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. Introduction

- chnicai 4 fdcuities arising in Lte calculation of rnarginai postenor densities needed for Bayesian

inference nave long served as an impediment to the wider appiication of the Bayesian framework to real

data. n the last few years there have been a number of advances in numerical and analytic approximation

:echnicues for s-.ci caiculations-see, for example, Naylor and Smith (1982. 1988), Smith et al (1985.

.987), T'erney and Kadane (196), Shaw (1988), Geweke (1988)-but implementation of these approaches

'yic ai, il requires sopnisticated numerical or anaivtic approximation expertise and possibly scec:aiist

software. :r a recent paper, Gelfand and Smith (1988) described sampling based approaches for such calcu-

'ations, which, by contrast, are essentially trivia, :o implement. even with limited computing resources. .in

.his previous paper we entered caveats regarding the computational efficiency of such sampling based

approaches, but our continuing investigations have shown that adaptive, iterative sampling achieved through

the Gibbs sampler (Ceman and Geman. 1984) is, in fact, surprisingly efficient, converging remarkably

quickly for a wide range of problems.

Our objective in this paper is to provide illustrations of a range of applications of the Gibbs sampler

in order to demonstrate its versatility and ease of implementation in practice. We begin by briefly review-

ing the Gibbs sampler in Section 2. In Section 3. based upon computational experience with a variety of

problems, we offer several suggestions on assessing the convergence of this iterative algorithm. In Section

. we begin our illustrative analysis with a variance components model applied to a 'nasty' data set intro-

duced in Box and Tiao (1973), whose Bayesian analysis therein involved eiaborate exact and asymptotic %,

methods. In addition, we illustrate the ease with which inferences for functions of parameters, such as

ratios, can be made using Gibbs sampling. in Section 5. we take up the k-sample normal means problem in

the general case of unbalanced data with unknown population variances. In particular, we show that the

previously inaccessible case where the population means are ordered is straightforwardly handled through C]

Gibbs sampling. Application is made to an unbalanced generated data set from normal populations with

known ordered means and severely non-homogeneous variances. In Section 6, we look at a population
Codos

linear growth curve model, as an illustration of the power of the Gibbs sampler in handling complex
/or

hierarchical models. We analyse data on the response over time of 30 rats to a treatment, with a total of 66
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.nvoivinz tne ccmparison 0C :wo d-uc t'ormulations. ,n order to iilustrate tne ease with which the Gibbs

amnoier ceais with compiicat:ons arsing from missing data in an originally baianced design. A summar.'

Jiscussion is provided in Section S.

2. Gibbs sampling

:, tLe sequei, densities ",vlil be denoted. generically. by square brackets so that Joint. conditional aix:

,narginai forms appear. resoeUCtvei. as &Y,Y, IXIY] and [Y.T.-",e usual marginaiisation by inte2Trat'cn

procedure will be denoted by forms such as

[x]= j XIYI-[Y].

Throughout, we shall be dealing with collections of random variables for which it is known (see. for exam-

pIe. Besag, 1974) that specification of all full conditional distributions uniquely determines the full joint

density. More precisely, for such a collection of random variables U,, U2 ... . Uk, the joint density,

.k], is uniquely determined by [U,IU, r i s], s = 1.2 ..... k. Our interest is in the marginal

distributions. [UJ], s = 1,2,.

An algorithm for extracting marginal distributions frc , h- .'uil conditional distribution was formally

introduced as the Gibbs sampier in Geman and Geman (1984). 'he algorithm requires all the full condi-

tional distributions to be 'available' for sampling, where 'available' is taken to mean that, for example, U,

can be generated straightforwardly and efficiently given specified values of the conditioning variables, U.,

1 =S.

Gibbs sampling is a Markovian updating scheme which proceeds as follows. Given an arbitrary start-

ing set of values U 0). U '°), we draw U 1 ) from [U . . . . . . .  . then U," )  from

"Uz !U; ),r .Uk k-°) -1 and so on up to U' 1 ) from tU, IUf' )........ ,o complete one iteration of the

zcheme. After t such iterations we would arrive at (U," ) ..... I' ')). Geman and Geman show under mild

d Uconditions that U)* - U. - iU as r o,,. Thus, for tlarge enough we can regard U ' as a simulatcd



Replicating this process .7: Tnes produces m lid k-.upies ..), jn = i . . For any s. te
coilecion U.".. . can be viewed as a simulated sanoie from ( C)7 e margial density is then

-sumated by the finite mixture density

=6', ,m- v rUJ. U2. ,* r. (1)i

See Geifand and Smith. >.SS. for further discussion.)

