
6d~ ILE ni T.WMBi10919
TEMH. W UNLIMID TECH. ME
SPACE 368 SPACE 368

N

N

ROYAL AEROSPACE ESTABLISHMENT

"MINIMAL" ORBITAL DYNAMICS

by

A. J. Sarnecid

July 1989

.DTIC
ELECTE DSEP 12 19M u

Procurement Executive, Ministry of Defence

Farnborough, Hants

____ -- i89 9 11 063



UNLIMITED

ROYAL AEROSPACE ESTABL I SHMENT

Technical Memorandum Space 368

Received for printing 30 June 1989

"MINIMAL" ORBITAL DYNAMICS

by

A. J. Sarnecki

Relations between position and velocity vectors at different points on a
trajectory in a pure inverse-square field of force are derived without the use of
geometrical descriptors of the orbit. An along-track 'minimal' transformation
variable is found, which permits the direct integration of the equation of
motion. The result is equally applicable to elliptic, hyperbolic, parabolic and
rectilinear trajectories. The relationship between the transformation variable
and time constitutes an archetype of Kepler's equation, conventional forms of
that equation appearing as special cases. The results allow a further simplifi-
cation for rectilinear motion, with the velocity used as the along-track
variable. The 'minimalist' approach is also applied to the rendezvous problem:
Lambert's celebrated theorem reduces to an obvious observation. Application of
the theorem to the rectilinear trajectory allows the physical interpretation of
parameters introduced by other authors through a purely mathematical analysis.
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Abstract The 'minimal' approach of this paper to the
two-point problem has two main thrusts. First, the

Relations between position and velocity vec- solution of the equations of motion is obtained
tors at different points on a trajectory in a pure without reference to the geometry of conic sections,
inverse-square field of force are derived without though the parameters naturally entering the mathe-
the use of geometrical descriptors of the orbit. matical solution can readily be related, a pos-
An along-track 'minimal' transformation variable is teriori, to the well-known geometric descriptors.
found, which permits the direct integration of the Secondly, instead of assuming the solution of a
equation of motion. The result is equally applic- second-order differential equation in terms of
able to elliptic, hyperbolic, parabolic and recti- (geometrically based) trigonometric or hyperbolic
linear trajectories. The relationship between the functions, a universal solution is obtained by
transformation variable and time constitutes an direct integration, after a suitable transformation
archetype of Kepler's equation, conventional forms of variable.
of that equation appearing as special cases. The
results allow a further simplification for recti- In section 2 a brief derivation of the second-
linear motion, with the velocity used as the alon- order differential equation governing the notion is
track variable. The 'minimalist' approach is also followed by a first integration, resulting in the
applied to the rendezvous problem: Lambert's cele- fundamental first-order equation (the energy
brated theorem reduces to an obvious observation, equation) expressed in terms of the initial position
Application of the theorem to the rectilinear and velocity components. Section 3 presents the
trajectory allows the physical interpretation of 'minimal' transformation needed to make that equa-
parameters introduced by other authors through a tion directly integrable. The relation between

purely mathematical analysis. time and the along-track coordinate so introduced is
derived in section 4; it appears as an archetype of
Kepler's equation. The special case of rectilinear
motion allows further simplification and is treated

Introduction in section 5. This completes the analysis of the
problem in which the conditions at some 'initial'

Problems involving the motion of a body, instant are known and those at a different time are
idealized as a point mass, in an inverse-square-law to be found.
force field, with or without perturbations, are
usually handled with the aid of a general theory of In section 6 the results are applied to a
orbits, which has evolved over several centuries modified two-point problem: the positions at both
and includes a rich treasury of mathematical tools ends of a trajectory and the time of travel are
for analysing, describing and calculating both the given, and the initial (and final) velocity to
instantaneous dynamical properties of the point achieve the rendezvous is calculated; this is
mass and the geometrical properties of its path, usually known as the Lambert Problem and has an
the orbit. extensive literature. Of course, the 'minimalist'

approach yields solutions which are entirely equi-

However, the very antiquity of the dynamical valent to those achieved using traditional methods:

problem, encountered by astronomers long before we start from the same vector differential equation
Newton's discovery of the inverse square law, has and set of boundary conditions; only the methodol-
established a tradition of geometrical approaches ogy is different.
to its solutionl

