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FOREWORD

The present monogram is an extensive treatment of model-
ing and control design of large flexible space structures (LFSS)
under high uncertainty. The uncertainties considered are of the
multiplicative type, that are state-dependent, control-dependent,
and measurement-dependent, in addition to regular additive noise.
The theory of such systems involves complex mathematical
developments and probabilistic approaches. The motive behind such
an approach for the accurate modeling and control design of LFSS
entails the fact that future LFSS, that are intended to be deployed
in space under virtually no gravitation, have inherently uncertain
characteristics. Moreover, testing, validation, and verificatin
under realistic conditions is almost impossible, and scaled-down
modal testing is still not advanced enough to present a viable means
of reducing uncertainties. Thus, a probabilistic apprc~zh that
i,,morporates the uncertainties into the analytical representation of
LFSS is appropriate and it provides means of robust control design.

The report consists of seven chapters. The first chapter presents
an overview of linear stochastic control systems with multiplicative
and additive noise and the stochastic modeling and control of LFSS
under a high degree of uncertainty. A review of research performed
in these areas is followed by a unified theoretical treatment of the
subject under perfect information considerations. The second
chapter formulates the problem in a mathematical setting as applied
to LFSS modeling and control design under uncertainties in the
frequencies, damping ratios, and modal vectors. It is conjectured
that knowing the statistics of the frequency and damping ratio
uncertainties, is sufficient for generating the statistical chazac-
teristics of the elements of the modal matrix, under the assumption
of Gaussian white noise. Also in this chapter the designation of
finite element models and the subsequent model-order reduction, that
is necessary for analysis, control design, and implementation
purposes, is discussed in fair detail. Various techniques are
briefly reviewed and commented upon, with specific application to
LFSS. Uncertainties and the performance 'ndex are discussed in
Chapter 3. Methods of generating the nucertainties and the expected
disturbances are presented and ways of - orporating these into the
system model are briefly reviewed. In Ch.')ter 4 the optimal feedback
control of linear stochastic systems under multiplicative and
additive noise is derived and the stability characteristics of such
systems are treated under various conditions. The relevance of such
systems to LFSS control is commented upon and disadvantages of such
a theoretical approach are underlined. The fifth chapter is
concerned with appropriate realistic measurement systems.
Specifically chosen for LFSS control, linear measurement systems
with measurement-dependent noise and additive noise are presented
and discussed. Moreover, controllability, detectability, and
observability of such systems are defined and related to the regular
linear quadratic Gaussian (LQG) case. The realistic state
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estimation problem is covered in Chapter 6. Linear minimum-mean-
square unbiased estimator algorithms and other Kalman-Bucy type
filtering algorithms are presented and discussed. A fixed structure
linear unbiased estimation procedure is developed and its
characteristic features are discussed briefly. The last chapter,
Chapter 7, is devoted to the closed-loop stochastic linear
compensator. It is shown that, under multiplicative and additive
noise contaminating a control system, the certainty-equivalence
principle breaks down and the overall estimaton and control should
be treated simultaneously.

There is a great deal of interest in this subject presently, and
many new articles have appeared treating various aspects of multi-
plicative noise. Moreover, many researchers have realized the
advantages of such probabilistic approaches, not withstanding the
difficulties involved. The robustness it inherently provides to a
control system due to the adaptabilty of the controller to system
and parametric variations cannot be overemphasized. Computational
problems have still to be overcome in most applications. However,
in the analysis, synthesis, and control design phases the payoffs of
probabilistic approaches can be significant. Furthermore, for
simple control systems with high uncertainties low order dynamic
models can be utilized and such stochastic controllers can then be
implemented without any difficulty.
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SECTION 1.1

INTRODUCTION

Very large-order finite element approximations are

utilized to generate linear finite dimensional models for LFSS.

There are various approaches to reducing the large order models for

implementation and analysis purposes [1.1]. Moreover, random dis-

turbances and uncertainties in the model are normally treated by

including an additive white Gaussian noise vector. However, under

conditions of high performance requirements and large degrees of

uncertainty, simple, additive, white Gaussian noise will not be ade-

quate and can even be the source of instability in a system's behav-

ior. Multiplicative and additive noise in the system linear dynamic

model, on the other hand, will be realistic and closely represent

the real structure on an average basis [1.2].

A survey of literature is presented in the present chapter regarding

various approaches to modeling and control of LFSS under high

performance recuirements and uncertainty [1.31. Furthermore, each

of the different methodologies are discussed briefly and their major

contributions are highlighted. Both the continuous and the discrete

time cases are presented and the references are evaluated in a

chronological manner. In Section 1.2 Optimal Stochastic Control of

Linear Systems with Multiplicative and Additive Noise is surveyed,

and in Section 1.3 Modeling for Control Design of LFSS Under

Uncertainty is reviewed. In Section 1.3.5 our approach to modeling

and control of LFSS under uncertainty is introduced very briefly.

In Section 1.3.6 conclusions are summarized; in Section 1.4

references of general importance are cited.
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SECTION 1.2

OPTIMAL STOCHASTIC CONTROL OF LINEAR SYSTEMS
WITH MULTIPLICATIVE AND ADDITIVE NOISE, A SURVEY

1.2.1 INTRODUTCTION

System analysis and controller design of complex systems

require a priori knowledge regarding overall performance, character-

istics of the plant and the controller, and mutual interactions of

the controller with the system at hand. However, the difficult

issue often is the analytical description of the dynamic behavior of

the plant. Moreover, the accuracy of the representation depends

upon the assumptions made, the approximations used, the

nonlinearities that are present and are identified, the unmodeled

part of the system that is considered insignificant, the parameters

involved, and the random disturbances that could affect the plant.

Thus, modeling and control of modern complex systems, such as very

large flexible space structures, entail an appreciable degree of

uncertainty.

The sources of uncertainties are due to modeling approximations,

noise and tolerances in components, random disturbances, parametric

errors, configurational and random changes (that are often a func-

tion of time), and many other factors that cannot be accounted for

with absolute accuracy. Statistical data regarding these uncertain-

ties can play an important role in creating stochastic models for

the control system under consideration. These models will be more

realistic and close to the real plant on an average basis.

Various ..'hors have addressed the problem of controlling linear/

nonlinear s,,stems with uncertainty in the model dynamics and con-

trol. Mot of the work done in the past however, deal with system
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models with only additive noise to compensate for all uncertainties

mentioned above; a large portion of the literature deals with linear

models in the discrete-or continuous-time domains. For a good list

of references on the subject see Kwakernaak and Sivan [1.1] and

Mendel and Gieseking [1.21.

Optimal control theory is at a respectable level of maturity, thanks

to mathematical developments such as the maximum principle, dynamic

programming, stability theory, functional analysis, and filtering

and estimation theory. However, stochastic optimal control theory

for systems with multiplicative and additive noise needs more work

for practical implementation and meaningful applications. The

present article is concerned with research and theory in control of

stochastic systems with multiplicative and additive noise that are

represented by linear/bilinear models.

1.2.1.1 Historical Perspective

Methods for the optimal modeling and control of complex

dynamic systems have been quite thoroughly investigated under deter-

ministic corditions. However, when the plant to be controlled is

subject to uncertainties (that are functions of the states and the

controls), and are random in nature with known statistics, then we

have a stochastic problem at hand [1.3]. Analysis and synthesis of

the problem of optimal control design under multiplicative noise is

relatively new. For, even though the general problem with stochas-

tic variations is encountered in numerous references starting with

the well known works of Wiener and Kalman, the optimal control of

systems with state-dependent and control-dependent noise was not

treated until the early part of the sixties.
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According to the published literature, the first authors who solved

a simple case of a control problem with random coefficients, were

Drenick and Shaw in 1964 [1.4]. A similar problem with a little

different setting was considered in a discrete-time function by

Gunkel II and Franklin [1.5]. The stability of control systems was

not addressed until 1965, by Krasovokiy [1.6]. Aoki [1.7) and

others followed with various papers on the subject.

1.2.1.2 Status of Stochastic Control

The optimal control problem for infinite dimensional

linear systems in Hilbert spaces is solved, both for deterministic

and for stochastic systems with additive noise only [1.8].

Similarly, linear quadratic Gaussian theory is well established and

is at a high level of maturity [1.1]. However, stochastic control

and even deterministic control, for nonlinear systems is still a

field open for research. The controllers that have to act under

conditions of stochastic indeterminacy can only be functions of the

observed data and thus of the "feedback" or "closed-loop" type. In

situations of linear systems with only additive white Gaussian noise

and quadratic performance indices the certainty equivalence princi-

ple is directly applicable. The certainty equivalence (or

separation) principle states that the optimal stochastic feedback

control is equivalent to the deterministic case with the state

vector replaced by its estimate. When multiplicative noise is

present, the above mentioned separability does not hold true. This

aspect of the stochastic optimal control problem has been treated by
various authors [1.71, [1.10].

The stochastic linear quadratic Gaussian (LQG) problem has a numb-ýr

of limitations. One major drawback is the fact that there is no

systematic procedure for selecting appropriate weighting matrices,

nor for choosing the covariances of the noise vectors of the meas-

urement and the state equations [1.11].
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All the limitations notwithstanding, linear quadratic Gaussian
control is applied to a wide variety of systems ranqing from large-
scale integrated systems with multiple sensor-actuator loops to
computer controlled systems with filters, adaptation, failure detec-
tion, reconfiguration and redundancy management. Moreover, the

advent of very large flexible space antennas, and structures such as
the space station, require new approaches to modeling under uncer-

tainties due to the mere fact that it is virtually impossible to
test these large structures under appropriate and realistic condi-

tions. But, the need for more effective control and system integra-
tion, and more accurate modeling techniques dictate the use of
stochastic modeling and control methodology as a viable approach for
systems with complexities, uncertainty, and high performance

requirements.

1.2.1.3 Application of Control Systems with Multiplicative and
Additive Noise

The underlying objectives in control theory are the
mathematical modeling and control design of complex dynamic systems

and maintaining a set of variables within definite bounds. In
operating physical systems, perturbations, which cannot be exactly
predicted, subject the states of the system to strains and stresses
and create the need to utilize stochastic models.

Various concepts of stochastic stability arise as a natural conse-
quence of the study of the qualitative behavior of a system that is
subject to random disturbances. Admissible controls for specific
applications are determined, a priori, by establishing effective
stability criteria. On the other hand, the criteria chosen often
lead to quantitative performance indices on the basis of which

admissible control strategies can be meaningfully compared. The

6



latter in turn, leads to the well known problem of optimization,

that is, determination of an optimal control function within an

admissible class of controls [1.12].

The disturbances that we are concerned with herein are of three

types: control-dependent noise, state-dependent noise and purely

additive noise. Control-dependent noise arises from fluctuations

in system structure, or of system energy content. The errors and

disturbances during control tests can be modeled as multiplicative

noise in the control matrix in a linear system. Additional causes

of multiplicative noise that is control dependent is modeling of

system parameters as idealized white Gaussian noise processes.

Control-dependent noise tends to increase errors by diminishing the

useful effect of the controller. Stabilization, especially by

linear feedback, may not be possible in such cases, when the noise

levels are high.

State-dependent noise, on the other hand, could be considered as

internal dynamic disturbances which may be due to unmodeled dynam-

ics, especially in systems with very high performance require-

ments. Additive noise is considered as an environmental distur-

bance which, together with the control, acts on the basic dynamics

and affects the system. Large state-dependent noise has a destabi-

lizing effect on the dynamics of the system and tends to increase

the magnitude of the optimal gain. Stability may not be achieved

even with a deterministic control input if the state-dependent

noise is of large magnitude.

7



1.2.2 PROBLEM STATEMENT AND DISCUSSION

A relatively new accomplishment in modern control
theory is the introduction of the concept of state space represen-

tation of a system. The optimal reconstruction of the state from
observed data and the unification between the "state-space" theory
and the classical transfer function theory have created opportun-
ities for further research and understanding of complex practical

issues. This has led to new approaches in systems control. In the

present section we will state the general problem under considera-
tion, the important relations between modeling and control, and the
stochastic nature of modeling under uncertainty (specifically, the

uncertainties that are state and control dependent and additive in
nature). We will discuss both discrete-time and continuous time
stochastic models. It should be noted that, while the minimal

state space in deterministic control theory is almost unique, there
are many solutions to the stochastic problem [1.13].

1.2.2.1 Mathematical Description

In this survey the optimal control problem of linear
dynamical systems with state-dependent noise, control-dependent

noise, and purely additive noise is considered. The most general
representations in both continuous and discrete-time systems will
be described and the necessary assumptions and restrictions will be

stated.

The most general representation for a complex dynamic control

system with high performance requirements will be a non-linear,

infinite dimensional stochastic set of differential or difference
equations [1.14). However, for all practical purposes, approxima-

tions and simplifications are performed in order to obtain solu-
tions, and to implement the system.

8



1.2.2.1.1 Continuous-time Case

Consider the following ordinary differential equations

with multiplicative and additive noise, representing a linear

control system:

n1

d x (t) = A(t) x (t) + B(t)U(t) + Z F (t) x (t) •i(t)
dt i=1 1

n 2
+ E G.(t)U(t) y (t) + E(t)w(t)(i )

j=l J 3

where x(t) - dim(n), U(t) - dim(m) are the state and the control

vectors respectively. i', i=l' ..." nl' yj' j=l, ... , n 2  and w(t)
dim(n) are zero mean white Gaussian independent random processes

with given statistics (realistically these could be non-white, and

non-Gaussian, however, for convenience quite often they are taken

as Gaussian white processes). A(t) - dim (n x n), B(t) - dim(n x

m), Fi - dim(m x n), i=l, ... , nl, Gj - dim(n x m), j=l, ... , n2,
and E(t) - dim(n x n) are matrix functions all defined and bounded

in the time interval of interest. E(t) is of full rank.

The measurement system that provides noisy information is given as

follows:

y(t) = C(t) x (t) + D(t)v(t) (1.2)

where: y(t) - dim(p) is the measurement vector, and v (t) - dim(p)

is the zero-mean white Gaussian measurement noise vector with given

statistics. C(t) - dim(p x n), and D(t) - dim(p x n) are matrix

functions that are of full rank, bounded, and defined over the

interval under consideration.

9



The performance functional that normally accompanies systems like

(1.1) and (1.2) is given by the following quadratic measure:

t[xT(tf) H(tf) x (tf) +f f [xT(t) Q(t) x (t)

0

+ UT(t) R(t) U(t)]dt] (1.3)

where, H(t), Q(t) are positive semidefinite and R(t) is a positive

definite matrix function defined and bounded over the time interval

[to, tf]. In Equation (1.3) E['] is the statistical expectation

operator. The optimal stochastic control problem is then to deter-
mine the admissible control input U(t) (that normally satisfies a
given constraint, such as U(t) ) such that J is minimized.

Under additive noise only the system above has an optimal control

that feeds back the estimates, X(t) of the state x(t) and the "cer-

tainty equivalence" principle [1.10] holds true. However, under
the present conditions it turns out that a set of non-linear matrix
differential equations have to be solved and the separation

principle mentioned above does not apply. Thus, the estimation and
control problem have to be addressed simultaneously.

1.2.2.1.2 Discrete-time Case

Similar to the continuous case, the control system in
the discrete-time domain is given by:

r1

x(k + 1) = 4(k) x (k) + F(k)U(k) + E ýi(k) Oi(k) x (k)
i=l

r 2

+ Z pj(k) Tj(k)U(k) + A(k)ct(k) (1.4)

j=1

10



where x - dim(n) is the state vector, U - dim(m) is the control

vector, 4j, i=l, ... rI and pj, j=l, ... r 2 , are zero-mean white

Gaussian, independent, noise elements with given statistics, and

a dim(n) is an additive, zero mean white Gaussian noise vector

with given statistical data and independent from the other rkuise

elements. ý - dim(n x n) and F- dim(n x m) are the state-

transition and the control matrices respectively of appropriate

characteristics. Also, Gi - dim(n x n), i=l, ... , rl are

coefficient matrices, and so is A - dim(n x n), all of full rank.

The measurement system for Equation (1.4) is

y(k) = H(k) x (k) + E(k) X(k) (1.5)

where y(k) - dim(p) is the measurement vector at time k, and X(k)~

dim(p) is the zero-mean white Gaussian noise vector with given sta-

zicz . and independent from the rest of the noise vectors. H and

E are coefficient matrices of full rank and appropriate dimensions.

The performance criterion for such a system is normally given by:

N-I
Jd = E [xT(N)S x (N) + E [xT(i)Q(i) x (i) + uT(i)R(i)U(i)] (1.6)

i=O

where N is the final time-step (in the infinite time situation

N - ), S and Q are matrices of appropriate dimensions and positive

semi-definite, while R is a positive definite matrix of compatible

dimensions. The discrete-time optimal stochastic control problem

is to determine the control law that will minimize Jd using the

information from Equation (1.5). Thus, as in the continuous case,

there could be some constraint on U. Moreover, the separation

principle being inapplicable, the filtering and control have to be

solved simultaneously.
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1.2.2.2 Relations Between Modeling and Control

In modeling and design of a control system the impor-

tant factors that need careful consideration are (a) performance

requirements, (b) uncertainties, (c) constraints, and (d) available

measurement/information system. The level of performance dictates

the degree of accuracy of the model. For, the higher the perform-

ance requirements the more effective a controller is needed, thus

creating the need for accuracy. Uncertainties in parameters may be

left as they are, and a "robust" control system may be designed

that is essentially insensitive to parameter variations. Alter-

nately, the levels of uncertainties can be reduced through exten-

sive testing and verification, (whenever possible) or by means of

real-time, on-line (or non-real-time) system identification. It is

tho fuomer approach that is advocated and surveyed herein. The

main reason for such an approach is twofold. First, system idenLi-

fication of complex control systems is often costly and practically

not feasible. Secondly, a "robust" control system has some advan-

tages that makes it more desirable as the "least of evil" [1.15].

Moreover, it is not always possible to generate an optimal (even a

sub-optimal) closed loop system from an open-loop one, and it could

be very involved. There does not seem to be a general approach to

approximating non-linear, stochastic models with linear ones.

1.2.2.3 Stochastic Modeling with Multiplicative and Additive
Noise

Various fields of application have motivated research

in the analysis and control design of systems with multiplicative

and additive noise. Thus, control systems that involve human

operators [1.17-1.191, complex econometric systems with stochastic-

ally varying delays [1.19,1.20], mechanical systems with random

vibrations, aerospace systems with high performance requirements

(e.g., momentum exchange for regulating the angular precision of
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rotating spacecraft [1.18]) can all be cast into linear mathe-

matical models with multiplicative noise. In addition, problems

associated with reflections of transmitted signals from the iono-

sphere, as well as certain processes that involve random sampling

errors can be formulated in the above mentioned fashion [1.5].

Further examples of systems with multiplicative noise models are:

nuclear fission and heat transfer processes; migrations of people;

migration of biological cells (as a consequence of the stochastic

nature of cell divisions and separation), and noisy measurements on

input and output variables. Furthermore, in pursuit-evasion game

theory, the response trajectories of the pursuer and the evader may

deviate from their nominal paths due to random parameter varia-

tions, thus resulting in a situation whereby state-dependent and

control-dependent noise is realistically included in the system

dynamic model [1.22]. Modeling of process disturbances with

Gaussian white noise often results in multiplicative noise models

as well (1.211.

The control and the stability characteristics of systems with the

abovementioned formulations are rather different from deterministic

systems, or systems with only additive noise elements [1.23,1.24,

1.25]. The formulation of stochastic models should be carried out

with caution since optimal control laws that are derived from

incorrectly specified stochastic disturbances may lead to

instability [1.10,1.27,1.23].

1.2.3 VARIOUS APPROACHES TO STOCHASTIC MODELING AND CONTROL

1.2.3.1 Additive Gaussian Noise Model

It is well established that the optimal control law for

linear stochastic systems with only additive, Gaussian noise, and a

quadrat-ic performance criterion is of the feedback type, and is
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accomplished by cascading the optimal state estimate with the

deterministic optimal controller [1.1]. Thus, two Riccati

equations are solved, the appropriate estimates and the optimal

feedback gains are derived, which furnish the engineer with the

optimal controller. We underline the fact that, by virtue of the

separation principle (certainty equivalence), the two above-

mentioned riccati equations are independent [1.8].

Under these circumstances, we have in Equation (1.1) i =-yj = 0

and in Equation (1.4) ýi = pj = 0 for all i and j. Thus, if the

new system is stabilizable and observable the optimal control

always exists and is unique. The controller is a linear function

of the state estimate and is independent of the intensity of the

additive noise. The optimal problem is completely solved under the

above conditions for both the discrete-time and the continuous-time

situations, for full-state information or partial measurements, for

simple regulation or tracking [1.1,1.8].

Extensive literature and theory exist on the topic of Linear Qua-

dratic Gaussian (LQG) control systems [1.27]. It is the purpose of

the present endeavor to review the state-of-the-art in stochastic

control systems with multiplicative and additive noise. Hence, the

reader interested in more details regarding LQG systems is referred

to many of the existing books on the subject.

1.2.3.2 State-dependent and Control-dependent Noise

The monumental works of Feldbaum, Bellman, and

Pontryagin dealt with a wide range of control problems: stochas-

tic; deterministic; linear; and non-linear. They were among the

first researchers to realize the statistical nature of the problem

and the need for stochastic modeling of control systems under high

performance requirements and uncertainties [1.281.
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1.2.3.2.1 The Continuous-time Case

Consider the system given by Equations (1.1), (1.2),

(1.3). The control analysis of this system has created worldwide

interest. Florentin [1.29-1.321 specially in [1.311, Gersch and

Kozin [1.33], Drenick and Shaw [1.4], Krasovokiy [1.61, and

Krasovskii [1.34], seem to be the first researchers to analyze the

abovementioned control system in the early sixties. Even though

their considerations were basically in the scalar, or single-input-

single-output, situation, they all realized the complex nature of

the system and did not fail to point out that the random variations

could result in non-existance of an optimal control input under

multiplicative noise. During the latter part of the sixties,

interest increased in control systems with multiplicative noise.

Thus, Wonham [1.35], Tou [1.38], Gorman and Zaborsky [1.36],

Kleinman [1.37] and McLane [1.18] considered multivariable systems

and derived their optimal control characteristics. Kleinman,

Gorman and Zaborsky considered the case with control-dependent

noise, while Wonham and McLane treated state-dependent noise situa-

tions. The stability of stochastic systems was reviewed by Kozin

[1.39] that brought into light several practical issues.

During the next decade the control problem with multiplicative

noise was expanded further. It was McLane [1.18] who determined a

linear feedback controller for systems with multiplicative and

additive noise through the Hamiltonian approach. In his analysis,

the measurement system was assumed perfect. He arrived at an

optimal control law given by

U(t) = K x (t) (1.7)

where

K(t) = -[R(t) + (P't)i BTpsc(cscT) (1.8)
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In Equation (1.8)

= tr [GT(t) JxxGj(t) F(t)]

S(t) = the costate of the system

P(t) is the solution of the matrix Riccati equation, F(t) = E [fyT]

and Jxx = 3jx

Simultaneously Haussmann [1.40] studied the same problem using

Lyapunov methods and derived conditions under which an optimal

control law exists. The above researchers concluded that, in the

use of control-dependent noise the control is cautious (small

gains), while for state-dependent noise more active controls are

required (large gains). Feedback stabilizability in the mean

square sense was taken up by Willems and Willems [1.21] and

necessary and sufficient conditions were presented.

During the latter part of the seventies several authors tackled the

control problem with multiplicative noise [1.41]. Timofeev and

Chernyavskii [1.42] considered a worst case situation in which the

statistics of the random variables are not known but only an admis-

sible set for their distributions is given. While Bismut [1.431

derived existance results for an optimal control in a random feed-

back form, using functional analysis. Moreover, he showed that a

unique solution to the matrix riccati equation exists under assump-

tions of independence of the coefficients of the equation and the

criteria from the noise parameters.

For the first time in the published literature, the problem of

estimation of Equations (1.1), (1.2), (1.3) was studied by Bondaros

and Konstantinov [1.44] through a Hamiltonian procedure. In this

model, multiplicative and additive noise contaminated not only the

state equation, but al3o the measurement equation. The analysis
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proved that the uncorrelated additive perturbations in the dynamics

and observation equations increase the estimation error. A similar

increase in the estimation error occurs if the additive and multi-

plicative noises of the measurement system are correlated.

Milshtein [1.45,1.46] derived stabilizing controllers for the

steady-state problem with both perfect and noisy measurements by
reducing it to a constrained minimization problem. While Katayama

considered the related problem of assymptotic stability properties

of the Riccati equation with constant but unknown coefficients.

Several other authors have studied the continuous-time problem of

stochastic control Equations (1.1), (1.2), (1.3) [1.47,1.481 and

most of the aspects treated. These studies are modifications to

their predecessors' works [1.49-1.53]. Hyland [1.54] used the

maximum enthoropy approach to control design and regulation for

uncertain structural systems with uncertainties in frequencies.

1.2.3.3 The Discrete-time Case

There is definitely a richer literature for the dis-

crete time problem Equations (1.4), (1.5). (1.6). The first

article on the subject was published by Gunkel and Franklin [1.5]

in which the effect of random sampling in sampled-data control

systems were presented in the form of multiplicative noise.

Tou [1.381 followed by advocating the concept of adaptive and

learning control under large parameter fluctuations, and used

statistical decision theory and dynamic programming. Aoki [1.7]

pointed out that the certainty equivalence principle does not

result in optimal control laws under multiplicative noise

situations. Controllability of stochastic linear systems was taken

up by Connors [1.55]. His analysis utilizes dynamic programming

and derives necessary and sufficient conditions of controllability

for systems with multiplicative noise and perfect r'easurements.

Murphy [1.56] and Grammaticos and Horowitz [1.57] considered linear

systems with unknown gains, while Ku and Athans [1.58] showed that

the open-loop feedback optimal adaptive gains are functions of
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current and future uncertainty of the parameter estimates. Bar-

Shalom and Sivan [1.591 studied linear systems with random

parameters and derived optimal open-loop and open-loop feedback

controllers under a quadratic criterion. Stability characteristics

for stochastic nonlinear difference systems perturbed by random

disturbances was treated for the first time by Konstantinov [1.60]

and Mishra and Mahalanabis [1.61]. Kendrick [1.621, Shupp [1.63]

and Aoki [1.7,1.201, presented applications of linear stochastic

systems like Equations (1.4), (1.5), (1.6) to macroeconomic and

economic systems. Katayama [64] treated the asymptotic properties

of the matrix Riccati equation with random coefficients, while

Athans, Ku and Gershwin [1.651 and Ku and Athans (1.66] studied the

limitations and conditions under which the infinite horizon

solution of the optimal stochastic control problem does not

exist. Wittenmark presented a survey of stochastic self

organizing, self-optimizing control methods whereby he also men-

tioned some aspects of multiplicative noise.

It was Zabczyk [1.67] who studied the general, infinite dimensional

stochastic control problem of linear systems with multiplicative

and additive noise in Hilbert spaces. His analysis contributes

significantly to discrete-time systems' stochastic observability,

controllability, existence and uniqueness of solutions, as well as

the characteristics of the Riccati equation, both under finite and

infinite time situations. He derived the optimal control law:

U(n) - G(n) x (n) (1.9)

where

G(n) = [R(n) + F*(n)W(n+l)F(n) + A(u)] 1- ' F*(n)W(n+l)$(n) (1.10)

18



W(n) = Q(n) + D* (n)W(n+1) (n)
rl n

+ E (W(n+1) -'5 ' 1 i(n) ei (n), Z i (n) ei (n))] (1.11)
i== i=l

• @*(n)W(n+l) F(u) [R(n) + f'*(n)W(n+l) 1-(n) + A(n)]-
-* (n)W(n+l) I <D(n)

(.,.) is the inner product operator

(*) is the complex conjugate transposition operator

.]i is the inversion operator, R = cov(pj) , j = 1,

r2 r2
a(n) = E[ (W(n+l) Z p j(n) 4j (n), Pj (n) ýj (n)

j=1 jil

Zabczyk proved that both A(n) and the quantity with the expectation

in Equation (1.11) are monotonic under some condition. Moreover,

he showed that for the steady-state solution W of the riccati

equation the cost is given by

Jd = (Wx, x) + Ntr(A*WAV) (1.12)

where V = coy (a)

Existence and uniqueness issues are also tackled in Zabczyk's arti-

cle and, so are stabilizability and detectability conditions. Stoc-

hastic observability is introduced for the discrete-time stochastic

system considered and novel results related to the finite dimen-

sional applications are discussed. Joshi [1.681, Harris [1.691

also treated the same problem. The latter presented results on

controllability for discrete stochastic systems with the random

variables in the state and control matrices drawn from different

distributions. Pakshin [1.70,1.71,1.72] analyzed the estimation

and control synthesis of discrete-time linear systems by deriving a
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filter and a controller that are optimal in the class of linear

systems. Furthermore, he drived a suboptimal solution for systems

with non-quadratic criteria. Tugnait [1.73] presented results on

uniform asymptotic stability of linear stochastic estimators with

white multiplicative noise (as well as additive) contaminating the

measurement system.

Panossian [1.231 and Panossian and Leondes [1.72,1.73] studied

various aspects of multivariable linear stochastic, discrete-time

systems that are partly deterministic, and partly stochastic with

multiplicative and additive noise. Furthermore, they analyzed the

estimation problem under partly exact and partly noisy measurements

(the latter having multiplicative and additive components as

well). Results on a reduced-order linear stochastic observer was

also presented that will produce estimates that are optimal in the

subclass of linear reduced-order stochastic systems. De Koning

[1.24,1.76,1.771 on the other hand, reported results on linear

discrete-time systems with stochastic parameters having models

whereby the state and control matrices are sequences of random

matrices with fixed statistics. These articles dealt with the

behavior of the first and second moments of the random variables,

and through the characteristics of these moments, De Koning

addressed the issues of stability, detectability, stability in the

mean and mean square sense, and optimal estimation. The subject of

systems with random coefficients is still of current research

interest. Moreover, design and control of uncertain linear systems

was last considered by Petersen [1.78].

1.2.3.4 Bilinear Stochastic Systems

There has been an appreciable amount of literature on

bilinear control systems during the past two and a half decades.

However, most of the articles deal with deterministic cases. The

stochastic problem of bilinear systems with random disturbances has
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been a topic of interest for many researchers [1.79]. Recent
interest in the controllability, stability, and other aspects of
the problem are also reported [1.80].

A wide range of problems may be approximated by bilinear stochastic
systems [1.81]. Diffusion processes, specially in nuclear fission,

inheat transfer, and in biological systems, may be modeled appro-

priately by bilinear stochastic systems [1.82]. An additional term
in Equation (1) will result in a general form of stochastic

bilinear systems. Thus, a term of the form N(t, U(t)) x (t) added
to Equation (1.1) on the right-hand side results in such a system.
The characteristics of bilinear stochastic systems are derived in
several papers [1.83,1.84]. Most of the studies treat such systems

as a first stage generalization of linear stochastic systems, espe-
cially under finite dimensional suboptimal filters. The problem of
identification, on the other hand, needs further research [1.84].
State-dependent and control-dependent noise problems can be con-
sidered special cases of bilinear stochastic systems and most of the
research is in this area (see previous sections). We will not treat
this subject any further, since the main interest of the paper is in
systems with multiplicative and additive noise. The analysis and
synthesis of bilinear stochastic systems need further development

and to this end many researchers continue to study various aspects

of the problem [1.85,1.86].

1.2.4 LINEAR STOCHASTIC SYSTEMS

For the past two decades linear stochastic systems in

the infinite dimensional spaces has been of interest to many
researchers [1.8]. The theory of semigroups in functional analysis,

specially that of linear operators developed recently, has proved
very valuable and advantageous in solving very general classes of

optimal control problems. Some of the disadvantages of semigroup
theory, such as its applicability to only time invariant systems,
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has created the need to extensions to time dependent "evolution"

equations [1.87]. However there seems to be a great deal of work

still ahead in this area for this approach to lend itself to practi-

cal aspects of the problems in stochastic control theory.

1.2.4.1 Distributed Parameter Systems

In Equation (1.1) A(t) would represent an infinitesimal

generator of a strongly continuous semigroup S(t) over an appropri-

ate Hilbert space when A(t) = A for all t and I = {t: 0 < t <T}.
Moreover, B, Fi, Gj and E would all be linear bounded transforma-

tions mapping appropriately defined separable Hilbert spaces into

the Hilbert space over which S(t) is defined. In a similar manner,
the observation equation can be generalized to infinite dimensional
Hilbert spaces. The quadratic cost functional in Equation (1.3)
will also have to be placed in an appropriate infinite dimensional

setting and then, the control problem is to find an admissible con-

troller that will minimize Equation (1.3).

The closed-loop optimal stochastic infinite dimensional problem under

partial and noisy measurements (to the author's knowledge) and with
multiplicative and additive noise has not been solved to this day.

1.2.4.2 Approximations to Finite Dimensional Systems

The infinite dimensional representation of control sys-

tems is only an idealization of reality under the assumption that
matter is a continuum and that internal and external forces and

moments are distributed. However, under practical circumstances,

when real control systems have to be implemented on real structures

only finite dimensional models and controllers are meaningful (at
least until the present). Hence, even though infinite dimensional
models, for instance models composed of partial differential

equations, can give deeper understanding and insight into subtle
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characteristics of systems' behavior. There are no physically

implementable distributed controllers (in the practical sense of the

word), nor are there infinitely distributed sensors for observation

that can be practically useful.

There are various approaches of approximating infinite dimensional

distributed parameter systems by finite dimensional ordinary differ-

ential (difference) equation systems. The widely used techniques

known as Rayleigh-Ritz-Galerkin, finite element, finite difference,

etc. are but a few of many others [1.88]. These numerical methods

are translated into computer codes and are widely utilized in

generating finite dimensional ordinary differential equation models

for structural systems.

1.2.4.3 Nonlinearities in Linear Stochastic Systems.

Linear stochastic systems with multiplicative and

additive noise can actually be considered a nonlinear system with

respect to stochastic variations. Since, the state vector, the

control vector, and the multiplicative noise matrices are expressed

as products of each other, they create a nonlinear setting. It is

well known that the optimal filter for such systems is an infinite

dimensional non-linear filter [1.44,1.451. Only suboptimal linear

filters can be formulated for linear stochastic systems with multi-

plicative and additive noise, or optimal filters in a class of

linear filters [1.481.

1.2.4.4 Computational and Realization Difficulties

The complexity of linear systems with multiplictive and

additive noise speaks for itself. It is obvious that for large

order finite dimensional systems there could be an unrealistically
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large amount of statistical information required. For situations of

non-Gaussian distributions, the problem gets more complicated spe-

cially when filtering under partial and noisy observation.

The computational'aspect of the problem is extremely complex, even

if the distributions of the statistical parameters are well known

and the order of the system is relatively small [1.23). Thus, in

order to formulate a control system model in the stochastic setting

presented herein, it is necessary to make certain assumptions, sim-

plifications and approximations. However, this is the case in any

modeling situations, and it is not considered a severe limitation.

The important fact in a control system remains to be, a valid

approximation in the form of a mathematical model, whether it be

stochastic or deterministic, linear or non-linear, distributed or

lumped, be as close to the real plant as practically possible.

1.2.5 CONCLUSIONS

We have presented a brief review of the state of the

art in stochastic linear-bilinear control sytems with multiplica-

tive and additive noise. Both the discrete-time and continuous-

time cases were exposed in a general setting and some of the impor-

tant developments in the field were brought to light. It should be

noted that, it is very difficult to iterate many of the significant

theoretical achievements in this area and still remain within the

limitations of publication guidelines. However, we have tried to

include those which we thought should be discussed.

The advent of supersonic aircraft with very high performance

requirements, and the futuristic space structures, such as the

space station, seem to promise some realistic ground for the

approach presented herein. Stochastic modeling and control is the

realistic alternative to controlling systems with high performance

requirements and uncertainty.
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SECTION 1.3

MODELING FOR CONTROL DESIGN OF LARGE SPACE

STRUCTURES UNDER UNCERTAINTY: A SURVEY

1.3.1 INTRODUCTION

The issue of mathematical modeling of large flexible

space structures (LFSS) presently is a topic of extensive research.

The theory of elasticity forms the core of modeling of the flexible

body dynamics. Thus, stresses and strains in structures, created

by various effects, result in deformations and displacements that

can mathematically be approximated by partial differential equa-

tions with forcing functions and random disturbances. However, it

is well known that engineering structures generally consist of dis-

crete parts of finite length fastened together into a complete,

integrated system [1.89,1.90,1.91]. The idealized representation

of each of these parts is by infinite dimensional distributed

parameter systems, given by partial differential equations (linear

or nonlinear, depending on the specific structure and the perform-

ance requirements at hand). The derivation of a finite dimensional

model hereon, is normally carried out through the use of approxi-

mations that reduce partial differential equation models to

ordinary differential equation models via various techniques that

essentially project the infinite dimensional space into a finite

dimensional one. The most commonly used of these techniques are

the finite element, the Rayleigh-Ritz-Galerkin, and the lumped

parameter methods [1.92]. The rigid body dynamics, on the other

hand, are described by ordinary differential equationb. Thus, LFSS

are coupled systems of elastically deformable and rigid bodies

whose behavior is characterized by nonhomogeneous, hybrid equations

with uncertain parameters and random disturbances [1.93].

25



There are some fundamental assumptions inherent in generating

finite dimensional models for LFSS. Namely, the existance of:

(1) an "accurate" finite dimensional model arbitrarily close to the

ideal infinite system, (2) a maximum fundamental natural frequency

of vibrations such that all the modes with higher fundamental fre-

quencies can be neglected, (3) interaction of various modes, either

stable or unstable, that can be modeled, (4) a finite control band-

width vis-a-vis expected disturbances and desired performance spe-

cifications, and (5) a finite amount of structural damping.

The inherent reason behind the analytical representation of the

dynamics of LFSS is to design a control system in order (1) to

stabilize the vehicle with reference to an appropriate coordinate

system, (2) to point the instrumentation with some a-priori con-

straint on accuracy and performance, and (3) to control shape

variations. While only an inertial, six-degree-of-freedom, model

is required in the rigid body dynamics situation, consideration of

control of elastic modes (as well as the standard rigid body

coordinates) must be made whenever the structural configurations

are very large, or when stringent performance specifications

dictate robust maneuverability requirements. The above mentioned

unified approach to the active control of flexible body responses,

in addition to ridig body dynamics, is often referred to as

control/structure interaction [1.941.

