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ABSTRACT

The free-surface flow generated by an impulsively accelerating, surface-piercing, vertical

plate has been studied numerically as well as experimentally. The two-dimensional, unsteady

Navier-Stokes equations are discretized using the finite-analytic scheme which incorporates the

analytic solution into the locally linearized differential equations. The continuity equation and the

dynamic boundary conditions on normal and tangential stresses at the free surface are applied to

determine the pressure and two velocity components at the free surface. The kinematic boundary

condition on the free surface provides the movement of the free surface.

A series of experiments is carried out in an open channel with a constant water depth. The

flat vertical plate is fixed on a towing carriage which is set off by suddenly dropping a weight

bucket through a connecting steel cable in a pulley system. A data acquisition system is used for

controlling the sampling process and for recording the signal output. The free-surface profile

ahead of the plate and the pressure distribution on the plate surface are measured.

The agreement of the free-surface profile and the pressure distribution between the

numerical results and the experimental measurements is fairly good. The mathematical singularity,

which is predicted by the potential-flow theory, at the contact line between the plate and the free

surface is not observed in the physical experiments. The water surface in front of the vertical plate

simply rises up during the initial stage of the acceleration of the plate.
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I. INTRODUCTION

ne study of the fluid-body interaction with a free surface has received a considerable

interest in the past few decades. The applications extend to a variety of topics, such as designs of

dams, bridge piers, offshore structures, ships, and so on. For instance, the information of

pressure and velocity distributions around a ship is required in designing a high-performance ship

hull. Up to date, the associated design involving the free surface still depends heavily on the

towing-tank experiments. However, the exact dynamic similitude in free-surface flows is rarely

achieved. It is common to require only Froude number similarity when two systems are compared

experimentally. Then the Reynolds number for the model test may be several hundred times less

than that for the prototype so that the viscous effects are not properly modelled. Corrections for

viscous effects can be made by using models of different scale ratios and extrapolating the results

to full prototype scale. Since exact dynamic similitude is rarely achieved in models of free-surface

systems, a considerable amount of judgment is necessary both in designing models and in

interpreting the results. Alternatively, the numerical experiment may resolve the problem of

dynamic similitude which plagues the towing-tank experiment. Once the validity of a computer

code is verified, the flow fields subjected to different conditions can be obtained by changing the

associated parameters, such as the Reynolds number, the Froude number, and the Weber number,

etc. However, the numerical method itself also carries difficulties. The main difficulty arises from

determining the time-dependent free-surface profile, which is not only a boundary of the flow

field, but also a part of the solution. Furthermore, the researchers are puzzled by the irregular free-

surface cells, which make the calculations difficult, when a time-independent Eulerian coordinate

system is used. As for the analytical method, Chwang (1983) developed a nonlinear potential-

flow theory by using a small-time-expansions method to determine the hydrodynamic pressure on

an accelerating vertical plate and the free-surface profile in front of it. A similar problem was

studied by Roberts (1987). Wang (1985) extended Chwang's idea to investigate the three-

dimensional nonlinear free-surface flow around an impulsively accelerating, surface-piercing,

vertical cylinder. A mathematical singularity was predicted at the intersection of the body and the



adjacent free surface by the potential-flow theory. However, the physical singularity was not

observed in Wang's experimental study.

1.1 Review of Numerical Study

The free-surface problem was first solved numerically by Welch et al. (1965). The so-

called Marker-And-Cell (MAC) method is a technique for solving the time-dependent flow field of

a viscous, incompressible fluid with a free surface. This method employed an Eulerian mesh of

calculation cells and finite-difference expression to approximate the continuity and Navier-Stokes

equations. The marker particles on the free surface were used to identify the free-surface location

by applying the kinematic boundary condition. In order to facilitate calculations, the cells in the

computational domain were flagged to be body boundary cells, free-surface boundary cells, full

cells, or empty cells. The dynamic boundary conditions on the free surface, which required that

the normal and tangential stresses be continuous, were used to determine the pressure and

velocities on the free surface. However, the MAC method in its original form used simple

approximations for these conditions. The normal-stress condition was replaced by zero surface

pressure. The tangential-stress condition was replaced by two conditions: one on the fluid

incompressibiiity for surface cells, and another on the vanishing normal derivative of the fluid

velocity at the free surface.

Improvements on the MAC method have been achieved later by several researchers. Hirt

and Shannon (1968) studied the formation of a viscous bore and recovered tiie normal-stress

boundary condition at the center of the free-surface cells where pressure was calculated. Chan and

Street (1970a, 1970b) applied the same boundary condition at the exact free-surface location to

determine the run-up of a solitary wave on a vertical wall. In addition to the normal-stress

boundary condition, Nicols and Hirt (1971) applied the tangential-stress condition to calculate the

free-surface velocity. They simplified the equation by categorizing the free-surface slopes to have

only vertical, horizontal, or 450 directions, and investigated a collapsing fluid column, a splashing

drop in a deep pool, and a viscous bore. The related studies and improvements were also made by
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Hirt, Cook, and Butler (1970), Viecelli (1971), Faltinsen (1977), and Lin, Newman, and Yue

(1984). Tang (1987) specified the complete boundary conditions on the free surface using the

finite-analytic scheme developed by Chen and his associates (1980-1986). The kinematic

boundary condition was used to provide the movement of the free surface. Two dynamic

boundary conditions at the free surface were used to determine the pressure and horizontal velocity

component respectively. The vertical velocity component was obtained by extrapolation from the

flow domain. This is a good approximation for smooth and slowly-varying flow fields only. A

refinement can be made by requiring conservation of mass in the surface cell.