- 3
. Indeed, the inverse square law

itself was originally deduced from the geometrical Finally, in section 7, the solution of the
properties of observed planetary orbits. This tra- Lambert problem obtained in section 6 is compared
dition persists to this day and the illustrative with the formulations of Lancaster et al (Ref 4,
nature of geometrical representation can be a help expanded in Ref 5). The comparison allows a phys,-
in the comprehension of many features of the dyna- cal interpretation (in terms of rectilinea
mical behaviour. Nevertheless, the preoccupation parameters) of the quantities introduced i .f
with the geometrical properties of the orbit can a purely algebraic basis.
sometimes obscure the physics of the motion, divert-
ing attention from the dynamical aspects, such as
energy and angular momentum, to difficulties asso-
ciated with the geometric descriptors of the orbi-
tal conic, such as the parameters describing the
orientation of its axes. The obscuracion of the
problem is particularly noticeable when the 'all-
points' approach via the geometry of the orbital 2. Basic dynamics
path is applied to problems that really involve
conditions (position and velocity components) at The motion of the point mass is governed by
just two points of the orbit: an 'initial' point, the vector differential equation of second order:
and the point reached at an arbitrary later (or
earlier) instant.
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d2 r ur Substitution in (6) yields

7 *(')2 2 2
dt

2  
r
3  

d r V2R 
2

(

where r is the radius vector from the centre of dt r r
attraction and u is a constant, which integrates to

If R and g are the position and velocity fdr 
2  

V2R
2  

2p
vectors at an initial instant (taken as time -d ) - - - constant
t -0), then the motion is confined to the plane r 22

through the centre of attraction (origin) and con- . W , say ((0)
taining the vectors R and 2 . To establish the This is the energy integral of the motio, (per unit
'minimal' equations of motion we have to define a mass) multiplied by 2. The quantity W has the
reference system in that plane; the obvious choice dimensions of velocity and is real, zero or pure
is the pair of orthogonal unit vectors I and J v imaginary, depending on the total energy of the
with I along R and the sense of J chosen to motion (W or iN is taken as non-negative). In
make 0. 1 non:negative (i is not unique when terms of the initial position and velocity,
. - 0). Thus we can write

R . RI (R > 0) and 9 - UI + Vj (V > 0). (2) W2 . U2 
+ 
V 2 - (21)

For the description of the position r and The first-order differential equation relating r
velocity q at an arbitrary time t , polar co- and t is therefore
ordinates Jr,o) are more convenient than cartesian.
Thus we have (dr 2 _ W2 

2
W 2R2

r - r(I cos O + J sin ) d r r2

and For this differential equation to be analyti-
cally integrable, it must be possible to transform

(I cos 0 + J sin 8) the independent variable in such a way as to make
the right-hand side of (12) a perfect square. To

+(rdo) (0 cos - I sin ) .(4) this end we first express (12). in terms of the
37 - - " quadratic roots of the right-hand side in a dimen-

The radial and transverse components of velo- sionless form, as
city will be denoted by u and v , respectivelyta [d 2 (p (
so that 2(2 Q2 (3)
q - u( coso+j sin)+v(j coso- I sinO) , (5 ) (

where u : dr/dr where V 2 p2Q 
2  

_ W 
2  

, ie VPQ - w

and v - r(d6/dt) and V
2

(2 2 2 
2 

+ v2 w
2

R (4

The differential equation governing the vari- also p
2 
> I > - Q2 (14)

ation with time of the variables Y, 8, u and v

is obtained by differentiating (4) again and sub- and V2 (P - )(I + Q2) . U
2

stituting in (I). fhis results in the equation

The quantity P is always real (and taken as posi-
12 . 2] Q cos O + i sin 0) tive), whereas Q has the same character as W

r dn and is related to the shape of the orbit: in hyper-
2 bolic orbits W and Q are real; in parabolic

[2r + (U co - I sin e) both are zero; and in elliptic orbits both are
* ddt I dt - imaginary.