The traditional approach to LFSS modeling is by the finite element

(FE) method. There are various computer programs that can generate
large-order FE models for complex control systems. Examples of

these codes include NASTRAN and DISCOS. The FE technique will

normally generate large dimensional models that have relatively

good accuracy in the lower frequencies and their corresponding

modes, and the uncertainities and errors increase drastically as

higher frequencies are included. Furthermore, for every new para-

metric value, a new model has to be generated, which rules out any
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insight to the physical behavior of the system relative to parame-

ter variations. Recently a great deal of interest was focused on

distributed parameter modeling of LFSS Fl.951. This latter

approach is definitely more concise in mathematical notation,

provides some insight relative to physical behavior and design

variations, and renders parametric studies possible. However, not

withstanding all the above mentioned facts, uncertainties inherent

to LFSS are so large that any approach to their mathematical

modeling will still be inadequate for designing robust control

systems without addressing the stochastic nature of the problem or

performing on-line identification (which is very costly). Thus,

theoretically, it is possible to develop a "best" deterministic

model for LFSS. Then one can incorporate all uncertainties, that

can statistically be identified, into this model for a realistic

stochastic model that is closer to the real system, in an average

sense [1.961.

There is a large amount of literature on modeling and control

design of LFSS. Two quite comprehensive surveys related to

dynamics and control of LFSS were published recently [1.97,1.98].

Nevertheless, most of the existing literature deal with methods of

generating deterministic analytical models, and in the best case,

discuss stochastic models with some additive white Gaussian noise

vector in the linear dynamic model. This additive random vector,

is supposed to account for all uncertainities due to modeling

approximations, noise and tolerances in components, random effects,

parametric errors, etc. Nevertheless, several authors [1.99-1.101]

pointed out, in the early sixties, that there are various uncer-

tainties that have to be accounted for in modeling of flexible

structures. Hoshiya and Shah [1.101], in particular, considered

the free vibration of a beam that has random material and

dimensional parameters with given statistics, and they generated

the general stochastic equations relative to the nth natural fre-

quency. Moreover, they performed sensitivity analyses between
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random input and output parameters of the stochastic system under

consideration. Collins and Thomson [1.102] also investigated the

statistical eigenvalue-eigenvector problem under random mass and

stiffness perturbations. Several other authors continued this

trend by addressing uncertainty in eigeuvalues and eigenvectors due

to randomness in structural properties and inputs [1.103-1.108].

Hyland [1.109-1.111] was the first to address the stochastic

closed-loop problem for LFSS. He presented the analytical model of

structures with uncertainties in the frequencies and analyzed the

optimal control problem under a maximum entropy setting. On the

other hand, the author has presented another approach to stochastic

modeling of LFSS [1.96] by incorporating statistical data into the

best system dynamic model available. The frequency, damping, and

mode shape parameters were considered to be stochastic processes

with known statistics and their closed-loop stability characteris-

tics, under various considerations were analyzed.

1.3.2 THE MODELING PROBLEM

Modeling of a control system is a direct function of

the performance requirements, the size, and complexity of the sys-

tem. However, accuracy requirements and the degree of detailed

modeling are related to performance specifications and expected

disturbances more than anything else [1.98]. The control system

model may be generated through simple procedures if accuracy

requirements permit leniency, or complicated FE or distributed

parameter models may be necessary for high accuracy and stringent

performance requirements. However, it is the balance between

analysis and testing that renders the derivation of acceptable

analytical models possible. Knowledge of structural character-

istics can also improve the model.

There are many problems that face the designer/dynamicist which

include data acquisition, excitation, hardware, and testing
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limitations and many other constraints. Currently there are two

basic testing techniques. Namely: (1) multiexciter normal mode

method, and (2) single excitation source frequency response matrix

approach. Each of these approaches has its advantages and disad-

vantages. One underlying problem with all testing methods is

relating the number of measurements, the number of identified mode

shapes, and the order of the mathematical model of the sys-

tem [1.100]. Moreover, determination of modal characteristics of

structures is the core of experimental testing. Thus, natural

frequencies, damping ratios, and modes are very important,

physically meaningful, elements for applications in stability and

control, prediction of response and loads, vibration, and modeling,

among others [1.1121. In the abovementioned parameters, damping is

the hardest to identify and model, especially in the case of LFSS,

since these have inherently very low damping [1.113].

In the final analysis, a dynamical system model is a mathematical

abstraction that represents the input-output relationship of a
"state" vector (which in turn, represents some internal character-

istics) with respect to an ordered set, time. Furthermore, a sys-

tem model is called a finite dimensional realization, on a given

interval and with known input-output characteristics, if it is com-

pletely reachable and completely observable. These conditions are

in general very hard to meet and thus, the realization issue of

dynamic control systems remains a nontrivial one 11.1141.

1.3.2.1 Infinite Dimensional Distributed Parameter Method

There are many advocates to distributed parameter

modeling and control design of LFSS [1.95]. Moreover, seve:al

authors assess the theoretical and practical advantages of partial

differential equation representation of LFSS in terms of suita-

bility for analysis, conciseness, and provision for physical under-

standing [1.1151. The usual procedure followed for modeling of
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listributed structures is the extended Hamilton principle, whereby

expressions are derived for the Kinetic and potential energy and

for the virtual work of the sytem and then the mathematical model

is generated using the variational approach [1.116]. For any

virtual displacement from the system's trajectory, the following is

true
t 2  t 2

•t (T-V) dt = 6 t FU ' r dt = 0 V tl 1 t 2  (1.13)
tl tl

where T and V aru the kinetic and the potential energies respec-

tively and FU'r is the virtual work of the applied forces during

the displacement. The modeling problem is now the computation of

the differential terms in Equation (1.13) and their varia-

tions [1.117]. Furthermore, application of the variation principle

and some manipulations yield the following:

L [x(s,t)] = [H(s)] R(t) + [D(s) + G(s)] x (t)

+ [Kis) + H(s)] x (t) = F(s) u(t) (1.14)

where x(t) is the spacial displacement vector, L is a linear trans-

formation, [M], [Di, [G], [S], [H] are matrices whose elements are

scalars and functions of spacial variables. Also, the latter

matrices are bounded operators with domains in appropriate spaces.

In Equation (1.14), [M ] is known as the mass or inertia matrix, [D]

is called the damping matrix, and [K] is the stiffness matrix. [G]

is often referred to as the gyroscopic or coriolis matrix, and [H]

is referred to as the circulatory matrix. Appropriate transforma-

tions will transform Equation (1.14) into the state-space represen-

tation. Thus, by taking y = (x,x)T we have:

y = Ay + Bu (1.15)
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where

A =-[M] [K+H] - [M] [D+G and B = K[M]-

In the above equations, (*)-i is the inversion operator, (*)T is

the transposition operator, t is time, and s is the spacial varia-

ble. For a stable system, [D+GJ is a positive definite matrix

operator. In most cases it is also self adjoining [1,117]. More-

over, [M] and [K+H] are real, positive, self adjoint operators in

most applicaLions.

In general, s will be a stochastic process, thus making [M], [D+G],

[K+H] and [F] random operators. Hence, Equation (1.15) is a stoch-

astic system with multiplicative and additive noise in the infinite

dimensional space [1.1191. To the author's knowledge, there is no

published literature relative to the abovempontioned stochastic

modeling and control problem in infinite dimensional spaces for

LFSS.

1.3.2.2 Finite Dimensional Methods, Model Reduction

For implementation and controller design purposes any

infinite dimensional system model will have to be reduced, somehow,

to a finite dimensional system model. There are various approxima-

tion techniques to this end, all of which essentially project the

infinite dimensional spaces onto finite dimensional ones and thus

reduce partial differential equations to ordinary differential

equations, [1.119] or large order models to smaller ones [1.120].

For structural response analysis, accurate expressions for the most

significant (in some sense) normal modes are required. However,

most real-life structures (especially the futuristic LFSS) have

very complex geometries, attachments, and boundary conditions;
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thus, making it almost impossible to derive exact expressions for

the normal modes. Herein lies the need for approximation. This

model reduction is accomplished by utilizing separation of varia-

bles and reducing Equation (1.15) to a set of ordinary differential

equations. The latter have to at least satisfy the rigid boundary

conditions [1,1171. Three basic approaches widely used in the

industry are: Rayleigh-Ritz, Galerkin, and the FE methods. The

first method performs the approximations from the variational

statement of the equilibrium conditions and involves choosing of an

appropriate sequence of shape functions that converge to a solu-

tion. The second method, on the other hand, requires minimization

of the approximation error with the right sequence of admissible

functions that converge to a solution. The third approach is more

direct and general, in that it treats the system as an assemblage

of discrete elements that have balanced displacements and internal

forces at the nodal locations. Thus, a sequence of approximation

functions are chosen that converge to a solution for each discrete

element. Furthermore, the selected structural elements must be

sufficiently simply in order to match the overall repertoire.

Otherwise, submodels should be developed and boundary conditions

carefully matched 11.981.

The capabilities and wide use of the above mentioned approaches

notwithstanding, accurate modeling is still an art that is learned

from experience and perfected by personal ingenuity. Moreover,

even when accurate large dimensional models are developed, the

issue of reducing the model down to a practically implementable

order is of paramount importance in control design. There is a

great deal of research interest in this particular area. Thus,

several model order reduction techniques have been proposed by

various authors, most of which deal with the problem as a mode

selection process based on an appropriate error

criterion [1.121,1.1221.
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LFSS control design and analysis entails development of a very
large order finite dimensional model which is followed by a large
order (50 or more) evaluation model. However, the evaluation model

is usually reduced down further for control synthesis. Moreover,
for practical on-board implementation purposes, a reduced-order

(< 10 modes) controller model has to be generated with special
consideration for spillover, i.e., the effect of sensor-actuator
locations on the unmodeled or truncated modes of the struc-

ture [1.123-1.124]. Thus, Equation (1.15) is now a large-order,
finite dimensional model and it can be represented by the

following:

A 00 Bc

R= 0 AR 0 YR + 0 (1.16)

YS 0 0 A YS 0

where yc is the controlled, YR is the reduced, and Ys is the sup-

pressed state vector components (similarly for Ac, AR, As, Bc). A

part of the large dynamic model is considered absolutely insignifi-
cant, and hence, it is suppressed. Another part, which is con-
sidered for spillover effects and evaluation purposes represented

by YR, are eventually truncated and all that remains for the con-

trol design is yc" Most of the approaches used in dynamics and
control analysis is normally performed through model truncation,
whereby modes that have fundamental natural frequencies above an

a-priori chosen frequency are simply discarded. For LFSS, however,
the frequency criterion for structural control is not sufficient in
general and specialized selective removal of modes is more

appropriate [1.1251.
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1.3.3 UNCERTAINTY MANAGEMENT IN MODELING AND

CONTROL OF LARGE SPACE STRUCTURES

A very important consideration in controller design for

LFSS aims at ensuring stability under modeling and parametric

errors, and unmodeled or truncated modes. The simplest approach to

the solution of the above mentioned robustness condition involves

direct output feedback, which requires actuators and sensors to be

collocated and placed appropriately. There are various other

approaches which in the presence of uncertainties and realistic

actuators and sensors, have their respective limitations. All

these techniques have disadvantages that could most often lead to

serious stability problems [1.126].

Uncertainty in modeling and control design of LFSS may arise either

from randomness in the properties of the structure itself or from

modeling approximations and process idealization [1.127]. Experi-

mentation and testing is one way of reducing uncertainty in the

analytical model, or in verifying and modifying it. However, LFSS

are intended to be deployed in space under near-zero gravitational

force and testing of such systems on earth is virtually impos-

sible [1.128]. Moreover, the modal characteristics of LFSS are very

dense and some of their eigenvalues are very low and nearly iden-

tical. To overcome the above mentioned difficulties, several

authors have presented various nonconventional approaches to testing

and data acquisition techniques, one of which is called multiple

boundary condition test (MBCT) [1.129]. In this approach, a flex-

ible beam is tested and analyzed with a variety of constraint con-

ditions and constraint locations and the test results are used to

modify parameters that are in error. All the recent developments in

techniques of testing LFSS notwithstanding, some underlying require-

ments still remain and must be addressed. Namely, treatment of non-

linearities and randomness, design growth and complexity, coupling,

and transformation of test results from scaled-down microstructures

to derive characteristics of LFSS (1.98].
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1.3.3.1 Uncertainties: Occurrence and Management

Modeling and control design of LFSS entail three basic

types of randomness. Namely, uncertainties in the dynamic model,

uncertainties in the control system, and random disturbances which
have a diverse effect on the performance of the system. The first

of the above mentioned stochastic phenomena is due to modeling

nonlinear effects by approximate linear functions, model parameter
errors, configuration growth and change, as well as internal and

external disturbances. Uncertainties in the control system are due

to errors in positioning and actuating of controllers, as well as

to internal and external control dependent noise. The purely

stochastic phenomena of the random disturbances are very hard to
account for, since information relative to their statistical char-

acteristics is often limited [1.127].

In situations of very high performance requirements for large and
complex control systems under uncertainty, the problem of initial

data for modeling purposes is a nontrivial and serious one [1.1301.
Moreover, modeling of LFSS with appropriate consideration of all

important uncertainties comprise a stochastic problem of high com-

plexity. Two issues are of paramount importance. Firstly, the

objective of the control system should be identified. Secondly,

the initial data with consistent probability distributions, should
be specified. Moreove,-, an appropriate measurement system should

be selected based on the control performance and objective. Even
with the best modeling and model reduction, however, it is conceiv-
able that better and more robust control performance can be

achieved when uncertainties are modeled through stochastic multi-
plicative and additive noise elements. For optimal control stra-

tegies derived under a wide range of parameter variations and

random disturbances will result in robust control systems, under
controllability and observability assumptions [1.131].
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For uncertainty management purposes, consider Equation (1.15) in a

finite dimensional setting. Under appropriate conditions of

stability, symmetry, and positivity, Equation (1.15) can be

transofrmed such that

[0] 1 0 1
A = [[2] -[2ýw ] and B L T [M]- 1F

where is the frequency, is the damping ratio and is the modal

matrix of the system and [w2 ] and [2ýw I are diagonal matrices with

entries shown in the brackets. Formulation of the mathematical

model in such a "modal" setting reduces the problem of uncertain-

ties to three different sets. Namely, uncertainties in the fre-

quencies, uncertainties in the damping ratios, and uncertainties in

the mode shapes. Moreover, if the Vandermonde matrix [1.131-1.1331

is utilized, then the uncertainties of the models can be deduced

from uncertainties of the frequencies and damping ratios. A sim-

ilar modeling approach with only uncertainties in the frequencies

was presented by Hyland [1.110]. However, his approach to control

design is based on minimum entropy, while Reference [1.96] treats

the optimal. control problem via dynamic programming.

There are other approaches to treatment of uncertainties in modal

parameters of structural systems that were mentioned earlier. The

basis for all these, however, is quantifying and reducing uncer-

tainty via testing and experience [1.108]. Structural uncertainty

is taken as the difference between prediction and measurement and
statistical correlation analysis is utilized to generate the "true"

values of the modal characteristics. In essence, the final model

is still deterministic. However, the model suggested in Reference

[1.96] and Reference [1.1101 will take the best available model,

incorporate statistical data into the uncertain elements and thus

generate a stochastic model that is closer to the real structural

system, on an average basis.
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1.3.3.2 Control Design and Uncertainties

Development of control design under stochastic indeter-

minacy is a relatively new approach to the control problem dictated

by high performance and stringent accuracy requirements of modern-

day soacecraft. The controller under such circumstances ir2lIýn7es
the system dynamics in two ways: (1) through the dynamics of the
control system and (2) through its dependence on the conditional
distributions and their respective moments [1.134]. This "duality"

is a very important consideration in any stochastic control prob-
lem [1.135]. Furthermore, the analysis of a control system and the

synthesis of its corresponding regulating member can be regarded as
stochastic problems. For, the fundamental disturbances and

stochastic uncertainty of control systems often cannot be neutral-
ized by simple regulation; their direct measurement is not, in gen-
eral, possible. Indirect determination is possible, however.
Thus, measuring inputs and outputs and analyzing their characteris-

tics furnishes valuable information. The lack of complete informa-
tion on the stochastic uncertainties leads to a-posteriori proba-

bility distributions reflects of their parameters. Although the
latter do not provide exact values of the parameters, it is more

accurate than a-priori distributions. A-poseteriori probability
distributions reflect the real characteristics of the uncertain-
ties. In general, the controllers whose regulation procedures
encompass investigating and directing simultaneously, through their
feedback processes, are referred to as "dual" controllers [1.135].
This duality is a significant feature of stochastic control

systems.

37



The stochastic problem described above can be represented via

several different approaches. The most common of these approaches

is the Bayesian method, whereby a-priori distributions of all ran-

dom variables are available. Another approach is the minimax

method. There are several other non-Bayesian approaches as well

kthe inte.LE d readc: can consult Refercnce [:.13•)

1.3.4 CHARACTERISTIC FEATURES OF FUTURE LFSS

The most significant features of LFSS are related to

their vibrational modes. The vibrational modes of such structures

are numerous, very densely populated, and have very low fre-
quencies, often coinciding with the on-board controller band-
width. Moreover, the difficulty associated with the uncertainty

involved in predicting these characteristics renders its analysis

and design a difficult problem [1.136].

1.3.4.1 Characteristics Different from Regular Spacecraft

The special features relative to control design of LFSS

are many, a few important ones of which will be mentioned below.

The first and foremost of these is that "theoretically", there

exist an infinite number of elastic modes (in addition to the rigid

body modes) that have low and uncertain natural damping. The

controller bandwidth and usually a significant number of the system
modes have an overlapping region. This latter feature is the

underlining characteristic for the accurate formulation of the
structural, vibrational, and attitude control problem for LFSS.

The interaction and coupling that exist between the flexible modes

of LFSS and the controller of both the attitude and the shape con-

trol systems contribute to the complexity of such inherently com-
plex problems [1.137]. Consequently, a well posed control problem

for LFSS entails a precise formulation of the performance criteria,
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careful modeling of couplings, inclusion of disturbances and

statistical data in the dynamic model, and selection of a practical

and appropriate measurement system. Another important complication

in generating reliable dynamic models for LFSS is the fact tcAat not

only the higher frequencies of the flexible modes are in error but

the lowest ones, being very close to each other, are also very

difficult to predict with high accuracy [1.1381.

The enormous size and number of geometrical attachments as well as

the new materials that are presently being designed and tested for

use in LFSS, create a large scale problem of complexity. Moreover,

the need for such structures to be transported by the space shuttle

and deployed in space is even a more formidable source of uncer-

tainty and complexity. Thus, consideration of all the above men-

tioned salient features of LFSS renders its modeling, analysis, and

control design a formidable task.

1.3.4.2 Model Verification and Validation Problems and the Need
for Advancement in Technology

There are numerous approaches to validation and verifi-

cation of dynamic models of spacecraft, all of which deal with

experimentation and/or on-board identification techniques [1.139].

However, it is widely believed that current techniques that are

used to treat dynamic problems in LFSS are inadequate and that

technological innovations and advancement are necessary in the

areas of efficient modeling, nonlinear analysis, model verification

and validation, as well as other areas [1.94,1.98,1.1381.

Normally, ground tests are structured and performed to provide cor-

relation with the analysis and thus lead to necessary modifications

and refinement of the analytical model. Nevertheless, in-orbit

tests are crucial in the case of LFSS because it could reveal

unexpected nonlinearities, couplings, and other interactions, as
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well as provide some means of validating ground test results and

verifying analytical models. In-orbit tests are, however, costly

and harder to design and implement. Scaled testing is another

approach to validation and verification. However, the technology

involved in scaled testing is not thoroughly adequate for LFSS for

the same reasons mentioned above. Furthermore, technology advance-
mpnt is needed in adapting scaling experimentation techniques to

LFSS in order to address all the different features and uncertain-

ties involved [1.112].

System identification for LFSS in-orbit is a difficult task as yet

unresolved. Because of modeling uncertainties and high performance

requirements of LFSS control systems, it is necessary to design

identification systems that start performing as soon as the struc-

ture is deployed. Since fine modifications of the control laws

might be requircd before the LFSS goes into orbit. Moreover,

identification routines will be required that can handle any system

and parameter variations while in orbit. However, systems ident-

ification, and even parameter identification, are difficult to

achieve in orbit because of insrumentation constraints, cost, and

various other aspects. Thus, alternate approaches should be

developed to tackle all the problems involved in LFSS modeling for

control [1.97].

Modeling for control design of dynamic systems under high

uncertainty entails several important issues that are absent where

complete information and certainty prevail. Moreover, modeling for

control design of such complex systems as the futuristic LFSS

encompass application of diverse technological fields, including

control, modeling, identification, testing, and many others. Thus,

LFSS control design and analysis present complex problems that are

of paramount importance for future space activities and mission

requirements.
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The main objective of the present article is to review the various

issues relative to modeling for control of LFSS under high degrees

of uncertainty, modeling/parameteric errors, and random effects.

Various existing approaches to uncertainty in modeling of LFSS have

been briefly introduced and two alternate recent developments in

this regard were discussed. The need for further advancement in

the technologies were highlighted. The advantages of stochastic

modeling, in regard to the robustness of the controller, was

briefly discussed. Moreover, the realistic representation of com-

plex systems under uncertainties with stochastic models with multi-

plicative and additive noise was presented and reviewed.

The modeling issue of LFSS still remains a very important one and a

unified approach is required that can generate a realistic model,

that is close to the real system under consideration, in some

predetermined sense. Moreover, uncertainties in LFSS modeling and

control design being so high, it is essential to treat the problem

in a stGchastic setting for accuracy and robustness.
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1.3.5 A NOVEL APPROACH TO STOCHASTIC MODELING AND

CONTROL OF LFSS

System and parameter uncertainty and random effects

render it necessary to address the problem of modeling and control

of LFSS in a stochastic setting. Even with the best of the exist-

ing modeling and model validation and verification techniques,

struutural engineers and dynamicists are faced with the difficult

task of predicting the dynamics of complex LFSS with the desirable

degree of accuracy. Because no deterministic model will be able to

stand the test of uncertainty and randomness due to the various

factors mentioned in the previous pages. Moreover, it is widely

established that linear stochastic models with multiplicative and

additive noise will best represent complex control system dynamics

with high performance requirements and large degree of uncer-

tainty [1.1401.

The approach that will be taken in the present research program

is: (a) take the best available analytical model of a LFSS control

and dynamic system; (b) transform this model into modal coordinates

and evalute the uncertainties in the frequencies, the damping

ratio, and the mode shape vector elements; (c) reduce the order of

the model to a degree suitable for analysis and control implementa-

tion; and (d) incorporate the statistical variations of the uncer-

tainties within the model thus creating a stochastic model that is

closer to the real structure on a statistical basis. In a similar

manner, develop a measurement system with all uncertainties

included in the measurement model [1.132].

The next phase consists of developing the optimal control algorithm

for such systems and analyzing the performance and stability

conditions [1.14]. State estimation and filtering will also be

addressed and appropriately trated. Furthermore, generation of

statistical characteristics for the elements of the natural modes
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from those of the frequencies and the damping ratios will be

studied and realistic simplifications for the practical application

of the present approach will be hinted upon. The next phase of the

program is the analytical formulation of the problem which entails

detailed development of the mathematical model.

1.3.6 CONCLUSIONS

A multitude of approaches exist presently in modeling

and control design of flexible spacecraft. The advent of the space

program, however, has created challenging engineering problems

involving design, deployment, and control of very large flexible

space structures, with characteristics that encompass a large

degree of uncertainty and randomness. Thus, many diverse technol-

ogies have to be integrated in order to develop viable space sys-

tems with adequate reliability, maintainability, and performance.

Moreover, new modeling and control techniques (as well as tech-

niques in other disciplines) will be required to answer the

numerous questions that such systems have raised.

Linear multiplicative and additive noise stochastic models have the

potential of being a viable approach that will address many of the

issues treated in the present report. Having a model that is

closer to the real structure on a statistical basis is better than

having a deterministic model that can become unstable due to random

effects and errors that are not included in the system model.
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CHAPTER 2.

ANALYTICAL FORMULATION OF THE CONTROL

PROBLEM FOR LARGE SPACE STRUCTURES
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2.1 INTRODUCTION

The mathematical formulation of a dynamical system

whether it be physical, biological, economic, or space, entails the

approximate analytial reprPsentation of input-output phenomena

relative to its internal characteristics. Recent developments in

system theory present unprecedented capabilities vis-a-vis the

solution of complex dynamic problems.

There are four important notions that integrate modeling and control

design analysis and synthesis; namely, state, control, optimization,

and realization. The state expresses the value of some internal

characteristic of a system at a specific moment which determines the

current value of the output function and which influences its future

values. The state is the most important notion in systems theory in

that it contains sufficient information about the past history of

the system behavior to characterize the system. Furthermore, the

information provided by the state at a given time tI together with

the affect of a given input applied during a given interval of time

(tl,t 2 ), t 2 >t 1 is necessary and sufficient to determine the state at

time t 2 12.1]. The control is the force, or input that regulates,

directs, commands, or just influences and changes the state of a

system. Optimization, on the other hand, is the mathematical

process whereby the best or the most favorable outcome or perform-

ance is sought for based on some a-priori constraints and perform-

ance criteria.

Realization theory is a relatively new development. Solution of the

abstract realization problem involves the mathematical construction

of the internal structure of a dynamic system via input-output rela-

tions. For a complete survey of realization theory see Krylov

[2.2].

63



Dynamical systems are, in general, nonlinear and stochastic in
nature. Nonlinear in that their outputs are not linearly related to
their inputs and stochastic in that their initial conditions and/or
forcing functions are not well known and random disturbances and
noise contaminate the system outputs and degrade performance. Real
systems should be modeled by stochastic differential equations as a
generalized representation of the system characteristics and, in the
limiting situation, when randomness can be neglected the determin-
istic form is derived [2.3]. Moreover, performance and optimality

requirements dictate the need for and the degree of detailed and
precise formulation of a control system. The laws of physics and
science in general provide an adequate tool for approximate modeling
of real systems. However, under certain conditions, when parameters

cannot bc Aetermined accurately or when random phenomena create an
unpredictable environment and cause performance degradation, linear
stochastic (and even nonlinear stochastic) models might be necessary

to satisfy the requirements 12.4].

When it pertains to system analysis and control design of large

flexible space structures (LFSS), numerous difficulties must be
overcome in order to have a viable and realistic control system that
satisfies stringent performance requirements. The control system
model may be a simple linear deterministic model, if accuracy

requirements permit leniency, or it may be a complicated nonlinear,
-. ochastic model, represented by a set of ordinary differential and

partial differential equations, when accuracy requirements are
high (2.5]. However, a balance between experimental testing and
analysis renders the generation of adequate analytical models for
control and analysis of LFSS possible. Direct methods of testing

and experimentation under almost zero gravitational environment is
still in the elementary stages and approaches that can be utilized
for model validation and verification as well as model test proce-

dures do not seem to exist presently.
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2.2 VARIOUS WAYS OF GENERATING FINITE DIMENSIONAL MODELS

Every scientific or engineering problem encompasses a

chain of actions that is directed towards the generation of an

admissible (according to some a-priori criteria) solution. Some of

the underlying elements of this problem solving methodology include:

(1) problem formulation, (2) analytical modeling, (3) model reduc-

tion, (4) analysis and synthesis, (5) simulation, (6) testing (when-

ever possible), (6) modifications. The first three tasks comprise

the most difficult and the most vital part of the problem solution.

The solution or the outcome will be as good and as close to reality

as the modeler has made it.

There are essentially three types of dynamic problems. Namely,

(1) analysis, (2) synthesis, (3) control and instrumentation. The

first of these seeks for outputs for a given system model and given

inputs. The second utilizes input and output information to gener-

ate a good system model, while the third determines the realistic

inputs for a known system model and known, desired outputs. The

methodology for the formulation of analytical models for systems

entails development of mathematical equations of three different

types: (1) distributed parameter, (2) lumped parameter, (3) dis-

crete. All of these types of models are based on fundamental

assumptions such as (1) casuality (whereby it is assumed that the

inputs and the outputs are related through the system), (2) separa-

bility (whereby a given system is assumed isolated from its sur-

roundings), among others. Furthermore, the derivations of these

models are carried out by utilizing certain laws and approximations

and they are, in general, functions of some parameters. The various

approaches to generacing finite-dimensional system models will be

presented in the following pages.
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2.2.1 Modeling of Large Flexible Space Structures (LFSS)

Any analytical model is the idealization of reality

based on assumptions, siplifications, approximations, and laws or

relations. In realistic applications, engineers are concerned with

modeling real dynamical systems with bonafide inputs and outputs.

It is widely accepted that LFSS are basically distributed parameter

systems that can be described analytically by partial differential

equations [2.6]. Moreover, the control system for LFSS should be

designed so that both attitude and shape reyulation can be handled

effectively. Practical and implementation considerations create the

need for reduction of infinite-dimensional partial differential

equation models to ordinary differential equations via discretiza-

tion. Furthermore, uncertainties due to modeling approximations and

other random effects dictate the use of stochastic modeling of LFSS.

In any event, a generalized model of a LFSS consists of coupled sys-

tems of partial differential and ordinary differential equations

that express the elastically deformable and the rigid body dynamic

characteristics of the system respectively. Subsequently, the main

issue remains to be the reduction of the above-mentioned complex set

of equations into a finite and implementable set, or at least into a

set that is appropriate for analysis and synthesis.

Most real structures consist of complex combinations of geometrical

and material characteristics. The development of a mathematical

model of such systems for dynamic analysis or for control design

entails idealization of inertia, damping, stiffness and other prop-

erties by discrete or continuous elements. Normally, the physical

system is approximated by an assemblage of discrete elements, such

as masses, springs, and dashpots, or continuous elements [2.7].

Application of laws of physics and mechanics to the system and its

elements yields the above-mentioned set of equations relating the

inputs (excitations, etc.) to the outputs (responses) as follows:
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L(P,d,s,t) x(s,t) = F(s,t) (2.1)

where L(') is an appropriate mathematical operator, p is a vector of

system parameters, d is a vector of design variables, s is the

spacial parameter, and t is time, x(s,t) is the response vector, and

F(s,t) is the input or excitation vector.

A large class of structural/mechanical systems can be described by

the following partial differential equations:

2 x(t) M

Sx(()t) + 1 x a (S) X.(st)i+ C () + ijt j=l

= Fi(s,t), i=l, 2, ... , m (2.2)

where:

pi are the inertia coefficients, ci represents the damping
coefficients, and Lij are a set of seif-adjoint, linear, partial

differential operators, called structural operators. In addition to
(2.2) the displacements xi(s,t), i=l, 2, ... , M must satisfy the

initial conditions, xi(s,O) = xio(s) and xi(s,O) = xio(s) and
homogeneous or nonhomogeneous boundary conditions. In solid

mechanics there could be rigid or forced boundary conditions
involving constraints on displacements and moments (among others) or

natural boundary conditions involving kinetic elements such as

forces and moments or a combination thereof (see Nigam [2.7] for
details). The idealized expressions for Lij(s) in (2.2) will be

given by:

(1) 2 [EI(s) a2]
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fo, the transverse vibration of an Euler beam, where

El(s) is the flexural stiffness.

4 4 4
(2) D + 2 +-2]

7sI s2 s2

for the transverse vibration of a thin plate, when

D - Eh3  2 is the flexural rigidity.
(2(1- v )

The vibrational behavior of LFSS can be described as free and

forced. The free vibrations occur at the natural frequencies of the

structures and, in general, the motions consist of several simul-
taneous oscillations at the various natural frequencies of the

system. However, under certain conditions, all the system coordi-

nates undergo harmonic motion corresponding to one of the natural

frequencies of the LFSS. The condition whereby such motion occurs

at every part of the LFSS is called the principal mode of vibration

or the normal-mode vibration. The number of such normal-mode vibra-

tions correspond to the degrees-of-freedom (DOF) of the system.
Thus, a LFSS represented by n-DOF will have n natural frequencies

characterized by their normal modes of vibration. In general, any
motion of LFSS can be represented by the superposition of normal-

mode vibrations under the assumption of linearity.

2.2.2 Approximation Methods

As a rule, an analytical model of a control system

should be sufficiently simple with the provision that the results

based on the model lead to realistic conclusions regarding the

behavior of the system at hand. By and large the most common models

68



are linear due to their anaiytical simplicity. However, nonlinear-

ities arise usually through materiel properties, in particular

damping, large deformation, and nonlinear couplings between terms.

Determination of the exact response of a structure to excitation via

the influence function or the normal mode methodology requires

accurate expressions for the complete set of influence functions or

normal modes, respectively. Practically it is virtually impossible

to get exact expressions for the usual modes or the influence Func-

tions. Thus, approximations to the response characteristics are

generated via the separation of variables principle by expanding the

displacement function in Equation (2.2) as a finite summation of a

complete sequence of admissible functions and associated generalized

coordinates. The resulting approximations normally lead to a set of

coupled, linear second-order differential equations.

2.2.2.1 Rayleigh-Ritz Method. The equilbrium conditions from

the variational formulation of a structural system are utilized in

the Rayleigh-Ritz approach to derive the finite dimensional approxi-

mation of the dynamics. The basic feature of this method is the

choice of a sequenue of basic functions that converge to a solution.

Thus, let xi(s,t), i=l, 2, ... , n, from Equation (2.2) denote the

displacements of the self-adjoint system and

M
xi (s't) = j2l Uji (s) qj (t) (2.3)

j=l J

where Uji(s) are admissible functions. By expressing the displace-

ments in terms of generalized coordinates qj(t), relations for the

Kinetic (T) and potential (K) energies, as well as for the dissipa-

tion function (R) can be derived as follows:
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n n
T = L m.. qiq (2.4)

i=l j=l1

in n
- = ci q qj (2.5)V 2 i=1 j=l

1n n
K = I kij qiqj (2.6)

i=l j=l

where mij, cij, and kij represent the mass, the damping, and the

stiffness characteristics of the structure at hand and have
appropriate integral representations [2.7].

The Euler-Lagrange equations of motion of the system can be written

d aT + + aV + = Qi(t), i=l, ... , n (2.7)
dýt aiq iqqi i qi

where Qi(t) are generalized forces that are functions of F in
Equation (2.2). Substitution of Equations (2.4) - (2.6) into

Equation (2.7) yields:

M q(t) + C q(t) + K q(t) = Q(t) (2.8)

which is the general finite dimensional expression of a structural
system with M = the mass, C = damping, K = stiffness matrices,

respectively, and Q(t) is the generalized forcing vector.

2.2.2.2 Galerkin Method. The similarity between the Galerkin

and the Rayleigh-Ritz methods is that both are based on the choice
of a sequence of admissible approximation function that converg to

a solution under the separation of variables assumption. However,
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the Galerkin method chooses the generalized coordinate functions by

minimizing and the L 2 -norm of the error between L(p,d,s,t) of Equa-

tion (2.1) and F(s,t) where x(s,t) is approximated by the sequence

of admissible functions.

The result of convergence is basesd on the assumption that the

admissible functions also satisfy the natural boundary conditions.

It is well known that under self-adjoint differential equations and

boundary conditions, and when the functional in the variational

problem is positive definite, then both the Raleigh-Ritz and

Galerkin methods give identical results.

2.2.2.3 Finite-Element Method. A more direct and general

approach to discretization of continuous systems than the Rayleigh-

Ritz and the Galerkin methods is the Finite-Element method. In this

approach the system is treated as an assemblage of discrete elements

(normally triangles or rectangles). Each member of which is a bona-

fide continous structure. The displacements and the internal forces

of each of the above-mentioned discrete members are required to bal-

ance at the nodes in order to ensure unity and continuity of the

assemblage of elements [2.81. Then, within each piece trial

functions are given in a simple form, like polynomials of (usually)

at most fifth degree. Boundary conditions are then imposed locally,

along the edges of the above-mentioned triangles or rectangles. The

accuracy of the approximations may be increased by refining the

subdivisions. The fundamental problem in the finite element pro-

cedure is to discover how closely piecewise polynimials can approxi-

mate an unknown solution. Mathematically, the main task is to

identify the error as accurately as possible and to determine the

rate of convergence relative to the number of pieces or the degree

of the approximation polynomial within each piece.
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7'he finite element approach can be summarized in the following

manner: suppose the problem is posed in a variational setting of

finding a function U that minimizes a certain expression of the

potential energy. The minimization leads to an Euler equation for U

that, normally, has no closed form solution. The Rayleigh-Ritz-

Galerkin idea is then utilized to choose a finite number of shape

functions Ql, Q21 "''' Qn, and to determine the minimizing linear

combination with the weight qj, via a system of N discrete algebraic

equations. The minimization process seaks out the combination that

is closest to the solution U [2.9].

2.2.2.4 The Finite Difference Method. By dropping the variables

and parameters in the parenthesis of Equation (2.1), we get L x = F.

Replacing the derivatives with their respective difference quotients

results in a finite linear system given by:

Lh xh = Fh (2.81

Equation (2.8) is the discrete operation form of the original

equation.

In finite difference approximation processes, the derivatives are

normally replaced with their centered difference quotients. Thus

I h x(s+h/2) - x(s-h/2) (2.9)
x (S) --A X(S) =h(29

Performing all the necessary operations results in Equation (2.8).
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The basic requirements for the analysis of Equation (2.8) are:

(1) the computation of the local truncation or discretization error

via a Taylor series expansion, (2) the determination of global

stability. The latter is accomplished by showing the coi tinuous

dependence of xh on Fh as the grid size h approaches zero,. These

steps establish the rate of convergence of xh to x as h reduces to

zero [2.9].

2.3 LINEAR CONTINUOUS STOCHASTIC MODEL

The equations of motion of a structure can be formulated

in a number of different coordinate systems. Dynamic, static, or

both forms of coupling could be present, depending on the choice of

coordinates. The general behavior of the structure, however, is

independent of the coordinate system.

In general, free vibrations take place at the natural frequencies

of a strucl-,re. The motion under such conditions will consist of

several superimposed simultaneous oscillations at various natural

frequencies. It is, theoretically, possible to represent the vibra-

tions of LFSS in a coordinate system that will eliminate dynamic and

static couplings and will result in diagonalized equations of

motion. Such a special kind of coordinate system is called prin-

cipal coordinates. Moreover, it is possible, in theory, for a

system to oscillate at a single frequency under appropriate initial

conditions [2.10]. For the general case, however, the initial

conditions cannot match a single mode and a linear combination of

modes is required.

