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Chapter 1. Scaling Relations

1.1 Introduction

Small scale models are a relatively inexpensive and convenient way of

studying prototype behavior. For similitude between model and prototype, the

model has to be scaled so as to satisfy certain requirements. These

requirements are the scaling relations between the model arid prototype and, as

explained in the accompanying report, can be obtained using the governing

equation of the phenomena being modelled or by using dimensional analysis.

This chapter examines the scaling relations applicable for intact rock and for

a joint surface.

1.2 Scaling relations for intact rock

The problem of modelling intact rock in an elevated g-field such as that

produced in a centrifuge was studied by Hoek (1965). The intact rock was

modelled as an elastic body in thermal equilibrium. His approach was as

follows:
The behavior of a point in the structure, defined by co-ordinates x, y

and z, depends on the geometry of the structure, the material properties and

the applied stresses. Consequently for the behavior of the corresponding

point in the model to be the same as that in the prototype, similitude between

the model and prototype has to be established regarding the geometry, the

material properties and the applied stresses. To do this, the prototype must

first be described in terms of its geometry, material properties and, the

stresses, accelerations etc. imposed on it. First the geometry of the

structure will be considered.
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Let the geometry of the prototype structure be defined as

L = a typical length dimension for example the diameter of a tunnel opening

rL = a set of dimensionless ratios relating other length dimensions of the

structure to L.

The geometry of the prototype is now defined.

Let the material properties of the prototype at this point (x, y, z) be

defined as

p = the density of the material.

E = the Young's modulus of the material.

V = the Poisson's ratio of the material.

There may be more than one material present in t he structure, or the

properties may depend on the state of stress at that point. Consequently,

the material properties at various points in the structure need not be the

same as those at points x, y, z. If this is the case, then let the properties

at the various points be related to the properties at point x, y, z by the set

of dimensionless ratios rP, rE and rV. The material properties of the

prototype and their distribution within the prototype are now described.

The remaining area where a description of the prototype is required is in

the mechanically applied stresses, forces, etc. The stresses imposed on the

model consist of both external and internal stresses. Tectonic stress or a

strezs due to gravitational body forces are examples of internal stresses.

Let the applied loads, stresses, displacement and accelerations at point

(x, y, z) be
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Q = an externally applied load

P = an externally applied stress

ao = an internal stress

g = acceleration which the entire body is subject to, and which results in

self-weight body forces.

Uo = a displacement imposed directly on only a part of the structure.

y = an acceleration imposed directly only on part of the structure.

The applied loads, stresses, displacements and accelerations at other

points may not be the same as those at point x, y, z. In this case let them

be related to those at the point x, y, z, by a set of dimensionless rations

rQ, rP , r O , rUO, ry .

Now the resultinq displacement 'u' or the resulting stress 'a' at point

x, v, z is some function of the above variables.

Thus,

u = f (x, y, z, t, L, p, E, Q, P, ao, g, v, v, rL, ...rV) (1)

and

a = f (x, y, z, t, L, p, E, Q, P, 0o, g, v, v, rL, ...rv) (2)

As shown in the accompanying report [Joseph et al (1987)], by using

dimensional analysis, the above variables can be rearranged to form the

following dimensionless products.

2 1/2 2 3 2 U o L2

u oL x Y z ty EL pyL g _ PL o o 0 0

L' Q L L ' L 1/2 Q Q Fy 'Q'L' Q
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Buckingham's Theorem (also called the H theorem) states that if an

equation is homogenous, it can be reduced to a relationship among a complete

set of dimensionless products. In other words, displacement u or stress a, in

the form of a dimensionless product, can be related to all other variables

when expressed as a complete set of dimensionless products. Using the

complete set just obtained, the following equations result.

t1/2 2 3 2 U 0L

u x y z ty EL pyL g PL2  o o

- F , z ' 1/2' ' ' y ' ' ' Q

L E V Q P U 0 o 0  
Y

v, r , r ,r ,r ,r r , r, r , r (3)

aL 
2

an

and 0 =F' ry'] (4)

where F and F' are functions expressing the relations among the dimensionless

terms. These dimensional products provide a means of ensuring that model

behavior simulates prototypc behavior. For complete similarity between model

and prototype, the dimensionless products of the model should be the same as

the corresponding products of the prototype. In other words, for complete

similitude between model and prototype,
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UMde1 = , for all i's.i~odel prototype

From equations (3) an (4), one can see that similitude between model and

prototype requires that the similitude requirements with regard to geometry,

material properties and applied stresses, displacements, accelerations and

forces be satisfied. Equality of the terms 1, -X, means that the same

L L L

point in the model is being considered. Equality of the ratios rL ensures

strict geometric similitude between model and prototype. In order that

similitude with respect to material properties be satisfied at a particular

point, the dimensionless products that contain in them any of the material

properties, should be the same in both the model and the prntotype (at this

point). The dimensionless terms involving the material properties are

pYL 3  ,and - - .Q EL2

One of the advantages of dimensionless products is that similitude

between model and prototype requires that the values of only the dimensionless

products be equal in both model and prototype, while the values of the

individual terms that make up the product need not be equal. For example,

consider the dimensionless product - , and let the suffix m and p refer toQ



6

2 2
E L E L

m m _ p
the model and the prototype respectively. As long as 2 2

Qp

it is not important if Em is not equal to Ep i.e. differences between Em and

Ep can be compensated for by suitably adjusting the values of L and Q, such

that the value of the complete dimensional product is the same in both the

model and the prototype. The Poisson's ratio V is dimensionless by itself and

consequently cannot be included meaningfully as part of any dimensionless

product. This means that, the Poisson's ratio should be the same in both the

model and the prototype or, that

Vm = V p (5)