2 tO o + 3. 'Minimal' transformation of variable
r

whence the standard results We attempt to turn the right-hand side of (13)
into a perfect square by introducing a transforma-~r (L'dL tion of the form

dt r _R a(n)
and 2r - n , (I5)

2(d_ (de) (d 0 (7)
dt J t rdt2/ where a and b are polynomials in n without

It follows from (7) that

2 2
r/O If Q - p 2 the right-hand side of (13)
r rv % constant (angular momentum per is already a perfect square and remains such under

unit mass), any transformation of the form (15), including oneso that found on the assumption that

v R and e - VR
n A- p Q 0 . (16)r We therefore proceed with the assumption (16).

Substitution of (15) into (13) yields
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dr
2  

b aThe constants F, G, H and K are arbitrary; the

dt V2(pb - +Qb)/b2 (17) only implicit constraint on their values is that2f and g should have no common factor, ie that

Now, any comon factor of (a + Q b) and the expression in (25) should be non-zero.

(P'b - a) is also a common factor of
[p2(a + Q

2
b) - -2(p2b. a)] and 2 4. Kepler's equation

(a + Q~b) + (F b - a)l, ie of (P
2 
, Q )a and

(p2 + Q2)b . Thus, apart from a constant, there With the aid of (25) to (27), and using (14),

is no comon factor. It follows that (a + Q2b) and the equation (23) may be rewritten as
(p2b - a) must each be a perfect square. We can

dtPf Qg (P2 + Q 2)(FK - GH)

22 ad (
2  

2 ?
3  ~ 2

(a + Qb) - [f(n)] and (P b- a) - [g(n)!I ,(18) + 2

where f and g are polynomials in n without a L pf - Qg + Pf + Qg Jf

con factor. L .... .. (28)

In terms of f and s This may be considered the archetype of Kepler's

p2f2 - Q
2
2 f2 + 2 equation. When W (and hence Q) is pure imagin-

a - and b - _-& . (19) ary, the logarithm in (28) is multi-valued, con-

p Q P + Q secutive values differing by 2wi ; thus identical

By substitution of (19) in (15) we obtain a trans- values of the motion parameters occur at time inter-

formation from r to the new variable n which vals of 2frui/W
3 

. This implies that the orbit is

makes the right-hand side of (13) a perfect square, periodic, with period T given by

whatever the form of the functions f(n) and 2'ui 2nu

Thus (iW)

R Pf2 (20) Identifying the multivalued logarithm as i times
Sf 2 + g2 an angle E , we can elininate n in terms of E

n t Then we get

and then

dr)
2  

2 2 ,2 2 f2o2 dt - d E - S in ,(30a)

*v (p Q fe d(770 in),Oa
wdt 2 (W) 2(iW)

so that (f g which is a more familiar form of Kepler's equation,

dr 2 2 with E the eccentric anomaly, and with the mean

r V(p ) 2 2 (21) motion and eccentricity expressed in terms of V,

- R, W, P and Q . When W (and hence Q) is real,
Elimination of r between (20) and (21) yields on the other hand, the logarithm in (28) is single-

2 2 valued and can be identified as the hyperbolic

r . (fg gf 2 equivalent of eccentric anomaly (usually denoted by
a (pf2 ) (22) B); elimination of n leads to the hyperbolic

analogue of Kepler's equation

where f' - df(n)/dn g' - dg(n)/dn 2 +2 s i

Then, without any new assumption regarding 
f and dt - 2 p sih2 - 30

g , (22) may be expanded in partial fractions as
The elliptic and hyperbolic forms of

dt 2 Q 2 f - gf') equation (30) both require the explicit determina-

dto2 + Q2 ' - ,tion of the parameters P and Q , as defined in

- 2W2(13). This is equivalent to finding the pericentre

+ 2u . '2 -a.. (23) of the orbit, which is a geometrical concept

g2j 2 2 2 22 extraneous to the 'minimal' problem of relating the
(Pf + Qg5 VW pf f Q g position and velocity at a 'final' instant to those

