
MASSACHUSETTS INSTITUTE OF TECHNOLOGY VLSI PUBLICATIONS

q~JU

VLSI Memo No. 89-547 It

July 1989

Adaptive Backoff Synchronization Techniques

Anant Agarwal and Mathews Cherian

Abstract

Shared-memory multiprocessors commonly use shared variables for synchronization. Our

simulations of real parallel applications show that large-scale cache-coherent multi-
processors suffer significant amounts of invalidation traffic due to synchronization. Large
multiprocessors that do not cache synchronization variables are often more severely
impacted. If this synchronization traffic is not reduced or managed adequately, synchro-
nization references can cause severe congestion in the network. We propose a class of
adaptive backoff methods that do not use any extra hardware and can significantly reduce
the memory traffic to synchronization variables. These methods use synchronization state
to reduce polling of synchronization variables. Our simulations show that when the
number of processors participating in a barrier synchronization is small compared to the
time of arrival of the processors, reductions of 20 percent to over 95 percent in synchro-
nization traffic can be achieved at no extra cost. In other situations adaptive backoff
techniques result in a tradeoff between reduced network accesses and increased processor
idle time.

Appro;-od fr P iji rele as m
DinflOI'onl Unliited

89 9 01026
Microsystems Massachusetts Cambridge Telephone
Research Center Institute Massachusetts (617) 253-8138
Roor 39-321 of Technologv 02139

Acknowledgements

To appear in the 16th Annual Symposium on Computer Architecture, Jerusalem, Israel, June
1989. This research was supported in part by the Defense Advanced Research Projects
Agency under contract N00014-87-K-0825 and by IBM under a joint research program.

Author Information

Agarwal: Laboratory for Computer Science, Room NE43-418, MIT, Cambridge, MA
02139. (617) 253-1448.

Cherian, current address: Intel Corporation, Santa Clara, CA 95051.

Copyright0 1989 MIT. Memos in this series are for use inside MIT and are not considered
to be published merely by virtue of appearing in this series. This copy is for private
circulation only and may not be further copied or distributed, except for government
purposes, if the paper acknowledges U. S. Government sponsorship. References to this
work should be either to the published version, if any, or in the form "private
communication." For information about the ideas expressed herein, contact the author
directly. For information about this series, contact Microsystems Research Center, Room
39-321, MIT, Cambridge, MA 02139; (617) 253-8138.

Adaptive Backoff Synchronization Techniques1

Anant Agarwal and Mathews Cherian
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139

Abstract

Shared-memory multiprocessors commonly use shared variables for synchronization. Our simulations of
real parallel applications show that large-scale cache-coherent multiprocessors suffer significant amounts of
invalidation traffic due to synchronization. Large multiprocessors that do not cache synchronization vari-
ables are often more severely impacted. If this synchronization traffic is not reduced or managed adequately,
synchronization references can cause severe congestion in the network. We propose a clam of adaptive backoff
methods that do not use any extra hardware and can significantly reduce the memory traffic to synchro-
nization variables. These methods use synchronization state to reduce polling of synchronization variables.
Our simulations show that when the number of processors participating in a barrier synchronization is small
compared to the time of arrival of the processors, reductions of 20 percent to over 95 percent in synchro-
nization traffic can be achieved at no extra cost. In other situations adaptive backoff techniques result in a
tradeoff between reduced network accesses and increased processor idle time.

rAcce,*jO'j O.

NTIS CR.A&I

DTIC TAB
U r. ,0 nCi d Li
JW ticf atic'n

Availability (.',ies

Dist AvS, Ij or

. Appears in I1h Annual Symposium on Computer Architecture, Jerusalem, Israel, Jume 1989.

1 Introduction

Processor self-scheduling schemes in shared-memory multiprocessors commonly use shared variables to synchro-
nize activities among processors [6, 22, 15]. This use of synchronization variables often leads to widespread W
sharing among processors. Our trace-driven simulations of parallel applications show that these widely shared
synchronization variables adversely impact the performance of large-scale multiprocessors, cache-coherent or
otherwise.

In systems without hardware support for cache coherence, such as the IBM RP3 [18], Ultracomputer [9],
Cedar [7], these references to shared variables must traverse the interconnection network. Not only do synchro.
nization references consume a significant fraction of the network bandwidth, but more important, a widely-shared
synchronization variable (such as in a barrier synchronization) will result in heavy traffic to the same location
in memory and cause hot-spot contention problems 119].

On the other hand, in systems that use directory schemes to maintain cache coherence, we show that syn-
chronization variables result in excessive invalidation traffic when the number of pointers in the cache directory
is limited. A potential solution for the cache directories would be to implement software combining trees [25]
for synchronization variables. As long as the degree of the nodes in the combining tree is less than the number
of pointers in the cache-directory, then synchronization variables will not result in extra invalidation traffic.
We are currently investigating this approach and will not address it here. An alternate method is to disallow
caching of synchronization variables.

In this paper we consider software schemes to reduce the number of synchronization spins in multiprocessors
that do not cache their synchronization variables. We propose a set of adaptive backoff techniques which make
use of available synchronization state information in order to "back off" and postpone polling a synchronization
variable.

The general idea of backoff has been used in one form or another in a number of applications. The approach
was first used in Aloha [1], a radio-based, packet-switching network. If a collision occurred in the network,
each source would backoff for a random interval before attempting to retransmit. The Ethernet [16] went one
step further and used a random retransmission interval in which collision history influenced the choice of the
mean of the random intervals. Adaptive control schemes for multiple access communications networks have
been analyzed in [13, 12, 14]. In addition to backoff history, we use information such as the expected time that
the resource becomes available, or the network load, and adapt to the current circumstances.

We evaluate the performance of adaptive backoff synchronization techniques by applying them to the bar.
rier synchronization. Barrier synchronizations are commonly used in applications to guarantee that all proces-
sors have reached a point in a program before proceeding.

This paper focuses on barriers implemented using two shared variables with busy waiting (or spinning) on
synchronization variables [22] (described in detail in a late q -' n). While this form of implementation is
quite common, especially when exploiting fine-grain paralle.xm, Lernate barrier implementations might use
a scheme where all but the last processor to arrive at the bar. re put to sleep (or blocked). Reactivation
of the processors is contingent on a condition variable signalled when the last process arrives at the barrier.
This method avoids the extra network traffic of polling a barrier flag, but incurs the potentially high overhead
of enqueuing a process on a condition variable. Often, the choice of busy waiting or blocking cannot be made
at compile time due to uncertainty in execution times of processes. In such cases, our adaptive methods can
be used to decide when it might be best to take a busy-waiting process out of circulation and queue it on a
condition variable as explained in a later section.

Hardware support for barriers has also been proposed in several forms. The RP3 [18] proposed using
a combining network in which the switches contain special hardware to combine simultaneous data accesses
destined to the same location in memory and forward one request. This would eliminate contention in the
network and at the memory modules, but RP3 cost estimates for this approach predict that switch size and/or
cost for a 2 X 2 switch could increase by a factor between 6 and 32. Several cache-coherent multiprocessors allow
simultaneous invalidates of all cached copies of a block. In such systems all repeat accesses of a synchronisation
variable can be satisfied by the cache. However, the need to rely on resources that can support broadcast
invalidates, such as a shared bus, limits the scalability of such systems. The PAX computer [10] uses special
global-synchronization logic implemented in hardware to allow low-latency, low-cost barrier synchronization.

2

Issues which arise with this approach concern flexibility in allowing multiple numbers of barriers to execute
simultaneously with varying numbers of processors.

