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INTRODUCTION

Binary munitions in which two different constituents are kept in separate compartments
until activation will constitute a significant fraction of the chemical weapons in the United
States. Because these munitions will be used under extreme circumstances, they must be
stockpiled over very long periods of time (up to 30 years) and still be able to operate relia-
blv when the need arises. A very high reliability of the storage container is essential to the
subscquent activation of, and availability of, this weapon system. The failure of the storage
container is a hazard in itself becausc of the toxic nature of one of the constituents. The
principal causc of failure will be the corrosion of the storage conwiner by the highly corro-
sive methylphosphonic ditluoride (DF). This compound will react with alcohol in the weapon
svstem to torm the active agent (GB). The hydroscopic DF interacts with the minor amounts
of water which may be present to torm hydrogen fluoride (HF). DF is not used in pure
form but contains significant amounts of chlorides and cathodic impuritics such as iron,
copper, and nickel which further increase the corrosion rate of most metals/alloys.  Although
polymeric liners are being used, they may slowly interact with HF in the DF, and thc sub-
stratc metal/alloy must be able, therefore, to withstand corrosion and pitting attack. Pitting
attack could lead to rapid perforation of the container. Vapor phase (thin electrolyte film)
corrosion has been shown to be the primary failure mode in GB munitions, and is prevalent
in DF systems. DF is a major constituent of GB. Electrochemical studies for metals/alloys
in methylphosphonic difluoride were initiated under a joint MTL-CRDEC program.

Army weapons systems equipment may also be exposed to toxic chemical environments dur-
ing their life cycle. When exposed, these systems must be decontaminated with solutions
which ncutralize toxic agents either by oxidation or by hydrolysis, but arc highly caustic and
may cause residual change.

The objectives of this study are: to investigate the kinetics and mechanisms of corrosion
of Al 6061-T6 and candidate mctal alloys in methylphosphonic difluoride (DF), to establish
cttective corrosion inhibitors and tc ultimately incorporate or immobilize inhibitors into
coatings which can provide protection above the liquid line, and to determine the corrosion
rates and behavior of selected metals/alloys and metal-matrix composites in decontaminating
solutions.

EXPERIMENTAL
Materials

DF Study: The DF was utilized in two purities, 97.1% and 99.8%. The complete com-
positions are shown in Table 1. Potential organic inhibitor materials were added to DF io
determine their effects on the corrosion processes and to provide a means for protecting the
alloys against corrosion. A variety of metals/alloys were utilized. Nominal compositions for
the ferrous and nonferrous metals/alloys are contained in Tables 2 through 6.




Table 1. ANALYSIS AND PURITY OF DF

Sampies
Analysis DF-2 DF-22*

Metals m)

Fe pp 120 7

Cu 10 10

Ni 18 22

Cr 4 1

Zn 18 2

Mo 2 2
Total Metals (wt%) 0.017 0.004
Cl (wt%) 0.22 0.01
Purite/ {mole % by method:)

P Depression 97.1 99.8

NMR 96.8 99.9
Impurities (mcle %)

Percent Accountable 0.237 cMi4

Percent Not Accountable 2.763 0.249

*Represents DF purified by distillation in Hastelloy B equipment to

produce high-purity material

Table 2. COMPQOSITION OF NONFERROUS ALLOYS

Nominal Composition (wt%)

Alloy Ta w Ti u Mg
Pure Ta 99.9 - - - -
Ta-10W 90 10 - - -
PureTi - - 99.9 - -

Pure Mg - - - - 99.9
U-0.75%Ti - 0.75 99.25 -
Table 3. COMPOSITION OF STAINLESS STEEL ALLOYS
Nominal Composition (wt%)

Alloy Fe Ni Cr Mn Mo Si Cu
20Cb3 35 35 20 2 25 1 3.5
317L SS 60 12 19 2 3.5 1 -
316L SS 65 12 17 2 25 1 -
304 SS 68 10 19 2 - - -
430 SS 80 0.8 17 1 - 1 -
1020 99 - - 0.5 - - -




Table 4. COMPOSITION OF NICKEL ALLOYS

Nominal Composition (wt%)

Alloy Ni Cr Mo Fe Cu w
Hast. C 59 16 16 5 - 4
Hast. B 61.2 1 28 5 - -
Monet 66.5 1.3 - - 31.5 -
Ni 200 99.5 - - - - -
Pure Ni 99.9 - - - - -

Table 5. COMPOSITION OF ALUMINUM ALLOYS

Nominal Composition (wt%)

