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Abstract

Work on the grant has concentrated on two aspects: 1) optimal

maneuvering of flexible spacecraft and 2) control of damped distributed

structures.

The problem of simultaneous maneuver and vibration control of

flexible spacecraft is solved by means of a perturbation approach where-

by the slewing of the spacecraft regarded as rigid represents the zero-

order problem and the control of vibration, as well as perturbations

from the rigid-body maneuver, represents the first-order problem. The

perturbation approach to maneuvering of flexible spacecraft was

developed earlier by the author of this report. However, the present

control design is different from the earlier design, particularly the

feedback control of the perturbations. The zero-order problem is solved

according to a minimum-time policy, resulting in bang-bang control. The

control of the elastic vibration and of the perturbations from the

rigid-body maneuver is carried out simultaneously with the "rigid-body"

slewing, rather than sequentially, so that the overall result is very

close to an ideal minimum-time solution. The maneuver control is open-

loop. On the other hand, the control policy for the perturbations

involves the solution of a time-varying linear regulator problem capable

of accommodating the disturbances from the rigid-body maneuver. An

exponential factor in the performance index forces the error to zero

within the minimum-time maneuver period. Feedback control of the

perturbations is essential in view of possible inaccuracies in the

system parameters affecting the natural frequencies and mode shapes.

The work is described in Ref. 1.

Undamped distributed structures represent self-adjoint systems,
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admitting real eigenvalue and real orthogonal eigenfunctions. Control

of self-adjoint systems can be carried out conveniently by modal

control. Distributed structures with proportional damping possess the

same eigenfunctions as the corresponding undamped structures, so that

the same modal approach can be used in this case as well. Nonpropor-

tional damping tends to destroy the self-adjointness of the system, so

that modal control is not as convenient as for undamped structures. If

damping is relatively small, however, it is possible to base the control

design on the self-adjoint system and still obtain satisfactory control

performance (Ref. 2).
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Optimal Vibration Control of a Flexible Spacecraft
During a Minimum-Time Maneuver

L. Meirovitch & Y. Sharony
Virginia Polytechnic Institute and State University

Blacksburg, VA 24061

Abstract

This paper is concerned with the simultaneous maneuver and vibra-
tion control of a flexible spacecraft. The problem is solved by means
of a perturbation approach whereby the slewing of the spacecraft re-
garded as rigid represents the zero-order problem and the control of
vibration, as well as of perturbations from the rigid-body maneuver,
represents the first-order problem. The zero-order control is to be
carried out in minimum time, which implies bang-bang control. On the
other hand, the first-order control is a time-dependent linear quadratic
regulator including integral feedback and prescribed convergence rate.

1. Introduction

The problem of slewing a flexible spacecraft is described by a
hybrid set of equations, in the sense that the rigid-body motions of the
spacecraft are described by ordinary differential equations, generally
nonlinear, and the elastic motion of the flexible parts by partial dif-
ferential equations. Practical considerations dictate that the partial
differential equations be discretized in space, resulting in a set of
nonlinear ordinary differential equations of relatively high order.

The problem has been considered by Junkins and Turner (Ref. 1),
Turner and Chun (Ref. 2) and Chun, Turner and Juang (Ref. 3). The
approach of Refs. 1-3 was to minimize a quadratic performance index for
the nonlinear discretized system. The problem was characterized by
prescribed end position and fixed final time. A different approach,
suggested by Ben-Asher, Burns and Cliff (Ref. 4) and by Thompson,
Junkins and Vadali (Ref. 5), consists of letting the final time be free
and solving a minimum-time problem for the nonlinear model. Both
approaches involve the solution of a nonlinear two-point boundary-value
problem for a high-order system. In the second approach, the control is
open-loop.

A different approach was developed by Meirovitch and Quinn (Refs. 6
and 7). The approach is based on the perturbation concept for solving
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nonlinear differential equations. The zero-order problem consists of
the rigid-body maneuver of the flexible spacecraft, and is described by
six nonlinear ordinary differential equations. The first-order problem
is obtained by linearizing the system of equations about the trajectory
describing the maneuver. The perturbation equations represent a high-
order set of linear time-varying ordinary differential equations. The
rigid-body maneuver is open-loop and the control of the perturbed system
is closed-loop. Whereas the feedback control is carried out during the
maneuver, the bulk of the vibration suppression takes place after the
termination of the maneuver.

This paper adopts the perturbation approach of Refs. 6 and 7, but
the control design is different-, particularly the feedback control of
the perturbations. The zero-order problem is solved according to a
minimum-time policy, resulting in bang-bang control. The control of the
elastic vibration and of the perturbations from the rigid-body maneuver
is carried out simultaneously with the "rigid-body" slewing, so that the
overall result is very close to an ideal minimum-time motion. The
maneuver control is open-loop. On the other hand, the control policy
for the perturbations involves the solution of a time-varing linear
regulator problem (LQR) capable of accommodating the disturbances caused
by the rigid-body maneuver. An exponential factor in the performance
index forces the error to zero within the minimum-time maneuver period.
Feedback control for the perturbations is essential in view of possible
inaccuracies in the system parameters affecting the natural frequencies
and mode shapes.

2. The Equations of Motion

We consider a flexible spacecraft consisting of a rigid hub and a
flexible appendage, as shown in Fig. 1. For convenience, we introduce
an inertial reference frame XYZ and a set of axes xyz embedded in the
spacecraft in undeformed state, so that x coincides with the axis of the
undeformed appendage. We shall refer to xyz as body axes. The origin 0
of the body axes coincides with mass center of the spacecraft in unde-
formed state. The general motion of the spacecraft can be described in
terms of the translation and rotation of the body axes relative to the
inertial frame and the elastic motion of the appendage relative to the
body axes. To this end, we denote by R the position vector of 0 rela-

tive to the inertial space, by r the nominal position vector of a point

in the spacecraft relative to the body axes and by u(r,t) the elastic

displacement vector of a typical point in the appendage. Moreover, we
denote by n(t) the angular velocity of the body axes relative to the
inertial space. The equations of motion represent a hybrid set of dif-
ferential equations consisting of six ordinary differential equations
for the rigid-body motion of the body axes and three partial differen-
tial equations for the elastic motion relative to the body axes. The
partial differential equations for u can be replaced by 3N ordinary dif-
ferential equations, where N is the-number of degrees of freedom used to
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OPTIMAL VIBRATION CONTROL DURING A MINIMUM-TIME MANEUVER

represent each component of u. Reference 6 presents the complete set of

equations. Our interest is in a special type of motion, so that the
general equations are not listed here.

