cis in CG then C=C, or C is in (CG - C', J>

QEDJ (Inductive step)

QED (TAIL-RMY\S)

273

TERM-COND-DISJj
{(PRIOR Ip (TIME-OF pix)). PI-DISJOINT(pix,pi)}

1-- (IF (INEV Ip (EXECUTABLE pi))
(INEV Ip EXC.-NI(pi~pix)J)))

Leminal)
(IF (IF A (IF (AND B C) D))

(IF A (IF C'(IF B D))))

Proof of Lemma 1

1) (IF A (IF (AND B C) D))
<assumtption>

2) A
<assumnption>

3) B
<assumption>

4) C
<assumption>

5) 1,2 I- (IF (AND B C) D)
<MfP applied to 2,1>

6) 1-4 F- D
<AlP applied to (AND-INTRO applied to 3.407>

7) 1-4 1-- (IF A (IF C (IF B D)))
<Discharging assumnption 8 then 4 then 2 in 6>

8) H- (IF (IF A (IF (AND B C) D))
(IF A (IF C (IF B D))))

<Discharging assum~ption 1 in 7>

QED (lemmnaI)

Proof continued on next page

27

Continuation of TERNI-COND-DS.J

Proof of TERM-COND-DISJ

1) (PRIOR 1I) (TIMTE-OF pix))
< ass Um ption>

2) PI-DISJOINT(pix,pij
< assumption>

3) (INE\' Ip (EXECUTABLE 1i)'
< assumption>

41) (PRIOR (TIME-OF 1pix) (TIME-Of pi))
<05S8 u?7pti'on>

5) F- (IF (PRIOR (TIME-OF pix) (TIMIE-OF pi))
(IF (AND (EXECUTABLE pix)

(IFTRIED pix (EXECUTABLE pj)n
(IF (0CC 1pi) (IFTRIED pix (0CC piflfl)

<Lemnma! in N.\01OVLP with substitutions ipix/,ril. pi/pzQ and substituting EXU(-.'I for

its definition>

6) F- (IF (PRIOR (TIME-OF pix) (TIME-OF pi))
(IF (IFTRJED pix (EXECUTABLE pi))

(IF (EXECUTABLE pix)
(IF (0CC pi) (IFTRIED pix (0CC pi))))))

<AlP applied to 5.Lernmal>

7) F- (IF (INEV Ip (PRIOR (TIME-OF pix) (TIME-OF pi)))
(lNEV lp (IF (lFTh lED pix (EXECUTABLE pl))

EX'-NI(pi.pix)fl)
<LDRL-IFTRi applied to 6 and EXYC'-.\ substituted for its definition>

8) 4 F- (I.NEV Ip (IF (IFTRIED pix (EXECUTABLE pi))
EXC- NI(p i,pix)))

<MlP applied to 4.(DRL.IFTR8 applied to 7 using equivalence TH-L\VV-1L4)'>

9) 4 F- (IF- (1INE\ Ip (IFTRIED pix (EXECUJTABLE pi)))
(INEN Ip EXC-NI(pi,pix)))

<AlP applied to 8..AX-L\'T>

10) F- (IF (INE\ Ip (PRIOR Ip (TIME-OF pix)))
(INEV Ip (IF (INEV Ip (EXECUTABLE pi))

(IFTRIED pix (E.XECUTABLE pi)))))
<DRL-!FTRI applied to AA-IFTR5 with substitutions /Ip/i, piz/pi. (EXECUTA4BLE

Proof continued on next page

C'ontiniuation of TERNI-COND-DiS' J

11) 1 -(INEV 1I) (IF (INEV]p (EXECUTAI3LE p))
(IETRIED pix (EXECUTABLE pi))))

<MRP applied to 1.(DRL-IFTR8 applied to 10 using equivalence TH-INV-1L4)>
12) 1 F- (IF (INEV Ip (EXECUTABLE 1pi))

(INEV]p (IFTRIED pix (EXECUTABLE pi'))))
<DRL-IFTR , applied to (MfP applied to ll,.AX-I.%l '2) using equivalenceTI-V-S>

13) 1.3.4 F- (INEV 11) EXC'-NI(pipix()
<MR applied to (MI1' applied :o 3.12J,9>

14) 1,3 F- (IF (PRIOR (TIME-OF pix) (TIME-,OF pi))
(INEV Ip EXC-NI(pi~pix)))

<Discharging assumption 4~ in 18>
15) (PRIOR (TIMIE-OF pi) (TIME-OF pix))

<aSSUnmption>

16) F- (IF (PRIOR (TIME-OF pi((TIME-OF pix))
(IF (0CC pi) (IFTRIED pix (0CC 1)))

< TI-Tw'I i u'i substitution.c #ixr/pi, (0CC pi]/P'>

17) 15 F- (IF (0CC pi) (IETRIED pix (0CC pi)))
<MRP applied to 15.16>

18) 15 1- (IF (EXECUTABLE pix)
(IF (0CC pi) (IFTRIED pix (0CC pi))))

<.\'TCD-I.VTR0 applied to 17>

19) F- (IF (INEV Ip (PRIOR (TIME-OF pi) (TIMIE-OF pix)))
(INE\ 11) NI-EXC(pilpix)))

<DRL-IFTRi applied to 18 after assumption discharged and NI-EXc sub-stituted for its
definition>

20) F- (IF (PRIOR (TIME-OF pi) (TIME-OF pix))
INI-EXC(pi,pix))

<DRL-IFTR8 applied to 19 using equivalence TH-IN'V.1L4>

21) 2 F- (OR (PRIOR (TIME-OF pix) (TIME-OF pi))
(PRIOR (TIMIE-OF pi) (TIME-OF pix))

<Subsfituting P1-DISJOINT in 21 with its definition>

22) 1-3 F- (INEV Ip NI-EXC('pi).pi'x))
<AlP applied to (MRIf applied to (AND-INTRO applied to 21 1.4.20).RCS).A-F0i>

23) {(PRIOR Ip (TIMIE-OF pix)), PI-DISJOI.NT(pix,pi)}
F(IF (INEV 1p (EXECUTABLE pi)

(INEV Ip EXC-NI(pi,pix))))
<Discharging assumption 8 in 22?>

QED (TERM-COND-DISJ)

27h

TERN -CON D-O'R LP 3
{(PRIOR Ip (TIME-OF PIx)). (INEV Ip (IF Nl~pi.pix) NI-CND(pipixj))}

I(IF (I'l'N IpNIipi4
(IF (INEX' 1) (EXECUTABLE pil

(INEV 11) EXC'-N](pJ.pix))))

Proof of TERNI-CON\D-ON'PLP3
1) (PRIOR Ip (TIME-OF PIN,))

<assqumpti'on>

2) (INE\ II (IF NI(pi,pix)NICDipx))3
<assumnption>

3) (INEN'Ip NI(pilpix))
<assufllption>U

4) (INEV 11) (EXECUTABLE pi))
<assumptioll>

5) (EXECUTABLE Ilx)
<assumption>

6) NI-CNL)(ppix U
<assuylption>

7) (EXECUTABLE pi)3
<asqsumption>

8) (IFTRIED pix (EXECUTABLE pi))
<assumption>3

9) 5-7 I- (IF (IFTRIED pix (EXECUTABLE pi))
(IF (0CC pi) (IETRIED pix (0CC pi)))