at an 'initial' instant. To tackle the problem
The simplest non-trivial form for f(n) , without calculating P and Q , we can introduce

g(n) is linear: a constraint on F, G, H and K . so as to set

f -F + Hn and g - G + Kn (24) n-0 at t - 0 , when r - R and u - U . Then,

according to (20) and (21), we must have

with F, G. H and K constants. Then p2F2- Q2G2 . F 2 2 and V(P
2 
+ Q2)FG - U(

F2 + 
G
2

gE' - gf' - FK - GH (constant), (25) 
...... (31)

and It follows that

f! -
gf  (PH + QK)/(Pf + Qg) -F

2  
- 2 F2 

+ G 2  
VFG

" f g -(PH - QK)/(Pf - Qg))/2PQ , (26) I + Q P - I P 2 Q

whilst so that, in terms of F and G

d(Pf - Qg) (PH - QK) and d(Pf + Qg) . (PH + QK). p . (US + VF)/VF and Q2 (UF - VG)/VG . (33)
dn do ...... (27)
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In view of (14) and (33), F and G are to be found from (42); then the quantities r, u,

constrained by v and e can be determined as follows:

UV(F ) (V
2  

W
2 
- U 2)FG (34) r is given by (38)

The denominator2 in the right-hand sides of (20) and u is given by (39)

(21) is f'2 + g ; expressed in terms of n , substitution of (38) in (8) yields

f 2 2 . (F2+G2) + 2(FH +GK)n + (H
2  

K 2)n
2  

(35) v = V[(1 - UX) - (WX) /(2 I + V 2X ) (43)

So far H and IL are unconstrained; it is and

convenient to choose them so that the linear term [2 = V X )]Vdx
in (35) vanishes. Then we put - 2 arctan V . (44)

_-- , (36) Thus VX is identified as the tangent of half the

angle turned by the radius vector from the initial
and get, with the aid of (33), position.

f2 g 82 . (F 2 
2
) [ + K 2n2 /F 2 In vectorial form the results can be written

p2f2 Qg2 . (F
2
+ G

2 
)[(- KUn/VF) - (KWnI/VF) 2, as

V(p 2Q 2)fg - (F2+G
2 ) 

[U +(V 2+W2U2)Kn/VF - - r[() - V 2 1  + 2VXI]/(I + V2X)

2 UK2n2 - R[0] - V
2 2 

2 2VX ]/[(I - U) 2_ (Wx)
2] 

(45)

and
...... (37) - u[( - V

2 2
) 2V +v[(i - V

2 2
)-2V }

On substitution in (20) and (21) we get q V 22

Rr [ -KnV)2_ 2 2r2 2R/r - f(I-KUn/VF)
2
-(KWn/VF)2]/[1 Kn2/F] +(4

S{U + (W
2 

-V U
2
_ V)X/( + V2X2)}

and +(Vi + (W
2 

- U 2)X2 1/ + V 2X2))i (46)
dr [U + (V2+ W

2  
U2 ) Kn/VF-UK22/F2]/[!+ 2r2 /F2 ,

dt These formulae apply for all values of U, V and

and then, on denoting Kn/VF by X , (non-zero) R . However, when W - 0 (zero total
energy, orbit parabolic), equation (42) takes the

R(I + V2 x) form 0 - 0 and has to be expressed differently,
S UX)2 (38) eg by expanding both sides in powers of W and

[(] - (comparing the leading terms, allowing for the con-
and straint between U, V and R expressed by (I).

U U + (V2 , W2 2 U2)X - 2UV22 The result isu - U--(
= 

V + -U2x (39) 2x 4×
t d= 22 - (R7)

I+V2X - UX) 2 3( - UX)
3  

(47)

Then, on eliminating r between (38) and (39),

we obtain 5. Rectilinear motion

dt 2R I V
2

1
2  

Equations (38) to (47) require no modifica-

dx [I - (U + W)Xj1
2 1 - (U - W)Xj/ tion when V - 0 , though the right-hand sides of

(43) and (44) become identically zero, expressing

77T uuW -x U 1 - U+W WT the physical fact that the motion is confined to

W -l 4X I - -X 2W
2  

a straight line. Furthermgri, with the vanishing
of the terms containing V X in (39), that