Often, model materials, that satisfy various other requirements do not have

the same Poisson's ratio as the prototype material. For some problems, the

effect of Poisson's ratio on the stress distribution is small, while for other

problems, the effect is significant, in which case, a suitable correction can

be made. The main effect of the Poisson's ratio is in the lateral stresses

induced in a body whose lateral deformation is restricted. The relationship

between the applied vertical and the induced lateral stresses is given by

V

a, = 1 a (6)1 1-v v

where, a, is the induced lateral stress

Tv is the applied vertical stress and

v is the Poisson's ratio of the material.
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Changes in the Poisson's ratio result in large changes in the lateral

stresses and a correction should be made to the resulting stress field using

the above equation. Hoek (1965) suggested an experimental procedure in which

the model is -laced on a liqnid filled rubber bag. The model is free to

deform laterally ind the stress field is uniaxial. To bring the lateral

stresses to their correct value, bags filled with a liquid of the correct

density are placed on the sides of the model as shown in Fig. 1. Practically,

however, it will be difficult to find rubber bags that can withstand the high

stresses involved. If the bags can handle the stresses involved, then the

technique will be of use when stress freezing photoelastic models. During

stress freezing, the photoelastic material has a Poisson's ratio approaching

0.5 which is quite different from most rocks and consequently a correction

(such as the one just described) should be applied to maintain similitude of

the lateral stresses.

Another advantage of dimensionless products is that they can be

multiplied among themselves to form other dimensionless products. Thus the

dimensionless products containing p and E namely

pyL 3 Q
and - can be combined as

Q ELa

PyL g 9 PgL

Q Y EL2  E

to form another dimensionless product i.e. pgL that contains both the
E

remaining material properties p and E.

P g m L m p p g p L

Hence, if m - P g or if
E Em p



-- CENTRE OF ROTATION

LIQUID DENSITY PLI

MODEL DENSITY Pm

,a /
d Or= dpmn , OH

STRESS---

-g. 1. Experimental correction to account for different Poisson's
ratio in model and prototype. From Hoek (1965).
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L p E p P m gm
__ _E m m -(7)

L M E m Pp *gpm Em Pp gp

then material similitude between the two points is obtained. If, in addition,

the ratios rP, rE and rV) are the same in both model and prototype, then material

similitude is ensured between the entire model and prototype. Sometimes,

however, the resulting model stresses and displacements am and um may not be

suited to the measuring capabilities of the instrument in which case, as

suggested by Hoek (1965) they can be scaled by a factor, say a, L ch that

*p = a am and

Up = Ot u M

This can be obtained by altering the material properties alone such that

aPm gm Lm pP gp LP

E E
m p

Hence equation (7) now becomes

L E P g_m-p p P~ (8)
L E p gpm m p p

Having ensured both geometric and material similitude, it remains to

consider similitude in relation to the mechanically applied or induced

stresses. These are defined by the parameters Q, P, 0o, Uo and y, and appear

in the following dimensionless products:

2 2 3 2 U a L 2

t y EL L py g PL o and o
L Q ' Y, ' Q L n
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By suitably multiplying these terms, relations between the applied stresses in

the model and prototype can be obtained in terms of the previously established

relationships for the geometry and the material properties. The various

relationships are as follows:

The relation between Qm and Qp can be determined in terms of the material

EL
2

and the geometry, using the dimensionless product Q . Hence,

0 E LM2

_m m
or -- = (9)

E L2 E L 2 Qp E 2EL EL p p L
m m p p p

The relation between Pm and Pp can be determined in terms of the material

properties by defining a dimensionless product EP

P PL2  Q
E Q EL 2

P P P Em p m m
i.e. - = - , or - =- (10)

E E P E
m p p p

Similarly the relation between a and a can be obtained in terms of the
m p

a

model material by defining the dimensionless product -h- given by
E

or a0L2 Q
o o L2

E Q EL2

o o o E
m p 0 mi.e. = p or __ a (11)E E a E
mp p o pP

u u u
Also, 0 0 o L

_ = p or, - - - (12)
L L U L

in p o p
p
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The inertia forces are controlled by the dimensionless groups

0 3
and Y

Q g

both of which have been used in obtaining equation (7) which controls the

gravity forces in the model.

Since the inertia forces involve time, the scaling for time in terms of

the material properties and the geometry, can be established by suitably

pL
2

multiplying the dimensionless products to define the product E 2Et2

Hence

pL2 pYL Q L

2 Q L2 * 2
Et E L Yt

2 L2
p L pLm m p p

or 22 2
E t E t

m m p p

1/2
t E p L

i e = [p -M ) __ (13)

t E p Lp m Pp p

If the scaling relations determined above are satisfied, then there will exist

complete similitude between model and prototype.

Various investigators [Esser (1962) Haycocks (1962), Oudenhoven (1962),

Hoek (1965)] used models made of photoelastic materials which they spun in the

centrifuge. The isochromatic fringes obtained in these materials are

proportional to the maximum shear stress Tmax in the material. So, the

greater the model shear stress, the better can the stress distribution in the

model, and consequently in the prototype, be studied.
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Let Tmax p = a Tmax m

From equation (8), we get the g field that must be applied to the model to

cause this shear stress as

gm L Pp E
- a L • - (14)

gp L m E
As previously described, the Poisson's ratio should be the same in both model

and prototype. For intact rock, the Poisson's ratio usually lies between 0.1

and 0.2 whereas for photoelastic materials, it approaches 0.5. Consequently,

a correction of the type described earlier will have to be made to account for

this error.

