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1 INTRODUCTION

Most cathodes operate at a temperature high enough to begin life in

the space-charge-limited (SCL) emission region. In that region, the net

current is insensitive to small changes in cathode temperature and surface

work function. However, during operation, the cathode work function often

gradually increases, until the undesirable temperature-limited (TL)

emission region is reached, often ending the cathode useful life. It is

therefore important to understand not only the SCL and TL emission limits

but also where the SCL-to-TL transition is, and how gradual it should be.

Previous theoretical treatments of electron emission have resulted in

the well-known Child 1-Langmuir2 law for SCL emission, and the Richardson 3

equation with Schottky barrier lowering 4 for TL emission. Each law is a

limiting case approximation and is not valid for the whole range.

Nottingham5 improved the Langmuir-Child formalism to aid its calculabil-

ity. Van der Ziel, 6 Crowell,7 and Rittner8 made additional refinements,

but they did not include the effect of Schottky barrier lowering in the TL

region.

As far as we are aware, no previous treatment accurately covers the

entire range, including the SCL-to-TL transition. Recently, there have

been some efforts by Longo,9 Scott, 10 Hasker,1 1 and Eng 12 to combine the

SCL and TL limits using various approximation techniques. However, it is

difficult to quantitatively ascertain the effects of eacn approximation,

a priori especially in the transition region.

In this work, we sought to unify the SCL and TL emission limits by

solving the full Poisson's equation including both space-charge and image-

force effects. Numerical techniques are used, without any additional

simplifying assumptions.
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Our results converge to the proper SCL and TL emission limits, as well

as accurately specifying the net current in the transition region between

SCL and TL emission. In addition, we present the first determination of

the shape of the interelectrode potential in the transition region between

SCL and TL emission. We then calculate the first principles of cathode

current-voltage (I-V) and current-temperature (I-T) behavior.



II. POISSON'S EQUATION FOR ELECTRON EMISSION

Poisson's equation relates the electrostatic potential V to the local

number density of electrons n(x):

V2V z eW(x)/eo, (1)

where c is the permittivity of free space, and e = +1.602 x 10- 19

coulombs. Poisson's equation assumes that electrostatics dominate the

forces acting on an individual electron. It ignores explicit time-

dependent (non-equilibrium) effects, and disregards the small magnetic

field created by the presence of a moving electron current.

In the simplest case of planar geometry, there is enough symmetry in

the boundary conditions so that only one spatial variable remains, and the

Laplacian operator becomes:

2 d

(2)
dx

2

Poisson's equation must then be solved, taking both electron energy

conservation and current conservation into account.

A. SPACE-CHARGE EFFECTS

For planar geometry, the momentum component along the direction of

electron flow varies with the potential field, but the momentum components

in the other orthogonal directions remain constant. Hence we need to

consider only the momentum p along the current flow direction. Energy

conservation can be written as:

E x (p2/2m) - eV = (pc2/2m) - eV. , (3)

where E is the electron total energy, [-eV] is the potential energy

component, and Vc and pc are the values for the potential and the electron

momentum at the cathode.
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The electron density due to space-charge effects, n(x), can be derived

from an electron distribution function n(p,x) by:

n(x) f n(p,x) dp : f n(E,x) dE, (4)
Pm(x) E (x)

where n(p,x) is the fraction of electrons at x with momenta between p and

p+dp. The value of the momentum p is taken to be positive in the direction

of net current flow, and Pm(x) is the minimum momentum that electrons can

have at that position. In Eq. (4), n(E,x) is the fraction of electrons at

x, sorted by energy instead of momentum, and Em(x) is the minimum total

energy for electrons at that point.

Since both the total energy E and the net current density J. are con-

served quantities, the fractional amount of current density dJ(E),

comprised of electrons of energy between E and E+dE, is also conserved.

Thus, dJ(E) must be independent of the spatial variable x. The equation:

dJ(E) = n(E,x) e v(E,x) dE , (5)

then relates changes in the local electron velocity v(E,x) to changes in

the local electron density n(E,x). Taken together, current conservation

[Eq. (5)] and energy conservation [Eq. (3)] determine n(p,x):

n(p,x) = (1/e) dJ(E)/dE , (6)

showing that n(p,x) is also independent of position.