<AND-ELLA! applied to (.11P applied to (.AND.IXTRO applied to 7,5j,6 after NI-CAT

substitu ted with its definiti.cnj>

10) .5-8 I- (IF (0CC pi) (IFTRIED pix (0CC p0))
<MP applied to 8.9>3

11) 6-8 I- (IF (EXECUTABLE PIx)
(IF (0CC pi) (iFTRIED pix (0CC pi)))

<Di'scharging assumption 5 in 10>3

Proof continued on next Page

Continuaticon Jf TERNI-COND-OV-RLP

1 12) I-- (IF (AND NI-CND(pipix)
(EXECUTABLE)
(IFTRIED pix (EXECUTAB11LE P 1))U EXC-NI(pi~pix)

<Discharging as.surnption.q in 11 and sub'Iitig EXNC'-X\I for its defirition>

13) K- (IF (AND (INEV Ip NI-CND(pi.pixl)I. (INEV I1) (EXECUITABLE pi))
(INEV 1Ip (IFTRIED pix (EXECUTABLE pi)))

(INEV Ip EXC-NI(pi.pix)

<DRL -IT TR8 applied twice to (DRJ.-IFTRI applied to 12) using equivalen-.' T!!-I.\V-SF.4>

14) 2.3 K- (INEV 11) NI-CND(p),pix))

<DRL-IFTR4 appli'ed to 9.2>

15) I- (IF (INEV 11p (PRIOR 11) (TIME-OF pix)fl)I(INEV 1p (IF (INEV 11) (EXECUTA-lBLE pi))
(IFTRIED pix (EXECUTABLE pi)))

<DRL-IFTRi applied to AX-IFTR5 with substittution .'Ip/i. pix/pi, (EXECUTABLE pi)/P->I 16) 1 F- (INEV 11) (IF (INEV Ip (EXECUTABLE pi))
(IFTRIED pix (EXECUTABLE pi))))3 <MP applied to 1J4DRL-IFTR8 applied to 15 using equivalence TH-J.'V-1L41>

17) 11 - (IF (INEV]p (EXECUTABLE pi))
kiNEN'Ip (IFTRIED pix (EXECUTABLE pi))))

<DPL-IFTRS applied to (ALP applied to 16,A4X-LVV2') using equivalence TH-.I-SF.J>

18) 114 H- (INEV Ip (IFTRIED pix (EXECUTABLE pi)))
<MP applied to 4,17>

19) 1-4I I- (INEV Ip EXC-NI(pi,pix))
<A!?P applied to (.A.\D-I.\VTRO appli'cd to 14.4,18).18>3 20) {(PRIOR Ip (TIMIE-OF pix)). (INEV 1p (IF Nl(Tipix) NI-C'ND(plpx)))

I(IF (iNEV Ip NI(pilpix))
(IF (INENV]p (EXECUTABLE pi))

(INEV Ip EXC-NIpi,pix))))
<Discharging assumption 4 then 8 in 19>

QED (TERMN-COND-ONVRL1P)

275

REDUCTIONS)
If S j=GEN-ST(1p~pi.CGk.Pi I--- Pi m

then S= (AND (INEV Ip (EXECUTABLE CNIP(pi 1 . pi)),)
(INEV Ip (IF (0CC (CNIP(pi Pimpi) G))))I

,.%here CGk is the causal gap produced by applying the applicable
sequence of operators 0p1) : ... -!op k to the initial cau.sal gap CC0 which is set to G:

this sequence includes the introduction of the plan instances pi...pi r, (in that
order).

Proof of REDUCTIONS by induction on kI

Proof of base case: k=O (since m<k, m must equal 0)3

1) S j=GEN-ST(I.1)pi,CG0)
<assumption>

2) 1 5 S 1- (AND (INEV Ip (EXECUTABLE CMP(pi)))I
(INEV Ip (IF (0CC (CMIP(pi) G)))))

<AND-ELIAI applied to 1 after replacing GEN-mST by, its definition, substituting CMlF for its

definition, and using the fact that CC0 is set to G>I
QED (base case)

Proof of Inductive step3
Assume that REDUCTIONS holds for J<n where n is a positive integer. We prove
that REDUCTIONS holds for j=n.

1) S j=GEN-ST(Ip.pi,CGC,,pi pi r,)I
<assumlption>

2) the operator applied to CCn1~ to produce causal gap CCn (i.e. OP n) Is REMOVE CI
<assumption>

3) 2 -PE -IL C

<using 2 (since REMO IE C is applicable>
4) 2 -CGn is equivalent to (CC~.. 1 - C)

<using 2 and the fact that the causal gap produced by applying REMOVE c to causal gap
CC is (CC - C)>

5) 1,2 -~ S 1= EN-ST(Ip,pi,(CG,.... - C),pi j*.,p1 m

<replacing CCn in 1 with its equivalent form given in 4>

6) 1,2 .- S C= EN-ST(Ip,pi,CC~.. 1 ,pi 1, ... , pi m)I
<REDUCTION-REMfOIE applied to 3.5 using aubstitutions /CGG- 1 /CG, mn/i >

Proof continued on next page3

Continuation of REDUCTIONS (inductive step)

7)1.2 -S 1=(AND (INEV Ip (EXECUTABLE CNIP(pi pi m.pi)fl
(INE\' Ip (IF (0CC (CNIP(pi ... ,pi ,pi) G))))

<inductire hypothexis applied to 6>

8) the operator applied to CG j.. to produce causal gap CG, (i.e. op isIINTROPV
<assumption>

9) 8 - {EFF(pi m,)IuPE F-IL CI<using 8 (since INTRO j,,, is applicable>

10) 8 -CG,, equals NE\\-CG(CGn..1 .Pi m,CPi 1, -Y. Pi mn-i)I .<using 8 and the fact that the causal gap produced by applying IN\TRO ,i.C to causal gap
CC ~~ (weep ... ir-i have already been entered) is NE\\-CG(CC~pi mC~pi

Pi P
11) 1.8 -~ S GEN-ST(Ip~pi.N\EW\-CG(CG,.. 1 .pi rnC,pi 1 P..I P, iPj.

