AT ik copy

WORKING MATERIAL

FOR THE LECTURES OF
EHUuD Y. SHAPIRO

THE FAMILY OF CONCURRENT LOGIC
PROGRAMMING LANGUAGES

AD-A213 958 pL—ECIFg

0CT.3 11389

a'ODB

- e >
———

i
INTERNATIONAL SUMMER SCHOOL

ON

LOGIC, ALGEBRA AND COMPUTATION

MARKTOBERDORF, GERMANY, JuLy 25 - AucusT 6.1989

Distribution Uslimited

89 1¢ 27 016

THIS SUMMER SCHOOL IS ORGANIZED UNDER THE AUSPICES OF THE TECHNISCHE
UNIVERSITAT MUNCHEN arp 1s sponsorep By THE NATO Science CommiTee
As PART OF THE 1989 ADVANCED STUDY INSTITHITES FROGRAMME, PARTIAL
SUPPORT FOR THE CONFERENCE WAS PROVIDED BY THE EUROPEAN RESEARCH
OFFICE anp THE NATIONAL SCIENCE FOUNDATION AND $Y VARIOUS INDUSTRIAL
COMPANIES. ' o



The Family of Concurrent Logic

Programming Languages -
E. Shapiro

CS89-08
May 1989

Department of Applied Mathematics & Computer Science
The Weizmann Institute of Science
Rehovot 76100, Israel




The Family of Concurrent Logic Programming Languages

Ebud Shapiro
Department of Applied Mathematics and Computer Science
The Weismann Institute of Science ,
Rehovot 76100, Israel

April, 1989

Abstract

Concurrent logic languages are high-level programming languages for parallel and distributed
systems that offer a wide range of both known and povel concurrent programming techniques. Being
logic programming languages, they preserve many sdvantages of the abstract logic programming
model, including the logical reading of programs and computations, the convenience of representing
data-structures with logical terms and manipulating them using unification, sod the amenability
to meta-programming. Operationally, their del of putation ists of & dynamic set of
concurrent processes, communicating by instantiating shared logical variables, synchronising by
waiting for variables to be instantiated, and making deterministic choices, possibly based on
the availability of values of variabl

This paper surveys the family of concurrent logic programming languages within a uniform
operational framework. It demonstrates the expressive power of even the simplest language in the
family, and investigates how varying the basic synchronisation and control constructs affect the
expressiveness and efficiency of the resulting languages.

In addition, the paper reports on techniques for seq tial and p impl tation of
languages in this family, mentions their applications to date, and relates these languages to the
sbstract logic programming model, to the progr ing language Prolog, and to other concurrent
computational models and progr ning languages. /1 -
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PART 1. INTRODUCTION

1. Introduction

In surveying concurrent logic programming languages, this paper:

Introd the putational models of logic programs, Prolog, and concurrent logic lan-
guages.

e  Discusses the different role of nondeterminism in these three computational models.

e  Explains the use of the logical variable as a communication channel, and the use of unification
in the specification and implementation of sophisticated communication protacols.

e Demonsirates the powerful programming techniques available in concurrent logic languages,
including: stream processing, the formation and manipulation of dynamic process networks,
incomplete-message protocols for dialogues and network configuration, concurrent construc-
tion of shared data-structures, and short-circuit protocols for distributed termination and
quiescence detection.

e Demonstrates the utility of enhanced meta-interpreters in concurrent logic programming, in-
cluding their application to putation control, to the formation of live and frozen snapshots,
and to computation replay and debugging.

o Exposes the spectrum of concurrent logic programming langua.ges, ranging from the simpler
and weaker ones, to the more complex and more expressive ones.

e  Reports on impl tech for tial and parallel computers developed for
concurrent logic lmguage as well as on p jalized acchitectures designed for them.

The paper does not aim at providing a historical account of the development of concurrent
logic languages. Rather, it attempts to expose the core concepts of these languages, as well as

tation

the internal structure of the family and the qualities of each of its bers, within a consistent
operational framework. As a result, usually an idealized or a simplified version of each language is
described. When applicable, the diffe from the actual language, as well as relevant historical

facts, are noted!,

The paper consists of five parts. In the remainder of Part I, Section 2 surveys briefly the
abstract computational model of logic programming and of (pure) Prolog, explaining the role of
the logical variable, unification, and nondeterminism in this model.

Part II conveys the core concepts and techniques of concurrent logic programming. Section 3
introduces the basic concepts of concurrent logic programming, and the use of shared logical
variables for communication and synchronization. Section 4 defines a simple concurrent logic
language. This language is used in Section 5 to illustrate basic concurrent logic programming
examples and techniq Section 6 discusses fairness conditions for concurrent logic programs.
Following that, Section 7 describes advanced concurrent logic programming techniques. Although
this part uses & particular concurrent logic language, both the basic and advanced techniques
shown are common to most programming languages in the family; exceptions are noted when each
fanguage is introduced.

Part Il surveys the various members of the family of concurrent logic languages. Section 21
describes our method of comparing languages in the family. We compare languages for their expres-
siveness, simplicity, readability and efficiency. In comparing expressiveness, we explore embeddings
among languages and the programming techniques provided by each language.

Section 9 dis the tics of rent logic programa. Sections 10 to 13 introduce
and pare flat rent logic languages. A flat language is defined with respect to a given fixed
set of primitive predicates (in the languages dis d these include mainly equality, inequality and

arithmetic tests). In a flat language a process can perform only a simple computation, specified

1 For additional historical notes see [145,164).




by a conjunction of atoms with primitive predicates, before making a committed nondeterministic
choice. In non-flat janguages such pre-commit computations may involve program-defined predi-
cates, thus can be arbitrarily complex. During a computation of a non-flat language the processes
form an And/Or-tree, whereas in a flat language the processes are a “flat” collection; hence their
name. Non-flat concurrent logic languages are surveyed in Section 18.

Part IV describes implementations developed for ent logic | , and refe

8

their lications. Implementation techni s for both sequential and parallel computers are

revnewed as well as specialised architectures designed for their efficient execution.

Part V concludes the paper by comparing the concurrent logic programming model with other
approaches to programming and modeling concurrency, including Prolog, dataflow languages, func-
tional languages, ge-passing models of cc rency, object-oriented languages, and nonde-
terministic transition systems.

How to read the paper

The reader who wishes only to understand a single concurrent logic language can skim Part I and
read Part II. There are sufficient intuitive explanations and examples so that the formal treatment
of the wmmtxcs of lopc programs can be skipped without loss of continuity. The reader interested
in imp tation t ques can read Section 20 of Part IV without reading Part III.

2. Logic Programming, Prolog, and the Power of the Logical Variable

This section introduced the logic programming computational model. It defines pure Prolog and
relates it to the logic programming model. It discusses properties of the logical variable and
unification and their relation to conventional data-manipulation operations.

2.1 Syntax and informal semantics of logic programs
‘We use the Edinburgh syntax {11] for logical variables, terms, and predicates.

Definitions: Term, atom, clause, logic program, vocabulary.

® A term is a variable (e.g. X) or a function symbol of arity n>0, applied to n terms (e.g. ¢
and f(s,X,9(b, Y))).

e An afom is a formula of the form p(Ty,. . ., Tn), where p is a predicate of arity n and Ty,..., Ty
are terms.

e A definite classe (clause for short) is a formula of the form:

A~ B],...,Bn. L 2 0.

where A is an atom B),..., B, is & sequence of atoms. A is called the clause’s head, and
By,..., By, its body. We denote the empty sequence of atoms by true.

o A logic program is a finite set of definite clauses.

e A goal is & sequence of atoms Ay, Az,...,An. A goal is empty if n=0, atomic if n=1, and
conjunctive if n>1. Each atom in a goal is called a goal atom. A goal atom is often called
also a goal for short.

o  The vocabulary of a logic program P is the set of predicates and function symbols that occur
in the clauses of P. 1§

We use the Edinburgh notation for lists (and also for streams, as discussed below). The term
[X|Xs] (read “X come Xs”) is a list whoee bead is X and tail is Xs, and the constant [ } (read
“nil”) is used by convention to denote the empty list.

Informal semantics of logic programs
Logic programs can be both declaratively and operationally. We describe these two views
here informally, and make them precise in Section 2.4 below.

-0 -



Declaratively, each clause in a logic program is read as a universally quantified implication.
If X1,X3,...,Xn are the variables in the clause A — B;,B3,.. ., By, then the clause is read “for all
X1,X2,..-,Xq, A is true if By and B2 and ... and By are true”. A logic program is read as the
conjunction of the universal implications corresponding to its clauses.

Operationally, logic programs can be viewed as an abstract computational model, like the
Turing Machine, the Lambda Calculus, and the Random Access Machine. A computation in this
model is a goal-driven deduction from the clauses of the program. Like the nondeterministic Turing
machine, computations in this model are nondeterministic: from each state of the computation
there may be several possible transitions. Specifically, the clauses of a logic program can be read
as transition rules of a nondeterministic transition system.

The state of a computation consists of a goal (sequence of atoms) G and a substitution
(assignment of values to variables) 8, and is denoted by a pair (G;f). A computation begins
with an initial state consisting of the initial goal to be proven and the empty substitution ¢,
and progresses nondeterministically from state to state according to the following transition rules,
Reduce and Fail. A computation can be viewed as an attempt to prove the initial goal from
the program. At each state the goal represents a statement whose proof will establish the initial
goal; the substitution represents the values computed so far for variables used in the computation,
including the initial goal variables. A computation ends in a state whose goal is either irue or
fail. In the former case the computation is successful, and it corresponds to a successful proof of
the initial goal. In the latter it is failed. The substitution in the terminal state, restricted to the
variables in the initial goal, is called the answer substitution of the computation.

A successful computation has the property that its initial goal, instantiated by the answer
substitution, is a logical consequence of the program.

A key step in the transitions is the unmification of a goal atom with the head of a clause.
Intuitively, a unifier of two terms T) and T3 is a substitution 8, whose application to Ty and T,
yields the same term, i.e. T19=T206. The unification of two terms T; and 7 returns their most
general (“simplest”) unifier @ if there is one, or fail if there is none. The two cases are denoted
by mgu(Ty, T2)=0 and mgu(Ty, T2)=fail, respectively. For example, the most general unifier of
F(X,b) and f(9(Y),2) is the substitution {X+—g(Y),Z—b}. Examples of other (less general)
unifiers are {X+g{a),Zb}, {X—g(8),Z~b}, and {X—g(g(W)),Z2—b}.

We denote the ability to move from a state S to a state S* using a transition rule ¢ by $-5.5".
Substitutions can be viewed as functions from variables to values (see Section 2.4), hence we use
@ o 0’ to denote the substitution whose application has the effect of applying 8 then applying
#'. The Reduce and Fail transition rules require that the variables in the clause be consistently
replaced by new variables that have not been used before in the computation. A clause to which
this replacement has been applied is called renamed apart. The requirement to rename a clause is
inherited from the resolution rule, and ensures that clauses are “re-entrant”.

There are two transition rules:

1. Reduce e
uce
(A1, Ai,. . AniB) ~——— ((A1,.. ., By,.. . By, . ,An)8' ;0 0 0')

If mgu{A; ,A) = &' for some renamed apart clause A — B;,.. By of P.
2. Fail

Fuil
(A1, ,Ai,. ., An) = {fail;0)
If for some i and for every renamed apart clause A — B;,..., By of P, mgu(A;,A) = fail.

Reduce has the following property: If {G,6) [Beduee, {G',008"), with mgu ¢, then G0’ is a
logical consequence of the program and G'. This implies, by induction, that the initial goal, to
which the answer substitution of a successful computation is applied, is a logical consequence of
the program.

Note that there are two types of nondeterministic choices in the Reduce transition: which goal

-8 -
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atom to reduce, and which clause to reduce it with. The first is called And-nondeterminism, the
d Or det ing Fail has only an And-nondeterministic choice.
A computation progresses until it reaches a terminal state, which is a state to which no
transition applies. By the definition of Reduce and Fail, the goal in a terminal state is either true
or fail.

2.2 Examples of logic programs and their computati

We show some simple logic programs and illustrate their operational behavior. The following logic
program defines the predicate sum(Xs,S), which holds if S is the sum of the elements of the list
Xs.

surn(Xs,S) — %1
sum’(Xs,0,S).

sum’({ },8,S). %2

sum/([X[Xs],P.S) — %3
plus(X,P,P)
sum’(Xs,P’,S).

The program uses an auxiliary predicate sum’(Xs, P,S), which holds if the sum of the Xs plus P is
S, and the predicate plus(X,Y,Z), which holds if X plus Y is Z. For the purpose of this example
we assume that plus is defined by a large set of facts, including:

plus(0,0,0). %4
plus(0,1,1). %5
plus(1,0,1). %6
plus(2,02). .. %7
plus(2,] L X

To increase readability of the following examples of computations we annotate Reduce tran-
sitior with a label (4,5) identifying the indices of goal atom and program clause that were used for
reduction, Fail transitions with the index of the failing goal atom, and restrict the substitution in
a state to the initial goal variables.

An example of a successful computation of the above program is:

Reduce(1,1)
(sum([l,2],S); C) ——

Reduce(1,3

(oum'([1,2],0,5); €) i),
Reduce(1,6
(plus(1,0,P), sum'(12}P.S); €) 2,
Reduce(1,3)

(rum([2],1,8); €) o,
Reduce(1,8)
(plus(2,1,P"), sum’([ ],P",5); €) —o™

Reduce(1,2)
A ————

{sum’([ ],3,5); ¢)
(true; {S—3})
An example of a failing computation is:

(sum([1,2]S); e) e,




(sum’([1,2},0,S); €) m

{plus(1,0,P), sum’([2],P,S); £}

(plus(1,0,P), plus(2,P,P"), sum'({ ,P* S); )
(plus(1,0,2), sum’([ ],4.9); ¢) B,
{fail, €)

The failure in the last computation could have been avoided by deferring the reduction of the
goal atom plus(£,P,P’) uatil more information was available. The Reduce transition of Prolog,
introduced in Section 2.5 below, always chooses the leftmost atom in the goal for reduction. Thusa
Prolog computation on an initial goal sem(Xs,S) whose first argument is a complete list?of integers
and the second argument is a variable is bound to succeed. Furthermore, such a computation is
deterministic, in the sense that at each step only one clause bead unifies with the selected goal
atom. Concurrent logic languagea use other mechanisms to delay the reduction of a goal atom,
which do not impose such strict sequentiality.

The following logic program defines the relation in_both(X,L1,L2), which holds if X is a
member of both lists Lf and L2. It uses the auxiliary predicate member(X, Xs), which holds if X
is a member of the list Xs.

% in_both(X,Ly,L2) — X is a member of both lists L; and L;.

in_both(X,L1,L2) — %1
member(X,L1), member(X,L2).

% member(X,Xs) — X is a member of the list Xs.

Reduce(2,3)

Reduce(2.9)

member(X,[X{Xs]). %2
member(X,[X1{Xs]) — %3
member(X,Xs).

Here are two possible computations from the goal in_both( X {a,],[5,¢]). A failing computation, in
which X is chosen to be a, and the computation of the remaining goal member(a,(¢.c]) fails:

(in_both(X,[a,b],[8,c]) - €) Reduce(1 1),

Reduce(1,2)

(member(X,[a,b)), member(X,[8,c]); €)
Reduce(1,3)

{(member(a,[b,c]) ; {X—a})

{member(a,[c]) ; {Xra}) Dol

(member(a,(]) ; {X—a)}) —h—ﬂ(l)o

(fail ; {X+a))
A successful computation from the same goal, in which X is chosen to be b:

{in_both(X,[a,b].{b,c]) ; £) Reduce(1,1)

(member(X,(a,8]), memder(X,[b,c]) ; €) Reduce(1,3)

2 A list is complete if every instance of it is & List [171]; {a,8), [X,8], and [X, Y) are complete lists, and [a, 8| Xs],
[} Xs], [X|X3] and Xs are examples of incomplete lists {171].

-5 -




(member(X,{8]), member(X,[b,d]) ; €) ),

(member(b,[b,¢]) ; {X+8}) Raduce(1,2)
(tree ; {X D))

For this program, no ordering of goal atoms can make the compulation deterministic on an
initial goal atom whose first argument is a variable.

The following logic program uses the difference-list technique for efficient list concatenation, so
we digress to explain it. A difference-list is a term representing a list as the difference between two
(poeeibly incomplete) lists. By convention, the term H\T is used, where ‘\’ is a binary function
symbol written in infix notation; H is called the head and T the tail of the difference-list. Examples
of difference-lists representing the list [a,d,c] are [a,8.c]\[ ], [a,},c,d,¢],\[d,¢], and [a,b,¢| Xs]\ Xs.
Given two difference-lists H;\ T} and Hz\ Ty, if Ty=H; then H;\ T, is their concatenation, It is easy
to see that the list represented by Hy\ T} is the concatenation of the lists represented by #;\ T
and H3;\T;. For example, the concatenation of [a,,c,d,e]\[d,¢] and [d,e]\[e] is [a,b,c,d,e]\[¢].
Operationally, the precondition for difference-list concatenation, i.e. T1=H8;, is usually met by
keeping Ty a variable. For example, [a,,¢[Xs]\ Xs can be concatenated to any difference-list. Its
concatenation with [d, e} Ys]\ Vs gives [o,),¢,d, el Ys]\ Ys, which can be further concatenated to any
list.

Difference-lists are the preferred representation of lists when concatenation is required. Pro-
grams that use difference-lists do not regqnire explicit list tenation using a predicate like
sppend, and are thus more efficient both in time and in space. Operationally, they achieve an
effect similar to that of rpled in Lisp, but mthout destructive data-manipulation operations. How-
ever, the precondition for differ list ¢ tion, i.e. Ty=Hj, cannot always be met, for
example when the same list needs to be concatenated to several lists,

The third example is a recursive program for flattening a tree. It operates on trees constructed
recursively from tree(L,R) and leaf(X), where L and R are recursively trees, and X is the value
at a leaf. The predicate flstten(T,Xs) holds if Xs is the list of values at the leaves of the tree
T, ordered from left to right. The predicate flatten’( T, Xs\ Ys) holds if the difference-list Xs\Ys
represents the list thus defined.

flatten(T,Xs) — %1
flatten’(T,Xo\[ ).

flatten’(leaf{X),[X|X5]\Xs). %2

fiatten’(tree(L,R), X6\Zs) — %3
flatten’(L,Xs\Ys),
flatten’(R,Ys\Zs).

The program employn several standard difference-list cliché’s. The call from flatten to flatten’ in
Clause 1 employs the standard translation between lists and difference-lists: if H\ T represents the
list L and T=[) then H=L. flatien’ returns a singleton difference-list in Clause 2, and implicitly
concatenates the difference-lists representing the leaves of the subtrees by calling the tail of the
first and the head of the second with the same name, Ya, in Clause 3.

The program haa only deterministic and successful computatione on initial goals flatten( T, Xs).
where T is a complete tree and Xs is 8 variable. For example:

(Bstten(tree(lea(a),troe(lea(b) Jeaf(c))) Xs); €)

{Batten’ (tree(leaf(a),tree(leaf(b) Jeaf(c))} Xe\[ }); €)
(Batten’(leaf(a),Xs\Ys), Batten’(troe(leaf(b) leaf(c)), Yo\[ }); €) ———
-8 -

Raduce(1,3)

Reduce(1,2)




~ ———

Reduce(1,3)
(Batten’ (tree(leaf(b),leaf(c))), Ys\[ ]); {Xsrs{alYe]}) ————
(flatten’(leal(b),Ys\Y#'), fatten’(leaf(c), Y&'\[ |); {Xars[a]¥e]}) —ooetl:?

(Batten'(leaf(c), Yo'\ 1; {Xe—s[ab{Ys]}) i

(true; {Xa—[a,b,c]})

The other three possible computations on the same initial goal would also be deterministic and
vield the same answer substitution.

2.3 The operational view of the logical variable and unification

The main difference between logic programming and other computational models is the logical
variable and its manipulation via unification.

The basic data-manipulation operation in logic programs — unification — results in a substi-
tution. Operationally, a substitution can be thought of as a simultaneous assignment of values to
variables, except that here:

e a vanable can be assigned a value only once, and

e  the value assigned can be itself another variable or a term containing variables.

The single-assignment property, the ability to assign one variable to another, and the ability
to assign a term containing variables to a variable are all fundamental to logic programming, and
are the source of many powerful logic programming techniques.

Since the basic computational step of a logic program requires the unification of a goal atom
with the head of 3 clanse, much of the effort in logic programming has been devoted to under-
standing both the implications of this operation and its efficient implementation. This study has
led to the realization that many of the subcases of goal/clause unification correspond quite closely
to basic data manipulation operations of conventional languages. For the logic programmer, this
implies that these special cases can be used to achieve the effect of conventional data manipulation.
For the logic programming language impl tor this implies that unification can be implemented
efficiently by compiling the special cases, when identifiable, into machine instructions that execute
the more basic data manipulation operations.

The correspondence is illustrated in Figure 1. The left column enumerates basic data-
mahnipulation operations of conventional languages such as Pascal or Lisp, with sample code frag-
ments. The right column shows the corresponding special cases of unification, with the correspond-
ing examples of goal and clause terms. In this figute T = T denotes the unification of the goal
atom term T with the clause head term 7”.

Note that the cases in the figure are not necessarily mutually exclusive. For example, the
unification of a goal variable with a ciause term both constructs the term and assigns it to the goal
variable; the unification of a goal term with an incomplete clause term both tests for equality and
performs da’ s access,

2.4 Semantics of logic programs

We provide here definitions for some of the councepts used intuitively above.

Unification
A substitution is a function from variables to terms which is different from the identity func-
tion on a finite number of variables. A substitution # is presented as the finite set of pairs
{Xi~Ty,....Xn—Tn}, where Xj,...,Xn are the variables where 8 is different from the identity
function, and T;=0(X;), i=1,...,n.

For any term T and substitution 8, T80 denotes the term obtained by replacing every variable
X in T by 8(X). A term T is an instance of a term T” if T=T7"9 for some substitution 8. For
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Conventional data manipulation
operation

The corresponding special case
of goal/clsuse unification

S?mgle—) Assignment

Equahty teating
e =af

Data access

&’g car and edr in Lisp, ‘.’ in Pascal)

= car([a,b,c]), Xs := cdr([a,b o))
Data construction

Variable = Non-variable
X=a

Term = Term
sa=a

Compound term = Incomplete compound term
{e,3,c] = [X|Xq]
Variable = Compound term

g'g cons in Lllp, new in Pascal)

s := cons(e,Xs) Ys = [a]Xs]
Parameter passing by value ,G(oa).l Term = Variable
a) =
Parameter passing by reference Vuiabyle = Variable
X =
No corresponding operation; Two variables = Same variable

similar to aliasing (Y,2) = (X,X)

Figure 1. Basic data manipulation operations and the corresponding
special cases in goal/clause unification

cxample, f(X,6), (X, X), (a,6), f(a,3), f(3(Z),A(})) are all instances of f(X,Y).

A mblmut:on 0 is move general than @ if there is a substitution o such that # = # o o,
where o denotes fu ition. An equivalent condition is that T'¢ is an instance of T'9 for
any term T. For example, {XHY} is more general than {X+a,Y—a} and {X+—f(Z)} is more
general than {X—f(a)}.

A substitution @ is a unifier of two terms T and T2 if T160=T,6. For example, the sub-
stitution {Xr=a,Y++f(a),Z+—8} is & unifier of p(X,b) and p(f(Y),Z), and so is the substitution
{X—f(Y), 28}

A substitution 0 is a most general unifier (mgs) of T; and T3 if it is a unifier of T} and T,
and is more general than any other unifier of T) and T,.

In the previous example the second unifier is the most general one. The most general uni-
fier of m(X,[X|Xs))and m(X’[a,d,c]) is {X++a,X "0, Xar—[b,c]}, and the most general unifier of
o([X|Xs], Ya,[XlZo]) and &([6,b,c),(d,e),Zs") is {Xr—~a,Xs—[b,c], Yorm[d, ], Z8'—[a} Z5]}.

In the previous examples there was one most general unifier. The two terms f(X) and f(Y)
bave two most general unifiers, {X—Y} and {Y—X}.

Ay g is a on that permutes its domain. An example is {X+—Y,Y—X}. It
can be shown that all most general unifiers are equivalent up to renaming, i.e. if # and # are two
most genera! unifiers of some terms than there is a renaming p such that § = # o p. In addition,
it can be shown that if two terms have a most general unifier, then they have an idempotent most
general unifier, i.e. an mgu # for which § =808.

We define a function mgu, which takes two terms and returns their set of idempotent most
general unifiers, if there are any, and fail if there are none. Usually we do not care which mgu is
employed; in such cases we write mgs( T, T3) = 0 instead of § € mgu( Ty, T3).

For a detailed analysis of unification see [108]. The operational intuitions behind unification
were elaborated in Section 2.3 above.
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A transition system for logic programs

Transitions systema will be employed throughout this paper. We specify a transition system for
logic programs, as well as general notions that will be used in subsequent transition systems for
concurrent logic programs. The general style of the transition system is that of Pnueli [142]; the
details are adapted from Gerth et al. [65).

Definition: Transition systém for a logic program P.

We associate with every logic program P a ¢ransition system which consists of:

e A et of states.
A state is a pair {(G;0), where G (the goal) is either a sequence of atoms or fail, and @ is a
substitution. '

e A set of transitions.
A transition is a function from states to sets of states. For states S, S’ and transition {, we
denote that $’ € ¢(S) by § £ S'. The set includes the Reduce and Fail transitions defined in
Section 2.1 above. B

Definition: Enabled transition, terminal state, success state, failure state.

e A transition { is enabled on a state S if ¢(S) is non-empty.

e A state on which no transition is enabled ia called a terminal state. A terminal state of the
form (true;d) is called a success state, and {fail;0) a failure state. §

Definition: Computation
A computation of a program P on a goal G is a (finite or infinite) sequence of states

¢e= 81,85, ...

salisfying:

s Initiation: S; = (G, ¢), where ¢ is the empty substitution.

s  Consecution: For each k, Sg4) € 1(S) for some transition {.

e Termination: c is finite and of length k only if Sy is terminal. |

Definition: Partial computation, partial answer substitution.
Any prefix of a computation is called a partial computation. The partial answer substitution of the
partial computation (G ¢),...,(G',8) is 0 restricted to variablesof G. @

Sound and complet of the transition system

A'rule that governs the And-nondeterministic choices, i.e. the choice which goal atom to reduce
next, is called a computation rule [121). Formally, it is a function from a goal to one of its
constituent atoms. A computation obeys a computation rule if the goal atom selected at each
transition is the one specified by the rule.

Theorem: Independ of the computation rule [19,121].

Let P be a program and R a computation rule. If P has a successful computaticn on a goal G
with answer substitution 6, then it has a successful computation on G with answer substitution 8
that obeys R.

The transition system for logic programs realizes, in effect, a proof procedure for logic pro-
grams. Each Reduce transition is actually an application of an inference rule, called SLD-resolution
(80,121}, which is a special‘case of Robinson’s resolution inference rule [147]. SLD-resolution, and
hence the transition system, have sound and complet properties that link their operational
view to the logical view of of logic programs {121].

Notation: If A is an atom or a clause with variables X;,X3,...,Xn, (V)A denotes (V
X1,X2,-. ., Xn)A. If P is a program with clauses Cy,C;,...,Cn then (V)P is the conjunction
(MCANV)CA - - AY)Cp.

Theorem: Soundness and completeness of SLD-resolution [80,19,121).
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Let P be a program and A an atom.

1. (Soundness): If P has a computation on the initial goal A with answer substitution #, then
(V) A9 is a logical consequence of (V)P.

2. (Completeness): If (V)A’ is a logical consequence of (V)P, where A’ is an instance of the
atom A, then there is a computation of P on the initial goal A with answer substitution 9,
such that A’ is an instance of A6. §

Note that, in particular, if (V)A is a logical consequence of (V)P, then there is & computation
of P frotn A with answer substitution § such that A8 is equal to A up to renaming.

The soundness theorem relates a successful computation with a proof of s goal. Given a
program P, let $; = Sy denote that there is partial computation of P leading from Sy to S3. A
partial computation from a unit goal can be viewed as a proof of a clause, whose head is the initial
goal, instantiated by the partial answer substitution, and its body is the remaining goal, as shown
by the following lemma:

Lemma: If (Gic) = (R;6), then (V)(G8 — R) is a logical consequence of (V)P. §

Hence every partial answer substitution can be thought of as a ditional answer to the query,
whose condition is the yet-to-be-proved goal {146,205].

Program equivalence and observables
For simplicity, we assume the existence of some global vocabulary V, in which all programs and
goals are written in.

A fundamental question in programming language semantics is when should two programs be
considered equivalent. For example, correctness of program transformation can be studied only
with respect such a notion of equivalence.

Usually, program equivalence is defined by assigning to each program a mathematical object,
called its meaning, and defining two programs to be equivalent if they have the same meaning.

The meaning of a program is usually some abatraction of its possible computations. What is
abstracted away and what is kept is, to some degree, arbitrary, and depends on what we wish to
identify as the obeervable result of a computation. Hence the meaning of a program is sometimes
referred to as its observable bekavior, or, in case it is a set, as its observables for short.

In the case of logic programs there are several possible notions of equivalence. One considers
meccessful computations. Define the success set of a program P to be the set of ground atoms from
which P has a successful computation. Two programs are success set equivalent if they have the
same success set.

Success set equivalence does not capture differences in the bstitutions computed by
two programs. Define the answer substitution set of a program P to be the set of pairs (G,6)
such that P has a successful computation from the goal G with answer substitution # [45]. Two

prog are bstitution equivalent iff they have the same answer substitution set.
25 Prolog
Prologis a te progr ing language based on the abstract logic programming model. Prolog
ploys a procedural reading of logic programs, in which each goal atom is viewed as a procedure
call, and each clause A « By, B,..., By, is viewed as a definition of a procedure, similar to:
procedure A
begin
call By,
call By,
call B,
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end

Such a clause is interpreted: “To execute procedure A, call By and call B; and ... and call B,”.
Prolog uses unification to realise various aspects of procedural Innguage- such as pan.mcter passing
by reference or by value, assignment, and data selection and tion, as was shown in Figure
1 above.

Formally, this operational behavior is achieved by employing a computation rule that selects
the leftmost atom in a goal, thus eliminating And-nondeterminism. Instead of the Reduce transition
of logic programs, Prolog employs the following transition rule:

Red
o (A1, Az,...,An:f) % ((Bys-+ B, Az, . o, An)¥;8 0 &)
If mgu(A;,A) = ¢ for some renamed apart clause 4 «— B;,.. .. B, of P.

The resulting transition still incorporates Or-nondeterminiam, which is interpreted in Prolog as
implicit search for all solutions. That is, Prolog attempts to explore all computations from the
initial goal, returning the answer substitutions of successful computations.

Most sequential Prolog systems compute the solutions to a goal by searching depth-first the
computation tree induced by different choices of clauses. Typically, one solution is produced at a
time, and additional solutions are searched for only by request. Under this behavior it is possible
for a program to produce several solutions, and then diverge. The point of divergence is determined
by the order of clause selection. Usually a Prolog program is defined as 2 sequence (rather than
set) of clauses, and the order of clause selection is textual order.

The possibility of divergence in the face of both successful and infinite computations makes
Prolog incomplete as a proof procedure for logic programs (see Section 2.4). However, this in-
completeness is not a major problem in practice. Knowing the Prolog computation rule, Prolog
programmers order bodies of clauses so that infinite computations are avoided on expected goals.
In the example logic programs in Section 2.1 above, Prolog computstions terminate on sum(Xs,5)
goals whoee first argument is 8 complete list of numbers; on in_both(X,L1, LQ) if both L; and Iz
are complete lists, and on flatten(T,Xs) if T is a complete tree. -

Prolog is a convenient language for a Targe clsiis of applications. llowever, to be practical
it augmented the pure logic programming model with extra-logical extensions [171). The main
purpose of these extensions is to specify input/output and to realise a shared modifiable store. As
we shall see later, this deficiency is peculiar to Prolog, and is not inherent to the logic programming

del. Indeed, rent logic programs can specify both input/output and shared modifiable
store in a pure way, relying solely on their different computation rule and different interpretation
of nondeterminism.

PART II. CORE CONCEPTS AND TECHNIQUES

3. Concurrent Logic Programming

Transformational vs. resctive langu
Prolog is a sequential progtamming language, designed to run efficiently on 8 von Neumann ma-
chine by exploiting its ability to perform efficient stack m ment. S tial Prolog can be
parallelized, and much research is devoted to effective ways of doln; © [122 10,207). Nevertheless,
Prolog, whether ted sequentially or in parallel, should not be termed a concurrent program-
ming language.

To understand why Prolog and other parallelisable eequential | ges t be termed
concurrent languages, it is useful to distinguish between two types of lyttems, or programs: trans-
formational and reactive {71]. The distinction is closely related to the distinction between closed
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and open systems [79]. A transformational (closed) system receives an input at the beginning
of its operation and yields an output at its end. On the other hand the purpose of a reactive
(open) system is not necessarily to obtain a final result, but to maintain some interaction with its
environment. Some reactive systems, such as operating systems, database manag: t systems,
etc., ideally never terminate, and in this sense do not yield a final result at all.

Al classical sequential languages in general, and Prolog in particular, were designed with
the transformational view in mind. These languages contain some basic interactive input/output
capabilities, but usually these capabilities are not an integrated component of the language and
sometimes, as in Prolog, are completely divorced from its basic model of computation.