Hoek (1965) suggested that the centrifuge be used to study fracture and

post failure behavior of rock, using model rock specimens. He assumed that

the compressive strength was inversely proportional to the square root of the

specimen size or

L 1/2

c c ) (15)
p m p

where a and ac are the stresses at failure in the model and prototypec c
p m

respectively, at failure. Consequently, if model stresses are a m- .iple of

prototype stresses, we get

L 1/2

= a (--a) a (16)
c L c

p p m

c
m
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and equdtion (8) now becomes

L E PM g
-p =m -_
L E p gpm m p p

L 1/2 E PM gm
m P m m
L Em p gp

i L 3/2 E pp
i.e. g = (-) E p(

m p m
which now accounts for the scaling of size with strength. It should be noted

that equation (15) is based on the simplified assumption that crack length is

proportional to size and that the bigger the specimen is, the larger will be

the cracks and flaws that it will contain and consequently, the weaker it will

be.

1.3 Scaling relations for a joint surface

1.3.1 Frictional joint behavior

In this section, the problem of modelling a joint on the centrifuge will

be examined. Only joints with frictional behavior will be considered.

Consequently, the problem reduces to modelling the frictional behavior between

two sliding surfaces. There are two factors involved in this sliding process.

One is the contact between the asperities and the other is the interlocking

between the asperities.

Terzaghi (1920) and later Bowden and Tabor (1967) presented a theory for

the frictional behavior related to asperity contacts. Large stresses at the

asperities cause plastic flow in both brittle and ductile materials. As the

normal load increases, the true area of solid to solid contact as shown in
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Fig. 2, increases, so that the normal stress stays constant. During plastic

flow, the shear stress is equal to the shear strength of the material.

Consequently, since the solid to solid contact area increases, there is a

proportional increase in the shear force required in order that the shear

stress reaches its limiting value. In other words, the normal force and shear

force are interdependent and related by the coefficient of friction P = T/a =

a material constant.

Byerlee (1967) analysed a brittle material based purely on the theory of

elasticity. He suggested that the tips of the asperities which are subject

to both a normal force and a shear force, crush under the action of the normal

force. The extent of crushing depends on the compressive strength of the

material. When a shear force is applied, tensile stresses are induced in the

asperities. If these induced tensile stresses exceed the local tensile

strength, then additional breakage will take place. If all possible shapes of

asperities are possible, then the shear and normal stresses are related as

-rt

a C 1  a 2
n c

where, C1 , C2 = constants independent of the material

at/ac = the ratio of the tensile strength to the compressive strength

The theories of Terzaghi (1920), Bowden and Tabor (1967) and Byerlee

(1969) apply to that component of friction due to contact between the

asperities. The second component governing frictional behavior between two

surfaces is the interlocking between the asperities. Usually the two surfaces

will not be in contact as shown in Fig. 2, with tip to tip contact between all
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Fig. 2. Contact of Asperities. From Einstein et al (1970).

Fig. 3. Interlockinq of asperities. From Einstein et al (1970).
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the asperities. The real situation will be more like that shown in Fig. 3, in

which only a few asperities will have tip to tip contact, while most will be

staggered or interlocking. These interlocking asperities will influence the

nature of the frictional behavior between the two surfaces. Einstein et al

(1970) state that it is conceivable that the relative importance of the two

mechanisms i.e. tip to tip contact between asperities and interlocking depends

on the scale and nature of the surface. Consequently, friction due to tip to

tip contact between the asperities will be of greater importance for smooth

surfaces and on a microscopic scale, whereas for rough surfaces and on a

macroscopic scale, the response will be governed primarily by interlocking.

Fig. 4 shows the shearing behavior of a single idealized asperity. Under

small to moderate normal stresses, the asperities will slide over each other

as shown in Fig. 4b, resulting in dilatant behavior. During this phase, the

shearing resistance is given by

S = N tan (ts + i)

where S = shear force

N = normal force

s = friction angle for sliding between two plane surfaces of

identical material

i = inclination of the asperity

As the two asperities displace with respect to each other, i point is reached

at which the stresses in the asp-rity will reach the strength, and the asperity

will shear off at this level. If the normal force is increased, a stage is

reached at which the asperities will shear at the base without any dilatancy.
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Fiq. 4. Dilatancy and shearinq of asperities. The mechanisms and
corresponding load-displacement. From Einstein et al (lq70).



18

For this stage, the relation between the stress and normal force is

S = K + N tan r

where *r is the residual friction angle of the sheared material and K is a

constant equal to the intersection with the shear force axis of the strength

line used to approximate the S-N curve at high normal forces, as shown in Fig.

5. The various force displacement relations possible are shown in Fig. 4. In

practice, the Mohr envelope will not be bilinear as shown in Fig. 5, but will

be curved as shown in Fig. 6. This is because the asperities have different

lengths and shapes, and consequently, the transition from dilatant to shear

behavior is not sudden as implied by Fig. 5, but gradual, as shown in Fig. 6.

The Mohr envelope for the entire range of shcaring is shown in Fig. 7.