Three-dimensional versions of the MAC method with inviicid-fiow free-surface boundary

conditions have been developed for ship wave problems by Suzuki et al. (1981), Masuko et al.

(1982), Miyata and Inui (1984), Miyata and Nishimura (1985), and Miyata et al. (1985). Miyata

et al. (1987) incorporated a boundary-fitted curvilinear coordinate system, which was deformed to

fit the moving free-surface at each time step, into the computational procedure. A sub-grid-scale

model was also introduced by Miyata et al. (1987) to simulate the turbulent flow. Their computer

code, in its infant stage, still suffered from the problems of accuracy, stability, and efficiency of

calculations. For instance, a filter was applied to the free-surface coordinate to remove the

unfavorable fluctuation.

The above-mentioned studies were all based on the finite-difference method. The finite-

element formulation for free-surface flows was also developed by a number of authors, including

Nickell, Tanner and Caswell (1974), Reddy and Tanner (1978), Frederiksen and Watts (1981),

Kawahara and Miwa (1984), and Ramaswamy and Kawahara (1987a, 1987b). In this

formulation, the unknowns of the differential equations were discretized using a linear interpolation

function, similar to the Galerkin method, based on a three-node triangular finite element.

1.2 Review of Experimental Study

The impulsive start of a wavemaker initially at rest in calm water can simulate the initial

stage of the motion of a dam under earthquake loading, or the motion of a ship under sudden

acceleration. Greenhow and Lin (1983) took a series of pictures on the free-surface profile in front

3



of a flat plate moving from rest with a constant velocity. A jet was observed at the contact line. To

simulate the slamming of ships, the high speed entry of a wedge and a cylinder into and exit from

calm water were also experimented. Because the pictures were taken through the transparent side

wall of a tank, the experiments provided the qualitative results due to the viscous and surface-

tension effects on the side wall. No pressure measurements were attempted in this study.

Wang (1985) conducted a series of measurements for the free-surface elevation in front of a

vertical circular cylinder and for the pressure acting on the cylinder surface. In his experiments,

the acceleration of the cylinder was a step function and the velocity was continuous. The

agreement between the theoretically predicted values of the free-surface elevation and the

experimentally measured ones was fairly good at a distance of at least one radius away from the

cylinder surface. His theory over-predicted the hydrodynamic pressure, since no viscous

dissipation was included in the inviscid theory.

1.3 Preview of the Present Report

The purpose of the present study is to investigate, numerically as well as experimentally,

the initial stage of the flow field generated by a vertical plate accelerating horizontally into a calm

water. The unsteady, two-dimensional Navier-Stokes equations are transformed into the

corresponding finite-difference form using the finite-analytic scheme developed by Chen and his

associates (1980-1986). In this method, the local analytical solutions are obtained for the

linearized governing equations in the discretized computational element. The local analytical

solutions are then expressed in the algebraic form and are overlapped to cover the entire flow

domain. Because of the analytic nature of the solution for the well-posed problem, the numerical

solution is more stable and accurate than the conventional finite-difference method. The SIMPLER

(Semi-Implicit Method for Pressure-Linked Equations Revised) algorithm of Patankar (1980,1981)

is used to solve the discretized equations. The mathematical formulation of the present problem is

given in Chapter H and the details of the numerical method are presented in Chapter m.

4



A series of experiments is conducted in a water flume on the second floor of IIHR. The

free-surface profile in front of the plate and pressure distribut~on on the plate surface are measured

for three different accelerations of the plate. A capacitance-type wave gauge is used to measure the

variations of the water surface. A variable reluctance pressure transducer is used to measure the

surface pressure. An accelerometer is used to measure the acceleration of the plate. All response

voltage outputs are recorded on an IBM PC-XT personal computer with a data acquisition electrical

board. The setup and experimental procedures are included in Chapter IV.

The experiments are carefully conducted and used as a criterion for evaluating Chwang's

theory (1983) and the present numerical code. The comparison and discussion are included in

Chapter V.

Finally, conclusions and further extension of present work are presented in Chapter VI.
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II. MATHEMATICAL FORMULATION

A vertical, rigid plate is initially at rest at x=O plane in a channel with a constant fluid depth

ho (Figure 1). At time t=O+, it starts to accelerate horizontally towards the fluid with an

acceleration a(t). For a two-dimensional flow of a viscous, incompressible fluid, the continuity

and momentum equations in a Cartesian coordinate system (x,y) are

au avau u au o, (11.1)

u v 0u x x -) (11.2)

av av av Ia+ a2v a2v
p'4-y + -), (11.3)

where u and v are velocities in the x and y directions respectively, p the hydrodynamic pressure, p

the fluid density, and v the kinematic viscosity of fluid.

We assume that the acceleration a(t) can be expressed as a power series in t,

a(t) = I n an tn - 1 , (.4)
n=l

where al is not equal to zero for an impulsive motion. A set of dimensionless quantities can be

defined in the following manner:

XO yo

uo  u v°  V (11.5)
6 - _- oho

I I I I I ! I II I6



pO' = p , to = t
pal ho -

where ai is the leading term of equation (11.4) and ho is the unperturbed free-surface level. Then

the dimensionless forms of the governing equations can be written as (after dropping the

superscripts 'o)

Du agv+- U. = 0, (11.6)

au au Du ax+I(a2u a2u
S+11 U. '+V ;--Y F.+Fe---- + --- 7y (11.7)

av v av a 2v.
"Ft + x + V U- 'y + Re (x ;y2v+u v7=(n1.8)

where Re denotes the Reynolds number

Re= a oh

The dependent variables u, v, and p can be solved by the above three equations with specified

initial and boundary conditions.