Since the expression (i', can be viewed as a Rao-Biackweilized' density estimator. relative to the

more usual kernel density estimators based upon U',' ), I ...... n, estimation effciency, is high and we find

,n = ICO (at most 200) to be adequate in practice as a converged sample size on which to base the marginal

density estimate.

Suppose interest centres on the marginal distribution for a variable V which is a function g(U, . ... Uk)

of U ..... U,. We note that evaluation of g at each of the (U .. U,') provides samples of V. In this

case. a density estimate of the form 1) is not available, but an ordinary kernel density estimate can readily

te calculated (see Section 4 for an iilustration of this).

All applications we consider in this paper are within the Bayesian framework, where the U, are unob-

servabie, representing either parameters or missing data iand V can thus be a function of the parameters

which we are interested in). All distributions will be viewed as conditional on the observed data, whence

marginal distributions become the marginal posteriors needed for Bayesian inference or prediction.

3. Convergence diagnostics

Our experience thus far, in a variety of real and simulated data analyses, shows remarkably rapid

:onvergence of the Gibbs sampler. In acquiring this computational experience, we have experimented with

a variety of diagnostic tools to facilitate concluding whether or not the algorithm has 'converged'. Gen-

erally, me most natural and least sophisticated approach has been the most useful. Namely, for a fixed m



:rcrcasc : cveriav 7:icts c. csuitinz czsuratea_ "d .nrsities. auscie i: _" e:s..mats -1-c *,iiuvai .nt

•v~r a- lick :: t-' '-e ..... " :;,;ariv, we also increase ,n at fixed ! 'o assess s:aailiv cf ders:tv
sunat. :.n our experimentation we increase :n muiuples of 10 never having recured > 50. We tvpi-

se, '7 = 50 or m = iM0. Rc.usite zeneration, even for larger t and m, is usuaily neither costly nor

stow. Univariate plots are drawn by selecting -'0 equally spaced points in the e,:ective domain of rhe van-

able. We then evaluate the density estimate (,of the form (1)) at tnese points and a spline-smoomhed curve is

-awn trough these vaiues. 3, e:yectave domain, we mean ria interval where. say. 9% or .e mass uces.

-e occasionaily require several passes to determine this domamn and nccasionaily require -., -:ri 2.,

roints to obtain a satisfying piot. Clearly. this oiotunr metnod ccuid be refined, but sucn issues a-e not 'e

main concern of this paper. in this regard, we also recommend a convenient check on calcuiations by using

a simpie tapezoidal integr:tion on me collection of estimated density values to see how ciose the result is

:o 1.

Monitoring across iterations of summary statistics such as sample moments or quantles has not pro-

ven effective. If we successively study differences or relative differences in such statistics, it is not easy to

assess when these quanuties are stable. Calculation of standard errors for such differences is difficult in

'art due to the unknown dependence ,tructure between successive iterations alhougn comparison of itera-

:tons, say 10 apart. wiil mitigate the dependence issue). Sample reuse methods might be tred. However,

rather than a comparison of a few summary statistics, we prefer an overall dismbutional comparison

between iterates.

An attractive graphical tool, which we have found very useful, is the empirical quantile-quanule plot.

With m constant across iterations, such plots are easily obtained. One only need order the generated sam-

ples at the iterations to be plotted. Using m = 100 (perhaps 200), under convergence the plotted points

should generally be close to the 45 ° line. Creating such displays over increasing numbers of iterauons

enables us to distinguish inherent variation from lack of convergence. Such displays, with their inherent

variation. accord with the aforementioned 'thick felt-tip pen' comparison. We offer illustrative displays in

,.cniunction wth the variance components example of Section 4.



oruna :tna. :st21Z : C:irtncn :0 Z.C asscs3=n't of :onvcrcc. . c Markovian ~~r

770coss M1oon1-s :-,t aparent :ovre Zecinbetmoorariiv -,nr-dby an uttvpicai'

7r-e.-s can upsct our f~Zts~ or oc,-aps several subsequent iterations until stability is restored.

