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ABSTRACT

The free-surface flow generated by an impulsively accelerating, surface-piercing, vertical
plate has been studied numerically as well as experimentally. The two-dimensional, unsteady
Navier-Stokes equations are discretized using the finite-analytic scheme which incorporates the
analytic solution into the locally linearized differential equations. The continuity equation and the
dynamic boundary conditions on normal and tangential stresses at the free surface are applied to
determine the pressure and two velocity components at the free surface. The kinematic boundary
condition on the free surface provides the movement of the free surface.

A series of experiments is carried out in an open channel with a constant water depth. The
flat vertical plate is fixed on a towing carriage which is set off by suddenly dropping a weight
bucket through a connecting steel cable in a pulley system. A data acquisition system is used for
controlling the sampling process and for recording the signal output. The free-surface profile
ahead of the plate and the pressure distribution on the plate surface are measured.

The agreement of the free-surface profile and the pressure distribution between the
numerical results and the experimental measurements is fairly good. The mathematical singularity,
which is predicted by the potential-flow theory, at the contact line between the plate and the free
surface is not observed in the physical experiments. The water surface in front of the vertical plate

simply rises up during the initial stage of the acceleration of the plate.
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I. INTRODUCTION

«ne study of the fluid-body interaction with a free surface has received a considerable
interest in the past few decades. The applications extend to a variety of topics, such as designs of
dams, bridge piers, offshore structures, ships, and so on. For instance, the information of
pressure and velocity distributions around a ship is required in designing a high-performance ship
hull. Up to date, the associated design involving the free surface still depends heavily on the
towing-tank experiments. However, the exact dynamic similitude in free-surface flows is rarely
achieved. It is common to require only Froude number similarity when two systems are compared
experimentally. Then the Reynolds number for the model test may be several hundred times less
than that for the prototype so that the viscous effects are not properly modelled. Corrections for
viscous effects can be made by using models of different scale ratios and extrapolating the results
to full prototype scale. Since exact dynamic similitude is rarely achieved in models of free-surface
systems, a considerable amount of judgment is necessary both in designing models and in
interpreting the results. Alternatively, the numerical experiment may resolve the problem of
dynamic similitude which plagues the towing-tank experiment. Once the validity of a computer
code is verified, the flow fields subjected to different conditions can be obtained by changing the
associated parameters, such as the Reynolds number, the Froude number, and the Weber number,
etc. However, the numerical method itself also carries difficulties. The main difficulty arises from
determining the time-dependent free-surface profile, which is not only a boundary of the flow
field, but also a part of the solution. Furthermore, the researchers are puzzled by the irregular free-
surface cells, which make the calculations difficult, when a time-independent Eulerian coordinate
system is used. As for the analytical method, Chwang (1983) developed a nonlinear potential-
flow theory by using a small-time-expansions method to determine the hydrodynamic pressure on
an accelerating vertical plate and the free-surface profile in front of it. A similar problem was
studied by Roberts (1987). Wang (1985) extended Chwang's idea to investigate the three-
dimensional nonlinear free-surface flow around an impulsively accelerating, surface-piercing,

vertical cylinder. A mathematical singularity was predicted at the intersection of the body and the




adjacent free surface by the potential-flow theory. However, the physical singularity was not

observed in Wang's experimental study.

I.1 Review of Numerical Study

The free-surface problem was first solved numerically by Welch et al. (1965). The so-
called Marker-And-Cell (MAC) method is a technique for solving the time-dependent flow field of
a viscous, incompressible fluid with a free surface. This method employed an Eulerian mesh of
calculation cells and finite-difference expression to approximate the continuity and Navier-Stokes
equations. The marker particles on the free surface were used to identify the free-surface location
by applying the kinematic boundary condition. In order to facilitate calculations, the cells in the
computational domain were flagged to be body boundary cells, free-surface boundary cells, full
cells, or empty cells. The dynamic boundary conditions on the free surface, which required that
the normal and tangential stresses be continuous, were used to determine the pressure and
velocities on the free surface. However, the MAC method in its original form used simple
approximations for these conditions. The normal-stress condition was replaced by zero surface
pressure. The tangential-stress condition was replaced by two conditions: one on the fluid
incompressibiiity for surface cells, and another on the vanishing normal derivative of the fluid
velocity at the free surface.

Improvements on the MAC method have been achieved later by several researchers. Hirt
and Shannon (1968) studied the formation of a viscous bore and recovered tiie normal-stress
boundary condition at the center of the free-surface cells where pressure was calculated. Chan and
Street (1970a, 1970b) applied the same boundary condition at the exact free-surface location to
determine the run-up of a solitary wave on a vertical wall. In addition to the normal-stress
boundary condition, Nicols and Hirt (1971) applied the tangential-stress condition to calculate the
free-surface velocity. They simplified the equation by categorizing the free-surface slopes to have
only vertical, horizontal, or 45° directions, and investigated a collapsing fluid column, a splashing

drop in a deep pool, and a viscous bore. The related studies and improvements were also made by
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Hirt, Cook, and Butler (1970), Viecelli (1971), Faltinsen (1977), and Lin, Newman, and Yue
(1984). Tang (1987) specified the complete boundary conditions on the free surface using the
finite-analytic scheme developed by Chen and his associates (1980-1986). The kinematic
boundary condition was used to provide the movement of the free surface. Two dynamic
boundary conditions at the free surface were used to determine the pressure and horizontal velocity
component respectively. The vertical velocity component was obtuined by extrapolation from the
flow domain. This is a good approximation for smooth and slowly-varying flow fields oniy. A
refinement can be made by requiring conservation of mass in the surface cell.