<replacing CG, in I 'with its equivalent form given in 8>

12) 12 S G ENST(lp,(COMP pi m pi),CG,.. 1 ,pi 1,.*.., Pi rn-1)
<REDUCTION-IN'TRO applie;d tco 9,11 using eubstitultionai /CGn-l/C-G. /pi/Px, ill

13) 1,8 - S := (AND (INEV Ip (EXECUTABLE CMIP(pi 1pi m,pi)))
(INEV Ip (IF (0CC (CMIP(pi 1, ... , pi mpi) G))))

<inductive hypothesis applied to 12 and then CMP(pi 1, .. pi r-3' (COMIP pi m pi))
replaced (twice) by its equivalent form CM1P(pi 1, ... ' rn-i,pi m.PP

14) 1 - =(AND (INEV Ip (EXECUTABLE CNIP(pi 'pi m.pi)))
(INEV 1p (IF (0CC (CMP(pi 1, ... , pi rn,pi) G))))

<using 7, 14 and the fact that either 2 or 7 must hold (since the operator applied to CG,-
must either be a remove or tile introduction of a plan instance, which is necessarily

pi since it is the last plan instance entered)>

QED (inductive step)

QED (REDUCTIONS)

280

REDUCTION-RE'MOVE)
If PE TC

and S -- GEN-ST(Ip,pi,(CG - C),pi 1, pi)J

then S 1=GE-N-ST(lp.pi.CG.pi. p)
where {(INE\ I p) I PE PE}, CS

Lemnma)
(IF (IF P Q) (IF (AND A P B) (AND A Q B)))

Proof of Lemma I

1) I-(IFPQ0)
<assumpli .on>

2) P
<assumnption>

3) A
< assumption>

4) B
<ass urptIIon>

5) 1,2 I- Q
<MVP applied to ,1>

6) 1-4 I- (AND A 0 B)
<AND-INVTRO applied to 3,5,4>

7) 1 I- (IF (AND A P B) (AND A Q B))
<discharging assumptions 2.3, and 4 in 6'>

8) I- (IF (IF P Q) (IF (AND A P B) (AND A QB)))
<discharging assumption in 7>

QED (Lemma 1)

Proof continued on next page

Proof of REDUCTION-REMOVE

1) PE C
<assumption for proof of ,neta-thecore m>

2) S j=GEN-ST(Ip.pi.(CG - C).pi 1i.. pi j)
<assumption for proof of tneta-thcorem>

3) 1 -~ PE I- C
<using 1 and fact that if 'A ~IL B' is true true then 'A H- B' is true (if B is deriuable from A4 in
the interval logic fragment th -B is derivable from A using all axioms and inference rules>

4) 1 -{(INEV I p) I PE PE})F (IF (INEV 1p (IF (0CC p1) (CG - C)))
(INEV 1p (IF (0CC pi) CG))))

<Lemma-STI-ST2 applied to .9 using substitutions /Ip/i, (0CC pi)/A>.,

5) 1 -~ S F- (IF (INEV Ip (IF (0CC pi) (CG - C)))
(INEV 1p (IF (0CC pi) CG)))

<.ATCD-L\'TRO applied t(, 4 (applicable because {(INEV i p) IPE PE} is a subset of S>

6) 1 S F-(IF (AND (PRIOR 1p (TIME-OF pi))
(INEV Ip (EXECUTABLE pi))
(INEV Ip (IF (0CC pi) (CG - C)))

(AND (PRIOR Ip (TIME-OF pi))
(INEV Ip (EXECUTABLE pi))
(INEVI Ip (IF (0CC pi) CG))

<MP? applied to 5,(Lemnmal with substitutions /(INEV Ip (IF (0CC pi) (CG - C)))/P, (INEI' Ip
(IF (0CC pi) CGJ)/IQ, (AN\D (PRIOR Ip (TIME-OF pi)) (INEV Ip (EXECUTABLE pi))/A.

7) 1 -S F- (IF GEN-ST(lp,pi,(CG - C),pi 1'pi
GEN-ST(Ip,pi,CG,pi 1, . pi 1

<substituting GEN-ST for its definition in 6>

8) 1,2 - S -, GEN-ST(Ip,pi,CG,pi 1' . pi j)
<RED UCTION-AUX2-1 applied to 7,2>

QED (REDUCTION-REMOVE)

Lemma-STI-ST2)
From: PE H- C
To: {(INEV i p) I pE PEI

I(IF (INEV i (IF A (CG - C)))
(INEV I (IF A CG)))

Proof of Lemma-ST1-ST2

1) PE - C
<assumption for proof of rule>

2) A
<assumption>

3) (IF A (CG - C)
<assumption>

4) 2,3 I- (CC - C)
<MP applied to 2,5>

5) 1 -PEu2,3 H- (AND (CG - C) C)
<AND-INTRO applied to 4,1>

6) H- (IF (AND (CC - C) C))
<Property of (CGC- CI>

7) 1 -~ PEu2,3 H- CC
<MlP applied to 5,6'>

8) 1 - PEu3 H (IF A CG)
<discharging assumption 2 in 5>

9) 1 - PE H- (IF (IF A (CG - C) (IF A CC))
<discharging assumption 8 in 8>

10) 1 - {(INEV i p) I PE PE}
I- (INEV i1 (IF (IF A (CG - C)) (IF A CC)))

<assumrptions put on left side after DRL-IFTRS applied :PE-i times usi .ng equi valence TH-
INV -SF9 to (DRL-IFTR1 applied to 9 after assumptions (memnbers of the set PE) discharged)>

11 - (I NEV I p) I PE PE}
F(IF (INEV i (IF A (CC - C)))

(INEV i (IF A CC))
<DRL-IFTR1 applied to 10>

QED (Lemma-STL-ST2)

Lemma-STO-INTI)
I--(IF (3 ?y P(t.) (3 ?x P(?x)))
where P(t) is a function from term t to a sentence, ?y is the only variable appearing in term
ty, ty has the same type as ?x, there are no free occurrences of ?y in P(?x). and there are no
free occurrences of ?x in P(ty)

Proof of Lemma-STO-INTI

1) I- (IF (V?x (NOT P(?x))) (NOT P(ty)))
<AX-F05 which is applicable because ly has the same type as ?x. and ?y. which is the only vari-
able appearing in ty, is not bound in P(tyj>

2) -- (IF (V?x (NOT P(?x))) (V?.v (NOT P~ty.))))

<UNIV-INTRO applied to 1 which is applicable since there are no free occurrences of .y in
Pix)

3) I- (IF (NOT (V'?y (NOT P(ty)))) (NOT (V?x (NOT P(?x)))))
<MP applied to 2. TRNSF'>

4) I- (IF (3 ?y P(ty)) (3 ?x P(?x)))
<substituting 3 for its definition in 8>

QED (Lemma-STO-INTI)

2sl

Lemm na -I NT1-I T2)
From: P-Eu EFF(pi 1)} H1 CI
To: S-EF H- (IF (INEV I (F (0CC pi2) (C(- Cl)))

(INEV I (IF (0CC (COMIP pi2 pil)) CG)))
where S-El' =d.',f { (!NE\ p) I PE PE

u 11 -(IN E 0 IF 0((CC i)l1)1:FF (pi) 11

Proof of Lemma-INT1'-INT2

1) PEu{EFF(pilfl. H-IL C1
<assumption for proof of rule>

2) 1 -PE I- (IF EFF(pil) CO)
<discharging assumrption {EFF(pil)} in 1 and using fact that if 'A B-J 13 s true true then 'A

I- B' is true (if B is derivable fro) A4 in the interval logic fragmnent then B is derivable from A

using all axrioms avid injertec rules>

3) (IF (0CC pi1) EFF~pi 1))
<assumnption>

4) 1 - PEu3 H- (IF (0CC pi I) CI)
<AMP-TRNS applied to 831?>

5) (IF (0CC p12) (CC - Cl))
<assumption>

6) 1 PEu3,5 H- (IF (AND (0CC pil) (0CC pi2))
(AND C1 (CC - Cl)))

