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1. Introduction

Technical difcuities arising n the calculauon of marginal posterior densities nesded for Bavesian
:nference have long served as an impediment to the wider appiication of the Bayesian framework to real
data. In the last few vears there have been a number of advances in numerical and analytic approximation
:echnigues for such calculatons—see, for example, Naylor and Smith (1982, 1988), Smith er a/ (1985.
i987), Tierney and K1dane (1986), Shaw (1988), Geweke (1988)—but implementation of these approaches
tvprcaily rzguires sopnisticated numericai or analvtic approximation expertise and possibly speciaiist
software. [n a recent paper, Gelfand and Smith (1988) described sampling based approaches ror such calcu-
‘auons. which, by contrast, are essentiaily trivia, :0 impiement, even with limited computing resources. in
‘his previous paper we entered caveats regarding the computational efficiency of such sampling based
approaches, but our continuing investigatons have shown that adaptive, iterative sampling achieved through
the Gibbs sampler (Ceman and Geman, 1984) is, in fact. surprisingly efficient, converging remarkably

quickly for a wide range of problems.

Our objective in this paper is to proviae illustrations of a range of applicatons of the Gibbs sampler
in order to demonstrate its versatility and ease of impiementaton in practice. We begin by briefly review-
ing the Gibbs sampier in Section 2. In Section 3. based upon computationai experience with a variety of
problems, we offer several suggestions on assessing the convergence of this iterative algorithm. In Section
+ we begin our iilustrauve analysis with a variance components model applied 1o a ‘nasty’ data set intro-
duced in Box and Tiao (1973), whose Bayesian analysis therein invoived eiaborate exact and asymptotic
methods. In addition, we illustrate the ease with which inferences for functions of parameters, such as
ratios. can be made using Gibbs sampling. In Section 5, we take up the k-sample normal means problem in
the general case of unbalanced data with unknown population variances. In particular, we show that the
previously inaccessible case where the population means are ordered is straightforwardly handled through
Gibbs sampling. Applicaton is made to an unbalanced generated data set from normal populations with
known ordered means and severely non-homogeneous vanances. [n Section 6, we look at a population
linear growth curve model, as an illustration of the power of the Gibbs sampler in handling complex

hierarchical models. We analyse data on the response over time of 30 rats to a treatment, with a total of 66




~aramelars nolag aierarcnical mocgel speciicauon. ia Secuca »2 2nalvse @ two-penod cross-over ¢a2sian
.avolving tae companson of (wo drug formulations. :n crder (o iilustrate the ease with which the Gitbs

sampier ceals with compiications arnsing rom missing data 1 an orniginaily balanced design. A summary

Jiscussion is provided in Section 3.

2. Gibhs sampling

11 the segquel, densiues wiil be denoted. generically, by sguare bdrackets so that joint, conditionai anc
marzinal forms appear, respecuively. (X, 7], ] and {7]. The usu 1nalisati v iategraticn
g £ Dp pecuveiv, as (X, Y]}, [X|Y] and (7] ¢ usual marg sation bv integratic

Jrocedure will be denoted by forms such as

(X] = | (X]|Y]=({Y].

Througnout, we shall be dealing with coilections of random variables for which it is known (see, for exam-
ple. Besag, 1974) that specidcation of all full conditional distributions uniquely determines the full joint
density. More precisely, for such a collection of random vanables U,,U,,...,U,, the joint density,
Uy, Us..... U], is uniquely determined by (U,|U,,r = 5], s = 1.2.....4. Our interest is in the marginai

disaribugons. (U], s = 1,2.....«.

An algorithm for extracting marginal distributions frc » th- (uil conditional distribution was formally
:ntroduced as the Gibbs sampier in Geman and Geman (1984). [he algorithm requires all the full condi-
uonal distributions to be ‘available’ for sampling, where ‘available’ is taken to mean that. for example, U,
can be generated straightforwardly and efficiently given specified values of the conditoning variables, U, ,

r =95,

Gibbs sampling is a Markovian updating scheme which proceeds as follows. Given an arbitrary suart-
ing set of values U{®,..U? we draw UM from (U U9, U], then UiV from -
VLU U9, U L and so on up to ULY from (U [UY..... U] to complete one iteration of the
scheme. After ¢ such iteratons we would armive at (U1”,...,U{"). Geman and Geman show under miid

4 PR .
conditions that U —— U, ~ [1/,] as t = e. Thus, for ¢ large enough we can regard U\” as a simulated

—




Replicaung this process m umes produces m iid &-wupies (L7)7,....2%0"), /= i....,m. For any s. (a2
collecton C}P,.... 071 can be viewed as a simulated sampie from (U,;. The marginai density is then

zsumated by the fnite mixture deasity

(LU = U0, r =5l 0

Cy,

I

3
i)

2ifand and Smith. %38, for rurther discussion.)