Three-dimensional versions of the MAC method with inviscid-flow free-surface boundary
conditions have been developed for ship wave problems by Suzuki et al. (1981), Masuko et al.
(1982), Miyata and Inui (1984), Miyata and Nishimura (1985), and Miyata et al. (1985). Miyata
et al. (1987) incorporated a boundary-fitted curvilinear coordinate system, which was deformed to
fit the moving free-surface at each time step, into the computational procedure. A sub-grid-scale
model was also introduced by Miyata et al. (1987) to simulate the turbulent flow. Their computer
code, in its infant stage, still suffered from the problems of accuracy, stability, and efficiency of
calculations. For instance, a filter was applied to the free-surface coordinate to remove the
unfavorabie fluctuation.

The above-mentioned studies were all based on the finite-difference method. The finite-
element formulation for free-surface flows was also developed by a number of authors, including
Nickell, Tanner and Caswell (1974), Reddy and Tanner (1978), Frederiksen and Watts (1981),
Kawahara and Miwa (1984), and Ramaswamy and Kawahara (1987a, 1987b). In this
formulation, the unknowns of the differential equations were discretized using a linear interpolation

function, similar to the Galerkin method, based on a three-node triangular finite element.

1.2 Review of Experimental Study

The impulsive start of a wavemaker initially at rest in calm water can simulate the initial
stage of the motion of a dam under earthquake loading, or the motion of a ship under sudden
acceleration. Greenhow and Lin (1983) took a series of pictures on the free-surface profile in front
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of a flat plate moving from rest with a constant velocity. A jet was observed at the contact line. To
simulate the slamming of ships, the high speed entry of a wedge and a cylinder into and exit from
calm water were also experimented. Because the pictures were taken through the transparent side
wall of a tank, the experiments provided the qualitative results due to the viscous and surface-
tension effects on the side wall. No pressure measurements were attempted in this study.

Wang (1985) conducted a series of measurements for the free-surface elevation in front of a
vertical circular cylinder and for the pressure acting on the cylinder surface. In his experiments,
the acceleration of the cylinder was a step function and the velocity was continuous. The
agreement between the theoretically predicted values of the free-surface elevation and the
experimentally measured ones was fairly good at a distance of at least one radius away from the
cylinder surface. His theory over-predicted the hydrodynamic pressure, since no viscous

dissipation was included in the inviscid thesry.

1.3 Preview of the Present Report

The purpose of the present study is to investigate, numerically as well as experimentally,
the initial stage of the flow field generated by a vertical plate accelerating horizontally into a calm
water. The unsteady, two-dimensional Navier-Stokes equations are transformed into the
corresponding finite-difference form using the finite-analytic scheme developed by Chen and his
associates (1980-1986). In this method, the local analytical solutions are obtained for the
linearized governing equations in the discretized computational element. The local analytical
solutions are then expressed in the algebraic form and are overlapped to cover the entire flow
domain. Because of the analytic nature of the solution for the well-posed problem, the numerical
solution is more stable and accurate than the conventional finite-difference method. The SIMPLER
(Semi-Implicit Method for Pressure-Linked Equations Revised) algorithm of Patankar (1980,1981)
is used to solve the discretized equations. The mathematical formulation of the present problem is

given in Chapter II and the details of the numerical method are presented in Chapter III.




A series of experiments is conducted in a water flume on the second floor of IIHR. The
free-surface profile in front of the plate and pressure distribut.on on the plate surface are measured
for three different accelerations of the plate. A capacitance-type wave gauge is used to measure the
variations of the water surface. A variable reluctance pressure transducer is used to measure the
surface pressure. An accelerometer is used to measure the acceleration of the plate. All response
voltage outputs are recorded on an IBM PC-XT personal computer with a data acquisition electrical
board. The setup and experimental procedures are included in Chapter IV.

The experiments are carefully conducted and used as a criterion for evaluating Chwang's
theory (1983) and the present numerical code. The comparison and discussion are included in
Chapter V.

Finally, conclusions and further extension of present work are presented in Chapter V1.




II. MATHEMATICAL FORMULATION

A vertical, rigid plate is initially at rest at x=0 plane in a channel with a constant fluid depth

hg (Figure 1). At time t=04, it starts to accelerate horizontally towards the fluid with an

acceleration a(t). For a two-dimensional flow of a viscous, incompressible fluid, the continuity

and momentum equations in a Cartesian coordinate system (X,y) are

du dv
S0, (IL1)

du. du,_ du_ 193 92u  92u
B-I-+u3;+vg)7=--p- x+1)(§x—2+572-), (I1.2)

ov ov ov 10 v 92y
> 3§+ v (

Bt—+u3;+va§-=- -8_7(7+5)'_2-)’ (I1.3)

where u and v are velocities in the x and y directions respectively, p the hydrodynamic pressure, p

the fluid density, and v the kinematic viscosity of fluid.

We assume that the acceleration a(t) can be expressed as a power series in t,

at)= Y nap -l (IL.4)
n=1

where ap is not equal to zero for an impulsive motion. A set of dimensionless quantities can be

defined in the following manner:

0-2X 0=
X —hov y —ho’
40 = —Y vo = —Y (IL.5)
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p0=-—2— tO:t 2.1_
’ h
pajhg o

where a| is the leading term of equation (11.4) and h,, is the unperturbed free-surface level. Then

the dimensionless forms of the governing equations can be written as (after dropping the

superscripts '0")

du ov
=t 3= 0, (IL.6)

du du du 0 1 ,02u 92u
S s @

ov oJdv ov 0 1 92v 92y
TRV oy R (Gat 52 as)

where Re denotes the Reynolds number

vai hg hg

L

Re =

The dependent variables u, v, and p can be solved by the above three equations with specified
initial and boundary conditions.