Let us consider the single-axis maneuver of the spacecraft, and in
particular the slewing of the spacecraft in the yz-plane, which amounts
to the rotation about the x-axis through a given angle. Ideally, the
maneuver is to be carried out as if the spacecraft were rigid. In
practice, a pure rigid-body maneuver is difficult to achieve, so that
the maneuver will excite elastic motions, which in turn will cause the
spacecraft to deviate from the rigid-body maneuver. Due to the con-
figuration of the spacecraft under consideration (see Fig. 1), the
equations for the rigid-body and elastic displacements in the yz-plane
and the rotation about the x-axis are decoupled from the remaining
equations of motion. Because these equations correspond to the very
same motions involved in the slewing maneuver, we concentrate on these
equations alone. Introducing the necessary simplifications in Eqs. (18)
of Ref. 6, the equations are

mR +2 C x1~~) -T-+ -+ 2 -T9 C TF (1a)
icx + + COS iyT 9 = M (1b)

a 2 -'cT"(cMAg + a + (N OzMA)9 + ±2 (c

where m is the total mass of the spacecraft, R = Ry RZ]T is the
position vector of the mass center and

rc 1 T
C= [ca sin~ [c, (2)

sina cos C T

is the rotation matrix from axes XYZ to axes xyz, in which a is the

maneuver angle. Of course, x= '  = are the maneuver angular

velocity and acceleration, respectively. In addition, u(r,t) =

[0 uz(y,t)JT is the elastic displacement vector, where

u z(y,t) = 0T(y)q(t) (3)

in which *(y) is a vector of admissible functions and q(t) is a vector

of generalized coordinates. Moreover,

= fmA o dmA, = fmA yt dmA (4a,b)

where mA is the mass of the appendage. Other quantities entering into
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L. MEIROVITCH AND Y. SHARONY

Eqs. (1) are the total mass moment of inertia I of the undeformed

spacecraft about x and the appendage mass and stiffness matrices

MA = fm A(y) T(y) dmA, KA = [.,.I (5a,b)

where [ , I represents an energy inner product (Ref. 8).

Finally, we assume that there are two force actuators Fy and Fz and

one torquer MX acting at the mass center of the rigid body and p torque

actuators MAI acting on the elastic appendage at the points y = y1 (i =

1,2,...,p). The torque actuators acting on the appendage can be expres-
sed as a distributed actuator torque in the form

p

max = l M i6(y - Yi) (6)

where 6(y - yi) are spatial Dirac delta functions. Then, the forcing

terms appearing in Eqs. (1) can be written as follows:

p
= Fy +Fz, M = Mx + DA mAx dDA = Mx + MAi (7a,b)

A =1

p
9 = fDA mAx. dDA = i MAit'(yi) = EM-A (7c)

where E = [0'(yl) t'(y 2 ) ... (yp)I is an Nxp modal participation

matrix, in which primes denote derivatives with respect to y, and MA =

[MAl MA2 ... MAp]T is a p-vector of actuator torques acting on the

elastic appendage. The reason for using torquers instead of thrusters
on the elastic appendgee will become obvious later.

3. The Perturbation Approach to the Maneuvering Problem

We consider the case in which the maneuvering dynamics can be
assumed to consist of some large terms associated with the ideal rigid-
body maneuvering and some small terms associated with the elastic
motions and the perturbations they cause in the rigid-body motions.
Consistent with terminology used In perturbation analysis, we refer to
the large terms as zero-order terms and to the small terms as first-
order terms, and denote them by subscripts 0 and 1, respectively.
Hence, we write

= + R1, = 0 + (8a,b)
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where Ri is expressed in terms of components along the body axes, =
(Ry RzI . Note that CO = C(ao). Moreover, g is regarded as a first-

order quantity. It can be verified that

R R + CT(!, + dy = o+ CT (R1 + 0 PR1) (9a)

0 + TO(R + 60! + 25! + 2 )= + C R1+ 2a 0PR 1

+ (ioP - 02)R1I (9b)

ax = aO + &1' 6x = 6O + aI (9c,d)

where dO = o in which

P rf 1] (10)

is a permutation matrix. Similarly, the forcing terms can be divided as
follows:

F FO + Fit+ =M 0 +M 1  (lla,b)

whereas Q is assumed to be of first order.

Inserting Eqs. (8)-(11) into Eqs. (1) and neglecting second-order
terms in the perturbations, we obtain the zero-order equations

mRo  o Fos 1 = Mo  (12a,b)

where, considering Eqs. (7), F0 = FyoJ + Fzok, MO = Mxo. From Eqs.

(12), it is obvious that, owing to the fact that the motion is referred
to the mass center C, the translational and rotational equations are
independent of each other. Because the interest lies in a slewing
maneuver, there is no loss of generality in assuming that R0 =

!9 = !0 = 0. This permits us to dispense with Eq. (12a), so that we are

left with a single zero-order equation, Eq. (12b). Moreover, we obtain
the first-order equations, which can be written in the compact form

Mx + Gi + Kx = X (13)

where

x= R T gTIT, X M (14a,b)1T 1
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are (3+N)-dimensional displacement and generalized force vectors,

respectively, in which

El a Fyl + Fzlt. M1 = Mxl +  MAi (15ab)

and Q is given by Eq. (7c), and

ml 0 e2-T 2mn 0P 0 -2a0eltT

N= 0 ic 0 G 0 0 0(16ab)

-eT M -T 0 o_
MZ2A 2Qo4L

M~a -2 ) 0 00e + 2 e-T
0~ I 0 0(n2)t

K= 0 0 0 (16c)

-(oe 2 T TM
- o0e2) 0 KA - 0 A

are coefficient matrices, where e = [1 O1T and e2 = I 1]T are stand-
ard unit vectors. Note that G and K depend on time through aO and 60"

It will prove convenient to express the generalized force vector in
terms of actual actuator forces and torques. To this end, we introduce
the notation

y= T1, Fzi = T2, Mxi = T3, MAi = T3+i, I = 1,2,...,p (17a)

, .0 0 ... 0

1 0 0 .. 0T
_ _I I i .. [- T T (17b,c)

0 E

and consider Eqs. (7c) and (15) to obtain

X= OT - 0! (18)

where T is the (3+p)-vector of actuator forces. Moreover, we wish to
expresi the matrices G and K in the form
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G =2aG, K K + 0G - 0 Ks  (1ga,b)

where

mP 0 - z T

G 0 0 = -(G*) T  (20a)

000 0 (20b,c)

0l 0Kc  0 0 0 Kc  K 0 0= K s  2b c

0 0 KA L e 0 MA _

and we recognize that G* is skew symmetric, K is the constant part of K,
a symmetric matrix, and Ks is symmetric as well.