V 22 + V
2  

(U - ) equation becomes linear and allows the elimination
X1(I - U) - () 2 1 - U1 + +-x)2 (40) of X in terms of the (radial)velocity u :

so that u - U
dt - d 1 - UX - W+ R W 2 (48)

W
3  

2 UX 
+ 

WX 2W2 Substitution in (42) and (38) then yields (with

V 2 +
(U+W)

2  V 2 +
(U W)

2  
V.0)

[L .w) (I,-ux-wX7* (u- w) (I-ux +wx
...... (41) t ln (U + W)(u - 14) W (u-U) x

....(3 t (U -W)(u + W) 2, U

and therefore, since t - 0 when X 0 , the u U +4 U9
'minimal' version of Kepler's equation is U *+ 1 U - 1 (49)

-- °ln I W1 * ( + - (U-W) V 2 (U- ) 2 nd

V I -U X + l 
2 

w 1 - - I - U X W X r R (U 
2  

W 
2 )

...... (42) r= .(0

Just as for other forms of Kepler's equation,

when t is given, the along-track parameter X has
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In rectilinear motion,equation (II), defin- - UX - W)( 2W
ing W , reduces to t In 1 + 

2

2 2 
2

w 21 1i - UX)+W I U - NOxTW 2  

+ 

U2 

_2U
W - ; (51)2

and the equations (50) and (51) may be combined as + - UJ ,(57)

r(u - W
2
) - R(U

2 
- W 

2
) - 2u . (52) r[(I - Ux) - (x) 

2  
R(I + V 2X 

2
) (58)

Although this cannot occur in the real world, [(R + r)
2 

- c2 IV x2 c - (R - r)
2  

(59)
if the attracting central body is reduced to a
point, then the pericentre of the rectilinear and

motion occurs at r - 0 . The velocity u is R(U
2 
+ V

2 
- W 

2 2
u (60)

infinite there and changes sign from negative to I
positive as the point mass 'bounces off' the centre With the aid of (58) we can eliminate V
of attraction. The time from the initial point to from (59) and (60), getting
the centre is found from (49) by taking limits as
u tends to infinity: [(R + r) - c

2 ] 
Hl - UX)

2 
- (Wx)I - 4R

2  
(61)

- (In
U + W 

- ) (53 and

tp - U - •
r[(I -Ux) 2-(W) 1 +R(U2-W ) - 2u] = R . (62)

In the further limit as W - 0 (rectilinear
parabola), we have This leaves (57), (61) and (62) as three equations

- -u in the three unknowns x(, U arid WI. However, the
X ,equations can be rewritten so that the unknowns

1 jappear only in the combinations

2 2
ru - RU

2  2
w , (54)

4 J j(0 - Ux)/R X , say (63)

t - _ and [Wy/Rl , = Y , ay.
The coefficients in the equations depend on

and the known values of W, t, c and (R + r) , but

4 2R (55) are independent of (R - r) ; thus

6. The Lambert Problem and Lambert's Theorem 2 = t (64)

So far we have considered the 'two-point'

problem with the initial position and velocity both [(R + r) - c
2 I[X - y2 - 4 (65)

given. The results can be applied also to the and
problem in which it is the initial and final posi- (f + r)W2IX

2 
- 2 1 y 2W X (66)

tions that are given, together with the time inter-

val, and the velocities at the end points are to It follows that the quantities W, X and Y in
be found; this is known as the Lambert Problem (or (63) depend only on p, t, c and R + r , and not

the rendezvous problem), on R - r . This proves Lambert's Theorem, which
states that, with p and energy (ie W) given,

The equations (38) to (47) continue to apply, the time of transit t depends only on R + r and

but now r and 8 (as well as R) are given, c
whilst U and V (and hence W) are unknown, as
also is the transformed variable X . With t Lambert's Theorem permits the definition of
given, equation (42) contains four unknowns (x,U,V equivalence classes of triangles (formed by the

and W) constrained by (11), (38) and (44). centre of attraction and the two end points of the

trajectory) for which the relation connecting t,
The complexity of the problem (four equations W, X and Y is identical for the members of a

in four unknowns) is reduced if the geometry of the class; all such members have the same R r and

end-point triangle (formed by the two end points c but are distinguished by the differing values of
and the centre of attraction) is specified not by R - r . This is considered further by Gooding

