
tILL

WORKING MATERIAL
FOR THE LECTURES OF

T1HE EAN4ILY OXF CO>NCLIRR~ENT LOG)CIC

PROGRA~AN NG LANG AG;E S

ADA23 58DTIC
AD-A21 958 ELECTE

001T3 11980

IN~FER!4AI ) ALsx L i P Ep S c c) c> L

ON

LOGIC, ALGEBRA AND COMPUTATION

MAxRKOBIEPMORP, GER-MANY. JULY 25 - AUCUST 6,1989

Approvo ic publc "&M;
Pi.6Avutom Unliite

SCOO 10ANZE 27 016
THI SUMERSCHOLIS RGNzDUNDERL THE AUSPICES OP THE TECHNISCHE

UNIVERSITAT MUINCHEN AMD IS SPONSOPED BY. TmE A SCIENCE COM MITEE

AS PARI OF THE 1989 ADVANCED STUDY INSTITiuTES PROGRAMME, PAXTIAL.

suppoiR FOR THE CONFERENCE WAS PROVIDED BY THE , uRtoPEAN. RESEARCH
OFFCE AzD THE NTONAL-SCIENCE FOUNDATION AND BY VAJOUS INDUSTRIAL

COMPANIES.



The Family of Concurrent Logic

Programming Languages.

E. Shapiro

CS89-08

May 1989

Department of Applied Mathematics & Computer Science
The Weizmann Institute of Science

Rehovot 76100, Israel



The Family of Concurrent Logic Programming Languages

Ehud Shapiro
Department of Applied Mathematics and Computer Science

The Weismann Institute of Science
Rehovot 76100, Israel

April, 1989

Abstract

Concurrent logic languagea are high-level proamming languages for parallel and distributed

systems that offer a wide range of both known and novel concurrent programming techniques. Being

logic programming languages, they preserve many advantages of the abstract logic programming

model, including the logical reading of programs and computations, the convenience of representing

dats-tructures with logical terms and manipulating them using unification, and the amenability

to meta-progamming. Operationally, their model of computation consists of a dynamic set of

concurrent processes, communicating by instantiating shared logical variables, synchronizing by

waiting for variables to be instantiated, and making nondeterministic choices, po sibly based on

the availability of values of variables.
This paper surveys the family of concurrent logic pro rmming languages within a uniform

operational framework. It demonstrates the expresnive power of even the simplest language in the

family, and investigates how varying the basic synchronisation and control constructs affect the

expressiveness and efficiency of the resulting languages.
In addition, the paper reports on techniques for sequential and parallel implementation of

languages in this family, mentions their applications to date, and relates these languages to the

abstract logic programming model, to the programmi Inguage Prolog, and to other concurrent

computational models and programming languages. i t ... ..

Aooesslon 1fw
NTIS QMkI *

DTIC TAB
Wnnoumoed 0
Justlloatin

Availabil ity (Codea

- - D t Speolal



Contents

I. Introduction
1. Introduction . ................................ 1
2. Logic programming, Prolog, and the power of the logical variable .. .. ... .... 2

2.1 Syntax and informal semantics of logic programs .. ... ..... ..... 2
2.2 Examples of logic program and their computations .. .. ..... ..... 4
2.3 The operational view of the logical variable and unification .. .. .... .. 7
2.4 Semantics of logic program.. .. ... .... ..... ..... .....
2.5 Prolog .. .. .... ..... .... ..... ..... ..... 10

HI. Core Concepts and Techniques
3. Concurrent logic programming. .. .. .... .... ..... ...... 11
4. FCP(J) - a simple concurrent logic programming language. .. .... ...... 15

4.1 Syntax .. .. ... ..... ..... .... ... .... ... 16
4.2 Operational semantics. .. ................... 16
4.3 Examples of concurrent logic programs .. .. ... ..... .... ... 18
4.4 The power of the logical variable in concurrent programming .. .. ..... 22

5. Basic programming examples and techniques. .. .. .... ..... ..... 25
8. Fairness. .. .. .... ..... .... ..... ..... .... ... 28
7. Advanced concurrent logic programming techniques. .. .. .... ..... .. 30

7.1 Static proces networks .. .. .. ..... ..... .... ....... 30
7.2 Dynamic proess networks .. .. ..... .... ..... ....... 32
7.3 Incomplete message protocols .. .. .... .... ..... ....... 36
7.4 Mutual exclusion protocols .. .. .... ..... ..... .... .. 39
7.5 Short-circuit protocols for distributed termination, quiescence detection,

and distributed event-driven simulation. .. ... ..... ..... .. 39
7.6 Object-oriented programming, delegation, and otherwise .. .... ..... 43
7.7 Enhanced meta-interpreters. .. .. .... ..... ..... ..... 44

111. Concurrent Logic Programming Languages
8. Language comparison .. .. ... ..... .... ..... ..... . . . 48
9. Semantic. of concurrent logic programming languages ........... . . . 51
10. Flat GHC: a language with non-atomic unification. .. .. .... ..... .. 53

10.1 The language FGHCv .. ... ..... .... ..... ....... 54
10.2 The language FGHC .. .. .. .. .... ..... ..... ..... 56
10.3 The meta-call construt . .. .. ..... ..... .... ....... 56

11. Flif PARLOG: FGHC extended with sequential-Or and sequential-And .. ..... 57
11.1 The language FP(;) .. .. ... ..... ..... .... ....... 58
11.2 FP(&). .. ..... .... ..... .... ..... ... . . . 59

12. P-Frolog. - synchronizing deterministic logic program...... . 61
13. ALPS - an integration of P-Prolog,, and FGHO .. ... .... ..... .. 63
14. FCP(:) - FCP(J) extended with atomnic test unification. .. ... ..... .. 64

14.1 t.he language PCP(:). .. ... ..... .... ..... .... .. 64
14.2 Programnming in FCP(:). .. .. ..... ..... .... ....... 65
14.3 Embedding KLI and Flat PARLOG in FCP(:) ............ . 68
14.4 Computation replay and debugging ................. . 71
14.5 An embeddinig of Or-parallel Prolog in FCP(:) ............ . 72

15. FCP(?) - dynamic sjnchronization with read-only variables ........ . 72
15.1 The lanuage. .. .... .... ..... ..... .... .. . 73
15.2 FCP(?) programming techniques .................. . 73

16. FCP(:,?) - an integration of FCP(:) and FCP(?). .. .. ..... .... .. 76



17. Doe - "X= X considered hariul . .......... 77
18. Non-flat concurrent logic programming languages: PARLOG, GEC,

Concurrent Prolog, and CP(,I) . .. .. .. .. ... .. ... ... .. .. 78
18.1 PARLOG and GIC .. .. ... .... ..... .... ..... .. 78
18.2 Concurrent Prolog and CP(1, 1) . .. .. .. .. .. .. .. ... ..... 0

IV. Implementations and Applications
19. Implementations of concurrent logic programming languages .. ... .... .. 81

19.1 Sequential implementations. .. .... .... ..... ..... .. 81
19.2 Parallel implementations .. .. .. ..... .... ..... ..... 84
19.3 Process to processor mapping. .. .... ..... .... ....... 86

20. Applications of concurrent logic programming languages .. .. .... ..... 88

V. Conclusions
21. Relation to other languages and computational models. .. .... ........ 89

21.1 Prolog, parallel logic languages and concurrent constraint languages .. .. .. 89
21.2 Distant relatives - Delta Prolog and Fleng. .. ........ ..... 90
21.3 Deadow languages .. .. ........ .......... ..... 91
21.4 Functional languages. .. ....... ......... ........ 91
21.5 Message-passing models of concurrency. .. ......... ....... 92
21.6 Concurrent object-orienited progrsmming. .. ......... ..... 92
21.7 Linda. .. ... . ................. ........ 95
21.8 Nandeterministic transition systems and UNIT. .. ....... .... 95

22. Conclusions. .. ... ......... ......... .......... 96

References..................................98



PART I. INTRODUCTION

1. Introduction

In surveying concurrent logic programming languages, this paper:
* Introduces the computational models of logic programs, Prolog, and concurrent logic lan-

guages.
a Discusses the different role of nondeterminism in these three computational models.
* Explains the use of the logical variable as a communication channel, and the use of unification

in the specification and implementation of sophisticated communication protocols.
a Demonstrates the powerful programming techniques available in concurrent logic languages,

including: stream processing, the formation and manipulation of dynamic process networks,
incomplete-message protocols for dialogues and network configuration, concurrent construc-
tion of shared data-structures, and short-circuit protocols for distributed termination and
quiescence detection.

* Demonstrates the utility of enhanced meta-interpreters in concurrent logic programming, in-
cluding their application to computation control, to the formation of live and frozen snapshots,
and to computation replay and debugging.

* Exposes the spectrum of concurrent logic programming languages, ranging from the simpler
and weaker ones, to the more complex and more expressive ones.

0 Reports on implementation techniques for sequential and parallel computers developed for
concurrent logic language, as well as on specialized architectures designed for them.
The paper does not aim at providing a historical account of the development of concurrent

logic languages. Rather, it attempts to expose the core concepts of these languages, as well as
the internal structure of the family and the qualities of each of its members, within a consistent
operational framework. As a result, usually an idealized or a simplified version of each language is
described. When applicable, the differences from the actual language, as well as relevant historical
facts, are notedl.

The paper consists of five parts. In the remainder of Part I, Section 2 surveys briefly the
abstract computational model of logic programming and of (pure) Prolog, explaining the role of
the logical variable, unification, and nondeterminism in this model.

Part If conveys the core concepts and techniques of concurrent logic programming. Section 3
introduces the basic concepts of concurrent logic programming, and the use of shared logical
variables for communication and synchronization. Section 4 defines a simple concurrent logic
language. This language is used in Section 5 to illustrate basic concurrent logic programming
examples and techniques. Section 6 discusses fairness conditions for concurrent logic programs.
Following that, Section 7 describes advanced concurrent logic programming techniques. Although
this part uses a particular concurrent logic language, both the basic and advanced techniques
shown are common to most programming languages in the family; exceptions are noted when each
language is introduced.

Part Ill surveys the various members of the family of concurrent logic languages. Section 21
describes our method of comparing languages in the family. We compare languages for their expres-
siveness, simplicity, readability and efficiency. In comparing expressiveness, we explore embeddings
among languages and the programming techniques provided by each language.

Section 9 discusses the semantics of concurrent logic programs. Sections 10 to 13 introduce
and compare fiat concurrent logic languages. A flat language is defined with respect to a given fixed
set of primitive predicates (in the languages discussed these include mainly equality, inequality and
arithmetic tests). In a flat language a process can perform only a simple computation, specified

For additional historical notes see (145,164).

,-!

---- I _il B R H H i la~ ai44



by a conjunction of atoms with primitive predicates, before making a committed nondeterminstic
choice. In non-flat languages such pre-commit computations may involve program-defined predi-
cates, thus can be arbitrarily complex. During a computation of a non-flat language the processes
form an And/Or-tree, whereas in a flat language the processes are a "flat" collection; hence their
name. Non-flat concurrent logic languages are surveyed in Section 18.

Part IV describes implementations developed for concurrent logic languages, and references
their applications. Implementation techniques for both sequential and parallel computers are
reviewed, as well as specialized architectures designed for their efficient execution.

Part V concludes the paper by comparing the concurrent logic programming model with other
approaches to programming and modeling concurrency, including Prolog, dataflow languages, func-
tional languages, message-psing models of concurrency, object-oriented languages, and nonde-
terministic transition systems.

How to read the paper
The reader who wishes only to understand a single concurrent logic language can skim Part I and
read Part II. There are sufficient intuitive explanations and examples so that the formal treatment
of the semantics of logic programs can be skipped without loss of continuity. The reader interested
in implementation techniques can read Section 20 of Part IV without reading Part Ill.

2. Logic Programming, Prolog, and the Power of the Logical Variable

This section introduced the logic programming computational model. It defines pure Prolog and
relates it to the logic programming model. It discusses properties of the logical variable and
unification and their relation to conventional data-manipulation operations.

2.1 Syntax and informal semantics of logic programs

We use the Edinburgh syntax (111 for logical variables, terms, and predicates.

Definitions: Term, atom, clause, logic program, vocabulary.
" A term is a variable (e.g. X) or a function symbol of arity n0, applied to n terms (e.g. c

and f(a,Xg(b,Y))).
* An atom is a formulaof the form p(Tl,..., Tn), where p is a predicate of arity n and T,..., T

are terms.
" A definite clause (clause for short) is a formula of the form:

A,-.B,...,A. a >0.

where A is an atom B1 , . ,Z. is a sequence of atoms. A is called the clause's head, and
Bt,...,B. its body. We denote the empty sequence of atoms by true.

a A logic program is a finite set of definite clauses.
* A goal is a sequence of atoms A 1,A2 ,.,A.. A goal is empty if n=0, atomic if n=l, and

conjnctive if n>1. Each atom in a goal is called a goal atom. A goal atom is often called
also a goal for short.

o The vocablary of a logic program P is the set of predicates and function symbols that occur
in the clauses of P. I

We use the Edinburgh notation for lists (and also for streams, as discussed below). The term
[XIXs1 (read "X cons X*") is a list whose bead is X and tail is Xs, and the constant!] (read
"nil") is used by convention to denote the empty list.

Informal semantics of logic programs
Logic programs can be read both declaratively and operationally. We describe these two views

here informally, and make them precise in Section 2.4 below.



Declaratively, each clause in a logic program is read as a universally quantified implication.
If XI,X 2,..X, are the variables in the clause A - B1 ,B2 ,...,Bk, then the clause is read "for all
X,X2.,X, A is true if BI and B2 and ... and Bk are true". A logic program is read as the
conjunction of the universal implications corresponding to its clauses.

Operationally, logic programs can be viewed as an abstract computational model, like the
Turing Machine, the Lambda Calculus, and the Random Access Machine. A computation in this
model is a goal-driven deduction from the clauses of the program. Like the nondeteruinistic Turing
machine, computations in this model are nondeterministic: from each state of the computation
there may be several possible transitions. Specifically, the clauses of a logic program can be read
as transition rules of a nondeterministic transition system.

The state of a computation consists of a goal (sequence of atoms) G and a substitution
(assignment of values to variables) 0, and is denoted by a pair (G;0). A computation begins
with an initial state consisting of the initial goal to be proven and the empty substitution C,
and progresses nondeterministically from state to state according to the following transition rules,
Reduce and Fail. A computation can be viewed as an attempt to prove the initial goal from
the program. At each state the goal represents a statement whose proof will establish the initial
goal; the substitution represents the values computed so far for variables used in the computation,
including the initial goal variables. A computation ends in a state whose goal is either true or
fail. In the former case the computation is successful, and it corresponds to a successful proof of
the initial goal. In the latter it is failed. The substitution in the terminal state, restricted to the
variables in the initial goal, is called the answer substitution of the computation.

A successful computation has the property that its initial goal, instantiated by the answer
substitution, is a logical consequence of the program.

A key step in the transitions is the unification of a goal atom with the head of a clause.
Intuitively, a unifier of two terms T1 and T 2 is a substitution 0, whose application to T1 and T2
yields the same term, i.e. T1 #= T20. The unification of two terms T1 and T2 returns their most
general ("simplest") unifier 0 if there is one, or fail if there is none. The two cases are denoted
by mgu(T,,T 2)-- and mgu(T,T 2)=fsii, respectively. For example, the most general unifier of
f(X,b) and f(g(Y),Z) is the substitution {Xt-g(Y),Z--.b). Examples of other (less general)
unifiers are {X--.g(a),Z-b), {X--.g(b),Z -b), and {X-.g(g(W)),Z-.b}.

We denote the ability to move from a state S to a state S' using a transition rule t by S-tS'.
Substitutions can be viewed as functions from variables to values (see Section 2.4), hence we use
0 o 0' to denote the substitution whose application has the effect of applying 0 then applying
0'. The Reduce and Fail transition rules require that the variables in the clause be consistently
replaced by new variables that have not been used before in the computation. A clause to which
this replacement has been applied is called renamed apart. The requirement to rename a clause is
inherited from the resolution rule, and ensures that clauses are "re-entrant".

There are two transition rules:

1. Reduce
(Ai ... ,A...A;) ....- ((A,. B..B,...)';o')

If mgu(Ai,A) = 0' for some renamed apart clause A - Bl,...,Bk of P.
2. Fail

(A1,.A..A,;O) -F- Uail;O)
If for some i and for every renamed apart clause A - Bl,...,Bk of P, mga(Ai,A) = fail.

Reduce has the following property: If (G,O) ± -. (G', o0), with mgu 0', then GO' is a
logical consequence of the program and G'. This implies, by induction, that the initial goal, to
which the answer substitution of a successful computation is applied, is a logical consequence of
the program.

Note that there are two types of nondeterministic choices in the Reduce transition: which goal



atom to reduce, and which clause to reduce it with. The first is called And-,aondermniniam, the
second Oraondeterminiam. Fail has only sn And-nondetenninistic choice.

A computation progresses until it reaches a terminal sate, which is a state to which no
transition applies. By the definition of Reduce and Fail, the goal in a terminal state is either true
or fail.

2.2 Examples of logic programs and their computations

We show some simple logic programn and illustrate their operational behavior. The following logic
program defines the predicate sam(Xs,S), which holds if S is the sum of the elements of the list
X8.

sum(Xs,S) %I31
sum' (Xs,O,S).

sum'([ ],S,S). %12
sum%(XXs],P,S) - 33

plus(X,P,P')
SUM'(XaP'S).

The program uses an auxiliary predicate sm'(Xs, P, S), which holds if the sum of the Xs plus P is
S, and the predicate plua(X, Y, Z), which holds if X plus Y is Z. For the purpose of this example
we assume that plus is defined by a large set of facts, including:

plus(O,O,O). 314
pl*sO,l,fl. M1
plus(l,O,1). 316
plus(2,0,2) 31
plda.

To increase readability of the following examples of computations we annotate Reduce tran-
sitior with a label (,,j) identifying the indices of goal atom and program clause that were used for
reduction, Fail transitions with the index of the failing goal atom, and restrict the substitution in
a state to the initial goal variables.

An example of a successful computation of the above program is:

(sum'([1,2],OS); e) "

(sum'([2],,S); e)-t 13

(plus(2l,,P'), sum'([2],P',S); ) e) ue16

(sumd([ ],3,S); .) Rdc(,

An example of a failing computation is:

(sumffl,2],S); C) R-0



(sum'l([1,21,0,S); e) R "1)

(plus(1,O,P), sum'([2],P,S); r) i d ,3)

(plus(l,,P), plus(2,P,P), sum'([ ],P,S); e)

(plus(l,0,2), sum'([ ],4,S); c)

Vjail, C)

The failure in the last computation could have been avoided by deferring the reduction of the
goal atom pra#(2,P,) until more information was available. The Reduce transition of Prolog,
introduced in Section 2.5 below, always chooses the leftmost atom in the goal for reduction. Thus a
Prolog computation on an initial goal sum(Xs,S) whose first argument is a complete lBAt2 of integers
and the second argument is a variable is bound to succeed. Furthermore, such a computation is
deterministic, in the sense that at each step only one clause head unifies with the selected goal
atom. Concurrent logic languages use other mechanisms to delay the reduction of a goal atom,
which do not impose such strict sequentiality.

The following logic program defines the relation in.bolh(X,Ll,L2), which holds if X is a
member of both lists LI and Lt. It uses the auxiliary predicate member(X,Xs), which holds if X
is a member of the list Xs.

% inboth(X,Ll,L2) - X is a member of both lists Li and L2.

in-both(X,Ll,L2) .- %
member(X,L1), mernber(X,L2).

% member(X, Xs) - X is a member of the list Xs.

member(X,[XIXs]). %2
member(XXIIXs]) -%3

member(X,Xs).

Here are two possible computations from the goal in-both(Xjab],Eb,c]). A failing computation, in
which X is chosen to be a, and the computation of the remaining goal member(a,(t.c]) fails:

Redoc.(i,])
(in.both(X,[a,b],[b,c])L )

(member(X,[a,6]), memter(X,[b,c) ; )

(member(a,[6,c]) ; (X-.a)
Reduce(1,3)

(member(a,[c) (X -.a))

(,nember(a( ); {X.-aj) !!!-Tl
(fail; {(X}))

A successful computation from the same goal, in which X is chosen to be b:

(in-boih(X,[,b],[b,c])); )

r)Reduc*13)(member(Xja,b]), member(X,[6,c) ;c)

2 A Hit complete if every instance of it iss list [171]; (a, b], CX, b], and [X, Y] swe complete lists, and 1a, b Xs],

[aIXS], {X IXs] ad Xs m examples ofincomplete lis 7 vl.

-5-



RRdues(i.21

(ncinber(&,[b,c]) ; {X,-.b)) -

(true ;{X-.b)>

For this program, no ordering of goal atoms can make the computation deterministic on an
initial goal atom whose first argument is a variable.

The following logic program uses the difference-list technique for efficient list concatenation, so
we digress to explain it. A difference-list is a term representing a list as the difference between two
(possibly incomplete) lists. By convention, the term H\T is used, where '\' is a binary function
symbol written in infix notation; H is called the head and T the taiI of the difference-list. Examples
of difference-lists representing the list [a,b,c] are [a,bc]\[], ,,c,,e],\[d,e], and [a,b,clXs]\Xs.
Given two difference-lists H\TI and H2\T 2 , if T1 =H 2 then H\T2 is their concatenation. It is easy
to see that the list represented by HI\T2 is the concatenation of the lists represented by H,\Ti
and H2 \T 2. For example, the concatenation of ja,b,c,d,e]\[d,e] and (d,c]\[e] is [a,6,c,de]\[e].
Operationally, the precondition for difference-list concatenation, i.e. T1 =H2 , is usually met by
keeping T1 a variable. For example, [,b,cIXs]\Xs can be concatenated to any difference-list. Its
concatenation with [deIYsJ\Ys gives [sb,ed,el Ys]\ Ys, which can be further concatenated to any
list.

Difference-lists are the preferred representation of lists when concatenation is required. Pro-
grams that use difference-lists do not reqiire explicit list concatenation using a predicate like
append, and are thus more efficient both in time and in space. Operationally, they achieve an
effect similar to that of rplcd in Lisp, but without destructive data-manipulation operations. How-
ever, the precondition for difference-list concatenation, i.e. TI-H2, cannot always be met, for
example when the same list needs to he concatenated to several lists.

The third example is a recursive program for flattening a tree. It operates on trees constructed
recursively from tree(L,R) and lesf(X), where L and R are recursively trees, and X is the value
at a leaf. The predicate flsttea(TXs) holds if Xs is the list of values at the leaves of the tree
T, ordered from left to right. The predicate flatten'( T,Xs\ Ys) holds if the difference-list Xs\ Ys
represents the list thus defined.

fatten(T,Xs) - %I
fitten'(T,Xs\[ ]).

flatten'(leaf(X),jXjXsj\Xs). %2
flatten'(tree(L,R),Xs\Zs) .- %3

flatten'(L,Xs\Ys),
fittn'(R,Ys\Zs).

The program employs several standard difference-list cliche's. The call from flatten to flatten' in
Clause I employs the standard translation between lists and difference-lists: if H\T represents the
list L and T=[ ] then H=L. flatten' returns a singleton difference-list in Clause 2, and implicitly
concatenates the difference-lists representing the leaves of the subtrees by calling the tail of the
first and the head of the second with the same name, Ys, in Clause 3.

The program has only deterministic and successful computations on initial goals flatten( T,Xs).
where T is a complete tree and Xs is a variable. For example:

(flatten(tree(lea(a),tree(leaf(b),leaf(c))),Xs); 
c)

(flatten'(lef(a),Xs\Ys), flatten'(tree(lesf(b),lef(c))), Ys\[ ]); e)

l ran Ha mum• mm m mnnn-6-



(fiatten'(tree(leaf(b),leafc))),Ys\[ 1); {Xs-(ajYs]})

(fiatten'(lea(b),Ys\Y'), flatten'0eaf(c),Y8'\[ ]); {X.-.8[aYs]J)

(fiatten'(leaf(c),Ys'\[ ]); {Xs -[a,bIY))

(true; {X&-[a,b,c]))

The other three possible computations on the same initial goal would also be deterministic and
yield the same answer substitution.

2.3 The operational view of the logical variable and unification

The main difference between logic programming and other computational models is the logical
variable and its manipulation via unification.

The basic data-manipulation operation in logic programs - unification - results in a substi-
tution. Operationally, a substitution can be thought of as a simultaneous assignment of values to
variables, except that here:

s a variable can be assigned a value only once, and
s the value assigned can be itself another variable or a term containing variables.
The single-assignment property, the ability to assign one variable to another, and the ability

to assign a term containing variables to a variable are all fundamental to logic programming, and
are the source of many powerful logic programming techniques.

Since the basic computational step of a logic program requires the unification of a goal atom
with the head of a clause, much of the effort in logic programming has been devoted to under-
standing both the implications of this operation and its efficient implementation. This study has
led to the realization that many of the suhcases of goal/clause unification correspond quite closely
to basic data manipulation operations of conventional languages. For the logic programmer, this
implies that these special cases can be used to achieve the effect of conventional data manipulation.
For the logic programming language implementor this implies that unification can be implemented
efficiently by compiling the special cases, when identifiable, into machine instructions that execute
the more basic data manipulation operations.

The correspondence is illustrated in Figure 1. The left column enumerates basic data-
manipulation operations of conventional languages such as Pascal or Lisp, with sample code frag-
ments. The right column shows the corresponding special cases of unification, with the correspond-
ing examples of goal and clause terms. In this figure T = T' denotes the unification of the goal
atom term T with the clause head term T'.

Note that the cases in the figure are not necessarily mutually exclusive. For example, the
unification of a goal variable with a clause term both constructs the term and assigns it to the goal
variable; the unification of a goal term with an incomplete clause term both tests for equality and
performs da. . access.

2.4 S-mantics of logic programs

We provide here definitions for some of the concepts used intuitively above.

A substitaion is a function from variables to terms which is different from the identity func-
tion on a finite number of variables. A substitution 9 is presented as the finite set of pairs
{Xi- "T,...,X,- T.), where Xj,..X are the variables where 0 is different from the identity
function, and T,=(Xj), 1=! .... a.

For any term T and substitution 0, TO denotes the term obtained by replacing every variable
X in T by O(X). A term T is an instance of a term T' if r=T'O for some substitution 9. For

-7-



Conventional data manipulation The corresponding special case
operation of goal/clause unification

(Single-) Assignment Variable = Non-variableX'-ae

Equality testing Term = Term

Data access Compound term = Incomplete compound term
.g. car and cdr in Lisp, '.' in Pascal)

.-car(fa,b,c]), X* : cdr([a,b,c]) fe,b,c] = [XIXsj

Data construction Variable = Compound term
ne.g. urns in Lisp, new in Pascal)

a% := cofh(aX.) Ys = [aIXs]

Parameter passing by value Goal Term = Variable
(d) = X

Parameter passing by reference Variable = Variable
X=Y

No corresponding operation; Two variables = Same variable
similarto aliaing (Y,Z) = (X,X)

Figure 1: Basic data manipulation operations and the corresponding
special cases in goal/clause unification

e-ample, f(Xa), f(X,X), f(s,s), f(s,b), f(g(Z),h(b)) are all instances of f(X, Y).
A substitution 0 is more general than 9' if there is a substitution a, such that = 9' o a,

where o denotes function composition. An equivalent condition is that TV is an instance of TO for
any term T. For example, {X.-.Y) is more general than {Xi-.a, Y-.a) and (X -f(Z)} is more
general than {X-.f(a)).

A substitution 0 is a usifler of two terms T1 and 72 if TIO=T29. For example, the sub-
stitution {X -.a, Y.-f(a),Z -.I} is a unifier of p(Xb) and p(.(Y),Z), and so is the substitution
{ X,-/( Y),Z -b}.

A substitution 9 is a most general unifter (myu) of T and 72 if it is a unifier of T and T2
and is more general than any other unifier of 

T
, and 722.

In the previous example the second unifier is the most general one. The most general uni-
fier of m(X,[XIXa])and m(X',[§,b,cJ) is {Xi-..,X'.-.a,Xs--[b,c]), and the most general unifier of
a((XlXs], Ys,[XIZ,]) and ([,,b,cJ,[doel,Zs;) is {X,-.a,Xu,-.[b,c], Y,8--.[dc],Zs',-.[ajZ,]}.

In the previous examples there was one most general unifier. The two terms f(X) and f(Y)
have two most general unifiers, (X-.Y) and (Y-.X).

A renaming is a substitution that permutes its domain. An example is {X,-. Y, Y-X}. It
can be shown that all most general unifiers are equivalent up to renaming, i.e. if 0 and 9' are two
most general unifiers of some terms than there is a renaming p such that 0 = 9Y o p. In addition,
it can be shown that if two terms have a most general unifier, then they have an idempotent most
general unifier, i.e. an mgu 9 for which 0 = 0 o .

We define a function mu, which takes two terms and returns their set of idempotent most
general unifiers, if there are any, and fail if there are none. Usually we do not care which mgu is
employed; in such case we write mn(Ti,T2 ) = 9 instead of 9 E mg.(T1,T 2).

For a detailed analysis of unification see [108]. The operational intuitions behind unification
were elaborated in Section 2.3 above.



A transition system for logic programs
Transitions system will be employed throughout this paper. We specify a transition system for
logic programs, as well as general notions that will be used in subsequent transition systems for
concurrent logic programs. The general style of the transition system is that of Pnueli [1421; the
details are adapted from Gerth et al. [65].

Definition: Transition system for a logic program P.
We associate with every logic program P a irasition system which consists of:
a A set of states.

A state is a pair (G;O), where G (the goal) is either a sequence of atons or fail, and P is a
substitution.

0 A set of transitions.
A transition is a function from states to sets of states. For states S, S' and transition t, we
denote that S' E t(S) by S -. S'. The set includes the Reduce and Fail transitions defined in
Section 2.1 above. §I

Definition: Enabled transition, terminal state, success state, failure state.
0 A transition f is enabled on a state S if t(S) is non-empty.
a A state on which no transition is enabled is called a terminal state. A terminal state of the

form (true;O) is called a success state, and (fail;O) a failure state. I

Definition: Computation
A computation of a program P on a goal G is a (finite or infinite) sequence of states

c = S1 , 52,

satisfying:
0 Initiation: S1 = (G; r), where r is the empty substitution.
• Consecution: For each k, Sk+i E t(Sk) for some transition t.
* Termination: c is finite and of length k only if Sk is terminal. U
Definition: Partial computation, partial answer substitution.
Any prefix of a computation is called a partial computation. The partial answer substitution of the
partial computation (Ge),..,(G',9) is 0 restricted to variables of G. l

Soundness and completeness of the transition system
A rule that governs the And-nondeterministic choices, i.e. the choice which goal atom to reduce
next, is called a computation rule [121]. Formally, it is a function from a goal to one of its
constituent atoms. A computation obeys a computation rule if the goal atom selected at each
transition is the one specified by the rule.

Theorem: Independence of the computation rule [19,121].
Let P be a program and R a computation rule. If P has a successful computation on a goal G
with answer substitution 0, then it hs a successful computation on G with answer substitution 0
that obeys R.

The transition system for logic programs realizes, in effect, a proof procedure for logic pro-
grams. Each Reduce transition is actually an application of an inference rule, called SLD-resolution
[80,1211, which is a special'case of Robinson's resolution inference rule [147]. SLD-resolution, and
hence the transition system, have soundness and completeress properties that link their operational
view to the logical view of of logic programs (121].

Notation: If A is an atom or a clause with variables X1 ,X2 _.,X, (V)A denotes (V
X.X2,...,Xn)A. If P is a program with clauses CI,C 2,.,C then (V)P is the conjunction
(V)C A(V)C2 A...^(V)C,

Theorem: Soundness and completeness of SLD-resolution (80,19,1211.

I mm im Ima r i mummmli



Let P be a program and A an atom.
1. (Soundness): If P has a computation on the initial goal A with anower substitution 9, then
(V)A0 is a logical consequence of (V)P.
2. (Completeness): If (V)A' is a logical consequence of (V)P, where A' is an instance of the
atom A, then there is a computation of P on the initial goal A with answer substitution 9,
such that A' is an instance of At. I

Note that, in particular, if (V)A is a logical consequence of (V)P, then there is a computation
of P from A with answer substitution 0 such that AO is equal to A up to renaming.

The soundness theorem relates a successful computation with a proof of a goal. Given a
program P, let S - S2 denote that there is partial computation of P leading from S1 to S2. A
partial computation from a unit goal can be viewed as a proof of a clause, whose head is the initial
goal, instantiated by the partial answer substitution, and its body is the remaining goal, as shown
by the following lemma:

Lemma: If (G;c) - (R;#), then (V)(GO - A) is a logical consequence of MY)P. I

Hence every partial answer substitution can be thought of as a conditional answer to the query,
whose condition is the yet-to-be-proved goal (146,205).

Program equivalence and observables
For simpficity, we asume the existence of some global vocabulary V, in which all programs and
goals are written in.

A fundamental question in programming language semantics is when should two programs be
considered equivalent. For example, correctns of program transformation can be studied only
with respect such a notion of equivalence.

Usually, program equivalence is defined by assigning to each program a mathematical object,
called its meaning, and defining two programs to be equivalent if they have the same meaning.

The meaning of a program is usually some abstraction of its possible computations. What is
abstracted away and what is kept is, to some degree, arbitrary, and depends on what we wish to
identify as the observable result of a computation. Hence the meaning of a program is sometimes
referred to as its observable behavior, or, in case it is a set, as its observables for short.

In the case of logic programs there are several possible notions of equivalence. One considers
mccessful computations. Define the success act of a program P to be the set of ground atoms from
which P has a successful computation. Two programs are success at equivalent if they have the
same success set.

Success set equivalence does not capture differences in the answer substitutions computed by
two programs. Define the answer substitution set of a program P to be the set of pairs (GO)
such that P has a successful computation from the goal G with answer substitution 0 145]. Two
program are atswer-sabshitution eqmivelest iff they have the same answer substitution set.

2.5 Prolog

Prolog is a concrete programming language based on the abstract logic programming model. Prolog
employs a procedural reading of logic programs, in which each goal atom is viewed as a procedure
call, and each clause A - B1 ,B2 ,...B. is viewed as a definition of a procedure, similar to:

procedure A
begin

call B1 ,
call B2 ,

call B,

- 10 -



end

Such a clause is interpreted: 'To execute procedure A, call B1 and call B2 and ... and call Be".
Prolog uses unification to realise various aspects of procedural languages such as parameter passing
by reference or by value, assignment, and data selection and construction, as was shown in Figure
1 above.

Formally, this operational behavior. is achieved by employing a computation rule that selects
the leftmost atom in a goal, thus eliminating And-nondeterminism. Instead of the Reduce transition
of logic programs, Prolog employs the following transition rule:

5 (A1 ,A2 ... A .;6) ,-.p. ((B1 .....Bk,A.. . A)';9o)
If mga(Ai,A) = W for some renamed apart clause A - B1 ,...,B of P.

The resulting transition still incorporates Or-nondeterminism, which is interpreted in Prolog as
implicit search for all solutions. That is, Prolog attempts to explore all computations from the
initial goal, returning the answer substitutions of successful computations.

Most sequential Prolog systems compute the solutions to a goal by searching depth-first the
computation tree induced by different choices of clauses. Typically, one solution is produced at a
time, and additional solutions are searched for only by request. Under this behavior it is possible
for a program to produce several solutions, and then diverge. The point of divergence is determined
by the order of clause selection. Usually a Prolog program is defined as a sequence (rather than
set) of clauses, and the order of clause selection is textual order.

The possibility of divergence in the face of both successful and infinite computations makes
Prolog incomplete as a proof procedure for logic programs (see Section 2.4). However, this in-
completeness is not a major problem in practice. Knowing the Prolog computation rule, Prolog
programmers order bodies of clauses so that infinite computations are avoided on expected goals.
In the example logic programs in Section 2.1 above, Prolog computations terminate on aum(Xs,S)
goals whose first argument is a complete list of number; on is_boA(XLJ,LA) if both L, and L2
are complete lists, and on flaten( TXs) if T is a oomplete tree.

Prolog is a convenient language for a Ia• clds of applications. However, to be practical
it augmented the pure logic programming model with extra-logical extensions [171]. The main
purpose of these extensions is to specify input/output and to realize a shared modifiable store. As
we shall see later, this deficiency is peculiar to Prolog, and is not inherent to the logic programming
model. Indeed, concurrent logic programs can specify both input/output and shared modifiable
store in a pure way, relying solely on their different computation rule and different interpretation
of nondeterminism.

PART II. CORE CONCEPTS AND TECHNIQUES

3. Concurrent Logic Programming

Transformational vs. reactive languages
Prolog is a sequential progtamming language, designed to run efficiently on a Von Neumann ma-
chine by exploiting its ability to perform efficient stack management. Sequential Prolog can be
parallelised, and much research is devoted to effective ways of doing so [122,10,207). Nevertheless,
Prolog, whether executed sequentially or in parallel, should not be termed a concurrent program-
ming language.

To understand why Prolog and other parallelisable sequential languages cannot be termed
concurrent languages, it is useful to distinguish between two types of systems, or programs: trans-
formational and reactive [71]. The distinction is closely related to the distinction between closed

- 11 -



and open systems [79]. A transformational (closed) system receives an input at the beginning
of ita operation and yields an output at its end. On the other hand the purpose of a reactive
(open) system is not necessarily to obtain a final result, but to maintain some interaction with its
environment. Some reactive systems, such as operating systems, database management systems,
etc., ideally never terminate, and in this sense do not yield a final result at all.

All classical sequential languages in general, and Prolog in particular, were designed with
the transformational view in mind. These languages contain some basic interactive input/output
capabilities, but usually these capabilities are not an integrated component of the language and
sometimes, as in Prolog, are completely divorced from its basic model of computation.

It may seem that the distinction between transformational and reactive systems is not directly
related to concurrent systems, and perhaps there could be concurrent transformational systems as
well as concurrent reactive ones. Indeed, there are concurrent systems that exploit parallelism to
achieve high performance in applications that are transformational in nature, such as the solution
of large numerical problems. Following Harel [70], we call concurrent systems that are transforma-
tional as a whole parallel jastems. However, if we investigate the components of any concurrent
system - whether transformational or reactive as a whole - we find these components to be
reactive; they maintain continuous interaction at least with each other and possibly also with the

environment.
Hence, there seems to be a common aspect to all concurrent systems or algorithms, indepen-

dently of what is their target architecture, and whether they exploit concurrency to achieve higher
performance, physical distribution, or better interaction with their environment. The common
aspect is that a language that describes and implements them needs to specify reactive processes
- their creation, interconnection, internal behavior, communication and synchronization.