4. Pseudo-Modal Equations of Motion

Equation (13) represents a set of 3+N linear ordinary differential
equations with time-dependent coefficients. For future reference, we
wish to rewrite the equations in a different form. To this end, we
observe that by letting ao = O = 0 Eq. (13) reduces to a time-invariant

set of equations. The eigenvalue problem for the time-invariant system

has the form K cU = MUA, where U is a (3+N)x(3+N) matrix of eigenvectors

and A = diag[O 0 0 2 w2 w 2 is a diagonal matrix of eigen-

values, in which wi(i = 1,2,...,N) are recognized as the natural fre-

quencies of the nonmaneuvering spacecraft. Because M and Kc are real

and symmetric and, moreover, M is positive definite and Kc is positive

scmidefinite, the eigenvectors are real and orthogonal with respect to M
and Kc and the nonzero eigenvalues are real and positive (Ref. 2). The

eigenvectors can be normalized so as to satisfy UTMU = I, UTKcU =,A. It
can also be verified that

UTG*U=, uTKsu= K (2a,b)

where I-
0 -1 0 1 0 0

1 0 0 1 0 0 1 0 0
G= 0 0 K 0 0 0 (22a,b)

0 T --T I-

in which 5 8 '2
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1 T T
K22  'N +I 22- -22 (23)

C

and we note r;,at IN is the NxN identity matrix and UT the NN lowerN 22
right submatrix of U.

Next, let us introduce the linear transformation

x(t) = UV(t) (24)

into Eq. (13), multiply on the left by UT and obtain

2-
v + 2s4oj + (A + 6 G- n0K)y = V (25)

where
V = uTx = UTDT 0 UT Y (26)

Equation (25) represents a set of pseudo-modal equations.

Due to the nature of the coefficient matrices, G, A and K, as well
of the excitation vector V, the pseduo-modal equations can be separated
into

+ 2ao6 + (6 P - aQ)T = T= [T I T2 ]T (27a)

p+1
VR = VR = T (27b)

j= 1

+ AE-2- = T -uT

YE (E oK2)E=YE =U 22 ETE 0 U22 (27c)

where vT Vl v2 ]T is a vector of perturbations in the rigid-body

translations, vR = v3 is the perturbation in the rigid body rotation,

VE = [v4  V5 ".. V3+NIT is a vector of pseudo-modal coordinates corres-

ponding to elastic motions, AE = diag (w 2 2 2 and T=
E 1 w2 .. wN) TEIT4  T5 ... T3+pI is a vector of torquers on the elastic appendage.

Equations (27) indicate that the rigid-body translations, rigid-body
rotations and elastic motions can be treated independently. This
justifies the choice of actuators in Sec. 2.

5. General Control Policy

The control can be divided into two tasks to be carried out
simultaneoulsy. The first task consists of the rigid-body slewing of
the structure according to Eq. (12b). The second task consists of
designing a regulator to suppress the perturbations from the rigid-body
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slewing. To this end, we use Eqs. (27). Of course, the actuator forces
and torques represent the controls for both tasks.

i. Rigid-body slewing.

For the rigid-body slewing, we use a minimum-time control policy,
which implies bang-bang control (Ref. 9). Assuming an ideal actuator
and recognizing that a0 = &0, where mO is the rigid-body slewing angle,

Eq. (12b) represents a linear time-invariant system with two real eigen-
values. As a result, there is only one switching time, namely halfway
through the maneuvering time interval. Hence, denoting by to the ini-

tial and by tf the final time, the switching time is simply t, = (tf -

to)/2, so that the control law is

c for t0  : t st(

0 i-c for t1 < t S tf (28)

Of course, the torque is M0 = I c o, so that c must be such that the

actuator operates at the saturation point. From Eq. (28), we conclude
that the slewing angular velocity is

ct for to 5 t s t I

O - c(t - 2t1 ) for t1 < t S tf (2)

and the slewing angle is

a w - c(2 2tt) for t < t t

and we note that Eqs. (29) and (30) imply that to = 0.

ii. Perturbation suppression

The perturbations are governed by Eqs. (27) and they represent a
time-varving system subjected to persistent disturbances generated by
the inertial forces resulting from the rigid-body slewing. These per-
turbations are to be suppressed during the maneuver, i.e., during the
time time interval tf - to. The time-dependent functions in Eqs. (27)

are no(t) and 60(t), which represent the commanded angular velocity and

acceleration of the "rigid body" slewing. Hence, they are both known a
priori.
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Another aspect of the problem is the high dimensionality. Due to
the on-line computer limitations, as well as inaccuracies in the model
higher states, the originally truncated model, Eq. (27c), must be
truncated again. The newly truncated model, referred to as the reduced-
order model (ROM), will be controlled by an optimal reduced-order con-
troller (ROC), which will accommodate disturbances during maneuver.

The truncation mentioned above is an open-loop truncation in which
the higher states are ignored on the assumption that their excitation
during maneuver is minimal. Moreover, any damping inherent in the
system tends to damp out these states the fastest. The validity of this
assumption can be verified by simulations.

The drawbacks of controlling a distributed-parameter system by a
ROC are the well-known control and observation spillover (Refs. 10 and
11). We assume in this paper that observation spillover effects are
mitigated by using a sufficient number of sensors, i.e., 2 translational
displacement, 1+N angular displacement, 2 translational velocity and 1+N
angular velocity sensors, where the sensors are placed so as to permit
an accurate estimate of the controlledstate vector.

As pointed out in Sec. 4, the rigid-body translations, the rigid-
body rotation and the elastic coordinates in the pseudo-modal equations,
Eqs. (27), can be treated independently. In particular, we first design
controls for the elastic perturbations. Then, we design the control for
the rotational perturbation, taking into account the fact that the actu-
ators for the elastic motion perturb the rotational motion, as can be
concluded from Eq. (27b). The rigid-body translations are entirely
decoupled from the rotational and elastic perturbations. Concentrating
on the elastic motions, we can introduce the elastic state vector
z(t) = (vT(t) vT(t)IT = ([z(t) : z(t) T , where Zc(t) [v(t) ; (t)

is the controlled part of the state vector and Zu(t) = IV T (W ,T is

the uncontrolled part. Then, considering Eq. (27c), the state equations
can be written in the form

r= ------ - E 60 (31)
_U] AUC AUjLu Lu I R

in which

o -1 .. ..C
AC -C , A ...... - -- (32a,b)

-AC 0 C 0 j0cu C O
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I ' j
AUC I__ , Au  _U (32c,d)

S 0 LAU+QKU I 0

Swhere we introduced the noainU2 cE = ECJ U2E= E, UT2C = C

notatio UT 2 .2C

UU = U and we note that the dimensions of the various submatrices

are consistent with the dimensions of Cand U'which are 2Nc and 2NU,
respectively. Of course, dim C + dim !U= 2N.

6. Control of the Elastic Reduced-Order Model (ROM)

The elastic ROM is obtained from Eq. (31) by ignoring the uncon-
trolled state vector zU and neglecting the coupling matrix ACU. Hence,

we propose to retain for control the reduced-order model

iC = ACzC + BCIE - YO C' 4c = MCzC (33a,b)

where the matrices Ac and BC and the vector RC are given by Eqs. (32a),

(32e) and (32g), respectively, and 60 is given by Eq. (28), in which c

is a given constant. Moreover, yC is the output vector and it repre-

sents the quantity to be controlled. In our case, the output vector has
two components, namely, the angular deflection and velocity at various
locations y1,Y2, ...,y of the beam. Hence, considering Eqs. (3), (14a),

(24) and (27), and recalling the definition of zC9 we have

MC = (34)

FTu21

where F = ['(yl) 0'(y2) ... *'(y,)] is an L x 2NC matrix, in which

primes denote derivatives with respect to y.

