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FINAL TECHNICAL REPORT

FOR CONTRACT NO. N00014-87-C-0700

RESEARCH ON GaAs QUANTUM-COUPLED

STRUCTURES THAT CAN BE USED AS

ELECTRON DEVICES

I. INTRODUCTION

The objective of this program was to conduct a theoretical and

experimental investigation of the physics of quantum-coupled semiconductor

structures, with the ultimate goal of developing an integrated circuit

technology based on quantum-coupled devices. The prototype structure on

which both the theoretical and experimental efforts were based was the

quantum-well resonant-tunneling diode. The theoretical work answered

questions concerning the dc and small-signal ac behavior of this device and

some very fundamental questions concerning the theory of open quantum

systems. The theory of open systems is a necessary part of the development

of quantum device technology because all electron devices are open systems.

The experimental part of the program focused on two areas of

investigation. The first concerned the behavior of quantum dot structures,

which are resonant-tunneling diodes whose lateral dimensions (perpendicular

to the direction of current flow) have been reduced to quantum scales by

microlithography and (at present) etching. We have successfully explained

the spectroscopy of these structures as revealed in their I-V

characteristics. The second area of investigation compared the I-V curves of

structurally well-characterized resonant-tunneling diodes to theoretical

models. We found that the resonant peak voltages sensitively depended on the

precise details of the epitaxial structure. The fitting of the theoretical

model to the experimental I-V curve appears to be a more precise way to

determine these details than any existing direct technique.
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II. THEORY

The theoretical investigations conducted as part of this contract

involved the extension and elaboration of the quantum kinetic transport

theory developed under the previous program, Contract No. N00014-84-C-0125,

"Research on GaAs Quantum-Coupled Structures That Can Be Used as Electron

Devices." This theory assumes that a system exhibiting quantum electron

transport is a finite open system, and it represents the state of this system

by the Wigner distribution function. The openness of the system is modeled

by the boundary conditions applied to the Wigner function as it evolves in

time as prescribed by the Liouville equation. This theory has been applied

principally to the study of the quantum-well resonant-tunneling diode (RTD).

We found that the agreement between the I-V curves obtained from the

quantum kinetic theory and the more conventional stationary-state scattering

theory is considerably better than our earlier results indicated. The source

of the earlier discrepancy was an error in the evaluation of the scattering-

theory current density. In the course of adapting the scattering state

program code to the needs of another research program, we discovered a coding

error in the kinematic factor that contributes to the current density. The

correction of this error not only improves the agreement between the

scattering and quantum kinetic theories, but also improves the agreement

between the scattering theory and experiment for resonant-tunneling diodes

with AlGaAs barriers in the direct energy gap range. (However, a significant

discrepancy remains between theory and experiment for devices with AlAs

barriers.) The new comparison is displayed and discussed in the manuscript

included as Appendix A.

Another aspect of the quantum kinetic theory that has been further

developed during this program is its use to evaluate the small-signal ac

response of tunneling diodes. Appendix B describes the results of this task

in detail. This work is significant because it provides an explicit

prediction of the linear and nonlinear responses of the RTD and displays the

differences between linear and nonlinear behavior. A particularly

interesting point is that the analysis demonstrates the nonlocality of the

current response as the frequency is increased and clearly shows the
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changeover from the electronic to the optical regime (see Figure 5 of

Appendix 8).

The effects of inelastic collision processes are an essential element in

the description of classical semiconductor devices and are expected to be

significant in quantum devices as well. As the first step in modeling such

effects, we added a classical Boltzmann collision operator to the Liouville

equation for the Wigner function. The results are presented in Appendix C,
which shows that the quantitative effects of phonon scattering on the I-V

characteristics of the RTD are quite modest. While our present analysis does

not include the possible scattering mechanisms and treats those included only

semiclassically, we believe that these results are a reasonable indicator of

the significance of inelastic effects. Because of the smallness of the

effect, we have postponed further development of this aspect of the model.

Finally, a significant part of the effort on this program has been

devoted to preparing a manuscript for publication that embodies a thorough

analysis of the quantum kinetic theory of open systems. It is included here

as Appendix D. The manuscript documents the studies (conducted largely under

the previous program) that led us to the successful theory and presents a

detailed analysis of this theory that considers both the fundamental

continuum theory and the discretized model that must be employed for

practical computations. This manuscript will be further expanded in a few

areas before it is submitted for publication. We have not yet identified the

proper forum for this work, as it is somewhat more tutorial and detailed than

is customary for the standard research journals.
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III. EXPERIMENT

The first report of laterally created discrete electronic states, work

that was initiated under Contract No. N00014-84-C-0125 ("Research on GaAs

Quantum-Coupled Structures That Can Be Used as Electron Devices"), was

presented by us in an invited talk at the 1987 International Conference on

Superlattices, Microstructures, and Microdevices. A preprint of this

conference proceeding is attached as Appendix E. Subsequently, we developed

under the current contract a better understanding of the potential(s) that

confine discrete states in laterally defined resonant tunneling structures.

Because of the Fermi level pinning of the exposed GaAs surface, there is

a narrow design window to observe discrete states; the physical size must be

small enough to produce splittings greater than kT, but large enough so that

pinch-off of the column does not occur. In fact, in the limit that the

radius of the column equals the depletion width, the potential is perfectly

parabolic and the column is just pinched off. Structures that exhibit the

phenomena have a conduction path core (i.e., a difference between the radius

of the column and the depletion width) typically less than 100 A. Thus, the

confining potential is essentially parabolic, with the eigenspectrum

reflecting this parabolicity. The observation of the phenomena and the

analysis was published in Physical Review Letters and is included here as

Appendix F.

We have verified that the laterally confined discrete states arise from

the quantum dot, not the contact, by fabricating structures similar to the

quantum dot structures, except that the epitaxial structure only contains a

single barrier; i.e., no quantum dot. No evidence of any fine structure from

the quantized cortact was observed in any of the numerous devices measured.

In both the single- and double-barrier structures, a previously reported

"switching" phenomenon (impedance switching between two discrete values) due

to single-electron trapping in these structures is often evident. We have

shown that this phenomenon, sometimes called 'telegraph noise," is the result

of electrons trapped and emitted from impurity/defect states in the region of

the double barriers. The change in impedance of the structure has been shown

4



to be caused by a modification of the potential in the double barrier region.

This work has been submitted for publication and is included here as Appendix

G. We also have evidence that this phenomenon is a result of the emptying

and filling of clusters of interacting localized states in the double-barrier

structure. At low temperatures we observe sharp two-level switching; at

higher temperature the impedance takes on intermediate values, with the

extrema still present. In addition, the distribution of switching times for

both the "up" (high resistance) and "down" (low resistance") states follows a

Lorentzian distribution, with the Lorentzian tail extending to long trapping

times. This result is consistent with previous work that implicated clusters

of traps.

An ongoing project is the creation of laterally confined states without

the dominating depletion layers observed in the work referenced above. An

alternative to the process described above is in situ etching and subsequent

overgrowth of a heterojunction interface. We have initiated work on "thermal

etching" (also called SUBLIME) for the creation of lateral resonant tunneling

structures. While the technique has yet to show the submicrometer dimensions

needed for this application, an even larger obstacle is the effect of the

sustained elevated temperature on tunneling structures. We performed a study

of the transport through double barrier structures that have been subjected

to temperatures (while capped, to simulate MBE arsenic-stabilized surfaces)

of up to 775°C (including 600'C, 675°C, 725°C, and 750'C) for up to eight

hours. There is no appreciable change in the negative differential

resistance (NOR) of these samples. Thus, the SUBLIME technique is viable for

lateral resonant tunneling structures.

Finally, in modeling the above-referenced quantum dot structures, we

have become concerned with the effect of contacts on understanding the

spectroscopy of tunneling devices. We reverted to understanding the
"simplest" case, a resonant tunneling diode (unconfined), to understand such

effects as phonon scattering or relaxation on the position of the pe'k

voltage. To test this we have grown, fabricated, measured, and modeled a

series of highly characterized RTDs. The rather suprising and important

results found are summarized as follows:

5



(a) In general, the model could not fit the voltage peak positions

using the nominal values of the parameters (barrier thickness, QW thickness,

etc.) for the characterized structures. Additionally, the variation of I-V

asymmetry could not be explained.

(b) The positions, however, could be fit precisely if the parameters

were varied within the measured error bars of the characterization. For

example, the asymmetry (of the resonant peak positions) of the structures can

be explained solely by different thicknesses of the top and bottom barriers.

The models we have developed are sufficiently well understood and

precise, and other characterization techniques sufficiently imprecise, that

these tunneling measurements and modeling results can serve as a diagnostic

of the structure. These results, attached as Appendix H, were presented at

the 15th International Symposium on GaAs and Related Compounds and will be

published in Applied Physics Letters.
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IV. CONCLUSIONS AND RECOMMENDATIONS

The results obtained in this contract indicate that quantum-coupled

semiconductor structures display a rich variety of phenomena that can be

exploited in a revolutionary post-VLSI IC technology. Such a technology will

require interfaces between the macroscopic external world and the nanometer-

scale devices. These interfaces and the role of contacts pose fundamental

theoretical questions that are only partially answered. Significant

fundamental work remains in developing realistic models of open quantum

devices, nanofabrication, and exploration of electronic states in these

devices. A number of promising avenues, such as laterally defined tunneling

nanostructures, have yet to be explored.
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"Quantum Transport Theory of Resonant-Tunneling Devices"

[To be published in ProceedinQs of the NATO Advanced Research Workshop on

Band Structure Engineering in Semiconductor Microstructures

(held at II Ciocco, Italy, April 1988)1



QUANTUM TRANSPORT THEORY OF RESONANT TUNNELING DEVICES

William R. Frensley

Central Research Laboratories
Texas Instruments Incorporated
Dallas, Texas 75265

INTRODUCTION

The ability to fabricate semiconductor heterostructures on the scale of a
few atomic layers has led to the development of devices which exploit the quan-
tum-mechanical wave properties of electrons in their operation. The quantum
device which has recieved the most attention recently is the quantum-well
resonant-tunneling diode (RTD).I,2 This device shows a negative-resistance
characteristic which is quantum-mechanical in origin, and is potentially a very
fast device. Most of the theoretical work on this device has employed the formal
theory of scattering, focusing on the behavior of pure quantum states which are
asymptotically plane waves. While this approach should adequately describe
the device under stationary corditions, it is poorly equipped to treat any sort of
time-varying behavior. The reason for this is that the behavior of the RTD, and
indeed any electronic device, is manifestly time-irreversible, and a proper no-
tion of irreversibility cannot be introduced into pure-state quantum mechanics.
A pure quantum state cannot evolve time-irreversibly. Models which attempt to
introduce such behavior inevitably violate some fundamental physical law,
usually the continuity equation. However, transitions between quantum states
may proceed irreversibly if the system of interest interacts with an external
system having a continuum of states. Such processes may be consistently
described in terms of statistically mixed states, which are represented most
simply by the single-particle density matrix. 3 A description of a many-particle
system in terms of such a single-particle distribution is generally termed a
kinetic theory. 4 The present paper describes such'a theory of electron devices
which incorporates quantum coherence effects (including tunneling).

QUANTUM KINETIC TRANSPORT THEORY

A satisfactory transport t-,ory must adequately treat two fundamental
aspects of electron devices. First, an electron device is necessarily an open sys-
tem; it is useless unless connected to an electrical circuit and able to exchange
electrons with that circuit. If one wishes to study the behavior of the device
apart from that of the circuit, it is convenient to represent the effects of the
external circuit by ideal electron reservoirs attached to the terminals of the
device. Secondly, a device is also a time-irreversible system. as evidenced by the
set of nonequilibrium steady states which constitute the I(V) characteristic. An
elegant and consistent kinetic model of a device can be obtained which



incorporates both openness and irreversibility into the model via boundary con
ditions applied to the Wigner distribution function.'; The Wigner function is
simply a mathematical transform of the density matrix p(x,x') so that it is
defined in the phase-space (x,k,):

f(xk) J ( e- p x+ k) x-P + . (1)

The Wigner funeti-'n .-- often invoked to derive the correspondence between
quantum and classical statistical mechanics. In the present case it provides the
means by which an essentially classical model of the coupling of an open system
to external reservoirs can be introduced into a quantum calculation. To describe
purely ballistic transport of electrons (that is, neglecting collisions within the
device) the Liouville equation for the time evolution of the Wigner function can
then be written

,) f/ ' 1 ( _IIle, (2)
dt -- - I -n L(x,/k -k')f(r k') (2)

at M dx hi 2n ih2

where L is the Liouville super-operator. The form of the Liouville equation is
quite similar to that in the classical case, with the exception that the effect of
the potential is now non-local. This is how quantum interference effects enter
the present model. The kernel of the potential operator is given by

U(x,k) = 2 dvsin (kv)( .t - 'Y)y- V( -1v)( ( (3)

The open system boundary conditions can be obtained in a physically
appealing .vay by assuming that the reservoirs to which the device is connected
have properties analogous to those of a black body: the distribution of electrons
emitted into the device from the reservoir is cha:acterized by the thermal equil
ibrium distribution function of the reservoir, and all electrons impinging upon a
reservoir from the device are absorbed by the reservoir without reflection. To
implement this picture, we must be able to distinguish the sense of the velocity
of an electron at the position of the boundary. Thus the Wigner function is the
natural representation for an open system, because it involves both the postion
and the velocity. Let the interface between the device and the left-hand reser-
voir occur at x=0, and the interface between the device and the right-hand
reservoir occur at x=1. Then we may write the open-system boundary condit-
ions as

f (0,, ' = F~k T ,) (4)

f (. k) b k<o0 = F k, , Tr)

where F is the Fermi distribution function (integrated over the transverse
momenta), p, are the Fermi levels, and T. are the. temperatures of the respec-
tive contacts. Note that these boundary conditions are in themselves time-
irreversible, because under time-reversal they would map into a specification of
the distribution of outgoing particles. While the Liouville equation (2) contains
only the ballistic transport of electrons within the system, the irreversibility
due to the coupling to the contacts is both necessary and sufficient to obtain a
meaningful description of a device. Of course it will eventually be desirable to
include those irreversible processes attributable to random scattering events,
and a First approximation to such processes is described below.

The houndary conditions (4) are inhomogeneous. It is readily shown that
the liuville operator (2), subject to boundary conditions of the form (4) is non
singular, and its eigenvalues are confined to the lower halfof the complex plane,
corresponding to .,table solutions.7 Because L is non-singular, any choice of the
boundary distribution [ leads to a well-posed problelm. To obtain quantitative



results, the Wigner function is evaluated within a discrete (finite-difference and
finite-sum) approximation. 5

STEADY-STATE BEHAVIOR

The steady-state Wigner function is obtained by numerically solving the
Liouville equation for the condition af/at=O. The 1(V) characteristic for the RTD
was obtained by calculating the steady-state Wigner function for each of a large
set of bias voltages, and the current density was evaluated by averaging over
the Wigner function. The results of such a calculation are shown in Fig. 1, along
with the (V) curve obtained from a more conventional scattering-theory calcu-
lation for comparison. The agreement bctween these calculations is quite good
in the vicinity of the peak tunneling current, and is somewhat poorer in the
vicinity of the valley.

This agreement between the transport and scattering theories is consider-
ably better than what was reported earlier.5,7 The scattering calculations
shown in the earlier work were in error, because the vrong velocity was used to
evaluate the current density contribution from each state. The incorrect formu-
la, which has been widely quoted, 8 involves the velocity of the electron on the
incoming side of the barrier, so that this velocity cancels the "density of states"
factor. The correct formula, as pointed out by Coon and Liu,9 involves the veloc-
ity of the electron on the outgoing side of the barrier, which is not the same as
the incoming velocity when there is a nonzero bias voltage. Correcting this
error brings the scattering calculation into much better agreement with the pre-
dictions of the present quantum transport theory. Recent work by Mains and
Haddad1O indicates that modifications to the method of evaluating the potential
operator (3) can have the effect of reducing the magnitude of the valley current.
Such modifications should improve the agreement between the transport and
scattering theories in this region of the (V) curve. These modifications have not
yet been incorporated into the present calculations.

4x105 ..
-Wigner function

...-- Scattering theoryN- 3x 105 "- ,

" 2x10 5  
/

S.. /
I.,xlO 5  ,. .

8.0 0.1 0.2 0.3 0.4 0.5
Voltage (V)

Fig. 1. Current density vs. voltage fora resonant-tunneling diode consist-
ing of 2.8 nm layers of Al0o3Ga0.7As bounding a 4.5 nm GaAs well,
at a temperature of 300 K. The current derived from a calculation
of the Wigner function (solid line) is compared to that derived from
a more conventional scattering calculation (dashed line).



The device structure assumed in the present calculations consists Qf a 4.5
nm wide quantum well of GaAs bounded by identical 2.8 nm wide barrier layers
of A1 3 Gao.As. The conduction-band discontinuity was taken t' be 0.60 of the
total bandgap discontinuity. 17.5 nni of the GaAs electrode layer was included
in the simulation domain on each side of the device. Because Hartree self-con-
sistency was not incorporated into the present calculations, the applied bias vol-
tages were assumed to be dropped uniformly across the well and barriers. The
electron density assumed in the boundary reservoirs was 2x 1018 cm- 3. All cal-
culations were performed at a temperature of 300 K.

TRANSIENT RESPONSE

The time-dependent response of the RTD to changes in the applied voltage
is readily evaluated by integrating the Liouville equation (2), using the numer-
ical procedures described in Ref. 5. The results of such a calculation are shown
in Fig. 2. Since the negative-resistance characteristic is the interesting feature
of this device, the transient response calculation was performed for a switching
event across this region of the I(V) curve. Figure 2 shows the current density in
the device as a function of position and time for an event in which the initial bias
of 0.11 V (corresponding to the peak in the current) was suddenly switched to
0.22 V (corresponding to the bottom of the valley) at t=0. More specifically, the
steady- tate Wigner function for a bias of 0.11 V was used as an initial value,
and the time evolution under the Liouville operator for 0.22 V bias was evalua-
ted. The response of the current is complex, as might be expected, but shows

Y 0L

0

0 0

Fig. 2. Transient response of the resonant-tunneling diode of Fig. 1.
Current density is plotted as a function of time and position with-
in the device. The potential profile illustrates the device struc-
ture. At t=0. the voltage was suddenly switched from 0.11V
(corresponding to the peak current) to 0.22V (corresponding to the
valley current). After an initial peak. the current density approa-
ches the lower steady-state value in 100-200 fs.



some features that are readily interpreted. The current density initially increa-
ses throughout the structure, so that the device displays a positive resistance
over a short time. The destructive interference which underlies the negative
resistance takes some tens of femtoseconds to manifest itself. The current has
settled quite near to its steady-state value after 200 fs. Of course the response of
real devices will be limited by the time required to charge the device capacitance
through the parasitic series resistance of the contacts. Such effects were deliber-
ately omitted from the present modcl in order to observe the intrinsic response
of the tunneling process itself.

SMALL-SIGNAL RESPONSE

In order to obtain the small-signal ac response, 1 we assume that a small
ac signal of amplitude v is superimposed upon the dc bias V. For a fixed V. the
conduction current densityj through the intrinsic device can be expanded in a
power series in v, and to second order it is given by:

,9+, ..tM *~2 -c+ . (5)

j(t) = j(V)+ (vve"t + cc) + a V2+1 (a,, v" -cc)+

where cc denotes the complex conjugate. Here w is the angular frequency, jo is
the dc current density, and y is the linear admittance (which equals djoidV at
co = 0). The nonlinear coefficients arect and a2, describe rectification and second-
harmonic generation, respectively, and both are equal to d2j 0/dV2 at W = 0.

To obtain the small-signal ac response, we apply a simple form of pertur-
bation theory to equation (2). The Liouville operator can be written as:

L = L + X(L (,')+cc). (6)

The dc part L0 includes the kinetic energy term and the dc potential. The ac
part L(, includes only the effect of the time-varying potential and thus is propor-
tional to v. A is a perturbation parameter introduced solely to keep track of the
order of the perturbation, which will ultimately be set equal to unity. The
Wigner function f can be expanded in a perturbation series, which to second
order is given by

,2 ,ct 2 (f., 2LWt+cc)+.. (7)
f + -,\ (, +cc)+ \ frect ,

Here fo is the dc part of the Wigner function, f,, contains the linear ac response,
and again frect and f2,, describe rectification and second-harmonic generation,
respectively. The perturbation equations are obtained by inserting (6) and (7)
into (2) and collecting terms of equal frequency and equal order in X. The result-
ing equations are:

LfA) 0. (8a)

f____ (8b)fU Lo-4hw fo•

1 L L L.f (8d)

'2, + 2Lo+2hw ,l ) hw od

These equations resemble those of the conventional perturbation series, but
differ in detail primarily because quantum-mechanical convention for the time-
dependence (e-,Li) of f has been mixed with the electrical engineering conven-
tion (eiwt) for the time-dependence of the applied signal. In particular, that is



the reason the "+ " sign appears in the denominators. The resolvent expressions
in (8b-d) are readily cvaluated within the discretization approximation by ordin-
ary matrix operations.

