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Chapter 1

Endorsement-based Reasoning

1 Introduction

Uncertainty is a state of mind that arises in the reasoning process. Our approach is
to ask what aspects of the process give rise to uncertainty. We emphasize the sources of
uncertainty and its consequences, rather than uncertainty as a mental phenomenon. A
second emphasis is how, in light of these sources and consequences, a system responds
to uncertainty. When a system cannot change its behavior in response to uncertainty,
which nonetheless has deleterious effects, we say it is reasoning under uncertainty. A
system that incorporates in its problem-solving repertoire some kind of response to
uncertainty is said to reason with uncertainty. A system that explicitly represents
sources and consequences of uncertainty, and reasons about them to control its own
behavior (e.g., by selecting problem-solving responses) is said to reason about uncer-
tainty. Reasoning about uncertainty thus places the most responsibility for managing
uncertainty on the system; reasoning with uncertainty is inflexible, because the system
does not reason autonomously about how to manage its uncertainty; reasoning under
uncertainty does not involve any management of uncertainty, autonomous or otherwise.

Our emphasis on the many sources of uncertainty has led us to a position we call the
composite view of uncertainty, contrasting with the one-dimensional view. Consider
a property of animals called “nastiness”. We propose to rank animals on this one
dimension by their nastiness: sharks and vipers are very, very nasty; shrews are a bit
less nasty; and so on until we reach koala bears. The inquiring mind will look at our
ranking and ask, “What features make one animal nastier than another?” because even
though the ranking is on a single dimension, the features that contribute to nastiness are
several. Those who must deal with nasty animals will want to know why their subjects
are nasty - their nasty characteristics - not merely the extent of their nastiness. Just
so with uncertainty. People and computers need to know why situations are uncertain,
not merely the extent of their uncertainty. Thus, we believe that theories of uncertainty
should emphasize the sources of uncertainty and its consequences.




2 Sources of Uncertainty

Uncertainty in rule-based inference has three general sources. It enters in evidence,
which may be inaccurate or insufficient; it is implicit in any model of a domain (which is
often encoded in production rules); and it is associated with the beliefs that result from
inference. We discuss these in turn. Throughout the discussion we assume that the
environment supplies evidence, which evokes inferences, which result in beliefs. Beliefs
may be used as evidence for further inference.

2.1 Sources of Uncertainty About Evidence

Among the things we can say about evidence are that it is errorful, irrelevant, or
insufficient. These are causes of uncertainty. In addition, we can say that a situation
has a chance of being true; for example, it might rain, or Sally has an 80 percent
chance of beating Fred’s poker hand. Because we want to understand the sources of
uncertainty, we are unwilling to summarize with a number the argument that evidence
is, say, irrelevant; since we wouvld no longer be able to distinguish irrelevance from
insufficiency or other causes of uncertainty. We will try to maintain this distinction,
though it is easily muddled when probabilistic arguments are combined with other
causes of uncertainty; for example, the evidence “Sally’s chances are 80 percent” may
be insufficient, and 2vidence may have an 80 percent chance of being insufficient.

Errorful evidence is common in systems that rely on sensory information. For
example, the tactile sensors of a robot may malfunction, resulting in an errorful inter-
pretation of any evidence the sensor provides. Noise causes uncertainty about whether
one’s evidence is relevant. Systems such as HEARSAY-1I (Erman, Lesser, Hayes-Roth,
and Reddy, 1980) and HASP/SIAP (Nii and Feigenbaum, 1977) contended with noise
from their transducers. Before they could ask whether data from transducers was er-
rorful, they had first to cope with uncertainty about its relevance - whether it was
signal or noise. Many applications are uncertain because they need more data than is
readily available, quite apart from the questions of whether the data that ss available
is errorful or relevant. In medicine, for example, some invasive tests are expensive or
life-threatening, and so diagnosis might proceed on the basis of incomplete evidence.
In other cases, the needed evidence will never be available; for example, pollsters nec-
essarily make statistical inferences from small samples because it is impossible, or
impractical, to query an entire population.

We prefer to characterize a poll as “accurate within a 2 percent margin of error,” or
a diagnosis as “lacking the evidence from a brain scan,” since these characterizations
guide us in dealing with our uncertainty. The more we know about the causes and
consequences of uncertainty about evidence, the better we are able to cope with the
uncertainty.




2.2 Sources of Uncertainty About the Model

Ruie-based inference systems capture knowledge about the world in inference rules
(which constitute a world model). Uncertainty is caused by the processes of construct-
ing and using these rules. When constructing rules, uncertainty is an inevitable con-
sequence of summarizing knowledge. We recognize that expert inference rules are
compilations of dozens or hundreds of experiences, and that minor differences between
the experiences are “smoothed out” in the rule. When using such rules, “relevant”
features of a case - those mentioned in the condition of a rule - are attended to, but
discrepant features are ignored.

A related source of uncertainty in rule-based inference is that rules are constructed
with some purpose in mind, but the context in which rules are used does not necessarily
correspond to the purpose for which they were intended. For example, imagine a simple
rule that states “If it’s raining, then take an umbrella.” This rule assumes that one’s
purpose is to stay dry, when in fact one may want to be drenched. It doesn’t work
to add another conditional clause to the rule, specifying that one wants toc stay dry,
because other implicit assumptions are easily generated; for example, we are assuming
that the umbrella works. One cannot escape the uncertainty caused by not knowing
whether the implicit assumptions of an inference rule are met.

Uncertainty arises from limitations of the world model. In terms of rule-based
inference systems, uncertainty is caused by not knowing whether one has rules for all
situations that may arise. It is worth making this source of uncertainty explicit, because
it makes an interesting qualification on one’s conclusions. Expert knowledge may be
relatively complete, so when the expert says “As far as [ know, you are healthy,” you
can be pleased. But the knowledge of expert systems is usually less complete, so a
clean bill of health from one of them is probably less encouraging. The expert system
should say “As far as | know, ...,” because far from being a conversational nicety, it is
an important qualification.

Note tl.at “I'm pretty sure you're healthy” is not as informative as “As far as I know,
you're healthy,” since the latter states the cause of any uncertainty and the former does
not. We re-emphasize the point we first made in connection with uncertainty about
evidence: The more one knows about the sources of uncertainty about inference rules,
the better one might cope with this uncertainty.

2.3 Sources of Uncertainty About Belief

Beliefs, in our simplified model of rule-based inference, are the conclusions of in-
ferences. Thus, important sources of uncertainty in beliefs are uncertainty in evidence
and inference rules. We will discuss how these sources of uncertainty are propagated
to beliefs in later sections. Here, we concentrate on uncertainty that arises from one’s
beliefs independent of their derivation. The chief cause of uncertainty is that beliefs are
sometimes inconsistent. For example, we believe that we pay too much money in taxes,




but we also believe that taxation for social programs is a Good Thing. Inconsistent
beliefs lead to uncertainty about our future conclusions and actions; it is not possible to
predict with certainty whether we will vote for tax-cutting or tax-raising political can-
didates. Another source of uncertainty concerns how beliefs are accessed. In humans,
at least, one can easily demonstrate priming and avaslabilsty biases (e.g., Kahneman,
Slovic, and Tversky, 1982). Briefly, people do not bring all beliefs to mind with equal
facility, and we use apparent facility as evidence about the truth of statements. |:: the
simplest case, if we cannot think of any examples of a proposition (e.g., that books can
dance the polka) then we say the proposition is false. This is fair enough, but we often
misjudge the likelihood of propositions by this same device. In Al inference systems,
access can be interpreted as search, which may be bounded by resource considerations,
or deduction, also susceptible to limits. Since the structure of the representations of
belief can affect the efficiency of access, judgments based on the relative ease of access
can introduce uncertainty about beliefs regardless of their content.

3 Desiderata for Intelligent Reasoning About Un-
certainty

This section asks what behaviors we should require of expert systems that reason
intelligently about uncertainty. The requirements are of two kinds: first, we discuss
what an expert system ought to do about uncertainty, then we focus on the represen-
tation of knowledge required to reason as we desire. It is striking that contemporary
expert systems do very little about uncertainty besides measuring it. Some expert sys-
tems assess degrees of belief for hypotheses, but they do not use these numbers except
to rank hypotheses and for some rudimentary control decisions. What more should an
expert system do? We focus on two behaviors: planning (or control) and explanation.

Intelligent behavior under uncertainty requires a plan for the management of the
uncertainty. Here are some examples of plans:

1. Confronted with uncertainty about which of two diseases afflict a patient, try
to rule out the most serious one. Specifically, order relatively inexpensive, non-
invasive tests before more costly ones, and give the patient a therapeutic trial
of medication for the more serious disease. See the patient again after the test
results are known and after the therapeutic trial has an opportunity te alleviate
symptoms,

2. Since I am uncertain whether my weekday bus runs on the weekend, I decide to
drive my car.

3. I am going to visit my parents, who say they have a birthday present for me.
They won't tell me what it is, so just to be safe. I put the roof-rack on my car.




The first case is taken from a series of interviews with a physician on the problem
of diagnosing chest pain. Two causes of pain, angina and esophageal spasm, can have
identical manifesiations, but one is more serious than the other. Thus, physicians will
try to rule out angina first, and may prescribe therapy for angina on a trial basis. The
angina/esophageal spasm differential is not usually resolved by ruling in esophageal
spasm, since it is difficult to get direct, physical evidence of spas.n. However, this plan
is appropriate if less costly tests fail to resolve between the disease hypotheses. In
contrast, one can sometimes quickly rule out angina by demonstrating that the pain is
due to damage to the muscles of the chest. This “rule-out by ruling-in” plan may not
be appropriate, however, if the patient is at risk for heart disease because of smoking,
age, family history, and so on, since this patient may have both heart disease and some
other cause of chest pain.

Thus, intelligent reasoning under uncertainty involves selecting a plan appropriate
to the nature of the uncertainty. Tke “rule-out by ruling in” plan may be appropriate
in some cases but not to the angina/esophzgeal spasm differential if the patient is at
risk for heart disease and if less difficult tests have not yet been tried.

If one knows enough about the nature of one’s unce:tainty to intelligently select a
plan, then this knowledge can be used to explain one’s behavior:

e Why did you try to rule out angina before esophageal spasm?

e Because the consequences of my uncertainty about angina are more serious; and
because it is difficult to find direct evidence for or against esophageal spasm; and
because there is evidence that the patient is at risk for heart disease, so ruling in
esophageal spasm would not rule out heart disease.

Many plans for managing uncertainty are much simpler than this one. The second
example, above, is a case of sidestepping uncertainty. Instead of facing the uncertainty
of whether a bus is running, che question is made irrelevant by deciding to drive a car.
The third case is similar: it involves anticipating possible outcomes and preparing for
the most extreme. When uncertain about the size of a birthday present, one prepares
for the worst (best?) case by arranging transportation for the biggest possible object.

One characteristic of these examples is that the probability of the various uncertain
outcomes is both insufficient to determine a response to the uncertainty, and further-
more, it is largely irrelevant. In the medical example, provided there is “enough”
evidence for angina, the physician pursues the angina hypothesis not because it is more
likely than esophageal spasm but because it is more dangerous. In the second case, if
there is “not enough™ evidence that the bus is running, the commuter decides to drive.
The extent of the uncertainty in these cases, and the third case, is not the salient factor
in deciding on a plan to manage the uncertainty.

Yet, the probability of outcomes plays a small role i1: thesc examples, and a greater
role in other cases, such as this one:




An airplane has crashed in dense jungle. Searchers superimpose a grid on a map

of the area and calculate, for each square in the grid, the probability that the plane
crashed in that square. They search the high-probability areas first.
Here, the appropriate plan for managing uncertainty depends on knowing the likelihood
of outcomes. Thus, in addition to planning and explanation, we need the ability to
believe one proposition more than another. This, in turn, requires the ability to update
degrees of belief in light of evidence.

In summary, the behaviors that make for intelligent reasoning about uncertainty
are: the ability to plan a course of action appropriate to one’s uncertainty, the ability
to explain one’s actions, and the ability to determine degrees of belief in alternatives
given evidence. We now consider the conceptual tools required to build expert systems
with these abilities.

An expert system requires a representation of knowledge about its uncertainty and
methods for manipulating this knowledge to plan and explain actions, and to modify
its belief in propositions. A good representation supports all the concepts one wishes to
reason about, and all the methods one uses to reason about them. A good representa-
tion makes important distinctions explicit. One should not have to struggle to represent
a situation — the representational techniques should make the “translation” between
a situation and its representation easy. If these representational criteria are met, then
we will be able to represent the knowledge required to achieve the three performance
criteria outlined above. Table 1 summarizes the performance and representational cri-
teria. We now survey current Al approaches to reasoning under uncertainty from the
perspective of these criteria.

TABLE 1

B n g .! .

Planning: Plan actions that are appropriate to uncertainty
Explanation: Explain plans for managing uncertainty
Measurement: Modify degree of belief in light of evidence

Representational criteria

Adequacy: Support all interesting concepts and methods for
reasoning about them

Explicitness: Make important distinctions explicit

Ease-of-use: Make the “translation™ between situation and

representation easy




4 Al Approaches to Uncertainty

Given the diversity of sources of uncertainty, it is not surprising to find a plethora
of responses in Al inference systems. The current approaches to uncertainty can be
organized into three major groups. Systems constructed to circumvent the effects of
uncertainty are of the engineering approach. Systems that control their behavior to
avoid or reduce the effect of uncertainty use the control approach. Some systems divide
the inference process into two separate subprocesses, one that performs inference as
if there were no uncertainty, and another that associates representations of partial
belief with the conclusions of the first process; this approach is called parallel certainty
inference (Cohen, 1983). Although there is some overlap in ihese categories, they
provide a useful organization to the discussion of current Al approaches to uncertainty.

4.1 The Engineering Approach

The designer of an inference system can anticipate some causes of uncertainty that
effect the performance of a system, and then formulate the problem to eliminate any
need to consider the uncertainty. For example, elementary textbook problems in physics
ignore the effects of friction, relieving the student of the need to calculate the (uncer-
tain) effect of this difficult-to-measure factor. It is common in Al inference systems to
engineer the uncertainty out of problems, especially for prototype systems. Problems
are frequently hard enough without considering noise or error, so the clean data assump-
tion is often made to eliminate the effect of uncertainty introduced by the evidence. Of
course, the same techniques that work with clean data must often be modified to cope
with the problems of noise and error.

A second way to engineer uncertainty out of Al systems is to assume relevance. It is
sometimes difficult to decide which features of the environment are relevant to a task,
especially if one's world model is incomplete. Systems that are free of this uncertainty
are conceptually simpler. For instance, Winston's (1975) “concept learning” program
was presented with a set of training instances and inferred a “rule” to classify them.
The program assumed that the teacher would supply typical and “near miss” cases
of a special form. The problem was made tractable by assuming relevance, but the
more difficult task of generating and evaluating training instances was finessed. Other
learning systems (discussed in Dietterich, 1982; Michalski, Carbonell, and Mitchell,
1983) have made similar assumptions.

A third form of the engineering approach is a response to the kind of uncertainty that
results from incomplete models of a domain. Since a system cannot know everything
about its domain, it must make tentative decisions on the basis of uncertain beliefs.
For instance, it is common to make the closed world assumption (Reiter, 1980) when
working with a finite database of facts. The assumption asserts that something is false
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if it is not known to be true.! Thus, under the closed world assumption, to decide
whether X is true, one checks if X is known; if it is not known, then X is assumed to
be false. In a rule-based inference system, if no rule has asserted a proposition (even
though it is possible that one might in the future), the proposition is false under this
assumption. A system that makes the closed world assumption is freed from the need
to have a complete model; it has removed one source of uncertainty-the uncertainty of
the unknown-by hiding it. (However, not all systems ignore the uncertainty intr. Juced
by assumptions. See the discussions of dependency-directed backtracking and reason
maintenance in the following two sections for techniques that recognize and reason with
the uncertainty introduced by assumptions.)

4.2 Control Approaches

Control approaches to uncertainty recognize the characteristics of a domain that
cause uncertainty, and utilize control strategies to reduce the effects of uncertainty or
eliminate its sources. As an illustration, consider a control strategy for solving a jigsaw
puzzle: build the borders first, and then work in towards the center. This strategy
exploits the local constraints provided by the straight edges of the border pieces to
redice the number of pieces that could be fit. Border pieces are less unconstrained
and should be placed first; then, any piece that looks as if it might extend the frame
should be placed next. A control strategy that exploits domain constrains this way
can sometimes minimize uncertainty or its effects. Al systems use knowledge about
uncertainty in their control strategies in a variety of ways. By recognizing those points
where uncertainty is introduced, a control strategy can provide a mechanism to retract
errorful conclusions or mark problematic issues for careful analysis. A control strategy
can also concentrate on hypotheses (partially supported belief) with especially high or
low certainty, or modify action on the basis of characteristics of uncertain evidence.

Dependency dirccted backtracking (Stallman and Sussman, 1977; Doyle 1979; Lon-
don, 1978) is a method for efficiently recovering from errors in choices made with
uncertainty. The behavior of a system can be seen as a tree, with each node represent-
ing a choice made under uncertainty. The power of backtracking is that the reasoning
process assumes all nodes (choices) along a single branch of the tree are certain. When

1Something is typically considered known if it is immediately available in a database or if it can be
found by some limited inference. But in some logic-based paradigms, something is known if it can be
proven - deduced from the current set of assertions (Artificial Intelligence, 1980). See (Levesque, 1984)
for a discussion of the difference.

A general assumption relating knowledge of a proposition to its truth is that X is true if and only if X
is known. The contrapositive of implication in one dircction { known(x) -; true(x)) is the closed world
assumption as commonly understood. The positive implication in one direction (true(x) -; known(x)
is the assumption made by (Collins, et. al., 1975) in plausible reasoning. The positive implication in
the other direction (known(x) -; true(x)) is the assumption made by reasoning processes that ignore the
effects of uncertainty in their beliefs, as in parallel certainty inference discussed in a later section.
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a choice is found to be wrong, the reasoning process reconsiders and makes an alternate
choice at that point. An efficient method for redoing the choice leaves the bulk of the
belief set unchanged. A related approach, which records the reasons for the uncertainty
at each choice point, is discussed below.

Least-commitment planning (Sacerdoti, 1977; Stefik, 1980) is a strategy to manage
the uncertainty introduced by not knowing the effects of actions (i.e., incompleteness
of the domain model). The construction of plan steps introduces uncertainty because
possible interactions with other plan steps are not known in advance. By delaying the
commitment to these plan steps until more interactions are known, the uncertainty in
the effects on other parts of the plan is reduced.

Opportunistic control, as in the HEARSAY-II speech understanding system, (Er-
man, et.al., 1980) directs the system to focus its attention to those hypotheses that
are supported with the greatest certainty, that is, to follow the most promising leads.
These 1slands of certainty are sources of local constraints that make it easier to propose
and support new hypotheses. In the speech understanding domain, the effects of uncer-
tainty were minimized by this opportunistic strategy, which relied on the redundancy
of information in the speech signal. One can imagine cases in which an opportunistic
strategy is not as well-suited to the characteristic uncertainty of a domain. The point
is that for the control approach to work, the control strategy must be matched to the
kinds of uncertainty that arise in a domain.

Heuristic search can also benefit from the consideration of uncertainty. The term
“heuristic knowledge” implies that the knowledge is imperfect (uncertain) in some
way. Understanding the limitations of heuristic knowledge can be a source of power in
using it. For instance, many computer chess programs incorporate a static evaluator, a
heuristic that estimates the worth of a board position. By searching a few moves ahead
and applying the static evaluator at the terminal nodes of the search tree to compare
the relative worth of each move, a chess program can choose a reasonable move. A
difficulty called the horizon effect (Berliner, 1974) occurs when beneficial positions are
missed because the static evaluator is applied at a uniform depth. Important positions
are missed if they are just over the horizon of the evaluator’s view. A controi strategy
can improve performance if it extends the search at points where the horizon effect is
most likely.

In summary, the control approach to uncertainty recognizes where uncertainty arises
and incorporates a control strategy to provide flexibility at those points.

4.3 Parallel Certainty Inference

The parallel certainty approach divides the reasoning process into two semi-independent
processes. One proceeds as if there were no uncertainty in its conclusions. The other de-
cides on the certainty of the conclusions derived by the first. This is convenient because
it allows the first process to concentrate on the domain problem without considering
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difficulties introduced by uncertainty. The first process decides what to believe, and the
second, how much or why to believe. Three broad categories of parallel certainty will
be discussed: degrees of belief, reason maintenance, and the theory of endorsements.

Degrees of belief

The most popular parallel certainty methods represent uncertainty as a ¢ ‘gree of
belief,? an expression of how much something is to be believed. The canonical example
is the certainty factor representation of MYCIN (Shortliffe and Buchanan, 1975) and
PROSPECTOR (Duda, Hart, and Nilsson, 1976). A proposition is associated with a
number between 0 and 1 that represents how much the system believes it. Inference
rules are applied without regard to the certainty of their premises® (or conclusions, if the
inference is backward-chaining), while degrees of belief are propagated from premises
to conclusions via a rule of combination.

At least two sources of uncertainty are represented by certainty factors: certainty
in inference rules and certainty in beliefs. A certainty factor for a rule represents
the expert’s confidence in it, but it is not always clear what confidence means. For
example, a rule that states that obesity implies illness might have a certainty factor
of 0.8 associated with it. This number might represent the proposition that 80that
the probability is .80 that a sick person is obese, or that the general rule that obesity
causes sickness is more applicable than a rule with a certainty factor of 0.6. Whatever
its meaning, the effect of the certainty factor on a rule is to weight the belief in its
conclusions; the higher the rule’s cf, the higher the belief in conclusions from that rule
(all things being equal). Certainty in beliefs is also represented by numbers. Again, it
is difficult to be clear about what the certainty factor of a belief means, other than to
say that higher numbers mean stronger belief.

Belief is propagated across inferences. The propagation rules used by MYCIN and
PROSPECTOR are variants of Bayes’ rule, which provides a mathematical method for
updating the probability of a hypothesis given an observation of evidence. Bayesian
methods are based on the axioms of probability theory, and have been applied in
several ways to combine the degrees of belief for multiple hypotheses given evidence
from multiple distinct sources that might disagree. They are quite general.

A related method of representing and reasoning with degrees of belief is the Shafer-
Dempster method (Dempster, 1968; Shafer, 1976; Lowrance and Garvey, 1982). In
contrast to the Bayesian approach, belief is represented by an interval between 0 and
1, rather than as a single point. The Shafer-Dempster method has a number of advan-
tages over a strictly Bayesian approach, mainly because it makes weaker assumptions.

3The term is due to Shafer (1976).

3Actually, MYCIN did not fire rules whose conditions were believed with less than 0.2 cf, so it is
not strictly a parallel inference method, since domain inferences are not kept entirely separate from
inferences about uncertainty.
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(Bayesians require all hypothesis to be mutually exclusive, exhaustive, singletcns). The
two-number representation allows for ignorance (the inescapable result of incomplete
knowledge), as well as degree of belief, whereas in Bayesian models ignorance is com-
monly misrepresented as belief in the negation. The Shafer-Dempster representation
can capture belief in sets of hypotheses, which is particularly useful when uncertainty
about the relevance of evidence prevents the assignment of belief to individual (single-
ton) hypotheses.

Many objections can be raised to representing uncertainty with degrees of belief.
First, the semantics of the numbers are not well defined. Some authors interpret the
numbers as subjective probabilities, others as frequencies, and others entirely ignore
the issue of what the numbers mean. An emphasis of recent research (Rich, 1983;
Kim and Pearl, 1983; Wesley, 1983; Ginsberg, 1984; Strat, 1984) has been to make
numerical degrees of belief represent an increasing variety of kinds of uncertainty, so
the interpretation of the numbers is a bewildering task. We believe that numbers are
not an adequate representation for everything one wishes to say about the causes and
consequences of uncertainty. A second problem, which is a consequence of the represen-
tational inadequacy of numbers, is that the numbers are used to represent combinations
of factors; for example, certainty factors in rule-based systems frequently account for
salience and utility as well as degree of belief. A third and related problem is that if
the components of a degree of belief are unknown, or if their relative contributions are
unknown, then it is impossible to predict whether transformations of degrees of belief
- such as combining functions — have any effects on the meanings of the numbers, since
the meanings were obscure to begin with. A rule may be given a high certainty factor
because it is important, or useful, even if it is not very accurate. What interpretation
does one give a number produced by combining two such certainty factors? A fourth
problem, again closely related, is succinctly put in the question: “where do the numbers
come from?”. Salmon (1967) calls this the criterion of ascerntasnability. How do we
hope to effectively capture the knowledge of a human expert with numbers when the
expert doesn’t reason that way?

Reason Maintenance

Reason Maintenance (Doyle, 1980, 1983a). was developed specifically to deal with
uncertainty caused by incomplete knowledge. Often, the truth of a proposition cannot
be determined, but one can proceed as if it were known. Reason maintenance, and the
theory of “reasoned assumption” most recently developed by Doyle (1983b), calls for
jumping to conclusions in the case where the truth of a proposition is not known but can
be assumed. In making assumptions of various forms, the system consciously introduces
uncertainty; it records the reasons for the assumption, and thus represents sources of
uncertainty associated with it. In terms of the parallel certainty inference model, the
first inference process proceeds as if it has confidence in assumed propositions, and the
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second provides a mechanism to carefully retract assumptions if they are found to be
wrong. Thus, reasons for belief support sophisticated reasoning about uncertainty.

The Theory of Endorsements

The parallel certainty inference approach divides reasoning under uncertainty into
two “streams”; one is a stream of logical inferences, typically the inferences t:at are
needed to solve a problem. The other is a stream of inferences about the certainty
of conclusions produced in the first stream. We have considered numerical inferences,
based on Bayes’ and Dempster’s rules, and also reason maintenance - the recording
and maintenance of dependencies among conclusions. A third approach is to record
arbitrarily complex messages (which we call endorsements) in the second stream. These
messages record causes and remedies of uncertainty; for example, we might note that
evidence is produced by an occasionally faulty sensor, or that a newspaper reporter
considers a wide range of sources before filing a report, or that the margin of error
on a poll is 5%, or that a recommendation comes from someone who doesn’t know
his subject, and so on. The fundamental assumption of the theory of endorsements
(Cohen, 1983) is that subjective degrees of belief, usually represented as numbers, are
composites of reasons to believe and disbelieve. We suggest that, for many tasks, one
needs to know more than simply the eztent of one’s belief; one also needs to know the
causes of belief. The theory of endorsements is concerned with how to represent and
reason with this knowledge.

We misrepresent the theory of endorsements somewhat by grouping it with parallel
certainty inference approaches. One advantage of knowing why a proposition is un-
certain is the ability to “take evasive action” to eliminate the cause, or the effects, of
uncertainty. For example, if one knows that the cause of uncertainty is the absence
of attainable knowledge, then one might eliminate the uncertainty by simply asking
for the missing information, or by searching for it. On the other hand, if the missing
knowledge isn’t obtainable, then one cannot eliminate the cause of uncertainty but one
may minimize its effects. For example, hedging minimizes uncertainty arising from
unattainable knowledge. The key to such evasive action is knowledge about uncer-
tainty. The search for missing evidence, for example, depends on knowledge about
its source. If the source produces evidence intermittently, like a volcanic fault, then
one must sit around and wait. We adopt one strategy for a feedback-directed search
for evidence (e.g., we have found the right book, then the right section, and finally
the desired sentence), and another for evidence that just “pops up” without warning
(e.g., waiting for a bus that may or may not be running). Thus, the key to making
a system responsive to its uncertainty is knowledge about the causes of uncertainty;
or, conversely, parallel certainty inference approaches aren’t responsive to uncertainty
because they know nothing about it except its extent.
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5 SOLOMON - An Implementation of the Theory
of Endorsements

The theory of endorsements was initially developed in the context of rule-based
systems, and was tested with expert heuristics from the domain of portfolio manage-
ment (gleaned from a program called FOLIO; see Cohen and Lieberman, 1983). Our
implementation of the theory of endorsements, a program called SOLOMON, reasoned
about the uncertainty associated with these heuristics and their use. All such reasoning
was mediated by structures called endorsements that represented reasons to believe and
disbelieve their associated propositions. Endorsements are frame-like knowledge struc-
tures representing reasons to believe (positive endorsements) and disbelieve (negative
endorsements). They are associated with propositions and inference rules at various
times during reasoning. Five classes of endorsements appeared important for reasoning
about uncertainty in rule-based systems:

Rule endorsements. Reasons to believe and disbelieve infereace rules
(e.g., a clause in a premise may be endorsed as maybe-too-restrictive,
that is, the premise might occasionally fail due to this clause when the
conclusion is in fact valid.)

Data endorsements. Reasons to believe and disbelieve raw data (e.g., a
statement about one’s own tolerance of risk is often conservative).

Task endorsements. Arguments about the evidence that executing tasks
are likely to produce, used to schedule the tasks (e.g., a task is worth doing
because it may produce a corroborating conclusion.)

Conclusion endorsements. Reasons to believe and disbelieve conclu-
sions. These are combinations of a priori rule endorsements and detected
relationships - such as corroboration - between conclusions (e.g., a con-
servative conclusion about one’s risk tolerance is corroborated by other
evidence.)

Resolution endorsements. Records of the application of methods to re-
solve uncertainty (e.g., no rules conclude a desired goal, but after eliminat-
ing a maybe-too-restrictive clause from a rule, we achieved the desired
conclusion.)

The style of reasoning mediated by these endorsements is, by design, similar to
the goal-directed reasoning of many expert systems: SOLOMON starts by trying to
conclude a goal, usually the value of a parameter, such as risk-tolerance in the domain
of investments. It then backchains through its rulebase, directed by this goal and its
subgoals. As it proceeds, SOLOMON develops bodies of endorsements ~ reasons to
believe and disbelive its conclusions. These provide justifications for the conclusions,
and also play a role in the control of SOLOMON's reasoning.
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It is important that endorsements should affect control of processing in SOLOMON,
because the theory of endorsements is oriented towards the effects of uncertainty on
behavior. In SOLOMON these effects were two: First, SOLOMON used endorsements
to decide whether a proposition was certain enough for the task at hand. It would
ask whether the endorsements of a subgoal conclusion were good enough to warrant
using the conclusion to assert its parent goal. This is similar to setting a threshold on
the numeric degree of belief that a conclusion must accrue in a backchaining « ‘stem
(e.g., MYCIN set a global threshold of 0.2.) However, the “threshold” is determined
dynamically for each goal and applied to its subgoals’ endorsements; and the threshold
is not a quantity but a boolean combination of desirable and undesirable endorsements.
Importantly, a proposition that is not certain enough for one task may serve for an-
other; for example, the word of a used-car salesman might barely suffice if you want
to know who won last night’s football game, but is perilously untrustworthy where the
salesman’s self-interest is concerned.

The second effect of uncertainty on behavior is achieved, in SOLOMON, by reso-
lution tasks. The principle of these tasks is that negative endorsements are viewed
as problems to be solved. SOLOMON wili attempt to improve the endorsement of an
important proposition. It has available general and domain-specific rules for resolving
uncertainty. For example, when it is unable to derive a desired conclusion from its
available rules, it can make small modifications to the premises of the rules, such as
dropping clauses. Clauses to drop are selected by their endorsements; SOLOMON will
not drop clauses endorsed as criterial. Dropping clauses results in additional endorse-
ments noting the uncertainty that it introduces (see Cohen, 1983, pp. 148-158, for a
detailed example).

In addition to rules to decide when a proposition is certain enough for a task,
and rules for resolving uncertainty, SOLOMON had a simple rule to combine endorse-
ments and propagate them over inferences. This was that a conclusion inherits all
endorsements of its premise, plus any that result from posting the conclusion (such
as a contradiction between the conclusion and another). In fact, this rule was doubly
flawed: First, reasons to believe or disbelieve a premise are not always endorsements
of the conclusion; and, second, the rule led to large bodies of endorsements after only
a few inferences. The remainder of this report reveals recent work on the problem of
combining endorsements.