Our results show that backoff techniques applied to barriers yield reductions in synchronization traffic by 20. percent to over 95 percent in cases where the number of processors involved in the barrier is small compared to
the time of arrival between processors. In other situations, these schemes provide a tradeoff between cost (in
terms of processor idle time) and performance. The user can determine this tradeoff depending on particular
needs or the application being run. We also discuss other applications of adaptive backoff schemes in Section 8.

The rest of this paper is organized as follows. We first present results from our trace-driven simulatioms
describing how synchronization impacts large-scale multiprocessors. We then describe the network model that
we assume for this study. Section 4 presents the adaptive backoff synchronizations techniques as they apply
to barriers. We then discuss the barrier evaluation model and our simulation methodology. We evaluate these
ideas and discuss the tradeoffs involved in their implementation using a simple analytical model and through
simulation- in Sections 6 and 7. Sections 8 and 9 suggest extensions to our work and summarize our findings.

2 The Synchronization Problem

In this section we present data from trace-driven simulations of the FFT [4], SIMPLE [5], and WEATHER [11]
applications and explain why synchronization is a problem in large-scale systems. We will illustrate the problem
through the barrier synchronization example.

A typical implementation of a barrier might use a shared variable whose initial value is zero. Each processor
arriving at the barrier increments the shared variable. If the variable attains the value N, implying that all N
processors have reached the barrier, the processor can proceed. Otherwise, it repeatedly tests the barrier until the
above condition is true. The increment operation on the barrier variable must be atomic. This implementation
has the drawback that each processor attempting to increment the barrier variable must contend with all the
others simply polling it to test for the proceed condition.

A better implementation, e.g., Tang and Yew's [22], splits the barrier into two shared variables: an incre-. menting variable (henceforth called the barrier variable) initially set to zero, and a barrier flag variable also
initially reset. An arriving processor increments the barrier variable. If the variable's value is less than N, the
processor polls the barrier flag which is set by the last processor to reach the barrier. Even this scheme requires
that the last processor to reach the barrier compete with the N-1 processors testing the barrier flag when it
tries to set the flag.

The important point to note, however, is that in both implementations, the shared variables involved are
necessarily shared among all processors in the system. It is precisely this widespread sharing which impacts
performance when scaling to large systems.

2.1 Synchronization References and Scalability

The widespread sharing that occurs with synchronization variables is not a problem when used in bus-based
snoopy-cache multiprocessors [8, 23]. Because snoopy-cache-based protocols perform broadcast invalidates or
updates, a variable shared among all processors generates no more traffic on the shared bus than a variable
shared among only two processors. The limitation of snoopy-based schemes, however, is that they do not scale
to large multiprocessor systems. Since these schemes require low latency broadcasts for cache coherence, as well
as the ability to "watch" all bus transactions, they must use a shared bus for communication. A single bus
cannot offer the bandwidth demanded by large-scale shared-memory multiprocessors.

Unfortunately widespread sharing of synchronization variables can drastically impair performance in large-
scale multiprocessors, cache-coherent or otherwise. First, let us consider multiprocessors with coherent caches,
where a directory is used to keep track of cached copies of shared blocks. In general, for every memory block,
a directory must store as many pointers as the number of processors (say N) in the system (3]. Such a scheme
is termed DirNNB, for N-pointers-No-Broadcast in [2]. In practice, it is possible to maintain just i pointers
(i < N) to yield the DiriNB scheme [2]. Invalidations are forced to limit the cached copies of a block to i, or to
gain exclusive ownership on a write. Results in [2] showed that during an invalidation situation, few invalidations

3

Ablbestl,,,ft
Figure 1: Cache invalidation statistics for SIMPLE with 64 processors. The height of a bar at x reflects the fraction
of write kits to previously clean blocks that resulted in x invalidation messages.

were actually necessary. Results from our trace-driven simulations of 64-processor systems discussed below as
well as the results in [24] corroborate the findings in [2].

Figure 1 shows an invalidation histogram for a 64-processor simulation of DirNNB driven by a trace from the
SIMPLE application. We also ran simulations on FFT and WEATHER application traces with 64 processors.2

The simulations used direct-mapped caches of size 256KBytes and block size 16 bytes. The graph shows the
histogram of the number of invalidations required during a write to a previously clean block. We see that in
over 95 percent of the times that an invalidation occurred (in both 16 and 64 processor simulations), a block
had to be invalidated from no more than three caches. Invalidation histograms for FFT and WEATHER had
a corresponding figure of over 99 percent. The graphs shows the percentage of writes which resulted in invali-
dations to up to 12 caches. Writes resulting in invalidations of greater numbers of caches were proportionately
insignificant.

Why do synchronization references hurt performance? Our simulations revealed that synchronizsation vari-
ables were largely responsible for the cases in which more than three caches were invalidated. Synchronization
references are even more damaging when the effect of simultaneous read sharing is considered. Recall that using
i pointers limits simultaneous read sharing of a block to only i copies, and invalidations must occur to enforce
this rule. For synchronizations like barriers, active sharing might occur among all processors involved, resulting
in a high invalidation rate in directory-based schemes.

Table 1 shows the fraction of synchronization references out of the total number of synchronistion ref-
erences which resulted in an invalidation. The percentage is far higher than the corresponding fraction for
non-synchronization data references. The values in the table are slightly pessimistic, because the processors
were simulated to make memory requests in round robin fashion (see Section A in the Appendix for more
details). In all css the percentages of references resulting in invalidations for both non-synchronization and
synchronization references improves as the number of pointers in the scheme increases from two to three.

It is clear that invalidation traffic due to synchronizations can be deleterious to the performance of cache-
coherent multiprocessors. One solution is to use. software combining trees. Alternatively, one can disallow

2See Section A in the Appendix for a deripticas of the qplicati ns, the tracng technique, and multipromeor simulation

4

Application Pointers Non-Synch. Synch.
2 -85 9. 5

. 37.1 81U.3

SIMPLE 4 6.0 81.m 5.2 -99
64 .53 1.2

2 1.9 99.9
3 -TT -9.9

WEATHER 4 1.5 99.9
m 1.5 99.9
64 1.2 .03
2 6.7 99.0
3 5.0 -99.

FFT 4 3.5 9.W
5 3.5 8.

643.51 3.5

Table 1: Percentage of synchronization and non-synchronisation references that cause invalidations in directory schemes
with 2, 3, 4, 5, and 64 pointers. Synchronization references comprised 0.2%, 7.9%, and 5.3% of the data references in
FFT, WEATHER, and SIMPLE respectively.

caching synchronization variables.

2.2 Disallowing Caching of Synchronization Variables

If most synchronization accesses cause invalidations that involve multiword transfers, then why cache synchro-
nization variables? The problems with this approach are similar to those in multiprocessors that make all shared

* locations uncacheable: increased network traffic and potential hot-spot contention. Synchronization references,
such as those due to a barrier, are often to the same location in memory and only a small percentage of all
data accesses to the same "hot" module can cause tree saturation [19] in the interconnection network and a
corresponding severe drop in the effective memory bandwidth.

Table 2 shows that the percentage of uncached synchronization traffic to memory out of the total data traffic
can be large. We compute traffic to memory by summing the total number of network transactions generated
by references. For example, in the case of a cache miss, two network transactions are generated: one to send
the requested address to memory and one to send the requested data from memory to the processor.

The reason SIMPLE and WEATHER generate far more synchronization traffic than FFT is that their load
balancing is not as good as in FFT (see Section A for details), resulting in more synchronisation accesses at loop
barriers as processors wait for all processors to arrive. The slight relative increase of synchronisation overhead
in all cases when going from two to five pointers is because synchronization traffic remained constant while
invalidation traffic (part of total memory traffic) decreased as more pointers were available for sharing of blocks.