.n obvious way to robUSufV* :eProcess is to work with pooied successive sanies within some moving

*:i.-Acain, wec snail iot fo-cus on such rednnems in this paper.

Variance comoonent problems

Ranlorni etiectsres are ve-v; natiuraiiv modelled %viun'n the 13aVeslan :r.arnework. N onetheiess.

acuiauon of -."e marginal posumror dismrbutions of variance cornponents and functions of variance corn-

c7nents nas proved a ch-allenginig :echnical problemn. 3ox and Tiuo .1973) report a substantial amount of

detiailed. sophisticated approxiMauon work, both analytic and numerical. Skene ( 1983) considers purpose-

'-uiit numerical techniques. The methods described by Smith er a,' (1985. 1987) require caretf.ul reparametri-

z.auton dencendentc uoon both the data and the choice of prior. In a similar spirit. Achcar and Smith (1988)

discuss parameter transformat-ions for successful implementation of Laplace's method (7Tierriey and Kadane.

. 38') B comparison. _oe Gibbs sampling approach is remarkably simple.

We shall illustrate u-ie approacni with a model involving oniy two variance components. but it will be

clear that the development for more complicated models is no more difficult. Consider. then, the variance

cornoonents mnodel defined by

where. arsuming conditional independence throughout. [9 u aJ = Mg,. a and [e,, C V(O, a~ Let

O = '0,.-j, Y =...........YK) and assume that u,ocr, are independent with priors [Lu] =(0a)

(71= [Gab a~] = LG(a 2 ,b,) (see, for example, Hill, 1965). where IG denotes the inverse gamma

Aistribuuion and uO,o'6,aj,bt,az,,b are assumed known. It is then straightforward to verify that the Gibbs

sampler is specitleJ by:

r')2 Yu~d c [Gta, K, b, - ZCO c

Y, IG( 2 Kb 2 .. (-



J -

a . , jCI
Ja;.+-a; + a;; +

•,here = (. .), Y, LY../J, I is a Kxl column vector of 's and I is a KxK identity matrix. In

7articular, in (3), we can allow the a; and/or b: equal to zero. representing a ranae of conventional improper

nriors for cg and a,-.

Box and Tiao (1973. Secuon 5.1.3) introduce two data sets for which unc .odei (2) is appropriate.

The second and more difficuit sat is zenerated from random normal deviates withi -- 5a.o'-=-to;= 16.

7he resultant data. summarised in Table 1, are badly behaved, in that the standard (.kNOVA based)

unbiased estimate of a', is negative, rendering inference about o' difficult. We shall use this example to

provide a challenging low dimensional test of the Gibbs sampler.

Table 1: Generated Data (Box and Tiao, 1973. p 247)

K= 6 J= 5 14=56656

Batch 1 2 3 5 6

f 6.2268 4.6560 7.5212 5.6848 6.0796 3.3252

S2  3.8650 25.4900 -5.6359 7.0935 1-.3590 3.2691

Source SS df MS

Between Batches 41.6816 5, 8.3363

Within Batches 358.7014 =-4 14.9459

Total 100.3830 29

= 14.9459 &"' = -. 3219



7cr :.lustrauve cu.oses. %we provide a 3ayesian araiysis basea en :. .-'or soeciacatiun

, = 'GO,0), "U'] = .,0, together with either

I: [oa] = IG(O0,) or ,7: [caj] = IG( ,b1 ).

Under /, we have the improper prior for (c,9aC) suggested by Hill (1965), which is a naive two dimen-

sional extension of the familiar non-informative prior for a variance. Under 11, we have a proper weak

.ndepencent Lnverse chi square oior for o'; which, depending upon b,, 'supports' or 'differs from' the oata

see Skene, i976 for further detailed discussion). The two priors for c.- differ considerably. Under I [C;]

is one-tailed, giving strong weight to the assertion that a; is near zero. As this is weaxiy confirmed by the

data. the marginal posterior (Figure la) reflects this prior. Under I1, [cr2 ] is two-tailed, having mode at

2b,,3. interestingly, experimentation with b, varying up to 6 leads to an outcome similar to that under I.

For all such bl, the prior is virtually reproduced as the posterior (see Figure 2a for the case b, = I). The

data provide very little information about c.