It may seem that the distinction bet transformational and reactive systems is not directly

Jated to rent systems, and perhape there could be concurrent transformational systems as
well as concurrent reactive ones. Indeed, there are concurrent systems that exploit parallelism to
achieve high performance in applications that are transformational in nature, such as the solution
of large numerical problems. Following Harel [70], we call concurrent systems that are transforma-
tional as a whole parallcl systems. However, if we investigate the components of any concurrent

tem — whether tr: tional or reactive as a whole — we find these components to be
reactnve, they maintain continuous interaction at least with each other and possibly also with the
environment.

Hence, there seems to be a common aspect to all concurrent systems or algorithms, indepen-
dently of what is their target architecture, and whether they exploit concurrency to achieve higher
performance, physical distribution, or better interaction with their environment. The common
aspect is that a language that describes and implements them needs to specify reactive processes
— their creation, interconnection, internal behavior, communication and synchronization.

Many abstract computational models are nondeterministic, including nondeterministic Turing ma-
chines, nondeterminitic finite automats, and logic programs. Reactive syst are also nondet.
ministic. However, the nature of nondetexminism its the former is very different from the one em-

ployed in the latter. Kowalski {102] adequately ¢ d nondeterminism of the first type don't-know
nondeterminiam, and of the second type don’t-care nondeterminism?. Don’t-care nondeterminism
is often called also indeferminism, and we will use these two notions interchangeably.

The don’t-know interpretation of nondeterminism implies that the programmer need not know
which of the choices specified in the program is the correct one; it is the responsibility of the
execution of the program to choose right when severw! transitions are enabled. Formally, this is
achieved by specifying results of only successful computations as observable. Examples of such
observables are the set of strings accepted by a nondeterministic finite automaton, or goal-answer
substitutions pairs of successful computations of a logic program.

Don’t-know nondeterminism is a very convenient tool for specifying transformational closed
systems, as witnessed by the Prolog language. However, it seems to be incompatible with reactive
open systems. The essence of don't-know nondeterminism is that failing computations “don’t
count”, and only sful tati may produce observable results. However, it is not
poesible, in general, to know in ndvance whether a tation will d or fail; hence a don't-
know nondeterministic putation cannot produce partial output before it completes; and hence
it cannot be reactive®.

The don’t-care interpretation of nondeterminism, on the other hand, requires that results of
failing computations be observable. Hence a don’t-care nondeterministic computation may produce
partial output (partial answer substitutions, in the case of concurrent logic programs) even if it is

3 Manna and Prueli [125] call the first ezistential nondeferminism and the second sniversal nondetermin-
tsm.
4 A related argument with a similar conclusion is given by Ueda [203].
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not known whether the computation will eventually succeed or fail.

Don't-care nondeterminism seems to be unn: Y, someti even a nui , in the spec-
ification of transformational systems, but as we shall see it is essential in the specification of
concurrent reactive systems.

Although the nondeterminism of abstract computational models is commonly interpreted as
don’t-know nondeterminism, such models are also open to the don’t-care interpretation. For ex-
ample, nondeterministic finite automata can be used to specify either formal languages [88] (don't-
know nondeterminism), or finite-state reactive systems (don’t-care nondeterminism) [125). The
logic programming model is also open to these two interpretations. Prolog takes the don’t-know
interpretation, whereas concurrent logic language, being geared for specifying reactive open sys-
tems, take the don’t-care interpretation.

Formally, the two interpretations of nondeterminism induce different notions of equivalence on
the set of programs. Assume some notion of equivalence of two (either failing and successful) com-
putations. For example, in logic programs two computations on tne same initial goal are equivalent
if they have the same answer substitution and same mode of termination. Under the don’t-know
interpretation, two programs are equivalent if they have equivalent successful computations. Under
the don’t-care interpretation, two programs are equivalent if they have equivalent computations,
whether successful or not.

We emphasize that concurrent logic languages are not unique in adopting the don’t-care
interpretation of nondeterminism. Rather, almost all models of concurrency and concurrent pro-
gramming languages, including CSP [86,87], CCS [129], UNITY [16), Occam [91], Ada, and othere,
take this approach as well. The difference is that concurrent logic languages have as an ancestor an
abstract nondeterministic computational model — namely logic programs — whose nondetermin-
ism can be interpreted both as don’t-know and as don’t-care. The other concurrent models and
languages do not have related models or languages which incorporate don’t-know nondeterminism,
hence for them the questions addressed here are usually not raised.

One active research direction in logic programming explores parallel (non reactive) languages
that incorporate both don’t-know and don’t-care nondeterminsm (209,210,150,153,154,157,72,8,
179]. The goal of these languages it to execute logic programs more efficiently by exploiting
determinism, more sophisticated control, and parallelism. This research direction is outside the
scope of the survey. It is discussed further in Chapter 21.

What are concurrent logic languages?

Concurrent logic languages are logic programming languages that can specify reactive open systems,
and thus can be used to implement concurrent systems and parallel algorithms. A concurrent logic
program is a don’t-care nondeterministic logic program augmented with synchronization. A logic
program thus augmented can realize the basic notions of concurrency — pro
synchronization, and indeterminism.

The process reading of logic programs [42], employed by concurrent logic programs, is different
from the procedural reading employed by Prolog and mentioned in Section 2.5. In the process
reading of logic programs each goal atom p(7T},...,Tn) is viewed as a process, whose program
state (“program counter”) is the predicate p/n and data state (“process registers”) is the sequence
of terms T4,...,T,. The goal as a whole is viewed as a network of concurrent processes, whose
process interconnection pattern is specified by the logical variables shared between goal atoms.
Processes communicate b;* instantiating shared logical variables and synchronize by waiting for
logical variables to be instantiated. This view is summarized in Figure 2.

The poesible behaviors of a process are specified by guarded Horn clauses, which have the
form:

tion
)

Head — Geuard | Body.

The head and guard specify the conditions under which the Reduce transition can use the clause,
aa well a8 the effect of the transition on the resulting state. This is explained further below. The

- 18 -




Rl S

—— g s

Process model Concurrent logic programming model

Process Goal atom

Process network Goal (collection of stoms)

Instruction for process action | Clause (See Figure 3)

Communication channel;

Shared location Shared logical variable

Communication Instantiation of a shared varisble

Synchronization Wait until a shared variable is sufficiently instantiated

Figure 2: The procesa reading of logic programs

body specifies the state of the process after taking the transition: a process can halt (empty body)
change state (unit body), or become several concurrent processes (a conjunctive body). This is

summarized in Figure 3.

Halt: A~ G| tree.
Change (data and/or program) state

(i.e., become a different process): A~ G| B.
Become k concurrent procesees: A+~ G| B,...B.

Figure $: Clauses as instructions for process behavior

Concurrent logic languages employ the don’t-care interpretation of nondeterminism. Intu-
itively, this means that once a transition has been taken the computation is committed to it, and
cannot backtrack or explore in parallel other alternatives. Formally, this is realized by making
observable partial results of the computation, as well as the final results of both successful, failing,
and deadlcoked cornputations [65], as explained in Section 9 below.

The head and guard of a guarded clauses specify conditions on using the clause for reduction.
A guarded clause can be used to reduce a goal atom only if the conditions specified by the head and
the guard are satisfied by the atom. Concutrent logic languages differ in what can be specified by
the head and the guard. A flat concurrent logic language incorporates a set of primitive predicates;
in the ianguages surveyed these include mainly equality, inequality and arithmetic predicates. A
guard in a flat language consists of a (possibly empty) sequence of atoms of these predicates. In a
non-flat language, on the other hand, the guard may contain both primitive and defined predicates,

and thus guard computations may be arbitrarily complex. Since guards of a non-flat language are
recursively defined by guarded cl , 8 computation of it forms an And/Or-tree of processes.
In a flat language the processes are a “fat” collection; hence their name. Flat languages have
received most of the recent attention of researchers, because it was found that their simplicity
and amenability to efficient implementation come at a relatively low cost in expressiveness and
convenience, when compared to non-flat languages (discuseed in Section 18).

Concureent processes communicate by instantiating shared logical variables, and synchronize
by waiting for variables to be instantiated. Variable instantistion is realized in most concurrent
logic language by unification. Three approsches were proposed to the specification of synchro-
pisation in concurrent logic programming: input matching (also called input unification, one-way
unification, or just matching) [20,24,198], read-only unification [160], and determinacy conditions
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{210]). All share the same general principle: the reduction of a goal atom with a clause may be
suspended until the atom’s arguments are further instantiated. Once the atom is sufficiently in-
stantiated, the reduction may b bled or terminally disabled, depending on the conditions
specified by the head and guard. Since input matching is the simplest and most useful synchro-
nization mechanism, we present it here and defer the discussion of the others till the languages
that employ them are introduced.

The matching of a goal atom A with a head of a clause A’ — G| B succeeds if A is an instance
of A’; in such a case it returns a most general substitution 8 such that A = A’6. It fails if the goal
atom and the head are not unifiable. Otherwise it suspends. More precisely,

8 6 is the most general substitution such that 4 = A’¢
match(A,A') = { fail if mgu(A,A") = fail
suspend otherwise.

Unlike unification, there is only one most general matching substitution. Using matching for
reducing a goal with a clause delays the reduction until the goal is sufficiently instantiated, so
that its unification with the clause head can be completed without instantiating goal variables.
Examples are given in Figure 4.

Goal Clause head Result
»(s) »(X) {X+sa}
p(X) r(a) suspend
p(a) p(¥) Jail
sum([1]/n],0n1) | sum([X|Xs},S) | {X+—1,Xa—In,S— Out}
sum(In,Out) | sum([X|Xs),5) suspend
sum([ ],0ut) | sum([X|Xs),5) fail

Figure {: Examples of input matching of goals with clause heads

The dataflow nature of matching is evident: an “instruction” (clause) is enabled as soon as
sufficient “data” (variable instantiations) arrive. Although simple, matching is found in practice
sufficiently powerful for all but the most complex synchronization tasks, as demonstrated by the
programming techniques in Section 7.

Languages in the concurrent logic programming family differ mainly in the capabilities of their
output mechanism. On one end of the spectrum there are languages that allow only matching
prior to clause selection and perform unification past clause selection. On the other end there are
languages which allow both matching and unification as tests prior to such a commitment. Test
unification in its most general form subsumes powerful synchronization mechanisms used in more
conventional models such as multiple simultaneous test-and-set and CSP-like output guards.

These differences and others are further elaborated upon when discussing the various languages
in Part III of the paper. Ur\:til then we concentrate on the common aspecta of the family.

4. FCP(]) — A Simple Concurrent Logic Programming Language

We illustrate the various aspects of concurrent logic programming discussed in the previous section
using a simple concurrent logic language, FCP(|) (read “FCP-commit™)3 FCP(}) is closely related

5 The nomenclature we use to describe concurrent logic languages is influenced by the one used by Saraswat {150},

- 15 -




N —

to Flat GHC [198] and to Oc (read “Oh see!™) [81,83]. We use FCP(]) as the introductory language
instead of the more familiar language Flat GHC since its definition is simpler, and since it can more
easily express some of the programming techniques related to distributed termination detection,
discussed in Section 7. However all programs shown in Sections 5 and 7 are legal Flat GHC
programs as well, and, except for the termination detection programs, the difference between
the behavior of these programs under the operational semantics of Flat GHC and of FCP(]) is
immaterial. See the discussion of Flat GHC in Section 10.

4.1 Syntax

Definition: Guard test predicates, guarded clause, FCP(|) program.

o  We assume a fixed finite set of guard test predicates, including integer(X), X < Y, X = Y,
X # Y, and others. The predicates assumed in this paper are given in Section 4.2 below.

o A guarded clause is a formula of the form:

A—G,...Gn | B,..,Bn. mn>0,

where A, Gy,...,Gm, Bi,..., By are atoms, the predicate of each G;, i = 1,...,m is a guard
test predicate and the variables of G; occur in A. If the quard is empty (m = 0) then the
commit operator ‘|’ is omitted. An empty body (n = 0) is denoted by true.

e  An FCP(]) program is a finite sequence of guarded clauses, which contains the unit clause
X = X as the only clause with head predicate ‘=’. §

Note: ‘=’is a primitive predicates in FCP(|) that cannot be redefined by a program. The reason
for a program being a sequence of clauses, rather than a set, will become apparent when we discuss
the otherwise predicate in Section 7.

4.2 Operational semantics

Modelling concurrency by interleaving atomic actions

We specify the behavior of concurrent logic programs in general, and FCP(|) programs in particular,
using a transition system very similar to that of logic programa. In this standard approach [142,16},
concurrency is modelled by the nondeterministic interleaving of the atomic actions of the processes
participating in the computation. The approach requires, therefore, a precise specification of what
is an atomic atep of execution, as differences in the grain of atomic actions may lead to radically
different computational models. As we shall see, one of the major differences between the various
concurrent languages is indeed the grain of their atomic actions.

Our transition system is not reactive: it does not model input from an outside environment.
This is not a major drawback, since if we wish to investigate a reactive computation of a program
P from a goal G, we can model the environment as another process G’, whose behavior is specified
by a program, say E, with predicates disjoint from P, and investigate computations of the program
P U E from the conjunctive goal (G,G’) [69). An alternative is to add an explicit input transition
[119].

Modeling concurrency by interleaving is a common approach, which has the advantage of
being simple and well understood. Its disadvantage is that concurrency is not explicit, and hence
an interleaving model sometimes gives rise to artificial fairness problems, which ate not present if
the concurrency is explicit in the model. We defer the discussion of fairness to Section 6.

Guard test predicates and guard checking
The meaning of the guard test predicates is given via a fixed set of ground atoms T over these
predicates. The predicates used in this paper and their meanings are:

X=X for every ground term X.

but is diffevent from it.
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X#Y for every two ground terms X and Y which are not equal.
integer(X) for every integer X.
X<Y for every ground arithmetic expressions X and Y
such that the value of X is less than the valueof Y.
X<Y for every ground arithmetic expressions X and Y such
that the value of X is less than or equal the valueof Y.
X=:=Y for every ground arithmetic expressions X and Y
whoee values are the same.
X \=:= Y for every ground arithmetic expressions X and Y
whose values are different.

There are three guard primitives var{X), snknown(X), and otAerwise, whose semantics cannot be
given simply by a set of ground atoms. It is discussed when the primitives are introduced. The
set of guard test predicates of “real” concurrent logic languages is not much larger than the list
above. See for example [100,170}.

An atom is true in T if every instance of it is in T, and false otherwise. A conjunction of
atoms is true in T if all its members are true in T, and false otherwise. The check of a guard G
succeeds if G is true in T} it fails if no instance of G is true in T} and it suspends otherwise. In
other words, the check suspends if some future instantiation of the gnard may result in it being
true. For example:

checking integer(2) succeeds
checking integer(a) fails
checking integer(X) suspends

hack: g <5 A
checking 5§ < 3 fails
checking 3 < X suspends
checking & < X fails

The clause try function
The only difference between the transition system of logic programs and of FCP(|) is that the
Reduce and Fail transitions employ matching and guard checking instead of unification. The

operation of matching and guard checking is captured by the clause try function, try.

The mgw function unifies the goal atom with the clause head, and returns a substitution or
fail. The try function does the same if the goal atom is an equality and the clause is the equality
zlause X =X. Otherwise it matches the goal atom and clause head, and, if successful, checks the
guard, instantiated by the matching substitution. 1t may return suspend if the matching or the
guard check suspends. iry is defined for equality goals as follows:

try(T1=T2,X=X) = mgu(T1, T2)-
And for clauses whose head predicate is different from the equality predicate:

[ if match(A,A") = @ A checking G succeeds
fail if mgu(A,A’) = 8 A checking G6 fuils

V meu(A,A') = fail
suspend otherwise

try(A(A'—G|B)),=

The transition system
The state of a computation of an FCP(|) program is, as in a logic program, a pair (G;6), where

G is a goal and @ a substitution. A compuuhon begins from an initial goal {G;¢) and progresses
using Reduce and Fail transitions, simil tations of logic programs. The difference is
that instead of unifying the goal atom 'mh the clause head, the Reduce and Fail transitions use
the clause try function, fry, instead of the mgu function:
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1. Reduce
(A1,.. .4, ., An;0) ——— ((A1,..,B1,. . ., By, . . An)8';00 &)
If try(A;,C) = ¢ for some renamed apart clause C = A — G | By,..., By of P.
2. Fail
il
(A"' . WA‘!‘ . ~1Al;o) _ U‘“w)
i for some i and for every renamed apart clause Cof P, try(A;,C) = fail.

Note that the suspend result of the try function is not used in the Reduce and Fail tran-
sitions. Its effect, therefore, is to prevent a goal atom from reducing with a clause and from
failing. Specifically, if A is a goal atom for which try(A, C)=suspend for some clause C in P, and
try(A,C')=suspend or fail for every other clause C’ in P, then A can participate neither in a
Reduce transition nor in & Fail transition. Such a goal atom is called suspended. A state consisting
of a goal in which all atoms are suspended is terminal, as no transition applies to it. Such a state
it is called a deadlock state, and a computation ending in a deadlock state is called a deadlocked
computation®

The following lemma relat ful computations of an FCP(}) program to computations
of the corresponding logic program.

Lemma (Soundness of FCP(|)):

Let ¢ be a non-deadlocked computation of an FCP(|) program P. Then there is a finite subset T’
of T such that ¢ is also a computation of the logic program PUT,

Proof: Immediate. J§

The opposite direction of this lemma is of course not true. In particular, the logic program can
proceed with a Reduce transition on states which the corresponding FCP(|) program deadlocks.

Observables of concurrent logic ams
As explained in Section 3, the observables of a concurrent logic program reflect both successful
and failing computations.

Definition: Obeervables of a concurrent logic program

The observable dehavior of a finite computation ¢ = (G1,€),...,(Gn,0n) of a concurrent logic
program P is the triple {G;,0,2) where 8 is the bstitution of the putation (i.e. 8,
restricted to variables of G,), and =G, if Gn=true or Gh=fail, and r=deadlock otherwise. The
observables of a concurrent logic program P,[[ P]}, are the set of observable behaviors of every
computation ¢ of P. §

4.3 Examples of rent logic programs

We show several simple examples of concurrent logic programs, written in FCP(|), that correspond
to the logic programs shown in Section 2.2, and describe their behavior.

The following concurrent logic program defines the process sum(Xs,S), which unifies $ with
the sum of the elements of the input stream Xs.

sum(Xs,S) %1
sum’(Xs,0,S).

sum’({ ],P,S) — P=S. %2
sum’([X|Xa},P,S) ~ %3

plus(X,P,P)
sum’(Xs,P',S).
8 Note, b , that this terminology is appropriate anly for a closed computation. In an open computation
fabies may be instantisted by the envi t, snd bomos & more refined definition of deadlock is required,
which takes into which variables are ible to the
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There are two differences between this program and the logic program for sym shown in Section
2.2. The first is that the base clause of sum’ unifies the partisl sum P with the answer S explicitly
in the body. This is necessary since in FCP(]) the goal atom is matched with the cl head, not
unified with it. The second is that the definition of plus has to be modified to reflect the direction
of the computation. plus behaves as if defined by clauses of the form:

plus(0,0,X) — X=0.
pius(0,1,X) — X=1.
plus(2,2,X) «— X=4.

Note also that each clause has an implicit commit operator “|”, which is omitted by our syntactic
conventions since the guard is empty. In contrast to the logic program for swm, the concurrent
logic program has only successful computations on an initial goal sum(Xs,S5), where Xs is a list of
integers and S is a variable.

Consider the following partial computation:

(sum([1,2),5); ¢) w
{sum’((1,2],0,S); €) m

(plus(1,0,P), sum’([2],P.S); £)
(plus(1,0,P), plus(2,P,P), sum’([],P',S); ¢)
At this state the logic program could reduce any of the three atoms. However, the concurrent logic
program cannot reduce the second plus p : it is suspended until its second argument P is
instantiated. A possible continuation of this partial computation is:

Raduce(l,plus)
—r——r——

Reduce(2,3)

(plus(1,0,P), plus(2,P,P), sum(][ ],P'.S); €}

(P=1, plus(2,P,P"), sum([ |,P".S); £} @),

Red: 3=
(P=1, plus(2,P,P"), P'=S; ¢) —men>Z),

Red: =
(P=1,plus(2,P,S); ¢} et )

Reduce(1,plus)
—————y

(plus(2,1,8); ¢)
Red 1=
(5=3; ) o2,
(true; {S—3})
The logic program for flattening a tree can also be easily turned into a concurrent logic program.
The only syntactic change required is specifying the construction of the output difference-list
explicitly, by an equality goal:
flatten(T,Xs) — %4
flatten’ (T, Xa\[ ]).
flatten’(leaf(X),Xs\Ys) ~— %5
Xa={X|Ys].
flatten’(tree(L,R), Xs\Zs) — %6
fiatten’(L,Xs\Ys),
flatten’(R,Ys\Zs).
The flatten process can operate on a tree that is provided incrementally, by a concurrent process,
as the two clauses of flatten’ d until it is known whether their first argument is leef(-) or
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tree(—,~). It can also be connected to the sum process, which incrementally sums the list produced
by flatien, as shown by the following computation:

(Basten(tree(leaf{17),1eaf{19)),Xs), sum(Xs5); €) —or
(Basten’(treeleal(17) Jeat(19)), Xa\{ ]), sum(Xa,S); ) 2.
{Batten’(1eaf(17),Xs\Ys), flatten(leaf(19),Yo\{ ]),Xa\{ ]}, sum(Xs,S); €} o),
(Batten’ (leaf(19),Ys\[ ), sum({17[Ya],S); {Xo—[17Ye]}) o,

Reduce(2.2)

(fatten’(leaf(19),Ys\[ ]), sum([17]Y3],0,5); {Xs-+[17]Ye]})

{fatten’(leaf(19),Ys\[]), plus(17,0,P"), sum(Ys,P’ S); {Xe—{17[Ys]})

(Aatten’ (leaf(19),Ys\[ ), P’=17, sum(Ys,P’ S); {Xs—[17]Ye]}) Reduce(2,=)

Reduce(1,8)

Reduce(2.plus)

(Batten’(leaf(19),Ya\[ ), sum(Ys,17,5); {Xs—~[17Ye}})
Reduce(1,3)

(sum([19],17 S); {Xs—{17,19]}) ———

{plus(19,17,P"), sum([ ),P",S); {X=a—{17,19]})

(P"=38, eum([ 1,P" S); {Xe—[17,19]}) —oo?2),

(P"=36, P7=S; (Xome{17,19]}} —emi)

(36=S; {Xom{17,19]}) 220",

(true; {X9—[17,19],5—36}

Summing the elements of a tree can be done more efficiently by
flatten and swm, into a single procedure free_sum:

% treesum(T,S) —
S is the sum of values of the leaves of the tree T.

Reduce(} plus)

bining the two proced N

tree_sum(T,S) ~
treesum’(T,0,5).

tree_sum’(tree(L,R),P,S) —
tree_sum’(L,P,P"),
tree_sum’(R,P/,S).
treesum’(leaf(X),P.S) —
plus(X,P.S).
This program spawns a network of linearly ted plus p , which sum the
leaf elements sequentially from left to right. A possible computation from the ini-
tial goal treesum(tree(tree(leaf(17),leaf(19)),lcaf(29)),S) may content the intermediate goal
plus(0,17,P), plus(17,P' ,P"), plus(23,P”,S), which is then reduced from lelt to right. (Note

however that the leftmost plus p may be reduced even if the spawning of the plus processes
to its right has not been completed yet.) The program demonstrates that in a recursively con-
structed p tree, leaf p (plus processes in our case) can communicate directly even if
they are not directly related.

Turning the in_both logic program into a concurrent logic program is more difficult, since
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it employs don’t-know nondeterminism in an essential way: it guesses a member of one list,
and verifies that it is also a member of the second. The following logic program does not
need to guess which clause to use, if the two lists are given in the initial goal, as in the goal
inboth(Xs,[1,8,9,4],(3,4,5,6]). In such a case all computations of the following program are deter-
ministic: each goal atom created during the computation of the program unifies with exactly one
clause head. The program employs the dufference-list technique. ’

% inboth(Xs,L1,L3) —
The list Xs contains the members of both lists L; and Lj.

in_both(Xs,{X|L1),L3) —
member(X,12,Xs\Xs),
in_both(Xs’,L1,L2).
m-bo‘h([ ]1[ ]l-)'

% member(X,L, X\ Xs') —
X is a member of L and Xs = [X|Xs'] or X is not a member of L and Xs = X¢'.

member(X,[X|L],[X|Xs]\Xs).

member(X,[Y]L),Xs\X#") —
X#Y, member(X,L,Xs\Xs').

member(X,[ ],Xs\Xs).

In contrast to the previous program, this program returns the (poesibly empty) list of elements
common to the two input lists, rather than nondeterministically selecting a common single element
if one exists, or failing if there is none. Here in_doth(Xs,Ly,L7) holds if Xs is the list of all elements
common to L; and L;. The multiplicity of elements in Xs is the same as in L;. This program
employs a difference-list to construct the output. member(X,L;,Xs\Xs’) holds if both X is in
L; and X is the difference between Xs and Xso' (i.e. X5 = [X{Xs']) or if X is not in L; and the
difference between Xs and Xo' is empty (i.e. Xs = Xs').

Since the program is deterministic on the desired set of goals, it can be turned into a concurrent
logic program quite easily. The following is such an FCP({) program:

in_both(Xs,[X|L1],L2) —
member(X,L2,Xs\Xs'),
in_both(Xs’,L1,L2).

in_both(Xs,[],-) «— Xs=[].

member(X,[X|L],Xs\Xs") — Xs=[X|Xs#).
member(X.[Y|L].Xs\X¢) —

X#Y | member(X,L,Xs\Xs").
member(X,[ },Xs\Xs') — Xs=Xs'.

Intuitively, the program operates as follows. On a call in_both(Xs,L1,L2) it spawns parallel mem-
ber(X,L2 X5\ Xs') processes, one for each element of L1, using the recursive clause of in.both.
Each of these processes searches down the list L2 for an element equal to its X. If it finds one,
it returns X in the difference-list Xs\Xs', by unifying Xs with [X]Xs’]. Otherwise it returns the
empty difference-list by unHying Xs with Xs’. The difference-lists are implicitly concatenated into
the output list by the recursive clause of in_doth. The output list is closed by the base clause of
mn_both.

The program operates correctly even if the two input lists L/ and L2 are given incrementally,
by some concurrent process. This is achieved since the program inspects them using matching
(specified by clause heads), which suspends if the input list is still ilable. The output, in
contrast, is constructed using unification, specified explicitly in the body of the clauses.

The guard of the second clause of member ensures that the clause is selected only after it is
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determined that X is different from Y. In the other clauses the guard is empty and the commit
operator is implicit.

4.4 The power of the logical variable in rent programming

The standard uses of the logical variable and unification were tioned in Section 2.3. C rent
logic programming extends its use also to process communication. By following specific conventions
and protocols, a wide range of concurreat programming techniques can be a realized using shared
logical variables, unification, and matching.

In this section we provide a gloseary of the major uses of the logical variable in concurrent
programming. These will be demonstrated by concrete examples throughout the paper. When
applicable, references to the relevant sections are provided.

It is useful to view variables shared between processes and their instantiation in two com-
plementary ways: as cc ication ch ls, which tr it ge streams, and as shared
locations, which are instantiated, poesibly incrementally and cooperatively, to compound data
structures. Both are explained below.

Shared logical variables as cc ication ch , and communication stream protocols

Given the single-assignment nature of logical variables, it may seem that a communication channel
implemented by a shared logical variable might carry at most one message. In some sense this
is true. A better way to understand the situation, however, is to view a shared logical variable
as a Genie, who will grant you a single wish”. A good strategy to follow when encountering such
a Genie is, of course, to request to have two wishes. This is realized by instantiating the logical
variable to a list (cons) cell, whoee head and tail are logical variables. The head may be used to
send the current message. Its tail is » new variable, shared by the processes sharing the original

variable, and can be used for subseq ications ad infinitem, as in
Xs = [my|Xs1}, Xsl = [m2|Xs2], Xs2 = [m3|Xs3], ...
In this way multiple “wishes” are u:hleved by the multiplicity of el ts in a single list.
Hence, when serving as a c« tion ch i, » shared logical variable is typically instan-

tisted to a stream of messages. Several protocols can be followed in constructing such a message
stream. They differ in the number of processes sharing the variable, and whether they share the
writing and/or reading of the stream. Useful stream communication protocols include:

e point-to-point communication (single-writer single-reader), e.g. sum_tree in Section 4.3

above.
o broadcast communication, (single-writer multiple-reader) (Section 7.7)
e  duplex communication (two writers/readers, who use the stream both for bidirectional
communication and for tight cynchronization) (Section 14)

*  many-to-one cc ication (multiple-writer, single-reader), (Section 15) and

e  blackboard communication (multiple writer/reader, cooperatively reading and writing the
stream) (Secuon 15).

These st ls require progressively stronger synchronization mechanisms. Only the
first two can be i ur ted by all ent logic languages. The language properties required
to realise the duplex protocol and multiple-producer protocols are described when the protocols
are introduced.

A single stream u not always '.he preferred data structure for communication. For high-volume

many-to-one tion, inistic merging of multiple single-writer streams is usually
preferved over having muluple writers cooperatively produce a single stream, since it eliminates
tention on the st 's tail. Stream merging is discuseed in Sections 6 and 7. In addition, when

the set of writer and the set of readers in a muitiple-writer multiple-reader stream are disjoint, it is

7 Thie analogy is due to Bill Silverman.
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often the case that the total ordering of a stream imposes on its elements unnecessarily serialized
sending and receiving of messages. In such a case, a more general data-structure, called Channel,
may be appropriate [194]. A Channel is a partially ordered set of messages, which can be produced
in parallel without contention, and can be read with the same degree of parallelism with which it
was produced.

Incomplet. ge protocols

Meesages sent on a stream need not be ground (i.e. variable-free) terms. A meseage containing

variables is called an incomplete message. The ability to send incomplete messages is perhape the

single most important reason for the added flexibility and expressiveness of concurrent logic pro-

gramming languages over other concurrent languages. D.H.D. Warren once characterised Prolog

as “pointers made easy”. Adapted to concurrent logic programming, the slogan may read “com-

munication channels made easy”. Indeed, incomplete messages may be viewed as a structured and

high-level way of dynamically allocating and distributing commnnica.tion channels.

There are several useful protocols employing incomplete

e Back-communication protocol (the “remote procedure call” eﬂ'ect) (Section 7.3).
A der sends a ge with a newly allocated reply variable R, and waits for R to be
instantiated. The receiver responds to the message by instantiating R to the reply. This
protocol achieves essentially the effect of a te-p dure-call hanism, without adding
any special constructs to the language.
It is easy to program servers using many-to-one meseage streams and the back-communication
protocol. There is no need for the server to know the identity of the client who sent the request,
nor for specially programmed mechanisms to route replies back to the clients.
If a server can serve multiple requests in parallel, then a many-to-many channel may be
preferred to a stream.

e Dialogue (Section 7.4).
The back-communication protocol constitutes only one round in a possibly longer dialogue.
The reply to which the variable R is instantiated may contain another reply variable R’,
with which the original sender can continue the dialogue, repeating the back-communication
protocol as long as desired by both parties.

e Network formation protocol (Section 7.2).
Assume that two processes p and c¢ sharing a variable X want each to become n processes
P1,.-.,pn and c1,...,cn, and establish a communication stream X; between p; and ¢, i =
1,...,n. This can be achieved as follows. p eends to ¢ the message [X},. . ., Xn], which contains
n variables, and then creates n processes, providing the i** process with X;. Upon receipt of
the message ¢ creates n processes and similarly provides its i** process with X;.
In a variant of this protocol, the stream (X},. .., Xn] is constructed incrementally by p. The
process ¢ need not know the stream’s length in advance, and can create the next process ¢;
when X; is available. This technique is heavily used in the formation of recursive process
networks, as described in Section 7.2.

o Network reconfiguration protocol.
Assume a process p that shares a variable Q with a process ¢ and a variable R with a process r.
If p wants to establish direct communication between ¢ and r it sends to ¢ on the stream Q an
incomplete meseage containing R. Once ¢ receives that message, it can use R to communicate
with r directly.
This technique can be employed to form an arbitrary communication graph in a network,
independently of how the network was created to begin with. In particular, in a recursively
constructed network the communication graph need not follow the path of the recursion, and
two “leaf” prc may ¢« icate directly no matter how high up their common ancestor
is (Section 4.3).

o Bounded-buffer communication protocol (Section 7.3).
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The basic stream communication protocol is asynchr However, using incomplete mes-
sages one can implement synchronised communication. For example, a k-bounded-buffer pro-
tocol, for k > 1, can be implemented using & single-writer single-reader stream of incomplete
messages as follows [177): Each message contains an acknowledgement variable. The reader
acknowledges the message by instantiating the variable to some constant upon receipt. The
writer does not send the n+k** message before receiving an acknowledgement, for the nt*
memsage.

Shared logical variables as shared locations

A shared logical variable can also be viewed as a shared location that can be assigned a data
structure, i.e. a logical term. The term may be compound, and 1tl construction may proceed
incrementally and in cooperati the p initially sharing the variable.

In the special case that the term is a stream we obtain the stream communication protocols
described above. However, the fact that stream communication results in a data structure, and is
not just a sequence of events that occur in time, has several ramifications. Two of them are:

o  Communication Ristory cen be kept and later examined.