Don't-lmow and don't-care nondeterminism
Many abstract computational models are nondeterministic, including nondeterministic Turing ma-
chines, nondeterminitic finite mtompla, and logic programs. Reactive systems are also nondeter-
ministic. However, the nature of nondetaminism in the former is very different from the one em-
ployed in the latter. Kowalski [102 adequately termed nondeterminism of the first type don't-know
nondeterminism, and of the second type don't-csre nondeterminism

3
. Don't-care nondeterminism

is often called also ideterninism, and we will use these two notions interchangeably.
The don't-know interpretation of nondeterminism implies that the programmer need not know

which of the choices specified in the program is the correct one; it is the responsibility of the
execution of the program to choose right when severxl transitions are enabled. Formally, this is
achieved by specifying results of only successful computations as observable. Examples of such
observables are the set of strings accepted by a nondeterministic finite automaton, or goal-answer
substitutions pairs of successful computations of a logic program.

Don't-know nondeterminism is a very convenient tool for specifying transformational closed
systems, as witnessed by the Prolog language. However, it seems to be incompatible with reactive
open systems. The essence of don't-know nondeterminism is that failing computations "don't
count", and only successful computations may produce observable results. However, it is not
poesible, in general, to know in advance whether a computation will succeed or fail; hence a don't-
know nondeterministic computation cannot produce partial output before it completes; and hence
it cannot be reactive

4
.

The don't-care interpretation of nondeterminism, on the other hand, requires that results of
failing computations be observable. Hence a don't-care nondeterministic computation may produce
part output (partial answer substitutions, in the case of concurrent logic programs) even if it is

3 Ma and Puna (12 ea the ibit ezifetial moudeterminim and the second universal nondeterinin-

4 A related argaiset with a ailOw cedliene Is givea by Ueda 12021.

- 13 -



not known whether the computation will eventually succeed or fail.
Don't-care nondeterminism seems to be unnecesary, sometimes even a nuisance, in the spec-

ification of transformational systems, but as we shall see it is essential in the specification of
concurrent reactive systems.

Although the nondeterminism of abstract computational models is commonly interpreted as
don't-know nondeterminism, such models are also open to the don't-care interpretation. For ex-
ample, nondeterministic finite automata can be Used to specify either formal languages [88] (don't-
know nondeterminism), or finite-state reactive systems (don't-care nondeterminism) [125]. The
logic programming model is also open to these two interpretations. Prolog takes the don't-know
interpretation, whereas concurrent logic language, being geared for specifying reactive open sys-
terns, take the don't-care interpretation.

Formally, the two interpretations of nondeterminism induce different notions of equivalence on
the set of programs. Assume some notion of equivalence of two (either failing and successful) com-
putations. For example, in logic programs two computations on tne same initial goal are equivalent
if they have the same answer substitution and same mode of termination. Under the don't-know
interpretation, two programs are equivalent if they have equivalent successful computations. Under
the don't-care interpretation, two programs are equivalent if they have equivalent computations,
whether successful or not.

We emphasize that concurrent logic languages are not unique in adopting the don't-care
interpretation of nondeterminism. Rather, almost all models of concurrency and concurrent pro-
gramming languages, including CSP [86,87], CCS [129], UNITY [16], Occam [91], Ada, and otbhre,
take this approach as well. The difference is *hat concurrent logic languages have as an ancestor an
abstract nondeterministic computational model - namely logic programs - whose nondetermin-
ism can be interpreted both as don't-know and as don't-care. The other concurrent models and
languages do not have related models or languages which incorporate don't-know nondeterminism,
hence for them the questions addressed here are usually not raised.

One active research direction in logic programming explores parallel (non reactive) languages
that incorporate both don't-know and don't-care nondeterminsm [209,210,150,153,154,157,72,8,
179]. The goal of these languages it to execute logic programs more efficiently by exploiting
determinism, more sophisticated control, and parallelism. This research direction is outside the
scope of the survey. It is discussed further in Chapter 21.

What are concurrent logic languages?
Concurrent logic languages are logic programming languages that can specify reactive open systems,
and thus can be used to implement concurrent systems and parallel algorithms. A concurrent logic
program is a don't-care nondeterministic logic program augmented with synchronization. A logic
program thus augmented can realize the basic notions of concurrency - processes, communication,
synchronization, and indeterminism.

The process reading of logic programs [42], employed by concurrent logic programs, is different
from the procedural reading employed by Prolog and mentioned in Section 2.5. In the proces
reading of logic programs each goal atom p(T 1 , . . .,T,) is viewed as a process, whose program
state ("program counter") is the predicate p/s and data state ("process registers") is the sequence
of terms 

T
j,.

.
,T,. The goal as a whole is viewed as a network of concurrent processes, whose

proces interconnection pattern is specified by the logical variables shared between goal atoms.
Processes communicate by instantiating shared logical variables and synchronize by waiting for
logical variables to be instantiated. This view is summarized in Figure 2.

The possible behaviors of a process are specified by guarded Horn clauses, which have the
form:

Head - Giard I Body.

The head and guard specify the conditions under which the Reduce transition can use the clause,

as well as the effect of the transition on the resulting state. This is explained further below. The

- is -



I

process model Concurrent logic progrmming odel

Process Goal atom

Process network Goal (collection of atoms)

Instruction for proces action Clause (See Figure 3)

Communication channel;
Shared location Shared logical variable

Communication Instantiation of a shared variable

Synchronization Wait until a shared variable is sufficiently instantiated

Figure 2: The process reading of logic programs

body specifies the state of the process after taking the transition: a process can halt (empty body)

change state (unit body), or become several concurrent processes (a conjunctive body). This is

summarized in Figure 3.

Halt: A - G I te.

Change (data and/or program) state

(i.e., become a different process): A - G B.

Become k con current proceses: A - GI BI,..,B

Figare S: Clauses as instructions for process behavior

Concurrent logic languages employ the don't-care interpretation of nondeterminism. Intu-

itively, this means that once a transition has been taken the computation is committed to it, and

cannot backtrack or explore in parallel other alternatives. Formally, this is realized by making

observable partial results of the computation, as well as the final results of both successful, failing,

and deadicoked computations [651, as explained in Section 9 below.

The head and guard of a guarded clauses specify conditions on using the clause for reduction.

A guarded clause can be used to reduce a goal atom only if the conditions specified by the head and

the guard are satisfied by the atom. Concurrent logic languages differ in what can be specified by

the head and the guard. A flat concurrent logic language incorporates a set of primitive predicates;

in the languages surveyed these include mainly equality, inequality and arithmetic predicates. A

guard in a flat language consists of a (possibly empty) sequence of atoms of these predicates. In a

non-lat language, on the other hand, the guar -nay contain both primitive and defined predicates,

and thus guard computations may be arbitrarily complex. Since guards of a non-flat language are

recursively defined by guarded clauses, a computation of it forms an And/Or-tree of processes.

In a flat language the processes are a "flat" collection; hence their name. Flat languages have

received most of the recent attention of researchers, because it was found that their simplicity

and amenability to efficient implementation come at a relatively low cost in expressiveness and

convenience, when compared to non-flat languages (discussed in Section 18).

Concurrent proces communicate by instantiating shared logical variables, and synchronize

by waiting for variables to be instantiated. Variable instantiation is reali ed in most concurrent

logic language by unification. Three approaches were proposed to the specification of synchro-

nitation in concurrent logic programming: input matching (also called input unification, one-way

unification, or just matching) [20,24,1981, read-only unification [1601, and determinacy conditions

- 14 -



[210]. All share the same general principle: the reduction of a goal atom with a clause may be
suspended until the atom's arguments are further instantiated. Once the atom is sufficiently in-
stantiated, the reduction may become enabled or terminally disabled, depending on the conditions
specified by the head and guard. Since input matching is the simplest and most useful synchro-
nization mechanism, we present it here and defer the discussion of the others till the languages
that employ them ae introduced.

The matching of a goal atom A with a head of a clanse A' - G B succeeds if A is an instance
of A'; in such a case it returns a most general substitution 0 such that A = A'9. It fails if the goal
atom and the head are not unifiable. Otherwise it suspends. More precisely,

9 0 is the most general substitution such that A = A'0

maich(A,A') = fail if mgu(A,A') = fail

suspend otherwise.

Unlike unification, there is only one most general matching substitution. Using matching for
reducing a goal with a clause delays the reduction until the goal is sufficiently instantiated, so
that its unification with the clause head can be completed without instantiating goal variables.
Examples are given in Figure 4.

Goal Clause head Result

p(a) p(X) {Xia)

p(X) p(a) suspend

p(a) p(b) fail

asm([l In],Ott) sum(X Xa],S) {Xi-.1,Xr..lnS.-.Out}
suin(In,Out) sum([XIXs],S) suspend

sam(( ,0l) Im(EXIXs],S) fail

Figure 4: Examples of input matching of goals with clause heads

The dataflow nature of matching is evident: an "instruction" (clause) is enabled as soon as
sufficient "data" (variable instantiations) arrive. Although simple, matching is found in practice
sufficiently powerful for all but the most complex synchronization tasks, as demonstrated by the
programming techniques in Section 7.

Languages in the concurrent logic programming family differ mainly in the capabilities of their
output mechanism. On one end of the spectrum there are languages that allow only matching
prior to clause selection and perform unification past clause selection. On the other end there are
languages which allow both matching and unification as tests prior to such a commitment. Test
unification in its most general form subsumes powerful synchronization mechanisms used in more
conventional models such as multiple simultaneous test-and-set and CSP-like output guards.

These differences and others are further elaborated upon when discussing the various languages
in Part Ill of the paper. Until then we concentrate on the common aspects of the family.

4. FCP(I) - A Simple Concurrent Logic Programming Language

We illustrate the various aspects of concurrent logic programming discussed in the previous section
using a simple concurrent logic language, FCP(I) (read "FCP-commit")

s FCP(I) is closely related

5 The nonsendure we tse to describe concurrent logic langpmesis influenced by the one used by Sarrswat [1501,

- 15 -



to Flat GHC [198] and to Oc (read "Oh see!") [81,83]. We use FCP() as the introductory language
instead of the more fsaniliar language Flat GHC since its definition is simpler, and since it can more
easily express some of the programming techniques related to distributed termination detection,
discussed in Section 7. However all programs shown in Sections 5 and 7 are legal Flat GHC
programs as well, and, except for the termination detection programs, the difference between
the behavior of these programs under the operational semantics of Flat GHC and of FCP(I) is
immaterial. See the discussion of Flat GHC in Section 10.

4.1 Syntax

Definition: Guard test predicates, guarded clause, FCP(I) program.
• We assume a fixed finite set of guard test predicates, including integer(X), X < Y, X = Y,

X $ Y, and others. The predicates assumed in this paper are given in Section 4.2 below.
0 A guarded clause is a formula of the form:

A - Gi_....G I Bi,...,../. m'n > 0,

where A, G1 ,..., G,, Bi,...B,. are atoms, the predicate of each Gi, i = 1,...,m is a guard
test predicate and the variables of Gi occur in A. If the quard is empty (m = 0) then the
commit operator 'I' is omitted. An empty body (n = 0) is denoted by true.

0 An FCP(I) program is a finite sequence of guarded clauses, which contains the unit clause
X = X as the only clause with head predicate '='. I

Note: '=' is a primitive predicates in FCP(j) that cannot be redefined by a program. The reason
for a program being a sequence of clauses, rather than a set, will become apparent when we discuss
the ot erwise predicate in Section 7.

4.2 Operational semantics

Modelling concurrency by interleaving atomic actions
We specify the behavior of concurrent logic programs in general, and FCP() programs in particular,
using a transition system very similar to that of logic programs In this standard approach [142,161,
concurrency is modelled by the nondeterministic interleaving of the atomic actions of the processes
participating in the computation. The approach requires, therefore, a precise specification of what
is an atomic step of execution, as differences in the grain of atomic actions may lead to radically
different computational models. As we shall see, one of the major differences between the various
concurrent languages is indeed the grain of their atomic actions.

Our transition system is not reactive: it does not model input from an outside environment.
This is not a major drawback, since if we wish to investigate a reactive computation of a program
P from a goal G, we can model the environment as another process G', whose behavior is specified
by a program, say E, with predicates disjoint from P, and investigate computations of the program
P U E from the conjunctive goal (G,G') [59]. An alternative is to add an explicit input transition
[119].

Modeling concurrency by interleaving is a common approach, which has the advantage of
being simple and well understood. Its disadvantage is that concurrency is not explicit, and hence
an interleaving model sometimes gives rise to artificial fairness problems, which are not present if
the concurrency is explicit in the model. We defer the discussion of fairness to Section 6.

Guard test predicates and guard checking
The meaning of the guard test predicates is given via a fixed set of ground atoms T over these
predicates. The predicates used in this paper and their meanings are:

X=X for every ground term X.

but is different from it.

- 16-



X#Y for every two ground terms X and Y which are not equal.
integer(X) for every integer X.
X< Y for every ground arithmetic expressions X and Y

such that the value of X is lea than the value of Y.
X< Y for every ground arithmetic expressions X and Y such

that the value of X is less than or equal the value of Y.
X=:= Y for every ground arithmetic expressions X and Y

whose values are the same.
X \=:= Y for every ground arithmetic expressions X and Y

whose values are different.

There are three guard primitives wer(X), uamotu(X), and otherwise, whose semantics cannot be
given simply by a set of ground atoms. It is discussed when the primitives are introduced. The
set of guard test predicates of "rea" concurrent logic languages is not much larger than the list
above. See for example [100,170).

An atom is true in T if every instance of it is in T, and false otherwise. A conjunction of
atoms is true in T if all its members are true in T, and false otherwise. The check of a guard G
succeeds if G is true in 7, it fails if no instance of G is true in , and it suspends otherwise. In
other words, the check suspends if some future instantiation of the guard may result in it being
true. For example:

checking integer(l) succeeds
checking integer(e) fails
checking integer(X) suspends

checking 3 < 5 succeeds
checking 5 < 3 fails
checking < X suspends
checking a < X fails

The clause try function
The only difference between the transition system of logic prograu and of FCP(I) is that the
Reduce and Fail transitions employ matching and guard checking instead of unification. The
operation of matching and guard checking is captured by the clause try function, try.

The mng function unifies the goal atom with the clause head, and returns a substitution or
fel. The try function does the same if the goal atom is an equality and the clause is the equality
:lause X=X. Otherwise it matches the goal atom and clause head, and, if successful, checks the

guard, instantiated by the matching substitution. It may return suspead if the matching or the
guard check suspends. try is defined for equality goals as follows:

trg(T1=T2 ,X=X) = mJ (Ti,T).

And for clauses whose head predicate is different from the equality predicate:

0 if match(A,A) = 0 A checking GO succeeds

fry(A,(A'.-GJB)),= fail if mu(A,A') = 0 A checking GO fails
V mg(A,A') = fad

suspead otherwise

The transition system
The state of a computation of an FCP() program is, as in a logic program, a pair (G;O), where
G is a goal and 9 a substitution. A computation begins from an initial goal (G;c) and progresses
using Reduce and Fail transitions, similar to computations of logic programs. The difference is
that instead of unifying the goal atom with the clause head, the Reduce and Fail transitions use
the clause try function, try, instead of the mqr function:

~ 17 -

,, atalm gimm I iIN ~ H I n



1. Reduce

If 9vv(A,C)~ = Vfor somnerenamed apart clause C = A - G I B1,-.-.,B of P.
2. Fal

(A1 ,.. .,j.,A.q;O) ~ (a
If for some s and for every renamed apart clause C of P, try(A.,C) = fail.

Note that the oeapad result of the try function is not used in the Reduce and Fail tran-
sitions, Ita effect, therefore, is to prevent a goal atom from reducing with a clause and ftrm
failing. Specifially, it A is a goal atom for which frv(A, C)=swspewd for some clause C in P, and
frp(A,C')=sxapeJ or fail for every other clause C' in P, then A can participate neither in a
Reduce transition nor in a Fail transition. Such a goal atom is called suspended. A state consisting
of a goal in which all atonu are suspended is terminal, as no transition applies to it. Such a state
it is called a deadlock stage, and a computation ending in a deadlock state is called a deadlocked
compatetdou

The following leoa relates successful computations of an FCP(J) program to computations
of the corresponding logic program.

Lemmat (Soundness of FCP(I)):
Let c he a non-deadlocked computation of an FCP(I) program P. Then there is a finite subset T'
ofTesuch that c is also a computation of the logic program PUT,.
Proof: Immediate. I

The opposite direction of this lemma is of course not true. In particular, the logic program can
proceed with a Reduce transition on states which the corresponding FCP(I) program deadlocks.

Obeervablee of concurrent oIc programs
As explained in Section 3, teobeervables of a concurrent logic program reflect both successful
and failing computations.

Deftion: Observables of a concurrent logic program
The obsermWee bekavior of a finite computation c = (Gi,e),.,(G.,9,,) of a concurrent logic
program P is the triple (G1 .1,:) where 0 is the answer substitution of the computation (i.e. 8e
restricted to variables of GO), and r=G. if G,%=true or Gn=fail, and r=deadlock otherwise. The
obserwablea of a concurrent logic program P, Uf P I, are the set of observable behaviors of every
computation c of P. 3

4.3 Examples of concurrent logic prograrns

We show several simple examples of concurrent logic programs, written in FCP(I), that correspond
to the logic prograrms shown in Section 2.2, and describe their behavior.

The following concurrent logic program defines the process surn(Xs,S), which unifies S with
the sum. of the elements of the input stream Xs.

su(X*,S) - %
sum'(XsOS).

surn'(( ]'P'S) .- P=S. %2
stur'((XIXs],PS) - %

sumf(xsP'S).

6No6, howy, that this ieemlshwv Is apaspdate e f. a ose ytao. In em Pe omuat
variables no be histanited by the onuilrousem, emi boom a meow relled dalaitio ddlck is required,
which takes into account which varables we aecedhe to the einzient.



There are two differences between this program and the logic program for sum shown in Section
2.2. The first is that the base clause of suim' unifies the partial sum P with the answer S explicitly
in the body. This is necessary since in FCP(I) the goal atom is matched with the clause head, not
unified with it. The second is that the definition of plus has to be modified to -reflect the direction
of the computation. plus behaves as if defined by clauses of the form:

plus(O,O,X) .- X=O.
plus(O,l,X) .- X=1.
plus(2,2,X) .- X=4.

Note also that each clause has an implicit commit operator i"" which is omitted by our syntsctic
conventions since the guard is empty. In contrast to the logic program for sum, the concurrent
logic program has only successful computations on an initial goal sum(Xs,S), where Xs is a list of
integers and S is a variable.

Consider the following partial computation:

(sum([i,2],S); v) -euei

(plus(i,O, P)pls2PP), sum (E ],P',S); e)-

(p=1~,P, plus(2,P, sum(f IP',S); c)

(P=plus(2,PP), s2P,'S; srQ]PS;c)Rd6'

(P=I, lus(2Ped) P'=S pcu)

(plus(2,l,S); c)-

(S=3; 6)
(true; {s.-3))

The logic program for flattening a tree can also be easily turned into a concurrent logic program.
The only syntactic change required is specifying the construction of the output difference-list
explicitly, by an equality goal:

flatten(T,Xs) - %~4
fiatten'(T,Xuj 1).

flatten'(leaf(X),Xs\Ys) %
Xs=[XIYSI.

fIatten'(tree(L,R),Xv\7s) - %e6
fiatten'(L,Xs\Ys),
flatten'(R,Ys\7A).

The flatfes process can operate on a tree that is provided incrementally, by a concurrent process,
as the two clsauses of flaifes' suspend until it is known whether their first argument is leef(-) or



tree(-,-)4. It can also be connected to the earn pboces, which incrementally gums the list produced

by jltte*as shown by the following computation:

(§sattea(tee(17)jleAI9)),Xs), sai(X,S); c)

(flatteW'(tree~leafq17),lQ)),Xs\[ ]), -u(XsS); r) -OKA

(fiatten(leaf(17),Xs\Ys), flatten(1eaf(19),Ys\[ 1),Xs\f 1), sum(Xs,); e) -

(fltte1(la~l),Y\[ ),P'=17, suz(Ya,P',S); {Xa-.Il7IYefl)

(sumn(119],17,S); {X.-417,19]})

(P"=36, P"=S; {Xs.-.(7,19l))

(true; {Xw-r17,19],S-36)
Summing the elements of a tree can be done more efficiently by combining the two procedures,
flaten and sum, into a single procedure tree-sum:

% treejumr(T, S)
S ia the sum of values of the leaves of the tree T.

tree-sum(T,S)
tree-sum'(T,O,S).

trsum (tree(L,R),P,S)
tree-ain(L,P,F'),
tre..umn'(RP',S).

trae.nuWn(leaf(X),PS)-
plus(X,P,S).

This program, spawns a network of linearly connected plus proocmss, which sum the
lear elieta sequentially from left to right. A possible computation from the ini-
tial goal te.smrstv(esI),sf1),efS)S)may content the intermediate goal

pu(,,Pplus(17,P',P"'), pl.(M3P",S), which is then reduced from left to right. (Note
howevet that the leftmost ph*s process may be reduced even if the spawning of the plus processes
to its right hoo not been completed yet.) The program demnonatrates that in a recursively con-
structed process tree, lea processs (plus processs in our case) can communicate directly even if
they aft not directly related.

Ihuing the "ath logic program into a concurrent logic program ia more difficult, since

- to



it employs don't-know nondeterminism in an essential way: it gueneas a member of one list,
and verifies that it is also a member of the second. The following logic program does not
need to guem which clause to use, if the two lists are given in the initial goal, as in the goal
in.both(Xs,[I,I,S,4],[3,4,5,6]). In such a case all computations of the following program are deter-
ministic: each goal atom created during the computation of the program unifies with exactly one
clause head. The progran employs the ddeFrence-list technique.

% is_both(X,L 1 ,L2 ) -
The list Xs contains the members of both lists L, and L2 .

in-both(Xs,[XLj],L2) -

msmber(X,L2,X-\Xa'),
in_both(Xs',LI,L2).

in-both([], 1_)

% member(XL,Xs\Xs') -
X is a member of L and Xs = [XIXs or X is not a member of L and Xs = Xs'.

member(X,[XIL],[XIXs]\Xs).
memer(X,[YjL],X\XYs -

X$Y, member(X,L,Xs\Xs').
member(X,[ ],Xs\Xs).

In contrast to the previous program, this program returns the (possibly empty) list of elements
common to the two input lists, rather than nondeterministically selecting a common single element
if one exists, or failing if there is none. Here isboth(Xs,L,L 2) holds if Xs is the list of all elements
common to L, and L2 . The multiplicity of elements in Xs is the same s in L 2. This program
employs a difference-list to construct the output. member(XLI,Xs\Xs) holds if both X is in
L, and X is the difference between Xs and Xs' (i.e. Xs = [XIXsI) or if X is not in L, and the
difference between Xs and Xs' is empty (i.e. Xs = Xs').

Since the program is deterministic on the desired set of goals, it can be turned into a concurrent
logic program quite easily. The following is such an FCP() program:

in.both(Xs,[XILL],L2) -
member(X,L2,Xs\Xs'),
inboth(Xs',LI ,L2).

in-both(Xs,[ ],-) - Xs=[ ].

member(X,[XIL],Xs\Xs') - Xs=XlXS'].
member(X,(YjLI,Xs\Xs') -

X#Y I member(X,L,Xs\Xs').
member(X,[ ],Xs\Xs') - Xs=Xs'.

Intuitively, the program operates as follows. On a call inbotA(Xs,LiL) it spawns parallel mem-
ber(X,LI,Xs\Xs') processes, one for each element of 1i, using the recursive clause of ma.boih.
Each of these processes searches down the list Lf for an element equal to its X. If it finds one,
it returns X in the difference-list Xs\Xs', by unifying Xs with [XIXjI. Otherwise it returns the
empty difference-list by unifying Xs with Xs'. The difference-lists are implicitly concatenated into
the output list by the recursive clause of in.both. The output list is closed by the base clause of
i.botg.

The program operates correctly even if the two input lists Ll and LI are given incrementally,
by some concurrent process. This is achieved since the program inspects them using matching
(specified by clause heads), which suspends if the input list is still unavailable. The output, in
contrast, is constructed using unification, specified explicitly in the body of the clauses.

The guard of the second clause of member ensures that the clause is selected only after it is

- 91 -

,4



determined that X is different from Y. In the other clauses the guard is empty and the commit
operator is implicit.

4.4 The power of the logical variable in concurrent programming

The standard uses of the logical variable and unification were mentioned in Section 2.3. Concurrent
logic programming extends its use also to process communication. By following specific conventions
and protocols, a wide range of concurrent programming techniques can be a realized using shared
logical variables, unification, and matching.

In this section we provide a glossary of the major uses of the logical variable in concurrent
programming. These will be demonstrated by concrete examples throughout the paper. When
applicable, references to the relevant sections are provided.

It is useful to view variables shared between processes and their instantiation in two corn-
plementary ways: as communication channels, which transmit message streams, and as shared
locations, which are instantiated, possibly incrementally and cooperatively, to compound data
structures. Both are explained below.

Shared logical variables as communication channels, and communication stream protocols
Given the single-assignment nature of logical variables, it may seem that a communication channel
implemented by a shared logical variable might carry at most one message. In some sense this
is true. A better way to understand the situation, however, is to view a shared logical variable
as a Genie, who will grant you a single wish

7
. A good strategy to follow when encountering such

a Genie is, of course, to request to have two wishes. This is realized by instantiating the logical
variable to a list (cons) cell, whose head and tail are logical variables. The head may be used to
send the current manage. Ito tail is a new variable, shared by the processes sharing the original
variable, and can be used for subsequent communications ad inJinitsm, as in

X8 [m IlsII, X81 = [m2IXS2], X82 = [m3 IXa*], ...

In this way multiple 'wishee are achieved by the multiplicity of elements in a single list.
Hence, when serving as a communication channel, a shared logical variable is typically instan-

tiated to a stream of mesages. Several protocols can be followed in constructing such a message
stream. They differ in the number of processes sharing the variable, and whether they share the
writing and/or reading of the stream. Useful stream communication protocols include:

" point-to-point communication (single-writer single-reader), e.g. sum-tree in Section 4.3
above.

" broadcast communication, (single-writer multiple-reader) (Section 7.7)
" duplex communication (two writers/readers, who use the stream both for bidirectional

communication and for tight cynchronization) (Section 14)
" many-to-one communication (multiple-writer, single-reader), (Section 15) and
" blackboard communication (multiple writer/reader, cooperatively reading and writing the

stream) (Section 15).
These stream protocols require progressively stronger synchronization mechanisms. Only the

first two can be implemented by all concurrent logic languages. The language properties required
to realise the duplex protocol and multiple-producer protocols are described when the protocols
are introduced.

A single stream is not always the preferred data structure for communication. For high-volume
many-to-one communication, nondeterministic merging of multiple single-writer streams is usually
preferred over having multiple writers cooperatively produce a single stream, since it eliminates
contention on the stream's tail. Stream merging is discussed in Sections 6 and 7. In addition, when
the set of writer and the set of readers in a multiple-writer multiple-reader stream are disjoint, it is

7 This ma." i. d tBUi Silwvae.

- 2S -



often the cae that the total ordering of a stream imposes on its elements unnecessarily serialized
sending and receiving of messages. In such a case, a more general data-structure, called Chancl,
may be appropriate (194]. A Channel is a partially ordered set of mesmages, which can be produced
in parallel without contention, and can be read with the same degree of parallelism with which it
was produced.

Incomplete-mesage protocols
Messages sent on a stream need not be ground (i.e. variable-free) terms. A message containing
variables is called an incomplete message. The ability to send incomplete messages is perhaps the
single most important reason for the added flexibility and expressiveness of concurrent logic pro-
gramming languages over other concurrent languages. D.H.D. Warren once characterised Prolog
as "pointers made easy". Adapted to concurrent logic programming, the slogan may read "com-
munication channels made easy". Indeed, incomplete mesages may be viewed as a structured and
high-level way of dynamically allocating and distributing communication channels.
There are several useful protocols employing incomplete message:
" Back-communication protocol (the "remote procedure call" effect) (Section 7.3).

A sender sends a message with a newly allocated reply variable R, and waits for R to be
instantiated. The receiver responds to the message by instantiating R to the reply. This
protocol achieves essentially the effect of a remote-procedure-call mechanism, without adding
any special constructs to the language.
It is easy to program servers using many-to-one message streams and the back-communication
protocol. There is no need for the server to know the identity of the client who sent the request,
nor for specially programmed mechanisms to route replies back to the clients.
If a server can serve multiple requests in parallel, then a many-to-many channel may be
preferred to a stream.

" Dialogue (Section 7.4).
The hack-communication protocol constitutes only one round in a possibly longer dialogue.
The reply to which the variable R is instantiated may contain another reply variable R',
with which the original sender can continue the dialogue, repeating the back-communication
protocol as long as desired by both parties.

" Network formnation protocol (Section 7.2).
Assume that two processes p and c sharing a variable X want each to become n processes
p,...,pn and cl,...,c,, and establish a communication stream Xi between pi and ci, i =
1,...,n. This can be achieved as follows. p sends to c the message [X1 ,...,X], which contains
n variables, and then creates n processes, providing the i

th 
process with Xi. Upon receipt of

the message c creates n processes and similarly provides its ith process with Xi.
In a variant of this protocol, the stream [X,...,Xn] is constructed incrementally by p. The
process c need not know the stream's length in advance, and can create the next process c
when Xi is available. This technique is heavily used in the formation of recursive process
networks, as described in Section 7.2.

" Network reconfig ration protocol.
Assume a process p that shares a variable Q with a process q and a variable R with a process r.
If p wants to establish direct communication between q and r it sends to q on the stream Q an
incomplete message coitaining R. Once q receives that message, it can use R to communicate
with r directly.
This technique can be employed to form an arbitrary communication graph in a network,
independently of how the network was created to begin with. In particular, in a recursively
constructed network the communication graph need not follow the path of the recursion, and
two 'leaf" processes may communicate directly no matter how high up their common ancestor

is (Section 4.3).
a Bounded-buffer communication protocol (Section 7.3).

S23



The basic stream communication protocol is asynchronous. However, using incomplete rmes-
sages one can implement synchronised communication. For example, a k-bounded-buffer pro-
tocol, for k > 1, can be implemented using a single-writer single-reader stream of incomplete
nanages as follows [177]: Each meage contains an acknowledgement variable. The reader
acknowledges the meage by instantiating the variable to some constant upon receipt. The
writer does not send the +kAth message before receiving an acknowledgement for the 3 th
memage.

Shared logical variables as shared locations
A shared logical variable can also be viewed as a shared location that can be assigned a data
structure, i.e. a logical term. The term may be compound, and its construction may proceed
incrementally and in cooperation between the proceses initially sharing the variable.

In the special case that the term is a stream we obtain the stream communication protocols
described above. However, the fact that stream communication results in a data structure, and is
not just a sequence of events that occur in time, has several ramifications. Two of them are:
a Communication historp can be kept and later examined.

A shared variable used as a communication channel is incrementally instantiated to a stream
data structure, which contains the memages and replies sent on it. Typically, a stream writer
or reader iterates with the tail of the stream once its head was written or read, and eventually
the head becomes inaccessible. Memory occupied by inaccessible data-structures is eventually

reclaimed by garbage-collection. Alternatively the initial stream variable can be kept, either
by the process communicating via the stream itself, or by a concurrent observer who shares
the initial stream variable. The data structure kept by the observer can be used later for
various purposes, such as debugging, logging, and recovery.
The stream data structure reflects only the order in which messages were sent and their
content, but does not record the order in which message subterms, including replies, were
constructed. In addition, if a process communicates via several independent streams, their
content cannot be used to determine the temporal relations between messages on different
streams.
For some applications this abstract form of communication history, represented by a stream
term, is sufficient. If a more precise history of the computation is required, e.g., to diagnose
transient timing bugs, a different technique for recording information about a computation,
which is sufficient for its accurate reconstruction, can be used [118]. This is further discussed
in Section 14.

6 A message stream can be inspected and transformed.
A proces may examine or transform its incoming stream before processing its messages, if it
so desires. A simple illustration of this is the ability of a process to "send to self", a useful
object-oriented programming paradigm. To do so a process prepends a message to its input
stream and proceeds with the resulting stream.

The constructed term need not be a stream, however. For example, in the distributed database
system of Reches et at. [144], a transaction is a tree-structured term that is constructed cooper-
atively by the user program and the database system. The user program constructs the term,
possibly concurrently, out of terms corresponding to sub-transactions, leaving in it variables for
the database system replies. The database system consumes the term, executing, possibly concur-
rently, the subtransactios, and instantiates the reply variables to the answers.

Another example is the type-checker of Yardeni (211]. In it, multiple processes cooperate in
constructing a term representing a finite automaton that defines the type of the program being
checked. The programming technique used is similar to the multiple-writer stream described in
Section 15.

- 24 -



5. Basic Programming Examples and Techniques

This section examines the operational behavior of FCP(I) programs via examples, and illustrates
basic concurrent logic progranming techniques.

Writers and readers
A writer process p(X), that unifies X with a and halts, can be defined using the single clause
program:

P(X) - X = a. %1

A reader c(X) that waits till X is a and then halts is defined by:

c(a). %2
A computation starting from a writer and a reader connected by the variable X, progresses as
follows:

(A(X), C(X); C) feduce(1,1)

lh~du..(I,=)(X= a, c(X); c) --------------

(c(s); (X,-.))
(truSe; {X.-a ))

The final state is a success state, and this is the only possible computation from that initial state.
Many reader may read the same value, giving the effect of a broadcast. The computation

starting from the initial state:

(pkX),c(X),c(X). c(x) e)
i-duces p(X), unifies X = a, and then reduces all the c(s) goal atoms one by one in some arbitrary
order.

Nondeterminism in writers and readers
A process p2 (X) that nondeterministically chooses to unify X with a or with b is defined by:

p2(X) - X=a. %1
P2(X) -- X=b. %2

There are two possible computations if we use the nondeterministic writer p2 instead of p in
the example above. A successful one, essentially identical to the one above, and a failing one:

Reduce(1,2)
(P2 (X), c(X); 6)

(X=b, c(X); e) duce(l,=)

Fu I( 1)

(c(b); {X-.bl)
Veil;{X-b))

If instead of c(X) we use a nondeterministic reader c2 (X), which accepts either a or b as values
for X:

C2(a).
c,(2).

then instead of failing this latter computation would proceed and terminate successfully.
The process c2 (X) has two alternatives. Which one is taken is completely determined by

its environment. p2 (X) has also two alternatives. However, the environment has no effect on its
choice. An intermediate example is the process cp(X, YZ), which behaves as follows. If X = a it

- 25 -



Z with a. If Y = Ilit unifies Z with 6. If both X = asand Y = it nondeterininistically chooses
one of the two.

cp(s,Y,Z) - Z=G.

Starting from the initial state:

(V2 (X),1 2( Y),CP(X, YZ);C)

there are several possible computations, depending on the choice of the goal atom and the clause.
To focus on clause choices, assume that goa atoms are reduced from left to right. Then there are
five possible computations. Three of the four choices of the two p2 processes uniquely determine
the behavior of cp(X, YZ). For example, if p2(X) unifies Y = a and p2(Y) unifies X = a then
cp must unify Z ita. If X = b and Y = a, then cp fails and the computation fails. However, if
p2 (X) chooses X a and p2(Y) chooses Y = b, then cp has a choice: it can either reduce with
the first clause, and unify Z = a, or with the second, and unify Z = b. Both computations are
possible.

Streams: roucers, consumers, transducers, distributors, and mergers
As mentioyned in Section 3, a stream is a list constructed incrementally.

Stream producers
Assume a proces X := E, which evaluates the Arithmetic expression E when it becomes ground,
and unifies X which its value (it can be defined in FCP(j) using more primitive arithmetic processes,
such as plus shown in Section 4.3). A process iegers(Ftom, To, X&), which, given integers From
and To, produces the stream [From, From +1,. .., To1, can be defined by:

* iategers(From, To, No) - Na is the list of integers from From to TO
8

inteprs(Froen,To,Ns) - From > To Ns=[ ].
integers(From,To,Ns) - From < To INs=[From INa'],

From' -= From +1,
iuteger9(From',To,Na').

A more interesting stream producer is jlb(NNs), which produces the elements of the Fibbonacci
series less than or equal to N.

%lib(N,Ne) - Na is the Fibbonacci series less than or equal to N.

fib(N No)

flb'(N,N1,N 2 ,Ns) - N < N1 I Ns=(]
fib'(N,N1,N 2 ,Ns) - N > N1 I Ns=[Ni INs'],

N3 := I+2
fib'(N,N2 ,N3 ,Ns').

A process which sums the elements of its input stream, was defined in Section 4.3.
The following procs reads two vectors of equal length, represented by streams of numbers,

and computes their inner product. It will form the building block of a matrix-multiplication
program, -shown in Section 7.2.

%. ip(Xe, YaS) - S is the inner product of Xe and Ys.

The eoms~a soesetd with conconeat logic ps m exp~la esuy their logicil, radhas, the reactiveexpects
we usually exp15135d In the test.



ip(Xs,Ys,S) -
ipl(XYs,O,S).

ipl([ ]JPS) .- P=S.
ipl([XIXsI4yYI~s],,) -

P =P + XsY,
ipl(XBaYs,P',S).

Stream transducer$
The following procs multiplies its input stream by some integer, to produce sn output stream:
% inullipiy(Ia,N, Out)-

multiply([Xlln],N,Out) - Out =(YIOutl,

The ollwin trnsdcerfilersallmulipl ofan integer from a stream. It is a building block of
the ~ ~ ~ ~ ~ ~ elmn ofale thev stea Istotes byow N.Scto72

Outis he trem rsutin frm dletng llmultiples of P from the stream In.

filer(Xj~jPOut - X od IOut=[XIOutl,

filter(In,P.Out).

t ~filter([ 1,P,Out) - Out=[]

Astream distributor
The following stream distributor has one input stream and two output streams. If an input mesage
senad(1,X) is received X is sent on the first output stream, and if send(5,X) is received X it sent
on the second output stream. A variant of this program is used in the mitg message sending system
shown in Section 7.2.

% distibste(In,Oati1, Os 2)-
In is a stream of elements of the form send(1,-.) and send(f,-.). Ostj is the stream of X's such
that aeni(1,X) is in fit, and Out2 is the stream of X's such that sead(SX) is in In.

distribute(Esend(l,X)Iln],Outl,Out2) - Outl=[XIOutll,
distribute(ln,Outl',Out2).

distribute([send(2,X)IIn],Outl,Out2) - 0ut2[XjOut2j,
distribute(ln,Outl,Out2').

distribute([ ],Outl,Out2) - Outlf 4], Out2=(]

A deterministic stream merger
Tefollowing proces receives two ordered lists of integers, and produces an ordered merge of

them. A variant of it is used, in the solution to Hamming's problem and in mergesort in Section 7.

% omerge(1n1 ,1n2, Out)
If Ist and N*2 awe ordered strearms of numbers, then Out is an ordered merge of nju and A32.

omerge((XjInI],(Yjln2j,Out) - X<Y IOut=[XIOutq,
omerge(ln~l In2j,Out').

omergeffXjInI],[YjIn2],Out) - X>Y I Out=[YIOutJ,
omerge((XjInl],1n2,Out').-



omerge([ ],In2,Out) - n2=Out.
omerge(nl,[ ],Out) -- lnl=Out.