Let F(x,y,t)=0 describe a surface S(t). If S(t) is an interface between two immiscible
fluids, the first condition it must satisfy is a kinematic one. As the surface moves, there should be

no transfer of matter across the surface. Consequently, the following equation must be satisfied

99
2;

(I1.9)

This condition is satisfied by any bounding surface, whether a free surface or a rigid boundary. If
the free-surface profile is defined by




F(x,y,t) =y - h(x,t) , (I1.10)

where h(x,t) denotes the free-surface elevation, then the kinematic boundary condition becomes

%ltl+u%:-=v. (IL11)

This condition provides the movement of the free surface.

In addition to the kinematic condition, there are dynamic conditions to be satisfied at the

free surface as follows:

1.  The effect of surface tension, as one passes through the free surface, is to produce a
discontinuity in the normal stress proportional to the mean curvature of the free
surface.

2.  For a viscous fluid, the tangential stress must be continuous as one passes through
the free surface.

The mathematical expressions of the above statements can be written as

2
K pajhg
nj Gjj 0j =g » We=——o—, (I1.12)
and
toijnj=0 (=12 j=1,2), (I1.13)

where nj (tj) is the i-component of a unit vector normal (tangential) to the free surface, Gj; the stress
tensor, K the surface curvature, We the Weber number, and & the surface tension coefficient. The

repeated index is summed from 1 to 2. The stress tensor ojj for an incompressible Newtonian

fluid can be expressed as
o= )'1_'1 8--+_1 a.i... i 4
Gij = - (p- Fr ) J * Re * dx{ axj ) (IL.14)




Fr2=ﬂ-,
g

where Fr denotes the Froude number, g the gravitational constant, and aij the Kronecker delta.

Substituting equation (II.14) into equations (II.12) and (IL.13), we have

au ov K
Re(T =)L =W (IL15)
2  ou ou  ov 2 (IL16)

R (3" 3‘“1 "z+Re<a-+3'><nz n1>—

The x and y components of the unit outward normal vector to the free surface are

12
n =-§";( 1 +(§“)-(-J2) : (IL.17)
12
n2=(1+(g";)z) : (IL.18)

where 1 denotes the free-surface variation from the unperturbed water surface. The free-surface

curvature is

312
=gi“_2(1+(g";)2) , (IL19)

The sign is so selected that the normal component of the stress vector increases in the outward

normal direction.




Equations (II.15) and (II.16) are used to determine the pressure and horizontal velocity
component respectively at the free surface. The vertical velocity component is obtained by
applying the continuity equation at the free surface. The no-slip boundary condition is applied at
the solid surface except the contact line between the plate and the free surface. The boundary
condition in the region around the contact line is still unknown. Several slip boundary conditions
similar to the linear slip-shear relation (Lamb, 1932, p.586) were proposed to study the contact-
line problem (for example, Hocking (1976), Dussan (1976), Durbin (1988)). None of them are
verified theoretically or experimentally. In the numerical calculations, Miyata et al. (1987) applied
the no-slip boundary condition at the contact line and calculated the wave height on the body
surface by extrapolation from two outer values. In Tang's study (1987), the no-slip boundary
condition was released at two nodal points beneath the free surface. The slip velocities were
extrapolated from the flow domain. Tang's model seems more reasonable and is adopted in the

present study. The initial condition are simply zero velocity and pressure at t=0.
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III. NUMERICAL FORMULATION

III.1 Discretization of Governing Equations

In order to solve the velocity and pressure fields numerically, the governing differential
equations have to be transformed into the corresponding discretized forms. All variables are
assumed to exist at the nodal points only and related to those at the neighboring nodal points by
some coefficients obtained from the discretization method. Mathematically, the discretized
equations should recover the differential equations if an infinite number of grid points, an infinite
small time step, and an appropriate discretization method are used. In other words, the accuracy of
the numerical solution depends on the grid size, the increment of the time step, the discretization
method, the calculational method, and so on. The finite-analytic scheme, a branch of the finite-
difference method, of Chen and others (1980-1986) is used in this study.

The governing equations (I1.7) and (I1.8) are rewritten in the form

af 02f of of
axz ayz 2Aa— ZBE-+RCT+Sf (HI.I)

where f stands for the velocity component u or v, and

Re U _ReV
A== B=T3
d )
Su=Re3E, Sy=Re 5-5 (II1.2)

The nonlinear equations have been linearized by replacing the coefficients u and v by U and V
respectively in the convective terms, where U and V are mean values of u and v in an numerical
element. This approximation is valid for a slowly-varying flow field or for a relatively small
element. In the original version of the finite-analytic scheme, the value of a dependent variable at a
nodal point was related to those at all neighboring nodal points. This eight-point formula, in a

two-dimensional system, ended up with a calculation involving an infinite series for obtaining the

11




finite-anal; u: coefficients. Because the method possesses a built-in, automatic upwind nature, the
coefficients have to be evaluated at each iteration according to the newly calculated flow field.
Therefore, a considerable amount of CPU time makes the method not efficient. Without losing the
nature of the original method, a simplified four-point version was derived by Chen and Patel
(1987). They tested a uniform flow past a horizontal plate with finite length and obtained fairly
good results. Later, Tang (1987) and Richmond (1987) incorporated this simplified version into
their studies. We also adopt this four-point finite-analytic method to discretize the governing
equations.