State Matrix

The analysis and decign of LFSS entails construction of

an idealized mathematical model that accounts for major 'ntoractions

between the system and the environment, excitations, :an( m inputs,
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'onstraints, and parameter, physical, and operational requirements.

Thus, inertia, damping, and stiffness properties are, normally,

;dealizel via discrete or continous elements. Application of the

laws of mechanics to the system and its elements then yields a

system of differential equations relating the inputs or excitations

to the outputs or the responses as in Equation (2.1).

Normally, the objective of experimental analysis of structural sys-

tems is to obtain the frequency response function by dividing the

fourier transform of the response by the fourier transform of the

excitation at discrete frequencies. This process assumes linearity

of the system. However, most structures have only limited ranges of

excitation levels and frequency content in which the system is

linear. It is important to underline the fact that the definition

of mode shapes and frequencies apply only when excitation and

responise of a system remain in the linear regions and cannot be used

to predict the system's characteristics or response outside that

range. A few of the salient features of nonlinear systems include

(1) the response of a harmoniclly excited nonlinear system at a

given frequency can be at other frequencies, (2) superposition does

not apply for nonlinear systems, and (3) the principle of homo-

geniety does not apply, i.e., the response of two simultaneously

applied inputs is not equal to the sum of the responses of each

input applied separately [2.111.

Notwithstanding the fact that many systems are nonlinear and

inhomogenous in rature, the most common models are linear due to

their analyticl simplicity, as well as the realistic results that

are ob'-ained when using the linear models to represent (a larger

class of) structural problems. However, while it is common practice

to Uo0nsider deterministic linear models fcr most structures, various

errors, such as those due to modeling, parameters, modeling uncer-

tainities, and linearization of nonlinearities create the need for

the stochastic formulation of the problem. Retter performance can
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be anticipated when the above-mentioned errors and uncertainties are

modeled appropriately via a good stochastic model that is close to

the realistic structure, on the average. Moreover, some of the

uncertainties will be state- and control-dependent, especially under

very high performfance requirements, and a i model with

multiplicative and additive noise will ensue.

Consider Equation (2.8) expressed in state-space form given by:

x = A x + Bu (2.10)
where:

A [01 L [0]
-[AL 21 -[2 UT ;

[92] is a diagonal matrix with the frequencies 2 as entries, and

[24] is a diagonal matrix with entries as twice the damping ratios

ý times the frequencies w. Also the matrix [U] is the modal matrix,

discussed earlier, composed of the mode shape vectors.

We note here that, under specific assumptions, UT[MjU = I, uT[c]u

[2,] and UT[K]U = [-2], where [M] [C] and [K] are as in Equation

(2.8) and that setting x = [q q]T yields Equation (2.10).

The matrix A is called the state matrix and is a function of the

frequencies and the damping ratios of the structure under considera-

tion. The uncertainties of A are mainly due to the dynamic modeling

and random effects that can have a diverse effect on the performance

of the system. Thus, it is very reasonable to look for data regard-

ing analytical versus measured values of both freqLencies and damp-

ing ratios of flexible structures. For it is intuitively apparent

that if there is "sufficient" statistical data of uncertainties of

the above-mentioned parameters, then it i- ?ossible to develop a
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realistic model of real LFSS. Hence, one way of generating a 3toc-

hastic state matrix for a LFSS is to incorporate all statistical

data on uncertainties of the above-mentioned elements within the

"best" available state mntrix of the system.

in the control design arid analysis of LFSS it is of particular

interest, and physically meaningful, to have the fundamental fre-

quencies and fundamental modes at the engineers disposal. It is

natural then to classify structural uncertainties according to the

type of analysis to be performed and the specific kind of structures

that are involved. It is very important, for instance, to separate

analyses that are performed for structural integrity from that done

for jitter or vibration or shape control. Similar characteristics

probably could separate structures of different categories.

From the analysis of very limited data of LFSS, specifically satel-

lites with flexible appendages, it was concluded that perhaps a

"good" representation of the probability density function for the

frequencies of LFSS is that of log normal distribution shcwn in Fig-

ure 2.1. In a similar manner the probability distribution that

seems to fit the damping ratio data available from real measurements

and analytical simulations is the Beta distribution given in

Figure 2.2.

It is widely accepted that by analytical simulations of flexible

structures it is possible to determine the lower frequencies with a

high accuracy via large finite element mode]q. However, in general,

finite element models are 'zoo stiff ( 4 1 large). Furthermore,

the mass of space vehicles increase in the course of the design

process. Also, modeling of stiffness characteristic is very diffi-

cult. Experimentation, whenever possible, will improve knowledge.

When it is not possible to test a system, online identification is

necessary for adjustment of parameters unless the stochastic formu-

lation of the problem proves more practical. Also, in analysis of
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LFSS, damping is usually known to be within a 100 percent error

range. Even by experimentation, it is very hard to find exact

values of damping. For there does not seem to exist good analytical

models of damping that can represent all kinds of flexible struc-

tural damping. All the above-mentioned difficulties and facts con-

tribute to the complexity of the modeling of LFSS and thus create

the need for the stochastic formulation of the problem.

2.3.2 The Control Matrix

Design of LFSS is a challenging process both for

structural and for control engineers because each must, in some

sense, obtain an optimal design. Both the academia and the industry

are aware of the high complexity and the interdisciplinary character

of LFSS design and control and steps are being taken to remedy the

lack of coordination and cooperation between the control engineer,

design engineer, and the dynamicist [2.12]. There are various

Government-supported programs that reflect the above-mentioned

awareness and that are intended to produce more cost-effective,

practical, and "totally optimal" designs of LFSS [2.131.

The development of a control matrix is highly dependent on the

design constraints, physical constraints, and instrumentation

constraints (among others) and it is conceivable that control/

structure integration will help in developing stable and more robust

control systems. The above-mentioned constraints and other diffi-

culties raise the problem of uncertainty in the control system.

This uncertainty is a direct function of performance requirements,

random effects that are related to instrumentation (actuator/sensor)

location, and to various other influences that have to be dealt with

appropriately for a stable control system that works.

Furthermore, the control matrix B in Equation (2.10) is related to

the modal matrix U, the mass matrix [M], as well as the actuator

locatinns via Q. The various uncertainties of its elements are then
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functions of the modal paramerers. The mass elements, misallignment

and tolerances of the actuators, and random effects related to

accuracy of the instruments, inter alia. Suppose Iki, i=l, ... , ni

represents the set of eigenvalues of the system in Equation (2.8).

Then the Vandermonde matrix given by:

1 1 ... 1

X2 n
2 2 2

U I X12 kn

n-l n-1 n-l
kI X2 Xn

will satisfy the characteristics of a "modal" matrix. For, in

Equation (2.10)

U-1 A U =A (2.11)

where A = diag (kI, X2, ... , I n)

Moreover, if a particular solution of Equation (2.10) is

xp(t) = T(t)q(t)

where T(t) is the state transition matrix, in the autonomous case it

is given by T(t) = exp(At) and q(t) is a vector valued function of

time then it can be shown that

x(t) = T(t) x(0) + Jt T(t-T) BU(T)dT (2.12)

Also, we should note that T(t) = U exp(At)U-I, (see [2.141 for

deýtails).
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The advantage of utilizing the modal matrix given by the Vandermonde

matrix (it can be shown that any modal matrix can be transformed to

the Vandermonde matriy via a nonsingular transformation) is that the

uncertainties of the modal elements are related to the uncertainties

of higher statistical measures of the frequencies. Theoretically,

the statistics of the modal matrix can be generated by using the

statistics of the frequencies. Hence, the overall problem of

uncertainty for LFSS is then reduced to the uncertainties of the

freuencies and the uncertainties of the damping ratios. It should

be pointed out that the derivation of the probability density

functions of each of the frequencies and each of the damping ratios,

and then the g-neration of the statistics of the mod, '. elements is

by no means a trival one.

In case of repeated eigen values, the Vandermonde matrix should be

modified to include the generalized eigenvectors. Moreover, if m of

the n eigen values of A are distinct and one of them is repeated

(n-m) times (or any other combinations thereof), say Xi, the ith

eigen value, then the corresponding generalized eigen vectors will

be given by

ei= ( I, i .)

e2 = (0, 2, 2xi, 3X, ... , (n-l) n-1

e3 = (0, 0, 1, (2) 1 ... , (n-i/2) - ... ,

e .. .0 (n-l) 1P)
en-m = (0, 0, .. , 0, (n-m)

where

(n-l) (n-l)(n-2) ... (n-i)/(l x 2 x 3 x ... i)

See [2.1.51 for details.
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2.3.3 Additive Noise Vector

Additive noise is incorporated in a linear system

usually to compensate for environmental and other disturbances which

act on the basic dynamics of the system (in parallel with the

contoller) and influences its behavior. Normally, the additive

disturbances are taken as white Gaussian noise with zero mean value

and some constant covariance matrix. In general, however, the

additive noise is modeled as the output of a linear system driven by

white noise [2.17].

Thus, the linear model of Equation (2.10) with the additive noise

vector will now take the form given by:

x(t) = A x(t) + B u(t) + ý(t) (2.13)

where (t) is given by

S(t) = A (t) + (t) (2.14)

where ,(t) is a zero mean white Gaussian noise vector with given

covariance.

It can further be assumed that the initial state is a stochastic

variable and so is j(t 0 ). Moreover, Equation (2.14) is augmented

with Equation (2.13) to give the general dynamic equation with white

Gaussian noise. However, we will assume (for convencience) at the

outset that the additive noise is a Gaussian white noise vector with

given statistics.

For completeness, we present a formal definition of white noise

processes. Consider Equation (2.13) and suppose that (t) is a

white noise process. Then its covariance

Cov ( E(t) = E[(ý(t)] - E[ ý(t)]) (T) - E[ (T)])T] = R(t) L(t-T)
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where R(t) is a positive semidefinite symmetric convariance matrix,

,(t-7) is the Dirac delta function, and E['] is the statistical

expectation operator, is delta-correlated. Moreover, if the corre-

lation matrix for E(t) is

Rx(T) = E[x(t+T) xT(t)]

Then its power spectral density function is lefined as the Fourier

transform of its correlation by:

Rx (-) = f ejt Rx(T) dT = constant for white noise process.

If in addition ý(t) is a zero mean Gaussian, random variable with

covariance R, then its probability density function is given by

[(2•)n detR] /2 exp [-1/2 ýT R- ,]

2.4 LINEAR DISCRETE-TIME STOCHASTIC MODEL

The basic property of dynamic systems is that their

behavior at a given instant of time depends not only on the vari-

ables acting on them at the same instant, but also on the variables

that have acted in the past. Often causality is the name describing

such systems whereby the output at time t does not depend on the

input applied after time t, but only on the input at and before

time t. Discrete-time systems have the general form that makes the

above-mentioned causality -uite apparent. Moveover, the advent of

digital computers has made discrete-time systems formulation even

more attractive and practically advantageous.
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2.4.1 The Discritization Process

The continuous time system presented in the previous

section is defined for all t in (-0,0) for the time-varying case or

in (0,-) for the time-invariant situation. The inputs and outputs

of discrete-time systems, to be presented herein, are defined only

at discrete instants of time. If we assume that in the continuous-

time system of Equation (2.10) the responses are of interest and can

be measured only at certain instants of time, then it can be repre-

sented by a discrete-time difference equation. Thus, consider Equa-

tion (2.12) representing the solution of Equation (2.10) and suppose

the inputs u(t) are piecewise constant; that is, the input u changes

values only at discrete instants of time. Inputs of this kind are

dealt with in sampled data systems or in systems where digital

computers are utilized to generate the inputs.

Let u(t) = u(k) for k T < t < (k+l)T; k=O, 1, 2, ... where T is a

positive constant, often referred to as the sampling period. The

discrete-times 0, T, 2T, ... , are called sampling instants. If only

the behavior of Equation (2.12) at the sampling instants is of

interest, a discrete-time dynamical equation can be formulated

giving the responses or the states x(k) 4 x(kT) at k=0, 1, 2,....

Thus Equation (2.12) is now wri ten as

x(k+l) = eA(k+l)T + f (k+l)T eA((k+I)T-T) Bu(T)d

= eAT [eAkTxo + fokT eA(kT-T) Bu(T)dT

+ f(ý+l)T eA(kT+T-r) Bu(-r)dT (2.15)

But, the term within the brackets in Equation (2.15) is x(k) and

u(r) is assumed constant in the interval (kT,(k+l)T) and equals to

u(k). Hence, a change of variables by r = (k+I)T-T we have

x(k+l) = eAT x(k) + (fT eATdT) Bu(k) (2.16)
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Putting Equation (2.16) into a moLe general form, we get

x(K+l) = Cx(k) + yu(k) (2.17)

where:

4=eAT

and

(f2 eATdT)B

2.4.2 State Transition Matrix

To perform the discretization the following evaluations

should be carried out:

A Ati At
Ai-e (2.18)

i=O

and

= A-1 (eAt - I)B (2.19)

where 4 is called the state transition matrix and it satisfies the

following properties:

cb(-t) = e-At =

P(t+to) = dt(t) c(to)

( ) = I

A more general form of Equation (2.17) can be derived if we express

the right hand side with respect to the initial state x(o). Thus

k-li
x(k) = d) x(o) + 1: B'i(k-j-l) (2.20)

j=0
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k is often teferred to as the discrete-state transition matrix.
,here are various ways of computing d and Y via Equations (2.18) and

(2.19) (see [2.16] for details).

For the system of Equation (2.8), where

A = I

can be written as:

*=exp t,

[. 2]- -[W22- 1]

0 B (2.21)

The numerical computations of • and P could prove costly and tedious

in certain cases. However, for symmetrical systems, like LFSS mass

and stiffness matrices, the computational burden will be somewhat

less. Moreover, approximate finite series expansions will often
lead to good results, depending on the particular magnitudes of the

elements of the matrices involved.

2.4.3 Additive Noise for Discrete Linear Stochastic Systems
Realization of realistic models for disturbances is a

nontrivial task, to say the least. An underlying characteristic of

random disturbances that occur in practical applications is that

their future behavior is completely unpredictable. To develop a

mathematical model for such a variable is very difficult. One rea-

son is that an analytical function cannot be used. Since, by means

of the analytical continuation property, it is possible to determine
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the values at every interval where the function is defined if its

values are known at an infinitesimal interval. A statistical

approach is feasible if one is careful enough (2.181. Thus,

modeling disturbances as a sequence of random variables is usually

the right approach. In the continuous time case, the white noise

process is considerably more involved, while for discrete time

random processes, it reduces down to a sequence of independent,

equally distributed, random variables.

Consider the discrete time linear model of Equation (2.17) and

suppose additive white Gaussian noise is to be included in the

model. Then, define the spectral density function by

1 • -ikw()= 1 R(k) e (2.22)

where

R(k,p) = covariance [x(k), y(p)]

= E[(x(k)-E[x(k)])(x(p) -Efx(p)])T]I

Trl
= T ejnrT (w)dw (2.23)

where j = •[-l, p = k = -c, ... , -1, 0, 1, ... and El'] is the

statistical expectation operator.

Now, for a weeakly stationary stochastic process, whereby the first

and second moments of the distributions of x(ti) and x(ti+r), i = 1,

... , k and t, tj ( T, are the same, then the power spectrum of such

a random variable will be constant [2.4].
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There are two ways of generating the additive noise vector for the
system in Equation (2.17). Namely, either by integrating step-by-
step the Gaussian white noise ý(t) in Equation (2.13) or by deriving
a comparable discrete noise vector with the characteristics

to those of ý(t) at the sampling instants. In both situations

suppose a(k) is the zero-mean white Gaussian noise vector of the

additive noise for Equation (2.20). Then the general form of a

linear distrete-time system will be:

x(k+l) = ox(k) + 4ju(k) + .(k) (2.24)
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2.5 MODEL ORDER REDUCTION TECHNIQUES

2.5.1 Introduction and Perspective

One of the central issues in the active control of large

flexible space structures (LFSS) is the derivation of a "correct"

mathematical model for both the controlled and the uncontrolled

dynamical systems. Theoretically, there are infinitely many elastic

modes or degrees of freedom (DOF) in the distributed parameter (DP)

models of LFSS, usually with very low natural damping. Moreover,

the flexible modes contribute to the actual deformation of the

structure. The abovementioned facts render the accurate modeling of

LFSS a very complicated, nontrivial problem 12.19].

The truely infinite dimensional character of LFSS models has to be

approximated by some "hign fidelity" finite (but usually very large)

dimensional model. The normal approach taken by engineers to

achieve this end is via modal models with a large number of modes

that provide a reasonable representation of the spacecraft dynamic

characteristics. However, a difficult problem still remains to be

the development of a model of low enough dimensional order that it

can be utilized by the onboard controller, yet high enough dimen-

sional order that it preserves the dynamic characteristics of the

real system represented and controlled [2.20]. The motivations for

such a reduction are either to reduce computations for analysis and

practical control design or to simplify the control system

structure [2.21].

The dynamic analysis and design of structures by the finite element

or other discretization procedure often lead to eigenvalue/
eigenvector problems of very large magnitudes; the solutions of

which are very costly and plagued with numerous computational and

numerical problems. Indeed, the structural dynamic matrix of the

flexible modes, being a fully populated one, creates a drastically

different situation from that of the static case (2.22]. Among the
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better known spacial discretization methods (other than the FE

method) are the Rayleigh-Ritz/Galerkin and the finite difference

methods. However, discretization procedures will not be discussed

herein and it will be assumed that a large finite dimensional model

has been generated some how. Furthermore, for implementation and

other practical considerations, the model needs to be further

reduced.

There are various approaches to model order reduction, some are

optimal or pseudo-optimal, others are ad-hoc methods based on

practical considerations and engineering experience and judgement.

These techniques are known by different names such as "reduction",
"condensation", "econmization", "aggregation", "optimal projection",

and other combinations thereof. It has often been pointed out that

such techniques generally constitute application of Rayleigh-Ritz/

Galerkin optimization, and matrix transformation methods to the

eigenvalue/eigenvector formulation for structural dynamic

problems [2.23].

The reduction or the condensation methods are based on transforma-

tions of the coordinates in the equations of motion that essen-

tially, maintain the invariance of the quadratic forms of the

potential and kinetic energies. An important feature of these

methods is that the reduced order model often looses the basic

characteristics of the original system. Considerable progress was

made by Likins, Ohkami, and Wong [2.24] in this respect. However,

they failed to develop a general enough criterion that could reduce

the system model in an optimal sense without significantly affecting

the eigenvalues of the original model.

The optimization or the mathematical reduction procedurt, on the

other hand, are based on the reduction of the eigenvalue problem to

a smaller size based on some optimality criterion (usually quad-

ratic) [2.25]. In these techniques the reductions are carried out
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without actually resorting to approximations, i.e., without trun-

cating any coordinates or states of the original system.

Model order reduction for stochastic linear systems can be credited

to the important works of Adamjan, Arov, and Krein [2.26 - 2.271

based on liankel-norm procedures. The early work in this field could

be credited to Desai and Pal [2.281, who formulated a "balanced

reduction" approach for Markovian systems of stochastic processes

[2.291. However, this latter method to model reduction has yet to

be extended to multivariable systems in order to be considered a

viable method for structural dynamic problems.

"Balanced" model reduction of linear time-invariant dynamical sys-

tems is essentially based on the controllability and observability

relations of the states of the system. Subsystem models are

obtained by deleting those states that contribute the least to the

controllability and observability (or the impulse response) of the

original system [2.30] and thus cannot be expected to have any

optimal character.

A more recent approach to model reduction is proposed in Skelton's

work [2.311, where each state of the system model is assigned a
"cost" relative to a given basis, via a quadratic criterion, and the

states with the least cost are deleted in a systematic manner. The

resulting reduced model of this method is a function of the state-

space basis and thus there is no guarantee for optimality for all

choices.

The latest development in model order reduction techniques is the

work by Hyland and Bernstein [2.32]. Herein, first order necessary

conditions for reduced order modeling of linear time-invariant sys-

tems are derived via a pair of modified Lyapunov equations coupled

by a nonorthogonal projection. This aproach reveals the possibility

of multiple exrema for some of the abovementioned methods.
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In the following pages the various techniques in model order reduc-

tion will be presented and appropriately discussed. The advantages

and disadvantages of each will be commented upon and further

requirements and trends will be briefly touched. The development

will include all the past and present model reduction procedures

with their characteristic similarities and differences in a rather

historical perspective. The motivation behind each of these tech-

niques and their applications will be highlighted.

2.5.2 Problem Statement and Scope

The usual procedure for the development of a model for

a distributed structure is by the use of the extended Hamilton

principle, whereby expressions for the kinetic and the potential

energies and for the virtual work of the system are derived. Sub-

sequently, a mathematical model is developed via the variational or

other approaches [2.33]. The most general finite dimensional model

can be expressed as follows:

M k(t) + Ck(t) + K x(t) = F u(t) (2.24)

where M, C, and K are termed the mass, the damping, and the

stiffness matrices respectively and they could be functions of

spacial variables. Appropriate transformations will change Equation

(2.24) into the state-space representation given by

y= Ay + Bu (2.25)

where

AM _IK 0M _CJ and B = [M -
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If the original model (2.24) has n DOF then Equation (2.25) will be

a 2nth-order system. Thus A-(2n x 2n), B-(2n x 2m) given that u(t),
the input or excitation vector is m-dimensional.

Real life systems that have motivated model order reduction range
from chemical to electrical systems, from the analysis and control

design of LFSS to turbines and power plants [2.341 There is a vast
amount of literature regarding methods for simplifying or reducing

models like that of Equation (2.25). However, for practical reasons

and space limitations, we will concentrate only on those model reduc-

tion techniques that are relevant to flexible space structures and

hence, to methods that are applicable to coupled multivariable sys-
tems. This constraint will reduce the scope of this endeavor, will
exclude some of the procedures that are in existance, and will hope-
fully create uniformity and "completeness" in the pages that follow.

It is unavoidable, in any survey to leave out some references that

should have been cited for their pertinent accounts, and the present

one will not be an exception. Moreover, with the various limita-

tions and the enormous amount of literature on model reduction

scattered in numerous journals and conference proceedings, it is
virtually impossible to be all inclusive. Nevertheless, we will try

to be as thorough as possible and as concise as possible to do
justice to the subject itself and to the researchers in model

reduction techniques.

2.5.3 Condensation Methods
During the 1950's the classical approach to generating a

reduced static model for a structural system was to use discrete
masses associated with certain selected deflections (2.35]. In the

early 60's, Guyan [2.361, Irons [2.351, and Davison [2.371 intro-

duced ad-hoc methods of model reduction that is commonly known by
various names, such as "Guyan reduction", "egenvalue economization",
"mass condensation", or simply "reduction". These methods basically
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reduce the order of the original large dimensional linear model by

discarding some of the modal deflections called "slave" DOF and

retaining the remaining ones, called "master" DOF. The choice

relative to the master and slave DOF is made, based on engineering

judgement, in such a way that the lower frequencies in the eigen-

spectrum of the structure are preserved as much as possible

[2.381. The resulting reduced order model has poles and zeros that

are "closest" to the origin in the complex plane (2.371.

In the latter part of the 60's it was Aoki [2.391 who first intro-

duced the idea of reducing dynamic models by "aggregation". This

method reduces the dimension of a system model SI, that is derived

according to a given coordinate basis, to a lower dimensional model

S2 that uses fewer coordinates, via appropriate transformations.

The aggregation technique can also be considered as a form of

condensation. Since, once again, the criterion for the reduction is

not based on any optimality concept, but rather on the preservation

of the system characteristics in a simplified model.

Notwithstanding the fact that the component mode synthesis method,

developed by Hurty [2.401, is also considered by many as a means of

model simplification, it will be excluded from this study. Because

1L zzsentially divides a system into subsystems to be analyzed

separately for simplification of analysis. Moreover, the overall

system model generated by the component mode synthesis approach will

still have to be simplified or reduced.

There are several other ad-hoc methods that can be considered

condensation techniques. However, they are all similar to each

other in certain respects. The main ideas of each "key" conden-

sation technique will be presented in this section and their advan-

tages and disadvantages will be pointed out. Modifications and

improvements to these methods will be cited and commented upon.
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2.5.3.1 Guyan Reduction

In structural analysis it is often necessary to reduce

the very large mass and stiffness matrices, generated by finite

element or other discretization procedures, for purposes of

computational ease and simplification of the analysis. The

underlying problem can be expressed as a general ?lgebraic

eigenvalue problem.

K x = kM x

where K, M are as before and are the eigenvalues of the system.

In what is commonly called "Guyan Reduction" the basis for the above

order reduction is the elimination of coordinates at which there are

no forces applied [2.361.

Thus the above mentioned eigenvalue problem can be expressed as

follows:

K121 K Ei M 1 M 2  [Xi[::]I= =21J k I (2.26)F2 KII K22J x2 M21 M22 _x2_

where Fl, F 2 are the components of forces and F 2 is assumed to be

zero. x1, x 2 are the corresponding component coordinates, Mii and
Kii, i=1,2, are the mass and stiffness components. This amounts to

a coordinate transformation of the forces: x = Txi. After more

manipulations it is found that the stiffness matrix corresponding to

the forces F1 is given by:

K1 = KII - K12 K2 2 - 1 K2 1  (2.27)
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and the mass matrix corresponding to F1 is:

M1 2 MII - M1 2 K2 2 " K2 1 - K1 2 K2 2 - 1M2

+- K22-K K2 1  (2.28)

As is mentioned in Reference [18], this transformation creates some
discrepancy in the eigenvalue-eigenvector problem. For, from

Equation (2.26)

x2 = [I - kK 2 2 ' M2 2 ]' K2 2 - [ kM2 1 - K2 1] x 1

and in expanded form

= M + (K2 2-I M 2
x2 + 22 22 2 2  2 2 )

+ ... ] K221 ( kM2 1 - K2 1 ) x1  (2.29)

Thus, in the reduced matrices K1 and Ml, the higher order terms are

eliminated resulting in changes in eigenvalues and eigenvectors of

the original system. Error bounds for the determination of eigen-

values for such reduction procedures are given in [2.41 - 2.42].

Furthermore, it has been established that eigenvalues are always

increased due to the reduction of a model order [2.431.

Alternate approaches to model truncation or reduction are proposed

by several authors that are variations of the Guyan reduction.

Irons [2.351 presents an essentially similar approach working out in

a rather step-by-step manner of eliminating "slave" modal

deflections and keeping "master" nodal deflections. Davison [2.37]

discusses his approach whereby only dominant time constants of a

system transfer matrix are retained. Fried [2.44] related the

reduction process to the power method where higher modes are

suppressed. Kidder [2.45] and Geradin [2.41] derived the necessary
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approxiamtions for a more "accurate" reduced order system model.

Flax (2.461, on the other hand, pointed out that the series in

Equation (2.29) does not converge except for those eigenvalues of

the retained terms that are less than those of the truncated

terms. Wilson [2.47] showed the relationship between condensation

and Gaussian elimination. While, Henshell and Ong [2.381 introduced

an "automatic" reduction method that finds the master DOF, whereby

all the natural frequencies in the lower portion of the eigen-

spectrum of the original system are preserved. Various authors

[2.48 - 2.49] have presented modifications that are meant to obtain

more accurate reduced models.

The issue of truncation of modal coordinates has attracted the

attention of many researchers, in particular, the various truncation

criteria involved in model simplification and their interrelation-

ships [2.50]. The two main criteria relative to eigenvalues are

(1) those normal mode coordinates that have substancially larger

frequencies than that of the highest significant harmonic in the

forcing function can be truncated, (2) appendage modal coordiantes

in hybrid coordinate systems can be reduced if the eigenvalues of

the original and the reduced system approximate "adequately".

Similarly, criteria related to eigenvectors and other controllability

and observability issues are formulated in Reference [2.501.

Another approach to dynamic condensation is presented in Leung

[2.51] and in Anderson, Irons, and Zienkiewiez (2.521 that is rather

similar to the basic approach taken in Guyan [2.36] with some

modifications. Downs [2.53] attempts to address several issues of

accuracy and detection of master DOF. Namely, errors in the Guyan

reduction process, bounds on the frequencies that can accurately be

described by a reduced system, and a systematic procedure for

selecting the master DOE in an improved manner. There are numerous

criticisms directed towara the Guyan reduction or condensation

procedures. The underlying problem is the influence of the
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reduction on the eigenvalues and the eigenvectors. The procedure

presented in [2.52] reduces the model via elimination of those

displacements that contribute Lne least amount to the kinetic energy

of the system. However, the choice of the retained DOF is still

guided by engineering skill and good judgement. Moreover, the

convergence of the approximations in Equation (2.29) are functions

of the choice of elements retained and the process of back

transformation could lead to erroneous results [2.46]. Also, there

seems to be some confusion in the number of retained DOF required

for an accurate lower mode of vibration. Even if the number of

retained DOF is fixed, an optimal procedure for selection of master

DOF does not exist as yet. Downs [2.53] suggests that displace-

ments, slopes, and twists shoula be the order of selection of the

retained DOF. However, complex structures have to be treated under

consideration of resonance and other aspects of stability.

Anderson and Hallauer [2.54] addressed the accuracy problem in their

method of model reduction by representing the eigenvalue problem

(2.26) in such a way that the eigensolutions (the modal matrix) of

the original system is required. The inverse of the modal matrix

with the diagonal eigenvalue matrix are utilized to generate a

reduced order modal matrix that preserves the modes of the original

system. However, the computational effort required seems to be much

higher in this approach since an algebraic Riccati iteration has to

be carried out. To address the proper selection of the retained

modes Shah and Raymund [2.55] proposed a step-by-step algorithm

based on bandwidth considerations while Thomas [2.56] examines the

issue of errors in algebraic calculations of frequencies during the

condensation process.

In many situations in structural analysis, the main reason for the

derivation of the "exact" eigenvalues and eigenvectors is their use

for the reduction of the order of the system model. Wilson, Yuan,

and Dickens [2.57], and Arnold et.al. [2.58] present an approach
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whereby an "accurate dynamic analysis" is obtained at a reduced

computational expense. Their method uses orthogonal ritz vectors,

which are not the eigenvectors of the system, and thus derives a

transformation that reduces the model. Paz [2.59] on the other

hand, presents his "dynamic condensation" approach that starts by

assigning to the eigenvalues an approximate or zero value for the

first eigenvalue. It then proceeds by elementary opezations to

eliminate the undesired displacements. The resulting reduced

eigenproblem is solved to derive a "virtually" exact eigenalue and

the corresponding eigenvector of the first mode, as well as an

approxiamte value for the second eigenvalue. Continuing in this

fashion, one obtains a reduced order model with eigenvalues of the

retained nodes very close to those of the original system.

Sotiropoulos [2.60) points out methods that could lead to estimates

of the error between the eigenvalues of the original and the reduced

system. Moreover, he presents his own approach to dynamic con-

densation and calculations of the errors in the natural frequencies

of structural systems in [2.62 - 2.66]. Other authors [2.63 - 2.66]

have also addressed various aspects of dynamic condensation. One of

the most important features of dynamic condensation methods is the

fact that it does not require the series expansion inherent in

static condensation or Guyan reduction procedures. Moreover, it

remains to critically compare the dynamic condensation method with

Guyan reduction and some of its better modifications in order to

assess the value and the advantages of the former.

The problem of choosing a "good' reduced order system is still an

art. A systematic procedure for generating the ideal reduced-order
model for a given system remains to be developed and tested.
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2.5.3.2 Aggregation Methods

Conceivably, valid analysis and design of large-scale

systems can be carried ojuL utilizing only aggregate models. There

are situations when it is desirable and necessary to reduce the

order of a given model li'ke that of Equation (2.25) into the

following form:

Z(t) = F x (t) + Gu(t) (2.30)

The state of this reduced model can be computed directly from the

above equation and thus simulations can be performed with less

computational effort. The aggregation method first introduced in

control theory by Aoki [2.391, is such a technique. However, if

Z(t) only approximates the "real" states of the original model x(t),

then the validity of any analysis via (2.30) depends on the degree

of accuracy of the approximations in the.reduction process, which in

turn is a function of the original system, the inputs, the choice of

aggregation technique and the engineer's insight [2.21]. In the

aggregation method, for dynamic exactness purposes, it is required

that

Z(t) = C x(t) (2.31)

(In the above equations, F, G, and C are constant matrices with

appropriate dimensions). The above-mentionee exactness can be

achieved if and only if the following matrix equations are

satisfied:

FC = CA (2.32)

G = CB (2.33)
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Equations (2.32) and 2.33) indicate that dynamic exactness exists

only if Z(t) is a linear combination of given modes of x(t). In

such a situation the eigenvalues of F are identical with the eigen-

values of A that correspond to the retained modes of x(t). Looking

at the aggregation method in this prespctive, it is apparent that,

like the Guyan reduction method, the dominant modes of the original

system model are retained. This characteristic definitely restricts

the class of matrices C, that can serve as an aggregation matrix.

Moreover, aggregation in linear systems is a form of minimal

realization, just like "merging" in telecommunications [2.671.

Various factors should be considered in the process of determining

the "best" aggregate model. Thus, the expected disturbances , the

inputs, the structure of the feedback loops in the case of control

systems, the bandwidth of the controller among others, should all be

evaluated relative to system stability in the light of the stability

of the reduced model. In linear quadratic control problems

researchers have derived bounds on the performance index via the

solution of the Riccati equation [2.68 - 2.701.

A different approach to aggregation is proposed by Tse, Medanic, and

Perkins [2.711. The new approach is called "generalized Hessenberg"

method, whereby a sequence of aggregate models are utilized, each

being a low order approximation to the given model, to obtain the

"best" reduced order model under conditions of observability of

modes and of coupling between components. In [2.72] a refinement to

aggregation is presented whereby conditions are established that are

necessary for aggregation of large scale systems, under incomplete

controllability and observability. An error criterion is obtained

for a quadratic performance functional and the subject of optimality

of the aggregated model is discussed.
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For time-invariant linear systems like that in Equation (2.25), the

determination of the aggregate model depends on the choice of the

eigenvalues of A and the choices of the aggregate matrix C.

Commault [2.73] discusses an optimal choice of modes for the

aggregate model in a combinatorial approach for a restricted class

of aggregated systems. While, Ying-Ping [2.74] discusses methods

for checking of the matrix C and for selecting its elements.

2.5.3.3 Perturbation Methods

Perturbation methods are often viewed as approximate

aggregation methods [2.21]. There are two basic approaches to the

perturbation technique, nonsingular and singular. The system model

in equation (2.25) is expanded as follows:

1 X2(t) 1 2 A 2 1  A2 2 I 2(t) 0 Br21 u2(t]

where E = 1 for conditions of weak coupling and (2 is a small

positive parameter, while E is small and E2 = 1 for strong

coupling. In the first case two separate approximations are

obtained, while in the second case, A22 is a stable matrix and the

system order is reduced via zeroth order approximation.

In the first case of weak coupling, the Riccati equation of the cor-

responding optimal control problem can be expanded in terms of C2 and

serves as a means of reducing the system model [2.75]. One disad-

vantage of this approach is that, in obtaining Zeroth or higher order

terms there is no recursive procedure, and hence it is difficult to

implement. Other drawbacks are discussed in Reference [2.21].

In the situation of strong coupling the eigenvalues of the first

system (with xI as its state vector) is approximated by the eigen-

values of (All A A -2 A1 A2 1 ), and the remaining eigenvalues are
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approximated (and their corresponding modes truncated) by those of

A2 2 / 1l [2.76]. The need for systematic procedures in modeling and

control design of large-scale systcms such Z L'SS is apparent in

many applications. Moreover, the separation of modes into cate-

gories, such as fast and slow, important and noncritical, is a non-

trivial task, very often, and it requires strong engineering judge-

ment, considerable physical insight, and experience. An approach

similar to the perturbation technique is presented in [2.71] whereby

a reduced order model is obtained that preserves the input-output

characteristics of the system behavior as shown by a set of measure-

ments (assumed available). This method is especially useful in

multiple decision processes. A collection of reduced-order models,

each being a distinct low-order representation of the original

model, are derived and a choice of the "best" reduced model with

appropriate parameters is made under given criteria. This study

uses a combination of aggregation and perturbation theories and is

discussed in both subsections.

Perturbation methods for model reduction purposes are not very much

applied in structural analysis and control design. However, it is

presently recognized that singular perturbations exist in most con-

trol systems with reduced order models which disregard high fre-

quency "parasites" [2.77]. Both continuous-time and discrete-time

sysems can be treated by this approach. Several surveys and mono-

graphs present the various features and applications of singular

perturbation methods [2.78 - 2.86]. Linear systems and time scale

characteristics are treated in [2.87 - 2.931, state and output

feedback are discussed in [2.94 - 2.96]. Optimization, dynamic

programming, and other fields are also applied to perturbation

theory [2.97 2.1071.

2.5.3.4 Cost Decomposition Method

The requirement to determine the relative importance of

modal vectors in a structural analysis and control design setting is
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apparent in various applications [2.1081. A systematic approach to

establish the contribution of "cost" of each component mode of a

large order system, based on a quadratic cost or performance index,

and accordingly truncate those that have a minimal contribution is

presented by Skelton (2.311. This method can be considered a

condensation method that addresses one of the important issues in

model reduction. Namely, the "best" choice of the retained modes.

Several choices of error criteria are presented on the basis of

output, component, disturbance, and cost decoupling transformations.

The second stage of the structural analysis and control design of

LFSS, or any large-scale system, according to this approach consists

of the computation of the cost of each closed-loop eigenvector of an

optimal system. Similar to establishing the most significant modes

in the open-loop dynamic model of a LFSS, Skelton and Hughes (2.1091

present a procedure for determining the most significant closed-loop

modes. The resulting control system is endowed with the property of

having the same eigenvalues and eigenvectors as the optimal sys-

tem. The remaining modes will have shifted eigenvalues that can be

predicted by modal controllability calculations. Furthermore,

Yousuff and Skelton [2.1101 give a controller reduction shceme that

utilizes component cost analysis to reduce the order of the control-

ler. Controller error measures are also defined and their mathemat-

ical expressions are derived with indications of their upperbounds

and their relations to the observability characteristics of the

states. The presentation includes the development of a cost

decoupled control coordinate system similar in nature to the gener-

alized Hessenberg representation in [2.71]. The resulting reduced

states have the least control component cost, the least sensitivity

to the control weighing matrix in the quadratic performance index,

and the least observability in the controller.