The object of the control is to drive jC to zero by the end of the
maneuver, or

lim Jc(t) = 0 (35)
ttf
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Because of the persistent disturbance - 60Rc, for Eq. (35) to be satis-
fied optimally, we must also have

ltm 8CIE(t ) ' cRC (36)
t~tf

For Eq. (35) to be satisfied, the range space of RC must be contained in

the range space of BC. Hence, because the order of the ROM is equal to

the dimension of Rc' the number of actuators must be equal to one half

the order of the ROM, or p = NC. Of course, the location of the

actuators must be such that EC P UTE has full rank.

The problem of disturbance accommodation using an LQR was discussed
in Refs. 12-17, among others. In view of the dimension of RC, as well

as our goal of satisfying Eq. (35) optimally, the approach suggested in
Refs. 12 and 13 appears suitable. Moreover, to force XC(t) to zero
within the time interval (to,tf), we include an exponential term in the

performance index. This term is equivalent to prescribing a degree of
stability to an infinite final time, time-invariant problem, as sug-
gested in Ref. 17. In the Appendix, it is shown that this exponential
term does provide the minimal rate of convergence even in time-varying
systems.

Let us consider a new variable vector u(t) defined by

BCu(t) = BCTE(t) + FC(t) (37)

where i- C for t0  t ! tI

t= CRC for t1 < t S tf (38)

T T T Tand introduce the new state vector xC(t) = [zC(t) u (t)T. Then, the
new state equations can be written in the form

Yc(t) = H(t)xC(t) + Gul(t), ul(t) = 6(t) (39a,b)

in which

H = [- --- J , G (4oa,b)

We propose to derive an optimal control by minimizing the
performance measure

=C(Tf)Hxc(Tf) + ITO e2Qt(XQlXc+ uSu1) dt (41)

where
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Q1 M R] ' Q = MC (42a,b)

The matrices Q, R and S are real symmetric and positive definite. More-
over, To and Tf are equal to to and t, for the first stage and to t1+

and tf for the second stage.

The formulation given by Eqs. (39) and (41) can be transformed into
a standard LQR formulation by defining the new state and control vectors

c(t) = e Xc(t), y1(t) = e tul(t) (43a,b)

In terms of the newly defined vectors, the state equations have the form
A AT 0
c(t) = H(t)c(t) + Gut(t), xc(To) = e xc(To) (44a,b)

where H(t) = H(t) + ai. Similarly, the modified performance measure is

ACT fiC Tf T A Ju~TA(5

Inserting Eqs. (43) into Eq. (45), it is easy to verify that =J.

The optimal control law can be shown to have the form

ul(t) = 6(t) = - S-IGTP(t)%c(t) (46)

where P(t) is the solution of the Riccati equation

P(t) = - P(t)[H(t) + aI - [H T(t) + aliP(t) + P(t)GS-1GP(t) - Q, (47)

and is subject to P(Tf) = H. We can partition the Riccati matrix as
follows: P

P [ - 2 (48)

[ 12 ' 22I

where P11 is 2Ncx2Nc, P12 is 2NcXNC and P22 is NcNC. Then, Eq. (47)

can be rewritten in terms of the original system, Eqs. (39) and (41), in
the form

P11  P11Ac " AP11 - 2aP 11 + P Is -IP Q (49a)

P12 = B c ATP - 12 22 (4b)

12 P c C 12 -2aP 12  12 P 24b

P 22C1 P22B - 1 - 2aP22 + P22 S'P22 R (49c)
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where the submatrices of P are subject to Ptj(of) = Htj(itj - 1.2).

Next, we wish to express the actuator vector TE(t) in terms of the

pseudo-modal coordinates. Inserting Eqs. (41b) and (48) into Eq. (46),
we obtain

6(t) = - S-P 2(t)Zc(t) - S-1P22(t)u(t) (50)

But, u(t) is related to the actuator vector via Eq. (37). Hence, using

Eqs. (33a) and (37), recalling Eqs. (28) and recognizing that Fc(t) 
over each control stage, we conclude that the actuator vector satisfies

!E~t S 1
2(t) - P22(t)B Ct)c - S1 22(t)Btc(t) (1

where Bt = (BcBc)T BT = 10: (E Ec)-E]J = 10, Et], in which the dagger

denotes the pseudo-inverse of a matrix. Introducing the notation

S-1 P12 (t) - P22(t)BtAc(t)] = [KI(t): K2(t)J (52a)

S 1P22 (t)Bt = 1P22 (t)[OEtI = [0: Kt)I (52b)

the actuator vector can be written in the form

TE(t) = TE(To) - ft [Kl(T)Vc(T) + K2(t)(C(t) + K3 (T)C(t)IdT (53)

where To is either to or tj, depending on the control stage. For

convenience, we take TE(To) = 0.

It should be pointed out that the above integral feedback control
is capable of compensating for constant unknown disturbances, such as

might occur when the vector * in the disturbance vector -0 is not
known exactly.

7. Response of the Full (Discretized) Model

We refer to the discretized model given by Eq. (31) as full,
although it represents a truncated model relative to the distributed
system. The idea is that the states ignored in arriving at Eq. (31) do
not participate anyway. The closed-loop system is obtained by intro-
ducing Eq. (53) into Eq. (31). Because the feedback control law is in
integral form, we will find it convenient to introduce the expanded 3N-
state vector given by w = [w , = [v T *-T -T J * .

using Eqs. (31) and (53), we obtain the closed-loop equation

= A(t)w(t) (54)
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where

S , 1 .. (55)

in which

0 IC 1
A -------:---- -C LE --- (56a)

10

---

AcuL2Doo~cuI Locu (56b)

0 01

-- -- ------------------------

A C[---------------- ------ (56c)
0C UC 2U

0 1 '0

A 0K0 : (56d)

where we regarded a0 as zero.

In many structures, the off-diagonal entries of the matrix K22 1 Eq.

(23), are very small compared to one. This is particularly true in the
case under investigation. In such cases, the coupling matrix Acut Eq.

(56b), is very small and can be ignored without affecting the results
very much. Under these circumstances, we conclude from Eqs. (54) and
(55) that the uncontrolled states do not affect the controlled states.
On the other hand, because AUC * 0, and the terms preventing TUC from

being zero can be traced to the feedback control, we conclude that the
system is subjected to control spillover. It is assumed here that the
controlled states are fully observable. Hence, the control spillover
cannot lead to instability, although significant performance degradation
can occur if the number of controlled modes is too small.
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8. Numerical Example

The structure considered is as shown in Fig. 1, in which the length
of the beam is L = 24 ft. Moreover, the first seven natural frequencies
of vibration in the yz-plane are 0.32, 1.8, 5.0, 9.8, 16.2, 24.2 and
33.8 (Hz). A damping factor of 0.01 is included.