[%2]
w
(43
o)

Since the expression (1} can be viewed as a "Rao-Blackweilized' density estimator. reiative to the
more usuai xemei density estimators based upon U‘.‘/"’, S =1,...,m, estimauon efdciency is high and we find
m = [CO (at most 2C0) to be adegquate in practice as a converged sample size on which to base the marginal

density esumate.

Suppose interest centres on the marginal distribution for a variable V which is a function g(Uy,..., U.)
of Uy.....0. We note that evaluation of g at each of the (U{P,....,U{’) provides samples of V. In this
tase, 2 censity esumate of the form (1) is not available. but an ordinary kemei density estimate can readily

be calculated (see Section 4 for an tilustration of this).

All applications we consider in this paper are within the Bayesian framework, where the U, are unob-
servable, representing either parameters or missing data (and V can thus be a function of the parameters
which we are interested in). All distributions will be viewed as conditional on the observed data, whence

marginal distributions become the marginal posteriors needed for Bayesian inference or prediction.

3. Convergence diagnostics

Our experience thus far, in a variety of real and simulated data analyses, shows remarkably rapid
convergence of the Gibbs sampler. In acquiring this computational experience, we have experimented with
a vanety of diagnostic tools to facilitate concluding whether or not the aigorithm has "converged’. Gen-

erally, the most natural and least sophisucated approach has been the most useful. Namely, for a fixed m




- ine resulung esumated denswes. and see 1f the esumates are aguivaisnt
2 woack eltup pentotest Simiarly, we also increase m oat Gxed ¢ o assess stabilitv of the densuy
sumate. [ our expenmentauon we increase : in muiuples of 10 never having required : > 33. “We tvpi-
caly set m = 50 or m = 100. Reguisite generauon, even ror larger ¢ and m. is usuaily neither costiv acr
siow. Univanate plots are drawn by selecung <0 equally spaced points in the efractive domain of the varn-
able. We then evaluate the densuy esumate (of the form (1)) at these points and a spline-smoothed curve s
Zrawn through these vaiues. 3v 2ifzcuve domain, we mean uUie interval wiere. sav, 9% of e mass lies.
“Ve occasionaily require severai passes o determine this domain and occasionaily raquire i.c:i tnzn sU
Tolnts o obtain a sausfying piot. Cleariy, this piotung method cculd be redned. but sucn issues are aot ihe
main concern of this paper. In this regard, we also recommend a convenient check on calcuiations by using

1 simpie Tapezoidal integrauon on tne collection of esumated density values (0 see how ciose the resuit is

0 1.

Monitoring across iterations of summary statistics such as sample moments or quanules has not pro-
ven effectuve. If we successively study differences or relatve differences in such staustics. it is not easy o0
assess when these quanuties are steble. Calculation of standard errors for such differences is difficult in
part due (o the unknown dependence structure between successive iteratons (althougnh comparison of itera-
uons, say 10 apart. wiil mitgate the dependence issue). Sample reuse methods might be trted. However,
rather than a comparison of a fcw summary staustcs., we prefer an overall distributionai comparison

hetween iterates.

An attractive graphical tool, which we have found very useful, is the empirical quantile-quantile plot.
With m constant across iterations. such plots are easily obtained. One only need order the generated sam-
ples at the iterations to be plotted. Using m = 100 (perhaps 200), under convergence the plotted points
should generally be close to the 45° line. Creatng such displays over increasing numbers of iterauons
znables us to distinguish inherent variation from lack of convergence. Such displays, with their inherent
variauon. accord with the aforementioned ‘thick felt-tip pen’ comparison. We offer illustrative displavs in

ccniunction with the variance components example of Section 3.




The Markovian nature

A2 omenucn 2 nnal DOinl ANICh S Cerunent 0 @ assessment Of Joavergence.
fatlve DIOC2sSs means Lial apparent coavergance Jan pe temporaniy certurced by an unnypical’
This can upsat our ¢22a0SUCS tOr perhaps several subseguent iterauons unnd stability is restored.