The specific application of modal cost analysis to space structures

is presented in References [2.111 - 2.1131. The reduced order model
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will have s modes of the n-dimensional original model (s < n) that

has the largest contribution to the quadratic performance functional

during closed-loop implementation. The approach is an iterative

one. However, all the component modes have to be evaluated and com-

pared for a valid reduction. There does not seem to exist an opti-

mal procedure for this approach. Moreover, residual interactions of

the truncated modes could have some impact on the performance of the

control system with the reduced order model and controller. But,

this is common to all reduction methods.

Several papers exist [2.114 - 2.1171 that treat the model reduction

technique by cost decomposition and address the issue of control

system performance versus complexity in deriving a lower-order

model. Moreover, model validation [2.118] is an important issue

that recognizes the connection between model reduction and control

dcsign. The procedure with wich the reduced model is evaluated is

by comparing the closed-loop suboptimal controller performance with

that of the original system.

2.5.3.5 Balanced State-Space Representation

The model reduction problem relative to minimal realiza-

tion theory was first introduced in control design by Moore

[2.301. His main idea was to be able to drive approximations to a

given control system model that has a lower-order and that has

virtually the same impulse response matrix. Thus, the states which

are highly excited by the inputs to the system and which contribute

most to the outputs are retained in this method. A normalization or

balancing procedure is presented whereby coordinates are derived

that are equally controllable and observable via transformations

that equalize the controllability and the observability "Grammians".

The question of obtaining a "sufficiently accurate" reduced order

model is an important issue in systems analysis and control
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design. The introduction of balancing in the coordinate system does

not furnish an answer to the above-mentioned question. Moreover,

the balanced coordinate procedure requires that the system be

asympetically stable such that the observability and controllability

Grammians be finite. The above mentioned Grammians can be defined

as follows:

t A~-T) ~ eAT(t-T)

Wc(tot) = f eAtT B B e d (2.35)
to

for the controllability Grammian, and

teAT(r-tO) A(r-to

W0 (to,t) = f e 0 CTCe dT
to

for the observability Grammian.

In the above equations, C is the matrix of the observation system of

Equation (2.25) given by Z = Cy, and to is the initial time. These

are defined for continuous deterministic systems. The procedure

used by Moore [2.30] to generate a transformation T that simultane-

ously diagonalizes W0 and WC and sets them equal is the singular

value decomposition. Thus, after equalization the new coordinates

(that are refered to as "balanced coordinates") are reduced by

deleting the diagonal elements in WO = WC with smallest magnitudes

and thus keeping the dominant components. It is shown in [2.1191

that the reduced order models thus obtained are stable only if the

original model is stable.

Several other researchers have addressed various aspects of balanced

coordinate model reduction techniques [2.120 - 2.122]. In Reference

12.121] it is shown that unstable systems could also be reduced and

model reduction is extended to uniform realization by giving

106



existance proofs of balanced realization for the class of analytic

systems. Error bounds for reduced order models is obtained from

internally balanced realizations in [2.1231. In [2.124 - 2.1261

comparisons to other methods and stochatic systems are considered.

All the various treatments based on balanced realizations involve

systems-theoretic arguments rather than optimality criteria.

Moreover, Kabamba [2.127] has pointed out that in the L 2 space the

balancing method is not optimal, as can be expected.

2.5.3.6 Optimal Projection Methods

Optimal selection of reduced model coordinates was first

treated by Wilson [2.128 -2.129]. In this approach the steady-state

output error, that is quadratically weighted, is minimized when both

the original system and the truncated model are effected by white-

noise inputs. First order necessary conditions (similar to those in

[2.39]) involving two Lyapunov equations, each of order equal to the

sum of the orders of the original model and the reduced model, are

obtained via parameter optimization. The basic procedure generates

optimal reduced order matrices in an iterative manncr, however, the

guarantee of convergence of the iteration has not been established.

Another optimality criterion for model reduction is presented by

Kabamba [2.251 where the original generalized coordinate vector is

projected on a smaller subspace and the error norm for chosen scalar

product is minimized. He refers to this method as "modal condensa-

tion". The essence of modal condensation is reducing an

n-dimensional vector x to an m-dimensional one Z by a matrix trans-

formation D and

Z = Dx (2.37)

Where DD = D and D*A = AD for A = nxn, hermetian positive definite

matrix, D self adjoint and idempotent. He has shown that truncation

in this manner is a form of orthogonal projection.
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In the case of structural systems, it is shown that the aim of

truncation is the minimization of the kinetic and the potential

energies of the residual modes, once the order of the reduced model

is fixed. Moreover, truncation leads to an underestimation of

potential and kinetic energies. Once again, the choice of the order

of the reduced model is not addressed in this research article.

However, the method lends itself to reduced computational effort and

it can lead to indications of decoupling properties in a system.

Several papers appeared recently on optimal projection equations for

model reduction [2.130 - 2.1371. The main result that appeared in

[2.32] concerns the derivation of necessary conditions (in the form

of two modified Lyapurov equations and rank conditions with non-

negative definite solutions) for an optimal reduced-order model to

exist. Multiple solutions to these optimal projection equations may

exist corresponding to various local extrema. The balanced realiza-

tion method is analyzed and compared with the optimal projection

approach. Moreover an algorithm is presented that computes the

local extrema by choosing eigenprojections. Also, component-cost

decomposition is utilized to direct the algorithm to a global

optimum.

Designing low-order controllers for flexible structures is taken up

in [2.138]. The optimal projection equations for fixed-order

dynamic compensation in the presence of state-, control-, and

measurement-dependent noise are derived as a generalization of

linear quadratic Gaussian theory.

The main idea behind the optimal projection approach is to directly

characterize the optimal reduced-order controller with a quadratic

performance functional for a given large-order model. Specifically,

the optimal projection equations comprise a system of four matrix

Riccati and Lyapunov equations coupled with an oblique projection

that determines the optimal control gains.
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The question of where the projection should take place is still

unclear in this approach and engineering insight and practical

experience apparently has it place. Computationally, solving

Riccati and Lyapunov equations is no minor task. However, for low-

order systems it is probably practical.

2.5.3.7 Other Model Reduction Techniques

Literature pertaining to model order reduction methods

is enormous and scattered in various journals, conference proceed-

ings, books, and reports. The survey article [2.139], by Genesio

and Milanese, gives a long list of references related to model

reduction techniques. Fromthe date of its publication,howver, there

has been numerous papers written on various aspects of the subject.

Most of the techniques that exist are ad-hoc methods. We will refer

to some of them in this subsection and point out their significance

as much as possible.

The "transfer matrix" method was developed in structural dynamic and

was first used for model reduction by Dokainish [2.140]. In his

approach, the stiffness and inertia matrices of individual elements

are first derived (similar to the derivation of displacements in the

finite element analysis). Then the matrices of only the retained

part of the system are assembled and the natural frequencies are

computed. The reduced modes are eliminated via algebraic transform-

ation. Several papers [2.141 - 2.1461 followed this presentation

that either formulated modifications to the approach of Dokainish or

analyzed the characteristics relative to its validity and

applicability.

The polynomial approximation methods, on the other hand, that use

low-order transfer functions to replace the original transfer

function of the given system, calculate the coefficients of the

reduced transfer function such that the output of the reduced model
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compares favorably with the output of the original system [2.147 -

2.152]. Methods that are often refered to as "moment mathcing",
"continued fraction", "pade approximation", and "Error minimization"

techniques are also ways of generating reduced-order models,

specially for single input-single output situations [2.153 - 2.1731

based on the same criteria.

Recent developments [2.26 - 2.27] related to Hankel norms has led to

model reduction techniques of stochastic systems [2.29, 2.174 -

2.1841. Most of these approaches, however, deal with single-input

single-output systems and utilize phase Hankel-norm techniques for

reducing the order of a system.
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2.6 CONCLUSIONS

Linear stochastic models that have state- and control-

dependent noise in addition to additive noise comprise a realistic

representation of the dynamics of LFSS. Uncertainties in various

parameters can be represented as frequency, damping ratio, and modal

paramter uncertainties, resulting in a mathematical formulation that

requires the statistics of the frequency and the damping ratio

uncertainties. The mechanism for referring the statistical measures

of the modal parameters from the frequency and the damping ratio

statistics is rather complex. However, considering the complexity

of LFSS and utilizing appropriate model reduction techniques to

derive a relatively small order model, the statistical characteris-

tics might not be too difficult to generate.

The practical implications of such an approach should be treated

separately on a realistic structure, and the advantages and disad-

vantages evaluated thereof. The intuitive and theoretical appeal of

such an approach is definitely justifiable. Moreover, many realis-

tic simplifications and assumptions could lead to practical results

that could be valuable in LFSS analysis and control design.

4~
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DETERMINATION OF UNCERTAINTIES AND

PERFORMANCE INDEX
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3.1 INTRODUCTION

There are many real situations where accurate mathemati-

cal modeling is a prerequisite for performance or response predic-

tion, system analysis, and control. The type and the degree of

accuracy of a model depends upon the application for which the above

mentioned tasks are to be performed. For instance, in aerospace

applications, where inherently high performance requirements exist,

normally very precise mathematical models are needed. Models for

industrial, economic, and other processes, on the other hand can be

very approximate. Thus, the performance requirments and the overall

objective dictate the need for accuracy of an analytical model [3.1,

3.21.

The mathematical model of a system can either be obtained via physi-

cal reasoning and application of fundamental conservation "laws" or

by analyzing experimental data from system tests. In the former

case modeling errors and approximations are unavoidable and in the

latter situation the ability of the engineer to obtain an accurate

representation of the system at hand is limited by the presence of

random fluctuations such as unmeasured disturbances and measurement

errors [3.3]. Furthermore, systems are in general dynamical and

inherently nonlinear in nature. Thus, the response or the output is

not linearly related to the input or excitations. The more serious

aspect of the modeling problem is the stochasticity or randomness,

that is always present and that should be incorporated within the

model in a realistic manner. Stochastic differential equations

could be utilized to represent such systems that have stochastic

processes as coefficients of the differential operator, or the

initial conditions could be random processes, and even the forcing

functions or the input excitations could be stochastic processes and

thus result in a stochastic system [3.4].
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Deterministic system and control theories do not provide sufficient

tools to perform analysis and control design of complex systems.

The inherent reasons for the above assessments are varied. First of
all, mathematical models are imperfect and only represent those

characteristics of a system that are of direct interest to the engi-
neer. For instance, complete vibration control of a large flexible

space structure (LFSS) will require an infinite number of modes.
However, "sufficient" control is accomplished most often by taking a

small number of dominant or critical modes to form a finite dimen-
sional model. This way of reducing the size of a real structure and

the approximate manner of generating analytical models result in

variations from reality that are random in nature. Second of all,

unpredictable disturbances which do not have deterministic represen-
tations often influence the behavior of systems. Moreover, even if
appropriate sensors are provided to gather test data for model per-
fection, the inherent shortcomings of the sensors cause random fluc-

tuations in the supplied information, thus creating the need for

stochastic representation of systems [3.5].

The level of uncertainty or the degree of randomness varies as a

function of performance requirements, information at hand, and

system complexity. However, since uncertainty is intrinsic to any
problem, the probabilistic approach provides a useful framework to

treat randomness quantitatively [3.6]. It essentially involves

identification of sources of uncertainty, formulation of stochastic
models, and incorporation of all the information and the lack of it

in the stochastic model. The fundamental characteristic of the

abovementioned approach is that each source of uncertainty is
accounted for in a systematic manner and the relative sensitivity of

the system to random variatons is assessed.

3.2 DEFINITION OF BASIC STATISTICAL APPROACH

The purpose of this section is to provide a concise

account of the results from probability theory which will be
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utilized in the development of the ensuing work. The material

covered will provide completeness, will motivate the usefulness of
probability and statistics as a powerful mathematical tool, and will

serve as a means of understanding the development and results in the
research work that will be presented in the following pages.

Probability and statistics are of course related fields. In proba-
bility theory a model is assumed that can furnish quantitative

information regarding the possibility of occurrence of various

events. Whereas in statistics, a model is developed from some given
observation data. Uses of probability and statistics are numerous
[3.7]. Some examples include sampling, redundancy, confidence

intervals, reliability, fracture mechanics, system identification,

estimation, optimal control of stochastic systems, calibration, etc.

3.2.1 Probability Theory and Random Variables

Problem solving in stochastic systems entails random

physical phenomena (experiments) with unpredictable outcomes. The
totality of outcomes is often termed the sample space, and a

subset of it an event, A. A probability measure P(') is assigned to
each event A such that P(A) > 0, P(Q) = 1, and P(UAi) = -P(Ai) for

Ai independent for all i. The collection of all events must form a
sigma field [3.8]. That is, A and its complement must both be bona-

fide events. Also, given a countable sequence of events {Ai}, then
their union must also be an event, so must . The probability of
two events is called a joint probability and the probabilitiy of
event A occurring given that event B has already occurred is termed
conditional probability. Thus p(A/B) = p(AB)/p(B) if p(B) 4 0.
Moreover, if Ai, i = 1, n are independent, then the probability of

their intersetion equals the product of the probability of all

events. Bayes' rule is a very important result in probability
theory that relates conditional probabilities, such that
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p(A/B) = p(B/A) p(A) if p(B) / 0 (3.1)p(B)

3.2.1.1 Random Variables

Normally the outcome of experiments are represented by

quantities that are random variables. Thus, a random variable is a
real-valued function X(') defined on Q for an outcome wEw. The set

given by 1W:X(W) < xf is a class of sets of s2 that is closed under

all countable set operations. The probability of the latter set is

called the distribution function and is denoted by FX(X). If Fx(X)

is absolutely continuous, then it can be expressed with respect to a
probability density function pX(x) by:

Fx(x) = Xl_ ... _fn px(y) dyi ... dyn (3.2)

where xi and yi are the ith components of x and y, respectively.

The above definitions indicate that for some wEQ, X(w) = x. The

distribution function completely describes the properties of a
random variable. If there is a mass function mx(') such that

Fx(X) = E mx() (3.3)

MOO )> 0

then, X is called a discrete random variable and it can assume only

a countable number of values.

If Fx(x) is differentiable then

PxX = dFx (x) (3.4)PX(X) = dx

the density function of a discrete random variable consists of a sum

of delta functions [3.9].
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The mean value or expectation (or first moment) of a continuous

random variable X usually written as E[X], is the scalar defined by

E[X] = x x Px(x) dx (3.5)

The above value exists if E[JXJ] <x . Moreover, a fixed determinis-

tic real function f(,) of a random variable X is itself a random
variable. Thus, Y = f(X) and its expectation is given by:

E[Y] = Jf(x)px(x))dx (3.6)

The expectation operation is linear. The kth moment of a random
variable is mk = E[Xk] and its kth central moment is lk = E[(X -

E[X])k]. The joint moments of two random variables X and Y are
given by the set of numbers E[XkY I and E[XY] is called the

correlation of X and Y. Their joint central moment is

E[(X - E[XI) (Y - E[YJ)] (3.7)

and is the covariance of X and Y. Furthermore, if E[XY] = E[X] E[Y]
then X and Y are uncorrelated. Independent random variables are
always uncorrelated. A random variable may also be characterized by
its characteristic function given by:

4x(s) = E[exp(jsX)I, j = --l (3.8)

Theoretically, one can obtain all the moments of the random variable
X through differentiation of X, if the latter is analytic. Thus,

kmk *k dk
mk = d X(S) Is=0 (3.9)ds

Given that an event A has occurred, the conditional moment of X is

defined as
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E[XIAI = _ X PXA k.xiA)dx (3.10)

Thus, E[XIY] is a function of the random variable Y, moreover,

E[E[XIY]] = E[X].

A very important theorem in probability theory is the central limit

theorem. It states that given Xi, independent, then, under general

conditions

1 nYn = - X.
n ni=

is approximately Gaussian with mean value 1ý L and variance of

1 U •2. Gaussian distribution (or normal distribution) is that

which has a probability density function given by:

n 1

Px(X) = [(2 )2 IVi I exp[-' 1(x - E[XI)T V - (x - E[X])] (3.11)

where JlV = determinant of V, V is the covariance matrix of X, and

I 1- 1is the inversion operator. The symbol often used for Gaussian

or normal distributions is

X - N(E[X] , V)

3.2.2 Stochastic Processes

A random variable defines a mapping from the sample

space into the real line, while a stochastic piooess is a mapping

from the sample space into the function space of x(t, w) for each

in the sample space. Thus, for different observations w4EQ, dif-

ferent realizations of the stochastic process are derived, that are

functions of time. Hence, a stochastic process is a function of two

parameters, the time parameter t (T, and the probabilty parameter
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In general, a vector stochastic process is represented by xt(•),

t(T, , or in short notation Ixt, tfTk, and is actually a family

of random vectors indexed by the parameter set T. For a stochastic

process an experiment results in a function mapping an underlying

time set (all integers, reals, or subsets of these) into the reals.

A stochastic process Jxt, t(Tý is strictly stationary if for any

real At, the joint probability density function is invariant at

t + At. Thus

p(x . , x ) p(x 1 +Att' -. Xtn+At) (3.12)

for all finite sets ETi ET and (ti + Ati) ET. A special case of

(3.12) is:

p(xt) = p(xt + At) for all At,

which means that p(xt) = p(x,t) = p(x) and that the mean value of

the process is a constant. A real stochastic process lxt, tETJ is

wide sense stationary, or covariance stationary if it is strictly

stationary of the first order, has a finite second moment and E[(xt

E[xt]) (xs - E[xtj) (xs - E[xs])] depends only on (t - s) and not on

either t or s [3.10]. A random sequence 1Xnl is said to converge to

x with probability 1 (wpl) if

lim Xn(-) = x(-) (3.13)

n-z

for all , except for a set A such that p(A) = 0. The convergence is

termed "in the mean square sense" if E[lxn] 2] <- for all n, E[x] 2 ]

<z and lim E[x - xn1 2 ] = 0. Then
n - -zn41
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l.i.m xn = x (3.14)

In general, convergence wpl neither implies nor is implied by mean

square convergence or by l.i.m. A necessary and sufficient condi-

tion for mean square convergence is the cauchy criterion:

lim E[j xn - xm 12] = 0 (3.15)
n, mf-co

xt is mean square continuous at tET iff E[xtxT] exists and is

continuous at (t, T ).

Processes for which only the first and the second moments of their

joint distribution functions are finite are termed second-order sto-

chastic processes. The above definitions extend to discrete sto-

chastic processes with minor modifications. Thus, a discrete-time

stochastic process is said to be an independent sequence if for any

set (tl, ... , tn) )E T, the corresponding random variables Xt, r...

Xtn are independent. Moreover, the joint distribution function F

can be factored:

F (Xti' ' Xtn) FI(Xt1) F2(Xt2) ... FN(XtN) (3.16)

where Fi(Xi) are the marginal distribution functions of Xti, i = 1,

... , N. In addition, if Fl, ... , FN are identical functions, then

the sequence is termed an independent and identically distributed

sequence.

A discrete-time stochastic process is called white noise if its

covariance matrix can be expressed in the form -5(t) bst where 6 st is

the Kronecker delta function and Z(t) is a non-negative definite

matrix.
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The spectral density matrix is the Fourier transform of the covari-

ance function and in discrete form it is given by:

(ý(ej Zý'O R(T) e-i ,, T (3.17)
_ýO

where R(t, T) = E[(Xt E[Xti) (XT - EIXTI )T]

and
Tr

R (T ý(ej-) ej d, (3.18)Tr TT

where R(T) = R(t, t - T) and (b(ejw), ,E[-TT, 71 is the spectral den-

sity matrix. An important result of the above is the power spectral

density for a wide sense stationary white noise process with covari-

ance of bst is

4)n(z) =Z (3.19)

where z = ej'.

Markov processes: Heuristically, a Markov process is a stochastic

process if, given the present information, the past does not influ-

ence the future, i.e., if ki > k2 > ... > kn' then

PX X X (Xk, I Xk Xkki k2l kn L 2 n

= P X ki I X k2 (X ki I Xk2) (3.20)

This type of a process is often called a f-rst order Markov proc-ý -L
ess. In a similar manner a second, third, and higher order Markov

processes are defined.

Ergodic processes: In ergodic stochastic processes, time averages

can be replaced by averages over the set of experiment outcomes or
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expectations. One definition of an ergodic process is: IXkt is

ergodic if for any suitable function f('),

E~f(IXk1)] = limr 1

2k + 1 f(qxil) (3.21)
ký c 2k+ 1-k

exists almost surely or wpl. In case 1Xkl is Gaussian with covari-

ance sequence Rk,

SIRk1 <o is sufficient for ergodicity.
k co

3.3 IDENTIFICATION OF SOURCES OF UNCERTAINTIES IN THE
ANALYTICAL MODELS OF LFSS

The advent of LFSS has created the need for vibration

and shape control of structural deformations within close toler-
ances. For instance, the satisfactory operation of a 100m antenna
can impose constraints on surface distortions down to a few milli-
meters. Stringent operational requirements such as these further

complicate the difficult modeling problem. Moreover, a particularly
important factor emphasizing the necessity for advanced analysis
methods is that the size of the abovementioned LFSS will make ground

testing prohibitive [3.111. The effective control of deformations
within very small tolerances underlines the careful consideration of

random loads such as pretensioning, orbital positioning thrusts,
gravity gradients, atmospheric drag, and thermal forces, among
others. Furthermore, the effect of uncertainties, that exist within

the best analytical model of a LFSS, on the accurate response

prediction or the control performance could be tremendous

The very high stabilization bandwidth requirements of precision

pointing and shape control systems coupled with the higher degree of
flexibility of the emerging LFSS, has driven the minimum frequency
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of the elastic modes of the structures well into the control

bandwidth. Under such conditions, the control sytem design engineer

has to recognize and compensate for multiple-elastic-mode behavior,

as well as stochastic vibrations that could play a prominant role in

the stability of The system.

3.3.1 Uncertainties in LFSS Contributing to Frequency and

Modal Element Variations

There is little fundamental published research

literature on uncertainties in frequencies and, particularly in

modal elements of LFSS. This, notwithstanding the fact that

researchers realize the large degree of uncertainty, specially in

the higher frequencies and their corresponding modes. Modern

computer-based methods, like the finite element modeling technique,

render it possible to make highly precise calculations of the mass

and stiffness properties of very complex structures. However, this

requires large financial and manual resources. Moreover, the higher

frequencies and their corresponding modes are still highly uncer-

tain. Furthermore theoretical procedures (comparable to those used

for frequencies and modes) relative to modeling of damping is almost

non-existent. Generating numerical values for damping ratios in

structures is based on "intelligent guesswork," as a rule.

Major efforts have been made in the field of risk analysis for

various structures for the purpose of evaluating safety and stabil-

ity margins. Especially important is the analytical work peformed

for offshore platforms, which are being utilized for oil extraction

from fields of deposits along the outer continental shelf [3.12].

One very important consideration in determining the degree of uncer-

tainty in the analytical models of LFSS is its direct relationship

to the accuracy requirements, which in turn, is a function of the

performance constraints. The abovementioned uncertainties may be

due to randomness in the structural characteristics or to approxima-

tions and idealizations or both. In any event, the modal
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characteristics may be treated in a probabilistic sense for

performance or response prediction purposes. Furthermore, the

randomness in complex structures may be attributed to many indepen-

dent random variables. When their respective variables are small in

magnitude relative to their mean values, perturbation theory is

usually used for analysis [3.13 - 3.16]. The modal parameters may

be treated as random variables which are linear combinations of

those associated with specific structural properties. The validity

of a linear model is dependent upon the magnitude of the deviation

with respect to the mean of the random variables. In general, as

the magnitudes of the deviations get large, non-linear effects start

to cause problems and linearity is not valid any longer.

In structural analysis the solution of an eigen value problem is an

essential step for the overall structural control. For instance, in

calculating static linearly elastic buckling loads and undamped

natural frequencies of vibration, the normal approach consists of

solving the following:

Kq = XMq (3.22)

where K and M are n x n square symmetric matrices and their elements

are in general functions of random variables. Hence, the eigen-

values %l', 24' ., n and the elements of the corresponding eigen-

vectors ql, •2' "42 ' qn are also random variables 1141.

The nonlinear least-squares technique is used in estimating the

parameters in a mathematical model of a structure by utilizing modal

test data [3.171. The first step consists of linearizing the equa-

tions from which analytical modal data are calculated and curve

fitted to the test data. This results in revised estimates for the

underlying mass and stiffness parameters. The latter revised esti-

mates are then used to recalculate the modal data. This recuision

continues until convergence occurs, or the correlation between
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analytical and test results is acceptable [3.18]. However, even

when simple structures such as cantilevered beams are concerned,

there are discrepancies between test results and analytical calcu-

lations of the frequencies and the modal parameters, specially for

higher modes and frequencies. Furthermore, the case of LFSS is even

more difficult to handle due to the mere fact that only minimal and

partial testing is possible. Thus, comparisons of test data with

analytical calcualtions is virtually impossible and essentially, the

model verification and validation task has no practical meaning.

In the process of space discretization for a finite dimensional

model of LFSS, the eigenvalue problem can be written with respect to

the order of the system as follows:

K(n)qi(n) = i M(n)qi(n) i = 1, 2, ... , n (3.23)

The superscript (n) indicates the n-degrees-of-freedom (DOF)

model. Now, when a model of the same LFSS is considered with

(n + 1) DOF, then

K(n + 1) qi(n + 1) = >. (n + 1) M(n + 1)qi(n + l)ki

i = 1, ... , n + 1 (3.24)

It can be shown [3.19] that the eigenvalues kl (n) k2(n) ,(n)
12 ' "2' n

are only approximations to the lowest eigenvalues X, k2' ... kn of

the actual structure. Also, the computed eigenvalues approach the

real eigenvalues of the LFSS from above as n tends to infinity.

Thus the cruder the approximation the more the uncertainty in the

values of the parameters. The higher the order n, the more accurate

are the lower values of the parameters. However, in LFSS the lower

eigenvalues are so closely spaced that even a slight degree of

uncertainty could be very critical under high performance

requirements.
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3.3.2 Uncertainties in Damping Ratios of LFSS

The integration of control and structures technologies

is presently a key issue in the analysis, synthesis, and

instrumentation of future spacecraft. A very important factor in

structural control is energy dissipation through damping. However,

the latter parameter is very poorly understood and in practical

applications it is modeled on the basis of "engineering" experience

and "good" judgment. It has been established that damping is essen-

tial for a structural system to be stable and that the response near

resonance peaks increases without bound in the absence of damping

[3.20]. Moreover, various approaches exist that are directed

towards augmenting natural damping by artificial means: passively,

through the addition of special materials on the surface of a

structure or actively, by means of feedback [3.21 - 3.231.

If one is to evaluate design stresses and responses, the uncertain-

ties in damping coefficients would be exactly equal to the uncer-

tainties in such stresses and responses. Thus, what is really

missing is the basic conceptual understanding of damping and the

numerical values of the relevant coefficients, for which only

empirical rules exist. There are various models of damping ranging

from the very simple viscous model to the more sophisticated

hysteretic damping concept, and even to multiparameter approaches

[3.24]. One underlying difficulty is the fact that if the damping

properties of each indiviidual component in LFSS are known apriori,

this by no means implies that, by any discretization technique, the

complete damping matrix for the structure may be constructed.

Moreover, nonproportional damping, i.e., damping that does not

exhibit proportional increase in magnitude as the frequencies

increase, results in coupled dynamics and nondiagonal damping

matrices [3.25].

The overall damping problem in structures can be summarized as the

exchange between the kinetic and potential energies within the
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structure. During this interaction damping causes the removal of

energy from the vibrating structure by radiation and dissipation.

The radiated part is associated with the aerodynamic damping and the

dissipated portion with structural damping. Most often, however,

these two entities cannot be separated. The main part of damping

that concerns LFSS is the structural damping, since these structures

will be deployed in the absence of air, in space.

3.3.2.1 Viscous Damping Model

In the viscous damping model the damping force Fd is

porportional to the velocity of motion, y. Thus

Fd = -cy (3.25)

where c is the viscous damping factor. The energy dissipated during

a single cycle of a harmonic motion with frequency w is given by:

D = 7rca 2  (3.26)

where a is the amplitude of motion.

The common approach is to express the damping factor as a fraction

of the critical damping, which is the damping for which motion is

just not harmonic any longer. The critical value is:

Ccr = 2 mwn (3.27)

where m and wn are the mass and the natural frequency of the mass-

spring system. The viscous damping ratio is then,

P = C/Ccr (3.28)

One important advantage of the viscous damping model is its applica-

bility in both transient and steady-state response analysis [3.24].
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Moreover, when a structure is built from basic elements with known

damping characteristics a proper damping matrix can be determined

which leads to the general linear equation of motion as followat

My + Cy + Ky = bU(t) (3.29)

where y is the vector representing displacements at discrete points

of the structure, M is the mass matrix, the damping matrix is C,

whose elements are derived by various experimental or ad-hoc

methods, and K, the stiffness matrix, is a function of material

characteristics.

3.3.2.2 Hysteretic Damping Model

There are many situations in various structures when,

unlike the case of viscous damping, the loss factor, i.e., the ratio

between the frequency of vibration and the natural frequency multi-

plied by twice the viscous damping ratio P, is independent of the

frequency, at least in some frequency ranges. Hysteretic damping is

meant to include such situations. In the hysteretic damping model

the damping force Fd is proportional to the displacement y and is 90

degrees out of phase with it.

Fd = -jhy (3.30)

where j = 'J- and h is the hysteretic damping factor. The maximum

potential energy stored is V = l/2Ka 2 and the loss factor now

becomes

h
ri h (3.31)

where k is the spring stiffness, and a is the amplitude of motion.

Material hysteresis due to plasticity and other nonlinear effects

are not included herein. It has been shown that hysteretic damping
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models can be used only for a steady-state response analysis but not

for transient response [3.26).

Once more, when a structure is built with elements of known damping

characteristics the equations of motion of the system become:

My + (K + iH)y = bU(t) (3.32)

Here, H is the damping matrix.

3.3.2.3 More Advanced Damping Models

To describe damping characteristics with the hysteretic

damping model the stiffness matrix and the damping factor need only

be known, while with the viscous damping model in addition to these

the resonance frequency is also required. To exteni the results

obtained by viscous and hysteretic damping, researchers have devel-

oped three parameter models (the so called Kelvin-Voigt model

[3.24]) whereby not only the instantaneous applied force but also

the pass loading is considered.

Fd = t41 (t,r) y(T) dT (3.33)

where Y is a memory function. This model is sometimes considered as

a viscous damping model with frequency dependent damping and stiff-

ness parameter [3.27].

In the modal coordinate formulation of the analytical models the

equation of motion is given by:

M q + ["2]q = F(t) (3.34)

where Mi i Fi = bU(t) are the ith elements and 6 is the

modal matrix. The corresponding damping matrix elements will be
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Cii= 6TC(j and Hij = tsjH
Hi

which are nondiagonal, in general, as a sign of coupling between

modes. The coupling is minimal under certain conditions related to

damping ratios [3.281.

3.3.2.4 Uncertainty in Damping

Throughout the extensive literature of active control of

LFSS, the role of structural damping is often omitted or relegated

to the inclusion of small first derivative terms in the equations of

motion. However, it is well established that satisfactory perfor-

mance and even stability of the system rely essentially on the

presence of such damping. For LFSS will not be surrounded by air

and thus lack a very important "sink" for energy dissipation. Their

lowest natural frequencies may be up to 1000 times less than those

for typical aircraft vibrations. In the case of plate- or shell-

like structures their spectra will have a very rich spectrum of

modes [3.291. These and other considerations raise the need for

better damping prediction and modeling, and more accurate informa-

tion about damping.

One of the most important and basic relations in dynamic modeling of

structures is that the measured modes satisfy the theoretical

requirement of weighted orthogonality with respect to the mass and

the stiffness matrices. Satisfaction of such a requirement implies

no or proportional damping (C = aM + bK) and a symmetrical stiffness

matrix [3.30]. In the above situati--i the damped modes are

identical with the normal modes. For simple structures the measured

modes (complex modes) are very close to the normal modes. However,

for more complex structures, this is not the case. Complexity of

modes could be due to errors in measurements, identification, model-

ing, or merely as a result of nonproportional damping 13.311. For

structures with nonproportional damping it is extremely difficult to

measure normal modes. Moreover, for LFSS where only parts of the
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whole system are amenable to some sort of testing it is virtually

impossible to have any reasonable certainty of modal or damping

parameters.

The analytical modeling under very limited testing for validation

and verification creates an environment of high uncertainty. In

order to achieve stability and control and appropriate compensation

for multiple-elastic-mode behavior in LFSS a large order finite

element model is usually used. However, due to the stringent limi-

tations on the number and location of implementable controllers and

sensors, as well as the limited on-board computational capability, a

lumped parameter (usually linear) controller design is possible for

only very low order models. Hence, reduced order models are neces-

sary for the purpose of control system design, resulting in control

and observation "spillover", that involve the residual vibration

modes ignored in the reduced order model, or not represented accur-

ately due to the high degree of uncertainty in the modeling problem

[3.21, 3.32].

Vibrations involving single fixed frequency excitations with low

stresses and relatively low performance requirements are virtually

nonexistant in modern aerospace systems. On the contrary, excita-

tions are invariably broadband random or arise from harmonic loads

that change in frequency. Thus, stresses are high, resonance is

almost unavoidable, and performance requirements are extremely

exacting. Under such circumstances damping plays a very vital role,

whether it be active or passive [3.33].

It is common practice to introduce damping in the modal model of

space:raft, whereby each mode has its own viscous or hysteretic

damping value. Moreover, these modal damping values are normally
"estimated"' from previous experience on similar structures or are
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measured (when possible) a posteriori by means of ground vibration

testing. The common method of generating modal damping valves from

tests is through the loss factor given by

- V.
j 2 J,max (335)

J j,max

wherc ,j is the loss factor of the jth element of the structure and

Vji)a is its maximum potential energy in the ith mode [34]. It is
j, max

theoretically possible to utilize damping values from tests per-

formed on substructures in order to infer the damping charac-

teristics for the whole system. However, the complexities involved

in LFSS and the material, model and other uncertainties inherent to

such systems render such approaches very difficult and of limited

use [3.35].

3.3.2.5 Propagation of Statistics in Simple Linear Models

Consider a simple relationship between two vectors x and

y given by:

1x all a12 a1 3 ] Fyl
x2 a21 a 2 2 a27  Y2  (3.36)

13 a31 a 3 2 a33  Y3

or x = Ay

If the components of y are random, then xl, x 2 , and x 3 are also

random. In order to compute the variances of x1 , x 2 , and x3 it is

necessary to perform matrix manipulations with the matrix A and the

covariance matrix of the vector y. The covariance of y is given by:
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y j YIY2 "IY3yl
coy (y) - =2 ' (3.37)

y ()Y2Yl 2 Y2 yYy

Y3Y2 'Y3Y2 (JY3

The diagonal elements of the covariance of y,!:y, are the squares of

the standard deviations (the variances) of each of the components of

y. The off-diagonal elements of the covariance matrix show how two

elements of y are statistically correlated. Under the assumption of

statistical independence of the components of y, y becomes a diag-

onal matrix. However, statistical independence of the components of

y does not imply, in general, the statistical independence of the

elements of x.

As a function of A and !:y, the covariance matrix for the components

of x can be expressed as

X = A 1y AT (3. 38)

The covariance matrix of x, Lx' now has the variances of its

elements along the diagonal of -x and the covariances of its

elements of the diagonal of Zx"

This presentation is intended to clarify the linear relationship of

statistical interdependence of vectors in linear models of LFSS.

3.3.3 Uncertainties in LFSS Models as State and Control

Dependent Noise

Consider the modal dynamic model of LFSS in the state-

space representation

S= Ax + Bu (3.39)
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where

x = and A = B = b

y = cbq, w and ci, i = 1, 2, ... , n are the eigenvalues and their

corresponding normalized eigenvectors.

Also, [-2ýiwi] = [diac [-2ýiwi]] i = 1, 2, ... , n.

The above formulation permits the generalization and the concise

statement of the uncertainty in the model. Thus, as discussed in
the previous section the uncertainties in the frequencies and the

damping ratios create a state-dependent noise via the matrix A. The

control-dependent noise, on the other and, will be effected through

the modal parameters (. Hence, the overall problem of uncertainty

in linear dynamic models for LFSS results in control-dependent and

state-dependent noise.

Any additional errors caused by modeling uncertainties such as

modeling of nonlinearities with linear approximations, or biases,

could be incorporated within the model of Equation (3.39) as an

additive noise vector. The resulting stochastic system model can be

represented by:

x = Ax + Bu + • (3.40)

where & is the additive noise vector with known statistics.

The statistical information necessary to completely define all the

uncertainties presented in the past pages is not a trivial task, by
any means. If, as was conjectured earlier, the distributions of the

random variables involved are non-Gaussian, then all their

statistical moments will be required for complete information. All

156



the essential assumptions and constraints that are practically

meaningful should be utilized to accomplish this requirement for a

tractable solution of the stochastic optimal control problem for

LFSS.

Most modeling and control design approaches to LFSS thus far assume

the existence of a very large order design model that is based on

complete deterministic information on the values of all structural

parameters and geometry. These models are then reduced and

simplified using model order reduction techniques.

The next step consists of computing an "optimal" control design via

linear quadratic Gaussian (LQG) formulations. For stability and

robustness purposes, some nominal LQG-based design is developed by

some researchers in order to recover essential system characteris-

tics via lengthy and complex iterations. Alternately, a simple

control design that accounts for spillover and other errors and ano-

mali •s, is also derived that has inherently lower overall perfor-

mance than the previous approach [3.36].

The above approaches are not at fault in terms of their logical

procedures under fully deterministic conditions. Rather, the

uncertainties that contaminate the issue render the presumption of

completely accurate, deterministic models incorrect. Moreover,

there is normally very insufficient data relative to deviations of

parameters from their nominal values. Thus, to be realistic, one

has to design control systems based upon stochastic models which

incorporate the state-dependent, the control-dependent and additive

random uncertainties within the best deterministic analytical model.

A very essential and timely task will be a formal analysis of

existing analytical and test data of LFSS for generation of
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statistical information about their main parameters, namely the

frequencies, the damping ratios and the modal parameters.