All surfaces have a work function 0, which is an intrinsic barrier to

spontaneous electron emission into the vacuum. For most solids, 0 = (1.5,

5.5) eV. When thermal energies are small compared with 0 , and given

macroscopic applied fields, one can assume that the distribution of

electrons just outside the cathode surface is Maxwellian:

n(p ,xe ) = (JO /ekT) exp [-E/kT], (7)
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where xc is the position of the cathode surface. In Eq. (7), the E=O point

is chosen to be the top of the electrostatic energy barrier (see Fig. 1),

Jo is the net emitted current density, T is in Kelvin, m is the electron

mass, and k is Boltzmann's constant.

Substituting Eqs. (3) and (7) into Eq. (4) results in:

n(x) (J /e) (im/2kT) P(), (8a)

eV/kT, (8b)

P() =(exp 2 f exp(-p 2/2mkT) dp/(2mkT) 2
. (8c)

11 12pM(x)Pm(

Because 4, depends on V(x), the function P(w) also implicitly depends on x,

making Poisson's equation nonlinear.

The energy scale defined by Eq. (7) means that an electron with total

energy E=O barely surmounts the electrostatic barrier. For the region

x=(xb,Xa) , between the barrier maximum (xb) and the anode or collector

(xa), all the electrons have a total energy E>O and each contributes to the

collected current. For the region x=(xCXb), between the cathode (xc) and

the barripr maximum, scnme electrons have a total energy E<O, and they will

be turned back by the barrier. The minimum momentum in this region corre-

sponds to the reflected electron with the highest energy. Both cases can

be sun narized together, resulting in the following expression for pm:

/2

Pm = f (2mkT 4) 1/, (9a)

f for x =(Xb,Xa ) (9b)

-I for x = (Xc,Xb)

9
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Figure 1: Schematic of the interelectrode potential energy. Space-
charge effects cause an energy barrier to develop for
emitted electrons, given an applied potential V0 . Also
shown are the vacuum level and the Schottky potential due
to image-force effects. The E=O level here is chosen to
be the barrier maximum at xb, with the anode at x and the
cathode at xc. The work function determines Xd, the point
at which the image force becomes singular.
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B. ',AGE-FORCE EFFECTS

Up to this point, we have considered space-charge effects and have

ignored the Schottky effect.4 An electron placed in front of a conductor

induces an opposite chdrge on the conductor, creating an attractive force

equivalent to that exerted by a positron placed at:

xp z 2 (xc - Xd) - X. (10)

In Eq. (10), xd offsets the mirror plane for the image charge so that it is

slightly inside the cathode. The electrostatic force between the electron

and its image is given by Coulomb's law:

S[-e21/47Eo0(XX ) 2]o 11) 

where x is a unit vector from the cathode to the collector.
0

A Schottky potential Q car, be aerived from using:

V4 2  (i2)

It shows that the image force contributes a singuiai tern, to the charge

density in Poisson's equation:

2 2 2 3
V Q z d Q,'x 2  2e [16rEoIX + Xd - Xci (13)

To determine the value of xd, we note that the potential energy

difference for a single electron at x xc, relative to the vacuum level,

is exactly the cathode work function:

e Q(x ) (1 4 )
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n the absence of applied fields. The image force contribution [Eq. (13)1,

together with the space-charge terms [Eqs. (8a)-(8c)], makes Poisson's

equation both nonlinear and inhomogeneous.

C. DIMENSIONLESS VARIABLES

The numerical computations can be simplified by using the following

scaling constants:

VL = kT/e = characteristic thermal voltage, (15a)

PL = (2mkT)1 12 : characteristic thermal momentum, (15b)

x = 1/2 2 k3T3 ) = thermal distance. (15c)
0

Poisson's equation can then be written in terms of the following dimension-

less variables:

eV KT = V/VL = scaled potential, (Ica)

x (x-x b)/x L  scaled distance, (it)

which shifts the x-axis so that the barrier maximum becomes the new origin.

The Schottky image-force term then introduces a second length scale

which competes with the thermal length, xL* It can be characterized by the

following dimensionless constants:

a (xb + xd - Xc)!XL, (17a)

X s /XL (17b)

= e2 /(16 n 0kT). (17c)

In terms of the dynamical variables, o and x, and the a and b con-

stants, Poisson's equation becomes:

12



d : (1 f) exp(/2/ + f H(,I  2 6/i + 18a)

d x

for i = [0, (x a-x b)/x L )
f = (18b)

-1 Ifor x [(x- xb)/xL, O

with the following boundary conditions:

tp0 and (d/dx)=O at x=O. (19)

and where H(z) is defined as:

H(z) (exp z 2 , 1 exp (-y 2) dy (23a)

: (exp 2) erfc(z), z _ C, (20b)
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111. SOLUTION OF POISSON'S EQUATION

A. METHOD OF SOLUTION

Equation (18a) is second order, inhomogeneous, and nonlinear, and it

was solved numerically. The inputs to the computer program were the

temperature T, cathode work function 0, and the current density J.