Therefore, if we are to scale multiprocessors, network traffic due to synchronisation must be rigorously
minimized.

In large-scale shared-memory multiprocessors, such as the RP3, Ultracomputer, Cedar, all traffic to shared
variables must go over the network3 , and the relative fraction of network accesses attributable to synchronisa-
tion is slightly smaller. We measured memory traffic when shared variables were not cached and found that
synchronisation traffic accounted for 25.5%, 49.2%, and 1.47% of the total traffic in SIMPLE, WEATHER, and
FFT, respectively. Our motivation for reducing the network traffic, especially traffic that is partial to a specific
memory location, still remains.

The adaptive backoff techniques we are proposing are software solutions to help alleviate the hot-spot
contention problem by reducing the number of idle synchronization spins. These techniques could even be used

'Aithough tmporwy cchin f shared location with compiler bated cache flush directives can help relieve netwwk load.

5

Apr! le tion Pointers Trafc
222.0

SIMPLE T 2.T

64 35.3

2 55.4

WEATHER

64 59.9
2 1.3

FFT 4 1.5

641.

Table 2: Synchronisation trafc to main memory as a percentage of the total traffic when the synchronisation variables
are not cached. Block size is mumed to be 16 bytes and cache size is 256KBytes. The non-synchronisation blocks are
cached and coherence is maintained using directory schemes with 2, 3, 4, 5, and 64 pointers.

in conjunction with hardware solutions such as a combining network. The combining network is much slower
than a conventional network, so we still would like to reduce the amount of synchronization traffic traversing
the network.

3 The Network Model

The network model that we assume is the following: processors can access any memory over the network in one
network cycle. We do not model network contention, but do model contention for the barrier variable and Rag.
We also assume that the barrier variable and flag are in different memory modules, so simultaneous requests
to the two by different processors can be satisfied. We assume that in a network cycle only one processor can
access the barrier variable or the barrier flag. If a processor is denied access to the variable in a network cycle it
repeats the access to the variable in the next network cycle. This model might correspond to a crossbar switch
where the only contention is for the end memory modules that have the barrier variable and Rag; contention
due to other non-synchronization references is not included. It also roughly approximates the performance of a
circuit-switched multistage interconnection network, where the network cycle time can be the round-trip time
over the network. In the latter case the contention at intermediate network nodes is not included.

The network traffic rates computed using our barrier scheme might also be input into a more complex model
of a multistage interconnection network such as that proposed by Patel [17] if network contention results are
desired. Unfortunately Patel's model does not account for hot-spot contention. We are also using large parael
traces of real applications derived using various synchronisation schemes to drive network models to obtain
performance estimates in the presence of hot-spots caused by barrier traffic and when the barrier traffic is
reduced using our techniques.

4 Adaptive Backoff Barrier Synchronization

The basic idea behind adaptive backoff meth6d.i simple. An adaptive backoff barrier technique makes use of
available information in deciding how long to wait before trying to read a barrier Blag rather than continuously
polling the flag. If necessary, the adaptive method can also provide a hint to the processor to queue itself on
the barrier flag.

We will assume barriers implemented using a separate barrier variable and a barrier Rag as described earlier.
60

If the barrier variable and flag are one and the same object, the relative advantage of using adaptive backoff
techniques will be even greater.

O 4.1 Backoff on the barrier variable

The first method, called backoff on the barrier variable, is the simplest and tries to reduce unnecessary network
accesses on the barrier flag. In this method, the barrier implementation is optimized by making use of the
state of the barrier variable. The barrier variable value reveals the number of processors waiting at the barrier.
Let there be N processors that must arrive at the barrier, and let the average memory access time over the
network be 1 cycle as mentioned earlier. If i processors have reached the barrier, then an arriving processor can
start polling the barrier flag at least (N-i) cycles after reaching the barrier variable A. Waiting to re-poll the
barrier variable can be implemented as a processor loop that does not access memory, with the loop count set
as function of the waiting time.

4.2 Backoff on the barrier flag

We will also look at other methods that try to further reduce the number of spins on the barrier flag. Processors
can keep track of the number of times they have polled the barrier flag and correspondingly backoff by a linear
or exponential amount the longer they have waited. This code can be part of the barrier implementation in
software and needs no hardware support. We call this group of techniques backoff on the barrier flag. In all our
discussions of the performance of these latter methods, we assume that backoff on the barrier variable is also
applied.

In backoff on the barrier variable, if the interarrival times of processors are very large, then a processor might
wait its N-i cycles and start polling the barrier flag long before the last processor arrives at the barrier. In
these situations, we might wait longer before polling the flag, say (N-i)+C or (N-i)*C, where C is some positive
integer. While this might reduce the number of unnecessary network accesses, it might also cause the processor
to remain idle and miss accessing the barrier at the earliest it becomes available. We suggest some methods ofO choosing appropriate backoff parameters in Section 8.

In backoff on the barrier flag, there exists a danger of backing off much more than necessary. Clearly there is
a tradeoff between network access reduction and cpu idle time. If only a few processors are involved in a barrier
synchronization, then to reduce the hot-spot contention problem, one might prefer to take the hit in cpu idle
time for these contending processors so that the remaining processors in the system can perform unhindered.
As mentioned before, even a small percentage of memory references to the same 'hot" memory module can
result in severe congestion of the interconnection network, thereby reducing all processors' utilization [19]. Of
course, if all processors in a system are involved in a barrier synchronization, then the cpu idle time becomes
an important consideration.

Note that the backoff algorithm we use is deterministic, unlike the adaptive control algorithms used in [13,
12, 14] where the probability of a retry is adaptively adjusted. We choose this route for the following reasons: 1)
we want backoffs to be as efficient as possible. Our deterministic backoff can be computed in a few instructions
as opposed to the hundreds of instructions which would be necessary to compute retry probabilities adaptively
and determine whether or not to perform a retry every cycle; and 2) often when processors first contend
for a synchronization variable such as a barrier flag, their execution becomes serialized. Once serialized, the
processors experience no contention the next time they poll the barrier flag. Since all the processors backoff by
equal amounts the serialization is preserved. However, if the processors retry probabilistically, the serialization
is destroyed and could result in contention again.

Backoff decisions are made only when a process has just updated the barrier variable, and when the process
has read the barrier flag and the flag is not set. So, once a processor initiates a barrier read request, the
network controller for that processor attempts to read the barrier. If contention thwarts this attempt, the
access is repeated until the flag is read. We do propose some other schemes where the network controller can
back off if the congestion in the network is high.

For software-tree based implementations of barriers on non-cache-coherent multiprocessor as suggested by. Yew, Tseng, and Lawrie [25], our methods can still be used to reduce the spins on the intermediate nodes of

7

Executiou Barrier Execution Barrier
I ----- I I I .I-------

9 A a A

Figure 2: Intervals of execution and synchronisation.

the tree.
We evaluate these ideas using a barrier model through analysis and simulations and discuss the tradeof

between reduced synchronization accesses and wasted cpu cycles.

5 A Barrier Model

We will first describe the model that we use to evaluate barriers. We use two metrics: (1) the number of
network accesses per process in accessing the barrier variable and barrier flag; and (2) the number of cycles that
an average process spends from the time it arrives at the barrier to the time it is allowed to proceed from the
barrier.