Our experience with Gibbs sampling in this context is very encouraging. Under both I and I/ (with

b, = 1), the iteratve approach had no difficulty with the extreme skewness in the resultant posterior of a;-.

Overall convergence was achieved under I within at most 20 iterations using m = 00. ana under II within

at most 10 iterations using m = 100. We demonstrate this in Figure 1, which, for case I, compares density

estimates after 20 and 40 iterations for a"2 and a2. Figure 2 presents the corresponding curves for case II

after 10 and 20 iterations. In Figures 3 and 4, we show several empirical Q-Q plots for a. and aq,

respectively, under II, again using m = 100 points. We compare the first iteration with the second, the

second with the third, the third with the fourth and at 'convergence'- the ninth with the tenth. Note that

for a. we essentially have convergence at the third iteration.

The variance ratio, a/ae, or perhaps the inoa-class correlation coefficient cr/(aj-+c"7) are often

quantities of interest. Remarks at the end of Section 2 show that obtaining the marginal posterior distribu-

tion for such variables is easily accomplished. Figure 5 shows the estimated density for the variance ratio

under both I and Ii obtained after 20 iterations with m = 1000, the untypicaily large value of m arisin-

trom the awkward shape of the posterior. A density estimator with normal kernels was used with window



'um sues:aa : Siive.r.nan i9,6 ;.4S)

Normal means problems

The comparison of means presumed from normal populations is arguably the most ubiquitous model

.n statistical inference, but issues such as unbalanced sampling and heterogeneity of variances nave tvpi-

caily forced compromises in fraquenust and empirical Bayes approaches. Historically, this has also been

somewhat true in the pureiv Bavesian setting. Frequently, with regard to variance parameters the proper

3avesian procedure of marginalisauon ov integration has been r, Iaced by point e=umation. in order :o

reduce Lne dimensionality of numerical integrations needed to obtain marginal posterior distributions for

mean parameters. Gibbs sampling provides a means of performing such integrations without having to

make approximations. The Gibbs sampler was introduced in the context of problems of very high dimen-

sion (such as image reconstruction, expert systems, neural networks) and has been spectacularly successful

in such contexts. Its encouraging performance in our investigations is therefore not surprising since even a

large multiparameter Bayesian problem is of small dimension compared to typical image processing prob-

:ems.

In tnis section, we consider the comparison of A population means which, in conjunction with distinct

unknown population variances and an exchangeable prior, results in a 21+2 parameter problem. We show

that the implementation of the Gibbs saiipier is s=x;hforwrd. The more general c where the popula-

uon means are represented as linear functions of a set of explanatory variables can be handled similarly

using by now familiar distribution theory given in, for example, Lindley and Smith (1972). Such an exam-

ple, involving 66 parameters, appears in Section 6.

Often there are implicit order restrictions on the means to be compared. For instance, it may be

known that the means are increasing as we traverse the populations from i = I up to I. If we incorporate

this information into our prior specification using order statistics, the integrations required for marginalisa-

tion are rypicaily beyond the capacity cf current numerical and analytic approximation methodology. How-

ever, as we show below, the Gibbs sampler is still straightforwardly implemented since normal ful!



Te rc.-uisite distribution theory assuming no order restnc-ons on the means is as follows. Assuming

-ondi-onai independence throughout, let (Y,i i, =.v(O, c) i i .... =.......

" !G(a,,bl), [ , = V(,aO,T) and [:- = iG(a,,b,), where iG denotes the inverse Gamma

'ismbuuon and .. ,O,b,iLoo6 are assumed known toten chosen to represent zonvenuicnai improper

,,,or :Crrns: sce Secuon y. 3y sufficiency, we -cnfine attention to a _a

z1" - *. :" - , L L ng d= , ), o = 1,cr,.... o-) ancY=Y 1  , . 2,, we have, :Cr

:.en aa vh .h. following fuil conditional distributions.

L I Y , C 4 L, z .-: ] = N 8 ,D2 -

wnere

rzi T, C i , .

0"i2

D.= . D' = O. ,

I

. ,= Y- (a,:52,.2, ,C,],

where

£Cr,"YS,.,] = IG(a I I- ni.b 1 -,-., b (Y~i-O,)2),
.1=1

YaE9 9, II- . I.o--=- + I

and

pe t e n Yw :,o be o ar , , ba, - Z('o, . .