<ANDAllapplied to 4.5>

7) 1 PEu3,5 H- (IF (0CC (COMP pil pi2))
(AND C1 (CG - Cl)))

<SITBST applied to 6 using equivalence AXY-IL 5>

8) H- (IF (AND C1 (CG - C1)) CG)
<property of (P -Q)

9) 1 --. PEu3,5 H- (IF (0CC (COMP pil pi2)) CG)
<AI-'-TR,%S- applied to 7,6'>

10) 1 -~ PEu3 H- (IF (IF (0CC pi2) (CC - C1))
(IF (0CC (COMIP pil pi2)) CC))

<discharging assumption .5 in 9>

11) 1 .- S-EF H- (INE\' I (IF (IF (0CC pi2) (CG - CD')
(IF (0CC (CONIP pil pi2)) CG)))

<DRL-IFTRS applied IPE, times using equivalence TH-INV-SF9 to (DRL-IFTRI applied to 10

after assumptions discharge dl>

12) 1 -~ S-EF H- (IF (INEV i (IF (0CC pi2) (CC - Cl)))
(INEV i (IF (0CC (COMIP pil pi2)) CC)))

<AfP applied to 11.AX-INV2>

QED (Lemma-INTI-INT2)

Lemma-INT2-INT3)
H(IF (PRIOR i (TIMIE-OF (COMP pi2 pil)))

(IF (AND (INEN i (EXECUTABLE pi2'))
(INEV I (IF (0CC pi12) (EXECUTABLE pi1)))
(INEV i (IF (0CC pi2) (IFTRIED pil (0CC pi2))))

(INEV I (EXECUTABLE (COMIP pi2 pil)))

Lemma 1)
I(IF (PRIOR I (TIME-OF pi))

(IF (AND (INEV i (EXECUTABLE pi)) (lNEV I (IF (0OCC pi) P)))
(INEV I (IFTRIED pi P))))

Proof of Lemma 1
1) (PRIOR i (TIME-OF pi))

<asumption>

2) (INEV i (EXECUTABLE pi))
< assumption>

3) (INEV i (IF (0CC pi) P))
< assumption>

4) H- (IF (PRIOR I (TIME-OF pi))
(IF (INEV i Q) (IFTRIED pi Q)))

<AX-IFTR 6>

5) H- (IF (INEV i (PRIOR i (TI'ME-OF pi)))
(INEV i (IF (INEV i Q) (IFTRIED pi Q))))

<DRL-IFTRI applied to 4>
6) H- (IF (PRIOR i (TIME-OF pi))

(INEV I (IF (INEV i Q) (IFTRIED pi Q))))
<DRL-IFTR$ applied to 5 using equivalence TH-INV4L4>

7) 1 H0 NEV i (IF (INEV i Q) (IFTRIED pi Q))))
<AfP applied to 1,6>

8) 1 H- (IF (INEV i (INEV I Q)) (INEV I (IFTRIED pi Q)))
<MP applied to 7,AX-I12>

9) 1 H- (IF (INENT I Q) (INEV i (IFTRIED pi Q)
<DRL-IFTRS applied 'o 8 using equivalence TH-INV-SF5>

10) 1,3 H- (INEV i (IFTRIED pi (IF (0CC pi) P)))
<MP applied to SJ,9 with substitution /(IF (0CC pi) P)/Q)>

11) 2 H- (INEV i (IFTRIED pi (0CC pi)))
<replacing EXECUTABLE by, its definition in 2>

12) 1-3 H- (INEV i (IFTRIED pi P))
<DRL-IFTR4 applied to 11,10>

13) H- (IF (PRIOR i (TIME-OF pi))
(IF (AND (INEV i (EXECUTABLE pi))

(INEV i (IF (0CC pi) P)))
(INEV i (IFTRIED pi P))))

<discharging assumptions 2,8 then I in 12>

QED (Lemma 1)

2 S5

Proof of Lemrna-INT2-I.NT3

1) (PRIOR i (TIME-OF (COMP pi2 pil)))
<assurnption>

2) (INEV I (EXECUTABLE Ipi2))
< assumption>

3) (I.\N I (IF (0CC pi2) (EXECUTABLE phi)))
<ass umption>

4) (INEV I (IF (0CC pi2) (IFTRIED pil (0CC p12))))
<ass umption>

5) 1 I- (AND (PRIOR I (TIM.%E-OF pil))
(PRIOR I (TI'ME-OF pi2)))

<,1P applied to 1,(ONL Y-IF part of T1I-A4PG-1)l>

6) 1 F- (PRIOR h (TIMIE-OF 1pi2))

<AND-ELLIf applied to 5>

7) 1-3 F- (INEV I (IFTRIED pi2 (EXECUTABLE pil)))
KAfP applied to (AND-IN'TRO applied to 2,S,(MfP applied to 6,Lemmal with substitutions
/'pi2lpi. (EXECUTABLE pil)/P~J'>

8) 1-3 I- (I.NEV' i (IFTRIED pi2 (IFTRIED pil (0CC phl))))
<EXVECUTABLE replaced by its definition in 7>

9) 1,2,4 F- (INEV i (IFTRIED pi2 (IFTRIED pil (0CC pi2))))
<AlP applied to 'ANJ'D-IN7TRO applied to 2,4),(MkP applied to 6,Lcmmal with substitutions
/pi2/pi, (IFTRIED Pii (0CC pi2))/Pj/>

10) 1-4 F- (INEV I (IFTRIED pi2
(IFTRIED pil (AND (0CC pi2)

(0CC pi)))))
<DRiL-IFTR5 applied to 9,8>

111) F- (IF (I.NEV i (IFTRIED p12 (IFTRIED pil (AND (0CC pi2) (0CC pi)))))
(INEV I (EXECUTABLE (COMP pi2 pil))))

<DRL-I.N'1 applied to TH-APG-S with substitutions /pi2/p ii, pl/pi2;>

12) 1-4 F- (INEV I (EXECUTABLE (COMP pi2 pil)))
<AlP applied to 10,11>

F(IF (PRIOR i (TIME-OF (COMP pi2 pil)))
(IF (AND (INEV i (EXECUTABLE pi2))

(INEV i (IF (0CC Pi2) (EX ECUT1ABJLE pi1)))
(INEV i (IF (0CC Pi2) (IFTRIED pil (0CC pi2))))

(INEV i (EXECUTABLE (COMP pi2 pil)))
<Discharging aaa8uniption 1 after discharging 2-4 in 12>

QED (Lemma-INT2-INT3)

Lernma-INT3-INT4)
{-(INEV i (IF EC(pil) (EXECUTABLE pil)))} I- (IF (INEV i (IF (OCC pi2 ECpil)))
(INEV i (IF (OCC pi2) (EXECUTABLE pil))))

Proof of Lemma-INT3-INT4

1) (IF EC(pil) (EXECUTABLE pil))
<assumption>

2) (IF (OCC pi2) EC(pil))
<assumption>

3) 1,2 I- (IF (OCC pi2) (EXECUTABLE pil))
<MP-TRNS applied to 1.1>

4) -- (IF (IF EC(pil) (EXECUTABLE pil))
(IF (IF (OCC pi2) EC(pil))