The finite-analytic coefficients for nonuniform grids shown in Fig.2(a) are obtained by an

exponential-linear scheme. Equation (III.1) is written as

92 _ . of
F 2B Pl G, (I11.3)
where Gy 1s the nonhomogeneous term
of 92f . of
Gf=2Aa-£--a-;(7+ Re 5=+ Sf. (111.4)

When the boundary conditions along the y-direction are expressed as a linear combination
of exponential and linear functions in terms of the nodal values, equation (III.3) can be solved
analytically in every numerical element. Let

f=a(e2By-1)+by+c. (I11.5)

At the nodal points,

SR,




y=hy, fn=a(e:2E'hn

-1)+bhy+c,

y=-hg, fo=a(e2BMs_1).bhg+c,

where a, b, and ¢ are solved in terms of the variables fp, fp, and fg as

hp fs + hg fy - £ (hp + hg)

a—hn e'ZBhS + hg e2Bhn - hp - hy , (tiL.6)
b o fs (-cZBhn +1)+f, (e'2BhS -1)+fp (-e'thS + ¢2Bhy )
B hy e 28BS 4 hge*Bn . g ’
II1.7)
c=fp. . (I11.8)
Aty =0, equation (III.3) becomes

0=2Bb + Gs. (I11.9)

Substituting (II1.7) into (I11.9) and rearranging the terms, we obtain
fp = &5 fs +Cq f + Ep G, (I11.10)

where

) e2Bhn _ 1
Cg = ’
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é _ 1 - e‘thS
n ethn . e’ZBhS ’

p=3B -2Bhy _ -2Bhg

We may approximate the x-derivative using the same method as above and obtain

A B e+ 5e) fy + o + G fe. (WL11)
OxX gx2 p
where 2 AL
A c
B =2A l-¢

he e 220w 4, 2ARe p o h,

c'zAhw - 1

Ge = 2A —— .
he e 2APW 4 by e2ARC 1 he

The time derivative is approximated by an implicit, backward difference scheme

%

Lol
..At(f; f; ), (111.12)

where f; is the value of {, at the nth time step, At is the increment of the time step. From

equations (I11.10) to (II1.12), we obtain the discretized equation (the superscript n is omitted

hereafter for simplicity)
f=cefe+cqf £ +Cofotc £ dcS 1L13
p=Csis+cnfp+cwfy +cefe +c; p +Cp Sf | (IT1.13)
where
CS=éSH’ Cn=énH ,
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‘_32- Re -
Cp = - H , chn=Cp H s
1
H= Re

1+ép(éw+ée‘z)

The variable fp is now related to those at four neighboring nodes, f, at the previous time
step, and the pressure gradient. With given initial and boundary conditions, the velocity field is
calculated from equation (ITI.13). The pressure field is obtained indirectly via the continuity

equation. The numerical method is given in the next section.

I11.2  Numerical Method of Solution

The SIMPLER algorithm of Patankar (1981) is adopted to solve the velocity and pressure
fields in the flow domain. The arrangement of velocities and pressure at nodal points in a
staggered grid system, first proposed by Welch (1965), is shown in Figure 2(b). Because the
pressure is obtained via the continuity equation, we separate the pressure terms from other terms in

the discretized momentum equation (II1.13)
A

A
where ug, called the pseudo-velocity by Patankar, is defined as

A 4 n
Ue = I Cie Uje +Cp U, (I11.14b)
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Rec
and d =—2F

e=
AXC

k]

where the subscript 'ie' denotes the neighboring nodes of node e. Similarly, we can write

A
Uy = Uy +dy (Pp - Pw) (I11.15)
A
vn=Vp *+dn (Pn - Pp) » (I11.16)
A
Vs = Vg +dg (pp - Ps) - (I1.17)

Substituting equations (I11.14) to (II1.17) to the discretized continuity equation

(ue - uw) Ay + (v - vg) Ax =0, (I11.18)
we have
A
appp=aepe+awpw+anpn+asps+D, (111.19)
where the coefficients are defined as
an-':Axdn, aS=Axds,
ap=ae+aw+an+as,

A A

A A A
D= (l]e"Uw)Ay+(Un'uS)Ax.




In this fashion, the pressure field can be obtained from a given velocity field which is contained in
the source term IS

The velocity field is solved from the momentum equation based on a given pressure field.
However, the pressure field is obtained via equation (II1.19) by a given velocity field. Therefore,
an iterative method is necessary to find the final solution based on an initially guessed pressure
field. Before a specified convergence criterion is reached, the pre-converged velocity field based

on a pre-converged pressure field p* is denoted by u* and v*. The pre-converged velocities can be

expressed as

* Ax * *
U = U, + de ( Pp~Pw ). (111.20)
% la% * *
“w=“w+dw(Pp'Pw ), (1I1.21)
* Ak % *
V=Vt dp ( Pn-Pp ), (111.22)
* Ak * %
Vg = Vg + dg (pp -Pg ) - (I11.23)

Equations (II1.20) to (II1.23) for the velocity field and equation (II1.19) for the pressure field
provide a complete discretized system for the numerical calculation. .

In order to accelerate the speed of convergence, the resulting velocity field at each iteration
can be corrected by requiring that the velocity field satisfy the continuity equation. Let us define

the velocity corrections u', v' and the pressure correction p' as
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L I * :
where u, v, p are converged values, and u™, v, p are pre-converged values. From equations

(I11.14) and (I11.20), we have

' At t []

ue=ue+d€(pe'pp)’ (111.24)
A A Ax
where u, = Ug - U,. Similarly,

' A t t
uw=uw+dw(pp-pw), (111.25)

' At * [
vn=un+dn(pn-pp), (I11.26)

t At 1 '
Vg= Vgt dg ( pp - By ) . (111.27)

At A A A

For convenience, we may drop Ug,s Uys Vo and Vg Then, the velocity-correction formula can be

written as

* t t
ue=u, +de (P - B ) (111.28)
uw=u*w+dw(pr',-p"v'), (II1.29)
* t [
vn=vn+dn(pn-pp), (I11.30)
s ' L
Vs=V5+ds(Pp'P5) . (IT1.31)
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Substituting equations (IT1.28) to (II1.31) into the discretized continuity equation, we have

t t

appp=anpn+asps+aepe+awpw+n*, (111.32)

where
* %* % * %
D =(ue-uw)Ay+(vn-vs)Ax.