An obvious way (o ‘robusufv’ he process is to work with pooled successive sampies within some moving

window. AgZain, we shail not focus on such rednements n this paper.

4. Variance component problems

Random erffects models arz very nawrally modeilad winin the Bavesian ramework. Nonetheless.
caicuiation of the marginai postenior disaibuuons of variance components and runcuons of variance <om-
ccnents nas proved a challenging technical problem. Box and Tizo (1$73) report a subswanual amount of
detailed. sophisticated approximauon work, both analytic and numerical. Skene (1983) considers purpose-
built numerical techniques. The methods described by Smith er al (1985, 1987) require careful reparametrti-
zzuon dependent upon both the data and the choice of prior. In a similar spirit, Achcar and Smith (1988)
Jiscuss parameter ranstormations for successtul implementation of Laplace’s method (Tiemey and Kadane,

1886). 3v comparison. the Gibbs sampling approach is remarkably simpie.

We shail iilustrate the approach with a model involving oniy two vanance ccmponents. but 1t will be
clear that the development for more complicated models is no more difficuit. Consider. then. the variance

components modei defined by

VY. =g

L8]

"'G;}‘, = 1,...,.X, _,'. = 1.....,.]. (:)

i

where, assuming conditional independence throughout, (8, |u,07) = V(u,05) and [e, (0] = N(0,07). Let
9=18,,....9), ¥ = (Y;,,....Yxs) and assume that 4,0~ 07 are independent with priors (1] = N(uy,05),
‘o5) = IGlay, by), (c?] = [G(aa,bs) (see, for example, Hill, 1965), where /G denotes the inverse gamma

distnbuuon and ug, 04,4y, b,.aa, 0+ are assumed known. [t is then straightforward to venfy that the Gibbs

sampler ts speciied by:

(o5 {Y.u.8.07) = [Glay - K. by = 1506, - uy) o
~ - . . N . o by
(GFIY.u.9.05) = [Glay+ :KT. by~ LIX(Y, - 5,)%) ‘
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‘_’l = 57.:/J, 1 is a Kx1 column vector of 1's and / is a &xK idenatity mamix. [n

= o

where ¥ = (¥y,.... T
carticular, in (3), we can allow the a; and/or b; equal to zero, represenung a range of conventional improper

ariors for o and 0.

3ox and Tiao ¢1973. Secuon 3.1.3) introduce two data sets f{or wnich the model (2) is apprepriate.
The second and more difficuit set 1s generated from random normai deviates with i = 3, g5 = 4, g7 = 16.
The resultant data, summarised in Table 1, are badly behaved. in that the standard (ANOVA based)

unbiased estimate of ¢ is negative, rendering inference about ¢ difficult. We shail use this example to

orovide a challenging low dimensional test of the Gibbs sampier.

Table 1I: Generated Data (Box and Tiao, 1973, p 247

K=6 /=35 Y = 356636
Batch 1 2 3 4 3 6
Y 5.2268 4.6560 7.5212  1.6848 5.0796  :.8252
52 8.8650 254900 25.6359 7.0935 143590 8.2691
Source SS df MS )
Between Batches +1.6816 s 8.3363

Within Batches 358.7014 4 14.9459

Total 400.3830 29

oF = 149459 &% 1.3219

#




For :ilustrauve purpeses. we provide a 3avesian aralysis 2ased on e prier specudcation

Y= 0G000), (ki = N0, 1045, together with either

G
S
i

[: {of] =1G0,0) ot I {c§] = IG(,by).

Under /. we have the improper prior for (¢5.,07) suggested by Hill (1965), which is a naive two dimen-
sional extension of the familiar non-informauve prior for a variance. Under //, we have a proper weak
:ndepencent inverse chi square prior for o which. depending upon by, ‘supports’ or “differs from’ the data
.see Skene. 1976 for further detailed discussion). The two priors for o5 differ considerabiv. Under / (c5)
:s one-tailed. giving strong weignt to the asseruon that 0'9: is near zero. As this is weakiy condrmed by the
data, the marginal posterior (Figure la) redects this prior. Under /I, {og] is two-tailed. having mode at
25,/3. Interesungly, experimentation with b, varying up to 6 leads to an outcome simiiar to that under /.
For all such 5,, the prior is virtually reproduced as the posterior (see Figure 2a for the case by, = 1). The

data provide very little information about @3

Our experience with Gibbs sampling in this context is very encouraging. Under both / and /I (with
b, = 1), the iteraiive approach had no difficulty with the exomeme skewness in the resuitant posterior of o;.
Overall convergence was achieved under / within at most 20 iterauons using m = 100. and under /I within
at most 10 iterations using m = 100. We demonstrate this in Figure 1, which, for case /[, compares density
estimates after 20 and 40 iterations for ¢ and of. Figure 2 presents the corresponding curves for case //
arter 10 and 20 iteradons. [n Figures 3 and 4, we show several empirical Q-4 plots for o7 and o3,
respectively, under [/, again using m = 100 points. We compare the first iteration with the second, the
second with the third, the third with the fourth and at ‘convergence’ —the ninth with the tenth. Note that

for g7 we essentially have convergence at the third iteration.