6. Fairness

A nondeterinistic stream merger
The following is a nondeterminiatic stream merger. Its output stream is some order-preserving
interleaving of its two input streams.

% merge(Ini,142,Oat) - The stream Out is an interleaving of the streams In and In2.

merge(fXjlnl],1n2,Out) -- Out=[XjOut],
merge(lnl,n2,Out').

merge(Inl,[XjIn2],Out) -- Out=XjOutj,
merge(Inl,ln2,Out!).

merge(Q ],n2,Out) - In2=Out.
merge(InIj ],Out) - Inl=Out.

The nondeterministic merge process thus defined guarantees nothing about the rate in which it
serves its two input streams. In particular, if one of the streams is unbounded then it is possible,
according to the semantics ot FCP(J) defined in Section 4 above, that only elements of that stream
will be copied to the output stream. Furthermore, if the merger (or any other process) is executed
in parallel with a nonterminating process, e.g. p - p, then there is no guarantee that it will reduce
at all.

A fairness requirement states conditions under which an event that may happen must eventu-
ally happen. The purpose of incorporating fairness requirements into the definition of a language
is to provide the programmer with confidence that even in the presence of nondeterminism and
unbounded computations certain program steps will eventually occur.

In concurrent logic programming it is useful to distinguish two types of fairness: And-fairness
and Or-fairness. An And-fairne" requirement states conditions under which a certain process
would eventually be reduced; thus it constrains And-nondeterninism. An Or-fairness requirement
states conditions under which a certain clause would eventually (not) be taken, thus constraining
Or-noudeterminism.

An And-fairness requirement should guarantee, for example, that even in the presence of di-
verging processes, deterministic stream consumers will eventually read all their stream elements;
similarly for producers. However, And-fairness cannot provide such a guarantee for nondetermin-
istic consumers such as stream mergers or interrupt handlers. This is the purpose of Or-fairness
requirements. Or-fairness requirements should allow, for example, specifying a fair stream merger
and an interrupt handler in the language. Together, And-fairness and Or-fairness requirements
should allow one to compose a controlling process and an interruptible process (e.g. in the style
of the computation controller and the interrupt-handling mets-interpreter shown in Section 7)
and guarantee that the controller process can interrupt the controlled process even if the latter is
nonterminating. The following fairness requirements achieve this. Their definition can be skipped
without los of continuity.

For simplicity we restrict the discussion to computations whose initial state has a unit goal. Let
P be a program and c = (G;c), ... be a computation from the unit goal G. Let b be the maximal
number of atoms in the body of any clause in P. We label goal atoms in the computation with
strings in {..}. The initial goal is labeled with the empty string. Let A be a process labelled
a, which is reduced using the clause A' ,- B,...,Bk, Then each of the new atoms B in the new
goal is labeled with the string &^i.

- 28 -



I'We extend the Reduce transition label to contain p, the label of the reduced process, and 0,
the try substitution restricted to variables of the procem P, ms in Reduce(p,f). We extend the Fail
transition label to contain the label of the failing proess p, as in Fail(p).

Definition: And-faimes.
A computation c is And-fair if there is no Reduce(p,f) trsnsition or Fail(p) transition which is
almost always enabled on the states of c.

9 
m

Noicu:
1) Since the state of a process changes in a monotonic way (it can only be instantiated further),

if Reduce(p,O) or Fail(p) are infinitely often enabled, they are also alzost always enabled,
hence there is no distinction in this case between weak fairness (also called justice) and strong
fairness [50,142].

2) We have defined the fairness condition by ruling out certain computations allowed by the
transition system. An alternative approach is to define a transition system which generates
only fair computations to begin with. The approach of Costa and Stirling [32] to weak fairness
in CCS can be applied here as well.

In programs implementing stream merging and interrupt handling, complete freedom in clause
selection would result in undesirable behaviors: a merger can ignore one of its input streams
indefinitely; a process may ignore a message on its interrupt stream for arbitrarily long. Several

approaches to constraining clause selection in such programs were suggested; none of them seems

completely satisfactory.
A global fairness requirement, which states that all clauses in a program satisfying certain con-

ditions should be used eventually seems unreasonable, because of the dynamic nature of processes,
and the fact that multiple processes may share the same set of clauses. Therefore approaches which
specify conditions on the selection of a clause by a process were pursued.

One approach is to impose preference on clauses, and require the Reduce transition to select
the most preferred clause among the applicable ones [160]. Assuming such a preference, specified
by textual order, the following program implements a fair merger. It achieves fairness by switching
the two input streams when an element from the preferred stream is read:

merge([XInl],1n2,Out) - Out=[XiOut],

merge(In2,lnl,Out').
merge(lnl,[XIln2],Out) - Out=[XIOutl,

merge(InIn2,Out').
merge(( ],In,Out) - In=Out.
merge(In,[ ],Out) - In=Out.

A proess p(...,Is) that responds to interrupts on the stream Is can be d by placing the
clause testing for an interrupt first:

p(... ,[IIs]) - interrupt.handler(.. .,[Il9]).
... ofher classes for p...

Although simple to define operationally, strict preferences are problematic. From a methodological
point of view, they destroy\the clause-wise modularity of programs. This may suggest awkward
programming techniques (A Is red cuts in Prolog [171]), and make the life of program analyzers,
transformers and compilers more difficult. From an implementation point of view, preferences
require strict synchronisation, since a second clause can be selected only if nothing happens that
may enable the first one. In fact, a correct distributed implementation of strict preferences may
require locking all the variables involved in the reduction of the first clause while attempting to

9 i.e. enabled an all but a fatite number ol the states of c.



reduce with the second clause. A weaker notion of preference seems more desirable, but it is not
clear how it should be defined.

Another approach is to use explicit conditions on clauses. Assume a guard primitive var(X),
which succeeds if X is a variable, and fails otherwise. Using war, a fair merger can be written as
follows, with bess cases as above:

merge([XjInI],In2,Out) - Out_-[XlOutt],

merge(In2,Inl,Out!).
mege(nl,[XjIn2],Out) - var(InI) I Out=[XjOutl,

merge(Inl,1n2,Out').

A proem p(...,ls) which is sensitive to interrupts on Is can be defined by adding to all its clauses
which do not serve the interrupt the test wer(Ij). The use of war to achieve Or-fairness has been
first proposed by Kusaik [104]. The war test approach is better than preferences since it does not
destroy clause-wise modularity, and has no effect when not used. Its drawback is that war seems
too strong a tool for this purpose. From a methodological point of view, it offers opportunities for
abuse. From an implementation point of view, ear, like preferences, implies tight synchronization.
To implement correctly an interrupt-sensitive proes thus defined, the Is variable has to be locked
whenever a reduction of the processes using a clause with a ear(Is) test is attempted. It there are
hundreds or thousands of such processes, all sharing the same interrupt stream Is, this would be
prohibitively expensive.

For that reason a weaker primitive, called nkntown(X), was defined [191]. Intuitively, an-
knoun is similar to ear, except that its definition allows anknoum(X) to 'ignore' for some finite,
but bounded, amount of time the fact that X was instantiated. For example, if X is instantiated to
a in processor P1 , unkaouo(X) can succeed after that time in another processor P2 . However, the
fact that X has a value should eventually reach P2 , preventing anklown(X) tests from succeeding
thereafter.

In our interleaving based transition system, this intuitive definition is formalized as follows.
ushiws(X) behaves like var(X), except that it may succeed only a finite number of times after
X becomes a non-variable. In other words, if in a computation a variable X is instantiated to a
non-variable term, then the computation does not have infinitely many transitions in which the
check of the guard predicate uanknoum(X) succeeds. Using unknown instead of ear in the above
programs would achieve the desired effect: the merger would be fair, and the process p would
eventually respond to an interrupt. This is achieved without heavy synchronization costs, and
without giving the programmer too powerful a tool, since unknown (X) succeeding does not imply
that X is presently not instantiated. In a language without atomic variables (see tie discussion of
Flat GHC in Section 10), the difference between ear and unknown is immaterial.

Note that unlike the other guard test predicates introduced, the success of the ear and unknown
primitives is defined operationally, without reference to the notion of truth.

7. Advanced Concurrent Logic Programming Techniques

The power of concurrent logic programming languages comes from the wide range of concurrent
programming techniques they support. To convey this, we have assembled a range of FCP()
programs which demonstrate these techniques.

7.1 Static process networks

Processes operating on streams can be composed into networks. This section shows two examples
of a static proces network.

- so -



A static network of stream transducers: a solution to Humming's problem
The following program [42] solves the mocle Harmming's problem [39]: generate an ordered
stream of all numbers of the form 2i3,Sk without repetition.

%s hammixg(Xa) - Xs is the ordered stream of all numbers of the form 2i3,5k.

hamming(Xa)
multiply([lIjs,2,X2),
-uLtiply([lIjs]3,X3),
multiplyflhljM,5,X5),
omerge'(X2,X3,X23),
omerge'(X5,X23,Xs).

where omerge' is a variant of omerge shown in Section 5, which removes duplicates from its input
stream.

% Omerge'(In,N~, Out)-
If Inj and '32 are ordered streams of numbers, then Out is an ordered merge of In, and 1*2
with duplicates removed.

omrge'l[Xllnl],[Xlln2],Out) - Out = [XIOutl,
omerge'(InI,In2,Out').

omrge'([XjII],[YIn2],Out) - X<Y I Out=[XIOutl,
omerge'(lnl ,[YjIn2],Out').

omerge'([Xllnl],[Ylln2],Out) - X>Y I Out=[YIOutj,
omerge'((Xjln l],1n2,Out').

omnerge%( ],1n2,Out) - 1n2=Out.
omierge'(InI,j ],Out) - lnI=Out.

multiply was defined in Section 5.

A static network: the MSG !mesag sending system
The may process network is a sipe message sending system for two computer terminals, Input
from each of the keyboards K1 and K2 is a stream of messages, including mssges of the form
message(X). Every message M on K, is echoed on S1 as 1:M. In addition, a message of the form
message(X) on K, is also echoed on S2 as 1:mesae(X). Similarly for messages on K2 (93]. The
program uses the merge process and a variant of the distrnbute process defined in Section 5.

% mug(KI,S,KZS2)
Si is an interleaving of 1:X such that X in in K1 and R:mesge(X) such that uueasge(X) is
in K2 . Similarly S2 is an interleaving of 2:X such that X is in K2 and 1 :meuae(X) such that
message(X) is in K1.

niag(K1,Si,K2,S2)-
distribute(l,Kl,Kll,K12),
distribute(2,K2,K22,K21),
merge(KlI,K2I,SI),
nmge(K22,lKl2,S2).

distribute(Id,(message(X)Iln],Outl,Out2)
OutI=Id:message(X)IOutll,
Out2=(Id:memage(X)fOut2j,
distribute(In,Outl',Out2').

distribute(ld,(Xjln],Outl ,Out2)
X~mesage(-)I
Outl=[ld:XIOutlq,

-31-



distrbuteQn,Outl',Out2).
distribute(( ],Outl,Out2) - Outl=[ 1, Out2-[ ].

7.2 Dynamic process networks

We show examples of dynamic process networks of various topologies. They are dynamic since
their size depends on their input. Dynamic process networks which solve algorithmic problems
typically exhibit two phases of operation. A spawning phase, in which the process network is
spawned, and a "systolic" phase [103], in which the proceses in the network perform both local
computations and communication. It is interesting to note that many of the concurrent logic
programs shown below, which implement "systolie-like parallel algorithms, are almost identical,
as logic programs, to Prolog programs which implement the corresponding sequential algorithms.
More on the relation between systolic algorithms and concurrent logic programming can be found
in [162].

Procs pipes: linear press networks
The following program is a parallel implementation of the Sieve of Eratosthenes [163]. It consists
of a process generating all integers in the desired range, and a set of filter proceses, one per prime
number found, which erase multiples of their prime from the remaining stream. This program
overlaps the dynamic construction of the process network with the computation of the result.
Its network consists of a dynamic linear pipeline of transducers. It uses the integers and filter
processes defined in Section 5.

% primes(N, Ps) - Ps are all the primes up to N.

prinmes(N,Ps) -
integers(2,N,Ns), sift(Ns,Ps)

%sifl(Ns,Ps) .- Ps are the numbers in No which are prime relative to their predecessors.

sift((P[Ns],Ps) - Ps=(PIPsI,
fllter(Ns,P,Ns'), sift(NslPs).

sift([ Ps) - Ps[ ].

TMe gwin program implements a parallel mergesort algorithm. Given a list of length N of
(possibly singleton) sorted lists, it forms a pipeline of length log2 N of msor processes. Each
stage in the pipeline performs a pairwise order-preserving merge of the sublists, using the omerge
procedure defined in Section 5. Each stage doubles the length of the sublists and divides their
number by approximately 2. Using log2 N processors, this program can sort an N elements list in
time O(N). See [189] for further discussion of the complexity of concurrent logic programs.

% mergesort(Ja, Out) -
If In is a list of ordered lists of numbers then Oat is a sorted list of these numbers.

mergesort([ ],Ys) - Ys=[ 1.
mer- sort([Xs],Ys) .- Xs=Ys.
mergesort([Xl,X2jXs,Ys) -

nmort([Xl,X21Xs,Zs),
mergesort(Zs,Ys).

mort([XI,X2Xs],Ys) - Ys=[YIYs],
omerge(XI,X2,Y),
msort(Xs,Ys').

moort([xYs) - Ys=[X].
msort([ ],Ys) - Ys=1I.



C

Vector-matrix mutplication

A lner array of ip proc~eses can multiply a matrix, represented by a list of vectors, by a vector.
It uses the ip proces defined in Section 5.

% vm(Xv, Ym,Zv) .- multiplying the vector Xv by the matrix Yes gives the vector Zv.

vm(-,[ ,Zv) - Zv=[ I.
vm(Xv,[YvIYm],Zv) - Zv=[ZIZv',

ip(Xv,Yv,Z), vm(XvYm,Zv').

The following program merges a list of streams into one stream, by creating a balanced tree of
binary merge processes. It uses the merge proem defined in Section 6.

% merger(In, Oat) - Out is the merge of the list of streams In.

merger([Xsl,Xs2I1n],Out) -
mergeJayer([Xsl,Xs2jln],Outj,
merger(Out' ,Out).

merger((Xs],Out) - Xsi-Out.

mergelayer([Xsl,Xs2jIn],Out) - Out=[YslOutqj,
merge(Xsl,Xs2,Ys),
mergelayer(In,Outl.

mergeiayer([Xs],Out) - Out=[Xs].
mergeJayer([ ],Out) -- Out=[].

Note that this program operates correctly only if the complete list of streams is given, since
it emits elements from the root of the tree only after the construction of the tree is completed.
If the list is given incrementally, i.e. it is actually a stream of stremsn, then a different approach
is needed. One naive solution is to create an unbalanced tree incrementally, using the following
program.

mergerl([Xslln],Out)
merge(Xs,Out',Out),
merger l(In,Out').

mergerl([ ],Out) - Out=[].

The program builds a linear tree top down. At each point in its construction, elements of the
input streams already connected to merge processes can reach the root of the tree.

More sophisticated balanced merge trees can be constructed, which support the dynamic
addition and deletion of merged streams, using the concept of two-three trees, as shown in this
section below.

Process arrays
Two matrices can be multiplied by an array of ip processes, each computing the inner product of
the appropriate row and a column of the matrices. We ssume that the second matrix is already
transposed.

% mm(Xm, Ym, Zm)
Zrn is the result of multiplying the matrix Xm with the transposed matrix Ym.

m(f ,_,Zm) - Zm0 I).
mm([XvIXm],YmZm) - Zm=[ZvIZmI

vm(Xv,Ym,Zv), mm(Xm,Ym,Zm'.

The program uses the vm process defined above.

- 33 -



The behavior of the mm program is reminiscent of the well-known systolic algorithm for
multiplying two matrices [103]. However, there are two differences. First, the process network is
created dynamically, to fit the sise of the input matrices. This suggested the nasme 10 

"soft-systolic"
to these kinds of software-oriented systolic algorithms, in contrast with the classical hardware-
oriented "hard-systolic" algorithms. Another difference is that the program, as specified, does not
pipeline the matrices along the connections between the ip processes, but rather "broadcasts" each
row and column to all processes requiring it. The program, however, can be easily modified to do
the pipelining. See [163,189] for further discussions of the subject.

To achieve pipelining, the mm program has to be modified to form direct connections between
adjacent ip procemes. A similar goal is achieved by the following tors program. Given a matrix
Array, represented as a list of list of values, it spawns a torms cell processes, each with one value
and with communication links to adjacent cell ,rocesses. The array is augmented with end-
round connections, to form a torus process network. This program schema (cliche) has several
applications, including array relaxation and the like.

torus(Array,...) -

torus'(Array,Bottonms,Tops,..),
Bottoms=Tops.

torus'([RowlArray],Bottoms,Tops,..) -

row(Row,Left,Right,Bottoms,Middles,..),
Left=Right,
torus'(Array,Middles,Tops,.).

torus([ ],Bottoms,Tops) -
Bottonm=Tops.

ow([ElementlRow],Left,Right,[BottomlB.],[TopITs],..)
cell(Element,Left,Middle,Bottom,Top,...),
row(Row,Middle,Right,Bs,Ts,..).

row([ ],Left,Rght,[],[ I,...) -
Left=Right.

cell(Element ,Left,Right,Bottom,Top,...)
An application specific program.

The layered stream method
Search problems that are amenable to depth-first search have elegant and efficien' solutions in
Prolog. Assume that the solution to the search problem is in the form of a list of elements, which
satisfy some consistency criterion. The incremental construction of a solution in Prolog often relies
on its backtracking mechanism, where forward computation consists of extending some prefix of a
solution, and backtracking occurs when it is discovered that the prefix cannot be extended further,
either because of inconsistencies or because it is a complete solution and additional solutions are
required.

The layered stream data structure, proposed by Okumura and Matsumoto (139], allows an
incremental and parallel construction of solutions to search problems without relying on a Prolog-
like backtracking mechanism. A layered stream represents a set of lists sharing a common head s
the cross-product of the head and the list of tails. The list of tails in turn can be represented by a
layered stream. For example the lists [1,2,4], [1,2,8], [1,3,9] are represented by the layered stream
I a [[2-,4], [2,8], [3,9] ], and also by the layered stream I * ( 2.[f,],(8]], (5,9] ]. The function
symbol ',' is used for mnemonic purposes, but of course any other function symbol would do. The
product X*[ J represents the empty set of lists, and the product X.true represents X.

The following programming methodology is associated with the layered stream. Suppose the

10 Due to Viay A. Sarwaat.

- 34 -



problem is to find values for N variables ranging over some finite domain of values V. N*1 V1
processes are initially created, one for each possible value of each variable. Denote the process
associated with value v of variable a by p",. Each ja,., process receives an input stream of
partial solutions which consist of an assignment to variables I. -,and produces an output
stream of partial solutions obtained by extending each input assignment with the assignment of a to
variable a, provided the resulting assignment is consistent. That is, given the input partial solution
v,...,%_j.., if the extended partial solution v ~~ is consistent, it is output. Otherwise it
is not.

The layered stream data structure allows all proceses N,,, vE V, to share the same input
partial solutions, thus saving apace and hence also time. It allows the pipelining of partial solutions,
hence increases the available parallelism. An example of a search program using a layered stream
is the four queens program shown below [139]. The program easily generalizes to N queens by
replacing the explicit construction of the filter processes by iterative procedures to do so.

% four..quecaa(Qs) -
Qa is a layered stream of all legal assignments of four queens on a 4 x 4 board.

four-queens(Qs) -
queen(true,Qsl), queen(Qsl ,Qs2), queen(Qs2,QsS), queen(Ws,Qs).

% queen(IaaOst) -
If In represents the set of legal assignments of N queens on a 4 x 4 board, Out represents the
set of legal assignmen ts of N+1I queens on a 4 x 4 board.

queen(ln,Out) -
filter(In,1 1 OutI), filter(In,2,l,Out2), filter(In,3,l,Out3), filter(In,4,l ,Out4),
Out=[Is*Out I,2sOut2,3*ut3,4*Out4].

%fihier(laj,D,O%1) -
If In is a set of assignments of N queens to consecutive colums, Out is the set of assignments of
N+1 queens obtained as follows: Extend each assignment in Ia with a queen on the next column
and on row 1. If the added queen does not interfere with the previous queens, incorporate the
extended assignment in Out.

filter(true,.., Out) a- Out=true.

fiIter(fl.41ln],l,D,Out) - filter(In,l,D,Out). % Sam row
filter([J*_jlnjjl,D,Out) - D=:=abs(l-J) I filter(InI,D,Out). %6 Same diagonal
filter([Jeln'jln],l,D,Out) - l#J, D\=:=abs(I-J) I %6 No interference

filter(In',l,D',Out'),
filter(ln,l,D,Out"),
Out=IJ*Out'Iout'1.

The answer obtained from the goal four.qseens(Qa) is the following layered stream:

Qs = [ * 3*( 1, 4 *[2 *('11,
2 a [4 * (I 4 (3 * trueli,
3 * (I a [4 * (2 * truel,
4 *[1 *[3s [1,2* (fl]

which represents the list of lists:

Qs = [(2,4,1,31, (3,1,4,211.

A comparison of the sequential and parallel performance of this program with other concurrent
logic programs and Prolog programs for the N-queens problem is given by Tick (1931.



7.3 Incomplete message protocols

Incomplete mesage protocols were reviewed in Section 4.4. Here we show several examples of their
application. The first application is monitors. A monitor is a process that maintains some local
state, and serves requests to inspect and/or modify the state. It is called so since its function is
similar to Hoare's original concept of a monitor [85]. Clients of a monitor are typically connected
to it via a merge network, and communicate with it using incomplete messages.

Perhaps the simplest monitor is the counter, which maintains a local counter, and reponds to
the messages clear, add, and read(X), the last of which is an incomplete message.

% counter(Jn) -
In is a stream of clear, add, and read(X) such that X is the number of add's since the most
recent clear.

counter(In) - counter'(In,0).

counter'([clearlln],C) - counter'(In,O).
counter'([addlln],C) - C' := C+1, counterl(In,C').
counter'([read(X)Iln],C) - X=C, counter'(In,C).
counte,'(( ],C).

The client of a counter who wishes the know its value sends it the message read(X), and waits for
X to be instantiated.

Shared queues
A more sophisticated monitor is the following queue process. It serves requests of the form en-
qseue(X) and dequeme(X), by unifying the arguments of corresponding enqueue and dequeue re-
quests, and maintaining arguments of superfluous requests. While a list is a natural data structure
for representing a stack, a difference-list is most convenient for representing a queue. The argu-
ments of superfluous requests are maintained in a difference-list data-structure, which is positive if
it received ,nore enqueue than dequeue requests, empty if the number of requests received of each
type were equal, and negative otherwise. A difference-list, explained in Section 2.2, is a common
data-structure both in Prolog and in concurrent logic programming languages [27,160,171].

% quese(In) -
In is a stream of enqueue(X) and dequeue(X), for which the list of X's such that enqueue(X)
is in In is identical to the list of X's such that dequeue(X) is in In.

queue(In) -
queue'(1n,Q\Q).

queue'([dequeue(X)Iln],H\T) - H=[XIH'],
queue'(ln,H'\T).

queue'(fenqueue(X)fIn],R\T) - T=[XITI,
queue'(in,H\T').

queue'([ ],H\T).

Another useful monitor is a priority queue. A priority queue has two input streams. One of
enqueue requests of the form enquese(X,P), and one of dequeue requests of the form dequeue(X).
It maintains an internal priority queue, which is a list of the elements enqueued but not dequeued,
sorted by their priority. It serves a dequeue request only if the queue is non-empty.

% pqueae(Es,Ds) -
Es is a list of enquese(X,P) and Da is a list of dequeve(Y) for the which the corresponding
multisets of X's and Y's are the same, and if dequese(X) precedes dequese( Y) in Ds then either
enqueue(X,PX) precedes enquese(Y,PY) in Es or enquese(YPY) precedes enquese(X,PX) in
Es and PY<PX.

- 36 -



pqueu(Es,Ds)-
pqueue'(Es,Ds,[])

pqueue([enqueue(X,P)IEs],Ds,Q)-
in-et(X,P,QQ'),
pqueue'(Es,D*,Q').

pqueue(Es,[dequene(X)Is,[(Y,P)IQJ) -X=Y,

pqueue'(Ed,Ds,Q).
pqueue'([ J,[ ],Q).
insrt(X,P,( IQ) - Q((X,P)].
insert(X,P,[(X',P')IQ],Q') -

P < P, Q'=[(X,P),(X',PI)IQ].
inset(X,PJ[(X',P')IQI,Q') -

P >- P' Ij,(XP)Q
insrt(X,P,Q,Q").

Merge trees
Another application of incomplete message protocols is network reconfiguration. We show here a
simple example of a dynamic two-three merge tree. A process p(X*,...) with a stream Xs to the
tree can create a new process q( Ys,..) with a stream Ys, and join Y& to the tree by sending down
Xs the message merge( Ya). For example:

Xs=[rnerge(Ys)IXsi],
p(Xa',. .
q(Ys,. --.

A balanced tree of merge processes capable of handling such messages can be composed of binary
and ternary mergers, defined below. We show the clauses which handle messages on the first
input stream only. Handling messages on the other streams is done by similar clauses of the same
procedure. Note how a merge2 process that receives a merge(X) message turns into a merge$,
and a merge$ process that receives such a message turns into two merge2's, and seuds up another
merge message.

merge2([XIXs],Ys,Zs)-
Ximerge(-) I Zs=[XIZ9'],
merge2(Xs,Ys,Zs').

merge2([merge(Ws)lXs],Ys,Zs)-
merge3(Ws,Xs,Ys,Zs).

merge2([ )J( ],Zs) - Zs= [].

merge3([WlWs],Xs,Ys,Zs) -
W96merge(-) I Zs=[Wzs1,
merge3(Ws, Xa,Ya,Zs').

mnerge3([merge(Wsl)Wa],Xs,Ys,Zej)-
Zs=[nwrge(Zsl)IZB'],
mnerge2(Wsl,Ws,Zsl),
merge2(Xs,Y'i,Z@').

merge3([ J,[ ],[ ],Zs) - 79=[ 1

The merge tree described grows dynamically, but does not shrink in a balanced way. An extension
based on a distributed variant of the two-three tree deletion algorithm is described in (167).
Th o-~buiffpl
In severa siu .in it is desirable to allow the reader of a stream some degree of control over its
writer. Examples are when the reader is much slower than the writer, and when only some prefix

-37-



of the produced stream is required, but its size can only be determined by the reader at runtime.
The bounded-buffer protocol [177] employs difference lists and incomplete manages to realize this
kind of control.

The idea of the bounded-buffer protocol is simple: the controlling reader process waintains a
difference-list H\T of incomplete messages, say of the form message(X), where X is a variable.
The difference-list represents the "buffer". After the buffer is initialized to a list of a incomplete
messages, the reader operates s follows: when it is ready to process the next message, it waits
until the first element in the buffer is known, i.e. H=[message(X)IHI, where X is known, dequeues
it, and enqueues an incomplete menage, message(Xo), at the tail of the difference list. When it
does not desire to receive any further messages it unifies the tail with nil. What to do in such a
case with the messages pending in the buffer is application dependent.

The producer is given initially the head of the difference list as its input stream. It then
operates as follows. It waits until its input stream has the message message(X), produces the next
element, unifying it with X, and iterates with the tail of its input stream. It terminates when its
input stream is nil.

Schematic programs for the producer and the reader are shown below.

bounded-buffer-network(...) -
buffer(n,H\T),
rew1(H\T,...),
produce(H,...).

% bvffer(NH\T) -
H\T is a difference list of message(-) of size N.

buffer(O,H\T) H.- H=T.
buffer(N,H\T)

N>O I
N':fN-1, T=[message(_ )ITj,

buffer(N',H\T).

read([mesage(X)IH]\T,...) -
known(X),
...I want more X's... I
T=(me-sge(_)fT,
... process X...,

read(H\T,...)
...I don't tant more X's... iT=[ 1,
.. process remaiming messages in H. ...

producefmessage(X)Iln],...) -
... produce X...,
produce(In,..

produce([ ],. .).

Several variations on this protocol are possible. For example, it is not necessary for the reader to
maintain a fixed size buffer: it can increase or decrease the size of the buffer if it so desires. It
is not necessary to synchronize on every message: a more efficient protocol might be to produce
k stream elements per incomplete memage, or to provide a parameter in the incomplete mesage,
specifying how many more elements to produce. Finally, it is possible for the incomplete message
to be simply a variable, rather than a term containing a variable.

- 88 -



7.4 Mutual exclusion protocols

Mutual exclusion can be achieved in FCP(I) using the following mechanism. The set of processes
participating in the mutual exclusion protocol are connected via a merge network into a muter
process. A single round mutual exclusion protocol is s follows: all procse competing for lock
send a Iock(Repty) incomplete manage to muter. mates grants the first lock request received by
unifying Reply = runted, and denies the other requests by unifying Reply = denied. It is defined
as follows:

% matex(Ia) - In is a list containing one lock( granted) followed by zero or more lock(denied).

mutex((lock(Reply) Iln]) -Reply=granted,

mutex'(1n).

mutex ([lock(Reply)IIn]) .- Reply=denied,
mutex'(1n).

mutex'( [])-

The single-round mutual exclusion protocol can he used to simulate CSP with input guards [87].
A simulation of CSP with both input and output guards is discussed in Section 14.

A multiple round mutual exclusion protocol is only slightly more complex. Instead of sim-
ple back-communication, it uses a three stage dialogue: the process requests the lock, then ma-
ter grants it, then the process releases the lock, and mates serves the next lock request. Pro-
cesses competing for permission send lock(Repli) as before. mutes answers the first by Reply =
grated(Done), and waits for Done = done. When the process to which the lock was granted ends
it critical operation, it releases the lock by unifying Dose = done, mates then grants the next
lock, and so on. If the merge network is fair, and every process that is granted a lock eventually
releases it, then every lock request will eventually be granted.

The definition of the multiple-round mate: process is as follows. Its trivial logical reading
indicates that its interest lies in its reactive aspects only.

% mutex(In) - In is a list of Iock(granted(done)).

mutex(In)
mutex(1n,done).

mutex'(Elock(Reply)lIn],done) - Reply=granted(Done),
mutex'(In,Done).

mutex'([ I,-).

A program schema for a perpetual process p participating in a multiple-round mutual exclusion
protocol is shown below. We assume that initially its first argument is a strean merged to mutes;
other arguments are application specific.

p(ToMutex,. . 3 - p..request(doue,ToMutex,...)

p-request(done,ToMutex,...) .- TbMutex=(lock(Reply)IToMutexl,
p..wsit(Reply,ToMutex ,...).

p-wait(granted(Done),ToMutex',...)-
..do critial operation; wkes dose, unify Doendone...

p..request(Done,ToMutex,...).

7.5 Short-circuit protocols for distributed termination, quiescence detection, and distributed
event-driven simulation

The problems of distributed termination detection and quiescence detection have received consid-
erable attention [15,16,40,51,105,126]. In concurrent logic programming, these probhlems have very

-39-



elegant solutions, using the short-circuit protocol. The protocol is originally due to Takeuchi [175],
and was later extended by Weinbaum and Shapiro [208] ad Sarswat et &1. [158]; we largely follow
[158] in the following discussion. The underlying behavior of implementations of this protocol are
closely related to that of distributed termination and quiescence detection algorithms based on dis-
tributed countera (105,126]. We do not know of algorithms for distributed event-driven simulation
corresponding to the one based on the short-ircuit.

Distributed termination detection
The idea of the short circuit for termination detection is as follows. Call the computation whose
termination should be detected the underlying computation, and the program it executes the
underlying program. Augment each proes participating in the underlying computation with two
additional arguments, called Left and Right. For readability, these arguments are typically packed
in one term using the '-'infix function symbol, as in Left-Right. The pair is called a switch. It is
closed if Left=Right, open otherwise.

Initially, connect all processes in a chain, by unifying Left of the i process with Right of the
i2h+l proess. The Right of the first process and the Left of the last process are called the ends
of the short-circuit. For a procmes, the chain contains a open switches.

. Each process in a computation operates as follows. If it halts it unifies its Left and Right
variables. If it iterates it leaves them unchanged. If it creates a new processes, it extends the
short-circuit by n-i intermediate links. This behavior is achieved by transforming the clause
of the underlying program along the following schema, where '...' denotes underlying program
arguments.

p(...). = p(...,L-R) .- L=R.

p(2...), p(...,L-R)
pI( ...) p"(...L-R).

p( ... ) *- =.p(-...,L-R) .-

Pl( -..., pi C...,-Xi),
p2( ...) P.2(... ,XI-X,),

p,,(..., Y ,..x,_t)

In FCP(I), a correct use of the short-circuit requires threading it to the equality goal atomrs in a
special way. If the underlying program has a body atom Ti = Ti, the transformed program should
have the atom (Left, Tl)=(Right, TO) for the appropriate switch variables Left and Right, so that
the switch would not close before the underlying unification completes.

The invariant of the short circuit under this behavior is that the number of open switches
is identical to the number of processes in the computation. In particular, all switches are closed,
which implies that the two ends of the initial chain are identical, if and only if all processes in the
computation have terminated, which is a stable property.

Any process wishing to detect that the computation has terminated is given the initial ends
of the short circuit. Assume the termination detecting process is called helted(Left-Right,...). It
can be implemented in FCP() in two ways:

halted(X-X,...) .- ... report termination ...

or:

halted(Left-Right,...) -
Left=done, waitior.done(Right,...)

waitlor-done(done,...) - ... report termination ...

- 40 -



Distributed phased termination detection
Some computations consist of phaes, where a proce is allowed to begin computations of the
next phase only if all processes have completed the previous phase [130,208]. The short circuit
can be generalized to achieve phased termination detection s well. Instead of having one short
circuit, a stream of short circuits is threaded through the underlying computation. Each process
is augmented with a Left-Rigkt switch as before, and with the original left and right ends of the
circuit, LeftEnd-RightEnd. However, instead of unifying Left and Right upon termination, it treats
Left and Right as streams. At the termination of a phase it unifies the head of Left with the head
of Right. Following that, it waits for the heads of LeftEnd and and RightEad to be identical before
it proceeds with the next phase. This is achieved by the following iterative schema:

p(Left-Right,LeftEnd-RightEnd,...) -
... do computtion of this phase, when done, do the following
Lett=fXILeft1,
Right=[XIRightl,
p-wat(Left-Right,LeftEnd-RightEnd,...).

p-wait(Left-Right,[XILeftEnd]-[XlRightEnd],..) -
p(Left-Right,LeftEnd-RightEnd,...).

Procem creation and termination is handled as before.
Note that the solution is completely symmetric. There is no centralized process that detects

the termination of a phase; rather, the ends of the circuit are distributed to all processes, and each
of them detects the end of phase independently.

Quiescence detection
Consider a network of processes participating in some underlying computation by exchanging
messages. The computation begins by a designated process, which sends one or more messages to
other processes. Each process that receives a mesage sends out zero or more messages in response.
No proces spontaneously initiates new messages. The computation ends when all meages sent
have been received, and no new response mmnages need to be generated. Normally, this results in
a deadlock of the underlying computation. We would like to augment the underlying computation,
so that instead of deadlocking it would report quiescence [15,16].

This can be achieved by another variant of the short circuit protocol. In this variant, switches
are embedded in messages, rather than in processes. The initial set of messages are threaded with
a short circuit, as was the initial set of processes above. A procm wishing to detect quiescence
holds the ends of the circuit and waits for them to become identical. Each message in the under-
lying computation is augmented with R P itch, and each process in the underlying computation
is augmented to obey the following protocol. When it absorbs a mssage, i.e. receives a message
without generating any additional messages in response, it closes the switch in the message. When
it sends one mesage in response to a mmasge, it includes in the outgoing message the switch of
the incoming message, intact. When it generates n response meages, a>1, it extends the switch
into a switches, and embeds the new switches in the outgoing memnges.

For simplicity, assume that each process has one input stream and one output stream of
messages. Mergers and distributers can be attached to these streams if necessary. The schema of
an augmented process is:

p([m(Left-RPght,'. .)In],Out,...) - % Absorb a message
Left=Right,

p(in,Out,...).

p([m(Left-Right,...)Iln],Out,...) - % Send one message

Out=[m'(Left-Right,...)IOut],

- 41 -

L



p(In,Out',...).

p([(Ldt-Right,...)IInl,Out,...) i- % Send many meagems

Out=[a 1 (Left-Middle,...),
m2(Middiei-Middle 2 ,...

m.(Middle,. 1 -Bight,.. .)Out'j,
p(In,Out,...).

The invariant of thin protocol is that the number of open switches is the number of message sent
(or to be sent) but not yet received. When this number reaches 0, the short circuit is closed,
and quiescence can be reported. Note that this protocol requires that each menage has at most
one receiver. To achieve broadcasting the underlying program must be augmented with explicit
distributors, which follow the same protocol.

Distributed event-driven simulation
One interesting application of the above techniques is distributed event-driven simulation. In
event-driven simulation, in contrast to clock-driven simulation, only changes are communicated
between tbe components participating in the simulation. This is especially important in hardware
simulation, where very often only a small percentage of the simulated device is active at any given
time.

An event-driven simulation is phased, since changes which occur in the next phase can be
reliably communicated only when all changes related to the previous phase have been received.
The method for phased termination detection, using the stream of short circuits described above
could be used, except that it requires every process participating in the simulation to be activated
in every cycle in order to close its segment of the short-circuit, contrary to our goal. Our solution
is a combination of the quiescence detection and phased termination detection techniques.

Each messge is augmented with a sream of switches and the ends of the short circuit; these
are the same data structures each process is augmented with in phased computation detection. In
addition, each process is augmented to behave as follows. In each phase, the process treats the first
mnage it receives as follows. It closes the head of its switch, and keeps the tail of the switch and

the circuit's ends. It then waits either for the head of the circuit's ends to close, or for additional
ages. (Note that only one of them can occur, since the head of the circuit's ends close only

after all msans sent in this phase have been received.) If an additional message is received, it
closes the memsag's entire switch, after verifyng that the message-circuit's ends are identical to
the ones it maintains (this is necesary to ensure that the message belongs to the current phase;
otherwise it is possible that this memage was sent by a process that has already detected the end
of the current phase and sent a mesag belonging to the next phase). If the head of the circuit's
ends close, it sends zero or more images, as required by the underlying computation, each with
a segment of the tail of the switch, and with the tail of the circuit's ends.