The contribution of a component fi of the Wigner distribution to the ter-
minal current density is obtained by averaging the current operator over the
momentum, and over the active region of the device in accordance with the
Ramo-Shockley theorem: 12.13

*JTff I = dx - -f Or,1) (9)
-x. _...F2n m* I

The coefficients in (4) are thus given by:

Jo = Jlfol (10a)

y = JIl/u,. (lOb)

.1,1/ 2 (lOc)1arect rect

a J Jlfl, 1 / , (10d)

The small-signal response was evaluated for an assumed structure which
was the same as that described above, except that the doping in the contact lay-
ers was taken to be 2X 107 cm -'U This structure is similar to the sample num-
ber 2 of Sollner et al.14 The linear admittance was evaluated from (8b) and
(10b), for a bias voltage near the center of the negative resistance region. The
resulting admittance as a function of frequency is shown in Fig. 3. The rca!
conductance is negative at lower frequencies, as expected. The negative con-
ductance "rolls off' in the THz region and goes positive at about 6 THz. The
imaginary part of the electronic admittance is negative and proportional to W at
lower frequencies, and thus resembles an inductance. This is due to the phase
shift resulting from the electrons' ;nertia.15 The rather complex behavior of the

I 1 l I  I I I I t I II I I I 1 I I L

CO 2x 105

II
E2

S-Re(y).
....-- an(y),, ,

2x 105 -

I0o  1010 1011 1012 1013 1o 4

Frequency (Hz)

Fig. 3. Electron admittance as a function of frequency. The electron
conductance is Re(y) and the electron susceptance, due to iner-
tial effects, is [m( '). The negative conductance at lower freq-
uencies is apparent. The susceptance due to the parasitic capac-
itance u(.' is shown to provide a measure of the effect of the
parasitic elements.



electronic admittanc abovc 10 THz reflects other resonant processes in the sys-
tem. In this frequency range the current response is quite nonlocal. 16

An estimate of the susceptance of the parasitic capacitance of the RTD is
also plotted in Fig. 3, for comaprison. The effects of this capacitance will become
dominant when the magnitude of its admittance exceeds that of the tunneling
current, which occurs, for the present model, somewhat below 100 GHz. This is
the practical limit for the observation of a linear negative conductance.

Some nonlinear effects are observable to much higher frequencies than the
linear effects, however. To examine the behavior of such processes, the nonlin-
ear coefficients were evaluated from (8c,d) and (10c,d) for that dc voltage at the
resonant peak of the j(V) curve. The modulus of arect and of a2o are plotted in
Fig. 4 as functions of frequency. The interesting point is that the calculations
predict an enhancement in the coefficient for rectification between 1 and 8 THz.
This agrees with the observations of Sollner et al.2 of rectification at 2.5 THz in
their experi-mental devices. The quantity arect is the same as that which is
denoted I" in Ref. 2.

EFFECTS OF PHONON SCATTERING

The effects of the electron-phonon interaction may be easily incorporated
into the present transport theory by adding an appropriate collision super-
operator C to the Liouville equation:

df L
_ - f +Cf (11)
,it ih

The existing numerical machinery can handle such a term so long as C can be
treated as local in space and time. The obvious first step toward obtaining such
an operator is to employ the classical Boltzmann equation form:

[Cfl (x,k,t) = fdk'[W k f(x,k',t) - Wk. kf(x,k,t), (12)

where Wk k' is the transition rate from k' to k, etc. The work of Levinsonl 7 and

I Iii 1 11I 1 1ii 1 i I ..7 --7
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Frequency (Hz)

Fig. 4. The nonlinear response coefficients as functions of frequency.
Rectification is described by arect and second-harmonic gener-
ation is described by a2,,. The persistence of the rectification
effect to terahertz frequencies is in agreement with the experi-
mental results of Ref. 2.



that of Lin and ChulS suggests that this is an appropriate approximation in the
semi-classical case (that is, when the Fermi golden rule may be used).

Because the RTD is in reality a three-dimensional system, the integral in
(12) must be three-dimensional. However, the model is one dimensional, so the
operator in (12) must be projected onto the one-dimensional subspace by integra-
ting over the transverse wavevectors k1 and k'1 . Invoking once more the
assumption that the distributions with respect to the transverse momenta are
Boltzmann, the expression for the transition rates projected into one dimension
is:

2n 2 12h2 O3h k'2
Wkk. 3  d k I d k' l(klft'lk' "-(Ek-Ek' ;hw) - exP J 13)

h (2r) I In Lin I

Here H' is the Hamiltonian which describes the particular electron-phonon
interaction. The numerical collision operators obtained from (12) and (13) were
checked for consistency with the requirements of detailed balance by applying
the operator to an equilibrium distribution function and verifying that the
result was zero.

In the present calculations the deformation potential interaction was
included for scattering with acoustic phonons and the Frohlich interaction was
included for scattering with longitudinal optical (LO) phonons. 19 The effects of
these phonon scattering mechanisms on the (V) curve of the RTD are shown in
Fig. 5. Acoustic phonon scattering has a nearly negligible effect on the (V)
curve. The effect of LO phonon scattering is rather more pronounced, primarily
in the reduction of the peak current. When both acoustic and LO phonons are
included in the calculation, the resulting 1(V) curve is indistinguishable from
that obtained with LO scattering only.

2.5x10 4  ,

No phonons
. 1---- Acoustic phonons

2._x10 4  --- LO phonons

' 1.5x104'

S1.QxlO4

C) ,10.5x 10 4  /

0.80 0.1 0.2 0.3 0.4
Voltage (V)

Fig. 5. Effect of semi-classical phonon-scattering operators on the (V)
characteristic of a resonant-tunneling diode.



CONCLUSIONS

The present quantum kinetic transport theory has proven to be exception-
ally effective in modeling the behavior of resonant-tunneling devices. This suc-
cess may be attributed to several key elements: First, it incorporates a simple
and explicit notion of irreversibility through the coupling of the device to its
contacts. This permits a simple treatment of irreversible phenomena such as
the transient response, which are beyond the scope of theories which do not
explicitly include irreversibility. The second element is that it corresponds as
closely as possible to a classical model, departing only as required to include
quantum interference effects [which enter via the nor local potential (3)]. This
permits a direct computation of classically measurable quantities, such as the
small-signal admittance. Finally, in contrast to the more sophisticated tech-
niques of many-body theory, it suppresses enough of the complexities of the sys-
tem so as to remain computationally tractable.

ACKNOWLEDGEMENT

This work was supported by the U.S. Office of Naval Research.

REFERENCES

1. L. L. Chang, L. Esaki and R. Tsu, Appl. Phys. Lett. 24, 593 (1974).
2. T. C. L. G. Sollner, W. D. Goodhue, P. E. Tannenwald, C. D, Parker and D.

D. Peck, Appl. Phys. Lett. 43, 588 (1983).
3. U. Fano. Rev. Mod. Phys. 29, 74 (1957).
4. Kubn, R., M. Toda, and N. Hashitsume, Statistical Physics II.

Nonequtlibrium Statistical Mechanics. (Springer-Verlag, Berlin, 1985).
5. W.R. Frensley, Phys. Rev. B36, 1570 (1987).
6. E. Wigner, Phys. Rev. 40, 749 (1932).
7. W.R. Frensley, Phys. Rev. Lett. 57, 2853 (1986).
8. R. Tsu and L. Esaki, Appl. Phys. Lett. 22, 562 (1973).
9. D.D. Coon and H.C. Liu, Appl. Phys. Lett. 47, 172 (1985).

10. R.K. Mains and G.I. Haddad, "Numerical Considerations in the Wigner
Function Modeling of Resonant-Tunneling Diodes," to be published.

11. W.R. Frensley, Appl. Phys. Lett. 51, 448 (1987).
12. S. Ramo, Proc. IRE 27, 584 (1939).
13. W. Shockley, J. Appl. Phys. 9, 635 (1938).
14. T.C.L.G. Sollner, E.R. Brown, W.D. Goodhue, and H.Q. Le, Appl.Phys. Lett.

50, 332 (1987).
15. K.S. Champlin, D.B. Armstrong, and P.D. Gunderson, Proc. IEEE 52,677

(1964).
16. W.R. Frensley, to be published in Superlattices and Microstructures.
17. I.B. Levinson, "Translational invariance in uniform fields and the equation

of motion for the density matrix in the Wigner representation," Soviet
Physics JETP 30, 362-7 (1970).

18. J. Lin and L.C. Chiu, 'Quantum theory of electron transport in the Wigner
formalism," J. Appl. Phys. 57. 1373-6 (1985).

19. E.M. Conwell. High Field Transport in Sem iconductor . (Academic Press,
New York, 1967)ch. 5.



Appendix B

"Quantum Transport Calculation of the Frequency Response

of Resonant-Tunneling Heterostructure Devices"

[Published in Superlattices and Microstructures 4, 4/5, 497 (1988)]



Superlattices and Microstructures, Vol. 4, No. 4/5, 1988 497

QUANTUM TRANSPORT CALCULATION OF THE FREQUENCY RESPONSE
OF RESONANT-TUNNELING HETEROSTRUCTURE DEVICES

William R. Frensley
Central Research Laboratories

Texas Instruments Incorporated
P.O. Box 655936, MS 154

Dallas Texas 75265

(Received 17 August 1987)

The frequency response of the quantum-well resonant-tunneling diode is
calculated using quantum transport theory. The state of the device is
represented by the single-particle Wigner distribution function. The Wigner
function is obtained by numerical solution of the Liouville equation, subject
to inhomogeneous boundary conditions that represent the ohmic contacts to
the device and that introduce dissipation into the model. The small-sinal ac
response is calculated by a perturbation expansion about the non-equilibrium
steady state. The calculations indicate that both the negative conductance
and nonlinear rectification persist up to the mid terahertz region, for the
design studied. This is compared to the lifetime of the resonant state inferred
from the width of the scattering resonance.

Introduction

Thequantum-well resonant-tunneling diode
(RTD)1, 2 is the simplest semiconductor hetero-
structure that displays interesting device proper- V

ties due to quantum coherence effects. It is thus an 'y0
ideal prototype system for which to develop tech-
niques for the analysis of quantum devices. A form
of quantum transport theory has been developed Figure 1. Physical model of the RTD, showing the
that is vdapted to the study of quantum devices device potential. A dc bias V and a small ac signal
because it provides a means of treating the electri- of amplitude v are applikd to the intrinsic device.
cal contacts to the device. 3.4 Recent interest in the
RTD can be attributed to the work of Sollner et al.,2

who demonstrated nonlinear electrical response in
these devices at frequencies up to 2.5 THz. The of the device are modeled. The internal state of the

existence of these results provides a motivation for device is represented by the Wigner distribution

the development of theoretical techniques to function,5 which is the quantum analog of the

evaluate the small-signal ac response of a tunnel- classical distribution function that appears in the

ing device. The present work denionstrates that Boltzmann equation.

such calculations may be readily performed by Regarding the contacts as particle reservoirs

applying the techniques developed in Refs. 3 and 4. gives a well-defined model of the open-system
nature of the device. The interaction between the

Transport Model reservoir and the device is simply described: Elec-
trons in the device that impinge upon the reservoir

The physical model of the resonant-tunneling pass into the reservoir without reflection and the
diode is summarized in Fig. 1. The device is consid- distribution of electrons entering the device from
ered to be a finite region of semiconductor, charac- the reservoir is given by the equilibrium distribu-
terized by a potential V that includes the effects of tion of the reservoir. These boundary conditions
applied voltages and of heterojunction band offsets. are a crucial aspect of the model, because they
The boundaries of the device are taken to be inter- permit the existence of steady-state solutions un-
faces to particle reservoirs, by which the terminals der applied bias and they lead to a stable approach

0749 -6036/88/040497 + 05 S02 00/0 © 1988 Academic Press Limited
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2.0. C

1.5 Rs

- 1.0
Sj(t)

S0.5
Figure 3. Equivalent circuit of the RTD. Electron

Uconduction through the intrinsic device is represen-

0 0 0 .12 013 04 ted by a current source, whose specification is the

Voltage (V) purpose of this paper. A parallel displacement
current flows through the parasitic capacitance C.

Figure 2. The current-voltage curve derived from The series resistance R, represents the effects of
the steady-state Wigner function calculation. The the contacts.
linear response shown in Fig. 4 was evaluated at
the dc bias shown as point "a," and the nonlinear
response of Fig. 6 was evaluated at point "b." superimposed upon the dc bias V. For the purpose

of obtaining the electrostatic potential, the contact
layers on either side of the quantum-well barriers

to those steady-state solutions after the bias vol- are assumed to be ideally metallic (i.e., the accu-
tage is changed. mulation and depletion layers are taken to be of

The time evolution of the Wigner function is infinitesimal width). The equivalent circuit of the
described by the Liouville equation device is shown in Fig. 3.6 8 The series resistance

af L hk af 1 dk( R. is due to the combined effects of all contacting
-=-f= - - U(x.k-k')fx..4 (1) layers, semiconducting and metallic, and as such is

a quantity that depends purely on the device design
where L is the Liouville super-operator and the and fabrication technology. The capacitance C is
kernel of the potential operator U is given by due to the depletion of electrons in the vicinity of

the quantum well structure. The current sourcej
U(x,k) = 2 dysin(ky)IVix+ Jy)- Vx- bl (2) responds to the voltage applied across it, and

0 represents the electronic response of the intrinsic
The open-system boundary conditions are device. For a fixed dc bias voltage V. the current

flOk =Fk d kO (3) density j can be expanded in a power series in t.
f ~kt = F (p,, T, i k>0 ( and to second order it is given by:f(l,h) = ip, , i 4<0 o~ 2.,

where F is the Fermi distribution function inte- " 14)

grated over the transverse momenta), pt., are the where cc denotes the complex conjugate. Here u) is
Fermi levels, and T,. are the temperatures of the the angular frequency,yj is the dc current density.
respective contacts. and y is the linear admittance (which equals d d'

Equation (1) is discretized on a uniform mesh at o=O). The nonlinear coefficients a, and a.
in the phase space (x,k). The boundary conditions describe rectification and second-harmonic gener
lead to a natural discretization of the gradient term ation, respectively, and both a. e equal to d-), dV-'

with a left-hand difference for k>O and a right- atw=0.
hand difference for k<O. This is an "upwind" dif- To obtain the small-signal ac response, we
ference and is the means by which the boundary apply a simple form of perturbation theory to equa
conditions stabilize the solutions of the Liouville tion (1). The Liouville operatorcan be written as:
equation. The Liouville equation (1) is readily 5= \L, ' -5
solved for the steady-state condition ft=o,
subject to the inhomogeneous boundary conditions The dc part L, includes the kinetic energy term and
(3). This is done for a set of bias voltages and the the dc potential as shown in Fig. 1. The ac part 1.
current is evaluated from the Wigner function to includes only the effectof the time varying poten
obtain an (V) curve as illustrated in Fig. 2. tial and thus is proportional to u. \ is a perturba

tion parameter introduced solely to keep track of
Small Signal Response Theory the order cfthe perturbation, which will ultimately

be set equal to unity. The Wigner function fcan be
To obtain the small-signal ac response, we expanded in a perturbation series, which to second

assume that a small ac signal of amplitude t is order is given by
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f= fo + (f .,' + cc) + A free + jX 2 f 2, t + cC)+ (6) . , . . ,

Here f, is the dc part of the Wigner function, f,
contains the linear ac response, and again f,,,, and r/h
f,. describe rectification and second-harmonic gen-
eration, respectively. The perturbation equations --........
are obtained by inserting (5) and (6) into (1) and ROM
collecting terms of equal frequency and equal order - (Y)
in X. The resulting equations are: W _Zilo-

fj 0(7a)
109 1010 lOll 1012 10

t  
1014

- (7b) Frequency (Hz)
Lo+A Figure 4. Electron admittance as a function of

I . ReL
o  (7c) frequency. The electron conductance is Re(y) and

2L 'L +At the electron susceptance, due to inertial effects, isIm(y). The negative conductance at lower frequen-
f2 L(7d) cies is apparent. The susceptance due to the para-

L0+2hw "L+#&w sitic capacitance wC is shown to provide a measure

The resolvent expressions in (7b-d) are readily of the effect of the parasitic elements.

evaluated within the discretization approximation
by ordinary matrix operations.

The contribution ofa component f, of the Wig- admittance as a function of frequency is shown in
ner distribution to the terminal current density is Fig. 4. The real conductance is negative at lower
obtained by averaging the current operator over frequencies, as expected. The negative conduc-
the momentum, and over the active region of the tance "rolls of' in the THz region and goes positive
device in accordance with the Ramo-Shockley at about 6 THz. The imaginary part of the electron-
theorem9 , 10: ic admittance is negative and proportional to u at

I hk lower frequencies, and thus resembles an induc-

Jff = -- 1 - - f Ix.k) tance. This is due to the phase shift resulting from
x-x J, J. 2r * (8) the electrons' inertia.1 I This inductance, however,

The coefficients in (4) are thus given by: is five orders of magnitude too small to explain the
inductance measured by Gering et al 7

J :ifol (9a) To provide an understanding of the role of the
: (9b) parasitic elements of Fig. 3, the capacitive suscep-

tance wC is also plotted in Fig.4. If we represent

a Ilf V2 (9c) the tunneling current by its conductance g = Re(y
"It 1d [and neglect !m(y)l then the resistance of the

a 
4 = 2 Iqf',,I (9d) parallel conductance and capacitance is7 . 8

RI1') g - 'II I-CW'" 11I - 10()

Predicted Small-Signal Response In the frequency range of interest g is negative.
leading to a negative resistance which rolls off

The device structure assumed in the present when IwClgl - 1. From Fig. 4 it is apparent that
calculations is similar to the sample number 2 of this will occur around 40 GHz, well below the cutoff
Sollner et al. 6 The model structure consists of a 4.5 frequency of the tunneling current itself. As shown
nm wide quantum well of GaAs bounded by iden- in Ref. 3, this leads to the "circuit limit" on the
tical 2.8 nm barrier layers of Al0 3GaO 7As. GaAs maximum oscillation frequency, which is reached
electrode layers 17.5 nm wide and doped at 2 X 10' when the negative resistance from (10) can no
cm- 3 were included in the simulation domain on longer cancel the series resistance R. The capaci-
each side of the device. All calculations were per- tance per unit area was estimated by v(x,-xl). to
formed for a temperature of 300 K. The dc j(V) be consistent with the assumed form of the poten-
curve was evaluated by solving (5a) as described in tial. The true capacitance will be lower when the
Ref. 4, and the result is shown in Fig. 2. finite depletion layer width is included. Neverthe

The linear admittance was evaluated from less, the present 40 GHz corner frequency is corn
(7b) and (9b), for V=0.17 V, which is near the cen- parable to the observed fr,, of experimental
ter of the negative resistance region. The resulting devices',
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.F igure 6. The nonlinear response coefficients as
S" functions of frequency. Rectification is described

by arpet and second-harmonic generation is describ-
ed by a2w. The persistence of the rectification effect
to terahertz frequencies is in agreement with the

Figure 5. Linear component of the ac current den- experimental results of Ref. 2.
sity (divided by the ac voltage and thus expressed
as an admittance) as a function of frequency and
position. The ac electric field is again assumed to 1:.
be uniform over the intrinsic device. The nonlocal- "

ity of the current response at higher frequencies is
evident. 10- 1

0

The rather complex behavior of the electronic "
admittance above 10 THz reflects otht r resonant
processes in the system. In this frequency range
the current response is quite nonlocal. This is 10-1
demonstrated in Fig. 5, where the same results as
in Fig. 4 are now resolved with respect to the
position x. The presence of complicated resonance 10_ I

phenomena above 10 THz is apparent. Also, the 0.00 0.05 0.10 0.15 0.20 0.25 0.33
negative conductance appears to persist to some- Energy (eV)
what higher frequencies in the vicinity of the left-
hand barrier than in other parts of the structure. Figure 7 The transmission probability T12 as a
This perhaps reflects the process of filling and function ofenergy for the assumed device structure
emp'ying the well by current through this barrier, with a bias of 0.17 V. Breit-Wigner resoriance

The nonlinear coefficients were evaluated forms (dashed lines) were fit to the resonant peaks
from (7c,d) and (9c.d) for V - 0.13 V at the resonant to estimate the resonant state lifetime.
peak of the ]IV) curve. The modulus of a.,,, and of
a,2- are plotted in Fig. 6 as functions of frequency.
The interesting point is that the calculations pro- that the smallest eigenvalues correspond to sub-

dict an enhancement in the coefficient for rectifi- millimeter-wave frequencies. Time-domain calcu-

cation between I and 8 TIlz. This agrees with the lations ofthe full transient response3. 4 .12 also indi-

obser-ations -if Sollner pt ai.2 of rectification at 2.5 cate that the smallest eigenvalues ofLo/A are ofthe
THz in their experimental devices. The quantity order of 10 s ' for the present structure.

a is the same as that denoted I" in ReF 2. This may be compared to the frequently
invokedl1 15 delay time estimate hI', where F" is

Discussion the width ofthe resonant peak in the transmissicn
amplitude. l was determined for the present struc

Pr an the forms of Eqs. f7) it is apparent that ture by a numerical calculation of the scattering
the tigenva lies of L) produce poles in the frequen- transmission amplitude. The Schroedinger equa
cy re-,pinse. and the numerical calculations imply tion was discretized with respect to i on the same
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ABSTRACT

A form of quantum transport theory has been developed to model the resonant-tunneling diode and similar
devices in which quantum interference effects play a significant role. The internal state of the device is rep-
resented by the Wigner distribution function, with boundary conditions which model the effects of the elec-
trical contacts to the device. Inelastic scattering processes are approximated by a classical Boltzmann col-
lision operator, and the effects of different scattering processes on the device characteristics are evaluated
numerically.