(IF (OCC pi2) (EXECUTABLE pil))))
<discharging assumption 2 then 1 in 8>

5) I- (IF (INEV i (IF EC(pil) (EXECUTABLE pil)))
(INEV i (IF (IF (OCC pi2) EC(pil))

(IF (OCC pi2) (EXECUTABLE pil)))))
<DRL-IFTR1 applied to 4>

6) {(INEV i (IF EC(pil) (EXECUTABLE pil)))-}
-- (INEV i (IF (IF (OCC pi2) EC(pil))

(IF (OCC pi2) (EXECUTABLE pil))))
<writing 5 in an equivalent form>

7) {~(INEV i (IF EC(pil) (EXECUTABLE pil)))-}
I- (IF (INEV i (IF (oCC pi2) EC(pil)))

(INEV i (IF (OCC pi2) (EXECUTABLE pil))))
<MP applied to 6.AX-INV2>

QED (Lemma-INT3-INT4)

Lemma-INT4-INT5)
-- (IF (INEV i (IF P (AND Q R)))

(AND (INEV i (IF P Q)) (INEV i (IF P R))))

Proof of Lemma-INT4-JNT5
1) P

<assumption>

2) (IF P (AND Q R))
<assumption>

3) 1,2 F- (AND Q R)
<MP applied to 1.2>

4) 1.2 -Q
<A.ND-ELI applicd to 8>

5) 2 -- (IF P Q)
<discharging assumption 1 in 4>

6) 1.2 - R
<AND-ELIM applied to 8>

7)2 -(IFPR)
<discharging assumption 1 in 6>

8) 2 -- (AND (IF P Q) (IF P R))
<.AND-LTRO applicd to 5. 7>

9) F- (IF (IF P (AND Q R))
(AND (IF P Q) (IF P R)))

<discharging assumption 2 in 8>

10) F (IF (INEV i (IF P (AND Q R)))
(INEV i (AND (IF P Q) (IF P R))))

<DRL-IFTR1 applied to 9>

11) F (IF (INEV i (IF P (AND Q R)))
(AND (INEV i (IF P Q)) (INEV i (IF P R))))

<DRL-IF'TR8 applied to 10 with equivalence TH-INV-SF9>

QED (Lemma-INT4-INT5)

Lemma-aux-1)
I- (IF (AND (INEV i (IF Q (IF P R))) (INEV i (IF P Q)))

(INEV i (IF P R)))

Proof of Lemma-aux-1

1) (IF Q (IF P R))
<assumption>

2) (IF P Q)
< assumption>

3) P
<assumption>

4) 2.3 I- Q
<MP applied to 3.2>

5) 1-3 I- (IF P R)
<MP applied to 4.1>

6) 1-3 I- R
<MP applied to 3.5>

7) 1.2 -- (IF P R)
<discharging assumption 8 in 6>

8) -- (IF (AND (IF Q (IF P R)) (IF P Q))
(IF P R))

< discharging>

9) - (IF (INEV i (AND (IF Q (IF P R)) (IF P Q)))
(INEV i (IF P R)))

<DRL-IFTRi applied to 8>

10) F- (IF (AND (INEV i (IF Q (IF P R))) (INEV i (IF P Q)))
(INEV i (IF P R)))

<DRL-IFTRS applied to 9 with equivalence TH-INU-SF9>

QED (Lemma-aux-1)

Lemma-aux-21
I- (IF (IF P Q) (IF (B '?x P) (3 'x Q)))

Proof of Lemma-aux-2

1) (IF P Q)
<assumption>

2) 1 I- (IF (NOT Q) (NOT P)
<MP applied to 1, TRX\SP>

3) -- (IF (V?x (NOT Q)) (NOT Q))
<A.-FO5 with substitutions ./YVOT QI/Pi, (.WOT Q)/P2>

4) 1 K (IF (Vx (NOT Q)) (NOT P)
<MP-TRNS applied to 3,2>

5) 1 -- (IF (Vx (NOT Q)) (Vx (NOT P)))
<UNI"-INTRO applied to 4 with substitutions fVrz (NOT Q)J/P. (NOT P: thi. rule i
applicable because .. does not occur free in (V ?z (NOT Q)!>

6) 1 K (IF (NOT (V'x (NOT P))) (NOT (Vx (NOT Q))))
<Mll applied to 5, TRASP>

7) 1K (IF (3 ?x P) (3 ?x Q))
<3 substituted for its definition in 6>

8) K (IF (IF P Q) (IF (3 ?x P) (3 ?x Q)))
<discharging assumption in 7>

QED (Lemma-aux-2)

291

Lemn -INTS2-,]N TSC-OVR LP)
S-PRuS-NIl

I(IF (AND (INEN Ip (IF (0CC p13) (EXECUTABLE pi'--)))
(INEV Ip (IF (0CC pi3) NI1(1il .pi2i)),
(I.NEV Ip EXC-NI'(pi13,pil iii

(INEV Ip EXC-NI(N(CO\P -;3 p;21 pil)))
where S-PR =def {i(PRIOR Ip (TIME-OF pil))Y

S-NI =def {(INEV Ip (IF N1(pi1,pi2) NI-C\D(pil.pi2))V}j

Proof of Lemma-INTS2-INTS5-OVRLP

1) (PRIOR Ip (TIME-OF pul))
<assumption>

2) (INEV Ip (IF NI(pil,pi2) NI-CND(pil,pi2)))
< assump Iio I>

3) (INEV Ip (IF (0CC 1)i3) (EXECUTABLE 1)i2)))
<assumption>

4) (INEV Ip (IF (0CC pi3) NI(pil,pi2)))
<assumption>

5) (INEV Ip EXC-NI(pi3.pil))
<assumption>

6) (IF (0CC pi3) NI(pli,jp2))
<assuimption>

7) (IF NI(pil.pi2) NI-CND(pi1,pi2))
<assumption>

8) 6,7 F- (IF (0CC pi3) NI-CND(pi1,pi2))
<MP-TRNS applied to 6.7>

<discharging assumptions in 8>

9) I- (IF (AND (INEV Ip (IF (0CC pi3) NI(pil,pi2)))
(INEV Ip (IF NI(pil .ji2) NI-CND(pil ,pi2))))

(I.NE\ Ip (IF (0CC pi3) N]-CND(pil,pi2))))
<DRL-IFTR3 applied using equivalence TH-LVV-SF9 to (DRL-IFTRI applied to 8 after
assumiptions discharged)>

10) 2,4 I- (INEV 1p (IF (0CC pi3) NI-CND(pil,pi2)))
<AlP applied to (AND-INTRO applied to 4,2),9>

11) 1-5 I- (INEV Ip EXC-NIV(COM\,P pi3 pi2)-,pil))
<MfP applied to (.4ND.INTRO applied to i,8,5),(AIP applied to 1,Lemma-IN'TS2-INTS5-
main)>

12) S-PRuS-NI I- (IF (AND (INEV Ip (IF (0CC pi3) (EXECUTABLE pi2)))
(INEV Ip (IF (0CC pi3) NI(pil,pi2)))
(INEV Ip EXC-NI(pi3,pi1))

