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AUS\ACT I s.
U'I this paprqmW 4as some rsichissues related to oV)= Jd!(V,w)Pe~dw/ 0,

the general toic of optimizing a t tic system via simu-
on. In prticular, we de Wte nie attention to finite-

Ration.~~~~~ Ipatca, dvt aad e 1< < rfl where {Yi(e) 1 < i < mn) is acollection of
difference estimators of objective f = n gradients c td pre- <ints.

sent a number of new limit theorems. 1e also discuss a new
family of orthogonal function approxiations to the global

behavior of the objective function. e show that if the oh- In most practical applications, the objective function

jective function is sufficiently smoot the convergence rate cr(6) and the constraints #j(8) are "smooth" functions of

can be made arbitrarily close to n -l in the number of ob- the decision parameter 0 (even though, typically, X(O, w)

servations required. The paper concludes with a brief discus- and the Y,(9, w)'s an not globally smooth in 0, for fixed

sion of how these ideas can be integratedinto an optimization w). Given that the functions a(8) and li(8)(l < i < m)

algorithm. can be cheaply evaluated without error, deterministic mathe-
( - ---- matical programming techniques may be applied to the above

optimization problem. Such methods typically take advan-
1. INTRODUCTION tage of derivative information of some kind (often evaluated

through numerically stable finite-difference approximations).
In recent years, considerable attention has been de- Of course, in the context of a complex stochastic system,

voted, in the simulation literature, to the development of al- the objective function e(9) and the constraints Oj(0) will

gorithms for optimizing complex stochastic systems. In this typically be evaluated via Monte Carlo simulation. As & con-
paper, we shall focus on describing some of the basic issues sequence, there will be random error associated with the cor-
that arise in the study of numerical optimization routines for responding function evaluations. In spite of the presence of
finite-dimensional continuous parameter optimization prob- such error, it is to be expected that derivative information
lemts. will continue to play an important role in the development

of successful optimization algorithms based on simulation.
To precisely describe the class of problems that we shall A significant portion of this paper is therefore devoted to

consider, let eCA be the decision parameter over which the a discussion of the various approaches that may be used to
optimization is to occur; the set A C Rd is the admissible calculate derivatives (or, more generally, gradients) via sim-
set of decision parameters. For each OCA, let (f, ., P.) be ulation.

the associated probability space. The probability measure

PA describes how the random environment is affected by the Section 2 is devoted to a discussion of the convergence
choice of 9. For ach PEA, let X(0) be a real-valued random characteristics of finite-difference estimators; much of this
variable corresponding to the "cost" of running the system material appears here for the first time. In Section 3, we de-
under 9. Then scribe a clam of unbiased gradient estimators that are based

on likelihood ratio ideas. Section 4 focuses on a class of gra-

.(e) X (0,w) P(dw) client estimation techniques for discreteevent systems known
(1.) as perturbation analysis methods. The estimators of Sections

3 and 4 both typically attain a somewhat faster convergence
is the expected cost of running the system under parame- rate than that available through the finite-difference methods
ter e. Assuming A is some open subset of R~d, the general of Section 2. The discussion of Sections 2 through 4 empha-
finite-dimensional continuous parameter stochastic optimiza- sizes the scalar setting in which d = 1; Section 5 is therefore

tion problem involves finding O"EA to minimize a(O), sub- devoted to describing the extension of these ideas to the case

ject (possibly) to constraints of the form in which the decision parameter 0 is vector-valued.
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In Section 6, we discuss some new results related to ii) 0 < Var. X(go) & E.o(X(0o) - Cr(0o)) 2 < 00global approximation of the objective function (and/or con- (E#(') denotes the expectation operator corresponding
straints) by orthogonal functions (specifically, trigonometric to P),
polynomials). One way to apply such "surface fitting" tech- i) C2 (9) ~ var, X(G) is continuous in an open neigh-
niques is to optimize the fitted surface (using determinitic borhood of 9o,
methods) and to use the resulting optimizer as an approxi- iv) e(0) = EOX(9) is infinitely differentiable in an open
marion to the optimizer of the true surface. neighborhood of 90.

Section 7 is devoted to a discussion of how the results of The following theorem states that if the difference in-
Section 2 through 6 can be used in an optimization setting. aement is chosen optimally, then the convergence rate of
Specifically, we discuss some of the convergence theory for Aa 1(n, h.) to a'(0o) is n- 14.
the Robbins-Monro and Kiefer-Wolfowits algorithms.

(2.2) THEOREM. Assume (2.1). If a"(0) 0 0, the:
a) if nl/4h -. oo with h -. 0, n1/ 4 JAal(n, h,) -

2. FIN1TE-DIFFERENCE ESTIMATORS a'(0o) ::o oo as n - 00 (we say that Z, :, 0o as
n- 00 if, for every K > 0, P{Zn > K} -- 1as

In this section, we describe some of the finite-difference n o0),
approimatiom that can be used to numerically calculate the b) if nl4h - 0, n1/4Aa 1(nhn) - 01(o) 00
derivative of a function a(#) of the form (1.1), when 9 is as n -- oo,
scalar (i.e., OCR). In Section 5, we discuss the special con- c) if n 1/ 4 hn -. h > 0, then n1 /4 (Aat1(n,hn) -
siderations that arise in dealing with gradients of functions '(00 )) * V N( 1
in which the parameter 0 is vector-valued (i.e., OCRd). 001) -/m"(G0)/2 a -.

00.

2.1 Forward-Difference Ertimators The proof of this result appears in the Appendix. (A

similar theorem, under different hypotheses, appears in FOXSuppose that we wish to estimate a'(00). The idea here and GLYNN (1989).) We note that the value of h which
is to estimate, via simulation, the function values c(80 + minimizes the second moment of the limiting r.v. appearing
h) and 0o) and to form a corresponding finite-difference in c) is
approximation to a'(90 ). More specifically, let X 1 (80 +
h), X 2 (Oo+h),... bei.i.d. replicates of the r.v. X(Oo+h),
simulated under common distribution P,+11. Similarly, we h'= r(8  0) 1/4
let X 1 (0), X 2 (00 ),.... be an independent stream of i.i.d. kCrit(9o)2
replicates of the r.v. X(Oo), generated under common dis-
tribution P#0 . Consider the forward-difference estimator Thus, the difference increment that minimizes asymptotic

mean square error is h. = hn - /4.This result was ob-
tained previously by ZAZANIS and SURI (1986). It is worth
observing that if one wishes to minimize the mean absolute

Aa ,) (X!0° + h) - X,(= 0)'_ error of the estimator, then the optimal difference increment
n= h takes the form hn = h.n- 1/ 4 , where (typically) h. $ h*.