Suppose now that the means are known to be ordered, say, O, < 0, < ... < O.If" we assume as our prior



"-at :he d. anse as order statisucs from a sample of size I from .V(t, 7-), then it is straightforward to show

:,hat [di 0Y, , i, o-,#, ] is now precisely the marginal normal distribution in (4), but restricted to the

interval [L.-,, 6i,1 (where we adopt the convention 00 = -. , = -- ) and so again is straightfor-

wardly available for sampling. The tull conditional distributions for o and j. remain exactly as above.

:n sampling from the muncated normal distribution, the rejection method (discarding ineligible obser-

oaons sampled from the non-Lruncated distribution) will iend to be wasteful and slow, -'articuiariv if

J. -_ i is small. To draw an observation from N(c,d:) restricted to (a,b) a convenient "one-for-one'

-,ampline method is the following (Devroye, 1986). Generate U, a random uniform (0, 1) variate and caicu-

:ate Y = c-d(-t(p(U; a,3,ca )), where

p(U: a, b, c,a) = a _ __(Id )

with 0 denoting the standard normal cdf. It is straightforward to show that Y has the desired distribution.

These ideas are easily extended to give a general account of Bayesian analysis for order restricted parame-

ters, but details will be deferred to a subsequent paper.

In order to study the performance of Gibbs sampling in the above setting, we analysed generated data

so as to be able to calibrate the results against the known situation. For the purpose of illustration, we

2reated a rather unbalanced, extremely non-homogeneous, data set by setting I = 5 and for the ith popula-

tioni= 1. 5 drawing ni = 2i-- 4 independent observations from N(i,i 2 ). The simulated data is summar-

ised in Table 2, and we note, in particular, the inversion of order of the sample means, 1*4 and Yc.

Table 2: Summary of simulated data for Normal Means problem

Sample 1 2 3 4 5

n 6 8 10 12 14

Y7,- 0.3191 2.034 3.539 6.398 4.811

S, 2 0.2356 2471 5.761 8.758 19.670



For ilusrauon, we sp cLded priors [ ,] = '.0), l0b), = IG,, 1) and -' = 1," ( ), 1. For the

Gibbs sampler, convergence was achieved within ten iterations for the unordered case using rn = 100. The

ordered case required at most twenty iterations, again using m = 100, except for [8, 1Y and [0, Y1 which

both required m = 1000. Rather than graphically documenting the convergence in this case, we compare

.he unordered and ordered marginal posteriors. Let [,I Y]. and [0 ,Yo denote, rcspect:v.,v. the unor-

-ered and ordered density estimates. In Figure 6a we consider, for example, 08 and see that [9, Y'. and

Y' . have roughly the same mode but that is less dispersed. Utilizing t o . ...... rrnaton

results in a sharper inference. In Figure 6b, we consider both O4 and 0. As would be expected. civen th

sufficient statistics, [09jY lies to the left of [0 Y],, and is very dispersed. Utilizing it.e order informa-

tion places [0,Y1o and [&,Y] o0 in the proper stochastic order, pulls the modes in the correc direction and

-educes dispersion.

6. An hierarchical model

Applications of hierarchical models of the kind introduced by Lindley and Smith 1197-.) abound in

delds as diverse as educatonal testing (Rubin, 1981), cancer studies (DuMouchel and Harris, 1983) and

biological growth curves (Strenio, Weisberg and Bryk, 1983). However, both Bayesian and empirical Baye-

sian methodologies for such models are typically forced to invoke a number of approximations, whose

consequences are often unclear under the multiparameter likelihoods induced by the modelling. See, for

example, Morris (1983), Racine-Poon (1985) and Racine-Poon and Smith (1989) for details of some

approaches to implemnting hcrarchical model analysis. By contrast, a full implementation of the Baye-

sian approach is L. achieved using the Gibbs sampler, at least for the widely used normal linear

hierarchical mode' st"

For illustrtion, we focus on the following population growth problem. In a study conducted by the

CIBA-GEIGY company, the weights of thirty young rats were measured weekly, for five weeks. The data

are given in Table 3, with weight measurements available for all five weeks.