A shared variable used as a unication ch ] is inc tally instantiated to a stream
data structure, which contains the and replies sent on it. Typically, a stream writer
or reader nerata with the tail of the stream once its head was written or read, and eventually
the head becomes in, ible. M y ied by i ible data-structures is eventually
reclaimed by garbage-collection. Altemtlvely the initial stream variable can be kept, either
by the process communicating via the stream itself, or by a concurrent observer who shares
the initial stream variable. The data structure kept by the observer can be used later for
various purposes, such as debugging, logging, and recovery.

The stream data structure reflects only the order in which messages were sent and their

content, but does not record the order in which message subterms, including replies, were

coustructed. In addition, if a process communicates via several independent streams, their
content cannot be used to determine the temporal relations between messages on different
streams.

For some applications this abstract form of communication history, represented by a stream

term, is sufficient. If a more precise history of the computation is required, e.g., to diagnose

transient timing bugs, a different technique for recording information about a computation,
which is sufficient for its accurate reconstruction, can be used [118]. This is further discussed

in Section 14.

o A message sircam can be inspecied and transformed.

A process may examine or transform its incoming stream before processing its messages, if it

80 desires. A simple iilustration of this is the ability of a process to “send to self”, a useful

object-oriented programming paradigm. To do 8o a process prepends a message to its input

stream and proceeds with the resulting stream.

The constructed term need not be a stream, bowever. For example, in the distributed database
system of Raches et al. [144], a transaction is a tree-structured term that is constructed cooper-
atively by the user program and the database system. The user program constructs the term,
possibly concurrently, out of terms corresponding to sub-transactions, leaving in it variables for
the database system replies. The database system consumes the term, executing, possibly concur-
rently, the subtransactions, and instantiates the reply variables to the answers.

Another example is the type-checker of Yardeni {211]. In it, multiple processes cooperate in
constructing a term trepresenting a finite automston that defines the type of the program being
checked. The programming technique used is similar to the multiple-writer stream described in
Section 15.
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5. Basic Programming Examples and Techniques

This section examines the operational behavior of FCP(|) programs via examples, and illustrates
basic concurrent Jogic programming techniques.
Write d e
A writer process p(X), that unifies X with ¢ and halts, can be defined using the single clause
program:

p(X)~X=a. %1
A reader ¢(X) that waits till X is ¢ and then halts is defined by:

¢(a). %2
A computation starting from a writer and a reader connected by the variable X, progresses as
follows:

Reduce(1,1)
(P(X), e(X); €) ~——
(X=a,c(X); €)
Reduce(2,2

(ela); {Xeva)) o,

(true; {X—a})
The final state is a success state, and this is the only possible computation from that initial state.

Many reader may read the same value, giving the effect of a broadcast. The computation

starting from the initial state:

(p{X),e(X),e(X)s. . ,e(X); €}
1educes p(X), unifies X = a, and then reduces all the ¢(a) goal atoms one by one in some arbitrary
order.

Nondeterminism in writers and readers

A process p3(X) that nondeterministically chooees to unify X with a or with b is defined by:
p2(X) — X=a. %1
m(x ) — X=b. %2
There are two possible computations if we use the nondeterministic writer p; instead of p in
the example above. A successful one, essentially identical to the one above, and a failing one:
Reduce(1,2)

Reduce(1,=)
—

{p2(X), c(X); €}
(X=b, c(X); &)
Fail(1)
(c(b); {Xrb}) —
{fail;{ X —b})
If instead of ¢(X) we use a nondeterministic reader c3(X), which accepts either a or b as values
for X: '

Reduce(l,=)
—

ca(a).
ea(b).
then instead of failing this latier computation would proceed and terminate successfully.
The process c3(X) has two alternatives. Which one is taken is completely determined by
its environment. pa(X) has also two alternatives. However, the environment has no effect on its
choice. An intermediate example is the process cp(X,Y,Z), which behaves as follows. If X = a it
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Z with ¢. f Y = b it unifies Z with b. If both X = a and Y = b it nondeterministically chooses
one of the two.

cp(a,Y,Z) — Z=a.

cp(X,8,2) — Z=b.
Starting from the initial state:

(72(X)pa(Y),cp(X,Y,Z)ie)
there are several possible computations, depending on the choice of the goal atom and the clause.
To focus on clause choices, assume that goal atoms are reduced from left to right. Then there are
five possible computations. Three of the four choices of the two p3 processes uniquely determine
the behavior of ¢p(X,Y,Z). For example, if p2(X) unifies Y = a and pz(Y) unifies X = a then
cp must unify Z = ¢. If X = b and Y = ¢, then cp fails and the putation fails. However, if
p2(X) chooses X = & and p2(Y) chooses Y = b, then cp has a choice: it can either reduce with
the first clause, and unify Z = a, or with the second, and unify Z = b. Both computations are
possible.

Streams: prod 3 , transd , distril , and mergers
As mentioned in Section 3, a stream is a list constructed incrementally.
Stream producers

Assume a process X := E, which evaluates the arithmetic expression E when it becomes ground,
and unifies X which its value (it can be defined in FCP(|) using more primitive arithmetic processes,
such as plus shown in Section 4.3). A process integers( From, To,Xs), which, given integers From
and To, produces the stream [From, From +1,...,To], can be defined by:

% integers(From,To,Ns) — Ns is the list of integers from From to To®

integers(From,To,Ns) — From > To | Ns=[ ].
integers(From,To,Ns) ~ From < To | Ns=[From [Ns']},
From' := From +1,
integers(From’,To,N#’).
A more interesting prod is fib(N,Ns), which produces the elements of the Fibbonacci
series less than or equal to N.

% fib(N,Ns) — Ns is the Fibbonacci series less than or equal to N.
fib(N,Ns) —
fib’(N,0,1,Ns).
£ib’(N,Nq,N3,Ns) — N < Ny | Ne={].
fib/(N,N1,N3,Ns) — N > N, | Ns=[N;|Ns],
N3 := N +Nj,
fib’'(N,N3,N3 Ns').

A process which sums the elements of its input stream, was defined in Section 4.3.

The following process reads two vectors of equal length, represented by streams of numbers,
and computes their inner product. It will form the building block of a matrix-multiplication
program, shown in Section 7.2.

% ip(Xs,Ys,S) — S is the inner product of Xs and Ys.

% The iated with logic progr lain only their logical reading; the reactive aspecta
are usually explained in the text.




e

ey e e e

ip(Xs,Ys,S) —
ip1(Xs,Ys,0,5).

ipl([ L,[),P.S) ~ P=S.

ip1([X|Xs],[Y|Ys],P,S) ~—
P/ := P + X»Y,
ip1(Xs,Ys,P/ S).

t
The following process multiplies its input stream by some integer, to produce an output stream:

% multiply(In,N,Out) —
Out is the stream resuiting from multiplying each element of the stream In by N.

multiply([ ],N,Out) « Out=[].
multiply([X|Ia),N,Out) — Out = [Y|Out’],
Y:=X«N,
multiply(In,N,Out’).

The following t: d filters all multiple of an integer from a stream. Ii is a building block of
the parallel Sieve of Eratosthenes, shown in Section 7.2.

% filter(In,P,Out) —
Ost is the stream resulting from deleting all multiples of P from the stream In.

filter([X|In},P,Out) « 0 =/= X mod P | Out={X|Out’],
filter(In,P,Out).

filter([X|In},P,Out) +— 0 =:= X mod P |
filter(In,P,Out).

filter([ ],P,Out) « Out=[ ].

A stream distributor
The following stream distributor has one input stream and two output streams. If an input message
send(1,X) is received X is sent on the first output stream, and if send(2,X) is received X it sent
on the second output stream. A variant of this program is used in the msg message sending system
shown in Section 7.2.

% distribute(In, Outy, Oxty) —
In is a stream of elements of the form send(1,-) and send(2,~.). Outy is the stream of X's such
that send(1,X) is in In, and Osty is the stream of X 's such that send(2,X) is in In.

distribute({send(1,X)|In},Out1,0ut2) — Outl=[X|Outl’),
distribute(In,Outl’,0ut?2).
distribute([send(2,X)|In),Out1,0ut2) «— Out2=[X|Out2’],
distribute(lii,Out1,0ut2’).
distribute([ ],0ut1,0ut2) — Outl={ ], Out2=(].
A deterministic stream merger
The following process receives twc ordered lists of integers, and produces an ordered merge of
them. A variant of it is usedin the solution to Hamming’s problem and in mergesort in Section 7.

% omerge(Iny,Ing, Oxt) —
If Iny and In; are ordered streams of numbers, then Out is an ordered merge of /ny and In;.

omerge([X|In1],{Y[In2],0ut) — X<Y | Out={X|Out/],
omerge(Inl [Y|In2],0ut’).

omerge([X|In1],[Y[In2],0ut) — X>Y | Out=[Y|Out,
omerge({X|In1),In2,0ut’).
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omerge({ ],In2,0ut) « In2=Out.
omerge(Inl,[ ],0ut) « In1=Out.

6. Fairness

A nondeterministic stream merger
The following is & deterministic st merger. Its output stream is some order-preserving
interleaving of its two input streams.

% merge(Iny,Ing, Ost) — The stream Ost is an interleaving of the streams Iny and In,.

merge([X|In1),1n2,0ut) — Out=[X|Out],
merge(Inl,In2,0ut’).

merge(In1,(X{In2],0ut) — Out=[X|Out’),
merge(Inl,in2,0ut’).

merge(f ],In2,0ut) « In2=Out.

merge(Inl,{ ],0ut) ~ In1=Out.

The nondeterministic merge process thus defined guarantees nothing about the rate in which it
serves its two input streams. In particular, if one of the streams is unbounded then it is possible,

ding to the tica ot FCP(]) defined in Section 4 above, that only elements of that stream
will be copied to the output stream. Furthermore, if the merger (or any other process) is executed
in parallel with a nonterminating process, e.g. p — p, then there is no guarantee that it will reduce
at all.

A fairness requirement states conditions under which an event that may happen must eventu-
ally happen. The purpose of incorporating fairness requirements into the definition of a language
is to provide the progr with confid that even in the presence of nondeterminism and
unbounded computations certain program steps will eventually occur.

In concurrent logic programming it is useful to distinguish two types of fairness: And-fairness
and Or-fairness. An And-fairness requitement states conditions under which a certain process
would eventually be reduced; thus it constrains And-nondeterminism. An Or-fairness requirement
states conditions under which a certain clause would eventually (not) be taken, thus constraining
Or-nondeterminism.

An Aund-fairness requirement should guarantee, for example, that even in the presence of di-
verging processes, deterministic stream consumers will eventually read all their stream elements;
similarly for producers. However, And-fairness cannot provide such a guarantee for nondetermin-
istic consurmners such as stream mergers or interrupt handlers. This is the purpose of Or-fairness
requirements. Or-fairness requirements should allow, for example, specifying a fair stream merger
and an interrupt handler in the language. Together, And-fairness and Or-fairness requirements
should allow one to compose a controlling process and an interruptible process (e.g. in the style
of the computation controller and the interrupt-handling mets-interpreter shown in Section 7)
and guarantee that the controller process can interrupt the controlled process even if the latter is
nonterminating. The following fairness requirements achieve this. Their definition can be skipped
without loes of continuity.

i-tai
For simplicity we restrict the discussion to computations whoee initial state has a unit goal. Let
P be a program and ¢ = {G;e}, ... be a computation from the unit goal G. Let b be the maximal
number of atoms in the body of any clause in P. We label goal atoms in the computation with
strings in {1,...,0}". The initial goal is labeled with the empty string. Let A be a process labelled
s, which is reduced using the cl A’ — By,...,B;. Then each of the new atoms B; in the new
goul is labeled with the string s*i.
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We extend the Reduce transition label to contain p, the label of the reduced process, and 4,
the try substitution restricted to variables of the process P, as in Reduce(p,0). We extend the Fail
transition label to contain the label of the failing process p, as in Fail(p).

Definition: And-fairness.
A computation ¢ is And-fair if there is no Reduce(p,8) transition or Fail(p) transition which is
almost always enabled on the states of c.? 1

Notes:

1) Since the state of a process changes in a monotonic way (it can only be instantiated further),
if Reduce(p,f) or Fail(p) are infinitely often enabled, they are also almost alwcys enabled,
hence there is no distinction in this case between weak fairness (also called justice) and strong
fairnesa [50,142].

2) We have defined the fairness condition by ruling out certain computations allowed by the
transition system. An alternative approach is to define a transition system which generates
only fair computations to begin with. The approach of Costa and Stirling [32] to weak fairness
in CCS can be applied here as well.

Or-fairness

In programs implementing stream merging and interrupt handling, complete freedom in cl

selection would result in undesirable behaviors: a merger can ignore one of its input streams

indefinitely; a process may ignore a message on its interrupt stream for arbitrarily long. Several
approaches to constraining clause selection in such programs were suggested; none of them seems
completely satisfactory.

A global fairness requirement, which states that all clauses in a program satisfying certain con-
ditions should be used eventually seems ble, b of the dynamic nature of processes,
and the fact that multiple processes may share the same set of clauses. Therefore approaches which
specify conditions on the selection of a clause by a process were pursued.

One approach is to imp fe on cl and require the Reduce transition to select
the most preferred clause among the applicable ones [160] Assuming such s preference, specified
by textual order, the following program implements a fair merger. It achieves fairness by switching
the two input st when an el t from the preferred stream is read:

merge([X|In1},In2,0ut) — Out=[X|Out’],
merge(In2,In1,0ut’).

merge(In1,[X|In2},0ut) «— Out={X|Out’],
merge(In1,In2,0ut’).

merge([ ],In,Out) — In=Out.

merge(In,{ ],0ut) ~ In=0Out.

A process p(...,Js) that responds to interrupts on the stream Is can be ¢ by placing the
clause testing for an interrupt first:

(...,[Iils]) — interrupt_handler(.. ., [I[Is]).
.. other clauses for p. ..

Although simple to define operationally, strict preferences are problematic. From a methodological
point of view, they destroy the clause-wise modularity of programs. This may suggest awkward
programming techniques (4 la red cuts in Prolog [171]), and make the life of program analysers,
transformers and compilers more difficult. From an implementation point of view, preferences
require strict synchronization, since a dcl can be selected only if nothing happens that
may enable the first one. In fact, a correct distributed impl ion of strict prefi may
require locking all the variables involved in the reduction of the first clause wlnle attempting to

tatl

? l.e. enabled on all but » finite number of the states of c.
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reduce with the second clause. A weaker notion of preference seems more desirable, but it is not
clear how it should be defined.

Another approach is to use explicit conditions on clauses. Assume a guard primitive var(X),
which succeeds if X is a variable, and fails otherwise. Using var, a fair merger can be written as
follows, with base cases as above:

merge([X|In1),In2,0ut) +— Out=[X|Out’],
merge(In2,In1,0ut’).

merge(In1,{X[In2],Out) « var(In1) | Out=[X|Out'],
merge(In1,In2,0ut’).

A process p(...,Js) which is sensitive to interrupts on Is can be defined by adding to all its clauses
which do not serve the interrupt the test var(ls). The use of var to achieve Or-fairness has been
ﬁut propooed by Kusalik [104]. The var test approach is better than preferences since it does not

ise modularity, and has no effect when not used. Its drawback is that var seems
too strong a tool for this purpose. From a methodological point of view, it offers opportunities for
abuse. From an implementation point of view, var, like preferences, implies tight synchronization.
To implement correctly an interrupt-sensitive process thus defined, the Is variable has to be locked

whenever a reduction of the prc using a clause with a var(Js) test is attempted. If there are
hundreds or th ds of such prc , all sharing the same interrupt stream /s, this would be
prohibitively expensive.

For that reason a weaker primitive, called unknown(X), was defined [191]. Intuitively, un-
known is similar to var, except that its definition allows wnknown(X) to ‘ignore’ for some finite,
but bounded, amount of time the fact that X was instantiated. For example, if X is instantiated to
¢ inp Py, snknown(X) can d after that time in another processor P;. However, the
fact that X has a value should eventually reach P;, preventing unknown(X) tests from succeeding
thereafter.

In our interleaving based transition system, this intuitive definition is formalized as follows.
unknown(X) behaves like var(X), except that it may succeed only a finite number of times after
X becomes a non-variable. In other words, if in a computation a variable X is instantiated to a
non-variable term, then the computation does not have infinitely many transitions in which the
check of the guard predicate unknown()') succeeds. Using snknown instead of var in the above
programs would achieve the desired effect: the merger would be fair, and the procesa p would
eventually respond to an interrupt. This is achieved without heavy synchronization costs, and
without giving the programmer too powerful a tool, since unknown (X) succeeding does not imply
that X is presently not instantiated. In a language without atomic variables (see the discussion of
Flat GHC in Section 10), the difference between var and snknown is immaterial.

Note that unlike the other guard test predicates introduced, the success of the var and unknown
primitives is defined operationally, without reference to the notion of truth.

7. Advanced Concurrent Logic Programming Techniques

The power of concurrent logic programming languages comea from the wide range of concurrent
programming techniques they support. To convey this, we have assembled a range of FCP(|)
programs which demonstrate these tech

4

71 Suti;: process networks

Processes operating on streams can be composed into networks. This section shows two examples
of a static process network. .
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A static network of stream transducers: a solution to Hamming's problem

The following program [42| solves the so-called Hamming’s problem [30): generate an ordered
stream of all numbers of the form 2¢3/5% without repetition.

% hamming(Xs) — Xs is the ordered stream of all numbers of the form 2¢3/5%.

ing(Xs) +—
multiply({1|Xs},2,X2),
multiply([1{Xs},3,X3),
multiply([1|Xs],5,X5),
omerge’(X2,X3,X23),
omerge’(X5,X23,Xs).

where omerge is a variant of omerge shown in Section 5, which removes duplicates from its input
stream.

% omerge/(Iny,Ing, Out) —
If In; and In; are ordered streams of numbers, then Out is an ordered merge of In; and Ing
with duplicates removed.

omerge’([X|In1),[X[In2),0ut) — Out = [X|Out’],
omerge’(Inl,In2,0ut’).

omerge’([X|In1],{Y|In2],0ut) «— X<Y | Out=[X|Out’],
omerge'(In1,[Y[In2},0ut’).

omerge’([X|In1},[Y]In2],0ut) — X>Y | Out=[Y|Out’]},
omerge’([X|In1),In2,0ut’).

omerge’([ ],In2,0ut) +— In2=0ut.

omerge/(In1,[ },0ut) «— In1=0ut.

multiply was defined in Section 5.

A static network: the MSG g ding L‘

The mag process network is a simpl g system for two computer terminals. Input
from each of the keyboards K; and K3 is a stream of messages, including messages of the form
message(X). Every message M on Kj is echoed on S; as 1:M. In addition, a message of the form
message(X) on K is also echoed on S3 as 1:message(X ). Similarly for messages on K3 (93). The
program uses the merge process and a variant of the distridute process defined in Section 5.

% msg(K1,51,K2,52) —
51 is an interleaving of /:X such that X is in K) and 2:message(X) such that message(X) is
in K3. Similarly S is an interleaving of 2:X such that X is in K7 and /:message(X) such that
message(X) is in K.

msg(K1,51,K2,52) —
distribute(1,K1,K11,K12),
distribute(2,K2,K22,K21),
merge(K11,K21,S1),
merge(K22,K12,52).

distribute(Id,[message(X)|In},Outl,0ut2) «
Out1=[Id:message(X)|Outl’],
Out2=(Id:message(X){Out2’],
distribute(In,Out1’,0ut?’).
distribute(Id,{X|In},Out1,0ut2) —
X#message(_) |
Outl=(I1d:X|Outl’], .
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distribute(ln,Out1’,0ut2).
distribute([ ],Out1,0ut2) — Outl=[ ], Out2=[].

7.2 Dynamic process networks

We show examples of dynamic process networks of various topologies. They are dynamic since
their size depends on their input. Dynamic process networks which solve algorithmic problems
typically exhibit two phases of operation. A spawning phase, in which the process network is
spawned, and a “systolic® phase {103), in which the pr in the network perform both local
computations and communication. It is interesting to note that many of the concurrent logic

programs shown below, which implement “systolic”-like parallel algonthms, are almost identical,
as logic programs, to Prolog programs which implement the corresp quential nlgonthms
More on the relation between systolic algorithms and concurrent logic progra.mmmg can be found
in {162).

Process pipes: linear process networks

The following program is a parallel implementation of the Sieve of Eratosthenes [163]. It consists
of a process generating all integers in the desired range, and a set of filter processes, one per prime
number found, which erase multiples of their prime from the remaining stream. This program
overlaps the dynamic construction of the process network with the computation of the result.
Its network consists of a dy ic linear pipeline of transducers. It uses the integers and filter
processes defined in Section 5.

% primes(N,Pa) «— Ps are all the primes up to N.

primes(N,Ps) «—
integers(2,N,Ns), sift(Ns,Ps).

% 8ifi(Ns,Ps) — Ps are the numbers in Ns which are prime relative to their predeceasors.
sift([P[Ns],Ps) — Ps=(P|P#],

filter(Ns,P,No'), sift(Ns1,Ps’).
sify([ },Ps) — Ps=[ .

Muﬁr_&

e following program implements a parallel mergesort algorithm. Given a list of length N of
(possibly singleton) sorted lists, it forms a pipeline of length logz N of msort processes. Each
stage in the pipeline performs a pairwise order-preserving merge of the sublists, using the omerge
procedure defined in Section 5. Each stage doubles the length of the sublists and divides their
number by approximately 2. Using loga N processors, this program can sort an N elements list in
time O(N). See [189] for further discussion of the complexity of concurrent logic programs.

% mergesort(/n,Out) —
If In is a list of ordered lists of numbers then Oxt is a sorted list of these numbers.

mergesort([ ],Ys) — Ys=[).

mergesort([Xs],Ys) — Xs=Ys.

mergesort({X1,X2|Xs},Ys) —
msort({X1,X2{Xs],2s),
mergesort(Zs,Ys).

masort([X1,X2|Xs),Ys) — Ys=[Y]Ys'),
omerge(X1,X2,Y),
msort(Xs,Ys').

msort({X],Ys) — Ys=[X].

msort([ ],Ys) — Ye=[).
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Vector-matrix multiplication
A linear array of ip processes can multiply a matrix, represented by a list of vectors, by a vector.

It uses the ip process defined in Section 5.
% vm(Xv, Ym,Zv) — multiplying the vector Xv by the matrix Ym gives the vector Zv.

vm(,{],Zv) ~ Zv=(].
vm(Xv,[Yv|Ym],Zv) — Zv={Z|Zv),
ip(Xv,Yv,Z), vim(Xv,Ym,Zv").

The following program merges a list of streams into one st , by ting » bal d tree of
binary merge processes. It uses the merge process defined in Section 6.

% merger(In,Out) «— Out is the merge of the list of streams In.

merger([Xs1,Xs2(In},Out)
merge_layer([Xsl,Xs2{In),Out),
merger(Out’,Out).

merger([Xs],Out) — Xs=Out.

merge_layer([Xs1,Xs2|In),0ut) «— Out=[Ys|Out],
merge(Xs1,Xs2,Ys),
merge_layer(In,Out’).
merge layer([Xs),Out) «— Out=[Xs].
merge_layer([ ],Out) « Out=[).

Note that this program operates correctly only if the complete list of streams is given, since
it emits elements from the root of the tree only after the construction of the tree is completed.
If the list is given incrementally, i.e. it is actually & stream of streams, then a different approach
is needed. One naive solution is to create an unbalanced tree incrementally, using the following

program.

merger1({Xs{In},Out) —
merge(Xs,Out’ Out),
merger1(In,Out’).

mergerl([ ],Out) « Out=[].

The program builds a linear tree top down. At each point in its construction, elements of the
input streams already connected to merge processes can reach the root of the tree.

More sophisticated balanced merge trees can be constructed, which support the dynamic
addition and deletion of merged streams, using the concept of two-three trees, as shown in this
section below.

Process arrays
Two matrices can be multiplied by an array of ip processes, each computing the inner product of
the appropriate row and a column of the matrices. We assume that the second matrix is already

transposed.

% mm(Xm,Ym,Zm) —
Zm is the result of multiplying the matrix Xm with the transposed matrix Ym.

mm({ ), ,Zm) — Zm=([}).
mm({Xv|Xm],Ym,Zm) «— Zm={Zv|Zm')
vm(Xv,Ym,Zv), mm(Xm,Ym,Zm').

The program uses the vm process defined above.
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The behavior of the mm program is reminiscent of the well-known systolic algorithm for
multiplying two matrices [103]. However, there are two differences. Firat, the process network is
created dynamically, to fit the size of the input matrices. This suggested the name!© “soft-systolic”
to these kinds of software-oriented systolic algorithms, in contrast with the classical hardware-
oriented “hard-systolic” algorithms. Another difference is that the program, as specified, does not
pipeline the matrices along the connections between the ip processes, but rather “broadcasts” each
row and column to all processes requiring it. The program, however, can be easily modified to do
the pipelining. See [163,189)] for further discussions of the subject.

To achieve pipelining, the mm program has to be modified to form direct connections between
adjacent ip processes. A similar goal is achieved by the following tores program. Given a matrix
Array, represenied as a list of list of values, it spawns a torus cell processes, each with one value
and with ication links to adj t cell . The array is augmented with end-
round connections, to form a torus process network. This program schema (cliché) has several
applications, including array relaxation and the like.

torus(Array,...) —
torus’( Array,Bottoms, Tops,. . ),
Bottoms=Tops.

torus’([Row|Array),Bottoms, Tops,. . ) —
row(Row,Left,Right,Bottoms,Middles,. . ),
Left=Right,
torus’(Array,Middles, Tops,.. ).
torus’([ ],Bottoms, Tops) +—
Bottoms=Tope.
row([Element|Row},Left,Right,[Bottom|Be],{Top|Ts],..) —
cell(Element, Left, Middle,Bottom, Top,. . ),
row(Row,Middle,Right,Bs,Ts,. . ).
row([ ],Left,Right,[1.[},...) —
Left=Right.
cell(Element,Left,Right,Bottom,Top,.. ) —
An application specific program.

The layered stream method

Search probl that are ble to depth-first search have elegant and efficient solutions in
Prolog. Assume that the solution to the search problem is in the form of a list of elements, which
satisfy some consistency criterion. The incremental construction of a solution in Prolog often relies
on its backtracking mechanism, where forward computation consists of extending some prefix of a
solution, and backtracking occurs when it is discovered that the prefix cannot be extended further,
either because of inconsistencies or because it is a complete solution and additional solutions are
required.

The layered stream data structure, proposed by Okumura and Matsumoto [139), allows an
incremental and parallel construction of solutions to search problems without relying on a Prolog-
like backtracking mechanism. A layered stream represents a set of lists sharing a common head as
the cross-product of the head and the list of tails. The list of tails in turn can be represented by a
layered atream. For example the lists [1,2,4], [1,2,8], [1,3,9] are represented by the layered stream
1+ [{24], (28], [3,9]], and also by the layered stream 1 » [ 2¢[[4].(8]]. (9.9] ]. The function
symbol ‘s’ ia used for mnemonic purposes, but of course any other function symbol would do. The
product X« ] rep ts the empty set of lists, and the product X sirue represents X .

The following programming methodology is associated with the layered stream. Suppose the

10 Dye to Vijay A. Saraswat.
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problem is to find values for N variables ranging over some finite domain of values V. Ns|V|
processes are initially created, one for each possible value of each variable. Denote the process
associated with value v of variable 8 by pn. Each gy, process receives an input stream of
partial solutions whick ist of an assignment to variables I1,...,n—1, and produces an output
stream of partial solutions obtained by extending each input assignment with the assignment of v to
variable 0, provided the resulting assignment is consistent. That is, given the input partial eolution
01,. .., th-1, if the extended partial solution vj,...,t,_),v is consistent, it is output. Otherwise it
is not.

The layered stream data structure allows all processes pn .y, vEV, to share the same input
partial solutions, thus saving space and hence also time. It allows the pipelining of partial solutions,
hence increases the available parallelism. An example of a search program using a layered stream
is the four queens program shown below [139]. The program easily generalizes to N queens by
replacing the explicit construction of the filter processes by iterative procedures to do so.

% four_queens(Qs) —
Qs is a layered stream of all legal assig ts of four q on & { x4 board.

four_queens(Qs)} —
queen(true,Qsl), queen(Qs1,Qs2), queen(Qs2,Qs3), queen(Qs3,Qs).
R queen(In,Ost) —
If In represents the set of legal assignments of N queens on a { x{ board, Out represents the
set of legal assignments of N+ queens on a § x§ board.
queen(In,Out) —
filter(In,1,1,0utl), filter(In,2,1,0ut2), filter(In,3,1,0ut3), filter(In,4,1,0ut4),
Out={1+0ut1,2+0ut2,3«0ut3,4+Out4}.
% filter(In,1,D,0Out) —
If In is a set of assignments of N queens to consecutive columns, Out is the set of assignments of
N 41 queens obtained as followa: Extend each assignment in /n with a queen on the next column
and on row I. If the added queen does not interfere with the previous queens, incorporate the
extended assignment in Out.

filter(true,. ,.,Out) — Out=true.
filter({ ],-,— ,Out) ~— Out=[].

filter({Is_ |In},1,D,Out) ~ filter(In,1,D,Out). % Same row

filter([J»_{In],1,D,0ut) ~— D=:=abs(i~J} { filter(In,I,D,Out). % Same diagonal

filter([J+In’|In),1,D,Out) — 1#J, D\=:=abs(I-J) | % No interference
DY:=D+1,

filter(In’,1,D’,0ut’),
filter(In,[,D,0Out”),
Out=[J+Out/|Out").
The snswer obtained from the goa! four_queens(Qs) is the following layered stream:
Qe={1«[3e[]d4e[2+[]]],
2«41 «[3«truefl],
3ol e[4e(2etrue]l],
4efle3s(]L2(I]

which represents the list of lists:

Qe = [{24,1,3],(3,1,4,2]].
A comparison of the sequential and paralle] performance of this program with other concurrent
logic programs and Prolog programs for the N-queens problem is given by Tick {193].
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7.3 Incomplete message protocols
Incomplete message protocols were reviewed in Section 4.4. Here we show several examples of their
application. The first application is it A monitor is a p that maintains some local
state, and serves requests to inspect and/or modify the state. It is called so since its function is
similar to Hoare’s original concept of a monitor [85]. Clients of a monitor are typically connected
to it via a merge network, and communicate with it using incomplete messages.

Perhaps the simplest monitor is the counter, which maintains a local counter, and reponds to
the messages clesr, add, and read(X), the last of which is an incomplete message.

% counter(In) —
In is a stream of clear, add, and read(X) such that X is the number of add’s since the most

recent clear.
counter(In) « counter’(In,0).

counter’([clear|In},C) — counter’(In,0).
counter’([add|In],C) +— C' := C+1, counter’(In,C’).
counter’([read(X)|In},C) — X=C, counter'(In,C).
counter’([ ],C).

The client of a counter who wishes the know its value sends it the message read(X), and waits for
X to be instantiated.

Shared queues
A more sophisticated monitor is the following queue process. It serves requests of the form en-

guene(X) and deguewe(X), by unifying the arguments of corresponding enqueue and dequene re-
quests, and maintaining arguments of superfluous requests. While a list is a natural data structure

for representing a stack, a difference-list is most convenient for representing a queue. The argu-
ments of superfluous requests are maintained in a difference-list data-structure, which is positive if
it received more enq than d quests, empty if the number of requests received of each

type were equal, and negative otherwwe A dlﬂ‘erence-hst explained in Section 2.2, is a common
data-structure both in Prolog and in concurrent logic programming languages [27,160,171).

% quese(fn) —
In is a stream of enguene(X) and deguene(X), for which the list of X’s such that engueue(X)

is in In is identical to the list of X 's such that dequeuye(X) is in In.

queue(In) —
queue’(In,Q\Q).
queue’([dequeue(X)|In], H\T) — H=[X|H],
queue’(In,H\T).
queue’({enqueue(X){In},H\T) — T=[X|T'],
queue’(In,H\T').
queue’([ ],H\T).
Another useful monitor is a priority queue. A priority queue has two input streams. One of
enqueue requests of the form enguene(X,P), and one of dequeue requests of the form dequeue(X).
It maintains an internal priority queue, which is a list of the elements enqueued but not dequeued,
sorted by their priority. It serves a dequeue request only if the queue is non-empty.
% pguene(Es,Ds)
Es is 8 list of enguese(X,P) and Ds is a list of dequese(Y) for the which the corresponding
multisets of X 's and Y'’s are the same, and if deguene(X) precedes deguese(Y) in Ds then either
enguene(X,PX) precedes euquue(y PY) in Es or enguewe(Y,PY) precedes engsene(X,PX) in
Es and PY<PX.