Two different maneuvers were considered. The first consisted of a
1800 slew in 7.05s and the second of 20° slew in 3.98s.

The ROM was assumed to have four flexible degrees of freedom and
the originally discretized system was assumed to have seven flexible
degrees of freedom. There were-seven actuators, three rigid-body actua-
tors mounted on the hub and four actuators mounted on the beam at the

points yi - iL/4 (i - 1,2,3,4). The values of the control parameters

were taken as Q = R = I, S = 0.1 I, = 5.0. Control is terminated at
tf.

The rigid-body maneuver is shown In Fig. 2. It is an ideal min-
imum-time maneuver. Figure 3 shows the moment output of the actuators
on the beam. Every actuator generates a near-constant moment, compen-
sating for the constant disturbance. The effect of the integral feed-
back is obvious. Figure 4-7 show the angular error (measured in
degrees) at the tip of the beam, at which point the deflection is the
largest. The error represents the difference between the actual dis-
placement and the rigid-body displacement, where the latter can be ob-
tained from Fig. 2. The characteristics of the error for both maneuvers
are similar, although the first maneuver, being faster, exhibits a
larger error. Figures 4 and 6 show the error of the controlled model

alone. Convergence to zero (10-10 degrees) is achieved during the
control interval (ToTf) by choosing a proper convergence factor a. The

"full model" experienced an error due to control spillover into the
uncontrolled states, as well as to uncompensated disturbances. This
error is shown in Figs. 5 and 7. The inherent damping in the system
causes this error to decay after the termination of the control.

9. Conclusions

For maneuvers characterized by angular velocities not much higer
than the lowest natural frequency of the beam, the time-varying terms in
Ac(t) tend to be negligible in the case of closed-loop control. In such

cases, the solution of the Riccati equation requires less computational
effort, as AC does not need updating. Note, however, that the Riccati

matrix still depends on time.

The errors result mainly from control spillover into the uncon-
trolled states. The contributions to the errors are primarily from the
lowest uncontrolled states. The error can be reduced by increasing the
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number of controlled modes. Even for the model used here, the error is
not very large. Indeed, the error in slope at the tip of the beam drops
to less than 0.10 at t = 1.1 tf. This good performance can be attrib-

uted to the large separation in the natural frequencies, which is typi-
cal of one-dimensional structures such as beams. For two- and three-
dimensional structures, the natural frequencies tend to be spaced more
closely, so that the error is likely to increase.
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Appendix

The purpose of this Appendix is to examine the convergence rate of
the controlled state xC(t). To this end, we recall that the optimal

control law for the system described by Eqs. (44) and subject to the
performance index (45) is given by Eq. (46), in which P(t) is the
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solution of the matrix Riccati equation, Eq. (47). The matrix P(t) is
syumetri, and positive definite for te[totf).

To help with the developments, we introduce the following:
Definition (Ref. 19): The system described by Eqs. (44) is finite-time
stable (FTS) in the interval T - [to,tf) with respect to (yj,toI I)

for every trajectory xc(t) if Ixc(to)I < y implies nxc(t)l < a for every

teT, where I I denotes the Euclidean norm.

Moreover, we introduce the notation

B(a) = (xc; II < a}, V!Jt) = min V(xct) (A1,A2)

xCa - a

VM~t = a _c~t), V M(t) =sup .V(!C,t) (A3,A4)

libel = a IX = a

This permits us to state the following:

Theorem (Ref. 20): The system described by Eqs. (44) is FTS with

respect to (ys,totflt o), y S s, if there exists a function V(xc,t),

as well as a function p(t) integrable on T, such that:

a. V(xc,t) < p(t) for every xceB(s) and te(to,tf)

t f v (y) t
b. f t P(T)d, 5 V'(t) - V (t), tc(tottf)

We choose

V(Xc,t) z! XPx C (A5)

Then, taking the time derivative and using Eqs. (44), (46) and (47), we
obtain

I(Xc,t) !C x(Q G PsGP)!C (A6)

But,

Q, + PGS-.GTP > 0, tT (A7)

Hence, Condition a of the theorem is satisfied by choosing a(t) 0, so
that Condition b reduces to

vV(Y)(to) s VI(t), teT (A8)
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Considering Eq. (A5), Eq. (A8) yields

XM(P(to)IYf 2 max ;T(to)Pto)!C(to) 5min XcP(t)xc = Pt1
I C I = y OxC1 M (A9)

where xM and xm are the maximum and minimum elgenvalues of the argument

matrix. We note here that all the elgenvalues of P are real and
positive in T, because P Is symmetric and positive definite.

Introducing #!c1 = y in Eq. (A9), we conclude that

IXc(t)I < a (All)

for
XM P(to)]

B Ixc(to)I XmiP(t ]  (AlO)

Recalling Eq. (43a), letting to = 0 and introducing the notation

=X[P] - min x [P(t)], teT (A12)
m t m

we obtain

IxC(t)B < Ac(XO)1 11 P( - e , teT (A13)

Inequality (A13) enables us to state that:

i. IxC(t)l approaches zero not slower than e-0t and

ii. In most cases, the ratio of the eigenvalues in (A13) does not
increase exponentially with a. Hence, increasing causes xc(t) to
decay to zero within the time interval tf.

n.

-- Y

Figure I - The Flexible Spacecraft
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CONTROL OF DISTRIBUTED STRUCTURES WITH SMALL NONPROPORTIONAL DAMPING*

L. Meirovitchi and M. A. Norristt
Department of Engineering Science and Mechanics

Virginia Polytechnic Institute and State University
Blacksburg, VA 24061

Abstract the question arises as to the possibility of
basing the controls on the self-adjoint system.

Undamped distributed structures represent This is the approach explored in this paper. A
self-adjoint systems, admitting real eigenvalues particular question to be answered is how large
and real orthogonal eigenfunctions. Control of the factors rendering the system non-self-adjoint
self-adjoint systems can be carried out conve- can be without invalidating the approach. This
niently by modal control. Distributed structures question is intimately related to that of robust-
with proportional damping possess the same elgen- ness, i.e., how sensitive is the control design
functions as the corresponding undamped struc- to changes in the system parameters, where these
tures, so that the same modal approach can be changes are the ones responsible for the non-
used in this case as well. Nonproportional self-adjointness of the system. One way of look-
damping tends to destroy the self-adjointness of ing at the problem is by examining the closed-
the system, so that modal control is not as con- loop poles. In particular, the question is
venient as for undamped structures. If damping is whether the factors rendering the structure non-
relatively small, however, it is possible to base self-adjoint can push the closed-loop poles far
the control design on the self-adjoint system and away from the closed-loop poles obtained from the
still obtain satisfactory control performance. control design based on the self-adjoint struc-

ture, thus impairing the control system perfor-
mance.