6
.

the two sides and included angle (R, r and 8) but
by the three sides, viz R, r and c , where c In particular, each equivalence class

is the distance between the end points, so that includes a pair of degenerate triangles for which

2 2 2
c R + r 2Rr cos 8 eR - rl - c

and I-cone c2 - ( r)
2  

ie such that the two end points and the centre of

V2X2 a c a c n T v toI cos e (R + r)
2  

_ c2 and Y with time can easily be found for the
degenerate triangle (in which the motion is recti-

In terms of R, r and c , the four equations in linear), but the results so obtained apply to all

X. U, V and W , viz (42), (38), (56) and (1I), members of the particular equivalence class. We

can be written as distinguish the outer and inner end points of the
equivalent rectilinear motion by the suffixes I and



2, retaining the unsuffixed notation for the two- and hyperbolic trajectories (the parabolic trajec-
dimensional original problem. Thus the two sets tory being a transitional case) and applying suit-
of radii and velocities are related by able (and different) transformations of variable o

arrive at a single algoritlhm for both types of
2RI  . R + r + c , 2R2  - R + r - c (67) orbit. The transformations are introduced as

mathematical tools of convenience and no physical
and, in view of (60), interpretation is offered by the authors for the

end results. In fact, the L-B-D parameters can be
(u R2(u ) + V W

2  
interpreted in terms of the Lambert-equivalent
rectilinear motion, as discussed in the present

r(u 2+ v
2 

_ 2) paper. As the L-B-D parameters are all dimension-
less, we first have to express our formulae in a

...... (68) dimensionless form. To this end we must define a

From (49), the equation relating transit time scale length and scale velocity related to the geo-
to the other quantities is metry of the end-point triangle (but common to awhole equivalence class), independent of the parti-

cular rime of transit (which is the input variable
'(U + W)U 2  W) + W IR2U R UI]I , (69) to the problem). These scales may be defined as

W In (13 . W)(U 2  2 1 [the radius and the escape velocity at the outer

where the skew-symmetric form of the second right- point of the Lambert-equivalent rectilinear triangle,

hand term has been obtained with the aid of (68). ie length scale - R1

A numerical solution for U1 , U2  and W can andvelocity scale (77)
now be obtained using one of the unknown veloci- whence velocit I
ties as the iteration variable and calculating time scale -h(Rc/20
the others with the aid of (68). An accurate
computing procedure for the solution, using a
dimensionless form of U as the iteration vari- The dimensionless versions of our formulae
able, is described by Goading6. (68), (69) and (72) to (76) are

Having found the values of U U and W for 
2
- W

2  . [U2  W . (78)
the given transit time t , we can determine the R

other parameters in (63), since, from (48)- ( [UI + WI [U2- W1

2 t +- lnU2*[ UU1 (79X - [I !-U((U 2 - [LU2-W22 W[ Ul - I U 2 + W] W[R2U2- 1)

...... (70) x = RU - U 2 1  (80)
and 2

y = WI(U , I - U2 )(U W MR W( U2 )/211 U -U /[U-U 2 1, (81)
......... (71) c2_ (_r2 1

V c -(R -r(82
and therefore, for the individual members of the V c U82-
equivalence class, FR + r)

2 
-Rc+ r

- R- (72) - U1U2 /[U2 - U] (83)
and ,and ic2 2

U - WII - RXI/RY (73) v c _2 __-----l - (R - r) 2 (84)

whilst from (36) and (72) it follows that r7U U 21 (R + - 2

2 _ 
2  

The L-B-D parameters are related to those of
(C r -(R - )(74 the present paper according to the following table:

L-B-D notation Present notation
Also, from the symmoetry of the geometry (or from Lengths
a manipulation of previously derived formulae) it s R
follows that

c c
u - - W[I - rX]/rY (75) Dimensionless quantities

and 1 - (R- r)2i K (-q2) R2
v - r + r)