Alioy Al Si Mg Cu Fe Mn Zn Li
Al 2017 93 0.6 0.6 4 07 0.7 - -
Al 2090 93.4 - - 2.8 - 0.8 - 2.4
Al 4043 93 5.3 - - 038 - - -
Al 5083 93 0.5 4.5 - 0.5 0.7 - -
Al 6061-T6 97 0.6 1 - 0.7 - - -
Al 7075-T6 90 0.5 2.5 1.6 0.5 - 5.6 -

Table 6. COMPOSITION OF COPPER ALLOYS

Nominal Composition (wt%)

Alloy Cu Zn Ni Pb
Cu (38% Zn, 2% Pb) 60 38 - 2
Cu (30% 2Zn) 70 30 - -
Gilding Metal a5 5 - -
Pure Cu 99.9 - - -

Decon Study: The compatibility of three decontamination solutions: sodium carbonate.
DS2 (an organic/hydroxide solution), and supertropical bleach (STB) with alloys of titanium.
aluminum, and magnesium as well as several steels and metal-matrix composites of alumi-
num/SiC and magnesium/Al,O; were assessed. Decontamination solutions and alloy com-
positions are shown in Tables 7 and 8.

Table 7. DECONTAMINATION SOLUTION COMPQSITIONS

Sodium Carbonate - 10 wt% Solution in Water

DS2 - 70 wt% Diethylenetriamine
28 wt% Methyi Cellosolve (Ethylene Glycol
Monomethyl Ether)
2 wt% Sodium Hydroxide

STB- Caicium Hypochlorite
Calcium Oxide - Added as a Stabilizer
Water - Optional; Used to Form a Slurry




Table 8. SPECIMEN COMPOSITION DATA

Density Equivalent Composition
Alloy {gm/cm®) Waight (Wi%)
C 1020 7.86 28.98 C-0.17, Mn-0.42, P-0.009,
$-0.006
20Cb3 7.86 24.53 C-0.019, Mn-0.34, Si-0.40,

P-0.021, $-0.002, Cr-19.40,
Ni-32. 91 Mo-2.22,
Cu-3.26,Cb + Ta-0.58

Ti-6AlI-4V 4.43 1170 C-0.02. Ni-0.014, Fe-0.14,
Al-6.0, V-3.9, 0-0.132
Al 5083-H112 2.66 9.18 $i-0.40, Fe-0.4, Cu-0.10,

Mn-0.40/1.0, Mg-4.0/4.9,
Cr-0.05/0.25, 2n-0.25, Ti-0.15

Al 6061-T6 2.70 9.15 Si-0.60, Cu-0.10. Mn-0.75.
Mg-0.10, Cr-0.20, Zn-0.125

Al 7039 2.70 10.01 Cr-0.16/0.25, Cu-0.10, Fe-0.4,
Mg-2.3/3.3, Mn-0.10/0.40,
$i=0.30, 7i-0.10, Zn-3.5/4.5

Mg ZE41A 1.85 13.33 2n-0.04, Ce-0.012, 2-0.007

Al 2090 Cu-3.0, Li-2.6, Zr-0.15

Al MML 043 Cu-6.1, Li-1.3, Zr0.16
Note: Metal-matrix composites use same data as matrix alloy. Surface area exposed is
modified.

Specimens and Procedures

DF Stud?': The corrosion cell was a modified polarographic trielectrode cell constructed
from Teflon."? The reference electrode in the DF solution was a silver wire in 0.1 M silver
nitrate in acetonitrile. The working electrode was an alloy cylinder, 1.2-cm® surface area.

The counter electrode was a spiralled 40-gauge platinum wire. In order to describe the
anodic and cathodic processes, anodic and cathodic polarization measurements were made utiliz-
ing the potential sweep method of potentiostatic polarization. The electrode potential was
contiruously changed at a constant rate of 5000 mV/h: and current was simultaneously
recorded. Corrosiun rates in mils per year (mpy) were generally determined by extrapolation
of the cathodic portion of the polarization curve to the corrosion potential: pitting scans were
performed to elucidate mechanisms of passivation or pitting. One hour potential time data
were obtained for all alloys in all environments in order to determine the corrosion
potentials. In addition, modified polarization specimens of 1.2- to 4.5- -cm” surface area were
exposed for up to 180 days at room temperature to DF-22 vapor by positioning the specimen
above DF-22 solution with and without added organic inhibitors.

Decon Study: A Pyrex cell with a volume of one liter was utilized for potentiodynamic
scans. The reference electrode was a saturated calomel electrode (SCE) separated by a glass
bridge with a vycor tip. The working electrode disc was contained in a polytetrafluorethylene
holder and had a surface area of 1.0 cm®. The electrochemical cell has been described in
detail elsewhere.®> The scan rate was 0.2 mV/sec. Corrosion rates in mpy were also obtaincd
by extrapolation of Tafel slopes to the corrosion potential.