Introduction
Quite often, control of structures is

Structures are distributed-parameter systems carried out as if the structures were undamped.
whose motion can be described by partial differ- Inherent damping in the structure, however,
ential equations characterized by self-adjoint causes the actual closed-loop poles to differ

from the modeled closed-loop poles. It is shown
stiffness operators1 . In the absence of damping, in this paper that if the control system design
thls implies that the structures themselves are takes advantage of the self-adjointness proper-
self-adjoint, which implies further that the ties of structures, then the sensitivity of the

eigenfunctions are orthogonal. In general, closed-loop poles to the addition of small

damping tends to destroy the self-adjointness ced-loopsous to th e dd o a

property. One notable exception is proportional 'general viscous damping can be reduced to a

damping, for which the eigenfunctions are the simple algebraic expression. In fact, the

same as for the corresponding undamnped struc- closed-loop eigenvalue sensitivity turns out to

tures, so that the orthogonality is preserved, be a function of the diagonal damping coef-
ficients, so that the eigenvalues are insensitive

self-adjointness property of distributed to damping that might cause the system to becomeThe se ry im port y of dsign. non-self-adjoint. A control system design which
Indeed, for undamped structures it is possible to takes advantage of the self-adjoint property in

take advantage of the eigenfunctions orthogonal- structures is independent modal-space control

ity and transform the partial differential equa- (IMSC) 2 5.
tion into a set of independent second-order ordi-
nary equations, known as modal equations. Then, This paper examines the circumstances under
controls can be designed for each modal equation which controls based on a self-adjoint structure
independently, making it possible to target indi- yield satisfactory performance when applied to

control2- The same is true the corresponding non-self-adjoint structure. To
vidual modes for cotol dame In the this end, the partial differential equation of
for systems with proportional damping. In the motion for a distributed structure is first in-

general case of feedback control of non-self- mto Th a erut i t chqe is sed

adjoint distributed structures, full decoupling troduced. Then, a perturbation technique is used

of the distributed system may not be possible, so poles to the addition of small viscous damping in

that modal control loses some of its appeal. the to the a per foll vith a pinge in

In many cases, the factors rendering the the system. The paper follows with an investi-

structures non-self-adjoint tend to be suf- gation of the sensitivity of the closed-loop

ficiently small that they can be regarded as poles when advantage is taken of the self-adjoint

perturbations on the self-adjoint system. Then, properties to design independent modal-space

* Supported in part by the USAF/ASO & AFOSR Researh Grant F33615-86-C-3233.

t University Distinguished Professor. Fellow AIAA.

tt Assistant Professor. Member AIAA.
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control for the structure. A numerical example The elgenfunctions can be normalized so as to
is presented in which the control system perfor- satisfy
mance is examined using varying amounts of
damping. The numerical example indicates in a fD mer(P )s(P) dO, f1O r(P ) *s(P) dO wr6 rs,

heuristic manner how large the nonproportional
damping can be without degrading control system r,s - 1,2,... (5)
performance.

where dr is the Kronecker delta function.

It Is perhaps appropriate to mention 
another rs

work using a perturbation approach to the control Equations (5) represent the orthonormality

of structures
6 . The structure considered in Ref. conditions for self-adjoint systems.

6 is undamped and the control is carried out by a We propose to express the solution of Eqs.
low-authority controller, i.e., a controller pro- (1) and (2) in terms of the infinite series
viding sufficiently small damping that the
modeled closed-loop poles could be computed from u(P,t) " I *r(P)ur(t) (6)
the open-loop elgensolution on the basis of a r-l

perturbation technique
1 . In contrast, the where ur(t) are time-dependent generalized

structure considered here is inherently damped, coordinates. Introducing Eq. (6) into (1),
but the damping is sufficiently small that the multiplying the result by *so integrating over
controller can be designed by ignoring the the domain 0 and considering Eqs. (5), we obtain
damping. Then, the perturbation approach is used
to calculate the shift in the undamped system " + ( 2U (t) f (t).
closed-loop poles caused by the inherent damping. r(t) +  c rss ru r rs~l

r = 1,2 .... (7)

Equations of Motion where

The motion of a distributed structure can be " 'D r s dO, s - 12 ()

derived using the extended Hamilton's principle
1  Crs, r ,"

and is given by the partial differential equation are viscous damping coefficients and

u(Pt) + ;(P,t) + m(P)u(Pt) - f(Pt), PED fr(t) a fO #r(P)f(P t) dO, r - 1,2 .... (9)

(1) are generalized control forces.

where u(P,t) is the displacement at point P in Equations (7) represent an infinite set of
the domain 0 of the structure, is a self- ordinary differential equations expressing the
adjoint differential operator of order 2p expres- motion of a distributed structure. In the
sing the system stiffness, is a viscous damping absence of damping, crs = 0 (r,s = 1,2,...), the
operator, m(P) is a scalar function representing
the mass distribution and f(P,t) is the external system is self-adjoint and Eqs. (7) represent a

force density. The displacement u(P,t) is decoupled set. However, damping tends to prevent

subject to the boundary conditions the decoupling and hence to destroy the self-
adjointness property. In the case of non-self-

8iu(P,t) - 0, 1 - 1,2,....p; PeS (2) adjoint systems it is necessary to first define
and then solve an adjoint eigenvalue problem i .

where Bi are differential operators of maximum Only in special cases does the operator have

order 2p-1 and S defines the boundary of D. *r (r = 1,2 .... ) as its eigenfunctions. In
these cases, crs = 0 (rss). Note that when the

We consider the eigenvalue problem associ- t (r 12t t n

ated with the undamped self-adjoint structure operator admits (r - 1,2,...) as its eigen-

given by functions, the normal modes of the undamped
structure are identical to the normal modes of

*r(P) - Xrm(P)r(P) , r - 1,2 .... ; PeO (3) the damped structurel.

and the boundary conditions Equations (7) can be expressed in the vector

Bir(P) -, 1 - 1,2,... ,p; r - 1,2 .... ; PeS form

(4) u(t) + C (t) + Au(t) . !(t) (10)

The solution to Eqs. (3) and (4) consists of a where

denumerably infinite set of real nonnegative u(t) = Cu (t) u (11)
efgenvalues Ar and associated real elgenfunctions I 2 (t) ... (

r (P). The eigenvalues are related to the is an infinite-dimensional vector of generalized

natural frequencies of undamped vibration coordinates,

by A - wr (r - 1,2.... ). For convenience, we f(t) - (f1 (t) f2(t) ...] (12)

order the eigenvalues so that XI r AP
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is an infinite-dimensional vector of generalized vOs, respectively. The two sets of eigenvectors
forces, 2Or' Os are blorthogonal and can be normalized

A - diag EwW 2 ...3 (13) so as to satisfy the biorthonormality conditions1T T

is the ex. matrix of natural frequencies of the v " 6rsT A0 -O )aOr6rs,
undamped structure squared and C - [Crs] is the -Os-Or rs- r
damping matrix. r,s X 1.2.... (20a,b)

In general, the damping matrix C is fully
populated. In this case, to obtain a solution, In general, the eigenvalues xOr (r - 1,2,...) and
it is necessary to cast Eq. (10) in the state- ( r
space. To this end, we introduce the 2-- eigenvectors u Or' Os (r,s - 1,2 .... ) are complex

dimensional state vector !(t) T (t) a (t)]T. quantities.