6 Combining Endorsements

Combining evidence is something that numerical approaches to uncertainty do very
well, because they represent uncertainty as a quantity increased or diminished by ev-
idence. We do not represent uncertainty as a quantity: We represent it in terms of
knowledge about evidence, and we do not summarize this knowledge in a degree of
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belief. Thus, it is not as easy to combine evidence in the theory of endorsements as it
is in quantitative theories. If there is evidence from more than one source for a propo-
sition, we must “calculate” a body of endorsements for the proposition by combining
the endorsements of each piece of evidence. Simple syntactic union of the endorse-
ments leads to the problems mentioned above: Large bodies of endorsements result,
and not all endorsements remain relevant for all uses of their associated propositions.
We are exploring semantic combining rules for endorsements - so called because the
combination of endorsements is mediated by rules that reflect what the endorsements
mean.

A related problem is ranking endorsements. Again, quantitative approaches can
rank the credibility of hypotheses easily, and again, it is more difficult with endorse-
ments. However, endorsements can be ranked on an ordinal scale, if not an interval
one, and so schemes for ranking endorsements can be designed. This is the subject of
a research note in preparation. This is the subject of the next section.

7 HMMM - An Endorsement-Based Plan Recogni-
tion Program

HMMM is a plan recognition program that infers which of several known plans a user
intends by combining the evidence provided by successive user actions. Plan recognition
is uncertain for two reasons: the user might make a mistake, in which case extrapolating
from the action might suggest the wrong plan; or a user action may be ambiguous; i.e.,
the action might be consistent with several known plans.* If all the user’s actions
belong to only one known plan, the interpretation process is straightforward; but when
an action can be interpreted as a mistake, or as belonging to more than one plan,
HMMM is uncertain of the user’s intentions, and so generates endorsements for the
competing interpretations. HMMM is a simplified version of POISE (Carver, Lesser,
and McCue, 1984), an office automation system with an intelligent user interface, which
discerns a user's plan and offers assistance by automating some plan steps.

Individual plan steps are interpreted in the context of developing plans. The pro-
gram uses its knowledge of the user’s previous actions to restrict the interpretations of
the current action. For example, assume the program knows the following plans:

Plan Steps
planl abd
plan2 bde
plan3 acd

4Other sources of uncertainty in plan recognition include an incomplete library of known plans and
inaccuracies in the plan library. We limited our exploration to unintended and ambiguous actions.
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Given that the user takes the actions a followed by b, we can construct three
interpretations for each action:

(start planl a) (continue planl b)
(start plan3 a) (start plan2 b)
(mistake a) (mistake b)

However, the interpretation of b as continuing planl would not be valid unless
the first step of planl, a, had already been taken. We account for these syntactic
restrictions with data structures called step linkages. Each step linkage represents an
interpretation of all the plan steps taken so far. Step linkages for the “current” step
are constructed from the existing step linkages, which link all previous steps. For an
interpretation that continues an already-opened plan (as b above continues planl),
each step linkage that mentions the preceding step is extended to include the new step.
For an interpretation of a plan step as starting a new plan (as b above is interpreted
as starting plan2), all step linkages are extended to include this interpretation.

Each step linkage carries endorsements. These are reasons to believe and disbelieve
the interpretations of plan steps represented by the step linkages. For example, a reason
to believe that b continues planl, above, is that “continuity is desirable.” Recall our
contention that these reasons have no implicit meaning, no matter how evocative are the
strings we use. The following example shows how meaning is ascribed to endorsements
and how endorsements facilitate reasoning about uncertain interpretations.

7.1 An Example of Endorsement-Based Plan Recognition

Suppose we have a simple environment in which we know that the user intends
exactly one of two known plans,

Plan Steps
planl abc
plan2 bde

and the user types the input actions a followed by b followed by d. Briefly, we can
imagine interpreting the first input as evidence for planl, and the second as further
evidence. The third input lends support for the plan2 interpretation of b, and casts
doubt on the planl interpretation of a, and indirectly supports the possibility that a
was a mistake. If a fourth input was ¢, we’d want the system to reaffirm its belief in
planl, whereas an input of e should have the opposite effect.
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8 Applicability Conditions for Endorsements

HMMM uses endorsements to reason as just described. The actions a, b, d result
in the following syntactic interpretations:

Step Interpretation Endorsements

l:a  (start planl a) (a only grammatical possibility +)
(a could be a mistake -)

2:b  (continue planl b) (a b continuity is desirable +)
(b other grammatical possibility -)
(b could be a mistake -)

b (start plan2 b) (a b discontinuity is undesirable -)
(b other grammatical possibility -)
(b could be a mistake -)

3.d (continue plan2 d) (d only grammatical possibility +)
(b d continuity is desirable +)
(d could be a mistake -)

The endorsements are associated with the interpretations by rules specifying their
applicability conditions: “other grammatical possibility” is applicable whenever a plan
step figures in more than one possible plan; “could be a mistake” is always applicable;
“continuity is desirable” is redundant with the interpretation of a plan step as contin-
uing an open plan; and “discontinuity is undesirable” applies whenever a plan step is
interpreted as disrupting an already open plan by starting a new one. Some endorse-
ments are positive, meaning that they support the interpretation with which they are
associated. Others are negative - reasons to disbelieve their associated interpretations.®

9 Combining Endorsements

The endorsements associated with an interpretation are brought along when that
interpretation is appended to a step linkage, and they are combined with endorsements
from the previous steps in the linkage to give the endorsements of the plan up to that
point. For example, the input a is evidence for planl, and b is further evidence for
planl. Note that b is a different kind of evidence from a, because it is ambiguous

® Applicability conditions for endorsements include rules to decide whether an endorsement is positive
or negative. This is easy in HMMM, but we believe it to be difficult in general to decide whether evidence
speaks for or against a hypothesis.
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between planl and plan2. Applicability conditions for endorsements give us the mech-
anism to distinguish between the kinds of evidence - each kind carries characteristic
endorsements — but they don't specify how to combine the endorsements of pieces of
evidence, such as a and b, when they support the same hypothesis (in this case, planl).
To this end, we have implemented semantic combining rules, two of which follow.

SCR1: If (plan N: step i could be a mistake -) and
(plan N: steps i j continuity is desirable +)
Then erase (plan N: step i could be a mistake -)

SCR2: If (plan M: steps i j discontinuity is undesirable -) and
(plan M: steps j k continuity is desirable +) and
(plans N,M: step j other grammatical possibility -)
Then erase (plan M: steps i j discontin'.ity is undesirable -)

Both rules use the occurrence of two consecutive plan steps as a basis for removing
negative endorsements that may have accrued to the first of the steps. The general
idea is that consecutive steps in a single plan eliminate uncertainty about the inter-
pretation of the first step. Given these rules, the combined endorsements for the planl
interpretation of the inputs a, b and the plan2 interpretation of the inputs a, b, d are
derived from the endorsed step linkages shown above:

planl interpretation of a, b: plan2 interpretation of a, b, d:

(a only grammatical possibility +) (b other grammatical possibility -)
(a b continuity is desirable +) (d only grammatical possibility +)
(b could be a mistake -) (b d continuity is desirable +)

(b other grammatical possibility -) (d could be a mistake -)

Note that (a could be a mistake -) has been erased by application of SCR1 for
the planl interpretation, and that (b could be a mistake -) and (a b discontinuity is
undesirable -) have been erased by SCR1 and SCR2 respectively for the plan2 inter-
pretation.

10 Strengthening Endorsements

The semantic combining rules discussed above are unintuitive because they elimi-
nate endorsements entirely, rather than increasing or decreasing the weight of endorse-
ments (e.g., a more intuitive version of SCR1 should reduce the concern that a plan
step is a mistake, not drop it entirely). Currently, we use numerical weights to reflect
the strengths of endorsements, and adju:t the weights to reflect combinations of en-
dorsements. Sirce we are concerned that these numbers should mean the same under
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combination as combinations of endorsements, we have strictly limited ourselves to a
single case of combination, namely corroboration of endorsements. We have identified
three general situations where endorsements corroborate, that is, where two endorse-
ments combine to create another “weightier” endorsement:

1. Corroboration of multiple instances of the same endorsement within a single plan
step. For example, if an ambiguous plan step could continue one plan and start
numerous others, then the weight of the “continuity is desirable” endorsement is
greater than it would be if the step could continue a plan and start but a single
plan.

2. Corroboration of instances of different endorsements of the same sign (both pos-
itive or negative) within the same plan step, resulting in a kind of synergetic
increase in the belief in an interpretation. For example, the two negative endorse-
ments “discontinuity is undesirable” and “other grammatical possibility” have a
combined weight which is greater than the sum of their individua! weights.

" 3. Corroboration of multiple instances of the same endorsement over consecutive
plan steps. We believe in a plan more strongly if it is successively reinforced by the
same positive endorsements. For example, we increase the weight of endorsements
associated with a plan if the “continuity is desirable” endorsement appears in
several consecutive steps.

11 Ranking Endorsements

We have said that the three components of semantics for endorsements are applica-
bility conditions, combining rules, and ranking rules. We have explored two methods
for ranking combinations of endorsements: one used the numerical weights of endorse-
ments as described above, the other was a classification scheme to separate likely and
unlikely alternatives.

We wanted combinations of endorsements to dictate at least a partial ordering on
alternatives facing any decision-making program. We accomplished this in HMMM
with a scheme for classifying step linkages as likely, unlikely, or neutral,® contingent
on the presence of particular endorsements or combined endorsements. For exam-
ple, a sufficient condition for being considered “likely” might be corroboration of two
different, positive endorsements, and the condition for “unlikely” might be any neg-
ative endorsement. Interpretations can be ranked by assigning them to one of these
implicitly-ordered classes, based on their endorsements. We think this kind of classifi-
cation scheme can serve as a general model for ranking endorsements, since the criteria

SThese terms are the names of classes; membership in any class is determined by endorsements. We
imply no probabilistic interpretation of these terms.
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for membership in classes are flexible (and may be set dynamically); and since the num-
ber of classes is also flexible, ensuring adequate discrimination of alternatives. (The
classification scheme was originally devised for a planning program which predicts a
planner’s next move to be from the class of “likely” moves.)

12 Discussion

The HMMM program raises many questions about endorsement-based reasoning.
Two we did not address in the body of this report concern the subjectivity and cost of
endorsement-based reasoning.

Subjectivity of endorsements. Endorsement-based reasoning is not normative or
prescriptive: there’s no “correct” set of endorsements for a domain, no correct method
for combining the endorsements of successive pieces of evidence. The endorsements
discussed in this report seem appropriate to the domain of plan recognition. We believe
that ambiguity of plan steps reduces certainty in all interpretations of those steps,
just as certainty is increased when two or more consecutive steps are interpreted as
belonging to the same plan. Other people might design a different set based on their
perceptions of the domain. The point is that this report provides a framework for
endorsement-based reasoning, but it is not prescriptive.

How much is required? The simple plan recognition example required few en-
dorsements and only two semantic combining rules. We need more of each to handle
other kinds of uncertainty and other relationships between endorsements. The number
of endorsements and combining rules required for a domain depends cn what you intend
to do with them. If you wish to represent the major sources of uncertainty in a domain
(e.g., the possibility of mistakes, ambiguity, disruption of an established scheme, etc.),
then we believe the number of combining rules will be small. This is the approach
we took for plan recognition. We expect that endorsements can constitute a small
investment for system-builders with a large payoff in terms of explanatory power and
facilitation of knowledge engineering (since the expert can give reasons for uncertainty
instead of numbers).

To effectively reason under uncertainty, in the long run, intelligent systems must
reason about uncertainty. This means specifying representations, thinking carefully
about what they mean, developing operations for combining and propagating them,
and considering what properties of uncertainty the operations preserve. Early work
in reasoning with uncertainty concentrated on whether there was uncertainty and how
much. This is adequate for some purposes, but the intelligent reasoning systems of the
future will need richer representations for a more sophisticated approach to uncertainty.
Some of the purposes to which sophisticated reasoning abou. uncertainty must be
J applied are explanation, evaluation, and control.

Explanation. We want to know “why” an agent believes something, not just
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“how much™ it is believed. Early inference systems such as TEIRESIAS, (Davis, 1976)
explained their behavior by displaying the chain of rules leading to a conclusion; they
didn’t explain why those particular rules fired. In particular, they failed to explain the
basis for partial support (i.e., certainty factors). It is not clear how a degree of belief
summarizes the reasoning under uncertainty that produced it, and yet, it is precisely
in conditions of uncertainty that good explanations are most beneficial.

Evaluation. Al systems cannot be evaluated as black boxes. Proper validation
requires a consideration of the structure and content of internal belief. For example,
Lenat’s (1976) AM program discovers fundamental concepts in mathematics. That’s
the black box view. Only after several years of experiment did anyone (including
Lenat) really understand why and how AM worked. (Lenat and Brown, 1983) That
analysis, which demystified the original program and provided valuable insights into the
nature of learning, was based on experiments with the structure and content of AM’s
representations. Similarly, we cannot hope to understand how our systems reason under
uncertainty unless we “open up” the black box representations of uncertaintv. As with
AM, we can say that our systems “work.” But they do not currently give us any insight
into the sources and consequences of uncertainty.

Control. Most expert systems use relatively simple control strategies. Processing
is data-driven or goal-driven, or the two may be mixed in an opportunistic manner.
Focus of attention in opportunistic systems is managed by numerically weighing, in
empirically derived equations, alternative actions (e.g., Erman and Lesser, 1980). Un-
fortunately these numeric assessments hide the reasons for performing one action over
another. We propose that flexible control strategies for reasoning in uncertain domains
must be sensitive to the causes and consequences of uncertainty. Only if these are
represented explicitly, can a system tailor its actions to minimize uncertainty or its
consequences.

In conclusion, sophisticated reasoning about uncertainty will require adequate repre-
sentations of knowledge about the causes and consequences of uncertainty, and adequate
mechanisms for weighing, combining, and selecting actions, based on these representa-
tions.
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Chapter 2

Semantics of Endorsements and the
GRANT Project

The work on endorsements was eventually impeded by a difficult question: Where
do endorsements come from, and what do they mean? The mnemonic value of en-
dorsements like may be a mistake disguises the fact that endorsements are arbitrary
symbols, whose meaning comes from the rules by which they are combined with other
endorsements. We were concerned that, for complex domains, dozens of endorsements
and combining schemes would have to be acquired. Although we had no objection in
principle to acquiring this knowledge from an expert (much as other domain knowl-
edge is acquired), we wondered whether the endorsements and combining schemas of
a domain could be derived from other knowledge about the domain, such as inference
rules. If so, we would worry less about whether we had the “right” endorsements and
combining schemas.

We focused on the uncertainty inherent in a single problem-solving task, namely
classification, to pinpoint the sources of uncertainty (and thus endorsements) of all
classification tasks. Classification is the problem solved by many or most expert systems
(Clancey, 1984).

Uncertainty in classification problem solving has two major sources. The first is that
data may be inaccurate or incomplete, and the second is partial matching. This article
is not concerned with the quality of data; we focus instead on uncertainty inherent in
the design and behavior of classification systems. The partial matching problem has
two forms, easily illustrated by the following common, empirical association: A person
with a queasy stomach, fatigue, aching limbs, and a fever has flu in sts early stages.
Now consider a person with a marginal fever, complaining of poor appetite, headache,
and a persistent twitch in his left eye. This case seems to exhibit manifestations not
stated in the rule for flu and fails to display manifestations that are so stated. We are
uncertain whether the person has flu for two distinct reasons: we cannot be certain
that the actual symptoms fail to match the stated ones (Does “marginal fever” count
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as a fever? Does “headache” count as aching limbs?); and we cannot be certain that
the rule for flu includes all and only the relevant manifestations of flu.

We suggest that the interpretation of probability in classification systems should
be in terms of similarity, not in terms of games of chance. This interpretation has
precedent in some frame-based expert systems (e.g., PIP and INTERNIST) and in
psychological literature, where it is called the representativeness henristic:

Many of the probabilistic questions with which people are concerned
belong to one of the following types: What is the probability that object
A belongs to class B? What is the probability that event A originates from
process B? What is the probability that process B will generate event A? In
answering these questions, people typically rely on the representativeness
heuristic, in which probabilities are evaluated by the degree to which A is
representative of B, that is, by the degree to which A resembles B. (Tversky
and Kahnemau, 1982, p. 4)

_Assessments of subjective probability in classification situations are insensitive to
factors that affect probability (such as prior probability distributions) and sensitive to
the resemblance between data and their classification. For example, Kahneman and
Tversky asked subjects to classify individuals as librarians or truck drivers on the basis
of personality sketches. They found that the classification was insensitive to the prior
distribution of librarians and truck drivers in the population. An individual described
as “neat, methodical, and shy” was classified as a librarian even if the prior probability
of being a librarian was low. Remarkably, subjects ignored prior probability even
when the personality sketches were completely uninformative, assessing a probability
of 0.5 for each alternative instead. Translating these results to the expert systems
literature, we would expect degrees of belief in heuristic associations between data
and solutions-often represented as conditional probabilities-to be interpreted not in
terms of relative frequency, but in terms of the degree to which data are representative
of a solution. We might hope that experts would use probabilistic information more
efficiently than novices, but evidence suggests that experts are as prone to judgment
by representativeness as the rest of us (Kahneman and Tversky, 1982, p. 35).

Intuitively, the degree to which evidence is representative of a conclusion determines
the credibility of the conclusion given the evidence. But if representativeness is to be
useful as an interpretation of uncertainty in Al programs, we need a way to measure
it.

The concept of representativeness is described only informally in the psychology
literature. An obvious implementation of representativeness, discussed in Section 2.2,
calculates the degree to which an instance is representative of a class by a weighted
sum of their common properties. For example, we say a person is likely to be suffering
flu if he or she has relatively many flu symptoms (properties) and relatively few non-
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flu symptoms !. This intuitive approach — counting common properties — fails if
an instance shares semantically-related, but nonidentical properties with a prototype.
Imagine that the prototype for flu includes the property “nausea,” but the patient
reports “loss of appeiite”; or the prototype may include “aching limbs,” and the patient
reports “pain across the neck and shoulders.” In these cases, we are obliged to look
at the degree of semantic match between properties before we can calculate the total
degree of match between two concepts.

In fact, we believe there are six sources of uncertainty in classification by partial
matching: Solutions are uncertain when data may be inaccurate; when the prototypes
(e.g., rules or frames) may be incorrect; when one cannot find data to match an aspect of
a prototype; when a prototype fails to account for some data; and when the procedures
that match data with prototypes make errors of ommission or commission, that is,
when the procedures fail to match relevant data to a prototype, or when they match
irrelevant data to a prototype. These six cases are shown in Figure 2.1, and illustrated
in the context of an example: A researcher is applying for funding for work on the
effects of dietary sodium on heart disease in tribal African populations. Two possible
funding agencies describe their interests as

1. funding new investigators to research the effects of diet on health

2. the effects of dietary sodium on appetite

Consider the proposal to be data, and the agencies to be prototypes. Assume,
for the moment, that a program matches the data with features of the prototypes
as shown in Figure 2.2 and concludes that agency 1 is more likely than agency 2 to
fund the proposal. Here, the word “likely” reflects the degree of match between each
agency and the proposal: agency 1 is considered the better match. This conclusion
is uncertain for the six reasons just articulated: 1) agencies 1 and 2 may not have
described their interests correctly, 2) the researcher may have described her interests
incorrectly, 3) agency 1 wants to fund new investigators, but no datum matches this
feature, 4) neither agency accounts for the datum that the research is to be done
in tribal african populations. These four problems are well-known (e.g., Hayes-Roth,
1978; Tversky, 1977), and many schemes have been proposed to deal with them. To
understand the last two sources of uncertainty, note that we assumed the matches
between data and features that are illustrated with dotted lines in Figure 2.2. One
match - between dietary sodium in the proposal and agency 2, is exact. The others
are semantic matches. They assume a semantic memory in which associative paths
(represented by dotted lines) hold between diet and dietary sodium, health and heart-
disease, and appetite and heart disease. A matcher unable to exploit these associative

!Clearly, the representativeness interpretation of likelihood is not probabilistic in the frequentist or
Bayesian flu — only the number of shared and unshared symptoms — in assessing the liklihood of flu.
See Tversky and Kahneman (1982) for other examples.
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FIGURE 2.1

PROTOTYPE DATA-OBJECT
CASE 5
F  + Fd,
CASE 1: CASE 6
The prototype| Fp, Fd,
features may
be inaccurate.| Fpy ASE 3 CASE 4 Fds
Fp. Fd,
CASE 1: Fp; may be inaccurate.
CASE 2: Fd; may be inaccurate.
CASE 3: No match found between Fp; and Fd;.
CASE 4: No match found between Fdy and Fp;.
CASE 5: This match should have occurred but didn't.
CASE 6:

This match should not have occurred but did.
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paths (i.e., a syntactic matcher that requires equality of the objects to be matched)
would fail to match diet with dietary sodium. This would be an example of case 5,
above - a datum may match a feature in the sense that an associative path connects
them, but the matcher doesn’t report the match. However, in principle, one can find
an associative path - often lengthy and indirect - between any datum and any feature
of a prototype, if these objects are nodes in semantic memory. The presence of an
associative path does not guarantee a “good” semantic match. Intuitively, thc match
between appetite and heart disease seems to be based on such a path, and is an example
of case 6, above - a datum inappropriately matched with a feature. Allowing semantic
matches, then, introduces uncertainty that data will be inappropriately matched with
features (case 6); but any attempt to restrict semantic matching introduces uncertainty
that an appropriate match has been disallowed (case 5).

In this report, we ignore cases 1 and 2 altogether, assuming accurate data and
accurately-specified prototypes. We address cases 3 and 4 this way: a feature of a
prototype lacks a match if no credible associative path can be found between a datum
and the feature; and a datum is unaccounted-for if no credible path can be found
between it and any feature of the prototype. Assuming criteria for what constitutes a
credible path, the credibility of a match between several data and a prototype depends
on how many features are unmatched with data (case 3) and how many data are
unmatched with features (case 4). Cases 5 and 6, then, reflect uncertainty about what
constitutes a credible associative path. Case 5 reflects concern that the criteria for a
credible associative path are too stringent; case 6, that they are too lax. Said differently,
cases 5 and 6 reflect concern that data should, or should not, be considered evidence
for a prototype. These cases are the main concern of this report.

Our central claim is that the degree to which a datum provides evidentsal support for
a prototype depends on the associative pathways between the datum and the features
of the prototype in a semantic memory. Once we know whether data support individual
features of prototypes, we can ask how many features are supported, and derive some
measure of the overall fit between data and a prototype. This is illustrated in Figure
2.2: the proposal seems a good match to agency 1 because there seem to be semantic
matches between two of the features of the agency and data from the proposal (although
another datum-tribal african populations-is unaccounted for). Diet matches dietary
sodium and health matches heart disease. Agency 2 seems poorly matched (even though
it shares with the proposal an interest in dietary sodium) because no apparent match
holds between appetite and heart disease. However, if we knew that appetite was
strongly associated with heart disease (perhaps as a symptom), then the match between
the proposal and agency 2 would seem stronger.

Given this claim, if we knew which pathways provide evidential support between any
datum and prototype feature, then the uncertainty of cases 5 and 6 could be eliminate~-
Our approach to managing this uncertainty, discussed later, is to mark a small nur : or
of general pathways as particularly likely or unlikely to provide evidential suppor:
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In the following sections, we describe a particular matching task in overview, then
formally specify the knowledge representation language used by an expert system that
performs this task. We then discuss the performance of the expert system as a test of
our claim that the degree of evidential support between data and prototypes depends
on the nature of the associations between them.

1 GRANT

GRANT is a knowledge system that finds sources of funding for research proposals.
The user builds a representation of a research proposal and instructs GRANT to search
for funding agencies that are likely to provide support. GRANT first constructs, then
ranks, a candidate list of agencies. An agency is added to the candidate list if a single
topic in its statement of interests is a good semantic match to a topic in the research
proposal. Semantic matches exist between topics that are the endpoints of particular
paths through a semantic network. Agencies on the candidate list are ranked by the
number of semantic matches between all the topics in the proposal and all the topics
in each agency’s statement of interests. The best-ranked agencies are thus those that
support the largest number of topics that are semantically related to the proposal.

The key assumption of the system is that if no agency can be found to support
research on a specific topic, then one might be found to support work on a semantically-
related topic, and the likelihood of support depends on the relationship between the
topics. Imagine a researcher is interested in dandelions, but GRANT cannot find any
funding agencies in its memory that mention dandelions. GRANT may, however, find
an agency to fund research on a related topic, say plants. The likelihood that the
agency will fund work on dandelions depends, in part, on the nature of the relationship
between dandelions and plants. Once GRANT has found an agency to fund a given
topic or a related one, it then calculates how well all aspects of the agency description
fit those of the research proposal. These two phases, finding an agency and computing
overall match, are the main components of GRANT. Since the novel aspect of GRANT’s
architecture is how it finds agencies, that will be the focus of this report.

2 GRANT Architecture

GRANT's architecture includes a large semantic network of research topics, a set of
funding agencies, a user interface for specifying proposals and presenting results, and a
control structure for finding agencies given a proposal. These are illustrated in Figure
2.3. The semantic network is in effect an indez to the agencies, since each agency
is linked into the network at those nodes of the network that represent its research
interests. Proposals, once elicited from researchers, are linked into the network in the
same way.
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In overview, the system works by spreading activation from a proposal through
the network until one or more agencies are activated. First, the research topics in a
proposal are activated, followed by all topics that are directly related (i.e., one link
away) in the network, followed by their related topics, and so on, as activation spreads
across relations in the network like ripples in a pond. Ordinary spreading activation
can quickly touch every topic in a network, which means that it can find pathways
from any research proposal to any agency description. Since most agencies fou :d this
way would not fund a given proposal, GRANT uses a modified search algorithm, called
constrained spreading activation. This algorithm is constrained by a set of rules to favor
particular pathways through the network, and terminate search along other pathways.
The rules lead GRANT to agencies that cannot be found by keyword search, and allow
it to avoid the numerous, irrelevant agencies that are found by ordinary spreading
activation.

2.1 GRANT’s Knowledge Base

- GRANT’s semantic network of research topics was constructed specifically to repre-
sent the interests of funding agencies. Currently, the network contains over 4500 nodes
that represent the research interests of 700 funding agencies. Nodes are added to the
network by linking them to other nodes with one or more of 48 distinct relations. For
example, we can define a heart disease node by linking it to heart with the has-setting
relation and to the disecase node with the isa relation (see Figure 2.4). All relations
are directional and have inverses (not shown in Figure 2.4); for example, the inverse
of has-setting is setting-of and the inverse of isa is has-instance. GRANT adds inverse
links between nodes automatically.

Sometimes the nodes that would define a new node do not exist in the network and
must themselves be defined. For example, to add mitral valve prolapse to Figure 2.4
we need to say it is a heart disease but we also need to say its setting is the mitral
valve, which is part of the heart. Figure 2.5 shows how adding mitral valve prolapse
also involves adding mitral valve. Nodes are added only as needed to define research
topics; GRANT’s knowledge base is not an encyclopedia of science, medicine, and the
arts, but is a highly cross-referenced index of research topics, represented from the
perspective of funding agencies?.

The relationships that define concepts are similarly tuned to GRANT’s domain; for
example, one field of research is a subfield of another, a phenomenon is an effect of a
process, something is a dependent variable of a study, and so on.

All nodes in the network are represented as frames. Slots represent links or relations
with other nodes. Some nodes represent funding agencies and the research topics they

3See Lenat, Prakash, and Shepard (1986), for a fascinating description of an encyclopedic knowledge
base.

33




component-of
Circulation
= — Organ 039'mnt ;mwm-
~ H w
v c @ Circulation #1 X neg-pumpose Study #689
8lood ”
. -component has- ol octed-by ariable
White B
C ite Blood Cell component < v
Physiological] omeonent, Biood Pressu )
\C \Fm "'sys:omm of setting-of P n)
Study #409 |_Subject - . Artherosct
Genera! =
Cardiovascular C 0'08'3)
System
Research-Topic
component-ot
Gascular Syet @ Cardiovascular e Stroke
Funding Source ndent ™
#587 var used-by
Lovel of Fundng e =
Ctzenstp Study #390 \
Covarlance T
Hypertension
independent
Variadle Stress -
Diet
Diabetes

FIGURE 2.6: A portion of the GRANT knowledge base

support. Agencies have slots for level of funding, citizenship restrictions, and so on, as
well as links to their research interests (Figure 2.6).

The frames that describe research interests, both for agencies and proposals, are
created by classifying the goal(s) of research into one or more of ten classes:

Design Educate Improve Intervene Manage
Supply Promote Protect Study Train

Each class is represented by a case frame with a set of obligatory and optional slots.
For example, a study frame represents exploration of some topic, and so has subject
and object slots that represent the topic, and a focus slot that describes which aspect
of the topic will be studied.

2.2 Constrained Spreading Activation

During a run of the GRANT system, activation spreads from the topics stated in a
proposal, through the network, to agencies via their stated interests. Some constraint
on the spreading activation is required, otherwise all agencies linked into the network
would eventually be activated. Three kinds of constraints have been imposed. The
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distance constraint says that activatior. should cease at a distance of 4 links (i.e., 5
nodes) from any research topic mentioned in the proposal. This is an extremely weak
constraint. A second fan-out constraint says that activation should cease at nodes
that have very high connectivity or fan-out. Examples of these nodes include science,
disease, and person. Two research topics may be semantically related by both being
sciences, but this does not guarantee that an agency will fund one if it will fund the
other.

The third kind of constraint captures the idea that the likelihood of an agency
funding a proposal depends on the nature of the relationships between the agency’s
interests and those of the researcher. Formally, GRANT is an inference system that
applies repeatedly a single inference schema:

request-funds-for-topic(x) and R(x,y) — request-funds-for-topic(y) (1)

for “paths” R. (Note that R can be thought of as a single link, such as ISA, or more
generally as a path of n links connecting n + 1 nodes, as described below.) If one would
ask an agency to fund research on dandelions, request-funds-for-topic(dandelions), and
dandelions are a kind of plant, then one stands a reasonable chance of obtaining funding
from an agency that supports research on plants.

request-funds-for-topic(dandelions) and ISA(dandelions,plants) —

request-funds-for-topic(plants) (2)

If we replace the constants with variables, leaving just the relationship ISA, we get
a rule of inference of the form described in (1) that we call a path endorsement:

request-funds-for-topic(x) and ISA(x,y) —
request-funds-for-topic(y) (3)

Associated with each path endorsement is a score denoting how likely it is that an
agency would fund research on topic x if they would fund research on topic y. The rule
above has a high score because funding agencies often support work on specializaticns
of their stated interests; an agency may specify plants but support dandelions, may
specify transportation but support air travel, may specify heart disease but support
mitral valve prolapse. On the other hand, agencies typically state their interests at the
most general level possible, so proposals that request funding for more general topics
are likely to be denied. One cannot approach the National Heart, Lung, and Blood
Institute with a proposal to study anatomy, since that agency is interested in . -uch
more specialized topics. This reasoning is represented by giving the following path
endorsement a low score, and calling it a negative path endorsement.
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request-funds-for-topic(x) and INSTANCE-OF(x,y) —
request-funds-for-topic(y) (4)

Negative path endorsements constrain spreading activation by disallowing particular
transitions through the network. The example in (4) says that if we are searching for
funding from the heart-disease node in Figure 2.5, we should not allow activation to
spread to the mitral valve prolapse node over the instance-of relation because any agency
associated with that node would be unlikely to fund the proposal.