1. TARANTINO, P. A.. and DECKER. M. Use of Electrochemical Techniques w Studv the Corrosion of Selected Allovs bv DF. U.S. Army
Materials Technology Laboratory, CRDC TR 8403, July 1984,

b}l}_}F{,()SBKI Cngand [LEVY. M. Corroston on WL’I(J/J/AI'/O\S in Methviphosphonic Difluonide.  Lxtended Abstracts. Electrochemical Suciety
v 6, p. 86

3. LEVY. M. Anodic Behavior of Titanium and Commercial Allovs in Sulfunc Acid. Corrosion, v. 23, no. 8. August 1967, p. 237.
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RESULTS AND DISCUSSION
Compatibility with DF

Potential time curves were obtained for Hastelloy B, Hastelloy C. titanium, Al 6061-T6,
Ta-10W, Moncl, Ta, and 1020 steel in both DF-2 and DF-22 solutions.  Generally, cquilib-
rium potentials were obtained within 30 minutes.  Except for Hastelloy B and Hastelloy C,
which contain chromium and molybdenum, the corrosion potentials of the other metals/alloys
were more active; i.e., negative in DF-22, the higher purity solution.  The corrosion potential
range tor the metalsqalloys was (+()71 V to -0.644 V) in DF-2, the 97.1% solution, and
(+0.254 V to -1.100 V) in DF-22, the 99.8¢% solution.

Polarization curves were obtained for these alloys in DF-2 and DF-22 solutions.
Although these curves are analvzed in the text, only a few are shown because of space
limitations. The curves tor Hastelloy B and C. titanium, Al 6061-T6, and 1020 steel are
shown in Figurc 1. All of the metals/alloys exhibited lower corrosion current densitics in DF-
22, the hlghcr purity 99.8% solution than in DF- 2 (97.1%) solution. Current densities in the

passive region were less than 100 uA/cm® (1 x 10° nA/cm®) with the exception of 1020 steel
and Hastelloy C.  Aluminum 6061-T6 and Ti exhibited cxtensive passive regions.

Pitting scans for Ta-10W in DF-2 and DF-22 solutions are shown in Figure 2. Pitting of
Ta-10W occurred in DF-22 solution but not in DF-2. Although not shown, none of the
rcmaining alloys pitted in DF-2, but pitting of Hastelloy B, Hastelloy C, and Monel was cvi-
dent in DF-22, the higher purity solution. The chromium content of Hastclloy B and
Hastelloy C and the tungsten content in Ta-10W may impart susceptibility to pitting in the
DF-22 solution. DF-22 vapor exposure data also shows that Hastelloy B, Hastelloy C. and
Ta-10W underwent pitting.

Table 9 shows that the corrosion rates of those metals/alloys in DF-2 were significantly
higher than thosc in DF-22. The impurities in the DF-2 solution cause an increase in the
corrosion rate. The 1020 stcel had the highest corrosion rate in both solutions. Al 6061-To.
Hastclloy C, and Ta-10W had corrosion rates of <1 mpy in both solutions.

Tabie 9. CORROSION RATES IN MILS PER YEAR

Alloy DF-2 DF-22
1020 99.2 175
Monel 15.0 1.8%"
Ta 9.1 <01
Ti 3.3 0.2
Hast. B 2.0 2.0°%
Ta-10W 0.8 0.5
A 6061-T6 0.1 <0.1
Hast. C <0.1 <0.1%

*SP = slight pitting

Polarization curves were obtained for several aluminum alloys in both DF solutions.
These curves show that Al 7075-T6, Al 5083, Al 6061-T6, and Al 2090 develop passive
regions in both solutions with current densities less than 20 uA/cm
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Table 10 lists the corrosion rates determined from the extrapolation of the cathodic and
anodic Talel slopes to th . corrosion potential.  Aluminum alloys, Al 7075-T6, Al 3083, Al
oo 1-To, and Al 2090 have corrosion rates <1 mpy in both DF-2 and DF-22 solutions.  The
remaining alloys. 4043 and 2017, cxhibit slightly higher corrosion rates (<3 mpy). Pitting scan
data in Table 10 for the DF-22 solution indicated that Al 5083, which contains 4.5¢2 magncs-
ium, and Al 2090, which contains 2.4% lithium, underwent pitting.  Visual examination of the
poluarizaticn specimens after completion of the pitting scans showed evidence of pitting in Al
SOS3 and Al 4043, Table 10 also shows that Al 5083 and Al 6061-T6 pit when cxposced to
DF-22 vapor.