KEYWORDS

Quantum transport; Wigner distribution function; Resonant tunneling; Electron-phonon interaction;
Transient response; Nanoelectronics.

INTRODUCTION

The progress of semiconductor fabrication technology has permitted the fabrication of devices whose be-
havior is dominated by quantum-interference effects, The most widely studied example of a quantum size-
effect device is the resonant tunneling diode (RTD) (Chang, Esaki, and Tsu, 1974; Sollner and colleagues,
1983). This device exhibits interesting properties in the form of a negative-resistance region of its charac-
teristic curve which unambiguously shows the quantum-mechanical nature of electron transport through
this structure. The central issue in the theory of such devices concerns the proper description of the dissipa-
tive processes which determine their behavior. Such processes can be grouped into two categories: interac-
tions of conduction electrons with other kinds of particles in the crystal (such as phonons), and the exchange
of those electrons with the elements of the external electrical circuit. Previous work (Frensley 1986, 1987a,
1987b) has demonstrated that a consistent model of a tunneling device may be obtained by invoking only
the latter type of interaction. The present paper extends this model to include phonon scattering.

TRANSPORT MODEL

In the present model the device is considered to be a finite region of semiconductor, characterized by a po-
tential that includes the effects of applied voltages and of heterojunction band offsets. The internal state of
the device is represented by the single-particle Wigner distribution function f(x,k,t) where x is the position
and k is the momentum (Wigner, 1932). The Wigner function is assumed to obey a Markovian kinetic equa-
tion of the form

-O =f L C (1)
-f= f + Cf

where L is the Liouville super-operator which describes ballistic electron motion and C is a collision super-
operator which describes random scattering. The boundary conditions on f describe the coupling of the
device to electron reservoirs which model the electrical contacts to the device. The boundary conditions
specify only the distribution of electrons entering the device, and thus introduce time-irreversibility into the
model independently of the collision operator. The Wigner function f is calculated in a discrete approxima-
tio., which reduces the integro-differential equation (11) to a large system of linear algebraic equations
which are solved numerically (Frensley, 1987a).

The collision super-operator C is assumed to be of the classical form:
ICfj(x,.k.) fdkIW k(x.k.t - W k  k f (JX,k't)l, (2)

where Wk k' is the transition rate from k' to k, etc.

739



740

SIMPLE COLLISION MODELS

There are two readily available approximations for the collision operator C, both of which have the form (2).
One is the well-known relaxation term:

[C"Im fl(k)= (I )Lf0 (k) fdk'f(k') - f(k)j, (3)

where i is a relaxation time, and f0 is the normalized equilibrium distribution function. The other simple
approximation to C is the dissipation operator derived from the Fokker-Planck or Kramers equation for
Brownian motion (Caldeira and Leggett, 1983; Kubo, Toda, and Hashitsume, 1985):

[CfpaI(k) -l (kf) + - if(131-i ak(4

This approximation assumes a very high rate of low momentum-transfer collisions.

These simple collision terms were tested in numerical calculations of the dc (V) curve of a resonant-tunnel-
ing diode, by solving (1) for steady state. A relaxation time t of 100 fs was assumed for both the relaxation
and Fokker-Planck models, corresponding to a mobility of 2600 cm 2 V-ls-I for GaAs. The resulting charac-
teristic curves are shown in Fig. 1. The relaxation term (3) greatly reduces the peak-to-valley current ratio,
both decreasing the peak current and increasing the valley current. The Fokker-Planck term (4), however,
leads to an increase in the current at all voltages.

2.0xl0
4

1.5x10'
U

,- .0XI0
4

0.5x 104-
-No collision term
--- Fokker-Planck term

Relxatonterm
0.8 1

0.1 0.2 0.3 0.4

Voltage (V)

Fig. 1. Effect of simple collision terms on the (V)
characteristic of a resonant-tunneling diode.

REALISTIC PHONON SCATTERING

The sensitivity of the I(V) curve to the form of the collision operator demonstrated by these simple models
implies that we need to use more realistic models of random scattering processes in the device. An obvious
first step in this direction is to retain the classical Boltzmann form (2), and use the Fermi golden rule to
calculate the transition rates W. The work of Levinson (1970) and of Lin and Chiu (1985) suggests that this
is an appropriate approximation when the electron-phonon interaction can be treated semi-classically.
Because only a single spatial dimension is resolved in the numerical model, we must make some assump-
tions about the dependence on the transverse components of the momentum k. The obvious assumption is
that the distribution is Maxwellian with respe,'t to the transverse wavevector k' . Then integrating the
resulting distribution function with respect to k-L, we obtain

22 j k, (E _E 6W) (5)
W 1 *, A (2)3 1k___ dk A ,I kIH 28m 2m,

Here H' is the Hamiltonian which describes the particular electron-phonon interaction. The numerical
collision operators obtained from (5) and (2) were checked for consistency with the requirements of detailed
balance by applying the operator to an equilibrium distribution function and verifying that the result was
zero,
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In the present calculations the deformation potential interaction was included for scattering with acoustic
phonons and the Frohlich interaction was included for scattering with longitudinal optical (LO) phonons
(Conwell, 1967). The effects of these phonon scattering mechanisms on the I(V) curve of the RTD are shown
in Fig. 2. Acoustic phonon scattering has a nearly negligibwe effect on the (V) curve. The effect of LO
phonon scattering is rather more pronounced, primarily in the reduction of the peak current. When both
acoustic and LO phonons are included in the calculation, the resulting I(V) curve is indistinguishable from
that obtained with LO scattering only.

2.Ox104

, l-Sx10 4  
-

,<-

0.5x 10 4 - V---
- No phonons

---- Acoustic phonons
.----- LO phonons

0 0.1 0.2 0.3 0.4
Voltage (V)

Fig. 2. Effect of semi-classical phonon-scattering
operators on the I(V) characteristic of a
resonant-tunneling diode.

The effect of phonon scattering on the dynamic behavior of the resonant-tunneling diode was investigated
by performing transient-response calculations (Frensley, 1986, 1987a) both with and without the collision
operator. The particular transient event that was simulated was an instantaneous switching of the applied
voltage from the peak of the (V) curve to the valley. The current through the RTD (averaged with respect
to position within the structure) is illustrated in Fig. 3. Both curves show an initial peak and small oscilla-
tions around a generally exponential decay to the new steady state. Somewhat surprsingly, these oscilla-
tions are larger for the calculation including phonon scattering.

2.5x104 .....

6 O2.0x104 \ - No phonons
-... coust & LO phonons

.5x104

I 1.OxlO' ,

c 0.5xl- 4

0 .0 ,, I. . .. . ,, , , , 1. .
0 50 100 150 200 250 300

Time (Is)

Fig. 3. Transient response ofa resonant-tunneling
diode with and without phonon scattering.

CONCLUSIONS

The present work represents an initial effort to include phonon scattering effects in a transport theory of
tunneling devices. The diversity of results obtained from the simpler approximations to the collision opera-
tor clearly indicates that meaningful results (and reliable insights into the effects of stochastic processes on
nanoelectronic devices) will only be obtained from realistic models of these phenomena.
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Abstract

Boundary conditions are formulated for kinetic models for open systems, in the

sense of systems which can exchange conserved particles with their environment. Open-

ing a system to particle flow violates the Hermiticity of the Liouville operator. If the

open-system boundary conditions are time-reversible, exponentially growing (unphys-

ical) solutions are introduced into the time-dependence of the density matrix. This

problem is avoided by applying time-irreversible boundary conditions to the Wigner

distribution function. These boundary conditions model the external environment as

ideal particle reservoirs with properties analogous to those of a blackbody.

1 Introduction

The more active, and thus the more interesting, products of technology are systems which

operate far from thermal equilibrium. An examination of a few examples of such systems

shows that they are generally open, in the sense that they exchange matter with their

environment. The present work examines some schemes by which open quantum systems
(which are beginning to become technologically important in the context of microelectron-

ics) may be effectively described at a kinetic level.

In the context of the present work, an "open system" is one which can exchange locally

conserved particles with its environment. To define such a system we must regard it as

occupying a finite region of space, and thus the exchange of particles must consist of a
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current flowing through that surface which is taken to be the boundary of the system. It

does not appear that the statistical physics of such a situation has been the subject of a

close examination, apart from the traditional use of the grand canonical ensemble to define

the equilibrium state [1]. There is, of course, a large body of work on quantum systems

which are coupled to a reservoir so as to permit an exchange of energy [2,3,4,5,6]. Such

analyses are niore directed to the problem of damping (as seen in ohmic conduction) than

to opciiness in the present sense. Much of the work in this area has been motivated by

the development of optical technology [5,6], in which the distinction between openness and

damping is unnecessary because the particles of interest are massless bosons.

To document the importance of open systems, let us consider some examples of active

systems. Most practical engines (in the sense of machines which convert some form of en-

ergy into mechanical work) exchange matter with two or more reservoirs. To cite examples

from an earlier technology we might consider the overshot water wheel [7], which operates

between reservoirs of water at different gravitational potential, or the high pressure steam

engine [8], which operates between its boiler and the atmosphere, reservoirs which diffe'r

greatly in their pressure and temperature. Conspicuously absent from a list of econom-

ically significant engines are systems which operate upon the Carnot model of a closed

svstem in purely thermal contact with its reservoirs.

A technology of more current interest is electronics, whose systems are usually ar-

riange(l such that a "power supply" maintains constant voltages (i.e., chemical potenti als

for electrons) on two or more "buses" [9]. The "circuits" (such as logical gates or aiiah g

amplifiers) which perform the intended functions of the system are connected to, and con-

duct current between, the buses. Each bus is an electron reservoir, and the l)erformnnce

of the system's power supply is judged by how nearly these reservoirs approach the" ideal

behavior of no change in chemical potential (voltage) as particles are exchanged (clu'rent

is drawn).

The example of electronics points out that the distinction bet ween a cl'sed am aii

opci' system depends upon how one chooses to partition the universe into the system (f
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interest and "everything else." (Such a partitioning is implicit in the analysis of every

physical problem.) To demonstrate this point, let us examine the etymology of the term

circuit. As used in the preceding paragraph, circuit means "an assemblage of electronic

elements [10]," which is most often open with respect to electron flow. This usage of the

term is now much more common among electrical engineers than the original meaning,

"the complete path of an electric current including usually the source of electric energy

[10]," which implies a closed system with respect to electron flow. It is no accident that the

usage of the word circuit has evolved in this manner. Early in the development of electrical

technology, a useful system (such as the electromagnetic telegraph [11]) was composed of

at most a few topologically closed "circuits," and the closure of the current path was a

central concern. As the complexity of electrical systems increased, the power supply and

bus structure was developed. This provided a common segment for all the current paths,

and the attention of the engineer focused on the remaining, "interesting," segment, that

which contained the active devices (and the term circuit came to be applied to such a

segment). However, by focusing on only a segment of the current path, one had to deal

with an open system, rather than a closed one.

The physics of closed systems is certainly simpler than that of open systems, because

closed systems obey global conservation laws, which open systems, in general, do not. In

the well-established techniques of physical theory one often encounters artifices, usually

in the form of periodic boundary conditions, which assure the closure of the theoretical

model, if not of the system itself. The point of the present discussion is that it is frequently

necessary to partition a complex system (which might reasonably be regarded as closed)

into smaller components which, viewed individually, must be regarded as open. Thus, the

more applied disciplines of the physical sciences must often deal at some level with the

concept of an open system.

There are many established techniques for dealing with open systems in fields such

as fluid dynamics, neutron transport, and electronics. All these fields are concerned with

the transport of (usually) conserved particles. The transport phenomena are described

by transport equations at a kinetic or hydrodynamic level which are either differential
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or integro-differential equations. Such equations require boundary conditions and it is in

these boundary conditions that the openness of a system is described. In the computation

of the flow around an airfoil, one must supply "upstream" and "downstream" boundary

conditions [12], or, more generally, sources and sinks. In electronics the connection to

the external circuit is accomplished by some sort of contact. In solid-state electronics

the most frequently used type of contact is the ohmic contact, an interface between a

metallic conductor and (usually) a semiconductor which permits electrons to pass freely.

Because the ohmic contact is a critical component of solid-state technology, most work on

such interfaces has been directed toward their fabrication and characterization(13]. The

representation of such contacts by boundary conditions has been a part of the analysis

of semiconductor device problems since the begining of semiconductor technology [14,15].

The current practice in this field is discussed in detail by Selberherr [16].

2 Approaches to Open Quantum Systems

Tunneling devices form the most obvious class of open systems in which quantum effects

are significant. The most common approach to describing the behavior of such systems is

to invoke the formal theory of scattering and assume that one is dealing with wavefunctions

which asymptotically approach traveling waves[17]. This is quite adequate to describe the

steady states of an open system which is not subject to any other dissipative interactions.

If there is dissipation, in the form of ohmic resistance for example, one should describe the

system at a level which adnits mixed states. However, even if the motion of the particles

within the system is purely ballistic (no dissipation) problems are encountered when one

atteml)ts to apply the scattering approach to the evaluation of transient phenomena. The

reason for this is that the boundary conditions (at any fixed position) for the Schroedingcr

cqj'ation which perinit outgoing waves to pass through without reflection are nonlocal in

time (or non-Markovain). To examine this, let us compare the Schroedinger equation to

the simple wave eq~iiation, for which one can formulate nonreflecting boundary conditions.
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For the simple wave equation,

- c - - 0 ,

& 2 Ox 2

one must specify the value of 90/,x at each end of the domain (Neumann boundary

conditions). Fourier transforming with respect to both position and time, and solving for

the Fourier transform of the gradient, we get the simple expression

ik = i/c.

The choice of sign determines which direction of propagation is permitted to pass without

reflection. Inverting the Fourier transform, we obtain the boundary conditions (for the

homogeneous case)
0€ 10
Ox c Ot'

and these are easily implemented in practical computations because the time derivative of

the wavefunc;on is readily available.

Let us consider applying this procedure to the Schroedinger equation (assuming for

the moment that the potential at any boundary is zero). We find

ik = i(2imw/h) 2

If we attempt to invert the Fourier transform, the L0/ 2 factor does not lead to a finite

series of time derivatives; instead, it leads to an integral expression which depends upon

the entire history of the system (that is, a memory term). If one wishes to evaluate the

behavior of a model system over a finite domain in position and time, such a memory

term is a great nuisance, although it appears that it may be adequately approximated

over a limited range of energies (181. It is not at all obvious that such a memory term

is really necessary to describe the behavior of something like a tunneling device. Thus,

it is desirable to possess an alternative model for the behavior of an open system which

does not contain a memory term. Such a model will be Markovian, in the sense that the

equation of motion will be a first-order differential equation with respect to time, and

the present work is restricted to an examination of such models. Markovian open-system

models may be formulated at a statistical (kinetic) level, and are not an approximation to
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scattering theory, but make use of a different set of assumptions. These assluiptiOis call

also be viewed as the approximations by which a many-body problen is reduced to a iore

tractable form.

3 Quantum Kinetic Theory

A generally accepted approach to the problems of statistical physics is to begin with

the general theory of nany-body dynamics and to proceed by deductive reasoning to a

formulation which provides an answer for the problem of interest [191. The steps in this

deductive chain necessarily involve the introduction of extra assumptions in the form of

suitable approximations. One may loosely categorize the levels of approximation in tcrimn.

of the independent variables which are required to specify the state of a system. The most

detailed level is tile fundamental many-body theory, which in principle requires a complete

set of dynamical variables for each particle. This can be reduced to the kinetic level

by restricting one's attention to one- or two-body properties (by truncating the BBGIKY

hierarchy of equations, for example). The removal from explicit consideration of other

dynamical variables of the complete system, such as photon or phonon coordinates, miay

also be required. The kinetic theory is expressed in terms of distribution functions dhefiiled

on a single-particle lha-;e space , requiring one position and one mnomientiuni varial)lc for

'a'h spatial dimension. (In the qualItul Case, this goes over to two arguments ()f the

,li'sit v operator. ) The hydro(dynamic level of approximation is obtained 1v making stot'

astlillptilom about the form of the distribution function with respect to iomienitmn. amlt

nitgratini, over all of the niomenta. Thus, the hy(ro(dynamic theory is expressed iII terims

of densities which are functions of position only.

The ap proach takei in the present work is quite different from the conventioial le.,hw

t a I( r( ach. The 01 jective is to identify the ilmat hemat ical properties which are r'eiiiret ,

)f intilp kinetic mnoelels of open systems. The proce(lr(' will he to, co(istruct small, spa-

illv ,iscre, iz/d Ijodells and to remmrically explore their properties. The sigiificaice 4

tlw rsilit s :must then be argue(d inductively.
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In the kinetic level of description of a complex system, the effects of those degrees

of freedom which are of less interest in a given problem are included implicitly in objects

such as collision operators or effective interaction potentials. In the example of electronic

devices such degrees of freedom should include electron coordinates outside the device but

within the external circuit. They also include all excitations of the device material apart

from the single-electron states (e.g., the phonons). Thus, at this level the state of the

system is described by a one-body density operator or distribution function. In general,

this can be written as

p(x,X') = ( w( I i)(i I X'), (1)

where i labels a complete set of states and the wi are real-valued probabilities for the system

to be in state 1 i). Because we will be considering open systems in which the number of

particles is not fixed, the usual convention for the normalization of p ((i 1 i) = 1 and Tr p =

1) is not useful. Instead, we will adopt a normalization convention such that p(x, x) gives

the actual particle density (in units of particles per cm 3 , for example). Thus, the definition

of the density operator is subtly changed from the probability distribution for an ensemble

of identical single-particle systems to the occupation factor for a system composed of

many noninteracting particles. One of the consequences of this is that Maxwell-Boltzmann

statistics naturally follow from this picture. Therefore, the models to be developed are

appropriate for dilute systems, and such effects as Fermi degeneracy or correlation effects

must be incorporated in the form of co-rection terms.

For a system descirbed by a simple single-particle Hamiltonian,

h2 02
H = + v(), (2)

the time evolution of the density matrix is given by the Liouville-von Neumann equation:

ihL' [H,p] Lp

h2 /92 02

-2 ( - aXo2) p + Mx) - V(X')J p, (3)

where H is the Hamiltonian and £ is the Liouville superoperator. The simplest approach

to modeling the behavior of open systems is to apply the Liouville equation to a finite
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spatial domain representing the system of interest and to apply boundary conditions which

model the openness of the system. The difl3culties and ultimate success of this approach

involve the effect. that such boundary conditions have upon the properties (particularly

the eigenvalue spectrum) of the Liouville superoperator. Zwanzig [20] has presented an

excellent discussion of the properties of superoperators (or tetradics). However, the present

analysis requires a somewhat different group of expressions, so the subject will be developed

here.

The density operators which represent the state of a statistically mixed system them-

selves form a linear vector space analogous to the space of pure quantum states represented

I)y wavefunctions. A linear combination of density operators might be used to describe the

results of superposing two partially polarized beams of particles, for example. Anything

which generates linear transformations oil a density operator [such as the right-hand side

of the Liouville equation (3)] is a superoperator. In a finite, discrete system with N states.

a wavefunction will be a vector (a singly-indexed object) with N elements, a density op-

erat(,r will be a matrix (a doubly-indexed object) wi+h N 2 elements, and a superoperator

vill be a tetradic (a quadruply-indexed object) with N 4 elements. Superoperators are iso-

1 x'rthic to ordinary operators, but to define concepts such as Hermiticity or unitarity of

s.uiU'ol)erators, we must have a definition for the inner product of two ordinary operators.