-~ 86 -




v

pqueue(Es,Ds) —
paueue’ (Es,Ds,[ ]).

pqueue’([enqueue(X,P)|Es],Ds,Q) —
insert(X,P,Q.Q),
pqueue’(Es,Ds,Q’).
paueue’(Es,[dequeue(X)|Da],[(Y,P)IQ]) — X=Y,
pq“eue’(Ed)D'vQ)‘
pquene’([1,[1.Q).
insert(X,P,[],Q) — Q=[(X,P)].
imert(X,P,[(X',P’)lQ],Q’) -
P < P’ | Q'=[(X,P),(X",P))|Q].
insert(X,P,{(X",P')IQ].Q') —
P2 P’ | Q'={(X".P)IQ"),
insert(X,P,Q,Q").
Merge trees
Another application of incomplete message protocols is network reconfiguration. We show here a
simple example of a dynamic two-three merge tree. A process p(Xs,...) with a stream Xs to the
tree can create a new process ¢( Ys,...) with a stream Ys, and join Ys to the tree by sending down
Xs the message merge(Ys). For example:
p(xs,. . ) -
Xs=[merge(Ys)|Xs'],
p(Xs',.. ),
q(Ys,...).
A balanced tree of merge processes capable of handling such gen can be posed of binary
and ternary mergers, defined below. We show the clauses which handle messages on the first
input stream only. Handling messages on the other streams is done by similar clauses of the same
procedure. Note how a merge2 process that receives a merge(X) message turns into a merged,
and a merged process that receives such a message turns into two merge2’s, and sends up another
merge message.
merge2({X|Xs),Ys,Zs) —
Xtmerge(_) | Ze=[X|2s'),
merge2(Xs,Ys,Zs').
merge2([merge(Ws)|Xs),Ys,Zs) —
merge3(Ws,Xs,Ys,Zs).
merge2([ },[ },Zs) — Zs=(].

merge3([W|Ws],Xs,Ys,Zs) ~—
Wemerge(_) | Zs=(W|Zs7,
merge3(Ws,Xs,Ys,2s').
merge3({merge(Ws1)|Ws],Xs,Ys,Zs) —
Zs=[merge(Zs1)|Z¢'),
merge2(Wsl, Ws,Zsl),
merge2(Xs,Ys,28').
merge3([ },(].( ],Zs) — Zs=[].
The merge tree described grows dynamically, but does not shrink in a balanced way. An extension
based on a distributed variant of the two-three tree deletion algorithm is described in [167].

The bounded-buffer protocol
In several situations it is desirable to allow the reader of a stream some degree of control over its
writer. Examples are when the reader is much slower than the writer, and when only some prefix
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of the produced st quired, but its size can only be determined by the reader at runtime.
The bounded- buffer protocol [177) employs difference lists and incomplete messages to realize this
kind of control.

The idea of the bounded-buffer protocol is simple: the controlling reader process inaintains a
difference-list H\T of incomplete meseages, say of the form message(X), where X is a variable.
The difference-list represents the “buffer”. After the buffer is initialised to a list of n incomplete
messages, the reader operates as follows: when it is ready to process the next message, it waits
until the first element in the buffer is known, i.e. H={message(X)|H'], where X is known, dequeues
it, and enq an incomplete message, message(X'), at the tail of the difference list. When it
does not desire to receive any further messages it unifies the tail with nil. What to do in such a
case with the messages pending in the buffer is application dependent.

The producer is given initially the head of the difference list as its input stream. It then
operates as follows. It waits until its input st has the ag: ge( X ), produces the next
element, unifying it with X, and iterates with the tail of its input stream. It terminates when its
input stream is nil.

Schematic programs for the producer and the reader are shown below.

bounded_buffer_network(...) —
buffer(n,H\T),
read(H\T,...),
produce(H,. . .).
% buffer(N,H\T) —
H\T is a difference list of message(~) of size N.

buffer(0,H\T) + H=T.
buffer(N,B\T) ~—
N>0 |
N’:=N-1, T=[message(-)|T"],
buffer(N’, H\T').
read([message(X)|HI\T,...) —
known(X),
...J want more X's. .. |
T={message(-)IT],
.. process X. ..,
read(H\T",.. ).
read(H\T,...) ~—
..I don’t want more X’s... |
T=[],

. .process remaining messages in H. .

produce([meseage(X)|In},...) —
..prodece X. ..,
produce(In,.. ).
produce([ ,...).

Several variations on this protocol are possible. For example, it is not necessary for the reader to
maintain a fixed sise buffer: it can increase or decrease the size of the buffer if it 8o desires. It
is not y to synchronize on every message: a more efficient protocol might be to produce
k stream elements per incomplete message, or to provide a parameter in the incomplet
specifying how many more elements to produce. Finally, it is possible for the incomplete measage
to be simply a variable, rather than a term containing a variable.
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7.4 Mutual exclusion protocols
Mutual exclusion can be achieved in FCP(]) nlm; the followmg mechanism. The set of processes

participating in the mutual exclunon t ted via 8 ge network into a muter
process. A single round mut uclunon tocol is as follows: all processes competing for lock
send a lock(Reply) incomplete message to mut. ¢ te the first lock request received by

unifying Reply = granted, and denies the other requentl by unifying Reply = denied. It is defined
as follows:

% mutez(In) — In is a list containing one lock(granted) followed by sero or more lock(denied).

mutex([lock(Reply)|In}) — Reply=granted,
mutex’(In).

mutex’(flock(Reply)|In]) — Reply=denied,
mutex’(In).

mutex/([ ]).

The single-round mutual exclusion protocol can be used to simulate CSP with input guards [87].
A simulation of CSP with both lnput. and output guatds is discuseed in Section 14.

A multiple round mutual tocol is only slightly more complex. Instead of sim-
ple back-communication, it uses a three stqge dialogue: the process requests the lock, then ms-
tez grants it, then the process releases the lock, and mutez serves the next lock request. Pro-
cesses competing for permission send lock(Reply) as before. muter answers the first by Reply =
granted(Done), and waits for Done = done. When the process to which the lock was granted ends
it critical operation, it releases the lock by unifying Done = done. mutez then grants the next
lock, and so on. If the merge network is fair, and every process that is granted a lock eventually
releases it, then every lock request will eventually be granted

The definition of the multiple-round mutezr process is as follows. Its trivial logical reading
indicates that its interest lies in its reactive aspects only.

% mutez(In) — In is a list of lock{granted(done)).
mutex(In) —
mutex’(In,done).

mutex’({lock(Reply)|In),done) — Reply=granted(Done),
mutex’(In,Done).
mutex'([},-).

A program schema for a perpetual process p participating in a multiple-round mutual exclusion
protocol is shown below. We assume that initially its first argument is a stream merged to mutes;
other arguments are application specific.

p(ToMutex,.. ) «— p_request(done,ToMutex,. . .).

p-request(done, ToMutex,. ..) — ToMutex=(lock(Reply)| ToMutex],
p-wait(Reply, ToMutex/,. . ).
p-wait(granted(Done), ToMutex’,...) ~
.. do critical operation; when done, wnify Done=done. ..
p-request(Done, ToMutex,. . .).

7.5 Short-circuit protocols for distributed termination, quiescence detection, and distributed
iriven simulati

The problems of distributed termination detection and quiescence detection have received consid-

erable attention [15,16,40,51,105,126]. In concurrent logic programming, these problems have very
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elegant solutions, using the short-circuit protocol. The protocol is originally due to Takeuchi [175],
and was later extended by Weinbsum and Shapiro {208] and Saraswat ¢t o!. [158]; we largely follow
[158] in the following discussion. The underlying behavior of implementations of this protocol are
closely related to that of distributed termination and quiescence detection algorithms based on dis-
tributed counters (105,126]. We do not know of algorithms for distributed event-driven simulation
corresponding to the one based on the short-circuit.

The idea of the short circuit for termination detection is as follows. Call the computation whose
termination should be detected the underlying computation, and the program it executes the
underlying program. Augment each process participating in the underlying computation with two
additional arguments, called Left and Right. For readability, these arguments are typically packed
in one term using the ‘-’ infix function symbol, as in Left-Right. The pair is called a swiich. It is
closed if Left=Right, open otherwise.

Initially, connect all processes in a chain, by unifying Left of the i** process with Right of the
ith41 process. The Right of the first process and the Left of the last process are called the ends
of the short-circuit. For n processes, the chain contains n open switches. )

. Each process in a computation operates as follows. If it halts it unifies its Left and Right
variables. If it iterates it leaves them unchanged. If it creates n new processes, it extends the
short-circuit by n-1 intermediate links. This behavior is achieved by transforming the clauses

of the underlying program along the following schema, where ‘...' denotes underlying program
arguments.
p(.. ) = p(..,L-R) «~ L=R.
p(...)~ =p(..,L-R)+~
p(...). (... I-R).
p(..) = =p(...L-R) ~
Paf-- ) Pi(. - ,L-Xy),
pa(.. ), pa(. . . X1-Xa),
Pnl...) pn{. . vXn-1-R).

In FCP(|), a correct use of the short-circuit requires threading it to the equality goal ator:s in a
special way. If the underlying program has a body atom T!=T¢, the transformed program should
have the atom (Lefl, T1)=(Right, T2) for the appropriate switch variables Left and Right, so that
the switch would not close before the underlying unification completes.

The invariant of the short circuit under this behavior is that the number of open switches
is identical to the number of p in the putation. In particular, all switches are closed,
which implies that the two ends of the initial chain are identical, if and only if all processes in the
computation have terminated, which is s stable property.

Any process wishing to detect that the computation has terminated is given the initial ends
of the short circuit. Assume the termination detecting process is called Aalted(Left-Right,..). It
can be implemented in FCP(]) in two ways:

halted(X-X,...) « ... report termination ...

or:

balted(Left-Right,.. ) —
Left=done, wait.for.done(Right,...)
wait for.done(done,...) — ... report termination ...
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Distributed phased termination detection

Some computations consist of phases, where a process is allowed to begin computations of the
next phase only if all processes have completed the previous phase [130,208]. The short circuit
can be generalized to achieve phased termination detection as well. Instead of having one short
circuit, a stream of short circuits is threaded through the underlying computation. Each process
is augmented with a Lefi-Right switch as before, and with the original left and right ends of the
circuit, LefiEnd-RightEnd. However, instead of unifying Left and Right upon termination, it treats
Left and Right as streams. At the termination of a phase it unifies the head of Left with the head
of Right. Following that, it waits for the heads of LefiEnd and and RightExd to be identical before
it proceeds with the next phase. This is achieved by the following iterative schema:

p(Left-Right LeftEnd-RightEnd,.. ) —
... do computation of this phase, when done, do the following ...,
Left=[X{Left’],
Right=[X Right,
p-wait(Left’-Right’,LeftEnd-RightEnd,. . .).
p-wait(Left-Right,[X|LeftEnd]-{X|RightEnd},.. ) —
p(Left-Right,LeftEnd-RightEnd,. . ).

Process creation and termination is handled as before.

Note that the solution is pletely sy tric. There is no centralized p that detect;
the termination of a phase; rather, the ends of the circuit are distributed to all processes, and each
of them detects the end of phase independently.

Quiescence detection

Consider & network of processes participating in some underlying computation by exchanging
messages. The putation begins by s designated process, which sends one or more messages to
other processes. Each process that receives a message sends out zero or more messages in response.
No process spontaneously initiates new messages. The computation ends when all messages sent
have been received, and no new response messages need to be generated. Normally, this results in
a deadlock of the underlying computation. We would like to augment the underlying computation,
so that instead of deadlocking it would report quiescence [15,16).

This can be achieved by another variant of the short circuit protocol. In this variant, switches
are embedded in messages, rather than in processes. The initial set of messages are threaded with
a short circuit, as was the initial set of processes above. A process wishing to detect quiescence
holds the ends of the circuit and waits for them to b identical. Each message in the under-
lying computation is augmented with a ewitch, and each procese in the underlying computation
is augmented to obey the following protocol. When it absorbs a message, i.e. receives a message
without generating any additional messages in response, it closes the switch in the message. When
it sends one message in response to a message, it includes in the outgoing message the switch of
the incoming message, intact. When it generates n response messages, n>1, it extends the switch
into n switches, and embeds the new switches in the outgoing messages.

For simplicity, sssume that each process has one input stream and one output stream of
messages. Mergers and distributers can be attached to these streams if necessary. The schema of
an augmented process is:

p({m(Left-Right,.. }{In],Out,.. ) — % Absorb a message
Left=Right,
p(In,Out,.. ).

p([m(Left-Right,. . ){In],Out,...) — % Send one message

Out=[m'(Left-Right.... )|Out’],
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p(In,Out’,.. ).
p([m(Left-Right,. . ){ln],Out,...) ~ % Send many messages

Out=[m; (LeR-Middley,... ),
my(Middler-Middles, . ),

ma(Middle,_y-Right,. . J[Out],
p(In,Out,.. ).

The invariant of this protocol is that the number of open switches is the number of message sent
(or to be sent) but not yet received. When this number reaches 0, the short circuit is closed,
and qmeswnee can be reported Nobe that this protocol requires that each message has at most
one r . To dcasting the underlying program must be augmented with explicit
dmtnbutors. which follow the same protoeol

Distributed event-driven simulation

Ogne interesting application of the above techniques is distributed event-driven simulation. In
event-driven simulation, in contrast to clock-driven simulation, only changes are communicated
between the components participating in the simulation. This is especially important in hardware
simulation, where very often only a small percentage of the simulated device is active at any given
time.

An event-driven simulation is phased, since changes which occur in the next phase can be
reliably communicated only when all changes related to the previous phase have been received.
The method for phased termination detection, using the stream of short circuits described above
could be used, except that it requires every process participating in the simulation to be activated
in every cycle in order to close its segment of the short-circuit, contrary to our goal. Our solution
is a combination of the quiescence detection and phased termination detection techniques.

Each message is suginented with a stream of switches and the ends of the short circuit; these
are the same data structures each process is augmented with in phased computation detection. In
addition, each process is augmented to behave as follows. In each phase, the process treats the first
message it receives as follows, It closes the head of its switch, and keeps the tail of the switch and
the circuit’s ends. It thien waits either for the head of the circuit’s ends to close, or for additional
messages. (Note that only one of them can occur, since the head of the circuit’s ends close only
after all messages sent in this phase have been received.) If an additional message is received, it
closes the message’s entire switch, after verifyng that the message-circuit’s ends are identical to
the ones it maintains (this is necessary to ensure that the message belongs to the current phase;
otherwise it is possible that this message was sent by a process that has already detected the end
of the current phase and sent a messagé belonging to the next phase). If the head of the circuit’s
ends close, it sends sero or more messages, as required by the underlying computation, each with
a segment of the tail of the switch, and with the tail of the circuit’s enda.

A schema of such a process follows. For simplicity a process which sends out one mesaage per
phase is shown.

p-dormant({m(Left-Right,LeftEnd-RightEnd,. . )[In},Out,...) — % received first message

Left={X|Left], % acknowledge receipt
Right=[X|Right},
% process and store message
p.pa-xve(ln Out,Left/-Right’,LeftEnd-RightEnd,. . ).
p-passive([m(Left1-Rightl,LeftEnd-RightEnd,. . )|In], % received additional message
Out,Left-Right,LeftEnd-RightEnd,. . ) «~ % of current phase

Left1=Right1, % acknowledge receipt
cen % process and store message
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p-pamsive(In,Out,Left-Right,LeftEnd-RightEnd,. . ).
p-passive(In,Out, Left-Right,[X|LeftEnd}-[X|RightEnd],.. ) — % detect end of phase
- % compute outgoing message
Out=[m(Left-Right,LeftEnd-RightEnd,. . )]Out’),
p-dormant(In,Out’,.. ).

The reason for embedding the circuit’s ends in messages is efficiency. If the ends were distributed
to all processes in the network initially, a process receiving a message after being dormant for some
time would have to search for the tail of the end’s streams. In the current scheme it receives the
updated tails in the message.

More details on this subject can be found in [158,208].

7.6 Object-oriented programming, delegation, and otherwise

Concurrent logic programming languages naturally give rise to an object-oriented programming
style, where the objects are processes communicating via message streams. Much research was
devoted to understanding the relation bet lassical object-oriented pts and techniq
and the object-oriented style offered by concurrent logic programming [95,169]. For a further
discussion of object-oriented programming see Section 21.

One cc >n object-oriented technique ia delegation. A process that does not understand a
certain message delegates it to another process, who may be better equipped to handle it. Consider
a process p(In,..., Out), which receives messages on In. Some messages it handles by itself; others
are delegated to the Ost stream. If the set of messages it recognizes is simple, say « and 3, then
p can be coded easily:

p([a]In],.. ,Out) —

.. p(In,.. ,Out).
p([blln],- . qOU'.) -
.. p(In,.. ,Out).

p([X{In],. . ,Out) —
X # 3, X # b | Out=[X|Out'],
p(In,...,Out’).

However, if the messages are complex, and have arguments which should have specific combinations
of values, then the explicit specification of conditions under which the message should be delegated
becomes harder. To that effect a new guard primitive, called otherwise, is introduced. The
operational semantics of otherwise is given assuming an ordering on clauses (say textual order).
Given a goal atom G, an otherwise guard in a clause C succeeds if try(G,C’) = fail for every
clause C' preceding C.

Using otherwise, defaults can be handled easily:

p([X|n],....Out) —
otherwise | Out=[X|Out'},

p(In,...,Out’).
Otherwise destroys clause-wise modularity, and the explicit formulations of the conditions under
which it ds is often cumb 11, This is the source of its power, but also an indication that

it should not be used excessively. Otherwise is best thought of as a primitive exception handling

1y , K. Kahn (p 1 ication) notes that there is & sense in which ofherwise enables clause
dularity. If a p dure needs to specifly a default case, as in this example, which applies when all other
clauses doa't apply, then without ofAerwise it must de explicitly the negstion of the other guards, and
should be updated if the other cl change. H , by ding the default with ofAerwise there is no

| depend b the default clause and the other clauses of a procedure.

~ 48 -




mechanism, which should be used only to handle exceptions, and not in normal programming
practice.

7.7 Enhanced meta-interpreters

A meta-interpreter for a language L is an interpreter for L written in L. If a language has simple
meta-interpreters, then one of the most convenient ways to enhance a language, or implement
sublanguages, is by starting from a meta-interpreter and enhancing it [60,149,171,178,182]. There
can be several meta-interpreters for a language, which differ in what aspects of the execution model
they reify, i.e. execute themselves, and what aspects they absord, i.e. default to the underlying
languages. The most useful type of meta-interpreter in logic programming is the one that reifies
goal reduction and absorbs unification.

Another distinction is how the meta-interpreter is compoeed with the program to be inter-
preted. One method is to pass a data-structure representing the program as & parameter to the
interpreter. This approach is the most flexible, but usually imposes unacceptable runtime over-
head. On the other extreme, the meta-interpreter and the program to be interpreted can be bound
together at compile time. This may give the most efficient result, especially if source to source
transformation techmniques, such as partial evaluation, are applied to the combined program (see
below). This approach, however, is very inflexible.

The most common approach in logic programming, which is also taken here, is an intermediate
one in terms of efficiency and flexibility. The program to be interpreted is ¢ iled in a special
way, and an interface to the meta-interpreter is provided. The interface determines which aspects
of the computation are absorbed, and hence compiled efficiently, and which are to be reified by the
meta-interpreter.

A plain FCP({) meta-interpreter
We demonstrate the approach for FCP(|). Each clause

A—G|B
of the FCP(j) program to be interpreted is transformed into the unit clause
clause(A,X) —~ G | X = B'.

where B’ is the conjunction obtained by replacing every goal atom G in B whose predicate is
neither true nor ‘=’ by the term goal(G).
For example, the omerge program is represented by clauses like the following:

clause(omerge([X[In1],(Y|in2],0ut), B) —« X < Y |
B=(Out=[X|Out'] ,gosl(omerge(In1,[Y|In2],0ut’))).
clause(omerge([ ],In2,0ut), B) — B=(In2=0ut).

Given such a representation, an FCP(]) meta-interpreter can be written as follows:

% reduce(Goal) — Goal is reducible using the program defined by the clause predicate.

reduce(true). %1
reduce(X=Y) ~ X=Y. %2
reduce((A,B)) — reduce(A), reduce(B). %3

reduce(goal(A)) — clause(A,B), reduce(B). %4
The meta-interpreter reifies process termination (clause 1) spawning (clause 3) and reduction
(clause 4). Note that the meta-interpreter interpreters the parallel processes (A,B) in parallel,
by forking into the two processes reduce(A) snd reduce(B). It absorbs unification (clause 2) by
calling FCP(])’s primitive unification predicate when interpreting a unification goal. It also absorbs
goal/clause matching and guard evaluation, since these are carried by the clause/2 predicate.
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A termination detec% meu-inm
meta-interpreter 18 not 90 interesting oa its own right. However, it may be enhanced
in several ways, to provide useful functionalities. One example is the following meta-interpreter,

employing the short-circuit technique to detect the termination of the interpreted program. On the
call reduce(A,Done), Done is unified with done when the computation of A successfully terminates.

% reduce(Gosl, Done) — Gosl is reducible and Done=trse.

reduce(A,Done)
reduce’ (A ,done-Done).

reduce’(true,L-R) +~ L=R.

reduce’(X=Y ,L-R) « (X,L)=(Y,R).

reduce’((A,B),L-R) « reduce’(A,L-M), reduce’(B,M~R).
reduce’ (goal(A),L-R) «— clause(A,B), reduce’ (B,L-R).

One of the main weaknenses of FCP(|) is that, although it can reflect on termination, it cannot
reflect on failure, without reifying unification. In other words, it is not possible in FCP(}) to enclose
a computation within a meta-interpreter in the style shown sbove, which reports failure whea the
computation it interprets fails, without failing iteelf.

This problem is alleviated in more powerful languages such as FCP(:), as discussed in Section
14.

An alternative solution is to replace FCP(|)’s unification primitive with a three-argument
predicate, which returns an indication whether unification succeeded or failed. This approach is
taken by Fleng [133], and is discussed in Section 21.

Interrupt handli.
Processes in FCP(|) are anonymous. Their number and rate of creation and termination renders
any conventional operating system spproach to process management infeasible. Therefore the
implementation of standard operating system capabilities, such as the ability to suspend, resume,
and abort processes requires novel solutions. The natural unit of control in concurrent logic
programming is not & process, but a (reactive) computation.12
In the Logix system [170] several, pomibly interscting, computations can proceed concur-
rently, We show below a meta-interpreter that can control an interpreted reactive computation by
responding to control signals.
% reduce(Goal,Is) —
Is is a stream of suspend, resume and sborf messages. Gosl is reducible or Js containa abort.

reduce(true,ls). :

reduce(X=Y,Is) —~ X=Y.

reduce((A,B),Is) ~ reduce(A,Is), reduce(B,ls).

reduce(goal(A),Is) — clause(A,B,Is), reduce(B,Is).

reduce(A,{I|Is]) — serve_interrupt({Ijls},A).

serve_interrupt{{sbort|ls},A).

serve_interrupt({suspend|is],A) +— serve_interrupt(ls,A).

scrve_interrupt([zesumefls],A) ~— reduce(A ls).

The plain mets-interpreter is enhanced with an interrupt stream /s. Whenever an interrupt is
sensed, an interrupt-handling routine is called. The interrupt handler can serve the

suspend, resume, and ebort. To ensure that an interrupt will eventually be served, even if the
interpreted computation is non-terminating, the sninown(’s) guard should be added to all but

12 The notion of computation employed bere ls closely related to the ome used in the semantic definitions, but e
different from it in being reactive.
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the last clause of reduce. To ensure that even a suspended process responds to an interrupt, an
additional clsuse is added to the representation of the interpreted programs:

clause(A,B,(Iis]) — A=B.

Its purpoee is to return the interpreted process intact when an interrupt is sensed. If an interrupt
is d, the cl P terminates and returns in the body argument the goal atom it was
called wlth This ensures that suspended goal at.oma of the interpreted computatlon are halted
rather than being left suspended. Once the put is d, the p is retried. This
feature is used for another purpose by the following snapshot meta'-mterpreteu.

Repeated live snapshots

The problem of obtaining a snapshot of the state of a distributed computation has been investigated
is various models [14,15]. The meta-interpreter shown above can be enhanced to obtain repeated
snapshots of the interpreted computation, by treating the short-circuit as a (possibly empty) stream
of snapshot requests. To obtain a snapshot, a n.essage state([ ]) is sent down the left end of the
short-circuit. A process P that senses a meeaage state(S) on ita left-end of the switch sends the
message state([P|S]) on the right end of the switch. This is achieved by aug g the terminati
detection meta-interpreter shown above with the clause {149) :

reduce(A,[state(S)|L]-R) — R=[state([A{S]){R],
reduce(A,L,R').

When the message state(S) arrives at the right end of the circuit, it contains a list of procesaes.

There are several delicate points to note. First, as specified, the message is guumteed to
arrive eventually only if the interpreted tation terminates or deadlocks. To improve upon
this the guard wnknown(L) can be added to the other clauses of the meta-interpreter. This ensures
that if the number of processes created in the computation is bounded (i.e. the number of times a
clause with more than one atom in the body is used is finite), then the mesaage would eventually
arrive, even if the computation is nonterminating. To obtain & snapshot in 8 computation with

b tion, the fi snapshot technique, discussed below, must be used.

Second, tbe dmmbuted fashion in which the live snapshot was obtained implies that the list
of processes obtained in not necessarily a possible state that actually occured ia a computation
[158]. For example, process A could have been added to the enapshot, then redu-ed, performed a
unification that enabled some other reduction, which created a process B, which was then added to
the snapshot. So the live snapshot may contain two processes which are causally related, and there-
fore could never exist simultaneously. Furthermore, p in the snapshot could appear more
instantiated than they were when added to it, due to other processes reducing before the snapshot
was completed. Nevertheless, under certain circumatances!3, a live-snapshot is'restartable, in the
following sense. If G has a successful computation, and G’ is a live snapshot of this computation,
then G’ also has a oful tation (but may also have failing and deadlocked ones). In
spite of these limitations live ana.pohots are useful for various purpoees, including the detection of
stable properties of networks. This subject is further discussed in [158].

Combining the concepts: interrupt handling, termination detection, and the computation of live

and frozen snapshots
We show a meta-interpreter which combinea the various features discussed. It has both an interrupt
stream and a short circuit, and it uses the clause form of the interrupt-handling meta-interpreter.
‘reduce(true,Is,L-R) ~— L=R.
reduce(X=Y Is,L-R) ~ (X,L)=(Y,R).
reduce((A,B),Is,L-R) — reduce(A lIs,L-M), reduce(B,ls, M-R).
reduce(goal(A),ls,1-R) —

13 Specifically, in the case ol’FCP(|). that neither v8r nor ¥nkROWN are used in the interpreted program.
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clause(A,B,ls), reduce(B,is,L-R).
reduce(A,{I{is],L-R) —
serve_interrupt({ljls),A,L-R).

serve.interrupt(fhaltils],A,L-R) — L=R.
serve.interrupt([suspend|ls],A,L-R) —
L={Done|L], R={Done|R7,
serve_interrupt(ls,A,L'~-R').
sexve_interrupt([resume|ls], A, L-R) —
reduce(A Is,L-R).
serve_interrupt({snapshot|is],A,L-R) —
L=[state(S)|L’), R=[state([A[S])IR]),
serve_interrupt(Is,A,L’~-R’).
The meta interpreter, called with the goal reduce(G,Is,L-R), can be used to obtain a live snapshot
S, even in the presence of unbounded p creation, by providing it with the following input:

Do in perallel:
Is=[snapshot,resume|ls’], L=[state{[ ])|L’], R=[state(S)|R’].
which cause each process to suspend, add its state to the snapshot, and resume immediately.
A frosen snapshot is obtained by suspending the computation, and only then collecting the
state of its processes. The following sequence of unifications can be used to get a frosen snapshot
and then resume a computation.

Suspend the putati
Is=[suspend|ls'], L={done|L’],
weit till R={done|R],
Take a snapshot:
Ie'=[smapshot|Is"], L'=[state([ )IL"],
vait till R'={state(S)|R")
Resume:
18" ={resume|Is™].
Specialisation of meta-interpreters
*e ?Eve shown that an enhanced meta-interpreter is a very convenient tool for specifying functions
of computation control. However, a naive implementation of these functions via enhanced meta-
interpreters could be quite costly. It is quite common that a program interpreted under an enhanced
meta-interpreter runs an order of magnitude slower compared with ita direct execution.

One approach to the problem employs the concept of partial evaluation [58,43), first explored
in this context by Gallagher {60,61), and refined by others [111,150,149,178,101]. It is to specialise
at compile-time the meta-interpreter for the execution of a given program.

For example, consider the following (inefficient) FCP(|) program for reversing a list:

rev([X[Xs},Ys) — rev(Xs,Zs), append(Zs,[X],Ys).

rev([],Ys) — Yo=[).

sppend([X|Xs],Ye,Zs) — Zs=(X|2¢’], append(Xs,Ys,2¢').

append([ ],Ys,28) — Yo=Zas.
The plain meta-interpreter, specialised to execute this program, is the program itself (although

ppend can be specialised further, see [149]). In [149,150] & partial evaluator for Flat Concurrent

Prolog, capable of partially evaluating meta-interpreters, was developed. As there is no par-
tial evaluator for FCP(]), we show here examples of manual specializations of meta-interpreters.
Using partial evaluation techniques similar to those of {149,150), the termination-detection meta-
interpreter can be specialised to execute this list reversal program, resulting iz the program [149):
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rev([X|Xs],Ys,L-R) — rev(Xs,Zs,L-M), append(Zs,[X],Ys,M-R).

nv([ ],Y!,L—R.) - (Y‘vL)=([ ]IR’)

append([Xan],Yo.Z-,L—R) - (Za,L):([X|Zc’],M), uppend(Xl,Ya,Zc’,M-R).

append([ },Ys,Zs,L-R) — (Ys,L)=(Zs,R).
And the interrupt-handling meta-interpreter can be specialised to execute this program, resulting
in:

rev([X|Xs],Ys,ls) « rev(Xs,Zs,Is), append(Zs,[X],Ys,Is).

rev([ 1,Ys,Is) «~ Ys=[].

rev(Xs,Ys,[I|Is]) — serve_interrupt([Ijis],rev(Xs,Ys)).

append([X|Xs),Ys,Zs,Is) — Zs=[X|Zs'], append(Xs,Ys,Z&' Is).
append({ 1,Ys,2Zs,Is) — Ya=2Zs.
append(Xs,Ys,Za,(I[Is]) « serve_interrupt([I|ls], append(Xs,Ys,Zs)).

serve_interrupt({abort{ls],A).
serve_interrupt([suspend|Is],A) « serve.interrupt(Is,A).
serve.interrupt(fresumefis},rev(Xs,Ys)) — rev(Xs,Ys,ls).
serve.interrupt([resumel|ls),append(Xs,Ys,Zs)) — append(Xs,Ys,Zs,ls).
Note how the state of the interrupted process is passed to the serve.interrupt routine, and that
this rontine has two clauses, one for resuming rev and one for resuming append.

Such specialisations eliminate the overhead of interpretation, while preserving the function-
ality of the enhanced meta-interpreter. The transformed programs are usually only 10% to 50%
slower than the original programs, depending on the added functionality, compared to the order
of maguitude slowd of naive tion of the interpreter [84].

Techniques for proving the correctness of transformations of concurrent logic programs are not,
as yet, well established. One question under debate is whether a transformation should preserve
the meaning of a program, including all possible nondeterministic choices, an approach taken by
[57,204], or whether a tranaformation could fix some choices at complle time” thus change the
meaning of a program; this approach views the source program as a specification, which may have
several, nonequivalent but correct, implementations.

PART III. CONCURRENT LOGIC PROGRAMMING LANGUAGES

8. Language Comparison

In a trivial sense all reasonable programming languages are equivalent, since they are Turing-
complete (i.e. can simulste a Turing machine, which is a universal computational model). However,
if the differences between languages were not material, we would not have invented so many of
them.

Concurrent logic languages are similar enough to allow & more precise comparison than is

usual among programmmg languages. They all share the same abstract compuuhonul model,
share the same principles, and employ very similar syntax. Therefore it it easier to focus on their
differences. In compuing languages in this family, we consider mostly expressiveness, simplicity,
readability, and efficiency.

In comparing languages for expressiveness, we use two methods: the first is to embed one
language in another; the second is to show programming techniques available 1n one but not in
another. We conclude that one language is more expressive, or “stronger” than another if the
latter can be “naturally” embedded in the former, but not vice versa, and/or if all programming
techniques of the latter are available in the former, but not vice versa.
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We first define the notion of language embedding, which can be used to compare any two
languages, and then discuss the finer notion of natural embedding, which is tailored for the com-
parison of logic programming languages. Related notions of language and their application to the
comparison of concurrent logic lang sges were studied bysm[l“]ndkvy[ll&]

Definition: Language embedding
Let L; and L; be two languages, ¢ a function from Ly programs to L3 programa, and v a function
from obeervables of I3 to observables of Ly. We say that (c,v) is an embedding of Ly in L3 if
v c(P)]1,) =0 P L, for every Li-program P. In such a case ¢ is called the compiler of the
embedding and v its viewer.

We say that Iy can be embedded in L3 if there are effective functions ¢ snd v such that (c,v)
is an embedding of Ly in L2. 8

In other words, a compiler ¢ and a viewer v form an embedding of I; in Lj if the observable
behavior of every Ly program P is the same as the observable behavior of the Lz program obtained
by compiling P using ¢ and viewing its behavior through ».

The notion of embedding is rather weak. Because of the Turing-completences of the languages
under consideration, any lsnguage L; can be embedded in any other ianguage L3, by writing in
Ly an interpreter of Ly, and “compiling” an I3 program P to the L3 program consisting of the
interpreter augmented with a representation of P.

The real issues with embeddings from Z to L3 are what is the complexity of the compilation
(e.g. how complex is the Ly interpreter written in [3), what is the runtime overhead of compiled
programs, how much of the parallelism of Ly is preserved in the compilation, etc. This is usually
related to how much of the execution mechanism of L; needs to be reified in the translation, and
how much of it can be absorbed in the execution mechanism of L;.