A sehema of such a proce follows. For simplicity a process which sends out one message per
phase in shown.

p.dormant(m(Left-Right,LeftEnd-RightEnd,. . )Iln],Out,..) - % received first message
Left--(XILeft], % acknowledge receipt
Right=[X~Rightj,
... , % process and store message
p-pssive(In,Out,Left'-Pight,LeftEnd-RightEnd,...).

p-passve([m(Leftl-Rightl,LeftEnd-RightEnd,.. )jIn], % received additional message
Out,Left-Right,LeftEnd-RightEnd,...) .- % of current phase

Leftl=Rightl, % acknowledge receipt
% process and store message

n mmmmmmuma nummmmm4 2 -



p-paive(]n,Out,Left-Right,LeftEnd-RightEnd,..
p-passive(n,Out,Left-Right,[XILeftEnd]-[Xl.ightEndl,..) - % detect end of phase

% compute outgoing message
Out=[m(Left-Right,LeftEnd-RightEnd,...)JOutJ,
p_dormant(In,Out',...).

The reason for embedding the circuit's ends in mages is efficiency. If the ends were distributed
to all procies in the network initially, a process receiving a menage after being dormant for some
time would have to search for the tad of the end's streams. In the current scheme it receives the
updated tails in the menage.

More details on this subject can be found in [158,208].

7.6 Object-oriented programming, delegation, and otherwise

Concurrent logic programming languages naturally give rise to an object-oriented programming
style, where the objects are processes communicating via message streams. Much research was
devoted to understanding the relation between classical object-oriented concepts and techniques
and the object-oriented style offered by concurrent logic programming [95,169. For a further
discussion of object-oriented programming see Section 21.

One common object-oriented technique is delegation. A process that does not understand a
certain message delegates it to another process, who may be better equipped to handle it. Consider
a process p(In,..., Out), which receives messages on In. Some messages it handles by itself; others
are delegated to the Out stream. If the set of messages it recognizes is simple, say a and b, then
p can be coded easily:

p([aJIn]...ot) ,-
*... p(ln,...,Out).

p([blln] .... Out) -
.... p(In .... Out).

p([Xllnj .....Out) -
X 0 a, X $ b I Out=[XIOutl,
p(In,...,Out').

However, if the messages awe complex, and have arguments which should have specific combinations
of values, then the explicit specification of conditions under which the message should be delegated
becomes harder. To that effect a new guard primitive, called otherwise, is introduced. The
operational semantics of otherwise is given assuming an ordering on clauses (say textual order).
Given a goal atom G, an otherwise guard in a clause C succeeds if try(G,C') = fail for every
clause C' preceding C.

Using otherwise, defaults can be handled easily:

p([Xlln] .... Out) -
otherwise I Out=[XIOut'],
p(In,...,Out').

Otherwise destroys clause-wise modularity, and the explicit formulations of the conditions under
which it succeeds is often cumbersome

1
. This is the source of its power, but also an indication that

it should not be used excessively. Otherwise is best thought of as a primitive exception handling

SHowever, K. Kahn (personal communication) notes th" there is a am. in which otherwise enables claus
modularity. If procedure neede to spedfy a deault cam, s in this emmple, which applies when all other
cleanss don't apply, Lhe without otherwise It mus encode explldtly the ms~sto of the other uards, and

should be updated if the otier claumss change. However, by encoding the default with otherwise thed is o
textual dependency between the default caue and the other clames of a I edue.

- 43 -



mechanism, which should be used only to handle exceptions, and not in normal programming
practice.

7.7 Enhanced mets-interpreters

A meta-interpreter for a language L is an interpreter for L written in L. If a language has simple
metfnterpreters, then one of the most convenient ways to enhance a language, or implement
sublanguages, is by starting from a meta-interpreter and enhancing it [60,149,171,178,182]. There
can be several mets-interpreters for a language, which differ in what aspects of the execution model
they reif, i.e. execute themselves, and what aspects they absorb, i.e. default to the underlying
languages. The most useful type of meta-interpreter in logic programming is the one that reifies
goal reduction and absorbs unification.

Another distinction is how the meta-interpreter is composed with the program to be inter-
preted. One method is to paw a data-structure representing the program as a parameter to the
interpreter. This approach is the most flexible, but usually imposes unacceptable runtime over-
head. On the other extreme, the meta-interpreter and the program to be interpreted can be bound
together at compile time. This may give the most efficient result, especially if source to source
transformation teafiques, such as partial evaluation, are applied to the combined program (see
below). This approach, however, is very inflexible.

The most common approach in logic programming, which is also taken here, is an intermediate
one in terms of efficiency and flexibility. The program to be interpreted is compiled in a special
way, and an interface to the meta-interpreter is provided. The interface determines which aspects
of the computation are absorbed, and hence compiled efficiently, and which are to be reified by the
metsr-interpreter.

A plain FCP(J) meta-interpreter
We demonstrate the approach for FCP(). Each clause

of the FCP(I) program to be interpreted is transformed into the unit clause

clause(A,X) - G I X = B'.

where B' is the conjunction obtained by replacing every goal atom G in B whose predicate is
neither true nor'=' by the term goal(G).

For example, the omerge program is represented by clauses like the following:

clause(omerge((Xllnl],[Ylln2J,Out), B) - X < Y I
B=(Out=[XIOut'],goal(omerge(Inl,[Ylln2],Out))).

clause(omerge([ ],1n2,Out), B) - B=(ln2=Out).

Given such a representation, an FCP(I) meta-interpreter can be written as follows:

% reduce(Goal) - Goal is reducible using the program defined by the clause predicate.

reduce(true). %I
reduce(X=Y) - X=Y. %2
reduce((A,B)) - reduce(A), reduce(B). %3
uduce(goal(A)) - cla-se(A,B), reduce(B). %4

The mete-interpreter reifies proem termination (clause 1) spawning (clause 3) and reduction
(dause 4). Note that the mets-interpreter interpreters the parallel processes (A,B) in parallel,
by forking into the two processes reduce(A) and reduce(B). It absorbs unification (clause 2) by
calling FCP(D's primitive unification predicate when interpreting a unification goal. It also absorbs
goal/clause matching and guard evaluation, since these are carried by the clause/I predicate.

- 44 -



A termination detect meta-innterre
The mets-interpreter described is Dot so interesting an its own right. However, it may be enhanced
in several ways, to provide useful functionalities. One example is the following nista-interpreter,
employing the short-circuit technique to detect the termination of the interpreted program. On the
call reduc*(A,Deae), Done is unified with doe when the computation of A successfully terminates.

% reduce(GodLDoae) - Goal is reducible and Done=trse.

reduce(A,Done)
reduce'(Adone-Done).

reduce'(true,L-R) ~- L=R.
reduce'(X=Y,L-R) - (X,L)=(Y,R).
reduce ((A,B),L-R) 4- reduce'(A,L-M), reduce'(B1,M-R1).
reduce'(goal(A),L-It) - claune(A,B), reduce'(B1,L-R).

One of the main weaknemss of FCP(I) is that, although it can reflect on termination, it cannot
reflect on failure, without reifying unification. In other words, it is not possible in FCP(j) to enclose
a computation within a mete-interpreter in the style shown above, which reports failure when the
computation it interprets fails, without failing itself.

This problem is alleviated in more powerfu languages such as FCP(:), as discussed in Section
14.

An alternative solution is to replace FCP(I)'s unification primitive with a three-argument
predicate, which returns an indication whether unification succeeded or failed. This approach is
taken by Fleng [133], and is discussed in Section 21.

Prcse arFC~j e anonymous. Their number and rate of creation and termination renders
any conventional operating system approach to proem management infeasible. Therefore the
implementation of standard operating system capabilities, such as the ability to suspend, resume,
and abort processes requires novel solutions. The natural unit of control in concurrent logic
programming is not a proem, but a (reactive) coenputation.12

In the Logix system [170] several, possibly interacting, computations can proceed concur-
rently. We show below a meta-interpreter that can control an interpreted reactive computation by
responding to control signals.
% reduce(GeslhI) -

Is is a stream of saspead, . es me and sbort menages. Godl is reducible or Is contains abort.

reduce(true,ls).
rsduce(X=YJs) -X=Y.

reduce(A,B),Is) .- reduce(Ajs), reduce(fl,ls).
reduce(gosl(A),Is) c- du(A,BjIs), reduce(Djs).
reduceA,qjI~s) - Yere.interrptUIIs,A).
serve..interrupt(fahortlla],A).
ssrv..iterpt(mspendlj,A) - serveinterrupt(Is,A).
serveinterrupt(r~esumell],A) .- reduca(Ajis).

The plain meteinterpreter is enhanced with an interrupt stream is. Whenever an interrupt is
sensed, an interrupt-handling routine is called. The interrupt handler can serve the meassages
*Wsend, sume, and abort. To ensure that an interrupt will eventually be served, even if the
interpreted computation is non-terminating, the ashaa(le) guard should be added to all but

12 n.s momla -t 0easaes MPod her. i. m*el relsa to &I. .s mm a ft ss DEMertC de"L6=tme but im

-45-



the last clause of reduce. To ensure that even a suspended proces responds to an interrupt, an

additional clause is added to the representation of the interpreted programs:

cIuw(A,B,VlIJ) - A=B.

Its purpose is to return the interpreted process intact when an interrupt is sensed. If an interrupt
is sensed, the clause process terminates and returns in the body argument the goal atom it was
called with. This ensures that suspended goal atoms of the interpreted computation are halted
rather than being left suspended. Once the computation is resumed, the process is retried. This
feature is used for another purpose by the following snapshot meta-interpreters.

Repeated live snapshots
The problem of obtaining a snapshot of the state of a distributed computation has been investigated
is various models [14,151. The meta-interpreter shown above can be enhanced to obtain repeated
snapshots of the interpreted computation, by treating the short-circuit as a (possibly empty) stream
of snapshot requests. To obtain a snapshot, a nessage state([ 1) is sent down the left end of the
short-circuit. A proesm P that senses a message st ete(S) on its left-end of the switch sends the
message utate([PISI) on the right end of the switch. This is achieved by augmenting the termination
detection mets-interpreter shown above with the clause [149]:

reduce(A,tstate(S)jL]-R) - R--state((AS)iR1,
reduce(A,L,R').

When the message state(S) arrives at the right end of the circuit, it contains a list of processes.
There are several delicate points to note. First, as specified, the message is guaranteed to

arrive eventually only if the interpreted computation terminates or deadlocks. To improve upon
this the guard sake~o(L) can be added to the other clauses of the meta-interpreter. This ensures
that if the number of processes created in the computation is bounded (i.e. the number of times a
clause with more than one atom in the body is used is finite), then the message would eventually
arrive, even if the computation is nonterminating. To obtain a snapshot in a computation with
unbounded process creation, the frosen snapshot technique, discussed below, must be used.

Second, the distributed fashion in which the live snapshot was obtained implies that the list
of processes obtained is not necessarily a possible state that actually occured in a computation
[1581. For example, process A could have been added to the snapshot, then redu:ed, performed a
unification that enabled some other reduction, which created a process B, which was then added to
the snapshot. So the live snapshot may contain two proc es which are causally related, and there-
fore could never exist simultaneously. Furthermore, processes in the snapshot could appear more
instantiated than they were when added to it, due to other processes reducing before the snapshot
was completed. Nevertheless, under certain circunmtances

3
, a live-snapshot is'restartable, in the

following sense. If G has a successful computation, and G' is a live snapshot of this computation,
then G' also has a successful computation (but may also have failing and deadlocked ones). In
spite of these limitations live snapshots are useful for various purposes, including the detection of
stable properties of networks. This subject is further discussed in 158].

Combining the concepts: interrupt handling, termination detection, and the computation of live
and froSen apshots
We show a mea-interpreter which combines the various features discussed. It has both an interrupt
stream and a short circuit, and it uses the clause form of the interrupt-handling meta-interpreter.

-reduce(true,h,L-R) - L=R.
educe(X=Y,l-,L-R) .- (X,L)r=(Y,R).

reduce((A,B),j,L-R) - reduce(A,Is,L-M), reduce(Bjs,M-R).
reduce(goal(A),Ue,-ft)-

13 Spscdsflca, in the ease af FCP(j), that eithr ar nor unknowln e med in the interpreted proum.

- 48 -



clauae(A,Bja), reduceB,Ia,L-R).
reduce(A,(lI~sl,L-R)

sevntpt(DatTa],A,L-R) - L=R.
seve-1ntenupt([mupendjIsj,A,L-R)

L=(DoeIL'I, RreDoneIR'I,
@erveanterrupt(Io,A,L'-R').

-entw pt((um II1,A.L-R)
reduc*(Ajs,L-R).

-eve..interrpt((snapshotIlu],A,L-R)-
L=(state(S) IL'), R=[(state((AISI)IRI,
serve-interrupt(Is,A,L'-R').

The meta, interpreter, called with the goal reiace(GIa,L-R), can be used to obtain a live snapshot
Seven in the presence of unbounded procem creation, by providing it with the following input:

Do in parallel:
Is--snapshot,resumels'I, Ln-[sate([ ])ILI., R--[stateS)IRI.

which cause each procs to suspend, add its state to the snapshot, and resume immediately.
A frose sapshot is obtained by suspending the computation, and only then collecting the

state of its procese. The following sequence of unifications can be used to get a frosm snapshot
and then resume a computation.

Suspead the computation:
Ia=[ospendilla, L=[d-ueLI,
wait till Rnj[donelR1,

Take a aepshot:
W=saphotla" L-[stte([ ])ILI],
wait fill R'=(state(S)IRI1

Resume:

Spcaiainof meta-interreters
W have sehown that an enhanced meta- interpreter is a very convenient tool for apecifying functiona
of computation control. However, a naive implementation of these functions via enhanced mete-
interpreter, could be quite costly. It in quite common that a program interpreted under an enhanced
meta-interpreter runa an order of magnitude slower compared with its direct execution.

One approach to the problem employs the concept of partial evaluation [6,43], first explored
in this context by Gallagher [80,611, and refined by others [11,150,149,178,101J. It in to specialize
at compile-time the meta-interpreter for the execution of a given program.

For example, consider the following (inefficient) FCP(I) program for reversing a list:

revfXIMa,Ys) - re(Xs,Zs), append(Zs,(X]Ys).
re(I INSa) - Ya1 I .
append((XIXsI,Y4,zs) - 7a=(XIMs, &ppend(Xs,Ys,Z'1).
appead(( ],Y@,Zs) - Ys=Zs.

T he plain mets-interpreter, specialized to execute this program, is the program itself (although
append can he specialized further, se [149]). In [149,1501 a partial evaluator for Flat Concurrent
Prolog, capable of partially evaluating meta-interpreters, was developed. An thee is no par.
tial evaluator for FCP(j), we show here examples of manual specializations of meta-interpreters.
Using partial evaluation techniques similar to those of [149,1501, the termination-detection meta-
interpreter can be specialized to execute this list reversal program, resulting iii the program [149]:



rev([XXs],Ys,L-R) -- rev(Xs,Zs,L-M), append(Zs,[X],Ys,M-R).
rev([ ],Ys,L-R) - (Ys,L)=([ ,11).

append([XIXs],YsZs,L-R) - (Zs,L)=([XIZsB],M), &ppend(Xs,Ys,Zs',M-R).
append([ ],Ys,Zs,L-R) - (Ys,L)=(Zs,R).

And the interrupt-handling meta-interpreter can be specialised to execute this program, resulting
in:

rev([XXsl,Ys,is) - rev(Xs,Zs,is), append(Zo,[X],Ys,Is).
rev([ ],YslS) - Y-=[ ].
rev(Xs,Yo,(II1-]) - serve-interrupt([lls],rev(Xs,Ys)).

append([XIXs],Ys,Zs,Is) - Zs=[XIZWI, append(Xs,Ys,Zs',Is).
append([ ],Ys,7,1is) - YsZs.
append(Xs,Ys,Zs,[jlis]) - serve.interrupt(DIJi], append(XsYs,Ze)).

aervejnterrupt((abortsj,A).
serve.interrupt(auspendlls],A) - serve-interrupt(Is,A).
sve.interrpt([reumeja],rev(Xs,Ys)) - e(Xs,Ys,ls).
serve-interrupt([-ueIs],append(Xs,Ys,Zs)) -- append(Xs,Ys,Zs,s).

Note how the state of the interrupted process is passed to the sere.-interrupt routine, and that

this routine has two clauses, one for resuming rev and one for resuming append.
Such specializations eliminate the overhead of interpretation, while preserving the function-

ality of the enhanced meta-interpreter. The transformed programs are usually only 10% to 50%
slower than the original programs, depending on the added functionality, compared to the order
of magWtude slowdown of naive execution of the interpreter [84].

Techniques for proving the correctness of transformations of concurrent logic programs are not,
as yet, well established. One question under debate is whether a transformation should preserve
the meaning of a program, including all possible nondeterministic choices, an approach taken by
[57,2041, or whether a transformation could fix some choices at "compile time" thus change the
meaning of a program; this approach views the source program as a specification, which may have
several, nonequivalent but correct, implementations.

PART III. CONCURRENT LOGIC PROGRAMMING LANGUAGES

8. Language Comparison

In a trivial sense all reasonable programming languages are equivalent, since they are Turing-
complete (i.e. can simulate a Turing machine, which is a universal computational model). However,
if the differences between languages were not material, we would not have invented so many of
them.

Concurrent logic languages are similar enough to allow a more precise comparison than is
usual among programming languages. They all share the sume abstract computational model,
share the same principles, and employ very similar syntax. Therefore it it easier to focus on their
differences. In comparing languages in this family, we consider mostly expressiveness, simplicity,
readability, and efficiency.

In comparing languages for expressiveness, we use two methods: the first is to embed one
language in another; the second is to show programming techniques available in one but not in
another. We conclude that one language is more expressive, or "stronger" than another if the

latter can be "naturally" embedded in the former, but not vice versa, and/or if all programming
techniques of the latter are available in the former, but not vice vers.

- h8 -



We first define the notion of language embedding, which can be used to compare any two
languages, and then discuss the finer notion of natural embedding, which in tailored for the com-
parison of logic programming languags. Related notions of language and their application to the
comparison of concurrent logic lung as were studied by Sarsawat [151 and Levy [1141.

t Definition: Langage embedding
Let LI and L2 be two languages, e a function from LI programs to L2 program, and 9 a function
from oheervaitles of L2 to observable. of Li. We say that (cYs) is an emieddiag of LIin L 2 if
4Ic(P) j r) = I P I r for every Li-program P. In such a cowe c is called the Compiler of the

embedding and v its viewner.
We say that Li can be embedded in L2 if there are effectve functions c and , such that (cv)

isan embedding of LIin L2. I

In other words, a compiler c and a viewer v farm an embedding of &i in L2 if the observable
behavior of every L, program P is the same an the observable behavior of the L2 program obtained
by compiling P using c and viewing its behavior through o.

The notion of embedding is rather weak. Because of the Trn-openesof the languages
under consideration, any language L-1 can be embedded in any other language L2, by writing in
L2 an interpreter of LI, and 0compiig an 11 program P to the L2 program consisting of the
interpreter augmented with a representation of P.

The real issues with embeddings from L4 to L2 are what is the complexity of the compilation
(e.g. how complex is the LI interpreter written in L2), what is the runtime overhead of compiled
programs, how much of the parallelism of LI is preserved in the compilation, etc. This is usually
related to how much of the execution mnechanism of 11 needs to be reifted in the translation, and
how much of it can be sorled in the execution mechanism of L2.

The Irasic execution mechanism in logic programming is unification. Terefore we are inter-
ested in embeddings from L, to L2 which absorb uifiication, iLe. use the unification mechanisn
of L2 to implement the unification mechanism of Li. In such an embedding, logical variables of
L2 represent logical variables of Li and hence nanground gals of L2 can be used to represent
similar goals of Li. We call an embedding that map logical variables in one language to logical
variables in another atural. We formaliae this notion by requiring that the viewer be the identity
function on observables containin goals with predicates of the sourPce program (although it may
hide auxiliary predicates introduced in the target program, if any). TIs& precludes embeddinga in
which the compiler encodes variables; in the source language by constants of the trget language
and the viewer decodes the answer substitution given in term of these co"tas.

De4finitiona: An embedding (c, 9) between two concurrent logic programming languages is atural
if v in defined by:

4ic(P)I) = (G,I,s) E~c(P)Jj GuapedcateoP).
The observables of a concurrent logic program PIP 1, were defined in Section 4.2. In the

following discussions of embeddinga we asseume that the viewer is defined as above and hence discuss
only the compiler.

In the following we show natural embedding. among concurrent logic programming languages,
and argue (although not prove) the lack of oppoite natural embeddings. Our findings are sum-
mnauised in Figure S. An arrow in the figure indicates the existence of a natural embedding.

Most of the embeddh*g we show have additional pleasant properties. For example, being
defined dlame-wise, and preserving not only the observables but alon the bahavior in ontext (the
so-called compositional suniantics). We do not addres these aspects further here.

14 We sBog, hoe, t hat if& thGsinees loI. leegaq jiee aWWdm* Pe.WUfl bs #,a.d~s atU.Ms,w
ona"l k to sawsa and esrnpine logica varetoM, thee ta annuiad b Itsud ^veetsth-vai..ethwe
Waro t111s duom7 Ia~ and deesilog assbe dons botrmasIy by the tia pea. TIS*teegamge
dicounIs in suvey do sot have th issty.



CP/ FCP(:,?) Concurrent Prolog

FCP(:) FCP(?)

GHC PARLOG FCP() Doe
FlatPARLOG

Safe GHC FGHC..

FGHC.. -- --- ALPS

Oc P-Prolog

Figure 5: Natural embeddings among concurrent logic programming languages

A second dimension of comparison is simplicity of the syntax and semantics. A simpler
language is preferred since it is easier both to grasp and to be used by humans, and is more
amenable to automatic program analysis and transformation. Usually a weaker language is also
simpler, but this is not alwaysso, especially when the difference lies in the granularityof the atomic
operations. Usually a language with coarser granularity, i.e. with larger atomic operations, is also
stronger. Sometimes, in addition, its transition system is also simpler to define. For example, the
languages FCP(I), FGHC,, and FGHCO.- discussed below, have, progressively, finer granularity
and more complicated transition systems'

5

A third dimension of comparison is readability. All languages described in this survey use
guarded Horn clauses, first employed in the Relational Language [20]. Most of them follow the
syntactic conventions of GHC [1971, that matching is used in the head, and unification is specified
explicitly in the body. Exceptions are FCP(?), P-Prolog, ALPS, and Doc; the impact of their
different syntactic conventions on readability is discussed when the languages are introduced.

A fourth dimension of comparison is ease of implementation. In general, the weaker the lan-
guage the easier it is to implement. In particular, the finer the granularity of the language's atomic
operations, the simpler the synchronization mechanisms required by its parallel implementation.

1 The phenamenou is true far the interleaevngsem antics used in this paper, s well as for the approach to defining
semiantics for languages with non-atomnic variables proposed by Maher [122] and extended by Sarsawat (15). It
is conceivable that using another method for defining semnantics may result in s different measure of simplicity.

- 50



We defer the comparative discussion of implementation to Section 20.
Each of the dimensions mentioned - expressiveness, simplicity, readability, and efficiency - is

only one dimension in a multidimensional design space, which usually involves design tradeoffs. For
example, a more expremive language may have a more complicated semantics, and be more difficult
to implement. A weaker language may need extra-lingual facilities to compensate for its lack of
expresiveness. Presently there is no consensus which language in this design space is optimal
as a general purpose programming language for parallel and distributed computers, and several
languages ae being pursued actively as candidates for this role. Notable efforts which comprise
of both language design, system design, and sequential and parallel implementations include KLI
(Flat GHC + control meta-call) [55] and PIMOS at ICOT [18], PARLOG and its flat variants
[162,66,491, and a PARLOG system [48] at the Imperial College of Science and Technology, and
Flat Concurrent Prolog [162] and its variants [991, and the Logix system [84,170] at the Weismann
Institute of Science.

For completeness, we provide a historical chart of concurrent logic languages in Figure 6. It
is an extension of an earlier chart by Ringwood [145]. In the chart the vertical axis denotes the
time in which the language design was published, and an arrow indicate some kind of intellectual
influence.

9. Semantics of Concurrent Logic Programming Languages

In the following sections we investigate several concurrent logic languages. All the flat lan-
guages are defined similarly to FCP(I), and assume the same set of guard test predicate. Although
small, this set turns out in practice to be sufficient for most practical purposes

16. Their state of

computation, as well as transitions, are identical to the ones of FCP(J) defined in Section 4.2. The
differences between most of the flat languages are captured simply by varying the definition of
the clause try functions. Although different, all try functions employed satisfy the following two
properties:

e) Suspension is not stable:

If try(Go a, Clee) = "spend
then there is a substitution 0 such that:

irp( Goeil, Clese) # .esand.

b) Failure is stable:

If try(Got, Cl.use) = fail
then for every substitution 0

try(Goal9,Clause) = fail.

Property a implies that a suspended clause try may succeed or fail in the future, if the goal atom
is further instantiated (e.g. by reducing other atoms in the goal). Property b implies that a failed
clause try need not be tried again.

We say that a language is success stable [157] if it satisfies the following property c:

c) Success is steble:

If try(Gost,Clause) = 0 a i, for some 0 and 9'

then try(Goal,Clshse) 0 (supeadjfail).

Most languages discussed in this survey, including FCP(), are success stable if the guard primitives
unknown and war are excluded. Exceptions will be noted when introduced.

16 See 11701 fr a, dsxLpt " timu guar predieam ad othw pniuittivein. * pses st.

- 51 -



Y-I.

83 Oo mwS 1$ lOs 18
0PARWG 83 (21

000i 1 (197,198.188j

CPUI.? 10.2 (ISM1
N FlatGIC 10

73 Polog PARLOGOG8 18.3(61
03Po .g o 17(P11

4 P-Proo.1 is8(388.2101

5 CP(%) (143)
81 11.8 PARLOG 13(8".8.3051

6 ALPS 13(1241

7 D- 17(821

a sM8 FCP(I) (3.1" pwj8 P CPoo CP(:) .14 1383,3101

9 FCP(:,?) is Jim

so

eI Roltioal Leag.

62

83 Coowot Prolo

84

85 0110 FCP(?) CP(I)

Be6 PARLOG 85 OC FGHCO P/lo CP(')

67 Fh3 PARLOG Doe ALPS/

FCP(I) FCP(:)

8 Strad FCP(:,?)

Figure 6: A historical chart of concurrent logic languages

5 2-



The non-tat languages re described only informally. Trsmition system for non-fiat languages
were defined by Swawat [154,157] and Levy (1141.

The notion olanguage embedding - described in the previous section presupposed a defnition
of the observables of the source and target language. As discussed in Section 3, smee concurrent
logic languages employ don't-caem ondeternmism, their observables record the results of failing
and deadlocked computations, in addition to the results of successful ones. The obeervablas of
a concurrent logic program, in any of the languages surveyed, record the initial state and an
abstraction of the final state of every computation.

Compositional semantics for concurrent logic programs that are fully abstract with respect
to these observables were investigated by [59,65]. Other investigations of the semantics of concur-
rent logic languages include [9,44,5930,110,131,204]. However, since the work on the semantics of
concurrent logic languages is in a state of flux we do not survey it here.

10. Flat GHC: A Language With Non-Atomic Unification

Flat GHC is the flat subset of the language Guarded Horn Clauses [198,199] (see Section 18). Flat
GHC, augmented with a control meta-call primitive discussed in Section 10.3 below, is the basis
of Kernel Language 1 [55], the core language of the parallel computer system developed at ICOT
as part of the Fifth Generation Project (195].

We consider two variants of Flat GHC. One called FGHCsv, for Flat GHC with atomic vari-
ables, and the other called FGHC,., for Flat GHC with non-atomic variables.

FGHC., is derived from the original definition of GHC [198], and it is quite similar to FCP().
The difference is that in FGHC., a unification specified by the goal T, = T2 need not be carried out
atomically. Saying it differently, a program in FGHC. cannot specify that a compound unification
is to be carried out as an atomic operation. We have found only one implication of this difference in
terms of expressiveness: FGHC.., requires slightly more elaborate code than FCP() to implement
the short circuit technique.

FGHCW. has an even finer notion of atomic actions. Intuitively, in FGHCasV even the instan-
tiation of a variable to a value need not he done atomically, and several occurrences of the same
variable can be instantiated to different (conflicting) values simultaneously. If such a conflict occurs
it is eventually detected and results in failure. However, in FGHCU, there are intermediate states
of the computation in which the same variable may have different values, whereas in FGHC., (and
in FCP(I)) this cannot happen.

This property of FGHCW. is a consequence of the principle of sati-substitati (199, 197],
also called loicel referenial transparenc 

17 
The principle states, informally, that an occurrence

of a variable X can be replaced in any context by a new variable X', provided the equality X =
X1 is *added" to the context. The principle is motivated by semantic elegance, and it justifies a
wide range of program transformations (204]. Operationally, it allows the 'decoupling" of different
occurrences of the same variable, and instantiating them to different values. In such a case the
inconsistency between the instantiations is detected eventually, and failure results.

The main difference in terms of expressivenem between FGHC, and FGHC, is that in
the latter the short-circuit technique cannot be used to detect the successful termination of a
computation. The reasoi is that the closing of the short circuit, both in the original version
described for FCP(I), and the variant described for FGHC., below, cannot guarantee that only
consistent instantiations have been made. It is still possible that two occurrences of some variable
in the computation were instantiated to inconsistent values, which would result in failure pst the
closing of the circuit.

It seen, that without additional facilities, such an the control neta,-call discussed below,

17 By uagm RIsewod.

- 53 -



detection of successfuil termination of a computation cannot be specified in FGHCow. Saying it
differently, FGHCSY cannot reflect on successful termination, unlike FCP(j) and FGRCIW.

The initial informal description of GUC [198] takes the atomic variables approach, an well
sthe treatment of GIC in [157]. Subsequent theoretical work on GHC embraced the anti-

substitutability principle (198], and thus imply non-atomic variables. The practical work at ICOT,
however, still adheres to atomic variables: the KL1 language designed and implemented at ICOT
is essentially FGHC. augmented with a control ineta-call [90].

Although the impelementation work on GIC and KL1 adopted the notion of *flatneese enm
ployed in this paper, Flat GHC wan defined formally only recently [2041 under the name erheo-
retical Flat GECI. The notion of flatness sed there is a bit different from ours.

In the folowing we relate FCP(I), FUHCwI and FGIC., with regard to the short circuit
technique, and show simple embedding. of FGHC.v in FCP(J), and of FGHC,. in FGHCa,,. The
syntax and the try function are the same for FGHCv, and FGHC0 5 ,. The difference is captured
in an additional Anti-substituate transition for FGHCU. described below.

10.1 The language FGHC.,

Definition: An FGHCW program is a finite sequence of guarded clause that include the unit
clause:

x = x.
and the classes:

f (XI,X 2 , X. ) f f(YI,Y 2,-. ., Ya) .- Xl= Y1. X2= Y2,-. ,X=
for every function symbol fu, a > 0, occurring in some clause whose head predicate is different
froen'='A~

asuaim
The fact that unification need not be done atomically is captured by the equality clauses, which
allow a compound unification to he performed piecemeal.

The FGflCvtUrfunction is dfned as follo@.Let C =(X=X2 ... be arenming of a
unification clause in P.

frI.*c(TI=T2,C) = mga((TI,T2),(XI,X 2 )).

The try function for the other clauses of P is defined as for FCP(I).

Noesu:
1) The smmntce of the unit clause X = X in FGHCav is identical to that of FCP(I), since

asea((TI,T:),(X,X)) = mgu(Ti,T 2), if X does not occur in Ti and T2.
2) The atomic operation in FGHCa. is assigning a variable to a variable, or assigning a term

whose argumnents are distinct variables to a variable. The first action is allowed by the unit
unification clause; the second by the other clauss. We do not prevent larger atomic actions;
we simply do not require them, by permitting smaller one.

Comparison of FGHCa, with GoP()
The main implication of the lakof atomic unification in FGHC in terms of expressveness is
that FGHC. cannot use the short-circuit technique an specified to detect the termination of a
computation. In FCP(I) one can perform the unification of the underlying computation X =

15We soesa ihUat as hniia @W deoso metasla fesetis s ymbols which do not ocur in he program

AheraaZdv* - equelley clamu has to he adsd for avvry fimotien symbol aliowed in a goal. er a generl
zeem uve daltemoo ei~aUoto, ug th Prelog-ikepredIcates facter and off should beused.

-54-



Y and closn the short circuit L-R atomically, within the same compuned uniftion (XL)
(YR). In FGECov one needs fist too perform the unification X =Y, wait fat it to complete
using matching, and only thin close the short-circutl' [his can be achieved by the procedure
-*adI-*-cse.c(X, Y.L-Z), defined using the auxiliary procedure stcLanu-cloesc as follows:

unifW.ad-dosa-sc(X,YJI-R) -
XrsY, -- maced.ls -cXY,-R).

unac~nd~cosescX,X,L-R)
L=R.

Note that to detect the termination of an underlying computation, anify-sadclnse-ic must be
used instead of '=' throughout the underlying program.

The FCP(I) terminationi detecting meta-interpreter shown in Section 7.7 above is also en
* FGHC weas-interpreter. However, the unification performed in the body of the clamse:

reduce(X=YL-R) .- (X,L)--(YR).

behaves differently in FCP(I) and FGHCW. The modified version of the short circuit can be used in
an FGHC,w termnination detecting meta-interpreter, by replacing the above claim with the clause:

reduce(X=YL-R) - unifyndclose.sc(X,YL-R).

The difigrence between FCP(I) and FPGHCar can be observed by composing a program that
does the compound unification f(X, Y) -f(el) with aprogram that natches either X = a o Y

4 , then unifies the other variable with c. Such a program in the -am in FCP(j) and FGHC:

test(&,Y) - Y=c.
test(X,b) - X=c.

If this FCP(I) program were to execute using the goal:

test(XY), f(alb)=f(XY)
the terminal state would never contain a substitution in which X := catr Y := c. As an FGHC.,
programn, some executions will have X := c and some Y := c, since FGHCv cannot specify that
the two unifications X = a and Y = 6 be carried out atomically.

An attempt to establish the diffierence in power between languages with and without aoi
unification was mae by Sarsawat [1551.

Anebdigof FGHC.Y in FC()
;FIC,,can be naturally embeddin FCP(I) using the following compiler. The compiler trans-
laties an FGHC,. program P to FCPQ) clause-wise. In every claim, it replace every body gOal
X = Y with the goal a(X, Y), where nify/2 is apredicatenot occurring in P. It adds to the
resulting program the clause:

unify(XY) .- X=Y.

and for every function symbol flu occurring in P, the clause:

UnifY(f(X1 ,X2,. . 4,-)ArY 1 , ,.-,Y%)) -
unify(X1 ,Y2), unify(X2 ,yll). ,UnifY(X,,,Y 0 ).

This completes the description of the compiler.
Like in the definition of the semantics of FGHC.,, the effect of the ddfnition of saifp/2 is

that a compound unification can be carried out either atomically, using the first clause, or non-
atomically, using the other claues.

is Thie &Ined le due 9. E.D. Tribble

-55-



10.2 The language FGHC,

M tx of FG C . is the oam a that of FGIHC..

The difference between FGHC., and FGHC., namely the anti-ubstitutability principles, can
be modelled in our framework by extending the transition system of FGHC,, with the following
transition:
a Anti-substitute:

(G;8) - , wX=Y;O)
where Y is a variable that does not occur in G, and G' is

obtained by replacing one occurrence of X by Y in G.

This transition directly models the principle of anti-eubhtitutability. However, a stated, it allows
almost any FGHC", program to diverge, by alternating the introduction and elimination of the
equality goals using Anti-substitute and Reduce".,. To prevent this, additional complicated
fairness conditions need to be incorporated.

Note that the Anti-substitute tanition may caiue a conditional answer substitution to contain
inconsistent assignments. We have defined substitutions to be functions, i.e. have a single value
for a variable. This has to be modified in order to specify observables for FGHCW.

The difficulty in modellinS the semantics of FGH ,V can be attributed to the need to ac-
cofinodate incosistent constraints on the values of variables. The method proposed by Maher
[1241 and further developed by Sarswat [156,157], suggest another method for modelling this. The
method is to separate the goal atoms into "pool?, each containing its own binding environment,
and add explicit transitions which communicate equality constraints between pools. Failure occurs
as soon as one of the pools detects inconsistency.

-m of FGHC,, with FGH .
FGVRC could use the liort-circuit technique to detect successful termination of a computation,
albeit with some additional effort. The technique is not applicable in FGHCS,,.. It is possible that
the unifications emecuted by the monitored computation are incoistent, without this inconsistency
detected prior to the dosing of the short circuit. Thus, unlike in FCP() or FGHCv, the closing of
the short-circuit is not a reliable indication that the computation has not failed. Technically, the
Anti-substitute transition incorporates in the underlying computation unifications which are not
threaded via the short-circuit. Even if the short-circuit closes, the new unifications introduced by
the Anti-substitute transitions can subsequently fail.

An embedding of FGHC S, in FGC,Y,
An embedding of IGHCRv in FGHC.v consists of a clause-wise compiler and the identity viewer.
For each clause, the compiler iteratively performs anti-substitution to any variable that occurs
more than once in clause body atoms other than equality, until no such variables are left. By
doing so, the compiler "decouples" every variable that may be used for communication, and adds
equalities to clause bodies. These equalities will eventually unify all decoupled occurrences of each
variable.

10.3 The met-call construct

The ability to reflect on the termination and failure of a computation is essential to a systems
programming langu ge, but FGHC. (and FCP(Q)) cannot do the latter, and FGH"C. can do
neither, without reifying unification. The problem can be solved in two different ways. One is
to strengthen the basic mechanism of the language. Atomic variables are sufficiest to reflect on
termination. To reflect on failure, atomic test unification is needed, a incorporated in the stronger
variants of FCP(I) shown in Sections 14, 15, 16 below.

- 56 -



Another molution, which was taken by the developers of both GHC and PARLOG, is to add to
the language a meta-level construct, which has 'built-n" reflection and control capabilities. There
are several variations on the construct, originally proposed by Clark and Gregory [22]. One variant,
which is referred to in the following as the coatrol mets-call, has the form call(Goel,Siuash, Events),
where Sigas, is a stream of ({usped, resume, abort), and Eents, is a stream of {aupended
resumed, filed(Gol), Ased, abortedl, the last three being terminal events.

The intuitive semantics of the control meta-call is as follows. A computation of a goal G
is started under the control meto-call using the goal cds(GIa, Out). if some goal atom G' in
the computation fals, the msisage faied(G) appears on the Out stream. if the computation
terminates, the message hated appears on Out. To suspend the computation, the message suspend
is sent to the Is stream, and when suspension occurs the acknowledgement message suapeded
appears on Out. Similarly, to resume or abort the computation the mesage resume or alorf is
sent on In, and the corresponding acknowledgement minage resumed or aborted appears on Out.
Using the control mete-call, a process in the language can start a computation and monitor it.

We refer to the language FGHC., augmented with the control meta-call as KLI [65]. The
actual meta-call implemented as part of PIMOS [18], the KL operating system, also indudes
resource management facilities: a computation is allocated some CPU time and some memory,
and when either of these is consumed it announces resource overflow and suspends. It can be
resumed by providing it with additional resources.