The simplest definition is

(AIIB) = Tr(AtB), (4)

wh.r, 4 and B are operators and the notation (11) is introduced to indicate expressions in

Ole linear space of operators. It is easily shown that this satisfies the axioms [21] defining

an iliner product on a complex vector space. Then a Hermitian superoperator R satisfies

(Aj[HB) - (H-L41B)

anil a unitary superoperator U satisfies

(IAIIUB) = (A11B). (6)

S pero perators are usually derived from ordinary quantuim observalble operators by

formiIg tlie c)mnutator or anti-commutator with the operator being acted upon. For an
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operator C let us denote these superoperators

C(_)A = CA- AC, (7)

C(+)A = I[CA + AC]. (8)

If C is Hermitian (Ct = C) the Hermiticity of C(-) and C(+) follow immediately:

(C(_jAB) = Tr [(CA - AC)' B] Tr (AtCtB - CtAtB)

=Tr (AtCB - CAtB) Tr (AtCB - AtBC) (9)

= Tr [At (CB - BC)] (AjIC(_)B),

and similarly for C(+). The Hermiticity (or lack thereof) of the Liouville superoperator is

the critical issue in formulating a kinetic model of open systems.

4 Time-Reversible Open System Model

To describe the behavior of an open system, we will consider an approach in which the

spatial domain is considered to be finite, corresponding to the extent of the system, and

boundary conditions axe applied which permit particles to pass into and out of the system.

The first model we will consider employs time-reversible boundary conditions which are

plausible, but which we will ultimately see to be unphysical [22]. The reason for examining

this model is that it helps to define the conditions that a physically reasonable open-system

model must display.

To provide the motivation for the first model, let us consider a spatially uniform

particle gas of infinite extent, -oo < x < oo, and take the open system to be the finite

region 0 < x < 1. The thermal equilibrium density matrix for a uniform gas may be

obtained by integrating the Bloch equation [23]

1peq/090 = -Hpeq. (10)

The solution Preq (for free particles in equilibrium)

Pfeq(XX') V 22 exp [- (2 )(-)+ 
]()
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where the normalization is such that Pfeq(X,X) gives the number of particles per unit

length and yi is the chemical potential. Now if we arbitrarily impose boundaries along

the lines x = 0, x = 1, x' = 0, and x' = 1, what boundary conditions would pf,- satisfvy?

Note that the dependence is only upon (x - x'), so that Op/8x = -Op/Ox'. Thus, in this

particular case p obeys the homogeneous boundary condition

19 0 \ 1

- Tz + x) = 0. (12)

Is (12) the appropriate boundary condition for a general open system? Let us explore

some of its consequences. Suppose at time t = 0 we apply a uniform force field F to the

particle gas. The solution to the Liouville equation (3) over the infinite domain and with

initial condition (11) describes an accelerating gas and is given by

Pacc-(X,X;0= pf.,(x,x')exp ) ( - X') (13)

Now Pacc also obeys (12), so it is also the solution to (3) over the finite domain subject to

boundary condition (12).

A more general consequence of boundary condition (12) is that the particle densities

at the boundaries, p(O, 0) and p(l, 1), remain constant as the density matrix evolves with

tine. To demonstrate this, note that we can factor the hyperbolic operator in the Liouville

equation (3) derived from the kinetic energy terms as

2 C a 7, a b "(14)

The boundary condition assures that the second factor in (14) is zero along the boundaries.

and along the diagonal the potential term is zero. Thus, Op(O, O)/at = 0 and Op(l, 1)/Ot =

0, the boundary densities do not change. This might be interpreted as the behavior of a

lare,, reservoir with a fixed particle density (or fixed pressure if the temperature is also

fixeI). Thus. the boundary condition (12) provides a plausible model for an open systen.

II fact, the Liouville equation (3) subject to the boundary condition (12) generates

;II ,uiphysical solution in the form of exponentially growing particle densities when it is

aipllil to more general potentials which do not have the symmetry of the uniform field
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[22]. The nature of the time-dependent solutions (whether they are growing, decaying,

or oscillatory) depends upon the cigenvalue spectrum of the Liouville superoperator (the

definition of which requires both the differential operator and the boundary conditions).

The problem with the growing densities (and ultimately the identification of the correct

model) is a consequence of opening the system, which violates the Hermiticity of the

Hamiltonian operator and of the Liouville superoperator. Recall the proof [24] of the

Hermiticity of the Hamiltonian (2). It proceeds by invoking Green's identity to transpose

the Laplace operator, which leaves a surface term. The precise expression is

Jv(H - Ht)d3x - j d2s, (15)

where V refers to the volume of the domain, S is its surface, and j is the current-density

operator. One maintains the Hermiticity of the Hamiltonian by choosing basis functions for

which the the surface integral is identically zero: states well localized within the domain,

and stationary scattering states (or periodic boundary conditions) for which the incoming

and outgoing currents cancel. Because the total number of particles in an open system can

change in response to externally imposed conditions, such a basis set is too restrictive.

The violation of the Hermiticity of the Liouville superoperator follows directly from

that of the Hamiltonian. This leads to eigenvalues of the Liouville superoperator which

have nonzero imaginary parts, leading to real exponential behavior in the time dependence

of p. There is a different, but related, situation in which such behavior is desired (and in

fact necessary): the case in which motion is damped by dissipative interactions. A specific

example is the ohmic dissipation associated with normal electrical conduction in solids.

Dissipation has been a very widely studied phenomenon, at all levels from fundamental

statistical physics [2] to the engineering properties of specific materials [25]. In the spirit

of the present treatment, however, let us take an extremely simple model of dissipation,

which we will use to study the relationship between openness and damping. This model is

simple Brownian motion as described by the Fokker-Planck or Kramers equation (26,27].

It is classically valid in the limit that the particles of interest are weakly coupled to an

ideal reservoir. Caldeira and Leggett [271 have studied the quantum-mechanical derivation
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of this equation and have shown it to be valid at higher temperatures. In terms of p the,

Fokker-Planck equation may be written

-p _-1 - Dp, (16)

at i h

where V is a damping superoperator. The Fokker-Planck expression for D is

DP = - x (P+ ;-- (x - X T) (17)

where -y is the damping rate. The first term in (17) describes dissipation and corresponds

to a frictional force equal to -yp, where p is the linear momentum. The second term

describes the thermal fluctuations. An important property of V is that (Dp)(x,x) = 0,

which is required for consistency with the continuity equation. V will be used below Lo

add dissipative interactions to our open-system models.

To explore the eigenvalue spectrum of the present open-system model and those which

will be investigated later, let us consider a finite-difference approximation to the Liouville

equation (3) which reduces £ to a finite matrix whose eigenvalues may be readily computed.

f he position coordinates x will be taken to be elements of a uniformly spaced mesh:

{.rj xj = jAforj = 1,2,... ,N }. The dependent quantities such as the wavefunction

and density matrix then take on discrete values also, which will be denoted by Q'j = 11,(xj),

11(l p,, = p(xi, xj). Using the simple finite-difference approximation (0 2V/O.r2 )= (C',-_ -

2 vi + !,+i )/2, the Hamiltonian (2) becomes

h2

Hij -2 (25ij - ilj - 6+l,j) + , (S)

for i, j not on one of the boundaries. To incorporate the boundary conditions, it is best

to think of adding an additional mesh point at each end of the domain (points .r0 and

• Nf), and specify the value of the wavefunction oii those points. For exmnple, to apply

the homogeneous Dirichlet conditions for a particle in a box, we would set <'0 = 0 and

!'N+J = 0. Inserting these conditions into (18) completely defines the matrix Hi, for

1 < i,j < N. Similarly, if we wanted to apply Neumann conditions 0'/0.x = 0, we would

set
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Writing the Liouville equation (3) on the finite-difference basis gives

h= Ci3;kLPk, (19)

where the tetradic nature of C is made explicit. This discrete representation of C may be

derived from (18) and is

h2

Cj3 k- 2rnA2 (- -,k., - bi+I,kbj1 + bik 6j-1,1 + bik6 +,) + (vi - vj) 6ikb31. (20)

Again, the elements adjacent to a boundary require special attention.

To evaluate the eigenvalues of C and other superoperators, we must map the tetradic

onto an ordinary matrix, so that conventional eigenvalue algorithms may be applied. To do

so for the finite, discrete case, we may map the density matrix p onto a singly subscripted

vector of dimension N 2 by pij -+ Pm with m = (i - 1)N + j. (This kind of expression is

well known to computer programmers as the means by which matrices are mapped into

the linear address space of a computer.) Note that with this mapping the inner product

between two operators (4) becomes the ordinary inner product between two vectors. The

mapping of the tetradic C onto an N 2 x N 2 matrix follows immediately. The matrix

representing C was actually constructed for N = 8 (resulting in a 64 x 64 matrix for C) using

the potential illustrated in Fig. 1. The fir;t case considered was a closed system with no

damping. This model was obtained by simply applying the particle-in-a-box (homogeneous

Dirichlet) boundary conditions to the Liouville operator (20). The eigenvalue spectrum

which results is shown in Fig. 2(a). All of the eigenvalues are purely real, as expected

from a Hermitian superoperator.

In the second case the model system is taken to be closed, but damped. The Fokker-

Planck damping operator (17) may be written in discretized form as

-/MA( IVA (i - J)[26 ik j. - bi-I,k6 jk - bik 6
1+l, for i > j

Dij mA= WF-(i-j) bik6j + - (21
2 (jh2  ( - i)[26ik6,l - 6 i+ ,k6jk - 6ikj-l,l for i < '

This form preserves the important properties of D. To illustrate the effect of dissipation

on the spectrum of (C - ihD), the zero temperature limit (f -- oo) was taken and the
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damping constant -y = 0.01 x (h/2mA 2) was used. The resulting eigenvalue cpectrirn is

shown in Fig. 2(b). Negative imaginary parts have been introduced into all the eigenvalues

(except possibly one eigenvalue which is equal to zero within the numerical roundoff error).

These negative imaginary parts lead to damped motion, as expected.

Now with this background we can consider the case of the open-system boundary

conditions (12). The simplest finite-difference approximation for the condition (12) is

x 'p +9p [A=(p+l,j - p ) + 1 (p - Ptj- = (P,+i, - Pii-i) =0 , (22)

for i or j equal to 1 or N. Thus, the open-system Liouville superoperator L(or) (for open

system, reversible) is obtained by inserting boundary values pio = pi+i,, and PN+l,j =

P.\,j-I (and the expressions obtained by transposing the indices) into (20). For the sake of

completeness, let us write down the elements of £(or) which are affected by the boundary

co(l(litions:

(or) h___+(V

C1I;kI = 2mnA 2  
V1,m~b, '~6 ,)±(,-v) bik

611.

'C(or) h2

l;k 2mA (-
6

2,k 3 J + 6 1'kb-l't) + (VI - vj) 6 1,k6 j.

(or) 
h2

iN;kl 2mA 2 (- 6 i +,k6N1 + 6ikN-,k) + (vi - VN) 
6 ikNl.

(or) h2

;k = -- 2A 2 (-bN-l'k 6
2 1 + 6 Nk 6 j+l,1) + (vN - Vj) 6 Nk:jl.

The non-Herniticity of £(or) follows from these expressions. For example, (C t;,-lr)

- (2/(2rA 2 ), but £!orj:,,l = 0. What has happened is that boundary conditions caused

e'lements of £ to be canceled in a way which breaks the Hernitian symmetry. The resulting

cigenvalue spectrum is plotted in Figure 3(a). The non-Hermiticity of £(or) leads to some

cigenvalues with nonzero imaginary parts. It is apparent that these eigenvalues occur in

cntplex conjugate pairs, with both positive and negative imaginary parts present. Thi.s i

a consequence of the time-reversal symmetry of both the Liouville equation and the opci-

syvstem lboundary conditions (12). The eigenvalues with positive imaginary parts pro(lhc'

growing exponential solutions to the Liouville equation, which would prevent any atproaclh

to steady state. This open-system model is thus physically unacceptable.
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One might speculate that the problem of growing solutions could be due to the absence

of damping in the model. To test this, let us add in the Fokker-Planck damping term (21)

as we did for the closed-system model. With the same damping constant [-Y = 0.01 x

(h/2mA 2)] as before, the resulting eigenvalue spectrum for (C(or) _ ihD) is that shown in

Figure 3(b). The addition of damping clearly does not solve the stability problem because

it does not remove the positive imaginary parts. In fact, a larger damping constant does

lead to a stable model, as shown in Figure 3(c), where -y = 0.03 x (h/2mA 2) was used.

All the eigenvalues now have negative imaginary parts, except for a doubly degenerate

eigenvalue at zero (which must be present because of the invariance of plu and PNN).

Thus modeling an open system by applying the boundary conditions (12) will work

only if the rate of damping within the system is sufficiently large (or, for the case of

electron transport, if the mobility is sufficiently low). The minimum acceptable damping

rate depends upon the magnitude of the imaginary parts of the eigenvalues of C(or) for

the undamped system, which in turn depends upon the form of the potential. In fact, the

potential of Figure 1 was chosen because it produces larger imaginary parts than potentials

with greater symmetry. All this adds up to a very unsatisfactory formulation for an open-

system model. The problems may be traced to the time-reversal symmetry of the boundary

conditions. To obtain a proper formulation, this symmetry must be broken.

5 Irreversible Open-System Model

To provide a physical motivation for the idea that openness necessarily involves time-

irreversibility, let us consider another example system drawn from electronic technology,
the vacuum thermionic device ("vacuum tube" or "valve") [28]. These devices were made

by introducing two or more metallic electrodes into a vacuum through which electrons

could be transported without dissipation. When a voltage was applied between anode

and cathode (and the cathode heated to thermally excite electrons into the vacuum), a

nonequilibrium steady state would be established with a nonzero current flowing. Such a

nonequilibrium steady state cannot be established in a reversible (or Hamiltonian) system.
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Consider what would happen if a population of electrons were introduced into soie sort of

trapping potential in ultrahigh vacuum. The system would effectively be closed, and th(

motion of the electrons would consist of periodic (thus, reversible) orbits. Of course what

happened in the case of the thermionic vacuum tube is that electrons were accelerated by

the electrostatic field until they impacted the anode, where they lost their kinetic energy

to collisions with the electrons in the metal. Thus, the power was dissipated as heat.

However, we can infer a much broader principle from this device: Making contact to a

system in such a way as to permit particles to enter and leave (opening the system) in

itself introduces irreversibility into the behavior of the system.

Now, if the openness of the system is to be inodeled by boundary conditions applied to

the system, these boundary conditions must themselves be time-irreversible. A physically

reasonable way to achieve such irreversibility is to distinguish between particles moving

into and out of the system. It is then reasonable to expect that the distribution of particles

tBowing into the system depends only upon the properties of the reservoirs to which the

>vstemn is connected, and that the distribution of particles flowing out of the system depends

only upon the state of the system. This picture leads to a fully acceptable model of ami

()I)'l system.

To implement boundary conditions which distinguish between patricles flowing into

and out of a system, we must reexpress the Liouville equation (3) in terms of the clas-

ieal )hase space (q,p), where q in this case corresponds to the position x an(d ) is t1w

momentum. This is naturally lone by the Wigner-Weyl transformation, which transform.-

the density operator p(x, r') into the Wigner distribution function f(q, p) [29.30]. For th,

1,rc'seint plirposes, the Wigner-Weyl transformation consists of a change of independent

('coordinates to the (liagonal and cross-diagonal coordinates:

q = (.r+,r'), (231

flhowc d by a Fourier transformation with resp'ect t r. (The variables q anmd r ame ,,fici

referred to as "center of mass" and "relative" cordinates, respectively. I feel that t lis is it
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misleading terminology, because it gives the incorrect impression that one is dealing with

a two-body problem.) The variables x and x' may be expressed in terms of q and r by

x = q+r, (24)

xI = q- Ir.

Thus the Wigner distribution can be expressed as

f(q,p) = dr p(q + r, q - -r) eprlh. (25)

The Liouville equation becomes

-f - rf Op f 1- i V(q,p- p')f(q,p'), (26)
atrn .9q Th 7r

where the kernel of the potential operator is given by

V(q,p) = 2 dr sin(pr/h) [v(q+ 1-r) -v(q-- r)]. (27)

This nonlocal potential is the means by which interference between alternative paths enters

the Wigner-function formalism. The remaining part of the Liouville equation, the drift

(or streaming, or advection) term, is exactly the same as the corresponding term of ti.-

classical Liouville equation with force F:

Ofl p Ofal F Ofl (28)
Ot m Oq Op

The correspondence between the classical and quantum drift terms will be exploited in

defining the open-system boundary conditions.

To address the question of boundary conditions, first note that in the Wigner-Weyl

representation, the Liouville equation (26) is of first order with respect to q and does not

contain derivatives with respect to p. Thus, we must supply one boundary value (at q = 0

or q = 1) for eaich possible value of p. There is no need to supply boundary conditions

at any limiting values of p. The kinds of boundary conditions which are appropriate

arv illustrated in Figure 4. To implement the picture described above, that the particles

,litering the device depend only upon the state of the reserviors and that the particles
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leaving the device depend only upon the state of the device, we should apply the boundary

conditions illustrated in Figure 4(c). That is, we set

f(O,p)[>o = fbdy(p),

f(l,p)P<o = f(r)by(p), (29)

where is the distribution function of the reservoir to the left of the system and f1bdvwhr bdy d

is the distribution function of the reservoir to the right. These boundary conditions are

not invariant under time-reversal, because time-reversal would change the problem of Fig.

4(c) into that of Fig. 4(d).

To investigate the eigenvalue spectrum of the Liouville operator subject to the bound-

ary conditions (29) (which we will refer to as C(o') for open-system, irreversible), we again

construct a small discrete model. The position variable q will take th( same set of discrete

vahies that x did in the previous section: {q I = jAqforj 1,2,...,Nq }. The val-

ues of p are also restricted to a discrete set: { Pk I Pk (7rh/Aq)[(k - !-)/N; - 1] for k

1,2,..., N }. The mesh spacing in the p direction is thus Ap = (wh)/(NpAq). The choice

of the discrete values for p follows from a desire to avoid the point p = 0 and the need to

satisfy a Fourier completeness relation, which will be discussed later. For the purposes of

the present discussion, the Liouville superoperator (26) will be separated into two terms:

£(° ) = ihT + ihV, (30)

where T is the superoperator derived from the kinetic energy term of the Hamiltonian:

p of
"Tf - 9 (31)

m Oq

and V is the superoperator derived from the potential term:

(Vf)(q,p) =-- -J -V(q,p - p')f(q,p'). (32)

hi 27rh

Tli discrete version of the potential term is readily defined. First, we define a discrete

pote ltial kernel:

V,/3k = 2 sin (vN+,,- sin,_j,) , (33)
N ji=)
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where j indexes position q, and k indexes momentum p. [Notice that (33) invokes values

of vj which are outside the domain { q3 j = 1 ... Nq ). This expresses the nonlocality of

quantum phenomena and is one way in which the environment of an open system influences

the system's behavior. The values which one assumes for vj, where j < 0 or j > Nq, depend

upon the nature of the environment. If ideal reservoirs are assumed, then setting these

values equal to the potential at the appropriate boundary appears to be an adequate

procedure.] The elements of V are then:

Vjk;j'k' = - 6 jjI j,(k-kI)modNp/h. (34)

Note that the elements of V are real and that Vjk;j'k, = -Vjlk,;jk so (ih) is an imaginary

Hermitian superoperator.

The boundary conditions (29) affect the form of the drift term T because they deter-

mine the proper finite-difference form for the gradient. On a discrete mesh a first derivative

(Of /Dq)(qj) can be approximated by either a left-hand difference

(f) (qj) f(qj)-f(qj,-) (35)Oq left Aq

or a right-hand difference

(qj) =f(q)- f(q) (36)

(0Z right ( -q

(There is also a centered difference form, [f(qj+l) - f(qj- )]/2Aq, which has poor stability

properties when used to approximate a drift term.) The boundary conditions determine

which of the above difference forms must be used simply because one or the other will

not couple the boundary value into the domain. Again, let us imagine that the boundary

conditions (29) are implemented by fixing the value of f on mesh points just outside the

domain:
fo,k f(J) for Pk > 0,

Jbdyk

fNq+I,k =d) for Pk < 0. (37)

This scheme is illustrated in Figure 5. Consider Pk > 0. The boundary conditions are

specified for qo, and if this value is to be coupled into the domain, we must use the left-

hand difference formula (35) for the gradient at q1 . Consistency then requires that we
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use the left-hand difference for all qj (for Pk > 0). Similarly, we must use the right-hand

difference (36) for Pk < 0. In the context of hydrodynamic calculations such a difference

scheme is called an "upwind" or "upstream" difference and is known to enormously enhance

the stability of a computation [31]. It has also been used in neutron transport calculations

at the kinetic (phase space) level [32]. The elements of T are thus:

_k;I Pk bkk' X i ij+1' - .j.j, for Pk < 0 (38)

nAq L bj,' - bj-,,j, for Pk > 0

The terms TI,,k;O,k and TNq,k;Nq+1,k couple to the fixed boundary values of f and are thus the

coefficients of inhomogeneous terms and are not strictly elements of T. (In particular, these

terms are not included in the eigenvalue calculation because eigenvalues are properties of

homogeneous linear operators.)