Table 10. POTENTIODYNAMIC CORROSION RATES AND PITTING OBSERVATIONS FOR
NONFERROUS ALLOYS IN DF-2 (97.1%) AND DF-22 (99.8%) AT 25°C

Corrosiyn Rate (mpy) Pitting in DF-22
DF-2 DF-22 Polarization Exposur; -
Aioy Cath_ Jdic Anodic Cathodic Anodic Scan Visual Vapor

Al 7275-T8 0.40 nd 0.06 007 N N nd
Al 5283 042 0.49 0.07 0.07 P nd rP
Al 2230 0.49 0.59 0.09 0.08 SP spP N
Al 2017 0.04 0.08 0.62 1.39 N N nd
Al 6061-T6 0.59 0.39 0.03 0.04 N nd PP
Al 4C43 3.09 1.1 0.64 1.47 N HP N
Pure Cu 676 39.22 1.53 1.90 P PP nd
Cu (5% Zn) nd nd 2.00 2.82 P nd nd
Cu (30% Zn) nd nd 1.60 1.69 SP sP nd
Cu (30% Zn, 2% Pb) 23.64 45.62 0.28 3.06 P PP nd
Pure Mg nd nd 10.94 16.81 HP P HP
U 0.75% Til nd nd 5.01 5.36 SP N nd
{Warm Worked)

Key for Pitting Data:

nd = Mo Cata PP = Possible Pitting P = Pitting

N = No Pitting SP = Slight Pitting HP = Heavy Pitting

Examination of polarization curves for selected copper alloys in both DF-2 (97.16¢) and
DF-22 (99.8%) solutions showced that copper alloys exhibited lower passive current densities
(100 uA’'em®) in DF-22 than in DF-2 solution. The addition of zinc to copper displaces the
curves toward more negative potentials.  The corrosion rates in DF-2 solution for copper and
the copper alloy containing 38% Zn, 29 Pb (this alloy was machined from a brass valve uscd
im a onc ton GB agent container) listed in Table 10 excceded 20 mpy, and arc signilicantly
highcer than those for the copper alloys in DF-22 solution. The corrosion rates in DF-22 solu-
tion were between 1.53 and 3.06 mpy, except for Cu (38% Zn, 2% Pb) which had a rate of
(.28 mpv. Pitting scan data in Tablc 10 for the DF-22 solution discloscd that pitting
occurred. Visual examination of the polarization speeimens after the completion ol the pit-
ting scans confirmed that pitting docs indeed occur.

Analysis of the polarization curves for commercially pure magnesium, U-0.75¢¢ Ti (warm
worked), Al 6061-T6, and Al 017 in DF-22 solution showed that magnesium and U-0.757: Ti
cxhibited more active corrosion potcntials and higher current densitics, but passive ¢ rrent
densities did not exceed 100 wA/cm?  Passive current densitics for the Al allovs were




between S and 10 wA/em®. The corrosion rates in DF-22 solution of commercially pure mag-
nesium and U-0.75¢ Ti significantly exceeded the rates for Al 6061-T6 and Al 2017, but
were lower than those tor 1020 steel (Tables 10 and 11).  Pitting scan data for DF-22 solu-
tion indicated severe pitting occurred on commercially pure magnesium, and slight pitting
occurred on warm worked U-0.75% Ti. Visual examination of the polarization spcecimens
atter completion of the pitting scans confirmed the occurrence of pitting in commercially purc
magnesium.  DF-22 (99.8%) vapor exposure data also shows severe pitting of magnesium.

Table 11. POTENTIODYNAMIC CORROSION RATES AND PITTING OBSERVATIONS FOR
FERROUS AND NICKEL ALLOYS IN DF-2 (97.1%) AND DF-22 (99.8%) AT 25°C

Corrosion Rate (mpy) Pitting in DF-22
OF-2 DF-22 Polarization " Expostre
Alloy Cathodic Anodic Cathodic Anodic Scan Visual Vapcr
20 Cb3 nd nd 0.30 0.22 N N nd
317L SS nd nd 1.20 1.17 N N nd
316L 5SS 36.94 77.00 0.27 0.33 N PP N
304 S8 43.47 44.16 0.16 0.24 SP PP HP
430 SS nd nd 0.73 0.91 PP SP nd
1020 98.66 135.90 17.50 20.79 N nd N
Hastelloy C 0.19 0.23 0.08 0.05 P nd PP
Hastelloy B 2.06 224 0.68 1.58 SP nd SP
Monei 14.97 36.77 1.81 2.45 PP nd nd
Ni 200 nd nd 2.40 2.58 SP PP nd
g_ornmermally Pure nd nd 1.38 0.88 P PP nd
|
Key for Pitting Data.
Rd:NrgoP[i)naiEwag gg - gﬁsgltb!l:’?n?:sng EP==Pi£ngvy Pitting

Polarization curves for stainless and other ferrous alloys in DF-22 (99.8%) solution
showed that the higher chromium and nickel content of stainless steels displaced the 1020
steel curve toward more noble potentials and lower current densities. The corrosion rates for
304 SS and 316L SS in DF-2 solution markedly excceded those in DF-22 solution but were
lower than the corrosion rates for 1020 steel.  Pitting scan data in Table 11 indicates that
slight pitting occurred on 304 SS and 430 SS in the DF-22 solution. Visual examination of
polarization specimens after completion of pitting scans disclosed slight pitting for 430 SS.