Let F(x,y,t)--O describe a surface S(t). If S(t) is an interface between two immiscible

fluids, the first condition it must satisfy is a kinematic one. As the surface moves, there should be

no transfer of matter across the surface. Consequently, the following equation must be satisfied

DF 0. (11.9)

This condition is satisfied by any bounding surface, whether a free surface or a rigid boundary. If

the free-surface profile is defined by

7



F(x,y,t) = y - h(x,t), (11.10)

where h(x,t) denotes the free-surface elevation, then the kinematic boundary condition becomes

ah ah
T--+ u -= V.

This condition provides the movement of the free surface.

In addition to the kinematic condition, there are dynamic conditions to be satisfied at the

free surface as follows:

1. The effect of surface tension, as one passes through the free surface, is to produce a

discontinuity in the normal stress proportional to the mean curvature of the free

surface.

2. For a viscous fluid, the tangential stress must be continuous as one passes through

the free surface.

The mathematical expressions of the above statements can be written as

2

K pal h
nioij nj -We We= , (11.12)

and

ti aij nj = 0 (i=1,2; j=1,2), (11.13)

where ni (ti) is the i-component of a unit vector normal (tangential) to the free surface, aij the stress

tensor, K the surface curvature, We the Weber number, and Y the surface tension coefficient. The

repeated index is summed from 1 to 2. The stress tensor Gij for an incompressible Newtonian

fluid can be expressed as

I I u. aui

i (ij j - +T.( xi+ !.), (11.14)

8



Fr2  al
g

where Fr denotes the Froude number, g the gravitational constant, and 8ij the Kronecker delta.

Substituting equation (11. 14) into equations (11. 12) and (11. 13), we have

-( 2 Du 2 Dv 2

P- + R- Tn, + ;7n2

2 au Dv K+ '(t -+ ) n l n2 = (11.15)

2 Du av 1 u 2 2
Re'-Tx- 2 + Re -- x- nn - u+a)(n2-n 1 )=0. (11.16)

The x and y components of the unit outward normal vector to the free surface are

n=- (1 +( )2), (11.17)

/ 02 -1/2 (11.18)

n2 =(1+ ) (I.8

where i1 denotes the free-surface variation from the unperturbed water surface. The free-surface

curvature is

K 2n(I+(\I2-3/2
1x= -- ( ) )(11.19)

The sign is so selected that the normal component of the stress vector increases in the outward

normal direction.

9



Equations (11.15) and (11. 16) are used to determine the pressure and horizontal velocity

component respectively at the free surface. The vertical velocity component is obtained by

applying the continuity equation at the free surface. The no-slip boundary condition is applied at

the solid surface except the contact line between the plate and the free surface. The boundary

condition in the region around the contact line is still unknown. Several slip boundary conditions

similar to the linear slip-shear relation (Lamb, 1932, p.586) were proposed to study the contact-

line problem (for example, Hocking (1976), Dussan (1976), Durbin (1988)). None of them are

verified theoretically or experimentally. In the numerical calculations, Miyata et al. (1987) applied

the no-slip boundary condition at the contact line and calculated the wave height on the body

surface by extrapolation from two outer values. In Tang's study (1987), the no-slip boundary

condition was released at two nodal points beneath the free surface. The slip velocities were

extrapolated from the flow domain. Tang's model seems more reasonable and is adopted in the

present study. The initial condition are simply zero velocity and pressure at t=O.

10



lII. NUMERICAL FORMULATION

111.1 Discretization of Governing Equations

In order to solve the velocity and pressure fields numerically, the governing differential

equations have to be transformed into the corresponding discretized forms. All variables are

assumed to exist at the nodal points only and related to those at the neighboring nodal points by

some coefficients obtained from the discretization method. Mathematically, the discretized

equations should recover the differential equations if an infinite number of grid points, an infinite

small time step, and an appropriate discretization method are used. In other words, the accuracy of

the numerical solution depends on the grid size, the increment of the time step, the discretization

method, the calculational method, and so on. The finite-analytic scheme, a branch of the finite-

difference method, of Chen and others (1980-1986) is used in this study.

The governing equations (11.7) and (11.8) are rewritten in the form

a2f a2f -A f + 2B f +e f
x y ;x-' F Sf,(I.)

where f stands for the velocity component u or v, and

Re U Re V
A -2B 2

Su =Rex, Sv Re . (111.2)

The nonlinear equations have been linearized by replacing the coefficients u and v by U and V

respectively in the convective terms, where U and V are mean values of u and v in an numerical

element. This approximation is valid for a slowly-varying flow field or for a relatively small

element. In the original version of the finite-analytic scheme, the value of a dependent variable at a

nodal point was related to those at all neighboring nodal points. This eight-point formula, in a

two-dimensional system, ended up with a calculation involving an infinite series for obtaining the

11



finite-anal .,; coefficients. Because the method possesses a built-in, automatic upwind nature, the

coefficients have to be evaluated at each iteration according to the newly calculated flow field.

Therefore, a considerable amount of CPU time makes the method not efficient. Without losing the

nature of the original method, a simplified four-point version was derived by Chen and Patel

(1987). They tested a uniform flow past a horizontal plate with finite length and obtained fairly

good results. Later, Tang (1987) and Richmond (1987) incorporated this simplified version into

their studies. We also adopt this four-point finite-analytic method to discretize the governing

equations.