(To see this, observe that h. would be obtained by minimiz-
ing the first absolute moment of the limiting normal r.v. ap-The deterination of the best posile difference incre pearing in c).) Stated more abstractly, the L 2 and L' errormerit h introduces a trade-off between the variance of the criteria do not yield precisly the same sequence of optimal

estimator and its bias. If h is chosen too small (relative to difference incrm ent.

n), the variance contribution to the mean square error will

dominate, whereas if h is chosen too large (relative to n), 2.2 Central-Difference Estimators
the bias will govern the convergence rate. It turns out that
the optimal difference increment h = h,, in this setting, is Theorem 2.2 states that the forward-difference estima-
typically of order n-1/4 . To rigorously state the result, we tor converges (at beat) at rate -1/4 to the derivative
assume that: 0(0o). One way to improve upon this poor convergence

rate is to instead use a central-difference approximation to
(2.1) the derivative. When function evaluations ae made with-

i) P,{X(OC) =:" Po {X(Oo)C.} as 9 -. Oo (=: de- out error, this is known to be a numerically more accurate
notes convergence in distribution), approximation to the derivative.
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To precisely define the estimator, we let XI (90 + h), method of common random numbers, as applied to derivative
X2 (90 + h), ... be ii.d. replicates of the r.v. X( 0 + h), estimation.
simulated under common distribution P#,+h. Similarly, we
let Xi(Oo - h), X2 (0o - h).... be an independent stream Suppose that the r.v. Y(Oo + h) is produced from the
of ii.d. replicates of the r.v. X(Oo - h), generated under same stream of random numbers as is X(Po) and shares
Poo0- . The central-difference estimator is defined as the same distribution as does X(Oo + h) under Po+h.

By convention, we set Y(Oo) = X(Oo). Let AY(h) =
Y(Oo + h) - Y(Oo). We make the following assumptions

1 about our common random number scheme:
Aa2(n,h)

~*1= 2h (2.4)

i) P{Y(h)e.) = P,.+,,{X(6o + h)e.),
The following theorem sumauizes the behavior of ii) EAY(h)2 = hor + o(h) as h 1 0. where ,2 > 0,

Aa 2 (n, h); the proof is similar to that of Theorem 2.2 and iii) there exists r > 0 such that EIAY(h)tl+( = h31 +
is omitted. o(h) as h 1O,

iv) e(O) = EX() is two times continuously differen-

(2.3) THEOREM. Assume (2.1). If k(3)(00) 6 0, then- tiable in an open neighborhood of 00.

a) if nl/ 6 hn - 0o with hn - 0, nI/3 jA, 2 (n, hn) -

a'(8a) I * oo as n - oo, Let AYI(h), AY 2(h).... be an i.i.d. sequence of
b) if nl6h, -. 0, n1/3 0 2(n, hn) - a'(00)I =* 00 as replicates of the r.v. AY(h). The forward-difference com-
n - o, mon random mambers estimator for a'(00) is then given by

c) if n1 l 6 h. -. h > 0, then n1/ 3(AOf2 (n,hn) -

* V 2 2 N(o, 1) - as n - 1 ___s__

0. 3 Aa3(n, h) = (h
-nE h

The improved convergence rate (of order n -1/3, as 01- Before proceeding to a statement of the convergence rate the-
posed to n1-1/4 for forward differences) is obtained here be- efor reng ho w seeto dsu o rensumtions
cause of the fact that central differences are less biased than ore fo sider he pa discuss our ssumption
forward differences. This permits the difference increment to furhe Ce the event sys a e
be chosen larger (of order n/-1/6, as opposed to n-1/4 for A(h) be the event that Y(G0 + h) experiences a change
forward differences) which, in turn, reduces the variability of in the order of events from that experienced by Y(of). Onthe estimator, the event A(h), Y(90 + h) - Y(8 0) is typic-lly of unit

magnitude. On the other hand, on the complement of A(h),
Y( 00 + h) - Y(90) is typically of order h in magnitude.The choice of h in c) that minimizes the asyrmptotic Also, formost discrete-event systems P(A(h)) - h+o(h)

mean square error of the central difference estimator is (oe, for some ) e > . For p > 0, write

also ZAZANIS and SURI (1966))

h, = WOO) . EAY(h)P = EAY(h)YI(A(h))+EAY(h)PI(A(h)).

This decomposition suggests that for most discrete-event syS- ,

2.3 Finite-Difference Estimators Using Common t , EAY(h)' = /3ph + o(h) for p _! 1. This explains

Random Numbers the form of (2.4) ii) and iii).

The central-difference estimator improves upon the con- (2.,5) THEOREM. Assume (2.4). If 0,'(00) k 0 and or

vergence rate of the forward-difference estimator by reducing nhn --* 00, then:
its bias (for fixed h). The method that we shall describe here a) if n1 l 3 h, -*00 with h,, -- 0, n'/'IA 3 (n, h.) -
improves upon the convergence rate of the forward-difference a'(00) * 00 as " - 00,
estimator by reducing its variability (for fixed h). The idea b) if n l/3 hn -- 0, n1/a3 IAa(n,h ) - a'(0o) = o0
is to generate the replicates of X(0 0 + h) using the same as n - 00,

stream of random numbers that were used toobtain the repl- c) if 11/ 3h" - h > 0, n1/"3 (Aft(n,h,)-a'(0o))
cates of X(9o). This, of course, is nothing more than the 5 ,(0h 1) - 2s Ii -- 00 .