304 SS. and 3161 SS. The DF-22 vapor exposure data in Table 11 indicates scvere pitting of
304 SS. but no pitting of 316L SS.

Comparing polarization curves for nickel alloys in DF-22 solution with purc nickel, it
appcars that the addition of chromium and molybdenum to nickel displaced the curves for
Hastclloy B and Hastelloy 7 toward more noble potentials and lower current densitics. The
addition of copper to pur ~ickei shifts the curve for Moncl toward more negative or active

potentials. The corrosior i+ s in DF-22 solution, in order of increasing rates, were
Hastelloy € (0.08 mpy). nastelloy B (0.68 mpy), commercially pure nickel (1.38 mpy), Monel
(1.1 mpy)., and Ni 200 (2.~ 2y). The corrosion rates in DF-2 solution were somewhat

higher than in DF-22 Hr hescelloy C (0.19 mpy) and Hastelloy B (2.06 mpy), and markcedly
higher for Moncel (14.97 mpy).  Pitting scan data in Table 11 indicates that the nickel allovs




Hastelloy C, Hastelloy B, Ni 200, Monel, and commercially purc nickel undergo pitting in the
DF-22 solution. The visual examination of polarization specimens after completion of the pit-
ting scans revealed pitting of Ni 200 and commercially pure nickel. DEF-22 vapor exposure
data in Table 11 indicates pitting of Hastelloy B and Hastelloy C.

inhibitor Studies

Table 12 lists the percent cathodic and anodic inhibition efficiencies of several organic
compounds in reducing the corrosion rate of mild steel in DF-2 solutions. The inhibition is
based on corrosion rates determined from cathodic and anodic Tafel slope extrapolations
which do not account for pitting. Sulfanilimide was found to have the highest cathodic and
anodic inhibiting efficiencies of 74.3 and 84.2%. Benzonitrile, benzothiazole, and benzotria-
zole additions provided cathodic and anodic inhibiting efficiencics greater than 50%. Sul-
fanilimide, benzonitrile, and benzotriazole are N-containing additives while benzothiazole is an
S-containing additive. These species may chemically absorb on thc surface to inhibit corrosion
by acidic fluorides (HF) and acidic chlorides (HCl). The remaining organic inhibitor additions
NLS (Na salt), NLS (free acid), benzimidazole (N-containing additives), and
2-benzothiazole-ethiol and 1-phenyl-2-thiourea (S-containing additives) had cathodic and anodic
inhibiting efficiencies lower than 50%.

Table 12. POTENTIODYNAMIC CORROSION RATES AND PERCENT INHIBITING EFFICIENCIES (1.E.%) OF
1020 STEEL IN DF-2 (97.1%) WITH 0.025 MOLAR ORGANIC INHIBITOR ADDITIONS

Cathodic Anodic
Inhibitor Addition (0.025 M) MPY .LE.% MPY .LE.%

DF-2 98.7 - 135.9 -

Sulfanilamide 25.4 74.3 215 84.2
Benzonitrile 337 65.8 427 68.6
Benzothiazole 35.9 63.6 50.2 63.1
Benzotriazole 435 56.0 63.1 53.6
NLS (Na Salt)* 55.1 442 827 39.1
NLS (Free Acid)* §5.9 434 98.6 27.4
2-Benzothiazolethiol 58.2 41.0 106.5 216
Benzimidazole - - 117.9 13.2
1-Phenyl-2-Thiourea 71.8 27.2 136.0 0.0

*N-Lauroyl Sarcosine

Table 13 contains similar data for 316L SS. Benzotriazole was found to have the highest
cathodic and anodic inhibiting efficiencies of 97.5 and 98.6%, rcspectively, but pitting scan
data and visual examination showed that pitting occurred. Since comparable polarization data
and visual examination of 316L SS exposed to DF-2 solution without an inhibitor showed no
evidence of pitting, it ic clear that benzotriazole will cause pitting of 316L SS despite the
excellent inhibition efficiencies displayed. NLS (free acid) gave the next highest cathodic and
anodic inhibiting efficiencies of 40.8 and 73.8%, respectively.