The pressure-correction p' is obtained from the pre-converged velocity field which appears
in the source term D*. Note that omitting any terms in the equations may result divergence or lead
to wrong solutions. However, the terms we have dropped will approach zero when the solutions
converge and will not affect the ultimate solutions in this case. The corrected velocity field satisfies
the continuity equation at every iteration cycle. The numerical computation is prone to convergence
and a continuity-satisfying velocity field is physically more reasonable than the uncorrected

velocities in equations (I11.20) to (II1.23).

I11.3 Solution Procedure

We have derived all the required discretized equations and in a position to describe the
sequence of calculational operations. The numerical computation is done according to the
following steps:

1. Define the physical domain and generate a suitable numerical grid system.
Specify the initial condition.
Specify the boundary conditions which are time dependent in the present study.
Calculate the finite-analytic coefficients given in (I11.13), (II.10), and (III.11).
Calculate velocities u* and v* from equations (I11.20) to (T11.23) and obtain D*.
Calculate pressure-correction p' from equation (I11.32).
Correct the velocity field by means of equations (I111.28) to (II1.31).

A A A
Calculate pseudo-velocities u and v from (I11.14b) and obtain D from (I11.19).

© © N e w s w0

Calculate pressure p from equation (II1.19).
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10.

11.

12.

13.
14.

Calculate free-surface velocities and pressure from dynamic boundary equations,
(I1.15) and (II.16) and continuity equation, (I1.6).

Repeat steps 4 to 10 until both the velocity and pressure fields reach a specified
convergence criterion. In the present study, the absolute error is 10-6 or less.

Use the kinematic boundary condition (II.11) to update the free-surface elevation and
use the given boundary condition to determine the new position of the plate.

Return to step 3 for the next time step.

Stop if time exceeds the specified maximum time period.
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IV. EXPERIMENTAL STUDY
The purpose of the experiments is to measure the free-surface profile and the pressure
distribution on an impulsively moving plate subject to various accelerations. The experimental
setup and procedures will be presented. The features of each instrument used in the present

experiments will be discussed.

IV.1 Experimental Model

A series of experiments was conducted in a water flume on the second floor of Iowa
Institute of Hydraulic Research. The 26m-long, 0.8m-wide, 0.3m-high open channel with
transparent glass bottom and sides is tiltable through an electrical driven gear system. The zero
slope was adjusted from a counter mechanically attached on the gear system. A level was used to
double-check manually the channel slope and to make sure no local humps on the channel bottom
in the test reach. A towing carriage was constrained to move along a pair of parallel rails mounted
on the top of the side walls of the channel (Figure 3). The carriage was set off impulsively by
suddenly dropping a weight bucket through a connecting steel cable in a pulley system. A
plexiglass flat plate was fixed on the carriage vertically and traversely. The channel was filled with
water to a height of 10cm. In order to diminish quickly the water disturbance generated by the
previous run between two measurements, the channel was shortened to 6m by putting two wood
boards upstream and downstream traversely. There was a moment acting on the moving plate due
to the relative motion of water. After a few test runs, we found that the impulsively moving
carriage was tilted and even overturned by this moment. We then decided to narrow the width of
the channel to 20cm by putting a wood board longitudinally. The carriage, with the narrowed
plate, ran smoothly after the modification. Therefore, the final dimension of the experimental
channel is 6mx0.2mx0.3m together with a 0.2mx0.3m plexiglass flat plate fixed on an instrument

carriage (Figure 3).
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IV.2 Instrumentation
IV.2.1 Acceleration Transducer

A Kyowa ASQ-2BL servo-type acceleration transducer (Figure 4) with a +2%9 81m/sec?
capacity was mounted on the carriage to measure the acceleration. It provides a wide frequency
response range and permits faithful measurement of random wave forms because of its excellent
phase characteristics. Unlike conventional strain-gauge-based transducers, the ASQ-2BL
accelerometer is equipped with a servomechanism to measure very small vibration with high
accuracy, which is difficult to measure with conventional transducers. For the conventional
transducers, the response voltage output is transmitted through an electrical cable and amplified by
a signal conditioner. The signal distortions and noises, produced by the cable and by the signal
conditioner, are also amplified inevitably. The outcome makes the data analysis difficult. The
longer the cable is, the worse the contamination will be. The Kyowa accelerometer overcomes this
difficulty by a built-in amplifier which provides a 5-volt output in the full scale. This feature
improves the stability and reliability of the response signals received by the signal conditioner. The
Kyowa VAQ-500A signal conditioner is a multi-purpose vibration measuring instrument designed
primarily for use with the above-mentioned accelerometer. Combined with the signal conditioner,
the accelerometer can not only measure the acceleration, but also the velocity and displacement.
Before the operation, a warm-up time of at least 2 hours is required after power is supplied.

The calibration was done following the procedure in the user's manual. Because the
accelerometer has a high DC sensitivity, calibration can be done via the gravitational acceleration
without using special equipment. The general calibration steps are:

1.  Decide the maximum value of acceleration in the experiments.

2.  Set the measuring ange. There are five measuring ranges, 1%, 3%, 10%, 30%, and

100% of the full scale, to be chosen.