Thebmcmtwnmehmmmlogeprognmmnguumﬁaﬁon Therefore we are inter-
ested in embeddings from Ly to 2 which abeorb unification, i.e. use the unification mechanism
of L3 to implement the unificstion mechanism of L;. In such an embedding, logical variables of
L3 represent logical variables of [; and hence nonground goals of L; can be used to represent
similar goals of [;. We call an embedding that maps logical variables in one language to logical
variables in another natural. We formalise this notion by requiring that the viewer be the identity
function on observables containing goals with predicates of the source program (although it may
hide auxiliary predicates introduced in the target program, if any). This precludes embeddings in
which the compiler encodes variables in the source language by constants of the target language
mdthmwadmdumemmhutuhupmmmdmm@‘

Definition: Anembeddm; {¢,9) between two concurrent logic programming languages is natursl
if v is defined by:
fc(P)I) = ((G4,5) €Lc(P)]l | G is » predicate of P}. &

The obeervables of & concurrent logic program P, I P], were defined in Section 4.2. In the
following discussions of embeddings we assume that the viewer is defined as above and hence discuss
only the compiler.

hthctdbmn;nuhownﬂmﬂembddhpmgmmtbgcpmw
and argue (slthough not prove) the lack of oppasite natural embeddings. Our findings sre sum-
marised in Figure 5. An arrow in the figure indicates the existence of s natural embedding.

Most of the embeddilgs we show have additional plessant properties. For example, being
defined clause-wise, and preserving not only the observables but also the bebavior in context (the
so-called compositional semsatics). We do not address these aspects further here.

M We note, b , that if the logic langueg hmwwmvﬂé
enable it to ine and logical variables, them it can 4 in l
MMM“-‘M-N“M&&WN—. The languages
discussed in this susvey do not have this capability.
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CP(l) FCP(.,7) Concurrent Prolog
FCP(:) FCP(?)
KL1 \
PARLOG FCP()) Doc
Flat PARLOG
Safe cnc rcﬂc..

FGHC,,., *—————» ALPS

Oc P-Prolog,

Figure 5: Natural embeddings among concurrent logic programming languages

A second dimension of comparison is simplicity of the syntax and semantics. A simpler
language is preferred since it is easier both to grasp and to be used by humans, and is more
amenable to automatic program analysis and transformation. Usually a weaker language is also
simpler, but this is not alwayeso, especially when the difference lies in the granularity of the atomic
operations. Usually a lmguage with coarser granularity, i.e. with larger atomic operations, is also
stronger. Sometimes, in addition, its transition system is also simpler to define. For example, the
languages FCP(}), FGHC.,, md FGHCn.v discussed below, have, progressively, finer granularity
and more plicated tr

A third dimension of oompa.mon is readablht.y All languages described in this survey use
guarded Horn clauses, first employed in the Relational Language [20]. Most of them foliow the
syntactic conventions of GHC [197], that matching is used in the head, and unification is specified
explicitly in the body. Exceptions are FCP(?), P-Prolog, ALPS, and Doc; the impact of their
different syntactic conventions on readability is discussed when the languages are introduced.

A fourth dimension of comparison is ease of implementation. In general, the weaker the lan-
guage the easier it is to implement. In particular, the finer the granularity of the language’s atomic
tions, the simpler the synchronization mechsnisms required by its parallel! implementation.

L4

15 The phnmmhtmcfu themmiuvm;mtiaundm this paper, as well as for the approach to defining
for languages with t bles proposed by Maher [127] and extended by Saraswat [155]. It
is conceivable that using another method for defining semantics may result in a different measure of simplicity.
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We defer the comparative discussion of implementation to Section 20.

Each of the dimensions mentioned -— expressiveness, simplicity, readability, and efficiency — is
only one dimension in a multidimensional design space, which usually involves design tradeoffs. For
example, a more expressive language may have a more complicated semantics, and be more difficult
to implement. A weaker language may need extra-lingual facilities to compensate for its lack of
expressiveness. Presently there is no consensus which language in this design space is optimal
as a general purpose programming language for paralle]l and distributed computers, and several
languages aze being pursued actively as candidates for this role. Notable efforts which comprise
of both language design, system design, and sequential and parallel implementations include KL1
(Flat GHC + control meta~call) [55) snd PIMOS at ICOT (18], PARLOG and ita flat variants
(162,66,49], and a PARLOG system [48] at the Imperial College of Science and Technology, and
Flat Concurrent Prolog [162] and its variants [99], and the Logix system [84,170] at the Weizmann
Institute of Science.

For completeness, we provide a historical chart of concurrent logic languages in Figure 6. It
is an extension of an earlier chart by Ringwood [145]. In the chart the vertical axis denotes the
time in which the Janguage design waa published, and an arrow indicate some kind of intellectual
influence.

9. Semantics of Concurrent Logic Programming Languages

In the following sections we inveatigate several concurrent logic languages. All the flat lan-
guages are defined similarly to FCP(]), and assume the same set of guard test predicate. Although
small, this set turns out in practice to be sufficient for most practical purposes'. Their state of
computation, as well as transitions, are identical to the ones of FCP(]) defined in Section 4.2. The
differences between most of the flat languages are captured simply by varying the definition of
the clause try functions. Although different, all try functions employed satisfy the following two
properties:

a) Suspension is not stable:
I try(Goal,Clanse) = svapend
then there is a substitution # such that:
try(Goal,Clause) # suspend.

3) Failure is stable:

If try(Goal,Claxse) = fail
then for every substitution ¢
try(Goal6,Classe) = fail.
Property ¢ implies that a suspended clause try may succeed or fail in the future, if the goal atom
is further instantiated (e.g. by reducing other atoms in the goal). Property b implies that a failed
clause try need not be tried again.
We say that a language is success stable [157) if it satisfies the following property ¢:

¢) Success is stable:

If try(Goal,Classe) = 90 ¢, for some ¢ and ¢
then try(Goald,Clanse) ¢ {suspend fail}).

Most languages discussed in this survey, including FCP(]), are success stable if the guard primitives
unknoum snd ver are excluded. Exceptions will be noted when introduced.

16 See [170] for & description of the guard predictass and other primitives in a practical syst
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Figure 6: A historical chart of concurrent logic languages
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The non-flat languages are described only informally. Transition system for non-flat languages
were defined by Saraswat [154,187] and Levy [114].

The notion of language embedding as described in the previous section presupposed a definition
of the observables of the source and target language. As discussed in Section 3, since concurrent
logic languages employ don’t-care nondeterminism, their observables record the results of failing
and deadlocked computations, in addition to the results of successful ones. The observables of
a concurrent logic program, in any of the languages surveyed, record the inmitial state and an
abstraction of the final state of every computation.

Compositional semantics for concurrent logic programs that are fully abetract with respect
to these observables were investigated by [59,65]. Other investigations of the semantics of concur-
rent logic languages include [9,44,5930,110,181,204]. However, since the work on the semantics of
concurrent logic languages is in a state of flux we do not survey it here.

10. Flat GHC: A Language With Non-Atomic Unification

Flat GHC is the flat subeet of the language Guarded Horn Cl [198,199] (see Section 18). Flat
GHC, augmented with a control meta-call primitive discussed in Section 10.3 below, is the basis
of Kernel Language 1 [55], the core language of the parallel computer system developed at ICOT
as part of the Fifth Generation Project [195].

We consider two variants of Flat GHC. One called FGHC,,, for Flat GHC with atomic vari-
ables, and the other called FGHC,,,v, for Flat GHC with non-atomic variables.

FGHC,, is derived from the original definition of GHC [198], and it is quite similar to FCP(|).
The difference is that in FGHC,, a unification specified by the goal T} = T} need not be carried out
atomically. Saying it differently, a program in FGHC,y cannot specify that a compound unification
is to be carried out as an atomic operation. We have found only one implication of this difference in
terms of expressiveness: FGHC,, requires slightly more elaborate code than FCP(]) to implement
the short circuit technique.

FGHChay has an even finer notion of atomic actions. Intuitively,in FGHC,,y even the instan-
tiation of a variable to a value need not be done atomically, and several occurrences of the same
variable can be instantiated to different (conflicting) values simultaneously. If such a conflict occurs
it is eventually detected and results in failure. However, in FGHC,,y there are intermediate states
of the computation in which the same variable may have different values, whereas in FGHC,, (and
in FCP(])) this cannot happen.

This property of FGHC,,, is a consequence of the principle of anti-substitutability (199, 197],
also called logical referential transparencyl” The principle states, informally, that an occurrence
of a variable X can be replaced in any context by a new variable X’, provided the equality X =
X' is “added” to the context. The principle is motivated by semantic elegance, and it justifies a
wide range of program transformations [204]. Operationally, it allows the “decoupling” of different
occurrences of the same variable, and instantiating them to different values. In such a case the
inconsistency between the instantiations is detected eventually, and failure results.

The main difference in terms of expressiveness between FGHC,, and FGHC,,, is that in
the latter the short-circuit technique cannot be used to detect the successful termination of a
computation. The reason is that the closing of the short circuit, both in the original version
described for FCP(]), and the varisat described for FGHC,, below, cannot guarantee that only
consistent instantiations have been made. It is still possible that two occurrences of some variabie
in the computation were instantiated to inconsistent values, which would result in failure past the
closing of the circuit.

It seemw that without additional facilities, such as the control meta-call discussed below,

17 By Graem Ringwood.
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detection of successful termination of a computation cannot be specified in FGHC,,,. Saying it
differently, FGHCnav cannot reflect on successful termination, unlike FCP(]) and FGHC,,.

The initial informal dﬂaiption of GHC [198] takes the atomic variables approach, as well

as the treatment of GHC in [157]. Subsequent theoretical work on GHC embraced the anti-
mbd.:tuublhty principle [198], and thus imply non-atomic variables. The practical work at ICOT,
howevu, still adheres to atomic variables: the KL1 language designed and implemented at ICOT
is essentially FGHC,, augmented with s control meta-call {90].

Although the impelementation work on GHC and KL1 adopted the notion of “flatness” em-
ployed in this paper, Flat GHC was defined formally only recently [204] under the name “Theo-
retical Flat GEC”. The notion of flatness used there is a bit different from ours.

In the following we relate FCP(|), FGHCyy and FGHCy,, with regard to the short circuit
technique, and show simple embeddings of FGHC,, in FCP(]), and of FGHC,y in FGHC,y. The
syntax and the try function are the same for FGHC,, and FGHC,,,. The difference is captured
in an additional Anti-sudstitute transition for FGHC,4v described below.

10.1 The language FGHC,v
Syntax
dDeﬁm'tion: An FGHC,, program is a finite sequence of guarded clauses that include the unit
ause:
X=X.
and the clauses:
f(X1,X3,...X) = f(N1,Ya,.., V) & Xi=1, Xa=Ya,. . ,Xn=Va

for every .!u.nction symbol f/n, n > 0, occurring in some clause whose head predicate is different
from [ ¢ b l

Semantics
The fact that unification need not be done atomically is captured by the equality clauses, which
allow a compound unification to be performed piecemeal.
The FGHC,y try function is defined as follows. Let C = (X;=X; « ...) be a renaming of a
unification clause in P.
tr"@lﬂ(Tl=T2:c) = m"((TlITQ)n(xhx’))‘
The try function for the other clauses of P is defined a8 for FCP(|).

Notes:

1) The semantics of the unit clause X = X in FGHC,y is identical to that of FCP(|), since
W((TI.TZ).(XM\')) = ""(TIITT)v if X does not occur in T) and T3.

2) The atomic operation in FGHC,y is assigning a variable to a variable, or assigning a term
whose arguments are distinet variables to a variable. The first action is allowed by the unit
unification clause; the second by the other clauses. We do not prevent larger atomic actions;
we simply do not require them, by permitting smaller ones.

Comparison of FGHC,, with FCP(})
main implication of t atomic unification in FGHC in terms of expressivencss is

that FGHC,, cannot use the short-circuit technique as specified to detect the termination of a
computation. In FCP(]) one can perform the unification of the underlying computation X =

18 We sesume here that aa initial goal doss not contain function symbols which do not occur in the program.
Alternatively, an equality clause has 10 be added for every function symbol allowed in a goal, or a general
recursive definition of unification, using the Prolog-like predicates functor and ¢ry should be used.
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Y and close the short circuit L-R stomically, within the same compound wnification (X,I) =
(Y,R). In FGHC,, one needs first to perform the unification X = Y, wait for it to complete
using matching, and only then close the short-circuit!®. This can be achieved by the procedure
wnify-and_close_sc(X,Y,L-R), defined using the auxiliary procedure metch_snd_closesc as follows:

unify and.closeac(X,Y,L-R) «— )
X=Y, match and_close.sc(X,Y,L-R).
match.and closesc(X X, L-R) ~—
L=R. .
Note that to detect the termination of sn underlying computation, snify_snd_close_sc must be
used instead of ‘=" throughout the underlying program.
The FCP(]) termination detecting meta-interpreter shown in Section 7.7 above is also an
FGHC meta-interpreter. Howevez, the unification performed in the body of the clause:
reduce(X=Y,L~R) +~ (X,L)=(Y.R).
behaves differently in FCP(|) and FGHC,,. The modified version of the short circuit can be used in
an FGHC,, termination detecting meta-interpreter, by replacing the above clause with the clause:
reduce(X=Y,L-R) + unify.and_closesc(X,Y,L~R).
The difference between FCP(|) and FGHC,y can be observed by composing s program that
does the compound unification f(X,Y) = f(s,d) with a program that matches either X =g or ¥
= §, then unifies the other variable with c. Such a program is the same in FCP(|) and FGHC:

test(aY) — Y=c.
test(X,b) « X=c.

If this FCP(|) program were to execute using the goal:

test(X,Y), f{(a,b)=RX,Y)
the terminal state would never contain s substitution in which X := cor Y := ¢. As an FGHC,,
program, some executions will have X := c and some Y := ¢, since FGHC,, cannot specify that
the two unifications X = ¢ and Y = § be carried out atomically.
An attempt to establish the difference in power between languages with and without atomic
unification was made by Saraswat [155].

An embedding of PGHC,, in FCPE!!

ay a0 be naturally em! in FCP(]) using the following compiler. The compiler trans-
lates an FGHC,, program P to FCP(|) clauso-wise. In every clause, it replaces every body goal
X = Y with the goal unify(X,Y), where unify/2 is a predicate not occurring in P. It adds to the

resulting program the clause:
unify(X,Y) — X=Y.
and for every function symbol f/n occurring in P, the clause:
unify(f(X1,Xa,- . . Xa)f(Y1,Y3,. . ,Yn)) =
unify(X1,Y3), unify(X2,Y3), ..., unify(Xa,Yn).
This completes the description of the compiler.
Like in the definition of the semantics of FGHC,y, the effect of the definition of snify/2 is

that a compound unification can be carried out either atomically, using the first clause, or non-
atomically, using the other clauses.

19 This method i due to E.D. Tribble




102 The language FGHCnay
Syntax
’l%mtuotmﬂc...iﬂhenmeuthud‘mllc...

Semantics
The difference between FGHC,y and FGHCpav, namely the anti-substitutability principles, can
be modelled in our framework by extending the transition system of FGHC,y with the following
transition: .
e Anti-substitute:
(G0 Anti-subetitute (6" X=Yi8)
where Y is a variable that does not occur in G, and G’ is
obtained by replacing one occurrence of X by Y in G.

This transition directly models the principle of anti-substitutability. H , a8 stated, it allows
almost any FGHCp,, program to diverge, by alternating the introduction and elimination of the
equality goals using Anti-substitute and Reducepquc. To prevent this, additional complicated
fairness conditions need to be incorporated.

Note that the Anti-substitute transition may cause a conditional answer substitution to contain
inconsistent assignments. We have defined substitutions to be functions, i.c. have & single value
for a variable. This has to be modified in order to specify observables for FGHC,,,.

The diffculty in modelling the semantics of FGHCp,y can be attributed to the need to ac-
commodate inconsistent consiraints on the values of variables. The method proposed by Maher
[124] and further developed by Saraswat {156,157}, suggest another method for modelling this. The
method is to separate the goal atoms into “pools™, each containing its own binding environment,
and add explicit transitions which communicate equality constraints between pools. Failure occurs
28 soon as one of the pools detects inconsistency.

Comparison of FGRC,y with FGHCpy.

ﬁﬁ%{”::uldmtﬁelhmircuit‘ hnique to detect eful termination of a computation,
albeit with some additional effort. The technique is not applicable in FGHCyqy. It is possible that
the unifications executed by the monitored computation are inconsistent, without this inconsistency
detected prior to the closing of the short circuit. Thus, unlike in FCP([) or FGHC,,, the closing of
the short-circuit is not a reliable indication that the computation has not failed. Technically, the
Anti-substitute transition incorporates in the underlying computation unifications which are not
threaded via the short-circuit. Even if the short-circuit closes, the new unifications introduced by
the Anti-substitute transitions can subsequently fail.

An embedding of FGHCypay in FGHC,y

An mmﬁ of FGHCpay in FGHCyy consists of a clause-wise compiler and the identity viewer.
For each clause, the compiler iteratively performs anti-substitution to any variable that occurs
more than once in clause body atoms other than equality, until no such variables are leR. By
doing 80, the compiler “decouples” every variable that may be used for communication, and adds
equalities to clause bodies. These equalities will eventually unify all decoupled occurrences of each
variable.

10.3 The meta-call conpstruct

The ability to reflect on the termination and failure of a computation is essential to a systems
programming language, but FGHC,, (and FCP(|)) cannot do the latter, and FGHC,.v ¢an do
neither, without reifying unification. The problem can be solved in two different ways. One is
to strengthen the basic mechanisms of the language. Atomic variables are sufficient to reflect on
termination. To reflect on failure, atomic test unification is needed, as incorporated in the stronger
variants of FCP(|) shown in Sections 14, 15, 16 below.
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Another solution, which was taken by the developers of both GHC and PARLOG, is to add to
the language a meta-level construct, which has “built-in” reflection and control capabilities. There
are several variations on the construct, originally proposed by Clark and Gregory [22]. One variant,
which is referred to in the following as the control meta-call, has the form call( Gosl, Signals, Events),
where Signals is a stream of {suspend, ressme, abort}, and Events is a stream of {suspended,
resumed, failed(Goal), halted, aborted}, the last three being terminal events.

The intuitive semantics of the control meta-call is as follows. A computation of a goal G
is started under the control meta-call using the goal call(G,Is,Oxt). If some goal atom G’ in
the computation fails, the message failed(G’) appears on the Out stream. If the computation
terminates, the message Aslted appears on Out. To suspend the computation, the messsge suspend
is sent to the In stream, and when suspension occure the acknowledgement message swspended
appears on Owt. Similarly, to resurne or abort the computation the message resume or abort is
sent on In, and the corresponding acknowledgement message resumed or aborted sppests on Ost.
Using the control meta-call, » process in the language can start a computation and monitor it.

We refer to the language FGHC,, augmented with the control meta-call as KL1 {55). The
actual meta~call implemented as part of PIMOS (18], the KL1 operating system, also includes
resource maaagement facilities: & computation is allocated some CPU time and some memory,
and when cither of these is consumed it announces resource overflow and suspends. It can be
resumed by providing it with additional resources.

The control meta-call eliminates much of the freedom of non-atomic variables. For exam-
ple, it can be used to detect the successful termination of unification, a capability not p t
in FGHCpay- Hence its implementation restricts the kind of algorithms that can be used in a
distributed implementation of the language; in particular, the algorithms must incorporate some
form of distributed termination detection.

In comparison with the meta-interpreters of FCP(]) shown in Section 7.7, the meta-~call con-
struct reflects on failure, whereas an FCP(|) meta-interpreter cannot. On the other hand, an
FCP(|) meta-interpreter can produce snapshotas, wherul the standard meta-call constructs cannot
(although Gregory et al. {67] have proposed an d control meta~call that does). We will
come back to the meta-call when we discurs FCP(:) in Section 14.

Yet a third approach is to construct a meta-interpreter that reifies unification, and extend it
in various ways. A first step in this direction was taken by Tanaka [182].

11. Flat PARLOG: FGHC Extended With Sequential-Or and Sequential-And

The PARLOG language [21], described in Section 18, preceded GHC, but went through several
evolutions that made it closer to GHC [24,66,145]. In the earlier definition [21), referred to as
PARLOGS3 by [145), the output mechanisin was assignment, rather then unification. In the latter
definition [66], refered to as PARLOG86 by [145), the output mechanism was (non-atomic) unifi-
cation, as employed by GHC. PARLOG consists of two sublanguages: the single-solution subeet,
and the all-solutions subset. The latter is essentially Or-paralie] Prolog. Here we concentrate on
the flat subset of the former. The non-flat language is discussed in Section 18. Presently, the main
difference between the computational models of the single-solution subset of PARLOG and GHC
is the sequential-Or and sequential-And constructs of PARLOG. In addition, PARLOG offers &
surface syntax which contains mode declarations. For example, using modes, the PARLOG append
program could be specified as follows:

mode append(?,7,1).

sppend([X|Xs],Ys,[X|Zs]} - sppend(Xs,Ys,Zs).
append([ ],Ys,Ys).

This program is then translated to PARLOG standard form:
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append(Xs,Ys,Zs)

Xs < [X|Xs'] | Ze=[X|Zs'], append(X¢’,Ys,Zs').
append(Xs,Ys,Zs) —

Xs <[] | Ys=Za.

where < is PARLOG’s input matching primitive. This program is operationally identical to the
Flat GHC program:

append({X|Xs],Ys,Zs) «— Zo=[X|Z&"], append(Xs,Ys,Zs').
append([ },Ys,Zs) — Ya=Zs.

Several proposals were made for a *fat” subset of PARLOG [66,106,49). The Flat PARLOG of
Foster and Taylor [49) is essentially Flat GHC with mode declarations as surface syntax. Recently,
a language called Strand [188] was derived by Foster and Taylor from their Flat PARLOG language
by reatricting the output mechanism to be assignment, rather than unification. Strand is essentially
a fla: version of PARLOG83, with sequential-And and sequential-Or eliminated. PARLOGS3 and
Strznd are not success stable.

OQur definition of Flat PARLOG is based on the KPAND 1vee 1anguage of Gregory [66]. The
lan guage is Flat GHC augmented with sequential-Or and sequential-And. We investigate each of
the two extensions to Flat GHC separately, denoting the resultant langnages FP(;) and FP(&).
Fc: the sake of uniformity we use the Flat GLC syntax instead of the PARLOG standard form
sy tax. The translation from the Flat PARLOG syntax to the Flat GHC syntax is straightforward.

Ta the following we refer to the language combining FP(;), FP(&), and the control meta-call
as Flat PARLOG. Although the subject is not discussed explicitly in the PARLOG papers, we
£x:1me that PARLOG has atomic variables, and hence ider Flat PARLOG to be an extension
ot FGHCqy rather than of FGHC,,q,.

‘11 The e FP(;

“he language FP(;) allows the specification of nequential-Or clauses Cy;Cy;...;Cn, where each
sisjunct C; is an ordinary guarded clause. The idea of a sequential-Or clause is that the guarded
:lause C; can be selected only if the clause tries of the clauses Cj,.. ., G fail. The connective ‘;’ is
-alled sequential-Or. The similarity of sequential-Or clauses to if-then-else constructs in procedural
‘anguages and to conditionals in Lisp is apparent.

Jyntax
Definition: Sequential-Or clause, program.
o A sequential-Or classe is a guarded cl or has the form Cy ; 2

where C; is a guarded clause and C; is & sequential-Or clause.
» An FP(;) program is a set of sequential-Or clauses, sugmented with unification clauses as in
FGHC. 1§

s .
The trypp, function is defined as follows. For a ccnditional clause C1;C;
.G = [ tr¥ronc(A,C1) it trysanc(A,C1) # fail
"7"(»)(‘;01:02) = { tryrecs(A,C2)  if trypanc(A,Ci) = fuil.
For a guarded clause C
tryer(4,C) = trypan-(4,C).

An embedding of FP(;) in FGHC,, with otherwise

The embedding ts of a ] wise compiler. Its method of compiling sequential-Or into
‘rerwise (introduced in Section 7.6) is similar to the one used by Codish and Shapiro [29] to

.ranslate a non-flat langvage into a flat one.
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The general idea is to reify clause selection, by explicitly programming the commitment oper-
ation. Each sequential-Or clause C1;C3;...;Cn is translated into a different procedure consisting
of m guarded clauses by adding ofherwise to the clauses C;,...,Cn. This ensures that a disjunct
can succeed only if all previous disjuncts fail. The head predicates of clauses resulting from each
disjunctive clause are renamed to form the new procedure.

A call to the original procedure is translated into a conjunctive call, one goal for each of the
new procedures. The single-round mutual exclusion protocol shown in Section 7.4is used to ensure
that at most one of these goals would “commit”, i.e. proceed to execute the body of the selected
digjunct of that sequential-Or clause. The other goals terminate quietly without causing any effect.

More specifically, an FP(;) procedure of the predicate p/n with k sequential-Or clauses is
translated into 2k FGHC,, procedures as follows. The i*’ conditional clause C);G;;...;Crn is
translated into the two FGHC,y procedures tesi_p;/k+1 and commit_p;/k+1. Each disjunct C; =
(#(T1,Tz,..., Ts) ~ G | B) is translated to the cl

test_p;(Ty,T3,. .., T, Commit)
otherwise, G |
Commit=lock(Reply),
commit_p;(Reply,T1,T2,.. ., Tn).

commit_p;(granted,T1,T3,...,Ta) — B.
commit_p;(refused,_,—,...,-).

And the call to p/n is translated to calls to the test_p; procedures using the clause:
p(X1,Xz,. . . Xn) —

test_p (X1,X2,. . .+Xn,Commity),
test_p2(Xy,X2,. - - Xn,Commitz),

test_pm (X1,X2,. - +Xn,Commit,),
mutex(Commit;,Commitg,. . ,.Commity,).
where the it clause of mutez/n is:
mutex(Commity,. . ,lock(Reply),. . .Commity) —
Reply=granted,
Commit; =lock(refused),
Commitg=lock(refused),

.. (excluding Commit;). ..

Commit,=lock(refused).

As the translation shows, there is a close relationship between sequential-Or and otherwise, and it
can be said that they were both designed to solve the same problem. Which construct to prefer is
largely a matter of taste. Both destroy clause-wise modularity and are easily open to abuse, and
therefore should be used sparingly. Sequential-Or is more appealing in being general and uniform.
Otherwise is more restricted (it can be viewed as a special case of sequential-Or [154,156]), as
perhaps appropriate for an exceptional construct, and the cases in which it is less convenient than
sequential-Or for its purpose are rare.

11.2 FP!&!
The language FP(&) is FGHC,, augmented with sequential-And. Adding sequential-And to a
language that supports dynamic creation of processes complicates both the definition and imple-
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mentation of the language. In defining the operational semantics, the state of the computation
cannot be represented by a sequence of goals. A tree of alternating sequential-And and parallel-And
nodes, whose leaves contain the goals, is required. The definition of & transition is also complicated
by the constraint that a goal can be selected only if it can be reached from the root by selecting
the left-most branch in every sequential-And node.

Because of this complication, FP(&) does not fit the semantic framework we described. In-
stead, we define the syntax of FP(&), and provide it with semantics by embedding it in FGHC,,,
using the short-circuit technique.

The compiler of the embedding translates each FP(&) program P into an FP(&) interpreter
written in FGHC,,, augmented with the standard clausal representation of P. Since FGHC,, can
be embedded directly in FP(&), using the identity compiler and viewer, this shows that the two
languages and practically identical from an expressiveness point of view.

Syntax

Definition: FP(&) clause and program.
e An FP(&) clawse is a formula of the form

A+~ Gy,..,Gm | By,....Bn. nm>0
where the A and G;’s are as before, and each B; has the form:
M&.. & A (k>0)

where each A; is an atom.
o  An FP(&) program is a finite sequence of FP(&) clauses.

Semantics
Let P be an FP(&) program. Translate each clause:
A—G\B.
of P into the FGHC,, clauses:
clause(A,B”) — G | B'=B".
where each unit goal G in B with predicate other than ‘=’ is replaced by goal(G) in B’ and
A +— reduce(A).
where classe and reduce are predicates not occuring in P. Call the resulting program P'.
An interpreter J of FP(&) in FGHC,,, which assumes this representation, is defined as follows:
reduce(A) —
reduce’ (A, done-Done).
reduce’(true,L-R) — L=R.
reduce’(X=Y,L-R) ~ unify_and_close_sc(X,Y,L,R).
reduce’((A,B),L~R) «— reduce/(A,L-M), reduce’(B,M-R).
reduce’/(A&B,L-R) «— reduce’(A,done-Done), wait(Done,B,L-R).
reduce’(goal(A),L-R) «— clause(A,B), reduce’(B,L-R).
wait(done,A,L-R) ~ reduce’(A,L-R).
unify and.closesc(X,Y,L,R) — See definition in Section 10.
The interpreter implements A & B by executing A and suspending the tion of B until A
terminates. Recursively nested sequential and parallel And’s, which may be created by recursive
procedures, are handled correctly, by starting a new short circuit for every sequential component.
The compiler ¢ is defined to map P to P! U I. The viewer v is the identify function on the
predicates of P, and hides the predicates clesse and reduce. The obeervables of an FP(&) are then
defined to be v([[e(P)]}).
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Not only the direct definition of sequential-And is quite complex, but also its direct imple-
mentstion. First, without complex data-structures it msy take an unbounded amount of time to
find the next process to execute — the amount is determined by the depth of nesting of sequential
and parallel And’s. Second, in 8 parallel implementation of the language, executing correctly the
conjunct A & B requires performing distributed termination detection on A.

The interpreter of FP(L) in FCP(]) solves the two problem- by delegating them to the under-
lying implementation of FGHC,y: the process wupennon and activation mechanism of FGHC,,
wakes up the wait process when its first argument is instantiated to done. The short circuit tech
nique bined with the itnpl tation of unification with atomic variabl jally
a well-known distributed termination detection algorithm based on distributed counters 1158] (see
discussion in Section 7.5).

12. P-Prolog, — Synchronizing Deterministic Logic Programs

In the lsnguages presented so far synchronizstion was achieved with matching, specified by clause
heads: a cl try suspends if its matching with the clause hesd, or checking the guard, suspend.

An alternative approach to synchronization in concurrent logic programming was proposed
by Yang and Aiso {209,210}, and incorporated in the language P-Prolog. Although P-Prolog
incorporates also an all-solutions Or-parallel component, we do not discuse it here. We focus on
its other component, which employs a novel synchronization mechanism called Insive guarded
Horn clauses. We refer to this language subeet ss P-Prolog,.

P-Prolog, does not use matching for synchronization. It uses goal/clause unification, rather
than matching, and employs the following synchronisation principle instead: the reduction of &
goal with a clause is enabled when it can be determined that the reduction with all alternative
clauses is failed. In other words, a process is suspended as long as it has more than one clause to

duce with. It red if it has exactly one clause to reduce with; it fails when it has none. A
process never makes an Or-nondeterministic choi

The appeal of this synchronization principle is in the following lemma, a variant of which is
due to Maher [124). The lemma implies that the And-nondeterminism of P-Prology does not affect

the result of cormputations.

Lemma: Equivalence of P-Prolog, computations.

£ & P-Prolog program P hss a successful computation from a goal G then every computation of
Pfrom Gis ofu) and the substitutions of sll such computations ate the same (up to
rensming). 0

Syntax
Th syntax of P-Prolog, is the same as that of FCP(]).

Semantics

We define the P—Prolog, try function, tryps, using the auxiliary function try‘’ye. Note that try's,
is tially try.» augmented with guard evaluation. The program P ia an wddmoual parameter
of the functions.

) if mgu(A,A’) = 8 A checking G8 succeeds
fadd if mgu(A,A’) = 0 A checking GP fails
V meu(A,A) = fail
suspend  otherwise
¢ if try'so(A,C,P) = § A try'(A,C',,P) = fail
forevay C'e P, C' # C
fail if try'ps(A,C.P) = fail
swspend otherwise

""'"(A’,(A'—G'B),P) =

roes(A,C.P) =
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The advantage of P-Prolog, is that the order of execution of processes is immaterial, since if a goal
has a successful computation, then all of its computations are ssful and produce the same
answer substitution.

The determinism of P-Prolog, limits it to algorithmic applications, since it cannot implement
system programs such as a stream merger and an interrupt handler?®. Most algorithmic concurrent
logic programs can be writter in P-Prology quite easily, without the need to distinguish between
matching and unification. This implies that some P-Prolog, programs can be used in more than
one ‘mode’. Consider, for example, the P-Prolog, append program:

append({X|Xs],Ys,[X|Zs]) — append(Xs,Ys,Zs).
append([ ],Ys,Ys).

This program can be used to append two lists, as usual. However, it can also be used to compute
the difference between a list and its prefix, using, e.g., the call:

append([1,2,3),Ys,[1,2,3,4,5,6]).

This is poesible since at most one clause head unifies with the initial goal, as well as with subsequent
goals, and hence goal reduction can proceed.

The practical advantage of this ‘multiple-mode’ ability is questionable. In practice, few logic
programs are used in more than one mode. When they do, the two common modes are output
generation and testing, which can be employed by all other concurrent logic languages mentioned,
rather then inverting the roles of input and output within a single clause, which is unique to P-
Prologx and its superset ALPS (and is available in a more restricted sense also in FCP(?) and
FCP(:,?) introduced below).

Furthermore, P-Prolog, uses unification in the head. As mentioned in the discussion of FCP(?)
in Section 15 below, this generality seems to impede program readability and maintainability,since
often the intended mode of use is known and fixed, but is not communicated by the code.