The varance ratio, o3/0~, or perhaps the intra-class correlation coefficient o;/(c§+0r) are often
quantities of interest. Remarks at the end of Section 2 show that obtaining the marginal posterior distribu-
tion for such variables is easily accomplished. Figure 5 shows the estimated density for the variance ratio
under both / and // obtained after 20 iterauons with m = 1000, the untypically large value of m arisin -

from the uwkward shape of the posterior. A density estimator with normal kernels was used with window

DINONI————————— |
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Normal means problems

The companison of means presumed from normal populations is arguably the most ubiquitous model
‘n stausucal infereace. but issues such as unbalanced sampling and heterogeneuy of vanances have typi-
caily forced compromises in frequenust and empirical Baves approaches. Histonically, this has aiso besn
somewhat true in the purely Bavesian setting. Frequenty, with regard to variance parameters the proper
Sayesian procedure or marginalisauon oy integrauon has been replaced by point esumation. in order :o
reduce the dimensionality of numerical integrations needed to obtain marginal posterior distrbutions for
mean parameters. Gibbs sampiing provides a means of performing such integrations without having to
make approximauons. The Gibbs sampler was introduced in the context of problems of very high dimen-
sion (such as image reconstruction, expert systems, neural networks) and has been spectacularly successful
in such contexts. [ls encouraging performance in our investigations is therefore not surprising since even a
large multiparameter Bayesian problem is of small dimension compared to typical image processing prob-

.ems.

[n tnis section, we consider the comparison of [ population means which, in conjunction with distinct
unknown population variances and an exchangeable prior, results in a 2/ +2 parameter problem. We show
that the impiementation of the Gibbs sampier is szaightforward. The more general case where the popula-
tion means are represented as linear functions of a set of explanatory variables can be handled similarly
using by now familiar distribution theory given in, for example, Lindley and Smith (1972). Such an exam-

ple, involving 66 parameters, appears in Section 6.

Often there are implicit order restrictions on the means to be compared. For instance, it may be
known that the means are increasing as we traverse the populations from { = 1 up to /. If we incorporate
this information into our prior specification using order statistics, the integrations required for marginalisa-
lion are rypicaily beyond the capacity of current numerical and analytic approximation methodology. How-

ever, as we show below, the Gibbs sampler is still swaightforwardly implemented since normal full




JIRQILCH2D Lo osimpiy replacsd oy wuncared ncrmaus.

The requisite dismibuuon theory assuming no order restricuons on the means ;s as tollows. Assuming

conditonal independence ihroughout. let [)’,;,-19;.0',-:} =N(8;,07) i=1,....0.;=1...», Gl =

NuT, o) = 1Glay,0y), [i4) = N(o,05) and [t=] = /G{a,,b4), where /G denotes the Inverse Gamma

Jismibuton and a..a2.,8(, 01,49, 05 are assumed known (oflen chosen 1o represent convenucnal improper

chor orms: see Secton <%, By sufficiency, we confine atteamon 0 I = IF,n, and I =

Y =7 in =1 Lewing 9= 8y, 8)), OF = Of.....of)ana ¥ o= Yy, T SEa LS5, we have, for
siven daw Y, the following ruil conditonal distnibunions.
(6|¥. 0" u. =) = N(6*.D™), )
where
6-’ n,«}',—f:'-‘-‘uo’,-'
1 had =
n"'t ‘Y‘d"
oft
D§ = ——, D=0 L=,
ntT+ o~
- - ! a - S
[rly'e'u‘r} = n [Gl.'f},l'sl."el]v
=]
where
- "1
(c#1Y..52.6] = 1G(ay+in,. by+% 3 (Yij_ei)z)-
/=1
[t Uq+05Z6;, 05
(u]Y.0.0% 72 = N[ ZHeT 9925 T 9
—+loy ~+los
and