The control meta-call eliminates much of the freedom of non-atomic varibles. For exam-
ple, it can be used to detect the successful termination of unification, a capability not present
in FGHCI. Hence its implementation restricts the kind of algorithms that can be used in a
distributed implementation of the language; in particular, the algorithm must incorporate some
form of distributed termination detection.

In comparison with the meta-interpreter of FCP(j) shown in Section 7.7, the meta-cal con-
struct reflects on failure, whereas an FCP(j) meta-interpreter cannot. On the other hand, an
FCP() meta-interpreter can produce snapshots, whereas the standard meta.-call constructs cannot
(although Gregory et 1. [67] have proposed an enhanced control mets-cal that does). We will
come back to the mete-call when we discun FCP(:) in Section 14.

Yet a third approach is to construct a mets-interpreter that reren unification, and extend it
in various ways. A first step in this direction was taken by Tanaka (1621.

11. Flat PARLOG: FGHC Extended With Sequential-Or and Sequential-And

The PARLOG language [21], described in Section 18, preceded GIC, but went through several
evolutions that made it closer to GHC [24,6,145)]. In the earlier definition [213, referred to as
PAIRLOG83 by [145], the output mechanism was assignment, rather than unification. In the latter
definition [66], refered to as PARLOG86 by [145, the output mechanism was (non-atomic) unifi-
cation, as employed by GHC. PARLOG consists of two sublanguages: the single-solution subset,
and the all-solutions subset. The latter is essentially Or-parallel PIolog. Here we concentrate on
the fiat subset of the former. The non-flat language is discussed in Section 18. Presently, the main
difference betw,t the computational models of the single-solution subset of PARLOG and GBC
is the sequential-Or and 6quential-And construct& of PARLOG. In addition, PARLOG offers a
surface syntax which contains mode declarations. For example, using modes, the PARLOG append
program could be specified as follows:

mode append(?,?,T).
append([XjX],YsjIXZ) - append(Xs,Y,Z.).
append([ j,Ys,Ys).

This program is then translated to PARLOG standard form:

-57



append(X@,Y*,Zs)
Xs t-_ [~Xs I Zsn4X174I appetd(Xa',Ys,Zs').

append(Xs,Ys,Zs) -
X2 4M (II Y-=41.

where 4= is PARLOG's input matching primitive. This Program in operationally identical to the
Flat GHO program:

F a&ppend([XIX9],Ys,YA) .- 7a=PCI~t], append(Xs,Ys,Zs').
append([ ],Ys,Zs) - Ya=Zs.

Several proposals were made for a Aat suzbset of PARLOG [66, 106,49). The Flat PARLOG of
Foster and Taylor [491 is essentially Flat GHC with mode declarations as surface syntax. Recently,
a language called Strand (188] was derived by Foster and Taylor from their Flat PARLOG language
by restricting the output mechanism to be assignment, rather than unification. Strand is essetially
a fiat version of PARLOG83, with sequential-And and sequential-Or eliminated. PARLOG83 and
Strand are not success stable.

Our definition of Flat PARLOG is based on the KPAND T. language of Gregory (661. The
Ian %nage is Flat CRC augmented with sequential-Or and sequential-And. We investigate each of
the two extensions to Flat GRC separately, denoting the resfultant languages FP(; and FP(&).
Fr: the sake of uniformity we use the Flat GC0 syntax inatead of the PARLOG standard form
synitax. The translation from the Flat PARLOG syntax to the Flat GHC syntax is straightforward.

in the following we refer to the language combining FP(;), FP(k), and the control metacall
a-. Flat PARLOG. Although the subject is not discussed explicitly in the PARLOG papers, we
F:, i ne that PARLOG has atomic variables, and hence consider Flat PARLOG to he an extension

rFGHC., rather than of FGHC.,,,.

11 The language FP(;
,.-he language FP(; allows the specification of sequential-Or clauses, Ci;C2; .. .;C,,, where each

isjunct CQ is an ordinary guarded clause. The idea of a sequential-Or clause is that the guarded
zlae Q~ can be selected only if the clause tries of the clauses C1 ,. 4C,_ fail. The connective';is
alled sequeaial-Or. The similarity of sequential-r clauses to if-then-else constructs in procedural
,inguages and to conditionals in Lisp is apparent.

'yntaz

Definition: Sequential-Or clause, program.
4 A seneal-Or clause is a guarded clause or has the form C1 ; C2

where C1 is a guarded clause and Q-2 is a sequential-Or clause.
An FP(;) programn is a set of sequential-O clauses, augmented with unification clauses as in
FGHC. I

The fr ,, function is defined as follows. For a ccnditional clause CI;C2

1r%,q,)AC1Q-2 fr~r,,(A,C1) if lrp.p,,(A,Cj) # fail
LVPU.()(ACl;2) ~try.p(,i(A, 2) if hvyc(A, CI) = fail.

F'or a guarded clause C

tril,)(A,C) = renA,)

An embedding of FP(;) in FG11C. with otkerivise
['he embedding consists of a clause-wise compiler. Its method of compiling sequential-Or into

.rcrwuae (introduced in Section 7.6) is similar to the one used by Codish and Shapiro [29] to
elaea non-fiat langrage into a flat one.

-58-



The general idea is to reify clause selection, by explicitly programming the commitment oper-
ation. Each sequential-Or clause CI;C-2 ;...;C6 is trsnslated into a different procedure consisting
of = guarded clauses by adding otherwise to the clauses GC,...,.Cm. This ensures that a disjunct
can succeed only if all previous disjuncts fail. The head predicates of clauses resulting from each
disjunctive clause are renamed to form the new procedure.

A call to the original procedure is translated into a conjunctive call, one goal for each of the
new procedures. The single-round mutual exclusion protocol shown in Section 7.4is used to ensure
that at most one of these goals would "commit", i.e. proceed to execute the body of the selected
disjunct of that sequential-Or clause. The other goals terminate quietly without causing any effect.

More specifically, an FF(;) procedure of the predicate p/a with k sequential-Or clauses is
translated into 2k FGHCs, procedures as follows. The iIA conditional clause Ci;C-;. .. ;C,. is
translated into the two FGHC., procedures tesrt~i/k.4- and ¢ommit-pi/k+l. Each disjunct Ci
(p(TI,T 2 ,..., Tk) - G I B) is translated to the clauses:

teast-p(T 1 ,T 2 ,.,Tk,Commit) -

otherwise, G I
Commit=lock(Reply),
commit.p.(Reply,T1,T2,. • .,Tn).

commit-pi(granted,T1,T 2,...,Tn) - B.
commit-p,(refused - ....-

And the call to p/n is translated to calls to the tet-p procedures using the clause:

p(XI,X 2 , ... ,X) -
teLp1 (XJ ,X2 ,.•.,X,CommitI),
tesLp 2(X ,X2 , .. ,Xn,Commit 2),

tesLp,,,(Xi ,X2 ,., .,XnCommitm),
mutex(Comnmit1,Commit 2 ,. .,Commit).

where the th clause of mater/n is:
mutex(Commitl ,..,lock(Reply),...,Commit,,) -

Reply=granted,
Commit 1=lock(refused),
Commit 2 =lock(refused),

... (excluding Commit,)...

Commit,,,=lock(refused).

As the translation shows, there is a close relationship between sequential-Or and otherwise, and it
can be said that they were both designed to solve the same problem. Which construct to prefer is
largely a matter of taste. Both destroy clause-wise modularity and are easily open to abuse, and
therefore should be used sparingly. Sequential-Or is more appealing in being general and uniform.
Otherwise is more restricted (it can be viewed as a special case of sequential-Or [154,156]), as
perhaps appropriate for an exceptional construct, and the cases in which it is les convenient than
sequential-Or for its purpose are rare.

11.2 FP(&)

The language FP(&) is FGHC, augmented with sequential-And. Adding sequential-And to a
language that supports dynamic creation of proces complicates both the definition and imple-

- 59 -



mentatioa of the language. In defining the operational semantics, the state of the computation
cannot be represented by a sequence of goals. A tree of alternating sequential-And and patallel-And
nodes, whose leaves contain the goals, is required. The definition of a transition is also complicated

p by the constraint that a go" can be selected only if it can be reached from the root by selecting
the left-mast branch in every sequential-And node.

Because of this complication, FP(&) does not fit the semantic framework we described. In-
stead, we define the syntax of FP(&), and provide it with semantics by embedding it in FGHC.,,
using the short-circuit technique.

T he compiler of the embedding translates each FP(&) program P into an FP(&) interpreter
written in FGHC.V, augmented with the standard clausal representation of P. Since FGHC., can
be embedded directly in FP(&), using the identity compiler and viewer, this shows that the two
languages and practically identical from an expressiveness point of view.

Definition: FP(&) clause and programn.
" An FP(&) clause is a formula of the form

A -G,-.,Gm ~. I "m >0
where the A and Gi's are as before, and each B, has the form:

A & ... &Ak (k>O0)
where each Ai is an atom.

" An FP(&) program is a finite sequence of FP(&) clauses.3

Let P be an FP(&) program. Translate each clause:

A - G I B.

of P into the FGHC.. clauses:
clauae(A,B") - G I B'=B".

where each unit goal G in B with predicate other than '=' is replaced by goal(G) in B' and

A - reduce(A).

where clause and reduce awe predicates not occuring in P. Call the resulting program P.
An interpreter I of FP(&) in FGHCS, which assumes this representation, is defined as follows:

reduce(A) -
reduce'(A,done-Done).

reduce'(true,L-R) .- L=R.
reduce'(X=Y,L-R) -unify..and..closeasc(X,Y,L,R).

reduce'((A,B),L-lt) reduce'(A,L-M), reduce'(B,M-R).
reduce'(A&B,L-FL) ~-reduce'(A,done--Done), wait(Done,B,L-R).
reduce' (goal(A),L-R) - clau*eA,B), reduce'(B,L-R).

wuit(done,A,L-R) - reduce'(A,L-R).

unify..and..close..sc(X,Y,L,R) .- See definition in Section 10.

The interpreter implements A & B by executing A and suspending the execution of B until A
terminates. Recursively nested sequential and parallel And's, which may be created by recursive
procedures, are handled correctly, by starting a new short circuit for every sequential component.

The compiler c is defined to map P to PI U 1. The viewer v is the identify function on the
predicates of P, and hides the predicates clause and reduce. The observables of an FP(&) are then
defined to be Y(rrc(P)fl).



Not only the direct definition of sequential-And is quite complex, but also its direct imple-
mentation. First, without complex data-structures it may take an unbounded amount of time to
find the next process to execute - the amount is determined by the depth of nesting of sequential
and parallel And's. Second, in a parallel implementation of the language, executing correctly the
conjunct A & B requires performing distributed termination detection on A.

The interpreter of FP(&) in FCP() solves the two problems by delegating them to the under-
lying implementation of FGHC&,: the proces suspension and activation mechanism of FG11C.,
wakes up the wait process when its first argument is instantiated to done. The short circuit tech-
nique combined with the implementatiou of unification with atomic variables essentially realizes
a well-known distributed termination detection algorithm based on distributed counters 1158) (see
discussion in Section 7.5).

12. P-Prolog& - Synchronizing Deterministic Logic Programs

In the languages presented so far synchronization was achieved with matching, specified by clause
heads: a clause try suspends if its matching with the clause head, or checking the gusrd, suspend.

An alternative approach to synchronization in concurrent logic programming was proposed
by Yang and Aiso [209,210), and incorporated in the language P-Prolog. Although P-Prolog
incorporates also an all-solutions Or-parallel component, we do not discuss it here. We focus on
its other component, which employs a novel synchronisation mechanism called exclseve gerded
Hors classes. We refer to this language subset as P-Prolog.

P-Prolog. does not use matching for synchronization. It uses goal/clause unification, rather
than matching, and employs the following synchronisation principle instead: the reduction of a
goal with a clause is enabled when it can be determined that the reduction with aft alternative
clauses is failed. In other words, a proces is suspended as long as it has more than one clause to
reduce with. It reduces if it has exactly one clause to reduce with; it fails when it has none. A
process never makes an Or-nondeterministic choice.

The appeal of this synchronization principle is in the following lemma, a variant of which is
due to Maher [124]. The lemma implies that the And-nondeterminism of P-Prolog does not &Bect
the result of computations.

Lemma: Equivalence of P-Prolog. computations.
If a P-Protog program P has a successful computation from a goal G then every computation of
P from G is successful and the answer substitutions of all such computations are the same (up to
renaming). I

7""utax of P-Prolog. is the same as that of FCP(J).

We define the P-Prolog. try function, tryp,., using the auxiliary function tr',,. Note that trp,.
is essentially tip,. augmented with guard evaluation, The programr P is an additional parameter
of the functions.

f U if mrs(A,A') = 0 A checking GO succeeds
tr'w,(A',(A,-GIB),P) fail if mga(A,A') = 0 A checking GO fails

V mss(A,A') =fail
*%xspend otherwise

6 if trp',p(A, C,P) =S A tr4(A, C',,P) fail

tvpu. 1(ACP)- for every C1 E P, C' it C
fai if try',p(A,C,P) = fail

*sspead otherwise

I l



The advantage of P-Prolog. in that the order of execution of processes is immaterial, since if a goal
has a succesful computation, then all of its computations are successful and produce the same
answer substitution.

The determinism of P-Prolog. limits it to algorithmic applications, since it cannot implement
system programs such as a stream merger and an interrupt handlers

0 
Most algorithmic concurrent

logic programs can be written in P-PrologX quite easily, without the need to distinguish between
matching and unification. This implies that some P-Prolog. programs can be used in more than

one 'mode'. Consider, for example, the P-Prolog. append program:

append([XIXs],Ys,[XIZs]) - append(Xs,Ys,Zs).
append([ ],Ys,Ys).

This program can be used to append two lists, as usual. However, it can also be used to compute
the difference between a list and its prefix, using, e.g., the call:

append([l,2,3],Ys,[,2,3,4,5,6]).

This is possible since at most one clause head unifies with the initial goa, as well as with subsequent
goals, and hence goal reduction can proceed.

The practical advantage of this 'multiple-mode' ability is questionable. In practice, few logic
programs are used in more than one mode. When they do, the two common modes are output
generation and testing, which can be employed by all other concurrent logic languages mentioned,
rather then inverting the roles of input and output within a single clause, which is unique to P-
Prolog. and its superset ALPS (and is available in a more restricted sense also in FCP(?) and
FCP(:,?) introduced below).

Furthermore, P-Prolog. uses unification in the head. As mentioned in the discussion of FCP(?)
in Section 15 below, this generality seems to impede program readability and maintainability, since
often the intended mode of use is known and fixed, but is not communicated by the code.

Embedding P-Prolo&. in FCP( )
The implementation of P-Prologx is not trivial. A naive implementation would be to try all clauses
whenever a process reduction is attempted; return to the successful clause if only one exists, or
suspend on all variables instantiated during clause tries if there were more than one successful clause
try. The overhead of this scheme seem unacceptable. An efficient implementation of P-Prolog,
seems to require a complete analysis of all possible call patterns, which is also quite complex.

To establish the relation between P-Prolog. and other languages in the family, we show here
an embedding of P-Prolog. in FCP(I). The idea of the embedding is as follows. For each goal

atom in the source program we create a controlling process, and for each source clause potentially
unifiable with this atom we create a reduction process simulating the attempt to reduce the goal
atom with the clause. The reduction process operates as follows. If it detects that it cannot
perform the simulated goal/clause reduction, it informs the controller. If it receives a permission
from the controller to reduce, it simulates the reduction.

The controlling process counts the number of clause try failures, and when all but one clause
have failed, it permits the remaining one to try and reduce. This behavior is achieved by the
following translation

2 l
.

Each P-Prolog clause A - GIB is translated into an FCP(I) procedure with three clauses.
The purpose of the first clause is to fail as soon as it is determined that the goal atom does not
unify with the head of the source clause or the guard fails. It can never succeed. The second clause

20 Althmou an ad oc extension to allow this was proposed (2101. Another extension. ALPS, is discussed in the
21 t nsctoi.

31 This trsatewas developedin eolboaienwith M. Maher. .adbenefited from comnu~ts by V.A. S-wt

- 61 -



informa the controller if the first clause has failed. The third dis.use reduces if permission is given
from the controller.

Specifically, let C1,C2,. . ., Ck be the clauses of the P-Prolog, procedure p/a. It is translated
into k+I FCP(I) procedures, p/a, pr/%+2, p2/a+2, ... , pk/*+2 , which use two auiliary pro-
cedur, a- follows. The ieA clause p(Ti, Tv.,;. ., T,,) - GIB of the P-Prolog, procedure p/s is
translated into the FCP(I) procedure:

........................................Tn,-.,foo) -G I true.
pi ,-,_,Failed_.) -otherwise I Failed~failed.

Pi(X,,X2 s.. Xn,go,) G- I (X1 ,X2 ,.. .,Xn)=(T1 ,T2 .. ,Tn), B.

The FCP(I) procedure p/u is defned s follows:

P(XI,X2 , . X,) -

P2(XI,X2,. ,52)

Pk(XI,X2 ,..-.,X,,S,-),

XOk(S1,S1I.S)

where corA; is defined as follows:

xork(Go,fsiled,fsailed,. . ,failed) - Go=go.
xork(failed,Go,failed, . ,failed) .- Go=go.

xork(failed,failed,.failed,Go) - Go=go.

with Go on the diagonal, and failed anywhere es.
The translated program operates as follows. The procedure p/s spawns k parallel clause

processes pi, one for each of the original p/n clauses, plus a cork proces. If the OI clause process
fails it unifies the Si variable with failed. T1,- cork process counts k-i failures, and unifies go with
remaining variable, which enables the remaining clause process to reduce if it has not filed yet
Note that the FCP(j) program fails whenever the source P-Prolog1 program fails.

The translation assumes that the unification implied by P-Prolog,'s Reduce transition is
atomic. If it is non-atomic, then the exact samne embedding can be used with lFG C., or G ,.
as the target language, depending on the kind of nonatomicity allowed.

13. ALPS - An Jntegration of P-Prolog. and FGHC

ALPS was proposed by Maher (124] as an algorithmic concurrent logic programming language
ALPS goal reduction rule states that a Soa can he reduced with a clause if either this is the only
candidate clause left (the P-Prolog, rule), or the reduction does not instantiate variables of the
goal (the FGHC and FCP(I) rule).

In particular, the FGHC unification primitive is definable in ALPS using the single unit clause:

x = x.
The reduction of the goal T1 = T2 with this clause is enabled if T, and 2 are unifiable, using
the P-Prolog rule, since this is the only candidate clause. Unlike FCP(I), and like FGHC, the
unification specified by such a goal need not be carried out atomically. In particular, the transition
system of ALPS defined by Maher realism. non-atomic variables, ss in FGBC..,..

ALPS was defined in the general setting of constraint logic programming [921; we address this
aspect of the language in Section 21.

-63



Embedding FGHC .- and P-Prolog, in ALPS
FGHC.. can be embedded in ALPS using a compiler that duplicates each clause, and the identity
viewer. Clause duplication prevents the resulting ALPS program from "eagerly" reducing using
the determinacy rule, since no goal is ever determinate

2 2
. P-Prolog. can be embedded using the

embedding into FCP(I), shown in the previous section, assuming unification need not be carried out
atomically. ALPS can be embedded in FGHC much the same way that P-Prolog& was embedded
in FCP(I).

Discussion
The transition rules of ALPS are more 'eager' than those of FGHC. This means that some programs
which deadlock as FGHC programs may proceed as ALPS programs. The practical implications
of this difference are yet be determined. The benefits in terms of added expressiveness are un-
clear, and the comment on P-Prolog apply here as well. In addition, the difficulties in efficient
implementation of the ALPS language, compared with FGHC, seem substantial.

14. FCP(:) - FCP(I) Extended With Atomic Test Unification

In FCP(I), FGHC and Flat PARLOG, a program can perform only matching prior to clause
selection. In the next set of languages shown, FCP(:), FCP(?), and FCP(:,?)

23
, a program can

perform unification as part of the test for clause selection, prior to commitment. If the unification
fails, it should leave no trace of its attempted execution; in other words, the unification attempt
should be atomic. We call unification which is tried before commit atomic test unification. In
FCP(I), atomic unification is a special predicate. In FCP(:) and FCP(:,?) it is definable, and in
this sense these languages are natural generalizations of FCP(J).

The first fiat language to combine input matching and atomic test unification is Saraswat's
FCP(4,I) [150,154]. This idea was generalized by Saraswat in the Ask-and-Tell framework [156],
which gave rise to the languages cc(l,I) [156,157] and the similar language FCP(:) [100] described
below.

14.1 The language FCP(:)

Syntax

Definition: FCP(:) clause and program.
" An FCP(:) clause has the form:

A ,- Ask : Tell I Body.

where Ask and Tell are possibly empty conjunctions of atoms, Ask atoms have guard test
predicates, and Tell contains only equality atoms. If Tell is empty, the colon is omitted.

" An FCP(:) program is a sequence of FCP(:) clauses. I
Semantics
The effect of a clause try of a goal A with an FCP(:) clause with an empty tell part is the same
as in FCP(!). If the tell part is not empty, the effect is as follows. First, the goal/head input
matching and the guard checking are performed. If they fail or suspend, the clause try fails or
suspends, respectively. If they succeed, then the unifcation specified by the tell is performed,
which can either succeed or fail, but not suspend. If it succeeds, the result of the clause try is

22 The clans.eduphaa. method is due to M. Maher.

23 Man pece but also move cumbemane narn. for thee Iaguae. am, respectively, FCP(:,I), FCP(?,I) and
FCP(:,:,I).

- 84 -



the substitution combining the ask substitution sad the tell substitution. If it fails, the clause try
fails.

Definition: Try function for FCP(:).
a Let Tell= (X 1 =Y, .... X=Y) be a conjunction of equality stoma. We define miti(Tell)

gs((X...Xn),( Y...Y)), and the try function to be:

OoG' if nstcA(A,A') = P A checking Auk# succeeds
A mgu(Tell) = 9'

fail if mgu(A,A') = fail V
try, ,)(

A ' ( A
' - Ask:TellIB)) m ing(A,A') = 0 A checking AWkO fails V

match(A,A') = 0 A checking As&G succeeds
A ings(TellS) = fail

suspend otherwise
Embedding of FCP(j) in FCP(:)

T'he embedding of FCP j) in FCP(:) is trivial. All the compiler does is to replace the unifica-
tion clause X = X by the clause

X=Y - true : X=Y I true.

This clause is necessary since '=' is a primitive in FCP() but not in FCP(:).

14.2 Programming in FCP(:)

Atomic teat unification enables numerous programming techniques not available in any of the
weaker languages introduced so far. These include multiple writers on shared variables, which
can be used to realize sophisticated synchronization protocols and blackboard-like arated data
structures; the ability to reflect on failure of unification, which enables the construction of failsafe
meta-interpreters that can be used to realize the control mets-call; the ability to record the logical
time in which a unification occurs, which is essential for computation replay and hence essential
to concurrent algorithmic debugging; and the ability to simulate Prolog's test unification, and
hence the ability to naturally embed Or-parallel Prolog and similar languages. We discuss these
techniques below.

Mutual exclusion and multiple-writer streams
Using atomic test unification, single-round mutual exclusion can be achieved with less machinery
than needed in FCP(I). Let ,. n be the processes wishing to participate in a single-round
mutual exclusion protocol, with unique identifiers Ij_.,. Add to each process an argument, and
initialize all processes with this argument being the variable ME. Each process pk competing for a
lock attempts nondeterministically unify its identifier 'k with ME, or to check that ME is already
instantiated to some I $ Ik.

A schematic description of each process is as follows. The kt
h 

proceau call L- p(ME, It,..

p(ME,I,...) .- true : ME=I I ... lock granted ...
p(ME,I,...) -- ME I1 ... lock denied ...

This technique is not a sulbstitute to the multiple-round mutual exclusion protocol shown in Section
7. However, in the special case that in each round the number of competing processes decreases
by one, it can be generalized, as follows.

Assume a set of processes pl,...,pk, where each pi may wish to deposit a message mi on
a shared stream Ms. Furthermore, assume that the maages are pairwise not unifiable. One
solution is to create a merge network for all these processes. However, if the number of processes
actually wishing to deposit their mesage on the stream is much smaller than k (as is the case with
exceptional messge streams), this solution is very wasteful. A more efficient solution in this case is
to extend the single-round mutual exclusion protocol above to streams, as follows. When wishing

- 65 -



to deposit a mnssage on Ma, the process nondeterministically attempts to do so, or to check that
another message is already there. In the second case it calls itself recursively with the tail of the
stream. Assume each process pi is called with Ma as its first argument and n% as its second, the
code of a procem is as follows:

p(M[s,M,...- true : Ms-4Mj-I I .. message sent; do other thin ga...

p(Ms,M,... - Ms=[- IMs' I p(MAW,M,- .
Using this protocol, if the number of minages to be placed on Ms is finitt, every process wishing
to place a message on Ma will eventually do so (assuming And-fairness).

The dinngphloopers
The smnlproblem of mutual exclusion is that of the dining philosophers (371. In this problem
" philosophers are sitting at a round table, with one fork between each two philosophers. To eat,
a philosopher requires two forks. Each philosopher goes through a cycle of eating and thinking.
The problem is to provide the philosophers with an algorithm that guarantees that they will not
deadlock, and that no philosopher will starve.

Using atomic test unification on multiple-writer streams it is easy to specify a deadlock-free
behavior for philosopher:

phil(Id,[eating(Leftld,done)lLeftJ,Right) - % Left is eating, wait till
phil(ld,Left,Right). % he is done.

phil(ld,Left,[eating(Raghtld,done)Iflight]) - % Right is eating wait till
phil(ld,Left,Right). % he is done.

phil(Id,Left,Right) - % Atomnically grab both forks
true : Left=[eating(ld,Done)jLeftj,
Right=[eating(Id,Done)IRightj I

.. eat, when done unify Done_-dobe,
then think, then become:

The program is independent of the number of philosophers dining. A dinner of a philosophers can
be specified by the goal:

phil(1,Forkl,Fork2), phil(2,Fork2,Fork3),.,phil(n,Forkn,Forkl).

whose execution results in each of the Fork variables being incrementally instantiated to a stream
of terms eetisg(Id, done), with the U's on each Fork reflecting the order in which its two adjacent
philosophers use it. For examnple, a partial run of this program on a dinner of 5 philosophers
provided the substitution:

Forki = [eating(1, done), eating(5, done), eating(l, done), eating(fl,-)II

Fork2 = featinS(1, done), eating(2, done), eating(l, done), eatirag(2,-)I]

Fork3 = eating(3, done), eating(2, done), eating(3, done), eating(2,-)I-

Fork4 = (eatiag(3, done), eating(4, done), eating(4, done), eating(3, done),
eating(4, done) 1 -1

Fork5 [eating(4, done), eating(4, done), eating(5, done), eating(4, done),
eating(5,-)I-

The run was suspended midstream in a state in which Fot*4 is free and the the 2"t and 51h
philosophers are eating. Up to that point each of the philosophers ate twice, except 4 which ate
three timess.

This program is much simpler then the Purlogild programn for the dining philosophers in [145].
The key to its simplicity is indeed the ability of FCP(:) to specify atomic test unification: a

-66-



philosopher atomically tries to grab both forks, excluding other philosophers from grabbing them.
The mutual exclusion is obtained by unifying the head of the Fork stream with a term containing
the unique Id of the philosopher.

The deadlock-freedom of the program is guaranteed by the language semantics. The program
can be further enhanced to achieve starvation freedom as well.

The duplex stream protocol
Processes placing messages on a shared stream need not be competing; they can also cooperate,
and use the shared stream for both communication and tight synchronization.

For example, consider a stream producer and a stream consumer, wishing to participate in
the following interaction. When the consumer reads the stream, it wants to read all the messages
produced so far by the producer. The producer produces messages asynchronously, but wishes to
know whenever all messages it has produced so far have been read. This can be achieved using
the following duplex stream protocol [1521. The producer places a message M on the stream
wrapped as wrile(M). The consumer, when reaching the end of the stream, places on it a read
message. From the consumer's point of view, successfully placing a read on the stream indicates
that it has read all messages produced so far. From the producer's point of view, failing to place
a nrite(M) message, due to the existence of a read message, is an indication that all previous
messages have been read. This is realized by the following code, where produce(MMa,Ms' ,Staf us)

places the message M on Ms, returning the remaining stream Ms', and Stat u=ucw if all messages
previous to M have been already read, Stafra=old otherwise. consume(Ms,Ms ,Rs) returns in Rs
the messages ready in Ms, and in Ms' the remaining stream.

produce(M,Ms,Ms',Status) -- true : Ms = [write(M)IMs] I Status=old.
produce(M,[resdjMs],Ms',Status) -- Ms-=(write(M)jMs], Status=new.

consume([MjMsI,Ms',Rs) - consume([MIMs],Ms',Rs).

consume'(Ms,Ms',Rs) - true : Ms=[readMs(] I Rs=[ 1.
consume'([write(M)Ms],MsW,Rs) -- Rs=MjRs], consume(Ms,Ms',Rs').

consume is two-staged so that it would not place a read message on an initially empty stream.
If the producer waits every so often for the consumer to catch up, then consume always

terminates.
The duplex protocol gives rise to a much more efficient and more flexible bounded-buffer

protocol than the FCP(I) protocol shown in Section 7.3. It is more efficient, since there is no
acknowledgement for every message, only one per 'batch'. It is more flexible, since the producer can
change its mind on how many messages to send without an acknowledgement, without consulting
or affecting the consumer, and with no need to change 'buffer-sise'.

CSP with both input and output guards
To demonstrate the power of atomic test unification, we show an FCP(:) simulation of CSP with
output guards [87]. CSP with output guards is notoriously difficult to implement, and hence Occam
[91], the practical realization of CSP, adopts only input guards. It is interesting to note that a
logic programming language with matching is sufficient to simulate CSP with input guards, but
a language with both matching and atomic test unification seems to be required to simulate CSP
with both input and output guards.

Consider two sets ot processes p,.,, ci,..,,, wishing to participate in the following
interaction. Some (possibly all) of the pi's wish each to interact with exactly one of the q's, but
they do not care which. Some (possibly all) of the ci's wish each to interact with exactly with one
of the pi's, but they do not care which. We would like a protocol, which, if there are i < n p's and
j < a e's willing to interact, then min(ij) pairs will do so. The protocol should be independent
of i and j, and allow i and j to increase dynamically.

The protocol is as follows [148]. Each p willing to interact sends to all the c's the incomplete

message hello(X). All messages sent by the same p have the same variable X, and the variables

- 67 -



in messages seat by different p's we distinct. Each c willing to interact does the following: it
nondeterministically and atomically selects one of its incoming hell(X) messages and unifies X
with its unique Id.

The program for the case of two p's and two c's is as follows:

p(X,ToCI,ToC2) - ToCl=hello(X), ToC2hello(X).

c(Id,hello(Xj),-) -- true: Id=Xj I true.
c(Id,_,hello(X2)) - true: Id=X2 I true.

The initial procem network is:

p(XI ,M 11,M1 2), p(X,M 21 ,M22), c(a,Mu,M21), c(b,M12 ,M22 ).

This process network terminates, and at the end of its execution exactly one of X, and X2 will be
instantiated to a, and the other b.

In this example the two p's and two c's were both willing to interact. However, the definition
of p and c is applicable also in the more general case, in which less are willing to interact on each
side, or that processes are added dynamically.

This demonstration of the power of atomic test unification also indicates that the distributed
implementation of atomic test unification is far from being trivial. It is discussed in Section 20.

Otherwise and reflection on failure
In FCP(I) it is possible to prevent failure of user-defined processes, by appending to each procedure
p the clause:

p(...- otherwise I ... report failure ...

However, there is no way to prevent the failure of the primitive unification process 1'=.
In FCP(:), on the other hand, since unification is definable, it is possible also to define failsafe

unification using the clauses:

X = Y - true : X=Y I true.
X = Y - X O Y I ... report failure of unification ...

More generally, it is possible to define a failsafe FCP(:) meta-interpreter, which, instead of failing
when the interpreted program falis, simply reports the failure. To achieve this we modify the clause
representation of the interpreted program, by appending to it the clause:

clause(A,B) -- otherwise I B = failed(A).

Using this representation, a termination detecting failsafe meta-interpreter for FCP(:) is defined
as follows:

reduce(A,Result)
reduce'(A,[ )-Result).

reduce'(true,L-R) - L = R.
reduce'((A,B),L-R) - reduce(A,L-M), reduce(B,M-R).
reduce'(failed(A),L-R) *- R--[filed(A)[L].
reduce'(goal(A),L-R) - clause(A,B), reduce'(B,L-R).

On a call reduce(A,Result), Result is instantiated to the (poesibly empty) stream of goals failed
during the com ttation. The stream is closed when the computation terminates.

14.3 Embedding KLI and Flat PARLOG in FCP(:)

The inability to reflect on failure without reifying unification made all the previous languages unable
to implement the control meta-call efficiently. Therefore to make them practical this construct has
to he introduced se a primitive into the language as discussed in Section 10.3.

- 68 -



We show how the control mete-call can be implemented in FCP(:), and thus provide an

embedding of KLI. in FCP(:). Combined with the techniques used to embed FP(;) and FP(&) in
FGHC,,, discussed in Section 11, the implementation of the control meta-call can be enhanced to
provide an embedding of Flat PARLOG in FCP(:).

Aimlenation of the control metacall in FCP(:)
Thuea-aIiplementation consists of two components: a mete-iterpreter, which can produce

events and is sensitive to interrupts, and a computation monitor, which provides the user interface.
The metsinterpreter requires the same clause representation of the FCP(I) interruptible

met&-interpreter shown in Section 7.7, augmented with the oeuswe came shown above and
an interrupt-sensitive clause. Each FCP(:) clause (including the unificationt clause)

A - Ask: Tell I B.

is translated into:

clause(AX,ls) - Ask: Tell I X=B'.

where B' is B transformed as in previous mets-interpreters, and two clas see appended:

clause(A,B3,ls) - otherwise I B=failed(A).
clause(A,BIjls]) - A=B.

The first teports failure of a reduction attempt. The second aborts the attusyt when snumug an
interrupt. Note that the order of the last two clauses is important: if they were switched, the
the meta-level process cleuse(A,B,Is) executing a failing object-level prssm A will seapend on
the interrupt stream Is rather then reporting failure. Th1s is snother dneontration of both the
subtlety and power of otherwise.

Using this representation, the following meta-interpreter achieves the daired behavim

teduce(true,ls,Ss,L-R) - L=R.
reduce((A,B),Is,Ss,L-R) - reduce(Ajls,Ss,L-M), reduca(DI,Ss,YA-R).
reduce(goaI(A),Is,Ss,L-R)

clause(A,B,Is), reduce(B,ls,Ss,L-R).
reduce(failed(A),ls,Ss,L-ft) -

serve..nterrupt(VPIul,A,Ss,L-R).

wnrte(M,MAs) - true : Ms=[Mj-I I true.
write(M,[MIMODI - write(d,M*).

The differences between this and the snapshot met&-interpreter of FMPI) shown in Section 7.7
above are the additionsl signals stream Ss, the clause added for handling prom failure and the
lack of a special clause for unification. The latter is not needed since the clause dfiig ='
is a normal FCP(:) clause which requires no special treatment. Failure is handled by placing
an appropriate message on the signals stream, using the multiple-writer stream protocol. This
is an example where creating a merger for each forked proes would have had an unaceeptable
overhead. Assuming either low rate of process failure, or that the computation insusmpended by the
controller as soon se failure is detected, the multiple-writer protocol would exhibit a much better
performance.

Note that if two unifiable proceses fail, only one msage is produced on the signals stream.
This oddity can be solved either by allocating unique identifiers to the meta-interpreter prcse
(which is inelegant and quite expensive), or, in FCP(:.,?), using the anonymous mutual exclusion
protocol, discussed in Section 15.

An alternative solution which does not ofe a multiple-writer stream is to use the short-circuit in
order to report failure, as in the failsafe FCP(:) mstainterpteter shown shove. The disadvantage of

-6g



this approach is tat the liot of failed Soalk will be seen only upon termination of the computation.
A computation monitor, which suspends the computation as soon as a failed goal is sensed, cannot
be programmed using this technique.

The definition of the computation monitor should be quite obvious now. Its top level is the
same as the meta call, cull(Go#,Si1J, Ereats). It invokes the meta-interpreter, keeping hold of
the ends of its short circuit streams. It searves signals coming from the outside by forwarding them
to the mets-interpreter, via the interrupt stream, and reports on events that happen during the
computation by placing them on the Eavets stream.

The meta-interpreter given serves as a specification of the required functionality of the control
meta-call. This functionality can be implemented by source to source transformation. The trans-
formation presently employed in the Logix system [84] which achieves this functionality results in
about 30% increase in runtime and 80% increase in code size. In (461, Foster reports an experi-
mental study that quantifies the cost of direct support for metacontrol functions, and compares
this with the cost of support by program transformation. The same paper describes extensions to
an existing abstract machine (49 required to support these functions. This study indicates that
direct support for the control meta-call need not be expensive, nor require complex implementation
mechanisms.

Discumion: atomic test unification vs. non-atomic unification
It is a subject of ongoing debate whether it is preferable to have a stronger language which can
embed nets-level functions such as the control meta-call, or to have a weaker language and provide
specific meta-level functions as language extensions.

The issue seems to be a tradeoff between simplicity at the implementation level versus elegance
and expressiveness at the language level. On one side of the debate are Flat GHC and Flat
PARLOG, with non-atomic unification. On the other side are FCP(,), FCP(:), FCP(?), and
FCP(:,?), languages, with atomic test-unification.

The main arguments for a weaker language, with non-atomic unification and a built-in control
meta-call, are:
a The base language is simpler to implement;
. The specialized mete-level construct can be added with leas overhead than via a general-

purpose language mechanism.
a The base language has simpler formal semantics, and is therefore better amenable to theoret-

ical treatment such as verification and transformation.
0 Atomicity of unification is not assumed by the theory of (pure) logic programming. Therefore,

it is important to write programs without relying on atomic unification whenever possible, and
a language with non-atomic unification encourages it. The resulting programs allow better
declarative reading

4 .

The main arguments for a stronger language, which has atomic test unification and can im-
plement mete-level constructs via interpretation and transformation are:
e Providing semantics for any specific meta-level construct as part of the base language is both

complicated and ad hoe (we know of no formal semantics for the control mete-call or similar
constructs, other then the one implied by the semantics of FCP(:) combined with the definition
of the control mete-call).