The eigenvalue spectrum for £(Oi) constructed from (30), (34), and (38) is shown in

Figure 6. The potential of Fig. 1 was used, with Nq = 8 and Np = 8. All the eigenvalues

of £(oi) have negative imaginary parts. Thus, the time-dependence of f contains only

decaying exponentials, so the model is stable. It has been successfully employed to model

the behavior of resonant-tunneling semiconductor devices [33,34].

The stability of this model follows from the boundary conditions (29) and does not

depend upon discretization. To demonstrate this, let us consider the expectation value of

(C(°i)/ih) with respect to an arbitrary distribution f: (ffI(C(Oi)/if). If we demonstrate

that this is nonpositive for any f, we will have shown that no eigenvalue of (,C("')/ih)

has a positive real part, because the operator itself is purely real. In the Wigner-Weyl

rep resentation the operator inner product (4) becomes simply [35]

(fl1g) - jdq fdp f(q,p)g(q,p). (39)

The expectation value can be rewritten

(fII(6(°i)/ih)Inf) = (flTl1f) + (fiVIlf) = (f iTIIf), (40)

because (flIVIIf) = 0 from the antisymmetry of V. For the homogeneous problem the

boundary conditions are f(0,p) = 0 for p > 0 and f(l,p) = 0 for p < 0. With this we can
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integrate the expectation value for T and simplify it to obtain

(flii1f) = 47hm [J '(0,(p) dp - j*Pf (1P) dpj
(YITIS -4rhm [FJ fop (o0)0

4jm pf(0 , p) dp- Pf (l,P)dp < 0. (41)

Thus, the stability of the solutions to the Liouville equation using £(o) follow from the

boundary conditions alone. The physical significance of this argument is that the particles

in an open system will eventually escape and the density will approach zero if there is no

inward current flow from the environment. There is, however, a possible exception to this

statement. If the potential has a local minimum within the system deep enough to create

one or more bound states, any particles in those states will not escape. Such states should

lead to eigenvalues of &0 which are equal to zero, although in an open system with finite

extent and finite potential depth there is presumably a nonzero rate of escape from any

such state.

Let us examine how this open system model can be usc -. Consider first the evaluation

of a nonequilibrium steady state. Note that if there are no bound states, all the eigenvalues

of C(Oi) are nonzero (see Fig. 6). Thus, C(oi] is a nonsingular operator and its inverse exists.

Therefore, the solution to the steady-state equation, (oi)f = 0, exists and is unique. The

boundary conditions are inhomogeneous, leading to nonzero terms on the right-hand side

of this equation. The steady-state Wigner function f(dc) (for "direct current") can thus be

expressed as

(d)P_fW__1j Pki

fidC)= - (,(oi)/ih)-: ,qPk' fr) _ (P(oi)/ih)-, ' mk' ,r() (42)
k'lpk,< °  mjk;Nqk r b y  klPk>01,O -- Jbdyk '

In practice one does not construct the complete inverse £(i - 1, but instead solves the

discrete linear system with a specific set of boundary values. For convenience in the

discussion of the mathematical properties of this model which follows, let us write down

the complete irreversible open-system Liouville equation in the discrete approximation:

Ofjk - Pk fh+,k - fik for pk <0 V f (43)
q Lk - f,-bk for Pk > 0 4k,
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where the notation Vk,k, --- Vj,(k-k')modNp is introduced to shorten the expressionsi to 1w

derived from the discrete Liouville equation. Solutions of this system of equations may be

used to evaluate the steady-state current versus applied force (the current-voltage curve iII

the case of electron devices), or they can provide the initial state for a computation of the

transient response of the open system [33]. The response to a small periodic perturbation

(the small-signal ac response) may also be evaluated by expanding the Liouville superop-

crator in a perturbation series, and applying the perturbation to the steady-state solution

[34).

Compare the present approach to the most commonly studied problem in transport

theory, transport in a spatially homogeneous system with a uniform driving field (as is

done to evaluate transport coefficients such as mobilities) [36,25]. This generates a math-

ematically homogeneous problem, and the solution corresponds to the null space of that

superoperator which appears in the transport equation [37). Thus, the superoperator must

be singular and, if the transport equation is linear, the solution is not unique (the total

density is not determined). What the present model demonstrates is that a proper formu-

lation of transport through a spatially inhomogeneous system leads to a mathematically

inlhoinogeneous problem, which is in many respects a good deal simpler than a similar

hoiogciWous problem. For example, because L(o'i) is nonsingular, there is no problem of

Comitpatibility relations for the boundary conditions [38]. Any choice of distribution flc-

tion on the boundary will generate a unique steady-state solution. The same considerations

apply to the evaluation of the transient response of an open system by integrating (26)

with respect to t. The solution is unique and, as we have seen, stable.

6 Mathematical Properties of the Irreversible Model

Let us examine in more detail the properties of the tine-irreversible open-systeim in( )(el

defined by (26) and (29). First, let u.i note that the Vigner function derived from a steady-

state (42) or transient solution of (26) is purely real-valued, because both the Liouville

equation (26) and the boundary conditions (29) are purely real. This implies that the
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corresponding density matrix is Hermitian, as required.

Now consider the domain upon which the model is defined, as contrasted to the domain

of a spatially closed system. This is illustrated in Figure 7. For a closed system of length

1 (bounded by an infinite potential well) the state of the system would be described by a

density matrix defined within the square formed by the long-dashed lines. The coordinate

rotation from the Wigner-Weyl transformation (23) implies that the domain of the Wigner

function maps onto the rotated square shown by the short-dashed lines in the x, x' plane.

The density operator is, in effect, a spatial correlation function. The partitioning of a

one-dimensional "universe" into a finite system bounded by two semi-infinite reservoirs

partitions the domain of the density operator into regions corresponding to various system-

system, system-reservoir, and reservoir-reservoir correlations. The domain of the Wigner

function does not coincide with that of the system-system density operator, and the Wigner

function domain extends into regions which describe system-reservoir correlations. This

may well be a necessary characteristic of an acceptable open-system model.

The use of boundary conditions which are localized in phase space naturally raises the

question of possible violations of the uncertainty principle. To address this question, let us

first note that q and p are not at all the same as x and p., = (i/h)O/Ox of the underlying

wavefunctions. In fact, q and p are the eigenvalues of commuting superoperators. These

superoperators are the anticommutator superoperators X(+) and '(+) as defined in equation

(8), which in the position-space basis are given by

P = h( _ ) =h (44)79+)-2i 9x 9x' - iar'

X(+) = 2(x + x'). (45)

It is easy to show that X(+) and P(+) commute, and it is quite obvious from Figure 7 that

they should, because they involve orthogonal directions.

How, then, does the uncertainty principle affect the Wigner function? The charac-

teristic property of a Wigner function which violates the uncertainty principle is that it

contains some states which have negative occupation probabilities. That is, the correspond-

ing density matrix will have at least some negative eigenvalues. Consider, for example, a
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Wigner function f(q, p) = 7r6(q)6(p), which clearly violates the uncertainty principle. The

corresponding density matrix is p(x,x') = 6(x + x'). If we operate on any antisymmetric

state VZ,(x) = -V,,(-x) with this density matrix, we get -0ba(x), so -1 is certainly an

eigenvalue of p, which is thus not a valid density matrix.

Therefore, to represent an acceptable mixed state, the density operator p must be

nonnegative-definite. A necessary and sufficient condition for p to be nonnegative-definite

is to have

(tlplk) > 0, (46)

for all states i,. The expectation value can be rewritten as an operator inner product (4)

by defining the projection operator Pp = 10)(4'1:

0 = Tr(Pp) = (<0*IP). (47)

Then the condition (46) can be transformed into the Wigner-Weyl representation using

(39) to obtain the condition

IdqJdpf(q,p)fO(q,p) _ 0, (48)

where fV, is the Wigner function for the pure state /, for all k. Note that the condition

that f is nonnegative definite as an operator does not imply that f(q,p) >_ 0. It is well

known that the Wigner function can take negative values [35], and that such negative

values are related to quantum interference.

Now, does the procedure of directly solving for the Wigner function under inhomoge-

neous boundary conditions lead to a nonegative-definite f(0c) operator? It does not appear

that there is a mathematical demonstration which guarantees that such is the case, and

thus it is probably possible to define a case of the present open-system model which does

violate the uncertainty principle. Let us explore some of the considerations which bear

upon the question of the nonnegativity of the Wigner function. First, note that the non-

negativity of f(d) necessarily involves the nonnegativity of the boundary values, because

f (,1) is a linear function of the boundary values as shown by (42). We can speculate that
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at least in a semiclassical case f(dc) should be nonnegative-definite if f(1) and (are non-

negative. To establish the plausibility of the idea, let us consider the classical case. The

properties of the classical Liouville equation (23) employing the open system boundary

conditions (29) are essentially the same as those of the quantum case with respect to the

eigenvalue spectrum of the Liouville operator and the stability of the resulting solutions. If

we assume that there is no damping within the system, then the classical Liouville theorem

holds within the system, and the distribution function f,1 is constant along the classical

trajectories. Any trajectory passing through a boundary must in fact pass through a

boundary twice, once as an incoming particle and once as an outgoing particle (otherwise

a density would have to build up in violation of the Liouville theorem). Such trajectories

cover the phase space, except for those regions which correspond to any bound orbits.

Because fcl is constant along a trajectory and its value is fixed by the boundary condition,

fdl must be nonnegative if and only if the boundary values are nonnegative. The values

of fc, in regions corresponding to bound states will be nonegative if and only if the initial

values of fc1 (with respect to time) are nonnegative.

How might these considerations be modified in a quantum-mechanical system? Or,

how can one get into trouble applying the open-system boundary conditions to a quantum

system? The only obvious case would be if one attempted to apply the boundary conditions

(29) in a region where there were strong interference effects, such as standing waves. We

can easily imagine that, for example, forcing f to have a large density at a boundary point

where a node in the density should occur might introduce spurious states with negative

occupation. To avoid such situations, one should apply (29) only in reasonably classical

regions of a system; in practice this means at least a thermal de Broglie wavelength away

from any abrupt feature of the potential. Note that such considerations imply that the

present open system model is appropriate for finite temperatures and that it is likely to

break down as the temperature approaches zero.

Now let us examine in more detail the mathematical structure of the model which

results from the time-irreversible boundary conditions. The discrete expression for the
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drift term T of the Liouville equation (38) has the form of a master operator, by which

I mean an operator which could appear on the right-hand side of a master equation [39]

which describes a Markovian process. Such an operator, when applied to a distribution

function, has the effect of removing some fraction of the density in each possible state and

redistributing that fraction among the other possible states. For a finite, discrete model

the properties of the matrix representing a niaster operator are:

a, < 0,

a, > 0 forij, (49)

aij 0.

In the last condition the row sum is actually equal to zero except for those states i which

can lose density to an external reservoir, as is the case for the open system model on

the outflowing boundaries. All the eigenvalues of a matrix satisfying the conditions (49)

will have nonpositive real parts. This may be readily demonstrated by appealing to Ger-

schgorin's theorem [45], which states that every eigenvalue of a matrix A lies in at least

one of the circular discs (in the complex plane) with centers at a,, and radii jj laiji.

Because a,, is negative for i = j and positive for i # j and is real for all i and j, we find

that the real part of each eigenvalue Ak must satisfy

aii - E aij 5 CJk aii + E aij - aij 0 , (50)
j#i ji j

for some i. Thus, R k 5 0 for all k. The fact that the row sums in T for the outflow

boundaries are less than zero makes T nonsingular. (In a master operator describing a

closed system, all the row sums would be zero, which implies that the determinant would

be zero, so there must be an eigenvalue equal to zero.)

The fact that the upwind discretization generates a master operator is the fundamental

reason for its success, both in the present context and in the more traditional applications of

transport theory [31,32]. Now, in the quantum case, the complete Liouville operator C (in

the Wigner-Weyl representation) cannot be a master operator, because we know that the

Wigner distribution can have negative values, which a master operator would not permit.
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As we have noted, the quantum interference phenomena enter the Wigner distribution

via the potential superoperator V. The fundamental result of the present work is the

demonstration in Fig. 6 and equations (40)-(41) that the Markovian model which follows

from the irreversible boundary conditions (29) introduces the necessary stability properties

in the quantum case as well as in the much more obvious classical case.

It is interesting to consider the form T assumes upon transformation back to a real-

space density matrix representation. For this purpose let us assume that we have defined

the Wigner function on a discrete basis with respect to q and on a continuum basis with

respect to p. Then T is given by

(T)p f(q+Aq,p)-f(q,p) forp<O(Tf)(q,p) = -A xP (X

mAq I~ f(q,p) - f(q - Aq,p) for p > 0

To transform this back to the density matrix representation, we must evaluate

(Tp)(q,r) = f_ dp _eipr/ (T f)(q,p), (52)

( ) 27rh

with (25) substituted for f. [To simplify the resulting expressions, we will express the

arguments of p in terms of q and r of equation (23) and Figure 7.] Evaluation of (52)

requires the formula j pdp ar -i) (53)

and its complex conjugate. Letting Aq approach zero we find
(TP)q'r- _r [ p___) + - __-oo _'__ ____h o L9[,pqr &op(q,r').

(Tp)(q, r) = - )(54)
m 9r aq 27 fo-r' a,2

The second term in (54) contributes an anti-Hermitian component to £. The appearance of

al2/aq 2 in this term is reminiscent of the "numerical viscosity" which is a property of some

finite-difference formulations of transport equations [44]. The principal-value integral in

(54) has the desired effect of distinguishing the sign of the momentum of the states present

in p. To see this, suppose that there is a term Ik)(kI = eikr contained in p. One could

evaluate its contribution to the integral in (54) by contour integration, closing the contour

in the upper or lower half-plane if k were positive or negative, respectively. But then
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the sign of the contribution of the pole on the real axis changes as the sign of k changes.

The anti-Hermitian term vanishes, except possibly for a surface contribution, in the limit

Aq = 0.

This description of open systems in terms of p(x, x') has not yet been developed into

a workable model. However, there is a strong motivation for doing so in the context of

semiconductor heterostructures (which provided the original motivation for this work). In

such a structure the electron energy-momentum relation can be considerably more complex

than a simple parabola, and it changes from one material to another in ways which cannot

be represented by a shift in the local potential. The simplest example of such an effect is

the change in effective mass as an electron crosses a heterojunction. This may be modeled

by writing the kinetic-energy term of the Hamiltonian as

h2 8 1 T =
2 x m*(x) Ox'

which thus locally modifies the Liouville operator for p(x, x'), but which produces nonlocal

terms in the Liouville operator for the Wigner function [40]. More complex features of

the energy-band structure can be modeled by any of a number of localized-basis-function

schemes which may require more than one basis function per lattice site. Such schemes

could easily fit into an approach expressed in terms of p(x, x'), but it is not at all obvious

how to incorporate such effects into the Wigner function.

Of more general interest is the appearance of (53) in the deductive chain leading to

(54). Such a relation, more often expressed in the form

1 _1 .(

S ir(w), (55)

is usually encountered in the analysis of irreversible quantum phenomena. It is the math-

ematical expression of the fact that a continuum of states (and therefore of frequencies)

provides enough degrees of freedom that a Poincarx recurrence can be postponed indef-

initely. It appears in the analysis of behavior in the time and frequency domains, and

is used to express the initial conditions which lead to irreversible behavior: no advanced

waves in electrodynamics [41], or adiabatic switching-on in many-body theory [42,43). In
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the present model such a relation appears in the position and momentum domains and

expresses the effects of the spatial boundary conditions.

7 Superoperator Symmetry and Conserved Quantities

One of the benefits of the time-irreversible open-system boundary conditions is that they

provide an alternative to the use of periodic boundary conditions in the analysis of quantum-

transport phenomena. The great disadvantage of periodic boundary conditions is that they

do not address the case in which the potential varies significantly across a system. That

is, their use restricts one to the study of low-field phenomena. It has been pointed out [46]

that quasi-periodic boundary conditions (i.e., periodic within a phase factor which can

be removed by a gauge transformation) are necessary if the momentum operator is to be

Hermitian on a finite domain. The present work demonstrates that far-from-equilibrium

phenomena can be modeled by employing a non-Hermitian momentum superoperator.

The connection between symmetries and conservation laws is undoubtedly one of the

great conceptual triumphs of the quantum theory. However, if one is faced with the task

of describing the behavior of a nonconservative system, the inability to modify or violate

the conservation laws becomes an obstacle to defining a realistic model, rather than a

benefit. The problem is that one wants a model whose solutions stably approach a steady

state, which requires complex-valued eigenvalues, but the expectation values of physical

observables should be real. The present analysis of open-system models demonstrates that

these conflicting requirements can be accommodated at the kinetic level, because the roles

of generating the dynamical evolution and evaluating observables are filled by different su-

peroperators. If we reexamine the models described above, we find that the dynamic effects

such as generating time evolution or moving density by current flow are described by com-

mutator superoperators, and these are the superoperators which become non-Hermitian

when one incorporates interactions with the outside world. The measurement of the expec-

tation values of observables is done by anticommutator superoperators, and these, ideally,

remain Hermitian.
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The general principles that commrutators generate motion and can be non-Hernlitiaii

and that anticommutators measure observables can be seen in two specific cases: the .li-

peroperators generated by the momentum operator and by the Hamiltonian. We hav,

already observed that the kinetic energy term of the Liouville equation (3) can be factred

into a sum and difference of derivatives (14). These are just the commutator and antic0ii-

mutator superoperators P(-) and P(+). The superoperator P(+) was defined in equatiOl,

(44). It will be Hermitian if we restrict our attention to density matrices whose off-diagoial

elements approach zero for large x - x'. Such density matrices describe normal systeill'

(as opposed to superconducting, or with some other long-range coherent effect) at noizero

temperature. In such normal cases P(+) produces the real-valued factor p in the drift termi

(31). The commutator,

(O )+0 hO a(56)) i Ox Ox, I oq'

generates the gradient in T and is thus the superoperator which is rendered non-Herinitian

by the boundary conditions (29).

We can also see the dichotomy of function between P(+) and P-) by examining the

elementary quantum continuity equation, which is conventionally written

a (9 0*J (57)

at ax

where

( J') 2mi ( V _ - * 0). (58)

By now we should readily recognize the presence of P(+) in the current density operator

.1. In fact, the current density is much more naturally regarded as a superoperator, J =

P(+)/m, and we see P(+) in the role of measuring an observable. At the kinetic level the

continuity equation is linear in terms of the density matrix p and is simply the Liouville

equation evaluated along the diagonal x = x'. To see this, we rewrite the Liouville equation

for p (3), using the factorization of the kinetic energy term (14) and the definitions of J

and 'P(-), as

( - 0X[') + ,)]JP (Xx') + [(X) - v(x')]. (59)
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If we denote the evaluation of an operator kernel for x = x' by angle brackets, (p). =

p(x, x), and apply this operation to the Liouville equation, we obtain

Np). 19(jP). (60)

which is a familiar form of the continuity equation.

The balance equations derived from higher moments of the Liouville equation are

obtained by operating on the equation with P(+) (or J) and evaluating the resulting ex-

pression along the diagon'd. This is equivalent to the phase-space procedure of multiplying

by some power of p and then integrating over all p. The first moment equation is thus

(9(Jp)." '9 a
_ =__( P_ - - (P), (61)

(9t 5X ax

where H - '+)/r is the momentum flux density. (For two- or three-dimensional models,

the direct product of the two factors of P(+) is taken and II will be a tensor [47].) Equation

(61) is identical to its classical counterpart. If we integrate it with respect to x (over the

domain 0 < x < 1), we obtain a generalization of Ehrenfest's theorem to the case of an

open system:
0'9 19v

m I(Jp) dx=- -- (p .dx+ (lip)- (ip)1. (62)

The last two terms represent the effect of opening the system: a flux of momentum density

through the boundaries of the system will affect the current flow within the system.