Eq. (10) can be written in the state vector By virtue of the small-damping assumption,
Then, the open-loop actual distributed structure is

nearly self-adjoint, and differs from the open-

x A*x + B*f (14) loop undamped structure by a small perturbation.
Of course, the perturbation arises from the fact

where that the actual distributed structure contains
small viscous damping. The actual closed-loop
equations of motion are given by

A* 15) Ax (21)

are coefficient matrices, in which I is an -x- where
identity matrix.

A - (22)

Sensitivy Analysis
We consider the case In which damping is The eigenvalue problems associated with Eq. (21)

sufficiently small that the control system design have the same form as Eqs. (19), except that the

can be based on the undamped model, where the subscript 0 is not present. Moreover, the two

latter is obtained by letting C a 0 in Eq. (10). sets of eigenvectors ur' Zr can be normalized so

In general, the feedback control recouples the as to satisfy the biothonormality conditions
undamped equations. Indeed, the control law is given by Eqs. (20) with the subscript 0 omitted.
given by

When damping in the actual distributed
f(t) - Gu - H6 (16) structure is small, i.e., when crs o 0(c) (r,s =

where in general G, H are fully populated -x-- 1,2,...), the matrix A can be expressed in the

dimensional control gain matrices with entries perturbed form

grs. hrs (r,s - 1,2 .... ), respectively. The net A - A + A
effect of the feedback control is to recouple the
undamped equations of motion, Eq. (10), through where A0 is given by Eq. (18) and A1 is a first-
the nonzero off-diagonal terms in the gain
matrices G and H. Substituting Eq. (16) into Eq. order perturbation matrix given by
(10) with C 0, we obtain the closed-loop state rO * 1
equations of motion in the vector form AI ... (24)

Ag(17) c

where Because A is obtained from A0 by a small pertur-

bation, we assume that the eigensolutions can be
written in the form- O r , 1.2.... (25a)

The elgenvalue problems associated with Eq. (17) u "Or * u r r 12.... (25b)
are -r -O

TA 02Or u ,Or Or' A S v OsOs. r,s - 1,2.... vr = + Ivr r - 1,2 .... (25c)

(19a,b) It can be shown that the elgenvalue and elgen-

where A Or (r = 1,2,...) are the closed-loop poles vector perturbations have the expressions
I

of the undamped system. We note that, because A0  X vT A r

is not symmetric, we must consider both the right I1r -or 1-Or' r - 1,2,... (26a)
and left elgenvectors of AO , denoted by UOr and



Hence, in the case of IMSC, characterized by

vT 1Or ukdiagonal control gain matrices G and H in Eq.
u0r k kr) (26b) (16), each of the closed-loop eigenvectors uOr'

k- Or - Ok !Or (r = 1,2 .... ) associated with the undamped

T A structure contains only two nonzero terms. The

I 2Ok 1Or closed-loop eigenvalues xOr and the normalization

-ir x Or Okk( " 6kr) (g6c) constants r (r - 1,2 .... ) have the expressions

12 /2
Equations (26a) can be regarded as providing the Or ' " 7 {hr r 1E4(r + gr) - hr] } (29a)
sensitivity of the closed-loop poles to small
viscous damping in the distributed structure. 2 2
Indeed, dividing both sides of Eqs. (26a) by cij, r r + gr "- r (29b)

we obtain the first-order eigenvalue sensitivity Equations (28) and (29) specify only one half of
coefficient Dxr/acij, which is a measure of the the elgenvalues and left and right eigenvectors.

change in the closed-loop eigenvalue Ar due to The complex conjugates comprise the other half.

the damping coefficient cij. In general, the Inserting Eqs. (28) into (26a), we can write

closed-loop elgenvectors u Or and vOr (r - 1, T

2,...) are fully populated so that the perturba- 1 (w + gr)el O  Th.
tions xIr. 21r !r (r - 1,2,...) are sensitive X r rr
to all the damping terms crs (r,s A1,2...). 1,r- ) rer

A2Or

Sensitivity Using Natural Control r Crr, r - 1,2 .... (30)
r

Natural control is characterized by the 2
preservation of the natural coordinates in the whereOthe real part of the quantity Aur/r (r

closed-loop system, which can be traced to the 1,2,...) is always negative. The perturbation in
fact that the open-loop eigenfunctions are iden- the right eigenvectors is obtained from Eq. (26b)
tical to the closed-loop eigenfunctions. It can and is given by
be shown that natural control is the globally
optimal solution to the control problem for self- I 1 - 6  Xr AOr XOk
adjoint distributed parameter systems3 . Natural -ir = 

- Ckr uOk'

control is obtained using the independent modal k Or Ok k r (31)

space control (IMSC) method2 "5 . The IMSC control
gain matrices G and H are diagonal with entries Examining Eq. (30), for a given closed-loop
equal to gr (r - 1,2.... ) and hr (r a 1,2 .... ), system, it is apparent that the perturbations in

respectively. Hence, natural control can be re- the closed-loop eigenvalues vary only as a
garded as providing proportional viscous damping function of the diagonal terms in the matrix C.
and proportional stiffness augmentation. Hence, damping perturbations in which c rr ) 0

(r - 1,2 .... ) cannot shift the actual structure
Recognizing that the right elgenvectors have closed-loop poles to the right in the complex

rT: A T we ( 1, plane relative to the corresponding closed-loop
the formu Or - [ IX Or Or]  where 2Or (r poles of the undamped structure. Note that this
2,...) are --dimensional configuration eigen- conclusion was reached on the basis of natural

vectors, Eq. (19a) can be written in the explicit control. The off-diagonal terms in the damping

form matrix are the terms inducing the actual dis-
tributed structure to vibrate in a linear combi-

IAOr 1o (2 the undamped normal modes. However, when the
i Or A2J ) damping terms are small, as is the case here, the

It can be shown that when G and H are diagonal in the damping matrix which do not induce non-
matrices, gOr " r' where er is a standard unit self-adjoint properties. Moreover, when the

damping matrix C is diagonally-dominant, the
vector (with all its components equal to zero perturbations in the eigenvectors given by Eqs.
with the exception of the rth component which is (31) are of second-order in magnitude, and the
equal to one). Then, from Eqs. (19b) and (20a), closed-loop system tends to vibrate essentially
we obtain as a linear combination of its normal modes only.