The finite-analytic coefficients for nonuniform grids shown in Fig.2(a) are obtained by an

exponential-linear scheme. Equation (111. 1) is written as

a2f af
=-2 = 2B y= + Gf, (111.3)

where Gf is the nonhomogeneous term

= f _2f ef
Gf--2A - --- Re7-+ Sf. (II1.4)

When the boundary conditions along the y-direction are expressed as a linear combination

of exponential and linear functions in terms of the nodal values, equation (111.3) can be solved

analytically in every numerical element. Let

f = a ( e2 By -1 ) + b y + c. (111.5)

At the nodal points,

y=0 , fp=c,
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y= hn , fn=a(e 2Bhn -1)+bhn+c

Y=-hs , fs=a(e -2 Bhs- 1 )-bh s +c

where a, b, and c are solved in terms of the variables fp, fn, and fs as

hn fs + hs fn- fp (hn + hs) (111.6)a = 2II.6

hn e-2Bhs + hs e2Bhn - hn - hs

fs (-e2 B h n + 1 ) + fn (e 2Bhs - 1 ) + fp (-e - 2 Bhs + e2 Bhn)

hn e-2Bhs + h. e 2 Bhn - hn - hs

(111.7)

C = fp (1.8)

At y = 0, equation (111.3) becomes

0 = 2Bb + Gf. (111.9)

Substituting (111.7) into (111.9) and rearranging the terms, we obtain

fp = s fs + Cn fn + Cp Gf, (I1. 10)

where

e12 B h n
Cs e2Bh n "- e_ 2Bhs
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1 - 2 B h s
In = e 2 B h n - e"2 B h s '

- -hs e2 Bhn - hn e'2Bhs + hn + hsCp=" e2 Bhn, e- 2 Bhs

We may approximate the x-derivative using the same method as above and obtain

Of a2f
2Aa af= (111. 11)2Ax - - -( Cw + Ce ) fp + Cw fw + a:e fe,(I.1)

where

=2A-I - e2 Ahe

he e'2Ahw + hw e2 Ahe, hw -he

e -2Ahw - 1ae=2A- A A
he e2Ahw + hw e2 Ahe - hw - he

The time derivative is approximated by an implicit, backward difference scheme

afflP =- 1 f _f - (111.12)
-FAt P p

where E is the value of at the nth time step, At is the increment of the time step. From
p

equations (111.10) to (I.12), we obtain the discretized equation (the superscript n is omitted

hereafter for simplicity)

fp = Cs fs + Cn fn + cw fw + ce fe + ct f- 1 + cp Sf, (111.13)

where

Is = Z:s H, cn=CnH
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Cw = Cw Cp H, ce=eCpH

Cp Re

ct=- AteH , Cp=CpH,

1 + ap ( w + Ce- - )
At

The variable fp is now related to those at four neighboring nodes, fp at the previous time

step, and the pressure gradient. With given initial and boundary conditions, the velocity field is

calculated from equation (111.13). The pressure field is obtained indirectly via the continuity

equation. The numerical method is given in the next section.

111.2 Numerical Method of Solution

The SIMPLER algorithm of Patankar (1981) is adopted to solve the velocity and pressure

fields in the flow domain. The arrangement of velocities and pressure at nodal points in a

staggered grid system, first proposed by Welch (1965), is shown in Figure 2(b). Because the

pressure is obtained via the continuity equation, we separate the pressure terms from other terms in

the discretized momentum equation (III. 13)

A

Ue = Ue + de ( Pe Pp), (1I1. 14a)

A
where ue , called the pseudo-velocity by Patankar, is defined as

A 4 n-1
ue = icie Uie + ct ue (11I. 14b)
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Re c
and de =- eAxe

where the subscript 'ie' denotes the neighboring nodes of node e. Similarly, we can write

A

Uw = Uw + dw (pp - Pw), (111.15)

A

Vn = Vn + dn (Pn - Pp), (111.16)

A

Vs = Vs + ds (Pp - Ps) (111.17)

Substituting equations (11 14) to (111. 17) to the discretized continuity equation

(Ue - Uw) Ay + (vn - vs) Ax = 0, (111.18)

we have
A

ap pp = ae Pe + aw pw + an Pn + as Ps +D, (D1.19)

where the coefficients are defined as

ae=Ayde, aw=Aydw,

an=Axdn, as = Ax ds ,

ap = ae + aw + an + as,

A A A A A

D = (ue - uw ) Ay + ( u n - us )Ax.
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In this fashion, the pressure field can be obtained from a given velocity field which is contained in
A

the source term D.

The velocity field is solved from the momentum equation based on a given pressure field.

However, the pressure field is obtained via equation (111.19) by a given velocity field. Therefore,

an iterative method is necessary to find the final solution based on an initially guessed pressure

field. Before a specified convergence criterion is reached, the pre-converged velocity field based

on a pre-converged pressure field p* is denoted by u* and v*. The pre-converged velocities can be

expressed as

*A* * *

Ue ue + de (Pp -Pw) (111.20)

* A** *

uw =uw + dw (Pp-Pw) (111.21)

* A* * *

Vn =Vn +dn ( Pn Pp) (111.22)

* A* * *

vs Vs + ds ( p" Ps) (111.23)

Equations (111.20) to (111.23) for the velocity field and equation (III. 19) for the pressure field

provide a complete discretized system for the numerical calculation.

In order to accelerate the speed of convergence, the resulting velocity field at each iteration

can be corrected by requiring that the velocity field satisfy the continuity equation. Let us define

the velocity corrections u', V and the pressure correction p' as

U=u u , V=v-v , =p-p
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where u, v, p are converged values, and u*, v*, p* are pre-converged values. From equations

(111.14) and (11.20), we have

I At I

Ue = Ue + de ( Pe" Pp) (I.24)

A' A A*

where Ue = ue - ue. Similarly,

A'

uw Uw + dw (pp Pw) (111.25)

1 t t t

Vn -Un +dn ( Pn - Pp) (111.26)

t I

vs =vs+ds(Pp"Ps) . (111.27)

A ' A ' A, A'

For convenience, we may drop ue , uw , vn , and vs* Then, the velocity-correction formula can be

written as

Ue Ue + de ( Pe Pp) (111.28)

Uw uw + dw (p -Pw) (111.29)

St

vn V n + dn ( Pn - Pp) (111.30)

Vs - s +ds(pps )  (111.31)
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Substituting equations (111.28) to (111.31) into the discretized continuity equation, we have

t t I I t

ap pp =an Pn + as ps + ae pe + aw pw + D*, (111.32)

where

D (ue - uw) Ay + (vn-vs ) Ax.