3. Place the accelerometer horizontally and set the output voltage to O V. Because the

gravitational acceleration applied in thc vibration detecting direction is 0 G in this

condition, the output voltage is zero.
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4.  Tilt the accelerometer to the position where the maximum acceleration is applied and
set the output voltage to S V.

5. Repeat steps 3 and 4 several times until both 0 and 5 output voltages do not shift.

6.  Tilt the accelerometer to several intermediate positions.

7. Repeat steps 3 to 6 several times. Average the measurements at each position and

plot a calibration curve. A typical calibration curve is shown in Figure 5.

The acceleration can be measured in a frequency range from 0 to 370 Hz by the Kyowa
accelerometer. Although the user's manual does not suggest a dynamic calibration, the above
calibration curve is thought, by experience, to be valid for the frequencies lower than 100Hz. For
frequencies higher than 100Hz, the calibration curve has to be examined by dynamic response
measurements. A vibrating table with adjustable acceleration and frequency can be used for this
purpose. As for our experiments, the acceleration is a step function with a nearly constant value.

Therefore, the static calibration curve is applicable to our study.

IV.2.2 Pressure Transducer

A Validyne DP-15 variable reluctance pressure transducer (Figure 6) was used to measure
the pressure on the moving plate. This differential transducer is equipped with 2 pressure ports and
2 bleed ports. A wide pressure range from 0.125 to 3200 psi can be measured by replacing a
diaphragm of magnetically permeable stainless steel inside the transducer which can be
disassembled. A diaphragm of 0.125-psi capacity is used in the present experiments. The
transducer with an applied pressure generates an AC signal which is transmitted through an
electrical cable to a signal corditioner. The Validyne CD1S signal conditioner takes this AC signal
input, amplifies it, demodulates it, and filters it into a DC voltage which represents the pressure
polarity and magnitude. A warm-up time of at least 2 hours is required after power is supplied.

Before any calibration, we first connect a flexible plastic tubing to each pressure port and
fill the transducer and tubings with water. It is very important that the pressure cavity and

transducer connections are free of air bubbles. Otherwise, the entrapped air bubbles act as a
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pneumatic spring and can seriously decrease the frequency response of the measuring system. To
assure water fill, loosen the bleed screw with the system pressure on. After the internal gas has
been expelled, the water starts flowing out of the bleed port. When this happens, close the screw
tight. After expelling the air bubbles, we fix one of the tubings and the transducer in a certain
pasition. Another tubing is attached to a scale which can be moved up and down vertically. The
scale is equipped with a vernier so that up to the third digit number, 0.001 foot, can be read. The
general calibration steps are:
1. Adjust the movable tubing until free surfaces inside two tubings are on the same
level. Set the output voltage to 0 V.
2. Raise the movable tubing to the position where the maximum pressure is applied and
set the output voltage to 5 V.
3. Repeat steps 1 and 2 until output voltages 0 and 5 V do not shift.
4. Raise the movable tubing to other intermediate positions. Record the output voltages.
5. Repeat steps 1 to 4 several times and average the output voltages at each position.
Plot the calibration curve.
A typical calibration curve is shown in Figure 7. Note that all the connecting plastic tubings should

be arranged as short as possible so that any unnecessary errors can be avoided.

IV.2.3 Wave-Height System

A new version of the capacitance-type wave-height system (Figure 8) developed by the
ITHR Electronics Shop was used in this study. This new system replaces the old one with much
neede” ‘~mprovements in the areas of versatility and sensitivity. The probe interface circuit (signal
conditioner) is modular in construction to minimize cost and to allow single probe use or easy
expansion to multiple probes.

The probe is made up of three basic parts: the sensor wire, the sensor wire support, and the
connecting cable to the interface. The probe sensor consists of a single strand 0.01" diameter

copper wire with a Teflon insulation thickness of 0.001". The sensor wire support is constructed
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of 0.25" diameter stainless steel tubing in a "U" configuration. In the ends of the support there are
inserted lucite insulators which seal the ends of the tubing, provide a convenient attachment point
for the sensor wire, and electrically insulate the sensor wire from the support. The sensor wire
serves as one plate, the Teflon insulation serves as the dielectric, and the water serves as the other
plate of the capacitor. As the probe is immersed in water, the plate area of the capacitor is, in
effect, increased proportionally and thereby increases capacitance.

The interface amplifies the input voltage and has a selectable bipolar range of 5 or 10 V full
scale. It provides a maximum measurement resolution of approximately 0.002" (0.008 cm) and
outputs 300 unique measurements per second. It is important to keep the connecting cable as short
as possible and use a cable with rated capacitance as low as possible to achieve a maximum
measurement sensitivity.

The dielectric insulator slowly absorbs water that causes a change of capacitance, and
consequently a drift of output voltage. After the probe has been immersed in water for about 6
hours, the drift rate is diminished considerably, and after 24 hours of immersion the drift rate
becomes very slow. Therefore, the probe must be immersed in water at least 1 to 2 days before
taking any measurements. During the experimental period, the probe should be immersed in water
completely when not in use and raises to its operating height during tests.

The output signal becomes very un<iable when the immersed probe is attached with
impurities and air bubbles in water. The flume was cleaned and filled with fresh tap water at the
beginning of the experiments. Most air bubbles can leave the water after about 2 days. Thereafter,
the sensor wire and support were cleaned periodically by a piece of soft linen sopped with ethyl
alcohol during the entire period of experiments.