The same dichotomy between commutator and anticommutator superoperators can

be seen in the case of the superoperators generated by the Hamiltonian H. Of course

H-1() is just the Liouville superoperator £, and we have examined at length the need for a

departure from Hermiticity in the case of C. We have not yet encountered a need for the

anticommutator R(+). One place it does occur is in a generalization of the Bloch equation

(10) to the case of an open system. If one attempts to compute an equilibrium density

matrix as a finite segment of a much larger system by modifying the boundary conditions

on p in the Bloch equation, one quickly discovers that product Hp must be symmetrized

to obtain sensible answers. Thus, the Bloch equation becomes

aPeqlafl =- -(Hpeq + peqH) = - 1 (+)Peq. (63)
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If the time-reversible open-system boundary conditions (12) are applied to the Bloch equa-

tion, one obtains a quite useful method for evaluating the equilibrium density matrix (in

contrast to the disastrous effect these boundary conditions have upon the time evolution).

Taking into account our particle-density normalization of p, the correct Bloch equation is

aPeq/la = -(H(+) - P)Peq, (64)

with the initial condition

P.!,16=0 = b(x - x'). (65)

When this equation is integrated, the resulting densities in regions of constant potential

are found to be equal to the semiclassically expected value (m/2rh213)1/2 exp[/3O - v)]. An

example of an equilibrium density matrix obtained from such a calculation is illustrated

in Figure 8.

Here we see that again the anticommutator superoperator appears in the role of eval-

uating an observable, in this case for the purpose of evaluating the energy and thus the

occupation probability of the possible states. We might expect that, for this purpose,

H(+) ought to be Hermitian. Unfortunately, this is not the case when the boundary con-

ditions (12) are applied. While the eigenvalues of H(+) are clustered near the real axis,

they are, in general, complex. However, this does not seem to produce any unphysical ef-

fects. The results of calculations employing (64) appear to be quite reasonable, and all the

cases which I have examined can be understood in terms of the behavior of the underlying

wavefunctions, as in the case shown in Figure 8.

Having noted that 7(+) appears in the evaluation of fhe equilibrium density matrix.

we can address a point raised by Dahl [481. It is that C, by itself, does not define a unique

cigenvalue problem for a quantum system; but together with 7"H( ), it does define such a

p)roblem. This consideration enters the present problem only for bound states localized

within the open system [30]. As noted earlier, such states would lead to a nontrivial null

space of £. The occupation of such states would have to be determined as an initial

condition, such as an equilibrium distribution evaluated using H(+).

32



8 Design of Discrete Numerical Models

The present work employs numerical computation and modeling for a purpose for which

it is not often employed: as the primary mode of investigating the structure and conse-

quences of a physical theory. The more traditional mode of investigation is, of course, to

maximize the use of analytical mathematics and resort to numerical techniques only when

the opportunities for analysis are exhausted, or when it is necessary to evaluate those

complicated expressions which express an analytical solution. Any approach to describing

physical phenomena will be successful only for some subset of those phenomena and will

be otherwise ineffective. Because analytical mathematics is such a widely used tool, its

domain of success has been extensively explored; this domain, of course, consists of those

problems with sufficient symmetry to admit analytic solutions and those problems which

can be regarded as small perturbations on analytically soluble problems. For statistical

phenomena this generally means thermal equilibrium of analytically tractable systems and

its near neighborhood. Numerical simulation techniques which are nonperturbative are

better able to address more complex structures and/or far-from-equilibrium states. Be-

cause the study of discrete numerical models is not widely practiced, it is worth examining

the principles by which such models may be constructed, using the present open-system

model as an example.

It is customary to regard discrete numerical models, such as finite-difference models

for partial differential equations, as approximations to the "truth" embodied in the contin-

uum formulation of the problem [491. Such a discrete model can represent the continuum

solution only to within an accuracy which is proportional to some power of the mesh spac-

ing (or other appropriate measure of the coarseness of the discrete model). This tends to

lead one to believe that the physics of the situation can be represented only to a given

order of accuracy, so that such expressions as conservation laws (or balance equations) will

be satisfied only to that order (see, for example, [37I). A corollary to this view is that

higher-order approximations produce better models. Such is often not the case [44].

In fact, discrete models can be constructed so as to exactly satisfy most of the balance
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equations and other global conditions which govern the behavior of the real physical system.

An example of a "global condition" which is not a balance equation or conservation law is

the stability requirement that there be no eigenvalues of C with positive imaginary parts.

It is absolutely essential that a discrete model exactly satisfy this condition. On the other

hand, a model may be adequate for many purposes even if it only satisfies the momentum

balance equation to the order of some power of the mesh spacing. Thus, one can articulate

a general approach to the design of discrete models: First, identify all the relevant relations

which the model should satisfy; then, establish the relative importance of these relations;

finally, design a discretization scheme which satisfies the most important relations and

trade off the less important relations against the computational resources required. The

problem with this prescription is that there is no reliable way to ascertain that one has

identified all the relevant relations or has prioritized them correctly. Nevertheless, the

articulation of such a general approach is of value in a field which is often described as

being "an art as much as a science" [44].

To observe how a discrete model can be made to exactly satisfy conservation laws

and other global conditions, let us again consider the discrete Liouville equation with

irreversible boundary conditions defined by equation (43). As we have noted, the total

number of particles is not conserved because the system is open. However, particles can

be lost or gained only by current flow through the boundhries, so particle conservation is

described locally by the continuity equation, which is obtained from the Liouville equation

for the Wigner function (26) by integrating over the momentum p. From the normalization

convention for the density matrix and the definition of the Wigner function (25), we find

that the expressions for the density of particles n(q) and the current density J(q) at position

q are

00dp fq~
n(q) = p(q,q) = q,p), (66)

J(q) = f-dp p f (q, 1). (67)
f-x, 2 7rh -7

In integrating the Liouville equation over p, the contribution of the potential term is zero
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because of the antisymmetry of its kernel. We thus obtain the continuity equation

Oln/t = -OJaq. (68)

To obtain the continuity equation for the discrete model we follow the same steps. The

density is obtained by summing f over the discrete values Pk:

27rh -fk. (69)

In a discrete model the current density is most naturally regarded as a quantity which is

defined on each interval between adjacent mesh points, rather than on the mesh points

themselves. Thus, the divergence of the current density is a difference taken between

adjacent intervals and is associated with their common mesh point. Let us denote the

current on the interval between qj and 'l+l by Ji+1/2. Then we must define J+1/2 to be

Jj+l/2 =:-V kpk<o k E fEk • (70)

The moment of the Liouville equation becomes

q - .. ~~12) - Np Np

A +1 2 Z 1/)Z Vj;k,klfq,k'.

To show that the contribution from the potential operator V vanishes, let us consider the

sum over k first. The sum can be reordered and then V§,k can be expanded using equation

(33):
N p p 2 Nq 2 N p / 2k A A q
E Vj;k,k' E = - E sin h (j,) -(, -A.
k=i k= N j1=1 k=:

Now, this sum will vanish if the sum

Z sin Ti )
k=1

vanishes, which happens if (2NpApAq)/h = 27r, and Ap was defined so as to satisfy this

relation. This is the Fourier completeness relation mentioned earlier. Thus, the discrete

model exactly satisfies the continuity equation

-nj 1 Pi/2- 1,/2). (71)
at / q
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The only limit on the precision of this relationship is the arithmetic roundoff error, which

is generally several orders of magnitude smaller than typical discretization errors.

One begins to encounter the limits of a simple discrete model when the momentum

balance (first moment) equation (61) is considered. To evaluate the rate of change of

current density, insert the discrete Liouville equation (43) into the definition of Jj+i/2 (70).

One then obtains

9Jj+i/2  1-

27r t,2 Pk EY '4 ;k,k'fj+l,k' + Y Pk Y Vj~kk fj~k' (72)

\klPk<O k' klpk>O k'

where

r- ( (z m + 1: Z f "k (73)
A klpk<O klpk>O

Note that the requirements of consistency in the discretization scheme imply that flj,

which one might expect to depend only upon the values of f at qj, actually depends upon

the values of f at qj-l and qj+. This sort of spreading over the domain becomes worse as

higher moments are considered. Now consider the potential terms in (72). For simplicity,

let us neglect the different j indices required by the form of J and simply evaluate

P N P N P N 2 1 rj 1V i
27r : Jk=, Y I j;kokNfj,k, =I 2N A----- - vcoi)t [ =, NPf kl

(74)

where equation (33) is again used and the stuns reordered as before. Now, in the contin-

iuiin case (61) this expression reduces to (Ot,/Oq)7i. The disrete expression (74) shows a

functional of v (the first. bracketed fatctor) times ii. If we consider only the first, term of

the suin over j' and take cot oi - 1/n for saiall o, we get (Vj+i - Vj )/ 2 Aq, which is just

the centered-difference approximation to (9v/Oq. However, the other terms of the stun are

not. negligible. While 7rj '/N, is small, tlie higher ternis just. add ini more remote a)i)rox-

imations to O,/DCq. Of course, cot o approaches zero much more rapidly than 1/0 as n

approaches 7r/2. Thius, there is a natuitral cutoff of these higher terms so long as j' < N,/2.

This helps to explain the significancc of the limit, of the J' sulnlnation of (33). The value
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of N./2 was originally chosen for the upper limit of this sum on the purely empirical basis

that the results were most credible with this value, and multiples of Nq were investigated

because the summation is carried out in position space. However, most calculations have

taken N,, - Nq, so these conditions are approximately equivalent. However, the significant

result is that the momentum balance equation (61) is not satisfied exactly by the discrete

model.

Defining discrete models in such a way as to exactly satisfy the appropriate physical

laws leads to practical beneiits in the evaluation of such models. Such formulations are

very "robust" in the sense that they do not catastrophically fail when applied to cases

which are in some way severe. A particularly useful case is the model which has a very few

nodes. We have seen how such models can be quite useful in investigating the structure of

a theory. While there may not be enough degrees of freedom to accurately represent the

behavior of a realistic system, the qualitative behavior of such a model can contain useful

information. Such models require very modest computational resources, of course.

9 Conclusions

The central conclusion of the present work is that an open system, in the sense of one

which exchanges particles with its environment through spatially localizable interfaces, is

necessarily irreversible. The reasoning behind this conclusion is a reductio ad absurdum

argument. We have seen that a particular reversible model of an open system possesses

unphysical instabilities. The mathematical properties underlying these instabilities, the

existence of complex eigenvalues of non-Hermitian superoperators and the requirement that

these occur in conjugate pairs due to time-reversal symmetry, are sufficiently general that

we should expect such instabilities in any reversible model. Thus, physically acceptable

models of open systems must be inherently time-irreversible.

A particular irreversible open-system model was presented, and its stability was

demonstrated. The irreversibility of this model follows from making a distinction be-

tween particles entering and leaving the system. Similar ideas, generally applied in the
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time domain, are the basis for the established theories of irreversibility and dissipation.

The present work demonstrates that spatial boundary conditions can be used to introduce

irreversibility in a way which is very similar to that by which temporal initial conditions

do so.

The present study of the kinetic theory of open systems helps to clarify the roles of

superoperators generated by the commutator and anticommutator of a physical observ-

able. It was demonstrated that, at the kinetic level, only the commutator superoperators

should acquire non-Hermitian parts to model irreversible phenomena. Anticommutator

superoperators ideally remain Hermitian and are used to evaluate expectation values.

This work is certainly not an exhaustive examination of the theory of open systems.

Undoubtedly, many more approaches to the subject can be formulated. However, one

should note that the significant behaviors of an open system involve a strong coupling

between the system and its environment and large deviations from equilibrium within the

system. It thus appears unlikely that perturbative approaches will contribute very much

to the theory of such systems. Thus, numerical models will have to be the mainstay of

such investigations.
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Figure Captions

Figure 1. Potential used in evaluating eigenvalue spectra of Liouville superoperators in the

discrete model. This potential was chosen to have both a driving field and a barrier.

Figure 2. Eigenvalue spectra of the Liouville operator for a small model closed system with

the potential shown in Fig. 1. If the system is taken to be conservative, the resulting

eigenvalue spectrum is shown in (a). All eigenvalues are purely real, as expected. In

(b) a damping term has been added, leading to negative imaginary parts for most

eigenvalues.

Figure 3. Eigenvalue spectra for open systems using the boundary conditions of equation

(12). If the boundary conditions are changed so as to open the system, nonzero

imaginary parts are generated, as in (a). Because the boundary conditions are time-

reversible, these imaginary parts occur in conjugate pairs. If a damping term is added

as in (b), most, but not all the imaginary parts are negative. The few eigenvalues

with positive imaginary parts are sufficient to render the model unstable. Stability

can be achieved by increasing the damping rate, leading to the spectrum (c).

Figure 4. Possible boundary conditions for the Liouville equation (26) in phase space. The

points at which the boundary values are specified (indicated by a heavy line) can

be at q = 0 as in (a), at q = I as in (b), or divided between the two boundaries

depending upon the sign of p, as shown in (c) and (d). The boundary conditions (c)

are, in fact, the appropriate ones for an open system.

Figure 5. Discretization scheme for the kinetic-energy superoperator (drift term) T in the

Wigner representation. The flow of probability between mesh points is indicated by

the arrows, which also define the sense of the finite-difference approximation for the

gradient. A flow toward the right requires a left-hand difference and vice versa. This

is the "upwind" difference scheme and is uniquely determined by the form of the

boundary conditions (29).
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Figure 6. Eigenvalue spectrum for a model open system with irreversible boundary con-

ditions. All eigenvalues have negative imaginary parts, verifying that the model is

stable, despite the fact that no damping is yet included.

Figure 7. Domain of the density matrix and the Wigner distribution function. The argu-

ments of the density matrix are x and x'. The Wigner function is obtained by trans-

forming to the coordinates q and r, followed by a Fourier transform with respect to r.

The long-dashed lines indicate the system-reservoir boundaries, and they partition

the domain into regions corresponding to the various system-system, system-reservoir

and reservoir-reservoir correlations. The short-dashed lines represent the boundaries

of the domain of the Wigner-distribution-function model. Note that the Wigner

function includes contributions from regions which represent correlations with the

reservoirs.

Figure 8. Equilibrium density matrix obtained by numerically integrating the generalized

Bloch equation (64) subject to the reversible open-system boundary conditions (-2).

The potential, displayed atx,,ve, represents the sort of features which are now re-

alizable using semiconductor heterostructure technology. The chemical potential y

is indicated by the dashed line. The calculation employed parameters appropriate

for the AIGal.,As system at 77 K. The three energy barriers create two identical

"quantum wells," bounded by contacting layers. The lowest energy states in these

wells are pushed toward higher energy by size quantization, which reduces the elec-

tron density in the wells via the Boltzmann factor. The shallow peaks off the diagonal

measure the correlation between the phase the electron at different positions, and

indicate in the present case that the symmetric combination of the well states has a

greater occupation factor than the antisymmetric combination.
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Appendix E

"Vertical Electronic Transport in Novel

Semiconductor Heterojunction Structures"

[Presented at the 1987 International Conference on Superlattices,

Microstructures, and Microdevices, Chicago, August 19871
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I. Introduction

Resonant tunneling in double barrier
heterostructures, first investigated in the
GaAs/AlGaAs system by Chang, Esaki, and Tsu,'
has recently been the subject of intense
investigation. The remarkable submillimeter
wave experiments of Sollner et a12 has generated
remarkable interest and success due to
improvements in GaAs epitaxial growth
techniques. Peak-to-valley tunnel current ratios as
large as 3.9:1 at 300K, and 21.7:1 at 77K have been
demonstrated in the GaAs/AlAs system. 3

Resonant tunneling by holes,4 sequential resonant
tunneling through a multiquantum well
superlattice,5 double superlattice barrier resonant
tunneling structures,6 and resonant tunneling in
triple barrier structures 7 are only among a few of
the intriguing investigations that have been
performed.

In this paper, we present investigations on
vertical transport in a number of new systems
primarily to demonstrate the spectroscopic ability
of resonant tunneling. The ability to "engineer"
the structures allows for interesting electronic
spectroscopy, previously available only with
optical techniques. We also present results on
transport in submicron structures that are
sufficiently small in the lateral dimensions (as
well as in the vertical dimension) such that size
effects are observable.

2. Review: Quantum Well Spectroscopy and
Deep Quantum Wells

The phenomena of resonant tunneling is
characterized by the appearance of negative
differential resistance regions in the I-V
characteristics due to resonant tunneling through
the quantum well state of the double barrier
structure. Figure 1 illustrates a typical-example of
resonant tunneling in a GaAs/AIGaAs structure
grown by MBE. Experimental details have been
described previously. 6 In this case the quantum
well width and tunnel barrier height have been
adjusted such that there are two states in the well
(ground and first excited state) that will be
available to transport with the structure under
bias. The two well-defined peaks in the
characteristics of Figure 1 correspond to these
resonances. The calculated peak positions of the
structure (83 meV for the ground state and 350
meV for the first excited state are in excellent



agreement with the experimentally observed
peaks, when a series resistance of 40Q is taken into
account. Although suitably designed structures
(like the one illustrated here) are easily fit by an
effective series resistance. a more precise
determination of the peak positions demand a
detailed modeling of the accumulation and
depletion regions in the contacts. This is especially
important in view of the recent trend in these
structures; i.e., inserting undoped GaAs "spacers"
between the doped GaAs contact and the A1GaAs
barrier to prevent Si diffusion into the double
barrier region.. Figure 2 shows the shifting of the
resonant peak to higher voltages with increasing
GaAs spacer thickness, as expected.

The design of these structures need not be
limited to the simple "double square barrier" case;
in addition to being able to substitute complex
barrier shapes, 6 it has been demonstrated 8 that
the central quantum well can be replaced by a
material with higher electron affinity than the
surrounding GaAs contact regions, specifically, a
strained-layer InGaAs quantum well. Figure 3
illustrates the gradual shifting of the ground state
resonance to lower voltages as In is incorporated
into the well of a nominally identical resonant
tunneling structure. It should be noted that the
lowest voltage structure (c) has a finite zero-bias
conductance since the quantum well state has been
lowered below the Fermi level of the GaAs
contacts.

Figure 4 illustrates the effect of adding
sufficient In to the quantum well that not only
lowers the quantum well ground state below the
Fermi level, but below the GaAs contact
conduction band edge. In this case, the ground
state is hidden from transport and resonant
tunneling proceeds only through the excited states.
Notice here that the conduction band edge of the
InGaAs was lowered sufficiently to observe the
n = 3 state of the quantum well, which was virtual
in the GaAs quantum well case.

3. Tunneling from Quantized Regions

The ability to engineer peak positions in
multicomponent systems now allows us, in
general, to use double barrier structures as
spectrometers on suitably designed quantum well
or superlattice structures. Specifically, we
demonstrate here that we can perform
spectroscopy on large quantum wells placed
between different GaAs (or InGaAs) quantum well,
double barrier structures. The different resonant



positions of the peaks, tunable by In content
instead of changing the quantum well width
(which introduces other complexities),
discriminates which region of the epitaxial
structure is being examined. This insertion of
these resonant tunneling regions throughout a
complex epitaxial structure gives us a microscopic
spectrometer to examine the energy states in the
structure.

Figure 5 illustrates an experimental
embodiment of such a structure. The structure
consists of a 40A Al.2 5Ga.75As double barrier (90A
In0.5Ga 9-As quantum well) / 750A GaAs quantum
well / 40'X A1 25Ga.75As double barrier (90A GaAs
quantum well), with a n+ GaAs contact on the
other side of the GaAs quantum well resonant
tunneling structure. The large GaAs quantum well
(750A) will have a small energy splitting in
comparison to the quantum wells of the double
barrier structures (90A). In this specific case, the
GaAs quantum well resonant tunneling structure
has a n + contact region so as to provide a "source"
or "sink" of available carriers. Thus, when the
Aructure is biased such that carriers tunnel from
the large quantum well into the double barrier
structure, they will be injected from a ladder of
states in the large quantum well. For simplicity,
we will discuss results using the GaAs quantum
well resonant tunneling structure as the
spectrometer (though similar results are also
obtained from the InGaAs resonant tunneling
structure, at a different bias position). In addition,
the heavily doped contact on the right hand side
and the intrinsic region on the left hand side (in
Fig. 5(b)) create accurately the band structure
schematically illustrated in Figure 5; a more
detailed self-consistent solution of the band
structure is remarkably similar. Thus, the
intrinsic region simply acts as a lever arm for the
applied v ltage, as well as being quantized.

Figure 6(a) shows a I-V characteristic at
T=4.2K corresponding to electron injection from
the large GaAs quantum well. A series of peaks
corresponding to electron injection from the states
in the 750A quantum well through the state in the
90A quantum well are clearly observable. The
structure appears on the low bias side of the major
peak only. The experimentally observed splittings
are 59 meV, 103 meV, 143 meV, and 238 meV. No
peaks corresponding to n>4 in the large quantum
well are observed, indicative of the position of the
Fermi level in this region. The ratios of the
splittings to the ground state splitting
(1:1.74:2.42:4.03) are in excellent agreement with



calculated values (1:1.69:2.36:3.01) except for the
n=4 level, presumably due to band bending.
Clearly this technique can be generalized to more
complex regions, such as parabolic injectors to
verify equal splitting in such structures.