The relationship R in (1) need not be a single link, but could be a chain of links.
Referring again to Figure 2.5, one can imagine that a funding agency interested in the
heart might support work on mitral valve prolapse; that is, spreading activation from
mitral valve prolapse to its setting, the mitral valve, then to the heart, which has-part
mitral valve, may find an agency that is likely to fund the original proposal. This is
denoted by giving a high score to the positive path endorsement

request-funds-for-topic(x) and HAS-SETTING:PART-OF(x,y) —
request-funds-for-topic(y) (5)

Negative path endorsements like (4) constrain search by disallowing spreading ac-
tivation. Since GRANT follows high-scoring endorsed paths before ic~er-scoring ones,
positive endorsements like (5) order search. Path endorsements are heuristic: (3) and
(5) could lead to agencies that will not fund the proposal, and (4) could lead to a willing
one’. Currently, GRANT uses about 120 path endorsements to prune and order search
paths. These were determined empirically during the early days of the GRANT project
and have not been changed appreciably since. Given that 48 different links are used in
GRANT’s network, many more than 120 different pathways can be traversed. The set
of path endorsements is not complete, except in the weak sense that unendorsed path-
ways are treated as if they are negatively endorsed - that is, they are pruned during
search.

The matching of the previous section is accomplished in a knowledge network,
formally described as a collection (O, L, P, D) where

O is a set of structured objects.

L is a set of binary relations between objects called link-types. Each link-type
{ € L links two objects.

P is a set of distinguished objects called prototypes.

3GRANT engages in lnu-[i_n—l- a‘e;:“r;:h‘(Nilsson, 1980) through a search space defined by its network.
The heuristic evaluation function is not computed dynamically at each node by lookahead, but is rather
a precompiled list of endorsed paths to search and prune.
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D is a set of distinguished objects called data-objects.

A link is a triple o,l0;, with 0,,0, € O,l € L.

A feature of object o, f(0), is a link from o to some other object: f(o) = o,lo,
where 0 = 0, or 0 = 0,.

An object o is a “frame” uniquely defined by its features:

o=fhf2a"'9fn

A path between object 0,(,¢ and 0.n4 is a sequence of links connecting 0,¢ar¢ t0 Ocnd:
Path(0,are, 0cnd) = (Outarel101,011202, - -, 0k 1110 cnd)
A path endorsement is a generalization of a set of paths:
Li; = (D,L,0;l2 Py)

l,1; is the path endorsement of a path between any Data-object D;, linked by [, to any
object O;, linked by [; to any prototype P.

Path endorsements thus represent the associative pathways between data and proto-
type, without regard to the identity of data objects, prototypes, or objects intermediate
on the pathways.

We claim that the degree to which a feature of data provides evidential support for
a feature of a prototype depends only on the endorsement of the path that connects
them.

GRANT performs a best-first search through its knowledge base, guided by path
endorsements. Assume the program starts at a proposal and follows a link to an object:
(Proposal,,,.[10,). If a continuation of this path, /;0,, results in a path endorsement [,!;
that GRANT recognizes as poor, then o; is pruned from the list of nodes that GRANT
tries to expand. If /,/; is a good path endorsement, then GRANT will give o, priority
to be expanded before any node o, found by an unknown path (Proposal {,0,/,0).

Constrained spreading activation finds a single semantic pathway between a pro-
posal and each agency it reports as a potential funding source. But what if the proporal
and agency share just a single interest ~ discovered by the search - but are otherwise
completely different? For example, an agency may support research on reproduction
in plants, while a proposal requests funding to study the economic impact of dande-
lions on landscaping. These seem to be a poor match, yet according to (2) above, the
agency is likely to fund the proposal based on the semantic match between dandelions
and plants. It appears that GRANT needs a way to calculate the full match between
all aspects of a proposal and an agency, once it has found a partial match based on
single pathway between them.

The result of best-first search is a candidate list of agencies. Each is known to have
a single research interest that atomically or semantically matches one research interest
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of the proposal. To the extent that the proposa! and an agency share several common
research interests, the agency is more likely to fund the proposal. Thus, GRANT ranks
the candidate list of agencies by the degree of overlap between the research interests
of the proposal and each agency. This is done by a partial matching function based on
both atomic and semantic matching. Hayes-Roth (1978), Tversky (1977), and others
measure the degree of overlap between sets in terms of set intersection and symmetric
difference; for example, Tversky’s contrast model (1977) calculates overlap this way:

S(a,b) =0f(ANnB)-af(A-B)-3f(B- A).

The function f returns the cardinality of the set to which it is applied. If A and B
are frames, then f(A N B) is the number of slot-value pairs shared by A and B, and
f{(A — B) is the number of slot-value pairs in A not shared by B. The parameters 4, o,
and J are set empirically; in GRANT each is 1.0. If A and B are frames representing
the research interests of a proposal and an agency, respectively, then S(a,b) measures
the number of research topics they have in common relative to those they do not share.
Agencies for which S(a,b) is higher are more likely to fund the proposal.

“In GRANT, (A N B) includes both atomic and semantic matches. If a path between
A and B contains a single node (e.g., the first case in Figure 2.5), or if the path is an
instance of a likely path endorsement (e.g., the second case in Figure 2.5), then f(A N
B) is incremented. Unlikely path endorsements, such as the third case in Figure 2.5,
and unknown paths do not contribute to f(A N B). The quantities /(A — B) and f(B
— A) are increased when research topics in the proposal lack an atomic or semantic
match to the agency, and vice versa.

In fact, we have not focused on full matching algorithms because GRANT currently
performs adequately without one, and because its performance was not significantly
improved when we added one to an earlier version of the system. Looking to the future,
however, the analyses of partial matching presented in this report have convinced us
that GRANT will eventually require full matching to achieve major reductions in its
fallout rate.

3 Evaluation of GRANT

GRANT’s evolution from a small, prototype system (Cohen, et al., 1985) to the
present has given us the opportunity to compare performance as the system has been
scaled up, and to consider the potentials and pitfalls of developing other GRANT-like
systems. This section discusses a battery of tests on the current system.

The primary measures of GRANT’s performance are recall and fallout rate. (A
third statistic, precision, is 1.0 - fallout.) Recall is the percentage of all the agencies
accepted by the expert that GRANT found, and fallout is the percentage of all the
agencies found by GRANT that were judged good by GRANT but bad by the expert:




num. of agencies judged goud by GRANT, bad by expert
num. of agencies judged good by GRANT

num. of agencies judged good by GRANT, good by expert
num. of agencies judged good by expert

fallout =

recall rate =

To calculate recall and fallout for a proposal, we need to generate a lisi of agencies
from which the expert can select the ones that are likely to fund the proposal. One
method would be to have the expert rank all 700 agencies in the network for each
proposal, but this would be exhausting. Instead, GRANT is run in a minimally-
constrained, spreading activation search that reports all agencies found within a given
“distance” from each research topic in the proposal. This is called breadth-first (BF)
search?. For each proposal, we first run a BF search then ask our expert to classify
the agencies it finds as good or bad. Since the search is blind, many of the agencies
are bad; that is, unlikely in the expert’s judgment to fund the proposal. Then we run
GRANT in an endorsment constrained mode called EC search, avoiding negatively-
endorsed pathways and favoring positively-endorsed ones. It finds a subset of the
agencies discovered by BF search. Ideally, it should find all and only the agencies
ranked as good by the expert, but in practice it fails to find some of the good agencies
(called misses) and finds some bad ones (called false positives). GRANT’s miss rate
tends to be very low, so we will be concerned primarily with the relationship between
the fallout rate and recall rate.

The following tests were all performed on a set of 27 proposals, representing the
interests of a diverse group of first-year faculty at the University of Massachusetts.
The first test was designed to probe the utility of endorsement-constrained search. We
compared EC and BF search with a third mode called unconstrained keyword search
(UKW). It finds all agencies that share a common research interest with a proposal.
It is implemented as a search for all agencies exactly 2 links distant from the proposal.
For example, if a proposal and an agency share the common interest dandelions, then
each will be linked to that node by, say, a SUBJECT link. The two-link

SUBJECT : dandelions : SUBJECT-OF

path connects the agency and the proposal via the common term dandelion; and, in
general, any two-link path between an agency and a proposal indicates a shared term.
UKW search is thus a simple keyword search, since it finds only those agencies that
share terms with proposals. The relevant statistics for UKW, EC, and BF searches are
shown in Table 1.

4Completely unconstrained BF search finds all agencies in the network, each by dosens of different
paths, and requires hours of CPU time on a Tl Explorer Lisp Machine. The data presented here are for
a modified version of BF search that avoids nodes with extremely high fan-out and prunes paths longer
than 4 links.
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UKW EC BF

fallout rate 64% T\% 94%
recall rate 44% 67% 100%
number of agencies found 164 406 2145
number of false positives 106 207 2013
number of hits 58 88 132
number correctly rejected 0 111 0

Table 1. Statistics from UKW, EC, and BF searches.
EC search has a higher recall than UKW and a lower fallout rate than BF. Its fallout

rate is typically higher than UKW because it subsumes UKW: it finds all the agencies
that UKW finds, then finds some more by exploiting semantic relations. Let us consider
the utility of this additional search.

Of the agencies found by GRANT for the 27 test cases, the expert thought that 132
would be likely to fund their respective proposals. UKW found just 44% of these. To
find the rest, it is necessary to exploit semantic relationships between the terms used
in research proposals and agency descriptions. EC search found 67% of the agencies
judged good by the expert. It found 242 more agencies than UKW search: 30 hits,
101 false positives, and 111 correctly rejected. So in the regions of the network that
cannot be explored by keyword UKW search, EC search found 40% of the agencies it
should, and incorrectly accepted 101 agencies, for a “marginal” fallout rate of 42% . In
contrast, BF search found almost all the agencies judged good by the expert, but at a
cost of a 94% fallout rate.

In practice, GRANT’s mode of operation is EC search. It is preferred to UKW
search because it finds more agencies, and to BF search because it Las higher precision.
BF search finds about 80 agencies per proposal at a precision of 6% — only 1 agency
in 20 is truly worth pursuing. EC search reports fewer agencies (15 per proposal), has
a better level of precision (29%) than BF search, and has an acceptable, intermediate
recall rate (67%).

Since EC search subsumes UKW search, it also inherits a significant fallout rate.
The fallout rate for agencies found by keyword UKW search is 64%, but the marginal
rate for those agencies found by additional semantic matching is just 42%. Clearly, path
endorsements can increase precision. But their utility is obscured to some extent by
the fact that EC search “starts off” with the 106 false positives found by UKW search.
With this proviso stated, we now explore how to increase the recall and precision of
EC search.

Our experiments are designed to address two general hypotheses:

¢ GRANT's performance is due to its path endorsements.

e GRANT’s performance is affected by the structure of its network, including the
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lengths of pathways between proposals and agencies, and the degree of intercon-
nection between nodes.

A third hypothesis is that GRANT’s performance is affected by how its language of
links is used to encode the interests of agencies. Since many people worked on GRANT’s
knowledge base, we were concerned that knowledge was encoded inconsistently. We
calculated several statistics that measure consistency, but we did not find signif -ant or
even suggestive correlations of these measures with fallout rates. We cannot conclude
that inconsistencies have no affect on GRANT’s performance, because our measures
of consistency may not be sufficiently sensitive. But we have found much stronger
evidence for the other two hypotheses.

Structural Factors in Recall and Precision. We first calculated the recall and
fallout rates as a function of the distance between proposals and agencies in EC search
(Table 2). As noted, at distance = 2 EC has the same fallout rate as UKW search,
which finds all agencies within two links of the proposal. Extending the search one
more link increases the recall rate substantially (from 42% to 70% ) and also raises the
fallout rate somewhat. Interestingly, extending the search further has almost no affect
on the recall rate but does increase the fallout rate. This suggests that endorsement-
constrained search as implemented here offers most advantage when finding agencies
based on a single semantic relationship between a term used in the proposal and a term
used in the agency description. Increased failout limits the utility of longer chains of
relations.

length fallout recall
rate rate

less than 3 64 42
less than 4 73 70
less than 5 78 69

Table 2. Recall and fallout rates for searches along pathways of different
lengths.

The structural feature of GRANT’s network that accounts for most variance in
recall rate and fallout rate is the branching factor of nodes, that is, the number of links
that connect nodes. In an experiment reported in Kjeldsen and Cohen (1987) we found
that the fallout rate was correlated with the average branching factor of pathways to
agencies. Average branching factor is the average of the number of links emanating
from each node on a pathway. It is a measure of the “density” of the network in the
vicinity of the pathway. We expected dense areas of the network to have low fallout
rates relative to recall rates, since there are more nodes per agency in dense areas, and
thus more basis for discriminating good agencies from bad ones. Table 3 shows the
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percentage of the false positives found along pathways with low, medium, and high
branching factors.

EC Search average branching factor

2-7 8-15 > 16
% hits 20.3 40.6 39.1
% false positives 8.4  36.9 54.6

UKW Search average branching factor

2-7 8-15 > 16
% hits 30.7 55.1 14.1
% false positives 8.4 37.3 51.8

Table 3. Hits and false positives for EC and UKW search, distributed
by average branching factor.

Contrary to our expectations, the majority of false positives were associated not
with low branching factors but rather with high ones. For EC search, 54% of the
false positives were found on paths with an average branching factor greater than 16.
For UKW search, 51% of the false positives were associated with high branching factor;
furthermore, only 14% of the hits were found in these areas. We looked at the test cases
individually to try to explain this result. Many of the false positives were associated
with nodes with high fan-out, such as “animal” and “location.” We believe that such
nodes are relatively general, that their fan-out is due to their many specializations. To
say an agency is associated with one of these general nodes is to say very little about
its interests, so agencies found via these nodes are more likely to be false positives.

These data seem to suggest that we could increase GRANT’s precision by pruning
agencies associated with general nodes. In fact, this is an artifact of the way we calculate
precision. We could certainly reduce the number of false positives this way, but we
would also reduce the number of agencies GRANT finds, and so would have little effect
on the fallout rate. Moreover, since the denominator of the recall rate is constant —
the number of agencies judged good by the expert — pruning agencies can only reduce
the recall rate. Clearly, false positives are associated with higher branching factors.
However, the key to improving precision is not to prune agencies, but to restructure
the network so that it has fewer pathways with high branching factors, that is, fewer
nodes that represent very general concepts. For example, the current network defines
dandelion and tomato plant as instances of the plant node, though they are obviously
different kinds of plants. The distinction could be made by defining dandelion as an
instance of a weed and tomato plant as a domestic plant, but because these nodes are
not in the network, the fan-out of plant is higher than it should be and dandelion and
tomato plant are not adequately discriminated.

The statistics in Table 3 suggest that the “ideal” branching factor is less than 16.
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Another experiment was needed to pinpoint the ideal more precisely. Starting with
the list of agencies found by the EC search and reported in Table 1, we ranked the
agencies by their branching factors, and recalculated the recall rate and fallout rate for
each successive level of the ranking. That is, we superimposed a ranking by branching
factor on the list of agencies found by EC search and asked about the recall rate and
fallout rate of all agencies that had, first, low branching factor, then those that had
higher branching factor, and so on. (For reasons discussed below, we used the br:aching
factor of the last node on a pathway instead of the average branching factor over all
nodes on a pathway.) The results are shown in Table 4.

Agency is counted
as “good” if the
branching factor

is: fallout recall number % change number % change
rate rate of FPs number of of hits number of
FPs hits
" any number 73 63 219 2 82 1
16 or less 73 62 215 14 81 17
13 or less 73 53 188 55 69 15
10 or less 67 46 121 157 60 140
7 or less 66 19 47 81 25 25

3 or less 58 15 26 20

Table 4. Fallout and recall rates from ranking agencies by branching
factor.

These data suggest that disproportionate numbers of false positives are associated
with low and moderately high branching factors. At the lowest level (branching factor
of 3 or less) there are few false positives (26) and hits (20) because few nodes have
such low branching factors. At the next level we consider agencies found via nodes
with branching factor of 7 or less. 47 are false positives, an increase of 81%, and 25 are
hits, an increase of 25%. Thus, fallout rate increases faster than recall rate for nodes
with relatively low branching factors. When nodes with higher branching factors (10
or less) are considered, fallout rate increases by 157% and recall rate by a comparable
140%. However, adding agencies that are found by nodes at the next level of branching
factor (13 or less) increases fallout rate by 55% but increases recall rate by only 15%.
Tke rates then increase proportionately for higher levels of branching factor.

The greatest increase in recall and fallout occurs when we add the agencies found
via nodes with branching factors between 8 and 10. Moreover, the numbers of hits and
fallouts increase by roughly the same amount in this area (about 150%). In contrast,
false positives increase more rapidly than hits at low (3 - 7) and moderately high (11
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- 14) branching factors. This suggests that the “ideal” branching factor is between 8
and 10, and supports the hypothesis that recall and fallout rate are correlated with the
generality - as measured by branching factor - of nodes. As mentioned above, we used
the branching factor of the last node on a pathway ~ the one “nearest” to the agency
and “furthest” from the proposal - to produce the data in Table 4. We reasoned that
very specific nodes, those with low branching factor, would rarely be part of an agency
description, and so would not be associated with many hits. On the other hand, as
we argued above, nodes with very high branching factors are too general to represent
the interests of an agency unambiguously, and so would be associated with high fallout
rates.

The primary implication of these results is that knowledge engineers for GRANT-
style systems should ensure that the definitions of new terms are as specific as possible.
For example, the knowledge engineer should define a new plant in terms of the most
specific possible subclass of plants, or perhaps create a new subclass, rather than linking
the new plant to the general plant node. Currently, GRANT is programmed to avoid
nodes with extremely high fan-out. An alternative would be to alert the knowledge
engineer to them during the development of the knowledge base, to fix the problem
before it arises. Then, any remaining nodes with high fan-out almost certainly denote
concepts that are too general to be useful, and endorsements could be designed to avoid
them, or to give them a low rank.

Endorsements as Factor in Recall and Precision. Our second hypothesis is
that although the representation language for the network is probably sufficient to en-
code the meaning of research proposals and agency descriptions, these representations
are not being exploited by endorsement-constrained search. Several findings support
this hypothesis. In Kjeldsen and Cohen [15] we reported that just three path endorse-
ments accounted for 85% of the hits but the same three led to 42% of the false positives.
The culprits were:

e SUBJECT : SUBJECT-OF
e SUBJECT : SUBJECT-OF : SUBJECT-OF
e OBJECT : SUBJECT-OF

Despite the fact that 48 distinct relations are used in the network to connect con-
cepts, just 3 (SUBJECT, OBJECT, and SUBJECT-OF) were sufficient to find the
majority of hits and a sizeable portion of false-positives. This is partly due to the
relative frequency of these links in the network: they are very common and so support
a disproportionate number of path traversals. However, our data suggest that the re-
liance on these links is not due entirely to their frequency, and that intelligent use of
other links could increase recall rate.

We measured the frequency with which different links were used to represent agency
descriptions. These data are shown in Table 5. As expected, SUBJECT, OBJECT,
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and FOCUS were most common, but WHO-FOR and LOCATION were not infrequent.
However, these latter links were almost never traversed to find agencies: Table 6 shows
the results of using the last link in a pathway (the one closest to the proposal) to rank
the agencies found by EC search. If SUBJECT and OBJECT are the only links that
GRANT is allowed to traverse, then it finds 74 hits and 179 false positives. It finds an
additional 15 hits when it is also allowed to traverse FOCUS. But, remarkably, allowing
it to traverse any link results in only 2 more hits: Most of GRANT’s hits arc found
by following SUBJECT, OBJECT, and FOCUS links into an agency. Although WHO-
FOR and LOCATION are used quite often to define the interests of agencies, they are
not used to find the agencies. This is not surprising, since WHO-FOR and LOCATION
are the final link in only 2 path endorsements. But it does suggest that using these and
other links judiciously could increase GRANT’s recall rate. In general, these results
stress that path endorsements must reflect the conventions for representing concepts.

Link Number of uses in Number of uses as
agency definitions last link of endorsements

- subject 513 19
object 258 10
focus 238 17
who-for 124 2
location 80 0
dv 30 8
iv 20 5
rv 18 5

Table 5. Number of times each link is used to define agency interests,
and number of times it is the final link in an endorsement.
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Agency is counted
as “good” if the
last link in a

pathway is:

fallout recall number number

rate rate of FPs of hits

SUBJECT or
OBJECT 71 57 179 74
SUBJECT, OBJECT,
or FOCUS 72 68 228 89
ANY LINK 73 70 251 91

Table 6. Fallout and recall rates from ranking agencies by final link.

To get a more complete picture of the utility of GRANT’s path endorsements we
would perform “ablation studies” — removing path endorsements one at a time to
see how they affect recall and precision. Unfortunately, an exhaustive analysis of all
endorsements would require weeks of computer time. Instead, we grouped the path
endorsements and assessed the effects on performance of removing these classes. Every
path endorsement is assigned to one of five classes that reflects the subjective probability
that an agency found by that endorsement would fund the proposal. The classes are
trash, unlikely, maybe, likely, and very-likely. We used these classes to rank as “good”
or “bad” the agencies found by EC search, then recalculated recall and fallout rates
for each rank. The results are shown in Table 7.
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Agency is counted
as “good” if it
is found by an

endorsement
classified as:
fallout recall number % change number % change
rate rate of FPs in number of hits numbecr of
of FPs hits
very-likely 55 18 28 425% 23 8%
likely or 73 42 147 41% 54 59%
very-likely
maybe, likely, 71 67 207 4% 86 0%
or very-likely
unlikely, maybe, 72 67 216 86
likely, or
very-likely

Table 7. Fallout and recall rates from ranking agencies by class of path
endorsements.

When only very-likely endorsements are allowed, the numbers of hits and false
positives are low (23 and 28, respectively). Adding in agencies that are found via paths
with likely endorsements increases the number of false positives by over 400% to 147.
This seems an excessive price to pay for the 78% increase (from 23 to 54) in the number
of hits. In contrast, adding in agencies with maybe endorsements increases the number
of hits by 59% and increases false positives by a significantly lower amount, 41% . (The
main reason for the increase in recall is that FOCUS links are used in a preponderance
of maybe endorsements, and are infrequently used in likely or very-likely. We saw in
Table 5 that the FOCUS link is used frequently in defining agencies, and in Table 6
that inclusion of the FOCUS link increases GRANT’s recall rate.)

Clearly, GRANT’s fallout rate could be improved by refining its likely endorsements.
The improvement in performance due to adding maybe endorsements — specifically
those dealing with FOCUS links — convinces us that it is possible to add endorsements
that will increase recall and precision simultaneously. Table 5 suggests that these
endorsements should exploit WHO-FOR and LOCATION links, which are used to
define agencies but are rarely traversed to find them. We are currently designing new
endorsements, though they will have to be tested on a new set of proposals to ensure
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that they are not simply “tuned” to the current test cases.

4 Lessons learned

Now we would like to take a step back from the details of the testing and summarize
what general lessons we have learned. Most importantly we have shown the potential of
constrained spreading activation and semantic matching. In the information retrieval
task which Grant performs, the addition of semantic information to a straight keyword
search was able to improve performance significantly. In Cohen (1987b) we have iden-
tified some characteristics of tasks that we feel Grant-like systems may perform well.
Here we will discuss what can be done to further improve the performance of such
systems. Following that we will look at some of the theoretical lessons we have learned.

Knowledge Representation This testing and our attempts to fine tune the rule
set, have pointed out that a major cause of trouble is the representation of research
interests. In the development of any similar system, this should be a primary focus
of effort. The representation language must be sufficiently powerful to extract the
differences between alternatives and clear enough that the knowledge engineer can be
consistent in its use.

Bruce Mccandless of the ORA has come up with a new case semantics for represent-

ing research interests in Grant. Rather than being based on a SUBJECT/OBJECT /FOCUS

description of the research itself, this is aimed at describing the product of the research.
The product may be a physical object or a better understanding of some process. It is
generally intended to be used by some audience, with some specific purpose in mind.
Thus the new representation language has well defined slots for each of these features.
Grant’s funding source knowledge base is in the process of being updated to make
consistent use of this new scheme.

The rest of Grant’s knowledge base, the network of relations between terms, seems
to be reasonably good for its task of finding semantic matches. It has about the right
level of detail and a reasonably good representation language. Inconsistencies in the
network base do not appear to be a major factor in the performance of the system.
In general, Grant is an interesting demonstration of what can be accomplished with a
broad, shallow, and somewhat inconsistent knowledge base.

Some changes to the knowledge base may be warranted however. As our branching
factor tests discovered, an increased use of subclassifications may improve Grant’s FPR.
Another advantage of an increased use of subclassification is that the system may be
able to make use of longer chains of inference. As we have shown, most of Grant's
useful work is done using relatively short paths. Rules leading to longer paths tend to
increase the number of false positives without helping find hits. This keeps Grant from
finding useful though more tenuous relationships. Part of the problem may be that
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long chains of inference very quickly reach a node with high fan-out, that is a node
representing a classification which should be subdivided. From this node links exit to
areas of the network which are conceptually unrelated to the starting point. There is an
idea here of locality of semantics, that is within an area of the network, concepts tend
to be related by close associations. Overly general nodes lead very quickly out of the
local semantics and so limit the length of useful paths. With a knowledge base having
more precision, that is more subclassifications and longer chains of links to re ch the
top of the net, it may be possible to make use of longer chains of inference.

Rules As has been mentioned, Grant has rules to help it avoid general nodes, that
is nodes which are thought to be to near the top of the concept hierarchy. This is a
very important factor in the performance of the current system. This importance may
indicate that the path grammars need to be modified. A path endorsement which avoids
expanding a general node is essentially a path endorsement which says any number of
links followed by node X followed by any number of links is a bad path. The general
node can be thought of as the contezt in which the path is used. Path endorsements,
however, are based on the assumption that relationships between topics are sufficient
to encode semantically meaningful associations regardless of the context in which they
are used. For example, a component of a social group (a person) may not interest
a funding source supporting investigation of interactions within such groups, while a
component of a mechanism may well interest an agency willing to fund improvement
of that mechanism. Thus the SUBJECT:HAS-COMPONENT:SUBJECT-OF path is
good when the SUBJECT is a rotary engine, but not when the SUBJECT is a soccer
team. A rich enough set of links could capture such subtle differences (it could use HAS-
MEMBER when referring to a social group) but this may lead to an unmanageable
proliferation of links. Another alternative is to include in the rules a notion of context
so that we can tell Grant to use the above rule only when the SUBJECT node is
connected by one or more ISA links to “thing.” Addition of contextual information to
path grammars will allow Grant to make use of more than just links in its evaluation
of a hode and may improve its power to discriminate good matches from bad. The
importance of general nodes in the current implementation argues that such contextual
information may be needed for the system to reach optimum performance. Grant
currently has the ability to create such grammars but they have been seldom used.

Knowledge Engineering Among the lessons we have learned is the very practical
one that powerful development tools are needed to ensure accurate construction of
such a system. In Grant there are two areas where such tools are needed; building the
semantic network and designing a rule set.

For building the knowledge base the most important tool is one which would provide
accurate, flexible display of the nodes of the knowledge base. A graphical display of the
nodes in the vicinity of those being worked on would be the best alternative. Current
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tools only allow individual nodes to be shown. Being able to see several node definitions
on the screen would provide many advantages. It would help avoid inconsistency in
link use by providing immediate examples, it would insure consistent semantics within
the local area of the network, and would serve as a visual reminder of what remains to
be done. An example of the utility of a graphical display came when we ported Grant’s
knowledge base into Intellicorp’s KEE. KEE has graphic display facilities capable of
showing only the ISA/EXAMPLE links in Grant’s network. Even this limited display
of the net showed us many inconsistencies in the way the nodes had been coded, and
provided insights into how it could have been done better.

Some problems with the knowledge base can be easily identified. Nodes with high
fan-out reduce performance and should be avoided. Improper link use can sometimes
be identified. A tool which would keep track of information such as this and alert
the knowledge engineer to potential problems would help the situation. One possible
implementation is to create a small rule based system which watches over the shoulder
of the user. The rules would embody what we have learned about good representation
practices, and point out potential problems such as high fan-out.

Probably the most important set of tools are those which help design a rule set. We
found that we could not live without two tools; one to find all paths (given a distance
limit) between two nodes, and one to find what rule had lead to a particular agency
after a search was completed. The former needs only to search the knowledge base, the
later must peer into Grant’s knowledge structures. These were invaluable in designing
the very specific rules needed to improve the performance of the system.

The process of creating a rule set may be able to be completely automated. While
adjusting the rule set, we found ourselves performing an algorithm very similar to
the one used by the learning system described in Appendix 2. The algorithm iterates
through many example cases, creating and adjusting the ranking of rules. It finds
paths to positive and negative examples provided by our expert and either creates a
rule or adjusts the ranking of an existing rule to lead to that example, or avoid it.
Our experience in manually adjusting the rule set argues for the utility and potential
success of such an approach.

Matching Among the reasons Grant was developed was to explore the utility of
semantic matching in uncertain domains. Experiments with Grant have shown the
importance of semantic matching. However ore of the most prominent lessons from
our experience is that we have rediscovered that single associations are not always
enough. Unfortunately previous solutions to this problem, such as Tversky’s contrast
model are limited by their reliance on syntactic matching. Combination of the two
may give a powerful matching algorithm. Semantic matching, as implemented here,
appears to be good at pruning large numbers of bad matches. It is not so good at
evaluating a degree of match at a more detailed level. For that we need a more powerful
matching algorithm, which in turn would get overwhelmed trying to determine degree
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of match between a large number of possibilities. We see a symbiosis of these two
working something like this: Spreading activation from a proposal prunes the possibly
matching agencies to the best dozen or so. It hands these to a matcher, along with a
ranked list of the semantic associations between the proposal and each agency. Now
assume each research topic description has its slots labeled as to which must match
and ranked as to which are most important to match. The matcher discards those
whose "must match” slots don’t or whose market factors rule out a match wi'h this
proposal, and ranks the rest by combining the slot rankings and the rankings on the
semantic associations between slots. Obviously work must be done to determine a
useful combining function.

The real win here will not come from a tightly constrained spreading activation
search, rather from a loosely constrained search and intelligent use of the results. By
combining a simple full matching algorithm and an underconstrained spreading acti-
vation search, neither of which performs very well, we may get a powerful retrieval
mechanism.

Uncertainty One of our goals with Grant was to integrate management of uncer-
tainty into the reasoning process. Cohen (1983) has described what he calls the parallel
certainty inference, where an inference is performed as though it were truth preserving
while a separate measure of our certainty in that inference is maintained. This is the
method of handling uncertainty used by most systems. Grant was constructed to work
in an uncertain domain without this explicit and separate representation. Unfortu-
nately, the way the system was implemented this doesn’t entirely hold. We still have
an inference and a separate measure of confidence in it. The difference is that the
measure of confidence is computed as needed rather than maintained in parallel.

This is not to say that Grant does not contribute to the study of reasoning under
uncertainty. It has become clear lately (Cohen, 1987a) that a powerful method of
managing uncertainty is to use knowledge about uncertainty to control the actions of
the system. Grant relies on its measure of confidence almost exclusively to guide the
reasoning process. It knows what conclusions it has drawn in which it has confidence,
and continues on from those conclusions until it finds its goal.

However, like most systems, Grant's knowledge of its ignorance is limited to a
course measure of its certainty in a conclusion. It may be able to benefit from a
specific representation of what it does not know. Given something more detailed than
a simple ranking of a path, such as in what conditions a certain path is useful it may
more accurately judge its level of certainty in a conclusion and be able to search more
effectively. Given knowledge about why an inference does or does not hold may help it
explain its decisions. Unfortunately this is an area where Grant is no better than its
peers.
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Inference Could a system such as Grant ever achieve perfect performance? It may
be that an absolute minimum FPR is determined by the approach itself. It can be
argued that the basic mode of inference used in Grant is abduction and that abduction
can lead to false positive results.