Richardson's equation,
3 ,14 ,15

J = A T2  exp (p), (21)0 0

determines the scaled barrier height p, with Ao=119.58 Amps/(cm2-K2 ) being

Richardson's constant. From these inputs, a unique value for the scaled

distance parameters, a and b, can be self-consistently determined.

Poisson's equation was first solved numerically between xb and Xc,

using an initial guess for the value of a. The solution was then iterated

until a value of a was found where the scaled potential at the cathode

surface s matched the scaled barrier height w. After an accurate value

for a was found, the potential V was determined from Eq. (18a), by a

straightforward numerical computation.

B. CALCULATION RESULTS

Using the Poisson equation solution, we obtained the potential curves,

barrier positions, and current-voltage characteristics under various

conditions.

An example of the interelectrode potential energy function is shown in

Fig. 2. The overall curvature between the anode and the cathode is due to

space-charge effects. Inset(a)of Fig. 2 shows that the near cathode region

has a very shallow barrier maximum 0.29 microns away from the cathode,

indicating that the cathode is barely operating in SCL emission. Inset (b)

shows the image force effects very near the cathode. The nearly flat slope

in inset (b) means that the net emission is very close to the SCL-to-TL

transition point.
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Figure 2: Sample calculation of the interelectrode potential energy
near the SCL-to-TL transition. Space charge effects cause
the observed curvature. Inset (a) has a barrier maximum
0.29 Pm from the cathode. Inset (b) shows the very-near-
cathode region where image-force effects are evident.
Figs. 2-6 were done using a work function of 2.02 eV, and
a 400 pm diode spacing. Here an applied voltage of 204 V
and a temperature of 1050C was also used, resulting in
emission at 99.8% of the Richardson current value.
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Figure 3 shows a set of calculated I-V curves for a uniform work

function of 2.02 eV and temperatures between 925 0C and 1150 0C. At low

voltages, the emission is nearly independent of temperature, consistent

with the SCL emission law of Child and Langmuir. As the voltage increases,

there is a sharp transition from SCL to TL emission (knee-region), but the

knee becomes less sharp as the transition region moves to higher

temperature or higher voltages.

For the SCL emission region, Child's law approximately relates the

current density to the applied voltage V as:

Jo = K Vo3/ 2 , (22)

where K is a constant. To compare our calculations with that law, we

plotted the I-V curves on the log-log scale in Fig. 4. For most of the

space-charge region, Jo(Vo) has nearly a simple power dependence. However,

the exponent value for Vo is closer to 1.4 rather than 3/2. The slight

curvature in the log-log plot is due to the electron velocity distribution

being taken into account and these results should be similar to the

original Langmuir 2 extension of Child's law.

At the other extreme, for TL emission, the historical Schottky barrier

lowering effect4 is:

= [P - (e3 V0 /4 0 ° d0 ) 1/2 ]/kT, '[-¢]kT, (23)

where do = 1xa - xcl is the anode-cathode distance. Equation (23) has

historically given rise to a method for estimating the cathode work

function 0. For a fixed electrode spacing and temperature, I-V data is

plotted on log(J o ) vs. Vo
112 axes (Schottky plot). Using those axes,

Eq. (23) should give a straight line in the high-voltage TL region. In

this method, the work function 0 is then determined by extrapolating the

straight line portion to Vo=O, and evaluating the intercept, where

V = */kT.

17
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14 WORK FUNCTION = 2.02 eV
TEMPERATURE = 925-1150'C
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Figure 3: Calculated emission current density vs. voltage (I-V)
curves for a temperature range of 925-1150'C. Each
curve approaches the same function in SCL emission,
followed by a sharp transition to TL emission behavior.
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Figure 4: A log-log plot from the calculated I-V curves of Fig. 3.
Child's Law gives a 3/2 slope. Our calculation shows a
value closer to 1.4, with a slight curvature evident in
the SCL region, due to the effects of a Maxwellian
distribution for emitted electrons.
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In Fig. 5, we show the results of a Schottky plot based on our 1-V

calculations. The calculated I-V values from the deep TL emission regime

were then used to estimate the work function 0 from the Schottky plot.