-Or rL r - Numerical Example
[Or"'r r A Or-r To illustrate the sensitivity of the closed-

r 1 1,2,... (28a,b) loop poles and control system performance to
small viscous damping, we consider the control of



the bending vibration of a simply-supported Note that with B a 0, we have proportional
beam. Assuming that the beam has uniform mass damping, in which case we obtain crs -

and stiffness properties, Eq. (1) becomes 7  aw2 6 Ua'd

r rs r rs.

4 
u  a2 3 u D2u  We consider controlling a subset of the

El -- -_ [cI(x) a M 2 f(xt), modes using IMSC, as controlling the entire
ax ax ax at at infinity of modes would require a distributed

0 < x < L (32) actuator2 . More specifically, the first three

where we note that the damping operator in Eq. modes are to be controlled using 3 discrete
w e2 w2 actuators at locations xI a iL/4 (I - 1,2.3)

(32), given by 2-- [cI(x) ---J, provides together with modal filters 2 , which are used for
ax ax the extraction of the modal coordinates. To

strain rate damping, which is a form of viscous determine the control gain matrices G and H in
damping. The displacement u is subject to the Eq. (16), the following performance Index is
boundary conditions minimized

2 ;[2(t 22
u(o,t) u(Lt) . 30 r-1 r r r r

ax ax Note that the first two terms in the integrals in
Eq. (38) represent modal kinetic and potential

For simplicity, we choose M 1 1, El I and L s 5. energies, respectively, and the third term repre-
sents the modal control effort, all for the first

It can be shown that the solution of the three modes. The minimization yields the modal
associated eigenvalue problem, Eq. (3), for the
undamped case, i.e., for cI(x) - 0, consists of gains2

the eigenfunctions and natural frequencies g = 2 r + W r(W + I/R r) /2, r = 1,2,3 (39a)

#r(x) - () 2sin (=), r x 1.2 ... (34a) h 2w 2 + R + 2 (W 2 + 1/R )1/2)11 2
hr " "?r /r "(r r 1/r)I21

Wr . (ri)2 , r - 1,2 ... (34b) r - 1,2,3 (39b)

respectively. For the damped case, we choose the The control law given by Eq. (16) with the con-
strain rate damping distribution to be given by trol gains provided by Eqs. (39) represents

linear optimal IMSC.
cI(x) -a + Bx(L - x), 0 < x < L (35)

To show the effects of damping, we investi-
where a and B are constants. Note that when B gate the 3 cases, a 0 - 0, a = B = 0.0001 and
0, the strain rate damping is uniform, which re- a a 0 a 0.001, denoted by 1, II and Il1, respec-
sults in the case of proportional damping, as in tively. Table 1 displays the damping matrix with
this case the damping distribution is propor- entries given by Eq. (37) with a - 0 - 1, where
tional to the stiffness distribution. However, the actual distributed structure is simulated by
the presence of a nonzero B destroys the self- truncating the infinite-dimensional system by
adjointness property, producing nonzero off- retaining 8 terms in series (6). Table 2 pro-
diagonal entries in the damping matrix C. From vides the closed-loop poles for the 3 cases with
Eq. (8), we obtain upon integrations by parts Rr x 1.0 (r - 1,2,3). Examining Figure 1, we

2  d2 * note that damping shifts the closed-loop poles to
S d  dx the left in the complex plane as the level of

dx dx damping increases. Morever, the shift in the
closed-loop poles for the controlled modes, i.e.,

d2 #(x) d2# (X) the lowest 3 modes, can be computed using Eqs.

f L Cc, + Bx(L - x)3 r- -- dx (29) and (30), where the natural frequencies wr
d0 2 ,(r - 1,2,...) are given by Eq. (34b) and the(36) control gains gr, hr (r - 1,2,3) are computed

using Eqs. (39) wIth Rr = 1.0 (r - 1,2,3).
With the elgenfunctions given 

by Eq. (34a), the

damping coefficients in Eq. (36) can be computed To examine the control system performance,
in closed-form and are given by we considered Cases I, II and Ill, as above,

except that we increased the control effort by

.( rw)4 + (!. 1 decreasing Rr in Eq. (38). To this end, we used
2  1-2 4rT 2 )  Rr 0.01 (r - 1,2,3), which has the effect of

increasing the gains, as can be seen from Eqs.
1,2,...,;r - (39). Figures 2 and 3 plot the performance index

crs - (37) J(t) given by Eq. (38) for the values Rr a 1.0

Os r * (-I) - I (-I) r s  I1  and Rr * 0.01 (r - 1.2.3). respectively, for the

L (r-s) 'r+s) above three cases. It is evident from Figure 2

rs 1,2 ... ;r *s that for Rr A 1.0 the effect of damping is to

r , o
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Table 1. Damping Matrix for a = 8 = 1.

2.27 7.02 0.00 2.25 0.00 1.39 0.00 1.02
7.02 30.44 68.22 .00 17.90 0.00 10.70 0.00
0.00 68.22 148.57 278.44 0.00 63.17 0.00 36.08
2.25 0.00 278.44 463.41 779.82 0.00 159.16 0.00
0.00 17.90 0.00 779.82 1124.42 1761.85 0.00 332.23
1.39 0.00 63.17 0.00 1761.85 2323.79 3461.39 0.00
0.00 10.70 0.00 159.16 0.00 3461.39 4296.37 6162.70
1.02 0.00 36.08 0.00 332.23 0.00 6162.70 7319.76
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Table 2. Closed-Loop Poles for Rr = 1.0 (r - 1,2,3).

Case I Case 11 Case III

& - 0 a • 0.0001 C tB = 0.001

-0.6199 ± 1.0057 -0.6200 ± 1.0056 -0.6211 + 1.0050
-0.6921 + 1.8436 -0.6936 t 1.8430 -0.7076 t 1.8382
-0.7037 ± 3.6792 -0.7112 ± 3.6778 -0.7815 ± 3.6676

+ 6.3165 -0.0231 ± 6.3168 -0.2248 t 6.3379
t 9.8696 -0.0562 t 9.8704 -0.5643 t 9.9485
± 14.2122 -0.1162 ± 14.2146 -1.1630 + 14.4489
± 19.3444 -0.2148 + 19.3504 -1.8443 ± 20.4288
+ 25.2662 -0.3660 + 25.2453 -3.9635 + 22.6735

IDA8 "eit

8 'a'

.

R Xt 1'.OO 2. 3.00 4.00 1.0
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Figure 1. Closed-LOOP Poles for the Cases I(a), Figure 2. Performance Index for Cases I. 11 and III

IF() and III() for Rr  • I (r • 1,2.3)
CeseI: • I• 0Case I: o, * S * 0
Case 1: -0.

Case el: a • • 0.0001 Case It: a - 0.0001

Case III: 0.D01 case a • 0.001
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Figure 3. Perforunce Index for Cases 1. II and III
for Rr • 0.01 (r • 1.2.3)

Case I: a 1 0
Case It: * 0.0001
Case III: a • S • 0.001