The wave-height system was calibrated as a set in still water immediately before and after
each series of runs. Figure 9 shows a typical static calibration curve. Normally, a dynamic
calibration is required to examine the meniscus, wetting, and wake effects in the vicinity of the
immersed wire. The commonly used instrumenis for the dynamic examination consist of an

oscillator and an electric motor. The oscillator allows vertical and orbital oscillations of the wave
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probe abc ‘e the water surface. The amplitudes and periods of the oscillation are adjusted to
simulate waves which would be typical of those created in the towing tank. The geared electric
motor drives a motion linkage through a transmission allowing continuous variable periods. A
thorough study on the dynamic calibration of capacitance, resistance, sonic wave probes was done
by Pearlman (1963). He found that the maximum error, which was compared with the static
calibration curve, was less than 1% for the capacitance wave probe in the condition of a period
range from 0.8 to 2.0 seconds and an amplitude range from 2 to 3 inches. The dynamic calibration
was not made in the present study for lack of the required instruments. However, an indirect
dynamic examination was carried out by Dr. Toda, a Visiting Scholar of [IHR. He conducted a
series of experiments, in the towing tank of IIHR, on ship waves. These experiments were the
same as those he had done in Japan (unpublished). A dynamic calibration was made in the
experiments which were performed in the towing tank in the Department of Naval Architecture,
Osaka University. After the comparison, Dr. Toda concluded that the maximum error of the static
calibration curve made from ITHR's probe is $0.5mm in the condition of a 0.5 second maximum
period and a 3cm maximum amplitude. In our experiments, the water surface simply piled up with
a maximum amplitude approximately 2cm on a moving plate. Therefore, the static calibration

curve was used in the present experiments.

IV.3 Data-Acquisition System

The data-acquisition system is a microcomputer IBM PC/XT with a MetraByte DAS-8 8
channel A/D converter board and a MetraByte STA-08 screw terminal connector board. The data-
acquisition board takes signals from measuring devices, converts them to digital forms, and
transmits them to the computer in a digital format. The Notebook, a data-acquisition software
developed by the Laboratories Technology Corp., was used to define the channel number, the

sampling rate, the sampling time length, data file name, and so on.
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IV.4 System Setup and Experimental Procedures

All relevant instruments have been familiarized and calibiated {ollowing the procedures
stated in the previous sections. The accelerometer, wave probe, and pressure transducer were
fixed on the carriage and transmitted response output signals through cables to the corresponding
signal conditioners and microcomputer which were put on a desk beside the flume. Both pressure
and free-surface profile measurements were recorded for a time length about 3 seconds with 100
Hz sampling rate after the carriage was set off. Every measurement was repeated several times for
reliable experimental results. A typical response voltage output for acceleration, pressure, and
free-surface variation is shown in Figure 10. A time interval of about 5 minutes was necessary
between two measurements in order to diminish the water disturbance induced by the previous run.

The wave probe mounted system (Figure 11) was so designed that the probe wire was
located at the center of the experimental channel and could be moved to any desired position along
the longitudinal direction. Moreover, the probe could be moved up and down so that the

calibration could be carried out convenientiy before and after a series of runs. In the present

expcrimental study, three accelerations were investigated: a1=1.04-0.96t, a>= 0.78-0.69t, and
a3=0.50-0.44t m/sec2. Ten positions were measured from 0.5cm to 23.5cm away from the plate.
The calibration curve was made at each measuring point.

The measurements of the pressure were separated from that of the free-surface profile.
This is to avoid the disturbance induced by the wave probe on the pressure taps. The pressure
distribution on the plate was measured with 6 lmm-diameter pressure taps located at 2.5, 3.5, 5.0,
6.5, 7.5, and 8.5 cm respectively above the channel bottom. A plastic tubing connected the
pressure tap to the '+'ve pressure port of the pressure transducer. The pressure transducer was
mounted on the carriage in an upward position and the surface of diaphragm was parallel to the
motion direction. This is to avoid the gravity force and the inertia force, due to the system in an
unsteady motion, acting on the diaphragm. Another tubing was connected to the '-'ve pressure
port and extended to the interior of a 1.5cm-diameter plastic hollow cylinder which was fixed on

the backside of the plate. The hollow cylinder was filled with water to about the same water level
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in the flume. Because the cylinder's diameter is small, we assume the water surface inside would
remain flat during the carriage run. In other words, the referencc pressure is a constant. The
reason to fix this cylinder to the backside of the plate other than the arbitrary place is to eliminate
the force, induced by the water mass subjected to the unsteady motion of the carriage, acting on the
diaphragm. The water mass is contained between two openings of the tubings inside the
connecting system projected in the moving direction. In so doing, there remains only a minor error
which is about 0.1g water inside the pressure hole in the plate. Three accelerations were studied
for the pressure measurements: aj=1.12-1.11t, ap=0.86-0.88t, and a3=0.55-0.55t m/sec2. The
experimental results for both free-surface and pressure measurements are presented in the next

chapter.




V. RESULTS AND DISCUSSION

The numerical solutions for the free-surface flow generated by a moving plate were
calculated by the method stated in Chapter III. A computational domain was taken for x=0~13,
and y=0~2, which have been normalized by the unperturbed water depth, with 80x60 grid points.
A partial calculation grid system is shown in Figure 12. A coarser and a denser grid system were
tested also. The present grid system gives a reasonable accuracy and efficiency. The time
increment was controlled that the maximum movement of the plate did not exceed 0.2 of the grid
spacing in the x-direction at each time step. The calculation at each time step took about 4 CPU
minutes in PRIME 9955 minicomputer at the University of lowa, and took about 9 CPU seconds
in CRAY X-MP/48 superccmputer at the University of Illinois at Urbana-Champaign. No
vectorization was attempted in the present numerical code when running in the supercomputer.
About 20 iterations in each time step were required to obtain an accuracy of 10-6 for both velocity
and pressure fields.