The pressure-correction p' is obtained from the pre-converged velocity field which appears

in the source term D*. Note that omitting any terms in the equations may result divergence or lead

to wrong solutions. However, the terms we have dropped will approach zero when the solutions

converge and will not affect the ultimate solutions in this case. The corrected velocity field satisfies

the continuity equation at every iteration cycle. The numerical computation is prone to convergence

and a continuity-satisfying velocity field is physically more reasonable than the uncorrected

velocities in equations (111.20) to (111.23).

11.3 Solution Procedure

We have derived all the required discretized equations and in a position to describe the

sequence of calculational operations. The numerical computation is done according to the

following steps:

1. Define the physical domain and generate a suitable numerical grid system.

2. Specify the initial condition.

3. Specify the boundary conditions which are time dependent in the present study.

4. Calculate the finite-analytic coefficients given in (11. 13), (111. 10), and (111. 11).

5. Calculate velocities u* and v* from equations (111.20) to (111.23) and obtain D*.

6. Calculate pressure-correction p' from equation (111.32).

7. Correct the velocity field by means of equations (111.28) to (111.31).
A A A

8. Calculate pseudo-velocities u and v from (III. 14b) and obtain D from (111. 19).

9. Calculate pressure p from equation (111. 19).
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10. Calculate free-surface velocities and pressure from dynamic boundary equations,

(11.15) and (11.16) and continuity equation, (11.6).

11. Repeat steps 4 to 10 until both the velocity and pressure fields reach a specified

convergence criterion. In the present study, the absolute error is 10-6 or less.

12. Use the kinematic boundary condition (11. 11) to update the free-surface elevation and

use the given boundary condition to determine the new position of the plate.

13. Return to step 3 for the next time step.

14. Stop if time exceeds the specified maximum time period.
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IV. EXPERIMENTAL STUDY

The purpose of the experiments is to measure the free-surface profile and the pressure

distribution on an impulsively moving plate subject to various accelerations. The experimental

setup and procedures will be presented. The features of each instrument used in the present

experiments will be discussed.

IV.1 Experimental Model

A series of experiments was conducted in a water flume on the second floor of Iowa

Institute of Hydraulic Research. The 26m-long, 0.8m-wide, 0.3m-high open channel with

transparent glass bottom and sides is tiltable through an electrical driven gear system. The zero

slope was adjusted from a counter mechanically attached on the gear system. A level was used to

double-check manually the channel slope and to make sure no local humps on the channel bottom

in the test reach. A towing carriage was constrained to move along a pair of parallel rails mounted

on the top of the side walls of the channel (Figure 3). The carriage was set off impulsively by

suddenly dropping a weight bucket through a connecting steel cable in a pulley system. A

plexiglass flat plate was fixed on the carriage vertically and traversely. The channel was filled with

water to a height of 10cm. In order to diminish quickly the water disturbance generated by the

previous run between two measurements, the channel was shortened to 6m by putting two wood

boards upstream and downstream traversely. There was a moment acting on the moving plate due

to the relative motion of water. After a few test runs, we found that the impulsively moving

carriage was tilted and even overturned by this moment. We then decided to narrow the width of

the channel to 20cm by putting a wood board longitudinally. The carriage, with the narrowed

plate, ran smoothly after the modification. Therefore, the final dimension of the experimental

channel is 6mxO.2mxO.3m together with a 0.2mxO.3m plexiglass flat plate fixed on an instrument

carriage (Figure 3).
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IV.2 Instrumentation

IV.2.1 Acceleration Transducer

A Kyowa ASQ-2BL servo-type acceleration transducer (Figure 4) with a ±2*9.8lm/sec2

capacity was mounted on the carriage to measure the acceleration. It provides a wide frequency

response range and permits faithful measurement of random wave forms because of its excellent

phase characteristics. Unlike conventional strain-gauge-based transducers, the ASQ-2BL

accelerometer is equipped with a servomechanism to measure very small vibration with high

accuracy, which is difficult to measure with conventional transducers. For the conventional

transducers, the response voltage output is transmitted through an electrical cable and amplified by

a signal conditioner. The signal distortions and noises, produced by the cable and by the signal

conditioner, are also amplified inevitably. The outcome makes the data analysis difficult. The

longer the cable is, the worse the contamination will be. The Kyowa accelerometer overcomes this

difficulty by a built-in amplifier which provides a 5-volt output in the full scale. This feature

improves the stability and reliability of the response signals received by the signal conditioner. The

Kyowa VAQ-500A signal conditioner is a multi-purpose vibration measuring instrument designed

primarily for use with the above-mentioned accelerometer. Combined with the signal conditioner,

the accelerometer can not only measure the acceleration, but also the velocity and displacement.

Before the operation, a warm-up time of at least 2 hours is required after power is supplied.

The calibration was done following the procedure in the user's manual. Because the

accelerometer has a high DC sensitivity, calibration can be done via the gravitational acceleration

without using special equipment. The general calibration steps are:

1. Decide the maximum value of acceleration in the experiments.

2. Set the measuring ange. There are five measuring ranges, 1%, 3%, 10%, 30%, and

100% of the full scale, to be chosen.