(INEV Ip EXC-NI(-(COM.NP pi3 pi2)-,pil)))
<S-PR substituted for 1 and S-NI substituted for 2 after assumptions 8-5 discharged in 11>

QED (Lemma-INTS2-INTS-5-OV'RLP)

2* 12

Lem ma-IN\TS2-INTT.-N\ON-OV'RLP)
S-PR I- (IF PI-DlISJOIN\T(piI,pi12'

(IF (AND (INEV Ip (IF (0CC pi3) (EXECUTABLE pi2)))
(INEV Ip EXC-N\I(pi3.pil)))

(INEV Ip EXC-NI(- (CON\IP pi3 pi2) ,pil)))
wvherc S-PR =d*f f{-PRIOR 11) (TIME-OF pil))-}

Proof of Lem rna-IN\TS2-I.NTS.5-NON\-OVRLP

1) (PRIOR Ip (TINIL-OF pil))
<assumption>

2) (OR (PRIOR (TIMIE-OF pul) (TIME-OF pi2))
(PRIOR (TIME-OF pi2) (TIME-OF pil))

<aSsumption>
31) (INEV Ip (IF (0CC 1)13) (EXECUTABLE pi2)))

<assumption>

4) (INEV Ip EXC-.NI(1pi3.1pil))
<assumption>

5) F- (IF (PRIOR (TIME-OF pil) (TIME-OF pi2))
(INEV Ip NI-CND(pilpi2)))

<NON-OVRLP with substitution /Ip/i>5

6) F- (IF (PRIOR (TIME-OF pi2) (TIME-OF pul))
(INEV Ip NI-CND(pi2,pil)))

<NON- 01 'RLP with su~bstitut~ ions /Ip/i, pieIp ii, pil/pi25

7F-(IF (INEV Ip NI-CND(pi2,pil))
(I\EV Ip NI-CND(pil,pi2)J

<DRL-IFTRi applied to Lemynax>

8) F- (IF (PRIOR (TIMIE-OF pi2) (TIME-OF pil))
(lNEV Ip \'I-CND(pil,pi2)))

<AfP-TRNS applied to 6,7>

9) 2 1- (INEV Ip NI-CND(pil,pi2))
<AlP applied to (RCS applied to 2,5,8),AX-FO1>

10) (0CC pi3)
<assumption>

11) NI-CND(pil,pi2)
<assumption>

12) 10,11 I- NI-CND(pil,pi2)
<ANTCD-INTRO applied to 11 using antecedant 10>

13) I- (IF NI-CND(pil,pi2) (IF (0CC pi3) NI-CND(pil,pi2)))
<discharging assumption 10 then 11 in 12>

14) I- (IF (INEV Ip NI-CND(pil,pi2))
(INEV Ip (IF (0CC pi3) NI-CND(pil,pi2))))

<DRL-IFTRI applied to 18>

Proof continued on next page

29:3

Cont inuation' of Lem ma-I NTS-2-I NTS-5-"ON\- O\ZLP

15) 2 I- (INEVI Ip (IF (0CC pi3) NI-CND(p~il.pi2)))
<MVP applied to 9,14>

16) 1-4 F- (INEV 1p EXC-NI(-(C0M'%P pi3 pi2).,p'I))
<AMP applied to (AND-INTRO applied to 1,8,4),.AIP applied to 15.Lemmna-INTS2-INVTS5-
mainfk

17) S-PR I- (IF PI-DISJOINT(plil2)
(PRIOR (TINIE-OF pi2) (TIME-OF pil)))
(IF (AND (INEV 1p (IF (0CC pi3)

(EXECUTABLE pi2)))
(INEV Ip EXC-NI(pi3,pil)))

(INEV Ip EXC-N1](-(C0NIP pi3 pi2)- pil)))
<S-PR substituted for 1 and P1-DISJOINT substitu ted for its definitiorn after assumptions 8 and
4 then 2 discharged in 16'>

QED (Lernma-INTS2-INTS5-NON-OVRLP)

Lemmax)
I- (IF NI-CND(pi2,pil) NI-CND(pil,pi2))

Proof of Lemmax
1) NI-CND(pi2,pil)

<assumption>

2) 1 F- (IF (AND (EXECUTABLE pi2) (EXECUTABLE pil))
(AND (IF (IFTRIED pi (EXECUTABLE pi2))

(IF (0CC pi2) (IFTRIED pil (0CC pi2))))
(IF (IFTRIED pi2 (EXECUTABLE pil))

(IF (0CC pil) (IFTRIED p' 2 (0CC pil))))))
<replacing NI-CNVD by t8 definition in 1>

3) 1 I- (IF (AND (EXECUTABLE pil) (EXECUTABLE pi2))
(AND (IF (IFTRIED pi2 (EXECUTABLE phl))

(IF (0CC pil) (IFTRIED pi2 (0CC pil))))
(IF (IFTRIED pil (EXECUTABLE pi2))

(IF (0CC pi2) (IFTRIED pi1 (0CC p12))))))
<SUBST applied twice to 2 using equivalence (1FF (AND P Q) (AND Q P))>

4) 1 F- NI-CND(pil,pi2)
<NI- C.ND substitu ted for its definition in S>

5) F- (IF NI-CND(pi2,pil) NI-.CND(pil,pi2)
<discharging assumption in P>

QED (Leminax)

Lemma-INTS2-I NTS5- mna in)
I(IF (INEV ip (IF (0CC pi3) N1-CND(pi1,pi2)))

(IF (AIND (PRIOR Ip (TIME-OF pil))
(INEV Ip (IF (0CC pi3) (EXECUTABLE p12)))
(INEV Ip EXC-NI(pi3.p'l)))

(INEY Ip EXC-NIV -(CO\IP pi3 pi,pil))))
Proof of Lemnma-INTS2-INTS.5-main

1) (INEV Ip (IF (0CC pi3) NI-CND(pil.pi2)))
<assumption>

2) (PRIOR Ip) (TIME-OF pil))
<a8su mption>

3) (INEV Ip (IF (0CC pi3) (EXECUTABLE pi2)))
<assumption>

4) (INEV Ip EX-\C-NI(pi3,pil))
<ass urption>

5) 2 V- (IF (AND (INEV Ip (IF (0CC 1)13) (EXECUTABLE p'2)))

(INEV Ip (IF (EXECUTABLE pi1)
(IF (0CC p13)

(IFTRIED pil
(EXECUTABLE pi2))))))

<MfP applied to 2,(Lemrna-1 with substitu tionas /Ip/i, pil/pi, (EXECUTABLE pil)/. (0CC
piSj/P, (EXYECUTABLE pi2)/Qj)>

6) 2-4 V- (INEV Ip (IF (EXECUTABLE pil)
(IF (0CC pi3)

(IFTRIED pil (EXECUTABLE pi2))))
<MP applied to (AND-INTRO applied to 8,45>

7) 1-4 V- (I NEV I p (IF (EXN-ECUTABLE pi 1)
(IF (0CC pi3)

(IF (0CC p12)
(IFTRIED pil (0CC pi2))))))