I v'I IA I~~ ~
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We note that the convergence rate here is of order
1 ~ the same as that obtained earlier for the central- ( 90' 2 11/

difference estimator. Obsve that the optimal difference in- " = 4(3) (e 0 )2)
crement now is of order n-1/ 3 , which is much smaller than
the difference increment of order n- 1/6 derived for central

differences. The lower variability of the common random 2.4 Finite-Difference Estimators With A Near-
numbers estimator is what permits us to choose the smaller Optimal Convergence Rate
increment. We further note that the value of h appearing in
c) which minimizes the asymptotic mean square error of the In the preceding three sections, we have discussed four
estumator A03 (n,h,) is different finite-difference estimators. The convergence rate

was improved from order n- 1/4, in the cae of forward differ-
20 2  1/3. emces with independent treams of random numbers, to order

I a' . !-n2/ 5 , which was achieved by a central difference estimator
that used a common stream of random numbers. A natural
question that arise here is whether any further improvementOf course, we can also combine central differences and

common random numbers. Let AY(h) = Y(Oo + h) - is possible. In particular, can one obtain finite-difference esti-
mators for the derivative that achieve a convergence rate that

(2-4); is arbitrarily close to the best possible rate for a Monte Carlo
procedure, namely n- 1/29 We will now answer this question

(2.6) in the affirmative by developing such a class of estimators.

i) P{Y(h)c.} = P*o+h{X(9o + h)c.}, To produce the type of estimator that we have in mind,
ii) EAeY(h) 2 

- ho' + o(h) ash 1 0, where O2 >0, we need to obtain a finite-difference approximation to c'(e0)
iii) there exists C > 0 such that EIAYc(h)I 2+, = h3 2 + that is as unbiased as possible. Suppose, for the moment,

o(h) as h 0, that a is 'an analytic function in 0. Then
iv) a(e) = EoX(9) is three times continuously differen-

tiable in an open neighborhood of e0 .

Let AcY 1(h), AY 2(h),... be an i.i.d. sequence of (2.8) cr(V + h) - ()(0) .
replicates of the r.v. AY(h). The centraldierece comn- Z= n

mon random numbers estimator of a'(00) is given by

Let Thac be the "shifted" function defined by (Thoa)(0) =

1 n A, i(h) ac(0 + h). We further let Do be the derivative function
A0 4 (n, h) = n 2h specified by (Dor)(O) - a0()(0). The expansion (2.8) may

31 =then be written as

The proof of the following convergence rate theorem for
Acs4(n,h) follows the same lines as that for A0 3 (n,h); h
the nroof is therefore omitted. (2.9) Tr =n.

(2.7) THEOREM. Amume (2.6). If or(3)(eo) 4 0 and
nh. -- oo, then: Proceeding formally, we may rewrite (2.9) in terms of the

a) ifnl/5 hn - oo with hn -*0,n 2 /SAN 4(n,,h,)- operators Th andDs
'(0o)I =: 0 as n -. ,

b) if n1l 5 hn - 0, n2//5IAN4(n,hn) - a'(0o) I oo
as fl -~ 00,2100h

c) i h h , n21S( 4 (n, hn)-G(6o)) Dn(.)n = exp(hD).
2 1)- 3)( ) as n - oo. n=0

Thus, combining common random numbers and central We now wish to express the operator D in terms of the shift
differences improves the convergence rate of the derivative operator Th:
estimator to order n- 2/15. Furthermore, the difference in-
crement that minimizes the asymptotic mean square error of 1
the estimator 0 4 (n, hn) is hn - h'n- I /5 , where D - og(T).
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Expanding the logarithm in a formal power series, we obtain

n-3-(a5 (h.,n) - a'(0o)) * a3N(O, 1)

(2.11) D= (Th- k -- ,wee 2 =2(0o)Xm/h 2 andh. a n - oo, w.her 0'=3 2O)Xh -
1=1

To obtain a finite-difference approximation to e'(O0) = 2 2

(Dcr)(90). we truncate the series (2.11) at the a'th term: Xn+ ( m (k) ) .

D (T - I)'k(-) Acording to Theorem 2.13, the convergence rate of
k a5(h.,n) may be made as dose as we wish to n- s1 2 , byk=!

(Thk1( )kil choosing mn sufficiently large. To some extent, this conver-

= t h) ( k gence rate is deceptive. Note, in particular, that the constant

;=I =O X is increasing in m. Furthermore, the construction ofeach

observation Z,(h) that enr a5s(h, n) requires m indepen-

Noting that (Th)= = Tft, we obtain the following approxi- dent simulations. As a consequence, the computational effort

mation to &'(00): required to generate as(hn, n) is sensitive to the choice of

n. Thus, although the convergence rate promised by The-

orem 2.13 is significantly better than those described earlier

1 kin this section, the run-lengths required to see such an im-

(2.12) a(0o) ft j E E (') (_ a(h + ht). provemet may be quite large.

hk=1 t=O I k

3. LIKELIHOOD RATIO DERIVATIVWE

To obtain a finite-difference estimator for Q'(0), we let ESTDAATORS

X 1 (9o + ht), X 2 (Oo + h),... be il.d. replicates of the

r.v. X(Oo + ht), simulated under common distribution In certain settings, it is possible to construct derivative

PO+ht(O < I < M). We further generate each of the estimators that achieve the best possible rate of convergence

m + 1 sequences independently of one another (i.e., the se- for a Monte Carlo estimator, namely n - 1 / 2 in the number

quences (Xi(Oo + ht) : i > 1) are mutually independent of observations n that are generated.

forO<t< in). set
Suppose, for the moment, that the distribution defining

a(9) is independent of 0. Then, all the 0-dependence of a

i (ml) sits in the r.v. X(O), so that a(8) = EX(O). Assum-

Z(h) = Z> (-1)1 -X.(Oo + ht). ing that we can interchange the derivative operator and the

k=1 fto expectation, we get

The expectation of Z,(h) then matches the right-hand side of a'(0o) = EW(Oo),
(2.12). We then obtain a finite-difference derivative estimator

by setting where W(Oo) = X'(0o). Then, by generating i.i.d. repli-

cates of W(Oo), we obtain an estimator which (use the stan-

a (h, n) -- "dard central limit theorem) possesses the canonical conver-
gence rate n - 1 / 2 . The idea behind the likelihood ratio

=1 method (and the perturbation analysis approach of the next

Our next theorem describes the convergence rate of section) is to structure the representation of a so that the

0 5 (h, n), when the difference increment is chosen appro- driving distribution is rendered independent of 0.

priately. Suppose that the distribution Pe defining a has density

(2.13) THEOREM. Assume (2.1). If r > 1 and hnl/ 2m L(8) with respect to some common distribution P, so that

-* h > 0 as n -. oo, then

5



many sampling settings, this choice of g leads to an estimator
W(9 0 ) that has desirable variance properties.

(3.1) Pg(dw) - L(O,w)P(dw).