This 0 value was then compared against the input value that was initially

used to generate the 1-V curves. When we used very high voltages, for a

wide range of temperatures and for work functions between 2.00-2.15 eV, we

found that the deduced 0 differed from the input value by at most ± 0.002

eV. This result is a good indication of the internal consistency of our

calculations.

The voltages used in this self-consistency check, however, are much

higher than experimentally practicable (- 20 KV on the scale of Fig. 5),

thus Schottky plots cannot generally be used to estimate work function

values from I-V data, as noted earlier by Hasker, 11 and by Eng, 12 who

attributed this effect to the persistence of residual space-charge effects

deep into the TL emission regime.

While the work function provides the most physical description of

cathode activity, it is also difficult to measure, because I-V curves often

require high applied voltages to drive the cathode into TL emission.

Instead, one often relies on a current vs. temperature (1-T) test, because

it can access the TL region without using high fields.

Typical results for the predicted 1-T curves from this study are shown

in Fig. 6. The high temperature portions of these curves are very nearly

flat, indicating that the SCL emission current is practically temperature

independent. The plot also determines how sharp the knee region between

SCL and TL emission should be for a uniform work function surface.

Figure 6 also shows that the transition region becomes more gradual at

higher applied voltages, due to the increased net emission giving rise to a

greater space-charge influence at the transition point.

20
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Figure 5: A Schottky plot from the I-V calculations, examining the

deep TL emission region. Using these axes, the historical

Schottky barrier lowering formula would result in a

straight line. The work function derived by extrapolating

the TL emission line from very high fields was found to

agree to within ±0.002 eV of the input work function for
values between 2.00 and 2.15 eV, showing the self-consistency
of the calculation procedure.
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Figure 6: Calculated emission current vs. temperature (1-T) plots,
normalized to unity at 1150 0C, for a variety of applied
voltages. Each voltage corresponds to different high
temperature current density Jmax* These curves also
show that the SCL-TL transition region becomes more
gradual at higher emission levels.
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IV. COMPARISON WITH PRIOR APPROXIMATE METHODS

In this section, we compare the results of this first-principles

numerical calculation of Poisson's equation containing both space-charge

and image-force effects, to the earlier approximations of Longo,9 Scott,10

and Eng.
12

Scott's method uses the Lagmuir 2 formalism for SCL emission, and he

developed a way to extend that method into the TL regime by approximating

the near-cathode field. Eng's analytic method approximated the inter-

electrode potential for calculating the effects of space-charge. Longo's

formula is semi-empirical and was based on cathode measurements.

In Fig. 7a, we compare the predicted I-V curves among these different

methods, using logarithmic axes. It shows that both the Scott and Eng

approximations are fairly accurate over a wide range of net currents.

Those results are plotted using an expanded scale in Fig. 7b, to emphasize

the SCL-to-TL transition region. It shows that the Scott method gives net

emission currents which are a few percent high, while the Eng method gives

values that are a few percent low.

In Fig. 8, the relative deviations among the various current predic-

tions are shown. The Eng calculation was used as a 0% baseline because

that method gives an I-V prediction which is both continuous, and has a

continuous first derivative. The present results are also compared to the

closed form approximation:
12

Jnet 1/2
n J ep ( - n (for J < J (24a)

kT JC R

Jnet = (for JR ? C (24b)
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Figure 7: Current density vs. voltage predictions comparing this
numerical method to the earlier approximate techniques
of Longo, Scott, and Eng. Figs. 7-10 all use a 2.0 eV
work function, a 256 pm anode-cathode spacing, and a
1050 0C cathode temperature. On the large scale of
Fig. 7a, both Scott's and Eng's calculations are similar
to this work. In Fig. 7b, showing the SCL-to-TL
transition, the Scott method predicts currents which are
a few percent high, while the Eng method is a few percent
low. Child's Law J[SCLI, and the usual Schottky barrier-
lowering current J[TL] are also shown.
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Figure 8: Comparison of the relative deviations among the different
methods of net current computation. The earlier Eng work
was used as a 0% baseline since that work was comprised of
smooth analytic functions. Also shown is the accuracy of
the closed-form approximation of Eq. (24 ).
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where JC and JR are the usual Child's Law (Jc - V3/2) and Richardson's cur-

rents, and where +64¢ is the usual Schottky barrier lowering from Eq. (23).