2 
- c " (76) T 2t

E W
2

This completes the solution of the Lambert Problem. x -U)

7. The Lancaster-Blanchard-Devanev method y (elliptic) iW

(hyperbolic) W

Lancaster, Blanchard and Devaney
4 

("L-B-D") z/q -U2
developed a method for solving the Lambert problem
in a coherent fashion, by starting from the clas- x-qz R2 [U2  U

sical formulae which are different for elliptic



9
W, * W]IU 2 - W between large quantities have to be calculated.

2 (There can therefore be no hard-and-fast rule which
T(elliptic) -iIn U- W[U2 + W would state that a particular set of orbital elements

1u1 + W] [U2 - W] is better than all others in all circumstances. The
success achieved here with the direct relationships

(hyperbolic) -I In [ -~-- ~ + [U2  Wi between the position and velocity vectors at two
1 2 particular points, supplemented only by the velocity

f/q (elliptic) iw[U] - U ]  W , suggests that perturbation effects might be
1I 2 expressible in terms of the (slow) variation of the

(hyperbolic) W[UI - U] osition and velocity at a selected epoch.
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No physical interpretation is offered for the
angular parameters a, B, y and 6 , which are Referencesrelated

2
,3 to the geometry of the elliptic or

hyperbolic trajectory. A final comment concerns 1. Smart, W.M., 'Celestial mechanics'. Longmans,
the separation of the expression for the transit Green and Co, 1953.
time into two terms described by the L-B-D function
* (and used only for near-parabolic trajectories). 2. Battin, R.H., 'Astronautical guidance', McGraw-
The two terms correspond, in the rectilinear equi- Hill Book Company, 1964.
valent motion, to the times taken from either end 3. Herrick, S., 'Astrodynamics', Van Nostrand
of the trajectory to the instant of 'bouncing' off Reinhold Co., 1971.
the centre of attraction, the pericentre of the
rectilinear motion. 4. Lancaster, E.R., Blanchard, R.C. and

Devaney, R.A., 'A Note on Lambert's Theorem',
8. Conclusions Journal of Spacecraft and Rockets 3(9): 14-6-

1438, September 1966.

The 'minimalist' approach to orbital dynamics 5. Lancaster, E.R. and Blanchard, R.C., 'A niiec
leads naturally to various basic results, in parti- Form of Lambert's Theorem', NASA TN D-5368,

cular as regards the prediction of position and Septcmber 1069.
velocity at a later time when initial conditions
are given, and in the solution of Lambert's rendez-
vous problem. The proof of Lambert's Theorem 6. Gooding, R.H., 'On the Solution of Lamberr's
becomes almost trivial. Furthermore, the elegant Orbital Boundary-Value Problem', RAE
formulation of Lancaster, Blanchard and Devaney Technical Report 88027, 1988.

is given a physical interpretation.

This approach, applied to the unperturbed
inverse-square-law field of force, bypasses the
classical analyses anchored to the geometrical pro-
perties of the orbit, and avoids the complications
associated with the orientation of the orbital
conic.

Orbital motion of a point mass is described
by a three-dimensional vector differential equation
of the second order, and therefore requires six
parameters (orbital elements) to describe it fully.
Five of these may be used to describe the path in
space, and the sixth to relate it to absolute time
(as by stating the time at pericentre or the cros-
sing of a reference plane). The classical set of
spatial elements

- 3 
consists of two describing the

shape and size of the orbit (a.e) and three angles
giving the orientation of the axes of the orbit
(i,2,). An alternative spatial set is provided by
the five independent components of the (mutually
orthogonal) angular momentum and eccentricity

vectors, which can be defined in terms of tne posi-
tion and velocity vectors. In principle it does
not matter which six elements are used to describe
the orbit, provided they are not subject to an

internal constraint. In practice some choices
make the problem ill-conditioned (eg pericentre-

related parameters in near-circular orbits, or
node-related parameters in near-equatorial orbits).
Additional difficulties may arise in numerical
work, with loss of accuracy when small differences
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