Embedding P-Prolog, in FCP(])
e implementation of P-Prolog, is not trivial. A naive implementation would be to try all clauses

whenever a process reduction is attempted; return to the successful clause if only one exists, or
suspend on all variables instantiated during clause tries if there were more than one successful clause
try. The overhead of this scheme seems unacceptable. An efficient implementation of P-Prolog,
seems to require a complete analysis of all possible call patterns, which is also quite complex.

To establish the relation between P-Prolog, and other languages in the family, we show here
an embedding of P-Prolog, in FCP(]). The idea of the embedding is as follows. For each goal
atom in the source program we create a controlling process, and for each source clause potentially
unifiable with this atom we create a reduction process simulating the attempt to reduce the goal
atom with the clause. The reduction process operates as follows. If it detects that it cannot

perform the simulated goal/cl duction, it informs the controller. If it receives a permission
from the controller to reduce, it simulates the reduction.
The controlling p ts the ber of clause try failures, and when all but one clause

have failed, it permits the remaining one to try and reduce. This behavior is achieved by the
following translation?!,

Each P-Prolog, clause A — G|B is translated into an FCP(|) procedure with three clauses.
The purpose of the first clause is to fail as soon as it is determined that the goal atom does not
unify with the head of the source clause or the guard fails. It can never succeed. The second clause

0 Although an 6d Aoc extension to allow this was proposed [210]. Another iom, ALPS, is di d in the
next section.

21 This translation was developed in collaboration with M. Maher, and benefited from comments by V.A. Saraswat.




informs the controller if the first clause has failed. The third clause reduces if permission is given
from the controller.

Specifically, let C),C;,...,Cy be the claunes of the P-Prology procedure p/n. It is translated
into k41 FCP(}) procedutes, p/n, p1/n42, p3/8+42, ..., pi/w-+2, which use two auxiliary pro-
cedures, as follows. The it? clause p(71,73,...,7s) ~— G|B of the P-Prolog, procedure p/n is
translated into the FCP(]) procedure:

Pi(T1,T2,.. ,Ta,. foo) — G | true.
pi(-1—)- . =, Failed,.) — otherwise | Failed=failed.
p.'(xl ,x:,. . .,x,.,go,_) -G I (xl,X3,. . .,xu)=(T1 ,Tg,. . .,Tn), B. -

The FCP(|) procedure p/n is defined as follows:

p(xl lx21~ - -,Xu) -
P1{X1,X32,.. ,Xn,81,-),
pa(X1,X3, . ,Xn.82,-),

Ph(xl Xa,. . ..Xn,sk:—)v
x0r(S1,81,..,5%),

where zory is defined as follows:

xor(Go,failed,failed,. . .failed) — Go=go.
xory(failed,Go failed,. . .failed) ~— Go=go.

xor(failed,failed,. . .failed,Go) ~ Go=go.

with Go on the diagonal, and failed anywhere else.

The transiated program operates as follows. The procedure p/n spawns & parellel clause
processes p;, one for each of the original p/n clauses, plus a zor; process. If the ith clause process
fails it unifies the S; variable with failed. Th~ zor; process counte k-1 failures, and unifies go with
remaining variable, which enables the remaining clause process to reduce if it has not failed yet
Note that the FCP(]) program fails whenever the source P-Prolog, program fails.

The translation assumes that the unification implied by P-Prolog,’s Reduce transition is
atomic. If it is non-atomic, then the exact same embeddiug can be used with FGHC, or FGECqay
as the target language, depending on the kind of nonatomicity allowed.

13. ALPS — An Integration of P-Prolog, and FGHC

ALPS was proposed by Maher [124] as an algorithmic concurrent logic programming language
ALPS goal reduction rule states that a goal can be reduced with a clause if either this is the only
candidate clause left (the P-Prology rule), or the reduction does not instantiate variables of the
goal (the FGHC and FCP(() rule).

In particular, the FGHC unification primitive is definable in ALPS using the single unit clause:

X=X.

The reduction of the goal Ty = T, with this clause is enabled if T; and T3 are unifiable, using
the P-Prolog rule, since this is the only candidate ciause. Unlike FCP(}), and like FGHC, the
unification specified by such a goal need not be carried out atomically. In particular, the transition
system of ALPS defined by Maher realizes non-atomic variables, s in FGHCpay.

ALPS was defined in the general setting of constraint logic programming [92]; we address this
aspect of the language in Section 21.
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Embedding FGHC,ov and P-Prolok in ALPS

FGHCpqv can be embedded in ALPS using a compiler that duplicates each clause, and the identity
viewer. Clause duplication prevents the resulting ALPS program from “eagerly” reducing using
the determinacy rule, since no goal is ever determinate?2. P-Prolog, can be embedded using the
embedding into FCP(|), shown in the previous section, assuming unification need not be carried out
atomically. ALPS can be embedded in FGHC much the same way that P-Prolog, was embedded
in FCP(}).

Discussion

The transition rules of ALPS are more ‘eager’ than those of FGHC. This means that some programs
which deadlock as FGHC programs may proceed as ALPS programs. The practical implications
of this difference are yet be determined. The benefits in terms of added expressiveness are un-
clear, and the comment on P-Prolog, apply here as well. In addition, the difficulties in efficient
implementation of the ALPS language, compared with FGHC, seem subsatantial.

14. FCP(:) — FCP(|) Extended With Atomic Test Unification

In FCP(]), FGHC and Flat PARLOG, a program can perform only matching prior to clause
selection. In the next set of languages shown, FCP(:), FCP(?), and FCP(:,7)?3 a program can
perform unification as part of the test for clause selection, prior to commitment. If the unification
fails, it should leave no trace of its attempted execution; in other words, the unification attempt
should be atomic. We call unification which is tried before commit atomic test unification. In
FCP(]), atomic unification is a special predicate. In FCP(:) and FCP(:,?) it is definable, and in
this sense these languages are natural generalizations of FCP(]).

The first flat language to conibine input matching and atomic test unification is Saraswat's
FCP(],|) [150,154). This idea was generalized by Saraswat in the Ask-and-Tell framework [156],
which gave rise to the languages cc(},]) [156,157) and the similar language FCP(:) [100) described
below.

14.1 The language FCP(:)
Syntax

Definition: FCP(:) clause and program.
e An FCP(:) clause has the form:

A — Ask : Tell | Body.

where Ask and Tell are possibly smpty conjunctions of atoms, Ask atoms have guard test
predicates, and Tell contains only equality atoms. If Tell is empty, the colon is omitted.
o An FCP(:) program is a sequence of FCP(:) clauses. @

Semantics

The effect of a clause try of a goal A with an FCP(:) clause with an empty tell part is the same
as in FCP(]). If the tell part is not empty, the effect is as follows. First, the goal/head input
matching and the guard checking are performed. If they fail or suspend, the clause try fails or
suspends, respectively. If they succeed, then the unification specified by the tell is performed,
which can either succeed or fail, but not suspend. If it ds, the result of the clause try is

22 The clause duplication method is due to M. Maher.

B More precise but also more cumbersomne names for these L
FCP(:%,]).

are, respectively, FCP(:,|), FCP(?.|} and

- 64 -



the substitution combining the ask substitution and the tell substitution. If it fails, the clause try

fails.

Definition: Try function for FCP(:).

o Let Tell = (X3=Y1,....Xn=Y4) be a conjunction of equality atoms. We define mgu(Tell) =
mgu((Xq,.. ,Xn)(Y1,. . .. Yn)), and the try function to be:

8o  if match(A,A") = 8 A checking Askf succeeds
A mgu(Tell) = ¢
fail if mgu(A,A") = fail v
trypcry(A,(A’ = Ask:Tell|B)) = mgu(A,A’) = 0 A checking Askf fails v
match(A,A") = 0 A checking Askd succeeds
A mgu(Tell) = fail
suspend otherwise

Embedding of FCP(]) in FCP(:
e embedding of F in FCP(:) is trivial. All the compiler does is to replace the unifica-
tion clause X = X by the clause
X=Y « true : X=Y | true.
This clause is necessary since ‘=" is a primitive in FCP(|) but not in FCP(:).

14.2 Programming in FCP(:)

Atomic test unification enables numerous programming techniques not in any of the
weaker Janguages introduced so far, These include multiple writers on shared variables, which
can be used to realize sophisticated synchronization protocols and blackboard-like shared data
structures; the ability to reflect on failure of unification, which enables the construction of failsafe
meta-interpreters that can be used to realize the control meta-call; the ability to record the logical
time in which a unification occurs, which is essential for computation replay and hence egsential
to concurrent algorithmic debugging; and the ability to simulate Prolog’s test unification, and
hence the ability to naturally embed Or-parallel Prolog and similar languages. We discuss these
techniques below.

ilahl

Mutual exclusion and multiple-writer streams

Using atomic test unification, single-round mutual exclusion can be achieved with Jess machinery
than needed in FCP(]). Let py,...pn be the processes wishing to participate in a single-round
mutual exclusion protocol, with unique identifiers I3,...,Jn. Add to each process an argument, and
initialize all processes with this argument being the variable ME. Each process pg competmg fora
lock attempts nc inistically unify its identifier I with ME, or to check that ME is already
instantiated to some I # Ii.

A schematic description of each process is as follows. The £** process call is p(ME, ;.. ).

p(ME]J,...) « true : ME=I | ... lock granted ...
p(MEL, .) — ME #1]... lock denied ...

This technique is not a substitute to the multiple-round mutual exclusion protocol shown in Section
7. However, in the special case that in each round the number of competing processes decreages
by one, it can be generalized, as follows.

Assume a set of processes py,...p;, where each p; may wish to deposit a message m; on
s shared stream Ms. Furthermore, assume that the messages are pairwise not unifiable. One
solution is to create a merge network for all these p However, if the ber of p
actually wishing to deposit their ge on the at is much smaller than k (as is the case with
exceptional message streams), this solution is very wasteful. A more efficient solution in this case ia
to extend the single-round mutual exclusion protocol above to streams, as follows. When wishing
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to deposit a message on Ms, the process nondeterministically attempts to do 8o, or to check that
another mesaage is already there. In the second case it calls iteelf recursively with the tail of the
stream. Assume each process p; is called with Ms as its first argument and m; as its second, the
code of a process is as follows:

p(Ms,M,...) — true : Me=[M|_] | ... measage sent; do other things. ..

p(MaM,...) — Ma=[..[Ms] | p(Ms'M,.. ).
Using this protocol, if the ber of ges to be placed on Ms is finite, every process wishing
to place a message on Ms will eventually do so (assuming And-fairness).
The dining philosophers
The seminal problem of mutual exclusion is that of the dining philosophers [37]. In this problem
n philosophers are sitting at a round table, with one fork between each two philosophers. To eat,
a philosopher requires two forks. Each philosopher goes through a cycle of eating and thinking.
The problem is to provide the philosophers with an algorithm that guarantees that they will not
deadlock, and that no philosopher will starve.

Using atomic test unification on multiple-writer streams it is easy to specify a deadlock-free

behavior for philosopher:

phil(Id,[eating(Left]d,done)|Left],Right) — % Left is eating, wait till

phil(Id,Left ,Right). % he is done.
phil(1d,Left,[eating(Rightld,done)|Right]) — % Right is eating wait till

phil(1d,Left Right). % he is done.
phil(Id,Left,Rigat) «— % Atomically grab both forks

true : Left=[eating(Id,Done)|Left’],
Right=[eating(Id, Done){Right |
... eat, when done unify Done=done,
then think, then become:
phil(Id, Left’ Right").
The program is independent of the number of philosophers dining. A dinner of n philosophers can
be specified by the goal:
phil(1,Fork1,Fork2), phil(2,Fork2,Fork3),. .., phil(a,Forkn,Forkl).
whose execution results in each of the Fork variables being incr tally instantiated to a stream
of terms eating(Id,done), with the Id’s on each Fork reflecting the order in which its two adjacent
philosophers use it. For example, a partial run of this program on a dinner of 5 philosophers
provided the substitution:
Forkl = [eating(1, done), eating(5, done), eating(1, done), eating(5, ~) | -]
Fork2 = [eating(1, done), eating(2, done), eating(1, done), eating(2, .) | -]
Fork3 = [eating(3, done), eating(2, done), eating(3, done), eating(2, ) | -]
Fork4 = [eating(3, done), eating(4, done), eating(4, done), eating(3, done),
cating(4, done) | -]
Fork5 = [eating(4, done), eating(4, done), eating(5, done), eating(4, done),
) eating(5, -) | -]
The run was suspended midstream in a state in which Fork{ is free and the the 2*¢ and 5%
philosophers are eating. Up to that point each of the philosophers ate twice, except 4 which ate
three times. .
This program is much simplet then the Parlog86 program for the dining philosophers in {145).
The key to its simplicity is indeed the ability of FCP(:) to specify atomic test unification: a
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philosopher atomically tries to grab both forks, excluding other philosophers from grabbing them.
The mutual exclusion is obtained by unifying the head of the Fork stream with a term containing
the unique Id of the philosopher.

The deadlock-freedom of the program is guaranteed by the language semantics. The program
can be further enhanced to achieve starvation freedom as well.

The duplex stream protocol
Processes placing messages on a shared stream need not be competing; they can also cooperate,
and use the shared stream for both communication and tight synchronization.

For example, consider a stream producer and a stream consumer, wishing to participate in
the following interaction. When the consumer reads the stream, it wants to read all the messages
produced so far by the producer. The prod produces messages asynchronously, but wishes to
know whenever all meuages it hu produced so far have been read. This can be achieved using
the following duplex stream protocol [152). The prod pl s ge M on the stream
wrapped as write(M). The cc , when hin g the end of the stream, places on it a read
message. From the consumer’s point of view, successfully placing a read on the stream indicates
that it has read all messages produced so far. From the producer s point of view, failing to place
8 write(M) message, due to the existence of a read message, is an indication that all previous
messages have been read. This is realized by the followmg code, where produce(M, Ms, Ma',Status)
places the message M on Ms, returning the i t Ms', and Statys=new if all g
previous to M have been already read, Statxs=old otherwise. caunmc(Mo,Ma’ Rs) returns in Rs
the messages ready in Ms, and in Ms’ the remaining stream.

produce(M,Ms,Ms’ Status) «— true : Ms = [write(M)|Ms’] | Status=old.
produce(M,[read]Ms),M#’ Status) ~— Ms={write(M)|Ms'], Status=new.

consume([M|Ms],Ms’,Rs) + consume’([M|Ms],Ms’ Rs).

consume’(Ms,Ms’ Rs) « true : Ms={read|Ms’] | Ra=( ].
consume’([write(M)|Ms],Ms’,Rs) «~ Rs=[M|Rs’], consume’(Ms,Ms#’ ,Re’).

consume is two-staged so that it would not place a read message on an initially empty stream.

If the producer waits every so often for the consumer to catch up, then consume always
terminates.

The duplex protocol gives rise to a much more efficient and more flexible bounded-buffer
protocol than the FCP(|) protocol shown in Section 7.3. It is more efficient, since there is no
acknowledg t for every ge, only one per ‘batch’. It is more flexible, since the producer can
change its mind on how many messages to send without an acknowledgement, without consulting
or affecting the consumer, and with no need to change ‘buffer-sise’.

CSP with both input and output guards

To demonstrate the power of atomic test unification, we show an FCP(:) simulation of CSP with
output guards [87]. CSP with output guards is notoriously difficult to implement, and hence Occam
[81], the practical realization of CSP, adopts only input guaeds. It is interesting to note that a
logic programming language with matching is sufficient to simulate CSP with input guards, but
a language with both matching and atomic test unification seems to be required to simulate CSP
with both input and output guards.

Consider two sets of procesees Py - 4Pny C1,..-,Cn, Wishing to participate in the following
interaction. Some (possibly all) of the p;’s wish each to interact with exactly one of the ¢;'s, but
they do not care which. Some (possibly all) of the ¢;’s wish each to interact with exactly with one
of the p;’s, but they do not care which. We would like a protocol, which, if there are i < n p’s and
J £ n c’s willing to interact, then min(i,5) pairs will do so. The protocol should be independent
of i and 5, and allow i and j to increase dynamically.

The protocol is as follows [148]. Each p willing to interact sends to all the ¢'s the incomplete
message Aello(X). All messages sent by the same p have the same variable X, and the variables
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in messages sent by different p’s are distinct. Each ¢ willing to interact does the following: it
nondeterminiatically and atomically selects one of its incoming Aello(X) messages and unifies X
with its unique Id.

The program for the case of two p’s and two c’s is as follows:

p(X,ToC1,ToC2) — ToCl=hello(X), ToC2=hello(X).

c(Id,hello(Xy),.) ~ true : Id=X, | true.

c(Id,— helio(X3)) — true : Id=Xj | true.
The initial process network is:

P(X1,M11,M12), p(X2,M321,M23), ¢(a,M11,M21), ¢(b,M13,M23).
This process network terminstes, and at the end of its execution exactly one of X; and X; will be
instantiated to s, and the other §.

In this example the two p’s and two ¢’s were both willing to interact. However, the definition
of p and c is applicable also in the more general case, in which less are willing to interact on each
side, or that processes are added dynamically. .

This demonstration of the power of atomic test unification also indicates that the distributed
impl tation of atomic test unification is far from being trivial. It is discussed in Section 20.

P

Otherwi 1 reflecti fail
In FCP(]) it is possible to prevent failure of user-defined processes, by appending to each procedure
p the clause:

p(...) + otherwise | ... report failure ...
However, there is no way to prevent the failure of the primitive unification process ‘="'

In FCP(:), on the other hand, since unification is definable, it is possible also to define failsafe
unification using the clauses:

X = Y + true : X=Y | true.
X=Y~X#Y|... report failure of unification ...

More generally, it is possible to define a failsafe FCP(:) meta-interpreter, which, instead of failing
when the interpreted program fails, simply reports the failure. To achieve this we modify the clause
representation of the interpreted program, by appending to it the ¢l

clause(A,B) — otherwise | B = failed(A).
P tation, a termination detecting failsafe meta-interpreter for FCP(:) is defined

Using this
as follows:

reduce(A,Result) —
reduce’(A,[ -Result).

reduce’(true,L-R) — L = R.

reduce’((A,B),L-R) — reduce(A,L-M), reduce(B,M-R).
reduce’(failed(A),L-R) — R=[failed(A)|L).
reduce’(goal(A),L-R) ~ clause(A,B), reduce’(B,L-R).

On a call reduce(A, Result), Result is instantiated to the (possibly empty) stream of goals failed
duting the com, "tation. The stream is closed when the computation terminates.

143 Embedding KL1 and Flat PARLOG in FCP(:)

The inability to reflect on failure without reifying unification made all the previous languages unable
to implement the control meta-call efficiently. Therefore to make them practical this construct has
to be introduced as a primitive into the language as discussed in Section 10.3.
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We show how the control meta-call can be implemented in FCP(:), and thus provide an
embedding of KL1 in FCP(:). Combined with the techniques used to embed FP(;) and FP(&) in
FGHC,,, discussed in Section 11, the implementation of the control metacall can be enhanced to
provide an embedding of Flat PARLOG in FCP(:).

An implementation of the control meta-call in FCP(:)
The meta-call implementation consists of two components: a meta-interpreter, which can produce
events and is sensitive to interrupts, and & computation monitor, which provides the user interface.

The meta-interpreter requires the same clause repregentation of the FCP(]) interruptible
meta-interpreter shown in Section 7.7, sugmented with the otherwise clause shown sbove and
an interrupt-sensitive clause. Each FCP(:) clause (including the unification clanse)

A — Ask: Tell | B.
is translated into:
clause(A,X,Is) « Ask : Tell | X=B'.
where B’ is B transformed as in previous meta-interpreters, and two clauses are sppended:

clause(A,B,Is) « otherwise | B=failed(A).

clause(A,B,[I|is]) — A=B.
The first reports failure of a reducti ttempt. The d sborts the attempt when semuing an
interrupt. Note that the order of the last two clauses is important: if they were switched, then
the meta-level process clawse(A, B,Is) executing a failing object-level process A will suspend on
the interrupt stream [s rather then reporting failure. This is another demonstration of both the
subtlety and power of otherwise.

Using this representation, the following meta-interpret hi the desired behavior:

reduce(true,ls,Se L-R) ~ L=R.
reduce((A,B),Is,Se,L-R) «— reduce(A,Is,Ss,L~M), reduce(B,Is,Se,M-R).
reduce(goal(A),Is,Ss,L-R) «—
clause(A,B,Is), reduce(B,Is,Ss,L-R).
reduce(failed(A),is,Ss,L-R) —
write(failed(A),Ss), L=R.
reduce(A,[1|1s],Ss,L-R) «
serve.interrupt([l{ls},A Ss,L-R).

write(M,Ms) — true : Ms=[M|.] | true.

write(M,[M|Ms]) — write(M,Ms).
The differences between this and the snapshot meta-interpreter of FCP(|) shown in Section 7.7
above are the additional signals stream S, the clause added for bandling process failure and the
lack of a special clause for unification. The latter is not needed since the clause defining ‘='
is & normal FCP(:) clause which requires no special treatment. Failure is handled by placing
an appropriate message on the signals stream, using the multiple-writer stream protocol. This
is an ple where ting & merger for each forked process would have had an unacceptable
overhead. Assuming either Jow rate of process failure, or that the computation is suspended by the
controller as soon as failure is detected, the multiple-writer protocol would exhibit a much better
performance.

Note that if two unifiable processes fail, only one message is produced on the signals stream.
This oddity can be solved either by allocating unique identifiers to the meta-interpreter processes
(which is inelegant and quite expenasive), or, in FCP(:,?), using the anonymous mutual exclusion

vy 1 A Y

. in Section 18.
An alternative solution which does not use a multiple-writer stream is to use the short-circuit in
order to report failure, a3 in the failsafe FCP(:) meta-interpreter shown sbove. The diasdvantage of




this approach is that the list of failed goals will be seen only upon termination of the computation.
A computation monitor, which suspends the computation as soon as a failed goal is sensed, cannot
be programmed using this technique.

The definition of the computation monitor should be quite obvious now. Its top level is the
same as the meta call, call(Goal,Signals, Events). It invokes the meta-interpreter, keeping hold of
the ends of its short circuit streams. It serves signals coming from the outside by forwarding them
to the meta-interpreter, via the interrupt stream, and reports on events that happen during the
computation by placing them on the Eveats stream.

‘The meta-interpreter given serves as a specification of the required functionality of the control
meta-call ‘This f\mcnona.hty can be implemented by source to source transformation. The trans-
for tly loyed in the Logix system [84] which achieves this functionality results in
about 30% increase in mnhme and 80% increase in code size. In [46], Foster reports an experi-
mental study that quantifies the cost of direct support for metacontrol functions, and compares
this with the cost of support by program transformation. The same paper describes extensions to

an existing abstract machine [49] required to support these functions. This atudy mdxcat.es that

direct support for the control meta-call need not be expensive, nor require pl p tion
mechanisms.

Di - . ¢ unificati tomic unificati

It is & subject of debat w‘ ther it is preferable to have a stronger language which can

embed meta-level funchonn such as the control meta-call, or to have a weaker language and provide
specific meta-level functions as language extensi

The issue seems to be a tradeoff bet implicity at the implementation level versus elegance
and expressiveness at the language level. On one side of the debate are Flat GHC and Flat
PARLOG, with non-atomic unification. On the other side are FCP(|,[), FCP(:), FCP(?), and
FCP(:,?), languages, with atomic test-unification.

The main arguments for a weaker language, with non-atomic unification and & built-in control

meta-call, are:

o The base language is simpler to implement;

o  The specialized meta-level construct can be added with less overhead than via a general-
purpose language mechanism.

e  The base language has simpler formal tics, and is therefore better amenable to theoret-
ical treatment such as verification and transformation.

e  Atomicity of unification is not assumed by the theory of (pure) logic programming. Therefore,
it is important to write programs without relying on atomic unification whenever possible, and
s language with non-atomic unification encourages it. The resulting programs allow better
declarative reading?4.
The main arguments for a stronger language, which has atomi¢ test unification and can im-

plement meta-level constructs via interpretation and transformation are:

¢  Providing semantics for any specific meta-level construct as part of the base language is both
complicated and ad Aoc (we know of no formal semantics for the control meta-call or similar
constructs, other then the one implied by the semantics of FCP(:) combined with the definition
of the control meta-call).

e The need for stronger meta-level constructs is continuously evolving (e.g. live and frozen
snapshots, sophisticated debuggers, etc. which are not provided by the control meta-call).
If these needs are met at the language definition level, rather than by interpretation and
transformation, the [anguage semantics as well as implementation have to be continuously
modified.

o  When atomic test unification is not employed, there is little or no runtime penalty compared

24 These Last two points were communicated by K. Usda.
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to implementations of the weaker languages.

e  Should the efficiency of a direct implementation of a certain meta-level function be required,
it can be provided without affecting the language semantics. Such a direct implementation
can be viewed a8 8 (possibly hand-coded) specialization of a function that could be provided
by the language itself.

o There are other applications in which the added strength of stomic test unification is employed,
such as embedding Or-parallel Prolog [165), and debugging (see below).

e It is not obvious at present that the semantics of the weaker languages is indeed simpler.

Recently, Saraswat has proposed combining both atomic test unification and non-atomic uni-
fication in a single language {157]. Such a language inherits the complexities of both approaches,
and it is not clear at present what performance gains it allows.

144 Computation replay and debugging

Oge type of bug which is most difficult to diagnose in concurrent programs are transient, or lurk-
ing, bugs. Once a bug occurs in a sequential deterministic language, it is possible to repeat the
computation and analyze it with various tools. This is not always possible in a concurrent program,
unless special measures are taken. Specifically, all communication and all nondeterministic (sched-
uler and program) choices made during a computation must be recorded, so that if an erroneous
behavior is observed, the computation can be repeated.

We show an FCP(:) meta-interpreter that records scheduler and program (i.e. And- and Or-
pondeterministic) choices made by the interpreted program. This information is sufficient in order
to reconstruct closed (non-reactive) computations, in which all communication happens internally.
‘The meta-interpreter computes a tree data-structure called a frace, which reflects the process
reductions occurred in the computation. Each node in the trace contains the pair (Time,Inder),
with the time in which the process in that node reduced, and the identity of the clause used for
reduction. Given an initial goal and a trace of its computation, the computation can be repeated
by redoing the process reductions specified by the trace in the order specified by the Time field of
each node, and for each reduction selecting the clause specified by the Index of its node.

To construct such a trace, we assume that the underlying machine maintains logical clocks
{107], and that the language provides a new primitive, fime(Téme), which unifies Time with the
present value of the local logical clock. The clause representation is modified, to provide additional
information on the clause reduction: the logical time in which it took place, and the identity of
the clause chosen?.

The itk clause A — Ask : Tell | B of the program is transformed into the clause:

clause(A X Index,Time) «— Ask : Tell, time(Time) | X = B’, Index = i.

Using this representation, a meta-interpreter that constructs a trace is defined as foliows:

reduce(true,true).

reduce((A,B),T) « T=(T1,T2), reduce(A,T1), reduce(B,T2).

reduce(goal(A),T) « T=trace(Index,Time,SubTrace),
clause(A,B,Index,Time), reduce(B,SubTrace).

A computation reconstructor, which repeats a computation given an initial goal and a trace, can
be written quite elegantly using incomplete data-structures. It first serializes the trace using the
Time field, then executes the reductions in order, one by one. We do not show it here.

Given the ability to truct a putation, algorithmic debugging techniques [159] can
be applied to concurrent programs as well. See [176,118,120] for details.

s Inability to record the time in which & unification occurs is what prevents the weaker languages shown from
replaying computations.
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145 An embedding of Or-parallel Prolog in FCP(:)

Theqnemonofhowt.opnmdetheup.bxhhaot?mlogmswnmmtlogcpmyammng
languages has received considerable attention since the beginning.

One approach was pursued by PARLOG [24,25 06]. namely to provide two sublanguages with
an interface: the single-solution sublanguage, which is the counterpart of other concurrent logic
programming languages, and the all-solutions sublanguage, which is essentially an all-solutions
Or-parallel Prolog. A stream-like interface allows single-solution programs to invoke and control
all-solution programs.

Another approach was to embed Prolog in s concurrent logic language. The first succees in
this direction was Kahn’s Or-parallel Prolog interpreter in Concurrent Prolog, discussed in Section
18. However, this interpreter relies in an essential way on the non-flat nature of Concurrent
Prolog. Initial attempts by Ueda [200, 201) and Codish and Shapiro [29], were succeseful in
producing efficient translations when the mode of unification of the source Prolog program could
be determined at compiler time. A more general, but less efficient, solution is described in [165], in
the form of an Or-paraliel Prolog interpreter written in FCP(?), a language introduced in Section
15. Although originally written in FCP(?), the interpreter does not exploit properties of it not
available in FCP(:), and can be easily converted to this language. This implementation is not
as direct as the interpreter in Concurrent Prolog, but is still quite simple. Furthermore, if the
mode of mbprogrum can be determined, the interpreter can be gracefully interfaced to programs
implemented using the tnnlfonmmon- proposed by Ueda. The execution algorithm employed by
the interpreter was prop independently f2: other purposes (3,4,28]; nevertheless, its practicality
is still under debate.

This embedding employs atomic test unification to implement Prolog’s unification. Hence, un-
like the disjoint-sublanguages approach, or the mode-based compilation, which is applicable to any
concurrent logic language, the embedding approach is not applicable to languages such as FCP(}),
(Flat) GHC, and (Flat) PARLOG. Should the execution algorithm employed by the embedded-
language approach prove efficient in practice, its advantage over the disjoint-sublanguages approach
would become apparent, especially in the presence of specialized hardware for the execution of con-
current logic languages [5,74].

A variant of the algorithm can be implemented also in Flat PARLOG or KL1, using the control
meta-call. However, such an implementation would be hopelessly inefficient, since it would require
a new meta-call at every choice point, and cannot prune alternatives using test unification as done
in direct implementations of Prolog or in the Prolog interpreter in FCP(?).

Another approach, pursued by Saraswat [150,153,157] and Yang and Aiso [209,210] was to
incorporate in concurrent logic languages don’t-know nondeterminism. As the resulting languages
cannot specify reactive concurrent systems, it is not an extension or a substitute for rent
logic languages. Assuming that an underlying reactive concurrent logic language is still desired,
the problem of integrating if with a parallel don’t-know nondeterministic logic languages is much
the same as that of integrating Prolog: it can either be implemented separately, with some all-
solutions interface, as in the two sublanguages approach, or it can be compiled into a concurrent
logic language, as in the embedding approach. This is discuseed further in Section 21.

15. FCP(?) — Dynamic Synchronization With Read-Only Variables

The language Concutrent Prolog [160] introduced & different approach to synchronization, using
read-only variables and read-only unification. The approach is preserved in its flat subset Flat
Concurrent Prolog [128), also known as FCP, and called throughout the paper FCP(?) (read
“FCP read-only”).

FCP(?) assumes two types of variables, writable (ordinary) variables, and read-only variables,
and uses read-only unification, which is an extention of ordinary unification, to unify terms con-
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taining read-only variables. The reed-only opersior, f, is a mapping from writable to read-only
variables. When applied to a writable varisble X, the read-only operator yields a corresponding
read-only variable X¢. The read-ouly operator is the identity function on terms other than writable
variables. :

In the absence of read-only variables read-only unification is just like ordinary unification.
However, a read-only variable X? cannot be unified with a value. An attempt to unify X¥ with
a term other than a writable variable suspends. When the writable variable X is instantiated to
some value T (by some concurrent unification) its corresponding read-only variable X¢ receives
the value T¢. This may release s unification suspended in an attempt to unify X? with some
value.

Whereas synchronization with matching is specified clause-wise and statically, synchronisation
with read-only unification is specified term-wise and dynamically. Read-only unification can be
used to achieve various forms of dynamic synchronisation, not acheivable otherwise.

15.1 The language

Syntex

The syntax of FCP(?) is the same as FCP(|), except that a clause may contain read-only variables.
.

The semantics of the language is similar to FCP([), except that goals may contain read-only

variables, and the goal and the clause head are unified using read-only unification instead of

matching.

Definition: Admissible substitution, read-only extension, read-only mgu.

e A substitution @ is admissible if X?8=X? for every variable X.

o  The read-only extension of an admissible substitution @ is the unique idempotent substitution

07 satisfying X (67) = X0 and X8y = (X6)¥ for every writable variable X .
o  The read-only mgs, mgwy, of two texms T; and T3 is defined by:

82 if mgu(Ty,Ta) = 6, 0 admissible
mguy(T1, T3) = { fail if mgu(Ty,T2) = fail [ ]
suspend otherwise

For example, {X++a} is admissible but {Xf~sa} and {Xr+a,X?—a} are not. The read-
only extension of {X1—a,Y++2Z} is {X1—+a,XPa, Y2, Y}2?}. megnr(f(X,Y),f(8,2)) =
{(Xrs0,X?r+a, Y= Z,Y#—2Z?}, and both mgu:(X¥,a), mgus(f(X,X?), f(s,a)), and mgus(f(X,X?),
f(a,8)) = suspend?®

The try function of FCP(?) is the same as that of FCP(]), except that it uses mguy instead of
match, and it returns suspend if the read-only unification of the goal and the head is inadmissible
due to read-only goal variable, and fail if it fails or is inadmissible due to a read-only clause varisble
only (since the latter state is stable).