Overall performance is impacted by the total network traffic, which includes the regular non-barrier traffic
and the barrier traffic. Because we currently do not model hot-spot traffic contention in the network, we
preferred to present the numbers for the barrier traffic alone, as average numbers for overall traffic might be
misleading in terms of the adverse effect of the barrier traffic focused on one memory module. We also provide
measurements of the time between barrier accesses in parallel applications. If necessary our barrier traffic
numbers can be amortized over this entire period to get the contribution of barrier traffic to overall average
traffic.

Let us define A to be the time interval during which prccesses can arrive at the barrier. A is the time from
the first processor's arrival at the barrier variable to the last processmor's arrival at the barrier variable. The
complementary interval between these two events we call E, i.e., the time between barriers in an application. If
we were to follow an application's execution through time, E and A would appear as shown in Figure 2.

We measured A for our three applications. In Table 3, A is defined to be the number of cpu cycles from the
time the first processor starts polling the barrier flag to the time the last processor sets the barrier flag. It is
interesting to note that the average A for SIMPLE and WEATHER did not increase as greatly as for FFT when
going from 16 to 64 processors. For highly uniform and load-balanced applications such as FFT the spread
among arrivals is primarily due to the serialization which takes place at the loop index assignment. Thus, FFT
was relatively more affected than the other applications wher the number of processors increased.

The reason E and A for SIMPLE and WEATHER with 64 processors are similarly sized intervals is because
the applications were not perfectly load-balanced. Not all the parallel loops contained a nice multiple of
iterations which could be distributed evenly among all processors. The few processors who did not get work
went straight to the barrier at the end of the loop.

The barrier model that we use for our analysis and simulations is actually slightly different and allows us
to model a varying number of synchronizing processors for a given value of A. Our measurements of A from
the applications were for a relatively large number of processors and this meuremment yields an indication of
the nmimum time span between the first and last arrival at a synchronization point in that application. It is
likely that a smaller number of processors can have an actual value of A much smaller than this maximum span.
Therefore, we now define A to be the interval during which procemrs ma arrive at the barrier, and N to be
the number of synchronizing processors. We further assume that each processor has a uniform probability of
appearing at any time instant during the interval A. From the uniform probability of arrival during the interval
A we must compute the average time span between the first and last arrivals out of a total of N arrivals. This
span must tend to A as N becomes large.

8

Application Processors A E
SI'E 1 7021 2007

_4 706 6195
WEATHER 16 82754 495298

64 82787 82716
FFT 16 237 228073

64 285 57997

Table 3: Average number of cycles, A, between first and lat arrivals at waits and barriers. E is the average umber
of cycles between the last arrival at the previous barrier (or wait) and the first arrival at the next barrier (or wait), ie.
it is the average time between barriers or waits.

FFT16
SIMPLEIG

s WTrHR16

6L"LL

4a

N

N

Figure 3: Arrival distribution of the processors involved in a synchronisation during the interval A.

To determine whether our assumption of uniform probability of arrival within A was reasonable we measured
the arrival times in our applications and plot the times in a histogram in Figure 3. It is easy to see that the
distribution is roughly uniform for FFT but is skewed towards the beginning and the end of the interval for
SIMPLE. This skewing occurs because of uneven load- balancing. We observed, however, in the last peak that
processor arrivals were still uniform over the last 200 references. There seenu to be no real pattern and our
assumption of a uniform distribution is not expected to significantly change our results for minor variations in
the arrivals. We also present additional validation of this model by comparing the predictions obtained through
simulations using the model and through measurements using the actual traces in Section 7.1.

5.1 Analytically Estimating Barrier Performance

We first present some simple calculations for extreme cases of A to determine the bounds on the possible savings
and to provide insight into our simulations.

For the case A = 0 (all processors arrive simultaneously) and no backofi, a processor will make on average
N + N + N/2 synchronisation references. Each processor makes on average N/2 references to get at the
barrier variable, pois the barrier flag N/2 references before the last processor gets through the barrier variable,
continues polling the barrier flag N times until the last processor can set the flag, and finally leaves after N/2

09

references, on average. We denote this model that assumes arrival at the same instant as Model 1.
If A >> N, there is practically no contention to get the barrier variable. In this case we assume that

processors appear at the barrier at a given time instant within the time interval A with uniform probability.
Let us first compute the average time span r between the first and the last arrival within the interval A given
N processors. The average time from the beginning of the interval to the first arrival can be shown to be
A/(N + 1), and the average time from the last arrival to the end of the interval to be AN/(N + 1). The required
time span r is the difference of the two, or

N-1
S= A -(1)

Observe that r approaches A as N becomes large. Thus, each processor make on average 7/2 + N + N/2 network
accesses during the synchronization phase. We call this Model 2.

Let us now cons.;Aer backoff on the barrier variable. In this technique, we backoff an amount proportional
to the value of the barrier variable. If i is the value of the barrier variable upon a processor's arrival, then the
processor can wait N-i cycles before beginning to poll the barrier flag. When A = 0, the average number of
synchronization accesses becomes N/2 + N + N/2 cycles because the processor does not start polling the flag
until the last processor gets through the barrier. A similar savings of N/2 is made for A >> N. With backoff
only on the barrier variable, the potential savings get smaller as A gets larger because the savings is a constant
N/2 no matter what A is.

Of course, a modified scheme that backs off some constant factor times the value in the barrier to account
for the non-unit time cost of accessing the barrier value, will provide a higher savings in network traffic, but
it also adds the potential of increasing cpu idle time. We still have more state information we can use in the
barrier: the number of times the barrier flag has been polled.

Rather than continuously polling the barrier flag until it is set, we backoff by some function of the number of
times we have already read the shared variable. Backoff on the barrier flag is especially useful when A > N. In
addition it can also help prevent interference with the final processor write request that will release the processes
waiting on the flag. From Model 2 for A >> N presented earlier, the potential savings in network accesses can
be as large as logj(r/2) for exponential backoff, where b is the basis of the exponential backoff algorithm used.
The backoff on the barrier flag can incur a high penalty - we might backoff to,, far, and waste cpu cycles. This
idea is tested out in simulations which are discussed in the next section.

Finally, we present som . network access rates for barriers on multiprocessors with hardware support for
barrier synchronization to provide a basis for comparison with the backoff schemes. Examples of such hardware
support are a bus to allow global invalidations (or global update) of cache entries, a directory with a full pointer
map, and special logic to implement a global synchronization gate [10]. If there are n processors the invalidating
bus incurs 3n+1 accesses for a barrier, n fetches of the barrier variable, n invalidations for n writes of the barrier
variable, n fetches of the flag, and the final global invalidation caused by the write into the barrier flag, yielding
roughly 3 accesses per processor per barrier operation. The updating bus (or an invalidating scheme that can
detect a fetch with intent to write) would use n lea than the previous scheme for roughly 2 bus accesses per
processor. Like the bus, the directory scheme must incur 3n on barrier variable accesses and invalidations, and
flag accesses, but lacking a global broadcast must incur an additional n for the individual invalidates on the
final write to the barrier flag, yielding 4 on average per processor per barrier operation. The Hoshino scheme
uses n accesses to the global synchronization gate and the final single broadcast message to the participants to
inform them to proceed, for a per-processor average of 1.

5.2 Simulation Methodology

We also use simulations to predict barrier performance with and without backoff. The barrier and network
models are the same as described previously. Our simulation methodology is described here.

In our simulations we set a value for A and simulated processors arriving with uniform probability during
this interval. Each processor first increments the barrier variable and then spins on the barrier flag until it is
set by the last arriving processor. Our previous data in Table 3 showed that for three applications the value
of E was between 6195 and 495298 cycles on average and the value of A was between 237 and 82787 cycles.