As the above discussiomn suggests, an important issue

The r.v. L(8) is called the likelihood ratio of Po (with in the development of likelihood ratio gradient estimators is

respect to P). Under this assumption, the contruction of a likelihood ratio (for & given das of

discrete-event simulations) that has desirable computational

and variability characteristics. For example, it turns out that
= in a discrete-event simulation context, the likelihood ratio

typically exists only for terminating sinmulation problenm. Of

= I X(9, w)L(, c)P(dw) ourse, steady-state daracteristics can be analyzed as a limit
Jn of finite-horizon estimation problems. Unfortumately, the as-

= Y(O,w)P(dw) socited likelihood ratios become successively more unstable
as the time horizon gets large. However, this problem can

- EY(0), be avoided if the discrete-event system has the right kind of
structure (typically, regenerative structure). REIMAN and

where Y(O) - X(O)L(O). This is the desired represen- WEISS (1986) discuss some of the relevant ideas.

tation of a. Assuming that the derivative-expectation in-

trchange is valid (and it typically is), we obtain a'(00) = 4

EW(Oo), where W(Oo) - X'(Oo)L(Oo) + X(Oo)L'(Oo). 4. PERTURBATION ANALYSIS DERIVATIVE

Hence, the key to obtaining likelihood ratio derivative esti-
watrs is finding a distribution P and a r.v. L(9) such that
(3.1) hols (ndiat storiutin an d aen eigorhooo L( O) In Section 3, we described the likelihood ratio approach(3.1) holds (at least for 0 in an op en neighborhood of 8o). t e i a i e e t m t o . T e b a c i e a o w hto derivative estimation. The basic idea was to ue the

This idea is esily illustrated when the basic sample method of lkelihood ratios so as to obtain a representation

space 0 is the real line. Suppose that the distribution P# of a in which the driving distribution is independent of 0.

takes the form P,(dz) = f(9,x)p(dz). For example, if In this section, we describe an alternative technique for oh-

Iu(dz) = dx, we are saying that Po has a (Lebesgue) density aining such a representation. The idea is to return to the

for each V. Choose g(z) > 0 so that common random numbers technique described in Section

2.3. Suppose that we can find a probability space ( P, , P)
an. a family of r.v.'s {Y(h) : Ihj < r} such that:

JR &()p(dz) = 1.

(This can always be done if p is 0-finite.) Set P(dx) = (4.1) P{Y(h)c.} = P.+hX(Oo + h)c.}.
g(z)p(dz) and observe that (3.1) holds with L(G, z) =

f(, 0)104). Under this assumption, it follows that

Suppose that we are interested in estimating both

a(90) and a'(0o). Assume that the set A(e) = fZ : a(O0"+ h) = EY(h)
f(, Z) > 0) is independent of 0 in a neighborhood of

Oo. A particularly convenient choice of g(Z), in this case,

is g(z) = f(9o, z). Becase A(O) is independent of 0, the for IhI < C. Assuming that we can interchange the derivative

likelihood ratio L(P, x) = f(9, r)/f(00, x) is well-defined and expectation operators, we find that 0'(0o) = EW(Oo),
in a neighborhood of 0. This choice of g has several advan- where W(Oo) = Y'(0). Hence, by generating i.i.d. repli-

gages. Note that to generate W( 00), the simulation involves cates of the r.v. W( 00), we obtain an estimator that achieves

generating outcomes under the distribution Pe. The dis- the n - 1/2 convergence rate that is best possible for a Monte

tribution P 0 is typically the "natural" distribution for esti- Carlo procedure.

mating a(00). Hence, ct(Go) and a'(0o) can easily be esti-

mated from the same set of sampling experiments. A second As in the case of the likelihood ratio method, this tech-

advantage is that by choosing g in this way, L(Oo) = 1 and nique is best illustrated when the basic sample space is the

the formula for W(80 ) simplifies. In fact, in most applica- unit interval. Let f = [0, 11, 7 " rel sets of [0,1), and

tions, the calculation of L'( 0 ) also simplifies considerably, let P be uniform distribution on fl. Set U(w) = w and

when g is chosen so that g(z) = f(Oo, Z). Furthermore, in observe that

6



common random numbers technique can still be applied, in

Y(h) = F,;1 (U) spite of the non-existence of & density. For exampIe, suppose
that X(9) = g(6, Y) and Y has distribution F(y/9) un-

satisfies (4.1) (where Fh(z) = P#o+h{X(9o + h) 5 z}). der Ps. If we set Y(h) = (6o + h)Y/Oo ( 0 > 0), then

Tocalculate W(Oo), we need to determine *Fd 1 (z)Ihof. (4.1) is satisfied with P = Po, and we find that

Assume, for the moment, that F1 has a (Lebesgue) density

fh for each h. By definition of the invese distribution func-

tion Fh, we have a(Go + h) = Es0 ( 0 + h, ( 0 + h)Y/o)

Fh(F;1 (z)) = z. ig is smooth, it is clear that the derivative ofg (o+h, (00+
h)Y/90) exists, eadls of the nature of" the distribution

Differentiating both sides of the above expression with re- F.

spect to h, we get

The representation (4.2) (for W( 0o)) can be derived
via an alternative argument. Recall that a(8) = E#X(O).

aFh(F; +(z)) + ,(F , ( z ) ) dF1 l (z) = ,  As & onrsequence, if X(6) is non-negative, we find that

from which we obtain cr(0o + h) = E#+h j I(X(Oo + h) > z)dz

(4.3) -

Hence, assuming that the derivative and integral operators
Thus, in this setting, we find that can be interchanged, we obtain

W(Oo) F(F;(U))f(F;(U))h(4.4) o'(0) = - j Fh(z)dzlh=o.

One undesirable feature of the approach that we have just

outlined is that since we have taken our basic probability ovaerato of the nte aario mh to te nuerca

space as uniform distribution on [0, 1], the generation of evaluation of the integral appearing in (4.4), we need to rep-
W( 00) appears to require inversion (i.e., calculation of resent it as an expectation. One way to do this is as follows
F;- 1 (.)). Recall, however, that F; 1 (U) has the same distri- (msiningFhhasadensityfh):

bution as Y(h) (or, alternatively, X (O0 + h) under P#o+h).

Hence, W(Oo) (under P) shares the same distribution as (4.5)

(4.2)= - L100 -00fh(Z) " fh(z)dzh=O

(42) O~hX( ))f(( )Io= -Et. ±rA (X (0o))/lf& (X (0o)) h

(under P 0 ). The advantage of the representation (4.2) is which is just (4.2). It is interesting to note that an alternative
that we can generate the derivative observations using pre- representation of the expectation cr(Oo + h) exists:
cisely the same algorithm a that used to estimate C(90)
itself (since c(Oo) is typically estimated by generating i.i.d.
replicates of X(Oo) under P,). See GLYNN (1967) for ad- o0
ditional details. (4.6) CJ( + h) = ]o zFh(dz).