15.2 FCP(?) programming techniques

Standard programming techniq

All standard programming techniques shown for FCP(]) and FCP(:) are realisable also in FCP(?).
However, for most of the simple synchronisation tasks, the generality and the dynamic nature of
read-only unification turns out to be more of a burden than an asset. Since read-only unification
is an extension of unification, using it for goal/clause unification is closer to the original model of

36 This defimition of resd-only unification is different from the original one [160], in that it is orderindependent
and disallows “self-feeding”, i.c. the success of f(X,Xf)=f(4,8). The revision was influenced by criticiem of
the carlier definition {163,197], and by the language CP(%) of Ramakrishnan and Silberschats [143).
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logic programming and Prolog. Nevertheless, in concurrent logic programming, matching is used
more often than unification. The default in FCP(?) encourages programmers to use unification
even when matching is needed, and instead restrict the use of the procedure by placing read-only
variables in the caller. For example, consider the FCP(?) procedure append.

append([X|Xs),Ys,[X|Za]) — append(Xs?,Ye,Zs).
append([ ),Ys,Ys).

The procedure is almost identical to the logic program (and Prolog program) sppend. The only
difference is the read-only annotation in the recursive call. Nevertheless, this program has awkward
behavior. Although its head specifies unification, the intention is that the first argument be
matched. The program ensures this for recursive calls, but not for the initial call. If the initial goal
is append(Xs,Ys,Zs) rather than sppend(Xsf, Ys,Zs), the first (or second) clause can be chosen
erroneously. Placing this responsibility on the caller is a of non-modularity and bugs. In
addition, matching can be compiled more efficiently than unification [99]. Without global analysis,
which infers that the caller always places a read-only variable in the appropriate position [30,186],
an FCP(?) program would compile less efficiently than a corresponding program in a language
with input unification.

A later definition of FCP {170] allowed both a matching predicate =?= and unification in the
guard. Using a matching guard, the ive cl of append could be specified as:

append(Xs,Ys,[X|Za]) — Xs =?= [X|Xs'] | append(Xs’,Ys,2a).

However, since this syntax is more verbose than the default one, programmers would still use
the previous style, resulting in programs which are both more error prone and less efficient. In
addition, it turned out to be difficult to define cleanly the try function for guards which contained
a free mix of matching and unmification predicates [173].

It seems, therefore, that the approach taken by the other flat languages, namely to use match-
ing as the default, is better. The language FCP(:,?), discussed in the next section, attempts to
unify the expressiveness of FCP(?) with the more convenient and efficient programming style of
the other languages.

Test-and-set

One use of read-only variables is to implement various forms of a test-and-set operation. A variable
can be tested to be a variable and then set to a non-variable term T in two stages: First unify it
with a new read-only variable X¥ and if successful unify T with X:

test_and_set(X?,T) « X=T.

The definition of read-only unification implies that the clause try will succeed with the goal
fesi_and_set(X,T) if and only if X is a variable at the time of the try. The technique directly
generalizes to simultaneous test-and-set of several variables.

The ability to implement test-and-set implies that FCP(?) is pot success stable. For example,
test_and_set(X,a) succeeds with X instantiated to &, but test_and_set(s,a) fails.

We note that test-and-set can be also realised in FCP(:), augmented with the var guard
primitive, but not in any of the weaker languages.

% mutual-exclusion, multiple-writer streams and distributed queues

ty to test-and-set can be used to implement anonymous mutual exclusion, that is, mutual
exclusion without unique identifiers. For example, a multiple-writer stream, which preserves mes-
sage multiplicity even in the presence of unifiable messages (in contrast to the FCP(:) program
shown in Section 14 above) can be defined as follows:

write(M,[X?|Ms],Ms) — M=X.
write(M,[-. [Ms],Ms’) ~ write(M,Ms,Ms’).
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The third argument Ms' can be used to place subsequent messages on the stream. It ensures that
the next message is placed after the previous one, 80 a writer can ensure that its own messages are
ordered. Even if a writer placing several messages on 8 stream does not care for their order, he
could still use Ms’ instead of Ms for subsequent messages, to increase efficiency.

Using this procedure, placing s messages by » writers on one stream requires O(n?) steps.
By introducing & special abetract dats type, called mutsal-reference [168), the three argument
write operation specified by the above program can be implemented by a destructive assignment
80 that the cost of sending » mesnages is O(n). The implementation is also ‘better’ than the
specification in another respect: assuming And-fairness it guarantees that every write operation
will eventually complete, even in the p of an unbounded number of writers, a property
not guarsnteed by the program above. Mutual-references are the standard technique for realizing
efficient stream mergers. Whenever we use a multiplicity-preserving multiple-writer stream in a
program we agsume it is implemented efficiently and fairly using mutual-references.

Another application of anonymous mutual exclusion is a distributed queue [165]. In it, client
processes are at the leaves and queue processes are at the internal nodes of a process tree. Each
engueue( X, ME) ot deg (X, ML) request is sent up the tree from the leaf process which generated
it, with X carrying the element to a queue or dequeue and ME being a new mutual exclusion
variable. If a queue process at a node can satisfy the request by matching it with a locally stored
corresponding request, it does so. Otherwise it keeps a copy of the request in its local queue,
and also sends a copy of it to its parent. A request is matched with a corresponding request by
atomically testing the ME fields of the two requests to be variables and setting them to some
value. When attempting to match the requests, the quene process also nondeterministically checks
whether the ME field of any of the requests has been set by another queue process; this indicates
that the request has been satisfied by some other queue, and 80 it is discarded.

Such a distributed queue can be used for dynamic load balancing, where workers off-load
work by enqueing, and request work by dequeing [191]. It is very suitable for this application since
requests are satisfied locally whenever poesible, but eventually get to the most global quene (the
root queue) if necessary.

cte tur
Another important application of read-only variables is to protect processes communicating across
trust boundaries. Consider an operating system process interacting with a possibly faulty user
process via an incomplete message protocol, or by i tally producing some data structure.

If the user process does not obey the protocol, and instead of waiting for the operating system
process to instantiate some variable it instantiates this variable to some erroneous value, it may
cause the operating system process to fail.

Several proposals were made to solve this problem. One is to restrict the type of communica-
tion protocols allowed between user processes and system processes, and provide user processes only
with complete data-structures, with no ‘holes’ to mess with. This solution greatly decreases the
flexibility of the interaction, and puts a heavy synchronisation and termination detection burden
on the operating system.

Another solution is to isolate the p ts of the operating system interacting with user
processes, and provide thexn with robust failure handling hani This solution also seems
infeasible, since incomplete data struct can be passed asynch ly between system compo-
nents, and therefore user processes may share variables with arbitrarily ‘deep’ operating system
components.

Another solution, adopted by the operating system designed by ICOT, is to use specialised
filter processes to monitor user-system interaction. These processes forward back and forth instan-
tiations done by the interacting processes, as long as the user processes obey the protocol which
the operating system expects. When a violation by the user is detected, the filter does not pass it
further to the system. Foster (48] describes three techniques for achieving robustnese in operating
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systems implemented in languages that do not support read-only variables: at-source (by trans-
formation of user programs), en-route (by filters) or at-destination (by making system programs
fail-safe). The second technique is shown to be generally the most effective.

Read-only variables allow a simpler solution {76]. An operating system component which
produces a dats-structure incrementally can protect the incomplete part of the data structure
from outside intervention. This is done by making it read-only to its readers, and keeping the
writable access to oneself. This is achieved by placing a read-only variable X¢ in every ‘hole’ in
the data structure, and keeping X. For example, a protected-stream prod can be defined as
follows:

p([X|Xs7],..) — p(X#,...).

If, when p(Xs,...) is invoked, it has the only writable occurrence of its first argument Xs, this
invariant will hold in all future iterati of the p , and no consumer can interfere with the
stream production. If the Message iteelf is also produced incrementally, it could also be protected
using the same technique.

The advantages of read-only unification over matching is that it is a generalization of unification,
rather than a special case of it: read-only unification in the abeence of read-only variables is
just unification. Hence read-only unification achieves both communication and synchronization
with a single notion. Second, read-only unification is sy tric: unlike matching, it does not
distinguish between the goal and the clause, and the read-only unification of any two terms behaves
alike. Third, it is dynamic. Read-only variables can be embedded in any data-structure, hence
synchronisation can be associated with data, not only with procedures.

Some of the disadvantages of read-only unification come from its strenght: Not being succees
stable makes it harder to analyze statically FCP(?) programs, and often makes FCP(?) less read-
able compared to programs using input matching. Its non-monotonic nature makes it more difficult
to analyze theoretically, compared to languages which use only input matching and unificatioa.
Finally, it has some points of singularity (e.g. the unification of X with X?), which do not seem
to have acceptable intuition behind them.

An alternative concept, called locks, was proposed by M. Miller and E.D. Tribble and formal-
ised by Saraswat [156]. Its motivation was to provide more reasonable semantics to the unification
X=X?. In FCP(?), this unification subtracts the writing capability from X, making it read-only.
In the alternate proposal, its effect it to make both X and X¢ writable. The ability of a read-only
variable to become writable gives rise to both additional complications and additional programming
techniques, though it has not been pursued to completion.

16. FCP(:,?) — An Integration of FCP(:) and FCP(?)

The language FCP(:,?) [100] attempta to integrate the convenience and efficiency of matching with
the expressiveness of atomic test unification and read-only variables. In addition, it has the added
pragmatic advantage over FCP(?) of being a superset of Flat GHC, FCP(|), and FCP(:), in the
sense that every program in these languages would execute correctly as an FCP(:,?) program.

FCP(:,?) is as strong as any other language in the family, in the sense that there are natural
embeddings of all languages in the family into it. It is the target language of the implementation
effort at the Weismaan Institute (99).

Syntax
:f‘Ee syntax of FCP(:,?) is the same as that of FCP(:), except that the tell and body parts may
contain read-only variables.

Semantics
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The semantics of the language is alsc the same as FCP(:), except that in the tell part read-only
unification is used instead of ordinary unification. This is reflected in the try function of FCP(:,?),
wkich is the same as that of FCP(:), except that it uses mguy instead of mgs, and returns suspend
if the read-only unification in the fell part suspends on a read-only goal variable, and fail if it fails
or suspends on a read-only clause variable (since the latter kind of suspension is stable).

Programming in FCP(:,?) .
As mentioned sbove, any FGHC, FCP(]) or FCP(:) would execute correctly as an FCP(:,?) pro-
gram. The FCP(?) programs shown in the previous section easily translate into FCP(:,?). For
example, the multiple-writer stream is written as follows:

write(M,Ms,Ms’) «— true : Ms=[X?|Ms'] | M=X.

write(M,[- |Ms],M&") «— write(M ,Ms,Ms').
and the protected stream producer as follows:

p(Xas,...) — true : Xs=[Message|{Xs’'?] | p(X#’,...).

17. Doc — “X = X Considered Harmful”

The language Doc (Directed Oc) by Hirata [82}, is a successor to Oc [81,83). Oc is essentially
FGHCpyy With no guards. Doc is a further restriction, which follows the motto “X = X considered
harmful”. Doc i8 a concurrent logic programming language in which every variable has at most
one writer and at most one reader, i.c. one process which instantiates a variable, and one process
that matches it. This restriction is enforced syntactically, by annotating each variable occurrence
as either a writable or a read-only, and requiring that each variable may occur at most once in
each mode in a clause.

The motivation for this restriction is that the cost of broadcasting information in a distributed
environment may be too expensive to be supported at the language level.
Discussi
Although the removal of variable-to-variable unification from logic programming seems a rather
drastic propoeal, its effect is not fatal, and the resulting language is still ble. The techniq
availablein Doc (except for protected data structures) are a subset of those availablein FGHCyqy-
In particular, the short-circuit technique and any of the techniques relying on atomic unification are
not availablein Doc. Furthermore, broadcasting is not available in Doc, und should be implemented
by an explicit distributor process, which receives a message and distributes it separately to each
recipient. In addition, Doc’s read-only annotation is a reminiscent of the read-only variable, and
indeed it can employ the protected data-structures technique; actually, a Doc process must protect
any incomplete structure it intends to produce, by the syntactic restrictions of the language.
Because of the ability to specify protected data-structures, it seems that Doc cannot be embedded
in a language that does ot contain the equivalent of read-only variables.

An embedding of Doc in broadcast-free FCP(?)
The similarity of Doc” annotations to writable and read-only variables in FCP(?) is apparent.
Indeed, it is natural to consider a subset of FCP(?), which may be called?” broadcast-free FCP(?),
in which every variable may occur at most once read-only and at most once writable in each clause.
Doc programs can be trivially translated into broadcast-free FCP(?).

This translation is valid, in the sense that every computation of the resulting FCP(?) program
corresponds to a possible computation of the source Doc program. However, the translation is not
an embedding in the sense used so far. Since the read-only unification used in FCP(?) is atomic,

27 The name wa suggested by V.A. Sarsawat.
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some executions of a Doc program cannot be realized by the corresponding FCP(?) program.
This can be remedied by further “decoupling” variables in the clause, as done in the embedding
of FGHCpay in FGHC,, in Section 10, which masks the atomicity of unification of FCP(?). For
each variable X that occurs both writable and read-only in a clause, replace X? by a new variable
Y?, and add the goal send(X?,Y) to the body of the clause. send is defined as follows. For every
function symbol f/n in the program, a > 0, send has the clause:
send(f(X1,X2,. . ,Xn)f(Y17,Y27,...,.Yn?)) «—
send(Xy?,Y)), send(X3?,Y3),. . ., send(Xn?,Yy,).
We note that broadcast-free FCP(?) is still stronger than Doc, since it provides a variant of the

short circuit technique. In this variant a ground message is sent around the circuit in a particular
direction. Its arrival at the other end indicates termination.

18. Non-Flat Concurrent Logic Programming Languages: PARLOG, GHC, Con-
current Prolog, and CP(l,])

A concurrent logic programming language is non-flat if the guard of a clause may contain program
defined predicates. Several of the flat languages described above — Flat GHC, Flat PARLOG,
FCP(|,1), and FCP(?) — were actually derived from their non-flat ancestors simply by restricting
the guard to contain predefined predicates only.

The ability to define guard predicates implies that guard computations may be unbounded
and, in general, may fail to terminate. Nevertheless, as in flat languages, a clause try is an atomic
operation: it succeeds, suspends, or fails, and if it suspends or fails it leaves no trace of its attempt.

Two approaches were taken to ensure atomicity of a clause try; they are also reflected in the
corresponding flat languages. One approach is to forbid guard computations from assigning goal
variables. This way several clauses can be tried in parallel for the same goal without interference.
This approach is taken by PARLOG and GHC, and is reflected in their flat subsets in the restric-
tion that guards can only do matching, not unification. The second approach is to allow guard
computations to assign goal variables, brt to make such assignments visible only upon commit-
ment. This s reflected in the FCP languages, which allow test unification in guards, but require
the unification attempt to be atomic.

We discuss the non-flat languages informally. Transition systems for non-fiat languages are
given by Saraswat {154] and Levy [114].

18.1 PARLOG and GHC

PARLOG and GHC are similar in their requirement that guard computations do not instantiate
goal variables, but differ in the way they realize this requirement. In PARLOG, a syntactic compile-
time check, called a safety check is performed to ensure that the program has no computations
in which guards instantiate goal variables {23]. Since the question whether a program is safe is
undecidable in general [29], any algorithm for determining safety can only perform an approximate
check, and if it correctly rejects all unsafe programs then it is bound to reject some safe programs
as well. This leads to the awkward situation in which the set of legal PARLOG programs is either
undecidable, or is determined by an algorithm, whose specification may be both quite complex and
evolving. The practice of PARLOG programming seems to be that the safety check is not done,
and the responsibility of producing safe programs is placed on the programmer's intuition.

The design of GHC {198] was influenced by an earlier design of PARLOG [24), called PAR-
LOGS83 in [145), which employed output sssignment instead of unification, and by critical exami-
nation of Concurrent Prolog [196). Rather than ruling out the poesibility of the guard instantiating
goal variables by a syntactic check, GHC ensures this with its synchronization rule. In fact, the
sole synchronization rule of GHC states that a unification in the head or the guard that attempts
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to instantiate a variable in the goal suspends.

The implementation of this synchronization rule in full GHC requires recording for each vari-
able which level in the process tree it ‘belongs’ to, which imposes considerable complications in the
runtime data-structures and algorithms [114,185]. Therefore two subsets of GHC were identified:
one is the flat subeet, introduced in Section 10, another is the safe subset, defined as follows. A
GHC program is safe if it has no execution in which a body unification suspends. Note that a Flat
GHC program is trivially safe. Of course whether » GHC program is safe is also undecidable.

As in their flat subsets, the main difference between Safe GHC and PARLOG is the availability
of tial-And and sequential-Or in the latter.

Althoush PARLOG and GHC predate their flat subsets, there are almadst no examples which
show that the former languuges are significantly more expressive than the latter ones. Perhaps the
one interesting example is that of unbounded nondeterministic ¢k~ e, imp) ted by r
in the guard. Consider a process ¢(Is,...) which has an unbouno ..t (or stream) of streams /n.
On each iteration, ¢ wishes to extract one element from one of the streams, if such an element is
ready, and iterate with /n’, which contains the tail of that stream and the unmodified remaining
streams. If all the streams close, the process terminates. Using non-flat guards, the program can
be written in GHC as follows:

c(ln,. B .) -—

get(X,In,In’) |

.. do something with X ...

c(In’,.. ).
c(In,...) —

halt(In) | true.
get(X,{{X’{Xs}{in],in") «— In’=[Xs|In], X=X".
get(X,[Xs|ln},In) o= get(X’,In,In”) | X=X', In'=(Xs|In"].

balt([[ }|In]) «— balt(In).
halt([]).

The intermediate variables X’ and In’ are needed to ensure that the recursive call of get does not
suspend because of an attempt to instantiate the goal variables X or In’.

Note the difference between get and Aalt. Both are recursive, but Aalt iterates in the body,
since it tests for a conjunctive condition (all streams have terminated), whereas get iterates in the
guard, since it tests for a disjunctive one (there is an element on one of the streams).

The program cannot be specified directly in a flat language, since it requires nondeterminism
of unbounded degree in process reduction. However, its purpose can usually be achieved using a
merge network, which is specifiable in any flat language.

Embedding Safe GHC in FCP(:)
Safe GHC can be embedded in FCP(:) using a technique for g Or-parallelism into And-
paralleliam, developed by Codish and Shapiro [29]. The ides is to lpawn And-parallel processes to
evaluate Or-parallel guards, and thread these processes using two short-circuits: s success circuit,
which reports the succese of one of the guards, and a failure circuit, which reports the failure of all
guards. The hierarchical And/Or tree is implemented by » hierarchy of success and failure circuits.
The power of FCP(: ) is needed since the method requires reflection on the failure of unification.

A mutual exclusion protocol that at most one guard can commit for each goal. Al-
though the mutual exclusion protocol used in the original embedding [20)] relies on atomic unifi-
cation (Section 14), the less efficient single-round mutual exclusion protocol (Section 7.4) can be
used as well. The technique was later enhanced by Levy and Shapiro [116], into a compiler from
Safe GHC to FCP(?).

The technique cannot be used to embed (unsafe) GHC in a flat language, since a correct
implementation of GHC requires recording the guard in which & variable is allocated. This problem
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is further discussion in Section 20.

Embedding PARLOG in FCP(:)

The technique for compiling Or-parallelism into And-parallelism can be combined with the FCP(:)
implementation of the control meta-call to form an embedding of Safe GHC + the control meta-call
in FCP(:). It can be further bined with the techniques for embedding FP(&) and FP(;) in
FGHC,y, to embed PARLOG in FCP(:).

18.2 Concurrent Prolog and CP(},|)

Concurrent Prolog [160] is the ancestor of FCP(?). Similarly, the language CP(|,]) [154,157,151] is
the ancestor of FCP(:). Unlike GHC and PARLOG, both allow guard computations to instantiate
goal variables. However, to achieve atomicity of a clause try, these instantiations should not be
visible outside the calling goal prior to the commitment of the clause. In order to perform Or-
parallel clause evaluation in Concurrent Prolog, a ‘multiple-environments’ mechanism is necessary.
This mechanism allows competing clauses to make temporary and hidden instantiations to goal
variables, which become permanent and visible only upon commitment. Several approaches to
the construction of such a hanism were investigated [114], but none have lead to satisfactory
results. The difficulty in constructing such a mechanism can be understood by examining the
power of Concurrent Prolog. It can specify almost trivially an Or-Parallel Prolog interpreter,
which simulates the don’t-know nondeterminism of Prolog by recursion in guards.

An embedding of Or-parallel Prolog in Concurrent Prolog

The Or-parallel Prolog interpreter assumes that the Prolog program is represented by the Con-
current Prolog procedure, clauses/2, which returns on the call clanses(A,Cs) the list of clauses
Cs potentially unifiable with the goal A. In principle Cs can be the entire Prolog program, but
indexing on procedure names or even on goal arguments can be used to reduce the number of
clauses returned. Each Prolog clause A — Hi,.. ., B; is translated into a term in the list Cs of the
form (A«—{B,,...B|Bs]\Bs). Note that it rep ts the (poesibly empty) body by a (poesibly
empty) difference-list of goals. Given this translation, an Or-Parallel Prolog interpreter can be
written in Concurrent Prolog as follows38

solve([ ]).
solve([A]As]) —
clauses(A,Cs), resolve(A,Ce?,As?).

resolve(A,[(A—Be\As)|Cs],As) —
solve(Be) | true.

resolve(A,[-|Cs],As) —
resolve(A,Cs,As) | true.

The interpreter as defined can return only one answer to a goal. This limitation, however, is
shared also by Prolog meta-int t To collect all solutions to a goal, a set abstraction is
incorporated in Prolog Itis typlcally implemented by storing the solution found (using a side-
effect) and inducing fi The approaches of Ueda [200,201) and Shapiro {165], in comparison,
naturally collect all solutions to a goal.

The simplicity of this interpreter indicates that the implementation of the multiple-
environments mechanism of Concurrent Prolog is at least as difficult as the direct implementation
of Or-Pazallel Prolog. Presently it seems that the added complexity of Concurrent Prolog over its
flat subset outweighs its added expressiveness.

28 This interpreter i due to Kenneth M. Kahn,
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PART IV. IMPLEMENTATIONS AND APPLICATIONS

19. Implementations of Concurrent Logic Programming Languages

Considerable effort has been invested in efficient implementations of concurrent logic programming
languages, for both sequential and parallel computers.

19.1 Sequential implementations

We consider in depth impl tation techniques for fiat languages, then ion briefly techniq
for non-flat languages.

There are several implementations of flat languages [f 7,49,89]. All employ some variant of
ap abstract machine developed by a group at the Weismann Institute, first incorporated in an
interpreter for FCP (128], and later refined and integrated with techniques for compiling unification,
developed by Warren [206], within a compiler/emulator based impl tation [89].

The sequential abstract machine

The key concepts of the machine are as follows. The machine represents the goal by an active
queue and a set of suspension lists. Each process in the goal ia either in the active queue or in one
or more suspension lists. Each suspension list is associated with an unbound variable, and may
consist of several processes.

The basic operation of the machine is to dequeue a process from the active queue, and try to
reduce it with some clause in the program. This operation is called a process try. A process try is
composed of a seq of cl tries. In each clause try the try function of the process and the
clause is computed (oee Section 4.2). A process try succeeds if one of its clause tries succeeds; it

pends if none , but at least one suspends; it fails if all clause tries fail. When a process
try succeeds the try -ubun.utlon 9 is puted. When a p try suspends a set of susp n
variables is computed; a variable is included in the set if lu being instantiated in the future may
release some clause try from suspension, i.e. cause it to succeed or fail.

If & process try ds with a substituti @ then the goals in the body of the successful
clause are added to the active queue, and 4 is applied to the state of the computation. In addition,
processes in suspension lists of variables in the domain of # are moved to the active queue. If the
process try suspends with a suspension set S then the process is added to the suspension lists of
each of the variables in S. If the process try fails the machine halts with an error state.

Note that a process can suspend on several variables, and be activated and suspended several
times before succeeding or failing. A mutual exclusion mechanism, described below, ensures that
a process is activated at most once per suapended process try.

The machine is connected to one or more external input devices, realised by data streams,
including a keyboard, and typically has a process consuming each stream. The machine terminates
successfully when all external input streams are closed, and there are no p left. It ter t
with deadlock if all input streams are closed and only suspended processes are left.

The machine maintains all dynamic data structures in a single address space, calied a Acap.
The heap grows when terms are allocated and processes are created, and shrinks by garbage-
collection. The structures in the heap are variables, terms, process records, suspension records,
activation records, and programs.

A variable is represented by one memory word, which is evuer empty or points to a suspension
list. When a variable is instantiated to a term, its memory word becomes a reference (pointer) to
the term unless the term can be stored in one word (e.g. an integer), in which case it is stored in
place of the variable. Other terma are repr ted using standard techniq A pracesg with a
predicate p/n is represented by n+¢ words: one for the program counter, which points &t the code
of the procedure p/n, n words for the process arguments, and one word for chaining the process in
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Figure 7: Suspending a process on two variables

the active quene. The active queue ists of chained prc A suspension list ists of a list
of suspension records (which could be list cells). Each suspension record points to an activation
record and to the next suspension record if there is one. The activation record realizes the mutual
exclusion mechanism which prevents multiple activations of the same process. It either points to a
process record or is null, if the process has already been activated. If a process suspends on several
variables, the suspension records in the suspension lists of these variables all point to the same
process activation record, which in turn points to the process. The first variable to be assigned
activates the process by enqueing it to the active gueue, and sets its activation record to null. This
prevents the other variables from re-activating this process. A process suspended on two variables
is shown in Figure 7.

In addition to the heap, the machine has global registers for the active queue front and
back, top-of-heap pointer, current process, current program counter, etc. In a language with test
unification, the machine also has a trail. The trail is used to record assignments made during test
unification in a clause try, so that they can be undone if the test unification subsequently suspends
or fails. Unlike the standard Prolog trail, which needs to support deep backtracking, the trail in
fiat languages needs to support only shallow backtracking, and is reset on every clause try. As a
result it can be rather small (e x. 256 words).

The machine employs several optimizations, the most important being tail-recursion
optimization?® Each dequeued process is given a time-slice ¢ (e.g. 1 = 25). When a process
A with time-slice { is reduced to the p By,.. By, k > 1, then one of them, say By, reuses
A’s process record (if it is large enough), inherits the time-slice 1-1, and is immediately tried if ¢
> 1. For the other processes By,..., By new process records are allocated, and they are enqueued
to the back of the active queue. If { = 1 then By is also enq d. This sch intains And-
fairness while decreasing process switch and memory access (assuming some process arguments are
maintained in processor registers during a time-slice).

To increase the chance of a process record being reused, minimal size records are allocated

» This name is kept for historical The optimisati pplies to any clause, not necessarily recursive, and
not necessarily to the tail call.
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Implementations of non-flat luﬁ:ﬁ‘g
One way to achi tomicity try in s non-flat language is to try and reduce goals in

some order; when reducing a goal, try each clause in some order; and for each clause guard apply
this execution algorithm recursively. This is the algorithm incorporated in the first interpreter for
Concurrent Prolog, written in Prolog [160]. Variants of it were implemented on top of Prolog, both
for Concurrent Prolog and for GHC and CP(},{,&) [203, 153). This execution algorithm, however,
does not satisfy any fairness requirements. For example, an attempt to reduce a faulty p
(with a nonterminating guard) may block the rest of the system forever.

Several other executions algorithms for Concurrent Prolog which do not suffer from this prob-
lem were investigated [115,127,141). Their complexity, however, seemed unacceptable, and was
partially a motivation for the development of Flat Concurrent Prolog and the simpler non-flat
languages, GHC, PARLOG, and CP(|,1). An abstract macaine for PARLOG was developed by
Gregory et al. [68], and later optimized by Crammond {34]. Its basic design differs from the FCP
abstract machine [89] in that it explicitly maintains & process tree. Another abetract machine for
GHC was derived from the FCP machine by Levy {113]. Although GHC is simpler than Concur-
rent Prolog, its implementation still required fairly heavy machinery. Therefore Safe GEC was
investigated, and a compiler from Safe GHC to FCP was developed {116].

Compilation of unification

The basic data manipulation of logic languages is unification. Warren [206] has developed a method
for compiling unification efficiently by identifying its various special cases which are specified in a
clause head, and generating special instructions for them.

Warren’s schemne was designed for Prolog’s general unification, and is applicable both to FCP’s
read-only unification [89], and to the input matching employed by FGHC [97] and PARLOG.
Using it, an abstract machine along the lines described above can achieve the same uniprocessor
performance as the Warren abstract machine for Prolog.

However, for input matching one can do better than Warren’s scheme. The input matching
component of a set of clauses of the same procedure can be jointly compiled into a decision tree,
which combines shared matcl ‘ngs and finds more efficiently the set of applicable clauses [89].
Procemsor architectures
Two processor architectures specialized for the tion of a rent logic programming lan-
guage, numely FCP("), were deveioped The first architecture, Carmel [74,75], takes the RISC

pp a architecture with mechanisms to support the expensive
or frequent openhonl of FCP(") By carefully tuning the instruction set and processor architec-
ture, impressive performance is obtained.

The second architecture, by Alkalaj and Shapiro (5], takes the view that internal concurrency
in a processor combined with a carefully designed memory hierarchy is the key to high perfor-

The architect ists of several specialized processing units, each with ita own memory
hierarchy. The reduction and tag processors are at the root of the hierarchy. They are supported
by three additional processing units: an instruction processor, 8 data-trail proceseor, and a goal-
management processor. The instruction processor employs standard techniques for instruction
prefetching and caching. The data-trail processor employs a data cache enbanced to support shal-
low backtracking, required in the implementation of atomic test unification. The goal-management
Pprocessor manages the top of the process queue in a way analogous to how a RISC processor man-
ages the top of the activation stack. The goal-management processor manages process switching,
spawning, activation, and suspension, using a bank of register windows. The execution algorithms
of this architecture are specified using an FCP(?) program, by hardware description techniques
developed by Suauki [172) and Weinbaum and Shapiro [208). The specification forms a working
simulator of the architecture. The performance of this architecture is yet to be evaluated. How




these two processors can be integrated in & multiprocessor architecture is an open question.
The PSI-II processor was designed for the execution of Prolog, but was re-microcoded to
v * ment KL1 [185]. It is the building block of the multi-PSI parsilel machine.

19.2 Parallel implementations
We review the concepts bebind two types of parallel implementations: distributed and shared-
memory. The implementations include a distributed implementation of FCP [190)], a distributed
implementation of FGHC [90], a distributed implementation of Flat PARLOG [47], and shared-
memory implementation of PARLOG [34)].

The core operation in these implementations ia unification.

Distributed atomic unification

In a distributed implementation each p executes a variant of the sequential abstract ma-
chine, described above, and takes opecla.l actions when a clause try involves variables shared with
other processors. These actions realise a distributed unification algorithm.

Since non-variable terms are immutable data structures, they can be replicated upon d d
throughout a processor network without any special istency maint: hani The
writing on a variable, however, needs to be coordinated. In particular, in a language with atomic
unification, a unification that involves writing on several variables should either succeed in writing
on all of them, or write on none. Hence, from a distributed implementation point of view, an
atomic unification is best viewed as an atomic transaction, which may read from and write to

several logical vacisbles. Standard database cc y-control techniques for realizing atomic
transactions can be adapted to the particular requirements of unification.
One approach, spplicable to & network of p without shared y, is as follows.

It uses the messages read, lock, become value, ‘and becomedocal. A variable shared by several
processors is represented by a directed tree, with edges pointing towards the root. Each processor
sharing a variable stores a node of the tree in its local memory, which contains the address of the
node it is pointing to if it is not the root. An occurrence of a variable ia called remote if it is an
internal node in the tree; local if it is the root of the tree.

An attempt to read a shared remote variable is called a read-fasli. A processor executing a
process which has had a read-fault sends a read request up the tree, and adds the faulting process
to the remote variable’s suspension list. When a processor storing the root of the tree receives a
read message, it operates as follows. If the variable has been assigned a term T, a become_valuc(T)
message is sent in reply. If the variable is still unbound, the read request is stored in the variable’s
suspension list, and will be replied to when the variable is assigned.

A shared variable can be written only at its root. Write-permission is transferred between
processors by changing and redirecting edges in the tree. A processor with a local shared variable
(i.e. the root of a shared variable tree) may write on it when it pleases. It ensures that a unification
that involves writing on several shared variables is atomic by not responding to ages, including
read messages, while performing a clause try.

An attempt to write on a remote shared variable is called a write-faul. A processor execu.ing
a process which has had a write-fault sends a lock message up the variable’s tree, and suspends
the fauiting process on the remote variable. The processor receiving this message replies with a
become.value(T) if the variable has already been assigned a term T, or with a decome Jocal( Reads)
if the variable is still unbound, and changes its local variable to be a remote variable pointing at
the sender’s variable. Reads is the (possibly empty) list of suspended read requests on the sender’s
local variable suspension queue, to which a request from the sender’s own variable is added in case
it has local processes suspended on it. The receiver of a decomelocsl( Reads) inessage changes its
variable from remote to local, wakes up all processes suspended on it, and adds the Reads to the
varisble’s suspension list.

The scheme as described may result in livelock, if two processors keep sending lock requests to
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each other, and none accumulates enough local variables to perform a process reduction. To prevent
this, a 2-phase-locking scheme can be incorporated {190,192]. The scheme requires additional
bookkeeping by a write-faulting processor, but not additional messages. We do not describe its
details here.