- :s -

Table 3: Rat population growth data

Rat Xi Xi2 -t: 3  X, 4  xi5 Rat Xii xi2  x, 3  x_4  x. 5

1 151 199 246 283 320 16 160 207 248 238 324

2 145 199 249 293 354 17 142 137 234 280 316

1 147 214 263 312 33 18 156 203 243 2S3 31,

.155 200 :37 272 297 19 157 212 259 307 336

5 135 188 230 280 323 20 152 203 246 2S6 321

6 159 210 252 298 331 21 154 205 253 298 334

7 141 189 231 275 305 22 139 190 225 267 302

8 159 201 248 297 338 23 146 191 229 272 302

9 177 236 285 340 376 24 157 211 250 235 323

10 134 182 220 260 296 25 132 185 237 286 331

11 160 208 261 313 352 26 160 207 257 303 345

12 143 188 220 273 31A 27 169 216 261 295 333

13 154 200 244 289 325 28 157 205 248 289 316

14 171 221 270 326 358 29 137 180 219 258 291

15 163 216 242 281 312 30 153 200 244 286 324

Xi I 8, Xi2 = 15, X 3 = 22, Xi4 = 29, x5 = 36 days, i = 1,..., 30.

For the time period considered, it is reasonable to assume individual straight-line growth curves so that.

under homoscedastic normal measurement errors.

Yj - N(a+ P,3 x, a2 ) (i = I. k; j = I. n1)

provides the full measurement model (with k = 30, ni = 5, and xjj denoting the age in days of the ith rat

when measurement j was taken). The population structure is modelled as

A~: 00(o.},(=1



ssumuz ;onditicnai inde~enrene -rougnout. A full Bayesian analysis now requires the specification of a

.r~or :or a-, ,t = .) " and . Typical in ferences of interest in such studies include marginal posteriors

zor he population prarameters cz,3 0 and predictive intervals for individual future growth given the first

week measurement. We shall see that these are easily obtained using the Gibbs sampler.

For the pnor specification, we take

:.u...-lF r: = .][ - [ ]

:o have a normai-Wishart-inverse-gamma form,

Iu] = ,c)

[Z.,- = W((pR)-Kp)

Z]=G( VoVr4)

Rewriting the measurement model for the ith individual as Y - N(Xi O,c 2 ,) with 8; = (caB,)r and X,

*denoting the appropriate design matrix, and defining

k k
Y = 0',,..., Yk7), =k- I , n= n,

i=1 i=i

Di = cr'-2Xil7Xi 
, 

.
-

I

V = (kZ-'+C-') - ',

the Gibbs sampler for 0 = (01..... k), Z, o'2 (a total of 66 parameters in the above example) is straightfor-

wardly seen to be specified by the following conditional distributions:

[ O IY,t,r-',o-2 1 = N[D,(o - 2XY, yZ-l),Dj} (i = 1,...,k) (5)

[gIY, I ,0 -E- 12 = N(V(k1 1 -OC -'q), V)

[E-lY, (O),#,era] = Wf [L(O-i)(O,-g)I.ir+pRJl,k+p}



-. 5

For the analysis of the rat growth data given above, the prior specification was defined by:

C-'=0, vo=0, p= 2, R=( 1 0 0  0
'0 0.1 '

7etiecUinZ rather vague initial information relative to that to be provided by the data. Simulation from the

",Vishar: ,isrnbution for the 2x natrix 1-1 is easily accomplished using the algorithm of Odell and Feive-

son i966): with G(.,.) denoting gamma distributions, draw independently from

U = G,, ), [.V=G(--'. ) .v1=N(0, 1):

set

W=fN -r U,+N2 ;

then if S - 1 = (Hi)T(Hf),

= (H4 )'W(H ) - -I(S- . v).

The iterative process can be conveniently monitored by observing Q-Q plots for aco,/3 0, and the eigen-

values of -1. For the data set summarized in Table 3, convergence is achieved with about 35 cycles of

m = 50 drawings.