(22]Y. 6,07 1] = [Gilay+ . by~ +5(6; - 1)).

i

Suppose now that the means are known (0 be ordered. say, 8, < §, < ... < ;. [f we assume as our prior
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hat the ¢, anise as order siausdcs from a sample of size / from N(u, ©7), then it is swaightforward to show
that [G; 1Y, d..) =L o;,;.z,."] is now precisely the marginal normal dismbution in (4), but restricted to the

interval {6;_,,9,,.,] {where we adopt the convenuon &y = -, §,.; = +e) and so again is straightfor-

wardly available for sampling. The tull conditional dismributions for o”. T% and u remain exactly as above.

in sampling from the Tuncatad normal distribution, the rejection method (discarding ineligible obser-
vauons sampled from the non-uuncated disuribution) will tend to be wasterul and stow, paruculariy if
7 o1~ d;-; is small. To draw an oobservauon from N(_c,d:) restricted to (g,5) a convenient ‘one-for-one’
;:ampiing method is :he foilowing (Devrove, 1986). Generate U, a random uniform (0, 1) variate and caicu-

ate ¥ = ¢~ d@ "N p(U; 3,b.¢.d)), where

p(U:a,b,c.d) = ¢<9———C)+U(¢(b—c)"p(a;c))

with @ denoting the standard normal cdf. It is straightforward to show that Y has the desired distributon.
These ideas are easily extended to give a general account of Bayesian analysis for order restricted parame-

ters, but deuils will be deferred to a subsequent paper.

[n order to study the performance of Gibbs sampling in the above setting, we analysed generated data
so as to be able to calibrate the results against the known situation. For the purpose of illustration, we
created a rather unbalanced, extremely non-homogeneous, data set by setting / = 5 and for the ith popuia-
ton, i = 1,...,5 drawing n; = 2i{+4 independent observatons from N(i,i%). The simulated data is summar-

ised in Table 2, and we note, in particular, the inversion of order of the sample means, ¥, and Ys.

Table 2: Summary of simulated data for Normal Means problem

i Sample 1 2 3 4 5 \
i
oo 6 8 10 12 14

} Y 0.3191 2034 3.539 6398 4811 !
s 102386 2471 S761 $.758  19.670 1

NERRRRRRRRRRREEEEEE
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For illustrauon, we specuded priors [u] = N0, 10%), {o7] = (Gt 1) and (7! = /G{&, ). For the

Gibbs sampler, convergence was achieved within ten iterations for the unordered case using m = 100. The

ordered case required at most twenty iterations, again using m = 100, except for [8,{Y] and {8<{Y] which
both required m = 1000. Rather than graphically documenting the convergence in this case., we compare
the unordered and ordered marginal posteriors. Lat (G; fY]“ and (6, iAY]o denote, respecuvely, the unor-
Jered and ordered density estimates. In Figure 63 we consider, for example, 8. and see that ‘[9:5‘}’]“ and
:8:?}’?0 have roughly the same mode but that 75, iAY]O is less disgersed. Utlizing the order niormauon
results in a sharper inference. In Figure 6b, we consider both &, and §s. As would be expected. given th2
sutficient staustics, [QSfY]“ lies 1o the left of (6, fY],, and is very dispersed. Utilizing the order intorma-

tion places [GJY]O and {GSIY]O in the proper stochastic order, pulls the modes in the correct direction and

reduces dispersion.

6. An hierarchical model

Applications of hierarchical models of the kind inuroduced by Lindley and Smith ¢197Z) abound in
fields as diverse as educational testing (Rubin, 1981), cancer studies (DuMouchel and Harris, 1983) and
biological growth curves (Strenio, Weisberg and Bryk, 1983). However, both Bayesian and empirical Baye-
sian methodologies for such models are typically forced to invoke a number of approximations, whose
consequences are often unclear under the multiparameter likelihoods induced by the modelling. See, for
example, Morris (1983), Racine-Poon (1985) and Racine-Poon and Smith (1989) for details of some
approaches to implementing nrcrarchical model analysis. By conuast, a full implementation of the Bave-
sian approach is - 1. . achieved using the Gibbs sampler, at least for the widely used normal linear

hierarchical mode. saur..