Anotber question to address is how to handle variable to varisble unifications. One approach
is to lack (i.e. make local) the two variables when assigning one to the other. This ensures that
no cycles are created, but may cause superfluous contention in applications using the short-circuit
technique. A second approach is to impose some ordering on variables, and to respect this ordering
when unifying two variables. Another approach is not to prevent the creation of cycles, but to
break them when they are detected.

Impl tation of non-atomic unification and the meta-call construct

In lmguages without atomic unification, such as GHC, PARLOG, and their fiat subsets, simpler
algorithms than the one described above apply. For example, when unifying a remote variable X
with a term T it is not necessary to bring X locally before assigning it; instead, a message can be
sent to X, requesting it to unify with T’ If the unification fails, the machine halts with an error
state (or simply notes the i ist cy and p ds).

Since either of these behaviors is not uceptable in & multbtuhng operatmg system, the
meta-call construct, described in Section 10.3, was developed. The imp tation of the meta-
call construct must be integrated with the distributed unification algorithm in order to detect
termination and to correctly ascribe failure. One approach, taken in the distributed 1mplemenutxon
of FGHC [90], is to associate with every computation (invocation of a meta-call) a unique identifier,
and maintain tables associating computation identifiers with the appropriate streams of the meta-
call. When a unification fails, this fact is reported to the computation by placing a message on the
appropriate stream. Since the short-circuit technique is not applicable, distributed termination of
a computation is detected by maintaining an explicit distributed counter for each computation, at
the language implementation level.

Foster [47] describes an alternative approach to the distributed implementation of the control
metacall, which avoids the complexity of FGHC’s distributed counters. Only uniprocessor compu-
tations are supported directly in the implementatione and remote structure-to-structure unification
operations are performed locally. Acknowledg t ages and & ting on individual
nodes hence suffice for termination detection. Termination detection in distributed (multi-node)
tasks is programmed in PARLOG using the usual techniques.

A shared-memory implementation
Crammond [34] describes a parallel implementation of PARLOG on a shared-memory multiproces-
sor. In this implementation each processor has its own data areas, although processors may access
each other’s areas in order to read the value of a shared variable, to assign a shared variable, or to
take work (processes) from each other. A simple locking mechanism is employed, where a proces-
sor that modifies a shared object (e.g. a process queue or & shared logical variable) locks it, and
a processor attempting to lock a locked object busy waits (“spins”) until this object is unlocked.
Since PARLOG does not have atomic unification, s processor needs at most one lock at a time,
and hence this locking scheme does not resuit in deadlock. An extension of this implementation
scheme to languages with*atomic unification would require some concurrency control mechanism
similar to the one discussed in this section above for distributed atomic unification.

A simple load balancing scheme is employed in this implementation, where a processor de-
queues processes from its own queue as long as it is not empty, and dequeues from some other
p with a pty queue if its own queue is empty. Using such a scheme, this impl

P

tation obtained a speedup of up to 15 using 20 processors. Alternative load balancing schemes can
be incorporated in this implementation with littie difficuity.
An aoalysis of a shared-memory implementation of Flat GHC is reported by Tick {163)].
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19.3 Process to processor mapping

The question of how to map processes to processors is not unique to concurrent logic programming,
and any general approach or solution may be applicable. Approaches to the probiem fall into two
general c&tegoma methods in which the program itself (or programs u-ocla.wd with it) specify
the mapping, and dynamic mapping techniques, incorporating load-balancing algorithms. Hybrid
techniques are also possible.

We show how instances of the two approaches can be realised using distributed meta-
interpreters. The interpreters are shown in FCP(:), although they could be written in any flat
language.

Mapping with Turtle-programs

The use of Turtle-programs for mapping processes to processors was suggested and demonstrated
in {163]. Assume that the parallel machine is a (finite or infinite) two dimentional grid. View each
process as a LOGO-like Turtle, which has a position on the grid, and a heading. With each process
activation (body goal) P we can association a LOGO-like Turtle program TP, as in P@TP. The
meaning of the call POTP is that P should have the position and heading obtained by applying
TP to the position and heading of its parent process, and execute in the processor corresponding to
that position. Processes without an associated Turtle program simply inherit their paren’t position
and heading.

Using this notation, a sequence of processes can be easily mapped on a sequence of processors.
For example, ider the vm vectro-matrix multiplication program in Section 7.2. Adding the
Qforward Turtle program to the recursive call to vm, cause the inner-product processes ip to be
placed on a sequence of adjacent procesees:

% vm(Xv, Ym, Zv) — multiplying the vector Xv by the matrix Ym gives the vector Zv.

vm(-,[],Zv) ~— Zv={].
ym(Xv,[Yv|Ym],Zv) — Zv=(Z|Zv],
ip(Xv,Yv,2), vin(Xv,Ym,Zv')@forward.

Mapping process arrays to processor arrays is just as easy. Consider the matrix multiplication
program mm in Section 7.2. Adding the @forward Turtle program to the recursive call to mm,
and Qright to the initial call to vm maps the array of ip processes to an isomorphic array of
processors:
% mm(Xm,Ym,Zm)

Zm is the result of multiplying the matrix Xm with the transposed matrix Ym.

mm([ ],-,[ ).
mm([Xv|{Xm],Ym,[Zv|Zm]) ~
vin(Xv,Ym,Zv)@right, mm(Xm,Ym,Zm)@forward.
The mapping of additional process structures is discussed in [163]. An alternative mapping strategy
is described in {174]. Herr  show an enhanced distributed meta-interpreter which implements
‘Turtle program mapping I-

We assume that the underlying machine is & torus- ted mesh of p (a virtual
torus csn be mapped on a two dimensional mesh by placing four virtual proceasors per physical
one). The interpreter consists of a torus of pr p We that these processes

are mapped to the underlying processors using the forus program shown in Section 7.2.

Each processor process has four outgoing streams to its neighbors. Ite four incoming
streams are merged into one. An interpreted process has a heading, and possibly also a
Turtle program. A headed process is represented by a pair (Gosl Heading) where Heading
is one of {norih,south,cast,west). To s headed process (G,H) a Turtle program TP msy
be attached, as in (G, H)OTP. We sssume the process in each processor is called proces-
sor(In,[In, ToNorth, ToSouth, ToEast, ToWest]), where the first argument is the merger of its neigh-



bors’ outgoing streams, and its second argument is the list of its five outgoing streams, one to iteelf
and four to its neighbors. The processor’s code is as follows:

processor([(Goal,Heading)|In],Out) ~—
reduce(Goal,Heading,In),
processor(In,Out),

processor([(G,H)@TPiIn],Out) «—
route(G,H,TP,Out,Out’),
processor(In,Out’).

It receives goals on its input stream. If a goal has s Turtle program it routes it to its appropriate
output stream. Otherwise it executes it locally. Its execution may result in new goals, possibly
with Turtle programs. They are merged into its input stream, and treated normally. The meta-
interpreter red goals, maintaining their heading, and when it encounters a goal with a Turtle
program it sends it to the processor for routing.

reduce(true,_,_).
reduce((A,B),H,Out) —
reduce(A,H,Out), reduce(B,H,0ut).
reduce(goal(A),H,Out) ~—
clause(A,B), reduce(B,H,Out).
reduce(AQTP,H,0ut) —
write((A,H)@TP,Out).

The router is specified, without showing its code:
route(Goal,Heading, TP,Out,Out’) —
Send Goal according to TP and Heading on the appropriate

Out stream, with an updated heading and possibly with a residual
Turtle program, and return the updated streams Ost’.

The torus of processor processes can be mapped on an underlying torus using Turtle programs;
but who will interpret these Turtle programs? Booting an initial process network on the processor
network is necessary, and can be dobe using standard techniques. One solution is described in
[187).

In this scheme the underlying parallel impl tation of the language does not have to sup-
port remote process spawning in addition to distributed unification, since it is implemented at
the language level by standard message passing between meta-interpreter (or runtime support)
processes. Another mapping notation is described in {174].

Mapping with dynamic losd-balancing

Dy ic load balancing requires that processors off-load work when they are too busy, and request
work when they are idle. A good dynamic load balancing algorithm distributes work evently and
with little overhead. If the underlying machine has & notion of locality, i.e. communication costs
between processors are not uniform, then a dynamic load balancing algorithm should prefer local
distribution of work over global one, when possible.

We show here a simple implementation of dynamic load balancing using a centralised queue.
The scheme can be enbaaced to use s distributed queue [165), and thus reduce contention and
increase locality.

Assume 8 network of processors, and a sest mapping command which places the process in
the next p in some pr ordering. A distributed meta-interpreter performing dynamic
load balancing can be defined as follows:

processors(N,ToQ) —
queue(ToQ),
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processors’ (N, ToQ)@next.

processor(ToQ),
processors’ (N/, ToQ)Gnext.
processor(ToQ) —
reduce(true, ToQ).

reduce(true,ToQ) +—
il deguens(A) ToQ 7o)
reduce(A,ToQ’
reduce(A, B),ToQ)
write(enqueue(B),ToQ,ToQ’), reduce(A,ToQ’).
reduce(A,ToQ) —
clause(A,B), reduce(B,ToQ).
queue(In) —
See Section 7.3.

Communication can be reduced, at the exp of slightly slower distribution of work, by placing
a buffer in each processor. The buffer forwards requests to the global queue only if it overflows

(has too many emguese requests) or underflows (; t satisfy a deg quest). For example,
in experiments made on a 16 p puter on a particular application a buffer sise of about
10 was found optimal [165)].

Code management

General solutions to the code management problem are also applicable to concurrent logic pro-
gramming languages. One approach to the problem is described in (187].

20. Applications of Concurrent Logic Programming Languages

Since their beginning, the design of concurrent logic languages was closely coupled with the de-
velopment of prototype applications, which were used as feedback to the design process. The
application programs were those which testified to the little difference between flat and non-flat
languages from an expressiveness point of view. The systems programs were those which stretched
the synchronization capabilities of logic languages to their limits, and provided examples where
the power of atomic test unification a.nd read-ouly unification shows through.

A description of tions, as well as further references, can be found
in the Concurrent Prolog book [164] The book reports on the implementation of par-
allel and distributed algorithms, systems prognmmlng, and the implementation of embed-
ded languages, among others. Other ap ti of cc rent logic languages include
{35,67,98,99,118,137,144,145,148,157,158,172, 181 ,183]. Combined, these applications witnesa to
the generality and v tility of the rent logic programming approach.

- 88 -




-

—_— e

PART V. CONCLUSIONS
21. Relation to Other Languages and Computational Models

21.1 Prolog, parallel logic languages and concurzent constraint languages

Prolog

Concurrent logic languages, as presently defined, are not an alternative to Prolog. They are,
in a sense, lower level languages, which exhibit their strength mainly in the implementation of
parallel algorithms, distributed systems, reactive systems, and in systems programming. Hence
the question of the integration of these languages with higher-level languages in general, and with
Prolog in particular, has received considerable attention.

One of the initial goals in the design of Concurrent Prolog [160) was the definition of a language
which includes Prolog as a subset. It seerned that this goal was not realized in the initial design
of the language, and hence this design was termed “a subset of Concurrent Prolog”. Later, it
was found out that an Or-parallel Prolog interpreter can be specified easily in that subset (the
interpreter is shown in Section 18) and, as a consequence, that the original design did achieve
this goal. However, the move to flat languages opened up again the question of the integration of
Prolog and concurrent logic languages.

Two solutions were discussed in Section 14. One is to provide some interface between two
separate languages: some form of Prolog, and some concurrent logic language {24,25]. Another is to
embed some form of Prolog into a concurrent logic language [29,165,198,200]. A third solution is to
provide some of the mechaaism of concurrent logic language via extensions to Prolog, such as ireeze
{12] and wait declarations {132]. The problem with the first solution is that it really does not address
the essence of the problem, namely to find an integrated solution in which the various strengths
of logic programmiing can brought to bear. It is applicable to any two programming language,
not necessarily logic programming ones. The problem with the second solution is performance.
Techniques for efficient implementation of concurrent logic languages lag one step behind those
of sequential Prolog, and there are claims that the algorithms employed in the embedding of
Prolog in concurrent logic programming are not feasible. The third solution is largely limited to
transformational applications, since it cannot change the basic fact that Prolog is not a reactive
programming language.

CP(l,\,&), Andorra, and Pandora

The synchronization and commitment mechanisms of coucurrent logic languages are useful also in
non-reactive applications. This motivated a different line of research — the design of non-reactive
languages that attempt to supersede Prolog in expressiveness and performance, without Leing
rooted in its sequential execution model.

Saraswat [150,153,157) investigated a parallel logic language, called CP(] |,&), that incorpo-
rates both don't-cate and don’t-know nondeterminism, and synchronization by input matching.
Although an efficient implementation on top of sequential Prolog is described [Sad), the language
seems cven more difficult to implement “for real” than the non-flat languages discussed in Section
18.

Yang and Aiso (209,210 also propose a language with don't-care and don’t-know nondetermin.
ism, called P-Prolog, but use a different synchronization mechanism — the determinacy conditions
described in Section 12 on P-Prolog,.

Recently, an elegant integration of the ideas of P-Prolog and of Or-paraliel Prolog, called the
Andorra model, was proposed by D.H.D. Warren (personal communication), and integrated in the
Andorra language (72). The idea is as follows: reduce in parallel determinate goal atoms as long as
possible (And-parallelism). When no determinate atoms remain, choose one atom for an Or-split.
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Create two or more subgoals, one for each clause unifiable with the chosen atom, and continue in
parallel reducing the Iti dependent goals (Or-parallelism). Under the Andorra model pure
logic programs muy exhibit the synchronization behavior of concurrent logic programs, yet enjoy a
complete proof procedure. If in an Or-split the leftmost atom is chosen, Andorra is more efficient
(in terms of the number of reductions required) than ordinary Or-parallel Prolog, since it prunes
the search space better.

The ideas in the Andorra model can also be loyed in an impl tation of the flat subset

of CP(},|,&). Another recent proposal along these lines is Pandora {8] — a parallel logic language
incorporating PARLOG-like synchronization, and a mechanism for specifying which roal atom to
chooee for an Or-split.

Concurrent constraint logic programming
The framework of constraint logxc programming [92,31] proved in recent years to be a powerful
generalization of logic programming, both from a theoretical and from a practical point of view.
Maher [124] suggested using concepts of constraint logic programming to provide a logical charac-
terization of synchronization in concurrent logic programming. The conditions for the success of
input matching and guard checking of a goal atom A with a clause A’ «— G | B are customarily
defined operationally, a8 in this paper. Maher showed how this condition can be specified logically,
a8 the requirement that the accurnulated constraint (corresponding to the accumulated substitu-
tion in our model) entails the existential constraint (3)A=A’ A G, where the existential quantifier
ranges over the variables local to the clause. Saraswat [156,157] developed these ideas further.
He developed a framework of concurrent constraint logic programming in which a computation
progresses by agents that communicate by placing constraints in a global store and synchronize
by checking that constraints are entailed by the store. Agents correspond to goal atoms, plac-
ing constraints correspond to unification, and checking constraints correspond to matching and
guard checking in rent logic progr ing. Employing the concepts of consistency and
entaiiment between partial information (i.e. constraints), Saraswat was able to provide a logical
characterization of constraint-based constructs that correspond to non-atomic unification, atomic
test unification, read-only unification, test-and-set, and others. Constraint logic programming of-
fer a logical framework for dealing with domains other than Herbrand terms, such as boolean,
integer, and real arithmetic. Saraswat showed how such domains and others can be incorporated
in concurrent logic languages using this framework.

The initial work on concurrent constraint logic programming is very promising, and one may
expect that it will have as much theoretical and practical impact on concurrent logic programming
a8 constraint logic programming had on logic programming.

21.2 Distant relatives — Delta Prolog and Fleng

Deita Prolog
Delta Prolog [140] is Prolog augmented with CSP-like communication primitives. Delta Prolog is

different from the other languages surveyed in two respects. First, it is not a logic programming
language in the sense that a successful computation corresponds to a proof of a goal statement, and
a partial computation corresponds to proofs of a conditional statement. Specifically, the role of
the communication primitives of Delta Prolog in the declarative reading of programs is unclear. In
concurrent logic languages the synchronisation primitives can be ignored in the declarative reading,
since they affect only which answer substitution is found, but not the substitution itself. This is
not the case in Delta Prolog. Although Delta Prolog can be given axiomatic semantics, this can be
done for any programming language, not only for a logic programming one. The second difference
between Delta Prolog and the other languages surveyed is that Delta Prolog is not reactive, since
it may backtrack on communication.

It is not clear yet in which application area the particular features of Delta Prolog show their
advantage.
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Fleng

Fleng [134,135,136] is a simple concurrent programming language inspired by GHC and Kernel
PARLOG {23]. Its syntax uses (guardless) Horn clauses. Like GHC, it uses goal/clause matching
for synchronization, and its unification is non-atomic. Unlike GHC, unification, as well as any
other primitive, reports termination.

Fleng has no notion of failure. Every primitive operation termir.ates and reports its termina-
tion status. For example, the unification primitive unify(X, Y, Resuit), attempts to unify X and
Y. If it succeeds it assigns Result the value true, if it fails it assigns the value false.

In spite of its appearance, Fleng is not a logic programming language, since not every successful
computation corresponds to a proof of the goal statement. In particular, the goal srify(a a,frue),
terminates successfully, but apparently so does unify(e,d, true).

‘The insist that a sful computation should correspond to a proof is not a mere nicety,
and Fleng cannot simply drop the title of being a logic programming language and live happily
ever after. The concept of failure serves the fundamental role of an exception mechanism in logic
programming. In its absence, some other mechanism must be developed. As is evident from other
languages (73], a sound exception handling mechanism is not a trivial component of a language,
and its incorporation in Fleng would certainly licate its tics. Specifically, if Fleng's
present exception handling mechanism (namely the chn variable of each primitive) cannot be
used to report the exception, as in the call unify(s,5,true), what exception should be raised? The
most natural one is to fail the computation, which brings us back to square one. ..

If failure is reinstated in Fleng, then it becomes similar in expressiveness to KL1, since it can
be naturally embedded in KL1 and vice versa.

21.3 Dataflow languages

Concurrent logic languages share mth dataflow lmguage- {1] single-assignment (or wnt&once)
variables and dataflow synchroni Ho , this is mainly a similarity in spirit, not in
implementation. The basic operation that is synchromzed by dataflow in concurrent logic languages
is the process try. It corresponds typically to several tens, up to several hundreds, of conventional
machine instructions. In contrast, the synchronised operation in datafiow models corresponds
typically to one conventional machine instruction. This difference explains why realizations of
concurrent logic languages on conventional hardware have acceptable synchronization overhead,
whereas dataflow language seem to tate & ialized architecture.

Other differences between the two models is thtt. dataflow languages are typically determin-
istic, whereas concurrent logic languages are not, and that dataflow languages and architectures
are typically geared for scalar operations, whereas logic languages operate mainly on compound
data-structures, which may contain logical variables.

214 Functional languages

Much has been said on the relation between functional and logic languages {36]. In the context
of concurrent programming, the major observation is that functional languages are, by design and
ideology, transformational, rather than reactive. Functionsal programs denote time-independent
functions from inputs to output, and notions of state, synchronization, communication, and non-
determinism are alien to them.

Functional programs can be parallelized, and often yield efficient parallel algorithms. Rowever,
without major extensions (7,52,53,54,69,77}, which seem to undermine their original motivation and
‘semantic elegance’, functional programming languages cannot be used for the specification and
implementation of reactive systems.

Concurrent logic lan;uagu on the other hand, have explicit notions of processes, process state,
communication, sy ization, and nondeterminism. Furthermore, proceases can have several
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outputs, and inputs and outputs of processes can be combined into arbitrary process networks.
These, combined with properties of the logical variable, seem to be the source of their power as
concurrent languages; all are absent from the base model of functional languages.

In addition, it seems that there are usually simple translations from concurrent functional
languages to concurrent logic languages {117]. Thus, & possible architecture of a paralle! computer
system, which provides both styles of programming, each for the application it suits best, is a system
in which the base language is a concurrent logic programming language, which implements the
underlying operating system and programming environment, and higher-level functional languages
are implemented by translation to it. Such an architecture is proposed by [117].

21.5 Message-passing models of concurrency

The origins of concurrent logic programming languages can be traced back to the work of Kahn
and MacQueen [94), which offered a model of concurrency based on deterministic asynchronous
processes computing relations over data streams. van Emden and de Lucena {42] were intrigued
by this notion, and showed how one can use logic programs to specify such processes. Clark and
Gregory [20] took these idess & crucial step further and, influenced by the notions of CSP [86,87),
introduced synchronization and committed-choice nondeterminiam into logic programs.

Concurrent logic languages are similar to CSP and Occam [91] in their notion of processes,
nondeterminism, and synchronization via communication. They are similar to Occam, and different
from CSP aad Actors (78], in that processes commumuh via ‘ports’ (realized by logical variables)
rather than by naming the destinati or

One difference between CSP and Occam on the one hand and concurrent logic languages on
the other hand are the type of communication and synchronization they employ. In the former
communication is synchronous; in the latter asynchronous. In the former a communication channel
is necessarily point-to-point. In the lma it u, in the genenl case, many-to-many. We find the
added flexibility of the communicati ilable in concurrent logic languages over those
of CSP and Occam quite apparent. The -ddmonal overhead entailed by this added flexibility is
yet to be determined. Presently, it is not clear for which tasks Occam-like point-to-point syn-
chronous protocols are inherently more efficient than the general asynchronous protocols employed
in concurrent logic language, and vice versa.

Another fundamental difference is that CSP and Occam can operate on and communicate
only “ground” data, whereas the ability to communicate and share incomplete data structures, i.e.
data structures containing logical variables, is fund tal to rent logic languages, and is
their main source of expressive power.

Being concrete programming languages, concurrent logic languages are not directly comparable
to sbstract computation models such as CCS. However, it seems that if one abstracts away the
details of the data domain (i.e. terms and unification), and concentrates on the synchronization
aspect of concurrent logic languages, then models which can be thought of as the asynchronous
counterparts of CCS [129] emerge {65].

Although the syntax of CSP and CCS seems superficially different from that of concurrent
‘logic languages, there is a close analogy between the basic operators of the two families, shown in

Figure 8.

216 G t object-oriented programming
The underlying operationsl model of rent logic languages resembles that of concurrent
object-oriented models, such as Actors [78], in that both consist of a dynamic collection of light-
weight processes, computing by performing local computations and exchanging messages. There
are, however, several apparent differences.

First, Actor objects, like CSP processes, address each other by name, and not via channels.
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CCS/CSP operators | Guarded Horn clauses
action prefix guard

pazallel composition | conjunction

restriction clause head

choice i alternative clauses
relabeling (imnplicit) clause renaming
recursion recursion

Pigure 8: Analogy between CCS/CSP operators and guarded Horn clauses

The advantage of channels over object names is modulatity and abstraction; this had led Occam’s
dengnmwdepntfromCSPmthutupect It is easier to ct one p twork to anoth
by assigning output channels of one to input channels of the other, than by informing one the names
or mail addresses of the appropriate processes in the other. Channels are also more abetract, since
knowing a channe! does not imply knowing who receives or sends messages on that channel. A
process can have several input channels, which provide different access modes to its local data; this
feature can be the basis of a capability system. Several processes may listen on the same channel,
each handling a different set of messages, or handling a different aspect of a message.

If one is able to pass chaanels in messages, as in logic languages, than channels have an-
other, perhaps more fundamental, advantage over name-based addressing. Process-names in mes-
sages, like incomplete messages, can be used for network reconfiguration. However, this is only
one particular application of incomplete messages. The use of incomplete measages in the back-
communication protocol, in dislogues, in the bounded-buffer protocol, in the duplex-stream proto-
col, and in others is based on the ability to allocatecommuaication channels on the fly, and on the
fact that the channel implicitly embeds som# context information, which is used in the protocol.
There is no natural way to achieve these effects in name-based addressing.

‘The drawback of concurrent logic languages, compared to Actor-like langnugs u ot thexr
underlying operational model, but rather the verbose syntax required for expressing or
programs. The description of an object with one input channel and some state mmble- in a
concurrent logic language has the typical form:

p({Message|ln),. . .state variables...) —
.. Aandle Message, update state variables. ..,
p(In,.. .new state variadles...).

Furthermote, when several processes share the same output channel (“talk to the same object”),
then some protocol, such as the spawning of a merge network, need to be followed. This is in
contrast to Actor-like Ianguages, in which state variables are assumed not to change unless s
change is stated explicitly, and explicit mergers need not be created in front of receiving objects,
since they are assumed implicitly.

Another bookkeeping service provided automatically by object-oriented languages is object
deallocation; when there are no more references to an object, it is deallocated, and its storage is
reclaimed. In concurrent logic langusges, unreferenced data-structures are reclaimed by garbage
collection, but the conditions for process termination must be specified explicitly, by one or more
unit clauses. Sometimes the burden of doing so manuaslly should better be avoided.

A mechanism for detecting that a variable is referenced only by one process (17] can be used
for garbage collecting processes: A process that detects that it is the only one referencing its input
stream may perform some cleanup operations (e.g. close its ontput streams or unify its segment of
a short-circuit) and terminate (K. Kahn, personal communication). Although the pragmatics of
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this mechanism is quite well understood, its logical semantics still needs to be worked out.

The question of the proper integration of inheritance in a concurrent object-oriented framework
is atill open. Delegation wae suggested as a mechanism which is more suitable to a concurrent
framework. As discussed in Section 7.6, objects which delegate incomprehensible messages can be
specified in concurrent logic languages by augmenting the process with additional output stream,
and adding a delegating clause which uses the otAcrwise construct. This mechanism, however, is
also quite verbose.

These observations have lead to the design of new object-oriented languages, such as Vulcan
[95], POLKA, and POOL (35]. These languages sttempt to enjoy the best of both worlds. They
adopt the channel concept of concurrent logic languages, but do not require explicit repetition
of state variables, explicit mergers, or explicit delegation mechanism. Another important design
consideration for these language was that their implementation be in terms of natural and efficient
translations to concurrent logic languages. This would allow the exploitation of implementations of
such languages, as well as support integration between applications that are best described by an
object-oriented language, and applications that enjoy the full power of concurrent logic languages.

Consider the standard bank account example. In the Vulean language, a process with the
desired behavior is specified by the following program:

class(account, (Balance=0, Name=“No Name Given”, Errors,.. ]).
account :: deposit(Amount) ~

new Balance := Balance + Amount.
account :: balance(Balance).
account :: withdraw(Amount) —
Balance > Amount
ifTrue new Balance := Balance - Amount
ifFalse Errom : M'n(Num. Balapce, Amonnt, )

A mmﬁmp&mﬁm'-wm.new "turfwe-yntu:” for
concurrent logic programs, rather than a completely new languages. The surface syntax, called
logic progrems with implicii variables [96), allows specifying only what has changed in the process’s
state during a transition, rather than the entire old and new states explicitly, as required by plain
logic programs. In addition, it has a special notation to support stream communication, and array
operations. For example, the bank account in FCP(}) with implicit variables would be specified as
follows:

proced ¢(In)+(Bal 0,Name=“No Name Given” Errors,. . ).

aceount —
In 7 deposit(Amount) |
Balance’ := Balance + Amount,
account.

account —
In ? balance(Balance) |
account.

account
In ? withdraw(Amount),
Balance > Amount |
Balance’ := Balance - Amount,
account.

account —
In ? withdraw(Amount),
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Balance < Amount |
Errors ! Overdrawn(Name,Balance,Amount,. . ),
acecount.

The variable X’ specifies the new value of the process argument X . The stream notation 3/
? X is o shorthand for the input matching Xs={M|Xs’], and M ! X¢ is a shorthand for the same

Unlike in Vulcan this notation is employed only for stream, rather then channel {194] commu-
nication. An extension of this approach to incorporate channels as an sbetract data type is being
investigated.

21.7 Linda
Linda {13,2] is a set of primitives that operate concurrently on a multiset of tuples, called a Tuple
Space. Tuples in a Tuple Space are accessed associatively using a degenerate form of unification
between tuples and tuple templates. The basic operations are out(T) (insert a tuple T to the Tuple
Space) in(T) (delete a tuple matching T, instantiating variables in T'; block if a matching tuple is
not available) and rd(T) (find a tuple matching 7', instantiate variables in T'). A fourth primitive
, eval, support process forking. Augmenting a conventional sequential programming language
with these Linda primitives results in a concurrent programming language in which processes
communicate and synchronise via the Tuple Space.

A compasison of Linda and concurrent logic program is given in {13]. A critique of this
comparison, which demonstrates an embedding of Linda's primitives in a variant of FCP(:) is
given in {168}

21.8 Nondeterministic transition systems and UNITY

Nondeterministic transition systems are a natural method for specifying concurrent systems. In-
deed, we have given the semautics of concurrent logic programming languages using nondeter-
ministic transition systems. Recently, a notation was proposed for specifying concurrency called
UNITY (16]. UNITY is based on unbounded iterative nondeterministic transitions.

Concurrent logic languages share with UNITY the goal of being a foundation for a general
purpose concurrent programming language, the belief that the execution model of such a language
should be a,bctnct rather then being tied with a concrete architecture, and the conviction that

det ism is an tial ¢t in such 8 model. Another point in common between
UNITY and the stronger concurrent log:c languages is the sise of the atomic operation: both the
simultaneous assignment of UNITY and atomic unification in languages such as FCP(:) involve
atomic transactions which read from and write to several variables.

One difference between UNITY and concurrent logic languages is the notion of a process. A
UNITY program has one global state, and transitions operating on it, poesibly concurrently; it
does not have an explicit notion of a process. Concurrent logic programs have a natural notion
of a process. However, this difference is only nppuent. The notion of a process in concurrent
logic programs is in the eyes of the beholder — it is not an inherent part of transition system of
concurrent logic programa, Similarly, one can often identify “processes” in UNITY programs, if
one 80 desires.

Another difference between UNITY and concurrent logic languages is the notion of termina-
tion. Concurrent logic programs terminate by explicit instructions. UNTTY programs terminate
implicitly, by reaching a fixpoint. One implication of this decision is that there is no distinction
between successful termination and deadlock. We feel that this difference is mostly a matter of
definition: one can define a different model of concurrent logic programs in which termination is by
fixpoint; similarly, one can define “NITY™, which is like UNITY except that there are explicit ter-
mination conditions. To our opinion, explicit termination is preferable both from the programmer’s
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and from the implementor’s point of view in both models.

We find the fundamental difference between UNITY and concurrent logic languages in the
notion of a variable, In UNITY, variables are mutable; therefore a transition must exclude other
transitions from writing on variables it reads from, and from accessing variables it writes to. In con-
current Jogic languages, variables are single-assignment, therefore no mutual exclusion mechanisms
are required when reading a variable. The effect of mutable unshared variables can be achieved
nonetheless in concurrent logic languages, as explained in Section 7, using iterative processes.

It seems that this fundamental difference is the source of another difference between UNITY
and concurrent logic languages, namely their attitude to architectures. Although both are architec-
ture independent, the gap between the general UNITY model and te archit , such as a
non-shared memory paralle} computer, is sufficiently large that the authors of UNITY suggest that
special sublanguages should be tailored for particular parallel architectures. In contrast, authors
of concurrent logic languages believe their languages are suitable for all architectures. The bur-
den of matching the application to the architecture resides solely with the algorithm designer and
programmer. The belief, which is backed by the implementation efforts, is that concurrent logic
languages are suitable for a wide range of architectures, including synchronous and asynchronous
shared-memory computers, and tightly snd Jocsely coupled non-shared memory comput The
difference bet these architect is not necessarily in the rent logic language suitable for
them, but rather in the tradeoffs in unication and putation they offer, which determine
which algorithms will better match a particular architecture.

This differ is not a coincid The single assignment property of logic variables means
that even in a language with atomic test unification, locking of variables is very rarely necessary.
Specifically, it is necessary almost only when the atomicity of unification is actually exploited to
achieve some synchronization task. For example, in simple benchmarks of the paraliel implemen-
tation of FCP(7) on the iPSC hypercube, more than 95% of the message trafic was associated
with reading remote values (which does not require locking because of the single assignment prop-
erty), and less than 5% with locking remote variables {191]. This is achieved without any special
compilation or program snalysis techniques. In UNITY, on the other hand, in the absence of
additional information, every transition which accesses more than one variable requires locking all
variables accessed. Therefore special sublanguages, which are structured to mimic the underlying
architecture, have to be employed to make the model realistic.

On a methodological level, there are other diffe: bet the approach of UNITY and that
of t logic languages. UNITY does not attempt to address questions of meta-programming
and systeme programming, or, more generally, how would a parallel computer system, whose base
language is UNITY, be constructed. This question has been fundamental to concurrent logic
programming from its beginning.

22. Conclusion

This survey attempted to convey the soundness, breadth, and potential of the logic programming

approach to concurrency. Progress in the following can foster fully realizing this potential:

e  Provide competitive implementations of concurrent Jogic languages for sequential, parallel and
distributed computers.

e Develop simpler tic foundations for rent logic languages.

»  Exploit the simplicity of these languages to provide advanced program development environ-
ments and tools.

o  Exploit the simplicity of these languages to provide advanced program analysis, transforma-
tion, and optimisation techniques, to aid in their eficient implementation.

. Funber develop prognmmm; Mhodolopa and techniques for these Janguages.

gramming by incorporating ideas and methods from constraint

° rent logic p
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logic programming.

e  Further explore techniques for embedding higher-level languages, and design higher-level lan-
guages (such as parallel constraint programming languages) especially suitable for embedding
in concurrent logic languages.
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