The argument that led to (4.2) appears to require exis-
tence of a density fA. It turns out that in many settings, the If F1 has a density, this becomes

7



It turns out that the common random numbers deriva.

a(Oo + h) ; f zh(z)dz. tive estimation method decribed above can be applied to cal-
JO culate derivatives of performance measures for discrete-event

dynamical systems. The subject of perturbation analysis
Assuming that the derivative-integral interchange is valid, we is concerned with the study and development of the resulting
get estimators. For example, consider a discrete-event system

in which the measure P# characteries the distribution (over
sample trajectories) when the event-scheduling distributions

(4.7) oa'(60)r- h(x)dr we indexed bya scale parameter 9. Now, became 9 appears

JO zh=o as a scale parameter in the event-sdheduling distribution, we
can view the event-scheduling r.v.'s that are generated a
taking the form 9XI, X 2 , • • for r.v.'s X 1 , X2. . . having

To represent the integr inin (4.7) a an expectation, we use distribution independent of . For discrete-event systems
the same idea i in (4.5): n which the probability of two events occuTing simultane-

ously is sero, a small perturbation of the event times will
have no effect on the order of the state transitions experi-

Aft, (X(0o)) enced by the discre v system. The effect of the parm-
= E*X(o)A (X(00)) h=O" eter 0 will reflect itself only in the timing of the sequence

of state transitions. Furthermore, as HO and CAO (1983)
point out, the manner in which the perturbation propagates

In particular, if X(O) -- X (in which cse oa() = EX), itself through the sequence of event timings is suitable to a
we obtain highly efficient recursive computation (i.e., the perturbation

of the n'th state transition epoch is easily calculated from

that of the (n - )',st). These ideas lead to an easily cal-

.-fh(X) culated sample path derivative for discrete-event system in
(4.8) '(0o) = E#.X fh(X)in0" which the event-cheduling distributions are parameterized;

see SURI (1987) for additional details on the nature of the

infinitesimal perturbation analysis (IPA) derivative compu-
It turns out that (4.8) is precisely the likelihood ratio deriva- tation.

tive estimator of Section 3. Hence, in this simple setting,

the common random numbers approach and the likelihood As described above, the IPA approach to derivative esti-
ratio method derive from the two analytical representations mation focuses on derivative estimation relative to perturbs-

(4.3) and (4.6) for the mean of a non-negative r.v. Since tions in the event-scheduling distributions. In many queueing
(4.3) and (4.6) are usually obtained from one another by an settings, one wishes to optimize over routing probabilities,
integration-by-parts, it follows that the likelihood ratio and however. Likelihood ratio methods are highly flexible and

common random numbers methods ar related through an can be applied in a straightforward manner to such prob-
integration-by-parts in this simple context. We note, paren- lems. Recent extensions of IPA to such routing probability
thetically, that if X(O) is non-negative, then derivative estimation problems hold significant promise, how-

ever (see HO and CAO (1985)).

00 Empirical evidence, gathered to date, appears to sug-
E#X(e) = p] tp-P#{X(O) > tP)dt gest that when both IPA and likelihood ratio methods apply

to a given problem, the IPA estimator will typically be more

efficient (in the sense of having lower variability). This con-
for p> 0, from which it follows that clusion stems, in part, from the fact that likelihood ratio

estimstors are known to have a variability that increases in

a roughly linear fashion with the time horison of the simula-

) F((X(Oo)p) tion; see REIMAN and WEISS (1966).

9= Efh (X(0)) h=O* Some care mut he taken in applying IPA techniques

to a given problem, however. The difficulty is that the inter-
Formula (4.9) generalizes (4.5). In principle, one could opti- change of derivative and expectation operators that is needed
mize over p in order to determine that p-value which yields to rigorously justify the IPA estimator (see (4.1)) may some-

a derivative estimator with the minimum variance, times be invalid. In such settings, the IPA estimator can

8



converge to the wrong quantity. To get some sense of the other hand, the likelihood ratio and perturbation analysis

problem, we note that if Y(h) has a well-behaved derivative techniques that were described in Sections 3 and 4 attained
Y'(0) at h = 0, then we would expect that the canonical convergence rate of n - 1/2 .

(4.10) h-2v[Y(h) - Y(O)] -. v&rY'(0) The generalization of theme ideas to the setting in which
9 is vector-valued is straightforward. The partial derivatives
with respect to each of the co-ordinates 6 is easily calculatedas h 4 0. (In fact, (4.10) is a sufficient condition for permit- intes. a h da-istiimatedm ear-

ting the interchange of derivative and expectation.) Hence, iam weyer, the caputatioa cop e o ating a
lier. However, the computational complexity of calculatig a

d-dimensional gradient is highly sensitive to d and is an issem
which is specific to the setting in which 0 is vector-valued (as

(4.11) EAY(h)2 = h 2EY'(0) 2 + o(h2 ) opposed to scalar valued). For example, note that a forward
difference estimator for the d-dimeasional gradient Va(0O)
involves performing simlations at the d+ 1 parameter pointsash 4 0. Recall, however, that in Section 2.3, we argued O,0he,.,o heweeite'hmvc

that the typical behavior of a discrete-event system was gov- or O h e oth. hnd, a e nr fere nce approunmation

erned by (2.4) ii), which contradicts (4.11). The difficulty is rre m the h d, a cen-

that while the effect of the perturbations on the state tran- requiren stimat for a pointsa0ona gdent ruires

sition sequence may be ignored in calculating W'(00 ), it roh ice stmuch comationa rasienforwari

cannot be typically ignored in calculating a'(00). In HEI- ruhytiea uhcmuainlefr safraddf
cannt b tyicaly inord i cacultinga'(o).In EI- ference estimator to obtain the same number of observations.