Presently, there is quite a number of flexible spacecraft, both

military and civilian, that have available test and analytical data

regarding their static and dynamic behavior. It is, of course, a

difficult undertaking to accomplish such a goal. However, the
importance of statistical data on the uncertainties of LFSS models

with the information it can supply and the benefits it can produce

could be immeasurable. One of two approaches could be taken: 1)

either the statistics of the underlying elements (frequencies,

damping ratios, and modal parameters) could be derived; or 2) the

statistical measures and distributions of the uncertainties of these

could be generated under realistic assumptions and restrictions.

This is an essential effort that has to be studied fully. The

prospects for success should be evaluated and an appropriate plan of

action should be formulated.

3.4 PERFORMANCE INDEX

Typical performance criteria for classical control

systems encompass two basic response characteristics. Namely: a)

system response to a step or ramp input that is characterized by

rise time, settling time, peak overshoot, and steady-state accuracy,

b) frequency response of the system that is characterized by gain

and phase margins, peak amplitude, and bandwidth. Classical

techniques have definitely proven successful in many applications of

control systems with single-input single-output features, time

invariant, and (normally) zero initial conditions [3.371. However,

multiple-input multiple-output control systems with complex

characteristics cannot effectively be handled through classical

means and thus, state-space representations and modern control

techniques are necesary to accomplish required performance criteria.
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3.4.1 The Basis for a Performance Criterion

A differential equation of the general form

ýMt = f(x(t) , u(t) , •(t) t) (3.41)

where x(t) is an nth order state vector, u(t) is an mth order

control or input vector, E(t) is an nth order random vector with

known statistics, f is an nth order vector stochastic function with

some desirable properties and t is time, can represent a complex

dynamical system with its characteristic behavior embedded within

the equation, relative to time. This will represent the important

quantitative characteristics of the system under consideration.

However, as was mentioned in the previous sections, there are

approximations,. simplifying assumptions, and constraints inherent to

the system in Equation (3.41). The engineer or the scientist who

has the task of designing and analysis for the system, has to

carefully consider all these conditions. In order to evaluate the

performance of the system one can compare the actual states x(t)

(from measured data) with some desired state vector z(t).

Alternately, it is possible to evaluate system performance in an

absolute sense, with some given desired characteristics [3.381.

Quite often the rate of deviation is measured and averaged over the

time interval of concern. Thus the performance index may be given

by an integral of the following form:

j= fT Q(x - z) dt (3.42)

where Q is a scalar function of the vector (x - z). The most common

performance measure of this type is given by
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n
Jd L (xi - zi)2 (3.43)

i=1

which is based on mean square deviation and is for sampled data

systems. While for continuous time systems the time average is

utilized.

j f T - z, x - z) dt (3.44)

where (.,.) is an appropriate inner product. These criteria can be

a representation of power loss or energy dissipation. Other meas-

ures could also serve as a means of evaluating performance of a

system. For instance, if one wishes to devote the least amount of

time for the performance to reach a desired state, then a time opti-

mal problem will be defined whereby the average time is minimized.

3.4.2 Vari3us Forms of Performance Criteria

The most general performance functional for problem

(3.41) can be expressed as:

J = h(x(T), T) + f T g(x(t), u(t), t) dt (3.45)

where h and g are functions of appropriate properties. However,

typical control problems are based on simplified functions replacing

h and g, usually quadratic, to provide physical motivation for the

selection of a performance criterion. For the discrete time situ-

ation the functional takes the following form:

N-1

Jd = h(x(N), N) + : gi (x(i), u(i), i) (3.46)
i=O
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The optimal control problem is now to find the sequence of control

inputs u(i) such that Jd is minimized.

In the case of stochastic systems the states and parameters are sto-

chastic processes or random variables and thus the statistical

expectation of J and -7d will be the appropriate cost functionals and

the optimal controller will only minimize the performance index on

an average basis.

3.4.2.1 Minimum Time Problems

The problem of transferring a system from an arbitrary

initial state, known or random, x(O) = xo to a predetermined target

set S in the least amount of time is referred to as the time optimal

problem. The performance measure is thus

J =T- 0

(3.47)
= �fT dt

0

where T stands for the instant when x(t) and the target set S

intersect.

3.4.2.2 Terminal Control Problems

There are cases when the final state of a system is

required to have a certain value r(T). An appropriate cost func-

tional will then be

n
J (xi(T) - ri(T)] 2  (3.48)

i=l

This performance index penalizes both positive and negative devi-

ations from the desired value. In matrix notation this can be

represented by:
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J x(T) - r(T) 1H1 (3.49)

where IHI'I is an appropriate norm and where H is a weighting matrix

of appropriate dimension. H is at the disgression of the designer

and there does not seem to exist any rigorous means of choosing its

elements. H is invariably chosen to be positive definite and often

diagonal. The relative importance of the various states will be

reflected in the magnitudes of the elements of the H matrix. Thus,

if H is chosen to be the identity matrix then the implication

follows that all states are equally important.

3.4.2.3 Minimum Control Effort

The general problem of being able to transfer a system

from an arbitrary initial state x(0) = x0 to a specified target set

S, under the constraint of the least amount of control effort is

termed minimum control effort problem. The particular application

at hand will determine the clear implication of the minimum control

effort. Hence, there could be various forms of the performance

measure depending on the requiremnts and constraints. One general

form of cop't functional for such a case is

j= fT II u(t) H1 2 dt (3.50)
0 R

where, as previously, R is a weighting matrix to be chosen by the

designer and that has to have appropriate dimensions and character-

istics that reflect the desired performance requirements. In the

discrete-time case, the integration is replaced by summation. When

the problem is placed in a stochastic setting then the expectation

operator acts on the integral or the summation for minimization on

an average basis.

3.4.2.4 Tracking and Regulator Problems

Most often, the need arises for maintaining a system

state x(t) as close as possible to a predetermined state r(t) on
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[o, T]. In such situations, a quadratic performance index with an

appropriate positive semi-definite weighting matrix Q, ensures the

minimal deviation from a desired trajectoroy. Of course, once again

for the most general linear case, the most common performance meas-

ure will be a quadratic cost functional given by:

j f T II x(t) - r(t) ll (t) dt (3.51)

and in discrete-time situations we will have a summation of the

form:

n-i1

Jd 1 (xi(i) - ri(i)) 2  (3.52)
i-i

When stochastic systems are involved, then

J = E [fT HI X(t) - r(t) 1 (t)dt] (3.53)

or

Jd = E (xi(i) - ri(i))2 (3.54)

We should note here that a regulator problem is a special case of a

tracking problem which results if the value of the desired state is

the zero vector for all t in to, T1.

3.4.3 Selection of a Performance Measure

The underlying purpose in selecting a performance cri-

terion is to attempt to define a mathematical expression which when

minimized ensures desired system performance according to require-

ments and constraints. Thus, choosing a cost functional is a trans-

lation of a given system's physical requirements, based on some
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constraints and assumptions, into analytical terminology. The more

general performance indices normally chosen in LQG problems consist

of

J = E [xT(T) Q(T) x(T) + 0OT [xT(t) Q(T) x(T)

(3.55)
+ uT(t) R(t) u(t)] dt]

for the continuous time case. And for the discrete time situation

the form becomes:

N-1
J = E [xT(N) Q(N) x(N) + Z [xT (i) Q(i) x(i)

1=1

(3.56)
+ uT(i) R(i) u(i)]}

where E P) stands for the statistical expectation operator, Q is a

real positive semidefinite, symmetric matrix, and R(t) is a real

positive definite symmetric matrix, all of appropriate dimensions.

Both Q and R are at the disgression of the design engineer to be

selected with good judgment in order to weigh the appropriate state

and control components in a physically meaningful manner. The

normal procedure is to iterate through several choices of Q and R

and evaluate the results according to performance requirements and

realistic system behavior constraints. There are some ad-hoc rules

suggested by various authors in selecting the "best" performance

index [3.391. Moreover, practical situations render more physical

insight to the selection process [3.40].

In the control of LFSS, the development that will follow consists of

the linear space representation of the dynamic system. A gener-

alized linear stochastic model will be assumed in which multiplica-

tive and additive noise contaminate the system dynamics. Then the
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statistics of all the random processes (assumed known apriori) will

be utilized for the development of the optimal stochastic control

input.

Moreover the expected value of a quadratic performance index of the

type shown in Equation (3.56) will be used for minimization purposes

that will result in an optimal sequence of control inputs.

3.4.3.1 Various Possible Choices of Performance Index for LFSS
Problems

Depending upon the particular control problem at hand,

there are many possible choices of performance functionals for

LFSS. Rigid body rotations and translations would normally be unde-

sirable and thus penalized in the cost function. Moreover, the

control effort should be bounded in order to conserve fuel and not

to create any excessive deflections that can cause resonances or

disturbances. Another important factor of motion that is also con-

sidered unwanted is vibration or displacement of the various parts

of the LFSS. Thus, vibration and shape control is one of the key

issues in LFSS control. Therefore, when dealing with LFSS control

problems (as in other cases) it is essential to analyze the problem

thoroughly and determine which of the above, namely, rigid body

motion, vibration, and shape, should be minimized or controlled and

accordingly include an appropriate penalty function within the per-

formance index. Normally, total strain energy, total kinetic

energy, and total displacement at discrete points on the LFSS are

considered viable elements of performance functionals. Thus,

lim E 1 f T
TýCr T fT [xT(t) Q(t) x(t)

(3.57)

+ uT(t) R(t) u(t)] dt}

i_ the general form of the performance index in steady-state situ-

ations, and averaged overtime. In the above equation xTQx could
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consist of total energy, plus total displacement energy [3.41]. The

case of displacements at discrete points on the structure could be

represented by a summation of the squares of the displacments at the

chosen discrete locations.

3.4.3.2 The Discounted Cost Problem (3.421

The space where the optimal control for the infinite

horizon problem is well defined and trackable can be extended into a

larger space by weighting the cost functional with a discount factor

k where 0 < a < 1 [3.43]. Such discount factors are used exten-

sively in economics in order to emphasize the short-term worth of

utility functions as compared to long-term worth [3.441.

In applied dynamic systems control the discount factor has been used

for infinite-time control problems [3.45]. In the infinite horizon

problems of discrete-time systems, since the cost is infinite, it is

usually normalized by the planning horizons N (just like in the con-

tinuous time case it is normalized by the magnitude of time interval

T). Thus, discounted cost functions for discrete-time systems is

expressed by:

Jav limýE { N [xTIZ (k) Q(k) x(k)

k=1

(3.58)

+ uT(k) R(k) u(k)]I

It can be shown that Jav can be closely approximated by

Jd E {, F k [xT(k) Q(k) x(k)
k=0

(3.59)

+ uT(k) R(k) u(k)]}
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where 0 < a < 1 [3.42]. The use of the discount factor guarantees

the finiteness of the performance index for any stabilizing con-

troller. Furthermore, in the above situation the initial perfor-

mance is emphasized, and if detectability and stabilizability condi-

tions [3.421 are not met, the oroblem might have a nonunique solu-

tion. In all the above, Q and K are assumed to be positive definite

symmetric matrices with appropriate dimensions. Also, note that the

case of a = 1 is simply the undiscounted cost problem. Moreover,

the normal approach to the solution of the discrete-time optimal

control problem is by dynamic programming.

3.5 CONCLUSIONS

Generalized linear stochastic modal models of LFSS with

state- and control-dependent and purely additive noise are realistic

representations of real structures. The main reasons for uncertain-

ties due to modeling techniques and approximations, as well as to

high performance requirements are discussed and related to basic

characteristics of geometry, material properties, inaccurate data,

tolerances and various other things. The performance functions

appropriate for LFSS control are highlighted and the best possible

cost index is suggested and justified.
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CHAPTER 4.

DERIVATION OF CONTROL ALGORITHM AND STABILITY

CHARACTERISTICS
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SECTION 4.1

INTRODUCTION

Desired dynamic behavior of a control system is contin-

gent upon (1) accurate configuration and modeling, (2) adequate

representation of damping effects, nonlinearities, and random

effects, (3) advanced algorithms, (4) hardware/software implementa-

tion and approaches, and many other factors. Control of large

flexible space structures (LFSS) requires a multi-input, multi-

output distributed approach. Complicating the design and analysis

of LFSS are many features that are characteristic of such

systems. Some of these features are: (1) LFSS cannot be treated

as rigid bodies. (2) In addition to pointing and shape control,

LFSS require several orders of magnitude of vibration suppression

(beyond what can be achieved by natural damping or by using

viscoelastic materials). (3) LFSS have extensive structural/

control, interaction since controller bandwidth and structural

modes often coincide. (4) There are appreciable uncertainties in

LFSS modeling, controller actuation and location, sensor outputs

and location, geometry, damping and other parameters, among others
[4.1].

An accurate representation of LFSS by linear dynamic

models requires large order systems of equations. The closed-loop

gains of a low, or reduced order model plays a very important role

in the control of LFSS. For, a high gain system means a large

control bandwidth requirement. And a large bandwidth implies that

more flexible modes should be considered. On the other hand, the

controller bandwidth is determined by establishing the desired

performance and the expected or existing disturbances. Thus, a

dilemma exists in modeling and control design of LFSS, that is

solved by compromising. First the expected disturbances are
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determined and then the control bandwidth that can adequately

reduce such disturbances is identified appropriately [4.2]. Once

the model has been established, there remains to consider the

available measurements.

In this part of the report, our assumption will be that all the

states are available through perfect measurements. The main objec-

tive will be to find an optimal feedback control law that uses all

states for feedback. The system being stochastic, as considered

earlier, a stochastic optimal control law will be developed under

multiplicative and additive noise. The frequencies, damping ratios

and the modal parameters of the LFSS modal model are considered

random in nature, thus creating a linear system with multiplicative

and additive noise.

The stochastic optimal control problem of linear multidimensional

systems with purely random parameters will be formulated and solved

herein. Both the discrete time and the continuous time cases will

be treated. Dynamic programming will be utilized for the discrete

case and the Hamiltonian approach will be taken for the continuous

time case. Stability in a stochastic setting will be defined and

appropriately discussed. Mean- and mean-square stability condi-

tions will be determined for the infinite horizon situation.
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SECTION 4.2

OPTIMAL LINEAR FEEDBACK CONTROL

UNDER FULL STATE INFORMATION

For stochastic optimal control problems it is vital to

furnish the necessary information for control. Hence, presently we

will assume that the states of the sytem, denoted by x(t) are

available at every instant from exact measurements. We will also

assume that the admissible controls are real-valued and of state-

feedback type: u(k) = f(x(k), k) for the discrete-time case, and

u(t) = g(x(t), t) for the continuous time situation.

4.2.1 PROBLEM STATEMENT AND SOLUTION: THE DISCRETE-TIME CASE

Consider a dynamical sytem represented by the following

linear discrete-time vector difference equation:

[x 1 (k + 1) A(k) 0n1xn2

x(k + 1) L I x(k)

x 2 (k + 1) On2xn(4

+ u(k) +
-F(k) 0o(k)

for k = 0, 1, ... , N.

For brevity, we can write Equation (4.2.1) as:

x(k + 1) = 1(k) x(k) + y(k)u(k) + ý(k) (4.2.2)
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where:

1. x is an n-dimensional state vector composed of

xl(k + 1), an nl-dimensional vector and x2 (k + 1),
and n 2-dimensional random vector.

2. u(k) is the m-dimensional control vector.

3. 6(k) and F(k) are n 2 x n 2 - and n 2 x m-dimensional

matrices of randomly varying parameters, which are

assumed to be Gaussian and white (uncorrelated in

time), with known means of:

E[6(k)I = 6(k) and E[[f(k)] = F(k) (4.2.3)
and covariances of:

E[(6(k) - 0(k)) (6(j) - O(j))T] = Ž6 6 (k)bkj (4.2.4)

E[I(F(k) - -(k)) (V(j) - r(j))T] = ZF (k) 6kj(

and cross covariance matrix given by:

E[(U (k) - 6(k)) (r(j) - F(j)) T = Zor(k)bkj (4.2.6)

4. A(k) and B(k) are nlxnI and n, x m-dimensional

deterministic matrices, respectively.

5. ýo(k) is an n 2-dimensional zero mean white Gaussian

noise vector which is assumed to be independent of

all the other random variables of the control system

and
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E[ (ýo(k) ýT(j) = k (4.2.7)

6. onlxn2 is the nlxn 2 null matrix.

A(k) 0n1xn 2

7. 4,(k) = and .(k)[n 2 xnl  6(k) j(k)

8. x(o) is deterministic (for convenience).

We note that 6 kj is the Kronecker delta operator.

The scalar index of performance for the above control system is

defined by the following quadratic cost functional:

JMu = E[L T x()+1 N-1 T ()~~~)+u

xu) xT(N)F x(N) + 2 (xT(k)Q(k)x(k) + uT(k) R(k)u(k)

(4.2.8)

where F and Q are positive semi-definite and R positive definite

matrices of appropriate dimensions.

The stochastic optimal control problem now is to determine a control

sequence 1u 1 }k-I such that the functional J(u) in Equation (4.2.8)

is minimized.

Under the circumstance of a general linear stochstic system of the

form of Equation (4.2.1) where ý(k) is a vector of correlated noise,

it is possible [4.3] to model the additive colored noise by a system

of first order difference equations driven by Gaussian white

noise. Thus, if

ý(k +1) = e(k) (k) + ýo(k) (4.2.9)
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then Equation (4.2.1) augmented with Equation (4.2.9) would take the

shape given in Equation (4.2.2). Hence, one reason for the particu-

lar diagonal matrix type form that appears in Equation (4.2.2) is

due to the abovementioned generalizations. See Figure 4.1 for block

diagram of the system.

4.2.1.1 Optimal Control of Linear Stochastic Discrete-time

Systems

We make the assumption that all the state variables can

be measured exactly. That is, the information set consists of the

following:

I(k) = lx(0), x(l), ... , x(k), u(0), u(1), ... , u(k - i)ý (4.2.10)

Theorem 4.1:

The optimal control for the system given by Equation (4.2.2)

minimizing J(u) in Equation (4.2.8) is [4.4].

* * x*
u (k) =-G (k)x (k) (4.2.11)

where

G (k) = R(k) + E [(kj T K(k + 1) B[(k)]

E K(k + 1)
-r(k) 0 E)(k)

and where K(k) is given by the following Riccati-like matrix

difference equation:
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Figure 4.1. Optimal Controller for System Equation (4.2.1)
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K(k) = Q(k) + E eWk)i K(k + 1) [A 0- E A (k) J

B (k) B(k (k) Tk)(k

K(k + 1) R(k) + E K(k + [)
F~k t(k) (k)J

[B(k)1 T rA(k)0
E K(k + 1) (4.2.13)

I~k I- 1(k)]

with

K(N) = F (4.2.14)

For a proof, see Appendix 4.1. The optimal state trajectory can now

be derived from the solution of the following difference equation:

x(k + 1) = (cZ(k) - p(k) G (k)) x(k); x(o) = x (4.2.15)

Clearly, the optimal control vector given by equation (4.2.11) is a

random vector since x(k) is itself a random variable. Due to the

uncertainties within the system and the control, we note that the

state and the control vectors are both weighted by the covariances

and the means of the random parameters and that the Riccati-like

Equation (4.2.13) cannot be reduced to coupled linear equations.

The extremal control of a stochastic multivariable discrete time

dynamical system is not necessarily the unique optimal control, we

must establish that the second order partial derivative of the

Hamiltonian function of our problem with respect to u is positive

definite [4.5]. The Hamiltonian function is given by:
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N-i

Hd = 1 T(k) K(k)x(k) + I Tr (K(i + 1) + PT(D(k)x(k)
i=k

(4.2.16)

+ y(k)u(k) + ý(k))

20) Hd
Hence, u2 is given by:

2Hd

= R(k) + E[y(k)TK(k + l)y(k)] >0 (4.2.17)

The solution K(k) to the Riccati-like Equation (4.2.13) is non-

negative definite and unique for N < . For a proof see Reference

[4.6].

In what follows we will need to establish certain rules regarding

the expected value of products of matrices that apear in Equations

(4.2.12) and (4.2.13). Hence, for the proof of Theorem 4.1, we note

the following facts.

In [4.7] p. 262, it is established for a random vector x with mean m

and covariance R, that

E[xTsx] = mT Sm + tr SR (4.2.18)

where S is a deterministic matrix and tr represents the trace

operator.

In the sequel, we will frequently have to calculate quanitities of

the following form:

E [ABATi (4.2.19)

where A and B are random matrices with stochastic Gaussian elements.
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To this end, we propose the following lemma:

Lemma 4.1
Let A and B be stochastic matrices with random Gaussian white ele-
ments and given statistics of:

E[A] = A, E[B] =

(4.2.20)

E[ (A-A) (A-A)T I AAI , El (B-B) (B-B)T I = EBB (4.2.21)

El(A-A)(B-B)T] = IAB (4.2.22)

Then,

E[ABA T] = ABT = Tr(MAAB) (4.2.23)

where Tr represents the matrix trace operator to be defined in

Appendix 4.1 and AT is the transpose of A. For a proof of Lemma
4.1, see Appendix 4.1.

4.2.1.2 Asymptotic Behavior of the Solution of the Riccati-like

Equation
The existence of an optimal control law is closely

related to the behavior of the Riccati-like difference Equation
(4.2.13) associated with the problem at hand. Hence, the latter

equation is studied carefully.

Throughout this section it will be assumed that the stochastic
linear system given in Equation (4.2.2) has wider sense stationary
statistics and the state and control weighting matrices Q(k) and
R(k) are constant. Then, the Riccati-like difference Equation

(4.2.13) will take the following form:
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K (k) Q + ýT K(k+l) (D + T r (2; 44K (k+l) [ýT K (k+l)

+ Tr (JVýK (k+l) (R + - T K (k + 1) + T r (2;"' ýj
Lý K (k+l) (4.2.24)

[ýT K (k+l) ý + Tr (f"K (k+1)

with

K (N) 0 (4.2.25)

Here, the ijth element of the covariance matrix Vb'ý is given by

ft"'i where (Di and 4)j are the ith and jth rows of-b respectively.

It is worth noting that Equation (4.2.24) does not always have a

steady-state solution "backward in time." Because, unlike the

constant parameter situation, here we have constant but unknown

parameters. The solution for the infinite-time of the scalar form

of Equation (4.2.24) has been treated previously [4.81.

Furthermore, unlike the Riccati equation, Equation (4.2.24) cannot

be related to a coupled set of linear equations. Hence, only under

some conditions the existence of a steady state solution could be

investigated. Reference [4.81, studied "The Uncertainty Threshold

Principle", the existence of a steady-state solution for the one-

dimensional scalar case of the abovementioned problem. In a similar

effort, we develop an argument to derive the existence of a solution

of Equation (4.2.24) under preassigned constraints.

It is not hard to show that there exist matrices Rl'r T2 and T3 such

that the following equality holds [4.9 4.111.

;ýT K(k+l) -ý + Tr (2:00K(k+l)) T1 ýTK(k+l) (-b T2 (4.2.26)
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Assuming the above is true, we can rewrite Equation (4.2.24) in the

following manner:

K(k) = Q + TI ;TK(k+l);5 T 2 - T2 T ITK(k+1); [R + T3 TK(k+I)•]-

" YTK(k+l) eDT 2  (4.2.27)

By adding and subtracting T 2 -TK(k+l)d T 2 to Equation (4.2.27), we

get

K(k) = Q + (T 1 - T 2T) (TK(k+l) 4 T2 + T 2 T •T IK(k+])

K(k+l) [ [R + T3 K(k+l) P]- 4TK(k+l)} I T2 (4.2.28)

Now, consider the quantity inside the curly brackets and define

M(k+l) = K(k+l) - K(k+l) ý[R + T 3 TTK(k+I) T]- 1 ýTK(k+l) (4.2.29)

In [4.121 it is given that for matrices A, B and C of appropriate

dimensions it is true that

(A + BCBT )- = A- 1 - A-1 B(C- 1 + BT A-IB)-I BT A-1

Hence, in Equation (4.2.29) M(k+l) can be rewritten as:

M(k+l) = [K-l(k+l) + - i' + T2 (ZPK(k+1)-1 --

It is now clear why M(k+l) need be positive-definite. Note, also,

that for IIK(k+l)ll very large, we can approximate Equation (4.2.28)

by

K(k) Q + (T 1 - T 2T) •T K(k+l) T2

which clearly is a Lyapunov-type equation and can be treated as

such.
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Matrices of the form of Equation (4.2.29) arise in the matrix

Riccati equation of standard linear quadratic Gaussian problems,

where the weighting matrices TI, T 2 , and T3 are not necessarily

unique (see [4.131).

If we assume that the systems of (Z, ý) and (4, Q2 ) are controllable

and observable respectively, then it is established [4.13], (4.81

that

M(k+l) = MT(k+l) -> 0 (is positive definite) (4.2.30)

and that there exists a bound L such that

L > M(k+l) for all k (4.2.31)

Hence, it follows that

T 2 T ;T M(k+l) $T T2 > 0 (4.2.32)

Thus,

K(k+l) > (T 1  - T 2 ) ýT K(k+l) ' + Q (4.2.33)

Obviously, if any eigen-value of (T 1 - T 2 ) DT is greater than unity

(i.e., if the spectral radius is greater than one) then K(k) grows

without bound "backward in time." In other words, lim K(k) does not

k-oc

exist. So, the optimal cost grows exponentially in a manner given

below:

J* (N)> D exp (ax i A N) (4.2.34)
i I

Where D is a constant matrix and m"x jli) denotes the magnitude of

the maximum eigenvalue of (T1 - T2 ) >T. In such a case, of course,

only short term controls can be implemented.
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From Equations (4.2.29) and (4.2.31) we have

K(k) < (T 1 - T 2 ) ;T K(k+l) .,T + Q + T2T IT L IT T2 (4.2.35)

Consequently, if lji <1 for all i, the right-hand-side of inequal-
ity (4.2.35) will be a constant bounded solution matrix and so will
K(k). Thus, the limiting solution lim K(k) is well defined. For

more details of the above argument, see [4.141, [4.15] where it is
required that 6 be nxn nonsingular.

For 2'4 = My =VDP = 0 the infinite time problem has a solution

independent of Xi [4.16]. While, when the above covariances get
larger no stability can be expected in K(k). Hence, if we define

Smax I (T1 - T2 )ij (4.2.36)

as the maximum value of the elements of the matrix (T1 - T2 ) then,

if

max I< the solution of the steady-state will exist and-L
will give the radius of a shrinking disc which will contain all

open-loop eigenvalues of $ that make the problem solvable.

4.2.1.3 Stabilizability of Linear Stochastic Discrete-Time

Systems

Digital control systems are very widely used nowadays
due to the prominent presence of the digital computer. Also digital
control systems under random sampling rates result in systems with

stochastic parameters. It is a well known fact [4.171 that the
infinite interval linear quadratic problem for a deterministic

system has a solution if the system is stabilizable. If the problem
is also observable then the solution is unique and the control
system is asymptotically stable. In this subsection the conditions
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on the statistical measures of a discrete-time linear stochastic

system for which the infinite interval problem has a solution will

be discussed. The development is based on Reference [4.18].

Consider the following discrete-time control system:

Xi+l= 20i xi + 1i ui + ýi (4.2.37)

where xi E Rn is the state, ui E Rm the control, 'i is an nxn and Fi

is an nxm system and control matrices respectively. Here f#i} and

{ i} are sequences of independent random matrices with constant

statistics. Also, at i = 0, xo is deterministic and ui is a

deterministic function of xj, j < i. Then, 4i and Pi are both

indppendent of xj for all j < i. Suppose the control law is of the

feedback type given as follows:

ui = -L xi (4.2.38)

where L is an mxn matrix. Also let

1Ki = bi - PiL (4.2.39)

Then the closed loop system can be written as:

Xi+l 1 •i xi + ýi (4.2.40)

Definitions: 1. Equation (4.2.40) is mean stable if E[xi] = xi -0,
and mean square stable if Efllxi1 21 _ 0 Vxo .

2. Equation (4.2.38) is mean stabilizable if an L can

be found such that Equation (4.2.40) is mean square

stable.

In the above E[.] is the statistical expectation oprator and I.H
is the usual Euclidean norm.
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Theorem 4.2

The system given by Equation (4.2.40) is mean stable if and only if

E[VPi = Yi is a stable matrix and it is mean square stable if and

only if E[YT X ,] is stable for every real symmetric nxn matrix X.

Moreover, mean square stability implies mean stability.

Theorem 4.3

Equation (4.2.38) is mean stabilizable if there is an L such that

EV'] is a stable matrix and mean square stabilizable if there is an

L such that E[VT Xz] is stable for every real symmetrix nxn

matrix X.

For the optimal control in a finite interval, consider the system of

Equation (4.2.38) with a performance functional given by the

following:

N- T T T
J E[ Z (xiQixi + uiRiui) + xN HxN] (4.2.41)i=o

where: Qi - nxn, Ri - mxm and, H - nxn are weighting matrices such

that Q and H are positive semidefinite and R is positive definite.

Theorem 4.4: for a feedback control of the form of Equation

(4.2.38). The optimal cost given by:

N-I i)T T

JN = xo E[ Z (Z (Q + L RL) + (N) H N] xo (4.3.42)
i=0

And the optimal control law is as given in Equations (4.2.11 - 4.2.13).

For the infinite interval case it can be shown [4.18] that if system

(4.2.37) is mean square stabilizable then the infinite interval

optimal control probelm has a solution. Moreover the mean square

stabilizability is also possible if the Riccati Equation (4.2.13)
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converges in the steady state, resulting in a solution. Thus, under

certain conditions [4.18], mean square stabilizability is necessary

and sufficient for the existence of the infinite interval optimal

control problem under full state information.

4.2.2 PROBLEM STATEMENT AND SOLUTION - THE

CONTINUOUS-TIME CASE

Optimal control of stochastic continuous systems have

been studied by several researchers [4.19 - 4.27]. In this section

the general form of the optimal control and the performance

functional are assumed known. Lyapunov functions are utilized to

guarantee optimal stabilization of the control system, in a

probabilistic sense. Thus, the states are assumed to be known at

every instant and the cost functional associated with the given

system is of the quadratic type.

4.2.2.1 Problem Statement in a General Setting

Consider a general system modeled by the following Ito

type stochastic differential equation:

dx(t) = f(x(t), t) dt + G(x(t), t) do(t) (4.2.43)

where x(t, ) Rn is the sate vector stochastic process, 0(t) is a

p-dimensional Wiener process, f(x(t), t) is an n-vector function

describing the system dynamics and G(x(t), t) is an n x s matrix

valued function, both continuous in t. AlTo

x(to) = xo

E [do(t) dfT(t)] = Q(t)dt

Here, Equation (4.2.43) is to be taken in the following sense:

-t
x(t) - x(tO) = f f(x(r), T) dT + f G(x(r, T) dO(r) (4.2.44)

to t
09 0
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where the first integral is an ordinary integral for a given sample

function of the process, while the second integral is an Ito

stochastic integral. The assumption that f and G are admissible

functions (according to some rule) yields solution processes of the

Ito type [4.28 - 4.29]. Both f and G are defined and assumed

measurable on [to, ,] x Rn and the following conditions are true:

For every t > to and, u, v Rn, there is a k>0 such that

1. Iif(u, t) - f(v, t) ii + G(u, t) - G(v, t)iI < k I u - vii

2. i lf(u, t)112 + 1 G(u, t)112 < k 2 (l + 1ul 12).

The first is a Lipschitz condition, while the second one restricts

the growth of f and G. It is also assumed that f(0, t) = 0 G (0, t)

= [0] for t > to. Under the above conditions [301 there exists an n
dimensional diffusion process x(t, x 0 ) that is the unique solution

of Equation (4.2.44).

The following stability conditions [25] will be used in the sequal

for the equilibrium solution x(t, xo) of Equation (4.2.44):

Def. 4.2.1: x(t, xo) is stoch-stically stable (ss) if V Z > 0

lim p( sup Ii x (t, xo) >E) = 0

x 0 -0 to < t <

Def. 4.2.2: x(t, xo) is stochastically asymptotically stable (sas)

if lim p ( lim x(t, xo) = 0) = 1
xo - 0 t-M

Def. 4.2.3: x(t, xo) is stochastically asymptotically stable in the

large (sasil) if p ( lim x(t, xo) = 0) = 1, for every xoERn.
t

An optimal controller will now make the above stochastic system

stable according to one or all of the above definintions and will
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minimize a certain performance functional to be defined later. To

this end rý-.sider a more general (than Equation 4.2.44) system given

by

dx(t) = A(x(t), t) dt + B(x(t), u(t), t) dt + C(x(t), t) dý(t)

+ D(u(t) , t) dy(t) + E(t) du(t)

(4.2.45)

where ý, Y and u are independent Wiener processes A, B, C, D, and E

are of appropriate dimensions and satisfy conditions 1 and 2

above. Moreover, at xo = 0 A(O, t) = B(0, 0, t) = C(O, t) = D(0, t)

= o for all t > to where u (xo, t) is an m-dimensional condition

input such that u(O, t) = 0 for all t> to,

Under complete controllability conditions the admissible set of

controllers will be those that guarantee. the continuity of B and D

and their first and second derivatives with respect to the

equilibrium solution x(t, xo). Define a performance functional that

is to be minimized by the optimal controller as follows:

J = lim oE [ tg(x(T, x, u(T) , T) dr (4.2.46)
t-•co2

where, as before E['] is the statistical expectation, g is a non-

negative continuous function of x(t, xO) and u(t), and t E [to, X].

The Jacobi-Bellman equation associated with Equation (4.2.45) for a

Liapunov function V(x(t), t) : Rn x R+ -- R+ is given by [30].

T -+ ( + V 1 _2V
LV = --t + (A + B) •-j + tr (CCT + DDT + EET)

M(x(t), t) + BT dV _ 1 DT d V. (4.2.47)3 tr (D
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Seeking the minimum for

n V n n T 2V
H = M(x(t), t) + Z Bi +• - E [DDT>. ji=l idx 2 i=l j=l 1dXi tX

+ g (x(t, xo), u(t), t) (4.2.48)

via dynamic programming, we have

oH n a B i dVn n ij_2

H I - + I n Z L [DD 2V
o--• i=] u axi 2i=l j=l Oxiaxj

ag(x(t, Xo), U(t), t)
+ du = 0 (4.2.49)

From Equation (4.2.49) the optimal control law is derived usually by

numerical means. Equation (4.2.46) can be expressed with respect to

the Liapunov function for the case of finite time interval as

follows:

tf

J - E [ ft f LV (x(t), t) dt] (4.2.50)

and

E [V(x(t), t)] = E [V(xo, to)] + E [ LV (X(To, T ) dT]

(4.2.51)

Since V is positive-definite and LV is negative definite the

integral in Equation (4.2.51) converges as t--o. The first term on

the right-hand side of Equation (4.2.51) is finite and V(x(t),t) is

a positive supermartingale, thus making J finite.

The following conclusion can be drawn from the above development:
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If

(i) LV (x(t), t) < 0 for l xi K>E, E > 0

(ii) LV (x(t), t) < 0 and V (x(t), t) < v(x)

where v(x) > 0 and H x(t)H < E, c > 0

(iii) V(x(t), t) is radially unbounded, (ii) is satisfied

for all x Rn and V (0, t) - 0 for all t > to

Then if (i) is satisfied the system in Equation (4.2.45) is ss, if

(ii) is satisfied it is sas and if (iii) is satisfied then it is

sasil.

To solve the above Jacobi-Bellman equation or for the minimizing

optimal control law some simplifying assumptions are necessary.

To this end let us consider a special case of Equations (4.2.45-46)

and

dx(t) = A (x(t), t) dt + P(x(t), t) u(t) dt
n

+ 7 Qi(t) x (t) d ti(t) (4.2.52)
i=l

m
+ 2; Ni(t) u(t) dyi(t) + E(t) u (t)

j=l1

with

J = E [ C Y (x(t) , xo, t) + uTRu) dt] (4.2.53)

Then LV is given by

JV 2TN

LV = N (x(t), t) + PT (x(t), t) u(t) -V +__ tr (uTNT J-• Nu)

+ 1 tr (xT(t) QT 2 Q x(t)) (4.2.54)
x

= LV + . (x(t), t) + uTRu

Fr..- he above we can obtain the optimal control law.
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4.2.2.2 Linear Stochastic Control Systems

Consider the case of regular stochastic linear quadratic

systems given in the following form.

m
dx(t) = A(t) x(t) dt + B(t) u(t) dt 2 Ci(t) x(t) d~i(t)

i=l

q
+ z Dj(t) u(t) d yj(t) + E(t) d V(t) (4.2.55)

j-l

with a cost functional given by:

J = E [ / (xT(t) Q(t) x(t) + uT(t) R(t) u(t)) dt] (4.2.56)

where ', Y, and u are independent Wiener processes with elements ýi

and Yj, and Q is a positive semidefinite and R a positive definite

symmetric matrices for all t respectively.

The Liapunov function for the above system is given by

V (x(t), t) = xT(t) F(t) x(t) + P(t) (4.2.57)

with F(t) > 0 and P(t) >_ 0 for all t > to. Application of the

Jacobi-Bellman equation with the Hamiltonian conditions yields the

following optimal control law:

q T -
u(t) Di-( Di K Di + R) BTKx (4.2.58)i=l

w i t !I

xT m T q T
SK 4 K + KA + C K Ci - KB ( f' D KD + R) B2K) x

i=l i j=l 3

+ tr (Lr5 &, = 0 (4.2.59)
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Since the above equation must be true for all x(t), then

T m T q T - T
K = -Q - ATK - KA - i K Ci + KB (2 DOj K Dj + R) BTK

i~l 1 1j=l

(4.2.60)

and

p= - tr (EETK) (4.2.61)

It can be shown [4.231 that if E(t) is a square integrable function

and if (4.2.60) has a solution then (4.2.58) is the optimal control

law for the system of (4.2.55) - (4.2.56).

4.2.2.3 Stabilizability of Stochastic Systems

In this subsection the probelm of stabilization of

stochastic linear continuous time systems with multiplicative and

additive noise will be studied. The control inputs that ensure

asymptotic stability of the equilibrium solu'tion x(t, xO) of

equation (4.2.45) minimizing the performance functional of Equation

(4.2.39) can be determined by using a modification of the Liapunov

stability theorem on asymptotic stability and certain considerations

of Bellman's dynamic programming method [4.261. The problem then

reduces to the determination of the appropriate Liapunov function

V(x, t) and the optimal control law. The first can be determined by

solving a partial differential equation with an additional

inequality constraint (which is quite a complex problem to solve).