The two basic mechanisms governing the shear force -normal force relation,

namely, sliding on existing or newly created shear surfaces and interlocking

of asperities, result in the following general behavior. 1)dilatancy and

subsequent shearing of asperities above their base - the initial curved

section 2)shearing of asperities at their base and sliding along base -

straight section 3)sliding along the sheared asperity base with plastic flow

at the contact points leading toward complete contact - final curved and

eventually horizontal section. Centrifuge modelling of a jointed rock

requires that this behavior be scaled. If, the scaling relationships for each

of the two basic mechanisms - sliding and interlocking are satisfied, then the

shearing behavior of the joint will be correctly scaled.
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Fig. 5. Dilatancy and shearing of asperities. The characteristicMohr envelope. From Einstein et al (1970).

ti ,r, !Erc.A



20

S

D,/o l ,Cy Shea--r, _-

A/atrn c! P / Foce IV

Fig. 6. Friction on surfaces with random asperities. Characteristic
Mohr envelope. From Einstein et al (1970).
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Fig. 7. Mohr envelope for the entire range of shearing.
From Einstein et al (1970).
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1.3.2 Scaling relations for joint shearing

In this section, the scaling relationships for the two basic mechanisms -

sliding and interlocking of the asperities will be determined.

Sliding between asperities was explained on the basis of the

Terzaghi-Bowden-Tabor and Byerlee's theories for frictional sliding. The

former requires that

O= m p (18)

while Byerlee's theory* requires that

o t  Ct( = ( )(19)

c m c p

in order that there be similitude. Byerlee's theory also requires that the

geometry of the asperities be scaled. Geometric scaling is considered below

when developing scaling relations for interlocking of the asperities.

Interlocking of asperities results in the shearing of asperities at or

above their base. Shearing of asperities at their base occurs before any

dilatancy, and sliding, on the newly created shear surface, then becomes the

predominant mechanism. Shearing above the base is governed by the

displacement and the geometry of the asperities, in addition to the material

properties. The necessary scaling relationships for a single asperity, for

shearing above the base, can be obtained using dimensional analysis as

follows:

Byerlee (1967) based his theory on linear elasticity. For the materials
involved and the range of stresses of the asperities, it is doubtful if
behavior is linear elastic.
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Consider the idealized interlocked asperity shown in Fig. 8. The

independent variables that control the shear force - normal force relation are

L = the length of the asperity

B = the breadth of the asperity

H = the height of the asperity

AL = the dilatant movement in the vertical direction, up to fracture

MN = the mass that results in the normal force acting on the asperity

g = the gravity that causes MN to exert the normal force.

As explained in the accompanying report [Joseph et al (1987)], the

dimensional matrix can be set up as

kl k2  k3  k4  k5  k6  k7

AL L H g B Mij T

M 0 0 0 0 0 1 1

L 1 1 1 1 1 0 -1

T 0 0 0 -2 0 0 2

which is a matrix with rank r = 3. Consequently, the number of independent

dimensionless products that can be obtained are n - r = 7 - 3 = 4.

By using the standard procedure of dimensional analysis, the following matrix

can be obtained.

AL L H g B MN T

11 1 0 0 0 -1 0 0

IT2 0 1 0 0 -1 0 0

113 0 0 1 0 -1 0 0

][4 0 0 0 1 -2 1 -1
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Fig. 8. idealized asperity.
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From this matrix the dimensionless H terms can be written as

AL L H g M

B' B B 2 T

By suitably multiplying the above terms, all the independent variables can be

combined in a single dimensionless product as

AL B B g Mn AL MN

B * L - H L2B H --

Hence, for similitude between model and prototype,

AL MN AL MN
L B H " T " gtm = rL B H " T " p

orAL m L m Bm Hm Np Tm  por m = __(20)
AL L B H M r g 20mp p p p Nm p m

In equation (20), the normal force acting on the asperity i.e. FN has

been expressed in terms of the mass MN and the acceleration in terms of 'g'.

This renders the equation suitable for use in an elevated g field such as in a

centrifuge. However, by using the fact that

~p • gp = F Np

and MNm " gm = Fgm
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Equation (20) can be rewritten as

AL L B H t Fm - -m m m m NpI (20a)

AL M L MB H m T m F N 2a
P p p p p Nm

which means that at Ig, by changing the magnitude of the mass resting on the

aspertity, one can alter FN. In other words, Equation (20a) is valid,

independent of the gravitational field in which the model or prototype is

placed.

On examining Equation (20a), it is seen that there are four factors that

are scaled. These are 1) the displacements at failure in model and prototype,

namely ALm/ALp; 2) the asperity geometry in the model and prototype, namely,

(Lm Hm BmJ/(Lp Hp Bp), 3) the shear strength of the asperity material in the

model and prototype, namely Tm/Tp and 4) the normal force on the asperity in

the model and prototype, namely FNp/FNm. The ratio of the displacement at

failure, namely ALm/ALp as expressed in Equation (20a) is dependent on the

scales at which the remaining three factors, namely, the asperity geometry,

the asperity strength and the normal force on the asperity are scaled. For

the sake of generality, it can be assumed that they each have different scale

factors. Hence, let the geometry of the asperity be scaled at S and the shear
T m

strength as- . The normal force on the asperity can be scaled either in

p
terms of geometry, the mass, or in terms of the gravitational field acting on

the model.
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To illustrate the above statement, the scaling the of the normal force is

considered in more detail in this paragraph. As mentioned, there are three

ways in which the scaling can be done. The first is by scaling the geometry

of the entire body resting on the asperity say at S = N in which case,

Np - 3
M
Nm

The second possibility is to scale the mass alone at N in which case

%p= N
M

The third possibility is to use any mass, and, to scale the

gravitational field in which case.

F - %pgp

FNm MNm gm

From this equation is is seen that if MNp = N MN and g gm

then FNp = FNM.