DELBERGER et al. (19M8), this point is analyzed further. feecesiaotobanthsu nmerfosrvin.
DEIt E et as.h thatconvent is IPin insent (n This, however, is balanced by the fact that the convergence
It is shown that conventional IPA can be inconsistent (in rate of a central difference estimator is more rapid than that
the sense of convergence to an incorrect answer) for mul- o owr ifrneetmtr sacneune ea

tiple customertype queueing networks. However, conven- that if d is large, a forward difference stimator may be more

tional IPA turns out to be consistent for a large number of ehit f s is large enog howeer the con

performance measures associated with single customer type tral dfence estimator always wins. This dimesionteality

networks. ta ifrneetmtrawy i& hsdmninlt
effect becomes even more pronounced for the "near optimal"

difference estimators of Section 2.4. Note that to estimateFurthermore, a number of extensions in the basic IPA d-iesolrdeniutto the d+1ois

algorithm hold significant promise for overcoming the diffi- a9-jesfa gradient (1 at mdareneeden.

culties that arise in the multiple customer context. In partic- Hence, the dimesionaliy degradation that occurs with this

ular, a new version of IPA, known as smoothed perturbation entimatr i en sio us tn that ced by the
estimator is even more serious than that experienced by the

analyis (SPA), is now under development. The idea is that, central difference estimators discussed earlier. An additional
rather than work with the "raw" sample path Y(h) itself, disadvantage of this class of estimators is that they can be
one considers instead the conditional expectation of Y(h) quite sensitive to numerical round-off error when m is large.
with respect to some appropriately chosen conditioning vari- (The presence of the altenating sign (-1)1 - can lead to
able Z (appropriate in the sense that E(Y(h)IZ) is eaily nu mec instlt

calculated). Since a conditional expectation involves an inte-

gration operation, the conditioning ought to yield a process
E(Y(h)IZ) which is smoother in h than is Y(h) itsev. Turning now to the likelihood ratio and perturbation

As a consequence, SPA has the potential to deal with esti- analysis estimators, we note that both of these estimators,

mation problems for which classical IPA does not work; see when applied to estimation of the gradient, require only a

GLASSERMAN and GONG (1989) for further details. single simulation at the parameter point Oo. Of course, the

additional computer time required to calculate the d partial

derivatives from the single simulation imply that the corn-
5. GRADIENT ESTIMATION putational effort to compute a S-dimensional gradient is still

increasing in d. However, one would expect that these esti-
In the previous three sections, we have described deriva- mation algorithms would be less sensitive to d than are the

tive estimation techniques that are applicable to problems in finite-difference estimators of Section 2. Thus, the likelihood
which the decision parameter 0 is scalar-valued. The meth- ratio and perturbation analysis estimators improve upon fi-
ode of Section 2 gave rise to estimators for which their re- nite difference estimators in two ways: computation time is
spective convergence rates were slower than n - 1/ 2 in the les sensitive to the dimension d, and the convergence rate is
number n of observations n that were generated. On the n - 1/2 .
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6. ORTHOGONAL FUNCTION (The Fourier suit for a is a cosine series because of the

APPROXIMATIONS fact that a is an even function.) The functions co,eI,...

am orthogonal with respect to the inner product (6.2) that

One ofthereason that gradient estinmation plays a key we have defined, in the sense that (ek,e) = 0 fork $ .
rote in optimization is that the gradient gives information (In fact, they are orthonormal since (ek, ek) = I for k>

about the shape of the objective function. When such shape 0.) Hence, (6.1) expreses a as a linea- combination of the

information is added to that supplied by a function evalua- orthonorma] "vectors" e0, e1 , 2 ... Thus, we can estimate

tion, we are esentially being given an affine approximation o by estimating each of the inner products akA (a, eC) for

to the function in a neighborhood of the point at which the k> 0. In contrast to expanding a function in a Taylor series,

evaluations occurred. More generally, if all the partial deriva- each of the coEcients ak is defined by an integral, namely

tivem of an analytic function are given at a single (fixed) point,

the entire global behavior of the function is then determined.

The ability to obtain global information about the behaviorfo z60k=0
of the objective function is dearly usdul in an optimization ah "

cWntext. *fa() co k~d, k > I

As indicated above, one way to cheaply infer global be- Monte Cl methods a well suited to estimating integrax

havior is via a Taylor series expansion that ia determined by In particular, suppose we generate U as a uniformly dis-

the partial derivatives of the function. Another approach in- tributed r.v. on the interval [0, r] and then simulate X(U)

volves attempting to expand the function in an orthogonal under the distribution Pu. Then, at can be represented as

expansion of some kind. We shall now illustrate this idea in

the case that the decision parameter 0 is scalar va',ied and

the orthogonal functions are the trigonometric functions. In fv'2EX(), k = 0
this case, we will then obtain a Fourier-like expansion of the ah 2./ EX(u) cos kU, k > I.
objective function.

Suppose that we are interested in studying the behav- Hence, the r.v.

ior of the objective function over the interval (0, r]. (By

transforming the interval if necesary, this is equivalent to I
studying a over an arbitrary compact interval of the form A(m, 6) = X(U) I + 2 cos(kU) cos kO
[a, b].) We can then make a 21-periodic by extending ok k=1

to [-1r, 0) via the even extension or(0) = a(-0) and then

letting 0(8 + 2r) = a(O). Assuming a is continuously ham expectation

differentiable on [0, 1r], it is well known (see FULKS (1969),

p. 547) that for each 86[-7r, ],

EA(mO) = (m, (,e*)e(O).
k=O

(6.1) = e(a, ck)e (), Thus, A(m, 9) is an unbiased estimator for the first M + 1

k:0 terms in the Fourier series of a. Note that only one simula-

tion is required to estimate the first m- + 1 Fourier coefficients

where the e&'s are the normalized cosine functions defined of a.
by Suppose that we genemte n i.i.d. copies AI(m,C),

n.,(m, ) of the r.v. A(m, e). We can then form the

k = 0 estimator
,coo k0, k > I

and F A(() =
6=1

we permit rn = mr to be a function of the sample size n

(6.2)9 -/ z(O)y(fldO. (since M will have to grow with n in order to asymptotically

-' r remove the bias of the estimator).
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In order to measrure the distance of the estimator an(-) the form Xo(Uo) + 2 E-1 Xk(Uk) cos(Wt) cas(kf)),
from the function a(.), we use the norm this would have no effect on (6.3). In other words, Ellon -

all2 is unaffected by whether the coefficients ae estimated
independently or not.

_lzll_((zz))11 2 2()dO / 2  We ae now ready to state a Emit theorem for ElIan -e112.