Table 13. POTENTIODYNAMIC CORROSION RATES AND PERCENT INHIBITING EFFICIENCIES (1.E.%) OF
316L SS IN DF-2 (97.1%) WITH 0.025 MOLAR ORGANIC INHIBITOR ADDIT!ONS

Cathodic Anodic
Inhibitor Addition (0.025 M) MPY LE.% MPY 1.E.%
DF-2 435 - 442 -
Benzotriazole 1.08 97.5 0.63 98.6
NLS (Free Acid)* 25.7 40.8 11.6 73.8
NLS (Na Salt)* 303 304 13.9 68.6
Benzothiazole 31.0 28.6 20.5 63.6

*N-Lauroyl Sarcosine

Figure 3 compares anodic polarization curves for 304 SS in DF-22 with and without a
0.025 M benzothiazole addition. The inhibitor addition shifted the curve toward more nega-
tive potentials and lower current densities, and reduced the passive current density from
80 uA/em® to 8 uA/em®. Table 14 compares the efficacy of the four different inhibitors for
304 SS in DF-22. Benzotriazole had the highest cathodic inhibiting efficiency of 76.47
followed by benzothiazole and sulfanilimide (greater than 50%) and the Na-salt of n-lauroyl
sarcosine (below 50%). Pitting scan data in Table 14 shows that all the inhibitor additions
eliminated pitting. Visual examination of the polarization specimens confirmed the elimination
of pitting by the four inhibitors. Figure 4 shows that 304 stainless specimens exposed to the
vapor above the DF-22 (99.8%) solution with 0.025 M benzothiazole were free of pitting.

veLTs
| .400 A
1.000 A

i
0.600 4

.

No Inhibitor

0.200 4
_ ] With 0,025 M
0.200 Benzothiazole

100 1g! 102 103 1o 1 OSNA/CHE

Figure 3. Effect of 0.025 M benzothiazole on potentiodynamic polarization
curves for 304 SS in DF-22 (99.8%) at 25°C, scan rate: 1.388 mV/sec.
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Table 14. POTENTIODYNAMIC CORROSION RATES AND PERCENT INHICITING EFFICIENCIES (L.E.%)
OF 304 SS IN DF-22 WITH ORGANIC INHIBITORS ADDED

Inhibitor Efficiency Pitting Observations
Anodic Cathodic Polarization Exposure
Inhibitor MPY 1.LE.% MPY .LE.% Scan Visual Liquid Vapor

No Inhibitor 0.025 M 0.329 - 0.270 - SP PP HP HP
Benzotriazole 0.025 M 0.097 70.5 0.064 76.4 N N nd nd
Benzothiazole 0.025 M 0.096 70.8 0.083 69.6 N N N N
Sulfanilamide 0.025 M 0.164 50.2 0.130 52.0 N N nd nd
N-Lauroyl Sarcosine 0.185 43.8 0.163 39.9 N N nd nd
(Na Salt

Key for Pitting Observations:

nd = No Data PP = Possible Pitting P = Pitting

N = No Pitting SP = Slight Pittting HP = Heavy Pitting

i
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{a) 304 SS in DF-22 Vapor (b) 304 SS in DF-22 Vapor with 0.025 M Benzothiazole

Figure 4. Elimination of pitting of 304 SS exposed to DF-22 vapor for 30 days
by addition of 0.025 M benzothiazole, Mag. 32X.

Figure 5 compares anodic polarization curves for commercially pure magnesium in DF-22
(99.8%) with and without 0.025 M benzothiazole. The addition of the inhibitor shifted the
curve toward more noble potentials, showed an active-passive transition, and reduced the criti-
cal current for passivity from 100 uAlcm?® to 10 uA/cm®. Table 15 shows that benzothiazole
had a higher cathodic inhibiting cfficiency (87.5%) than benzotriazole (71.5%). The pitting
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scan data in Table 15 shows that both inhibitors eliminated pitting. Visual examination ot

the polarization specimens after pitting scans, however, revealed that slight pitting was evi-
dent. Figure 6 shows that commercially pure magnesium exposed to DF-22 (99.8%) vapor con-
taining 0.025 M benzothiazole significantly reduces the magnitude of pitting.

vaLTs |

0.e00 4

0.200 4

-0 200 -

0.02SM Benzothiazole
-0.600 A

No Inhibitor

-1.000 -

1o 10S el g4 105 | OBNA/CHE

Figure 5. Effect of organic inhibitors on potentiodynamic polarization
behavior of commercially pure Mg in DF-22 (99.8%) at 25°C, scan
rate: 1.388 mV/sec.