<MfP applied to (AND-INTRO applied to 1,6),(Lernma-2 with substitutions /Ip/i. (0CC

piS)/P/)>

8) 1-4 V- (INEV Ip (IF (EXECUTABLE pi1)
(IF (0CC (COMP pi3 pi2))

(IFTRIED p11 (0CC pi2)))))
<MP applied to 7,(Lemma-5 with substituation f1pli, (EXECUTABLE pil)/A,(IFTRIED pil

(0CC pi2NP;J>

9) (IF (EXECUTABLE pi1)
(IF (0CC p13) (IFTRIED pi1 (0CC pi3))))

<assumption>
10) (EXECUTABLE pi1)

<assumption>

Proof continued on next page

Continuation of Leinma-INTS2-INTS$5-main

11) 9,10 H- (IF (0CC pi3) (IFTRIED pil (0CC p13)))
<MP applied to 10, 9>

12) 9,10 H- (IF (0CC pi2)
(IF (0CC pi3) (IFTRIED pil (0CC pi3)))

<AXTCD-INTRO applied to 11>

13) 9 H- (IF (EXECUTABLE pil)
(IF (0CC pi2)

(IF (0CC pi3) (IFTRIED pil (0CC pi3)))))
<discharging assumnption 10 in 12>

14) H- (IF (INEV Ip (IF (EXECUTABLE p11)
(IF (0CC pi3)

(IFTRIED pil (0CC pi3)))))
(INEV Ip (IF (EXECUTABLE 1)1

(IF (0CC pi2)
(IF (0CC pi3)

(IFTRIED pil (0CC pi3)))))))
<DRL-IFTR1 applied to 13 after discharging the assumption>

15) 4 H- (INEV Ip (IF (EXECUTABLE pil)
(IF (0CC pi2)

(IF (0CC pi3)
(IFTRIED pil (0CC pi3))))))

<AlP applied to 4.14 after EXVC.XI is replaced by, its definition in 4>

16) 4 H- (INEV Ip (IF (EXECUTABLE pil)
(IF (0CC (CO'MP pi2 pi3))

(IFTRIED pil (0CC pi3)))))
<,AlP applied to 15,(Lernma-S uwith substitutions 11p/i, (EXECU'TABLE pil)/A4. pi'2/pi3.

pi8/pi2. (0CC pi3s)/Pjl>

17) 4 H- (INEV Ip (IF (EXECUTABLE pil)
(IF (0CC (COMIP pi3 pi2))

(IFTRIED pil (0CC pi3)))))
<AlP applied to 16,(AfP applied to AY-F07,A-ILS)l>

IS) 1-4 H- (INEV Ip (IF (EXECUTABLE pul)
(IF (0CC (COMP pi3 pi2))

(IFTRIED pil (0CC (COMP pi3 pi2))))))
<AlP applied to (AND-INTRO applied to 8,17), (Lemrna.4 with substitutions /!p/i,
(EXYECUTABLE pil)/A, (0CC (COMP pi,9 pi2))/P15

19) 1-4 I- (INEV 1p EXC-NI(-(COMIP pi3 Pi2)_,Pi1))
<EXVC-NI substituted for its definition in 18>

20) I- (IF (INEV Ip (IF (0CC pi3) NI-CND(pi1,pi2)))
(IF (AND (PRIOR Ip (TIME-OF pil))

(INEV Ip (IF (0CC pi3) (EXECUTABLE pi2)))
(INEV Ip EXC-NI(pi3,pi1)))

(INEV Ip EXC-NI(-(C0MP pi3 pi2)-,pil))
<discharging assumptions 2-4 then 1 in 19>

QED (Lemima-]INTS2-,NTS5-xnain)

2 (

Lemnma-i)
I(IF (PRIOR i (TIME-OF pi))

(IF (AND (I.NEY i (IF P 0))
(INEV i(IF A (IF P (IFTRIED pi P)))).)

(INE\ I (IF A (IF P (IFTRIED pi Q))

Proof of Lemnma-i
1) (IFTRIED pi (IF P Q))

<assumption>

2) A
<assumption>

3) P
<assumption>

4) (IF A (IF P (IFTRIED pi P)))
<assumption>

5) 2-4 H- (IFTRIED pi P)
<MIP applied to 8,(MfP applied to 2.4)>

6) 1-4 i- (IFTRIED pi Q)
<DRL-IFTR4 applied to 5,1>

7) 1.4 I- (IF A (IF P (IFTRIED pi Q)
<discharging assumption 5 then assumption 2 in 6>

8) I- (IF (AND (IFTRIED pi (IF P Q))
(IF A (IF P (IFTRIED pi P))))

(IF A (IF P (IFTRIED Q))))
<discharging the assumptions in 7>

9) H- (IF (AND (INEV i (IFTRIED pi (IF P Q)
(INEV i (IF A (IF P (lFTRIED pi P)))))

(INEV i (IF A (IF P (IFTRIED Q)))))
<DRL-IFTR8 applied to (DRL-IFTRJ applied to 8) using equivalence TH-I.XV-SF9>

10) (PRIOR i (TIM'%E-OF pi))
<assumption>

11) (INE\T i (IF PQ)
<assumption>

12) H- (IF (PRIOR i (TIME-OF pi))
(IF (INEV i (IF P Q)) (IFTRIED pi (IF P Q))))

<AX-IFTR,5 uwith substitution /(JF P Q)/P,>

Proof continued on next page

297q

Continuation of Lemma-]

13) I- (IF (INEV i (PRIOR i (TIMIE-OF pi)))
(INEV I (IF (INEV i (IF P 0))

(IFTRIED p~i (IF P Q~)
<DRL-IFTRi applied to 1!.>

14) I- (IF (PRIOR i (TIME-OF pi))
(I.NEV I (IF (INEV i (IF P Q))

(IFTRIED pi (IF P Q)))))
<DRL-IFTR3 applied to 13 using equivalence TH-LVI'-1L4>

15) 10 F- (INEV I (IF (INEV i (IF P Q))
(IFTRIED pi (IF P Q))))

<MlP applied to 10,14>

16) 10 I- (IF (INEV I (I;NEV i (IF P Q)
(INEV i (IFTRIED pi (IF PQ))

<MAP applied to 15,AX-IFTR2>

17) 10 I- (IF (INEV i (IF P Q))
(INEV i (IFTRIED pi (IF PQ))

<DRL-IFTRS applied to 16 using equivalence TH-I.NV-SFS>

18) 10.11 F- (INEV I (IFTRIED pi (IF P Q)))
<AlP applied to 11,17>

19) (INEV i (IF A (IF P (IFTRIED pi P))))
<assumption>

20) 10,11,19 1- (AND (INEV i(IFTRIED pi (IF P Q)))
(I NEV

(IF A (IF P (IFTRIED pi P)))))
<ANID-INTRO applied to 18,19>

21) 10,11,19 F- (INEV i (IF A (IF P (IFTRIED piQ))
<MfP applied to 230, 9>

22) F- (IF (PRIOR i (TIMIE-OF pi))
(IF (AND (INEV i (IF P Q))

(INEV i
(IF A (IF P (IFTRIED pi P)))))