Consider Equation (4.2.61). Under a fixed final time tf and with

p(tf) = 0 we have

pMtt f tr (EETK) dt (4.2. 62)
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If the t-lD P(t) exists and Equation 4.2.60 has a solution K(t),
then tr (K(t)) < a, for a > 0. Moreover,

- 00fl

P(t) < J tr (GGTD) dr < a J tr (GGT) dT
it0 t

Hence if G is a square integrable function matrix for t> to and the
above conditions hold then the optimal control law of Equation

(4.2.58) is stabilizing in the sense of stochastic asymptotic
stability in the large [4.25].

Consider a simplified form of Equation (4.2.60) given by:

m
K Q - ATK - KA - c cTKCi + KBR-lBTK (4.2.63)

The state equation corresponding to (4.2.63) is

dx(t) =m
dt = A(t) x(t) + B(t) u(t) + • Ci(t) x(t) 9i(t) (4.2.64)dt i=l

Since it is assumed that Dj = 0 for all j and E = 0. It can be
shown that the equation for the covariance of x(t) is given by:

m
P(t) =(t, to) Po tT(t' to) + to (tT) I ~ CT(T) P(T)C9(=1)

0 0jtl

•DT(t, T) d1 (4.2.65)
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Where (t, to) is the state transition matrix. Moreover, under the

assumption of uniform controllability of (A(t), B(t)), A(t)

- B(t)R-I (t) B(t) K(t) can be made stable [31] with the desired

degree of stability. Thus if there is a kl, k 2 such that x(t)Q(t)

x(t) > k, Ilx! 2 and

* m

m IIC 112 < k for kl, k2  > 0

Then

tojjpjj < 11.,1 2 tlpoll + m k2 tot 11111 11Il dT

Also, II (t, r) 112 < k 3 e 4 (tT) for some k 3 , k 4 > 0.

Hence
kttft ek4T

IIPII e k4 t k 3  1IPolI + t m k 2 k 3  e IIPII dT

and by Gronwall's inequality we have

IIPIl ek4t < k 3 1lPoll exp(-m k 2 k 3 t) (4.2.66)

which implies that as t- m, IIPII-0. The above result leads to the

stability of P(t), the state covariance matrix with the implication

that for every positive symmetric matrix Q(t), for all t > to. The

Equation (4.2.63) has a unique solution. Thus Equation (4.2.64) is

stochastically stable in the large and under time-invariant

situatiors, the stability is asymptotic [4.221.

Following Reference [4.31] we assume the following control law for

the system of Equation (4.2.55) with E = 0:

u(t) = -q(t) BT(t) S(t, t + At)-I x(t) (4.2.67)
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where q(t) > 1/2 is a scalar piecewise continuous time function and

S(t, t + At) is defined by:

S(t, t + At) = ft+Att e1(t- T) 4(t, T) B(r) BT (T) T(t, T-) dT

with a > 0. Let V = xTS(t, t + At)-Ix and

LV = -xT S(t, t + At)-I (S(t, t + At) - S(t, t + At) AT(t)

m
-A(t) S(t, t + At) + 2q(t) B(t) BT(t) - S(t, t + At) 2 cT(t)

i=l

* S(t, t + At)- 1 Ci(t) S(t, t + At)
q

-q 2 (t) B(t) q DT(t) S(t, t + At)-I

j=l

* Dj(t) BT(t)] S(t, t + At)-Ix

= XT W-1 [e- At ,(t, t + At) BBT 1T (t, t + At) + (2q(t) -1) BBT
mn q

CT S-cis 2 B 3D'3 S-DjBT] S- xi=l ij=l

If we assume that for positive constants C1 and C2 , 0 < C1 I <

S(t, t + At) < C2 I then

LV < - axT S- 1 x - tr (S- 1(2q - 1) BBT - S m CT S-1CiS
i=1

- q 2 B q Dj BTs xxT

j=1

Sm T -q2 -I q T S-1 TjB
I2lx1 2 + tr ( r Ci S 1 Ci + qS 1 B S-1 S xxT

i=C2 j--

<[ n 3  qa jjxH 12 + 1; H1C, 1H 2 -+ q2  I IBI12 lidj12]
i--C j=1
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Moreover, if

n2 q1n__ l Ci 2 n 3 2 JIB I12 2: JjDjjl

1 l ill 2l C

for all t > to, then

d t A(t) x(t) + B(t) u(t) + Z Ci(t) x(t) ýi(t) (4.2.68)
dt i=l1

q
+ D Oj(t) u(t) Tj(t)

j=l

is stochastically asymptotically stable in the large.

4.3 CONCLUSIONS

The optimal stochastic control law of linear dynamical

systems with multiplicative and additive noise reflects the influ-

ence of uncertainties on the dynamics of the control system via the
presence of the covariances of the random elements in the system

matrices. Thus, the Ricatti-like equations with constant but

unknown coefficients have unique solutions under restrictive condi-
tions. Moreover, under very high uncertainty no solution of the

optimal control problem can be established. This makes a great deal

of intuitive sense, since if a control system is highly unknown then
we cannot expect to be able to stabilize any perturbations.
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APPENDIX 4.1

For a complete proof of Theorem 4.1 we will establish

the validity of Lemma 4.]..

Before we begin the proof of Lemma 4.1 we will represent the matrix

A by the product of its columns. Thus, let AIA 2 . .. ,An be the

column vectors of AT. Then, we can express A in the following form:

A T
A1

A T
A - 2 and AT = (A1 A 2 ... An]

*T
An

Proof of Lemma 2.1

Let AT = [All A 2 ..**Aln], AT = [A21 A22TA ... AT

= [An, An2.-.Ann]

Now, let us define a matrix given by (B - E[B/A]) where E[B/A] is

the conditional probabilistic expectation of B conditioned on the

known values of the elements of A. It is easy to see that B -

E[B/AI is independent of A. Hence, by appropriate use of Equation

(4.2.18) we can start the proof of Lemma 4.1.
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E[ABATi = E[A(B - E[B/A] + E[B/A])AT]

= E(B - E[B/A]) EA A(B - E(13/A])AT + AE[B/A]AT/(B - E[B/A))

= E(B - E[B/A]) (A(B - E[B/A])AT + AE[B/AIAT (4.1)

+ Tr (ZAA (B - E[B/A]) + Tr (1AA E[B/A])

= T + Tr(,AAgT)

AIAl- AlA2 - T AIAn T
tr(I B) tr( . . . tr( B

trI (A2AIBT) tr( BA2A2B) . . . tr( (A2AnBT)

Tr(2AAB) = (4.2)

tr(jAnAlBT) tr nA2BT) . tr(A AnA B)

To see how Equation (4.2) is generated we note:

AT A T BAAT BAATBAA1  1 BA 1 A1 BA 2 ... A1 BAn"Tm T T T

A2T A TB A A TB A A TB A
ABA T 2 B(Al AAI =A 2 1 2 2" 2 n (4.3)

ST T T

A. A2 BA1 A2 BA2 ... A2 BAn

A n A n B A1 A n B A2 ... A n B An

We will also require the following relation [81

E[XT(k+l) FX(k+1)] = xT(k+l) FX(k+I) + tr(F-:X(k+l)] (4.4)

where X(k+l) = E[X(k+l)] and the ijth element of the matrix !X(k+l)

is given, using Equation 4.2.2, by:

X XT Xikj + xT i jxij (k+l) = X k r X(k) + 2 T(k) 2: u(k) (4.5)

+ u•(k)j. u(k) +
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where ZiYj is the covariance matrix of the ith row of (D with the
jth row of Y.

We now, prove theorem 4.1 by dynamic programming [4.2A] [4.3A].

Proof of Theorem 4.1

Let the final cost-to-go be given by

1 T
V(x(N), N) =- T (N) Fx(N) (4.6)

By applying the principle of optimality, the first stage

optimization cost is:

V(x(N-I) , N-i) = Min E [xT(N-l)Q(N-l)x(N-l)

U(N-I) e(N-1)

I (N- 1) (4.7)

S(N-l)

+ UT(N-I)R(N-I)u(N-1) + V(x(N), N)/I(N-I)]
2

Equation (4.7) can be rewritten in the following form:

1 uTV(X(N-l) , N-1) =(Miy)EE-f X (N-l)Q(N-)X(N-lUuN-l

+ 1 uT(N-1)R(N-l)u(N-i)

+ 1 xT(N) F x(N)/I (N-i)]
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=~~ Mi)E(LX (N-1) Q(N-1) x(Nq-1) u(N-1)

+_LUT(N-1)R(N-1)u(N-i)

+ A (-)0 x ( N-) FB(N-1)1 u(N1
1+ ( - 1) x( -) + 7 (NJ 1)

+ o ý. (Ni)JFA( - N 1

+ 
X (0N -01N- 1

B (N-i 1  u (n-1 -1(N-i)) (N-i)
U(N-1)j /

.1)- ([ X(-)Q(i -~ (-) (Ni R(-) N-)
u~n (~2 ([E [xT (N-i) (N-i)

+ E [xT(N1) [A(N-i)] T F [ ](-

1 F O(N-i TFFB(N-i)
*x (s-i) + ET(N-i)A(-) 0]T [B(N-i)] u(-J

+0 E)T(~i [(N-1. 1) T(oj ]

"+ E[UT(N-i) [B(N-i] T F[ Ni 0

IX 0 ON-1) e(N-l)

"+ E uT(N-1 L(N T. L B(N-i

"+ EuT(N-i) B(-1 F [B(N-..l] +E [ aN1
-[F 0 (N-i1)O] x(N-ij

+ E[[ TF [J u(N-1)]+ E ][Tl F

[a(N-1)J1 (4.8)
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To minimize Equation (4.8) over u(N-l) we set the derivative with

respect to u(N-i) to zero and obtain:

u (N-) =- R(N-I) + F + Tr

B(NNI1)(N-l)

I-(N-1)

A(N-I) 0 00
*F ] ; [-:)+ Tr [F x (N-F) (4.9)

Substituting Equation (4.9) back into Equation (4.8) yields

F (Ni]0 ~ J Ni 49
V(x(N-I), N-I) = xT(N-I)K(N-I)x(N-I) + tr F (4.10)

where

K(N-1) 0 TQ(N-1) 0 0 +0T
K- Q(N-1) + (N-] 0 (N-)] Tr( eF

-rA(N-1) 0 T [B(N-1) 1 Tr [ 0 e 4  F))

0 (N-1) r(N-1) 0+ (
[R(N-) + L [B + Tr [0 O] F) -ir_ (-) L (N-1) F•(N-I) 0 2:

B(N- TF + Tr ( ] F (4.11)F(N-1) 0 f(N-I 0 0 "]

Repeating the above procedure for time N-2 we get:

V(K-2, N-2) =(Mig)E - xT(N-2)Q(N-2)x(N-2) + u(N-2)R(N-2)u(N-2)U(N-2)

+ V(x(N-i), N-i) (4.12)
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We note that the structure of the optimal policy rule derived in

Equation (4.9) is modified to incorporate the difference between the

cost expressions at times (N-i) and (N-2) respectively [4.4A]. Thus,

after the usual repetition of the above steps we receive:

U(N-2) -- R(N-2) + B(-)TK(N-I) [BN2 + Tr
(N-2) (N-2)

U(-)=-[RN o [r K(N-)-1) [1 +N2 Tr -1
0 1F -1 (N-2)] N

II 0( )) (0 02

0A (N _2)] + Tr [ G K(N-l) x(N-2)

(4.13)

The functional Equation 4.12) is now rewritten as

V(x(N-2) , N-2) = X (N-2K(N-2)x(N-2) + Tr ([ o~o (4.14)
0 (N-1)

where

K(N-2) Q(N-2) + A(N-2) 0 K(N-1) A(N-2) 0
0 Q(N-2) 0 -e(N-2)j

+ Tr (0 K(N-1)
r(N-1)I

/FA(N-2)o0 T F B(N-2) 1 Fr 0 0

0 N.2J K(-)[N-2 J T (N-1)]

* K(N-1) R(N-2) + _ K(N-1)

1 (N-2)1 (N-2)]
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+ Tr 0K (N-]) 1 [B(N-2) TK (N-1)[0 rrI (N-2)Z(N- 1)

A(N-2) 0 0 / 0

E(N-2) + Tr ( 0 O1F K (N-1) (4.15)0 8•N2) 0 (N-1)

Since the structural form of Equation (4.15) is exactly the same as

that of Equation (4.10), by induction, with the usual steps of

dynamic programming we get the following recursively general

equations for the control law at any time k.

* G* *
u (k) = - (k) x*(k) (4.16)

where

G *(k) = [R(k) + E[,PT(k) K(k+l) ý(k)]]-I E[•T(k) K(k+l)4(k)] (4.17)

and K(k) is given by the matrix Riccati-like difference equation

that follows:

K(k) = Q(k) + E[4PT(k) K(k+l)4Z(k)] - E[OT(k) K(k+l),(k)] [R(k)

+ E[YT(k) K(k+l),P(k)]]-I E[YT(k) K(k+l)c(k)] (4.18)

with

K(N) = F (4.19)

The recursive functional equation for the optimal cost can now be

written as [4.5A1.

V(x(N), N) = xT(N)Fx(N)

V(x(k), k) = 1 x (k)K(k)x(k) + N- tr K(i+l) = J*(u)i=k0 °°

(4.20)

212



Remark 4.1

The quantities Tr(2 ()N-1) K(k+l)) and Tr(Z (N-i)
K(k+l)) are monotonic and both satisfy the conditions that follow.

If there exists a Kk sequence such that lir Kk - K then
k-az

lim Tr(IýKn (k+l))- TR(J'•K(k+l)) .

n-•

Also, lir TR (14Kn(k+l)) - Tr(Zj 4K(k+l)).
n --

Now, if we define

FG(k) = QTQ + GTRG + Tr(X14K(k+I) + GTTr(j•K(k+I)) G + (D-YG)T

K (D-yG) (4.21)

where G is given by Equation (4.17). Then it is proved that [4.5A]

* T N-IJ (k) = x (k)K(k+l)x(k) + I Tr(j K(k+l)) (4.22)
k=o

In particular, if G is fixed for k = O,1,...,N-1 and FG(k) = K, then

= xTKx + N Tr(ZýPK) (4.23)
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CHAPTER 5

FORMULATION OF MEASUREMENT SYSTEM

AND DETERMINATION OF CONTROLLABILITY, OBSERVABILITY,

AND DETECTABILITY
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SECTION 5.1

I NTRODUCT I ON

Data and information gathering has been of great concern

for engineers and scientists for the past several decades and
continue to be so for the present. Moreover, the futuristic complex

control systems that involve multidimensional, large-scale dynamic
couplings present the need for high accuracy observation systems for
reliable information and decision making.

An observation system designed for data or information gathering can
serve one of two main purposes. Namely, estimation of system states
and parameters, and hypotheses testing or decision making [5.1].
Decision theory is applicable to a wide range of problems ranging
from radar target detection and identification, to stock exchange

and economic decisions. The decisions are of the "yes" or "no"
types, referred to as H0 and H1 hypotheses in communication
theory. Each of the hypotheses in a given situation results from an
observation source which generates one of the hypotheses as an
output. Here, the hypotheses are observed only indirectly and a
probabilistic "transition mechanism" sorts the hypotheses out from
the observations. This mechanism assumes a priori knowledge about
which hypothesis is true and generates points in the observation

space based on some rule of probability. Then, utilizing the

observation points or elements, a decision is made on the basis of
some decisiion rule as to which hypothesis to accept, given the
probability measures of the various hypotheses.

On the other hand, estimating the states and parameters of a system
from observations that are noisy, or are virtually determiistic, or

are partly noisy and partly exact, is a nontrivial problem. The
main purpose of state estimation is reconstruction of the missing

states, while for parameter estimation, the underlying idea is to
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formulate an appropriate model that fits the given or measured

characteristics of the system at hand.

During the initial phase of the design of a feedback control system,

it is convenient to assume that the entire state vector is available
via measurements. However, in most complex control systems, con-

straints on sensors and sensor locations render only partial state
measurements. In the case of linear optimal control problems with

quadratic performance functionals, it is well known that [5.2] the
optimal control law is of the feedback type and it utilizes all of

the states as feedback. When only some of the states are available
from measurements, full state feedback cannot be implemented in the

usual sense of the word. Thus, either a different approach,
accounting for the partial measurements, must be developed or
approximations of the missing states will have to be utilized for
feedback. Invariably, this latter approach is followed and various
techniques exist for estimating approximate values of the missing
states from measurements of the available states.

The latter method results in the decomposition of the control design
problem into two main tasks [5.31. During the initial task, the

control law is designed under the assumption of full state

availability. Here, the control law derivation can be carried out
via optimization or some other technique. In all cases, the
resulting control law is normally without dynamics. The second step

is the control system design with an approximation to the state
vector. That part of the control system design which produces the
approximation to the missing states is called an observer [5.41 in

the deterministic setting and a Kalman filter in the case of

additive white Gaussian noise contaminating the system and the

measurement dynamics [5.5].

The optimal state estimation problem has recently attracted
considerable attention, especially relating to complex dynamical

systems with appreciable process noise. For linear systems with

217



additive white Gaussian noise, the optimal unbiased minimum
viariance estimator was ficst derived by Kalman and Bucy [5.6] and

it has been the subject of extensive research and applications.

In many practical applications, the system dynamics and the
measurement system are inherently nonlinear and the truly optimal

nonlinear filter entails infinite dimensional systems for their
solution [5.71. Thus, methods for approximating the a-posteriori

probability density functions based on perturbations and Taylor's
series expansions have been developed [5.8]. In nonlinear filtering
applications, first-order extended Kalman filers yield valid results

under bounded (small) second-order perturbation terms.

The overall problem involving an appropriate measurement system for
the purose of data and information gathering is very complex. The
procedure entails test planning, instrumentation specificatio,k,
choice of an appropriate (linear or nonlinear) mathematical model, a

particular numerical technique suitable for the task at hand, and a
special statistical approach for interpretation of results.

However, most of the time, linear quadratic Gaussian models are
found to be satisfactory and the usual Kalman-Bucy filtering

algorithms give sufficiently accurate results for state vector
estimates. However, in some situations, some of the measurement
output can be considered practically noise-free. This type of
system often leads to singular measurement covariance matrices and

such ill-conditioned matrices create numerical problems [5.91. If
the output variables are noise free and the system is linear, then a
Luenberger observer can be utilized for the state estimates [5.31.
When all the output variables are corrupted by additive white

Gaussian noise, then a Kalman filter is used [5.4] to reconstruct

the states.

There are many situations in which the measurement system can be
considered linear. Furthermore, part of the measurement output can
be taken as deterministic and the remaining part as stochastic. In
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some cases, the measurement noise influences the output dynamics in

a state- and control-dependent fashion, in addition to the regular

additive noise that contaminates the output 15.10-5.11]. Moreover,

measurement systems can be treated in discrete-time or continuous-

time settings, depending on the specific application, instrumenta-

tion, and implementation. In particular, measurement systems with

multiplicative noise arise in applications of signal processing (in
phenomena related to reflection of signals from the ionosphere),

sampling (random data and measurement sampling), and gating or

amplitude modulation.

Many researchers have presented various situations involving linear

measurement systems with multiplicative noise. De Koning [5.111

derived the optimal linear state estimation algorithm for linear

discrete-time systems with multiplicative measurement noise, while

Tugnait [5.121 derived conditions regarding the uniform asymptotic

stability of the optimal linear continuous filter with an observa-

tion system that is contaminated by white multiplicative noise. In

References [5.13-5.14], optimal linear one-stage predictors are

generated for continuous and discrete systems, respectively, where

multiplicative noise contaminates the measurement outputs.

In this chapter, a general measurement system, both in the discrete-

time and continuous-time domains, is presented whereby the measure-

ment output is a linear function of the states and the state mea-

surement matrix includes random Gaussian elements. Some extensions

to the theory of stochastic controllability and observability have

been achieved in the area of linear systems with multiplicative and

additive noise contaminating not only the state equations, but also

the observation system.
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SECTION 5.2

GENERAL MEASUREMENT SYSTEM

The most general measurement system is a nonlinear

stochastic system where the measurement output is a function of the

states, the controls, and time. Moreovez, some additive noise may

be involved that will compensate for the modeling errors and other

random effects. Thus, a measurement system of the It0 [5.15] type

can be written as follows:

dy(t) = f(x(t), u(t),t)dt + g(x(t), u(t),t)dw(t) (5.1)

where the observed process {y(t) ,t'to} is an m-vector stochastic

process, f and g are mxn, random, continuous matrix time-function

processes and tw(t),t-toj is an m-vector Brownian motion process

with E[w(t)wT(t)] = R(t)dt, R(t)>O. Moreover, x(to), and w(t) are

assumed independent of each other and of the noise dynamics of the

state vector.

In a similar manner, the discrete-time nonlinear stochastic

measurement system may be written as follows:

Yk = • (xk'ukk) + F (xl,,uk,k) vk (5-.)

where Yk is the m-dimensional observation vector, ¢ and r are nxn

and mxn random, bounded matrix functions respectively, and
tVk,k = 1,2,...} is an m-dimensional white Gaussian noise sequence,

Vk-N(O,Rk), Rk>0. Similarly, xo is Gaussian with xo-N(xo,Po). xo

and vk are independent. If there is no white Gaussian noise
assumption, then Equation (5.1) can be written in a more general

setting as follows:
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z~t) (t) t) _ f(x(t) ,u(t) ,T) + g(x(t) ,u(t),t) ' (t) (5.3)dt''•

where

dw(t)
¥(t) =t dt

A similar generalization is true for Equation (5.2).

Since the well-known monogram of K. Ito on Ito stochastic

differential and integral equations, the rigorous formulation of

complex dynamic systems with a high degree of uncertainty and

randomness has taken a new outlook. The determination of the

Kolmogorov (5.16] diffusion process has now been facilitated through

Ito integral equations. Thus, when the linear dynamical system

associated with the linear version of Equation (5.1) is given by:

dx(t) = F(t) x(t)dt + G(t)d 3.(t) (5.4)

then Kolmogorov's forward equation becomes

dp(x,t/Yt) = L(p)dt tkr<t<tk+1 (5.5)

where

nn 2 (,(GQT)
= - + 1/2 E (5.6)

i l='j i i,j=l 1 i j x

becomes

=-ptr(F) - P TF x + 1/2 tr(GQGT P) (5.7)

yielding the conditional probability density function [5.171.
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SECTION 5.3

LINEAR NOISY MEASUREMENTS

The continuous Time Case

The simplest measurement system is given by the linear

time-invariant equation

y(t) = C x (t) (5.8)

where y(t) is an m-dimensional measurement output vector and C is

the constant mxn measurement matrix and x(t) is the n-dimensional

state-vector that is the solution to the following time-invariant

dynamic equation:

k(t) = Ax(t) + Bu(t) (5.9)

where A is an nxn and B an nxm constant matrices respectively. The

dimension of the observation vector y(t) is in general lower than

that of the state vector. The main reason being that in practice it

seldom occurs when the whole state vector ic thoroughly (directly or

indirectly) measurable. Thus, the realistic approach is to have m<n,

whereby a set of linear combinations of the state vector components,

that is lower in dimension than the state vector, is available from

the measurement output that is reflected via Equation (5.8).

For more realistic situations that involve systems of relatively

high complexity, the appropriate measurement system that is usually

considered and widely practiced is represented by an equation

similar to Equation (5.8) with an additive noise element represent-

ing the inaccuracy or the error in the measurement sensors. Thus, a
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"stochastic" linear measurement system with only additive noise is

expressed as follows:

y(t) = C x (t) + Y(t) (5.10)

with y(t) an m-dimensional random noise vector that is usually taken

to be a zero-mean, white Gaussian noise with a covariance matrix

given by:

cov(y(t)) = E[y(t) 'YT()] = R(t) 6(t--)

where R(t) is an mxm positive definite matrix and E['] is the

statistical expectation operator. Furthermore, the linear dynamic

system equation that expresses the diffeential behavior of the state

vector is given by:

k(t) = Ax(t) + Bu~t) + Eý(t) (5.11)

with E an nxn constant matrix and W(t) an n-dimensional (usually)

zero-mean, white Gaussian noise vector with covariance of

E [ (t) ý T(,)] = Q(t) 6 (t-T)

Also, it is usually assumed that the initial state vector x(to) is a
random vector with zero-mean and covariance of

Efx(o) xT(o)] = P(o) = a known, nxn, covariance matrix.

The most general linear measurement system that is closer to reality

than the previous ones is the stochastic model given by:

x(t) + (5.12)
Y2() k6(t) (t)2j
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where Yl, Y2 are the exact and noisy parts of the measurement output

vector y(t) and Yi is p-dimensional and Y2 is (m-p)-dimensional, C

is a pxn- and e is a (n-p) x n-dimensional matrices with C
deterministic and e a random matrix with zero-mean, white Gaussian

noise elements of known covariance of E[8(t)9T(T)]Z= 04) (t-T).

Also, v(t) is a p-dimensional zero-mean white Gaussian noise vector
with covariance of E[v(t)v T(T)] = V(t) 6 (t-T). Thus, a part of the

measurements are assumed to be perfect (the noise level is minimal)

and the rest of the measurement output is considered noisy, with

state-dependent noise.

The corresponding state equation for Equation (5.12) will have the

following form:

xl(t A(t) 0 xl(t) [B(t) u(t) + 01(5.13)

x2(t0 (t) x2 (t) (t)j L

where, similar to Equation (5.12), ' (t) is an (n 2 xn 2 ) random matrix

with zero-mean white Gaussian noise elements and known covariance of
Z6 (t- T) , and that of F given by Zl6(t-T) . Here 6 is the delta

function and F is of appropriate dimension [5.10].

The Discrete-Time Case

Similar to the continuous-time case, the discrete-time
observation system is given in the simplest form by

y(k) = H x(k) (5.14)

where x is the state vector, y the output vector (with dimension

usually less than that of x) and H is a constant matrix with

appropriate dimensions. When the output is also a function of the
inputs, then (5.14) is written as

224



y(k) = H x(k) + Eu(k) (5.15)

where E is a constant matrix of appropriate dimensions and u is

the control input vecotr with dimension less than (normally) that

of the state vector and different from the dimension of the output

vector y. The dynamics equation in the state-space form for the

discrete-time case is given by:

x(k+l) = F(k) x (k) + G(k) u(k) (5.16)

where F and G are coussant matrices of appropriate dimensions.

The interconnection between the discrete-time and the continuous-

time systems is given as follows:

it[+l 1
x(t i+I = 4(ti+ltit)x(ti) + f(+i+IT)B(T)dT u(ti)

t i (5.17)

where • (t,t 0 ) is the state-transition matrix of the system in

Equation (5.9). Also, u(ti) = u(t), tjj<t<ti+1 i = 0,1 .... To

transform Equation (5.9) into Equation (5.15), let

F = C(ti+l, ti)

G = fti+l (D(ti+I, s) Bds
ti

H = C (tj, ti)

t.E = C (D(tll, s) Bds + D(t')

ti

when the sampling periods are equally spaced, ti÷ 1 - ti =A, and

t- ti = A', then F = eAA, G = (f eAds)B, H = CeA' and

E = C(f•W' eASds)B+D, see [5.181 for details.
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The most general linear discrete-time measurement system can be
written as follows [5.19]:

y(k) = =+ (5.18)
Y2(k) Q• (k) x2(k) v (k)

where yl is the 1-dimensional vector of exact measurements, Y2 is
the q-dimensional vector of noisy measurements, H is the ixn

deterministic matrix andQ•(k) the qxn stochastic matrix of Gaussian

elements with given statistics of:

E [ ý(k)] I r2(k)

and

E [ (Q (k) - n (k) ) (SI(i) - (i) )T] =zESI (k)6 ki

Also, • (k) is the q-dimensional vector of Gaussian (usually white)

noise with statistics of

E[v(k)] -o

and

Ef Nk) vT~= (k)6 ki

and u is assumed statistically independent of all the other random

variables.
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SECTION 5.4

STOCHASTIC CONTROLLABILITY

The question of determining stochastic controllability

in linear time-dependent systems with multiplicative and additive

noise has been the subject of extensive research during the past

decades. The fundamental issue in the determination of controlla-

bility, with even the best definition, is the derivation of suffi-

ciently simply and easy-to-use algebraic conditions that can be

applied as a test for stochastic controllability.

Work in this field commenced primarily by Kalman [5.20] and later

was extended by Connors [5.21]. Stochastic continuous-time systems

have been considered by several authors [5.22-5.23]. It was Harris

15.241 who extended the work on discrete-time controllability under

multiplicative noise. We will present herein a brief description of

controllability of stochastic linear dynamical systems under

multiplicative and additive noise.

In general, it is said that a system is stochastically controllable

if "the initial state of the stochastic system under consideration

can be transferred, in some stochastic sense, to any desired state

within a finite time by some control action." We base our arguments

on this defin.-tion.

5.4.1 Continuous-Time Case

For a linear deterministic time-dependent control system

similar to Equation (5.9) with A and B both functions of time, if

there exist to and ti, with 0 < to <t, <- such that the following
"controllability Gramian" is nonsingular:

I tTT
W(to,t) = t0  1(t,T)B(T)BT (T)(T (t,T)dT (5.19)
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(where :(t,to) is the transition matrix of the system), then the

system is said to be completely controllable [5.251. In the case

that A and B are constants, the corresponding controllability condi-

tion is that the matrix [B, AB, A2 B, ... An-lB] is of full rank (n).

In the case of linear quadratic Gaussian (LQG) systems of the form

of Equation (5.11) with A and B functions of time, the

controllability condition is more involved [5.261. The basic

controllability criterion is the existance of a piecewise continuous

control function u(') such that the solution of the system

differential equation with initial state of x(to) = x0 can be

transferred to any final state x(tI) = x, in some finite time tI via

the application of a controller u(t) for t in [to tl].

It is easy to see that if a system such as

k(t) = A(t)x(t) + B(t)u(t) (5.20)

is completely controllable, then one controller that can transfer

the initial state to any final state in a finite time is given by:

u(t) = -BT(t)T(to't)[W(to'tl)]-l[xo - 4 (to,tl)xI] (5.21)

If W is singular and of rank k < n, then (n-k) of the states will be

controllable.

For systems of the form of Equation (5.11), stochastic controlla-

bility is defined as the condition whereby positive numbers a and b

in [o,00] as well as a time interval [to,tI] can be found, such that

for all t inside the interval [to,tI] the following hold:

a I - t1 l (t,s) E Q(s) ETDT(t,s)ds (5.22)
0
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is negative-semidefinite and simultaneously

J 1 4 (t,s) E Q (s)E T T(t,sTdW - bI (5.23)
0

is positive-semidefinite, where I is the identity matrix. The
reason for the above conditions is due to the input noise, since the
noise effects all the states. Thus, for stochastic controllability,

the integral in Equations (5.22, 5.23) must be bounded above and
below and it should be positive-definite for the time interval under

consideration.

There are two main definitions to stochastic controllability for

systems with multiplicative and additive noise, such as Equation

(5.13). One of the definitions is referred to as E-controllability

and the other controllability with probability one [5.23]. These

two definitions with their conditions will be briefly presented.

Definition 5.1 - An initial state xo for a system such as Equation

(5.13) is stochastically E-controllable in probability p, in the
interval [to,tl], if there exists a controller u(t,') such that

pr[II x(tl) 112 > E Ix(to) = xo] < 1- P (5.24)

where the norm is the usual Euclidean norm and O<P<l. If, in

addition, the above definition is true for all x0 ERn, then it is

called completely E-controllable.

The approach taken in showingc -controllability is by finding a

Lyapunov-like function V(x,t) that has bounded first and second

derivatives with respect to every component of x, and a first

derivative with respect to t = tI, in the interval of interest.

Moreover, V(x,tl)> / xT(T 1 x (tl), where o<a<<e and

V(xo,to)<(l-p)c/a. When these conditions (along with negative
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definiteness constraints [5.231 are satisfied, the system can be

proven to be stochastically E-controllable.

Definition 5.2 - The initial state x. of the system (5.13) is

stochastically controllable with probability one in the interval
[t 2] If fh:re is a controller u such that

lim

Pr(t tlI Ix(t)1I = 0 1 x(tO) = xO] = 1

This definition too can be extended to complete controllability.

Sufficient conditions for such stochastic controllability are as

follows: (5.1) V(x,t) exists and satisfies the boundedness of the

aforementioned derivatives, (5.2) for all functions f(t) such that

lim f(t),t) X 0 the following holds
t-tI

lim

and an additional constraint related to the Jacobi-Bellman Equation

[5.231.

It is a nontrivial task to check for stochastic controllability with

probability one or even E-controllability. The appropriate

Lyapunov-type function is often very difficult to find. However,

stochastic controllability checks are sometimes essential in order

to avoid extensive analysis.

5.4.2 Discrete-Time Case

In the constinuous-time situation, controllability can

be defined as the propety that any initial state can be transferred

to the zero state in finite time. However, such a definition will

make a discrete-time system that is always zero (: x (k+l) = 0)

controllable. To avoid such a confusing situation, we take the

definition of transferring the initial state to any final state in a
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finite number of steps. Such a behavior can be clarified further by

the following development. Consider a 1-ime-dependent discrete

system given by

x(k+l) = A(k) x (k) + B(k)u(k) (5.25)

The solution to this system is given by:

k-1
x(k) = D (k,i) x (i) + Z P (k,j+l)B(j)u(j) (5.26)

j=-i

for k : i+l. Here (D(k,i) is given by

A(k-l)A(k-2) ... A(i) for k>i+l
¢(k,i) =

1I for k=i

In the case when A(k) = A for all k then

S(k,i) = Ak+i (5.27)

The controllability of system (5.25) can be expressed as follows:

Equation (5.25) is completely controllable if and only if the

following (controllability Gramian) symmetric, nonnegative-definite

matrix

k-l T T
W(i,k) = Z • (k,j+l)B(j)B (j) P (k,j+l) (5.28)

j=i

is nonsingular. Uniform controllability can also be singularly

defined [5.18]. For the time invariant case like that of (5.16),

complete controllability holds if and only if the following

controllability matrix [G,FG,F 2 G, ... , Fn-lG] has full rank (n).
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When a stochastic linear system with only additive noise is

considered, such as

x(k+l) = F(k)x(k) + G(k)u(k) + E(k)w(k) (5.29)

with W(k) a zero-mean white Gaussian noise sequence and with known
covariance ot:

E[w(k) JT(j)] = Qd(k) 6 kj

then system (5.29) is stochastically controllable if there exists a
and b in the interval (i,o), and a positive integer N such that, for

all kbN

k
aI< Z (k,j)E(j)Qd(j)ET(j)I)T(k,j)<bI (5.30)

j~k- n+!-

The condition implies complete controllability with respect to the
sequence of the noise w(k) [5.26].

The more general situation is the one with multiplicative and

additive noise (the discrete-time version of Equation (5.13)) and
the controllability of such systems is very complex. Similar to the
continuous-time situation, the Lyapunov function approach is the
most convenient and popular: a few definitions regarding discrete-
time controllability are in order.

Definition 5.3 - The initial state xo of a discrete-time stochastic
linear system like Equation (5.13) is stochastically s-controllable

with respect to a final state xf, with probability p, in the

Euclidean norm sense, in the time interval [o,N] (for a fixed N) if
there is a control law u[o,N] = {u(xn,n), n = o,l,...,N-1} such that
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prob { Xf X N - xj Ii E C j Xo} I P o <P < 1 and uEUCE(m). If the

last two conditions hold true for every initial state xo, then the

system is called stochastically completely controllable.

The following is proved in [5.24). An initial state x. is

stochastically E-controllable with respect to a known final state

xf, if all of '-h- following statements hold true:

a. A scalar non-negative definite function V(x,k) can

be defined in [o,N], such that fora >o andc >>c,

V(xn - xf,N) : [a'2(XN - xf)T (XN - xf)]i/2

b. V(x 0 - Xf, 0) < p C/a

c. A control law u exists such that

E[V(Xn+ 1 - xf, n+l) - V(xn - xf, n) lXn ] 0

with probability 1 on the set txn I V(xn - xfk) < X.

for 0 <k<N}

There are other approaches to stochastic controllability that have

some advantages and some disadvantages over the ones presented

herein. One such approach is known as the Chebyshev approach, and it

can be represnted in a simple algebraic bound, thus making it

relatively easy to use. However, both the Lyapunov and the latter

Chebyshev approaches are only sufficient conditions for stochastic

controllability when the bound is less than unity. Otherwise,

simulation-type approaches might be more useful [5.231.
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SECTION 5.5

STOCHASTIC OBSERVABILITY

The usual definition to observability is that if a system

is observed uo to any given time tl, there always exists a time to<t1

when the state of the system can be uniquely determined. Observa-

bility is concerned with the effect of the states of a system on the

outputs that are available from measurements. An observable system

is one in which the output is effected in some way by the variations

of any state variable. Also, the effect of any state variable of a

system on the output of that system must be unique to be separable

from the effects of other state variables.

Observability for stochastic linear systems with multiplicative and

additive noise has been addressed by a few authors [5.10,5.11,5.191.

In [5.111, mean- and mean-square-observability are considered for a

linear stochastic system with a sequence of random matrices. Zabczyk

[5.28], on the other hand, consideLs a Hilbert space setting of

discrete-time linear stochastic systems with multiplicative noise. We

will present some of the important characteristics of stochastic

observability, various definitions and conditions involved, and their

applicability both in continuous- and discrete-time domains.

5.5.1 Continuous-Time Observability

Consider system (5.9) with the measurements given by

Equation (5.8). Then, it is well known 15.181 that this system is

completely observable if and only if the following observability

matrix
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c

CA
CA2

CA3

CAn-I

is of full rank (n). Consider a time-dependent system:

k(t) = A(t)x(t) + B(t) u(t) (5.31)

with

y(t) = C(t) x (t) (5.32)

Then, there exists a time to for all tI such that - <to<tl, system

(5.31,5.32) is completely observable if and only if the following

observability Gramian:

t~ (DT (s,t)C T s) C(s) 4) (s, t) ds (5.33)

0

is nonsingular. This definition can be extended for uniformly
complete-observability. Moreover, the "duality" between

observability and controllability is discussed in [5.18].