As we remarked earlier, full Bayesian analysis of structured hierarchical models involving covariates

has hitherto presented difficulties and a number of Bayes/empirical Bayes approximation methods have been

proposed. Racine-Poon and Smith (1989) review a number of these and demonstrate, with a range of real

and simulated data analyses, that the EM-type algorithm given by Racine-Poon (1985) seems to be the best

of these proposed approximations. However, it can be seen from Figure 7, where we present the estimated

posterior marginals for the population parameters, that, even with this fairly substantial data set of 30x5

observations, the EM-type approximation is not really an adequate substitute for the more refined numerical
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approximanon provided by the Gibbs sampier. Here. the EM-based 'posterior density' is the normal condi-

-:onai form i5) with the converged estimates from the Racine-Poon algorithm substituted for the condition-

:ng parameters.)

To further underline the effectiveness of the Gibbs sampler, and the danger of point-estimation based

approximations in hierarchical models, we reanalysed two subsets of the complete data set of 150 observa-

tions given in Table 3, chosen to present an increasing challenge to the algorithms. One 7:b..: .onsisted of

90 observations, obtained by omitting .he final data point from rats 6-10, the final two data points from rats

: 1-20. the final three from rats 21-21 and the final four from rats 26-30. The other subset consisted of 75

observations, obtained from the 90 by retaining only one of the observations for each of the rats 16-30.

Convergence for the first subset required about 50 iterations of rn = 50; convergence for the second about

65 iterations of m = 50.

Figure 8 summarizes the marginal posteriors for the growth rate parameter obtained for the two data

subsets from the Gibbs and EM-type algorithms, respectively. It can be seen that while the EM approxima-

tion is perhaps tolerable for the full data set (Figure 7), it is very poor for the smaller data sets.

Consider now the data set of 90 observations and suppose that the problem of interest is the predic-

tion of the future growth pattern for one of the rats for which there is currently just the first observation

available (i = 26,...,30). Specifically, suppose we consider predicting Y,, j 2.3,4, 5, corresponding to

= 15, xi 3  22, x,4 = 29, x,5 = 36 days. Then, formally,

=YijYJ =fLYii i.O r9!1Y1,

where

[Yijjji, 0"2] =  N(cti +gjlxi i , 0"2). (6)

An estimate of [YijjY] of the form (I) is thus easily obtained by averaging [Y8jjji,o7:] over pairs of

(Oi,c0.) obtained at the final cycle of the Gibbs sampler. Figure 9 shows, for i = 26, bands drawn through

the individual 95% predictive interval limits calculated at days 15, 22, 29 and 36, together with the subse-

quently observed values at those points.

II I i I I I I I I I W
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Aternatively, we could view the omitted or. in general, as yet unobserved data points as missing data.

7he Gibbs sampler could then be implemented treating such Yi as unobservable (in addition to the model

parameters) since the required full conditional distributions have the form (6).

7. Missing data in a cross-over trial

The balanced two-period cross-over design is widely used: for example, in the pharmaceuticai indus-

try for bioequivalence studies involving a standard and a new drug formulation. A and B, say (Racine et a!.

1986; Racine-Poon et al, 1987). Assuming n subjects, the standard random effects model for a two-period

cross-over is given by:

yi(: ) = u a (- 0 )(- 1)( - 1)(A-1l() -

where

,(jk) = response to the ith subject (J = 1.n) receiving the

jth formulation (j = 1,2) in the kth period (k = 1,2);

= overall mean level of response;

o = difference in formulation effects:

ir = difference in period effects:

3i = random effect of ith subject;

ei(jk) = measurement error.

The (5, Ei(jk) are assuming independent, for all i,j,k, with e(jk) - N(O, a1
2), 3i - N(0,

Suppose now that subjects i = I ...... V have data missing from one of the two periods: subjects

M + I- . n have complete data. We shall write



Y = I I(I = I !.... t),

where the 'observauons' within subject i have been labelled such that V is the observed data, Ui is miss-

ing, and Xi defines the corresponding design matix. For subjects i = M+ 1.. n, Yi = Vi simply denotes

all the observed data. We write U = (U1 . . . . UW), V = (V,,..., V,)r. Then, conditional on

Where o,- = 9o-2 we have

Y= - [ OS -(XO, S),

where

Z0

S=

Here. Y is 2nxl, X is 2nx3 and S is 2nx2n.