(INEV i (IF A (IF P (IFTRIED pi Q))))))
<discharging assumption 11 and 19, then 10 in 21>

QED (Lernma-l)

Lemma-2)
-1((AND (INEV i (IF P NI-CND(pil.pi2)))

(INEV i (IF (EXECUTABLE pil)
(IF P (IFTRIED pil

(EXECUTABLE pi2))))))
(INEV i (IF (EXECUTABLE pil)

(IF P (IF (OCC pi2)
(IFTRIED pil (OCC pi2)))))))

Proof of Lemma-2

1) (EXECUTABLE pil)
<assumption>

2) P
<assumption>

3) (IF P NI-CND(ji1,j)i2))
<assumption>

4) (IF (EXECUTABLE pil)
(IF P (IFTRIED pil (EXECUTABLE pi2))))

<assumption>

5) 2,3 - NI-CND(pil,pi2)
<MlP applied to 2.3>

6) 1,2.4 -- (IFTRIED pil (EXECUTABLE pi2))
<MP applied to 2,(.MP applied to 1,4>

7) 1-4 -- (IF (OCC pi2) (IFTRIED pil (OCC pi2)))
<AlP applied to (AND-INTRO applied to 5.1,6),Lemma-2-1>

8) 3,4 - (IF (EXECUTABLE pil)
(IF P (IF (OCC pi2)

(IFTRIED pil (OCC pi2))))))
<discharging assumption 2, then assumption 1 in 7>

9) I- (IF (AND (INEV i (IF P NI-CND(pil,pi2)))
(INEV I

(IF (EXECUTABLE pil)
(IF P (IFTRIED pil (EXECUTABLE pi2))))))

(INEV i
(IF (EXECUTABLE pil)

(IF P (IF (OCC pi2) (IFTRIED pil (OCC pi2)))))))
<DRL-IFTRS applied twice using equivalence TH-INV-SF9 to (DRL-IFTR1 applied to 8 after
discharging assmptions)>

QED (Lemma-2)

299

Lerna-2-1)
I(IF (AND NI-CND(pli,pi2)

(EXECUTABLE pi 1)
(IFTRIED pil (EXECUTABLE pi2))))

(IF (0CC pi2) (IFTRIED pil (0CC 1)i2))))

Proof of Lemnma-2-1

1) NI-CND(pil,pi2)
< assumption>

2) (EXECUTABLE pil)
<asumption>

3) (IFTRIED pil (EXECUTABLE pi2))
<assumption>

4) (0CC pi2)
<assum~ption>

5) I- (IF (0CC pi2)
(1FF (IFTRIED pi2 (0CC pi2)) (0CC pi2)))

<AXV-IFTR3 with substitutions /pi2/pi, (O(C pi2)/P >

6) 4 I- (1FF (EXECUTABLE pi2) (0CC pi2))
<MP applied to 4,5 and EXECUTABLE suibstituted for its definition>

7) 4 V- (EXECUTABLE pi2)
<AfP applied to 4,(OXVLY-IF part of 6J>

8) 1,2,4 I- (AND (IF (IFTRIED pi2 (EXEC'UTABLE pil))
(IF (0CC pil)

(IFTRIED pi2 (0CC pil))))
(IF (IFTRIED pil (EXECUTABLE pi2))

(IF (0CC pi2)
(IFTRIED pil (0CC pi2))))))

<AfP applied to (AND-INTRO applied to 2. 7),1>

9) 1-4 F- (IF (0CC pi2) (IFTRIED pil (0CC pi2))))
<MfP applied to 8,(AND-ELLIf applied to 8)>

10) 1-4 F- (IFTRIED pil (0CC pi2))))
<AfP applied to 4,9>

11) 1-3 F- (IF (0CC pi2) (IFTRIED pil (0CC pi2))))
<discharging assumption 4 in 11>

12) I- (IF (AND NI-CND(pil,pi2)
(EXECUTABLE pil)
(IFTRIED pil (EXECUTABLE pi2))))

(IF (0CC pi2' (IFTRIED pil (0CC pi2))))
<discharging the assumptions in 11>

ql.U) (Lemma-2-1)

'300

!
Lemma-3)

-- (IF (INEV i (IF A (IF (OCC pi3) (IF (OCC pi2) P))))
(INEV i (IF A (IF (OCC (COMP pi3 pi2)) P))))

Proof of Lemma-3 j
1) A

<assumption>

2) (OCC pi3) I
<assumption>

3) (OCC pi2)
<assumption> I

4) (IF A (IF (OCC pi3) (IF (OCC pi2) P)))
<assumption>

5) 1-4 I- P
<AlP applied to 8,(MIP applied to 2.(MP applied to 1,4)>

6) 1,4 - (IF (AND (OCC pi3) (OCC pi2)) P)
<discharging assumptions 2 and 3 in 5>

7) 1,4 - (IF (OCC (COMP pi3 pi2)) P)
<DRL-IFTRS applied to 6 using equivalence AX-IL 5>

8) 4 -- (IF A (IF (OCC (COMP pi3 pi2)) P))
<discharging assumption I in 7>

9) - (IF (INEV i (IF A (IF (OCC pi3)
(IF (OCC pi2) P))))

(INEV i (IF A (IF (OCC (COMP pi3 pi2))
P))} !

<DRL-IFTRi applied to 8 after discharging assumption 4>

QED (Lemma-3)

I
I
!
I
I
I
!
I

- 301 _ _

I Lemnma-4)
I(IF (AND (INEV

(IF A (IF P (IFTRIED pil (0CC pl3)))))
(IIN EV

(INEVi (IF A (IF P (IFTRIED pil (0CC pi2))'fl4)

(IF A (IF P (IFTRIED pil
(0CC(COMP p13 pi2)))))))

Proof of Lemma-43 1) A
<assumiption>

2) PS <assumption>
3) (IF A (IF P (IETRIED pil (0CC pi3))))

<assumlption>S 4) (IF A (IF P (IFTRIED pil (0CC pi2))))
<assumption>

5) 1-3 F- (IFTRIED p11 (0CC pi3))t <AlP applied to 2,(M1P applied to 1.8]>

6) 1,2,4 F- (IFTRIED pil (0CC pi2))
<MfP applied to 2,(MfP applied to 1,4.)>I 7) 1-4 F- (IFTRIED pil (AND (0CC pi3) (0CC pi2)))
<DRL-IFTR5 applied to 5,6>1 8) 1-4 F- (lFTRIED pil (0CC (COMP pi3 p12)))
<DRL-IFTRS applied to 7 using equivalence AA -IL 5>

9) 3,4 F- (IF A (IF P (IFTRIED pil
(0CC (COMP pi3 pi2)))))

<discharging assumption 2 then assumnption 1 in 8>

9) F- (IF (AND(INEV i (IF A (IF P (IFTRIED pil (0CC pi3)))))
(INEV I (IF A (IF P (IFTRIED pi1 (0CC pi2))))))

(INEV I (IF A (IF P (IFTRIED pil (0CC (C0MIP pi3 pi2)))))))

<DRL-IFTRS9 applied using equiv'alence TH-L\T-SF9 to (DRL-IFTRi applied to 9 afterI discharging assumptions) >
QED (Lemma-4)