Our goal is to find concepts that match our starting point by some measure. We take
as an axiom that matching concepts are likely to be semantically related. In Grant, this
is the premise of the abductive inference that the existence of semantic relationships
between concepts implies a match between them. That is, given the premise that
matching concepts are related, if Grant finds a relationship between concepts, it infers
that the concepts match. Because this is an abductive inference, not a deductive one,
it will occasionally be wrong. When it is it will lead to false positive results, as Grant
will find semantically related concepts that do not match.

An extension of our axiom would state that the better two concepts match, the more
relationships they are likely to share. Using an abductive argument once again we can
conclude that two concepts with several semantic relationships between them are likely
to be a good match, and at least are more likely to be a good match than concepts with
a single relationship. Thus one way to reduce false positives due to Grant’s method of
inference is with a matching algorithm which takes into account multiple associations
between concepts, such as in the one proposed above.

5 Future Work

Over the last years we have built and expanded a system, run an extensive series
of tests on it and started the motions of getting it into use. What remains to be done?
There are several aspects of Grant which make it a prime candidate for further work.
We have here a system with a reliable control structure and a large semantic network
representing many person hours of knowledge engineering. The methods Grant uses
are relatively simple and easily understood, but the implementation is flexible enough
to support much more complex methods of controlling spreading activation. Moreover,
we understand rather well how and why the existing system works. This provides a
basis by which to judge the effect of changes to the system. There are five areas which
come to mind as viable, near-term projects.

Improve the knowledge base The existing knowledge base is a very broad but
shallow cross section of knowledge. As we have stated many times, it has been designed
and built with Grant's performance task in mind. In our opinion, however, it is general
enough that it can be used for other tasks without major modification. Unfortunately
we have shown that it has some problems with consistency and precision. We have
learned a great deal about what is needed in such a knowledge base for it to be used
reliably. With a reasonable amount of effort Grant’s knowledge base could be made
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much more usable. Specifically what needs to be done are two tasks; improve the
consistency with which links in the net are used and lower the average branching factor
by adding subclassifications of nodes with high fan-out. Neither of these tasks is very
difficult and the payoff is that it would make the knowledge base a valuable resource
for further work.

Add Full matching In our minds the most interesting open project is to ir. egrate
Grant with a more complete matching algorithm, such as the one described above.
Algorithms which compare frames for shared properties can benefit from the use of
semantic associations while any Grant-like system would benefit from a more complete
matching algorithm. The trick will be in how to combine differently ranked semantic
associations into a measure of the degree of match.

Explore utility of context in path grammars There are many improvements
which can be made to the current system which would provide interesting projects.
One is to explore the utility of context in path grammars. Is it possible to improve
the performance of the system if contextual information is added to the rule set? Is
there a better way to control spreading activation to find potential matches? Carefully
controlled experiments can be run now that we have a performance baseline.

Learning Grant also seems to be an excellent test bed to try learning and knowledge
acquisition algorithms. There is a reasonably well defined performance task and eval-
uation criteria, there is a large initial knowledge base from which to start, examples of
good behavior (correct matches) are easily generated and there are two aspects of the
system which could benefit from learning. Improving the network is one. There are
too many interrelations for a knowledge engineer to keep on top of. A good knowledge
acquisition interface and/or a learning system which looked over the shoulder of the
programmer to watch for inconsistencies and missing links would be invaluable. Im-
proving the rule set could also benefit from learning. An attempt was made to learn
rules from examples is described in Appendix 1. The algorithm used was simple, but
could be easily extended to include induction, analogy and perhaps other tools.

Abstraction of Grant Finally there are the cognitive science issues which would be
interesting to explore. Some work was started on describing Grant in terms of plausible
inference, that is formalizing the inferences it is making. The relationship between the
techniques Grant uses and the concepts of representativeness and availability has never
been followed up on. Continuation of these projects would be valuable to further our
understanding of the broad but shallow reasoning Grant does.

| ;




6 Conclusion

Through our work with Grant we have shown the potential of the techniques it
uses. Grant's greatest asset is its ability to find potentially matching entities using
semantic information and identifying the associations between them. In a domain such
as information retrieval, where a high FPR is acceptable, Grant's existing techuiques
may be sufficient. In a more stringent environment, however, changes may have to
be made. We have identified improvements such as better full matching, addition of
context, and more careful knowledge engineering (including an improved set of links
and better enforcement of network semantics) which a Grant-like system could use to
improve its performance. Finally we have tried to identify what we have learned from
our experience with respect to matching and the management of uncertainty.

7 Extensions to GRANT

~ Grant led to two projects that are designed to improve and generalize inference by
constrained spreading activation. These are discussed next.

Spreading activation search of a semantic net can be used as a search for representa-
tive concepts. A method is put forward for learning rules to constrain such a search in
a general net. This method uses an iterative parameter adjustment procedure, based
on a comparison with supervised learning pattern classification tasks, to find paths
through a net which lead to truly representative concepts using examples provided by
a human tutor.

Introduction

Semantic nets can be a convenient way to represent the relationships between con-
cepts. One application of such nets has been to use them to find topics related to, or
representative of some starting point(s) (Cohen, 1985). Given a net representing gen-
eral relationships, traversal rules can be crafted, which constrain a spreading activation
search of the net to lead to concepts which are representative of the starting point by
some measure.

Unfortunately, it is not easy to generate these traversal rules. To do so requires both
knowledge about reasoning in a particular domain and knowledge of the structure of the
net itself. Even a domain expert may not be consciously aware of her own reasoning
process, or may be unable to put it into useful terms. During the development of
Grant,® traversal rules were hand generated using a witches brew of decision examples,
intuition, trial and error and luck. On the other hand, it was easy for our expert to

5Grant is a system which finds funding sources for research proposals using the described techniques
{Stanhope, 1986).
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provide examples of correct decisions given some context for them. An automated
method to generate traversal rules using such examples would facilitate knowledge
acquisition in any similar system.

At any given time, in a spreading activation search, we may extend the search by
expanding one of the nodes on the frontier of the search, adding all nodes which are
directly related to that node to the frontier. The assumption in Grant was that the
best node to expand was the one most representative of the starting point of the :earch,
and that this degree of fit was indicated by the sequence of associations (links) traveled
from the start node.

Thus a convenient (if large) set of potential traversal rules for our learning system is
the set of all combinations of links in the network. If we can use the path to a node to
find a weight for each node on the frontier indicating how well it supports associations
of the type in which we are interested, then at any given point in a spreading activation
search, the node who's path has the highest weight is expanded, and at each step we
are pursuing the most representative concept available. The problem becomes how to
assign weights to the paths.

- Learning in this context seems to have similarities to a Supervised Learning Pattern
Classification task as described by Barto and Anandan (1984). It therefore seems to
make sense to try to find the weights using methods found to be successful at such
a task. In supervised learning pattern classification, a system learns to classify input
states into one of several categories. The training set is a set of states x, each paired
with it’s correct classification, y. The learning system adjusts it’s decision rules in order
to increase the probability of classifying x correctly. X is generally a vector, and can
be thought of as a set of features describing a state. Each of these features has an
associated weight. The weighted sum of the input vector is used to classify that state.
For example, in a two class system, a threshold on the weighted sum is used to classify
the input. During training an input vector x is supplied to the inputs. The weight
vector is adjusted using the correct classification, y. Generality occurs when some x
is input which has not been seen before. A supervised learning pattern classification
system will attempt to classify it into the class who's members it matches best.

In grant an input state is a description of one node at the frontier of a spreading
activation search. One set of features we can use to describe this state is the path
followed to that node, and the context of that path. Context refers to the nodes passed
thru along the way. These are the features available to the system during the search.
Our output classification is Good or Bad, but rather than use a threshold, we will
output the weighted sum of the input features as a measure of the 'goodness’ of that
state. The training set we have mentioned can be thought of as a set of descriptions of
good, or possibly bad states, using another set of features, in this case the representative
node itself. A training pair (A B) says that for a spreading activation search starting
at node A, B is a representative concept.

If we can have Grant translate these examples into the path/context representa-
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tion, we can use an iterative parameter adjustment procedure similar to those used in
supervised learning pattern classification systems to find the weights for this weighted
sum.

Implementation

Let each possible path in the net have a weight vector associated with it, where one
of the weights is the weight of the path itself, and the others are grouped as follows.
There is a group of weights for the start node of the search, the end node, and each
node passed thru. In each group there is one weight for each type of node in the net®.
Thus the weighted sum which determines a state’s ’goodness’ is the sum of the path
weight, and one weight from each group, chosen by the node types encountered along
the path. During spreading activation, the system will compute such a weighted sum
for each node on the frontier and expand the node with the highest weight.

We will attempt to have the system learn the weight parameters which will generate
weighted sums for paths which in turn will lead the system to the associations in the
training set. Once adjusted, the weights will have generality in the sense that they will
apply to situations not in the training set. This will occur because we are generating
weights for semantic paths between concepts and adjusting those weights according to
the context of the path. This process is independent of the end points of the search,
represented by the training set.

The first step is to translate a training pair to the path/context representation. The
system performs a breadth first search starting at the start node of a training pair, to
find the shortest path to the end node. This is assumed to be the correct path, that is
the path the expert traveled in her decision making process. The path and it’s context
are recorded. This is done for all pairs in the training set. Next the system searches
from each start node using it's current weight vectors 7. It halts when it has found the
end node, or when it has found a path longer than the correct path. If it has found the
end node, it proceeds to the next training pair. Otherwise it determines the node on
the search frontier that is farthest along the correct path, the node which should have
been expanded to continue along the path to the end node. The path to this node is
the longest discovered subpath of the correct path. For the rest of the nodes on the
frontier, the active weights of their paths are decremented by a small amount. The
weight of the longest subpath is incremented by an amount equal to the total amount
removed from the other nodes.

SThere are several ways to define the type of a node. One example is to say that a node, Y, is of
type X if the node X can be reached by following a chain of ISA links from Y.

7If a node has not been encountered before, it receives a random weight during the weighted learning
search in order to eliminate the breadth first search which occars the first time thru the learning loop,
when no path has a weight. When the system is in use, such nodes are given a weight of 0.
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Status

In order to test the feasibility of this learning scheme, a simplified version of the
algorithm has been implemented on top of the existing Grant. For this purpose, only
the weight of the paths themselves are used. It is expected that this will be able to learn
useable traversal rules, but that later addition of context information will fine tune the
rules, and improve performance. Some testing has been done on this implementation,
though by no means enough.

Evaluation Criteria

There are at least two ways to test a program such as this. The first, objective
testing, determines if the learning algorithm itself works. In other words does the
system find the nodes in the training set sooner after training than it did before. The
second, subjective testing, attempts to determine if the system will work in the real
world. Here we test to see that after the system is trained on one set of examples, it
finds other meaningful associations which were not in the training set. This is actually
a test of the validity of this type of generalization.

Results

For the objective testing, a training set was created by selecting several start nodes,
and giving them to the original Grant system. Each was used as the start node of a
search using the old (hand crafted) traversal rules. Several training pairs were created
from each start node by combining it with the nodes which Grant found along strong®
paths. These pairs ranged from 1 to 4 links apart. More than half had a path length
of 2 with most of the rest split between 1 and 3.

Using the new Grant, a sa='e of these pairs were szarched for before any learning
was done. In this configuration all of the weights were 0, creating a breadth first search.
For a typical pair, over 100 nodes were searched before finding the end point. After one
pass over the training set, there was a noticeable improvement in the number of nodes
searched. After 4 passes, typically less than 10 nodes were searched before finding the
goal. Most of those were from pairs also in the training set.

This indicates that the system is learning to follow paths leading to the training
pairs, however the testing is obviously incomplete. A more complete analysis of these
test results is in order, as well as testing with several different training sets. No attempt
has yet been made at subjective testing.

8 Traversal rules in the original Grant put paths into several classes, the best of which was strong.
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Discussion

The weight adjustment procedure solves one problem which had plagued the original
Grant. This is a problem similar to the horizon effect in game tree search. No attention
was given, when creating traversal rules, to the paths leading to those in the traversal
rules. Thus Grant at times expanded the best paths available at each step till it had
reached one of it's search limits, maximum search depth for instance. There was no
way of knowing that if it had followed a lower ranking path, it would have reached a
high ranking path. In other words, highly ranked paths could be hidden behind lower
ranked subpaths. The new system avoids this problem because it tends to reward paths
it finds leading to representative concepts, rather than the path to the concept itself.
This may lead to a somewhat higher false positive rate, as short paths which may or
may not be good associations, lead to strong longer paths, and so are rewarded. We
expect, however, that this will be more than offset by the empirical accuracy of the
rules.

Another problem for the original Grant, was when if what constituted a good asso-
ciation changed from one part of the net to another. If a SETTING-ISA path is good
for illnesses, but not so good for living things, the system got into trouble when it tried
to use SETTING-ISA paths everywhere. We hope to show that this is solved by use of
the context information in the weight algorithm.

Further Work

There are several areas open for further work. First and most important is further
objective testing to see if the learning algorithm can produce useable traversal rules.
Next some attempt must be made at subjective testing to test the validity of using
paths for this type of reasoning. When we have evaluated the performance of the
system using just path weights, the next goal will be to add the context information
to the algorithm, and assess it’s effects.

Possible Enhancements

A more sophisticated form of generalization could be added. One technique which
was useful in the original version of Grant was the use of wildcards in path descriptions.
It may be possible for the system to notice, for example, that there were many heavily
weighted paths starting with a cause link. A new rule for 'cause-*’ (cause followed by
any links) could be created and allowed to compete for weight with the other rules.
This would give the system an explicit form of generalization.
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Notes

One thing we noticed while working with the system was that there was something
- to be learned from looking at the training set after it was compiled into paths. First
we were easily able to recognize when the system had connected two nodes by a poor
path. It would have been easy, if our goal was to maximize performance, to fine tune
the training set at this point. More importantly, sometimes those bad paths pointed
out missing links in the net itself. Allowing a user access to the compiled trai:iing set
could be important for a functioning system by showing her where the net need be
improved. Better still, perhaps there is a way for the system to recognize these missing
links itself. The system could look for long paths which connected pairs in a training
set as a guide to where to add links in the net. If it sees a suggested link several times,
it could add a new link there. Along with this may be needed a inechanism to eliminate
links to avoid a link explosion.

Another way of viewing this learning algorithm is to think of the system as shifting
weight from the net in general towards paths which lead to the associations in the
training set. As the sub-paths of the training path are learned, the system learns to
follow paths leading to the associations in the training set. This has similarities to
Holland’s Bucket Brigade algorithm, where the desired action receives a reward. It in
turn rewards actions which lead to it, and so on, ending up with the actions leading to
the desired ends occurring with a higher probability. It may be useful to pursue this
similarity further.

Conclusion

The learning system, as implemented so far, shows some promise. It's advantages
seem to be 1) creation of traversal rules from empirical data gathered from a domain
expert, rather than subjective knowledge engineering. We hope to show that this leads
to more accurate, and so useful, traversal rules. 2) Generality from some small set
of training pairs to the whole net. 3) A knowledge engineering interface closer to the
domain, asking the expert to think in terms of representative concepts and correct
decisions, rather than chains of associations.

8 Plausible Inference

This research is concerned with the formal underpinnings of common sense plausible
inference, the ability to give plausible answers to arbitrary questions from a very large
knowledge base of associated statements. The goal is to find one or more answers to a
question by consulting the knowledge base, and to say which of the answers are most
credible. This has been a goal of Al since its earliest days (McCarthy, 1958, 1968), and
is now seeing a resurgence {Collins, 1978a,b; Lenat et al, 1986). The motivation for

59




such work comes from the increasing realization that powerful Al programs will depend
on very large knowledge bases. It will be necessary for the system to use the knowledge
base to answer questions that were not anticipated at the time of its construction.
To handle both the broad ranging nature of possible queries, and to make use of large
amounts of knowledge in an efficient manner, it is expected that the use of heuristics, or
plausible inference rules, as well as traditional truth-preserving ones, will be necessary.
Our research is directed by these concerns, as well as by a desire to bring a formalism
to plausible reasoning similar to that enjoyed by deductive logic, so that systems using
plausible reasoning need not have their semantics established on a case-by-case, ad hoc
basis.

The most important question to be answered about plausible inference is how to
judge its credibility. Since plausible inference need not be truth-preserving, some other
semantic property besides truth must be the basis of judgments of credibility. We
propose to develop a semantics for common sense plausible inference based on the
associations that hold between the antecedents and consequents of inferences. Our
approach is strongly motivated by evidence-based control: the credibility of a statement
is represented by reasons why it may be false, reasons that can be used to control
backtracking and retraction of plausible but false inferences.

Plausible inferences, unlike deductive inferences, need not be truth-preserving. The
distinction is clear in a contrast between two rules of inference, modus ponens and
abduction:

Modus ponens is truth-preserving: if A — B and A are true, B cannot be false.
Abduction is a rule of plausible inference because A is a plausible conclusion given A
— B and B, but this conclusion is not guaranteed to be true, as the conclusion B is in
modus ponens.

Since rules of plausible inference do not make guarantees about the truth values
of their conclusions, how are we to assess the credibility of conclusions of plausible
inference? In the deductive case we associate credibility with the semantic property
truth: true statements are credible, false statements are not. What semantic property of
conclusions derived by plausible inference will be associated with credibility? We could
use truth, since some conclusions of plausible inference have truth values. The problem
is that rules of plausible inference make no guarantees about these truth values, as rules
of deductive inference do. So the question remains: What properties of conclusions are
preserved by rules of plausible inference and are the basis for judgments of credibility?

Truth is not the semantic property we seek to preserve in plausible inference. This
is because of our abiding interest in uncertainty, the state of not knowing whether
a proposition is true or false. Many attempts have been made to modify deductive
logic to represent uncertainty, including modal logics, 3-valued logics, nonmonotonic
logics, fuzzy logics, and probabilistic logic (Turner, 1984; Zadeh, 1975; Nilsson, 1984)
Some of these approaches “sequester” uncertainty by introducing a new argument that
represents the uncertainty but is itself true or false. Modal logics do this. Other
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approaches augment the values true and false; for example, three-valued logics add
the value “unknown,” and fuzzy logics introduce numeric arguments. Nonmonotonic
logics go further and replace the notion of truth with one of support. Nonmonotonic
formulations differ; in McDermott and Doyle’s version, the notion of truth is generalized
to support and falsity to lack of support (McDermott and Doyle, 1980).

Although uncertain statements are neither true nor false one can say a great deal
more about them. Extensions to logic, however, say little. With the possible exc ption
of nonmonotonic logic and dependency-directed backtracking, none of the extensions
to logic enable us to say why we are uncertain and what we might do about it (de
Kleer, et al, 1977). Shortly, we will discuss an alternative approach, but first we must
address another common paradigm in Al for plausible inference and explain why we
are avoiding it.

Much of the Al community favors probabilistic representations of uncertainty. We
believe that, with one exception, the semantics of these representations are opaque.
The exception is when the probabilities are relative frequencies, combined by Bayes’
theorem. This case is akin to deductive inference in that a semantic property (relative
frequency) is guaranteed to be preserved by a rule of inference (Bayes’ theorem). Just
as we associated credibility with truth in deductive inference, we can associate it with
relative frequency in probabilistic inference. In both cases, we can guarantee that
the credibility of a conclusion can be unambiguously determined. Unfortunately, the
numbers used in knowledge systems are not relative frequencies. Until we know what
they represent, we cannot know whether their intent or meaning is preserved by the
functions that are used to combine them. The plethora of combining functions discussed
in the Al literature suggests that no common interpretation of degrees of belief is
available (Duda and Hart, 1976; Pearl, 1982; Shafer, 1976).

So we are led back to the question, if truth or relative frequency are not the basis of
credibility when reasoning under uncertainty, what is? What properties of statements
determine their credibility, and can we guarantee that these properties are preserved
by inference rules? In Section 4 we saw that the credibility of inferences depends on the
semantic associations on which they are based. For example, if a researcher is interested
in VLSI layout, and a funding agency is interested in electronics, the fit between them
is good and the agency is apt to fund the proposal. The semantic association between
electronics and VLSI is “has-subfield,” and it is the basis of this plausible inference:

interested-in(agency, electronics)
has-subfield (electronics, VLSI)
interested-in(agency, VLSI)

In brief, degree of fit between two objects, X and Y, was defined to mean that some
rule of plausible inference could be invoked to conclude interested-in(agency, Y) given
interested-in(agency, X).
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The GRANT system (Section 4) sets the stage for the current research. It is the first
step toward a common sense plausible inference system as defined above - a program
that answers arbitrary questions from a large, associative knowledge base. But GRANT
does not, in fact, answer arbitrary questions. It answers the single question, “If a
funding agency is interested in X, will it be interested in Y?” It can be generalized to
a common sense plausible inference system as follows:

1. Assume that all questions are about properties of objects; for example, “Does
Fido have fur,” or “Is coughing caused-by bronchitis.” Abbreviate such questions
R(0,,0;)?; for example, caused-by(coughing,bronchitis)?.

2. The answer to R(0;,0;)? is yes if the knowledge base contains O; and O; con-
nected by R. The answer is plausible if there is a rule of plausible inference of the
form

Q(0s,0,)?
R(05,0:)
R(Olyoz)

and Q(Os, O3)? is plausible. For example, imagine asking a system, “Are gin-and-
tonics intoxicating?” or, has-effect(gin-and-tonic, intoxication)? Assume that the ob-
jects gin-and-tonic and intoxication are not linked by has-effect in the knowledge base.
The question can be answered, however, by plausible inference using the rule

has-component(x,y)?
has-effect(y,z)
has-effect(x,z)

and the knowledge that gin-and-tonics contain alcohol and alcohol is intoxicating:

has-component(gin-and-tonic,alcohol)?
has-effect(alcohol,intoxication)
has-effect(gin-and-tonic,intoxication)

Property inheritance in frame systems is a special case of this kind of inference.
The rule for property inheritance is

isa(X,Y)

R(Y,Z)
R(X,Z)
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where R is any relation. For example, isa(collie,dog) and part-of(dog,fur) implies part-
of(collie,fur). The approach we propose here allows us to infer the answers to questions
based on semantic associations other than isa. Thus, the approach unifies several kinds
of plausible inference, including causal inference (Weiss et al, 1977).

The model of plausible inference is not complete, however, since it lacks statements
about the credibility of inferences drawn by plausible inference rules. Obviously, we
do not intend to include rules that draw erroneous conclusions, but credibili.. is not
guaranteed, as it is in logic, by plausible inference. We discussed how our rules im-
plement a notion of credibility based on degre= of fit, but this still does not guarantee
credibility. We know of two general approaches to this problem. One is to attach to
each conclusion a set of conditions that, if met, would increase its credibility. Collins,
who developed this idea, calls these certainty conditions (Collins, 1978b). The other
is to attach a set of conditions that, if met, would decrease credibility. We have called
these negative endorsements (Cohen, 1984). From the standpoint of control, certainty
conditions can guide a system to increase its belief and negative endorsements can help
a system recover from errorful conclusions by pointing to reasons a conclusion might
be.wrong. Obviously, both are required for evidence-based control.

Given a set of rules of plausible inference, with reasons to believe and disbelieve
their conclusions, we can engage in a range of common sense plausible inference tasks.
Our proposed work thus involves several stages:

e Develop common sense plausible inference rules. These are based on semantic
associations, 8o clearly we need a set of associations at the outset. We began
with the associations in GRANT"'s knowledge base. Next, we generated all com-
binations of associations of the form

AI(X’Y)
AZ(sz)

AI(X,Z)

These can be filtered by case-semantic considerations: y must be a particular
kind of object to fill the A, case of x, and z is also restricted by its relation to y.
In many cases, though, z will not fill the A, case of x, and so a potential rule can
be filtered out. Even with this filtering, GRANT’s associations generated about
600 rules of plausible inference.

The rules are further pruned by automatically generating, from GRANT’s knowl-
edge base, examples of inferences made by the rules. Thus we can select empiri-
cally a set of rules that make a high proportion of truly plausible inferences.

¢ Endorse the rules. Given these rules it remains to specify the conditions under
which they are more or less likely to generate plausible conclusions. This work
remains to be done.
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o Test the rules. Recently, Cohen et al. (1985) tested GRANT by comparing its
performance against that of an expert. The same approach will be used to test
our common sense plausible inference system both in the GRANT domain, for
which we have a very large associative knowledge base, and in other associative
domains such as causal reasoning.

Further extensions involve generalizing rules of plausible inference to include con-
junctions, negations, and quantification. It will probably be easy to make these exten-
sions given the propositional form of the rules as shown above. However, the inference
mechanism that underlies GRANT is a tightly-controlled spreading activation. This
has several advantages that are discussed in Cohen et al. (1985), so we want to maintain
this approach in our proposed work. We currently know how to model the plausible
inference rules above as spreading activation, but we are not sure how to extend this
approach when the rules include conjunctions, negations, and quantifiers.

The result of this work will be a set of rules of inference whose plausibility for the
GRANT knowledge base has been discovered empirically and confirmed by comparison
with expert judgment. We hope, however, to go beyond this result to explore the
reasons WHY the rules discovered are plausible, in what situations they would not
be plausible, etc. To this end, we plan to extend our work on plausible reasoning to
domains that already have algorithmic solutions (e.g. deadlock prevention in operating
systems). The use of an algorithmic solution as a foil for plausible ones will aid in the
discovery of formal characterizations of the nature of plausible inference rules.
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Chapter 3

Prospective Reasoning

1 Introduction

MUM is a knowledge-based consultation system designed to manage the uncertainty
inherent in medical diagnosis (the acronym stands for Management of Uncertainty in
Medicine). Managing uncertainty means planning actions to minimize uncertainty or its
consequences. Thus it is a control problem - an issue for the component of a knowledge
system that decides how to proceed from an uncertain state of a problem. Uncertainty
can be managed by many strategies, depending on the kind of problem one is trying
to solve. These include asking for evidence, hedging one’s bets, deciding arbitrarily
and backtracking on failure, diversification or risk-sharing, and worst-case analysis.
The facility with which a consultation system such as MUM manages uncertainty is
evident in the questions it asks: it should ask all necessary questions, no unnecessary
questions, and it should ask its questions in the right order. These conditions, especially
the last one, preclude uniform and inflexible control strategies. They prompted the
development of the MUM architecture in which control decisions are taken by reasoning
about features of evidence and sources of uncertainty.

1.1 The Goals of MUM

MUM diagnoses diseases that manifest as chest pain and abdominal pain. This in-
cludes taking a history, asking for physical findings, ordering tests, and prescribing trial
therapy. Physicians call a diagnostic sequence of questions and tests a workup. MUM’s
primary goal is to generate workups for chest and abdominal diseases that include, in
the correct order, all necessary questions and tests and none that are superfluous. Since
we built MUM to study the management of uncertainty, the goal of correct diagnosis
is secondary to generating the correct workup. We were influenced by a distinction
physicians make between retrospective diagnosis, in which all evidence is known in ad-
vance and the goal is to make a correct diagnosis, and prospective diagnosis, which
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emphasizes the workup and proper management of the patient, even under uncertainty
about his or her condition. MUM is definitely prospective. Figure 3.1 illustrates part
of the workup for coronary artery disease. Clearly, we could build a system that follows
this and other stored workups, but the point of the research is to be able to reason
about the features of evidence, and the uncertainty in partially-developed diagnoses,
to decide which questions to ask next. If MUM does this properly then its questioning
will correspond with a standard workup, or at least be a reasonable alternative workup.

1.2 Managing Uncertainty and Control

MUM is based on the idea that managing uncertainty and controlling a complex
knowledge system are manifestations of a single task, namely, acquiring evidence and
using it to solve problems. There would be little basis for variation in problem-solving
strategies if all evidence was equally costly, reliable, available, and pertinent; but if
available and attainable evidence is differentiated along these and other dimensions,
then problem-solving can be guided by the ideal of maximum evidence for minimum
cost. For example, here is a strategy for focusing attention on available evidence:

CONTEXT: to minimize cost

CONDITIONS: test; and test; are pertinent, and
test, is potentially-confirming, and
test; is potentially-supporting, and
cost(test;) >> cost(test;)

ACTIONS: begin
do test;
if supporting then do test,
else do not do test;
end

That is, given cheap, weak evidence and expensive, strong evidence, get the weak
evidence first and don’t incur the cost of the strong evidence unless the weak evidence
lends support. The rule serves to manage the uncertainty associated with the weak
evidence - it says seek strong corroboration only if the weak evidence is positive. It
also uses features of evidence such as cost and reliability to control the acquisition of
evidence; for example, it explains why an angiogram (an expensive, risky, and excruti-
ating test) is done only after a stress test in Figure 3.1. We distinguish these functions -
managing uncertainty and control - only because uncertainty and control have, with a
few exceptions noted below, been viewed as different topics. In fact, if control decisions
are based on features of evidence, then control and managing uncertainty are the same
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thing. This is the principle that motivates the design of MUM discussed in Section 2.

1.3 Related Work

The close association between control and managing uncertainty has been apparent
in the literature on sophisticated control for several years ! but is largely absent from the
Al literature on reasoning under uncertainty. Three important results have emerged
from research on control: First, complex and uncertain problems have to be solved
opportunistically and asynchronously - working on subproblems in an order dictated
by the availability and quality of evidence (Hayes-Roth and Lesser, 1977). Second,
since control tends to be accomplished by lo:al decisions about focus of attention, the
behavior of complex knowledge systems sometimes lacks global coherence. Coherence
can be achieved by planning sequences of actions instead of selecting individual actions
by local criteria?. Third, programs are impossible to understand if the factors that
affect control decisions are smpliest. For example, the focus of attention in Hearsay-II
was difficult to follow because it depended on many numerical parameters calculated
from data and combined by empirical functions with “tuning” parameters (Hayes-Roth
and Lesser, 1977). A better approach is to explicitly state and reason about the implicit
factors, called control parameters (Wesley, 1983), that the numbers represent (Davis,
1985; Clancey, 1983). If the control parameters are features of evidence and uncertainty,
then control strategies can be developed to manage uncertainty.

This last point colors our reading of the Al literature on reasoning under uncer-
tainty. Much of it is concerned with the mathematics of combining evidence, the
calculation of degrees of belief in hypotheses. (A representative sample includes Short-
life and Buchanan, 1975; Duda, Hart, and Nilsson, 1976; Zadeh, 1975; Shafer, 1976.
See Cohen and Gruber, 1985; and Bonissone, 1985, for literature reviews, including
nonnumeric approaches to uncertainty; and Szolovits and Pauker, 1978 for a discussion
of uncertainty in medicine.) Degrees of belief can serve as control parameters, but it
is necessary to maintain a distinction between combining evidence and control. Oth-
erwise, degrees of belief (and the functions that combine them) have to be “tuned”
not only to find the most likely answer but also to focus attention in a reasonable
way. Inevitably they become ambiguous summaries of implicit control parameters. For
example, MYCIN'’s certainty factors contained probabilistic and salience information,
an indirect result of using them to focus attention (Buchanan and Shortliffe, 1985).

Another important reason to maintain the distinction between combining evidence
and control is *hat combining evidence is only a part of the problem of reasoning under
uncertainty. Other aspects include formulating decisions, assessing the need for more
evidence, planning how to get it, deciding whether it is worth the cost and, if it isn’t,

!For example, the classic paper by Erman, Hayes-Roth, Lesser, and Reddy (1980) is called *The
Hearsay-Il speech understanding system: Integrating knowledge to resolve uncertainty.”
2Personal communication, Victor Lesser.
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hedging against residual uncertainty. In MUM we address the problem of combining
uncertainty in the context of these other tasks.

2 An Architecture for Managing Uncertainty

Managing uncertainty in MUM requires several kinds of knowledge discussed in this
section. Anticipating section 2.3, on control, it may be useful to think of data noving
bottom-up through Figure 3.2 as it triggers hypotheses and is requested by MUM’s
planner.