To restate again, the most general case is expressed by Equation (20),

with the asperities scaling at say S, the shear strengths and masses as any

value and the gravity at N. Based on this, equation (20) can be written as

ALm T MNp gp
-1 m (21)

AL S3 T M gmp S p Nm m

Examination of this equation shows that there are various possibilities

available for scaling.
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Case 1) In this case, the asperity geometry is scaled at N, (i.e., S = N) the

geometry of the mass resting on the asperities is scaled at N and the model is

spun at Ng. For these conditions equation 21 reduces to

AL Tm 1 m 3 1

AL N3 T N

or AL 1 Tm
A--L" =  "r(22)

p N p

Case 2a) In this case, let the asperity geometry scale at S, the geometry of

the mass resting on top of the asperity scale at N, and let the model be spun

at Ng on a centrifuge. For these conditions, equation 21 reduces to

AL T 3 1
AL - N
AL S3 T N

AL N
i.e. m M N m (23)

ALp S3  p

It can be seen that for S = N (case 1) Equation 23 reduces to Equation 22.

Case 2b) In this case, rather than scale the geometry of the mass resting on

the asperity at N, let the mass itself be scaled at N, i.e., let 4N p  = N.
M

In this case, equation 21 reduces to

AL I T

A- NAL 3 T N
p S p
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ALt
or m 1 m

= (24)AL S 3

Fron these cases it is clear that the general relationship is given by

Equation (21), which in turn is equation (20) expressed in terms of the model

to prototype ratios.

Let Equation (21) be written for a model (say model 1) of a prototype

AL ml T m1 .  9fml = 1P (25)

AL 3 TNml gml
p p MImP

Let another model (say model 2) be used to model the same prototype, but at a

different scale. Equation 21, for this case becomes

ALm 2  =I m2 MuP gP (26)

AL 3 T Nm2 gm2
P p P Nm

Dividing Equation (25) by Equation (26), we get

ALml $2 Tml MNm 2  gm2

ALm2 S13 Tm 2  MNml gml

By suitably separating the terms in this equation we can write

3 3~o

ALml S1 MNMI gml 2 3 MNm2 gm2

Tml  Tm 2

In other words, for any model,

3

ALto S m 3MNm gm cosat=AL p MNp g

= a constant =
T T

m p
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As can be seen, when testing models at ig, this equation reduces to

3
AL S M AL M
m m Nm p Np a constant (27)

T T
m p

This means that Equation 20 is valid if the relation given by Equation (27) is

true. This relationship can be verified by shear tests at 1g.

In Equation 20, by replacing the term Mlp gp by Wp (the prototype weight)

and MNM gm by Wm, the model weight, it becomes clear that the relation can be

verified at 1g, i.e., to verify this equation, it is not necessary to use a

centrifuge.

It is worth studying Equation 20 as it applies to centrifuge testing.

Let the prototype to be modelled consist of a joint within a rock mass. There

are several ways in which this joint can be scaled.

1
Possibility 1. Let the mass of the model blocks in the rock mass be I those

N
of the corresponding prototype blocks, and let the model asperities and model

material be the same as those of the prototype i.e. S = 1 and Tm = Tp. Let the

model be spun at Ng in order to obtain the same surface tractions. For these

conditions, Equation 20 reduces to

ALin 3 1
-= 1 N . 1 . - = 1

AL N
p

i.e. as expected, when the tractions on the surface of the model joint are the

same as those on the prototype, and if, the geometry and material properties

of the model are the same as those of the prototype, then the movements too

will be the same.

N6= . ., ~ i m m m n -'
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Possibility 2. Let a model material be used for which Tm = Tp, but S is not I

as in the previous case, but say N. Let the geometry of the material above the

joint be scaled at 1/N, and to get the same surface tractions, let the model

be spun at Ng. In this case, Equation 20 reduces to

ALm 1 3 1~i =~ 1. N
ALp N3  N

This means that AL - I AL or that
m N p

AL - ALm N P
m Lm  L P

N p

i.e. if the asperity geometry is scaled at I/N and if the mass MN is scaled at

1 3 ' then imposing the same stresses in the model as in the prototype will

result in the model having the same strains as the prototype.

Possibility 3. Suppose a jointed work mass of several blocks is to be modeled
I

using model blocks that are geometrically scaled at - , but whose asperities

are not scaled, i.e. S = I. Then, if it is required that the model strains

(strains being defined as AL/L where L is a dimension of the asperity) be

equal in the model and the prototype for equal stresses, it is necessary that

ALm = ALP. Substituting in equation 20,

ALM I T m 3  1
mf = 1 T "n =" 1
AL1*- * N

P P

or r T
m N2 p

i.e. if the rock blocks are geometrically scaled at c te hset

unscaled (S = 1), then in order that strains and displacements be the same at
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equal stresses, it is required that

1T - T
m N2 p

Possibility 2 suggests that if a rock mass is modelled by blocks of the

1

same rock and geometrically scaled (both block and asperity) at 1, then model
1

displacements will be l prototype displacements and model strains will equal

prototype strains, both at the same stresses. Possibility 3 suggests that if
1

the rock blocks are scaled at I with the asperities unscaled and if the model

material is N2 times weaker than the prototype material, then the strains and

the displacements in the model and prototype will be equal, at equal stresses.