Our goal is to describe the magnitude of the distance Ila -n (6.4) THEOREM. Let b(O) = EX 2 (8). Suppose that
ali. Let b(e) is continuous on [0, r] and a(e) has a continuous p'th

deritve on [0, v](p > 1). I m_ 2p , then:

a) EX 2(U) + 2 E ' EX 2(U)co 2(kU)
{ ,f n - v = X,(U), k = 0 mfo b(O)dO/i as m --- oo,

(-)=. 2/ 1  _.=1 X,(U)co@(kU), k> I b) n1-Ellan11 2 - 0 asn --* ooforany-> 1/2p,
c) n1/ 2 -"12 11a. - all *- 0 as n - 00 for any 7 >

and note that 1/2p,

d) for C > 0, m{oe[O,r] : a.() - o(e)l >
60nn / 2 - 1 / 2 } n* 0 a. l - 0o, for -y > l/2p. (m

an () = ()e) is Lebesgue measure.)

k=o

Thus, if a is sufficiently smooth, we can obtain a global
If a is continuously differentiable on [0, W], then (6.1) is valid, convergence rate arbitrarily close to n-1/ 2 in the num-
so that ber of observations n that are simulated. (We note that

because a is 2w-periodic and is an even function. a's first

p derivatives must vanish at 0 and i in order to satisfy the
m. smoothness hypothesis of Theorem 6.4. If a does not sat-

an(O)-((O)=E (&k(n)-at)ek(O)- E atek(O) isfy thecondition, one can shrink a's domain of definition to
k=O k>rn. [C, i - C] and then smoothly extend a to [0, W] in order to

satisfy the smoothness hypothesis.)

where ak = (a,ek). Then, the orthogonality of the eL's

guarantees that 7. STOCHASTIC APPROXIMATION

ALGORITHMS

I an all 2  )2 + 2 In this section, we briefly describe how the results of
I 1 =E (a() - )+ ak. the previous sections can be integrated into an optimization

k=O k>rn. algorithim.

Hence, Consider the unconstrained problem in which the goal

is to minimize the objective function e ,() over OdEd. The
(6.3) idea in to develop a recursive procedure in which the (n +

m a l)'st iterate is likely to be closer to the miniier 0* than
Ellcn - all2 = E vah,(n) + 1: a& is the n'th iterate. Specifically, suppose that it is possible

k--0 k>m. to generate r.v.'s W(O) such that EW(O) f V'a(O); as

2n (X U + 2 E' X2UC02 W discussed in Sections 2-5, this can be done either through&
= r- EX2 (U) -- EX 2 (U )coeU finite-difference approximation or through the likelihood ra-

M k=1 tio and perturbation analysis gradient estimator (in which

2 a21  case + y O is typically equal to Va(O)). Assuming exis-.tece of such r.v.'n s(), conider the recursion
k=O k>m.

It is worth observing that if each of the Fourier coefficients

were to be estimated independently (so that A(m, 0) takes (7.1) On+I = On - n-Irv.+i,



where r is a given d X d matrix and P{V.+ieAOo, Vo, Pe.-en-11/). Here a central difference approximation to
... , On, V} = P{W(O.)CA). In other words, the r.v. the derivative is being used (recall that n- 1 0 is the opti-
Vn+1 is generated by simulating & copy of W(On). mal difference increment as specified by Theorem 2.3). The

resulting minimiaation algorithm is known as the Kiefer-
In the came that E1{Vn+1Io, Vo,..., On,Vn} = Wolfowits procedure. As one might expect, some degra-

Va(9n) (as would occur if the methods of Sections 3 and 4 dation in the convergence rate occurs as a consequence of
were used), algorithm (7.1) is known as the Robbins-Monro the finite-difference approximation. Specifically, RUPPERT
algorithm. Assuming that a is twice continuously differen- (1982) shows that under suitable regularity hypotheses,
tiable, the optimal choice of the matrix r then turns out to
be (7.4) nl/3t 1/3(OLnr - 0*) =: bi + b2 t- A- i B(j 2A+1

r = H(', asn -- oo(inD[E, oo)),wherebb 2,,andAareproblem-

dependent constants. Thus, the convergence rate of the
where H is the Hessian of second derivatives; see POLYAK Kiefer-Wolfowits procedures in which a central difference ap-
and TSYPKIN (1980) for details. proximation is used to estimate the gradient, is n - 1 / 3 in

the number of observations generated. Note that this con-
It is particularly illuminating to consider (7.1) in the vergence rate is identical to that discovered in Theorem 2.3.

case that 0 is scala,-valued. In this case, (7.1) takes the form The fact that the convergence rates for the optimization aI-

goreithms (7.3) and (7.4) match the convergence rates of the
corresponding gradient estimators indicateq the pivotal role

(7.2) On+1 = On - n-lc Vn+I that gradient estimation plays in the optimization setting.

While the above discussion has focused on uncon-

Note that if C > 0, 0n+1 has a tendency to be smaller strained optimization, constrained variants of (7.1)-(7.2) am

than 0n when Or'(0n) > 0, and has a tendency to increase also avmilabk. Among the approaches that have been stud-
when '(en) < 0. As a consequence, the sequence (On : ied are penalty function methods and Lagrange multiplier

n > 1) has a tendency to move towards a point 0* for techniques; see RUBINSTEIN (196) for a more extensive
which a'(O") = 0 and a'(0) > 0 (a'(0) < 0) for 0 in description.
a neighborhood to the right (left) of 0. Any such 0* must A somewhat different philosophy for optimizin sto-
necessarily be a local minimizer of a. Thus, the algorithm chastic systems via simulation involves the idea of using sim-
(7.1) appears intuitively reasonable.

ulation to develop a description of the global behavior of
the objective function and constraints. The orthogonal func-

E V +a cto, (70 .. ha On, Vno = '(n) nd d = t RUP- tion approximations of Section 6 would represent one way to

PERT (1962) has shown that under suitable regularity con- obtain such global descriptions. Having fitted functional ap-

ditions, proximations to the objective function and constraints, one

can then use deterministic techniques to optimize the fitted

surface. One then uses the optimizer of the fitted surface as

an approximation to the optimizer of the original stochastic
(7.3) nl1 2 t 1 l 2 (Olnj - 0*) =* at-D- iB(t2D+1) system.

as n - OO (in the Slmobod space D[c, oo), c > 0), where ACKNOWLEDGMENTS
B(.) is standard Brownian motion and a and d are certain
problem-dependent constants. Setting t = 1 in (7.3), we This research was supported by the IBM Corporation
conclude that On converges to 0* at rate n-1/ 2 when unbi- under the SUR-SST Contract 2480042 and by the U.S. Army
ased estimators of the gradient are available. Research Office under Contract DAAL-03-6&K-0063.