For illusaation, we focus on the following population growth problem. In a study conducted by the
CIBA-GEIGY company, the weights of thirty young rats were measured weekly, for five weeks. The data

are given in Table 3, with weight measurements available for all five weeks.
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Table 3: Rat population growth data

Rat X X2 X3y X Xs Rat Xy X2 X3 Xs X
1 151 199 246 283 320 16 160 207 248 288 324
2 145 199 249 1293 3354 17 142 187 234 280 316
3 147 214 183 312 3Z8 18 156 203 233 283 3i7
1 155 200 237 272 297 19 157 212 259 307 336
5 135 188 230 280 323 20 152 203 36 286 321
6 159 210 252 298 331 21 154 205 1253 298 334
7 141 189 231 275 305 22 139 190 225 267 302
8 159 201 248 297 338 23 146 191 229 272 302
9 177 236 285 340 376 24 157 211 250 285 323

10 134 182 220 260 296 25 132 185 237 286 331

11 160 208 261 313 352 26 160 207 257 303 345

12 143 188 220 273 314 27 169 216 261 295 333

13 154 200 244 289 325 28 157 205 248 289 316

14 171 221 270 326 358 29 137 180 219 258 291

15 163 216 242 281 312 30 153 200 244 286 324

X1 = 8, X2 = 15.X,'3 =22, x4 = 29,X,'5 = 36 days. i=1,...,30.

For the time pertod considered, it is reasonable to assume individual straight-line growth curves so that,

under homoscedastic normal measurement errors.

Y‘I - N(a,-+ﬁ‘x 62) (‘

{3
~
~.

i
—

=
~

iy

S, and x; denoting the age in days of the ith rat

provides the full measurement model (with k = 30, n,

when measurement j was taken). The population structure is modelled as




i

assuming conditicnal independence throughout. A fuill Bayesian analysis now requires the specidcation of a
- oricr or o, 4 = iy, So)” and E. Typical inferences of interest in such studies include marginal posteriors
for the population prarameters @y, and predictive intervals for individual future growih given the first

~egk measurement. We shail see that these are easily obtained using the Gibbs sampler.

For the prior specidcation, we take

10 have a normai-Wishart-inverse-gamma torm,

™

i
I
=
°
x
h
)

Rewriting the measurement model for the ith individual as Y; - N(X;6;,06°I,) with 6; = (a;,3,)T and X,

Jdenoting the appropriate design matrix, and defining

- k
Y = (Yl""'Yk)?' 9 = k_l Z 9", n = Z n['

D" O'-ZX‘TX‘*+Z—1

V=((kZ'+C™H,

the Gibbs sampler for 8 = (8,,...,6,), X, o* (a total of 66 parameters in the above example) is straightfor-

wardly scen 10 be specified by the following condidonal distributions:

6 1Y. 4,2 0% = N(D(c™%X, Y.+ 27 'u),D;} (i =1,..k (5)

(1Y, (6),27" 0% = N(V(kZ='6+C '), V)

(Z-Y,(6),p.07]

WIZ(E, -u)8,-p)+pR]™" k+p}
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A . iV
(otlY.8), . 2T = IG( 2

-

-~

(XY, = X,0,)7(Y,~ X.0) = va54] |. )

o) —

For the analysis of the rat growth data given above, the prior specification was defined by:

100 0
-1 = = = 2 =
C 0, vo=0, p . R ( 0 o1 )

\

seflecung rather vague initial information reladve to that to be providad by the dawm. Simulation from the
"Vishart distribution for the 2x2 matrix £~ is easily accomplished using the algorithm of Odell and Feive-

son 1 1966): with G(.,.) denoting gamma distributions, draw independendy from

v 1 v—-1

Ul = G(E»E), (U] = G(—z—, ), (VM1 =N(. 1)

2| -

set

v [ diew

NNU; U,+N?
then if S™! = (BN,
= @Y WY -~ Wiy,

The iterative process can be conveniently monitored by observing Q- plots for 4.3, 0 and the eigen-

values of £~'. For the data set summarized in Table 3, convergence is achieved with about 35 cycles of

m = 50 drawings.