In conclusion it must be noted that

m Nm m normalized with respect to L B H is
Ip p pm

ALm TM m m which is

LB H T
m m m m

a dimensionless product. By reproducing the prototype phenomenon in the

model, we require that the dimensionless product that defines this phenomenon

be the same in the model. This requires that for all models, the

dimensionless product be equal to its prototype value or

ALm M gm AL _ M Np (with gp 1)
= a constant - P =L B H T L B H T

m m m m p p p p

or that

AL S3 M gm ALM
m SMNm g - a constant = p Np

I T
m p

where S is the asperity geometry scale.
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1.4 Conclusion

In this chapter, the various scaling relations applicable to an intact

rock and a joint were determined. It was found that changing the

gravitational field of the model by spinning it in a centrifuge, resulted in

considerable flexibility of modelling as compared with the case of modelling

at 1g. Once the modelling of intact rock and a joint has been successfully

accomplished, it will be possible to model a jointed rock mass.
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Chapter 2. Proposed Rock Mechanics Research Using the Centrifuge

2.1 Introduction

In the accompanying report, details were provided about the principles of

centrifuge testing and a review made of centrifuge work done in rock

mechanics. It was seen that initially (in the fifties and early sixties) the

centrifuge was used more for studying problems in rock, than soils. Gradually

the situation changed until in the seventies, almost all the work was done in

soil mechanics. This was because soils are more amenable to testing at

relatively low g levels. In the last few decades, considerable theoretical

work has been done in rock mechanics. The centrifuge can be used to verify

the various theories developed. Where no theoretical models exist, the

centrifuge can be used to gain more insight into the problem. Scaling

relations for intact rock and for a joint were developed in the previous

chapter of this report. This chapter studies areas where the centrifuge can

be of use.

2.2 Proposed research

The proposed research deals with basic issues in rock mechanics, such as

shearing along a joint, then leading to sliding of a block on a joint and to

the behavior of a wedge in various stress fields, and finally, the behavior of

of slopes, arching in tunnels and other problems. The general objectives are

to conduct experiments on behavior which is difficult to observe in nature or

on behavior for which recent theoretical models are based on simplifying

assumptions, or both. For some phenomena, nothing direct is known about the
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failure mechanism and only the evidence available after failure is used to

hypothesize pre and post failure behavior. The proposed research will be

grouped under the following sub-headings. 1)Conditions where stress

distribution and or gravity play a role and not involving the flow of water or

dynamic events 2)conditions involving water and 3)rock dynamics. These areas

will be discussed below.

2.2.1 Conditions where stress distribution and/or gravity play a role

There are several basic problems that can be studied using the

centrifuge. For some of these, theories and models of various degrees of

sophistication exist, while for others not enough is known to formulate a

model. Centrifuge tests can be used either to validate the existing theories

or to gain more insight into the failure mechanisms. The actual failure is in

general difficult to observe in the field, whereas a controlled failure in the

centrifuge can be observed and recorded. Once these basic issues are better

resolved, then their interaction with water and dynamics can be studied.

Consequently, in this report, emphasis will be placed on static or

quasi-static problems involving no water.

A basic problem is the sliding of a block on an inclined plane. The

commonly used limit equilibrium analysi. cannot address stress distribution

effects, and the actual contact stresses may deviate significantly from these

assumed. Further, in the usual analysis, the failure mechanism assumed is

based on simplifying assumptions regarding initiation of movement, the factors

that affect the movement, whether failure occurs with the block moving in

translation or rotation, if it topples or if combined failure modes

(translation and rotation) occur. By modelling the process on the centrifuge,
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important information regarding the entire failure mechanism i.e. pre-failure,

failure and post-failure behavior can be obtained. By varying the surface

roughness, the influence of the surface can be studied. The effect of various

forces on block movement can also be investigated. An idea of the stress

distributions across th face of the block can be obtained by suitable gageing

and so, a measure of the effect of stress distribution on movement can be

obtained. The suitability of different methods of analysis can be examined by

duplicating their implicit assumptions in the tests and comparing them with

the results. The methods of analysis that will studied are the usual limit

equilibrium analyses and also the method of artificial supports [Chan and

Einstein (1981)] as well as some numerical approaches.

An extension of this problem is the case of a single block or wedge on

multiple planes. Here too, the stress distribution at the base of the wedge

is not known. A number of analytical approaches show the importance of stress

distribution in the planes on stability [Chan and Einstein (1981)]. However,

the approaches use different basic assumptions. For this case, even less is

known about movement o the block and stress changes at the interface, than

for the case of a block as a single plane. By measuring displacement and,

stresses under controlled conditions, questions of interest such as when does

movement take place on a single plane, or on both planes, when does rotation

occur and how do these movements compare with predictions made from analytical

models, can be answered. The effects of in-situ stresses, external forces,

surface roughness and joint stiffness can also be studied. As in the

single plane case, here too, it is of interest to specifically model particular
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analytical assumptions and compare the results of the tests with those

predicted by the analyses.

The test runs discussed above will provide information that will be useful

in every area of rock mechanics and underground construction in rock, where

rock wedges and blocks are likely to be encountered, and particularly where

wedges and blocks interact. The interaction of several rock blocks prior to

and during failure is not well understood. During instability, any combination

of rotation and translation of the individual blocks may occur so much so that

sometimes this may lead to dilatancy, which will prevent failure. By observing

such behavior in the centrifuge, additional information will be obtained,

leading ultimately to the development of an analytical model. An extension of

studies on block interaction are studies of arching of rock blocks, which is of

interest in various underground construction problems such as tunnels, caverns,

etc. The load deformation behavior of tunnels can be studied with arching

tests. There is a dispute about the load deformation behavior of the supports.