On the other hand, in certain applications, only finite-
difference approximations to the gradient may be present. APPENDIX
For example, suppose d = I and that P{V, +iCA[1o, Vo,
.... On, Vn = P{[X(en + cn l / 6 ) - X(O. - cn-/ 6 )] Proof of Theorem 2.2. Let ,Zi(0) = X,(0) -(0) be
/2cn-1/ecA}, where X(On + cn- 1/6 ) is simulated (un- the centered version of Xi(O). We first wish to show that
der P*,+n-'/6) independently of X(On - Cn - 1/6 ) (under when hn -* 0,
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as n - 00. The left-hand side of (A.4) can be bounded by

1-/2 ft,(Oo + h) - f2,(Oo) I A.? ~. .,12.
(A.1) E I_ 2+eK*. )) , Ai(h. )2 > Ko n>

= v 12-(Oo) NV(o, ) 5 E &]Ih 12 e(o c c2n/)

as n --* oo. This follows from the central limit theorem ; -c/2~- X (nh)'
for triangular arrays (see, for example, CHUNG (1974), pp. 2+ /2(n

205-209). In particular, to verify Lindeberg's condition, we
observe that (2.1) ii) and ill) together imply that X(o + sen - 00; this yields Lindeberg's condition (since nh.
hn) = X,(Oo) and EX,(fo + hn12 -- , EXf(Oo) 2 , from 00). The proo in completed by writing
which it follows that {X.i(O 0 + hn) 2 :  11 no) uniformly

integable (see Theorem 4.5.4, p. 97, CHUNG (1974)). The n 1/ 3 (Ae(nh) - r'(9o))
uniform integrability of {X(Oo + hn) 2  n > no) im- n

plies that of {(X,(o + hn) - f,(0)) 2  n > no}, from _ 1 n
which Lindeberg' condition is an eay consequence. This 7 (_ +

establishes (A.1).

where b(h) = EAY(h)/h - &'(0o). (To obtain the de-
We now n.sired limit theorem, use (A.3) and b(hn) = c"(0o)h./2 +

o0 .)
n /4(A (nhn) - a'(0o)) Proof of Theorem 2.13. We rt observe that there

exists c >0 such that {hZ,(h) : 0 < h <r) is uniformly

(A.2) =t e(a + hb) - b(l0) iegrae. (Use the sum argument as that employed in the
= proof of Theorem 2.2). Hence, Lindeberg's condition may be

+ n 1/4b(h) verifed, to obtain the central limit theorem

where b(h) = (e(00 + h) - O))/h - a'(9o). it is n
(A.5) n- 1/2 E hnZi(hn) =:: 0'3N(O, 1)

evident that by (2.1) iv), ck(Oo + h) = Ot(Oo) + ho'(0o) + i=1
h 2a"(o)/2 + o(h 2 ), so that b(h) = h c"(0o)/2 + o(h).
The theorem then follows immediately from (A.1) and (A.2). as n --. oo. The next step is to study the bias term /(h) =

EZ,(h) - a'(e0 ). We start by observing that since a is m
Proof of Theorem 2.5. The proof proceeds along the times continuously differentiable, it follows that

same basic lines as in Theorem 2.2. We fint note that (2.4)

ii) and iv) together imply that "2 - varAY(hn) = hn0 2 +

o(h) - (a'(Oo)hn + o(h)) 2 = hn2 + o(h). Let (A) ( t

AY(h) = AY,(h) - EAY(h). We wish to show that if EZ,(h) = E E (( o + ht)
hn - 0 with nhn - 00, then k=1 0

1 & =1 =0

(A.3) r i( 'Ao(h) * N(0, 1) ( r)(eo) )r + o(hm)

as n -" 00. To obtain (A.3), we need to verify Lindeberg's I fnr h r m
condition for the triangular arry {Akj(h)/VF : 1 h L= 0"'r , E ,o
i < n, n > 1). But the Lindeberg condition reduces here
to verifying that for K > 0, (-+l)-t (hm-)

k
1im

(A.4) E{AYI(h.) 2 /0,2; AY(hn)2 > K n} 0 h + c()(9)h-r 1),
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where N = N(r) such that Ib(G) - bN~(9)l < C, Where bW) is
the pecewise constant function defined by

E, E (2Z ) kr bN(e) = b N. ~ 'k=1 t=O "f L J

To get a handle on the y.'s, we note that Since cos 2(kO) :5 1, it follows that

X = Iog(1 + e* -1 IfVA.S)C82kOd

= n (_,),+, (e - I )k + O(zn+i) 0L bN(O) C2(k)d - b)o s(Bd <,C

k=1

k=~(1) 1= M )(lkEe (m1 (A.9) obpj(9)d9 - jo b(O)do I < C.

-jy(k) 
+) Z~O(Xm+)

k=1 t=O ,.O choose k so large that 2uw/k < c. Then, setting t

rn m &)(.0i1-1C .tm Lk/2NJ, we have

= rk=1 _=0

- r Oz~ bN(e) COO 2 (ke)dO

r=O ~~~N-1 f (j+1)/N b()C6(#d

Comparing coefficents in X, we conclude that 'yr = 0 for i+ .Ne IN 2 k9d
r ad ubtiutngin (A.6), we conclude N-i wjII

that EZ,(h) = cz(1)(eo) + o(hmn-l). Hence, /3(h) = N6~(vj/N)[ Cas2(ko)do
o(hml-). To obtain the desired central limit theorem, we j=O fij1N

write N-1 1 1 vkj/N+iwk/N

= FbN(1rj/N)7 Ikl cos2(u)du

N-1 Jrk /N 21

n a~n )- 0'(00)) E N wkj/N+ cOS2 (u)du

-h2h n-1/2E h. hZ 1(h.) j0Jk/

-+n'W .,3(hn), 1 o 2 (~~+w)d
oh).N-i bNIjv W (k/N-2t)

and ue (A.5) and the astimate 0(j=0~hn1.E 7 1f

Proof of Theorem 6.4. To prove a), we will show that C0821 (V+ Ljj-+ 2t)dv1
EX 2 (U) cos2(kU) -2-'fo b(O)dO/i as k -~ 00. we N-i 1 jWkUj+1)/N

bY~~~ ng'-= bN(ri/N)j dv/2

(AT EX(UCoe 2(kU) =jb)Cos 2(k9)do/W. + F,6N(vj/N)! vkNU

Since b(.) is continuous, it is evident that b(-) is unformy IC ( N-2 £ 2
continuous on [0,ir]. Hence, for every C > 0, there exists
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i.e.,
00

WG b()dO E2 a = (
2 lw k=m+l
N-1 l r(k/N_21)

(A.10) + 1 b(irjlN) j Hence, if m,, = ,iP, it follows that &,>.. a,
j=o 1= 0(n Furthermore, part ) implies that

[coS2 (v+ .--- + 2wf) - i]dv.

(We've used the fact t f + coo 2 (u)du = f:+2l n-1 EX2(u) +t2 _.EX(u)co(ku) - a:)

sin 2(u)du, so 
-t-at
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