Chwang (1983) treated the same problem, on the basis of the potential-flow theory, in
terms of the small-time-expansions method. The velocity potential was obtained up to and
including the third order. An example for the constant acceleration of the plate was presented in his

study. For a ime-dependent acceleration, a=a|+2ajt, in the present study, the free-surface profile

in the dimensionless form is

y°=1+2£2(1+%a(2)) T (kp ho )1 ekmX, (V.1)
m=1

and the normalized hydrodynamic pressure on the plate surface defined in equation (I1.5) 1s
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where hg denotes the unperturbed fluid depth,
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The inviscid analytical solution, the viscous numerical results, and the experimental
measurements on the free-surface profile and pressure distribution are compared in a series of
figures. The free-surface profiles are shown in Figures 13 to 15 for different accelerations at three
sequential times, 82=0.05, 0.1, and 0.15. The agreement between the present numerical results
and the experimental measurements is quite satisfactory. The numerical method predicts the water
elevation equally well in the region very close to the plate where viscous and surface-tension
effects are important. Chwang's theory (1983) gives a good prediction in the region away from
the plate and at small time. After a further examination, we found that his theory overpredicts the
elevation in the region close to the plate and underpredicts the elevation in the region away from the
plate. The larger the time is, the larger the difference would be. This is due to a mathematical
singularity, which is predicted by the potential-flow theory, at the intersection of the plate and the
free surface. A certain amount of mass is piled on the plate and causes an underprediction of the
elevation in the outer region. However, the physical singularity was not observed in the
experiments. The water surface simply rises up along the plate during the initial stage of the plate
motion. Thereafter, there is a train of waves propagating downstream along the channel. A few
pictures showing the initial stage of the plate motion are given in Figures 16 to 18.

A comparison of the pressure distribution on the plate surface is shown in Figures 19 to
21. The numerical method predicts the results quite well. Chwang's theory agrees with the
measurements in the region close to the channel bottom and at small time. However, his solution
overpredicts the pressure near the free surface and at large time. This is due to the limitation of the
small-time-expansions method and a mathematical singularity at the unperturbed free surface.
Another reason is that the viscous dissipation is not included in the potential theory.

The time evolution of the velocity vector field is shown in Figures 22 to 24. ‘1'hese figures
indicate that the upper portion of water in front of the plate is pushed up and forward. The water
near the bottom is pushed forward only. The time evolution of the hydrodynamic pressure field is
presented in Figures 25 to 27. The values on the contour lines correspond to the hydrodynamic

pressure. These figures indicate that the pressure reaches its maximum values near the corner of
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the plate and the channel bottom, as expected from physical intuition. Note also that the values of
the pressure decrease vertically from channel bottom to free surface. The pressure contour lines

also show that a pressure wave propagates downstream as time increases.
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VI. CONCLUSIONS

The physical problem of the free-surface flow generated by an impulsively accelerating,
surface-piercing, vertical plate has been studied numerically as well as experimen*ally. The
unsteady, two-dimensional Navier-Stokes equations are solved numerically to describe the flow
phenomena. The continuity equation and two dynamic boundary conditions on normal and
tangential stresses at the free surface are applied to determine the pressure and two velocity
components at the free surface. The kinematic boundary condition provides the movement of the
free surface. A series of experiments has been conducted in an open channel with a constant water
depth. The free-surface profile in front of the plate and the pressure distribution on the plate
surface are measured.

The inviscid analytic solution, the viscous numerical results, and the experimental
measurements have been compared. The agreement of the free-surface profile between the
numerical results and the experimental measurements is fairly good. The inviscid analytical
solution developed by Chwang (1983) also gives a good prediction in the region away from the
plate and at small time. The agreement of the pressure distribution on the plate surface between the
numerical and experimental results is also satisfactory. Chwang's theory agrees with the
experimental measurements quite well in the vicinity of the channel bottom and at small time. The
mathematical singularity, which is predicted by the potential-flow theory, at the intersection of the
plate and the free surface is not observed in the physical experiments. The water surface simply
rises up ahead of the plate during the initial stage of the plate motion.

In the present study, the carriage is released manually and driven by a freely falling weight
bucket. All the measurements are taken within a small time after releasing the carriage. It is
important to require the acceleration be a step function at time t=0,. Although the output data were
carefully checked, the human error still exists. To improve the accuracy, the carriage could be
driven by an electrically controlled motor system from which the rate of acceleration can be

regulated. For the pressure measurements, the measuring range is about 9~20% of the capacity of
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the pressure transducer in the present experiments. The degree of accuracy can be improved by
using a pressure transducer with more compatible capacity.

The present numerical code has been verified by the experimental measurements and can
predict satisfactorily the flow field generated by the impulsive motion of a plate. This two-
dimensional numerical code can be extended to study similar problems on axisymmetric or three-
dimensional flows. For the flow domain with a complex configuration, the numerically-generated
boundary-fitted coordinate system can be used, which not only fits the body boundary but also fits
the free-surface boundary.
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Figure 1.  Schematic diagram of an accelerating plate.
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Figure 4.  The accelerometer (right) and the signal conditioner.
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Figure 5. Calibration curve for the accelerometer.
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Figure 6.  The pressure transducer (right) and the signal conditoner.
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Figure 8.  The wave gauge (left) and the signal conditioner.
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Figure 11.

Wave-gauge mounted system.
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Figure 16. Free-surface profile for a=0.50-0.44t (m/secz).
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Figure 17. Free-surface profile for a=0.78-0.69t (m/sec2).
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Figure 18.  Free-surface profile for a=1.04-0.96t (m/sec2).
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