10

Clearly a wide range is possible and so we siAulated A with a wide range and we will show the results for A = 0,
100, 1000 for brevity. The important factor here is the relative size of the interval to the number of processors
involved in the barrier - as our results will show. We chose A's which span the entire spectrum.

Each simulation run measured the average numbcr of network accesses made by a process from the time it
arrived at the barrier variable to the time it proceeded from the barrier flag after having successfully tested the
flag and observing a true value. As mentioned before, the number of network accesses includes contention for
the barrier. We also measured the average time each process spent from the time it arrived at the barrier to
the time it left.

The simulation for each set of parameters is repeated 100 times and the numbers are averaged over all the
runs to compensate for the random variations due to the assumption of a uniform probability of arrival. We
verified that for each of the numbers we present the standard deviation was less than about 7% over the hundred
runs.

6 Evaluation

We evaluate the backoff methods using the models just described. This section first compares the predictions of
the model with simulations. We then estimate the potential savings in network traffic using backoff techniques
and discuss the tradeoffs involved in choosing the right parameters for the backoff algorithm.

6.1 Estimating the Potential Reduction in Traffic Using Analysis

We will first analyze the accuracy of our simple model in predicting the behavior of the barrier synchronization
under various load conditions. The model will indicate the range of performance gains that we might expect
using the backoff techniques and give insight into our simulation numbers.

In Figure 4 we compare the curves predicted by our model with simulation results and display the predicted
network accesses for three cases: A = 0, A = 100, A = 1000. We will only compare the non-backoff performance. for validation. The model can be modified to predict the performance of the backoff schemes, but for certain
cases it can get quite complicated. We will, however, mention what terms in the model equations get impacted
by the various schemes.

The network accesses for A = 0, A = 100 do not differ much overall, but the way in which they differ is
significant. For N < 32, A = 0 results in fewer accesses than A = 100 because when A = 0 processes do not
have to wait for the last processor to arrive at the barrier. For larger N, however, A = 100 starts performing
better because when the arrivals are spread out slightly, there is less contention in accessing the barrier. We
observe a similar behavior for A = 1000 as N approaches A. As expected when N is small, A = 1000 makes far
more accesses than A = 0 or A = 100.

The model is accurate as the figure shows. Model 1, as expected matches the curves for the A << N cases.
In particular, Model 1 closely approximates the A = 0 case, and yields a good match with the A = 100 curve
for N > 16.

Model 2 matches all the cases where A >> N. Specifically, the Model 2 curve for A = 1000 provides a near
perfect match with the corresponding simulation curve for all the values of N shown. The Model 2 curve for
A = 100 matches the simulation A = 100 curve for N < 128. When N is greater than 128, the model begins to
underestimate the cr* -ention in accessing the barrier variable. In general, the maximum of the predictions of
the two models yif!cW -, good fit with simulation in all ranges.

The model im- 'o- hat for the case where N > A, the potential reduction in network traffic is 20%. When
A > N, the potential ;."s are much more significant. If an exponential backoff method is used with constant
e, then if the network ,es of the flag were M, with backoff these accesses can be reduced to the order of
tog(M). Becat e thc .iting processes are not busily accessing the flag, the final process that must set the
flag can usually pcee'. to update the flag without contending with the other processes.

11

ISO-

I - a - a A-.cN (Model 1)
o- A=O (Sim)I--o A-100 (Model 2)

Im 0- --0 A-100 (Slm)

... AIOOO (Model 2)o.... o A.1000 (Sim)

M ~I i

1W

m1 : -

1 ... I

dee .. a.

Figure 4: Compari.ng the predictions of the analytical model ad predictions of bar-rier performance.

6.2 Simulation results

We now present simulation results for barrier synchronization performance. Figure 5 shows the net accesses
for N ranging from 2 through 512 when A = 0, i.e., when all processes arrive at the barrier at the same time.
The curve follows the model as shown before, which mesas that the net accesses increase as 5N/2, where N is
the number of processors. The curves for backoff on the barrier variable alone, and backoff on the barrier Rsg
with backoff constant 2, 4,ad 8 are also shown (as mentioned before, all out simulated came of backoff on the
barrier flag include first backing-off on the barrier variable.)

Figure 5 corresponds well with our model's prediction of an average 20% reduction of synchronization
references due to backing off with informtion rorn the barrier variable, i.e., the backoff on the barrier variable
gives 3N/2 network accesses. Not surprisingly, using binary backoff (or backoff with constats 4 or 8) on the
barrier rBag made no difference becase everyone reaches the barrier at the same time when A = 0. The backoff
on the barrier variable results in each processor spending very little time polling the barrier risg waiting for it
to change. For example, for the 64 processor case, a processor on average accessed the network 32 times to get
at the barrier variable, 96 times to test the RagK before it ws set, ad 32 times after it was met, for a total of
about 160 network accesses. With backoff on the barrier variable this number reduced to roughly 132, a 15%
reduction.

Backoff" with A=1000 often has a savings greater tha the log of the time inter-Ad of arrival at the barrier
because of reduced interference with the final write request into the rBag. This phenomenon also explains the
fewer network accesse for backoff with base 8 at A=1000 tha t A=0 for 32 processors. However, this svings
often comea at the expense of increased processor waiting times.

Figures 6 and 7 correspond to the network acesses by a proem for A = 100 and A = 1000 respeeively.
In Figure 6 for the backoff on the barrier variable we wee similar savings as in Figure 5 with A = 0 because
the interval A is still not very big compared to the number of processors. Note, however, the big reductions
that the exponential backoffe on the barrier Ragt gave. With A = 100, not everyone reaches the barrier Biag
simltaneously, so the ones who arrive early backoff by some exponential constant rather than continuously
polling the barrier Rsg. In the 16 processor caw with a base 4 backoff on the barrier rBsg, for example, we see a
savings of over 90%. In a 64 processor case with an base 8 backoff, the savins are in network acceses is about
60%.

12

J iN - WitAu Beciiff
--- iofflan BlWrlVar.
... Seos 2 Backaff an Bwnie Flag

IND....Bme 4 Backoff an Bante Flag
ON ... Sn* Bamdaokff an Banter Flag

AN

70

AN

1 * 4 0 is S2 04 is 20 512
0 ofproosswe

Figure 5: Performance of b..ckoff algorithms for A = 0.

lawI Without Bakoff
Backoff on Berdor Vat.I~ ~ B 8 Bdff an BwlrWFmg

40

IN.

1W 13

1300

I - Wthout lacoff
flg -" Baloff on Barlr Var.

1100Base29aotAfon Barrier Fa9

4- ///..

..- a, /

100~
/i

fm- y" 4 8 i W 64 al 20 sie ' I I ,I I - J -- -I* t" - I" I

06 ,Messom

Figure 7: Performance of backoff algorithm for A = 1000.

The proportional benefit due to backoff decreases as N increases because contention in the network to access
the barrier flag becomes a sizable portion of the network accesses. Recall that an unsuccessful network access in
accessing the barrier flag is still counted as a network access. (To reduce these unsuccessful accesses one might
use backoff techniques in the network accessing. This issue is discussed later.) For example, in the A = 100 and
N = 512 case with base 8 backoff, the reduction in network accesses was only about 30%.

For A = 1000 backoff on the barrier variable once again offers only modest savings. It is interesting to note
that for up to 32 processors this scheme offers virtually no savings, because not many processors are contending
on the barrier flag. The savings become more significant for larger numbers of processors because the backoff
on the barrier variable reduces the length of time that all of the processors spend polling the barrier flag. For
256 processors, for example, backoff on the barrier variable yields about a 15% improvement.