As we remarked earlier, full Bayesian analysis of structured hierarchical models involving covariates
has hitherto presented difficulties and a number of Bayes/empirical Bayes approximation methods have been
proposed. Racine-Poon and Smith (1989) review a number of these and demonstrate, with a range of reat
and simulated data analyses, that the EM-type algorithm given by Racine-Poon (1985) seems (0 be the best
of these proposed approximauons. However, it can be seen from Figure 7, where we present the estimated
posterior marginals for the population parameters, that, even with this fairly substantial data set of 30x$

observations, the EM-type approximaton is not really an adequate substitute for the more refined numerical

BERNNNENNNN————
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approximauocn provided by the Gibbds sampier. Here, the EM-based ‘posterior deasity' is the normal condi-
;ionai form (§) with the converged estimates from the Racine-Poon algorithm subsdtuted for the conditicn-

1ng parameters.)

o further underline the effectveness of the Gibbs sampler, and the danger of point-estimauon based
approximauons in hierarchical models, we reanalysed two subsets of the complete data set of 150 observa-
ziens given in Table 3, chosen to present an increasing challenge to the algorithms. One k<2t ~onsisted of
90 observations, obtained by omiiting the onal data point from rats 6-10, the dnal two data points {rom rats

<
2

11=20, the final three from rats 21-2° and the fnal four from rats 26-30. The other subset consisted of
observauons, obtained from the 90 by retaining only one of the observations for each of the rats 16-30.
Convergence for the first subset required about 50 iterations of m = 50; convergence for the second about

635 iteratons of m = 50.

Figure 8 summarizes the marginal posteriors for the growth rate parameter obuained for the two data
subsets from the Gibbs and EM-type algorithms, respectively. It can be seen that while the EM approxima-

uon is perhaps tolerable for the full data set (Figure 7), it is very poor for the smaller data sets.

Consider now the data set of 90 observations and suppose that the problem of interest is the predic-

tion of the future growth pattern for one of the rats for which there is currently just the first observation

available (i = 26....,30). Specifically, suppose we consider predicting Y, j = 2.3,4,5, corresponding to

X3 = 15, %3 = 22, x;4 = 29, x;5 = 36 days. Then, formally,
[¥51¥] = [ (¥,16,,0%1(6;,0°| Y],
where
(Y;16:.0%] = N(o+ Bixi;, o). (6)

An esumate of (Y;|Y] of the form (1) is thus easily obtained by averaging [Y,-,-!G,-,o;] over pairs of
(8;,0*%) obtained at the final cycle of the Gibbs sampler. Figure 9 shows, for i = 26, bands drawn through
the individual 95% predictive interval limits calculated at days 15, 22, 29 and 36, together with the subse-

quently observed values at those points.

e ———————




Alternauvely, we could view the omitted or, in general, as vet unobserved data points as missing data. .
The Gibbs sampler could then be implemented treaung such ¥j; as unobservable (in additon to the mode!

parameters) since the required full conditional distributions have the form (6).

7. Missing data in a cross-over trial

The balanced two-period cross-over design is widely used: for example, in the pharmaceutical indus-
wry for bioequivalence studies involving a standard and a new drug formulation. A and B, say (Racine et a!,

1986; Racine-Poon ef al, 1987). Assuming n subjects, the standard random erfects model for a two-period

cross-over is given by:

where

k= response to the ith subject (/ = 1,...,n) receiving the

i

jth formuladon (f = 1,2) in the kth period (k = 1,2);
i = overall mean level of response;
o = difference in formulation effects:
n = difference in period effects:
é; = random effect of ith subject;
€i(jxy = measurement error.
The &, &, are assuming independent, for all i, j, k, with &,y ~ N(0,07), 6; = N(0, 67).

Suppose now that subjects i = 1,...,8 have data missing from one of the two periods: subjects

i =M+1,...,n have complcte data. We shall write

—




where the ‘observauons’ within subject / have been labelled such that V; is the observed data, U; is miss-

ing, and X, defines the corresponding design matrix. For subjects i = M+ 1,...,n, ¥; = V; simply denotes

all the observed data. We write U = (U,y...., Uy)™, V = (V;,....V.)". Then, conditional on

2 2
G2 O3 )

8=iuo0m, I= 2 :
A o O

where 65 = Of+05, we have

Y, X
Y=} :)1~N 18,8} = N(X8,85),

where

Here, Y is 2ax1, X is 2ax3 and S is 2nx2n.

. I3 . a .
It is convenient to work with 9,0‘{,0'32, where 0'32 = 0',24.-20'22. and to note that, if we define

Y;” = average response of the ith subject

:(Yian + Yizzy) ; AB
= or sequence
(Y2 + Yi1zy) BA

Y” = difference of the two responses for the ith subject

for sequence,
1Yian-Yiaz) BA

[ 1Yy = Yiazy) AB

then:




2or the A8 sequence,

G
+
E
———
2

oy O>. -

Y

‘or the 84 sequence.