2.1 Types of Knowledge

Data, Evidence, and Interpretation Functions. Evidence is abstracted from
data thiough iuterpratation functions. All data about a patient are stored in frames
that describe personal history, family history, tests, history of episodes, and other in-
formation. Interpretation functions map data to evidence; for example, information
that a patient smokes 3 packs of cigarettes a day is abstracted to the evidence heavy-
smoker by an interpretation function that maps data about smoking habits to one
of (non-smoker light-smoker moderate-smoker heavy-smoker). Interpretation functions
are often graphs called belief curves that relate ranges of a continuous data variable to
belief in evidence. Figure 3.3 shows a belief curve relating the duration of chest pain
to the evidence classic-anginal-pain. Belief curves and other interpretation functions
are acquired from an expert. They provide the same functionality as fuzzy predi-
cates (Zadeh, 1975), and generalize Clancey’s view of data abstraction as categorical
(Clancey, 1983).

Features of Evidence. Evidence may be characterized by its cost, reliability, and
roles. The cost of evidence reflects monetary cost as well as discomfort and risk to the
patient (later versions of MUM will separate these and other determinants of cost).
Reliability refers to several factors, including false-positive and miss rates of tests, and
also the belief in evidence derived from belief curves (e.g., is classic-anginal-pain at least
supported by data about the pain duration?) The most important feature of evidence
is the roles it can play with respect to evaluating hypotheses. MUM recognizes five
roles, two of which are symmetric pairs:

Potentially-confirming and potentially-disconfirming. If evidence plays a potentially-

confirming role with respect to a hypothesis, then acquiring it might confirm the
hypothesis, though not all potentially-confirming evidence will, in actuality, con-
firm. For example, an EKG confirms the hypothesis of angina only if “positive”
(i.e., shows ischemic changes.) Once confirmed (or disconfirmed), a hypothesis
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Belief in Classic Anginal Pain

A belief curve plotting the datum "Duration of Pain in Minutes"
vs. belief in the evidence "Classic-Anginal-Pain”
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requires no further evidence, though a diagnostician may continue working to
disconfirm other hypotheses, especially if they are dangerous.

Potentially-supporting and potentially-detracting. Like potentially-confirming and

potentially-disconfirming, but not conclusive. However, combinations of support-
ing or detracting evidence may be confirming and disconfirming, respectively (see
“Combining Functions,” below). The combination referred to as cluster-2 (Figure
3.2) is potentially-supporting with respect to disease-2; cluster-1 is potentially-
detracting with respect to disease-1.

Trigger. Evidence plays the triggering role with respect to a hypothesis if its presence
focuses attention on the hypothesis, or “brings the hypothesis to mind,” or, in
MUM, adds the hypothesis to a list of potential diagnoses. Cluster-4, if it is sup-
ported, triggers disease-1 (Figure 3.2). This role of evidence is found in virtually
all medical expert systems.

Modifying. Some evidence primarily alters the way diagnosis proceeds. For example,
risk factors for coronary artery disease (e.g., hypertension, elevated cholesterol)
play a modifying role with respect to the hypothesis of angina since diagnosis will
proceed aggressively if they are present and less aggressively otherwise.

Note that evidence can play multiple roles with respect to any hypothesis; for
example, risk factors are both potentially-supporting and modifying with respect to
angina; and most triggers are individually or in combination with other evidence at
least potentially-supporting (e.g., note the roles cluster-4 plays with respect to disease-
1 in Figure 3.2). Also, one piece of evidence can play different roles with respect to
several hypotheses (illustrated by the roles cluster-2 plays with respect to disease-1
and disease-2 in Figure 3.2). Finally, note that some evidence potentially plays two
symmetric roles, while some is “asymmetric”; for example, a stress test will either
support coronary artery disease or detract from it, while an EKG supports angina if it
is positive and is useless otherwise. That is, EKG plays a potentially-supporting role
only.

Clusters. Physicians often see collections of evidence that play particular roles in
diagnosis; for example, shortness of breath that comes on suddenly but is unrelated to
exercise or other inciting factors triggers the diagnosis of pulmonary embolism. Just
as evidence has roles with respect to clusters, so clusters have roles with respect to
diseases, and these roles need not be supporting; for example, the cluster (patient-age
< 30 and no-family-history-of-coronary-events) plays a potentially-disconfirming role
with respect to all coronary diagnoses of chest pain. Instead of saying that the available
evidence is a poor match to coronary diagnoses, we can say the evidence is a good match
to a cluster that potentially detracts from or disconfirms coronary diagnoses.
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Combining Functions. Every cluster includes a function, specified by the expert,
that combines the available evidence for the cluster and returns a value for the cluster
given evidence. The values returned by combining functions are just “realizations” of
potential roles of evidence. For example, the value returned by the combining function
of a cluster supported by potentially-confirming evidence could be confirmed. The
value for a cluster with several pieces of potentially-detracting evidence might be dis-
confirmed, or perhaps detracted. Combining functions are further discussed below.

Diseases. A disease is technically a cluster. Diseases reside at the top of a hierarchy
of clusters (as shown in Figure 3.2), each of which has its own combining function and
specifications of the roles played by the clusters below it.

Strategic Knowledge. We characterize strategic knowledge as heuristics for decid-
ing which triggered disease hypotheses to focus on, and how to go about selecting ac-
tions to gather evidence pertinent to these hypotheses. These heuristics have the same
contingent nature as Davis’ meta-rules (Davis, 1985) and control rules in Neomycin
(Clancey, 1985). We represent strategies as rules that include:

o condstions for selection of the strategy;

o a focus policy that guides the choice of a subset of the triggered disease hypotheses
to focus on;

o planning criteria that guide the selection of actions to gather evidence and treat
diseases currently in the focus.

Examples of focus policies are plausibility (choose hypotheses based on their degree
of support); eriticality (focus on hypotheses that, if true, would require immediate
action); and differential (focus on hypotheses that offer alternate explanations for the
symptoms). Examples of planning criteria are cost (prefer evidence that is easy to
obtain, and inexpensive on some cost metric); roles (prefer potentially-confirming over
potentially-supporting); and diagnosticity, meaning that a given result has the potential
to increase the belief in one hypothesis and decrease belief in the other, as indicated
by belief curves.

2.2 Combining Evidence and Propagating Belief

In MUM, evidence is combined by local functions, as shown in Figure 3.2. Typically,
knowledge systems require three functions to com*ine evidence and propagate belief.
These are illustrated in the context of two inference rules:

Rl: (A AND B) —» C
R2: (D AND E)—~ C
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One function calculates the degree of belief (dob) in a conjunction from degrees of
belief in the conjuncts:

dob(AND A B) = Fi(dob(A)dob(B))

The second function calculates the degree of belief in a conclusion from
a) the degree of belief in its premise (computed by F;)

b) the “conditional” degree of beliet in the conclusion given the premise;
often called the degree of belief in the inference rule:

dob(Cpg,) = F2(dob(AND A B),dob(C|(AND A B)))

The third increases the degree of belief in a conclusion when it is derived by independent
inferences:

dob(Crixr:) = F3(dob(Cgr,),dob(Cr;))

In MUM, these three kinds of combining are maintained, but with two important
differences. First, there are no global functions corresponding to F;, F;, and Fg; all
combining is done by functions local to clusters. Second, instead of the usual numeric
degrees of belief, MUM has seven levels of belief: disconfirmed, strongly-detracted,
detracted, unknown, supported, strongly-supported, confirmed. These are just “realiza-
tions” of the roles of evidence described earlier.

Combining evidence and propagating belief in MUM is illustrated in Figure 3.2.
Each cluster, including diseases, has its own local combining function, specified by an
expert. For example, cluster-1 is strongly-supported if the data support evidence-1 and
if the data on a patient’s smoking habits support evidence that he or she is a nonsmoker.
This is a conjunction of evidence of the kind calculated by F;, above. Another example
is found in the combining function for disease-1. If cluster-2 and cluster-4 are both
confirmed, then disease-1 is strongly-supported. This illustrates the kind of combining
for which F;, above, is required: even when the evidence for a disease is itself certain,
the conditional belief in the disease given the evidence may not be certain. Disease-
2 also contains a conjunctive rule, but the entire combining function illustrates the
corroborative situation for which Fy is needed. In this case, cluster-4 and cluster-2
individually play potentially-supporting roles, and taken together increase the level of
belief in disease-2 to strongly-supporting.

Local combining functions have many advantages. Foremost is the ease with which
an expert can specify precisely how the level of beliel in a cluster depends on the levels of
belief in the evidence for that cluster. Control of combining evidence is not relinquished
to an algorithm, but is acquired from the expert as part of his or her expertise. Since
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local combining functions are specific to clusters, they can be changed independently.
And since the values passed between them in MUM are few, it is easy to trace back
the derivation of a level of belief and pinpoint a faulty local combining function. The
prospect of having to acquire many functions seems daunting, but we have found it
easy and intuitive, and much easier to explain than a global numeric method.

2.3 Control of Diagnosis in MUM

MUM’s basic control strategy involves three components:

User Interface: uses data description frames in the knowledge base to ask questions
and create patient data frames for the results;

Matcher: uses the interpretation and combining functions to record the effect in-
coming data have on the belief states for clusters and disease frames, and triggers
new hypotheses as appropriate;

Planner: uses strategic control rules to guide the selection of a focus set and the
planning process.

Basic Control. The planner follows a basic control loop within which it interprets
strategic control rules. It is implemented in a blackboard system with knowledge
sources specified in the same syntax as strategic control rules. This facilitates experi-
mental modifications. The design of the blackboard system was influenced by Hayes-
Roth (1985), and shares the emphasis on explicit solution to the control problem. We
first describe the basic control loop, then strategies and their selection.

The basic control locp is initiated with the choice of a strategic phase. All sjrategic
phases but one include a focus policy that directs MUM’s attention to a subset of
candidate hypotheses. This is followed by the selection of short-term plans to gather
evidence and select treatment pertinent to these hypotheses (the rule in Section 1.2
represents such a plan). Since the effort of developing lengthy plans may well be
wasted in a domain permeated with uncertainty, we constrain plans to single actions or
sequences of two actions where the applicability of the second depends on the outcome
of the first. Several short-range plans may be generated and executed.

Carrying out plans typically consists of invoking the user interface to request some
information, updating the status of the diseases with the matcher, and conditional
continuation of the plan. When no short-term plans remain, the system iterates the
basic control loop to determine if a new strategic phase is appropriate, updates the
focus, and generates new short-term plans.

Strategic Control. We represent MUM's overall strategy as an ordered set of rule-
like strategic phases, shown in Figure 3.4. Each phase has conditions that activate it.
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Once activated, a phase controls MUM’s focus of attention and the choice of actions
pertaining to the hypotheses in this focus.

The phase Get General Picture is invoked when the system is started, and may
also be uscd if all previously considered hypotheses are ruled out. It has no focus policy
because no hypotheses are active when it is invoked. It directs the planner to ask for
evidence that plays the potential-trigger role for one or more hypotheses, pursuing
the lowest-cost evidence first. The cluster initial-consultation (consisting of age, sex,
and primary complaint) meets the criteria of potentially triggering many hypotheses
and costing little. The initial consultation usually triggers some hypotheses, which
result in a new strategic phase being selected. If no hypotheses were triggered, the
planner asks for potential-triggers of higher cost.

The Initial Assessment for Triggered Hypotheses phase is invoked when new
hypotheses are triggered. Since the conditions of the other strategic phases depend
somewhat on the level of belief in candidate hypotheses, this phase gathers preliminary
evidence for the hypotheses. The focus is on the triggered hypotheses, so only evidence
playing some role relative to these hypotheses is considered by the planner. This phase
directs the planner to gather low-cost evidence for the hypotheses. For example, MUM
asks about aspects of the patient’s episode (the event which is the primary complaint)
which bear on the triggered hypothesis, and about risk factors.

As soon as the easy questions for triggered hypotheses have been asked, MUM
decides between the next two phases on based its belief in the hypotheses and whether
any of the hypotheses are eritical, that is, require immediate treatment if supported.
Critical hypotheses are dealt with first.

The Deal With Critical Hypotheses phase places all candidate critical hypothe-
ses in MUM?’s focus. The short range planner is then directed to attempt to rule out
these hypotheses. It begins with potentially-disconfirming or potentially-detracting ev-
idence. If it fails to find any, then it looks for potentially-supporting evidence. It will
not seek evidence that plays a lesser potential role than evidence it already has. For
example, it will not seek potentially-supporting evidence for a hypothesis that is al-
ready strongly supported, but rather focuses on potentially-confirming evidence. The
planner will focus on low-cost evidence first, but it is not prohibited from pursuing
high-cost evidence as it was in the previous phase.

If the focus of attention is not captured by critical hypotheses, it is dictated by
plausibility. The strategic phase Discriminate Strongest Hypotheses discriminates
competing alternatives with as little cost to the patient as possible. As before, the
potential roles of evidence are used to decide whether it is worth acquiring.

Currently MUM stops work when a hypothesis is confirmed and no critical hypothe-
ses remain in its focus. We are implementing the next strategic phases, prognosis and
treatment. Both provide evidence of diagnostic significance; for example, MUM may
begin treatment for angina if it is strongly ~upported, rather than incurr the cost of
absolute confirmation. If the treatment relieves the symptoms, then it is additional
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Strategic Phase:
Conditions:
Focus Policy:

Planning Criteria:

Strategic Phase:
Conditions:
Focus Policy:

Planning Criteria:

Strategic Phase:
Conditions:

Focus-Policy:

Planning Criteria:

Strategic Phase:
Conditions:
Focus-Policy:

Planning Criteria:

Get General Picture.

No candidate hypotheses.

None.

Evidence must play trigger role; prefer
low cost on all cost metrics.

Initial Assessment for Triggered Hypotheses.
One or more hypotheses are triggered.

Focus on triggered hypotheses.

Must be low on all cost metrics; prefer
stronger roles.

Deal With Critical Possibilities

There are critical hypotheses which

have not been confirmed, disconfirmed or
strongly detracted, and if they are detracted,
no other hypothesis is confirmed.

Criticality.

Rule OQut if possible, else gather support.
Utility of evidence. Low cost first; as
needed let discomfort and monetary cost
increase.

Discriminate Strongest Hypotheses

More than one hypothesis is supported.
Plausibility.

Diagnosticity, Low cost first. Utility of
evidence. Substitute high cost confirmation
for one hypothesis with lower cost
disconfirmation for the other.

Figure 3.4: Four Strategic Phases in MUM?’s Diagnosis
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evidence for the diagnosis. If not, it is evidence that detracts from the diagnosis and
may support others. Since treatment provides evidence, we represent treatments as
clusters, exactly the same way as we represent tests such as angiography.

The emphasis in MUM is on asking the right questions in the right order without
superfluous questions. MUM's control knowledge is not yet sophisticated enough to
satisfy all these criteria. It asks questions in a reasonable order, but it sometimes focuses
on the wrong disease. Since MUM is a nascent system, this does not yet concern us.
We believe the system is successful in providing a framework for exploring management
of uncertainty by sophisticated control, that is, by making control decisions based on
the roles, costs and other characteristics of evidence; and the criticality of diseases; and
the credibility of diagnoses.

3 Conclusions

MUM manages uncertainty by reasoning about evidence and its current state of
belief in hypotheses. Its goal is to generate appropriate workups for chest and abdom-
inal pain, that is, to ask the right questions in the right order without unnecessary
questions. To the extent it succeeds, it demonstrates its ability to manage uncertainty,
to select the appropriate action given uncertainty. We have said this is a control task.
Indeed, much of MUM’s architecture is devoted to explicit, evidence-based control.

Much work remains to be done. Currently, MUM resembles a programming envi-
ronment more than a medical expert system. We will be devoting ourselves to building
up its clusters and control rules.

Although MUM was designed for medical problems and is discussed in that context,
we believe the approach to uncertainty and control it engenders is general to classifi-
cation problem solvers, as well as to other systems responsible for the management of
uncertainty. An empty version of MUM called MU has been developed and is discussed
in the next section.

4 The MU Architecture

MU is a development environment for knowledge systems that reason with incom-
plete knowledge. It has evolved from a program called MUM that planned diagnostic
sequences of questions, tests, and treatments for chest and abdominal pain (Cohen et
al., 1987). This task is called prospective diagnosis, vecause it emphasizes the selec-
tion of actions based on their potential outcomes and the current state of the patient.
Prospective diagnosis is uncertain because the precise outcomes of actions cannot be
predi~ted, in part because knowledge of the state of the patient is incomplete. Yet we
have found that physicians have rich strategic knowledge with which they plan diag-
noses in spite of their their uncertainty. MU does not provide a knowledge engineer
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with any particular strategies, but rather provides an environment in which it is easy
to acquire, represent, and experiment with a wide variety of strategies for prospective
diagnosis and other prospective reasoning tasks.

Three goals underlie our research and motivate the MU system. First, MU is
intended to provide knowledge-engineering tools to help acquire expert problem-solving
strategies. MU allows us to define explicit control features, which are the terms an
expert uses to discuss strategies. Control features in medical diagnosis include degrees
of belief in disease hypotheses, monetary costs of evidence, the consequences of incorrect
conclusions, and “intangibles” such as anxiety and discomfort. Some, like degrees of
belief, have values that change dynamically during problem solving. MU helps the
knowledge engineer define the functions that compute these dynamic values and keeps
the values accessible during problem solving. For example, with MU we can easily
define a control feature called criticality in terms of two others, say dangerousness and
degree of belief, and acquire a function for dynamically assessing the criticality of a
hypothesis as its degree of belief changes.

Second, we want to show that strategies enable a prospective reasoning system to
produce solutions that are efficient in the sense of minimizing the costs of attaining
given levels of certainty. MU has no “built in” problem solving strategies, but we have
been able to acquire and implement efficient, expert strategies in MU because we can
define explicit control features that represent the various costs of actions, as well as the
levels of certainty in the evidence produced by actions.

Third, we want to implement in MU a task-level architecture for prospective reason-
ing (Gruber and Cohen, 1987), an environment for building systems that plan efficient
sequences of actions, despite uncertainty about their outcomes. After working in the
domains of medicine and plant pathology, we now think that many control features
pertain to diagnostic tasks in general. Moreover, diagnosticians in many fields seem to
use similar strategies to solve problems efficiently. This view is influenced by the recent
trend in Al toward defining generic tasks (Chandrasakeran, 1986) such as classification
(Clancey, 1985) and the architectures that support their implementation. MU shares
the orientation toward explicit control efforts such as BB* (Hayes-Roth, 1985, Hayes-
Roth et al., 1986) and Heracles (Clancey, 1986) but emphasizes control features that
are appropriate for prospective reasoning.

In sum, MU is a tool for representing and providing access to the knowledge that
underlies efficient prospective reasoning. This report begins with an analysis of prospec-
tive reasoning, then describes the MU environment first as a program, emphasizing its
structure and function, then from the perspective of the knowledge engineer who uses
it. As an illustration, we describe how MUM was reimplemented in MU. We conclude
with a summary of current work.
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5 Prospective Reasoning

Prospective reasoning is reasoning about the question “What shall I do next,” given
that

ot

. knowledge ahout the current state of the world is incomplete,
2. the outcomes of actions are uncertain,

3. there are tradeoffs between the costs of actions with respect to the problem
solver’s goals and the utility of the evidence they provide,

4. states of knowledge that result from actions can influence the utility of other
actions.

An example from medical diagnosis illustrates these characteristics:

A middle-aged man reports episodes of chest pain that could be either
angina or esophageal spasm; the physician orders an EKG, but it provides
no evidence about either hypothesis; then he prescribes a trial prescription
of vasodilators; the patient has no further episodes of pain, so the physician
keeps him on long-acting vasodilators and eventually suggests a modified
stress test to gauge the patient’s exercise tolerance.

The first and second characteristics of prospective reasoning are clearly seen in this
case: Knowledge about the state of the patient is incomplete throughout diagnosis,
and the outcomes of actions (the EKG, trial therapy, stress test) are uncertain until
they are performed and are sometimes ambiguous afterwards. Less obvious is the third
characteristic, the tradeoffs inherent in each action. Statistically, an EKG is not likely
to provide useful evidence, but if it does, the evidence will be completely diagnostic.
The EKG is given because its minimal costs (e.g., time, money, risk, and anxiety)
are offset by the possibility of obtaining diagnostic evidence®. Similarly, trial therapy
satisfies many goals; it protects the patient, costs little, has few side-effects and, if
successful, is good evidence for the angina hypothesis.

The fourth characteristic of prospective reasoning is that states of knowledge that
result from actions car affect the utility other actions. This is because the costs and
benefits of actions are judged in the context of what is already known about the patient.
For example, trial therapy is worthwhile if the EKG does not produce diagnostic evi-
dence, but is redundant otherwise. The outcome of an EKG thus affects the utility of
trial therapy. This implies a dependency between the actions, and suggests a strategy:
do the EKG first because, if it is positive, then trial therapy will be unnecessary.

3This example oversimplifies the reasons for giving an EKG, but not the cost/benefit analysis that
underlies the decision.
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Dependencies between actions help the prospective reasoner to order actions. We
call this planning, though it is not planning in the usua! Al sense of the word (Sacerdoti,
1979) (Cohen and Feigenbaum, 1982). The differences are due to the first and second
characteristics of prospective reasoning: the state of the world and the effects of actions
are both uncertain. The prospective planner must “feel its way” by estimating the
likely outcomes of one or more actions, executing them, then checking whether the
actual state of the world is as expected. Plans in prospective reasoning tend to be
short. In contrast, uncertainty is excised from most Al planners by assuming that the
initial state of the world and the effects of all actions are completely known (e.g., the
STRIPS assumption, (Fikes, Hart, and Nilsson, 1972). Al planners can proceed by
“dead-reckoning,” because it follows from these assumptions that every state of the
world is completely known. All further discussions of planning in this report refer to
the “feel your way” variety, not to “dead reckoning.”

Prospective diagnosis requires a planner to select actions based on their costs and
utility given the current state of knowledge about the patient. We have described
prospective reasoning as planning because the evidence from one action may affect the
utility of another. Alternatively, prospective reasoning can be viewed as a series of
decisions about actions, each conditioned on the current state of knowledge about the
patient. We considered decision analysis (Raiffa, 1970, Howard, 1966) as a mechanism
for selecting actions in prospective reasoning, but rejected it for two reasons. First,
collapsing control features such as monetary expense, time, and criticality into a sin-
gle measure of utility negates our goals of explicit control and providing a task-level
architecture for prospective reasoning (Cohen, 1985, Gruber and Cohen, 1987). Sec-
ond, decision analysis requires too many numbers — a complete, combinatorial model
of each decision. The expected utility of each potential action can only be calculated
from the joint probability distribution of the possible outcomes of the previous actions.
But although we do not implement prospective reasoning with decision analysis, MU is
designed to provide qualitative versions of several decision-analytic concepts, including
the utility of evidence and sensitivity analysis.

6 The MU Environment — An Overview

A coarse view of MU'’s structure reveals these components:

¢ a frame-based representation language,
e tools for building inference networks,

e an interface for defining control features and the functions that maintain their
values,
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Figure 3.5: Organization of Knowledge Within Mu

¢ a language for asking questions about the state of a problem and how to change
its state.

e a user interface for acquiring data during problem-solving,

With these tools, a knowledge engineer can build a knowledge system with a planner
for prospective reasoning. MU does not “come with” any particular planners, but it
provides tools for building planners and incorporating expert problem-solving strategies
within them.

Among MU’s tools is an editor for encoding domain inferences, such as if EKG
shows 1schemic changes then angina s confirmed, in an inference network. MU does
not dictate what the nodes in the inference network should represent, except in the
weak sense that nodes “lower” in the network — relative to the direction of inference
— provide evidence for those “higher” up. However, the nodes in the network are
usually differentiated; for example, in Figure 3.5 some nodes represent raw data, others
represent combinations of data (called clusters), and a third class represents hypotheses.
In the medical domain, data nodes represent individual questions, tests, or treatments.
Clusters combine several data; for example, the risk-factors-for-angina cluster combines
the patient’s blood pressure, family history, past medical history, gender, and so on.
Hypothesis nodes represent diseases such as angina.

Since MU does not provide a planner, the knowledge engineer is required to build
one. The planner should answer two questions:

e Which node(s) in the network should be in the focus set, and which of these
should be the immediate focus of attention?




e Which actions are applicable, given the focus set, and which of these should be
taken?

For example, in the medical domain the focus set might include all disease hypotheses
that have some support, and the immediate focus of attention might be the most
dangerous one. The potential actions might be the leaf nodes of the tree rooted at the
focus of attention (Figure 3.5), and the selected action might be the cheapest of the
potential actions.

MU provides an interface to help the knowledge engineer define control features
such as the degree of belief in hypotheses, the dangerousness of diseases, and the costs
of diagnostic actions. It also provides a language with which a planner can query the
values of features and ask about actions that would change those values. Planners can
ask, for example, “What is the current level of belief in angina?” or “Tell me all the
inexpensive ways to increase the level of belief in angina,” or even the hypothetical
question, “Would the level of belief in angina change if blood pressure was high?”

The relationship between these functions of MU and the functions of a planner are
shown in Figure 3.6. Using MU, a knowledge engineer can: define a control feature
such as criticality in terms of other features such as dangerousness and degree of belief;
specify a combining function for calculating dynamically the value of criticality from
these other features during problem solving; associate criticality and its combining
function with a class of nodes, such as diseases, and have each member of the class
inherit the definitions; and write a planner that encodes an expert strategy for dealing
with critical or potentially-critical diseases. MU facilitates the development of planners,
and makes their behavior explicit and efficient, but the design of planners, and the
acquisition of strategies and the control features on which they depend, is the ,ub of
the knowledge engineer.

7 The MU Environment — Features and Combining
Functions

Knowledge representation in MU centers around features. Features and their values
are the information with which planning decisions are made. Each node in a MU
inference network can have several features; for example, the node that represents trial
therapy for angina includes features for monetary cost and risk to the patient. Features
are defined in the normal course of knowledge engineering to support expert strategies
for prospective reasoning. We have identified four classes of features, differentiated by
their value types, how they are calculated, and the operations that MU can perform
on them:

Static The value of a static feature is specified by the expert and does not change at
run time. Monetary cost is a typical static feature, as the cost of an action does
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not change during a session.

Datum The value of a datum feature is acquired at run time by asking the user
questions. Data are often the results of actions; for example EKG shows ischemsc
changes is a potential result of performing an EKG.

Dynamic The value of a dynamic feature is computed from the values of other feature
values in the network. The value of each dynamic feature is calculated by a
combining function, acquire” through knowledge engineering. 2 dynamic feature
of every hypothesis is its degree of belief — a function of the degrees of belief of
its evidence.

Focus The value of a focus feature is a set of nodes whose features satisfy a user-defined
predicate. Focus features are a subclass of dynamic features. In medicine, the
differential focus feature can be defined as the list of all triggered hypotheses that
are not confirmed or disconfirmed.

Feature values can belong to several data types, including integers, sets, normal
(one of an unordered set of possible values), ordinal (one of an ordered set of possible
values), boolean, and relational (e.g., isa).

Four operations are defined for features: one can set a feature value (e.g., as_ert
that the monetary cost of a test is high) get a feature value (e.g., ask for the cost of
a test), ask how to change a feature value, and ask what are the effects of changing a
feature value. Planners need answers to these kinds of questions to help them select
actions (see Section 5 for further examples.)




Data Types - _ V_Qg_x_gs»t.ions B
Feature || Number Set Ordinal Normal : Get Set How To Effect Of
static X X X X X
datum X X X X X X X
dynamic X X X X X
focus X X |

Figure 3.7: Capabilites By Feature Type

All combinations of feature type, value type, and operations are not possible. Figure
3.7 summarizes the legal combinations.

MU provides an interface for defining features. A full definition includes the fea-
ture type, value type, its range of values, and the domain of its combining functions.
For instance, the dynamic feature level of support is defined to have seven values on
an ordinal scale: disconfirmed, strongly-detracted, detracted, unknown, supported,
strongly-supported and confirmed. Figure 3.8 shows the definition of level of support.

Level-Of-Support
Feature-type: Dynamic
Value-Type: Ordinal

Value-restriction: (disconfirmed strongly-detracted detracted unknown
supported strongly-supported confirmed)

Combination-function-slot: local to each hypothesss

Value: the current level of support of the hypothesis

Figure 3.8: Definition of Level-Of-Support

Instances of this feature (and others) are associated with individual hypotheses,
each of which may have its own, local function for calculating level of support, and its
own, dynamic value for the feature!. For example, Figure 3.9 shows part of the frame
for the angina hypothesis, encompassing an instance of the level of support feature,
and showing a fragment of the function for calculating its value for angina.

Combining functions calculate values for dynamic features such as level of belief,
criticality, elapsed time, and so on. They serve two important functions: First, they
keep the state of MU’s inference network up-to-date; for example, when the result of

4Not all feature values are calculated locally, but, for reasons discussed in (Cohen, et al., 1987) and
(Cohen et al., MUM) levels of belief are.
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Angina
Feature-list: (level-of-support severity)
Current-level-of-support: strongly-supported

Combination-function:
IF value of ekg is ischemic-changes
THEN angina is confirmed
ELSEIF episode-incited-by contains exertion AND
risk-factors-for-angina are supported
THEN angina is strongly-supported . . .

Figure 3.9: Part of the Angina Frame With Local Combining Function

an EKG becomes available, the combining function for the angina node updates the
value of its level of support feature accordingly.

" Second, and perhaps more important from the standpoint of a planner, combining
functions provide a prospective view of the effects of actions; for example, the combining
function for angina can be interpreted prospectively to say that EKG can potentially
confirm angina. The same point holds for the combining functions for other features:
MU can prospectively assess the potential effects of actions on all dynamic features. A
planner can ask MU, “If EKG is negative, what changes?” and get back a list of all
the features of all data, clusters, and hypotheses that are in some way affected by the
value of EKG. The effects of actions are assessed in the context of MU’s current state
of knowledge (i.e., the state of its network). For example, if an EKG has been given
and its results were negati+ then MU knows that the answer to the previous question
is that nothing changes.

The syntax of combining functions is relatively unimportant provided they are
declarative, so MU’s question-answering interface can read them, and experts can eas-
ily specify and modify them. Currently, combining functions look like rules, but we are
experimenting with tabular and graphic forms (Cohen, Shafer and Shenoy, 1987).

The two major classes of combining functions are local and global. A local function
for a node such as angina refers only to the nodes in the inference network that are
directly connected to angina. In contrast, global functions survey the state of MU’s
entire inference network. Functions for focus features take a global perspective because
the value of a focus feature is the subset of nodes in the network whose features sat-
isfy some predicate. For example, Figure 3.10 illustrates the combining function for
the differential focus feature. Any node that represents a disease hypothesis, and is
triggered, but is neither confirmed nor disconfirmed is a member of the differential.

o
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Differential
feature-list: (focus-feature)
current-focus: (angina prinz-metal ulcer)

combining-function:
Set-of $node$ member-of disease Such-that
$node$ is triggered AND
level-of-support of $node$ is not confirmed AND
level-of-support of $node$ is not disconfirmed

Figure 3.10: Part of the Global Focus-Feature Differential

The knowledge engineer can define many focus features, each corresponding to a
class of nodes that a planner may want to monitor. Besides the differential, a planner
might maintain the set of critical hypotheses (e.g., all dangerous hypotheses that have
moderate support or better), or the set of hypotheses that have relatively high prior
probability, or the set of all supported clusters that potentially confirm a particular
hypothesis. MU supports set intersection, union, and sorting on the sets of nodes
maintained by focus features. A planner’s current focus of attention is represented in
terms of the results of these operations.