Figure 8 clearly shows that the prior work of both Longo and Scott over-

estimates the TL current, while the above closed form developed by Eng is

found to be quite accurate in that regime.

Both the earlier methods of Scott and Eng also give a prediction for

the barrier position, and those are compared to the present calculation in

Figs. 9a and 9b. The Scott method uses the Langmuir formalism for the SCL

regime. In deep SCL emission, away from the transition region, the

Langmuir formalism used by Scott (Fig. 9b) agrees almost identically with

this first-principles calculation. A good agreement is expected here

because image forces are not important in this regime. At these low volt-

ages, the Eng methoo overestimates the barrier position by about a factor

of 2, since it disregarded the effects of trapped near-cathode electrons.

Near the SCL-to-TL transition point, the present work and the Eng

calculation give similar barrier position predictions, both having a steep

change which marks the SCL-to-TL transition region. In contrast, the Scott

method, which uses a Langmuir formalism for the SCL region, gives a barrier

position that vanishes on the SCL side of' the transition while subsequently

predicting a barrier position infinitely far from the cathode on the TL

side of the tran.ition. This swing in the predicted barrier position from

zero to infinity at the SCL-to-TL transition point in the Scott method

explains why that method predicted I-V curves with a "kink" at this point.

Finally, in Figs. 10a and lob, we show the asymptotic (near-anode)

behavior of the interelectrode potential function covering both the SCL and

TL emission regions. In Fig. 10a, each potential function was normalized

to 100% being the net anode-to-cathode applied voltage, so as to emphasize

the changes in the potential function shape.

The near-anode portion was then fit to the function V(x) - xp to

examine how that exponent changes with applied field, and those results are

shown in Fig. 10b. Child's Law predicts p=4/3 for SCL emission, while the

26
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Figure 9: Barrier position as a function of voltage, with this
numerical method compared to the earlier work of Scott
and Eng. The Scott method is very inaccurate near the
SCL-to-TL transition, where it gives a barrier position
that varies from zero to infinity, as shown in the inset.
The Eng method is quite accurate except in deep SCL
emission, due to disregarding a trapped space-charge cloud
near the cathode.
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Figure 10: The interelectrode potential-energy function shape vs.
applied voltage. Values used in Fig. 10a are: 11.62,
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Child's Law would have given a single universal curve
with a power of p=4/3, while TL emission would be a
linear function with power p=1. Fig. 10b shows how the
power, p, actually changes with applied voltage, using
this numerical calculation. The SCL-to-TL transition
point is marked with an arrow.
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historically-derived Schottky barrier lowering effect assumes p=l for TL

emission. However, the results of the present calculation show that a more

complicated behavior is present.

At very low voltages, the interelectrode potential function is nearly

parabolic (p :2), corresponding to the charge density being nearly uniform

throughout the anode-to-cathode region. As the applied voltage increases,

a Child's Law type regime becomes evident, consistent with the space-charge

cloud collapsing to become denser near the cathode. Here, we find the

exponent is p : 1.4, instead of the Child's Law value 4/3, similar to the

results shown in Fig. 4, where the SCL region behaves like J - VI "4 instead

of the Child's Law value of J - V3 /2 .

The SCL-to-TL transition point is marked with an arrow on Fig. lOb,

corresponding to where the barrier position changes most steeply. Beyond

this point, the p-index then gradually approaches the p=1 value of TL

emission. The gradual change in the p-value in the TL region, along with

the demonstrated accuracy of Eqs. (24a) and (24b), further proves that

space-charge effects persist well into the TL emission regime.

These results, taken together, show that both the recent approximate

formalisms of Scott and Eng can be accurate to within a few percent for

predicting net emitted current, while the Longo semi-empirical formula

gives an I-V curve which changes too gradually to describe a uniform work-

function surface. The barrier positions predicted by the Scott or Eng

methods are also fairly good, except for the deep SCL regime in the Eng

method, and the SCL-to-TL transition region for the Scott method.