3. Place the accelerometer horizontally and set the output voltage to 0 V. Because the

gravitational acceleration applied in thc vibration detecting direction is 0 G in this

condition, the output voltage is zero.
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4. Tilt the accelerometer to the position where the maximum acceleration is applied and

set the output voltage to 5 V.

5. Repeat steps 3 and 4 several times until both 0 and 5 output voltages do not shift.

6. Tilt the accelerometer to several intermediate positions.

7. Repeat steps 3 to 6 several times. Average the measurements at each position and

plot a calibration curve. A typical calibration curve is shown in Figure 5.

The acceleration can be measured in a frequency range from 0 to 370 Hz by the Kyowa

accelerometer. Although the user's manual does not suggest a dynamic calibration, the above

calibration curve is thought, by experience, to be valid for the frequencies lower than 100Hz. For

frequencies higher than 100Hz, the calibration curve has to be examined by dynamic response

measurements. A vibrating table with adjustable acceleration and frequency can be used for this

purpose. As for our experiments, the acceleration is a step function with a nearly constant value.

Therefore, the static calibration curve is applicable to our study.

IV.2.2 Pressure Transducer

A Validyne DP-15 variable reluctance pressure transducer (Figure 6) was used to measure

the pressure on the moving plate. This differential transducer is equipped with 2 pressure ports and

2 bleed ports. A wide pressure range from 0.125 to 3200 psi can be measured by replacing a

diaphragm of magnetically permeable stainless steel inside the transducer which can be

disassembled. A diaphragm of 0.125-psi capacity is used in the present experiments. The

transducer with an applied pressure generates an AC signal which is transmitted through an

electrical cable to a signal corditioner. The Validyne CD15 signal conditioner takes this AC signal

input, amplifies it, demodulates it, and filters it into a DC voltage which represents the pressure

polarity and magnitude. A warm-up time of at least 2 hours is required after power is supplied.

Before any calibration, we first connect a flexible plastic tubing to each pressure port and

fill the transducer and tubings with water. It is very important that the pressure cavity and

transducer connections are free of air bubbles. Otherwise, the entrapped air bubbles act as a
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pneumatic spring and can seriously decrease the frequency response of the measuring system. To

assure water fill, loosen the bleed screw with the system pressure on. After the internal gas has

been expelled, the water starts flowing out of the bleed port. When this happens, close the screw

tight. After expelling the air bubbles, we fix one of the tubings and the transducer in a certain

position. Another tubing is attached to a scale which can be moved up and down vertically. The

scale is equipped with a vernier so that up to the third digit number, 0.001 foot, can be read. The

general calibration steps are:

1. Adjust the movable tubing until free surfaces inside two tubings are on the same

level. Set the output voltage to 0 V.

2. Raise the movable tubing to the position where the maximum pressure is applied and

set the output voltage to 5 V.

3. Repeat steps 1 and 2 until output voltages 0 and 5 V do not shift.

4. Raise the movable tubing to other intermediate positions. Record the output voltages.

5. Repeat steps I to 4 several times and average the output voltages at each position.

Plot the calibration curve.

A typical calibration curve is shown in Figure 7. Note that all the connecting plastic tubings should

be arranged as short as possible so that any unnecessary errors can be avoided.

IV.2.3 Wave-Height System

A new version of the capacitance-type wave-height system (Figure 8) developed by the

IlIR Electronics Shop was used in this study. This new system replaces the old one with much

neede-' ""provements in the areas of versatility and sensitivity. The probe interface circuit (signal

conditioner) is modular in construction to minimize cost and to allow single probe use or easy

expansion to multiple probes.

The probe is made up of three basic parts: the sensor wire, the sensor wire support, and the

connec.ing cable to the interface. The probe sensor consists of a single strand 0.01" diameter

copper wire with a Teflon insulation thickness of 0.001". The sensor wire support is constructed
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of 0.25" diameter stainless steel tubing in a "U" configuration. In the ends of the support there are

inserted lucite insulators which seal the ends of the tubing, provide a convenient attachment point

for the sensor wire, and electrically insulate the sensor wire from the support. The sensor wire

serves as one plate, the Teflon insulation serves as the dielectric, and the water serves as the other

plate of the capacitor. As the probe is immersed in water, the plate area of the capacitor is, in

effect, increased proportionally and thereby increases capacitance.

The interface amplifies the input voltage and has a selectable bipolar range of 5 or 10 V full

scale. It provides a maximum measurement resolution of approximately 0.002" (0.008 cm) and

outputs 300 unique measurements per second. It is important to keep the connecting cable as short

as possible and use a cable with rated capacitance as low as possible to achieve a maximum

measurement sensitivity.

The dielectric insulator slowly absorbs water that causes a change of capacitance, and

consequently a drift of output voltage. After the probe has been immersed in water for about 6

hours, the drift rate is diminished considerably, and after 24 hours of immersion the drift rate

becomes very slow. Therefore, the probe must be immersed in water at least I to 2 days before

taking any measurements. During the experimental period, the probe should be immersed in water

completely when not in use and raises to its operating height during tests.

The output signal becomes very unzable when the immersed probe is attached with

impurities and air bubbles in water. The flume was cleaned and filled with fresh tap water at the

beginning of the experiments. Most air bubbles can leave the water after about 2 days. Thereafter,

the sensor wire and support were cleaned periodically by a piece of soft linen sopped with ethyl

alcohol during the entire period of experiments.