It is convenient to work with 0, o,o', where C: = .+2-az, and to note that. if we define

Y.. average response of the ith subject

f (Yii) +Yi(22)) for ABseuec
= :(Yi(21) + f(or)) BA sequence

Y- = difference of the two responses for the ith subject

= (y.(2t)_y.(=)) for B sequence,
1'Y(1 -K1) BA

then:
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-or the .4B sequence,

(yi- IN V - a'" 0
" ', 0 a,

for the BA sequence,

y"i- j'-2v a r- 0 r

If we now make the prior specification

[..12,.C3-' N-wc)ZG(, = V)7v3 Y.2C)r.IG ,

it can be seen that

9] (a?)

-3 )ex{~s 3 }a)2 exp -3h}

where

s* = 22 2 [y(-2 T JJ

ABa*q. BA *aq.

sS3 = 2 Y_ (Y .j-)2 .

ft follows that a Gibbs sampler for oat, s', 9 and U is specified by:

[a- , U,V,8, cr =G :G --- v 2xp, e
2 2

- 2),V,Oa ep = IG(n+v3 S2v 1'.

(a 2cj ( ) x a
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[OIU,V,c-,¢] =iV(D(XTS-'Y-C-1r7),D},

with

X'rS-ty = XirzT-Iyi,
i=1

x'rS-Ix = x Xir- -lxi,

D = X '-X+C-

[UI, O cC~c£] NX.O----.(V-X-O), Cr 12 2-:' .

~a=2

with

X= : , U= ,

X-. , W=

Table 4 summarizes data from a (complete data) trial conducted with n = 10 subjects, in which responses

are trcated as missing ,zcrn subjcct 1 in pcriod 1. su.jt 3 in period 2 and subject 6 in period 2.
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Table 4: Data from a two-period cross-over trial

Subject Sequence Period ] Period 2

1 AB 1.40 1.65

2 AB 1.6-4 1.57

3 BA 1.44 1.58

4 BA 1.36 1.68

1 5 BA 1.65 1.69

6 AB 1.08 1.31

7 AB 1.09 1.43

8 AB 1.25 1.44

9 BA 1.25 1.39

10 BA 1.30 1.52

A = new tablet, B = standard tablet; formulations of Carbamazepine.

Data are observations of the logarithms of 1.52 maxima of concentration-time curvzes:

see Maas et al (1987) for background and further details.

Convergence was achieved within 30 iterations of m = 50. Figure 10a shows the marginal posterior

density for a 2 ; Figure 10b shows the marginal posterior density for 0, the treatment effect. The Gibbs

sampler also automatically provides 'predictive' densities for the missing responses; these are shown in

Figure 11 and their locations may be compared with the actual missing values. Finally, the ease with which

the Gibbs sampler permits analysis of this cross-over model enables informative sensitivity studies to be

performed. In particular, we can easily study the difference between the treatment posterior density based

on the complete data, the data omitting the assumed missing values, and the data based on just the seven

subjects for whom full data was assumed. The resulting posteriors are shown in Figure 12 and reveal a

typicil finding in such trials. Namely: that if there is missing (at random) data from a subject we might just



as weil ignore We subiect a1tocether; also, that the ioss of 30% of subiects in a small rial results in sub-

stantiaily increased inferental uncertainty.

8. Summary discussion

The range of normal data problems considered above as illustrations of the ease with which numerical

3avesian inferences can be obtained via Gibbs s..iin, :nciude the Silowinz asoects:

awkward postenor distributions, other-wise requLing subtle and sophisticted numerical or analytic

approximation techniques (Sections 4 and 5);

further distributional complexity introduced by order constraints on model parameters (Section 5);

dimensionality problems. typically putting out of reach the implementation of other sophisticated

approximation techniques (Section 6);

messy and intractable distribution theory arising from missing data in designed experiments (Section

7);

general functions of model parameters, including so-called Fieller-Creasy problems (Section 4);

awkward predictive inference (Section 6).

In all these situations, we have seen that the Gibbs sampler approach is straightforward to specify

distributionally, trivial to implement computationally and with output readily translated into required infer-

ence summaries.

Th, potential of the methodology is enormous, rendering straightforward the analysis of a number of

problems hitherto regarded as intractable from a Bayesian perspective. Work is in progress in extending the

range of implementation. First, by developing, where necessary, purpose-built efficient random variate gen-

erators for conditional distribution forms arising in particular classes of applications; secondly, by facilitat-

ing the reporting of bivanate and conditional inference summaries, in addition to univariate marginal
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curves. We plan to report shortiv on varous of these extensions.
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