Everybody agrees that the so called ground reaction curve shows a decreasing

load with increasing support displacement. At very large displacements, some

authors claim [Steiner and Einstein (1980)] that the loosened material above

the support results in an increase in load in the tunnel support. The combined

effect of gravity and far field stresses is not understood and needs to be

studied. Arching tests will also be useful for tunnels in soil since the same

mechanism is operative there too. Also, three dimensional effects at or near

the tunnel face can be investigated with such tests run in soil. More complex

tunnel geometries such as intersections with larger openings, etc. can be

studied in rock mass arching tests. Initially simple geometries will be used,
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leading eventually to the study of more complex joint patterns. Ultimately,

key block geometries can be investigated and compared with the results of

corresponding analyses. Observations will be the deformation and loads on the

supports which will be in the form of a trap door. Results from these tests

will provide information on how rock blocks interact, and will be of use in

the analysis of jointed rock slopes.

Rock block breaking is related to rock fall which will be discussed

below.* Blocks impacting against each other or impacting against fixed rock

surfaces can break up. The mechanism by which they break up and what block

sizes and shapes result will effect the character of the entire failure and

how the falling rock mass comes to rest. Here too, original information based

on observation of blocks after they come to rest is not satisfactory. Blocks

of various sizes will impact against each other and fall on fixed surfaces

under the influence of gravity. Initially, video recordings of the

disintegration will be made, and will lead to a better understanding of the

process, and ultimately, to measuring the process. The variables involved

will be block size, shape, the number of blocks, the height of fall, and the

inclination of the fixed surface.

The rock breaking study is only a step towards investigation of rock

fall, which is one of the least understood processes. Massive rock falls or

rock avalanches have similarities with snow avalanches and slides of other

particular media. Consequently, mechanisms of high pore pressures (liquid

or gas) and of cyclic or dynamic mobility have been proposed to explain the

movement of such avalanches. Again, in-situ observations are limited and

Both rock block breaking and rock fall can also be considered as dynamic
problems.
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there is no unequivocal evidence for the rock fall mechanism. Rock fall

involving a limited number of particles (including the falling of a single

one) has been treated empirically, analytically and numerically, the latter

involving the falling, bouncing and rolling of simple models of individual

spheres, ellipsoids and a few other shapes. Centrifuge observations of the

single particle mechanism (fall, jump, roll and break up) and of the

multi-particle interaction process, with interaction between the particles,

will clarify the issue and provide a basis for measurements and theoretical

treatment.

Tests, run in the areas described above will provide new data,

leading to the verification of existing theoretical models, the development of

new models, or, an increase in an understanding of the phenomenon.

2.2.2 Conditions involving water

Once a jointed rock mass has been successfully modelled in the

centrifuge, then problems involving the flow of water in jointed rock masses

can be studied. A question of interest is whether water flows through a

fractured rock mass in a manner similar to a pipe network. The idea that one

does not have parallel plate flow but channeling can also be studied.

Finally, the question of deformation-flow coupling can be studied, i.e. what

is the effect of this coupling on channeling and on stability (stress

distribution) and vice versa.
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2.2.3 Conditions involving dynamics

Once basic testing has been successfully done, then dynamic effects can

be studied. Problems of interest are the Newmark/Whitman block problem (a

block on a slope that is subjected to base shaking), and blast cratering. The

latter is to extend studies already done on soils to rock and in order to study

damage due to explosions. Another topic of interest concerns the effects of

shock waves on a jointed rock mass. All these problems can be conveniently

and more realistically modelled on the centrifuge.

2.3 Problems involved with centrifuge tests of rock

There are a few basic problems that have to be investigated and solved.

One such problem is that of the joint surface asperities. In Chapter 1 of this

report, the criterion for joint similitude was established. This relationship

will have to be verified by direct shear tests of different asperities. Once

the intact rock and the joint have each been successfully scaled, then the

jointed rock mass as a whole can be modelled. When it comes to including water

and dynamics, then appropriate scaling relations will have to be derived, that

satisfy the similitude conditions. At present however, the main problem is the

correct scaling of the joint surface.
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Chapter 3. The Testing Program

3.1 Introduction

This chapter proposes tests to investigate the areas of research

described in Section 2.2.1. The surface roughness plays a role in all the

areas, and so, the first aim is to study the surface roughness to see if

asperity behavior scales as suggested by equation (20) in Chapter 1. Another

basic objective is to be capable of obtaining some idea of the stresses on the

surface of sliding or contact. Consequently, it is suggested that the first

test series of the testing program be directed towards these two areas. The

following section considers each of the areas of research suggested in Section

2.2.1 and proposes experiments to study these areas. The issues involved, the

variables concerned, the methods of testing and the experimental problems

likely to be faced will be discussed. Either natural or intact rock will be

used, depending on the nature of the experiment.

3.2 The testing program

3.2.1 Scaling of asperities

The aim is to study if the shearing of asperities scales when the

similitude requirements as suggested in Chapter 1 are satisfied. In order to

best study this, an idealized asperity such as shown in Fig. 8 will be used.

The variables involved are the geometry of the asperity, the material

properties and the normal force acting on the asperity. Once the

relationships developed have been verified for the idealized asperity, then a

natural rock surface will be studied, and the scaling relationships for joint

behavior developed for use in subsequent testing programs. The choice of

material used to make the artificial rock will be based on research done by
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Lin.ia et a! (1973,. A jonunca problem for tests involviij jiiiLetd i.ok is

the scaling of both the intact rock and the joint surfaces. If the material

strength of the intact rock is too high, then there will be no shearing off

of asperities and the effect of dilatancy will be too high.

An extension of these tests is to study the effect of stress distribution

on shearing behavior. For this, the orientation of the surface of sliding for

the two blocks will be varied resulting in a change in the stress distribution

of the surface of contact. The effect of the different contact stress

distributions on the normal stress and shear stress versus displacement curves

will be studied.