* The need for stronger meta-level constructs is continuously evolving (e.g. live and frozen
snapshots, sophisticated debuggers, etc. which are not provided by the control meta-call).
If these needs are met at the language definition level, rather than by interpretation and
transformation, the language semantics as well as implementation have to be continuously
modified.

e When atomic test unification is not employed, there is little or no runtime penalty compared

24 Thss lsit two pelnts w• eremxalvated by K. Uslds.

- 0-



to implementations of the weaker languages.
0 Should the efficiency of a direct implementation of a certain meta-level function be required,

it can be provided without affecting the language semantics. Such a direct implementation
tcan be viewed as a (possibly hand-coded) specialization of a function that could be provided

by the language itself.
0 There are other applications in which the added strength of atomic test unification is employed,

such - embedding Or-parallel Prolog [165], and debugging (see below).
0 It is not obvious at present that the semantics of the weaker languages is indeed simpler.

Recently, Sarsesat has proposed combining both atomic test unification and non-atomic uni-
fication in a single language [157]. Such a language inherits the complexities of both approaches,
and it is not clear at present what performance gains it allows.

14.4 Computation replay and debugging

One type of bug which is most difficult to diagnose in concurrent programs are transient, or lurk-
ing, bugs. Once a bug occurs in a sequential deterministic language, it is possible to repeat the
computation and analyze it with various tools. This is not always possible in a concurrent program,
unless special measures are taken. Specifically, all communication and all nondeterministie (sched-
uler and program) choices made during a computation must be recorded, so that if an erroneous
behavior is observed, the computation can be repeated.

We show an FCP(:) meta-interpreter that records scheduler and program (i.e. And- and Or-
nondeterminiatic) choices made by the interpreted program. This information is sufficient in order
to reconstruct closed (non-reactive) computations, in which all communication happens internally.
The meta-interpreter computes a tree data-structure called a trace, which reflects the process
reductions occurred in the computation. Each node in the trace contains the pair (TimeIadez),
with the time in which the process in that node reduced, and the identity of the clause used for
reduction. Given an initial goal and a trace of its computation, the computation can be repeated
by redoing the process reductions specified by the trace in the order specified by the Time field of
each node, and for each reduction selecting the clause specified by the Index of its node.

To construct such a trace, we assume that the underlying machine maintains logical clocks
[107], and that the language provides a new primitive, time(Time), which unifies Time with the
present value of the local logical clock. The clause representation is modified, to provide additional
information on the clause reduction: the logical time in which it took place, and the identity of
the clause chosen

25.

The i
th clause A - Ask : Tell I B of the program is transformed into the clause:

clause(A,X,lndex,Time) - Ask : Tell, time(Time) I X = B', Index = i.

Using this representation, a meta-interpreter that constructs a trace is defined as follows:

reduce(true,true).
reduce((A,B),T) - T=(TI,T2), reduce(A,T1), reduce(B,T2).
reduce(goal(A),T) -- T=trace(Index,Time,SubTrace),

clause(AB,Index,Time), reduce(B,SubTrace).

A computation reconstructor, which repeats a computation given an initial goal and a trace, can
be written quite elegantly using incomplete data-structures. It first serializes the trace using the
Time field, then executes the reductions in order, one by one. We do not show it here.

Given the ability to reconstruct a computation, algorithmic debugging techniques [159] can
be applied to concurrent programs as well. See [176,118,120] for details.

26 Inability to record the time In which a unificatiou occurs is what prevents the weaker languages hown from
replaying computations.

- '71 -



14.5 An embedding of Or-parallel Prolog in FCP(:)

The question of how to provide the capabilities of Prolog in a concurrent logic programming
languages has received considerable attention siace the beginning.

One approach was pursued by PARLOG [24,25,66], namely to provide two sublanguages with
an interface: the single-solution sublanguage, which is the counterpart of other concurrent logic
pr languages, and the all-solutions ublanguage, which is essentially an all-olutions
Or-parallel Prolog. A stream-like interface allows single-solution programs to invoke and control
all-solution programs.

Another approach was to embed Prolog in a concurrent logic language. The m succe in
this direction was Kahn's Or-parallel Prolog interpreter in Concurrent Prolog, discussed in Section
18. However, this interpreter relies in an essential way on the non-flat nature of Concurrent
Prolog. Initial attempts by Ueda [200, 201] and Codish and Shapiro [29], were successful in
producing efficient translations when the mode of unification of the source Prolog program could
be determined at compiler time. A more general, but less efficient, solution is described in (165], in
the form of an Or-parallel Prolog interpreter written in FCP(?), a language introduced in Section
15. Although originally written in FCP(?), the interpreter does not exploit properties of it not
available in FCP(:), and can be esily converted to this language. This implementation is not
as direct as the interpreter in Concurrent Prolog, but is still quite simple. Furthermore, if the
mode of subprograms can he determined, the interpreter can he gracefully interfaced to programs
implemented using the transformations proposed by Ueda. The execution algorithm employed by
the interpreter was proposed independently fci other purposes [3,4,28]; nevertheless, its practicality
is still under debate.

This embedding employs atomic test unification to implement Prolog's unification. Hence, un-
like the diajoint-sublanguagm approach, or the mode-based compilation, which is applicable to any
concurrent logic language, the embedding approach is not applicable to languages such as FCP(),
(Flat) GHC, and (Flat) PARLOG. Should the execution algorithm employed by the embedded-
language approach prove efficient in practice, its advantage over the disjoint-sublanguages approach
would become apparent, especially in the presence of specialized hardware for the execution of con-
current logic languages [5,74].

A variant of the algorithm can be implemented also in Flat PARLOG or KL1, using the control
mets-call. However, such an implementation would he hopelessly inefficient, since it would require
a new mets-call at every choice point, and cannot prune alternatives using test unification as done
in direct implementations of Prolog or in the Prolog interpreter in FCP(?).

Another approach, pursued by Saraswat [150,153,157] and Yang and Aiso [209,210] was to
incorporate in concurrent logic languages don't-know nondeterminism. As the resulting languages
cannot specify reactive concurrent systems, it is not an extension or a substitute for concurrent
logic languages. Assuming that an underlying reactive concurrent logic language is still desired,
the problem of integrating if with a parallel don't-know nondeterministic logic languages is much
the same as that of integrating Prolog: it can either be implemented separately, with some all-
solutions interface, as in the two sublanguages approach, or it can be compiled into a concurrent
logic language, as in the embedding approach. This is discussed further in Section 21.

15. FCP(?) - Dynamic Synchronization With Read-Only Variables

The language Concurrent Prolog [160] introduced a different approach to synchronisation, using
read-only variables and read-only unification. The approach is preserved in its flat subset Flat
Concurrent Prolog [128], also known as FCP, and called throughout the paper FCP(?) (read
"FCP read-only-).

FCP(?) mesma two types of variables, writable (ordinary) variables, and read-only variables,
and uses read-only unification, which is an extention of ordinary unification, to unify terms con-

- 72 -



taining read-only variable.. The r'ead-only operator, F, is a mapping from writable to read-only
variable.. When applied to a writable variable X, the read-only operator yield. a cowreapoadiag
read-only variale XF. The read-only operator in the identity function on terms other than writable
variable.

In the absence of read-onlj variables read-only unification is just like ordinary unification.
However, a read-only variable X? cannot be unified with a value. An attempt to unify X? with
a term other than a writable variable suspends. When the writable variable X ia instantiated to
some value T (by some concurrent unification) its corresponding read-only variable XF receive.
the value TP. This may release a unification suspended in an attempt to unify X? with some
value.

Whereas synchronization with matching is specified clause-wise and statically, synchronization
with read-only unification is specified termi-wise and dynamically. Read-only unification can be
used to achieve various forms of dynamnic synchronization, not acheivable otherwise.

15.1 The language

syntax
The syntax of FCP(?) is the same as FCP(I), except that a clause may contain read-only variable.

The semantics of the language is similar to FCP(I), except that goals may eontain read-only
variable., and the goal and the clause head ace unified using read-only unification instead of
matching.

Definition: Admissible substitution, read-only extension, read-only mgu.
s A substitution 9 is admissible if X99=XI for every variable X.
s The r-ead-only extension of an admissible substitution 9 is the unique idempotent substitution

97 satisfying X(O?) = XO and XFO7 = (XfI)I for every writable Variable X.
* The read-only ings, mgay of two terms T1 and T2 is defined by:

J ~ if ingu(TI,T2) = 0, 9 admissible
fngla?(TI,T 2) = feail if -09MT, TO) = failI

saupend otherwise

For example, {Xt-e) is admissible but {Xfo-.s) and (Xe--d,X?,-s) are not. The read-
only extension of {Xi-s,Yi--Z) is {Xi-s,XF,-.,Yi-Z,Y?"-Z?). mrga (f(X,Y)J(s,Z)) =
{(Xi-#a,Xli-s, Y'-Z, Y?i ZF}, and both ingv,(X? a), mp"~(, 9 , ~~),ad g.fXX)
f(a,b)) = ssspei;4

20

The try function of FCP(?) is the same as that of FCP(I), except that it use. ings instead of
mte&, and it returns suspend if the read-only unification of the goal and the head is inadmissible
due to read-only goal variable, and fail if it fails or is inadmissible due to a read-only clause variable
only (since the latter state is stable).

15.2 FCP(?) programming technique.

Standard progamming Wehniques
All standard programming technique. shown for FCP(I) and FCP(:) are realizable also in FCP(?).
However, for most of the simple synchronisation tasks, the generality and the dynamic nature of
read-only unification turns out to be more of a burden than an asst. Since read-only unification
is an extension of unification, using it for goal/claus unification is closer to the original model of

26 This dellaltim of read-only uMuici is dillaeai from the oslotal ame [16001, in Uh.A it I@ ordsr-idpemdmnt
and disalmn "sVdin , Le. the suireem of f(XX?).f(sa). Tb. esehio vss luflunced by cmud. of
tb. ssriw definition 1152,1971, ad by the Langusge CP(%) of Rsaaskrihman and Silberwhata [143].



logic programming and Prolog. Nevertheless, in concurrent logic programming, matching is used
moe often than unification. The default in FCP(?) encourages programmers to use unification
even when matching is needed, and instead restrict the use of the procedure by placing read-only
variables in the caller. For example, consider the FCP(?) procedure append.

append([XIXM,Ys,[XI4) .- append(Xs?,Ys,Zs).
apped([ ],YsYs).

The procedure is almost identical to the logic program (and Prolog program) append. The only
difference is the read-only annotation in the recursive call. Nevertheless, this program has awkward
behavior. Although its head specifies unification, the intention is that the first argument be
matched. The program ensures this for recursive calls, but not for the initial call. If the initial goal
is appead(X, Ys, Zs) rather than ;ppead(XsF, YsZs), the first (or second) clause can be chosen
erroneously. Placing this responsibility on the caller is a source of non-modularity and bugs. In
addition, matching can be compiled more efficiently than unification [99]. Without global analysis,
which infers that the caller always places a read-only variable in the appropriate position [30,186],
an FCP(?) program would compile lees efficiently than a corresponding program in a language
with input unification.

A later definition of FCP [170] allowed both a matching predicate =?= and unification in the
guard. Using a matching guard, the recursive clause of append could be specified as:

append(X,Ys,[XlZs]) - Xs =?= [XjXs I append(Xf',Ys,Zs).

However, since this syntax is more verbose than the default one, programmers would still use
the previous style, resulting in program which are both more error prone and les efficient. In
addition, it turned out to be difficult to define cleanly the try function for guards which contained
a free mix of matching and unification predicates [173].

It seems, thereore, that the approach taken by the other flat languages, namely to use match-
ing as the default, is better. The language FCP(:,?), discussed in the next section, attempts to
unify the expressiveness of FCP(?) with the more convenient and efficient programming style of
the other languages.

Test-and-ant
One use of read-only variables is to implement various forms of a test-and-set operation. A variable
can be tested to be a variable and then set to a non-variable term T in two stages: First unify it
with a new read-only variable X? and if successful unify T with X:

test.andset(X?,T) - X=T.

The definition of read-only unification implies that the clause try will succeed with the goal
1euLas4jef(X, T) if and only if X is a variable at the time of the try. The technique directly
generalizss to simultaneous test-and-set of several variables.

The ability to implement test-and-set implies that FCP(?) is not success stable. For example,
fest-aLaet(X,a) succeeds with X instantiated to a, but teSendjet(e,a) fails.

We note that test-and-set can be also realised in FCP(:), augmented with the vsr guard
primitive, but not in any of the weaker languages.

A mus mutual-exclusion, multiple-writer streams and distributed queues
The abiuity to test-and-set can be used to implement anonymous mutual exclusion, that is, mutual
exclusiqn without unique identifiers. For example, a multiple-writer stream, which preserves mes-
sage multiplicity even in the presence of unifiable messages (in contrast to the FCP(:) program
shown in Section 14 above) can be defined as follows:

write(M,[X?MslMs) .- M=X.

write(M,[4IMs],Ms') - write(M,Ms,M.').

- 74 -



The third argument Ms' can be used to place subsequent mesages on the stream. It ensures that
the next mesage is placed after the previous one, so a writer can enmre that its own messages are
ordered. Even if a writer placing several mesages on a stream does not c re for their order, he
could still use MW instead of Ms for subsequent messages, to increase efficiency.

Using this procedure, placing a messages by a writers on one stream requires O(s
2

) steps.
By introducing a special abstract data type, called mutual-reference [1681, the three argument
write operation specified by the above program can be implemented by a destructive assignment
so that the cost of sending a messages is 0(s). The implementation is also 'better' than the
specification in another respect: assuming And-fairness it guarantees that every wrife operation
will eventually complete, even in the presence of an unbounded number of writers, a property
not guaranteed by the program above. Mutual-references are the standard technique for realizing
efficient stream mergers. Whenever we use a multiplicity-preserving multiple-writer stream in a
program we assume it is implemented efficiently and fairly using mutual-references.

Another application of anonymous mutual exclusion is a distributed queue [165]. In it, client
processes are at the leaves and queue processes are at the internal nodes of a process tree. Each
euqseue(X, ME) or dequeae(X, ME) request is sent up the tree from the leaf process which generated
it, with X carrying the element to a queue or dequeue and ME being a new mutual exclusion
variable. If a queue process at a node can satisfy the request by matching it with a locally stored
corresponding request, it does so. Otherwise it keeps a copy of the request in its local queue,
and also sends a copy of it to its parent. A request is matched with a corresponding request by
atomically testing the ME fields of the two requests to be variables and setting them to some
value. When attempting to match the requests, the queue process also nondeterministically checks
whether the ME field of any of the requests has been set by another queue process; this indicates
that the request has been satisfied by some other queue, and so it is discarded.

Such a distributed queue an be used for dynamic load balancing, where workers off-load
work by enqueing, and request work by dequeing [191]. It is very suitable for this application since
requests are satisfied locally whenever possible, but eventually get to the most global queue (the
root queue) if necessary.

Protected d4ta-structures
Another important application of read-only variables is to protect processes communicating across
trust boundaries. Consider an operating system process interacting with a possibly faulty user
process via an incomplete message protocol, or by incrementally producing some data structure.

If the user process does not obey the protocol, and instead of waiting for the operating system
process to instantiate some variable it instantiates this variable to some erroneous value, it may
cause the operating system process to fail.

Several proposals were made to solve this problem. One is to restrict the type of communica-
tion protocols allowed between user processes and system proceses, and provide user processes only
with complete data-structures, with no 'holes' to men with. This solution greatly decreases the
flexibility of the interaction, and puts a heavy synchronisation and termination detection burden
on the operating system.

Another solution is to isolate the components of the operating system interacting with user
processes, and provide thern with robust failure handling mechanisms. This solution also seems
infeasible, since incomplete data structures can be passed asynchronously between system compo-
nents, and therefore user processe may share variables with arbitrarily 'deep' operating system
components.

Another solution, adopted by the operating system designed by ICOT, is to use specialized
filter processes to monitor user-system interaction. Theme procses forward back and forth instan-
tiations done by the interacting process, as long as the user processes obey the protocol which
the operating system expects. When a violation by the user is detected, the filter does not pas it
further to the system. Foster (481 describes three techniques for achieving robustness in operating

- '15 -



system implemented in languages that do not support read-only variables: at-source (by trans
formation of user program), en-route (by filters) or at-destination (by mabn system program
fail-safe). The second technique is shown to be generally the most effective.

Read-only variables allow a simpler solution [76]. An operating system component which
produces a data-structure incrementally can protect the incomplete part of the data structure
from outside intervention. This is done by making it read-only to its readers, and keeping the

the data structure, and keeping X. For example, a protected-stream producer can be defined as
follows:

p(XlXs],.) *-- p(Xs',...

If, when p(Xs,...) is invoked, it has the only writable occurrence of its first argument Xs, this
invariant will hold in all future iterations of the proces, and no consumer can interfere with the
stream production. If the Messae itself is also produced incrementally, it could also be protected
using the same technique.

The advantages of read-only unification over matching is that it is a generalization of unification,
rather than a special case of it: read-only unification in the absence of read-only variables is
just unification. Hence read-only unification achieves both communication and synchronization
with a single notion. Second, read-only unification is symmetric: unlike matching, it does not
distinguish between the goal and the clause, and the read-only unification of any two term behaves
alike. Third, it is dynamic. Read-only variables can be embedded in any data-structure, hence
synchronization can be associated with data, not only with procedures.

Some of the disadvantages of read-only unification come from its streght: Not being success
stable makes it harder to analyze statically FCP(?) programs, and often makes FCP(?) less read-
able compared to programs using input matching. Its non-monotonic nature makes it more difficult
to analyze theoretically, compared to languages which use only input matching and unification.
Finally, it has some points of singularity (e.g. the unification of X with X?), which do not seem
to have acceptable intuition behind them.

An alternative concept, called locks, was proposed by M. Miller and E.D. Tribble and formal-
ised by Saraswat [156]. Its motivation was to provide more reasonable semantics to the unification
X=XF. In FCP(?), this unification subtracts the writing capability from X, making it read-only.
In the alternate proposal, its effect it to make both X and X? writable. The ability of a read-only
variable to become writable gives rise to both additional complications and additional programming
techniques, though it has not been pursued to completion.

16. FCP(:,?) - An Integration of FCP(:) and FCP(?)

The language FCP(:,?) (100] attempts to integrate the convenience and efficiency of matching with
the expressiveness of atomic test unification and read-only variables. In addition, it has the added
pragmatic advantage over FCP(?) of being a superset of Flat GHC, FCP(I), and FCP(:), in the
snse that every program in then languages would execute correctly as an FCP(:,?) program.

FCP(:,?) is as strong as any other language in the family, in the sense that there are natural
embeddings of all languages in the family into it. It is the target language of the implementation
effort at the Weismann Institute (991.

h-- e tax of FCP(:,?) is the same as that of FCP(:), except that the tell and body parts may
contain read-only variables.

- 76 -



The semantics of the language is also the same as FCP(:), except that in the tell part read-only
unification is used instead of ordinary unification. This is reflected in the try function of FCP(:,?),
which is the same as that of FCP(:), except that it uses mgs instead of men, and returns susend
if the read-only unification in the fell part suspends on a read-only goal variable, and fail if it fails
or suspends on a read-only clause variable (since the latter kind of suspension is stable).

Pro smmin FCP(:,?)
eie above, any FGHC, FCP(j) or FCP(:) would execute correctly as an FCP(:,?) pro-

paim. The FCP(?) programs shown in the previous section easily translate into FCP(:,?). For
example, the multiple-writer stream is written as follows:

write(M,M#,Ms') ,- true: Ms=[XMsj I M=X.
write(M,[_jM],Ms') - write(M,Ms,Ms').

and the protected stream producer as follows:

p(Xs,...) - true : Xsa[MesgelXs' ?j I p(Xs',..

17. Doc - "X = x Considered Harmful"

The language Doc (Directed Oc) by Hirata [82], is a successor to Oc [81,83]. Ot is essentially
FGHC.., with no guards. Doc is a further restriction, which follows the motto "X = X considered
harmful". Doc is a concurrent logic programming language in which every variable has at most
one writer and at moet one reader, i.e. one proesm which instantiates a variable, and one prcss
that matches it. This restriction is enforced syntactically, by annotating each variable occurrence
as either a writable or a read-only, and requiring that each variable may occur at most once in
each mode in a clause.

The motivation for this restriction is that the cost of broadcasting information in a distributed
environment may be too expensive to be supported at the language level.

Although the removal of variable-to-variable unification from logic programming seems a rather
drastic proposal, its effect is not fatal, and the resulting language is still usable. The techniques
available in Doc (except for protected data structures) are a subset of those available in FGHC,,.,.
In particular, the short-circuit technique and any of the techniques relying on atomic unification are
not availablein Doc. Furthermore, broadcasting is not available in Doc, and should he implemented
by an explicit distributor process, which receives a message and distributes it separately to each
recipient. In addition, Doc's read-only annotation is a reminiscent of the read-only variable, and
indeed it can employ the protected data-structures technique; actually, a Doc process mat protect
any incomplete structure it intends to produce, by the syntactic restrictions of the language.
Because of the ability to specify protected data-structures, it seems that Doc cannot be embedded
in a language that does not contain the equivalent of read-only variables.

An embedding of Doe in broadcast-free FCP(?)
The similarity of Doe's annotations to wratable and read-only variables in FCP(?) is apparent.
Indeed, it is natural to cobsider a subset of FCP(?), which may be cailed

27 
broadcat-jfee FCP(?),

in which every variable may occur at most once read-only and at most once writable in each clause.
Doc programs can be trivially translated into broadcast-free FCP(?).

This translation is valid, in the sense that every computation of the resulting FCP(?) program
corresponds to a possible computation of the source Doec program. However, the translation is not
an embedding in the sense used so far. Since the read-only unification used in FCP(?) is atomic,

27 The a wa suggaie by V.A. Sammwat.

- ...I -



some executions of a Doc program cannot be realised by the corresponding FCP(?) program.
This can be remedied by further "decoupling" variables in the clause, as done in the embedding
of FGHC- in FGHC,, in Section 10, which masks the atomicity of unification of FCP(?). For
each variable X that occurs both writable and read-only in a clause, replace X? by a new variable
Y?, and add the goal sead(X., Y) to the body of the clause, send is defined as follows. For every
function symbol f/a in the program, a > 0, send has the clause:

end(f(Xl,X 2 .... X.),f(Y 1 ?,Y 2?,...,Y.?)) -
send(Xi?,Yi), send(X 2 ?,Y2),,.., send(X,?,Y,).

We note that broadcast-free FCP(?) is still stronger than Doc, since it provides a variant of the
short circuit technique. In this variant a ground message is sent around the circuit in a particular
direction. Its arrival at the other end indicates termination.

18. Non-Flat Concurrent Logic Programming Languages: PARLOG, GHC, Con-

current Prolog, and CP(bI)

A concurrent logic programming language is non-flat if the guard of a clause may contain program
defined predicates. Several of the fiat languages described above - Flat GHC, Flat PARLOG,
FCP(I,1), and FCP(?) - were actually derived from their non-flat ancestors simply by restricting
the guard to contain predefined predicates only.

The ability to define guard predicates implies that guard computations may be unbounded

and, in general, may fail to terminate. Nevertheless, as in flat languages, a clause try is an atomic
operation: it succeeds, suspends, or fails, and if it suspends or fails it leaves no trace of its attempt.

Two approaches were taken to ensure atorncity of a clause try; they are also reflected in the
corresponding fiat languages. One approach is to forbid guard computations from assigning goal
variables. This way several clauses can be tried in parallel for the same goal without interference.

This approach is taken by PARLOG and GHC, and is reflected in their fiat subsets in the restric-
tion that guards can only do matching, not unification. The second approach is to allow guard
computations to assign goal variables, bvt to make such assignments visible only upon commit-

ment. This is reflected in the FCP languages, which allow test unification in guards, but require
the unification attempt to be atomic.

We discuss the non-fiat languages informally. Transition systems for non-flat languages are
given by Saraswat [154] and Levy [1141.

18.1 PARLOG and GHC

PARLOG and GHC are similar in their requirement that guard computations do not instantiate
goal variables, but differ in the way they realize this requirement. In PARLOG, a syntactic compile-

time check, called a safety check is performed to ensure that the program has no computations
in which guards instantiate goal variables [23]. Since the question whether a program is safe is

undecidable in general [29], any algorithm for determining safety can only perform an approximate
check, and if it correctly rejects all unsafe programs then it is bound to reject some safe programs
as well. This leads to the awkward situation in which the set of legal PARLOG programs is either
undecidable, or is determined by an algorithm, whose specification may be both quite complex and

evolving. The practice of PARLOG programming seems to be that the safety check is not done,
and the responsibility of producing safe programs is placed on the programmer's intuition.

The design of GHC [198] was influenced by an earlier design of PARLOG [24], called PAR-
LOG83 in (145], which employed output assignment instead of unification, and by critical exami-
nation of Concurrent Prolog [196). Rather than ruling out the possibility of the guard instantiating

goal variables by a syntactic check, GIC ensures this with its synchronization rule. In fact, the
sole synchronization rule of GHC states that a unification in the head or the guard that attempts

- 8-



to instantiate a variable in the goal suspends.
The implementation of this synchronization rule in full GHC requires recording for each vari-

able which level in the process tree it 'belongs' to, which imposes considerable complications in the
runtime data-structures and algorithms [114,185]. Therefore two subsets of GHC were identified:
one is the flat subset, introduced in Section 10, another is the safe subset, defined as folows. A
GHC program is safe if it has no execution in which a body unification suspends. Note that a Flat
GHC program is trivially safe. Of course whether a GHC program is safe is also undecidable.

As in their flat subsets, the main difference between Safe GHC and PARLOG is the availability
of sequential-And and sequential-Or in the latter.

Although PARLOG and GHC predate their flat subsets, there are almost no examples which
show that the former languages are significantly more expressive than the latter ones. Perhaps the
one interesting example is that of unbounded nondeterministic ci'-' e, implemented by recursion
in the guard. Consider a proces c(Ia,...) which has an unbouno .:st (or stream) of streams In.
On each iteration, c wishes to extract one element from one of the streams, if such an element is
ready, and iterate with In', which contains the tail of that stream and the unmodified remaining
streams. If all the streams close, the proc terminates. Using non-fiat guards, the program can
be written in GHC as follows:

c(zn,...} .-
get(X,In,In') I
... do something with X ...
c(In',...).

c(In,...) -
halt(In) I true.

get(X,ffX'I lnjln') - In'=[XsIIn], X=X'.
get(X,[,XsIn],In') - get(X',In,ln") I X=X', In'=[XslIn".

haltfI[ lilni) - halt(ln).
halt([ 3).

The intermediate variables X' and In" are needed to ensure that the recursive call of get does not
suspend because of an attempt to instantiate the goal variables X or In'.

Note the difference between get and halt. Both are recursive, but halt iterates in the body,

since it tests for a conjunctive condition (all streams have terminated), whereas get iterates in the
guard, since it tests for a disjunctive one (there is an element on one of the streams).

The program cannot be specified directly in a flat language, since it requires nondeterminism
of unbounded degree in process reduction. However, its purpose can usually be achieved using a
merge network, which is specifiable in any fiat language.

Embedding Safe GHC in FCP(:)
Safe GHC can be embedded in FCP(:) using a technique for compiling Or-parallelism into And-
parallelism, developed by Codish and Shapiro [29]. The idea is to spawn And-parallel processes to
evaluate Or-parallel guards, and thread these processes using two short-circuits: a success circuit,
which reports the success of one of the guards, and a failure circuit, which reports the failure of all
guards. The hierarchical And/Or tree is implemented by P hierarchy of success and failure circuits.
The power of FCP(:) is needed since the method requires reflection on the failure of unification.

A mutual exclusion protocol ensures that at most one guard can commit for each goal. Al-
though the mutual exclusion protocol used in the original embedding (29] relies on atomic unifi-
cation (Section 14), the less efficient single-round mutual exclusion protocol (Section 7.4) can be
used as well. The technique was later enhanced by Levy and Shapiro [116], into a compiler from
Safe GHC to FCP(?).

The technique cannot be used to embed (unsafe) GHC in a flat language, since a correct

implementation of GHC requires recording the guard in which a variable is allocated. This problem

- 79 -



is further discussion in Section 20.

Embedding PARLOG in FCP(:)
The technique for compilin Oroparaeli into And-parallelism can be combined with the FCP(:)
implementation of the control meta-call to form an embedding of Safe GHC + the control meta-call
in FCP(:). It can be further combined with the techniques for embedding FP(&) and FP(;) in
FGHCY, to embed PARLOG in FCP(:).

18.2 Concurrent Prolog and CP(1,I)

Concurrent Prolog [160] is the ancestor of FCP(?). Similarly, the language CP(,j) [154,157,151] is
the ancestor of FCP(:). Unlike GHC and PARLOG, both allow guard computations to instantiate
goal variables. However, to achieve atomicity of a clause try, these instantiations should not be
visible outside the calling goal prior to the commitment of the clause. In order to perform Or-
parallel clause evaluation in Concurrent Prolog, a 'multiple-environments' mechanism is necessary.
This mechanism allows competing clauses to make temporary and hidden instantiations to goal
variables, which become permanent and visible only upon commitment. Several approaches to
the construction of such a mechanism were investigated [114], but none have lead to satisfactory
results. The difficulty in constructing such a mechanism can be understood by examining the
power of Concurrent Prolog. It can specify almost trivially an Or-Parallel Prolog interpreter,
which simulates the don't-know nondeterminism of Prolog by recursion in guards.

An embedding of Or-parallel Prolog in Concurrent Prolog
The Or-parallel Prolog interpreter assumes that the Prolog program is represented by the Con-
current Prolog procedure, claues/2, which returns on the call clesses(A,Cs) the list of clauses
Cs potentially unifiable with the goal A. In principle Cs can be the entire Prolog program, but
indexing on procedure names or even on goal arguments can be used to reduce the number of
clauses returned. Each Prolog clause A - 0I,...,Bk is translated into a term in the list Cs of the
form (A-[B,...BkIBs]\Bs). Note that it represents the (possibly empty) body by a (possibly
empty) difference-list of goals. Given this translation, an Or-Parallel Prolog interpreter can be
written in Concurrent Prolog as follows 

.

solve([ ]).
solve([AIAu]) -

clauses(A,Cs), resolve(A,Cs?,As?).

resolve(A,[(A-Bes\As)Cs],As) -
solve(Be) I true.

resolve(A,[_ICs],As) -
reolve(A,Cs,As) I true.

The interpreter as defined can return only one answer to a goal. This limitation, however, is
shared also by Prolog meta-interpreters. To collect all solutions to a goal, a set abstraction is
incorporated in Prolog. It is typically implemented by storing the solution found (using a side-
effect) and inducing failure. The approaches of Ueda [200,201] and Shapiro [165], in comparison,
naturally collect all solutions to a goal.

The simplicity of this interpreter indicates that the implementation of the multiple-
environments mechanism of Concurrent Prolog is at least as difficult as the direct implementation
of Or-Parallel Prolog. Presently it seems that the added complexity of Concurrent Prolog over its
flat subset outweighs its added expresiveness.

2Th ints m rpt~ris due to Kenneth M. Kahn.

- 80 -



PART M IMPLEMENTATIONS AND APPLICATIONS

19. Implementations of Concurrent Logic Programming Languages

Considerable effort has been invested in efficient implementations of concurrent logic programming
languages, for both sequential and parallel computers.

19.1 Sequential implementations

We consider in depth implementation techniques for flat languages, then mention briefly techniques
for non-flat languages.

There are several implementations of flat languages [F 7,49,89]. All employ some variant of
an abstract machine developed by a group at the Weizmann Institute, first incorporated in an
interpreter for FCP [1281, and later refined and integrated with techniques for compiling unification,
developed by Warren [2061, within a compiler/emulator based implementation 1891.

The sequential abstract machine
The key concepts of the machine are as follows. The machine represents the goal by an active
queue and a set of suspension lists. Each process in the goal is either in the active queue or in one
or more suspension lists. Each suspension list is associated with an unbound variable, and may
consist of several processes.

The basic operation of the machine is to dequeue a proem from the active queue, and try to
reduce it with some clause in the program. This operation is called a process try. A process try is
composed of a sequence of clause tries. In each clause try the try function of the proce and the
clause is computed (see Section 4.2). A process try succeeds if one of its clause tries succeeds; it
suspends if none succeeds, but at least one suspends; it fails if all clause tries fail. When a proem
try succeeds the try substitution 0 is computed. When a process try suspends a set of suspension
variables is computed; a variable is included in the set if its being instantiated in the future may
release some clause try from suspension, i.e. cause it to succeed or fail.

If a process try succeeds with a substitution 9 then the goals in the body of the successful
clause are added to the active queue, and 0 is applied to the state of the computation. In addition,
processes in suspension lists of variables in the domain of 0 are moved to the active queue. If the
process try suspends with a suspension set S then the process is added to the suspension lists of
each of the variables in S. If the process try fails the machine halts with an error state.

Note that a process can suspend on several variables, and be activated and suspended several
times before succeeding or failing. A mutual exclusion mechanism, described below, ensures that
a proces is activated at most once per suspended process try

The machine is connected to one or more external input devices, realized by data streams,
including a keyboard, and typically has a process consuming each stream. The machine terminates
successfully when all external input streams are closed, and there are no processes left. It terminates
with deadlock if all input streams are closed and only suspended processes are left.

The machine maintains all dynamic data structures in a single address space, called a Aeop.
The heap grows when terms are allocated and processes are created, and shrinks by garbage-
collection. The structures" in the heap are variables, terms, proces records, suspension records,
activation records, and programs.

A variable is represented by one memory word, which is eitier empty or points to a suspension
list. When a variable is instantiated to a term, its memory word becomes a reference (pointer) to
the term unless the term can be stored in one word (e.g. an integer), in which case it is stored in
place of the variable. Other terms are represented using standard techniques. A pr-nft with a
predicate p/s is represented by #+I words: one for the program counter, which points at the code
of the procedure p/n, a words for the process arguments, and one word for chaining the process in

- 81 -



P

process

x

record

Figure 7: Suspending a process on two vaibles

the active queue. The active queue onsists of chained processes. A suspension lst consists of a st
of suspension reords (which could be ist cells). Each suspension record points to an activation
record and to the next suspension record if there is one. The activation record realies the mutual
exclusion mechanism which prevents multiple activations of the same process. It either points to a

proem record or is null, if the proem ssh already been activated. If a process suspends on several
variables, the suspension records in the suspension lists of these variables all point to the same
proem activation record, which in turn points to the process. The first variable to be assigned
activates the process by enqueing it to the active queue, and sets its activation record to null. This
prevents the other variables from re-activating this process. A process suspended on two variables
is shown in Figure 7.

In addition to the heap, the machine has global registers for the active queue front and
back, top-of-heap pointer, current procem, current program counter, etc. In a language with test
unification, the machine also has a trail. The trail is used to record assignments made during test
unification in a clause try, so that they can be undone if the test unification subsequently suspends
or fails. Unlike the standard Prolog trail, which needs to support deep backtracking, the trail in
fiat languages needs to support only shallow backtracking, and is reset on every clause try. As a
result it can be rather small (e g. 256 words).

The machine employs several optimizations, the most important being tail-recursion
optimization2 z. Each dequeued process is given a time-slice t (e.g. 9 = 25). When a process
A with time-slice i is reduced to the processes B,...,Bk, k > 1, then one of them, say B1, reuses
A's procem record (if it is large enough), inherits the time-slice 9-1, and is immediately tried if t
> 1. For the other processes B2 ,...,Bk new process records are allocated, and they are enqueued
to the back of the active queue. Ift I- I then B, is also enqueued. This scheme maintains And-
fairnsswhile decreasing process switch and memory access (assuming some process arguments are
maintained in processor registers during a time-slice).

To increase the chance of a process record being reused, minimal size records are allocated

9This urs Is kept for historical rnuons. Thw opfiasation apliss to any clause, not necesmrily recursive, and
not nscsaatly to the toll cAl.

- 82 -



(e.g. 10 words). In addition, free-lists of process records, suspenson records, and activation records
are maintained between garbage collections, to improve storage utilization.

Implementations of non-tat Inguas
One way to achieve atomicity ofa cnle try in a non-flat language is to try and reduce goals in
some order; when reducing a goal, try each dause in some order; and for each clase guard apply
this execution algorithm recursively.This is the algorithm incorporated in the first interpreter for

~Concurrent Prolog, written in Prolog [160). Variants of it were implemented on top of Prolog, both
for Concurrent Prolog ad for GHIC and CP(1,4,&) [203, 153). This execution algrithm, however,
does not satisfy ay fairness requirements. For example, ant attempt to re ' uc a faulty process

(with a nonterminating guard) may block the rest of the system forever.
Several other executions algorithms for Concurrent Prolog which do not suffer from this prob-

lem were investigated [115,127,141]. Their complexity, however, seemed unacceptable, and was
partially a motivation for the development of Flat Concurrent Prolog and the simpler non-flat
languages, GHC, PARLOG, and CP(I,J). An abstract macune for PARLOG was developed by
Gregory et al. [68], and later optimized by Crammond [34]. Its basic design differs from the FCP
abstract machine [89] in that it explicitly maintains a process tree. Another abstract machine for
GHC was derived from the FCP machine by Levy [113]. Although GHC is simpler than Concur-
rent Prolog, its implementation still required fairly heavy machinery. Therefore Safe GHC was
investigated, and a compiler from Safe GHC to FCP was developed (116].

Compilation of unification
The basic data manipulation of logic languages is unification. Warren [206] has developed a method
for compiling unification efficiently by identifying its various special cases which are specified in a
clause head, and generating special instructions for them.

Warren's scheme was designed for Prolog's general unification, and is applicable both to FCP's
read-only unification [89], and to the input matching employed by FGHC [97] and PARLOG.
Using it, an abstract machine along the lines described above can achieve the same uniprocessor
performance as the Warren abstract machine for Prolog.

However, for input matching one can do better than Warren's scheme. The input matching
component of a set of clauses of the same procedure can be jointly compiled into a decision tree,
which combines shared matcl :ngs and finds more efficiently the set of applicable clauses [99].

Procesor architectures
Two processor architectures specialized for the execution of a concurrent logic programming lan-
guage, namely FCP(?), were developed. The first architecture, Carmel [74,75], takes the RISC
approach. It augments a simple processor architecture with mechanisms to support the expensive
or frequent operations of FCP(?). By carefully tuning the instruction set and processor architec-
ture, impressive performance is obtained.

The second architecture, by Alkaiaj and Shapiro (5], takes the view that internal concurrency
in a processor combined with a carefully designed memory hierarchy is the key to high perfor-
mance. The architecture consists of several specialized processing units, each with its own memory
hierarchy. The reduction and tag processors are at the root of the hierarchy. They are supported
by three additional processing units: an instruction procsor, a data-trail proceor, and a goal-
management procesor. The instruction procesor employs standard technique for instruction
prefetching and caching. the data-trail proesmor employs a data cache enhanced to support shal-
low backtracking, required in the implementation of atomic test unification. The goal-management
processor manages the top of the proc queue in a way analogous to how a RISC processor man-
ages the top of the activation stack. The goal-management processor manages process switching,
spawning, activation, and suspension, using a bank of register windows. The execution algorithms
of this architecture are specified using an FCP(?) program, by hardware description techniques
developed by Suzuki [172] and Weinbaum and Shapiro [208]. The specification forms a working
simulator of the architecture. The performance of this arcbitecture is yet to be evaluated. How

- 83 -



these two processios can be integrated in a multiprocessor architecture is an open question.
The PSI-I processor was designed for the execution of Prolog, but was re-microcoded to

im,' -aint KL1 [195]. It is the building block of the multi-PSI parallel machine.