For stochastic systems with only additive noise such as in system

(5.10) with (5.11), the stochastic controllability is defined as

follows: System (5.10) and (5.11) is stochastically observable if

one can find finite scalars S>a>0 and times to and tI such that

tl>to>O and for all t~tI
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I < 1 ( (Stt)H1 T (s)R- ( )H(s) (st)ds< BI (5. 34)

J t0

where the integral is similar to that of (5.22) - (5.23). Obviously,

stochastic controllability is violated whenthe covariance matrix R is

singular over the time interval of concern.

For a stochastic system with multiplicative and additive noise such

as given in Equation (5.13) with the measurement system of equation

(5.12), stochastic observability can be defined in several different

ways. One approach would be to consider an appropriate filter that

will give an estimate of the state x(t). The usual Kalman-Bucy

filter would give a suboptimal estimate of the form

• • A(t) 0 I• ^B(t)) [[Yl(t)] [C(t)))^

= x(t) + u(t) + L(t) j x(t)

0 ýD (t) LF it Y2(t)J LP tM
(5.35)

Then, the error vector x(t) = x(t) - x(t) satisfies:

X M A(t) 0 C(t)
(5.36)

0 M t) - (9 t)I Xt)+P(t)

where LL L [0]
s (t) = L +

Usually a feedback control is chosen by

u(t) = -Kx(t) (5.37)
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thus determining a sto~chastic feedback regulator. The dynamics of

the closed-loop system is now given by:

Fx~t)l ([: ]], 1) , [B] K x(t)l + [L]f

[X(t) o(A oj-L [] ~

The, stochastic observability in the mean sense can ibe related to

stochastic stability in the mean-square sense. Thus, writing system

(5.38) in simplified notation:

X = MX + ' (5.39)

where

([ ] jand 10=

0 [ 0] -L r
L ( 10 0]

One can state that system (5.39) is exponentially stable in the mean-

square sense if and only if there exist positive definite matrices P

and N such that

M*P + PM + Y = -N (5.40)
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Then system (5.12), (5.13) is stochastically completely observable in

the mean-sense if and only if there exists a matrix L such that

is a stable matrix [5.291.

Moreover, following Zabczyk [5.28], we can also fo..mulate a

stochastic observability criterion given by the following:

The above-mentioned system (5.12), (5.13) is stochastically com-

pletely observable if and only if for every non-zero initial state

the following inequality will be true with positive probability:

Sup t[] x(t) ", > 0

for all t and with an appropriate choice of norm in an appropriate

Hilbert space.

5.5.2 Discrete-Time Observability

For a discrete-time, time-invariant linear deterministic

system of the form (5.14), (5.16), complete observability refers to

the condition of the following matrix

H

HF

HF
2

(5.41)

HFn-I

being of full rank (n) as a necessary and sufficient condition

[5.18]. Moreover, for time-dependent discrete-time deterministic
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systems of the form (5.14), (5.16), complete observability is

fulfilled if and only if for every k there exists an i<k-l such that

the symmetric non-negative definite matrix given by the following

summation

k T T.k .T (j,i+l)H (j)H(j) ij, i+l) (5.42)
j=i+l

is nonsingular. In the above summation 4 is the transition matrix of

the system (5.16). These definitions can be easily extended to

include uniform complete observability.

Consider the following linear discrete-time system that has additive

white Gaussian noise

x(k+l) = F(k)x(k) + G(k)u(k) + a(k) (5.43)

with an appropriate measurement system given bý

y(k) = H(k)x(k) + w(k) (5.44)

where

E[c(k)aT(j)] = Q(k) 6 kj

and

E[w(k)wT(j)] = R(k)6kj
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both and w are zero-mean white Gaussian independent noise vectors

and is the Kronecker delta function. Then observability of the

above system is satisfied if there exist finite numbers a and b such

that o<c<b and a positive integer N such that, for all i>N

i T
aI-j = I (j,i) HT (j)l 1  (j)H(j)D (j,i)<bI

i-N-i

This condition implies complete observability with respect to the

output of the measurements from the system model. Hence, it reflects

the effect of change of any state in the output. The summation

between the inequalities is often referred to as the information
matrix.

In order to analyze stochastic under multiplicative and additive

noise, let's assume that in system [5.43 and 5.44] F(k) =Fi(k),G(K)

=Gi(k) and H(k) =Hi(k) are all sequences of matrices that are random

and time-invariant for each ki and each have constant statistics.

Moreover, assume that the initial state x(o)=xo is deterministic and
that u(k) is a deterministic function of x(j) for all j.k. We will

now define mean observability and mean-square observability based on

the work in [5.271.

We say that the system [5.431, [5.44] with the random characteristics

defined above are mean observable if there exists a time-step N such

that E[y(k) ] =Y(k) for all k = o, 1,..., N-1 then x(o) =0. Moreover

it is mean square observalbe if one can find an N such that E [I1y(k)
Ij 21 = o for k=o,l,...,N-i than x0 = o. Obviously, this shows that

mean observability implies that x0 can be reconstructed from y(k) fa

k=o ..... ,N-l, for some N. Similarly, for mean-square observability.

Also, we should note that for such a system-observability there is a

mean value observability matrix similar to the deterministic case

given in the previous pages.

A more general case was considered by Zabczyk [5.281 in the following
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formulation: Consider a system of the form:

x(k+l) = Fx(k) + E(x(k), E (k)) (5.46)

with an observation system given by:

y(k) = Hx(k) (5.47)

The above system is stochastically completely observable if and only

if for every non-zero initial state, the following inequality will

hold with positive probability:

SkplHx(k) I>o (5.48)

where x(k) is .ow the soluLion of equation [5.461. It can be shown

that the above system is stochastically observable if and only if,

for all x in an appropriate Hilbert space H, x j o

Supj (L k(o)x,x) ;K=o,l,...]>o (5.49)
0

and if and only if

Sup[ (Mk(o)x,x) ;k=o,l,.... .>o (5.50)

where:

for any W in a linear bounded space

Lw (K) =H*H+W*RW+A 1 (K)

+ (F-GW) *K (F-GW) (5.51)

where R is a positive semidefinite linear bounded operator in an

appropriate Hilbert space and

S( k=l kFkKFk (5.52)
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where Fk(') = F(',ek) k=1,2,... and Xk, ek, are the eigenvalues and

eigenvectors of the covariance operator of the state-dependent noise

vectors F. Moreover, ( ,') is an inner product in an appropriate

Hilbertspace [5.281. Also,

M(K) = H*H + AI(K) (5.53)

and (*) indicates complex conjugate transposition. Stochastic

stability, stabilizability, and detectability can also be related to

observability. [5.281.
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5.6 CONCLUSIONS

A general theory of measurement systems and applications

is presented in the previous pages. Linear noisy measurement systems

are treated under various situations: Deterministic, complete

measurements, simple incomplete measurements with additive zero-mean

white Gaussian noise, and systems with incomplete measurements

contamnated by multiplicative and additive zero-mean white Gaussian

noise elements. Moreover, stochastic and deterministic control-

lability and observability issues are treated in appreciable detail

and extensions to the existing theory of stochastic controllability

and observability of linear dynamic systems.
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CHAPTER 6

DERIVATION OF STATE ESTIMATION EQUATIONS UNDER

REALISTIC MEASUREMENT ASSUMPTIONS
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6.1 INTRODUCTION

In recent years, interest in control systems with multi-

plicative and additive noise has increased considerably. One of the

reasons for this is the increased complexity of systems and the high

uncertainty involved in their modeling. Thus, modeling of modern

complex control systems has become a nontrivial task, especially due

to the very high performance requirements and the virtually unknown

new instrumentation and materials being utilized. Moreover, model

accuracy requirements and the extent of detailed modeling are a

function of performance specifications and the expected disturbances

that could effect the system [6.11.

Typically, in most complex systems, the entire state vector is not

available from measurements, but only a linear combination of a set

of the state variables is given. Under such circumstances, either a

new procedure should be developed wherebly the missing states are

accounted for, or an appropriate approximation cf the complete state

vector must be derived for the optimal control law. In virtually

all complex situations, approximations to the state vector generated

from the available partial measurement information, are developed

and utilized. Thus, observers are derived that will reconstruct the

missing state information via appropriate estimation and filtering

techniques. A great deal of theory and many algorithms exist for

thp Aptprministic [6.21 and linear quadratic Gaussian (LQG) [6.31

systems estimation and filtering methods. In contrast to the above-

mentioned case of additive white Gaussian noise for which even
nonlinear filters or extended Kalman fili-pring algorithms exist,

there are a very small number of papers that address the issue of

state estimation of linear (let alone nonlinear) stochastic systems

with multiplicative and additive measurement noise.

The limited amount of research in the state estimation and control

of sysLems with multiplicative noise can be related to the following

fact. The extension of deterministic control system and state
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estimation theory to stochastic systems often poses serious

complications due to the consequences of Ito calculus. Thus, the

number of equations as compared with the deterministic case

increases mainly because of the appearance of second powers of

system matrices in linear stochastic systems with multiplicative and

additive noise (6.4]. The problem of optimal estimation under

multiplicative and additive noise is essentially a nonlinear

filtering problem.

The problem of optimal state estimation of linear stochastic systems

with multiplicative noise from noisy measurements has been the topic

of considerable research in recent years. Optimal linear recursive

estimation schemes have been especially useful in the LQG system

setting particularly because of their computational features and

structural simplicity. Many different optimality criteria such as

minimum-mean-square error, maximum lilelihood, least-square errors,
etc., have been in common use in a wide variety of fields. One

fundamental assumption in all observer and LQG filtering techniques
is that the system dynamic model is accurately known. In practice,

this is far from reality and often uncertain parameters, modeling
errors, and other factors are involved. Thus, performance levels

are often reduced due to a-priori chosen nominal model-parameter

values when these parameters experience deviations.

Robustness is significantly more important nowadays than in the past

due to the complex nature of control systems, whether these are

under development or already in application. Thus, for least
performance degradation due to parameter variations, it is highly
desirable that one obtain robust state estimation algorithms and

methods that provide a high degree of performance. This high

performance even under worst possible system or prarmeter variations
over the range of parametric undertainty [6.6.1.

The reduced order state-estimation problem is another topic of

extensive research interest. The need for this type of an optimal
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reduced order approach to state estimation is from practical

constraints on computational capabilities, complexity, instrumenta-

tion and reliability, among others. Moreover, often only a small

number of estimates would be quite adequate to perform the task at

hand. However, reduced order estimators designed by means of either

model reduction followed by "full-order" state estimation or full-

order estimation followed by estimator order reduction is not

optimal for the given order of the system [6.6]. It has recently

been shown [6.111 that solutions to the steady-state reduced-order

state-estimation problem is characterized by a system of modified

Riccati and Lyapunov equations that are coupled by an "oblique"

projection.

The case when measurement noise is singular (i.e., colored noise),

the optimal state-estimation does not exist since the filter gains

of linear quadratic (LQ) estimation algorithms are given in terms of

the inverse of the noise intensity matrix [6.6]. A good reference

on research related to stochastic observer theory is the book by

O'Reilly [6.22]. The usual approach (by most researchers) to

overcome noise singularily is to introduce new measurements via

differentiation of existing noise-free meassurements. Haddad and

Bernstein [6.23] complemented the above technique by simultaneously

designing an optimal reduced-order dynamic estimator for the noisy

measurements and an observer for the noise-free measurements. The

results obtained include modified Riccati-Lyapunov equations coupled

with two "oblique" projections which essentially generalizes the

classical steady-state Kalman-Bucy filtering theory.

Further extension of the classical Kalman-Bucy state estimation of

the case of state-, control-, and measurement-dependent noise, is a

relatively new development [6.241. The fundamental motivation of

such a modeling approach is to help desensitize the controller and

the state estimator which will result in robust filtering algorithms

that have virtually invariant performance relative to actual

parameter or system variations [6.25-6.30]. Specially in discrete-
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time systems with stochastic parameters (that often arise in

sampling, gating or amplitude modulation) mean square system

stability is required for the existence, uniqueness, and stability

of time invariant estimators [31-32].

The problem of estimation of signals that are contaminated by

multiplicative noise under restrictive assumptions of semi-infinite

observation interval and stationarity has been addressed by Loo

[6.33]. Nahi [6.341, on the other hand, has studied uncertainties

in the observation via hypothesis testing. Rajasekaran,

Satyanarayana and Srinath (6.351 presented estimation algorithms

that are optimal in the class of linear minimum mean-square error

estimators in the form of prediction, filtering and smoothing. Both

discrete-time and continuous-time situations are considered for

nonstationary stochastic systems. Tugnait [6.36] presents

conditions for uniform asymptotic stability in the large of the

optimal minimum mean-square error linear filter for linear systems

with multiplicative observation noise. The implications for such

stability conditions are that the computations of the filter gains

and error covariances are stable. In the above, only scalar

multiplicative noise was considered.

Accelerated interest has been shown in recent years regarding the

optimal control, stabilization, state estimation, and identification

of linear stochastic systems with multiplicative and additive noise

[6.37-6.491. State-estimation has been of special interest due to

the practical implications relative to realistic complex systems.

According to the published literature, the first authors who con-

sidered state estimation of linear systems with multiplicative noise

in their measurement system were Bondaros and Konstantinov [6.50].

Simultaneously Milshtein [6.511 considered the optimal controller of

linear systems with multiplicative and additive noise, but with

partial deterministic observation dynamics. Recent advances showing

performance and stability robustness of such has made state

estimation of stochastic linear systems practically attractive.
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6.2 THE STATE ESTIMATION PROBLEM: THE CONTINUOUS-TIME

OBSERVER

Consider a linear dynamic system represented by the ing

stochastic differential equation:

= ~+ u(t)+(6 i

[ 2 (t) 0 (t) x 2 (t) F (t) u(t)

where: nio, n2=o, nl+n2 = n>o,

nI n 2  (~nAn

X1ER , x 2 ER , A (n1xn1),D-n2xn 2 , n Ixm, F'-n 2 xm, uR m, and

n 2
YER are the state vectors, the state matrices, the control

matrices, the control input vector, and the additive zero-mean white

Gaussian noise vector, respectively. In the above, ý and F are

matrices with random zero-mean, white Gaussian noise (for

convenience) elements and covariances of Z¢6 (t-T) and Z 1(t-T)

here 6 is the usual delta function). The covariance of y is

ZYY6 (t-T).

The most general linear measurement system for Equation (6.1) is

given by:

= x(t) + (6.2)
Y2 (t)] 1(t) W(t

P1  P 2  P 2where: ylER 2 , pl+P2 =p, C plxn, 0 P 2 xn, and vER , are the

measurement vectors, the measurement matrices and the additive

measurement noise vector. In the above 0 is a matrix of zero-mean

white Gaussian noise elements with covariance ofZ 6 (t-T) and o is
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a zero-mean White Gaussian noise vector with covariance of Z"'J (t-T)

and independent of all the other random elements.

The above system is a worst case situation for a linear system since

it has state-, control-, and measurement-dependent noise. Moreover,

it is assumed that in realistic situations, a part of any complex

system can be considered to be adequately modeled and thus, there is

no need for any stochastic representation. Similarly, a part of the

measurements can be considered accurate enough not to warrant any

probabilistic representation. Under these conditions, the state

estimation problem is to find an "optimal" filtering algorithm that

will furnish the required estimates of the states for an acceptable

control system performance.

The deterministic part of Equation (6.1) will be neglected and so

will that of Equation (6.2). For, there are numerous observer

algorithms that handle such cases [6.2]. We will concentrate on

x 2 (t) with measurements of Y2 (t) and call them x(t) and y(t)

respectively for convenience.

6.2.1 The Stochastic Observer

The approach we will take is to find an unbiased optimal

linear state estimator x(t) of the state x(t) given by a stochastic

differential equation of the following general form:

x(t) = Fl (t) + F 2 y(t) + F3 (6.3)

where Fl, F 2 , F 3 are unknown matrix coefficients that will be

determined.

Let us define the error vector by x(t) = x(t) - 'xt). Then, if we

assume that the optimal feedback control is u(t) = -Gk(t), we have:
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x(t) =FiX(t) + (4+F 1 -F 2 ) 2)x(t) - FGx(t)+ (y(t)-F 2 v(t) -F 3 ) (6.4)

The equation of the mean error is given by:

E[X(t)] dtx F 1 (E[Z] + Efx]) - F3  (6.5)

with E[/(o)] = o, E[x(o)] = o, from unbiasedness we have

E[xý o and E[x] = o for all t, where x(o) = E[x(o)]

Hence,

FIE[x]=F1  = F 3  (6.6)

and

x(t)=Fl(x(t)-E[x]) + (D+Fi-F 2 e)x(t) - FG'(t) + y(t)-F 2 4(t)

Define the error covariance matrix P by P=E[3CxZ] then the

differential equation for P is:

T P-4P T I T F2T T

P=FTP÷PF + Tr( Zxx) + F F +FTr(Z ZFxx + GTr(V Z-xx)G

+ ZY+F2 Z VF 2 T  _ FlxxTFI (6.7)

and its initial condition is P(o) = E[x(o)xT (o)].

T-king the Hamiltonian (H) approach with the minimization criterion

being the error covariance, we have the following external

conditions:

D= 0 (6.8)

2F5 5 F2
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dS DH (6.9)

where H is given by:

TT T T TH=F 2 P+S (FlP+PF1T+Tr(E xx)+FIxxF1T+F2 Tr(Z Zxx)F 2

These, together with the state equation and the performance

functional, form the new deterministic control problem. From the

above, with some manipulations, the following observer equation is

derived [49].

-T -i Z- P[T -i1
x (xx-P0-2 X) x P[Tr(Z Exx)] y-2STPE xx x (6.11)

with •(o) = E[x(o)] = 7o, and x = Efx]

Equation (6.11) is the observer equation for the optimal linear

stochastic filter that is unbiased and that is optimal only in the

class of linear filters.

6.3 THE STATE ESTIMATION PROBLEM: THE DISCRETE-TIME

OBSERVER

There are several advantages to discrete-time

observers. The most imporetant one is the fact that most data

processing systems are digital and it makes a great deal of sense to

have algorithms that are discrete-time. In addition, most

measurement systems give information at discrete-time points and

their realistic representation is by difference rather than

differential equations. Moreover, optimal recursive linear

estimation routines have beenparticularly attractive due to their

computational advantages performed via digital processing, as well

as because of their simple structure. Various criteria of
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optimality such as minimum mean-square error (MMSE), maximum

likelihood (ML), and least square error (LSE) have been estensively

utilized upon the problem of interest at hand [6.521.

Various researchers have developed recursive estimation algorithms

for discrete-time systems with state- and measurement- dependent

noise [6.1, 6.9, 6.25, 6.30, 6.32, 6.351. Presented herein is a

summary of the major algorithms with a brief discussion of their

advantages and disadvantages.

6.3.1 The Optimal MMSE Linear Recursive Estimator [6.351

Nahi [6.34] has developed an algorithm for uncertain

observation systems (with scalar multiplicative noise) in an

hypothesis testing approach that can be considered a special case of

what is presented herein. The problem considered in this subsection

involves a discrete-time system that is a special case of the system

presented in Equations (6.1) - (6.2). Thus, the stochastic

measurement equation at the k-th instant is given by:

y(k) = P(k) H(k)x(k) +v (k) (6.12)

where, as previously defined ycRm is the measurement vector, xcRn is

the state vectorpE R is a scalar white noise process with mean

value m(k) and covariance of N(k), H-(mxn) and vERm is a zero-mean

white Gaussian noise vector with covariance of Z". The state

equation for the above system is given as follows:

x(k+l) = A(k+l,k)x(k) + B (k+l,k) w (k) (6.13)

where A nxn, B nxr are constant matrices and w (k) is a zero-mean

white Gaussian noise vector with covariance of Zww. The initial

state x(o) is assumed to be random and independent of the other

noise elements. The problem is to find an optimal estimate x(k/Z)

of the states x(k) which is a linear combination of the measurements
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up to the Zth instant such that the expected value of the estimation

error squared E([x-x)T(x-`x is a minimum. The problem we will

address here is that of filtering, when Z= k. It is known that the

necessary and sufficient condition to be satisfied for the optimal

filter is:

E[x(k)-x(k/k)y T(j)] = 0 for j = 0, 1, ... , k (6.14)

The innovations process defined by I(j)=y(j)-m(j)Hx(j/j-l) can

replace the observation vector in Equation (6.14). Thus, the

necessary and sufficient condition is now:

Efx(k/k)IT(j)]=o, j=o, 1, ... , k (6.15)

It is shown elsewhere [6.35] tha the innovations process is a zero-

mean white sequence with covariance

EI(k)=m2 (k)H(k)P(k)HT(k)+N(k)H(k)E[(x(k)xT(k)]HT(k)+ E" (6.16)

and P = the error covariance matrix as defined earlier. Continuing

the derivations to satisfy the necessary and sufficient condition

for optimal estimate, the filtering equation is given as follows:

X(k/k)=X'(k/k-l)+m(k)P(k)fHT (k)(ZI)- [y(k)-m(k)H(k) x (k/k-l)] (6.17)

and the error covariance equation is given by:

P (k) =A (k,k-l)P (k-l)AT(k,k-l) -m 2 (k)P (k)HT (k) (SI)-IH(k)P (k)

+B(k,k-l)z WW(k)BT (k, k-1) (6.18)

with initial condition of P(o)=E[x(o)xT(o)]. Similar results can

easily be derived for the continuous-time case.
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6.3.2 Optimal Estimation of Linear Discrete-Time Systems with
Continuous-Valued Stochastic Parameters [6.321

Consider a system of the following sequential form:

x(k+l)=P(k)x(k)+w(k) (6.19)

with a measurement system given by:

y(k) = H(k) x (k) + v(k) (6.20)

where, as before, xERn is the state, yER is the measurement, weRn

is the zero-mean system noise, vcR is the zero-mean measurement

noise, and p and H are random vector a1 as follows:

a.= [St(PT (k))St(H T(k)w T(k))v T(k)] (6.21)

where St is the stacking operator tht transforms a matrix into a

vector by St(PT(k)) = [1 02 ... n]T where Oi is the ith row of pT.

Now, assume that ai is a sequence of independent random variables

with contstant and known statistics and independent of x(o)=xo.

Moreover, assume that the elements of 0 and H are independent of

those of w and v. The following statistics are assumed known:

T T TE[xo0 ]-=x ,E[x 0--x ) (Xo-x ) ]=Po, E[w(k)w (k)]=W, E[\ (k)v (k)]=v

Suppose 0 and H can be expressed as follows:

0(k) = -+ý(k), H(k) = IT + H(k). Using these expression in Equations

(6.19) - (6.20) we get:

x(k+l)=Ox(k)+ w'(k) and y(k)=iHx(k)+ v(k) (6.22)
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1 1

where: w W + € and v = v + Hx

Now the statistics are given by:

E[wl (W )T] W + E[O x(k) x T(k) 0T] = W + E[O X(k) 0T

E[vl(vl )T = V + E[H x(k) x T(k) H TI = V + E[H X(k) HT]

X(k + 1) = E[O X(k) oT] + W (6.23)

--- T
with X(o) = xxO+ P

The minimum variance linear estimate x(k+i/k) of x(k+l) given the

known measurement information y(o),...,y(k) is given by:

x(k+i/k) = Tx(k/k-1) + K(k)[y(k) - Ifx(k/k-l)], x(O/-l) =Xo

(6.24)
K(k) = T-P(k/k-1) IT[( P(k/k-1)IT + W + E[xA'TX]+ (6.25)

P(k+i/k) = --P(k+i/k-l)3-T - TP(k/k-l)T [Tr P(k/k-l)fT +

V + E[H X H T] H P(k/k-1) TT + W + E[¢XOT] (6.26)

with P(O/-l) = Po and [ ]+ denoting pseudo-inverse.

DeKoning [32] has shown that if the spectral radius P(€'P)<l.

Here, Q denotes the Kronecker product 000 = [€ij€], where ¢ij

is the i*th element of 0. Moreover, the steady-state lim X(k+l) = X

as k-- of Equation (6.23) has a unique solution when P(€X€)<I holds.
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Thus, mean square stability of the above system is sufficient and

almost necessary condition for the existence, uniqueness, and

stability of the time invariant estimator.

6.3.3 The Linear Stochastic Observer

Consider the discrete-time form of Equations (6.1) -

(6.2) with a random Gaussian initial state vector x(o), that is,

independent of all the other random elements and given statistics of

Ejx(o)] =XO and E[(x(o) - x.) (x(o) - Xo) = X0 .

xl(k+l) [Ak) 0 xl~) Bk
x(k+l) = 1 + U(k) +

x 2 (k+l) 0 e (k) r (k) (k)
(6.28)

Similarly, the corresponding measurement system is given by:

[yl(k) 1 Fc (k)] lk~
ylk) == + (6.29)

y)Y2 (k) J L2(k) [ 2 kJ v(k)

where xi, yi' i=l, 2, A, B, 0 , 7 , u, y , C, Q and v are defined in

the same manner as previously. The optimal control problem is to

derive a control sequence {(k), k=O, l,...,N} that minimizes the

following performance functional:

N-1 T

T(N) S N x(N) + E (x %) Q(k) x(k) + uT (k)R(k) u(k)}
k=O

(6.30)

where SO and Q(k) are symmetric non-negative definite nxn matrices

and R(k) is a symmetric positive definite mxm matrix.
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The solution to the above stochastic optimal control problem with
multiplicative and additive random parameters shows the effects of
uncertainties in the performance of the control system. Thus, the
control gain will be a function of the unconditional means and
covariances of the uncertainties creating nonlinear effects. For
simplicity and practical considerations, only a suboptimal
stochastic linear feedback control law will be considered [5.53].
The following control law:

u(k) = -L(k)x(k) (6.31)

is assumed, where x(k) is the estimate of x(k) and is found by means
of a Kalman-Bucy type filtering algorithm. This algorithm is of
lower dimension than that of the Kalman-Bucy filter, since the
optimal mean-square unbiased estimate requires roughly n 3

multiplications for the above system, while it only requires (n-pl)3

multiplications for the observer we will prescnt.

6.3.3.1 Reformation of the Problem

Choose a vector Z(k) such that when augmented with the
deterministric vector yl(k), it forms an nth order vector. Thus,

Z(k)
[zkj = M(k) x(k) (6.32)

Yl(k!

where: [Ml(k)]

M(k) = (6.33)
C(k)

and det M(k) / o, with the dimensions of Ml(k) given by (n-pl) x n.

Hence, Equation (6.28) can be rewritten as:
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x (k+1) =M
1 (k-i-) Zkl

and = [::~Yik+lj+uk+E ~k 0~~l 1lk [Ak (k)) 0][1 1k1[

y0 (k) (V)e (k) Jlk [+k) [ F ( k) [(k)J u y(k)

Rea tn g Eq(ton (6 354yel s

Z(k+1) M 1 (kk+l) x(k) 0 Ml(kk-I-iZy(k) + B1 (kk+l)uk B Y(v)

+ M~~l) (k)(6. 36)

yljk+l) A A2 1 (k,k+l) x(k) + A 2 2 (k,k+l) yl(k) + B 2 (k,k+l)u(k) + y2k

(6.37)

where: [All A12] [M (k+l)] A(k) 0] [M(kvl]

[A21 A22] [C(k+1)j 0 0 e(k)J IC(k) j
[Bi(k,k+l)1 Mkl [B(k)1 and -y1(k)1 M= l [0
LB2 (k ,k+l)J L(ku LY 2(k)J Mk1 L(k)

where: All -(n-pl), A1 2-'-(n-pl) x pi' A2 1 --.- PI x(n-pl),

A22-Px pl, B1 -- (n-pl) x M, B2 -pl x m, andy 1 ~-n-pl,

and Y2'P 1 dimensional matrices and vectors.
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Consider Equation (6.37) rewrite it as follows:

Z 2 (k) = yl(k+l) - A2 2 (k,k+l) yl(k) - B 2 (k,k+l) u(k)

= A2 1 (k,k+l) Z(k) + '2(k) (6.38)

A new system of equations representing a control systme can now be

defined by Equation (6.36) as the state equation with a measurement

system given by Equation (6.29) and an additional equation to be

derived later: it is possible to choose M(k) such that yl(k+l) and

yl(k+l) and yl(k) are deterministic. Then Z 2 (k) can be calculated

from the exact measurements of yl(k+l) and yl(k).

Equation (6.29) can be rewritten as:

Y2(k) = k) x(k) + v(I-)
1Z(k)

= 2(k) M- (k) + v(k)
yl (k

= Hl(k) Z(k) + H2 (k) yl(k) + \(k) (6.39)

which yields: Z 3 (k) = Y2 (k) - H2 (k) yl(k)

= Hl(k) Z(k) + v(k) (6.40)

This implies that, since Y2 and yl give the value of Z3 on the left

hand side of Equation (6.40), we have a new measurement equation.

Thus, the estimation problem reduces to estimating Z(k) in Equation

(6.36) via the measurements of (6.38) and (6.40).

For convenience, introduce an augmented set of measurements by:

Z(k)1

Za(k) = [Z (k) H (k,k+l) Z(k) + Ya(k) (6.41)
Z 3(k)

where: A2 1 (k)k+l)1 ' 2 (k)
Ha(kLk+l) H1 (k,k+1)I and Ya (k) (k)
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6.3.3.2 Generation of the Observer Equation

Consider the new state estimation system given by:

Z(k+l) = All(k,k+l) Z(k) + A1 2 (;,',4-1) yl(k)
+ l(k,k+l) u(k) + .y (k) (6.42)

Zl(k) = Hl(k,k+l) Z(k) + Ya(k) (6.43)

The equation of the observer can now be rewritten as [30].

Z(k+l) = Kl(k) Z(k) + K2 (k) Za(k) + K3 (k) [Bl(k,k+l) u(k)

+ A1 2 (k,k+l) yl(k)] (6.44)

where KI, K2 , K3 are unknown observer matrix coefficients tha need

to be determined for optimality. Define the estimation error by

by ' (k) = Z(k) - Z (k) . Then,

x(k+l) = [All(k,k+l) - Kl(k) - K2 (k) Ha(kk+l)j Z(k)

+ K,(k) x'(k) - K2 (k' -ya(k) + [I - K3 (k)I tBl(k,k+l) u(k)

+ A1 2 (k,k+l) yl(k)] + y 1 (k) (6.45)

where I is the (n-pl) x (n-pl) dimensioned identity matrix. If we

assume that the estimator is a minimum mean-square error, unbiased

estimator, then,

E[k(k+l)] = E[All(k,k+l) Z(k)] - Kl(k) E(Z(k)]

-K 2 (k) E[Ha(k,k~l) Z(k,] + Kl(k) E[x(k)]

- K)(k) E[•a(k)] + [I-K3 (k)] [E[BI(K,k+1) u(k)

+ E[Al 2 (k,k+l)l yl(k)] +. EF[ ] 'k)]

(6.46)
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ý2 and e are assumed to have uncorrelated elements with those of x(o)

and, similarly, All and Ha have uncorrelated elements with A(k).

These assumptions and facts with the unbiasedness property yield:

K3 (k) = 1 i-Ld KIL(k) = ll - K2 (k) 7a (6.4/)

where: All = E[AII(kk+l)] and T[a = E[Ha(k'k+l)].

Now Equation (6.44) becomes:

•(k+l) = [JAl -K 2W[a] I(k) + k 2 (k) Za(k) + Bl(k,k+l) u(k)

+ A1 2 (k,k+l) yl(k) (6.48)

with initial condition of:

Z(o) = M1 (o) -70 = M,(o) Ejx(o)]

Equation (6.45) can now be rewritten as:

ý(k+l) = All(k,k+l) Z(k) - [T[ii-K 2ITa] Z(k) + K2 (Ha(kk+l) z(k)

-Ya(k)] + Yl(k) (6.49)

The errer covariance matrix is given by:

P(k+l) = Efx(k+l) x (k+l)]

TT T )T ZT HT KT
= E[AI2 x A 11 - All x £ (I-A 1 K2ITa) - All x Z a 2

T T -T TA11 x 2 + A11 x i ( 1 IAIIK 2]TaZ) XZA 11

T AT+ (AII-AIl-K 2Tra) Z Z(-KIAll-K21Ta)
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+ (Tl-AII-K2'Ta) Z T HaT K2T + (WlI_AIIK2]Ta) Z-aT K2

- (•II-A1-K2Aa) 1 - 1 T 2 K 'TAIIT 2+ K11T 2-Y T

_TT T T TK2 T + KTITZT (T

+ K2ya ZHaTK2T + K2 YaYaT -2 "a'.. + ,l x A,1

Z Z (wil-AII-K27Fa) T _ ZT HT KT - T KT + T

(6.50)

The optimal mean-square error unbiased estimate requires the

minimization of the tr(P(k+l) with respect to K2. The initial

condition for Equation (6.50) is:

P(o) = E[Z(o)-Ml(O)-Xo) , (Z(o)-Ml(o) T].

Performing the calculations and equating the partial derivative of

the trace of P(k+]) with respect to K2 to zero yields the optimal

value of K2 :

I{r EZT] T T^K2 =T 1[Z -ii + Tr( Z AII E[ZZT]) T 2 •IIE[ZZ ]

!T EZZ I E[Z2T "T-

'TaT + 2 Xyiya} [TraT EJzzT]T Ra +Z aYa (6.51)

K2 minimizes the dispersion of the error at the next step. The

optimal estimator is now given by Equations (6.48), (6.50), and

(6.51).

The optimal mean-square error unbiased estimate of x(k) is given by:

-(k)

x(k) = M (k) (6.52)
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The need to know the value of yl(k+l) at time instant (k+l) for

estimating Z(k) is definitely undesirable. To eliminate this

nonreal-time computational requirement, define a vector

Z l(k) -- (n-pl) such that

Z(k+l) = Z 1 (k+l) + K2  Z (k+l), k=O,l,...,N (6.53)

where: Z' (k) -- (Pl + P2) dimensional vector given by:

Z' (k) = [yll(k)/,yl 2 (k),...,ylPl(k),O,...,O]T (6.54)

and where Yii(k) is the ith element of yl(k). Now, define

I- T T TZ(k),k=O,l,...,N by Z(k) = [Z (k) A2 2  (k,k+l):O] where Z is a

(Pl + P 2 ) -- dimensional vector augmented with zeros. Similarly, let

u(k),k=O,l,...,N, be an (P1 + P 2 ) ", dimensional vector given by

T T T
[u (k) B2 (k,k+l):O]. Then, Equation (6.38) can be rewritten as

follows:

yl(k) = Z' (k+l) = Z (k) - u' (k) (6.55)

where: Yl(k) = [Z 2 1 (k),...,Z 2 Pl(k),O,...,O] T, is a (P1  + P 2 )

dimensional vector. Using the above vectors, the equation of the

observer (6.48) can be rewritten as:

Z l(k+l) + K2 (k) Z/ (k+l) = [-ll - K2 (k)WraIZ(k/k-1)

+ Bl(k,k+l) u(k) + A1 2 (k,k+l) yl(k)

+ K2 (k) ,K) + Z (k+l) - Z(k) - u(k)]

(6.56)

where: Z3 (k) = [O,...,OZ 3 1 (k), Z 3 2 (k) ,...,Z 3 Pl(k)I T is (Pl + P2)

dimensional. Some manipulations yield the final form of (6.56) as:
*

Z l(k+l) = [All-K2 Ha] Z(k/k-l) + Bl(k,k+l) u(k) + A1 2 (k,k+l) yl(k)

+ 1' 2 (k) [Z 3 (k)-Z(k) - 'u(k)] (6.57)
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The real-time minimum mean-square error linear unbiased stochastic

estimator. The optimal estimation problem is solved by the use of

Equations (6.57), (6.51), and (6.52) with all the newly defined

augmented vectors and the following initial condition:

Z(o) = Ml(O) Xo

Z 3((o) Y2(o) - H 2 (°)yI(°)

The case with all noisy measurements, pl=O, coincides with the

regular Kelman-Bucy filter with the removal of the multiplicative

noise elements from the system equations and the measurements.

6.4 CONCLUSIONS

Herein presented were optimal linear state estimators,

in the minimum mean-square sense and unbiased, both in the

continuous-time and discrete-time cases. The presence of

multiplicative noise in the system and measurements renders the

conditional probability density function of the state vector non-

Gaussian, notwithstanding the fact tha the random processes

representing the multiplicative noises were assumed Gaussian.

The results of previous derivations on minimum mean-square error

stochastic observer theory was extended. The linear stochastic

filter derived is similar in nature to the regular Kalman-Bucy

filtering algorithm. However, the lower dimension of the observer

developed in the previous pages reduces the computational effort

(for large order measurement systems) tremendously. While the

Kalman-Bucy filter for an nth dimensional system requires n

multiplications, the stochastic reduced order observer only required

(n-pl) multiplications. The stability considerations for such

systems needs to be modified [321.
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CHAPTER 7

THE CLOSED-LOOP STOCHASTIC

STABILIZATION AND COMPENSATION
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SECTION 7.1

INTRODUCTION

The complexity of many physical systems, such as large

space structures (LSS), combined with their inheient nonlinearities,

randomness, and uncertainties, precludes any direct deterministic

analytical approach and creates the need for stochastic analysis and

approximation Lechniques. Theoreti.cally, there are various methods,

such as the method of operator equations using Green's functions

[7.11 that can solve nonlinear stochastic multi-dimensional

differential equations. However, in practice, their use is limited.

The pioneering work on the modern theory of differential equations

was led by Liapunov and Poincarre at the turn of this century.

Interest in stochastic differential equations was heightened by Ito

[7.2] with his rigorous formulations of differential equations that

led to the solution of Kolmogorov's diffusion process.

The analytical representation of complex dynamic systems entail

nonlinear stochastic partial differential equations that

characterize the overall behavior of the system in an approximate

manner. The difficulty of generating solutions to such systems has

resulted in various approximation techniques that reduce these

systems to linear ordinary differential/difference equations. Under

certain realistic situations, it becomes unavoidable to utilize the

probabilistic approach for the analysis and optimal solution of such

systems.

It is often the case that stringent stability requirements are

difficult to meet due to the availability of only partial measure-

ments of the state variables of a system. Moreover, systems

subjected to random external disturbances and with a high degree of

internal uncertainty in their analytical models have established the
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stochastic approach to stability theory as a viable engineering

tool. This is especially true when the randomness or the

uncertainty is of the state- and/or control-dependent type. The

stability and stabilizibility characteristics of such stochastic

systems cannot be treated on the basis of the separation or the

certainty equivalence prnciple. Furthermore, an optimal control may

not exist for control systems with multiplicative and additive

noise, and the optimal filter is nonlinear and infinite dimensional

[7.3-7.71. Only suboptimal filters in the class of linear filters

can be derived in practice, thus leading to suboptimal stabilization

of stochastic linear systems. Various authors have addressed the

problem of controlling linear systems with uncertainty in the model

dynamics and control. Most of the past work deals with system

models with only additive noise [7.8, 7.91.