8 MU from the Knowledge Engineer’s Perspective

MU is a development environment for prospective reasoning systems. We began
our research on prospective reasoning when we were building a system, MUM, for
prospective diagnosis (Cohen et al, 1987), and realized that we lacked the knowledge
engineering tools to acquire and modify diagnostic strategies. An example will illustrate
the knowledge engineering issues in building MU:

MUM had several strategsic phases, each of which specified how to assess a focus of
attention and select an action. One phase, called tnitial assessment, directed MUM to
focus on triggered hypotheses one by one and take inexpensive actions that potentially
support each. This covered a wide range of situations, and maintained the efficiency of
diagnoses by focusing on low-cost evidence, but it made little sense for very dangerous
disease hypotheses. For these, diagnosticity — not cost — is the most important crite-
rion for selecting actions. Once the expert explained this, we should have immediately
added a new strategic phase, run the system, and iterated if its performance was incor-
rect. Unfortunately, control features such as criticality and diagnosticity did not have
declarative representations in MUM, were implemented in lisp, and could not easily be
composed from other control features. Operations such as sorting a list of critical hy-
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potheses by their level of support were also implemented in lisp. Each strategic phase
required a day or two to write and debug. From the standpoint of the expert, it was
an unacceptable delay.

The MUM project showed us that MU should facilitate acquisition of control fea-
tures, maintain their values efficiently, a~.d support a broad range of questions about
the state of the inference network. MU allows a planner to ask 6 classes of questions:

Questions about state are concerned with the current values of features. For ex-
ample:

Q1: “What is the current level of support for angina?”
Q2: “Is an ulcer dangerous?”
Q3: “What is the cost of performing an angiogram?”

Another class of questions is asked to find out how to achieve a goal. Examples of
questions about goals are:

Q4: “Given what I know now, which tests might confirm angina?”
Q5: “What are all of the tests that might have some bearing on heart disease?”

These questions help a planner identify relevant actions and select among them. Those
that pertain to levels of belief are answered by refering to the appropriate combining
functions and current levels of belief. For example, the answer to the question about
angina is “EKG,” if an EKG has not already been performed (Figure 3.9).

Questions about the effects of actions allow a planner to understand the ramifica-
tions of an action. For example,

Q6: “Which disease hypotheses are affected by performing an EKG?
Q7: “What are the possible results of an angiogram?”
Q8: “Does age have an effect on the criticality of colon cancer?”

MU answers these questions by traversing the relations between actions and nodes

“higher” in the inference network. For example, Q6 is answered by finding all the

nodes for which EKG provides evidence. The planner may ask either for the immediate

consequence of knowing EKG, or for the consequences to any desired depth of inference.
Focus questions help a planner establish focus of attention. For example:

Q9: “Give me all diseases that are triggered and dangerous.”
Q10: “What are all of the critical diseases for which I have no information?”

Q11: “Are any hypotheses confirmed?”
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Questions about multiple effects allow the planner to combine the previous ques-
tion types into more complex queries such as “What tests can discriminate between
angina and esophageal spasm?” In this case, the term discriminate is defined to mean
“simultaneously increase the level of belief in on-. disease and lower it in an other.”

Hypothetical questions allow the planner to identify dependencies among actions.
For example, one can ask, “Suppose the response to trial therapy is positive. Now,
could a stress test still have any bearing on my belief in angina?”

With the ability to define control features and answer such questions, we quickly
reimplemented MUM’s strategic phase planner. Most of the effort went into adding
declarative definitions of control features and their combining functions to MUM’s
medical inference network.

9 Conclusion

MU supports the construction of systems that have the characteristics of prospec-
tive reasoning identified in Section 2: Prospective reasoning involves answering the
question, “What shall I do next,” given uncertainty about the state of the world, the
effects of actions, tradeoffs between the costs and benefits of actions, and precondition
relations between actions. The six classes of questions, discussed above, help planners
to decide on courses of action despite uncertainty. Questions about state make uncer-
tainty about hypotheses explicit. Hypothetical questions and questions about effects
make uncertainty about the outcomes of actions explicit. Questions about goals and
multiple effects help a planner identify the tradeoffs between actions. And hypo-
thetical questions make dependencies between actions explicit.

We are currently extending MU'’s abilities in several ways. One project seeks to
automate the process of acquiring strategies. It attempts to infer strategies from cases,
asking the expert to supply new control features when the current set is insufficient to
represent the conditions under which strategies are appropriate. We are also building
an interface to help acquire combining functions. This task becomes confusing for
the expert and knowledge engineer alike when levels of belief must be specified for
combinations of many data. We discuss related work on the design of functions to
extrapolate from user-specified combining functions in (Cohen, Shafer and Shenoy,
1987). A third project is to implement sensitivity analysis in MU. The goal is to add a
seventh class of queries, of the form, “To which data and/or intermediate conclusions is
my current level of belief in a hypothesis most sensitive.” This will facilitate prospective
reasoning by giving the planner a dynamic picture not only of its belief in hypotheses,
but also in its confidence in these beliefs. With sensitivity analysis the prospective
reasoner will be able to find weak spots in its edifice of inferences and shore them up
(or let them collapse) before they become the basis of unwarranted conclusions.
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Chapter 4

Prospective Decision Making

1 Introduction

Making a decision is the process of accumulating and integrating evidence, selecting
an alternative, and perhaps acting on that selection. The first step is typically per-
formed by a decision analyst and a client in a relationship similar to that of a knowledge
engineer and an expert. It involves building a complete model of the decision. Simple
algorithms can then select an alternative that is optimal with respect to the model.
The model must provide a way to evaluate the worth of aiternatives, and thi. typically
involves constructing a search space of outcomes of the alternatives. If the model is
to faithfully represent the real world, then this space can be combinatorially large. By
Al standards, searching it is relatively inexpensive, but the cost of constructing the
space can be enormous. This is due to two related reasons. First, it is done by peo-
ple, not computers, and involves the same kind of ponderous, error-ridden interviewing
that characterizes the knowledge acquisition bottleneck in knowledge engineering. Sec-
ond, because constructing the decision is accomplished before selecting an alternative,
the selection process provides no guidance to the construction process and, worse, the
constructed model includes (at great expense) information that is not relevant to the
selection process.

This report presents an alternative approach called constructive decision making
that merges the construction and selection processes. It iteratively asks whether more
information could increase confidence in a decision and, if so, decides what information
is needed. It views decision-making as a transition through decision states, each of
which represents a decision supported by successively more evidence. Thus, the algo-
rithm can offer a decision at any time, with the proviso that more evidence might result
in a better decision.

Constructive decision making underlies a decision support system that incremen-
tally identifies the factors that influence a decision, and moves from states where al-
ternatives have weak support to states in which choices are more clear. This system,




called CDM, emphasizes the process of acquiring and structuring just the information
required for a decision. It characterizes the current state of the decision with respect to
strength of support for each alternative. If no alternative is clearly superior, it seeks in-
formation about factors of the decision that can discriminate the alternatives. It never
requests information that it does not need to develop the decision; that is, it never
asks for irrelevant information. The process of acquiring information about attributes
continues until a decision is forced or a clear choice emerges.

Since constructive decision making merges the processes of constructing a decision
and selecting an alternative, it is ideally suited to Al programs that must construct
decisions for themselves. This situation arises in domains where the relevance of factors
cannot be determined until run-time; that is, domains where decision analysts cannot
construct a combinatorial model of a decision ahead of time. For example, programs
with dynamic control structures must construct dozens or hundreds of control decisions
based on factors whose relevance changes in the course of problem-solving (HEARSAY,
MUM). Moreover, in real-time control problems, the constructive decision making ap-
proach can offer satisficing decisions that are the best possible given the time available
to collect and process evidence.

1.1 Why Not Just Rely on the Decision Sciences?

The development of decision theory was motivated by a desire to produce optimal
decisions in difficult or complex problems. Decision theory has become the theoretical
basis for most other work in decision making because it provides a consistent, rigorous
mathematical approach to representing decision problems under uncertainty so that
they can be examined (North 1968), and offers a definition of optimality that relies on
the state of knowledge (Luce and Raiffa, 1957).

Decision analysis provides a methodology of decision making based on decision
theory (von Holstein 1971). Decision analysts use formal procedures to solve decision
problems by balancing different factors of a decision (Howard 1966). It is a comprehen-
sive model of decisions that provides the ability to place a dollar value on uncertainty,
justify major decisions, and encode subjective information about risk aversion and un-
certainty (Howard 1966, Raiffa 1970).

However, decision analysis is an expensive, time consuming and painstaking pro-
cess. The analyst’s task is far from easy. Utility assessments force people to place a
monetary value on distinctly non-monetary outcomes such as environmental damage
or an education (Huward 1968). Probability assessments are never clear-cut and are
often difficult to obtain (Raiffa 1970). Moreover, before a decision can be analyzed, the
alternatives, and their outcomes, probabilities, and utilities must already be specified.
Decision analysis does not easily accommodate the notion of constructing decisions by
acquiring information only as needed.

The primary decision representation, a decision tree, becomes a “bushy mess” for
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problems involving more than a few alternatives (Raiffa 1970). Consequently, the repre-
sentation may be difficult to construct, manage and analyze for complicated problems.

Skilled decision analysts are able to reduce this complexity by narrowing the number
of distinct alternatives considered for each action (e.g. Henrion and Cooley 1987), but
this simply illustrates the need for further assistance in managing the complexity of
the task.

Decision support systems assist humans in solving unstructured problems by pro-
viding models and data (Ford 1985). Most standard decision support is model-based,
designed for specific areas, such as corporate planning, portfolio management, and mar-
keting, using mathematical models of decision making expertise (Wang and Courtney
1984). These systems assist decision making by providing previously described simu-
lations of possible repercussions of a decision selection in tightly constrained domains.
Consequently, model based decision support reduces the informational demands on the
user, but doesn’t describe how to build the representation or make the selection.

A few systems have been developed to assist the general task of making decision
selections. ARIADNE, Alternative Ranking Interactive Aid based on DomiNance struc-
tural information Elicitation, addresses the problem of eliciting from a user a dominance
structure for selecting from multiple criteria alternatives (Sage and White 1984). Leal
and Pearl describe a program that interacts with the user to construct decision trees
(Leal and Pearl 1977). GODDESS, a GOal-Directed DEcision Structuring System, pro-
duces a hierarchical goal representation of decision alternatives by selectively focusing
the user’s attention on the most crucial issues (Pearl et al. 1982).

Both these general-purpose systems focus on constructing a representation of the de-
cision that will facilitate selection. Once constructed, the evaluation should be straight-
forward. The traditional split between building and resolving decisions exists to ensure
optimal decisions. First, the decision is built, defining a search space. Then, it is
exhaustively searched, ensuring the best decision.

Many decisions must be made in dynamic situations by intelligent programs with-
out human intervention. In these cases, the program must define the decision by itself.
Because we wish to avoid combinatorial search spaces and promote real-time prob-
lem solving, the current two-step build-and-resolve view of decision making must be
replaced by a dynamic, constructive algorithm. This algorithm must:

1. not hold up processing while waiting for evidence

2. not consume resources building a combinatorial model that must be searched
exhaustively

3. provide the ‘best’ decision at any point in processing, but in supporting this
capability will sacrifice the goal of optimality

4. work even when the alternatives and attributes are not known or specified a
priori, but emerge in the course of decision making.
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These capabilities are beyond those supported by traditional decision science. The
decision process must respond to a dynamic environment in which precise information
is not always available and conclusions may be drawn with varying confidence in less
time. Consequently, dynamic planning is predicated on qualitative assessments with
graceful degradation of the decision process under conditions of less available data and
time.

1.2 How Do People Decide?

Humans have the decision making capabilities that we would like to include in our
intelligent programs. Kahneman and Tversky and many of their collegues (Kahneman,
Slovic and Tversky 1982, Payne 1982) performed experiments to investigate these ca-
pabilities. They observed that because people have limited processing capabilities they
tend to rely on heuristics to assess probabilities and predict outcomes and that these
heuristics sometimes lead to difficulties.

These heuristic strategies often result in satisficing in which global rationality (op-
timizing) is replaced by a definition that is more compatible with human capabilities
(Simon 1981). Satisficing bypasses some of the difficulties of evaluating utility and
comparing incommensurable attributes and limits the amount of search which needs
to be done (Coombs, Dawes and Tversky 1970).

A technique for further investigating human decision making heuristics is protocol
studies of people making complex decisions.

e Analysis of four senior auditors analyzing an audit case showed that in the course
of the decision process, the decision making operations of structuring, search and
analysis was intermixed, and that evaluative criteria emerged as the decision
progressed. (Biggs and Mock 1983)

e Payne, Braunstein and Carroll (Payne 1978) found that subjects eliminate alter-
natives by deleting any whose attributes don’t equal a criterion value and compare
pairwise the remaining alternatives.

e In protocol studies of people selecting a house, Ola Svenson (1979) found that
attributes varied across subjects and became more specific and detailed as the
decision process progressed. Additionally, new attributes tend to emerge in the
course of making the decision.

e Bettman and Jacoby found that subjects used a strategy called “choice by feed-
back processing” in which they alternated between considering alternatives with
respect to attributes and attributes with respect to alternatives (Svenson 1979).

The most compelling facets of these studies are that people successfully use heuris-
tics, often tailored to pairwise comparisons, to reduce the computational requirements
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of complex decision tasks and that decision making is a constructive process that selec-
tively includes, analyzes and discards information as it becomes more or less relevant to
the task. Consequently, if we wish to reduce the combinatorial search space of decisions
and produce real-time decision making behavior, these heuristic methods provide some
suggestions of how to do so.

2 Constructive Decision Making

The development of constructive decision making (CDM) was motivated by the need
for intelligent programs to define and evaluate decisions autonomously. By relying on
a model that contains aspects of human decision making, it addresses some of the
problems in decision analysis.

The research presented here focuses on these problems: comparing incomparable
attributes and constructing the solution to a decision problem. Comparing incompa-
rable attributes refers to the problem of collapsing all relevant factors of a decision
into a single measure, as in utility theory and more so in probability. Mapping all
factors onto a single scale is difficult to do when no scale is obvious or the factors do
not obviously fit the scale, and is difficult to interpret because possible uncertainty
has been factored out. Constructive decision making is qualitative; it emphasizes dif-
ferences over absolute judgments, and does not collapse all factors to a single scale.
The approach is constructive because all necessary information may not be available
initially, and in fact, may not all be needed. The remainder of this report will describe
this methodology for solving two alternative, multiple attribute decision problems.

2.1 Decision Typology

The core of constructive decision making is the decision typology. The typology
characterizes decision situations using domain independent dimensions, guides the col-
lection of support and provides the best possible decision given available evidence when
there is some distinction between the alternatives. The goals of decision making as per-
formed by the typology are:

e to select an alternative that seems reasonable given the available information

e to reduce uncertainty in the selection of the alternative by collecting evidence to
support it or refute it.

We developed the typology to model the process of making decisions based on in-
comparable attributes. We call problems of this type apples and oranges problems.
When you compare apples and oranges in a grocery store you may find one fruit pre-
ferred on the basis of flavor and the other on the basis of quality. If you could combine
the attributes to compare the alternatives on a single, composite attribute, then the
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choice is often clear. But if, as in this case, flavor and quality are not easily combined,
then the choice between apples and oranges is problematic. The description of the
typology will refer back to this example.

Decision States

We begin the discussion with simple 2-alternative, 2-attribute problems typified by
the apples and oranges problem. Decision alternatives are compared on their salient
attributes.! A decision state in our model is a concise statement of the current com-
bination of salient attributes, including how well the alternatives are distinguished on
the available attributes and how important those attributes are. We identified five
dimensions that describe decision states.

The dimensions in the decision typology are abstracted from the decision situation
and are used to reason about the state of the decision. Decision problems between two
alternatives can be characterized along four dimensions:

¢ significant difference

o conflict
e order
e greater-than.

Significant difference with respect to an attribute indicates whether the
values of the attribute for the two alternatives are distinct. Assuming that the values
of all the other attributes for the two alternatives are equal, can a decision be made
based only on this attribute? This dimension determines whether the difference between
two alternatives is significant enough to support a decision, which effectively avoids the
issue of exactly what value each alternative has or what distribution of values can be
expected and how much difference is required to be significant. The formal definition?
used in the typology is:

y_ J 1 if Ailp] and Ailq] are distinct
SdiAl = { 0 otherwise

Otherwise indicates no significant difference or that we lack evidence to tell whether
there is a significant difference.

!'Throughout this report “attribute” is used loosely to refer to features of alternatives that are salient
to the task of selecting the best alternative. This definition is vague enough to accommodate oxtcomes,
goals or charactersstics. The distinction will be refined in Section 2.1.

3In the descriptions that follow, alternatives are referred to as p and ¢, attributes as A, and 4,, and
values of attributes for specific alternatives as A,|p]. The symbols > and < indicates preference between
two values, and > and < have their normal meanings.
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A conflict exists when the two attributes support different alternatives, that is, we
have conflicting evidence. Formally, this is described as:

1 if Ailp|>Ai{q] and A,[p|< A;(q] or
ClA;, A;] = if Ai[p|<A.[q] and A;[p]> A/[q]
0 otherwise

Importance indicates whether one attribute is considered more influential than the
other. Once again we have avoided the issue of why we believe this. It may be because
the attribute itself is more important, independent of the values of the alternatives
on the attribute, or that the values of the alternatives are so radically different on a
particular attribute that it is more discriminating that the others.

0 if importance(A;) = importance(A4;)
if relative importance is unknown

1 if importance(A,) > importance(A;)
or importance(A;) < importance(A;)

I{A;, Aj] =

Greater_than is simply an extension of Importance to indicate which attribute is
more important if, in fact, one is.

S|Ai, Ay = { 0 or importance(A;) < importance(A;)

v 1 if importance(A;) > importance(A;)

These four dimensions are the basis of the five that describe a decision state. Sincea
decision state describes a comparison between alternatives on two attributes, the state
description includes the significant difference evaluation on two attributes, A; and A;,
not just one as shown in the definitions.

These dimensions can be illustrated in the context of the problem of selecting fruit:
p is apples, ¢ is oranges, A, is quality and A; is flavor. If the quality of apples is
“good” and the quality of oranges is “poor,” then Sdjquality] = 1 because good and
poor are distinct values. Similarly, if one prefers the flavor of oranges to that of ap-
ples then Sd|flavor] = 1. Since apples have better quality but oranges taste better,
C|quality, flavor] = 1. Finally, if quality is preferred to taste I|qualsty, flavor]| = 1
and >[quality, flavor]| = 1. These dimension values can be put together to form a
vector descriptor of the state of the decision represented as |1, 1, 1, 1, 1].

Actions

The purpose of the characterization of the decision on these dimensions is to rea-
son about how to develop the decision dynamically. Decision making is viewed as an
constructive process. Five general actions apply in the multi-attribute, two-alternative
model to help construct a decision:




decision

transformation by attribute

transformation by importance

substitution

combination

" Decision means selecting an alternative based on available evidence. For example,
if importance distinguishes two attributes (I[A;, 4;] = 1), then the alternative favored
by the more important attribute is the decision. A decision can always be made, but
with varying confidence. If you wish to increase confidence, another action should be
performed instead.

The actior transformation by attribute (abbreviated Ta) seeks to transform
the current decision state by gathering information about one of the attributes. If the
current information about an attribute is uncertain or unknown, this action attempts to
resolve that uncertainty. The intent of a transformation is to change one decision state
into another, hopefully more facilitative state. However, the desired transformation to
a better state may not be possible; the actual transformation depends on the evidence
obtained. For example, we may gather evidence about A; with the hope of getting
additional support for the currently favored alternative (supported by information we
already have about A4;), but if the evidence, when obtained, indicates that A, and A,
actually support different alternatives, then we end up in a state with a conflict.

The action transformation by importance (Ti) is like transformation by at-
tribute but involves obtaining importance information.

We may wish to include other attributes. Two actions, substitution and combina-
tion, add new attributes. When one of the two existing attributes doesn’t provide a
significant difference, a new attribute may be substituted (Su) for it by discarding
the existing insignificant attribute and replacing it with a new one.

Alternatively, we could combine (Co) the new attribute with the existing ones by
taking advantage of the fact that there are only two alternatives. Since an attribute
may only support one or the other of the alternatives, the attributes may be clustered
together according to whick alternative they support. Clustering is the key to extending
a basic two-alternative, two-attribute representation to two-alternative, N-attribute
representation, and finally to an M-alternative, N-attribute representation, because it
permits complex decision situations to be constructed iteratively within the framework
of the decision typology.

These actions describe the state transitions that gather information and judgments
about a decision and structure them such that the selection of an alternative becomes
relatively obvious.
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Typology

Considering all the possible combinations of the values of the five dimensions and
pruning out isomorphic states (isomorphic with respect to the actions that may be
taken) produces 23 basic states. Basic states have no clustered attributes.

The 23 states can be arranged in a table (Figure 4.1). The illustrative apples and
oranges problem discussed earlier is state 23 in this table. In English, state 23 says:

For p=apples and q=oranges, the strength of evidence for quality, A;[p] and
A,q), is sufficient to claim that the difference supports a choice between p
and q. The strength of evidence for flavor, A,[p| and A,|q], is sufficient
to claim that the difference supports a choice between p and q. There is
a conflict between p and q on A; and A;, and the attribute A; is more
important than A;.

Isomorphic states have been pruned out of the table. A full table would include
40 states. From the perspective of how a decision-maker acts, the 40 decision states
contain some redundancies. Consider these states:

State 18a: S|A;] = 1, S[4;] =0, C[A;, 4] = 1, AiSA;
State 18: S[A.'l =0, SlA,] =1, CIA.', A,'] =1, A,-5A.-

In English, this state means

“The dimension for which your evidence supports a decision is the most
important dimension.”

The states are identical in the sense that a decision-maker would not act differently in
response to them. Consequently, the two states are represented only by state 18 in the
table.

Once the state of a decision has been identified, the table can be used to look up
the set of possible actions. Figure 4.1 shows the appropriate actions for each state.
The actions are divided into two rows. The first shows the actions for states with
complete evidence. The second describes actions to be performed when some of the
state information is missing.

Each of the actions has well-defined transitions determined by the new information
that they gather. Transformation is an appropriate action for any decision state with
0 in either of its first two rows or ? in its fourth. Substitution is appropriate when two
alternatives are not differentiated on an attribute (Sd[A;] = 0); since the attribute does
not distinguish the alternatives, it should be replaced with one that does. Combination
is appropriate anytime the decision is uncertain and more evidence should be gathered.
This is typified most by states in which attributes support different alternatives (there
is conflict) and attributes have equal importance. The most appropriate actions (not
all the possible actions) for a given state are listed in the table with numbers that
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State # 0 1 .2 3 4 5 6 7
Sd| A, 0 1 1 0 1 1 0 0
Sd[A; 0 0 ' 1 0 0 1 0 1
ClA;, A;] b0 o . 0 1 1 1 0 0
a4l 1 7 por r o0 0
R ") N I T S M A
JAlT Co [ S« | [ = |SuCoi Co  Co = Su
Actions ~I£f9_4____p‘ 1 D ' D | D : Db D |
Part | Ta 0,1,4 | Ta 1,5,8 | Ta34,5| Ta 2,4 i Ta6, TalT,
Info | Ti6, | Ti7, |[Ti58| Ti9, |Tilo, | Till, K 7,10 8,11
12,20 13,14 t 21 16,22 | 17,18 | 19,23
State # | 8 9 ] 10 11 12 13 14 15
Sd|A; 1 0 T 1 1 0 1 0 1
Sd[A,] 1 0 0 1 0 0 1 1
ClAp4] o) 1 | 1 |11 o 1 0 0 0
1[4, Aj] 0 o ¢ o (o4 » { 1 1 1
'S[A}TA;L"“—T'"“ L o * 1o 0o 0 0
All | Co Su ] Su Co Co Su [ Su Co
Actions | Info | D Co . Co Su D + Co D
Part | Ta 9,10,7 { Ta 10,11,8 Ta 12,13, | Ta 13,15, | Ta 14,15,
e Info | b 1401718 ) 17,19 ,‘,_,‘__18_'19
State # 16 17 | 18 19, 20 21| 22 |23
Sd|A; 0 1 o 1T o 1 0 1
Sd[A; 0 0 1 1 0 1 0 1
ClA;, A, 1 1 1 1 0 0 1 1
I[A;, A; 1 1 1 1 1 1 1 1]
>‘A.‘, A,'] 0 0 | 0 0} ; 1 1 1
All Co Su Su Co i Co Co Co Co
Actions | Info Su Co Co Su D Su
[ Part | Ta 16,17, | Ta 17,19, | Ta 18,19, " Ta 20,13, Ta 22,13,
Info | 13,14,18 15 15 . 14,17,18 14.17.18

Figure 4.1: Basic Decision Typology with states and actions
State numbers appear at the top of each column. For each state, the columns con-
tain the values for the five dimensions followed by the actions that seemed the most
reasonable. The actions are partitioned according to whether all the information has
been acquired for the dimensions. For example, if only partial information has been
acquired, then transformations are better. The numbers following some of the actions
refer to the state transitions that may occur if that action is taken.
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indicate the set of possible destinations if the actions is performed. Note, as mentioned
earlier, it is not possible to say exactly which of these states will arise until after the
action is performed.

Effect of Actions on Decision State

Adding a new attribute via substitution and combination potentially affects every
cell in a decision state, that is, each value Sd[4,], Sd[4;], C[A:, 4,], I[A;, A,], and
>|Ai, Aj]. In combination with a new attribute, a previously insignificant single at-
tribute may form part of & significant cluster (e.g., Sd[A,] = 0 but Sd{A;&An.o] = 1).
C[A,, A;] may change if the new attribute produces a conflict, and I[A;, A,| and
>[A,, Aj] change simply by clustering attributes. Within the framework of our ty-
pology, the effects of adding a new attribute are:

1. to introduce a conflict where there was none
2. to take a side in a conflict

" 3. to join the consensus (ClAi&A;, Anew] = 0) but lend it legitimacy since Sd|Apee| =
1

4. to introduce an ordering where there was none
(e.g. 1|Ai, Aj| = O but I{A;, (A;&Aq.0)] = 1)

5. to change an ordering (e.g., >[A;, A;] = 1 but
5[ As, (A;&Anes)] = O

Figure 4.2 shows all the possible actions and their cffects for a single state in the
typology, state 4. In this example, there is enough of a difference to support a decision
on A,, but not A;, and the evidence of the two attributes is contradictory. Four ac-
tions are appropriate: transformation by attribute (the 0 value for Sd[A;] may indicate
insufficient evidence), transformation by importance, substitution (for A;), and com-
bination. Note that it is possible to return to the same state, state 4, but by different
paths. Substituting A; or combining attributes transforms state 4 to state 5. But note
that when state 5 was reached by combining attributes, one of them, A; or A;, actually
represents the evidence of two attributes and so supports a decision more strongly.

Expanding the Definition of Attribute As presented in the typology, attributes
refer to features of alternatives that are salient to the task of selecting the best alter-
native. This definition accommodates outcomes, goals or characteristics. Because each
affects the decision differently and because we would like to be able to reason about the
interaction of goals, the model has been extended to account f~- these separate types
of attributes and how they interact.
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Figure 4.2: Single Transition with Multiple Attributes
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Goal is the desired result (outcome) of a decision along a particular attribute.

Attribute is the actual result or repercussion of a decision, e.g., when you purchase
a car, one result may be gas mileage, another may be reliability.

Expected outcomes are the expected results, with respect to a goal, of making a
particular decision.

Characteristics are the actual attributes of the decision alternatives that contribute
to the performance of those alternatives on each of the goals.

As an example, imagine the decision being between two cars, a Porsche 928 and a
Nissan Maxima. Two of my goals in selecting a car may be fast acceleration and great
gas mileage. Given the two choices, the actual attributes of the decision might be fast
acceleration for the Porsche and reasonable gas mileage for the Nissan. The expected
outcomes are that the Porsche will be better on acceleration and the Nissan will be
better on gas mileage. A characteristic of the car that is related to both attributes is
engine size. So, the smaller engine size of the Nissan gives it better gas mileage, but
slower acceleration. Knowing that a characteristic supports one goal and detracts from
another allows us to recognize a trade-off and attempt to seek other evidence that will
distill its effect.
To summarize, these four are related in the following way:

o A decssion has many attributes.

o These attributes provide evidential support (by clustering as described earlier) to
one of the two alternatives.

o A goal is a desired outcome along a particular attribute.
e Desired outcomes may be compared to ezpected outcomes on each attribute.

e An ezpected outcome for each alternative is a function of some subset of the set of
characteristics. So expected outcomes form clusters of characteristics that lend
support to the claim that a particular alternative performs better on a particular
goal.

As can be inferred from their relationships described above, the four terms form a
hierarchy (see Figure 4.3).

3 How Does it Work? Program Implementation

A decision support system has been built based on the typology (Howe 1986b). It
asks the user general questions about his/her decision, constructs a representation (as

102




Altl-cluster

Decision

Alt2-cluster

/

AttributeN-M
(goalN-M )

AttributeN
(&calN)

Attributel AttributeM
(aodl) (&oalM)
EO-Altl EO-Alt2 EO-Alt1 EO-Alt2

BEXE

FIGURE 4.3

103




Decision Construction Control

[ 1

Finite Select Question Decision
Automaton Actions Asking Representation
Figure 4.4:

104




described in the last section), and ultimately suggests an alternative as a decision. The
possible actions and possible decisions, along with reasons, for each state are suggested
by the typology.

A CDM based decision support system requires four parts: a finite automaton to
control state transitions, rules for selecting actions at each decision state, a question-
asking interface, and an internal decision representation. These parts interact via a
controlling program as shown in Figure 4.4. With respect to implementing the typology,
the last two modules, question-asking and internal representation, are fairly simple.
The primary role of the question-asking module is to translate the actions to a form
that the user can understand - direct questions that request the necessary information.
This is implemented simply by mapping the actions to pre-determined questions. The
internal decision representation forms the database for the decision information as it
is gathered and provides routines to print and explain the decision being constructed.
The first two modules implement the decision typology, and are described below.

3.1 Finite Automaton

The decision typology is represented as a finite automaton in which the states are
the decision states described earlier and the arcs are labeled with the decision actions.
The finite automaton module translates the dimensions of the typology into a state
representation, determines the applicable actions and transitions for the state, and
creates new states, as necessary.

Performing an action causes a state transition. The program determines what
actions are applicable and predicts their possible resuits. For example, if we start frcm
state 4 as in Figure 4.2, the applicable actions are Su, Co, Ta, and To. These actio. s
may result in states 2, 4, 5, 10, 17, and 18. The set of applicable actions for a give.:
state are determined by following all applicable rules presented in Figure 4.5.

Each action has a set of rules for determining the possible changes to the dimen-
sions and so the possible destination states. For transformation by attribute (Ta),
getting attribute information causes the dimension Sd and possibly the dimension C to
change. In transformation by importance (Ti), new states include changes to Impor-
tance and >. Because most of the dimensions are determined relative to the attributes,
performing a substitution changes Sd of the attribute being substituted, C, I and >.
Combination actions conceivably change every dimension (in particular ways) because
the new attribute gets combined with the existing ones.

Decisions can be made, if necessary, by accumulating supportive evidence. This
evidence is gathered from the following rules which propose a selection and explain
why.

1. If A; has Sd=1 and A, has Sd=0, then one can decide based on A,.
2. if Aj has Sd=1 and A, has Sd=0, then one can decide based on A,.
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[ 1. If the information about an attribute is unknown or uncertain (e.g., Sd=0),
then suggest Transformation by Attribute.

| 2. If the relative importance of the attributes is unknown (e.g., I=7), then suggest
Transformation by Importance.

3. If an attribute doesn’t provide adenuate support (e.g., Sd=0), then suggest
Substitution.

4. If both attributes provide significant, corroborating evidence (e.g.,
Sd(A;)=Sd(A,)=1 and C(A,, A,)=0), then suggest Decision.

with the other attribute and it is considered to be more important (e.g.,
Sd(A;)=1, C(A,, A;)=0, and >(A,, A;)=1), then suggest Decision.