Table 15. POTENTIODYNAMIC CORROSION RATES AND PERCENT INHIBITING EFFICIENCIES (1.E.%)
OF COMMERCIALLY PURE Mg IN DF-22 WITH ORGANIC INHIBITORS ADDED

inhibitor Efficiency Pitting Observations
Anodic Cathodic Polarization
Inhibitor MPY (E.% MPY 1.E.% Scan Visual Vapar
No Inhibitor 0.025 M 10.94 - 16.81 - P HP HP
Benzothiazole 0.025 M 137 875 nt nf N SP P
Benzotriazole 0.025 M 3.09 7.7 3.78 77.5 N SP nd
Key for Pitting Observations:
ﬂd:N':oP?t%:% gfp; Nscz‘tgﬁgupqg“"g Z; J"SL'L%Y Pitting
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(a) Commercially Pure Mg in DF-22 Vapor {b) Commercially Pure Mg in DF-22 Vapor
with 0.025 M Benzothiazole

Figure 6. Reduction of pitting of commercially pure Mg exposed to DF-22 vapor
for 15 days by addition of 0.025 M benzothiazole, Mag. 32X

Compatibility with Decon Agents

Tables 16 through 21 contain corrosion rate data (mpy) for the following alloys and mctal-
matrix composites: 1020 carbon steel, Carpenter 20Cb3 (a Ni-Cr steel), Ti-6Al-4V (grade 35),
aluminum alloys 5083, 6061-T6, 7039, magnesium ZE41A, Al 6061/25 vol% SiC, and magncs-
ium ZE41A/35 vol% FP (fire polished Al,O3). These materials were exposed to the following
Decon solutions: 10% sodium carbonate solution; 100% DS2, and in dilutions of 50%, 30%,
and 20%; a saturated solution of STB as well as a 50% dilution with water.

Table 16 contains corrosion rates in mpy for several alloys exposed to 10% Na,COj solu-
tion. The 1020 carbon steel, stainless steel 20Cb3, and Ti-6Al-4V had low corrosion rates of
<1.5 mpy. Current Army armor alloys, Al 5083 and Al 7039, exhibited moderate corrosion
rates in excess of 25 mpy. Two recently developed Al-Li alloys, Al 2090 and Al MML 043,
had high corrosion rates in excess of 250 mpy. It appears that the copper and lithium alloy-
ing constituents in the latter two alloys significantly increased the corrosion rate.
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Table 16. ALLOYS IN 10 wt% SODIUM CARBONATE

Corrosion Rate

Alloy (mpy)
C 1020 0.14
Alloy 20Cb3 0.08
Ti-6Al-4V 0.08
Al 5083 28.4
Al 7039 374
Al 2090 264.0
Al MML 043 300.0

Tables 17 throvch 20 list corrosion rates in mpy for additional ferrous alloys, nonferrous
alloys, and mectal-matrix composites in DS2 solutions. All of the alloys and mctal-matrix com-
posites exhibited a low corrosion rate of <0.25 mpy in 100% DS2. When DS2 is diluted
with water, the corrosion rate usually increases for all of the alloys and metal-matrix compos-
ites. Slight increases were shown for 1020 carbon steel, stainless steel 20Cb3, and Ti-6Al-4V
(<1 mpy at all dilutions).

Table 17. FERROUS AND TITANIUM ALLOYS IN DS2

DS2 C 1020 Alloy 20Cb3 Ti-6A-4V
(vol%) (mpy) (mpy) (mpy)
100 0.01 0.03 0.01
50 0.03 0.04 0.04
30 0.20 0.10 0.03
20 0.34 0.25 0.18
0 1.00 0.10 0.02

Table 18. ALUMINUM ALLOYS IN DS2

DS2 Al 5083 Al 7039
(vol%) (mpy) (mpy)
100 0.13 0.02
50 180 ‘400
30 490 990
20 360 980

0 0.04 0.08

Table 19. ALUMINUM METAL-MATRIX COMPOSITES IN DS2

DS2 Al 6061 Al 6063 Al 6061/SiC
(vol%) {mpy) {mpy) (mpy)
100 0.23 0.12 0.22
50 445 421 69
30 > 1000 766 444
20 > 1000 717 888
0 0.05 71 0.24
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Table 20. MAGNESIUM METAL-MATRIX COMPOSITES IN DS2

Ds2 Mg ZE41A Mg ZE41A/FP
(vol%) (mpy) (mpy)
100 0.03 0.03
50 0.29 0.48
30 0.24 1.92
20 0.50 0.34
0 4.80 4.90

Aluminum alloys and aluminum metal-matrix composites underwent a significant incrcasc
in corrosion rate with dilution reaching a maximum of >300 mpy in the range 20% to 30%
DS2. This data is in accord with Tarantino® who found that the maximum corrosion rates
occurred at 30% DS2. The maximum corrosion rate for the magnesium alloy occurred at
309% DS2. The magnesium alloy ZE41A and metal-matrix composite Mg ZE41A/FP had corro-
sion rates of <2 mpy for dilutions up to 20% DS2. With further dilutions, the corrosion

rate increased to 5 mpy.