19.2 Parallel implezuentatlo..

We review the concepts behind two types of parallel implementations: distributed and shared-
memory. The implementations include a distributed inplementation of "CP [190], a distributed
implementatioa of FGHC [90], a distributed implementation of Flat PARLOG [471, and shared-
memory implementation of PARLOG [34].

The core operation in these implementations is unification.

Distributed atomic unification

In a distributed implementation each processor executes a variant of the sequential abstract ma-
chine, described above, and takes special actions when a clause try involves variables shared with
other procesors. These actions realise a distributed unification algorithm.

Since non-variable terms are immutable data structures, they can be replicated upon demand
throughout a processor network without any special consistency maintenance mechanisms. The
writing on a variable, however, needs to be coordinated. In particular, in a language with atomic
unification, a unification that involves writing on several variables should either succeed in writing
on all of them, or write on none. Hence, from a distributed implementation point of view, an
atomic unification is best viewed as an atomic transaction, which may read from and write to
several logical variables. Standard database concurrency-control techniques for realizing atomic
transactions can be adapted to the particular requirements of unification.

One approach, applicable to a network of procssos without shared memory, is as follows.
It uses the messages read, lock, become-value, and becomelocal. A variable shared by several
processors is represented by a directed tree, with edges pointing towards the root. Each processor
sharing a variable stores a node of the tree in its local memory, which contains the address of the
node it is pointing to if it is not the root. An occurrence of a variable is called remote if it is an
internal node in the tree; local if it is the root of the tree.

An attempt to read a shared remote variable is called a read-faalt. A processor executing a
procem which has had a read-fault sends a read request up the tree, and adds the faulting process
to the remote variable's suspension list. When a processor storing the root of the tree receives a
read message, it operates as follows. If the variable has been assigned a term T, a becomevealsc(T)
message is sent in reply. If the variable is still unbound, the read request is stored in the variable's
suspension list, and will be replied to when the variable is assigned.

A shared variable can be written only at its root. Write-permission is transferred between
processors by changing and redirecting edges in the tree. A processor with a local shared variable
(i.e. the root of a shared variable tree) may write on it when it pleases. It ensures that a unification
that involves writing on several shared variables is atomic by not responding to messages, including
read messages, while performing a clause try.

An attempt to write on a remote shared variable is called a writc-feal. A processor execu.ing
a proem which has had a write-fault sends a lock message up the variable's tree, and suspends
the faulting process on the remote variable. The processor receiving this message replies with a
becomeimdee(T) if the variable has already been assigned a term T, or with a become-local(Redas)
if the variable is still unbound, and changes its local variable to be a remote variable pointing at
the sader's variable. Read@ is the (possibly empty) list of suspended read requests on the sender's
local variable suspension queue, to which a request from the sender's own variable is added in case
it has local processes suspended on it. The receiver of a becomeJocsl(Reads) "nessage changes its
variable from remote to local, wakes up all proceses suspended on it, and adds the Reads to the
variable's suspension list.

The scheme as described may result in livelock, if two processors keep sending lock requests to

- 84 -



each other, and none accumulates enough local variables to perform a process reduction. To prevent
this, a 2-pha -locking scheme can be incorporated [190,192]. The scheme requires additional
bookkeeping by a write-faulting processor, but not additional messages. We do not describe its
details here.

Another question to address is how to handle vwiable to variable unifications. One approach
is to lock (i.e. make local) the two variables when assigning one to the other. This ensue that
no cycles ae created, but may cause superfluous contention in applications using the short-circuit
technique. A second approach is to impose some ordering on variables, and to respect this ordering
when unifying two variables. Another approach is not to prevent the creation of cycles, but to
break them when they are detected.

Implementation of non-atomic unification and the net-I coastruct
In languages without atomic unification, such as GIC, PARLOG, and their fiat subsets, simpler
algorithms than the one described above apply. For example, when unifying a remote variable X
with a term T it is not necessary to bring X locally before assigning it; instead, a message can be
sent to X, requesting it to unify with T. If the unification fails, the machine halts with an error
state (or simply notes the inconsistency and proceeds).

Since either of these behaviors is not acceptable in a multi-tasking operating system, the
mets-call construct, described in Section 10.3, was developed. The implementation of the meta-
call construct must be integrated with the distributed unification algorithm in order to detect
termination and to correctly ascribe failure. One approach, taken in the distributed implementation
of FGHC [90], is to associate with every computation (invocation of a meta-call) a unique identifier,
and maintain tables associating computation identifiers with the appropriate stresms of the met&-
call. When a unification fails, this fact is reported to the computation by placing a m e on the
appropriate stream. Since the short-circuit technique is not applicable, distributed termination of
a computation is detected by maintaining an explicit distributed counter for each computation, at
the language implementation level.

Foster [47] describes an alternative approach to the distributed implementation of the control
metacall, which avoids the complexity of FGHC's distributed counters. Only uniprocessor compu-
tations are supported directly in the implementations and remote structure-to-structure unification
operations are performed locally. Acknowledgement mesages and message counting on individual
nodes hence suffice for termination detection. Termination detection in distributed (multi-node)
tasks is programmed in PARLOG using the usual techniques.

A shared-memory i lementation
Crsmmond [341 describes a parali implementation of PARLOG on a shared-memory multiproces-
sor. In this implementation each processor has its own data areas, although procors may access
each other's areas in order to read the value of a shared variable, to assign a shared variable, or to
take work (processes) from each other. A simple locking mechanism is employed, where a proces-
sor that modifies a shared object (e.g. a proces queue or a shared logical variable) locks it, and
a processor attempting to lock a locked object busy waits ("spins") until this object is unlocked.
Since PARLOG does not have atomic unification, a processor needs at most one lock at a time,
and hence this locking scheme does not result in deadlock. An extension of this implementation
scheme to languages with\atomic unification would require some concurrency control mechanism
similar to the one discussed in this section above for distributed atomic unification.

A simple load balancing scheme is employed in this implementation, where a processor de-
queues procemes from its own queue as long as it is not empty, and dequeues from some other
procesor with a nonempty queue if its own queue is empty. Using such a scheme, this implemen-
tation obtained a speedup of up to 13 using 20 processors. Alternative load balancing schemes can
be incorporated in this implementation with little difficulty.

An analysis of a shared-memory implementation of Flat GHC is reported by Tick (193].

- 85 -



19.3 Proces to proceso mapping

The question of how to map processes to processors is not unique to concurrent logic programming,
and any general approach or solution may be applicable. Approaches to the problem fall into two
general categuries: methods in which the program itself (or programs associated with it) specify
the mapping, and dynamic mapping techniques, incorporating load-balancing algorithms. Hybrid
techniques are also possible.

We show how instances of the two approaches can be realized using distributed meta-
interpreters. The interpreter are shown in FCP(:), although they could be written in any flat
language.

Mapping with Turtle-programs
The use of Turtle-programe for mapping procras to processors ws suggested and demonstrated
in (163]. Ansume that the parallel machine is a (finite or infinite) two dimentional grid. View each
process as a LOGO-like Turtle, which has a position on the grid, and a heading. With each procem
activation (body goal) P we can association a LOGO-like Turtle program TP, as in POTP. The
meaning of the call P@TP is that P should have the position and heading obtained by applying
TP to the position and heading of its parent process, and execute in the processor corresponding to
that position. Processes without an associated Turtle program simply inherit their paren't position
and heading.

Using this notation, a sequence of procesa can be easily mapped on a sequence of processors.
For example, consider the am vectro-matrix multiplication program in Section 7.2. Adding the
Oforward Turtle program to the recursive call to vm, cause the inner-product processes ip to be
placed on a sequence of adjacent proomes:

% vm(X, Ym,Zv) .- multiplying the vector Xv by the matrix Ym gives the vector Zv.

vm(_,[ ],Zv) - Zv=[J .
vm(Xv,[YvIYm],Zv) - Zv=[ZlZvI,

ip(Xv,Yv,Z), vm(Xv,Ym,Zv')Oorward.

Mapping proes arrays to processor arrays is just as easy. Consider the matrix multiplication
program mm in Section 7.2. Adding the Oforward Turtle program to the recursive call to rin,
and Oright to the initial call to vm maps the array of ip proceses to an isomorphic array of
processors:
% mm(Xm, Ym,Zm) -

Zm is the result of multiplying the matrix Xin with the transposed matrix Ym.
mmn(( ],,[ J).

mm([XviXm],Y-m,[ZvlZm]) -
vm(Xv,Ym,Zv)Oright, mm(Xm,Ym,Zm)Oforward.

The mapping of additional process structures is discened in [163]. An alternative mapping strategy
is described in [1741. Herp show an enhanced distributed metas-interpreter which implements
Turtle program mapping J.

We asme that the underlying machine is a torus-connected mesh of processors (a virtual
torn cam be mapped on a two dimensional mesh by placing four virtual processors per physical
one). The interpreter consists of a torus of proceser processes. We assume that these processes
are mapped to the underlying processors using the torus program shown in Section 7.2.

Eah processor procem has four outgoing streams to its neighbors. Its four incoming
streas are merged into one. An interpreted proces has a heading, and possibly also a
Turtle program. A headed procem is represented by a pair (Gol, Heedinl) where Heading
is one of {sork,south,esat,aest). To a headed procm (GH) a Turtle program TP may
be attached, as in (GH)OTP. We assume the proein in each procemor is called proces-
sor(Ia,[jn, TeNorit, ToSoutk, ToEars, To West]), where the first argument is the merger of its neigh-

- e6 -



bore' outgoing streams, and its second argument is the list of its five outgoing streams, one to itself
and four to its neighbors. The processor's code is as follows:

procesor([(Goal,Heading)Iln],Out) -
reduce(Goal,11eading,in),
proeesor(ln,Out),

proe (fG,H)@TPjln],Out)
route(G,H,TPOut,Out'),
proceor(In,Out').

It receives goals on its input stream. If a goal has a Turtle program it routes it to its appropriate
output stream. Otherwise it executes it locally. Its execution may result in new goals, possibly
with Turtle programs. They are merged into its input stream, and treated normally. The meta-
interpreter reduces goals, maintaining their heading, and when it encounters a goal with a Turtle
program it sends it to the processor for routing.

reduce(true,_ ,_).
reduce((A,B),H,Out)

reduce(A,H,Out), reduce(B,H,Out).
reduce(goal(A),11,Out) -

claue(A,B), reduce(B,H,Out).
reduce(A@TP,H,Out) -

write((A,lI)@TP,Out).

The router is specified, without showing its code:

route(Goal,Heading,TP,Out,Out) -
Send Goal according to TP and Heading on the appropriate
Out stream, with an updated heading and possibly with a residual
Turtle program, and return the updated streams Out'.

The torus of processor processes can be mapped on an underlying torus using Turtle programs;
but who will interpret these Turtle programs? Booting an initial process network on the processor
network is necessary, and can be done using standard techniques. One solution is described in
[187].

In this scheme the underlying parallel implementation of the language does not have to sup-
port remote procem spawning in addition to distributed unification, since it is implemented at
the language level by standard message passing between mets-interpreter (or runtime support)
processes. Another mapping notation is described in f174].

Mapping with dynamic load-balancing
Dynamic load balancing requires that processors off-load work when they are too busy, and request
work when they are idle. A good dynamic load balancing algorithm distributes work evently and
with little overhead. If the underlying machine has a notion of locality, i.e. communication coasts
between processors are not uniform, then a dynamic load balancing algorithm should prefer local
distribution of work over global one, when possible.

We show here a simple implementation of dynamic load balancing using a centralized queue.
The scheme can be enhanced to use a distributed queue [165], and thus reduce contention and
increase locality.

Assume a network of procesors, and a sert mapping command which places the process in
the next processor in some procesor ordering. A distributed mete-interpreter performing dynamic
load balancing can be defined as follows:

procinors(N,ToQ)
queue(ToQ),

-8 7 -



procemorie(N,ToQ)Qnext.

processors'(0,_).
procesos(N,ToQ) -

N>O I N':=N-1,
procesior(ToQ),
processor'(N' ,ToQ)Onext.

procesmor(ToQ) 4-

reduce(true,ToQ).

reduce(true,ToQ) 4-

write(dequeue(A),ToQ,ToQ'),
reduce(A,ToQ').

reduce(OA,B),ToQ) -
write(enqueue(B),ToQ,TobQ), reduce(A,ToQ').

reduce(A,ToQ) -
clause(A,B), reduce(B,ToQ).

queue(In) -
See Section 7.3.

Communication can be reduced, at the expense of slightly slower distribution of work, by placing
a buffer in each procemor. The buffer forwards requests to the global queue only if it overflows
(has too many eaquese requests) or underflows (cannot satisfy a dcquee request). For example,
in experiments made on a 16 procemor computer on a particular application a buffer size of about
10 was found optimal [165].

Code management
General solutions to the code managemnt problem are also applicable to concurrent logic pro-
gramming languages. One approach to the problem is described in [187].

20. Applications of Concurrent Logic Programming Languages

Since their beginning, the design of concurrent logic languages was closely coupled with the de-
velopment of prototype applications, which were used as feedback to the design process. The
application programs were those which testified to the little difference between flat and non-flat
languages from an expressiveness point of view. The systems programs were those which stretched
the synchronization capabilities of logic languages to their limits, and provided examples where
the power of atomic test unification and read-only unification shows through.

A description of numerous applications, as well as further references, can be found
in the Concurrent Prolog book [164]. The book reports on the implementation of par-
allel and distributed algorithms, systems programming, and the implementation of embed-
ded languages, among others. Other applications of concurrent logic languages include
[35,67,98,99,118,137,144,145,148,157,158,172,181,183]. Combined, these applications witness to
the generality and versatility of the concurrent logic programming approach.

- 88 -



PART V. CONCLUSIONS

21. Relation to Other Languages and Computational Models

21.1 Prolog, parallel logic languages and concurrent constraint languages

Prrolog
Concurrent logic languages, as presently defined, are not an alternative to Prolog. They are,
in a sense, lower level languages, which exhibit their strength mainly in the implementation of
parallel algorithms, distributed systems, reactive systems, and in systems programming. Hence
the question of the integration of these languages with higher-level languages in general, and with
Prolog in particular, has received considerable attention.

One of the initial goals in the design of Concurrent Prolog [160] was the definition of a language
which includes Prolog as a subset. It seemed that this goal was not realized in the initial design
of the language, and hence this design was termed "a subset of Concurrent Prolog". Later, it
was found out that an Or-parallel Prolog interpreter can be specified easily in that subset (the
interpreter is shown in Section 18) and, as a consequence, that the original design did achieve
this goal. However, the move to fiat languages opened up again the question of the integration of
Prolog and concurrent logic languages.

Two solutions were discussed in Section 14. One is to provide some interface between two
separate languages: some form of Prolog, and some concurrent logic language [24,25]. Another is to
embed some form of Prolog into a concurrent logic language [29,165,198,200]. A third solution is to
provide some of the mechanism of concurrent logic language via extensions to Prolog, such as freeze
[12] and wait declarations [132]. The problem with the first solution is that it really does not address
the essence of the problem, namely to find an integrated solution in which the various strengths
of logic programming can brought to bear. It is applicable to any two programming language,
not necessarily logic programming ones. The problem with the second solution is performance.
Techniques for efficient implementation of concurrent logic languages lag one step behind those
of sequential Prolog, and there are claims that the algorithms employed in the embedding of
Prolog in concurrent logic programming are not feasible. The third solution is largely limited to
transformational applications, since it cannot change the basic fact that Prolog is not a reactive
programming language.

CP(J,&,), And.,rra, and Pandora
The synchronization and commitment mechanisms of counurrent logic languages are useful also in
non-reactive applications. This motivated a different line of research - the design of non-reactive
language, that attempt to supersede Prolog in expressiveness and performance, without being
rooted in its sequential execution model.

Saraswat [150,153,157] investigated a parallel logic language, called CP(.I,,&), that incorpo-
rates both don't-care and don't-know nondeterminism, and synchronization by input matching.
Although an efficient implementation on top of sequential Prolog is described [Sad], the language
seems even more difficult to implement "for real" than the non-flat languages discussed in Section

18. Yang and Aiso [209,210] also propose a language with don't-care and don't-know nondetermin.
ism, called P-Prolog, but use a different synchronization mechanism - the determinacy conditions
described in Section 12 on P-Prolog5 .

Recently, an elegant integration of the ideas of P-Prolog and of Or-parallel Prolog, called the
Andorra model, was proposed by D.HD. Warren (personal communication), and integrated in the
Andorra language [72). The idea is as follows: reduce in parallel determinate goal atoms as long as
possible (And-parallelism). When no determinate atoms remain, choose one atom for an Or-split.

- 89 -



Create two or more subgoals, one for each clause unifiable with the chosen atom, and continue in
parallel reducing the resulting independent goals (Or-parallelism). Under the Andorra model pure
logic programs may exhibit the synchronization behavior of concurrent logic programs, yet enjoy a
complete proof procedure. If in an Or-split the leftmost atom is chosen, Andorra is more efficient
(in terms of the number of reductions required) than ordinary Or-parallel Prolog, since it prunes
the search space better.

The ideas in the Andorra model can also be employed in an implementation of the fiat subset
of CP(I,1,&). Another recent proposal along these lines is Pandora C8] - a parallel logic language
incorporating PARLOG-like synchronization, and a mechanism for specifying which coal atom to
choose for an Or-split.

Concurrent constraint logic programming
The framework of constraint logic programming [92,31] proved in recent years to be a powerful
generalization of logic programming, both from a theoretical and from a practical point of view.
Maher [124] suggested using concepts of constraint logic programming to provide a logical charac-
terization of synchronization in concurrent logic programming. The conditions for the success of
input matching and guard checking of a goal atom A with a clause A' .- G I B are customarily
defined operationally, as in this paper. Maher showed how this condition can be specified logically,
as the requirement that the accumulated constraint (corresponding to the accumulated substitu-
tion in our model) entails the existential constraint (3)A=A' A G, where the existential quantifier
ranges over the variables local to the clause. Saraswat [156,157] developed these ideas further.
He developed a framework of concurrent constraint logic programming in which a computation
progresses by agents that communicate by placing constraints in a global store and synchronize
by checking that constraints are entailed by the store. Agents correspond to goal atoms, plac-
ing constraints correspond to unification, aid checking constraints correspond to matching and
guard checking in concurrent logic programming. Employing the concepts of consistency and
entailment between partial information (i.e. constraints), Saraswat was able to provide a logical
characterization of constraint-based constructs that correspond to non-atomic unification, atomic
test unification, read-only unification, test-and-set, and others. Constraint logic programming of-
fer a logical framework for dealing with domains other than Herbrand terms, such as boolean,
integer, and real arithmetic. Saraswat showed how such domains and others can be incorporated
in concurrent logic languages using this framework.

The initial work on concurrent constraint logic programming is very promising, and one may
expect that it will have as much theoretical and practical impact on concurrent logic programming
as constraint logic programming had on logic programming.

21.2 Distant relatives - Delta Prolog and Fleng

Delta Prolog
Delta Prolog [140] is Prolog augmented with CSP-like communication primitives. Delta Prolog is
different from the other languages surveyed in two respects. First, it is not a logic programming
language in the sense that a successful computation corresponds to a proof of a goal statement, and
a partial computation corresponds to proofs of a conditional statement. Specifically, the role of
the communication primitives of Delta Prolog in the declarative reading of programs is unclear. In
concurrent logic languages the synchronisation primitives can be ignored in the declarative reading,
since they affect only which answer substitution is found, but not the substitution itself. This is
not the came in Delta Prolog. Although Delta Prolog can be given axiomatic semantics, this can be
done for any programming language, not only for a logic programming one. The second difference
between Delta Prolog and the other languages surveyed is that Delta Prolog is not reactive, since
it may backtrack on communication.

It is not clear yet in which application area the particular features of Delta Prolog show their
advantage.

- go -



Fleng [134,135,136] is a simple concurrent programming language inspired by GHC and Kernel
PARLOG [23]. Its syntax uses (guardless) Horn clauses. Like GHC, it uses goal/clause matching
for synchronization, and its unification is non-atomic. Unlike GHC, unification, as well as any
other primitive, reports termination.

Fleng has no notion of failure. Every primitive operation termirates and reports its termina-
tion status. For example, the unification primitive uaify(X, Y, Result), attempts to unify X and
Y. If it succeeds it assigns Resalt the value free, if it fails it assigns the value fakse.

In spitt of its appearance, Fleng is not a logic programming language, since not every successful
computation corresponds to a proof of the goal statement. In particular, the goal snifi(s a,frse),
terminates successfully, but apparently so does nify(s,b, trse).

The insistence that a successful computation should correspond to a proof is not a mere nicety,
and Fleng cannot simply drop the title of being a logic programming language and live happily
ever after. The concept of failure serves the fundamental role of an exception mechanism in logic
programming. In its absence, some other mechanism must be developed. As is evident from other
languages [73], a sound exception handling mechanism is not a trivial component of a language,
and its incorporation in Fleng would certainly complicate its semantics. Specifically, if Fleng's
present exception handling mechanism (namely the Resnlt variable of each primitive) cannot be
used to report the exception, as in the call sasif(s, ,true), what exception should be raised? The
most natural one is to fail the computation, which brings us back to square one...

If failure is reinstated in Fleng, then it becomes similar in expressiveness to KLI, since it can
be naturally embedded in KLI and vice versa.

21.3 Dataflow languages

Concurrent logic languages share with dataflow languages [1] single-assignment (or write-once)
variables and dataflow synchronization. However, this is mainly a similarity in spirit, not in
implementation. The basic operation that is synchronized by dataflow in concurrent logic languages
is the process try. It corresponds typically to several teas, up to several hundreds, of conventional
machine instructions. In contrast, the synchronised operation in dataflow models corresponds
typically to one conventional machine instruction. This difference explains why realizations of
concurrent logic languages on conventional hardware have acceptable synchronization overhead,
whereas dataflow language seem to necessitate a specialized architecture.

Other differences between the two models is that dataflow languages are typically determin-
istic, whereas concurrent logic languages are not, and that dataflow languages and architectures
are typically geared for scalar operations, whereas logic languages operate mainly on compound
data-structures, which may contain logical variables.

21.4 Functional languages

Much has been said on the relation between functional and logic languages [36]. In the context
of concurrent programming, the major observation is that functional languages a-e, by design and
ideology, transformational, rather than reactive. Functional programs denote time-independent
functions from inputs to output, and notions of state, synchronization, communication, and non-
determinism are alien to them.

Functional programs can be parallelized, and often yield efficient parallel algorithms. However,
without major extensions [7,52,53,54,69,77], which seem to undermine their original motivation and
'semantic elegance', functional programming languages cannot be used for the specification and
implementation of reactive systems.

Concurrent logic languages, on the other hand, have explicit notions of processes, process state.
communication, synchronization, and nondeterminism. Furthermore, processes can have several

- 91 -



IF413 "-THE rM N OF /

jPoCLA::zFID isv PIUCZFGI24



I.0 1"LsI

1.25i 11111.4



outputs, and inputs and output* of procees can be combined into arbitrary process networks.
Thee, combined with propert of the logical variable, eem to be the source of their power as
concurrent languages; all we absent from the base model of functional languages.

In addition, it seem that ther are usually simple translations from concurrent functional
languages to concurrent logic languages [117). Thus, a possible achitecture of a parallel computer
system, which provides both styles o(programming, each for the application it suits best, is a system
in which the bae language i a concurrent logic programming language, which implements the
underlying operating system and programming environment, and higer-level functional languages
are implemented by translation to it. Such an architecture is proposed by [117.

21.5 Mesage-pasing models of concurrency

The origins of concurrent logic programuing languages can be traced back to the work of Kahn
and MacQueen [94], which offered a model of concurrency based on deterministic asynchronous
processes computing relations over data streams. van Emden and de Lucena (42] were intrigued
by this notion, and showed how one can use logic programs to specify such processes. Clark and
Gregory [20] took thes idea a crucial step further and, influenced by the notions of CSP [86,87],
introduced synchrouzabon and committed-choice nondeterrium into logic programs.

Concurrent logic languages ae similar to CSP and Occam [91] in their notion of processes,
nondeterminiam, and synchronization via communication. They are similar to Occan, and different
from CSP and Actos (78], in that processes communicate via 'ports' (realized by logical variables)
rather than by naming the destination process or object.

One difference between CSP and Occam on the one hand and concurrent logic languages on
the other hand are the type of communication and synchronization they employ. In the former
communication is synchronous; in the latter asynchronous. In the former a communication channel
is necessarily point-to-point. In the latter it is, in the general case, many-to-many. We find the
added flexibility of the communication protocols available in concurrent logic languages over those
of CSP and Ocam quite apparent. The additional overhead entailed by this added flexibility is
yet to be determined. Presently, it is not clear for which tasks Occarn-like point-to-point syn-
chronous protocols are inherently more efficient than the general asynchronous protocols employed
in concurrent logic language, and vice versa.

Another fundamental difference is that CSP and Occam can operate on and communicate
only "ground" data, whereas the ability to communicate and share incomplete data structures, i.e.
data structures containing logical variables, is fundamental to concurrent logic languages, and is
their main source of expressive power.

Being concrete programming languages, concurrent logic languages ae not directly comparable
to ahstract computation models such as CCS. However, it seemsu that if one abstracts away the
details of the data domain (i.e. terms and unification), and concentrates on the synchronization
aspect of concurrent logic languages, then models which can be thought of as the asynchronous
counterparts of CCS [129] emerge [65].

Although the syntax of CSP and CCS seems superficially different from that of concurrent
-logic languages, there is a close analogy between the basic operators of the two families, shown in
Figure .

21.6 Concurrent object-oriented programming

The underlying operational model of concurrent logic languages resembles that of concurrent
object-oriented models, such as Acton [78], in that both consist of a dynamic collection of light-
weight procees, computing by performing local computations and exchanging messages. There
are, however, several apparent differences.

First, Actor objects, like CSP procerss, addres each other by name, and not via channels.

- 91 -



CCS/CSP operators Guarded Horn clausm

action prefix guard

paallel Composition conjunction
restriction clause head

choice alternative clauses

relabeling (implicit) clause renaming

recursion recursion

Figure 8: Analogy between CCS/CSP operators and guarded Horn clases

The advantage of channels over object names is modularity and abstraction; this had led Occam's
designers to depart from CSP in this respect. It is esier to connect one process network to another
by assigning output channels of one to input channels of the other, than by informing one the names
or mail addresses of the appropriate processes in the other. Channels are also more abstract, since
knowing a channel does not imply knowing who receives or sends messages on that channel. A
process can have several input channels, which provide different access modes to its local data; this
feature can be the basis of a capability system. Several processes may listen on the nsae channel,
each handling a different set of messages, or handling a different aspect of a manage.

If one is able to pas channels in mesalpe, s in logic languages, than channels have an-
other, perhaps more fundamental, advantage over name-based addressing. Proom-names in mes-
sages, like incomplete memages, can be used for network reconfiguratio. However, this is only
one particular application of incomplete messages. The use of incomplete mesages in the back-
communication protocol, in dialogues, in the bounded-bufer protocol, in the duplex-stream proto-
col, and in others is based on the ability to alncat.~nznuaation channels on the fly, and on the
fact that the channel implicitly embeds -ma cutext infonmation, which is used in the protocol.
There is no natural way to achieve these effects in nume-based addressing.

The drawback of concurrent logic languages, compared to Actor-like languages, is not their
underlying operational model, but rather the verbose syntax required for expressing object-oriented
programs. The description of an object with one input channel and some state variables in a
concurrent logic language has the typical form:

p(IMeeagelln),...aiele nriables...) -
... hsadl Message, update sate aribies...,
p(ln,..e.w statc variables...).

Furthermore, when several processes share the same output channel (Wak to the same object"),
then some protocol, such as the spawning of a merge network, need to be followed. This is in
contrast to Actor-like languages, in which state variables are assumed not to change unless a
change is stated explicitly, and explicit mergers need not be created in front of receiving objects,
since they are assumed implicitly.

Another bookkeepingservice provided automatically by object-oriented languages is object
deallocation; when there are no more references to an object, it is deallocated, and its storage is
reclaimed. In concurrent logic languages, unreferenced data-etructures are reclalmed by garbage
collection, but the conditions for proess termination must be specified explicitly, by one or more
unit clauses. Soemetims the burden of doing so manually should better be avoided.

A mechanism for detecting that a variable is referemeed only by one proem (17] can be used
for garbage collecting processe: A process that detects that it is the only one referencing its input
stream ay perform some cleanup operatione (e.g. close its output strewn or unify its segment of
a short-circuit) and terminate (K. Kahn, personal communication). Although the pragmatics of

- 93 -



this mechanism is quite well understood, its logical semantics still needs to be worked out.
The question of the proper integration of inheritance in a concurrent object-oriented framework

still open. Delegation was suggested s a mechanism which is more suitable to a concurrent
framework. As discussed in Section 7.6, objects which delegate incomprehensible mesages can be
specified in concurrent logic languages by augmenting the proces with additional output stream,
and adding a delegating clause which uses the otherwise construct. This mechanism, however, is
also quite verbose.

These observations have lead to the design of new object-oriented languages, such as Vulcan
[95], POLKA, and POOL [36]. These languages attempt to enjoy the best of both worlds. They
adopt the channel concept of concurrent logic languages, but do not require explicit repetition
of state variables, explicit mergera, or explicit delegation mechanism. Another important design
consideration for these language was that their implementation be in terms of natural and efficient

translations to concurrent logic languages. This would allow the exploitation of implementations of
such languages, as well as support integration between applications that are best described by an
object-oriented language, and applications that enjoy the full power of concurrent logic languages.

Consider the standard bank account example. In the Vulcan language, a process with the
desired behavior is specified by the following program:

clas(account, (Balance=O, Name="No Name Given', Error#,..]).

account :: deposit(Amount) --.
new Balance := Balance + Amount.

account :: balance(Balance).

account:: withdiaw(Amount) -
Balance > Amount
iffrue new Balance := Balance - Amount
ifFalse Eam s Ovi.spda(Name, Ba leAmount, ... .

A more conserva"ts tlw tbwoms direction was to devise a new "sudrae synta for
concurrent logic program, rather than a completely new languages. The surface syntax, called
logic programs with implicit variables [96], allows specifying only what has changed in the procesa's

state during a transition, rather than the entire old and new states explicitly, as required by plain
logic programs. In addition, it has a special notation to support stream communication, and array
operations. For example, the bank account in FCP(J) with implicit variables would be specified as
follows:

procedure account(ln)+(Blance=O,Name='No Name Given",Errort,...).

account ,-

In ? deposit(Amount) I
Balance' := Balance + Amount,
account.

account -
In ? balance(Balance) I
account.

account +-

In ? withdraw(Amount),
Balance > Amount I
Balance' := Balance - Amount,
account.

accout -

In ? withdraw(Amount),

- 94 -



Balance < Amount I
Errors! Overdrrn(Nsme,Bance,Anount,..),
account.

The variable X' specifies the new value of the proem argument X. The stream notation M
Xs is a shorthand for the input matching Xsf-[MIXI, and M I X, is a shorthand for the mame

unification.
t Unlike in Vulcan this notation is employed only for stream, rather then channel [194] commu-

nication. An extension of this approach to incorporate channels as an abstract data type is being
Onv,-tigtd.

21.7 Lw

Linda (13,2] is a set of primitives that operate concurrently on a multiset of tuples, called a Tuple
Space. Tuples in a Tuple Space are acessed associatively using a degenerate form of unification
between tuples and tuple templates. The basic operations are oat(T) (insert a tuple T to the Tuple
Space) in(T) (delete a tuple matching T, instantiating variables in T; block if a matching tuple is
not available) and rd(T) (find a tuple matching T, instantiate variables in T). A fourth primitive
, eai, support procem forking. Augmenting a conventional sequential programming language
with these Linda primitives results in a concurrent programming language in which proces
communicate and synchronise via the Tuple Space.

A compatison of Linda and concurrent logic program is given in (13]. A critique of this
comparison, which demonstrates an embedding of Linda's primitives in a variant of FCP(:) is
given in [168].

21.6 Nondeterministic transition systems and UNITY

Nondeterministic transition system ae a natural method for specifying concurrent systems. In-
deed, we have given the semantics of concurrent logic programming languages using nondete-
ministic transition systems. Recently, a notation was proposed for specifying concurrency called
UNITY [16]. UNITY is based on unbounded iterative nondeterministic transitions.

Concurrent logic languages share with UNITY the goal of being a foundation for a general
purpose concurrent programming language, the belief that the execution model of such a language
should be abstract, rather then being tied with a concrete architecture, and the conviction that
nondeterminism is an esential component in such a model. Another point in common between
UNITY and the stronger concurrent logic languages is the sise of the atomic operation: both the
simultaneous assignment of UNITY and atomic unification in languages such as FCP(:) involve
atomic transactions which read from and write to several variables.

One difference between UNITY and concurrent logic languages is the notion of a process. A
UNITY program has one global state, and transitions operating on it, possibly concurrently; it
does not have an explicit notion of a process. Concurrent logic program have a natural notion
of a process. However, this difference is only apparent. The notion of a process in concurrent
logic programs is in the eyes of the beholder - it is not an inherent part of transition system of
concurrent logic programs, Similarly, one can often identify "processs in UNITY programs, if
one so desires.

Another difference between UNITY and concurrent logic languages is the notion of termina-
tion. Concurrent logic programs terminate by explicit instructions. UNITY programs terminate
implicitly, by reaching a fixpoint. One implication of this decision is that there is no distinction
between successful termination and deadlock. We feel that this difference is mostly a matter of
definition: one can define & different model of concurrent logic programs in which termination is by
fixpoint; similarly, one can define 'NITY*, which is like UNITY except that there are explicit ter-
mination conditions. To our opinion, explicit termination is preferable both from the programmer's

- 95 -



and from the imlnptor's point of view in both modlels.

We find the fundamental difference between UNITY and concnrrent logic languages in the
notion of & variable. In UNITY, variables oe mutable; therefore transition must exclude other
transitions from writing on vriables it reads from, and from acteing vtiables it wites to. In con-
current logic languages, variables we mgle-asinet, therefore no mutual exclusion mechanisms

ie required when eadis nt vaiable. The effect of mutable lghired variable can be achieved
nonethele in conc nt loit a , as expotined in Section 7, uin g itertive processey.

It eems that this fndami tal diffeepce is the source of another difference between UNITY
tad concurrent logic languages, namely their attitude to architectures. Although both a asrchitec-
ture independent, the gap between the general UNITY model eand concrete arhitecture, such as a
non-shared memory parallel computer, i v sufciently large that the author of UNITY suggest that
special sublaguages should be tailored for particular parallel architectures. In contrst, authors
of concurrent logic languages believe their languages are suitable for all architectures. The bur-
den of matching the epplication to the architecture resides solely with mimigrthm designer and
programer. The belief, which is backed by the implementation efforts, is that concurrent logic
language are suitable for an wide range of architectures, including synchronous and asynchronous
shared-memory computers, and tightly and lo ly coupled non-shared memory computers. The
difference between the achitectured is not necessarily in the concunennt logic language suitable for
them, but gather in the tradeof in communication and computation they offer, which determine
which algorithm will better match a particular architecture.

This difference is not coincidence. The sinbe assignment property of logic variables means
that even in a language with atomic test unification, locing of variables i very rarely necessary.

Specifically, it is necessary arh e only when the atomiity of unification is actually exploited to
achieve some synchronization tatk. For example, in simple benchmarks of the parallel implemen-
tation of FCP(?) on the iPSC hyperube, more than 95% of the menage traic was sociated
with reading remote values (which does not require locking because of the single assigment prop-
erty), and low than 5% with locking remote variable [191). This is achieved without any special

compilation or poram analysis techniqus. In UNITY, on the other hand, in the absence of
additional information, every transitiom which access" more than one variable requires locking all

variables acessed. Therefore special sublanguage, which are structured to mimic the underlying
architecture, have to be employed to manke the model realistic.

On a methodological level, the de other difteenie q between the approach of UNITY and that
of concurrent logic languages. UNITY does not attempt to address questions of mets-programming
and systems programming, or, more generally, how would a parallel computer system, whose base
language is UNITY, be constructed. This question has been fundamental to concurrent logic

progranming from its begincoag.

22. Conlusion9

This survey attempted to convey the soundness, breadth, and potential of the logic programming
approach to concurrency. Progress in the following can foster fully realizing this potential:

• Provide competitive implementations of concurrent logic languages for sequential, parallel and
distributed computers.

• Develop simpler semntic foundations for concurrent logic languages.
• Exploit the simplicity of theme langages to provide advanced program development environ-

mints iad tools.
•Exploit the simplicity of the lagae to provide advanc.ed programn analysis, transforms-

tion, and optimization technique, to aid in their eflitient implementation.
•Further develop programmningl methodologes and techniques for thewe languages.
• Enhance concurrent logic programming by incorporating ideas and methods from constraint

-96



logic programig.
o Further explore techniques for embedding highe-level languages, ad design highe-level Isn-

giiages (such - parallel coustain programaming languages) espcially sitble f-r embedding
in concurrent logic language.

Acknowledgements

Comments by Andrew Davidson, Moreno Falschi, Yiaha Feldman, Ian Foster, Hairn Gallman,
John Gallagher, Steve Gregory, David Hare, Ken Kahn, Michael Maker, Martin Nilsson, VUay
Sarswat, Jiro Tanaka, Kasunori Ueda, Peter Wegner, Eyal Yardeni, and the anonymous referees
are gratefully acknowledged.

-97-



References

[1) Ackerman, W.B., Data flow languages, IEEE Computer 15(2), pp.15-25, 1982.
[21 Ahuja, S., Carriero, N., and Gleemter, D., Linda and friends, IEEE Computer 19(g), 26-34,

1986.
13] Ali, K.A.M., Or-parallel execution of Prolog on a multi-sequential machine, SICS Technical

Report, 1986.
141 Ali, K.A.M., Or-parallel execution of Horn clause programs based on the WAM and shared

control information, SICS Technical Report, 1986.
[5] Alkalaj, L., and Shapiro, E., An architectural model for a Flat Concurrent Prolog processor,

in Bowen, K. and Kowalski, R.A. (eds.), Proc. 5'
h 

International Conference Symposium on
Logic Programming, pp. 1277-1297, MIT Press, 1988.

(6] Apt, K.R., and van Emden, M.H., Contributions to the theory of logic programming, J.
ACM 29(3), pp. 841-863, 1982.

[7] Bage, G., and Lindstrom, G., Committed choice functional programming, Proc. International
Conference on Fifth Generation Computer Systema, pp. 666-674, ICOT, Tokyo, 1988.

[8] Bahgat, R., and Gregory, S., Pandora: Non-deterministic parallel logic programming, To
appear in Proc. 68A International Conference on Logic Programming, Lisbon, MIT Press,
1989.