It is an unquestionable fact that LFSS with very high performance

requirements require active feedback control systems due to their

high flexibility, high density modes in the lower part of their

spectrum, and the (virtually inevitable) control/structure

intraction problems inherent to such systems. Typically, LFSS with

their broadband uncertainties have high order analytical

representations, with fully coupled dynamic equations mainly due to

the need for multiple input-multiple output feedback con-trol

systems. Finite el., it (FE) models of LFSS have inaccuracies in

the very low frequency modes as well as in the very high frequency

modes. Even though experimentation and identification techniques

might be sufficiently advanced in the near future to be used to

iprove model accuracy, yet residual uncertainties and time-dependent

changes, as well as other random effects must still be handled

appropriately. Thus, both synthesis and analysis techniques are

necessary for the optimal control design of LFSS, since the

implementation of coupled, multiple feedback loops, with their

complex interactions, renders regular methods such as LQG very

unattractive.
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Moreover, LQG controllers are of the same order as the structural

model and this requires a high degree of computational effort

[7.10]. Application of stochastic techniques with stochastic

reduced-order observers presents an approach with decreased compu-

tational burden and robust performance. This avenue is presently

being pursued by many researchers.

In the analysis and control design of LFSS, modeling errors must be

accounted for in order to provide adequate robustness for the

control system. Multiple-loop frequency and time-domain techniques

exist that deal with this model unertuinty and robustness issues (at

least to some extent) [7.11]. However, the controllers derived with

frequency domain techniques are usually of higher order [7.12]. LQG

methods do not address the model uncertainties appropriate and do

not guarantee gain margins [7.13]. In certain special cases, the

so-called "LQG/LTR" technique guarantees stability under control

matrix perturbations of only a certain kind [7.14-7.18].

Furthermore, realistic parameter variations are treated via loop

shaping techniques based on singular value norm bounds. This could

often lead to unrealistic constraints.

Modal characteristics of LFSS such as frequencies, damping ratios,

and modal displacements represent physically meaningful parameters,

and any uncertainties relative to these have a strong effect on the

stability and robustness of the control system. LQG theory can be

utilized for controller synthesis in multiple input-multiple output

environments. However, since the underlying features of LQG com-

prise synthesis of feedback gains of an optimal dynamic compensator

via the solutions of two uncoupled Riccati equations, it is very

difficult to address performance robustness or computational matters

adequately under high performance requirements or significant

modeling uncertainties. Recently, optimal reduced-order compenstirs

were derived via optimal projection equations [7.19-7.20]. In these

presentation:, the structure and the order of the control law are
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fixed and the performance functional is minimized with respect to

the control gains of the system, thus leading to necessary

conditions for otpimality. These necessary conditions are then

transformed into a coupled set of four algebraic Ricaati and

Lyapunov equations via an oblique projection. The coupling between

these equations is a strong indication of the breakdown of the

separation principle under multiplicative noise [7.211.

In the present chapter, a unified theory of stability stabiliza-

bility and control of stochastic linear control systems with multi-

plicative and addit-*.ve noise will be treated. The fundamental

characteristics of such systems will be discussed and the

stabilizing optimal/suboptimal controller will be derived. Both

perfect information and partial and noisy mesurements will be con-

sidered and directions of future research in the area of

linear/nonlinear systems with multiplicative and additive noise will

be briefly commented upon. It is emphasized that multiplicative

noise is a realistic way of expressing the influence of high

uncertainty on the system performance via their statistical

covariance. This, in a way, provides a natural performance robust-

ness vis-a-vis random parametric and plant variations.
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SECTION 7.2

THE STOCHASTIC STABILIZATION PROBLEMS

Consider the following Ito stochastic differential

equation representing the perturbed motion of a system via a Markov

process:

dx(t) = f[x(t),t]dt + F[x(t),t]d ,(t) (7.1)

with f(o,t) = 0 and (o,t) = 0 and where x Rn is the state vector,

f(.,.) is a real n-dimensional continuous function such that

I1f[x(t),t] - f[y(t),t][I _ < kjx(t) - y(t)jI for all t > to and for

all x,y Rn. [x(t),t] is a real n x m matrix function continuous

for t > to and it in turn satisfies a similar Lipschitz condition.

,(t) is an n-dimensional Wiener process with independent elements,

zero mean, and E* 2(t)] = 2t for j = 1, ... , m. Here, E[.] denotes

statistical expectation.

Under the above conditions, there is a strong Markov process that

has almost sure continuity with a Feller trasition function as the

solution to Eq. 1. The associated Jacobi-Bellman equation for

Equation (7.1) is [7.53.

n f 1 n 32
J t i x

i=l i xiij l J0 ixj (7.2)

where [aij] = -FT and (.)T denotes transposition.

The stability and stabilizability of the equilibrium solution of the

linearized form of Equation (7.1) by a partial set of the state

variable measurements of xl, x2, ... , Xp, p<n, is the main concern

of the present article.
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Stabilization of systems of the above form by a partial set of

imperfectly mesured (noisy) states can be achieved by the synthesis

of additional control forces u(t). Thus, let g[x(t),u(t),tI be a

real n-dimensional continuous function that is uniformly

Lipschitzian with respect to t > to >_ o and let the control

functions u(t) be Markovian with u(o,t) = 0; then for every control

function u U (an admissible set), there is a corresponding Markov

process that is almost sure continuous and is the solution to [7.7]:

dx(t) = f[x(t),tldt + g[x(t),u(t),t]dv(t) + F[x(t),t] d (t) (7.3)

The Jacobi-Bellman equation for Equation (7.3) is given by:

a n n

Lg = + f x(t) , 8- + n gi[x(t) ,u(t) ,t]
g ati. x.g ax.i=l i i--i 1

1 n

2 i,j=l axiaxj (7.4)

where v is the zero-mean Weiner process independent of . Under

appropriate conditions, Equation (7.3) can be written in the

following simple form:

dx(t)/dt = f[x(t) ,t] + g[x(t) ,u(t) ,t] *Y(t) + F[x(t) ,t] ý(t) (7.5)

where '1 and • are zero-mean, independent, white Gaussian noise

processes with covariances of •Y and 1, respectively. A partial

set of measurments of the states are provided by a system of the

following form:

y(t) = h[x(t),t] + w(t) (7.6)
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where ycRe is a measurement vector, h is a continuous function that

is Lipschitzian with respect to t and is uniformly bounded with

respect to x(t). w(t)ERý is a zero-mean white Gaussian noise vector

with covariances Ew and is independent of all the other noise

elements.

The optimal stabilization problem is now to find an admissible

control function u(t) that will make Equation (7.5) with the mesure-

ments in Equation (7.6) stochastically stable with respect to x(t)

and stochastically asymptotically stable with respect to the

partialset of measurements. However, for the sake of being

practical, the route that will be followed herein consists of

treating the linearized version of the above problem. The

approximation error is compensated for by incorporating the

uncertainty terms in the dynamic equation.

In most practical situations, equations of the quations

(7.5) and (7.6) can be approximated by a linear ith

multiplicative and additive noise that cn be made itically

close to the original nonlinear system. Thus, a linear stochastic

system results, given by:

k(t) = Ax(t) + Bu(t) + C(ý)x(t) + D(yu(tl - E,•t) (7.7)

With Equation (7.6) replaced by its linearized version:

y(t) = Fx(t) + G(a)x(t) + H (t) (7.8)

Where A,B and F,H are constant (for convenience) matrices of

appropriate dimensions, XERn and uERm are the state and the control

vectors, respectively; ý, 7, WI, , and q are zero-mean, independent

Gaussian noise vectors with covariances of 1, J w, 1, and

respectively, C, D, and G are matrix functions of ý, 7, and a

(usually taken as linear functions of the random variables) and
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(A,B) is assumed stabilizable. Moreover, the initial state is

assumed deterministic and known.

The stabilization problem is now to find appropriate control forces

u(t) such that system Equations (7.7) and (7.8) are probabilis-

tically stable with respect to all the variables xl, ... , xn and is

asymptotically probabilistically stable with respect to the

estimates x(t) of the states x(t), generated from appropriate linear

estimator/filters.

In order to establish the asymptotic stability in the large of the

unperturbed motion

x(t) 4 0,

of the dynamic system Equations (7.7) and (7.8), we start by a

Lypunov function

V(xt) = xT(t)Px(t) (7.9'

where P is a positive definite symmetric matrix that will be

determined later and V(o,t) = 0.

Oefinition 7.1

System Equations (7.7) and (7.8) are quadratically asymptotically

stabilizable if there exists a feedback control u = Kx, an n x n

positive definite symmetric matrix P, and a constant P> 0, such

that, for the Lyapunov function (7.9) and any .•a;7.ssible uncer-

tainties C(k) and D(y), the following is satis. 3:

L[x(t),t] 4 xT (t)[[A + C(ý)]TP + P[A + C(S)]}•(t)

"+ xT (t){KT [B + D(T)]TP

" P[B + D(Y)IK}x(t) < - P(IHx!! 2 * I JX2 (7.10)



Remark 7.1

When Equation (7.10) is satisfied, it can be shown that for any

admissible uncertainties C( ) and D( ), the corresponding closed-

loop system has x(t) 0 as an asymptotically stable equilibrium

point [7.22-.25].

Definition 7.2

System Equations (7.7) and (7.8) is:

1. Probabilistically stable [7.5] if for any to>0, E>O,

a>0 there exists a b>0 such that Ix I<6

P [ sup IIx(t)ll>E] <a
t>to

2. Asymptoticallyprobabilistically stable if it is

probabilisticlly stable and

lim [lim jjx(t)jj = 01=1
x-*0 t--.o

3. Asymptoticlly stable in the large if 1. is satisfied

and

P [lim lA(t) I I = 0] = 1

Theorem 7.1

If in the set Ix: j Z•(t)jj < d, d > 01 x R+, there exists a V(x,t)

as defined above and satisfying:

LV[x (t) ,t]<0 (7.11)
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for x(t) X 0, then x(t) 0 of Equations (7.7) and (7.8) is

probabilistically stable. If, in addition,

Xi (II lI < V (x (t) ,t] < 2( x ) (7.12)

and

LV[x(t),t] < - 3 (I Ix ), (7.13)

where i(s) are continuous positive, monotonically increasing

functions for all s l[o,-) and 'i(o) = 0, i=l, 2, 3, then x(t) = 0

is asymptotically probabilistically stable in the large.

It can be proven [7.51 that if 41 (ijxil) = - as 1IxI- ,o, then the

trivial solution is asymptotically probabilistically stable in the

large. The P matrix above is the solution of a Lyapunov-like

equation given by:

{A + C(ý) + KT[B + D(Y) ]T} P + P {A + C(ý) + [B + D(vY)] K} = -Q

(7.14)
and

P = /3 exp {A + C(•) + KT[B + D V)]Ttl Q exp {A + C(ý)

[B + D(y)]K} t dt (7.15)

This formulation is an extension to the case given in Reference

[7.5]; however, the proof of the theorem is very similar to the one

given therein -- thus, it is omitted.
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SECTION 7.3

STOCHASTIC CONTROL UNDER PARTIAL INFORMATION

System Equations (7.7) and (7.8) can be optimally

stabilizable by the optimal controller that minimizes the following

performance functional:

J = EtxT(T) Hc x(T) + IT [xT(t) Qc x(t) + uT(t) R u(t)ldt}

(7.16)

where Hc and R are positive definite and Qc is positive semi-

definite matrices of appropriate dimensions. The necessary and

sufficient conditions for optimal stabilizability will be given and

discussed. It is established [7.26] that when EET is positive

definite, then an optimal control exists given that the control- and

state-dependent noise are "small". Moreover, Haussman [7.27) has

shown that when the above-mentioned noises affect only stable modes

(thus, independent of the magnitudes of the control- and state-

dependent noise vectors), an optimal control exists under complete

state information. It is not hard to show [7.28] that, under a

feedback control u = -Kx(t), an optimal (in the class of linear

controllers) K exists, if (A,B) is stabilizable and subject to the

steady-state condition of Equation (7.16) and (here I is the

identity matrix)

inf fjJ et(A-BK) [KT 1(I) K + A(I)et(A-BK)dt 11 < 1(7.17)

where A(S) = Tr(E[CT(ý)SC(ý)]), F(S) = Tr{E[DT(Y)SD(-)]} and Tr is

the matrix trace operator that was defined in earlier chapers.

Also, E[.] is the statistical expectation operator and S is any

positive semidefinite matrix of compatible dimensions. Then, K is

found to be given by:
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K = [r(P) + R + BTPBI]- BTPA (7.18)

and P is the unique positive definite solution of the following

Riccati-like matrix algebraic equation:

Q + ATP + PA + A(P) - pB IF(P) + R + BTPB]-IBTp = 0 (7.19)

The optimal cost under the above conditions is found to be given by:

J* = tr(ETPE;.] (7.20)

Under conditions of partial and noisy measurement information like

Equation (7.8), the state estimate that is optimal in the class of

linear unbiased observers given by

4(t) = Ax(t) + Bu(t) + M(t) [y(t) - (F +Ja)H- H ] (7.21)

that minimizes the weighted estimation error given by:

Je = E (T(t) Ui (t)], (7.22)

where k = x - x and U is an nxn positive definite matrix.

Let us define X = [x] and t = , then

X(t) = (A + C + D) X + at, (7.23)
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where

A - BK BK

0 A -MF

C =[ [] E ,GJ
C0-DK DK E MG

and

u(t) = -K(t) '(t) (7. 24)

Also, if we define

H 0 Q [ 
KTRK[0 U-KTRK KR

then, the cost functional for Equation (7.24) will be

J E[XT(T)HX(T) + fT XT (t)OX(t) dt] (7.25)

Moreover, let

W = E [xxT] = IW W121
W WI2T w 22

Then,

T
x= tr[HW(T) ] + j tr(QW) dt (7.26)

0

and
T T T T

W =AW + WA + CWC +DWD +EE (7.27)
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The optimal co•,.rol problem is now transformed to that of minimizing

JX subject to Equation (7.27). The Hamiltonian approach will yield:

- - -T -- T - -T
H = tr(QW) + tr (AW + WA + CWC + DWD )S (7.28)

where S is the nxn symmetric costate matrix

[12T S22

given by the solution of

- -T -- T - -T-
S = -(Q+A S+SA+C SC+D SD) (7.29)

with

S(T) = H

The necessary condition for optimality yields

M = W2  S T + S; -1f w1T 2  (7.30)

and

0 yieldsaK

DK(W 1 I - W1 2T - W12 + W2 2 ) - BT(S1 W 1 - S W + S WT- S12 W2 2 )

+ DT(WI1 + W1 2T + W12 + W2 2 )K(W - W - + W2 2 ) = 0 (7.31)

Some simplifying assumptions will lead to easily computable

solutions of this system [7.21].
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7.3.1 Statement of the Discrete-Time Compensation Problem

The following discrete-time linear stochastic system

with purely random (white) parameters is considered:

x(k+l) = $D(k)x(k) + 'Y(k)u(k) + F (k) (7.32)

where x(O) is a Gaussian random vector wiht E[x(O)] =xO and

cov[x(0)] = X0 . The measurements are given by:

riyl1 ) (k) xl(k) 1 0
y(k) = ---- I =---- +1 (7.33)

[Y2( Q J Lx2(k) J v(k)]

where x, u, yI' Y2 ' y are n-, m-, Z-, q-, and (E+q)-dimensional

state input and output vectors, respectively. O(k), T (k), C(k),

S2(k) are nxn, nxm, Lxn and qxn matrices and 0 and T are as described

earlier. While C(k) and Q2(k) are deterministic and stochastic

matrices, respectively, with E[Q(k)] = Q(k) and cov[Q(k)] = E

Also, F (k) and v(k) are n- and c-dimensional mutally uncorrelated,

zero-mean Gaussian white noise processes with given covarainces of

cov[&(k)] = Zrc(k) and cov[y(k)] = Zv. Assume that O(k) and ' (k)

have some correlation with each other expressed by coy [4 (k),

If (k)I = Er•. While Q (k) is uncorrelated with v (k) and * (k) , T (k)

are uncorrelated with E (k) at all times.

The optimal control problem is now to generate a closed-loop control

law based on past and current measurements and past controls that

will minimize the following quadratic cost functional.

[TFN N-1l TiJ = E (N)Fx(N) + Z (xT(k)Q(k)x(k) + uT(k)R(k)u(k)) (7.34)
IX ~ k=0

where Q(k) is a symmetric, non-negative definite matrix and R(k) is

a symmetric positive definite matrix of approximate dimensions.

The information set available at each instant of time is given by:

I(k) = t(0),y(l),...,y(k); u(0),u(l),...,u(k-l)} (7.35)
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As was previously done, it will be assumed that the admissible

controls are measurable functions of the current and previous

measurements. Furthermore, the control laws sought are of the

feedback type, namely:

u(k) = f(x(k) ,k) (7.36)
A

where x(k) is the unbiased state estimate generated by the linear

algorithm developed previously, uEU (where U is the set of

admissible controls) has full memory and completely nested

information structure.

The cost functional can be expressed as:

J = E[L(u(k), &(k) x(k)) + L(x(k+l))] (7.37)

where a(k) are random vectors and L(k) is some convex function of

its variables.

By the principle of optimality, we can get the minimum value of the

cost as:

J*(I(k)) = Min E[L(u(k), a(k), x(k)) + J*(I(k+l)) jI(k)] (7.38)

u(k)

With the noisy observations given in Equation (7.33), we have to

know the conditional probability function P(x(k)II(k)). The perfect

me-ory of the controls renders it possible to recursively compute

P(x(k+l)II(k+l)) from P(x(k)!I(k)) by some filtering algorithm. In

the case when the filtering algorithm is independent of the control

laws at all past time-indices, then the S.paration Theorem can be

applied for dynamic optimization.
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7.3.2 Optimal Solution of the Stochastic Tinear Problem with
Incomplete State Information

Let us define the observed outputs by:

Yk = [yT(O),yT(1),...,yT(k)]T (7.39)

Assume that the admissible controls u(k) are functions of the

outputs Yk-l' where clealy, Yk is a vector in the (q+l) dimensional

space and the dimension of Yk increases with k.

Consider the stochastic problem defined by Equations (7.32), (7.33),
and (7.34) with the appropriate statistics given as before. Then,

the following identity can be verified easily [7.29].

T T N-1IxT(N)Fx(N) = xT (0)K(0)x(0) + Z [xT(k+l)K(k+l)x(k+l)

k=0

- T ((k)K(k)x(k)] (7.40)

K(N) = F (7.41)

Take each term in the summation separately and expand it by using

Equation (7.32) to get:

xT(k+l)K(k+l)x(k+l) = [4(k)x(k) + 4.(k) u(k) + ý(k)]TK(k+l)•

[4ý(k)x(k)+,(k)u(k) + ý(k)] (7.41)

and:

xTk(k)k) (k)k) + •T(k)K(k+l)i(k) + Tr(5 4 K(k+l))

- T(k)K(ki. -(k) + Tr(Y- K(k+l)] [R(k) + yT(k)K(k+l) (k)
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+Tr K (k 1) 1 1 Y~T(k ) K(k+l)iv(k) + Tr [ K (k+1) x (k)

=XT (k) [Q(k) +jTck)K(k+l)i(k) + Tr(Z t K(k+1)) -GT(k)

(R (k) + FT(k) K(k+1) (k) + Tr ( EK (k+1))]G(k) Ix (k) (7.42)

where G(k) is the feedback gain derived earlier.

Now, substituting Equations (7.41) and (7.42) into (7.40), we get:

ST(N)Fx(N) = xT(0)K(0)x(Q) + N-rl 1v~k~x~k + 'V(k)u(k)]TK(k+l)
k= 1

-["k~xk)+ '1 (k)u(k)I + [O(k)x(k) + 'V(k)u(k)]TK(k+l)&(k)1

+ýT(k)K(k+l)[i(k)x(k) + 'V(k)u(k)] + ýT(k)K(k+l)ý(k)

N-1it
E tx TI (k)Q(k) + OT(k)K(k+l)4(k) + Tr(Z' K(k+l))) - GT(k) [R(k)

k= 0

+ f(k)K(k+l) i(k) +Tr(E V ~~)]xk uTR(k)u(k)

- u T (k)K(k)u(k)} (7. 43)

By rearranging the terms in Equation (7.43), we end up with:

xT (N)Fx(N) +Ex T(k)Q(k)x(k) + u T(k)R(k)R(k) =x T(0)K(0)x(0)
k=0

+ Nr II(k)x(k) + 'V(k)u(k) ]TK (k+l) ( k)x(k) + IT(k)Kuk(k)

kk=O
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(xT k) [OT(k)K(k+l) O(k) + Tr( Z"K(k+l) - GT(k) [R(k) + YT(k)

K(k+1) I(k) + Tr(EIK(k+1)]G(k)]x(k) + uT(k)R(k)u(k)1 (7.44)

The ootimal cost functional is now given by [7.29]:

N-I

J = Min E[xT(N)Fx(N) + z (xT(k)Q(k)x(k) + uT(k)k)k)u(k))]
u(k) k=O

N-I

= EtMin [E[xT(n)Fx(n) + E (xT(k)u(k)x(k)
u(k) k=0

+ uT(k)R(k)u(k))]Yk- 1 ]1 (7.45)

Now, let us define the conditional mean of the state vector by:

x(k) = E[x(k)/Yk.I] (7.46)

And the conditional covariance matrix of the state vector by:

zxx(k) = E[(x(k) - x(k))(x(k) - Tx(k))T (7.47)

The Equation (7.45) can now be written as:

N-i
SE M inE[T(O)K(O)x(O) + E {(x+yu)TK(k+l) ( x+Pu)(u(k) k:0

N-i
+ (Ox+Yu)TK(k+l) C + JTK(k+I) ($x+fu) + TKg(k+l) E} -

k=0

{xT[.TK(k+l) 0]x + Tr( K(k+l)) - GT[R + rTK(k+l) I

+ Tr(E K(k+I))]G + uTRu}Iyk-l])
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Min N-i -
=E[ [xT(o)KOnx(o) + Tr(x0 K(O)) + E { xTTDK(k+Ii)Ox

u(k) k=O

+TTr (EOIK(k+l)) x + xTK(k+i) Iu + uTIFK(k+l)Ox

"+ 2xTTr(E OlyK(k+l))u + uTTTK(k+l)Tu + uTTr(Z"K(k+l)) u

" Tr(E K(k+l))l Z N-i TKk+)
K=O0

"+ Tr(E K(k+i)) -GT[R+,FT K(k+ly'f

+Tr(Z0 K(k+l)) G GT[R+-TTK(k+l)T1

+ TrZ (Xy K(k+1)) [G-uTRull I k-lI' (7.48)

Minimizing with respect to u(k) in the usual manner yields:

u~k) = -i¶R+iITK(k+li) + Tr(Z FTK(k+l))I l [-,VTK(k+l)o

+ Tr(EOl K(k+i))] x(k) = -G(k)x(k) (7.49)

The minimum value of the loss function then yields:

T ~N-1i
J = E(AxT(0)K(0)xL(0) + Tr(xOK(0)) Z [t~xG[

k= 0

"+ WTK(k+l)!f + tr(ECCK(k+i))]G -tr(Z"K(k+l)

"+ XT;TK~k+li'GX + xTGTyTK(k+l)OX

"+ 2xTTr (Z K(k+i) )G(xjI Yk-1) (7. 50)
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We summarizeý the above results in the following theorem.

Theorem 7.1

Consider the system given by Equations (7.32) with (7.33). Let the

admissible controls u(k) be functions of Yk-l. Assume that an

optimal K has been found such that it is non-negative definite and

[R(k) K(k+l)'ý + Tr(Y_'ý'ýK(k+l))) is positive definite for all k.

Then there exists a unique admissible control given by Equation

(7.49) which minimizes the expected cost functional. The minimal

value of the cost is given by Equation (7.50).

Remark 7.1

It is possible to modify Theorem 7.1 to include the case when u(k)

is a function of Yk*

Remark 7.2

It is appropriate to note here that the conditional mean defined

above-is not computable in closed form because the truly optimal

filter that will give the true estimate of x is infinite

dimensional. So, we cascade a linear filter with a linear

controller to get a fixed structure for our dynamic compensator.

7.3.3 Fixed Structure Linear Controller

The development that follows is a reformulation of the

original stochastic control problem into a deterministic parameter

optimazation problem using only first and second unconditional

moments.

Consider the linear multivariable stochastic system given by

Equations (7.32) - (7.34). The Optimal Stochastic Control for the

above-mentioned system is to be generated at each instant of time by

the following time-varying controller:
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u(k) = -G(k)x(k) (7.51)

where x(k)c Rn (for nER and n ) is the state-estimate of the true

state vector x(k). x(k) is generated by the linear unbiased
estimator algorithm that was developed in previous chapters.

To achieve the transition from the stochastic to the deterministic
control problem, we define a random vector consisting of the

original state variable augmented with the estimation error:ix1k
t(k) = [ (7.52)

x(k)-x(k)

Let us denote the second moment matrices of L (k) by:

LL10 (k) Lll(k)]

xlk)xT (k) x(k) [x(k)-x(kHl

= [x(k)-x(k)]xT(k) [x(k)-x(k)] [x(k)-x(k)]T (7.53)

The original state equation considered was given by:

x(k+l) = [ 3 x(k) + [3 u(k) + 1&(k)] (7.54)

Ndw, this equation can be written (after some algebraic mani-

pulation) as:

k)A(k-0 G [-) B(k- 1)-l
0 e (k-l) G ) (k-l)
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+ Bku) G(k-l) ( x(k-i)-x(k-1) + [----1 (7.55)

As previously shown, the state estimate x takes the following form:

A A kz 1(k) (All-K2 Ha) Z k1 +K2Hz (k-i)
x(k) =M-l(k) Lyl(k)J= L-~ A2 1 z (k-i)+A2 2 y1 (k-i) +B 2 u (k-i)

4K 2 ý(k-l) +Blu (k-l) +Al 2 y1 (k-i)1

+ 2(k-i)

- '(k) [( -------- A2 (:) k~-1()- G] X(k-1)

+ M (k) (----- ) M(k-i)x(k-i) + M 1 (k) (--4) (7.56)

By appropriate use of Equations (7.53) - (7.56), the following

component matrices of L(k) are obtained:

LOO(k) E 6(k-1)) 0 (B~k-1) G(k-l)J x(k-i)

+ G(k-i) (x(k-i)-x(k-l)) + [ J (_Oe)

[-B [I'- G) + [_B-] Gx-x) + [_O]fl

=D 1Loo(k-l)D1 T+DiLolD 2 T+D2LllD 2 T+2Xý

+ Tr(2XD~ LOO + Y-DD (L01+Ll0 ) + E 2D L11) (7.57)
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where, for convenience, the time indices have been dropped and

where:

D1= [- G D1 = E[DI]
0 a r

D2 = G(k-1) and E [D2 1 = D2

r0

DiDj

E D = cov(DiDj) for i = 1,2;j = 1,2

The equation for the estimation error is given by:

^rA 0 K H (
x(k)-x(k) = - M- 1M(k) ( 2 ) M(k-i) x(k-i)

[Bi FAllfK H- A.2

r 0 I A2 2

+ G-p ̂ ]x + [M) 1 (lk) [K2Ca]
AFfM1 2H / A.,jK 2Ha

Ak 0 -M-Kk M(k-1) - 0 -- 1 )
0I ] A2 1  0 0 A2 2

M(k-1) + [-- G] -[--] G) x (k-1)0

+ (F[-B G-M- 1  (k) .(..K2 Ha A

r0 A2 2
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M(k-l) + -- G] (x(k-l)-x(k-l))+ --

[K2F"a]
- M-l(k) [--

= D3 x(k-1) + D 4 (x(k-l)-x(k-1)) + D 5  (7.58)

Clearly, D 3 , D 4 and D 5 are given by the expression for which they

are substituted in Equation (7.58). Thus,

A' Fol) \ )/
L 0 1 (k) = E [( Dix + DJ2 (x-x) + [__J D 3x + D4 (x-x) + D5 T

T T+- - - -FF1 TD1 L0 0 D3  D1L0 1 D4  D2L10D3T + D 2 L1 1 D4 T + LKJ Ds

+ Tr ( L 0 0  
1 3 +L 0 1 DI 4 +LI 0oz +L 1 1 1 2 7.)

X0 T

Eo [(R 3x + D 4(x-5t) + D 5) (Dix + DI(x-^N + []

= D3 L0 0 D1 T + D3 L01D 2
T + D4 L1 oD1 T + D4 L1 1 D2 T + E D5  [-o

0 YD 3 D1 LollD2DD42

Tr (L 0 0  1 + + + L 4 LII ) (7.60)

and
Lli(k) = E D3 x + D4 x-•) + D5  D3 x + D4 (x-) + D5 ) T]

= D3 L0 0 D3 T + D3 L 0 1 D4 T + D4 L1 0 D3 + D4 L1 1 D4 T + 5 D5

Tr(L0D3 D3 YD 3D4 D4D43

Tr Loo + L0 1  + L1 0  D4 D3 + LII DD

(7.61)
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Note: In all of the above equations the time indices are dropped

for convenience. Also, the actual value of '(2 is given in a

previous chapter on estimation.

We can now write the cost functional by:

N-1 A

J = tr(SL(N)) + 2 tr(Q(k)L(k)) (7.62)
k=0

where:

[F 01 n k [Q + GRG -GTRG1]
SS = [~ 0Iand Q(k) L= GR TG

00 -GTRG GTRG

Expanding Equation (7.62) in terms of its components we obtain:

N-I
J tr(FL 0 0 (n)) + I tr(QL0 0 (k)) + tr(GTRG[L 0 0 (k)-L 0 1 (k)

k=0

-L1 0 (k) + Lll(k)]) (7.63)

Let us formulate the Hamiltonian function:

A

tr(Q(k)L(k)) + tr([L(k+l)-L(k)] pT(k+l)) (7.64)

Now, the canonical equations will be given by:

L* (k+l)-L(k) = aH with L*(0) = L(O) (7.65)
P(k) *

and

P*(k+l)-P**(k) = - aH with P*(N) = F (7.66)

dL(k) *

where * stands for evaluation along the optimal trajectories.
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We can expand the Hamiltonian function given in Equation (7.64) in

the following manner:

R tr(LQ0 0 (k) + tr(GTRG(L00 -L0 1 -Ll0 + l)

L0 0 (k+1)-L00 (k))P 0 (k+l) + (L0 1 (k+l)-L0 1 (k))P 10 (k+1)
+ tr(

L1 0 (k1-L 0 ()) 0 0 (+)+( 1 (k+l) -Ll 1 (k) 0 P 1 0 (k+1)

L 0 0 (k+1)-L 0 0 (k))P T (k+1) + (L 0 1 (k+l)-L 0 1 (k))P 1 1 kl

T T
Lj 0 (k+1)-Ll 0 (k))Pjkl T (L11 (k+l)-Lll(k)) 1kl_

=tr(QLOO (k)) + tr(GTRG(L0 0 (k)-L 0 1 (k)-Ll0 (k) + Llk]

T T
+ tr ((L0 0 (k+l)-L00 (k)) P00 (k+1) + L0 1 (k+l)-L0 1 (k)) P1 0 (k+l)

+( 1 0 (k+1)-L 1 0() P'i(k+l) + (Lii(k+l)-Lllk)(L-L (k) PT 1(k+1))

(7.67)
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Substituting Equations (7.57) - (7.60) into Equation (7.67) one

obtains:

H tr(QL00 ) + tr(GTRG[L0 0 -L01 l.LI0 + L11]) + tr t(DLooDT+DiLolD2 T

D2 TL- D T D D i D
+ DLlol +D 2 L 1 1 D2 T + Et+ Tr(E o LlLo

+ E D2D2Lll)-LOO)pooT(k+l) +D 1 LQ0 D3 T + DlL 0 1 D4 T + D2 L1 0 D3 T

+D2LjlDAT + ro E [L] D T] Tr(L0 01 lD3+ o l DlD + iD 2 D3

4 35 1 4 +L 0

+ L 1 1 E 
2 D4 )-L 0 1 )p 1 0 T(k+1) + (D3 LQ0 D1 T + -3OD D4 L1 QD1 T

+ D4 LjlD 2 T + E[D5  to] + Tr(L OZD3 D, + 1 3 2 + L 01 D4D2 )

- L1 0 )PQ1 T(k+1) + D3 LooID3 T + 5 3LO 1 54 T + 5 4L1 053 T + D 4 L1 1 D54 T +4- 5

+Tr(L0 0 z3D + Lol D3D4 + L0E D4 D4 ) Ll i ~~) (7.68)

The co-state equations can be derived from Equation (7.68) as

follows:

3H___ = -POO (k+l) + Poo(kW
a L00 (k)

= Q+G TRG+D1 TPOO(k+1)D1 TPQQ(k+1)D1 T Plo(k+1)

D3 Plo(k+l) + D3TPl(k+1)DlPo(k+l)

+ D ~TP1(k+l) D3 -Pll(k+1) + Tr(E DI I)Poo(k+l)

+ Tr(E Dl3)Pio(k4-1) + Tr(ED3 D)Pol (k+l)

+ Tr (E 3D ) (7.69)
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dL1H, -P0 1 (k+It) + P 0 k

G GTRG+Dl TPoo(k+1)D 2 +DTplo (k+l)D4 Tp0 1 (k+l) D2

-T DD 2+ D3 Pii(k+l)D4 -Pl0 (k+1) + Tr(Z )P0 0 (k+1)

+ Tr(E i 4 )P1 0 (k+l) + Tr(Z 3 D4 )P0 1 (k+l)

+ Trr 'D 3 D2 'P'lk+l' + Tr (ED3D4 )P1(~) (.0

aH
d~ijtkr = -Pio(k+l) + PI 0 (k)

G GRG+D 2 TPoo(k+1)Dl + Tr( I)POO(K+l)

-T -D 2 D 3
+ D2 P1 0 (k+1)D 3 + TR(z Pokl

-T -D 4 D 1
+ D4 Pol (k+1)D 1 + Tr(z Plkl

- D4 D3+ D4TP 1 1 (k+i-)D 3 + Tr(z )P 1 1 (k+1)-P 0 1 (k+1)

(7.71)

aL1 1 (k) =-Pll(k+1) + P 1 1 (k)

-G ~RG+D2TPOO (k+1)D 2 + Tr(z 2D )POO(k+1) + D2TPl(k+1)D4

D2 D4  -T -D 4 D2+ Tr(E )Pl0 (k+l) + D4 P 0 1 (k+l)D2 + Tr(E )P0 1 (k+l)

+ D4T Pll(k+1)D 4 + Tr(E 4 4 P1 1 (k+1)-Pll(k+l) (7.72)
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Since there is no constraint on the "control" matrix G, the optimal

value of G can be computed as follows:

aH : 0 (7.73)
3G

Obviously, to obtain the above optimal gain matrices, we have to

deal with coupled, highly non-linear, very-hard-to-solve, two-point

boundary value problems (TPBVP) which involve multi-dimensional

matrix difference equations. Thus, no separation exists between

control and filter equations and the only means of solving the

above-mentioned TPBVP is successive approximations of numerical

iteration techniques.

I

304



SECTION 7.4

CONCLUSIONS

The solution to the linear multivariable stochastic

control system with a fixed structure feedback regulator was

presented herein. The complex nature of the matrix equations

generated, even if an analytical solution in a closed form were to

be derived, would make computer simulations a non-trivial problem to

say the least.

For the class of stochastic control problems considered in the

previous pages, the optimum estimator is non-linear and requires

computation of all the moments. Hence, adaptive sub-optimal

controllers with given fixed structures were sought. The class of

admissible controllers were thus fixed to be of linear feedback

regulator type and subsequently, after the problem was reformulated

in a deterministic framework, the free parameters of the compensator

were optimized.

The final time-varying feedback controller wtih its implicit

differential or difference equation requires severe off-line

computations. Thus, to obtain the gains coupled, highly non-linear,

two-point boundary value problems have to be solved. Even though

different approaches (to the estimation problem) were considered,

yet in all cases the high degree of complexity involved in the

estimation problem from the matrix equations for the gains makes it

impossible to obtain comparable analytical results, as compared to

the perfect information situation discussed previously.

Presented herein was a unified theory of stochastic stability and

stabilizability of linear systems with multiplicative and additive

noise under partial information. The fundamental characteristics of

such a system preclude the application of the certainty equivalence

principle. Thus, a simultaneous solution of the estimation and
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stabilization/control problems was treated. The field of stochastic

systems presents a challenging new research area, whereby a novel

approach to robustness in the usual sense, that guarantees minimiza-

tion of a given quadratic performance functional is possible.

Robust stability and performance is a crucial issue in complex

control systems. Designing a controller that will sustain its

effectiveness under parametric and other random variations is of

paramount importance, especially in situations of complex nonlinear

distributed parameter stochastic systems. There is a great deal of

work in this branch of stochastic control and stabilization. Appli-

cation of approximation theory and stochastic nonlinear control

systems should be further reconciled and new methods of dealing with

nonlinearities and randomness is needed for practical

implementation.
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CONCLUSIVE REMARKS

A unified theory of linear stochastic control systems

with multiplicative and additive noise was presented in the previous

pages. This theory, as applied to LFSS modeling and control design

presents a new, probabilistic approach that has several advantages

not the least of which is the inherent robustness it provides to the

controller. Moreover, both stochastic continuous-time and discrete-

time systems were considered for completeness. The stability

characteristics and stabilizability of the closed-loop system was

also treated.

There are extensive worldwide research activities pertaining to LFSS

that are currently ongoing. An enormous amount of literature exists

that covers various aspects of LFSS ranging from dynamics and non-

linearaties, to uncertainties and modeling techniques. Probabilis-

tic approaches to structural dynamics and control is a relatively

new phenomenon that is steadily expanding. The theory presented
herein is an effort to present an approach for more realistic

modeling of LFSS and the subsequent control design that is involved

under the assumed uncertainty conditions. There are other such

procedures that have been suggested by researchers in the field,

(see the references). However, our approach has the advantage of

relating the uncertainties to the model parameters; the statistics
of which is possible to generate with some effort.
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