6. Suggest Combination anytime.

|
|
! 5. If at least one attribute provides significant evidence which doesn’t conflict

Figure 4.5: Rules for determining possible actions

3. If there is no conflict, then one can decide based on A;.
4. If A; is more important than A;, then one can decide based on A;.

5. If A, is more important than A;, then one can decide based on A;.

3.2 Action Selection

Once we know what the possible actions are, we must select one. The Action
Selection module’s function is to select exactly which action should be implemented in
a given situation.

Ideally, selecting the action should rely on domain dependent information or strate-
gies promoted by the user. For example, a possible action may be to transform by
attribute. In most cases, this would be the preferred action because it provides the
most evidence; however, if it is expensive to get that information, then it may be
preferable to do something else. The current implementation does not include domain
dependent information but relies instead on a simple, heuristic, though possibly ad hoc
ordering. Sometime later, this ordering could be replaced or superseded by a rule base
and interpreter or some other general representation of domain information.

To augment the simple ordering scheme, the program does some rudimentary rea-
soning about the possible destinations of an action. At least one of the possible desti-
nations must be a state in which a decision can be made, hence a change for the better.
Otherwise some other action will be performed.
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3.3 Construction Control

The construction control module controls the other modules and governs their in-
teraction. It determines the possible actions given the current state, selects the most
appropriate, takes the action by asking the user questions, determines when its appro-
priate to finish, updates the representation and allows the user to examine the evolving
decision. Most of this simply involves calls to modules already described. However,
because it forms the interface between the representation and the user, interpretation
of the users responses and requests is crucial to determining when all the applicable
information has been accumulated.

3.4 Results

The first version of the CDM program has been tested by several people. The user
is presented with a decision and some facts about it. They were to use the system to
make a decision between two alternatives. The following transcript is an annotated
version of one of those sessions. The user was asked to select between two houses
described in a real estate advertisement.

The following is a portion of a transcript of a decision making session using the decision
typology. The system’s responses are in typewriter font, the user's responses are in
roman font, and annotations are in stalics font for ease of identification. Portions that
have been omitted without an explanation are indicated by vertical ellipsis. After every
system action, the user may view parts of the growing representation. This option is
presented after every action in a menu. Often that section of the transcript has been
omitted to save space.

Lisp> (construct-decision)

Welcome to Version 1.0 of the Constructive Decision Support System.

The purpose of this program is to help you make a decision by asking you
questions about the alternatives, keeping track of your answers, and
trying to focus on the salient aspects of it. The system builds a sort
of pro/con representation to help explain why one alternative seems best.

The current version has a few restrictions:
- the decision involves exactly two alternatives
- all goals require at least two characteristics
- once the program has selected an alternative, you can’'t override it

The program will ask you to evaluate characteristics and goals of your
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decision. In answering these questions, you should consider ONLY the
feature that you're being asked about. Don’'t evaluate the features with the
effects of others in mind. Try to select the features and think of thea
independently of one another.

Finally, the program will ask you questions that refer to alternatives,
goals, characteristics, values and importance.

Would you like an explanation of these terms? y

At this point, the program gives definitions of the basic termas: alterna-
tives, goals, characteristics, values, and importance as they are described in
the paper.

Please give a short text description of the decision problem:
(empty line to end] buying a d.h.jones house

What is the name of the first alternative? [one word) charming.cape
What is the name of the second alternative? [one word] castle
What is a goal of this decision? [one word] commute
What is another goal of this decision? [one word) privacy
What is a characteristic that affects the performance of the
goal Commute? ([one word) distance
What is another characteristic that affects the performance
of the goal Commute? [one word] roads

Do you have information on the values of the alternatives on
the feature, Roads? [y or n)y
What is the value of Charming Cape for characteristic Roads? fair
What is the value of Castle for characteristic Roads? good
What is the best value that they can have? excellent
Is the difference between Charming.Cape and Castle
significant on characteristic Roads? yes
Which alternative performs better on roads?
(CHARMING.CAPE = 1 & CASTLE = 2, O = neither) 2

To examine all or part of the decision being constructed,
select one of the following options:
1 Print the decision tree
2 Print a goal tree
3 Explain the current state
4 Break to lisp temporarily [type (continue) to return when tinished]
6 continue with the program

which one? |
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The user has entered the basic information needed to start the system.
The program used this information to build the tree displayed above by the
user.

Do you have information on the values of the alternatives on
the feature, Distance? (y or nly
What is the value of Charming.Cape for characteristic Distance? half_hour
What is the value of Castle for characteristic Distance? half_hour
What is the best value that they can have? 10.mins

The system just performed a transformation by feature. It had no infor-
mation about the feature, Distance, and so asked the user. In the section
of the transcript that has been omsitted here, the system performed a tran-
Jormation by order to determine which feature, Distance or Roads, is more
stmportant. Action selection i1s performed conservatively. Importance in-
formation is requested because it provides evidence used to distinguish the
currently available characteristics should st happen that they are the only
ones avaslable. If other characteristics get included, the importance mea-
sure usually gets disregarded.

At this point, this system cvaluates the avaslable information (note: it
now has ‘complete’ information about the characteristics it started with)
with respect to making a decision and tdentifies a gap in the evidence: the
DISTANCE characteristic doesn't really contribute any evidence to support
esther alternative.

One of the features doesn’'t contribute any evidence to the decision.
Is there another characteristic that is significant to the goal,.
COMMUTE? yes
What is its name? miles
Do you have information on the values of the alternatives on
the feature, Miles? [y or nly
What is the value of Charming.Cape for characteristic Miles? 10
What is the value of Castle for characteristic Miles? 20
What is the best value that they can have? §
Is the difference between Charming Cape and Castle
significant on characteristic Miles? yes
Which alternative performs better on miles?
(CHARMING CAPE = { & CASTLE = 2, O = neither] 1
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The program subststuted the new charactersistic, MILES, for the insignif-
scant characteristic, DISTANCE. The new state that resulted from the sub-
stitution 138 tn some ways less certain than the previous state. The old state
permitted a choice because the only significant evidence supported alterna-
tive 2. Now however, one characteristic supports alternative € and the other
supports alternative 1; so there is conflict that must be resolved.

Is one of the characteristics, (Miles) and (Roads).
more important than the other, with respect to COMMUTE? n

In an effort to resolve the conflict, the program requested smportance
information. In this case, there 1s no resolution based on smportance.

Is there another characteristic that is significant to the goal,
COMMUTE? y
What is its name? snow-route

A In the omitted transcript, the program requested ezplicit information

- about the characteristic SNOW-ROUTE for the goal COMMUTE. Charm-

ing_Cape was on a snow route and the other wasn’t. So Sd=1 and Charm-
ing_Cape ss favored.

The characteristic, Snow-Route, is being combined with
the other characteristics, Miles.
Do they together produce a significant difference? [y, nor 7]y

Is one of the characteristics, (Miles Snow-Route) and (Roads),
more important than the other, with respect to COMMUTE? y
Which is more important? (0 = (ROADS), i1 = (MILES SNOW-ROUTE)] 1

Again following a conservative strategy, the program first requests sm-
portance information, as a fallback, and then checks to make sure that there
1sn’t any other cvidence.

Since there 18 no more evidence, the goal, COMMUTE, s evaluated based
on the avaslable snformation and the program suggests a conclusion.

Is there another characteristic that is significant to the goal,
COMMUTE? n
Given the set of characteristics, alternative Charming Cape performs better

on goal COMMUTE than does CASTLE.
Is that an acceptable conclusion? (y. n, ?) y
Is the difference between the two alternatives significant on this goal?

y
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To examine all or part of the decision being constructed.
select one of the following options:
1 Print the decision tree
2 Print a goal tree
3 Explain the current state
4 Break to lisp temporarily [type (continue) to return when finished)
5 continue with the program

which one? 2

Which goal would you like to see?
1 COMMUTE
goal: 1

Neme:
A1_value:
A2_vsive:
Target_valse:

Preferred_alt
Sa¢:
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To examine something else, select one of the following options:

Print the decision tree

Print a goal tree

Explain the current state

Break to lisp temporarily [type (continue) to return when finished)
continue with the program

oS W -

which one? 3

The current configuration for the decision is (1, 0, 0, 7, *].

The decision can be described as buying a 4. h. jones house.
Alternative 1 is called Charming_Cape. Alternative 2 is called Castle.
All evidence supports the same conclusion. The importance ordering for
the two clusters is unknown currently.

With the goal COMMUTE expanded, the other goal, PRIVACY, needs
to be worked on. The program ezpands it in much the same way as COM-
MUTE. The user provides charactersstics: prozsmity-to-highway and lot-
size. The difference between the alternatives on LOT-SIZE is not signifi-
cant.

One of the features doesn’'t contribute any evidence to the decision.

Is there another characteristic that is significant to the goal,
PRIVACY? n

Given the set of characteristics, alternative Charming.Cape performs better

on goal PRIVACY than does CASTLE.
Is that an acceptable conclusion? (y, n, 7} y

Is the difference between the two alternatives significant on this goal?
n

Now two goals have been expanded. Both COMMUTE and PRIVACY
support alternative 1. COMMUTE is significant, but PRIVACY isntt.

One of the goals doesn’'t contribute any evidence to the decision.
Is there another goal that is significant to the decision? y
What is its name? pretty_house

The user is asked questions about the goal PRETTY.HOUSE. Its char-
acteristics, EXTERIOR and HARDWOOD_FLOORS, support alternative
1. Its characteristic, FIREPLACE, supports alternative 2. The pair of
characteristics are more important than the single one.
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Is there another characteristic that is significant to the goal,
PRETTY_HOUSE? n
Given the set of characteristics, alternative Charming Cape performs better

on goal PRETTY HOUSE than does CASTLE.
Is that an acceptable conclusion? (y, n, ?] ?

The best decision seems to be Charming_Cape, alternative 1.

The features which support alternative 1 are preferred by importance ordering.
The current configuration for the decision is (1, 0, 0, 7, s).

The current configuration for the goal PRETTY_HOUSE is (i, &, 1, 1, 1].

The goal PRETTY_HOUSE has the following values. There doesn’'t seem to
be a significant difference between the two alternatives on
PRETTY_HOUSE. The currently available evidence is conflicting - there
is some support for each alternative. The evidence in cluster i is more
important than that in cluster 2.
The following characteristics support alternative 1:

exterior (significant), hardwood_floors (significant).

The following characteristics support alternative 2:
fireplace (significant).

Is Cherming Cape an acceptable conclusion? y
Is the difference between the two alternatives significant on this goal?

y

PRETTV_HOUSE gets substituted for PRIVACY. The program regquests
tmportance information and is told that PRETTY_HOUSE is more smpor-
tant than COMMUTE.

Another goal, SIZE, is added to the set. It has charactersstics, BED-
ROOMS, BATHS, and GARAGE, supports alternative 2, and is significant.
COMMUTE and PRETTY_HOUSE form a more important cluster.

Is there another goal that is significant to the decision? n

You can make a decision given the evidence that has been accumulated.
The favored alternative is CHARMING_CAPE.
Is that an acceptable selection? (y, n, 7] ?
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The best decision seems to be CHARMING_CAPE, alternative 1.

The features which support alternative 1 are preferred by importance ordering.

The current configuration for the decision is (1, 1, 1, 1, O).

The decision can be described as buying a d. h. jones house.
Alternative 1 is called Charming_Cape. Alternative 2 is called Castle.
The currently available evidence is conflicting - there is some support
for each alternative. The evidence in cluster 1 is more important than
that in cluster 2.
Alternative 1 is supported by goals: commute (significant),

privacy (insignificant), pretty_house (significant).
Alternative 2 is supported by goals:

size (significant).

Is CHARMING_CAPE an acceptable selection? y
“Decision construction completed”

Since there are no more goals, the program recommends an alternative
as the decision and gives the user an opportunity to review the evidence
supporting st. If it is acceptable, the process ends. Otherunse, the program
tries with the user’s help to revise the decision.

Because the emphasis was placed on the style of reasoning, rather than the user
interface, the interaction is a bit rough. Future versions of the program will include an
improved interface with better explanations and some form of sensitivity analysis for
allowing the user to consider the repercussions of uncertain judgments. Additionally,
as the mechanism is enhanced to include multiple alternatives, the conflict resolution
between actions will become correspondingly more sophisticated.

4 "How Far Have We Come and What Is Left

The focus of this report is the model of constructive decision making. A decision-
maker starts with a two-alternative, two-attribute problem, then acquires information,
and perhaps adds attributes and other alternatives, under the guidance of actions asso-
ciated with decision types. Each decision situation is first classified, then modified by
one of the associated actions to make it more tractable. As the information is accumu-
lated, the decision is constructed as a collection of support for one of the alternatives.

CDM contrasts sharply with the more static decision theoretic models. A summary
of the differences appears in Figure 4.6%. The goal of decision theory is to find optimal

*This table was produced with help from Tammy Tengs, a member of the department of Operations
Research at UMass.
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Decision Theory

Decision Typology

- Goal

optimizing satisficing
Algorithm combines evidence | gathers evidence
Evaluation static dynamic
# of alternatives many 2
Comparison scales single multiple
Informational
| burden on user reductionistic holistic
k consistency | __required ignored
. Ignorance of assume some disregarded or
. attribute values | _distribution |  deferred _
» Ignorance of assume disregarded or
: attribute importance equality deferred
' measurable
sufficient
. Requirements on minimal none
attributes non-overlapping

important &

" utility theory explicit not explicit
. numeric/symbolic |  probabilities reasons
cost of evidence included included
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solutions. In CDM, salisficing is preferred so that the search space will be manage-
able. CDM is dynamic because the algorithm gathers evidence as the decision evolves.
Evidence is not combined on a single scale, but rather is compared as collections of
support. CDM manages uncertainty and ignorance by gathering available information
as supportive evidence at the most opportune time.

The method circumvents mapping attributes to a uniform scale by abstracting their
difference according to whether or not the attributes provide support to a decision.
However, this advantage comes at a cost. As implemented in the decision support sys-
tem, the decision typology places the burden of assessment on the user. In the ty pology,
the user is required to make qualitative assessments of combinations of support as the
attributes are included in the evolving decision.

Yet, integrating the assessments into the construction process is integral to mak-
ing dynamic control decisions in Al programs. CDM provides this integration and a
satisficing strategy that permits faster decisions if the domain requires quicker response.

Constructive decision making has not yet been included as a decision making com-
ponent of an Al program. In fact, some issues must first be resolved. Because the
burden of preference combination is placed on the user, the mechanics of deriving di-
mensions and producing preference judgments must be worked out. More importantly,
the conditions and mechanisms for adding new alternatives mu=t be specified as they
were for new attributes.

Constructive decision making is the core of a decision sunnort system, CDM. Hwang

and Yoon in their book on multi-attribute decision making (Hwang and Yoon 1981) ex-
pressed some frustration in the future/current work section of their book about the lack
of easy to learn, useful methods for decision support. Sage and Rouse (1986) in report-
ing the results of a workshop on aiding the human decision maker emphasize the need
for research into systems that help structure decision problems and address dynamic
decision situations. CDM addresses these concerns through an iterative method that
more closely emulates human decision making styles than standard decision techniques,
and qualitative assessments that are more comfortable for people to provide.

CDM is not intended to produce optimal solutions to complex decision problems
given_complete information, but rather to explore methodologies for structuring deci-
sion problems, performing symbolic comparisons, reasoning about uncertain decisions,
and automating dynamic decision making.
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Chapter 5

Task-level Architectures and
Knowledge Engineering

A knowledge system architecture is a level of description of knowledge systems that
specializes general AI implementation techniques to suit a class of problem solving
tasks. This report presents three complementary views of the architecture level, and
analyzes their implications for the design of knowledge engineering tools. The analysis
is illustrated with an architecture for systems that reason under uncertainty, and with a
hierarchy of knowledge engineering tools to support system development and knowledge
acquisition at the architecture level.

1 Introduction

This report is ahout tools for knowledge engineering at the archstecture level. A
knowledge system architecture specializes common Al problem-solving techniques to
a particular class of tasks. Architectures provide descriptions of particular kinds of
problem solving (e.g., diagnosis or configuration) at a conceptual level that is above
the implementation, thus making clear which aspects of a class of problems are in-
trinsic to the problem and which are artifacts of the implementation. Architectures
are partial designs in which some decisions are made in advance to support particular
task characteristics. For example, many medical diagnosis systems first interpret data
bottom-up to find “triggered” disease hypotheses, then set top-down goals of acquiring
evidence pro and con the triggered hypotheses. This “trigger/acquire evidence” cycle
is an intrinsic part of any architecture for the class of medical diagnosis tasks, though
it might be implemented in a wide variety of ways.

Architecture-level tools for knowledge engineers can improve the productivity of
system development and knowledge acquisition because:

e By supporting the abstraction of representational and computational primitives
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at the architecture level, they permit the knowledge engineer and expert to co-
operatively develop systems using a shared language of architecture constructs,
rather than in terms of the underlying implementation.!

e They can incorporate knowledge about the architecture to facilitate system de-
velopment and knowledge acquisition (e.g., by enforcing constraints on the types
and values of elements in the knowledge base).

The idea of an architecture level underlies recent work on knowledge systems.’
Chandrasekaran and his colleagues have identified a number of “generic tasks” such
as hierarchical diagnosis and routine design, and have developed task-specific repre-
sentation languages and control strategies for them {Chandrasekaran 1986, Bylander
and Mittal, 1986, Brown and Chandrasakeran, 1985). McDermott and colleagues have
produced several knowledge systems using architectures that integrate knowledge ac-
quisition tools with the problem solving methods (Kahn et al., 1984, Eshelman and
McDermott, 1986, Marcus, 1987, Kahn et al., 1987). Clancey has described in detail
the heuristic classification method embodied in the HERACLES architecture (Clancey,
1986). Newell (Newell, 1982) anticipated much of this work in his AAAI President’s
Address on the Knowledge Level, where he distinguished the knowledge of an intelli-
gent agent, which is used to model its behavior, from the knowledge representation
that describes how the knowledge is encoded in a symbol system.

This report presents an analysis of the role of knowledge engineering tools at the
architecture level. We describe three complementary views of what is meant by the
architecture level, and illustrate them in the context of MU, an architecture for systems
that manage uncertainty by deciding how to act. We show how the architecture-level
analysis leads to a hierarchical organization of knowledge engineering tools to support
software development and knowledge acquisition for MU systems. We conclude with
some advantages of this approach to knowledge engineering.

2 .Three views of the architecture level

Architectures can be viewed from three perspectives, each which suggests roles for
architecture-level tools. First, the functional view presents an architecture as an appli-
cation of general Al techniques to suit a particular style of problem solving. One might

{Data abstraction and related methodologies such as object-oriented programming are well estab-
lished software engineering techniques for reducing the complexity of large programs by hiding imple-
mentation details (Abelson 1985). For knowledge systems, the architecture is a particularly useful level
of abstraction, and tools to support it reduce the inherent complexity of large knowledge-based pro-
grams by separating the representational and computational needs of the problem solving task from
implementation decisions.

3The architecture level was a major focus of the AAAl Workshop on High-level Tools in October,
1986. An earlier version of this paper was presented there.
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say that, functionally, the blackboard architecture is well-suited to problems with noisy
data and multiple sources of evidence (HEARSAY 1980, Nii 1986). There are archi-
tectures for simple classification (e.g., traversing decision trees), heuristic classification
(e.g., HERACLES (Clancey, 1986); CSRL (Bylander and Mittal, 1986)), constructing
configurations (e.g., SALT (Marcus, 1987); COAST (Bennett, 1986)), and design (e.g.,
DSPL (Brown and Chandrasakeran, 1985)); DOMINIC (Howe et al., 1986)).

The second perspective is structural: an architecture is a partial design that in-
cludes specifications of knowledge representation formalisms, inference mechanisms,
and control strategies. Many of these structural components are available from com-
mercially available Al programming environments. Architectures, however, are not
arbitrary combinations of these components, but “good” combinations designed by the
knowledge engineer for particular tasks.

A third view of an architecture is that it defines a virtual machine. The architecture
provides a language that describes the behavior of a system in terms natural for the
knowledge engineer and expert. For example, most medical diagnosis systems provide
some kind of support for triggering - making particular hypotheses “active” when cer-
tajn events (typically input data) occur. To the expert, triggering might correspond
to “bringing a diagnosis to mind.” A programmer can produce the effect of triggering
using implementation-level primitives (e.g., giving triggered diseases high certainty fac-
tors or agenda priorities). But terms such as “trigger” — not their implementation —
are the medium of knowledge engineering. Such task-level terms promote explanation
(Swartout, 1983) and knowledge acquisition® (Gruber and Cohen, 1987). Knowledge
engineers, experts, and users can all understand triggering without thinking about how
it is implemented. A virtual machine that executes “triggering” is easier to program.

In summary, the functional view of an architecture emphasizes the behavior of pro-
grams that instantiate it. The structural view emphasizes knowledge representations,
inference methods, and other components of the architecture. A virtual machine inte-
grates these views: it is an abstract device designed to meet the functional needs of a
class of problem solving tasks. The next section discusses how the interactions of these
views result in an organization of knowledge engineering tools.

3 Tools for the MU Architecture

In this section we present an architecture for systems that reason under uncertainty,
called MU (Cohen et al., 1987b), with the aim of illustrating how the three views of
architectures influence the design of knowledge engineering tools. MU grew out of
experience with MUM (Managing Uncertainty in Medicine), a system for planning a
series of diagnostic questions, tests, and treatments for diseases manifesting chest and

3Without task-level terms, the (non-programmer) expert is effectively barred from working directly
with the knowledge base.
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abdominal pain (Cohen et al., 1987a). The primary aim of MUM is to decide how to act
when data are insufficient for diagnosis and treatment. Like a physician, MUM reasons
about tradeoffs between the costs of evidence, the marginal utility of potential data
given what is already known, the effects of treatments and the evidence they provide,
and so on. MU is an architecture for building systems like MUM that reason about
uncertain situations in deciding how to act.

Viewed from a functional perspective, MU’s task is managing uncertainty by taking
appropriate actions. Structurally, MU has a large long-term memory of hypotheses
and their supporting evidence and intermediate conclusions, a working memory of
developing hypotheses, inference mechanisms for propagating the effects of evidence
in working memory, and control strategies. Viewed as a virtual machine, MU supports
knowledge engineering in terms that make sense for diagnostic tasks, such as hypothesss
and potential-evidence. These terms are instantiated for specific domains by terms such
as disease, or further instantiated as specific diseases such as angina.

The interactions of these views of the MU architecture are apparent in the design of
knowledge engineering tools. Figure 5.1 shows a hierarchy of tools that supports devel-
opment of systems in MU. The foundation is a commercially-available Al programming
environment that includes implementation primitives such as rules and frames, and ba-
sic Al programming techniques such as pattern-matching rule interpreters and message-
passing. The first layer in Figure 5.1 is a structural description of the implementation
of MU. It is not a design for an architecture, because no functional description has been
given or is implied by this collection of implementation primitives and Al programming
techniques, which could be instantiated to provide a wide range of behaviors.

The functional view of an architecture constrains how implementation-level prim-
itives and techniques are specialized for a particular kind of problem-solving. The
functional requirements of MU are that it should represent inferential relations between
data, intermediate conclusions, and hypotheses. It should maintain measures of belief
in all these objects, decide focus of attention (i.e., which objects to seek evidence for),
and decide which evidence to seek. At the second level of Figure 5.1, the frames and
slots of the first level are specialized as Aypotheses and inferentsal relations, respectively.
Rules are used to implement combining functions for evidence pro and con hypotheses.
Some properties of hypotheses — a subset of their slot values - are used as control param-
eters, which help determine focus of attention. Similarly, value propagation functions
are implemented via the demons and message passing, and so on. Thus, the functional
view of the MU architecture tells the architecture designer how to specialize low-level
implementation primitives and techniques to achieve a virtual machine, or shell, for a
particular class of tasks.

An architecture is designed not for a specific task like diagnosing chest pain, but for
a class of tasks such as diagnostic reasoning. Thus, the knowledge engineer and expert
must snstantiate architecture-level primitives for a particular application just as the
architecture designer needed to specialize implementation-level primitives. Figure 5.2
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Tool Level

Objects in User’s View

Software Support

Knowledge
Acquisition
Interface

Virtual
Machine

(shell)

(KEE)

Application-specific Terms
diseases, intermediate diagnoses,
questions, clinical tesis, triggering
symptoms for diseases, confirming
test results, criticality of diseases,
relative costs of tests, treatments,
efficacy of treatment

(Mets-)Knowledge-based Utilitics
language-specific editors and form-
filling interfaces, inferential consis-
tency analyser, graphical display for
objects and relations

Task-level Constructs
hypotheses, intermediate conclu-
sions, inferential relations, data
descriptions, combining functions,
control parameters, control rules,
preference rankings among actions

Tesk-specific Ressoning Mechanioms
value propagation functions, predi-
cates on the state of the inference net,
rule-based planner, decision-making
support

Implementation Primitives
frames and slots, rules, pat-
tern matching language, Lisp ob-
jects and functions, windows and
graphic objects v

Al Programming Technigues
knowledge base bookkeseping, rule in-
terpreter, knowledge base bookkeep-
ing, inheritance mechanisms, assump-
tion maintenance, demon invocation
and message passing, window system,
network grapher

Figure 5.1: A hierarchy of knowledge engineering tools to support the MU architecture.
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is a structural view of MUM - a chest pain specialist - engineered in the MU architecture.
Hypotheses are instantiated as diseases such as classic anging; intermediate conclusions
are instantiated as clusters such as ezercise-induced-pain; inferential relations suci as
potential evidence are instantiated by specific links between evidence and conclusion,
such as EKG results and classic angina.
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Figure 5.2: Fragment of the inference network for MUM

Once the knowledge engineer has decided to instantiate hypotheses as diseases, he
or she can build a knowledge-acquisition interface to help elicit knowledge in the terms
of the architecture. Meta-knowledge about the terms is provided by the knowledge
engineer while designing the shell, and is used by the knowledge acquisition interface to
help the user build a syntactically valid and semantically consistent knowledge base. We
currently have form-filling editors for all objects in Figure 5.2, a graphics interface for
acquiring some continuous combining functions, and rudimentary consistency-checking
abilities; other tools, especially for acquiring control knowledge, are in progress.

4 Conclusions

Architecture-level knowledge engineering tools have several advantages:
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e One can capitalize on vertical integration of implementation-level tools at the
architecture level. For example, a general-purpose frame editor and network
grapher that is provided at the implementation level (such as the KREME in-
terface (Abrett and Burstein, 1987)) can be customized as a knowledge acqui-
sition interface for editing architecture-level constructs such as hypotheses and
diseases. This is possible because the architecture-level objects are specializa-
tions of implementation-level objects.

¢ Software development is facilitated because architecture-level constructs — the
primitive objects of the virtual machine — are represented declaratively. For
example, once the trigger relation has been designed, one need not worry about
several members of a software project trying to achieve its functionality by dif-
ferent implementations.*

e Declarative architecture-level constructs also facilitate knowledge acquisition be-
cause meta-knowledge (Davis 1984) can be attached to objects to check for consis-
tency, provide help, generate explanations, and so on. For example, a form-filling
interface specialized for acquiring an instance of a disease can use a declarative
description of the properties of diseases, such as the kinds of relations they have
with data, to offer a menu of documented choices (Gruber and Cohen, 1987).

¢ Building a virtual machine at the architecture level and then a knowledge acqui-
sition interface on top of the virtual machine defines the roles of the knowledge
engineer and expert. The knowledge engineer designs an architecture by special-
izing general-purpose implementation-level tools to operationalize the constructs
suited for the problem solving task, whereas the expert instantiates architecture-
level constructs for the application domain. Virtual machine tools (shell support)
assist the knowledge engineer in customizing an architecture for a particular ap-
plication, and knowledge acquisition tools help the expert build, refine, and debug
the knowledge base.

5 Discussion

The hierarchy of tools discussed here reflects a power/generality tradeoff. Con-
structs at the implementation level are general (e.g., production systems can be con-
figured for many kinds of problem solving) but from the standpoint of knowledge en-
gineering they are weak. To say an object is a disease hypothesis is to imply much
more knowledge about it than to say it is a frame, even though the implementation

‘The EES project (EES 1985) aims at making every implementation decision explicitly recorded in a
language which allows a program writer to actually generate the code.
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of the disease hypothesis may be no more than a frame. This added knowledge con-
strains the internal structure of the disease frame (e.g., values and types of slots, or the
kinds of messages it can handle, etc.), constrains its relationships with other frames,
and so on. Since these constraints facilitate knowledge engineering, architecture-level
objects like disease frames are at the “power” end of the power/generality spectrum.
Implementation-level objects, lacking constraints, are more general but correspondingly
less powerful from the standpoint of knowledge engineering.

Thus, when one builds an expert system for a task, the utility of an architecture
level analysis depends entirely on how much one knows about the task. The knowledge
system architecture embodies knowledge about a class of problem solving tasks - it
is a virtual machine for that class - and as such facilitates system development and
knowledge acquisition for problem solvers of that class. The power/generality tradeoff
tells us that we can ameliorate the knowledge acquisition bottleneck for restricted
classes of tasks by designing architectures and building integrated “power tools” at the
architecture level.

The problem of knowledge acquisition is viewed in terms of the incongruity between
the representational formalisms provided by an implementation (e.g., production rules)
and the formulation of problem solving knowledge by experts. The thesis of this report
is that knowledge systems can be designed to facilitate knowledge acquisition by reduc-
ing representational mismatch. Principles of design for acquisition are presented and
applied in the design of an architecture for a medical expert system called MUM. It is
shown how the design of MUM makes it possible to acquire two kinds of knowledge that
are traditionally difficult to acquire from experts: knowledge about evidential com-
bination and knowledge about control. Practical implications for building knowledge
acquisition tools are discussed.

6 Design for Acquisition

Knowledge acquisition is the process of gathering knowledge about a domain, usu-
ally from an expert, and transforming it to be executed in a computer program. It is a
part of the knowledge engineering process, which includes defining a problem, design-
ing an architecture, building a knowledge base, and testing and refining the program.
Knowledge acquisition is regarded as the bottleneck in this process. Our thesis is that
the design of a knowledge system should anticipate the acquisition process. By analogy
with “design for testability,”.in which digital hardware is designed to be easily tested
(Bennetts, 1984), our aim is design for acquisition: designing knowledge systems to
facilitate knowledge acquisition.

The first advance on the knowledge acquisition problem was the invention of gen-
eral architectures: knowledge representation techniques and accompanying interpreters
that allow the programmer to encode domain knowledge in a knowledge base separate
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from the algorithm that interprets it. The EMYCIN architecture is paradigmatic (van
Melle, 1979; see also Buchanan and Shortliffe, 1984). Its essential architectural features
are a rule formalism with conjunctive premises, certainty factors, and an exhaustive
backward-chaining control strategy.

With the general architectures came tools to help the knowledge engineer and expert
transform knowledge into the available formalisms. Experts were insulated from the
Lisp implementation by rule editors and pseudo-natural language interfaces (Shortliffe,
1976). In TEIRESIAS, Davis (1976) demonstrated that a knowledge acquisition program
can use knowledge about the architecture, such as the structure of rules and the effect
of backward chaining, to help users refine and debug the knowledge base. With ROGET,
Bennett (1985) showed that information about the kinds of domain knowledge likely
to useful for a task could be used by a system to help acquire the initial “conceptual
structure” of a domain.

Recently, knowledge systems research has emphasized the power of less general,
more task-specific architectures (Chandrasekaran, 1986; Clancey, 1985; McDermott,
1983). Many systems share common problem solving methods, despite differences in
implementation. When the task can be characterized at a level independent of the
implementation, an architecture can be designed to capture the task-specific problem
solving knowledge. For example, the HERACLES architecture (Clancey, 1986) is designed
to do heuristic classification, a common task for knowledge systems.