Finally, the Eng closed-form approximation for unifying the SCL and TL

emission limits (Eqs. (24a) and (24b)] is found to be very accurate above

the SCL-to-TL transition point. Its accuracy in this regime, when compared

to the numerical results, proves that the main ingredient required for

unifying the Langmuir-Child and Schottky regimes is to take into account a

space-charge correction to the normal Schottky barrier lowering effect.
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V. CONCLUSIONS

A first-principles calculation for the electron emission from a

uniform planar emitter was done using Poisson's equation and included both

space-charge and image-force effects. The results were found to be

consistent with the historically derived formulas for the SCL and TL

emission limits, as well as smoothly bridging the transition region between

them.

By providing the first direct calculation of the emission properties

near the SCL-to-TL transition, we were able to show how sharp the knee

region should be in a current vs. voltage or a current vs. temperature test

for a uniform work function emitter. Also, by unifying the SCL and TL

emission regimes through Poisson's equation, we were able to quantitatively

predict how the shape of the interelectrode potential function changes,

including in the critical SCL-to-TL transition regime, where all terms in

the nonlinear Poisson's equation remain important.

The results of this numerical calculation were also compared to the

prior approximate methods of Longo,9 Scott,10 and Eng.12 The Longo formula

has a SCL-to-TL transition which is much too gradual. The Scott method was

found to be a few percent high in this regime, while the Eng method was a

few percent low. In addition, the closed-form approximation [Eq. (24)]

derived earlier by Eng was found to be very accurate lor TL emission,

showing that space-charge effects persist well into the classical

temperature-limited emission regime.
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LABORATORY OPERATIONS

The Aerospace Corporation functions as an "architect-engineer" for

national security projects, specializing In advanced military space systems.

Providing research support, the corporation's Laboratory Operations conducts

experimental and theoretical investigations that focus on the application of

scientific and technical advances to such systems. Vital to the success of

these investigations is the technical staff's wide-ranging expertise and its

ability to stay current with new developments. This expertise is enhanced by

a research program aimed at dealing with the many problems associated with

rapidly evolving space systems. Contributing their capabilities to the

research effort are these individual laboratories:

Aerophysics Laboratory: Launch vehicle and reentry fluid mechanics, heat

transfer and flight dynamics; chemical and electric propulsion, propellant
chemistry, chemical dynamics, environmental chemistry, trace detection;
spacecraft structural mechanics, contamination, thermal and structural

control; high temperature thermomechanics, gas kinetics and radiation; cw and
pulsed chemical and excimer laser development including chemical kinetics,
spectroscopy, optical resonators, beam control, atmospheric propagation, laser

effects and countermeasures.

Chemistry and Physics Laboratory: Atmospheric chemical reactions,

atmospheric optics, light scattering, state-specific chemical reactions and
radiative signatures of missile plumes, sensor out-of-field-of-view rejection,

applied laser spectroscopy, laser chemistry, laser optoelectronics, solar cell
physics, battery electrochemistry, space vacuum and radiation effects on

materials, lubrication and surface phenomena, thermionic emission, photo-
sensitive materials and detectors, atomic frequency standards, and

environmental chemistry.

Computer Science Laboratory: Program verification, program translation,

performance-sensitive system design, distributed architectures for spaceborne
computers, fault-tolerant computer systems, artificial intelligence, micro-

electronics applications, communication protocols, and computer security.

Electronics Research Laboratory: Microelectronics, solid-state device

physics, compound semiconductors, radiation hardening; electro-optics, quantum
electronics, solid-state lasers, optical propagation and communications;

microwave semiconductor devices, microwave/millimeter wave measurements,
diagnostics and radiometry, microwave/millimeter wave thermionic devices;

atomic time and frequency standards; antennas, rf systems, electromagnetic

propagation phenomena, space communication systems.

Materials Sciences Laboratory: Development of new materials: metals,
alloys, ceramics, polymers and their composites, and new forms of carbon; non-
destructive evaluation, component failure analysis and reliability; fracture

mechanics and stress corrosion; analysis and evaluation of materials at

cryogenic and elevated temperatures as well as in space and enemy-induced

environments.

Space Sciences Laboratory: Magnetospheric, auroral and cosmic ray
physics, wave-particle interactions, magnetospheric plasma waves; atmospheric

and ionospheric physics, density and composition of the upper atmosphere,

remote sensing using atmospheric radiation; solar physics, infrared astronomy,
infrared signature analysis; effects of solar activity, magnetic storms and

nuclear explosions on the earth's atmosphere, ionosphere and magnetosphere;
effects of electromagnetic and particulate radiations on space systems; space

instrumentation.