The wave-height system was calibrated as a set in still water immediately before and after

each series of runs. Figure 9 shows a typical static calibration curve. Normally, a dynamic

calibration is required to examine the meniscus, wetting, and wake effects in the vicinity of the

immersed wire. The commonly used instruments for the dynamic examination consist of an

oscillator and an electric motor. The oscillator allows vertical and orbital oscillations of the wave
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probe abc -e the water surface. The amplitudes and periods of the oscillation are adjusted to

simulate waves which would be typical of those created in the towing tank. The geared electric

motor drives a motion linkage through a transmission allowing continuous variable periods. A

thorough study on the dynamic calibration of capacitance, resistance, sonic wave probes was done

by Pearlman (1963). He found that the maximum error, which was compared with the static

calibration curve, was less than 1% for the capacitance wave probe in the condition of a period

range from 0.8 to 2.0 seconds and an amplitude range from 2 to 3 inches. The dynamic calibration

was not made in the present study for lack of the required instruments. However, an indirect

dynamic examination was carried out by Dr. Toda, a Visiting Scholar of IIHR. He conducted a

series of experiments, in the towing tank of IIHR, on ship waves. These experiments were the

same as those he had done in Japan (unpublished). A dynamic calibration was made in the

experiments which were performed in the towing tank in the Department of Naval Architecture,

Osaka University. After the comparison, Dr. Toda concluded that the maximum error of the static

calibration curve made from IIHR's probe is ±0.5mm in the condition of a 0.5 second maximum

period and a 3cm maximum amplitude. In our experiments, the water surface simply piled up with

a maximum amplitude approximately 2cm on a moving plate. Therefore, the static calibration

curve was used in the present experiments.

IV.3 Data-Acquisition System

The data -acquisition system is a microcomputer IBM PC/XT with a MetraByte DAS-8 8

channel A/D converter board and a MetraByte STA-08 screw terminal connector board. The data-

acquisition board takes signals from measuring devices, converts them to digital forms, and

transmits them to the computer in a digital format. The Notebook, a data-acquisition software

developed by the Laboratories Technology Corp., was used to define the channel number, the

sampling rate, the sampling time length, data file name, and so on.
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IV.4 System Setup and Experimental Procedures

All relevant instruments have been familiarized and calibiated following the procedures

stated in the previous sections. The accelerometer, wave probe, and pressure transducer were

fixed on the carriage and transmitted response output signals through cables to the corresponding

signal conditioners and microcomputer which were put on a desk beside the flume. Both pressure

and free-surface profile measurements were recorded for a time length about 3 seconds with 100

Hz sampling rate after the carriage was set off. Every measurement was repeated several times for

reliable experimental results. A typical response voltage output for acceleration, pressure, and

free-surface variation is shown in Figure 10. A time interval of about 5 minutes was necessary

between two measurements in order to diminish the water disturbance induced by the previous run.

The wave probe mounted system (Figure 11) was so designed that the probe wire was

located at the center of the experimental channel and could be moved to any desired position along

the longitudinal direction. Moreover, the probe could be moved up and down so that the

calibration could be carried out convenientiy before and after a series of runs. In the present

experimental study, three accelerations were investigated: al-1.04-0.96t, a2= 0.78-0.69t, and

a3=0.50-0.44t m/sec2 . Ten positions were measured from 0.5cm to 23.5cm away from the plate.

The calibration curve was made at each measuring point.

The measurements of the pressure were separated from that of the free-surface profile.

This is to avoid the disturbance induced by the wave probe on the pressure taps. The pressure

distribution on the plate was measured with 6 1mm-diameter pressure taps located at 2.5, 3.5, 5.0,

6.5, 7.5, and 8.5 cm respectively above the channel bottom. A plastic tubing connected the

pressure tap to the '+'ve pressure port of the pressure transducer. The pressure transducer was

mounted on the carriage in an upward position and the surface of diaphragm was parallel to the

motion direction. This is to avoid the gravity force and the inertia force, due to the system in an

unsteady motion, acting on the diaphragm. Another tubing was connected to the '-'ve pressure

port and extended to the interior of a 1.5cm-diameter plastic hollow cylinder which was fixed on

the backside of the plate. The hollow cylinder was filled with water to about the same water level
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in the flume. Because the cylinder's diameter is small, we assume the water surface inside would

remain flat during the carriage run. In other words, the reference pressure is a constant. The

reason to fix this cylinder to the backside of the plate other than the arbitrary place is to eliminate

the force, induced by the water mass subjected to the unsteady motion of the carriage, acting on the

diaphragm. The water mass is contained between two openings of the tubings inside the

connecting system projected in the moving direction. In so doing, there remains only a minor error

which is about 0.1 g water inside the pressure hole in the plate. Three accelerations were studied

for the pressure measurements: al=1.12-1.1 It, a2=0.86-0.88t, and a3=0.55-0.55t m/sec2 . The

experimental results for both free-surface and pressure measurements are presented in the next

chapter.
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V. RESULTS AND DISCUSSION

The numerical solutions for the free-surface flow generated by a moving plate were

calculated by the method stated in Chapter III. A computational domain was taken for x--0-13,

and y--0-2, which have been normalized by the unperturbed water depth, with 80x60 grid points.

A partial calculation grid system is shown in Figure 12. A coarser and a denser grid system were

tested also. The present grid system gives a reasonable accuracy and efficiency. The time

increment was controlled that the maximum movement of the plate did not exceed o.2 of the grid

spacing in the x-direction at each time step. The calculation at each time step took about 4 CPU

minutes in PRIME 9955 minicomputer at the University of Iowa, and took about 9 CPU seconds

in CRAY X-MP/48 superccniputer at the University of Illinois at Urbana-Champaign. No

vectorization was attempted in the present numerical code when running in the supercomputer.

About 20 iterations in each time step were required to obtain an accuracy of 10- 6 for both velocity

and pressure fields.