In both these series of tests, the measured variables will be the normal

force, the shear force and the displacement of the top block relative to the

bottom block.

3.2.2 Stresses on the sliding surface of a block

The ability to determine tractions on the surface of sliding will be of

use in a number of proposed experiments. In experimental soil mechanics,

there are several contact stress transducers, designed to measure the shear

stresses and normal stresses at the surface. These, however, are designed for

use at 1g. No device seems to exist on the market that is suitable for use at

high g levels. Consequently, suitable strain gageing will be developed to

determine the surface tractions.

3.2.3 Block on an inclined plane

These Lests will involve a block sliding or a single plane. The issues

of interest will be the failure mode, i.e. the type of movement before,
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during, and after failure, and also, the stress distribution throughout the

process. The viriables involved are the slope angle, the surface roughness,

the externally applied forces, the stress distribution and the geometry of the

block. The quantities measured will be the displacements and the stresses (as

in Section 3.2.2). Tests which model the simplified assumpcLions of various

analyses (the limit equilibrium and method of artificial supports) will also

be run to check the validity of these analyses. For running these tests it

may be necessary to be able to change -he slope angle in flight, in an

accurate and controlled manner. This will require the construction of an

inclined plane whose slope can be controlled hydraulically or mechanically.

Both natural and artificial rock will be used in the experiments.

3.2.4 Si jle block or wedge on multiple planes

These tests are an extension of the previous tests. The issues of

interest are the stress distribution during the entire sliding process, right

from initiation, and the type of movement at the start of, during, and after

failure. The variables are the same as in the previous case, with additional

variables being the angle between the two planes and the stresses imposed by

the two planes on the wedge. Comparisons will be made between experimental

and theoretical results and tests will be run with the specific aim of

modelling the assumptions of available theories so as to check their validity.

Here too, both naLural and artificial rock will be used. In this case,

measuring the stresses on the sliding surfaces will not be as straightforward

as suggested in Section 3.2.2.
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3.2.5 Multi-block failures

The aim is to study the interaction of multiple blocks on a plane and to

determine what criteria govern the failure mode (e.g. rotation vs.

translation). Dilatancy too may occur under certain conditions, and an attempt

will be made to determine what these conditions are. The interaction effects

will be governed by the geometry of the individual blocks, the arrangements of

the blocks, the surface roughness of the blocks, the strength of the asperities

and the externally applied stresses. A series of experiments will he run te

see if the int-raction of the blocks scales with size and, to study the effects

of all variables listed on the tverall benavior.

The interaction of a group of blocks will also be studied using a trap

door arching experiment as shown in Fig. 9. The aim of this test is to -ee

whether the behavior of a jointed rock mass can be scaled, and to gain insight

into arching of jointed rock. This can be determined by studying the

force-settlement relationship for the rock mass and seeing if it scales from

one size of experiment to another. After each experiment, the rock mass will

be carefully taken apart to observe the amount and the location of sliding

between the blocks. Similar experiments have been used successfully to study

the behavior of soils lying above a yielding trap dour. The variables whose

influence can be studied in these experiment are the effect of two-dimensional

versus three-dimensional geometry (a long strip door vs. a square door), the

thickness of the rock mass relative to the trap door width, the joint

geometry, the model material and the surface characteristics. The dimensions

of the blocks to be used depend on the model material and the scales at which

the proposed tests will be run.
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The experiments described above can be extended to study tunnels in

jointed rock masses. Of interest will be the modelling of the three

dimensional geometry near the tunnel face, leading eventually to the study of

tunnels intersecting other underground openings of various shapes. Initially,

however, relatively simple geometries will be used, involving the study of

block geometries and also support behavior. Here too, observations will be

made on the deformations and loads.

3.2.6 Break up Tests

The aim of these tests is to study the mechanism by which rocks impacting

against one another or against a fixed surface break up. Of interest will be

the geometry of the resulting pieces and their displacement behavior. The

variables will be the geometry (size and shape) of the block, the number of

blocks, the height of fall and the inclination of the surface of impact. The

impacting blocks have to be unrestrained, causing problems of instrumentation.

Consequently, only visual observations and video recordings will be initially

made. During these tests, an effort will be made to develop new techniques to

make measurements on individual block behavior. Based on these tests, a

program of tests to study one of the least understood problems in rock

mechanics - rock falls and avalanches - will be developed.

3.2.7 Rock Fall and Avalanche Tests

These tests are an extension of the tests described above. Rock falls and

avalanches are not well understood and the primary aim of these tests will be

to obtain a better understanding of the process through visual observations, at

the same time recording it on video for further analysis as required. On the

basis of tests as described in Section 3.2.6, more detailed measuring
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techniques will be determined. Avalanche tests are more complicated than

rock fall tests since they involve pore pressures. Simulating pore pressures

will first require the development of suitable scaling relations to determine

what the similitude requirements of the model pore fluid will be. The dynamic

mobility effect also plays a role and will have to be treated separately from

the pore pressure. It is also not known at present how one can judge if one or

the other of the two mechanisms takes place and how one would measure the pore

pressures. Suitable testing techniques that can handle these problems will

have to be developed.

3.3 Conclusion

The tests discussed above have been presented in order of increasing

complexity, with almost every series depending on the previcus test series.

Once intact rock and joint surfaces have been modelled, then one can proceed to

model the jointed rock mass. Based on accumulated experience, more complex

problems can be tackled, ultimately leading to the study of problems involving

fluids and dynamics. Almost no centrifuge testing has been done so far

with jointed rock and consequently much can be learned from suclh tests.
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