Now consider electron injection from the n+
GaAs region, through the 90A GaAs quantum well
double barrier structure, into the 750A GaAs
quantum well region. Below the resonant peak, the
tunneling current is a sum of elastic scattering to
available states on the other side of the structure,
and inelastic tunneling through the entire
structure or through the intermediate quantum
well state (which should be negligible at these
temperatures). Thus, no structure in the I-V
characteristic below the resonant peak should be
seen due to the large quantum well. However,
when the structure is biased beyond the major
resonant peak position, elastic scattering can then
occur via the 90A quantum well state; i.e., elastic
scattering to the 90A quantum well ground state
subband, relaxation to the bottom of this band,
then tunneling out of the structure. Thus, peaks in
the I-V characteristic should occur at biases
greater than the major resonant peak bias.

Figure 6(b) shows the I-V characteristic of this
structure at T=4.2K corresponding to electron
injection from the n+ GaAs region. There are no
observable peaks at biases less than the resonant
bias. However, a series of oscillations appear at
biases greater than the resonant bias in
accordance with the mechanism described above.
The spacings of these oscillations (-130meV) are
approximately constant, corresponding to the
asymptotic energy level spacing of a large
quantum well, and quantitatively are in good
agreement with the size of the splittings of these
levels when the asymmetry of the resonant peak
positions is taken into account. However, there is
insufficient resolution of the splitting to allow an
exact determination of the quantum numbers of
these' vels.

4. Transport through Quantum Dots

The resonant tunneling devices discussed so far
operate by virtue of the quantum size effect in the
quantum well imposed by the lower electron
affinity tunnel barriers. The dimension of the
structure in the plane of the quantum well is
essentially infinite on this scale. However,
microfabrication techniques have advanced to the
degree that lateral dimensions can approach the
dimensions determined by the epitaxial growth



layers. In this case, splitting of the quantum well
state (band) will occur due to lateral quantization
imposed by a microfabricated potential. We have
produced such structures, and have measured
transport through these laterally confined
quantum wells, i.e. "quantum dots".

The microfabrication approach used to produce
these microstructures is summarized in Figure 7.
The initial structure (substrate) is a resonant
tunneling diode structure, grown by MBE on a n +
GaAs substrate and consisted of a 0.5 micrometer-
thick Si-doped (2x10 18 cm- 3 ) GaAs buffer layer
graded to less than 1016 cm-3 , a 50A undoped GaAs
spacer layer, a 50A Alo.27Gao 7 3As tunnel barrier,
and a 50A undoped GaAs quantum well. The
structure was grown to be nominally symmetric
about a plane through the center of the quantum
well. Large area (2 micrometers x 2 micrometers)
devices fabricated in a conventional manner
exhibit a 1.6:1 peak to valley tunnel current ratio
and a current density at resonance of 1.6 x 104
A/cm- 2.

E-beam lithography was used to define an
ensemble of quantum dots (including single and
multiple dot regions) nominally 0.25, 0.15, and 0.1
micrometer in diameter, in a bi-layer PNVLMA resist
spun onto the structure. This pattern was then
transferred to a AuGe/Ni/Au (500k / 150k / 600k)
dual-purpose Ohmic top contact and etch mask by
lift-off. Highly anisotropic reactive ion etching
(RIlE) using BC13 as an etch gas defined columns in
the structure. A SEM of one of these etched
structures is seen in Figure 8. To make contact to
the tops of the column(s), an insulating polyimide
was spun on the wafer, cured, and then etched back
by oxygen RIE until the tops of the columns were
exposed. A gold contact layer was lifted off which
provided bonding pads for contact to either single
dots or arrays of them.

Figure 9 shows a I-V characteristic of a single
quantum dot resonant tunneling structure at
100K. The lateral dimensions of this single dot
structure is 0.15 micrometers x 0.25 micrometers.
The structure clearly shows NDR, though the peak
to valley is degraded from the large area structure,
probably due to process damage. The I-V clearly
exhibits a "noise" that is far above the system
background noise. The origin of this noise is the
so-called "single electron switching" phenomena 9

that has been observed in narrow Si MOSFET
wires. Traps in or near the narrow conduction
channel and are near the Fermi level can emit or
capture electrons with a temperature-dependent
characteristic time. The lowering of specific traps



through the Fermi level is clearly evident (at .6V,
.8V through .85V, 1.OV through 1.1V). This
phenomena is seen up to room temperature
(though for a different set of traps), and is usually
"frozen out" by 4.2K.

Figure 10 shows a time-dependent trace of a
similar device at fixed bias voltage. The switching
between two discrete states is evident. In all
regions of Figure 9 where a trap is biased near the
Fermi level, switching similar to Figure 10 is
observable, provided that the temperature is in the
correct range. The switching rates for different
traps are in general unique, and are dependent on
temperature and bias. Under the appropriate
temperature/bias conditions, a superposition of
these phenomena can be seen (for example, see Fig.
9, -- 1.1V).

If the mechanism for the telegraph noise is
scattering from traps of varying occupancy as
suggested, then the trap(s) should have a well-
defined activation energy measurable by the
switching rate between discrete values as a
function of temperature. This was measured by
taking the same device as shown in under
constant bias (specifically, the same as for Figure
10) and varying the temperature. Figure 11 shows
that the behavior is indeed activated, with a
measured activation energy of of 280 meV for this
particular trap.

It is curious that telegraph noise can be seen for
the physical dimensions (0.15 micrometer x 0.25
micrometer) of the structure. 9 However, the effects
of depletion at the etched mesa side surfaces due to
pinning of the Fermi level has not been taken into
account. Taking the observed current at resonance
and assuming that the current density must be the
same as in the large area device (assuming that
the switching is a perturbationy, we calculate that
the effective (circular) conduction path diameter is
-500A, consistent with the observation of the
switching phenomena. This implies a depletion
layer of approximately 500A. However, transport
and switching phenomena have also been observed
in an array of dots 2000,k by 1000A suggesting a
depletion layer smaller than 500A.

At these lateral dimensions, splitting of the
quantum well resonance due to laLeral size
quantization imposed by the depletion depth
potential should be observable. Very recent results
of one of these structures, e pitaxially similar with
lateral dimensions of 1000A round, is shown in
Figure 12. The I-V characteristics show well
defined negative differential resistance peaks at
low temperature, which disappear at high



temperature. L'his is due to resonant tunneling
through the 0-D density of states in the quantum
"dot", and is the first indication of lateral
quantization in all three dimensions in a
semiconductor quantum well. Detailed
measurements of this structure are in progress. 10

5. Summary

The range of new phenomena in the vertical

transport of heterostructure and microfabricated
heterostructure systems is rapidly expanding. The
above provides some techniques useful for the
design and spectroscopy that is available in these
structures. We also have described the techniques
for the fabrication of n-icrostructured multilayers,
which already show interesting size effect
phenomena and the first indication of lateral size
quantization to all three dimensions in a
semiconductor quantum well. These structures
should provide a unique laboratory for the
investigation of localization and quantum size
effect phenomena.
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r'IGURE CAPTIONS

Figure 1. 1 V characteristics of a IOOA GaAs
quantum well / double Al.3 Ga.7 As barrier
structure at 77K. (a) Characteristic demonstrating
the ground and first excited state. (b) An expanded
scale showing the ground state resonance.

Figure 2. Resonant voltage position (T=77K) as a
function of GaAs undoped spacer layer thickness
for a 50A GaAs quantum well / 50A A1 3 Ga.7 As
double barrier structure. The spacer lies bet:,veen
the AlGaAs barrier and the n+ GaAs contact
(ixOl1S cm-3), which was graded to 1x10 16 cm-3

over -200A prior to the spacer.

Figure 3. I-V characteristics of a 50A InyGa 1 -,As
quantum well / double 40A Al.25 Ga. 75As barriier
structure at 77K. (a) y=O (right hand current
scale). (b) y=0.03 (left hand current scale). (c)
y = 0.08 (left hand current scale).

Figure 4. (a) I-V characteristics of a 85A GaAs
quantum well / double 35A AlAs barrier structure
at 77K. The ground and first excited state are
visible. The inset is an expanded view of the
ground state resonance. (b) I-V characteristics of a
85A In.IGa.9As quantum well / double 35A AlAs
barrier structure at 77K. The ground state is
hidden, and the first (n=2) and second (n=3)
excited states are visible. Note the absence of the
low bias resonance seen in (a).

Figure 5. (a) Schematic of the large GaAs quantum
well / resoiant tunneling spectrometer structure.
(b) Bias condition for injection from the large GaAs
quantum well.

Figure 6. (a) I-V characteristic at T =4.2K of the
large GaAs quantum well / double barrier
structure, corresponding to electron injection from
the 750A GaAs quantum weli. The structure on
the low bias side of the major peak is due to
tunneling from the levels in the 750A GaAs
quantum well. (b) I-V characteristic at T=4.2K of
the large GaAs quantum well / double barrier



structure, corresponding to electron injection from
the n+ GaAs contact. The structure on the high
bias side of the major peak is due to tunneling into
the levels in the 750A GaAs quantum well.

Figure 7. Schematic of fabrication sequence of
quantum dot devices. (a) GaAs/AlGaAs double
barrier structure starting material, with n + GaAs
contacts on top and bottom. (b) E-beam definitior
in PMMA of dots (singular or multiple; 3 showrn
here). Evaporation of AuGe/Ni/Au Ohmic contacts.
(c) Liftoff. BC13 reactive ion etch to define pillars
with "dots". (d) Planerization with polyimide.
(e) Etchback to Ohmic top contacts. Evaporation of
Au bonding pads.

Figure 8. Scanning electron micrograph of a single
anisotropically etched column containing a
quantum dot. The marker is 0.5 micrometer.

Figure 9. I-V characteristics at 100K of a single
quantum dot which has lateral dimensions 0.25 x
0.15 micrometer.

Figure 10. Time dependent resistance fluctuations
at a fixed bias of a single quantum dot. T = 180K.

Figure 11. Measurement of the activation energy
of the trap responsible for the telegraph noise seen
in Figure 10.

Figure 12. I-V characteristic of a single quantum
dot nanostructure at 4.2K, showing resonant
tunneling through the discrete states of the
quantum dot.
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Appendix F

"Observation of Discrete Electronic States in a

Zero-Dimensional Semiconductor Nanostructure"

[Published in Physical Review Letters 60, 535 (1988)].
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Observation of Discrete Electronic States in a Zero-Dimensional Semiconductor Nanostructure

M. A. Reed, J. N. Randall, R. J. Aggarwal, (a) R. J. Matyi, T M. Moore, and A. E. Wetsel(b)

Central Research Laboratories, Texas Instruments Incorporated, Dallas, Texas 75265
(Received 2 October 1987)

Electronic transport through a three-dimensionally confined semiconductor quantum well ("quantum
dot") has been investigated. Fine structure observed in resonant tunneling through the quantum dot cor-
responds to the discrete density of states of a zero-dimensional system.

PACS numbers. 73.20.Dx, 72.15.Rn, 72.70.+m, 73.40.Gk

Carrier confinement to reduced dimensions in a semi- studied ranged from 0 to 0.08. Large-area (- 2 pm
conductor was first demonstrated in GaAs-AIGaAs square) mesas of a typical structure (x -0.08) fabricat-
quantum wells by electronic I and optical 2 spectroscopy ed by conventional means exhibited two resonant peaks:
in 1974. This achievement had led to numerous impor- a ground state at 50 mV with a peak current density of
tant developments in basic semiconductor physics and 30 A/cm 2, and an excited state at 700 mV with a peak
device technology. Structures produced by ultrathin-film current density of 8.1 X 103 A/cm 2, both measured at 77
growth are inherently two dimensional, and thus investi- K.
gations have been largely confined to heterostructures Electron-beam lithography defined an ensemble of
where only the carrier momentum normal to the inter- AuGe/Ni/Au Ohmic metallization dots (single- or
faces is quantized. Recent advances in microfabrication multiple-dot regions), nominally 1000-2500 A in diame-
technology 3-5 have allowed the fabrication of structures ter, on the top n +-GaAs contact by use of a bilayer poly-
with quantum confinement to one dimension ("quantum methylmethacrylate (PMMA) resist and liftoff. The
wires") 6' 7 and have initiated intriguing investigations metal-dot Ohmic contact served as an etch mask for
into one-dimensional physics, such as localization and highly anisotropic reactive-ion etching with BCI3 as an
electron-electron interaction,' 9 single-electron trap- etch gas, defining columns in the epitaxial structure. A
ping, 0 and universal conductance fluctuations."' It is scanning electron micrograph of a collection of these
expected that the realization of semiconductor hetero- etched structures is seen in Fig. I. To make contact to
structures with quantum confinement to zero dimensions the tops of the columns, a planarizing and insulating pol-
("quantum dots") will yield equally intriguing phenome- yimide was spun on the sample and then etched back by
na. Attempts to observe confinement optically have been 02 reactive-ion etching to expose the metal contacts on
reported recently,1'2 ' 6 but the spectra do not show the the tops of the columns. A gold contact pad was then
characteristic structure of a series of isolated peaks ex-
pected from a zero-dimensional electron-hole gas. We
have therefore studied such structures by electronic
transport, and in this Letter present evidence for elec-
tronic transport through a discrete spectrum of states in
a nanostructure confined in all three spatial dimensions.

The approach used to produce quantum-dot nano-
structures suitable for electronic transport studies was to

confine resonant-tunneling heterostructures laterally
with a fabrication-imposed potential. 17 This approach
embeds a quasibound quantum dot between two
quantum-wire contacts. The initial molecular-beam-
epitaxial structure is a 0.5-pum n +-GaAs contact (Si
doped at 2x l0 cm -, graded to approximately 1016
c111 -3 over 200 A, followed by a 100-A undoped GaAs
spacer layer), a 40-A Al0 2sGao75 As tunnel barrier, and
a 50-A undoped lnGa, -,As quantum well. The struc-
ture was grown to be nominally symmetric about a plane
through the center of the quantum well. Employing a FIG. I. A scanning electron micrograph of various size
lnGaj - ,As quantum well allows one to lower the quan- GaAs nanostructures containing quantum dots. The dark re-
tum well states with respect to the conduction-band edge gion on top of the column is the electron-beam defined Ohmic
while keeping the vertical dimensions fixed; x values contact and etch mask. The horizontal bars are 0.5 pm.
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FIG. 2. Schematic illustration of the vertical (a-a') and lateral (b-b') potentials of a column containing a quantum dot, under
zero and applied bias. O(r) is the (radial) potential, R is the physical radius of the column, r is the radial coordinate, W is the de-
pletion depth, OT is the height of the potential determined by the Fermi-level (EF) pinning, and Ecr is the r-point conduction-band
energy.

evaporated over the top(s) of the column(s). The bot- pinning. When the lateral dimension is reduced to 2W
tom conductive substrate provided electrical continuity, or less, the lateral potential becomes parabolic though

Figure 2 schematically illustrates the lateral (radial) conduction through the central conduction-path core is
potential of a column containing a quantum dot, and the pinched off.
spectrum of three-dimensionally confined electron states A structure that satisfies both constraints was achieved
under zero and applied bias. A spectrum of discrete with a Ino.0sGa0.92As quantum-well double-barrier struc-
states will give rise to a series of resonances in transmit- ture with a physical (lithographic) lateral dimension of
ted current as each state drops below the conduction- =:1000 A. Figure 3 shows the current-voltage charac-
band edge of the injection contact. To observe lateral teristics of this (single) microstructure as a function of
quantization of quantum well state(s), the physical size temperature. If we assume that the current density
of the structure must be sufficiently small that quantiza- through the structure is approximately the same as in a
tion of the lateral momenta produces energy splittings large-area device, measurement of the peak resonant
> kT. Concurrently, the lateral dimensions of the struc- current implies a minimum (circular) conduction-path
ture must be large enough that pinchoff of the column by core of 130 A for this structure; thus, a lateral parabolic
the depletion layers formed on the sidewalls of the GaAs potential approximation is valid. This implies a de-
column does not occur. As a result of the Fermi-level pletion depth of -430 A at the double-barrier structure,
pinning of the exposed GaAs surface, the conduction in reasonable agreement with that expected from the
band bends upward (with respect to the Fermi level), known doping level (at 2x 10 8 cm - , W -220 A) and
and where it intersects the Fermi level determines in real with the realization that W will enlarge in the undoped
space the edge of the central conduction-path core. We double-barrier region. The splitting of the discrete elec-
can express the radial potential 0(r) in the column [for tron levels in the quantum dot is then
(R - W) < r 5 R], assumed axially symmetric, as AE -(2T/m * ) I/2 hz/R, (2)

0,(r) --1 [ -(R - r)/Wl 2, (Il)
where m* is the effective mass of the electrons in the

where r is the radial coordinate, R is the physical radius quantum well (linearly extrapolated between that of
of the column, W is the depletion depth, and Or is the GaAs and InAs) and R is the physical radius. With a
height of the potential determined by the Fermi-level Fermi-level pinning of 0.7 eV, the states should be split
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tial in the lateral dimensions) on the nanometer scale
We have performed electrical spectroscopy in the form

// - - of resonant tunneling through the spectrum of electron
/ 15 states, and observe resonances that correspond to the

///X. ' density of states of a zero-dimensional system.
/ ,We are indebted to R. T. Bate, W. R. Frensley, J. H.

//// 7 10 Luscombe, and R. H. Silsbee for helpful discussions and
// ' analysis, and to R. K. Aldert, D. A. Schultz, P. F. Stick-

"ney, and J. R. Thomason for technical assistance. This
- . research was supported in part by the U.S. Army

• ~ -Research Office and the U.S. Office of Naval Research.
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FIG. 3. Current-voltage characteristics of a single
quantum-dot nanostructure as a function of temperature, (a)Present address: Massachusetts Institute of Technology,
showing resonant tunneling through the discrete states of the Cambridge, MA 02139.
n -2 quantum well resonance. The arrows indicate the voltage (b)Present address: Harvard University, Cambridge, MA
positions of the discrete states for the T - 1.0-K curve. 02138.
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Observation of single electron trapping phenomena in heterostructure

quantum wires

A. E. Wetsel,(a) M. A. Reed, J. N. Randall, R. J. Aggarwal,(b) R. J. Matyi and

T. M. Moore

Central Research Laboratories

Texas Instruments Incorporated

P. 0. Box 655936, MS 154

Dallas, Texas 75265

ABSTRACT

Discrete level resistance "telegraph noise" fluctuations have been

observed in vertical GaAs microfabricated heterostructure quantum wires

due to single electron trapping at defects. Several traps are observed and

seem to work independently. The trapping rate, or the capture and escape of

electrons from the defects, varies with temperature and is thermally

activated. It is shown that the mechanism is fluctuation of the potential

barrier in the vertical heterostructure. The change in inelastic tunneling due

to scattering from a single trap is measured.

PACS numbers: 72.15.-v, 72.70. +m, 73.40.Gk, 73.40.Lq.
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Advances in device fabrication have made it possible to study quantum

effects in extremely small electronic devices. The effects of individual defects

upon electronic transport through the device can be observed in detail.

Recently, there has been a great deal of interest in telegraph noise exhibited

in electronic microstructures such as metal-oxide-semiconductor field-effect

transistors (MOSFET's)1,2 and MOS tunnel diodes. 3,4 The discrete resistance

fluctuations of the device are thought to be due to the trapping and escape of a

single electron at a defect in a tunnel barrier or in an inversion layer. In this

paper we report the observation of resistance fluctuations due to single trap

states in microfabricated GaAs heterostructure quantum wires. Analysis of

the trapping behavior in this structure allows us to determine if the effect is

due to scattering by defects in the conduction channel or fluctuations of the

barrier heights in the heterostructure. We have also observed a change in the

amount of inelastic scattering due to a single one of these defects.

Large, discrete, two-level resistance fluctuations give clear information

on a single trap affecting transport through a single quantum wire. In the

case of MOSFET wires, as shown by Ralls et. al.,2 electrons in the conduction

channel are trapped or detrapped at defects, thus chahging the charge state of

the defect(s). The traps act as variable scattering centers in the quasi-iD

conduction path of the MOSFET wires due to the difference in the scattering

cross section of a neutral versus a charged defect. This causes a change in the

impedance of the channel, which is manifested as discrete resistance changes

2



in the inversion layer. The capture and emission processes of the electrons are

thermally activated, thus yielding the energetic position of the trap.