The savings due to exponential backoff on the barrier flag with A = 1000, however, are quite dramatic. Since
the processors potentially have a large interval to poll the barrier flag before everyone arrives, exponentially
backing off between testing the flag helps tremendously. In the 16 processor case with a binary backaff on
the flag, for example, we ee over a Q5% savings in network accemes. The 64 processor cae offers a similar
improvement. This reduction roughly approximates a log, reduction in the number of accesses, where b is tue
base used in the exponential backoff.

The small number of network accesses with backoff on the barrier flag for the cases A = 0 and N < 8,
A = 100 and N < 32, and A = 1000 and N < 128, compares reasonably with the network accesses in the bus-
based schemes, the broadcast based schemes, or the Hoshino scheme, with no extra hardware or the broadcst
requirement. However, when A is smaller or N is larger, the backoff schemes tend to do much worse than the
schemes that have special hardware support for synchronisation.

It is dear that backoff an the barrier flag is potentially much more beneficial for large A became most t the
network accesses that happen while the processes await the remaining processes to arrive at the barrier can be
obviated. These accesses correspond to the -ist term in the Model 2 equation. Backoff on the barrier variable
alone does not impact performance significantly when N is small compared to A, but can yield up to a 20%
improvement when N is large.

It is interesting to see that the network accesseincrease dramatically for N = 128 (A = 1000). It seems that
the backoff techniques are not as useful in this case (improvement is less than about 30% for N = 256 and backoff

14

"45 - WIoA Bedwf

-- - edw an Smoer IVa.
. me 2 Bldil m Boel Flag

Ism - esm 4 lade an Sulw RIe Fg

M uN

is

1

I.

I 4 8 is W S Is I SIR

Figure 8: Processor waiting times for backoff algorithms for A = 0.

with constant 2), although for these cases barrier synchronization is probably inappropriate anyway without
some form of distributed software combining [25]. Our backoff methods can still be used on the intermediate
nodes of the combining tree. The reason for the sharp increase can be described as follows: When the number of
processors is small compared to A, a process can get access to the barrier flag usually within one network access.. However, when the number of processors is not small compared to A, then a process will suffer contention in
trying to access the barrier flag, and contention shows up as repeated network accesses.

In both cases the network accesses can be dramatically reduced for N < 128. For larger N, when the
contention due to multiple processors simultaneously accessing the barrier increases, the percentage benefits
decrease. Note we do nothing about these contention accesses. A method described in the next section will
show a method to reduce this problem.

Our simulations show that using a backoff method on both the barrier variable and the barrier flag can
yield savings from 20% to over 95% of the network accesses. However, the reduction in network traffic using
the backoff methods does not always come for free. Because a backoff method can cause unnecesary processor
idle time, we must carefully analyse the delays that thee techniques can introduce. The occurrence of delays
alone might not be a major cause for alarm, because these delays correspond to the delays suffered by the
synchronizing processes alone, and do not affect other processes. The next section addresses these isues.

7 Discussion of Tradeoffs

An appropriate backoff constant must be determined by trading off the reduction in network accesses with the
potential increase in the number of cycles the cpu spends idling during backoff.

Figures 8 through 10 correspond to the average waiting times for each of the processes for A = 0, 100, 1000
respectively. The waiting time for a process is computed as the number of cycles between first arriving at the
barrier to when the process finds the barrier lag set. The graphs denote the four cases shown previously, that
is, without backoff, with backoff on the barrier variable and with exponential backoff on the barrier flag with
bases 2, 4 and 8.

We see that in all cases binary backoff provides a favorable tradeoff between large reductions in synchronisa-
tion references and contained increases in wasted cpu cycles. In the sixty-four processor case when A = 1000,

15

--- = *WNa BA Var.
Ga 4mSBadff an Ow m Fbq

IO

1 2 4 8 is so U ip 2- SIR
fepfS"M,

Figure 9: Processor waiting times for backoff algorithms for A 100.

2 M - WKou Badciff
- Badwff an Bonir ..

I;:
wM -. .

*erpmmsi
Figure 10: Processor waigitimes for bacoff algorithms for A = 1000.

16

for example, the binary backoff decreased synchronization accesses by 97% while increasing the time spent at
the barrier by only 16%.

For A = 0, and A = 100, the waiting times for all the four curves are similar because the opportunity for a. large backoff time is rare given that all the processes arrive within a 100 cycles of each other. The waiting time
in these cases is proportional to the number of network accesses, as it is precisely these network accesses that
give rise to the delays at the barrier. This intuition is corroborated by the strong resemblance of the curves in
Figures 6 and 9.

The average time spent idling can increase dramatically when A is large because of the possibility of large
backoff times. This opportunity is greater for the base 4 and base 8 exponential backoff schemes. As an example,
for 64 processors and A = 1000, the waiting times without backoff and with base 8 exponential backoff on the
flag are 576 and 2048 respectively - depicting an increase of over 350% due to backoff. Even in this case, one
important benefit is that the barrier accesses are both reduced and spread out uniformly over time.

When the arrival interval A is much larger than the number of processors, and a high processor utilization
is important, one can modify the backoff algorithm as follows. If the backoff amount crosses some preset
threshold, then it might be worthwhile to place the process on a queue pending the arrival of the last process.
The enqueuing operation incurs a constant overhead that might be unnecessary should the processes arrive
within a small interval. Because A cannot often be determined a priori, such a method of deciding when to put
a process to sleep might be promising.

Interestingly, for the A = 1000 case, the average waiting times per processor reach a maximum around 64
processors and then actually decline as N increases. When the number of processors is small compared to A,
the processors can test the flag without excessive contention with other processes. After each unsuccessful test,
they back off, and the backoff time is exponentially related to the number of times they unsuccessfully back off.
Because the number of such accesses can be quite large when contention is low and A is large, there arises the
potential for overshooting the point where the flag is set by a large amount. Conversely, when the number of
processors is comparable to A (or greater than A), the number of times a process manages to access the barrier
flag is small due to contention with other processes. In such cases, the network access count increases, but the
average waiting time per processor decreases. Referring to Figures 7 and 10 the decrease in the waiting time
for the backoff curves closely corresponds to the increase in network accesses.

7.1 Summary

A few general observations can be made at this point. When the number of processors participating in the
barrier synchronization is small compared to the time of arrival of the processors, significant reduction in
network accesses can be achieved without compromising processor utilization due to backoff waiting for a small
backoff base. In such caes, the number of synchronization network accesses is similar to those made in schemes
that use special hardware support such as synchronization buses, broadcasts, or global synchronization logic.
When the number of processors is large, and if they arrive within a relatively small interval of time, a penalty
in either network accesses or processor idle time must be paid. However, depending on the situation, one can
be traded for the other.

Our discussion thus far focused on the traffic and the waiting time during the execution of the barrier. We
can also look at the effect on average traffic with the caveat that such smoothing might tend to make barrier
accesses seem less disruptive. We measured the average network data traffic per processor in FFT (assuming
separate packet-switched networks foi the request and response), excluding synchronization references, to be
0.133 network accesses per cycle. Using results from our simulations of the barriers with A = 100 (roughly
approximating the barrier interval A in FFT with 64 processors) we compute the extra traffic due to barriers
when the barrier variable and the barrier flag are not cached. Adding these synchronisation references to our
base network traffic, the average traffic increases to 0.136 network accesses per cycle (assuming that the base
traffic in A is also 0.133). Now, with a base 8 exponential backoff we find that the average network traffic drops
to 0.134. This decrease is significant considering that these savings come from reductions in synchronisation
references which are effectively hot-spot references. Moreover, we observe in this case that the base 8 exponential
backoff also results in a 10 percent decrease in waiting time at the barrier. Both average network traffic and
waiting time at synchronizations are reduced using backoff methods for our FFT application.