Chwang (1983) treated the same problem, on the basis of the potential-flow theory, in

terms of the small-time-expansions method. The velocity potential was obtained up to and

including the third order. An example for the constant acceleration of the plate was presented in his

study. For a time-dependent acceleration, a=a 1 +2a2t, in the present study, the free-surface profile

in the dimensionless form is

00

yO=l+2E2(l+ .a2) Y__(km ho)-I ekmx, (V.1)m=l

and the normalized hydrodynamic pressure on the plate surface defined in equation (11.5) is

oo2 (-1I) m + lI - 4 a 0-)

pO y 2 2 cos(kmy)
m=l km ho
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where ho denotes the unperturbed fluid depth,

2 t2 a l  o a2t-h o ' al '

al (2m- 1) t

a 9--, km 2h(

rn- 2 -1
Am = ; (h 0 ks kms ( m = 2,3,...),

S-1

krm-- (m  i) (m = 2,3,..). (V.3)
ho
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The inviscid analytical solution, the viscous numerical results, and the experimental

measurements on the free-surface profile and pressure distribution are compared in a series of

figures. The free-surface profiles are shown in Figures 13 to 15 for different accelerations at three

sequential times, E2--0.05, 0.1, and 0.15. The agreement between the present numerical results

and the experimental measurements is quite satisfactory. The numerical method predicts the water

elevation equally well in the region very close to the plate where viscous and surface-tension

effects are important. Chwang's theory (1983) gives a good prediction in the region away from

the plate and at small time. After a further examination, we found that his theory overpredicts the

elevation in the region close to the plate and underpredicts the elevation in the region away from the

plate. The larger the time is, the larger the difference would be. This is due to a mathematical

singularity, which is predicted by the potential-flow theory, at the intersection of the plate and the

free surface. A certain amount of mass is piled on the plate and causes an underprediction of the

elevation in the outer region. However, the physical singularity was not observed in the

experiments. The water surface simply rises up along the plate during the initial stage of the plate

motion. Thereafter, there is a train of waves propagating downstream along the channel. A few

pictures showing the initial stage of the plate motion are given in Figures 16 to 18.

A comparison of the pressure distribution on tht plate surface is shown in Figures 19 to

21. The numerical method predicts the results quite well. Chwang's theory agrees with the

measurements in the region close to the channel bottom and at small time. However, his solution

overpredicts the pressure near the free surface and at large time. This is due to the limitation of the

small-time-expansions method and a mathematical singularity at the unperturbed free surface.

Another reason is that the viscous dissipation is not included in the potential theory.

The time evolution of the velocity vector field is shown in Figures 22 to 24. These figures

indicate that the upper portion of water in front of the plate is pushed up and forward. The water

near the bottom is pushed forward only. The time evolution of the hydrodynamic pressure field is

presented in Figures 25 to 27. The values on the contour lines correspond to the hydrodynamic

pressure. These figures indicate that the pressure reaches its maximum values near the corner of
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the plate and the channel bottom, as expected from physical intuition. Note also that the values of

the pressure decrease vertically from channel bottom to free surface. The pressure contour lines

also show that a pressure wave propagates downstream as time increases.
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VI. CONCLUSIONS

The physical problem of the free-surface flow generated by an impulsively accelerating,

surface-piercing, vertical plate has been studied numerically as well as experimenally. The

unsteady, two-dimensional Navier-Stokes equations are solved numerically to describe the flow

phenomena. The continuity equation and two dynamic boundary conditions on normal and

tangential stresses at the free surface are applied to determine the pressure and two velocity

components at the free surface. The kinematic boundary condition provides the movement of the

free surface. A series of experiments has been conducted in an open channel with a constant water

depth. The free-surface profile in front of the plate and the pressure distribution on the plate

surface are measured.

The inviscid analytic solution, the viscous numerical results, and the experimental

measurements have been compared. The agreement of the free-surface profile between the

numerical results and the experimental measurements is fairly good. The inviscid analytical

solution developed by Chwang (1983) also gives a good prediction in the region away from the

plate and at small time. The agreement of the pressure distribution on the plate surface between the

numerical and experimental results is also satisfactory. Chwang's theory agrees with the

experimental measurements quite well in the vicinity of the channel bottom and at small time. The

mathematical singularity, which is predicted by the potential-flow theory, at the intersection of the

plate and the free surface is not observed in the physical experiments. The water surface simply

rises up ahead of the plate during the initial stage of the plate motion.

In the present study, the carriage is released manually and driven by a freely falling weight

bucket. All the measurements are taken within a small time after releasing the carriage. It is

important to require the acceleration be a step function at time t--O+. Although the output data were

carefully checked, the human error still exists. To improve the accuracy, the carriage could be

driven by an electrically controlled motor system from which the rate of acceleration can be

regulated. For the pressure measurements, the measuring range is about 9-20% of the capacity of

33



the pressure transducer in the present experiments. The degree of accuracy can be improved by

using a pressure transducer with more compatible capacity.

The present numerical code has been verified by the experimental measurements and can

predict satisfactorily the flow field generated by the impulsive motion of a plate. This two-

dimensional numerical code can be extended to study similar problems on axisymmetric or three-

dimensional flows. For the flow domain with a complex configuration, the numerically-generated

boundary-fitted coordinate system can be used, which not only fits the body boundary but also fits

the free-surface boundary.
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Figure 4. The accelerometer (right) and the signal conditioner.
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Figure 8. The wave gauge (left) and the signal conditioner.
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Figure 11. Wave-gauge mounted system.
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Figure 16. Free-surface profile for a=O0.50-O.44t (m/sec 2).
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Figure 17. Free-surface profile for a=O.78-O.69t (m/sec 2 ).
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Figure 18. Free-surface profile for a=1.04-O.96t (ml/sec 2).
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