[9] de Bakker, J.W., and Kok, J.N., Uniform abstraction, atomicity and contractions in the corn-
parative semantics of Concurrent Prolog, Proc. International Conference on Fifth Generation
Computer Systems, pp. 347-355, ICOT, Tokyo, 1988.

(10] Baron, U., Chassin de Kergommeaux, J., Bailperin, M., Ratcliffe, M., Robert, P., Syre, J.-C.,
and Westphal, H., The parallel ECRC Prolog system PEPSys: An overview and evaluation
results, Proc. International Conference on Fifth Generation Computer Systems, pp. 841-850,
ICOT, Tokyo, 1988.

[11] Bowen, D.L., Byrd, L., Pereira, L.M., Pereira, F.C.N., and Warren, D.H.D., PROLOG on
the DECSystem-10 User's Manual, Technical Report, Department of Artificial Intelligence,
University of Edinburgh, 1981.

[12] Carlsson, M., Freeze, indexing, and other implementation issues in the WAM, in Lasser, J.-
L. (ed.), Proc. 4 1 International Conference on Logic Programming, pp. 40-58, MIT Press,
1987.

[13] Carriero, N., and Gelernter, D., Linda in context, Comm. ACM 32(4), 444-458, 1988.
[14] Chandy, M., and Lamport, L., Distributed snapshots: determining global states of dis-

tributed systems, Transactions on Computer Systems 3(1), pp. 63-75, 1985.
[Ibj Chandy, K.M., and Misrs, J., A paradigm for detecting quiescent properties in distributed

computations, in Apt, K.R. (ed.), Logic& and Models of Concurrent Systems, pp. 325-342,
Springer-Verlag, 1985.

[16] Chandy, K.M., and Misra, J., Parallel Program Design, Addison-Wesley, 1988.
[17] Chikayama, T., and Kimura, Y., Multiple reference management in Flat GHC, in Lassez,

J.-L. (ed.), Proc. VA International Conference on Logic Programming, pp. 276-293, MIT
Press, 1987.

[181 Chikayama, T., Sato, B., and Miyazaki, T., Overview of the parallel inference machine
operating system (PIMOS), Proc. International Conference on Fifth Generation Computer
Systems, pp. 230-251, ICOT, Tokyo, 1988.

[19] Clark, K.L., Predicate logic as a computational formalism, Research Report DOC 70/59,
Department of Computing, Imperial College, London, 1979.

[20] Clark, K.L., and Gregory, S., A relational language for parallel programming, Proc. A ('rI
Conference on Functional Languages and Computer Architecture, pp. 171-178, 1981. Also
Chapter 1 in [164].

[21] Clark, K.L., and Gregory, S., PARLOG: A parallel logic programming language, Research

- 98 -



Report DOC 83/5, Department of Computing, Imperial College, London, 1983.
[22 Clark, K.L., and Gregory, S., Notes on systems programming in PARLOG, Prc. Inter*,-

tional Conference an Fifth Generation Computer Systems, pp. 299-306, ICOT, Tokyo, 1984.
[23 Clark, K.L., and Gregory, S., Notes on the implementation of PARLOG, Research Report

DOC84/16, 1984. Also in J. Logic Prorommism 2(1), pp. 17-42, 1985.
[24] Clark, K.L., and Gregory, S., PARLOG: Parallel programming in logic, ACM TOPLAS 8(l),

pp. 1-49, 1986. Revised as Chapter 3 in [164].
[25] Clark, K.L., and Gregory, S., PARLOG and PROLOG united, in Lssses, J.-L. (ed.), Proc.

4 114 International Conference on Logic Progremmsng, pp. 927-961, MIT Press, 1987.
[26] Clark, K.L., McCabe, F.G., and Gregory, S., IC-PROLOG - language features, in Clark,

K.L., and Tirnlund, S.-A. (eds.), Logic Programming, pp. 253-266, Academic Press, London,
1982.

[27] Clark, K.L., and Tirnlund, S.-A., A first-order theory of data and programs, in Gilchrist, B.
(ed.), Information Processing 77, pp. 939-944, North-Holland, 1977.

[28] Clocksin, W.R, and Alshawi, H., A method for efficiently executing Horn clause programs
using multiple processors, Technical Report, Department of Computer Science, Cambridge
University, Cambridge, 1986.

[29] Codish, M., and Shapiro, E., Compiling Or-parallelism into And-parallelism, New Generation
Computing 5(l), pp. 45-61, 1987. Also Chapter 32 in [1641.

[30] Codish, M., Gallagher, J., and Shapiro, E., Using safe approximations of fixed points for
analysis of logic programs, Proc. META88, Workshop on Mete-Programming in Logic Pro-
gramming, Bristol, 1988.

[31] Colmerauer, A., Opening the Prolog-IlI universe, BYTE Magaie 12(9), August 1987.
[32] Costa, G., and Stirling, C., Weak and strong fairness in CCS, Information and Computation

73, pp.207-244, 1987.
[33) Crammond, J., A comparative study of unification algorithms for Or-parallel execution of

logic languages, Proc. IEEE Interational Confience on Parallel Procesmg, pp. 131-138,
1985.

[341 Crommond, J.A., Implementation of committed choice logic languages on shared memory
multiprocessors, Ph.D. Thesis, Department of Computer Science, Heriot-Watt University,
May 1988. Also Technical Report PAR 88/4, Department of Computing, Imperial College,
London, 1988.

[35] Davison, A., POOL: A PARLOG object oriented language, Department of Computing, Im-
penal College, London.

[36] DeGroot, D., and Lindstrom, G. (eds.), Logic Programming - Functions, Relations end
Equations, Prentice-Hall, New Jersey, 1986.

[37] Dijkstra, E.W, Hierarchical ordering of sequential processes, Acs Informatica 1, 115-138,
1971.

[38] Dijkstra, E.W., Guarded commands, nondeterminacy, and formal derivation of programs,
CACM 18(8), pp. 453-457, 1975.

[39] Dijkstra, E.W., A Discipline of Programming, Prentice-Hall, New Jersey, 1976.
[40] Dijkstra, E.W., and Scholten, C.S., Termination detection for diffusing computations, Infor-

motion Processing Letters 11(1), pp. 1-4,1980.
[41] van Emden, M.H., and Kowalski, R.A., The semantics of predicate logic s a programming

language, J. ACM 23(4), pp. 733-742,1976.
[42] van Emden, M.H., and de Lucena, GJ., Predicate logic as a language for parallel program-

uing, in Clark, K.L., and Tirnlund, S.-A. (eds.), Logic Programming, pp. 189-198, Academic
Press, London, 1982.

[43] Ershov, A.P., et al. (eds.), Special Issue: Selected papers from the Workshop on Partial
Evaluation and Mixed Computation, 1987, Rew Generation Computing 6(2,3), 1988.

[44] Falachi,. M., and Levi, G., Finite failures and partial computations in concurrent logic

- 99 -



languages, Proc. Interational Conference on Fifth Generation Computer Systems, pp. 364-
373, ICOT, Tokyo, 1988.

[45] Falaschi, M., Levi, G., Martelli, M., and Palemidemi, G., A new declarative semantics for
logic languages, in K. Bowen and R.A. Kowalski (eds.), Proc. 5 t

h 
International Conference

Spmposium on Logic Programming, pp. 993-1005, MIT Pr em, 1988.
[46] Foster, I., Efficient metacontrol in parallel logic programming, Research Report PAR 87/18,

Department of Computing, Imperial College, London, 1987.
[47] Foster, I., Parallel implementation of PARLOG, Proc. International Conference of Parallel

Processing, 1988.
[48] Foster, I., PARLOG as a Systems Programming Language, Ph.D. Thesis, Department of

Computing, Imperial College, London, 1988.
[49] Foster, I., and Taylor, S., Flat Parlog: A basis for comparison, International J. of Parallel

Programming 16(2), 1987.
[50] Frances, N., Fairness, Springer-Verlag, 1987.
[51] Frances, N., and Rodeh, M., Achieving distributed termination without freezing, IEEE

Transactions on Software Engineering SE-8(3), pp. 359-385,1982.
[52] Friedman, D.P., and Wise, D.S., Aspects of applicative programming for parallel processing,

IEEE Trans. on Computers C-27(4), pp. 289-296,1978.
[53] Friedman, D.P., and Wise, D.S., An approach to fair applicative multiprogramming, in Kahn,

G. (ed.), Semantics of Concurrent Computation, LNCS 70, pp. 203-226, Springer-Verlag,
1979.

[54] Friedman, D.P., and Wise, D.S., An indeterminate constructor for applicative prograumming,
Conference Record 7 h ACM Sympoum on Principles of Programming Languages, pp. 245-
250, 1980.

[55] Fuchi, K., and Furukawa, K., The role of logic programming in the Fifth Generation Com-
puter Project, New Generation Computing 5(1), pp. 3-28, 1987.

[56] Furukawa, K., and Ueda, K., GHC proces fusion by program transformation, Proc. I"
Conference on Japan Society of Software Science and Technology, pp. 89-92, 1985.

[571 Furukawa, K., Okumura, A., and Muraksmi, M., Unfolding rules for GHC programs, in
Biorner, D. et al. (eds.), Proc. Workshop on Partial and Mixed Computation, G). Avernaes,
1987.

[58] Futamura, Y., Partial evaluation of computation process - an approach to a compiler-
compiler, Systems, Computers, Controls 2(5), pp. 721-728,1971.

[59] Gaifman, H., Maher, M.J., and Shapiro, E., Existential constraints, reactive behaviors, and
fully abstract compositional semantics of concurrent logic programs, Technical Report, De-
partment of Computer Science, The Wetsmann Institute of Science, Rehovot, 1 989.

[60] Gallagher, J., An Approach to the Control of Logic Programs, Ph.D. Thesis, Department of
Computer Science, Trinity College, Dublin, 1983.

[61] Gallagher. J., Transforming logic programs by specialising interpreters, Proc. 71 European
Conference on Artificial Intelligence, pp. 109-122, Brighton, 186.

[621 Gallagher. J., Codish, M., and Shapiro, E., Specialisation of Prolog and FCP programs using
abstract interpretation, New Generation Computing 6, pp. 159-186, 1988.

[63] Gaifman, H., and Shapiro, E., Fully abstract compositional semantics for logic programs,
Proc. ACM Syinposium on Principles of Programming Languages, pp. 134-142, 1989.

[64] Gaifman, H., and Shapiro, E., Proof Theory and Semantics of Logic Programs, To appear in
Proc. IEEE Symposium on Logic in Computer Science, 1989.

[65] Garth R., Codish M., Lichtenstein Y., and Shapiro E., Fully abstract denotational semantics
for Flat Concurrent Prolog, Proc. IEEE Symposium on Logic in Computer Sciencc, pp.
320-333, 1988.

[66] Gregory, S., Parallel Logic Programming in PARLOG, Addison-Wesley, 1987.
[67] Gregory, S., Neely, R., and Ringwood, G.A., PARLOG for specification, verification and

- 100 -



simulation, in Koomen, CJ., and Moto-Oka, T. (ads.), Proc. 7th Juteruetdouel 5yp,-
ammoa Computer Hardware. Description Langagesande their Application s, pp. 139-148,
Elaevier/North-Hollaad, Amsterdam, 1IM.

1681 Gregory, S., Foster, I.T., Budt, A.D., ad Ringwood, G.A., An abstract machine for the
implementation of PARLOG as uniprocessass, New Gemeaftee, Computing 6(4), 389-420,
1W8.

(691 Hulstead, R.H., MultiLisp - A language for coincurrent symbolic computation, A CM Trea.
on Programming Languages ad Systems 7(4), pp. 501-588,1985.

[70] Harel, D. (ed.), Alporithmis: n1. Spirit of Competing, Addison-Wesley, 1987.
(71] Hare!, D., and Pnuai, A., On the development of reactive system, in Apt, K.ft. (ad.), Logics

and Model of Concurreat Syst ems, Springer Verlag, 1985.
172] Haridi, S., and Brand, P., ANDORRA Prolog - an integration if Prolog and committed

choice languages, Proc. Interatioal Conference on Fifth Geaeration Computer Systems,
pp. 745-764, ICOT, Tokyo, 1988.

(73] Harper, It, MacQueen, D., and Milner, R., Standard ML, Technical Report ECS-LFCS-86-2,
University of Edinburgh, 19M6.

(74] Harsat, A., and Ginosar, ft., CARMEL - a VLSI architecture for Flat Concurrent Prolog,
EE PUB. Technical Report, Department of Computer Science, Technion, Haifa, 1987.I [75] Harsat, A., and Ginosar, ft., CARMEL-2: a second generation VLSI architecture for Flat
Concurrent Prolog, Proc. Isterautiea Conference a FOft Geaeration, Computer Systems,
pp. 962-"69, ICOT, Tokyo, 1968.

[76] Hellerstein, L., and Shapiro, E., Implementing parallel algorithms in Concurrent Prolog: The
MAXFLOW experience, J. Logic Pvresmomitg 3(2), pp. 157-164, 1984. Also Chapter 9 in

[77] Henderson, P., Purely fuctional operating systems, is Darlington, J., Dean, P., and
'Turner, D. (eds.), Functional Progruopmain sa Its Applicstion., Cambridge Univesity
Press, 1982.

(78] Hewitt, C., A universal, eodft in artiliial intelligenee, Proc. [atewiis-
tionel Joint Conference an A,-,-i hIam-ue, W83.

(791 Hewitt, C., The challenge of open systemw, IAE Magai, pp. 223-242, 1985.
[60] Hill, ft., LUSH-resolution and its completeness, DCL Memo 78, Department of Artificial

Intelligence, University of Edinburgh, 1974.
(81] Hirata, M., Letter to the editor, SWGPLAN Notices, pp. 16-17, May 1986.
[82] Hirata, M., Programming language Doe and its self-description, or, X=X is considered harmn-

ful, Proc. 31d Conference of Japan Society of Softwere Science and TecArolopy, pp. 09-72,
1986.

[831 Hirata, M., Parallel list processing language Oc and its self-description, Computer Soil were
4(3), p. 41--64, 1987 (in Japanese).

[84] Hirsch, M., Silverman, W., and Shapiro, E., Computation control and protection in the Logix
system, Chapter 20 ii' [1641.

[85] Howe, C.A.R., Monitors: an operating systems structuring concept, Comm. ACM 17(10),
pp. 549-557, 1974.

(861 Hose, C.A.R., Communicating sequential proeses, Comm. ACM 21(8), pp. 6-77,1978.
[87] Howe, C.A.ft., Com~municating Sequcatiel Processes, Prentice-Hall, New Jersey, 1985.
(88] Hopcroft, J.E., and Ullman, J.D., Introduction, to Automata Ticsep, Lomgusee, and Com-.

puletion, Addison-Wesley, 1979.
189] Honri, A., and Shapiro, E., A sequential abstract machine for Flat Concurrent Prolog, Char-

ter 38 in (1641.
[90) IchiYoahi, N., Miyaaaki, T., and Taki, K., A distributed imnplemsustation of Flat GHC on the

Multi-PSI, in Lames, J.-L. (ed.), Proc. 4 t Internationul Conference of Logic Progrvmmisg,
pp. 257-275, MIT Press, 1987.

- 101 -



(p1] At'MOS Ltd., OCCAM Programminsg Manuel, Prentice-Hall, New Jersey, 1984.
92] Jffar, J., and Lames, J-L., Constraint logic programming, ACM Synposinm on Principlesof Programming Languages, Munich, 1987.

193] Johnson, S.D., Circuits and systems: Implementing communications with stre ms, Technical
Report 116, Computer Science Department, Indiana University, 1981.

[94] Kahn, G., and MacQueen, D., Coroutines and networks of parallel processes, in Gilchrist, B.
(ad.), Isformaioa Processing 77, Proc. IFIP Congress, pp. 993-998, North-Holland, 1977.

[951 Kahn, K., Tribble, E.D., Miller, M., and Bobrow, D.G., Vulcan: Logical concurrent objects,
in Shriver, B., and Wegner, P. (eds.), Research Directions in ObIjec-Oriented Progreamming,
MIT Press, 1987. Also Chapter 30 in 1164].

196] Kahn, K., Silverman, W., and Shapiro, E., Logic programs with implicit variables, unpub-
lished, 1988.

[97] Kimura, Y., and Chikaymna, T., An abstract KLI machine and its instruction set, Proc.
IEEE Symposium on Logic Progreamming, pp. 468-477,San Francisco, 1987.

[98] Kishimoto, M., et a., An evaluation of the FGHC via practical application programs, ICOT
Technical Report TR-232, Institute for New Generation Computer Technology, Tokyo, 1987.

[991 Kliger, S. and Shapiro, E., A decision tree compilation algorithm for FCP(I,:,?), in Bowen,
K. and Kowalski, R.A. (eds.), Proc. 5th Internatiosal Conference Symposium on Logic Pro-
grumming, pp. 1315-1336, MIT Press, 1988.

(1001 Kliger, S., Yardeni, E., Kahn, K., and Shapiro, E., The language FCP(:,?), Proc. Inter-
national Conference on Fifth Generation Computer Systems, pp. 763-773, ICOT, Tokyo,
1988.

1101] Kohda, Y., and Tanaka, J., Deriving a compilation method for parallel logic languages, Logic
Programming, LNC8 31 0, pp. -94, Spring.r-Verlag, 1988.

1102 Kowalski, R.A., Logicfor Problem Solving, Elsevier, North-Holland, 1979.
[1031 Kung, H.T., WVhy systolic architectures?, IEEE Computer 15(1), pp. 37-46, 1982.
f10q Kum" A.., Boundsd-wait merge in Shapiro's Concurrent Prolog, New Generation Com-

puting 1(12), pp. 157-169,1984.
(105] Lai, T.H., Termination detection for dynarmitally distributed systems with non-first-in-first-

out communication, 1. Parallel sad Distributed Computing 3, pp. 577-599, 1986.
[106) Lain, M., and Gregory, S., PARLOG and ALICE: a marriage of convenience, in Lames, J.-L.

(ed.), Proc. 4"' International Conference on Logic Programming, pp. 294-310, MIT Press
1987.

[107] Lamport, L., Time, Clock@, and the ordering of events in a distributed system, Communca-
tion of the ACM, July 1978.

1108] Lamae, J.-L., Maher, M.J., and Mariot, K., Unification revisited, in J. Minker (ed.), Foun-
dathons of Deductive Databaes and Logic Programmiung, pp. 587-626, Morgan Kaufmann.
1987.

[109] Levi, G., Models, unfolding rules and fixpoint semantics, in Bowen, K. and Kowalski, R.A.
(eds.), Proc. 51 h 

International Conference Symposium on Logic Programming, pp. 1649-
1665, MIT Press, 1988.

1110] Levi, G., and Palamidesi, C., An approach to the declarative semantics of synchroniza-
tion in logic languages, in Lasses, J.-L. (ed.), Proc. 44 International Conference on Logic
Programming, pp 877-893, MIT Pres, 1987.

11ll] Levi, G., and Sardu, G., Partial evaluation of meta-program in a multiple world's logic lan-
guage, in Bjorner, D., Erthov, A.P. and Jones, N.D. (eda.), Workshop on Partial Evalualon
and Mired Computation, GI. Avernss, 1987.

(1121 Levy, J., A unification algorithm for Concurrent Prolog, Tirniund, S.-A. (ed.), pror pnd
International Conference on Logic Programming, pp. 333-341, Uppsala, 1984.

(1131 Levy, J., A GHC abstract machine and instruction set, in Shapiro, E. (ed.), Proc. S'd
International Conference on Logic Progrmmina, LNCS 225, pp. 157-171, Springer-Verlag,

- 10t -



1986.

(1141 Levy, J., Concurrent Prolor and Related Leauguses, Ph.D. Thesis, Department of Computer
Science, The Weisman Institute of Science, Rehovot, 1988.

[115] Levy, J., and Friedman, N., Concurrent Prolog implementations - two new schemes, Tech-
nical Report CS86-13, Department of Computer Science, The Weiman Institute of Science,
Rehovot, 1980.

(116] Levy, J., and Shapiro, E., Translation of Safe GHC and Safe Concurrent Prolog to FCP,

Chapter 33 in [164].
[117] Levy, J., and Shapiro, E., CFL - A concurrent functional language embedded in a concurrent

logic programming environment, Chapter 35 in [164].
[118] Lichtenstein, Y., and Shapiro, E., Concurrent algorithmic debugging, Proc. ACM Workshop

on Parallel Debugging. Also Technical Report CS87-20, Department of Computer Science,
The Weizmann Institute of Science, Rehovot, 1987.

[119] Lichtenstein, Y., and Shapiro, E., Representation and enumeration of Flat Concurrent Prolog
computations, Chapter 27 in [164].

[120] Lichtenstein, Y. and Shapiro, E., Abstract algorithmic debugging, in Bowen, K. and Kowl-
ski, R.A. (eds.), Proc. 5 1A International Conference and Symposium on Logic Programming,
pp. 1315-1336, MIT Press, 1988.

[121] Lloyd, J.W., Foundations of Logic Programming, Second Edition, Springer-Verlag, 1987.
[122] Luak, E., Butler, R., Diaz, T., Olson, R., Overbeek, R., Stevens, R., Warren, D.H.D, Calder-

wood, A., Sseredi, P., Haridi, S., Brand, P., Carlsson, M., Ciepielewski, A., and Hausman, B.,
The Aurora Or-Parallel Prolog system, Proc. International Con ference ov. Fifth Generation
Computer Spstems, pp. 819-830, ICOT, Tokyo. 1988.

[123] Maher, MJ., Equivalences of logic programs, in J. Minker (ed.), Foundations of Deductive
Databases and Logic Programming, pp. 627-658, Morgan Kaufmann Publishers, Los Altos,
1987.

[1241 Maher, M.J., Logic semantics for a class of committed-choice programs, in Lasses, J.-L. (ed.),
Proc. 4th International Conference on Logic Programming, pp. 858-876, MIT Press, 1987.

[125] Manna, Z., and Pnueli, A., Spe'-ification and verification of concurrent programs by V-
automata, Report STAN-CS-88-1230, Department of Computer Science, Stanford University,
Stanford, 1988.

[126] Mattern, F., Algorithms for distributed termination detection, Distributed Computing 2, pp.
161-175, 1987.

[127] Miyazaki, T., Takeuchi, A., and Chikaysma, T., A sequential implementation of Concurrent
Prolog based on the shallow binding scheme, IEEE Symposium on Logic Programming pp.
110-118, 1985. Also Chapter 37 in [164].

[128] Mierowsky, C., Taylor, S., Shapiro, E., Levy, J., and Safra, S., The design and implementation
of Flat Concurrent Prolog, Technical Report CS85-09, Department of Computer Science, The
Weizmann Institute of Science, Rehovot, 1985.

[129] Milner, R., A Calculus of Communicating Systems, LNCS 92, Springer-Verlag, 1980.
[130] Misra, J., Distributed discrete-event simulation, Computing Surveys 18(1), pp. 39-65, 1986.
[131] Murakami, M., A declarative semantics of parallel logic programs with perpetual proceses,

Proc. International Conference on Fifth Generation Computer Systems, pp. 374-381, ICOT,
Tokyo, 1988.

[132] Naish, L., MU-Prolog S.1db Refierence Manual, Internal Memorandum, Department of Com-
puter Science, University of Melbourne, 1984.

[133] Nilsson, M., and Tanaka, H., Fleng Prolog - The language which turns supercomputers
into Prolog machines, in Wada, E. (ed.), Proc. Japanese Logic Programming Conference, pp.
209-216, ICOT, Tokyo, 1986. Proceedings also published as Springe r LNCS 264.

[134] Nilhson, M., and Tanaka, H., The art of building a parallel logic programming system or
from zero to full GHC in ten pages, in Wads, E. (ed.), Proc. Japanese Logic Programming

- 103 -

I _ m mm nl( l ,m



Conference, pp. 155-163, ICOT, Tokyo, 1987. Proceedings also to a ppear as Springer LNCS.
[135] Niluson, M., and Tanaka, Hf., Massvely parallel implementation of Flat GC on the connec-

tion machine, Proe. Internutionasl Conferene on Fift Generation Comeputer Systems, pp.
1031-1040, ICOT, Tokyo, 19N8.

[138] Nilnm, M., and Tanaka, H., A Flat GHC implementation for supercomputers, in Bowen,
K. and Kowalski, R.A. (eds.), Proc. 5tk International Conference Symposium on Logic Pro-.

gramming, pp. 1337-1350, MIT Pa., 1988.
[13?] Ohki, M., et al., An object-oriented programming language based on a parallel logic pro-

gramm-ing language KLI, ICOT Technical Report TR-22, Institute for New Generation
Computer Technology, Tokyo, 1987.

[138] Okahe, Y., and Yajima, S., Parallel computational complexity of logic programs and al-
ternating turing machine., Proc. Iaternational Conference on Fifth Generation Computer
Systems, pp. &56-363, ICOT, Tokyo, I98.

[1391 Okumura, A., and Mdatsumoto, Y., Parallel programming with layered streamns, Proc. IEEE
Symposium on Logic Programming, pp. 224-231, San Francisco, 1987.

[140] Pereira, L.M., and Nan, ft., Delta-Prolog; a distributed logic programming language,
Proc. International Conference oa Fifth Generation Computer Systems, pp. 283-291, ICOT,
Tokyo, 1984.

[141] Picca, ft., Bellone, J., and Levy. J., Or-parallel And-interleaving execution of Concurrent
Prolog, Technical Report CS87-07, Depsrtment of Computer Science, The Weizmann Insti-
tute of Science, Rehovot, 1987.

[142] Pnueli, A., Applications of temporal logic to the specification and verification of reactive
aystems: A survey of current trends, in de Bakker, J.W., de Roever, W.P., and Rosenberg,
G. (eds.), Current Trends in Concurrency, Ov'eriews and Tutorials , LN'CS 224, pp. 510-
584, Springer-Verlag, 1986.

[143] Rnmnskrishnan, Rt., and Silberuchats, A., Annotations for distributed programnming in logic,
Conference Record ISm ACM Syssposiam on Principles of Programming Languages, pp.
25-262,1986.

[144] Ruched, E., Gudes, E., and Shapiro, E., Parallel accs to a distributed database and its
implementation in Flat Concurrent Prolog, Technical Report CS88- 11, Department of Comn-
puter Science, The Weimnnn Institute of Science, Rehovot, 1988.

[145] Ringwood, G.A., PARLOG86 and the dining logicians, CA CM 31(l), pp. 10-25, 1988.
[146] Ringwood, G.A., Pattern-directed, Markovian, linear, guarded definite clause resolution,

Department of Computing, Imperial College, London.
[147) Robinson, .1.A., A machine oriented logic based on the resolution principle, J. A CM 12(l),

pp. 23-41, 1965.
[148] Safra, S., Partial Evaluation of Concurrent Prao# and Its Implications, M.Sc. Thesis, Tech-

nical Report 0588-24, Department of Computer Science, The Weianiann Institute of Science,
Relbovot, 1986.

(149] Safra, S., and Shapiro, E., Meta-interpreters for real, Information Processing 86, pp. 271-
278, North-Holland, 1986. Also Chapter 25 in (1841.

[150] Sarafwat, V.A., Partial correctness semantics for CPfI,1,&], Proc. Ph Conference on Foun-
detiona of Software Technology dad Theoretical Computer Science, LNCS 206, pp. 347-368,
New Delhi, 1985.

(1511 Sarawat, V.A., Problems with Concurrent Prolog, Technical Report 86-100, Carnegie-Mellon
University, 1986.

1152] Sarawat, V.A., Merging many streamsu efficiently: The importance of atomic commitment,
Chapter 16 in [1841.

[13] Sarsawat, V.A., A compiler of CPQ,1,&) on top of Prolog, Technical Report CS-87-174,
Carnegie-Mellon University, 19187.

(154] Samnawat, V.A., The concurrent logic programming language CP: Definition and operational

-104-



semantics, Proc. ACM Symposium on Principles of Programming Languages, pp. 49-63,
1987.

[155] Sarmuwat, V.A., The language GHC: Operational semantics, problems and relationship with
CP[1,f, Proc. IEEE Symposium on Logic Programming, pp. 47-358,San Francisco, 1987.

[156] Saraswat, V.A., A somewhat logical formulation of CLP synchronisation primitives, in
Bowen, K. and Kowalski, R.A. (eds.), Proc. 51h Internstiosal Conference Symposium on
Logic Programming, pp. 12M-1314, MIT Press, 1968.

[157) Sarzowat, V.A., Concurrent Constraint Programming Languages, Ph.D. Thesis, Carnegie-
Mellon University, 1989.

[158] Sarsaswat, V.A., Weinbaum, D., Kahn, K., and Shapiro, E., Detecting stable properties of
networks in concurrent logic prograraning languages, Proc. ACM Conference on Pr nciples
of DistrIted Computing, 1988.

[159] Shapiro, E., Algorithmic Program Debugging, MIT Press, 1983.
[160] Shapiro, E., A subset of Concurrent Prolog and its interpreter, ICOT Technical Report TR-

003, Institute for New Generation Computer Technology, Tokyo, 1983. Also chapter 2 in
[164].

[161] Shapiro, E., Alternation and the computational complexity of logic programs, J. Logic Pro-
gramming, 1(1), pp. 19-33, 1984.

[162 Shapiro, E., Concurrent Prolog: A progues report, IEEE Computer 19(8), 44-8, 1986.
Also Chapter 5 in [164].

[163] Shapiro, E., Systolic programming: A paradigm of parallel proesming, Proc. International
Conference on Fiflth Generation Computer Systems, pp. 458-471, 1984. Alm Chapter 7 in
[164].

(164] Shapiro, E. (Editor), Concurrent Prokg: Collected Papers, Vols. I and 2, MIT Prs, 1987.
[165] Shapiro, E., Or-parallel Prolog in Flat Coneumat Ptolog, Chapter 34 in [164].
1168) Shapiro, E., Embedding Linda and other joys of concurrent logic programming, Technical

Report, Department of Computer Science, The Weisma Institute of Science, Rehovot,
1989. ...

[1671 Shapiro, E., and Mierowsky, C., Fair, 5Awss and wtlalancing mwge operatosa Their
specification and implementation in Concurnat Prolog, New Generation Computing 2(3),
pp. 221-240,1984. Also Chapter 14 in [164].

[168] Shapiro, E., and Safra, S., Multiway merge with constant delay in Concurrent Prolog, New
Generation Computing 4(2), pp. 211-216, 1986. Also Chapter 15 in (164].

[169] Shapiro, E., and Takeuchi, A., Object-oriented programming in Concurrent Prolog, New
Generation Computing 1(1), pp. 25-49, 1983. Also Chapter 29 in [164].

(170] Silverman, W., Hirsch, M., Houri, A., and Shapiro, E., The Logix system user manual,
Version 1.21, Chapter 21 in [164].

[171] Sterling, L.S., and Shapiro, E., Tie Art of Prolog, MIT Pres, 1986.
[172] Susuki, N., Experience with specification and verification of complex computer using Con-

current Prolog, in Warren, D.H.D, and van Caneghem, M. (eds.), Logic Programming and
It# Applications, pp. 188-209, Ablex Pub. Co., New Jersey, 1988.

[173] Ssdke, D., Distrikated Flat Concurrent Prolog on a Network Architecture, M.Sc. Thesis,
Department of Computer Science, The Weinmana Institute of Science, Rehovot, 1987.

[174] Takeda, Y., Nakashim., H., Mmud&, K., Chikyamsa, T., and Taki, K., A load balancing
mechanism for large scale multiprocessor system and its implementation, Proc. International
Conference on Fifth Generation Compler Systems, pp. 976-986, IC OT, Tokyo, 1988.

[175] Takeuchi, A., How to solve it in Concurrent Prolog, 193 (unpublished note).
[176] Takeuchi, A., Algorithmic debugging of GHC progams and its implementation in GHC,

Chapter 26 in [164].
[177] Takeuchi, A., and Furukawa, K., Bounded-bufer communication in Concurrent Prolog, New

Geteratian Computing 2(2), pp. 145-155, 1965. Also Chapter 18 in [164].

- 105 -

e, ' .

jJ



(1781 Takeuchi, A., and Furukawa, K., Partial evaluation of Prolog program sad its application
to meteprogramming, Information Processing $9, pp. 416-420, North-Holland, 1986.

[1791 Takeuchi, A., at *I., A description laaguaa with AND/OR parallelism fat concurrent sys-
temns and its strea-bed realisation, ICOT Technical Report TR-229, Institute for New
Generation Computer Teclanolog, Tokyo, 1987.

[180] Tamski, H., A distributed unification achesne for systolit proram, Proc. Isteratial Co.
fersace on Parslld Processng, pp. 552-M5, 1065.

[181] Tanaka, J., A simple programming system written in GUC and its reflecive operations, Prot.
Jepenese Logic Progrraing Conference, pp. 143-149, ICOT, Tokyo, 1988.

11821 Tana"a J., Metainterpreters, and rdfective operations in GHC, Proc. Interatioal Confer-
eace on Fifth Generation Computer Systems, pp. 7744783, ICOT, Tokyo, 1988.

1831 Tana"a J., Ueda, K., Miyasaki, T., Takeuchi, A., Matmumoto, Y., and Furukawa, K.,
Guarded Horn clauses and experiences with parallel logic programming, Proc. FJCC A CM,
pp. 948-954, Dallas, 198.

[1841 Tana"a H., et al., First annual report of the research on a large scale knowledge information
processing system, ]COT Technical Report, 198 (Partly in Japanese).

[185] Taylor, H., Localizing the GHC suspension test, in Blowen, K. and Kowalski, R.A. (eds.),
Proc. 59h Internaetional Conference Symsposium oa Logic Programminag, pp. 1257-1271, MIT
Press, 1988.

1186] Taylor, S., Parallel Logic Programming Techniques, Ph.D. Thesis, Department of Computer
Science, The Weismann Institute of Science, Rehovot, 1988.

[1871 Taylor, S., Av-RoD, E., and Shapiro, E., A layered method for proeom and code mapping, J.
New Generation Computing 5(2), 1987. Also Chapter 22 in [1641.

[1683 Taylor, S., and Foster, I., Strndi Language Reference Masudl, Technical Report PAR 88/10,
Department of Computing, Imperial College, London, 1988.

[1891 Taylor, S., Rellerstein, L., Sabra, S., and Shapiro, E., Notes on the complexity of systolic
programs, J. Parallel ad Distriisted Cormputing 4(3), 1987. Also Chapter 8 in [164].

[190] Taylor, S., Safra, S., and Shapiro E., A paralle implementation of Flat Concurrent Prolog,
J. Paralle Programming 15(3), pp. 245k-275,1967. Also Chapter 39 in [164).

11911 Taylor, S., Shapiro, R., and Shapiro, E., FCP: A aummary of perfornance results, in Fox,
G. (ed.), Proc. Srli Conference on frypercube Concurrrst Computers ad Apphesthoaa, pp.
1364-1373, ACM Press, 1988.

[1021 Taylor, S., and Shapiro, E., An improved parallel algorithm for Flat Concurrent Prolog,
Technical Report CS88-O9, Department of Computer Science, The Weismann Institute of
Science, Rehovot, 1968.

[193) Tick, E., A performance comparison of And- and Or-parallel logic programming architectures,
ICOT Technical Report TR-421, Institute for New Generation Computer Technology,Tokyo,
1968.

[1941 Tribble, S.D., Miller, M.S., Kahn, K., Dobrow, D.G. and Abbot, C., Channels: A gen-
eralisatiom of strearna, in Lasses, J.-L. (ed.), Proc. 4th Interatioal Conference of Logic
Programaming, pp. 839-67, MIT Press, 1987. Also Chapter 17 in 1164].

(1961 Uchida, S., Tald, K., Nakashima, K., Goto, A., and Chikaysma, T., Research and develop.
ment of the parallel inference system in the intermediate stae of the FGCS project, Proc.
Internauioal Conference an Po1k Generation Computer Spalewa, pp. 16-36, ICOT, Tokyo,
1968.

1196) Ueda, K., Concurrent Prolog re-exaie, 100? Technical Report TR-102, Institute for
New Generation Computer Technolop, Tokyo, 196.

(197 Ueda, K., Guarded Mra Classes, Ph.D. Thesis, Information Engineering Course, University
[196 Tolkyo, Tokyo, 1966.
191Ueda, K., Guarded Rorn Clase, in Wads, E. (ad.), Logic Programming, LNCS 221, pp.

168-179, Sprlngsr-Vartag, 198. Also Chapter 4 in [1641.

-106-



[199] Ueda, K., Guarded Horn Clauses: A parallel logic programming language with the concept
of a guard, ICC)? Technical Report TR-208, Institute for New Generation Computer Tech-
nology, Tokyo, 1986 (revised in 1987). Ao in Nivat, M., and Fuchi, K. (eds.), Frog ramming
of Future Generation Computer., pp. 441-456, North-Hofland, 1988.

[200] Ueda, K., Making exhaustive seach programs deterministic, New Generation Computing
5(l), pp. 29-4, 1987.

[201] Ueda, K., Making exhaustive search program. deterministic, Part HI, ICOT Technical Report
TR,249, Institute for New Generatin Computer Technology, Tokyo, 1987.

[202] Ueda, K., Parallelism in logic programming, Proc. IFIP Congress, 1989.
[2031 Ueda, K., and Chikaysmna, T., Concurrent Prolog compiler on top of Prolog, Proc. MEE

Symposium on Logic Programnang, pp. 119-126, 1985.
[204] Ueda, K., and Furukawa, K., Transformation rules for GEC prograns, Proc. International

Conference on Fifth Geaeraion Computer Systemsa, pp. 582-591, ICOT, Tokyo, 1988.
(205] Vasey, P., Qualified answers and their application to transformation, in Shapiro, E. (ed.),

Proc. Sd International Conference os logic Programming, LNCS 225, pp. 425-432,
Springer-Verlag, 1986.

[206] Warren, D.H.D., An abstract Prolog instruction set, Technical Report 309, Artificial Intelli-
gence Center, SI International, 1983.

[207] Warren, D.H.D., The SRI model for Or-parallel execution of Prolog - ahstract design and
implementation, Proc. IEEE Symposiumn on Logic Programming, pp. 92-102, San Francisco,
1987.

(208] Weinbaum, D., and Shapiro, E., Hardware description and simulation using Concurrent
Prolog, Proc. CHDlL '87, pp. 9-27, Elsevier Science Publishing, 1987. Also Chapter 36 in
[164].

[209] Yang, Rt., A Parallel Logic Programming Language and Its Implementation, Ph.D. Thesis,
Keio University, 1986.

[210] Yang, R., and Aiso, H., P-Prolog: a parallel logic language based on exclusive relation, in
Shapiro, E. (ed.), Proc. 31d International Conference on Logic Programming, LNCS 225,

pp. 255-269, Springer-Verlag, 1986.
[211] Yardenki, E., and Shapiro, E., A type system for logic programs, Chapter 28 in [184].

-107-