Table 21 contains the corrosion rates in mpy for several ferrous alloys, nonferrous alloys.
and metal-matrix composites in full strength supertropical bleach (STB) and in 50% dilution.
Ti-6Al-4V and Carpenter stainless steel 20Cb3 exhibited corrosion rates below 1.3 mpy in
both solutions. Corrosion rates for Al 5083, Al 7039, Al 6061-T6, and Al 6061/SiC were in
the range of 10 to 64 mpy with the highest rate achievcd by the Al 6061/SiC metal-matrix

composite.

Table 21. CORROSION OF ALLOYS iN SUPER TROPICAL BLEACH

Full Strength 50% Dilution

Alloy (mpy) (mpy)
C 1020 156 97
Alloy 20Cb3 1.28 0.28
Ti-6Al-4V 0.14 0.14
Al 5083 10 23
Al 7039 50 20
Al 6061-T6 27 10
Al 6061/SiC 24 64
Mg ZE41A 125 290
Mg ZE41A/FP 330 575

The corrosion rates for 1020 steel in full strength STB and in 50% dilution were higher;
156 and 97 mpy, respectively. The Mg ZE41A and Mg ZE41A/FP had corrosion rates in the
range of 125 to 575 mpy in both full strength STB and in 50% dilution. The maximum ratce
was attained by the Mg ZE41A/FP metal-matrix composite.

4. TARANTINO, P. A, and DAVIS, P. M. Electrochemical Corrosion Rates of DS2 with Some Aluminum Allovs. U.S. Army Armament
Research and bevelopment Command Technical Report, ARCSL TR 83051, June 1983. ’ .
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CONCLUSIONS
DF Studies

The corrosion rates of the metals/alloys in 97.1% DF were significantly higher than in
99.8% DF. The Cl. Fe. and other impurities in the 97.1% solution cause an increase in the
corrosion rate.

The 1020 steel had the highest corrosion rate in both solutions. Hastelloy C, Ta-10W,
Al 6061-T6, Al 5083, Al 2090, and Al 7075-T6 had corrosion rates of <1 mpy in both

solutions.

The corrosion potentials of the metals/alloys were generally more active in the higher pur-
ity solution except for Hastelloy B, Hastelloy C, 304 SS, and 316L SS, Al 2090, Al 2017, and
Cu (38% Zn, 2% Pb).

Pitting tendency as determined from potentiodynamic pitting scans disclosed that pitting
did not occur for any metal/alloy in the 97.1% solution, but that pitting did occur in the
higher purity 99.8% solution for most alloys.

The best inhibitor for specific alloys in DF is as follows: Sulfanilimide for 1020 steel and
benzotriazole for 316L SS in 97.1% DF; benzotriazole for 304 SS and benzothiazole tor Mg
in 99.8% DF.

Potentiodynamic pitting scans for 304 SS in 99.8% DF solution with 0.025 M additions of
benzotriazole, benzothiazole, sulfanilimide, and N-lauroyl sarcosine (Na salt), and tor Mg with
benzothiazole and benzotriazole additions, showed that these inhibitors reduced or eiiminated
pitting.

An addition of 0.025 M bcnzothiazole to the liquid phase greatly reduced the extent of
pitting of 304 SS and Mg specimens after long-term exposure to vapor above 99.8% DF.

Decon Studies

Lithium and copper alloying elements significantly increase corrosion rates of aluminum
alloys in 10% sodium carbonate solution.

Aluminum alloys and aluminum metal-matrix composites exhibited low corrosion rates in
pure DS2, but high corrosion rates (>360 mpy) in the more aggressive dilutions of 20% to
30%. Carbon steel, magnesium alloys, and magnesium metal-matrix composites had significant
corrosion rates (>125 mpy) in STB.

The following alloys exhibited low corrosion rates (<2 mpy) in Decon agents: stainless
steel 20Cb3 and Ti-6Al-4V in 10% Na;COs; all alloys and metal-matrix composites in 100%
DS2; 1020 carbon steel, stainless steel 20Cb3, and Ti-6Al-4V in all dilutions of DS2:

Mg ZE41A and Mg ZE41A/FP in dilutions up to 20% DS2; stainless steel Cb3 and
Ti-6Al-4V in STB.

The following alloys exhibited moderate corrosion rates (10 to 64 mpy) in Decon agents:

Al 5083 and Al 7039 in 10% Na,CO,; and Al 5083, Al 7039, Al 6061-T6, and Al 6061/SiC in
STB.
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