[f we now make the prior specification

\ ’

Vi V303
ol 52 e

&

(0.5%.05) = N(n. Cyvo( 1, 4T

1t can be seen that

b - - _g I 2 —(%"1) Vlrl *
lof, o7 |U.V, 8] = (of) exp{—z—o_leSl}(o',) exp{—a_?}
vl
?”) VaTy

-2 1 -
x (01) Zexp{‘E'SSS}(OBZ) ( CXP{—F}[(GIRG,’)'
3

where

e 3 e 3 e

AB seq. BA seq.

$$3=2 % (V7 -t
(=]

=

It follows that a Gibbs sampler for 6, 0f, 6 and U is specified by:

(cZ|U,V,8,0%] = /G(n;Vlv SS!;VX z.1)”(0.'«:,’)

(G21U.V.8.0%] = /G(nng' SS;:vsfs),(al,“:)
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(6|U,V,0f,0f] = N(D(XTS™'Y+C"'n), D),

w~1th
n
XTs—lY= Z X“TE-IY[,
i=1
XYS_lX £ Z X‘-r):-lX;,
i=1
D=X'S"'x+C",
\ s 3 - o \?
[UlV.G.cr{,a,‘]=N{X,,9+-G—‘2(V—Xw8),af'2 1-( 22) IM].
T2 g2
with

Xlu Ul
X,=| 1| U= :
Xuu Uy
XIU Vl
X.=| |, w=I[l.
Xuo Vu

Table 4 summarizes data from a (complete data) trial conducted with n = 10 subjects, in which responses

are weated as missing from subject 1 in period 1. subject 3 in period 2 and subject 6 in period 2.
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Table 4: Data from a two-period cross-over trial .

Subject  Sequence  Period !  Period 2

I!
1 AB 1.40 165 |
2 AB 1.64 1.57 '
3 BA 1.44 1.38 |
: 4 BA 1.36 1.68
s BA 1.65 169 |
6 ~ AB 1.08 1.31 ;
7 AB 1,09 143 |
8 AB 1.25 1.44
9 BA 1.25 1.39
10 BA 130 1.52

A = new tablet, B = standard tablet; formulations of Carbamazepine.
Data are observations of the logarithms of 1.52 maxima of concentration-time curv:s:

see Maas er al (1987) for background and further details.

Convergence was achieved within 30 iterations of m = 50. Figure 10a shows the marginal posterior
density for c'f; Figure 10b shows the marginal posterior density for ¢, the treaument effect. The Gibbs
sampler also automatically provides ‘predictive’ densities for the missing responses; these are shown in
Figure 11 and their locations may be compared with the actual missing values. Finally, the ease with which
the Gibbs sampler permits analysis of this cross-over model enabies informative sensitivity studies to be
performed. In particular, we can easily study the difference between the treatment posterior density based
on the compiete data, the data omitting the assumed missing values, and the data based on just the seven
subjects for whom full data was assumed. The resulting posteriors are shown in Figure 12 and reveal a

typicl finding in such trials. Namely: that if there is missing (at random) data from a subject we might just

L
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as well lgnore the subject aitogether: also, that the ioss of 30% of subjects in a small tial results in sub-

stanually increased inferenual uncernainty.

8. Summary discussion

The range of normal data problems considered above as illustrations of the ease with which numerical

3avesian inferences can te optained via Gibbs sampling, iaciude the lcilowing aspecs:

awkward posterior distributions, otherwise requiring subtle and sophistcated numerical or analytic

approximation techniques (Sections 4 and 3);
further distributional complexity intreduced by order constraints on model parameters (Section 5);

dimensionality problems, tyvpically putting out of reach the implementation of other sophisticated

J approximaton techniques (Section 6);

messy and inctractable distribution theory arising from missing data in designed experiments (Section

- 7).
general functions of model parameters, including so-called Fieller-Creasy problems (Secticn 4);
awkward predictive inference (Section 6).

In all these situations, we have seen that the Gibbs sampler approach is straightforward to specify
distributionally, trivial to implement computationaily and with output readily translated into required infer-

ence summaries.

The potential of the methodology is enormous, rendering straightforward the analysis of a number of
problems hitherto regarded as intractable from a Bayesian perspective. Work is in progress in extending the
range of implementation. First, by developing, where necessary, purpose-built efficient random variate gen-

erators for conditional distribution forms arising in particular classes of applications; secondly, by facilitat-

ing the reporting of bivanate and conditional inference summaries, in addition to univariate marginal




curves. We plan w report shorty on vanous of these ¢xtensions.
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