Knowledge acquisition tools for task-specific architectures can apply knowledge
about the kind of problem that the task addresses and the problem solving meth-
ods it provides. For example, ETS (Boose, 1984) is a method of acquiring knowledge
for hierarchical classification tasks. It applies a psychological theory of how to elicit
classification hierarchies from people. SALT (Marcus, McDermott, and Wang, 1985)
assists in knowledge acquisition for iterative design tasks such as configuration. The
architecture for SALT identifies three kinds of domain knowledge used by its problem
solving strategy, and SALT uses knowledge about their form and purpose to focus and
constrain the knowledge acquisition dialog. In both cases, the knowledge acquisition
method is driven by demands of the task (e.g., classification or configuration) rather
than the implementation formalisms (e.g., rules).

Both ETS and SALT acquire knowledge for well-characterized problem solving meth-
ods, with corresponding architectures. However, the space of methods (and even tasks)
for knowledge-based systems has surely not been fully explored. For those problems
without suitable task-specific methods, knowledge systems and tools to build them must
be designed. Design means choosing knowledge representations and control strategies
that can bring expert knowledge to bear on the problem. Careful attention to the
design of a problem solving architecture can make knowledge acquisition easier both
for knowledge engineers and automatic knowledge acquisition tools.

This report presents principles for designing knowledge systems to facilitate knowl-
edge acquisition. In Section 7, we introduce three general principles of design for
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acquisition. In Section 8, we show how these principles have been applied in the design
of an architecture for managing uncertainty in medicine. The architecture makes it
possible to acquire two kinds of knowledge that are traditionally difficult to acquire:
knowledge about evidential combination and knowledge about control. In Section 9 we
show how the principles of design for acquisition imply a hierarchical organization of
tools for implementing knowledge system architectures, emphasizing the integration of
knowledge acquisition support.

7 Principles of Design for Acquisition

This section presents three principles that should be considered during the design
of a knowledge system architecture. They may be familiar to knowledge engineers as
heuristics for knowledge representation. We emphasize the goal of making it easy for
ezperts to express their knowledge.

Principle 1:
Design task-level representational primitives to capture important domain con-
cepts defined by the ezpert.

This principle prescribes that the knowledge engineer provide a language of task-
level terms. It addresses a fundamental obstacle to knowledge acquisition, the represen-
tational mismatch between the way that an expert formulates domain knowledge and
the way the knowledge is represented in an implementation (Buchanan, Barstow, Bech-
tel, Bennett, Clancey, Kulikowski, Mitchell, and Waterman, 1983). Representational
mismatch typically occurs when the knowledge engineer imposes implementation-level
primitives on the expert. For example, knowledge acquisition in a strictly rule-based
architecture is ultimately rule acquisition, and if it is difficult for an expert to ex-
press problem solving expertise as rules, then it is hard to acquire the knowledge. The
problem is that rules are implementation-level primitives.

An example of a task-level primitive is the notion of a “trigger” — a special rela-
tion between data and hypotheses such that when the data are found, a hypothesis is
immediately activated. Trigger is natural construct for diagnosticians. For the cardiol-
ogist, a 45 year old man complaining of chest pain with exercise “brings to mind” the
hypothesis of angina. If it is a representational primitive for the system, then acquiring
triggering relations from the expert is straightforward. If instead one must achieve the
effect of a trigger by, say, “tuning” the certainty factors of rules or the weights on links,
then it will be difficult to acquire, explain, and modify this knowledge.

Principle 2:
Design ezplicit, declarative representational primitives.
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From the standpoint of knowledge acquisition, declarative knowledge representa-
tions are preferable to procedures. The meaning of declarative representations can
be “read” directly, whereas the meaning of procedures can only be had by execut-
ing the procedure or simulating its execution. For experts to understand procedural
representations of their knowledge they must first understand the algorithm that inter-
prets them. Even when knowledge seems naturally represented with procedures (e.g.,
control knowledge), formulating it declaratively can facilitate acquisition, explanation,
and maintenance. Furthermore, the requirement of explicitness means that when a new
primitive is needed to express some domain concept or expert strategy, its purpose and
operational definition must be made public; this is important when multiple experts
and programmers work on a system.®

In Section 8.3 we show how designing declarative primitives for control knowledge
allows one to represent expertise in deciding what to do next under conditions of
uncertainty. By making the knowledge explicit and declarative, the expert can examine
the assumptions underlying his or her control decisions. In Section 9 we show how
representing task-level terms declaratively allows the use of conventional “form-filling”
user interface technology in knowledge acquisition tools.

Principle 3:
Dessgn representations at the same level of generalization as the ezpert’s knowl-
edge.

This principle can be summarized with two caveats:

e Don’t force experts to generalize except when necessary.

e Don’t ask experts to specify information not available to them.

Generalization is one of the dimensions of representational mismatch, the distance
between the expert’s formulation and the implementation.® A representation and its
referent in the world are at different levels of generalization if there are distinctions in
the world that the representation fails to capture or the representation makes artificial
distinctions. An example of overgeneralization is forcing a large range of values into a
small set of categories. The expert interpreting blood pressure considers the full range
of systolic/diastolic ratios, while the knowledge engineer may want to categorise it as
high, normal, or low, to make it easier to implement. Conversely, the knowledge
engineer may ask the expert to specify more knowledge than he or she has, again to
suit the implementation. For example, the expert may be asked to supply degrees of
belief with far more precision that is justified by his or her knowledge.

>Neches, Swartout, and Moore (1985) emphasise the advantages of this principle for explainability
and maintainability, and Clancey (1983) argues for the explicit representation of control knowledge to
facilitate explanation, knowledge engineering, and tutoring. Our point here is that “good engineering”
is also good for knowledge acquisition.

S Another dimension is operationalization, converting advice to procedures (Mostow, 1983).
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8 A Case Study of Design for Acquisition

In this section we illustrate the principles of design for acquisition in the context of
a medical expert system. We show how the design of the system facilitates acquisition
of two kinds of knowledge that are traditionally hard to acquire: knowledge about how
to combine evidence and knowledge about how to control the order of actions. The
ability to capture this expertise gives the system a unique ability to manage uncertasnty
by selecting or planning actions that will minimize uncertainty or its effects.

8..1 Task domain: Prospective Diagnosis

MUM is an knowledge system that Manages Uncertainty in Medicine, currently in
the domains of chest and abdominal pain. (See Cohen, Day, Delisio, Greenberg, Kjeld-
sen, Suthers, and Berman, 1987, for details.) Physicians make a distinction between
retrospective diagnosis, in which all the evidence is known in advance and the goal is
to make the correct diagnosis, and prospective diagnosss, which emphasizes the proper
management of the patient through the workup, a diagnostic sequence of questions and
tests. In prospective diagnosis, uncertainty about the patient’s condition is managed
by gathering evidence in the best order (e.g., to maximize diagnostic information and
therapeutic effectiveness and to minimize cost and discomfort). MUM's task is prospec-
tive diagnosis; it uses expert knowledge about evidence and contro! to generate an
intelligent workup for a patient.

The knowledge acquisition task for MUM includes not only eliciting heursstic asso-
ciations (Clancey, 1985) between evidence and diseases (“What are the symptoms of
angina?”), but also combining knowledge (“What is the effect of risk factors like smok-
ing on the hypothesis of angina when there has only been one episode of pain?”), and
control knowledge (“Under what conditions should an angiogram be given?”).” The ex-
pert for MUM has a wealth of combining and control knowledge, central to his expertise
as a physician. This knowledge is difficult to represent, and thus acquire, in current
architectures. We designed MUM in accordance with the principles discuzeed above to
make it easy to acquire combining and control knowledge.

8.2 Design for acquisition of combining knowledge

Combining knowledge specifies how belief in several pieces of evidence is combined
to support a single conclusion. Remarkably, knowledge engineers rarely ask experts how
they combine evidence. Instead, fixed, global numeric functions that compute degrees
of belief are built into the architecture (Duda, Hart, and Nilsson, 1976; Shafer, 1976,
Shortliffe and Buchanan, 1975; Zadeh, 1975). Although the numeric representations

7An angiogram is an expensive, invasive test for coronary artery blockage, ususlly given only after
other tests show positive results.
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and functions are a convenient implementation formalism, they make it surprisingly
difficult for experts to express their knowledge about how they manage uncertainty
(Cohen and Gruber, 1985; Szolovits and Pauker, 1978).

MUM’s design does three things to facilitate the acquisition of combining knowledge.
First, it replaces the real-valued numeric representation of uncertainty with symbolic
states of belief that are meaningful in domain terms. Second, it provides an explicit
representation for clusters of evidence, to encapsulate diagnostically significant sub-
sets of evidence. Third, it replaces the global numeric function with local combining
functions, specified by the expert, for each cluster of evidence.

MUM represents belief as ordinal values that characterize the expert’s evaluation
of evidential support. Seven states of belief are defined by the expert: confirmed,
iisconfirmed, supported, detracted, strongly-supported, strongly-detracted,
and unknown. They are primitives at the task level; each has diagnostic or therapeutic
significance.

MUM represents combinations of evidence with clusters, frames that represent di-
agnostically significant groupings of evidence. With respect to evidential support,
diseases are clusters. Clusters also represent intermediate results, such as common
groupings of clinical findings and definitional data abstractions (Clancey, 1985). For
example, the cluster chest-pain-when-eating illustrated in Figure 5.3 describes a
situation in which the chief complaint of a patient is pain or pressure in the chest
that begins after eating. This cluster triggers the disease classic-esophageal-spasm.
crescendo-pain-long-duration in Figure 5.3 represents the situation where the pain
has been increasing in intensity for more than ten minutes. The cluster discriminates
between angina and esophageal spasm: pain from the former usually lasts less than ten
minutes.

MUM represents evidential combination with local combining functions, symbolic
functions mapping states of belief in evidence to states of belief in a conclusion. Each
cluster has its own combining function, and there are no global combining functions.
Combining functions are acquired from the expert, usually as a set of rules, but they
can also be acquired in tabular or graphical form. The combining function for the
first cluster in Figure 5.3 is a simple example; if an episode of chest pain (which may
also be described as pressure) is incited by eating then this is a confirmed case of
chest-pain-when-eating. No other combination of states of belief in evidence has any
affect on belief in that cluster. Diseases, also represented as clusters, typically have more
complex combining functions. For example, the frame for classic-esophageal-spasn,
with the set of rules that define its combining function, is shown in Figure 5.4.

The representation of combining knowledge in MUM is unconventional, but not
novel. (Similar designs are used in PIP (Pauker, Gorry, Kassirer, and Schwarts, 1976),
MDX (Chandrasakeran, Mittal, and Smith, 1982), and the “criteria tables” of (Kings-
land and Lindberg, 1986).) It was, however, designed to facilitate knowledge acquisi-
tion, in accordance with the principles of design for acquisition. First, applying Princi-
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Cluster: chest-pain-when-eating
Combining-function:
IF (and (or (confirmed episode-chief-complaint=pain)
(confirmed episode-chief-complaint=pressure))
(confirmed episode-chief-complaint-location=chest)
(confirmed episode-incited-by-eating))
THEN confirmed

Cluster: crescendo-pain-long-duration
Combining-function:
IF (and (or (confirmed episode-chief-complaint=pain)
(confirmed episode-chief-complaint=pressure))
(confirmed episode-chief-complaint-frequency=crescendo)
(confirmed episode-chief-complaint-duration>10minutes))
THEN confirmed

Figure 5.3: Two clusters for diagnosing chest pain
Clusters represent diagnostically significant combinations of evidence. They might play a
part in a diagnostic scenario like this: A patient reports an episode of chest pain in-
cited by eating (chest-pain-when-eating); this combination of findings is relevant to many
diagnoses. (For instance, it triggers classic-esophageal-spasm, shown in Figure 54))
The ‘physician then asks about the duration and time course of the pain. If the re-
port matches the situation characterized here as crescendo-pain-long-duration, the clus-
ter is confirmed. This cluster of symptom descriptions is useful in differential diagno-
sis; for instance, it supports classic-esophageal-spasm and detracts classic-angina).
In these examples, the combining functions specify necessary and sufficient conditions
for clusters to be confirmed; no other belief state (such as supported) is relevant.
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Cluster: classic-esophageal-spasn
Isa: disease
Triggered-by: (confirmed chest-pain-when-eating)
Combining-function:
IF (or (confirmed barium-swallow=spasm)
(confirmed manometrics))
THEN confirmed
IF (or (confirmed vasodilator-tx)
(confirmed nitroglycerin-tx))
THEN strongly-supported
IF (confirmed crescendo-pain-long-duration)
THEN supported
IF (disconfirmed nitroglycerin-tx))
~ THEN detracted
IF (confirmed chest-pain-short-duration))
THEN detracted
IF (disconfirmed barium-swallow=spasm)
THEN disconfirmed

Figure 5.4: Part of a Disease Frame for Classic Esophageal Spasm
The evidential combining function for this disease is made up of rules; each IF part specifies
conditions on the state of belief in clusters, and each THEN part asserts a state of belief for
the disease. “tx” means trial therapy; for example, nitrogiycerin-tx is confirmed if pain goes
away when the patient takes a nitroglycerin tablet. Manometrics and barium-swallow are tests;
barium-swallow=spasm is a cluster that is confirmed when the barium-swallow shows a spasm.
The triggering function has the same syntax as the left hand sides of rules in the combining
function. In this example, when the cluster chest-pain-when-eating (Figure 5.3) is confirmed,
the disease classic-esophageal-spasm is triggered. These combining and triggering functions
were elicited by a knowledge engineer working with a physician, in the context of actual cases.
From inspecting the combining function, a planner can infer that the tests (manomet-
rics and barium-swallow) are most diagnostic, since they can confirm and disconfirm
the diagnosis of this disease. In the frames representing these tests, however, one will
find that they are invasive and therefore costly - to be avoided. Slightly less diagnos-
tic information (strongly-supported, detracted) can be obtained from trial therapies, and
even less (supported, detracted) from reports of episodes of pain given by the patient.
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ple 1, the ordinal states of belief are chosen to be sufficient to characterize diagnostically
significant situations, and nothing more. Since the expert defines these terms, there
is no problem of “getting numbers from experts.” The expert can state categorically
the implications of a subset of findings, instead of relying on the system to calculate
a partial match to a set of possible findings, as in INTERNIST (Pople, 1977). Sec-
ond, symbolic combining functions are explicit, declarative representations of decisions
about evidential support, whereas the belief in a conclusion given belief in evidence is
only implicit in global, numeric combining functions. Adhering to Principle 2 in this
case means representing evidential yudgments, rather than representing degrees of belief
and computing the result. Third, symbolic, local combining functions represent specific
combinations; only a subset of possible evidence is considered for each cluster, and
only some of the belief states in each constituent piece of evidence are specified. This
contrasts with the situation where no local combining function is specified, and every
possible combination of belief is possible. In accordance with Principle 3, the expert
is not asked for information (e.g., probabilities) that can be used to make distinctions
(e.g., in levels of belief) that he or she does not endorse.

. We have found that having to specify the combining knowledge explicitly and locally
makes knowledge acquisition more efficient when maintenance and knowledge base
refinement are considered. Combinatorial problems are avoided because the space of
combinations is very sparse; not every combination of belief in every piece of evidence is
relevant in the chest pain domain. This holds advantages for knowledge base refinement
and testing. First, every combination of evidence is justified. Second, when test cases
are found for which combining knowledge is inadequate, the-omission is easily localized
to the cluster where the combining function is underspecified. If combining functions
produce conflicting belief states for the same cluster, it indicates a case that the expert
had not considered, an error of omission. Thus the design helps experts, knowledge
engineers, and knowledge acquisition tools address the credit assignment problem.

8.3 Design for acquisition of control knowledge

A major part of expertise in prospective medical diagnosis is the ability to gather
data in the proper order, omitting unnecessary tests, asking only those questions that
pertain to relevant hypotheses, and prescribing preliminary or exploratory treatment
before all of the manifestations of a disease are present.®! This is control knowledge
about what to do, rather than what to believe. Traditionally, domain knowledge is
acquired without troubling the expert to think about control. Simple control strategies
such as forward chaining are implicit in the interpreter, separated from the domain
knowledge base, and selected by the knowledge engineer. When these weak methods

$ Prospective diagnosis is concerned"with gathering evidence for diagnosis and treatment, and is
fundamentally different from retrospective diagnosis which concentrates on the classification of data
already available.
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are inadequate, the knowledge engineer coerces the interpreter to dc comething more
complicated, perhaps by ordering rules or having rules communicate via control flags.
Other techniques for specifying control, such as procedural attachment in frame-based
systems, are, again, designed and implemented by knowledge engineers largely without
consulting experts. But experts have useful domain-specific knowledge about how to
solve problems that should be acquired.

The problem we faced in MUM was how to represent control knowledge so we could
acquire it from the expert. The solution is to ask the expert for the parameters of a
domain that affect control decisions, and then ask him to formulate control knowledge in
terms of these control parameters. For example, some diseases are more dangerous than
others; some clinical tests are very costly; and some evidence is more diagnostic. Control
knowledge is easier to acquire in these task-level terms, in contrast to smplementatsion-
level parameters, such as the priorities of tasks on an agenda, or the order of clauses in
a rule. Since task-level control parameters are declarative they can be reasoned about
by a knowledge-based system, and more to the point, they can be acquired.

Control parameters are a vocabulary for describing situations in which the expert
knows what to do. Control rules (Davis, 1976), acquired from the expert in terms of
control parameters, represent the decision points in diagnosis. Given the evidence that
has already been acquired, and the hypotheses it suggests, the diagnostician selects
some action, typically to gather evidence for a suspected hypothesis, sometimes by
prescribing trial therapy. MUM was designed to represent this decision-making process,
so that the expert could specify how it should proceed.

Some control rules specify preferences among alternative actions. For example,

Control rule: prefer-cheap-to-confirming
Conditions: action, is potentially-confirming, and
action, is potentially-supporting, and
action; costs more than action;
Strategy: prefer action,

The effect of this rule is to cause the system to favor cheaper actions and sacrifice a
little support.® Other control rules specify focusing strategy:

Control rule: focus-on-dangerous-supported-hypos
Conditions: hypothesis, is supported, and

hypothesis; is supported, and

hypothesis, is more dangerous than hypothesis,
Strategy: focus on hypothesis,

OFeatures of evidence like potentially-confirming are derived from descriptions of the actions and the
clusters for which they serve as evidence. An action (e.g., running a test) is potentially-confirming if it
can result in evidence that contributes to a confirmed state of belief in a cluster (e.g., a diseass).
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This rule directs the attention of the system to the most dangerous hypothesis (e.g., a
life-threatening disease) that has support. That is, the system will search for evidence
for and against the more dangerous hypothesis first.

Just as the design of clusters and combining functions give structure to the ex-
pert’s descriptions of evidential belief, control parameters and control rules organize
the expert’s strategic knowledge. Control parameters define a space of diagnostic sit-
uations, called the control space, distinct from the belief space of evidential support
for hypotheses. In accordance with Principle 1, both the control space and the belief
space are constructed from task-level terms. The representation of the control space is
designed to facilitate knowledge acquisition from experts rather than forcing them to
abide by implementation decisions that they often do not understand. As recommended
by Principle 2, MUM selects actions based on declarative control rules; they describe
control decisions in terms of explicit control parameters, rather than as unexplainable
procedures. In accordance with Principle 3, the design of MUM does not ask the expert
to generalize beyond the diagnostic situations with which he or she is familiar.

As combining functions prescribe local combinations of evidence, control rules rep-
resent local control decisions. Local control rules have the same relation to global
conflict resolution strategies (e.g., “choose the most specific rule”) as local combining
functions have to their global counterparts (e.g., Bayes' rule). Again the local context
facilitates acquisition and makes errors of omission more transparent. When control
rules conflict, the cause is missing control knowledge in a particular context. For exam-
ple, the prefer-cheap-to-contirming rule resolves the conflict between more general
preference rules, one that says “prefer actions that are potentially confirming” and the
other that specifies “prefer actions that cost less.” The tradeoff is acquired from a
particular diagnostic situation.

9 Implications for the design of architecture sup-
port tools

In the previous section we emphasized the design of knowledge representations to
facilitate knowledge acquisition, but the principles in Section 7 also have practical im-
plications for the design of software support for knowledge engineering. Specifically, the
principles guide the design of task-specific architectures. A task-specific architecture
integrates particular knowledge representation formalisms and problem solving strate-
gies to perform a well-defined task, such as hierarchical classification.!® The point for
knowledge acquisition is that task-specific architectures can provide a language of task-
level terms to the expert and a way for knowledge engineers to implement these terms

10T agk-specific architectures have been designed for many familiar tasks. Among them are varietics
of classification and diagnosis (Bylander and Mittal, 1986; Clancey, 1985) and design and configuration
(Brown 1985; Howe, Dixon, Cohen, and Simmons, 1986; Marcus et al., 1985).
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declaratively and at the appropriate level of generality, hiding the implementation.

This section presents a hierarchy of knowledge engineering tools for an architecture
called MU that is a generalization of MUM. Figure 5.5 illustrates some of the struc-
ture of task-level constructs that MU generalized from MUM; for example, triggering
and evidential combination are instances of inferential relations, which automatically
propagate values through a symbolic inference net.

Figure 5.1 shows the organization of software support for the MU architecture. The
three tiers correspond to functional levels. The left column shows the hierarchical
relationship among tools. The knowledge acquisition interface is constructed from
functionality supplied by the shell, which is built on top of implementation primitives
supplied by an Al toolbox. The center column shows the objects that a user would work
with at each level; experts would use application-specific terms that are instantiations
of task-level constructs, which are in turn implemented using primitives provided by
the Al programming environment. The right column lists some of the services provided
by software at each level.

At the base of the hierarchy are the implementation level tools. Instead of Lisp,
the primitives are Al programming constructs: frames and slots with inheritance and
attached procedures, “worlds” for assumption-maintenance, and graphical displays.
The software support is standard technology; we currently use the commercial product
KEE.!! The primary user of these tools is the knowledge engineer. Figure 5.6 shows an
implementation-level view of part the knowledge base for MUM, reimplemented in MU.

The middle level is the shell - the software that implements a “virtual machine”
that operates on task-level constructs. Supporting a virtual machine level is a natural
application of Principle 1. The shell is a set of tools, some that support runtime
operations, such as propagating the effects of data through an inference net, and others
that provide an interface for customizing task-level terms (defined by the architecture)
for a specific application. Task-level constructs are implemented as objects using the
Al toolbox, but can be viewed by the user as primitives.!? For instance, one can relate
data to hypotheses with an evidential relation or a triggering relation without thinking
about how those relations are implemented. Figure 5.7 shows a virtual machine view
of part of the evidential support relation for MUM.

The top tier is the knowledge acquisition interface, a set of tools that together
present a “user illusion” (Kay, 1984) of a language of application-specific instantiations
of constructs provided by the architecture. For example, classic-angina is an in-
stantiation of a cluster, and it is presented to the expert as an object related to other
clusters and data by links in a graph of evidential support (such as Figure 5.7). The
primary function of the knowledge acquisition interface is to make it easy for experts

11 Which is, of course, a trademark and product of IntelliCorp.
2In our implementation, they are represented as class frames, slots, slot facets, attached demons, and
method functions.
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Figure 5.5: The structure of a MU knowledge base.
In the MU architecture, objects in a symbolic inference net are connected by inferential relations
that propagate symbolic values. For example, the potential-evidence relation propagates

belief states, such as supported and confirmed. At each node, a local combining function -

determines the belief state of the current node as a function of the belief states of nodes con-
tributing potential evidence. The control knowledge is used to focus (e.g., decide which clusters
to concentrate on) and to choose among possible actions (such as prescribing a test), given the
state of the objects in the net and characteristics of actions (tests and treatments are actions).
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Figure 5.6: The Implementation-level View: A fragment of the MUM knowledge base

as displayed by KEE.

The objects in the user’s view are implementation-level objects: frames, annotated slots,
and inheritance relationships. The graph shows a fragment of a hierarchy of frames. They
are organized by their implementation. The window on the left shows some of the clus-
ters and diseases (a subclass of clusters) for MUM. The window on the right shows a
KEE display of a disease frame.
for example, all clusters have a slot for combining-function, defined in the clusters class
frame. prinz-metal is a kind of cluster, and it instantiates its own combining function.

The semantics of slots are defined by the architecture;
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Figure 5.7: The Architectural View: A fragment of the evidential support relation in
MUM.

This lattice shows one kind of inferential relation in MUM, the evidential support relation
(potential-evidence). The nodes in the lattice represent assertions that may be believed.
The links represent the inference paths that evidence may take; belief in one node is propa-
gated (i.e., from right to left) to other nodes for which it is evidence (that it may support or
detract). The expert or knowledge engineer can select nodes to edit them or add new nodes,
and the graph displays the evidential context. Similar graphs are available for other inferential
relations provided by the MU architecture, such as triggering and treatment efficacy, and each
relation may be viewed in both directions. This view of the knowledge base differs from the
frame hierarchy of Figure 5.8 in that the structure represents evidential rather than hierar-
chical relationships - that is, the structure of the knowledge rather than the implementation.
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to formulate their expertise in the available language. A practical effect of applying
Principle 1 is that the language is restricted to task-level terms. This allows one to
build a knowledge acquisition tool that can apply specific heuristics for acquiring them,
as is done in SALT (Marcus, 1987).

When task-level terms are represented declaratively as objects, meta-knowledge
(Davis and Buchanan, 1984) about how to acquire task-level terms can be represented
as annotations to those objects. This straightforward application of Principle 2 allows
one to use simple syntactic techniques to improve the user interface for knowledge ac-
quisition. A surprising amount of leverage can be achieved by using conventional data
entry techniques, which we will call form-filling, to elicit knowledge from experts. Form
filling is a generalization of the “fill in the blank” style of data entry, where each “blank”
is labeled and presented in a context. The legal input values are highly constrained and
possible values are enumerated when known. On-line help is conveniently accessible,
in the form of descriptions of the expected input and examples. For instance, choosing
from a menu is a simple kind of form filling (for a single “blank”). A more sophisticated
example is the rule editor shown in Figure 5.8, a kind of “language-specific editor” for
acquiring rules of various kinds in MU. It uses descriptions of task-level objects to
restrict the user’s input to semantically valid choices. This technique is similar to the
menu-based approach to natural language interfaces described in (Tenant, Ross, Saenz,
Thompson, and Miller, 1983). A better example is OPAL (Musen, Fagen, Combs, and
Shortliffe, 1987) the knowledge acquisition interface for the ONCOCIN expert system,
which uses form-filling to acquire the majority of the expert knowledge used in speci-
fying treatment plans for cancer therapy. Form filling is a viable knowledge acquisition
technique because the terms that the expert instantiates (e.g., the “blanks” in a form)
are explicit and declarative, so that each primitive can be annotated with meta-level
descriptions to constrain and validate input. Furthermore, integrating the represen-
tations used by knowledge acquisition tools with the shell and the implementation
environment is possible because the design of the system anticipated acquisition.

10 Towards Automated Knowledge Acquisition

If the problem of knowledge acquisition is viewed as representational mismatch,
the primary contribution of design for acquisition is to make the notation for express-
ing knowledge more comprehensible and accessible to those with the knowledge. An
analysis of successful knowledge acquisition tools (Bennett, 1985; Boose, 1984; Davis,
1976; Eshelman and McDermott, 1987; Kahn, Nowlan, and McDermott, 1984; Mar-
cus et al., 1985) suggests that they satisfy two requirements: to identify the kinds of
knowledge to expect from the user, and to provide a functional mapping from user
input to implementation primitives. When the underlying architecture supports task-
level primitives, the first is accomplished and the second is simplified. Thus design for
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Figure 5.8: The Expert's View: A knowledge-based rule editor for acquiring a combin-
ing function.

The rule editor is a sophisticated instance of conventional data entry technology: form-filling.
Each term in the rule editor can be selected with a mouse; they are the “blanks” to fill. In
the example, the set of rules comprises a symbolic combination function, computing the be-
lief in the diagnosis classic-esophageal-spasa as a function of several sources of evidence.
The ‘syntax of the rules is supplied as a parameter to the editor, and can be seen in the
rule template at the top of the window. In this case, the left hand side of a rule is a state-
ment about belief in one of the clusters which serve as potential-evidence for this disease,
and the right hand side is always a statement about belief in the diagnosis. The user has
selected a belief term from the left hand side of a rule. The meta-level description of com-
bining functions for potential-evidence tells the editor that only members of a class called
belief-states are allowed for this term, and so a menu is presented. If the user chooses
to create a new belief-state, a form for creating new instances of that class is invoked.
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acquisition facilitates knowledge acquisition by both human and machine.

Yet the probilem of knowledge acquisition can go beyond representation and imple-
mentation issues. It may be that for some kinds of expertise, it is difficult to design any
notation comprehensible to the expert that can also be executed. If an expert diagnos-
tician is not accustomed to formalizing his or her expertise, there may be no natural
notation other than the cases with which he or she works. For this kind of expertise,
induction from examples can be an appropriate acquisition methodology. An inductive
learning program can transform knowledge in the form of examples, which alone are
inadequate to drive a knowledge system, into more general knowledge of the sort useful
to the system.!?

Acquiring control strategies is an example where a knowledge acquisition method-
ology can profit from augmenting a good design with induction techniques. Experts
who are not familiar with programming may have difficulty writing general control
ruies, even if they are specified in a comprehensible language of control parameters.
Experience with MUM has shown that a good way to acquire these rules is by analyzing
physicians’ workups on actual patients.!* This suggests a knowledge acquisition tool
that asks about control parameters in the context of decision trees (in the sense of
Hannan and Politakis, 1985). Each node in the decision tree corresponds to a decision
about what to do next (e.g., test to perform); each arc represents a possi*'e outcome
(e.g., test result). The tree contains a wealth of implicit control knowledge, in the
choice of actions and the order they are prescribed. The role of the acquisition tool
is to elicit example decision trees, and to walk the expert through hypothetical cases
(paths in the tree) asking for control parameters pertinent to each decision. It could
ask questions such as “What factors influenced your decision to do action X instead of
Y?” The decision tree is then annotated with these reasons for action, and inductive
techniques are used to find patterns for generating plausible control rules. The success
of the induction still depends, however, on the description language for generalizations
(i.e., the bias (Utgoff, 1986)). Thus integrating induction with “interviewing” style
knowledge acquisition ultimately requires that the proper task-level terms, in this case
control parameters, be designed.

11 Conclusions

We described three principles of design for acquisition and demonstrated their ap-
plication in an architecture where knowledge about evidential combination and knowl-
edge about control can be acquired from an expert. We conclude that proper design

131f the system only knew about a set of examples, and had no generalisations, it would be the extreme
of “brittleness”: it would reduce to a lookup table.

'$Workups are a natural representation of diagnostic procedure for physicians; they are often published
in medical journals. Specific workups for a set of patients can be merged to produce a workup grepA,
which is a compact form of a decision tree.
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of knowledge representation primitives can reduce the representational mismatch be-
tween implementation-level and task-level formalisms and thereby facilitate knowledge
acquisition. We also conclude that emphasizing knowledge acquisition in the design
of an architecture is consistent with good knowledge engineering; if knowledge acqui-
sition tools are designed with the architecture, they can be integrated with runtime
and implementation-level software. The function of knowledge acquisition interfaces
is made easier when the underlying architecture supports “acquirable” primitives. Fi-
nally, we proposed a technique to address a fundamental limitation of the “intelligent
interface” approach to automating knowledge acquisition. When the expert cannot
formulate the necessary knowledge in any notation, then expert-guided induction may
facilitate generalization from examples of problem solving. However, the success of in-
duction still depends on whether the knowledge engineer can devise the proper language
of generalizations - the right task-level terms.
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