17

As a validation of our barrier s;- iation model, we also compared the average network traffic in FFT
when synchronization references are not cached with the average network traffic predicted by our barrier model
simulations. The numbers correlated well, with barrier simulations predicting 0.136 net accesses per cycle per
processor, while measurements from FFT yielded 0.135.

We analyzed the tradeoff between network accesses and processor idle time due to backoff. In general,
reducing the number of network accesses might be more important than reducing the processor idle time
because reducing the number of network accesses also reduces the processor idle time because of the reduced
contention in the network, and because of decreased competition with the regular network activities of the other
processors not involved in the barrier.

8 Optimizations and Extensions

This paper focused on the effect of adaptive backoff techniques on barrier synchronization. The same methods
can be applied in several other cases. For example, this technique can be applied to processors waiting on a
resource. Processors waiting to access a resource can backoff testing the resource by an amount proportional
to the number of processors waiting. Adaptive techniques will likely perform much better in this situation
than with barrier synchronizations because the amount of time a processor has to wait at a resource is directly
proportional to the number of processors waiting (with the constant of the proportion being the average amount
of time the resource is held by each processor). In a barrier situation, the amount of time a processor has to
wait at the barrier flag is not necessarily directly proportional to the number of processors which have reached
the barrier.

Another similar method that can reduce contention in unbuffered circuit-switched networks is to use adaptive
backoff methods for network accesses also. If a network access suffers a collision, instead of resubmitting the
request immediately, one can backoff some amount first. This backoff amount can be determined in one of
several ways:

(1) For example, a network supplied status byte can be used to determine the stage at which the collision
occurred. The backoff amount can be proportional to the network depth traversed by the message. The
rationale for this choice is that the deeper a message travels, the greater the network resource that it ties up
in its unsuccessful attempt. Conversely, if a collision occurs within a few stages of travel into the network, the
access can be resubmitted sooner as the network resources tied up will be smaller.

(2) An argument for making the backoff amount inversely proportional to the network depth traversed can
also be made. The deeper a message travels before colliding, the less congested the network is expected to be,
and so the access can be retried sooner. Simulations can be used to study the tradeoffs involved in these two
opposing arguments and suggest a practical backoff algorithm.

(3) On a collision, a network access might wait some constant time proportional to the average round trip
time to memory through the network before resubmitting the request.

(4) The number of previous unsuccessful tries can be used as a parameter to an exponential backoff algorithm.

(5) In a packet-switched network, Scott and Sohi [20] make use of the state information found in the queues at
the memory modules to signal processors to stop making requests in congested situations. This state information
could also be used to have the processors back off sending requests by some time proportional to the length of
the queue.

As we mentioned before, the adaptive backoff techniques that we evaluated do not require special hardware
support. The synchronization software that determines which backoff method is used can be designed in one
of several ways. One can be conservative and use a simple adaptive backoff on the barrier variable and a
binary backoff on the barrier flag. The programmer can write the algorithms into the synchronization macros
or routines from a knowledge of the application. The compiler can determine appropriate code sequences for
the barrier synchronizations based on expected behavior of loops and the amount of visible parallelism. One
can get more venturesome by using profiling to determine the temporal behavior of the application and the
number of processors participating in the synchronization and pass this information on to the compiler for
further optimization. One case where such information might be useful is in determining when to (or whether
to) queue a process to await a signal when the barrier flag is set rather than spinning on the network.

18

9 Conclusions

Network bandwidth is a precious resource in large-scale shared memory multiprocessors. In this paper we. present a group of adaptive synchronization techniques aimed at reducing the number of network accesses
due to synchronizations. We model adaptive techniques for barrier synchronizations and show that in mome
cases these techniques can achieve dramatic savings at minimal extra cost, while in other situations network
accesses can be reduced while trading-off processor utilization of synchronizing processors. These techniques
are implemented in software, and they can be optimized for varying applications.

The central idea behind an adaptive synchronization technique is to make use of information available from
synchronization state and from past history to reduce the number of idle synchronization spins. The general
technique is useful for barrier synchronizations as well as other situations such as reducing accesses made by
processors waiting on a resource or reducing contention in unbuffered circuit-switched networks.

10 Acknowledgements

We thank Kimming So, Harold Stone, and Prabhakar Raghavan for their insights contributed during discussions
on many of the ideas presented in this paper. Kimming So aided us greatly in obtaining traces from PSIMUL.
We also thank Pat Teller from NYU who provided the SIMPLE and WEATHER programs parallelized under
the Epex environment. The research reported in this paper was funded by the Defense Advanced Research
Projects Agency under contract # N00014-87-K-0825, and by IBM under a joint research program.

A Tracing Methodology

The multiprocessor traces we used for our simulations were generated using a "post-mortem scheduling" tech-
nique in which a multiprocessor trace is created from a memory reference trace of a uniprocessor execution of
a parallel application. Key to the scheme is that the uniprocessor execution trace include information about. synchronization events in the code. Using this record of synchronization events, a scheduler can schedule tasks
from the uniprocesor execution trace into a multiprocessor trace in which the synchronization sections are
simulated.

This methodology can be used for a variety of programming paradigms. The two applications we traced are
both written in Epex/Fortran using the Single-Program-Multiple-Data (SPMD) computational model [6]. In
this model all processes are created at the beginning of the program and execute the same program. Though
all processes are executing the same program, synchronization constructs embedded in the code dynamically
determine which sections of the program processors execute. The SPMD model for Epex/Fortran contains
serial and parallel sections along with replicate sections, which are executed by all processors. We use this
model in the FFT, SIMPLE and WEATHER applications because it is a good method by which to exploit
the parallelism in these scientific applications without making major changes (likely modifying the fundamental
algorithms used) to the already existing uniprocessor code.

The post-mortem scheduler simulates synchronization events in the application using some prescribed syn-
chronization implementation. We simulate fetch-and-adds (F&A), a synchronization primitive used to ex-
clusively update a location in memory, with an atomic read-modify-write operation. In EPEX/FOIRRAN,
synchronization constructs at the beginning of parallel and serial sections perform F&As on shared variables to
determine task assignments to proceses. Barriers and waits at the end of ioops and serial sections are simulated
by arriving procesors first incrementing a shared variable through a F&A and then polling a barrier flag until
it is set by the last arriving processor.

The uniprocemor memory reference trace with synchronization information was produced by PSIMUL [21],
a multiprocessor simulator. PSIMUL generates IBM S/370 memory reference traces and has the capability of
marking down into the trace the type of synchronisation constructs it traverses while tracing the application.
Our scheduler simulates a parallel execution of this trace, assigning processors references from the trace on a
round-robin basis. We assume that processors make a memory reference every cycle, which is an approximation
because the S/370 instruction set contains register-to-register instructions.

19

The Fast Fourier Transform (FFT) [4] application, written at IBM, is a parallelized version of a Radix-2
FFT computation in two variables on a random array of complex numbers. Since we used a problem size of
128, the parallel loops working on the 128x128 matrix contained 128-way parallelism. This provided for an
even distribution of work among processors for the 64 processor simulations. We traced two passes of the TF2
routine, which computes the FFT, through the matrix, first by rows and then by columns. FFT is an example
of a highly uniform parallel application in which processors execute parallel loop iterations of approximately
equal length and arrive at barriers within close intervals.