A conceptually different mechanism has been observed in MOS tunnel

junctions,4 in which trap states in the oxide layer fluctuate around the Fermi

level until electron tunneling is favorable. The electrons tunnel through the

top of the potential barrier, and as the electrons are trapped and detrapped at

defects in the barrier the potential height of the barrier fluctuates. This

modulates thp turneling current through the potential barrier, and thus the

device impedance fluctuates. The conceptual distinction between the two

cases is that, in the tunnel junction case the detailed potential in the region of

the barrier is modified due to the trapping of an electron, whereas in the

MOSFET wire embodiment the impedance is affected by the change of defect

scattering cross sections in the conduction path.

To elucidate the differences between these tw:¢o effects, we chose an

embodiment of a vertical, microfabricated GaAs quantum wire that contains a

tunnel junction; 5 specifically a double barrier/single quantum well resonant

tunneling structure. The barriers serve as a current limiter and, as will be

seen, allows us to distinguish between the two different mechanisms

mentioned previously. This is a physical embodiment of a tunnel

junction/quantum wire combination. The barriers in the devi "e should give

analogous results to the MOS tunnel diodes, and the narrow GaAs wire with

the barrier in the conduction path should allow for scattering as in the narrow

3



MOSFET wires. Fabricating the structure this way gives the possibility of

simultaneously observing and distinguishing between these mechanisms

described above.

The resonant tunneling structures used in this study were grown by

molecular beam epitaxy (MBE) in a Riber 2300 on a directly heated 2-inch n +

(Si-doped, Sumitomo) GaAs substrate oriented two degrees off the< 100 >.

The structure consists of two 50 A undoped Al. 27 Ga.7,As barriers enclosing a

50 A undoped GaAs quantum well. Two undoped 50 A GaAs spacer layers

were grown on either side of the barriers, with two 5000A Si-doped GaAs

buffer layers on top and bottom. The structure nominally has inversion

symmetry about a plane through the center of the quantum well.

An e-beam lithography step and lift-off process followed, leaving a

circular metal pad of -2500A diameter that served as an etch mask and top

Ohmic contact. A highly anisotropic reactive ion etch (RIE) process etched

down into the well structure forming columns (vertical wires) with the Ohmic

contacts on top. To make contact with the tops of the wires, an insulating and

planerizing polyimide layer was spun onto the sample. The tops of the

columns were then uncovered by an 02 RIE. Once the tops of the wires were

revealed, a gold bonding pad was defined to provide electrical contact to the

tops of the wires. A backside Ohmic contact provided electrical continuity.
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The samples used in this study are single quantum wires of dimension 2500A

in diameter.

The current-voltage characteristics of one of these quantum wires at

100'K is shown in Figure 1. The discrete switching between two impedance

states is observed at a number of different bias positions (0.6V, 0.75V-0.85V,

1.OV-1.1V, 1.25V-1.35V). These fluctuations are superimposed onto the well

known negative differential resistance characteristic of the double

barrier/single quantum well heterostructure (due to the quantum well state

passing through the conduction band edge of the contact). The overall

structure of the characteristics were the same upon repeated bias sweeps,

though the detailed structure in the fluctuation regions were not; in

particular, the characteristics in the non-fluctuating regions (e.g.,

0.65V-0.75V, 0.9V-0.95V, etc.) were exactly repeatable, but the fluctuating

regions were not repeatable in detail.

The rate at which the impedance of the device switches between discrete

values is a strong function of temperature. Figure 2 shows the resistance of a

similar device, at fixed bias, as a function of time for different temperatures.

Since the resistance fluctuates only between two discrete values (qualitatively

identical to what has been previously observed 2 ,3 ), the behavior indicates the

trapping of a single electron onto a given trap in the structure. It should be

noted that amplitude of the fluctuations is nearly constant over the bias range

in which the trapping occurs (e.g., 0.75V-0.85V in Figure 1), implying that a
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single trap only is involved. The difference in the amplitudes for different bias

regions implies that more than one trap exists that causes the fluctuations.

These traps are selectable by device bias. Clearly, the details of the current-

voltage characteristics of such a device (i.e., Figure 1) depends not only on the

tcmperature but on the rate that the bias is changed.

To verify that the resistance fluctuations are due to trapping onto a

single defect, the average rate at which the resistance fluctuates was

determined (at fixed bias) as a function of temperature. This is shown in

Figure 3. The behavior is clearly activated, and measures the depth of the

trap to be 280meV. Measurement on other traps in this (and other similar)

device(s) indicated a wide distribution of trap energies, with switching due to

some traps observable to room temperature.

In some instances the simultaneous effects of two different traps are

observed. Figure 4 shows an example of a resistance increase to an "up" state

(ARI) and larger decrease to a "down" state (AR2) due to different traps. These

traps appear to act independently, since the impedance when both traps

"switch on" is simply the sum of the impedances (i.e., at i-100 sec,

AR=ARI-AR2 ). These two traps clearly have different activation energies,

and appear to be separated sufficiently well in real space to eliminate

interaction effects.
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The physical lateral size of the quantum wire appears to be large in

comparison to the size of systems in which telegraph noise has previously been

observed. However, this system is distinct from the other above mentioned

cases due to the Fermi level pinning of free GaAs surfaces and the

accompanying depletion layer that will extend laterally into the wire. Large

(_>2pm diameter) mesas fabricated by conventional means yielded a current

density at the resonance peak of 1.6x10 4 A/cm 2 . Assuming that the trap

switching phenomena are a perturbation, we arrive at an effective (circular)

conduction path diameter of -500A from the peak resonance current of

Figure 1, consistent with the physical size scale necessary to observe

telegraph noise in MOSFET wires or MOS tunnel junctions.

The negative differential resistance characteristic of the heterostructure

quantum wire enables us to determine which mechanism (scattering or

potential fluctuation) is causing the observed switching phenomena. Let us

first consider the case of scattering. If the defect in the wire is a positively

charged defect, capture of an electron converts it to a neutral, thus I ausing a

decrease in the wire impedance. This will cause an increase in the current

through the device. Thus, as the trap is biased into occupancy, the current

state will switch from a low to asymptotically high current state. Let us

define this sense of asymptotic current value "switching high". Similarly, a

neutral trap capturing an electron to become a negatively charged trap will

cause a decrease in the current, which asymptotically "switches low" with
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occupancy. The situation of a neutral going into a negative is schematically

shown in Figure 5(a).

As we have seen in Figure 1, these traps become occupied at various bias

positions. The scattering mechanism predicts that the sense of switching

("high" or "low") will be the same no matter where in bias position the trap

becomes occupied. Thus, the sense of switching will be the same on either side

of the resonant peak position; i.e., "symmetric".

The second case to consider is a fluctuation in the local potential of the

double barrier structure. The change in the charge state of a defect located in

the accumulation, double barrier, or depletion regions of the structure can

modulate the potential distribution across the double barrier structare. This

shift in potential will move the position of the resonant tunneling state with

respect to the conduction band edge of the injection contact, thus changing the

tunneling current through the structure. For example, if the device is biased

such that the quantum well state is resonant with the conduction band edge of

the contact, and a trapping event causes the quantum well state to shift up in

energy with respect to the conduction band edge, a decrease in current will

occur. This can be thought of as an effective shift in the local current-voltage

characteristics. Capture of an electron by a positively charged defect to

become neutral, or of a neutral defect to become a negative, causes an effective

shift to higher biases of the local current-voltage characteristics.
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In this case, the asymptotic sense of current direction depends on where

in bias position the trap becomes occupied. This is schematically illustrated in

Figure 5(b). At device biases below the resonant peak position, the asymptotic

sense is "switching low" as the trap becomes occupied; in the negative

differential resistance region, the sense is "switching high"; and at large

biases, the sense will eventually be "switching low". The sense of switching is

not the same on either side of the resonant peak position; i.e., this is an

"asymmetric" case.

As can be seen in Figure 1, this device exhibits asymmetry in the sense

of switching. In the region 0.75V-0.85V, the current switches "low" as the

trap becomes occupied. In the region 1.OV-1.1V, the current is switchs "high",

and at very high bias (1.3V-1.35V) the state switches "low". Note that the

structure in the range 1.2V-1.275V appears to first switch high, then low.

This is consistent with the intersection of the shifted current-voltage

characteristics occurring at approximately 1.26V.

The change in the charge state of these traps can not only shift the local

potential but can cause changes in the dynamics of the resonantly tunneling

electrons. Figure 6(a) show the current-voltage characteristic of a similar

device that has a relatively flat resonance peak due to excess inelastic

tunneling. Switching phenomena is observable for a trap that fortuitously

becomes occupied at the resonant peak, and the impedance fluctuations due to
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this trap exhibit marked modulation as the quantum well resonant state is

passed through resonance. This cannot be explained by a simple effective

shift in bias; indeed, the amplitude fluctuations are largest for minimum

slope, opposite to what would be expected from a bias shift for this flat

resonance. However, the observation is consistent with the switching

between a given characteristic and a shifted characteristic with less inelastic

scattering due to the neutralization of a positively charged defect. Figure 6(b)

schematically illustrates this phenomena, assuming less inelastic scattering

due to the charged defect becomming neutral. The amplitude of the switching

first grows, than decreases as the device is biased through resonance. We are

assuming a relatively small shift in the local potential due to this trap.

By observing the change in the amplitude fluctuations as the device is

biased through resonance, we can determine the amount of inelastically

scattered current (at resonance) due to a single trap. Assuming that neutral

impurity scattering is negligible, we arrive at a value of 5.9x10- 9 A/cm 2 per

defect for inelastic scattering from positively charged defects, at resonance.

We are thus able to uniquely measure the inelastic scattering cross section of

a defect in a tunneling structure, which is equal to 3.7x10- 13 cm 2 in this

embodiment.

In conclusion, we have observed discrete resistance changes due to trap

defects in GaAs heterostructure quantum wires. These traps are thermally

activated and appear to act independently of each other. We have determined
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that the mechanism responsible for the switching is the modification of the

local potential in these structures due to trapping onto defects in the

structure. We have also measured the inelastic scattering cross section of a

single charged defect in vertical electronic transport through a

heterostructure.

We would like to thank W. R. Frensley for helpful discussions and

R. Aldert, D. Schultz, P. Stickney and R. Thomason for technical assistance.
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Office of Naval Research.
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Quantitative resonant tunneling spectroscopy:
Current-voltage characteristics of precisely

characterized RTDs

M. A. Reed, W. R. Frensley, W. M. Duncan, R. J. Matyi*,

A. C. Seabaugh, and H.-L. Tsai

Central Research Laboratories, Texas Instruments Incorporated

Dallas, Texas 75265

ABSTRACT

A systematic comparison of precisely characterized resonant tunneling structures is

presented. A self-consistent bandbending calculation is used to model the

experimentally observed resonant peak positions. It is found that the peak positions

can be accurately modeled if the nominal characterization parameters are alloweed

to vary within the measurement accuracy of the characterization. As a result, it is

found that the asymmetries in the current-voltage characteristics are solely

explainable by tunnel barrier thickness fluctuations.

• Present address: Department of Metallurgical and Mineral Engineering,

University of Madison, Wisconsin.



The origin of negative differential resistance in double barrier/single quantum

well resonant tunneling structures is qualitatively well understood.1 However, a

full accounting of the current-voltage characteristics requires precise physical and

electrical measurement of the device material properties. We present here a

systematic comparison of measurements on precisely characterized resonant

tunneling structures with models of the current-voltage dependence.

A set of four specimens has been grown by MBE to provide devices which vary

over seven orders of magnitude in resonant peak current density for the

AIGaAs/GaAs/AlGaAs system. This is achieved by growing nominally identical

structures which differ solely in barrier thickness. Photoluminescence test

structures were grown to provide for measurement of the AlGaAs band gap,

transmission electron microscopy was used to independently verify the layer

thicknesses, and capacitance-voltage profiling provided an independent

determination of the doping density. The current-voltage characteristics of these

structures have been measured. A systematic shift of the resonant peak and a

variation of the resonant peak voltage asymmetry with current density is observed

and compared with modeling results. It is found that a self-consistent bandbending

model can accurately predict the voltage peak positions, though the structural

parameters used are not necessarily the "nominal" values, yet values within the

error of the characterization measurement.

The samples used in this study were grown on Si-doped n + GaAs conductive

substrates using a Riber 2300 MBE system. The structures consist of a 0.5 micron

Si-doped GaAs buffer and bottom contact layer, a (nominally) 150A undoped

GaAs spacer layer, an undoped AIGaAs tunnel barrier, an undoped GaAs quantum

well, a second undoped AIGaAs tunnel barrier of nominally identical thickness,

another 150A undoped GaAs spacer layer, a 0.5 micron Si-doped GaAs top contact, a

0.5 micron undoped AIGaAs layer, an undoped GaAs 50A quantum well, a 0.1
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micron undoped AlGaAs layer, and a 100A GaAs cap layer. The entire structure was

grown at constant temperature at 600C (to minimize Si diffusion) as measured by a

short wavelength pyrometer. The four specimens were grown sequentially to ;nsure

a constant unintentional impurity background.

The active resonant tunneling structure is buried underneath a series of

diagnostic photoluminescence structures. Conventional photoluminescence was

performed at 4.2K and 300K. The top quantum well photoluminescence exhibited

typical FWHM values of 10 meV. Photoluminscence of the thick AlGaAs layers was

used for determination of the Al content. The band gap relation of Casey and

Panish 2 was assumed. The doping density of the n + GaAs layers was determined by

standard capacitance-voltage profiling measurements, and the thicknesses of the

tunnel barriers and quantum wells were determined by cross-sectional TEM. A

summary of these structural parameters for the four samples studied is shown in

Table I.

Prior to device fabrication, the top diagnostic layers were removed by a chemical

etch so that contact could be made to the upper n+ GaAs layer. Mesa devices

ranging from 1.6x10-7 cm-2 to 4.1x10-5 cm-2 were fabricated by standard

photolithography and chemical etching. Bonding pads contacted the upper top

AuGeNi alloyed metal Ohmic contact and a similar bottom contact through a

Si3N4/polyimide passivation layer. Static current-voltage characteristics (4-point

where necessary) were measured at 77K.

Figure 1 shows a realistic conduction energy band profile of the 85A barrier

thickness structure under (a) zero and (b) resonant bias. The model from which this

Figure was obtained finds the self-consistent solution of Poisson's equations for the

electrostatic potential. The electrons in the contacts are treated in a finite-

temperature Thomas-Fermi approximation. (i.e. these electrons are assumed to be

in local equilibrium with the Fermi levels established by their respective electrodes.)
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One result of this calculation, illustrated in Figure 1(a), is that the band profile near

the quantum well is significantly perturbed by the contact potential of the n +-

undoped junction. This shifts the resonant state upward (with respect to the n +

GaAs Fermi level) from that expected from a naive flat-band picture. This contact

potential thus shifts the resonant peak position (Figure 1(b)) considerably; the model

predicts a resonant voltage at 310 meV, much higher than that predicted by a flat-

band picture.

Figure 2 shows the experimental current-voltage characteristics of a typical

(4 micron) 2 mesa device of this structure at 77K. Care must be exercised in the

spectroscopy of the structures. Current-voltage characteristics of successively

increasing mesa size (same epitaxial structure) progressively exhibits the well-

known plateau structure due to self-biasing 3. This self-biasing perturbs and is

observed to lower the apparent resonant peak position. For accurate spectroscopy,

this effect must be avoided.

The experimental resonant peaks are not in very good agreement with the model

calculation; the experimental peaks appear at 263 meV and 227 meV for positive and

negative bias polarity, respectively, whereas the model predicts a value of 310 meV.

(The convention here is that positive bias polarity implies electron injection from the

top epitaxial contact). What is also obvious is the asymmetry of the resonant peaks

holds for both voltage and current. It is found that this asymmetry is not consistent

for a large sampling of similar devices; the asymmetry ranges from zero to as much

as 60 meV in voltage and a factor of 3.3 in current. However, the degree of

asymmetry is correlated; a larger voltage asymmetry implies a larger current

asymmetry.

To ascertain the degree of asymmetry and variation, characteristics of a large

number of devices from the various epitaxial structures were measured. The

resonant voltage peak positions as a function of resonant current density are shown
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in Figure 3 (due to the above mentioned complication of stabilizing oscillations,

measurements from the the 30A barrier were unreliable and are not presented here).

The 118A barrier structure data exhibits a clear exponential behavior over two

orders of magnitude, with the positive bias peaks occurring at lower volt: ges and

current densities than the negative bias peaks. The 85A barrier structure data is not

as clear, exhibiting considerable scatter. The origin of this scatter is not known.

Additionally, the data exhibits the inverse of the 118A data; the positive bias peaks

occur at higher voltages and current densities than the negative bias peaks. Finally,

the 65A barrier structure deviates significantly from exponential behavior.

Examination of the 118A barrier structure data reveals the major cause of the

asymmetry, both in current and voltage position. Consider a fluctuation in the

thickness of one of the tunnel barriers of a nominal thickness barrier sample. This

implies a change in the voltage position at which resonance occurs, and concurrently

a change in the tunneling current. Figure 4 illustrates the 85A barrier structure

with parameters varied within the error bars quoted in Table I; specifically, with the

top barrier thickness equal to 80A, the bottom barrier thickness equal to 90A, and

the quantum well equal to 48A. Figure 4(a) shows the modified structure under

positive bias (the right hand side of the Figures corresponds to the top Ohmic

contact), and exhibits a resonant voltage at 270 meV. In the reverse bias direction

(Figure 5(b)), resonance occurs at 230 meV. These are in excellent agreement with

experimentally observed values. Note that larger current densities correspond to

electron injection first through the thinner (top) barrier.

Figure 3 shows that the inherently thinner top barriers of the 85A sample are a

sample-dependent phenomenon; the 118A data reveal that the top barrier is thicker

than the bottom barrier in the 118A sample. Likewise, the 65A sample appears to

have approximately equal barrier thicknesses. These results imply that Si dopant

redistribution, at least in these samples, is not a complication. Finally, the scatter in
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the 85A data with respect to the 118A and 65A data may imply that this sample has

larger quantum well thickness fluctuations, though this cannot be verified without

further data on Al content and doping fluctuations.

The quantitative spectroscopy of these structures is relatively straightforward if

one stays in the regime where the structure impedence is dominated by the tunnel

barriers. Outside of this regime (e.g., for the 65A data) the device may be affected by

an internal series resistance. The resonant voltage position for the 65A data is found

to be linear with current density, and gives a contact resistance of 8.8x10- 5 Q-cm 2 ,

equal for both positive and negative bias peak positions. This resistance can be fully

accounted for by the AuGeNi Ohmic metallization used here.

We have shown a self-consistent bandbending model that can accurately predict

experimentally observed resonant peak positions, and have compared it with

precisely characterized resonant tunneling structures. It is found that, to accurately

model the resonant voltage peak positions, the characterization values must be

varied within the error bars of the measurement. Indeed, this technique can be used

as an accurate diagnostic of the structure. Asymmetries in the electrical

characteristics have been shown to be due to fluctuations in the tunnel barrier

thicknesses.
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TABLES

Table I

Barrier RTD QW Al PL QW contact doping

thickness thickness content energy density, cm-3

(TEM) (TEM) (PL, 300K) (PL, 4.2K) (CV)

118(± 5)A 48(±5)A 27.7(±0.6) 1.620 eV 1.7(±0.2)1018

85(± 5)A 44(± 5)A 26.4(±0.6) 1.623 eV 1.7(±0.2)1018

65(±5)A 44(±5)A 27.7(±0.6) 1.613 eV 1.4(±0.4)1018

32(±5)A 38(±5)A 25.0(±0.6) 1.616 eV 2.6(±0.1)1018
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Figures Captions

Figure 1. Self-consistent band diagram using Poisson's equations for the

electrostatic potential. The electrons in the contacts are treated in a finite-

temp-r.ture Thomas-Fcxnii aiproxim:-ation. The simulation does not include

current-flow. The structure is a 85A AlxGalxAs (x = .264) barrier / 44K GaAs QW /

85K AlxGaI_xAs (x = .264) barrier structure at T = 77K for (a) no applied bias and

(b) resonant bias. The energies of the bound states are denoted by dashed lines and

the Fermi level by a dotted line.

Figure 2. Current voltage characteristics of the 85A sample for square mesa areas of

1.6 x 10-7 cm2 . Positive voltage corresponds to electron injection from the top

contact. T = 77K.

Figure 3. Resonant peak voltage position versus resonant peak current density for a

large sample of three different barrier thickness structures. Both positive (+) and

negative (-) voltage polarities are shown for the three structures of nominal barrier

thickness 65A, 85A, and 118A. T = 77K.

Figure 4. Self-consistent band diagrams of a 90A bottom barrier / 48A quantum well

/ 80K top barrier structure at resonance. T = 77K. (a) Positive bias and (b) negative

bias polarities are the same as Figure 2.
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