The SIMPLE code models hydrodynamic and thermal behavior of fluids in two dimensions [5]. Finte
difference methods are used to solve the equations of inviscid compressible hydrodynamics and simple ieet
conduction. The problem is formulated on an NxN mesh. Once again, we used a problem size of 128, but
many of the parallel sections in SIMPLE do not contain fully 128-way parallelism. The resulting distribution
of work among the 64 processors in our simulations is uneven. Sixty-four processors is, however, the optimal
number of processors to execute this application, given the problem size. Another important difference in this
application from FFT is that SIMPLE contains a number of small and large parallel loops (20 in all) rather
than the few large parallel loops that FFT contains. SIMPLE also contains many small serial sections (5) in
which one processor executes the serial section while all the rest wait at the bottom. The resulting difference is
that SIMPLE contains far more synchronization activity than FFT. Parallel loop iteration lengths in SIMPLE
vary occasionally, also contributing to more synchronization accesses due to more processor waiting at the end
of a parallel loops with uneven loop iterations. SIMPLE would be representative of a typical application which
allows neither worst-case, nor best-case performance giving our SPMD computational model.

The WEATHER code forecasts the weather by modeling the state of the atmosphere as described by the
NASA GLAS/GISS fourth order general circulation model of a three-dimensional atmosphere [11]. The algo-
rithm breaks the atmosphere down into a three-dimensional grid encircling the globe and computes the value
of several interrelated state variables using finite difference methods. In the model simulated by WEATHER,
the atmosphere was represented by nine regions of fixed altitude and a grid uniformly spread across longitude
and latitude on each layer. In the runs we traced, the grid was 108 by 72. Parallel sections of the COMP1
routine, which calculates horizontal and vertical advection differences in the atmosphere, were traced. The
load-balancing in this application is far worse than in FFT and SIMPLE, given that it was simulated with 64
processors. Since the parallelism is derived by simultaneously working on rows/columns of the atmosphere grid,
and the dimensions of the grid are not multiples of 64, many processors are forced to idle in parallel sections
which are followed by barriers. Fifty-four processors would be a more optimal number of processors to execute
this application with the problem size used. Thus the load balancing in our three applications showed a wide
range.

References

[1] Norman Abramson. The ALOHA System - Another alternative for computer communications. In Proc. of
the 1977 Fall Joint Computer Conf, pages 281-285, 1977.

[2] Anant Agarwal, Richard Simoni, John Hennessy, and Mark Horowitz. An Evaluation of Directory Schemes
for Cache Coherence. In Proceedings of the 15th International Symposium on Computer A rchitecture, IEEE,
New York, June 1988.

(3] Lucien M. Censier and Paul Feautrier. A New Solution to Coherence Problem in Multicache Systems.
IEEE Trasactions on Computers, C-27(12):1112-1118, December 1978.

[4] J. W. Cooley and J. W. Tukey. An Algorithm for the Machine Calculation of Complex Fourier Series.
Math. Comput., 19:297-301, April 1965.

[5] W. P. Crowley, C. P. Hendrickson, and T. E. Rudy. The Simple Code. Technical Report, Lawrence
Livermore Laboratory, February 1978.

[6] F. Darems-Rogers, D. A. George, V. A. Norton, and G. F. Pfister. Single-Program-Multiple-Data Comp -
tational Model for EPEX/FORTRAN. Technical Report RC 11552 (55212), IBM T. J. Watson Research
Center, Yorktown Heights, November 1986.

20

[7] Daniel Gajski, David Kuck, Duncan Lawrie, and Ahmed Saleh. Cedar - A Large Scale Multiprocessor. In
International Conference on Parallel Processing, pages 524-529, August 1983.

[8] James R. Goodman. Using Cache Memory to Reduce Processor-Memory Traffic. In Proceedings of the 10th. Annual Symposium on Computer Architecture, pages 124-131, IEEE, New York, June 1983.

[9] A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L. Rudolph, and M. Snir. The NYU Ul-
tracomputer - Designing a MIMD Shared-Memory Parallel Machine. IEEE Transactions on Computers,
C-32(2):175-189, February 1983.

[10] Tsutomu Hoshino. PAX Computer. High-Speed Parallel Processing and Scientific Computing. Addison
Wesley, Reading Mas., 1989. Editor Harold S. Stone.

[11] Eugenia Kalnay-Riva and David Hoitsma. Documentation of the Fourth Order Band Model. Technical
Report, NASA Modeling and Simulation Facility Laboratory for Atmospheric Science, NASA/Goddard
Space Flight Center, Greenbelt, MD, 1979.

[12] L. Kleinrock and Y. Yemini. An Optimal Adaptive Scheme for Multiple Access Broadcast Communication.
In Proceedings ICC, June 1978.

[13] S. S. Lam. A Carrier Sense Multiple Access Protocol for Local Networks. Computer Networks, 4(1),
January 1980.

[14] S. S. Lam and L. Kleinrock. Packet Switching in a Multiaccess Broadcast Channel: Dynamic Control
Procedures. IEEE Transactions on Computers, C-23, Sept. 1975.

[15] E. L. Lusk and R. A. Overbeek. Implementation of Monitor with Macros: A Programming Aid for the
HEP and other Parallel Processors. Technical Report ANL-83-97, Argonne National Laboratory, Argonne,
Illinois, December 1983.

[16] R. Metcalfe and D. Boggs. Ethernet: Distributed Packet Switching for Local Computer Networks. Com-
munications of the A CM, 19(7), July 1976.. [17] Janak H. Patel. Analysis of Multiprocessors with Private Cache Memories. IEEE Transactions on Com-
puters, C-31(4):296-304, April 1982.

[18] G. F. Pfister, W. C. Brantley, D. A. George, S. L. Harvey, W. J. Kleinfelder, K. P. McAuliffe, E. A.
Melton, A. Norton, and J. Weiss. The IBM Research Parallel Processor Prototype (RP3): Introduction
and Architecture. In Proceedings ICPP, pages 764-771, August 1985.

[19] G. F. Pfister and V. A. Norton. 'Hotspot' Contention and Combining in Multistage Interconnection
Networks. IEEE Transactions on Computers, C-34(10), October 1985.

[20] Steven Scott and Gurindar Sohi. Using Feedback to Control Tree Saturation In Multistage Interconnection
Networks. In Proceedings 16th Annual Int'l Smp. on Computer Architecture, June 1989.

[21] K. So, F. Darema-Rogers, D. A. George, V. A. Norton, and G. F. Pfister. PSIMUL - A System for Parallel
Simulation of Parallel Systems. Technical Report RC 11674 (58502), IBM T. J. Watson Research Center,
Yorktown Heights, November 1987.

[22] Peiyi Tang and Pen-Chung Yew. Processor Self-scheduling for Multiple-Nested Parallel Loops. In Proceed-
ings of the 1986 International Conference on Parallel Processing, pages 528-535, August 1986.

[23] Charles P. Thacker and Lawrence C. Stewart. Firefly: a Multiprocessor Workstation. In Proceedings of
ASPLOS II, pages 164-172, October 1987.

[24] Wolf-Dietrich Weber and Anoop Gupta. Analysis of Cache Invalidation Patterns in Multiprocessors. In
Third International Conference on Architectural Support for Prolramming Languages and Operating Sys-
tem (ASPLOS III), April 1989.

[25] P.-C. Yew, N.-F. Tseng, and D. H. Lawrie. Distributed Hot-Spot Addressing in Large-Scale Multiprocessors.
IEEE Transactions on Computers, C-36(14):388-395, April 1987.

21

